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Abstract

Model-Based Enhanced Operation of Building Convective Heating Systems & Active

Thermal Storage

Jennifer Date, Ph.D.

Concordia University, 2021

This thesis presents an experimental and theoretical study of a reduced-order modelling

methodology and dynamic response of convectively heated buildings and active thermal storage.

A methodology was developed for the generation of control-oriented building models which

can be used within model predictive control (MPC) or other model-based control strategies

to satisfy occupant comfort and improve building-grid interaction. A methodology to identify

and evaluate MPC strategies is presented to improve a building’s energy flexibility. There is

an emphasis on modelling building thermal mass and a dedicated thermal storage device. The

two applications for reduced-order thermal modelling (buildings and dedicated active thermal

energy storage devices) require different modelling approaches for control applications. Several

case studies are introduced and are typical Québec construction with convective-based heating

systems: a detached low-mass house, a low-mass retail building, and a warehouse (with active

thermal storage device).

The residential building study outlined a methodology for multi-level control-oriented mod-

elling with several zones and multiple floors. This multi-level approach allows the user to “zoom

in and out” so that models at each control level remain manageable. In the second case study,

implementation of MPC was presented for a conventional bank building to reduce the yearly

utility bill and avoid the summer peak load penalty. A cost savings of 25% on the yearly electric

utility bill and a peak power reduction of 38% were achieved. With the new optimized opera-

tion, the cost per square meter for the bank would decrease from $30.19/m2 to $22.57/m2, or a

yearly savings of $7.62/m2.

The last case study comprises a 1650 m2 warehouse equipped with a dedicated active high-

temperature thermal energy storage device. A methodology was presented for the development
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and analysis of control-oriented models for enhanced operation of the electric thermal storage

device. The goal was to maximize the building energy flexibility the building could provide to

the grid by evaluating the Building Energy Flexibility Index (BEFI). A BEFI of 55% to 100%

was achieved. The average demand during the critical times was reduced between 36 kW and

65 kW and the utility cost to the customer can be reduced by 12-30%.
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Chapter 1

Introduction

Construction and operation of buildings are among the largest energy consumers in the world, as

they represent 36% of global final energy use and 39% of energy-related carbon dioxide (CO2)

emissions in 2017 (IEA, 2018). The operation of a building is directly affected by the fluctu-

ations in weather and occupancy that are then reflected in variations in the space conditioning

loads that buildings impose on the utility grid during daytime and nighttime. To deal with these

fluctuations in an optimal manner, a good understanding of the thermodynamic behaviour of

buildings and a focus on energy management is necessary.

One of the critical challenges associated with buildings and renewable energy is that the

peak consumption periods seldom coincide with the availability of power generation from re-

newable sources. In the case of the utility grid in California, this supply-demand mismatch

has been illustrated in Figure 1.1 by the concept of the California Independent System Oper-

ator (CAISO) “duck curve” (Denholm et al., 2015): peak consumption periods (morning and

evening) do not coincide with the period of maximum generation which occurs in the middle of

the day. Furthermore, the price and the available power supplied by the electric grid are usually

significantly variable.

On the other hand, the province of Québec faces a different problem with electricity supply

and demand mismatch during the winter due to space heating, rather than summer space cooling.

In Québec, where more than 99.8% of the electric power is generated through hydroelectric

plants of roughly 37 MW (Hydro-Québec, 2016), it is not unusual to find commercial buildings

using electricity as their only energy source.
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Figure 1.2: Peak electricity demand in Québec (example representation)

buildings (Figure 1.3).

Building load flexibility could be described as the ability to reduce the building energy

demand and/or peak load, during a certain period of a day, through shifting or postponing con-

sumption compared to a reference scenario. Building load flexibility – which may be enhanced

by the incorporation of energy storage devices (Jensen et al., 2017, Reynders et al., 2018) –

coupled with model-based control strategies is a key factor to optimize energy consumption to

match the availability of renewable energy or available supply from the grid. The implementa-

tion of model-based control is an essential strategy for the optimization of energy consumption

while preserving occupant comfort. Effective control strategies should be able to manage the

various systems of a building, including thermal and/or electrical storage devices, and should

take advantage of the thermal inertia of the building structure (Junker et al., 2018, Liu & Heisel-

berg, 2019, Reynders et al., 2018, 2017).

This work focuses on the development of control-oriented thermal models for buildings

with convective heating systems, and convective active thermal energy storage devices, as well

as the development of improved control strategies. These models are intended to be used within

a model-based control strategy methodology for energy and load management in typical Quebec

buildings during the heating season. While most research efforts have focused on improvements

to the building envelope and energy-efficient HVAC systems, model-based control strategies
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be identified based on knowledge of the geometry and materials of the building and through

real-time calibration with measured data. Key model parameters may also be estimated using

optimization algorithms.

1.1 Motivation and objectives

1.1.1 Problem statement

Theoretical background and research in MPC and model-based operations for buildings is well

developed, with many strong and active research teams working in this area. However, exam-

ples of practical and robust model-based control strategies and methodologies that have been

implemented in the building industry are still very limited.

The general objective of this study is to develop a robust and applicable model-based con-

trol methodology, with a foundation on state-of-the-art model-based control research findings

and translate this foundation to operational rules that can be implemented in the existing build-

ing stock with convective heating systems. Linearized building thermal models are used, rules

are developed for typical Quebec buildings, and the generalization scope for these strategies is

discussed. While machine learning techniques are increasingly used to create control-oriented

models and are expected to play a key role in the foreseeable future, purely data-driven mod-

elling approaches are outside the scope of this thesis and reduced-order physics-based models

(grey-box models) are employed in this work.

The phenomena and processes that occur in buildings typically are non-linear and discon-

tinuous and require complex physical models (“white-box”) or advanced data-driven models

(“black-box”) to accurately represent such detailed processes. However, the computational de-

mand is increased in MPC when more complex models are employed, through increased sim-

ulation time as well as not being suitable for efficient optimization algorithms, which could

be replaced with gradient-free algorithms (Drgoňa et al., 2020). Also, developing a detailed

physics-based model of a building can be much more time-consuming and may require even

more expert knowledge in the heat transfer and/or building performance simulation tools. It is
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therefore important that an acceptable compromise between model accuracy and simplicity is

achieved.

Black-box models learn the building dynamics from measured data and make no prior

assumptions of the physical relationships. The main advantages of the black-box modelling

approach are that there is usually a lower associated development cost and that any signal can

be an input or output, as there is no direct modelling of physical phenomena involved. One

disadvantage of black-box models, however, is that they require extensive high-quality training

data (Afroz et al., 2018) and are not reliable in operational situations outside of the training

range (Afram & Janabi-Sharifi, 2014).

Special attention is required with data sets intended for training data-driven models, as

poor or incomplete data may not capture all important system dynamics. Training data can be

obtained from a detailed model (usually for research purposes) or from actual measurements

(implementation purposes). With the first approach, different excitation signals can be intro-

duced at no additional cost, however, an initial reliable and detailed model is required. In the

second approach, when employing real measurements, the input excitations for obtaining suffi-

cient training data are limited by the constraints of the current HVAC system operation.

When the main objective is designing building models suitable for control, the generated

inputs must cover the control-relevant options of operating situations. Many system identifi-

cation studies have used data from normal building and system operation; however, this data is

routinely inadequate for a model to learn from and reliably estimate the building’s behaviour and

operational potential (Prı́vara et al., 2013). This is due to only a small portion of the possible

HVAC operating range being used during normal operation. Consequently, the other under-

utilized operating conditions remain unexplored in the data by the model and thus cannot be

learned. This is an important consideration for MPC, as often the identified optimized operating

strategy is new and/or has never been implemented before in the building.

Modelling is one of the main barriers to implementing MPC in real buildings. The choice

of a particular modelling approach (white-, grey-, or black-box) mainly depends on the available

resources and information about the building and/or system. If detailed technical documenta-

tion of the building and expert physics-based modelling knowledge is available, then a white-box

modelling approach may be desirable, as it leads to reliable and interpretable models which are
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based on physics, and with minimal requirements on sensor data quality/quantity (Afroz et al.,

2018). While, if reliable and abundant sensor data are available, modelling using a black-box ap-

proach provides predictions with better accuracy and the model structure can be compatible with

different buildings and systems (Afroz et al., 2018). In industry, there is a trend towards data-

driven modelling approaches as they can be more easily automated and do not need an expert

level of knowledge of the underlying heat transfer phenomena. Lastly, if adequate information

about the building and HVAC system is available, along with useful historical measurements,

the grey-box modelling approach may be more advantageous, as it comprises useful attributes

from both white- and black-box approaches (Afroz et al., 2018).

Incorporating the principles of building energy flexibility together with on-site energy stor-

age devices and advanced or optimized control strategies is essential for optimizing energy con-

sumption and matching demand with the availability of energy from the grid at critical times, and

the development of a suitable control-oriented thermal model is crucial for improving building

energy flexibility and building-grid interaction. In this work, the focus was put on the grey-

box type of modelling approach for building thermal modelling of buildings with convective

heating systems and modelling for thermal energy storage devices. The two applications for

reduced-order thermal modelling (buildings and thermal energy storage devices) require dif-

ferent modelling approaches for control applications. It was observed that many available case

studies – which are representative of typical Quebec buildings – have adequate sensor points and

data for creating a low-order model suitable for control, and grey-box modelling has strengths

from both physics-based modelling, while also incorporating machine learning or optimization

in the model development and calibration. However, further work could include investigating

how purely data-driven models perform with the typically available data in representative Que-

bec buildings. Also, as buildings change, in terms of operation, physical elements, or occupancy

schedules, a grey-box model can be easily modified to account for these changes. It is also ex-

pected that in the future, measured real-time data from the BAS will play an important role in

the continuous calibration of the low order models that have been developed.
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1.1.2 Objectives

The goal of this research work is to develop a methodology for the generation of control-oriented

building models which can then be used within MPC or other model-based control strategies for

eventual implementation into the building HVAC industry that can satisfy occupant comfort and

improve grid interaction. A focus on developing a methodology to identify and evaluate MPC

strategies that improve a building’s energy flexibility or building-grid interaction capabilities.

The focus of this research is on the winter operation of archetypal buildings found in Que-

bec, mainly low-mass and low-rise buildings. Radiant floor heating and other types of heating

systems are applicable to these buildings; however, only convective heating systems will be con-

sidered in this work and in the case studies. Also, there is an emphasis on modelling thermal

mass and thermal storage devices, while devices containing advanced materials such as phase

change materials (PCM) are not considered.

Specific objectives of this study are:

• To develop and apply reduced-order models for model-based control of convective heating

systems.

• To develop model-based predictive control strategies to optimize comfort and load man-

agement in typical Quebec buildings with active and passive thermal storage and convec-

tive heating systems.

• To apply the developed model-based control algorithms in typical case study buildings

and study the benefits of MPC (and other model-based control approaches) applied to

these building types.

Case studies Several case studies, shown in Figure 1.4, where measured operational data from

the buildings can be used for model development and calibration, are used in this research. The

chosen buildings are typical construction with convective-based heating systems widely seen

throughout Quebec: a detached low-mass house, a low mass retail building, and a warehouse

(with incorporated active thermal storage device).

8





Chapter 1. Introduction

• Chapter 3 provides the theoretical background for this research regarding thermal mod-

elling methods such as finite difference methods, thermal networks, optimization and

MPC.

• Chapter 4 describes the general methodology employed in the development of the control

algorithm and models useful for controls for convectively heated houses. This chapter also

presents a residential building application and small commercial building application as

demonstration projects. The results and contributions from this work are discussed.

• Chapter 5 presents a methodology for reduced-order thermal dynamic model develop-

ment of an electrically-heated high-temperature thermal storage device with heuristic con-

trol scenarios to improve peak demand of the building.

• Chapter 6 introduces the Building Energy Flexibility Index (BEFI) and a methodology

for MPC and Contingency studies with an active thermal storage device and associated

warehouse building.

• Chapter 7 presents the conclusion of the thesis, contributions, and suggestions for future

work.
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Literature Review

Today, there is a growing trend to use Building Energy Management System (BEMS) in build-

ings to make the indoor built environment more comfortable and to use energy in a more efficient

way. Currently, BEM’s lack a building heating model and the control is often reactive and based

on the current temperature of zones. The integration of a robust building heating model, along

with future weather and occupancy forecasts into BEMS may assist in monitoring and planning

the heating of buildings in an optimal way.

This chapter discusses existing literature on the topics of building thermal modelling,

model-based predictive control, model parameter identification, building energy flexibility, and

previous work on thermal energy storage, with specific interest on electrically-heated high-

temperature energy storage (an economical alternative to batteries and a suitable storage device

for buildings in Canada or other cold climates). In section 2.1, an overview of building thermal

modelling approaches is presented. In section 2.2, reduced-order models (ROM) for building

thermal modelling and modelling for building controls are presented. In section 2.3.1, work on

MPC for buildings is presented. Section 2.4 introduces research work done on building-grid in-

teraction and the concept of building energy flexibility, and section 2.5.1 outlines previous work

on thermal energy storage devices suitable for applications in buildings. The following literature

review outlines meaningful research work that has been developed for the areas of building ther-

mal modelling and modelling for thermal energy storage devices – the first being considered as

a passive storage medium, while the latter is an active storage medium – where the two (passive
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and active) require differing modelling approaches for control applications. The literature re-

view includes work on non-convective heating and/or cooling studies to give a general overview

to the topic, however, the scope of this thesis is solely on zones with convective heating systems

and an air-based (convective) electrically-heated high-temperature thermal storage device.

2.1 Building thermal modeling approaches

The research field related to building modelling and energy performance prediction is very pro-

ductive, involving various research domains (Foucquier et al., 2013). Among them one can dis-

tinguish physics-related fields, focusing on the resolution of equations simulating building ther-

mal behaviour and mathematical-related ones, consisting in the implementation of a prediction

model with the use of machine learning techniques. There is a third area where physics-based

and mathematical-based techniques are combined, commonly referred to as grey-box models.

Obtaining a model that provides reliable predictions and can be implemented in real con-

trollers is crucial for achieving optimal building performance. It is rather difficult to directly

use sophisticated building models (EnergyPlus) for predictive control strategies as they are far

too complex, their execution times become intolerable, and many inputs are required which

are often not known. Models for control purposes must be sufficiently simple, but also robust

and accurate enough for the desired application. Much research has focused on resistance-

capacitance (RC) thermal networks for control applications where the parameters of the models

have physical meaning, but mathematical techniques can also be implemented for parameter

value identification and model order reduction.

2.1.1 Physics based modeling (“white-box”)

The physical-based techniques of building thermal modelling are based on solving equations

describing the physical behaviour of heat transfer. The principal in-coming and out-coming

fluxes taking place in the heat transfer are conduction through the walls, convection, long wave

and short-wave radiation and ventilation. The corresponding and relevant heat exchanges on a

wall are shown in Figures 2.1 and 2.2 (DOE, 2013).
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Figure 2.1: Outside heat balance con-

trol volume diagram, reprinted with per-

mission from Dr. Amir Roth (DOE,

2013)

Figure 2.2: Inside heat balance control

volume diagram, reprinted with permis-

sion from Dr. Amir Roth (DOE, 2013)

Commercial software for building thermal modelling and building performance simulation

include TRNSYS (TRNSYS, 2020), EnergyPlus (EnergyPlus, 2020), IDA-ICE (IDA, 2020),

ESP-r (ESP-r, 2020), Clim2000 (Bonneau et al., 1993), BSim (Rode & Grau, 2011) and BUILDOPT-

VIE (BuildOpt-VIE, 2020), which all employ the lumped parameter method or conduction trans-

fer functions. In the lumped parameter method, one zone is approximated to a node that is de-

scribed by a unique temperature, pressure, etc. A node generally represents a room, a wall or the

exterior of the building and can also represent more specific loads such as internal gains from

occupants or equipment. The finite difference method is notably employed using a description of

the heat transfers from an electrical analogy. It is very useful since it simplifies the physical prob-

lem through linearization of the equations and thus reduces the computation time. The principle

of the electrical analogy is to associate a thermal resistance R and a thermal capacity C to a wall.

The analogy gives the following equivalence with Ohm’s law: U1−U2 = RI ⇔ θ1−θ2 =
e

λS
ΦL.

The temperature θ is equivalent to voltage U, the heat flux ΦL to current I and the thermal

resistance e/λS (L/kA) to electrical resistance R.

The great advantage of this technique is its ability to describe the behaviour of a multiple

zone building on a large scale with a small computation time. It is well suited for the estimation

of the energy consumption and the evolution of the space-averaged temperature in a room. One

disadvantage is it difficult to study thermal comfort and air quality inside, due to simplifications

used in the technique.
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An alternative approach in dynamic thermal modelling involves using frequency-domain

techniques. The frequency-domain approach has been shown to be efficient in building energy

analysis in combination with thermal network theory (Athienitis et al., 1990a). This method

can facilitate the integration of design and control (Chen et al., 2013). Shou (1991) stated some

potential advantages of frequency-domain techniques over time-domain techniques: 1) More

efficient and less expensive solutions than time domain since there is no time step involved in

calculations in the frequency-domain, and 2) Discretization of elements with thermal mass is not

needed. Rather, the exact solution is obtained from solving the equation for 1-D conduction heat

transfer in the Laplace domain. The main disadvantage of frequency domain modelling is the

challenge of incorporating non-linearities, such as temperature-dependent heat transfer coeffi-

cients. However, it is often acceptable to linearize equations for heat transfer phenomena (Shou,

1991). Athienitis et al. (1986) presented an analytical method to determine swings in room tem-

perature in rooms with direct gain. Also, Athienitis et al. (1987) used discrete frequency domain

methodology to determine auxiliary energy load in buildings. Haghighat & Athienitis (1988)

compared two computer programs; one in a frequency-domain and the other in time-domain

and compared their result with the experimental data.

Generally, a main disadvantage of the physical formulation is the fact that it suggests a

detailed description of the physical behaviour. Therefore, it requires extensive knowledge on

the physical system, especially on the mechanisms occurring inside and outside the building

geometry. Unfortunately, this information is not always available. In contrast, statistical tools

(black-box models) can produce models from measurements only using techniques such as ma-

chine learning or system identification.

2.1.2 Purely data-driven models (“black-box”)

Black-box models learn the building dynamics from measured data and make no prior assump-

tions of the physical relationships. The main advantages are that there is usually a lower as-

sociated development cost and that any signal can be an input or output, as there is no direct

modelling of physical phenomena involved. One disadvantage of black-box models, however,

is that they require extensive high-quality training data (Afroz et al., 2018) and are not reliable

in operational situations outside of the training range (Afram & Janabi-Sharifi, 2014).

14



Chapter 2. Literature Review

The simplest black-box models are the parametric linear models. The forecasts of these

models are linear in the observations, the uncertainty increases with the prediction horizon, and

are commonly written in state-space formulation. The parametric nonlinear models provide

a nonlinear relation between the inputs and outputs of the model and have a varying increase

of their uncertainty over the prediction period. Artificial Neural Networks (ANN) may be the

most well-known type of linear black-box models (Billings & Chen, 1992, Hagan et al., 1997,

Siegelmann & Sontag, 1995). Huang et al. (2014) state that the application of ANN for MPC

on real commercial buildings is challenging because of the complicated structure, which results

in non-convex optimization problems that can be hard to solve, however, Chen et al. (2019)

found the use of convex ANN in optimal control of the building HVAC system performed bet-

ter than classical linear models. The nonparametric models, like k-Nearest Neighbors (kNN),

Support Vector Machines (SVM), Decision trees (DT), and Random Forest (RF), do not make

firm assumptions about the model structure. Therefore, these models can learn generic function

mapping between inputs and outputs. The main drawbacks of these modelling approaches are

the larger data requirements and the higher risk of over-fitting. Jain et al. (2017a,b), Smarra et al.

(2018) present control-oriented building models based on regression trees and random forests.

One last powerful nonparametric stochastic model type is the Gaussian Processes (GP). GP can

account for the model uncertainty directly and provide a distribution of the predictions of the

model, while also using prior knowledge in the system identification process. A study by (Zhang

et al., 2015) found that GP used for building energy prediction are accurate and flexible.

2.1.3 Grey-box (hybrid) models

It is possible to overcome limitations of physics-based and statistical-based modelling methods

by coupling them through a technique which is commonly referred to as Grey-box modelling.

By retaining a part of physical meaning, the interpretability of the problem is not lost. Building

characteristics can be determined by optimization techniques such as genetic algorithms gradient

descent-based algorithms. Thus, it is not a requirement to have all physical and geometrical input

parameters.

The principle of grey-box (or hybrid) models is based on the coupling of statistical and

physical models. Grey-box modelling is well proven as a comprehensive and accurate method to
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model dynamical systems and obtain knowledge of the thermal properties of a building (Bacher

& Madsen, 2011). One strategy consists of using statistical methods in fields where physical

models are not effective or accurate enough. Another application would be to determine the heat

behaviour in multiple zone buildings where the thermal properties of some zones are unknown.

Some zones would be physically studied while others would need to be described statistically

via measurements collected in these zones. One strategy consists in using machine learning

as physical parameters estimator. Another strategy is to use statistics to implement a learning

model describing the building behaviour.

The main advantage of the grey-box method is that it allows one to consider only a limited

amount of data. Furthermore, the input parameters do not need to be fixed at the initial time

of the simulation. Specified bounds on physical parameters can be used, and thus a rough

characterization of the building geometry and thermal parameters is sufficient. Also, the hybrid

methods allow one to retain a physical interpretation. The major pitfall to this approach is

the potential difficulty in determining the value of the model parameters. They vary for every

individual building and in many cases are time-variant. Thus, the choice of parameter estimation

technique for inverse modelling is crucial; so that models of low complexity can be trained with

minimal computational effort to yield reliable parameter estimates.

2.2 Reduced order building thermal models

Reduced-order models (ROM) offer distinct advantages for district modelling (Baetens et al.,

2015, Lauster et al., 2014) and advanced control strategies (Bacher & Madsen, 2011, Lin et al.,

2012, Wang & Xu, 2006). Simplified models allow for rapid simulation of complex and/or large

systems with acceptable accuracy and benefit from quicker calibration procedures (Kummert

et al., 2006). Research has focused on single-zone modelling and simplified modelling of multi-

zone buildings (Deng et al., 2014, Hu & Karava, 2014, Kim & Braun, 2015). One common

approach for simplified building modelling is grey-box RC thermal networks (Inderfurth et al.,

2015), where system identification techniques are used to determine effective resistance and

capacitance values for the model. Besides energy conservation measures, there is interest in
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Table 2.1: Control-oriented modeling in buildings

References HVAC System Type Study type Location Simulation Software Testing period

Bacher & Madsen (2011) Electric heaters single zone
Iterative method to find RC

models (Simulation and experiment)
Denmark CTSM Several months

Lin et al. (2012) Single duct multi-zone
Varying model complexity

(Simulation and experiment)
Florida Not specified

1 summer day

and 1 winter

day

Goyal & Barooah (2012) Single duct multi-zone
Model reduction method

(Simulation)
Florida MATLAB 1 day

Inderfurth et al. (2015) Single duct multi-zone
Parameter identification

(Simulation)
Germany Modelica and GenOpt 1 year

Reynders et al. (2014c) Heat pump with radiators

Parameter identification of reduced

order models

(Simulation)

Belgium Modelica

5 data sets

(February –

June)

Wang & Xu (2006) Multi-zone high rise
Identification of RC networks

(Simulation and experiment)
Hong Kong Not specified

Cooling season

(14 days)

Kim & Braun (2018) Single duct single zone Field test Florida Not specified
Spring/summer

(120 days)

ways to reduce peak power demand (due to space heating or cooling) at critical times (Fournier

& Leduc, 2014, Leduc et al., 2011) and improve building-grid interaction.

There exist several specific studies on reduced-order thermal modelling of buildings, with

noteworthy studies highlighted in Table 2.1. Hu & Karava (2014) presented a control-oriented

modelling approach for multi-zone buildings with mixed-mode cooling, based on the linear

state-space representation with varying coefficient matrices. Key features are the time-variant

thermal resistances, associated with the heat extraction due to airflow, calculated using an air-

flow network model. A 53rd order LTV-SS mode was developed (Fig 2.3). Simulation results

obtained with the LTV-SS model were compared with predictions using a non-linear finite dif-

ferent model to investigate the impact of the use of radiative and convective coefficients from the

previous time step on dynamic system behaviour. The 53rd order LTV-SS model was considered

as a true representation of the mixed-mode test-building and was used to identify the parame-

ters of 4th order model (Fig 2.4) so that the difference of their outputs is minimized. Different

prediction errors were found for the south and north zone. The reason is that the two zones have

different system inputs, and each zone could be viewed as a thermal dynamic system. The in-

puts for the south zone include solar gain, outdoor temperature, natural and mechanical cooling.

The north zone temperature dynamics mainly depend on the outdoor temperature, which is a

continuous excitation with a smaller fluctuation magnitude.

Lin et al. (2012) raised two important questions related to control-oriented thermal models.

(i) Q1: What is the minimum model complexity that is required to predict the temperature

dynamics of a single zone with an acceptable degree of accuracy so that it can be used in MPC?

(ii) Q2: How to identify the values of the uncertain parameters from measured data, and what
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Figure 2.3: Thermal network of the test-building (south zone) - detailed model, reprinted with

permission from Dr. Panagiota Karava (Hu & Karava, 2014).

Figure 2.4: Thermal network for the test-building (two zones) - low-order model, reprinted

with permission from Dr. Panagiota Karava (Hu & Karava, 2014).

kind of measured data is required, to achieve this level of accuracy? They compared a detailed

model of a zone that employs the 3R-2C wall configuration that is commonly used to two low-

order models (a first-order model and a second-order model). For calibration, two methods

for parameter estimation, with different cost functions are studied: 1) Least-squares and 2)

Maximum likelihood method. In minimizing the cost functions, the direct search method is
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used. The cost functions are non-convex, and optimization algorithms like gradient descent

often get stuck in a local minimum. By using the direct search method, this problem is avoided.

Lin et al. (2012)’s analysis showed that for almost all closed-loop data, such comparison is

meaningless; grossly ”wrong” models can reproduce such data quite accurately. That the model

is wrong becomes evident only when it is asked to predict measurements with very specific

features, namely when there are large differences between the temperature of the room and the

temperatures of the surroundings. This is in fact the situation that the model needs to be able to

predict if it is going to be useful for control algorithms that seek to reduce energy, because the

controller may let the temperature float up or down when the zone is unoccupied. Thus, they

conclude, that unless specific forced response tests are conducted to gather certain types of data,

one is better to use ASHRAE suggested R and C values of parameter rather than to estimate

parameters from closed-loop data.

Foucquier et al. (2013) presented a comparison and a validation of a simplified model

with the numerical software EnergyPlus on both low and high insulation mono-zone buildings.

They study the effect of merging walls on the accuracy and the computation time. Contrary

to expectations, increasing (or decreasing) the number of elements does not necessarily lead to

minimizing (or increasing) the error, showing that the choice of the merged walls is essential. In

a calibrating phase, it is quite difficult to find constant parameters for the entire year considering

the season variation. Shamsi et al. (2019) devised a general reduced-order grey-box modelling

approach to predict the thermal behaviour of commercial buildings. Based on easily identifiable

building metrics, then a general structure to obtain the reduced-order models is produced, which

reduces modelling complexities of dynamic simulation. Further development is needed on the

identification of the walls between two zones. The thermal coupling between the zones obtained

by the virtual experiments that were carried out resulted in a significant correlation between the

temperatures in both zones. As a result, identifiability problems occur for the walls between the

zones as well as for the integrated models for which both zones are identified at the same time.

Reynders et al. (2014b) studied 5 model types ranging from first to 5th order models (Figure

2.5). In general, two approaches are found to derive reduced-order models. The first group of

reduced-order models is represented by physical white-box models that simulate the heating

demand by simplified physical equations. In Reynders et al. (2014b)’s work, the influence of the
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of demand-side management using the structural thermal mass as a storage capacity in Smart

Grids.

Ramallo-González et al. (2013) developed a new, more accurate, analytic method, named

the Dominant Layer Method, for creating parameters of a second-order lumped parameter model,

which can be used to represent multi-layered constructions. This new method does not require

complex numerical operations but is obtained using a simple analysis of the relative influence

of the different layers within a construction type on its overall dynamic behaviour.

2.3 Modeling for building thermal controls

Modelling for the purpose of developing building control strategies is different than the sim-

ulation of a building for analyzing its overall performance or for design. Suitable simplified

multi-zone thermal models enable a rapid assessment of control strategies targeting such things

as energy reduction, building-grid interaction, or occupant thermal comfort (Bacher & Mad-

sen, 2011, Candanedo et al., 2011, Lin et al., 2012, Wang & Xu, 2006) and advanced control

strategies could greatly benefit from adequate, simple models (Sturzenegger et al., 2016).

Models that are developed using special building performance software (e.g., EnergyPlus,

TRNSYS, etc.) may produce highly accurate building heating models. Even though they are

usually highly accurate, they may have a high computational burden with a delayed response

that makes them unsuitable for control applications. More importantly, they also take more time

to create and are more difficult to calibrate since they involve many parameters. Therefore, the

selection of a physics-based building heating model for online control should consider the model

complexity, desired accuracy, and ease of calibration.

Classical control techniques such as bang-bang or “thermostat control” (On/Off control

with predefined setpoints) or proportional-integral closed-loop feedback control are popular con-

trol algorithms used in BEMS. However, the behaviour of the thermal dynamics of a building

is variable, owing to the thermal interactions among the different zones and HVAC (Heating,

Ventilation, and Air Conditioning) system, and the variable boundary conditions from weather

conditions. Therefore, the use of classical control algorithms in such variable building systems

may fall short to deliver the expected (desired or maximum potential) performance levels.
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Presented in the following paragraphs are relevant works in the area of model-based control

in buildings. Nguyen-Hong et al. (2017) presents an approach which is called meta-optimization

combining with scattering analysis used to enhance on-site real-time temperature anticipation

for energy management. The aim of this approach is to analyze the sensitivity of the parameters

to simplify, and then attain, the best reduced model able to match with measurements regu-

larly in a robust manner. The main idea of scattering parameters analysis initially introduced

by (Le Mounier et al., 2014) is to find which parameters are the most scattering and hard to

converge through optimization. After that, they are fixed to their physical value, hence decreas-

ing the number of dependent parameters and hopefully, the optimization process could converge

easier. The methodology integrating meta-optimization and scattering analysis improves the

model identification process. It also decreases the calculation time by providing a logical way

to simplify the model. Some aspects could be improved, such as the numbers and procedures

of meta-optimization progress per cycle, which are still the most consuming processes. Improv-

ing initial values of parameters sets the distribution in the searching range could also enhance

optimization performances.

Donghun & Braun (2012) presents methods and results for representing the complex ther-

mal network of a building envelope and interior in the form of reduced-order state-space equa-

tions that can more easily be applied in model-based predictive and other advanced control ap-

proaches. The complexities of heat transfer phenomena through glazings and long-wavelength

exchanges among walls make the representation difficult. The model employs the net radiosity

method for long-wave interaction, one-dimensional transient conduction through walls, conduc-

tive and convective coupling between zones, etc. Model order reduction is applied to simplify

the state-space representation.

Perera et al. (2016) studied modelling strategies that are suitable for online control with

acceptable performance and accuracy. They studied physics-based multi-floor building heating

models developed in MATLAB and Modelica environments (Figure 2.6). The model should be

application-independent and can thus apply to different building configurations. It is essential

that the model can perform in BEMS to improve the energy efficiency of buildings. Models

for multi-zone buildings often appear with building-specific software tools such as EnergyPlus,

Fluent and TRNSYS, but there are still challenges in modelling the inter-flow air exchanges
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and conduction heat transfers through intermediate walls and floors. In their review, Perera

et al. (2016) found no published articles on the simplified physical modelling of multi-floor

buildings. Convection heat transfer is one of the primary modes of heat transfer in buildings.

They reported a lack of building heating models developed for multi-floor buildings, where

inter-floor air/heat circulations contribute significantly to the differing energy consumption of

the different zones. The determination of the vertical air exchange rate between two floors is not

straightforward. This mass flow rate depends on the density difference and pressure difference

between the two spaces. The measurement of the pressure difference between the two floors is a

challenge because it is small, and the accuracy of pressure sensors is typically similar to the real

pressure difference. Though previously developed models do achieve good results in modelling

applications, they are, for the most part, building type specific and limited to a few heat-transfer

processes. Models that are simple, flexible, robust, and suitable for control applications are still

lacking. The significance of the model developed by Perera et al. (2016) is that it addresses

ventilation heat losses in between inside-outside and inside-inside. Inside-inside heat losses

between different floors are modelled using a non-linear algebraic equation. Walls, floors, roofs,

and intermediate floors normally consist of several layers of dissimilar materials such as wood,

concrete, and insulation.

Figure 2.6: Modeling of multi-floor buildings, reprinted with permission from Wathsala Perera

(Perera et al., 2016)

Srivastava et al. (2019) conducted a nationwide survey of 448 building energy manage-

ment professionals in the United States to help answer the following questions: 1) what impacts

the adoption of data analytics and simulation among building energy management profession-

als; 2) in what phases of the building energy management decision-making process are data

analytics and simulation currently used, and 3) what are the barriers of use for data analytics

23



Chapter 2. Literature Review

and simulation and how can they be improved to better support building energy management

decision-making.

Overall, their key insights include:

• Professional domain plays a large role in driving the uses, barriers and expectations for

data analytics and simulation tools.

• Data analytics and simulation are most used in similar phases of the decision-making

process and can be coupled to leverage their functions.

• The accuracy of results needs to be improved for both data analytics and simulation tools.

• Professionals need more and improved training, especially for simulation tools.

Model order reduction (MOR) methods are attractive and much more reliable than identifi-

cation approaches since they directly extract a lower-dimensional model from a detailed physics-

based model without any pre-simulations. However, because of computational and data storage

requirements, there are challenges of applying these methods to a large-scale building. To over-

come the problem, Kim et al. (2020) introduced the Krylov subspace method to the building

science field. Technical issues in applying the method to building applications are addressed

and a suitable algorithm that overcomes those challenges is presented. To demonstrate the re-

liability of the algorithm, comparisons between the resulted reduced-order model (ROM) and a

high-fidelity model from a commercial BES software for a 60-zone case study building are pro-

vided. The ROM was a factor of 100 faster than the high-fidelity model but with high accuracy.

Ye et al. (2020) aimed to develop new baseline models for the U.S. medium office buildings.

The methodology they introduced consists of three phases: (1) identification of model inputs,

(2) model calibration, and (3) model validation with uncertainty analysis. The evaluation index

is the coefficient of variation of the root-mean-square deviation (CV(RMSD)) of site energy use

intensities (EUIs) between the modelled baseline and empirical baseline. Thirty baseline models

for two vintages (pre- and post-1980) and 15 climate zones were then created and evaluation

showed that the CV(RMSD) is lower than 0.05 for the modelled baselines produced by the new

baseline models. As a comparison, the CV(RMSD) is higher than 0.1 for the existing modelled

baselines generated by DOE Commercial Reference Building Models. Further analysis showed
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that the newly developed baseline models were able to capture the uncertainties of representative

features of existing buildings.

Arroyo et al. (2020) proposed a methodology to facilitate the identification of higher-order

grey-box models for multi-zone buildings following a centralized approach. The methodol-

ogy is implemented for an emulator building of the Building Optimization Performance Test

(BOPTEST) framework (Blum et al., 2019) and compared against a decentralized and a single-

zone model in both simulation and control performance. The results show a relevant impact of

the used training data length. One week of data is enough to identify the multi-zone building

model. When comparing the models in simulation performance, the centralized model slightly

outperforms the decentralized model and shows similar accuracy as the single-zone model. In

control performance, the differences are more significant: the decentralized model is the one ex-

hibiting the worst comfort whereas the centralized model does not overestimate the temperature

in any zone which leads to the minimum possible comfort violations. The multi-zone central-

ized model also outperforms the single-zone model by achieving lower discomfort that is more

heavily penalized than the cost in the objective function. However, the single-zone model shows

a surprisingly good performance, although a perfect hydraulic balance is assumed. These results

suggest that the thermal interactions among zones should be modelled for multi-zone buildings

and that single-zone models are suitable as well if the heat distribution to the zones is properly

balanced.

Assessing the system-wide DR potential from heat pumps requires adequate models to

account for the thermal response of the building stock to flexible operating strategies. Sperber

et al. (2020) looked at reduced-order thermal response models of twelve representative German

building types in three insulation states based on a grey-box modelling approach. The identified

models reveal a good compromise between the accuracy of the simulated indoor temperature

(RMSE of on average 0.6 ◦C) and computational cost (acceleration by factor 250) compared to

the complex building simulation software TRNSYS. Furthermore, these reduced-order models

are employed in a case study to estimate the technical DR potential of heat pumps by passive

storage at specified ambient conditions.

Modelling techniques suitable for the thermal dynamics of a building and its systems, such

as grey-box linear modelling approaches (RC thermal networks, state-space representations,
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etc.) can be used for control purposes (Candanedo et al., 2013, Inderfurth et al., 2015). Model

parameters can be identified based on knowledge of the geometry and materials of the building

and through real-time calibration with measured data. System identification techniques can also

be used to determine effective resistance and capacitance values for the model (Deng et al.,

2014, Fux et al., 2014, Kim & Braun, 2015).

Low-order models allow for fast and easy simulations to help choose proper operation and

control strategies in order to improve energy consumption, occupancy comfort or peak demand

reduction; these types of models can also be useful for such anticipatory or MPC applications

(Cigler et al., 2013b, Donghun & Braun, 2012, Kummert et al., 2001, Moroşan et al., 2010,

Oldewurtel et al., 2012, Picard et al., 2016, Touretzky & Baldea, 2014).

The goal of this research is to develop suitable control-oriented models for buildings and

thermal storage devices with the purpose of using these models within advanced control strate-

gies schemes, such as model-based predictive control (MPC). Reduced-order models suitable for

control applications, along with a comprehensive methodology, will help facilitate the widespread

adoption of advanced control by the building HVAC industry, leading to significant improve-

ments in terms of load management, building energy flexibility and building grid-interaction,

and occupant comfort.

2.3.1 Model-based predictive control for buildings

Model Predictive Control (MPC) is a multivariable control algorithm that uses an internal dy-

namic model of the system, a history of past control moves, forecasts of future disturbances

(i.e., weather forecast) and an optimization cost function that is minimized over the receding

prediction horizon (i.e., the period for which future information is available, ranging from a

few hours to a few days). The potential of MPC to improve energy management in buildings

has been amply demonstrated over the last decade (Cigler et al., 2013b, Kummert et al., 2001,

Oldewurtel et al., 2012, Touretzky & Baldea, 2014). The basic principle of MPC in buildings is

that knowledge of forecast weather and anticipated occupancy schedules enables better control

of the building energy systems, for example, by better managing thermal storage capabilities.

Because of the number of variables and constraints that must be considered, optimization of the

problem can become quite complex. Once the optimization algorithm determines the optimal
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sequence of control moves, these moves are applied to a “control horizon”, a period that is often

shorter than the prediction horizon.

Setting up a suitable control-oriented model for the building is crucial for MPC. The degree

of modelling effort is difficult to assess in advance as each model is typically tailored for one

specific building. MPC design requires a certain degree of knowledge on building modelling,

such as a good understanding of what details are appropriate to include or exclude in the control

model. One modelling approach is to develop a low-order grey-box resistance-capacitance (RC)

thermal network to represent the building. The parameters of this grey-box model should be

calibrated by using real measurement data from the existing building. Purely data-driven models

are reliable and robust, but they cannot be easily applied in other buildings, and cannot identify

(potentially optimal) control moves that were not present in the training data set.

Simulation studies often use two building models: a simulation model, meant to represent

the building as accurately as possible, and a control-oriented model, a simpler representation

that facilitates the solution of the optimization problem (Hu & Karava, 2014, Moroşan et al.,

2010, Oldewurtel et al., 2012). In field studies or experiments, only the control-oriented model

is necessary (De Coninck & Helsen, 2016).

An alternative to a formal MPC approach for identifying optimal temperature setpoints

consists of implementing simple linear ramping profiles in place of abrupt setup or setback

profiles. Gradual ramps over a given period of time can result in a significant reduction in the

peak power demand required to change from one setpoint value to another, as demonstrated in

Date et al. (2016b,c), Morris et al. (1994). Ramp setpoint profiles with different start times can

be used in different zones of a building to stagger when heating the zones begin. By staggering

the start times, the building heating demand is smoothed over a certain period. Preheating

by a few degrees can also be used when transitioning from a night setback to a comfortable

temperature. By preheating during an off-peak time and to a temperature that is still satisfactory

to occupants, the peak demand during critical times can be further reduced. Pre-determined

rules of operation based on the building dynamics and short-term dynamics offer a pathway to

optimize the operation of the building. For example, Candanedo et al. (2015) proposed near-

optimal profiles for transitioning between a night setback and a daytime temperature profile.

This optimal transition curve, which significantly reduces the peak load in this period, depends
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only on the time constant of the space and the “transition time” established by the building

operator.

MPC for buildings has been a popular research topic in the past years. Several studies and

experimental setups have shown the energy savings potential of MPC up to 30% compared to

the conventional control strategies. Besides modelling of the buildings, the bottleneck of MPC

wide spreading is the understanding of the concept of MPC by HVAC engineers and managers.

Therefore, the objective of Cigler et al. (2013b) was to develop a tool that would make MPC

strategy for buildings more understandable for the wide public. The application BuildingLAB

enables users to explore the controller’s behaviour, tune controllers with aid of displaying and

comparing simulation results, validate mathematical models of the particular building, etc.

Most current building control systems rely on a combination of bang-bang or PID feedback

control and schedule-based setpoint, without considering all the necessary information to decide

an optimal performance trajectory for a given objective (weather forecasts, energy prices, occu-

pancy). In addition, the current control systems do not provide meaningful feedback to operators

about the impact of certain control actions on system performance, which would help operators

better manage systems according to their objectives.

MPC is an established control technique in other fields, such as chemical processing and

electrical engineering (Qin & Badgwell, 2003); it is also a promising strategy for improved con-

trols in buildings. MPC has received increasing attention in building operations research but has

yet to become a mainstream practice in the industry. Due to the number of variables and con-

straints that must be considered, optimization can quickly become quite complex. Establishing

suitable control-oriented models for buildings is essential for well-functioning MPC. The degree

of modelling effort is difficult to assess in advance as each model is typically tailored for one spe-

cific building. Today, MPC design and implementation requires expert knowledge on building

modelling and systems, namely, a good understanding of what details are appropriate to include

or exclude in the building control model. The time lags introduced by the building, its HVAC

system and the sensor-control system are one of the major causes of complexity in controlling

indoor environments (Athienitis et al., 1990b). Decisions must be taken with anticipation, con-

sidering the inertia of the system. Storage and control are some of the key problems of solar

energy engineering. Predictive control can help in dealing with solar energy variability. MPC
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techniques have been mostly applied to commercial building applications. Simplified models

obtained from more detailed models, can be used to implement MPC strategies. With both grey-

box and white-box modelling approaches, determining the required level of model complexity to

develop an adequate MPC strategy remains a challenge, and no systematic method to determine

this optimal model complexity is yet available (or standardized) (Houda et al., 2015, Kircher &

Zhang, 2015, Lin et al., 2012, Reynders et al., 2014c).

Conventional control in buildings is often reactive: the operation of the system is based

on basic feedback loops (ON/OFF, PID) and heuristic rules. Model-based Predictive Control

(MPC), depicted in Figure 2.7, uses a model of the system (building and HVAC) and predic-

tions of future disturbances (weather, occupancy) to select an optimal set of control operations.

Model-based control strategies have largely unexploited potential for reducing the building en-

ergy demand and the peak load, while subject to operating constraints such as occupant thermal

comfort. To deal with load fluctuations, a good understanding of the dynamic behaviour and a

focus on energy management is necessary. Selecting the complexity level of the building model

remains a fundamental problem. More research is needed on the selection of adequate model

resolution in building simulation. The difficulty of this task lies in deciding which details can

be neglected without jeopardizing the validity of the conclusions.

In the following paragraphs, past research on MPC model development is presented and a

list of projects successfully implementing MPC in a real building is shown in Table 2.2. Jorissen

& Helsen (2016) present a Linear Automated Toolchain for MPC (LAT-MPC) that allows highly

automating the process of setting up a controller model and running a linear MPC. From this

process automation, new research comes into the picture such as integrated optimal control and

design of buildings.

Hou et al. (2016) investigated a distributed MPC approach based on a variant of the Al-

ternating Direction Method of Multipliers (ADMM). The proposed method is highly scalable

and facilitates a device-level plug-and-play implementation. A case study was carried out in

an open office space of multiple thermal zones with individual thermostat controls. There are

significant thermal couplings due to direct air exchange and noticeable load gradient between

zones, thus a multiple thermal zones coordination problem is formulated with the objective of

optimally scheduling the different thermostat setpoints for energy minimization and comfort
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contribute to the solution:

• An emphasis is put on the use of adaptive models, which use measurements of the building

performance to continually update and remain accurate enough for control optimization.

Such models are expected to drastically reduce model setup and maintenance costs.

• Automatic model parameter estimation and optimization problem formulation together

with flexible data input modules reduce the required MPC and programming expertise of

users.

• The use of open software standards enables contributions from other researchers and

adoption by industry while maintaining code maintenance and longevity due to the use

of standards that have support in many industrial sectors.

• An extensible architecture enables rapid development and distribution of new MPC meth-

ods.

A newer iteration of a more general framework for testing any advanced control strategies

in buildings was presented in 2019 (?). External components are currently based on the Model-

ica and Functional Mock-up Interface open standards, with system emulation models and MPC

models able to be defined as native Modelica files or as Functional Mock-up Units (FMU).

The paper by Cai et al. (2016b) presented a general multi-agent control methodology that

can be applied to building energy system optimization in a “plug-and-and-play” manner. A

multi-agent framework is developed to automate the controller design process and reduce the

building-specific engineering efforts. To support distributed decision-making, two alternative

consensus-based optimized algorithms are adapted and implemented within the framework. Cai

et al. (2016a) presented a general approach for determining maximum monthly energy cost

savings associated with optimal supervisory control for cooling in commercial buildings in the

presence of utility rates that include both demand and time-of-use energy charges. The devel-

oped tool incorporates a month-long time horizon due to the nature of demand charges and is

only useful for bench-marking the performance of simpler and shorter-term demand response

and optimal control approaches. The bench-marking problem was formulated as a dynamic op-

timization problem within a multi-agent control framework so that the monthly optimization
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problem is segmented into several sub-problems where each sub-problem involves system opti-

mization for a shorter period of time, for example, a 1-day period.

De Coninck & Helsen (2016) implemented MPC in a medium-sized office building in Brus-

sels and found an energy cost reduction of more than 30% for this particular building. In their

paper, they outline monitoring techniques, model identification, forecasting of disturbances,

state estimation, formulation and solving of the optimization problem and transmission of con-

trol signals. They note that an important step for wider implementation of MPC in buildings is to

evaluate the performance with real operating conditions including measurement errors, limita-

tions of the installed control system, communication issues, etc. The main differences between

the MPC and original rule-based control (RBC) strategies are that the MPC uses the heat pumps

much more, starts up earlier to pre-heat the building and strongly reduces the supply water tem-

perature once the comfort setpoint has been reached. They also acknowledge that if the original

RBC was different (or improved) and used the heat pumps more often the energy savings with

MPC would have been smaller. However, the results of this single experiment with MPC con-

taining many simplifications are encouraging for MPC use for controlling thermal systems in

buildings.

Rehrl & Horn (2011) performed MPC on a real-world HVAC system consisting of standard

industrial components. The core components of the system are water-to-air heat exchangers,

both for heating and for cooling purposes as well as a steam humidifier. The following properties

of HVAC systems make MPC a well-suited control methodology: the plant is a multiple input,

multiple output system and its inputs are constrained – both in their value and in their rate of

change. Also, several disturbances acting on the plant like varying outdoor air temperature

or outdoor humidity can be measured. Furthermore, time constants are relatively large which

makes it easy to perform the required optimization of the MPC strategy in time. The proposed

control strategy in this study, namely the exact feedback linearization in combination with MPC

proved to be a powerful approach to control HVAC systems.

Prı́vara et al. (2011) presented a model predictive controller (MPC) applied to the temper-

ature control of a real building. The controller utilizes information on the thermal capacity of

a building with the objective to minimize energy consumption, while the inside temperature is

maintained at the desired level. Subspace methods are used to identify multiple input multiple

32



Chapter 2. Literature Review

output (MIMO) models. The controller was tested on a large university building during a heating

season and achieved savings of 17–24% compared to the original controller.

Drgoňa et al. (2018) proposed a compact methodology for the construction of simple sub-

optimal MPC-like control strategies for building control applications by using advanced ma-

chine learning algorithms. The focus is on the creation of a systematic and universal framework

applicable to a variety of large-scale building control problems while providing valuable in-

sights into the selection of the most relevant features and an appropriate type of approximation

model. Although some approaches for a fast and simple online implementation of MPC for

building control applications have been suggested previously (Ma et al., 2011, 2012), the task

remains challenging, especially when using existing control hardware, such as programmable

logic controllers (PLC). There are two main difficulties. First, such simple hardware provides

only limited computational capabilities with a limited amount of memory storage (typically

in the range of kilobytes). Second, most PLCs do not allow the control algorithm to be imple-

mented in high-level languages. As a result, implementation of the complex, optimization-based

control algorithms on simple hardware is cumbersome (Huyck et al., 2012). Though these hard-

ware issues are one of the main barriers to the adoption of MPC, this work does not delve into

looking into possible solutions to this particular problem.

Jorissen et al. (2019) developed TACO (Toolchain for Automated Control and Optimiza-

tion), which is a Modelica-based automated toolchain for MPC of building systems. Its goal is

to significantly reduce the engineering expertise and the time investment required for applying

MPC to buildings. The implementation is verified using two example models and is bench-

marked concerning accuracy and computation time. These results show that the computation

time can be reduced significantly using the tool-chain options, while only slightly reducing the

controller optimality. The numerous advantages of MPC for the control of building energy sys-

tems have been well documented. A key requirement for the successful implementation of such

approaches is that strategies can be easily adapted to accommodate a range of building types

with minimal commissioning effort. O’Dwyer et al. (2017) introduced an MPC-based building

heating strategy, where the objectives of energy and thermal comfort are optimized in order of

priority, where balancing the weights in the objective function is eliminated and thus the design

of the strategy is simplified.
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Bursill et al. (2020) proposed and tests an approach to MPC using rule extraction (RE) that

can be easily implemented in building controllers to override sub-optimal control. The resulting

decision trees could be implemented by building control programmers to save energy when

ambient conditions are predicted to satisfy the thermal requirements of the spaces. A detailed

MPC algorithm using inverse models was implemented in 27 rooms of an institutional building

to provide data for a classification learning approach. Cooling and heating season decision trees

were generated based on the inputs and outputs of the detailed MPC algorithm. An ensemble and

sample randomization were used to generalize the trees across rooms and prevent over-fitting to

individual rooms. A study by Ma et al. (2009) presented an MPC approach to building cooling

systems with thermal energy storage. They focused on buildings equipped with a water tank to

actively store cold water produced by a series of chillers. Using a simplified hybrid model of the

system, a periodic robust invariant set as terminal constraints, and a moving window blocking

strategy, through experiments they showed a reduction in the central plant electricity cost and

an improvement in efficiency.

In 2016, Hilliard et al. (2016) performed a survey on the current MPC trends and op-

portunities highlights areas for further research and improvement. These areas included the

optimization strategy, the effects of forecast disturbance assessment, and desirable traits of ex-

isting buildings under consideration for MPC implementation. The ability to integrate artificial

intelligence into building models is another area of advancement, where the plant model can be

updated based on recorded measurements from the building, leading to more accurate models

that can adapt to equipment or operational changes over time. From their review, four studies

analyzed single-zone systems, with two of the works derived from OptiControl (OptiControl,

2019). A key factor in zone-level studies is that more than one piece of equipment is operating

to maintain thermal comfort, and the MPC takes a coordinated approach. Multi-zonal optimiza-

tion for systems with both heating and cooling (Bengea et al., 2014, May-Ostendorp et al., 2013,

West et al., 2014, Zhao et al., 2013) represents the most advanced systems and challenging con-

trol scenario in buildings. Such scope is advantageous because inter-zonal transfers of energy

may be predicted.

The first noticeable trend of the research reviewed is the use of simplified models to rep-

resent the thermal dynamics of the building, whether it be RC models, linearized state-space
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models, or black-/grey-box models. Most of the reviewed papers used linear or quadratic opti-

mization techniques, due to their simplicity and ability to guarantee to find the global minimum.

The MPC optimization method will influence results. Linear and quadratic optimization tech-

niques constitute over two-thirds of the optimizers reviewed. Nonlinear and particle swarm

solving techniques are advantageous in that they allow for unique cost function structures, as

they do not require derivatives and/or continuity. The trade-off to using these techniques is

that they can be slow, computationally expensive, and may not find the optimal solution if the

problem is too complex. Approximately one-third of reviewed articles by Hilliard et al. (2016)

were experimentally verified. Ideally, all the studies should have experimental verification, and

a greater emphasis should be placed on the results containing experimental verification.

A large body of work has shown that MPC can help enable buildings to meet these new

requirements (Rockett & Hathway, 2017). However, despite its widespread adoption in other in-

dustries and its success in research, MPC has not been widely adopted in the building industry,

except for a few companies offering MPC as a software service (BuildingIQ, 2019, QCoeffi-

cient, Inc, 2019) for commercial buildings and campus central plants (Johnson Controls, 2015).

Several factors contribute to the lack of penetration of MPC into industry, as outlined by Rockett

& Hathway (2017), with the foremost being 1) the lack of long-term trials showing the effec-

tiveness of MPC and 2) the expense and skill required for installation and maintenance. This

is particularly true for initial model configuration and maintaining model accuracy as building

operation changes over time. Also, penetration of advanced building control techniques into the

market has been slow since buildings are unique and site-specific controller design can be costly.

Often, in medium- to large-sized commercial buildings, HVAC system configurations are very

complex, which makes centralized control infeasible.

The development of self-learning models for both building response and optimization rep-

resents an area of research that has yet to be fully explored in relation to buildings. Further

research should focus on evidence that directly compares the performance of specific optimiza-

tion algorithms, parameters (time-step, horizon), and climate forecast accuracy for the same sce-

nario. It is suggested that the sensitivity analysis of time-step and horizon, and climate forecast

accuracy be further explored to fully understand the effects they have on performance. This will
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enable better methods to minimize and deal with these uncertainties in using MPC for building

control.

Huang et al. (2016) investigated robust MPC which integrates uncertainty to improve the

stability of MPC but found that the additional computational burden impeded performance and

practicality. Jorissen & Helsen (2016) recognized the challenges of developing the required

model of each building for an MPC controller, and that significant expert knowledge is often

required for proper building thermal model development. Sturzenegger et al. (2016) showed a

successful case of implementing MPC for 3 months in a real office building located in Switzer-

land. Data showed that adequate comfort levels for occupants were maintained, and it suggested

that the MPC performance was greater compared to the original strategy.

Reinforcement Learning (RL), as another emerging technique that could be suitable for

controls in buildings. RL has attracted growing research interest and demonstrated its potential

to enhance building performance while touching some disadvantages of other advanced control

techniques, such as MPC. Wang & Hong (2020) conducted a review of existing research on

applied RL for building controls and found that RL is still in the research stage with limited

applications in real buildings. Three noteworthy implementation barriers of RL controllers in

actual building controls include: (1) a time-consuming and data-demanding training process,

(2) lack of adequate control security and robustness, and (3) the generalization of RL controllers

should be improved using approaches such as transfer learning.

2.3.2 Model parameter value identification

In most cases, simplified models for control applications must be calibrated and/or their model

parameter values must be identified through either manual or automated mathematical tech-

niques. There are many mathematical techniques for parameter value identification that have

been explored in the context of building thermal modelling.

Since the real building parameters are often unknown in existing buildings and tend to

deviate from the values used during the design of the control system, the use of statistical black-

box models that have self-learning capabilities is an interesting topic (Chen et al., 2006, Cigler

& Prı́vara, 2010, Liu & Henze, 2006). However, a substantial amount of data might be required
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to achieve the model accuracy needed for MPC. Moreover, the resulting parameters do not

necessarily have a direct relation to the physical properties and can therefore not be extrapolated.

To overcome this problem, grey-box models are introduced. Grey-box models rely on physical

knowledge about the system dynamics to define the model structure. Statistical methods are

then used to estimate the unknown parameters. If the model structure represents the physical

behaviour of the system, these parameters could be linked directly to the physical properties of

the building (Bacher & Madsen, 2011, Xu & Wang, 2008).

Vande Cavey et al. (2015) compared three different state estimation techniques and showed

how they can improve the ability of the building model to correctly predict the behaviour of

the real building. The methods studied in (Vande Cavey et al., 2015) are the unscented Kalman

filter, the deterministic approach, and a moving horizon estimation scheme.

Houda et al. (2015) studied three optimization techniques to enable for the reliable calcu-

lation of as-built envelope thermal parameters (resistance and capacitance) based on measure-

ments collected over a limited time period. The tool developed by Houda et al. (2015) is based

on a combination of a basic physical model and optimization algorithms that automatically cal-

ibrate the model from measurements. The first method studied was based on a simple greedy

resolution (Particle Swarm Optimization) and the other two methods were based on substitution

model (Support Vector Regression and Meta-models). They found that meta-models coupled

with a cross-validation method (kriging) lead to the best results. Based on a simple mono-

zone building use case, the results show that convergence is faster in the case of PSO-SVM

and kriging. PSO alone tends to get attracted by local minima and does not perform as well.

The convergence patterns also suggest that kriging will be more robust and probably, the best

candidate.

Inderfurth et al. (2015) proposed an approach to identify parameter sets for existing build-

ings based on low-order building models and optimization strategies using the Jeeves-Hooke

general pattern search algorithm, as described in the GenOpt manual, for parameter identifica-

tion. In numerous iterations, the algorithm minimizes a cost function. One noteworthy finding

was that the identified parameter sets vary greatly from year to year. Especially parameters for

thermal capacities are subject to huge variations. In lesser manner air change rates, window-

wall ratios and thermal transmittance also differ from the derived values. This suggests that
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more than one combination of parameters can reflect the thermal behaviour of a given building

reference. It was observed that considerably different combinations of parameters can reproduce

the thermal behaviour of a given reference building model with reasonable accuracy for different

years.

Reynders et al. (2014a) studied a bottom-up multi-zone modelling approach of Belgium

residential building stock and one major finding was that the coupling between two adjacent

rooms was found to reduce the identifiability of the model parameters, resulting in unreliable

estimates of the inter-zonal heat flows. Reynders et al. (2014a) used two approaches to calculate

the model parameters: (1) a theoretical calculation of the building parameters based on the build-

ing stock data completed by assumptions and rules-of-thumb, and (2) parameter identification

using grey-box modelling, where a forward selection procedure was implemented. The model

is systematically increased until the identified model captures all dynamics that are available in

the dataset. It was found that the thermal dynamics can be described by 4 thermal capacities

for the day-zone, 3 thermal capacities for the night-zone and 2 thermal capacities for the floor

between day- and night-zone.

Various other researchers employed differing statistical approaches to solve the problem of

parameter value identification. These attempts include recursive least-square methods (Chen &

Athienitis, 2003), (Loveday et al., 1992), the extended Kalman filter (EKF) (Fux et al., 2014)

and the unscented Kalman filter (UKF) (Radecki & Hencey, 2012). These techniques still have

their shortcomings including local minimization (i.e., finding the minimal value in a certain

range and not the overall minimum of the function) and the need for accurate starting values;

both of which are problematic in a system designed to reduce the intervention by a technician

or other knowledgeable individual.

2.4 Building energy flexibility: building-grid interaction

Building load flexibility can be described as the capability to alter the energy demand of a

building at a specific time of day by postponing or shifting consumption when compared to a

reference scenario (Business as Usual). Incorporating principles of building energy flexibility
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together with on-site energy storage devices and advanced or optimized control strategies is es-

sential for optimizing energy consumption and matching demand with the availability of energy

from the grid at critical times (Jensen et al., 2017, Reynders et al., 2018). In recent years, studies

on the quantification and utilization of building energy flexibility have been conducted by var-

ious international research groups and there is now a comprehensive list of publications in this

relatively new research area (International Energy Agency, 2020). Many studies have focused

on the adjustability or flexibility of a building’s space conditioning systems. In general, these

studies study the impact of Demand Side Management (DSM) strategies at the building and/or

energy infrastructure level.

Flexibility in individual buildings There exists several studies where they looked at a

single building to determine its’ energy flexibility potential. Le Dréau & Heiselberg (2016)

assessed the potential of residential buildings to regulate heating power and identify strategies

to capitalize on flexibility potential. Hurtado et al. (2017) proposed a method to quantify the

demand flexibility potential of individual buildings, where they assessed the effects on demand

flexibility due to weather fluctuations, construction variations, and occupant comfort consid-

eration. Other researchers found that specific technologies and parametric optimizations are

necessary for energy flexibility maximization in residential buildings, such as Weiß et al. (2019)

who found that for buildings in Austria built after 1980, peak loads from space heating can be

shifted to off-peak times by up to 50%.

Flexibility in building clusters Groups of buildings in operation together have also been

considered in order to evaluate the potential of aggregated energy flexibility. Vigna et al. (2018)

studied a cluster of buildings, where it is possible to take advantage of the disparities in en-

ergy consumption patterns between different building types. Foteinaki et al. (2018) investigated

the potential for flexibility of low-energy buildings and analyzed the thermal storage capacity

present in the structural mass. The study showed that low-energy buildings can remain au-

tonomous for several hours and that when many buildings are aggregated together - rather than

a stand-alone building - the flexibility becomes significant.

Energy flexible buildings, through smart DSM, smart DR, and incorporating efficient en-

ergy storage, are one of the most encouraging prospects to roll out storage and renewable tech-

nologies on a large scale in existing electricity networks.
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From field study data, Aduda et al. (2016) demonstrated that office buildings can provide

energy flexibility to the grid. However, they concluded that accurate flexibility potential estima-

tion may be challenging due to variations in indoor air quality and thermal comfort in different

zones within a building. In a study by Sánchez Ramos et al. (2019), demand management mea-

sures were analyzed by using the buildings’ thermal mass as thermal storage. Cost savings of

3.2% for heating and 8.5% for cooling were observed after the implementation of the improved

demand management control strategies. Previously refurbished buildings observed twice the

amount of savings. They concluded that low installation costs of these measures make them

feasible, given that regional electric pricing and user behaviour allow for acceptable flexibility.

Perez et al. (2016) looked at the ability of individual residential customers to lower community-

level peak demand. By harnessing individual preferences and physical differences between

houses (i.e. insulation values, window type, how many floors, orientation etc), through control

and scheduling, the peak demand was minimized for the neighbourhood. A reduction of one-

quarter of the daily peak load was achieved for a group of houses when compared with the refer-

ence case of individually controlled thermostats and appliances. Sharma et al. (2016) proposed

a centralized energy management system (CEMS) where optimized decisions were determined

by considering realistic model parameter settings and customer preferences. Over a course of a

day, it was shown to reduce both the energy cost and energy consumption of the customers. Pat-

teeuw et al. (2016) investigated how the participation of residential heat pumps in load shifting

could reduce operational costs and CO2 emissions and potential ways to motivate homeowners

with heat pumps to enable flexibility measures to see their benefits. From this study, it was seen

that Operation during dynamic time-of-use (TOU) pricing performed well, however, dynamic

TOU showed poorer outcomes at high levels of residential heat pump penetration. The Smart

Grid Application Guide: Integrating Facilities with the Electric Grid by ASHRAE (2020) pro-

vides building owners, managers, and designers with guidance on the smart grid, applicable

smart grid standards and regulations, and the design and operation of systems in this emerging

industry. The guide details the concrete steps needed to prepare a building – whether new con-

struction or renovation – for integration with the smart grid. Energy flexible buildings through

smart demand-side management (DSM) or smart demand response (DR) using efficient energy

storage, are currently one of the most promising options to deploy low-carbon technologies in

the electricity networks without the need of reinforcing existing networks.
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Zhu et al. (2016) propose a Cost-for-Deviation (CfD) retail-pricing scheme, which is de-

signed to minimize the demand uncertainty of individual customers or communities. Day-ahead

planning and real-time tracking optimization problems for individual buildings was developed.

CfD pricing scheme for a community of two buildings was formulated and a collaboration

scheme by which the two buildings negotiate was devised. A series of experiments demon-

strate that CfD pricing was able to reduce demand uncertainty in a building or a community. By

the virtue of end-users being able to closely monitor their daily loads and by paying fines for not

adhering to their plans would ultimately benefit energy efficiency and will reduce infrastructure

costs. Kolokotsa (2016) addresses critical issues on smart grid technologies and the integration

of buildings in this new power grid framework. The main objective of this paper is to provide a

contemporary look at the current state of the art in the potential of buildings and communities

to be integrated into smart grids as well as to discuss the still-open research issues in this field.

The challenges for the building sector are discussed and future research prospects are analyzed.

Talebi et al. (2017) report the development of a simplified model for predicting the thermal

demand profile of a district heating system. The paper describes the method used to develop

two types of simplified models to predict the thermal load of a variety of buildings (residential,

office, attached, detached, etc.). The predictions were also compared with those made by the

detailed simulation models. The simplified model was then utilized to predict the energy demand

of a variety of district types (residential, commercial or mix), and its prediction accuracy was

compared with those made by a detailed model: a good agreement was observed between the

results.

A bottom-up method to generate synthetic residential loads realistically, but with minimal

computational resources, is presented by Mammoli et al. (2019). Distributions for the number of

events, start time and duration are proposed for four demographic categories: singles, couples,

families, and retired people. The distributions are augmented by elasticity parameters that allow

load control and shaping. The distributions are based on information from focus groups and

online surveys. In principle, the method can produce data at arbitrary temporal and topological

resolution and is thus suitable for a range of applications from machine learning of energy

consumption patterns to detailed transient power flow analysis. It is shown that aggregated loads

can be shaped to follow a desired signal, for example, to balance intermittent solar generation.
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Significant load reduction achieved by residents’ behavioural response is also demonstrated.

Such load reductions could be invoked in the case of low-probability, high-consequence events,

and could contribute to increased energy resilience at the community level.

In a paper by Zepter et al. (2019), they propose a framework to integrate prosumer commu-

nities into the existing day-ahead and intraday markets. Using a two-stage stochastic program-

ming approach, we incorporate the sequenced decision-making in the wholesale system under

uncertainty of renewable generation and spot prices. We focus on the value of peer-to-peer (P2P)

trading in the integration of prosumers in the day-ahead and intra-day markets and investigate

how residential battery storage contributes to local demand-side flexibility in an integrated mar-

ket setting. To this end, they introduced the Smart elecTricity Exchange Platform (STEP) that

represents the interface between the wholesale electricity markets and the prosumer communi-

ties and coordinates the community’s operational supply-demand decisions. A study on resi-

dential buildings in London shows that both P2P trade and battery storage by themselves each

induce a reduction of electricity bills by 20%–30%. Combined, P2P trade and battery storage

may lead to savings of almost 60%. In other words, we find that peer-to-peer trade and flexibility

options such as local storage generate higher levels of the community’s self-sufficiency.

Badiei et al. (2019) described a new method to swiftly model the dynamics of heating

energy demand and indoor air temperatures of houses and housing stocks. The Reduced data

Energy Model (RdDEM) provides a cost-effective alternative to steady-state modelling by en-

hancing the input dataset from the Reduced data Standard Assessment Procedure (RdSAP) – the

method used to calculate Energy Performance Certificates (EPC) in the UK. The new inferences

and methodological enhancements were first tested and then implemented at scale using a sam-

ple of 83 semi-detached houses. Most energy results from RdDEM were within 10% of those

from RdSAP. The differences are explained by the different ways that indoor air temperature is

calculated.

Iria & Soares (2019) proposes a cluster-based optimization approach to support an aggrega-

tor in the definition of demand and supply bids for the day-ahead energy market. This approach

consists of two steps. In the first step, the aggregated flexibility of the entire portfolio is com-

puted by a centroid-based clustering algorithm. In the second step, the supply and demand bids
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are defined by an optimization model that can assume the form of a deterministic or a two-

stage stochastic problem. A case study of 10,000 prosumers from the Iberian market is used

to evaluate and compare the performance of the bidding optimization models with and without

pre-clustering. The numerical results show that the optimized bidding strategies outperform an

inflexible strategy by more than 20% of cost savings. The centroid-based clustering algorithm

effectively reduces the execution times of the bidding optimization problems, without affecting

the quality of the energy bids.

A stochastic bottom-up model for the generation of electric load profiles is introduced in a

paper by Fischer et al. (2015). The model is designed for investigating the effects of occupant

behaviour, appliance stock and efficiency on the electric load profile of an individual household.

Probability distributions are incorporated for when and how often an appliance is operated.

Duration of operation is given as probability density conditional on the start time. The results

showed an accuracy of 91% and a correlation of up to 0.98. In the paper by Mikkola & Lund

(2014), they present a new model for generating spatio-temporal power demand data for urban

areas of the form P(x,y,t). The model is flexible and can be adjusted to different cases and local

conditions. The dimensions of the model are not restricted, but a typical case would comprise an

hour-by-hour simulation over a whole year with a spatial resolution from a few hundred meters

up to several kilometres, depending on the area to be covered. These kinds of load profiles are

useful when analyzing, e.g., smart grids, demand-side management, and renewable energy in

the urban context.

Work by Kotzur et al. (2020) proposes a novel bottom-up model that consists of an aggre-

gation algorithm to create a spatially distributed set of typical residential buildings from census

data. Each typical building is then optimized with a Mixed-Integer Linear Program to derive

its cost-optimal technology adoption and operation, determining its changing grid load in fu-

ture scenarios. In a future scenario for 2050, photovoltaic and heat pumps are predicted to be

the most economically and ecologically robust supply solutions for the different building types.

Nevertheless, their electricity generation and demand temporally do not match, resulting in a

doubling of the peak electricity grid load in the rural areas during the winter. The urban areas

can compensate for this with efficient co-generation units, which are not cost-efficient in the

rural areas.
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Mata et al. (2014) presented a methodology by which national building stocks may be ag-

gregated through archetype buildings. The accuracy of the description is validated by simulating

energy demand using the ECCABS Building Stock Model and comparing the final energy de-

mand modelled with corresponding statistical data. The total final energy demand calculated for

these countries differs from available statistics by between 6% and 12%, which is considered

satisfactory. Fernandes et al. (2014) proposed an innovative method to manage the appliances

on a house during a demand response event. A dynamic load priority (DLP) method is proposed

to change the load priority during a demand response event. A case study with two scenarios is

presented considering a demand response with 30 min duration, and another with 240 min (4 h).

Di Giorgio & Liberati (2014) presented an event-driven MPC approach for a local energy

management system, enabling residential consumers to automated participation in demand-side

management (DSM) programs. Resources are coordinated according to the needs of maximiz-

ing self-consumption and minimizing the cost of energy consumption, in a contractual scenario

characterized by designed or market indexed pricing models, with DSM options. The control

action (appliances’ start times, the storage charging profile and the IEC 61851 compliant charg-

ing profile of the electric vehicles) is updated every time an event triggers the controller, such as

a user request, a price/volume signal, or the notification of a new forecast of micro-generation

from the photovoltaic unit. Using a regression-based baseline model, Mathieu et al. (2011) pre-

sented a method to compute the error associated with estimates of several DR parameters. A

metric was also developed to determine the amount of observed DR variability resulted from

baseline model error rather than real variability in response. It was seen that most observed

variability in the results was due to baseline model error.

The paper by Missaoui et al. (2014) deals with the performance analysis of a Global Model-

Based Anticipative Building Energy Management System (GMBA-BEMS) managing house-

hold energy. This GMBA-BEMS can optimize a compromise between user comfort and energy

cost considering occupant expectations and physical constraints like energy price and power

limitations. To validate the GMBA-BEMS, the model of a building has been developed in MAT-

LAB/Simulink. This work analyzes GMBA-BEMS application that manages appliances such

as heating, washing machine and dishwasher from a grid point of view. Yoon et al. (2014) pre-

sented a controller that reduces peak load as well as saves electricity cost while maintaining
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reasonable thermal comfort. The controller changes the setpoint temperature when the electric-

ity retail price is higher than a customer’s pre-set price. Through simulation, they show that the

controller could provide up to 10.8% of energy cost savings when dynamic pricing is present.

Also, the results present the potential for peak load savings of 24.7% and 4.3% of total annual

electrical energy savings for HVAC in homes.

The study by Yalcintas et al. (2015) investigates potential cost conservation measures that

focus on reducing energy at times of higher energy costs to maximize energy savings. It is

shown that shifting work schedules of office buildings with one shift 1 h early can slightly

reduce monthly electricity rates by 1–3% and that thermal energy storage systems can be cost-

effective for retrofits with dynamic pricing schedules and areas that need full replacement of

air conditioning. The paper by Pallonetto et al. (2016) is concerned with the development and

evaluation of control algorithms for the implementation of demand response strategies in a smart

grid enabled all-electric residential building. An EnergyPlus model of a highly instrumented

building is used to assess the effectiveness of demand response strategies using different time-

of-use electricity tariffs in conjunction with zone thermal control. The analysis identified an

annual reduction of consumer electricity consumption of up to 15.9%, lower carbon emissions of

27% and facilitated greater utilization of electricity generated by grid-scale renewable resources,

resulting in a reduction of generation costs for the utility of up to 45.3%.

The study by Shen et al. (2016) evaluated the performance of conventional demand re-

sponse at the building-group-level under common electricity prices. The evaluation results dis-

close major limitations of conventional demand response due to lack of coordination. Under

time of use pricing, conventional HVAC demand response cannot effectively and efficiently re-

duce peak demand at the building-group-level. Under dynamic pricing, conventional HVAC

demand response can cause a new undesirable peak demand at the building-group-level which

could be much larger than the original one and impose stress on the grid. Coordinating demand

response of individual buildings can solve these limitations. With improved performance at the

building-group-level, simple coordinated examples have been given to demonstrate the need for

coordination in conventional demand response. The study results show the significance of coor-

dination in demand response and the grid pressures imposed by building peak demands can be

better released if coordinated demand response is implemented.
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2.5 Thermal energy storage in the context of buildings

The structural components of a building can themselves be treated as a thermal storage system

in which the thermal energy is stored within the building materials, i.e., floor, walls ceilings and

furnishings. As emphasized by Braun (Braun, 1990), both energy costs and peak electrical use

can be significantly reduced through optimal strategies while considering the use of intrinsic

thermal storage within the building structure. Some simulated-based and experimental results

also show that MPC strategies which take into account both the structural storage capacity of the

building, i.e., the thermal mass embedded in the building structure, and the non-structural stor-

age capacity, i.e. the storage capacity embedded in the thermal systems, may result in substantial

energy cost saving.

Adding dedicated active thermal storage to a building system will add additional storage

capabilities and opportunities for greater building energy flexibility and improved building-grid

interaction. An active thermal storage device can be controlled more precisely than passive

building thermal mass during both thermal charging and discharging phases, thus making active

thermal storage an attractive technology to incorporate into building design.

Usually, control strategies applied to energy storage devices are far from optimal. These

strategies typically consist of heuristic rules (e.g., “charge whenever possible”, or “charge the

device in the nighttime”). While these approaches may address peak load issues, they usually

entail other problems, such as significant heat losses when the device is unnecessarily charged

at high temperatures, for example, during the shoulder seasons. In this context, model-based

predictive control provides the opportunity to plan the charging and discharging cycles of the

storage device as a function of the expected heating load over a specified prediction horizon;

depending on the application, the prediction horizon may range from a few minutes to a couple

of days.

2.5.1 Electrically-heated high temperature thermal energy storage

Active technologies such as Electric Thermal Storage (ETS) can assist in building heating load

management and can complement the building’s passive thermal storage capacity.
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ETS systems can convert electricity to stored heat during a low electricity price period

(or when demand on the grid is low) in a high-temperature storage medium (normally bricks

heated up to 800-900◦C), thus requiring smaller storage space and provide heat to the building

during peak demand periods (Moffet et al., 2012). The purpose of the device is not to reduce the

total energy consumption of the building, but rather to provide a considerable reduction of the

electricity bill in the presence of a demand charge within the utility pricing structure (Bedouani

et al., 2001, Syed, 2011). With a mix of electric heating during both on-peak and off-peak times,

the load can be smoothed and installing new generating capacity can be delayed (Cooke et al.,

1980). During low price periods or off-peak times, the ETS system uses bricks to store heat for

later use. In peak periods, the stored heat is released from the bricks to the building with the

help of a thermostat-controlled fan.

A detailed thermal model of the energy storage device considered was developed in a pre-

vious Master’s thesis (Lavigne, 2006). This model, intended primarily for design purposes,

focused on the assessment of different design alternatives –including the use of phase change

materials (NaCl and KCl)– to increase the storage capacity of the device. The model yielded

results that predicted satisfactorily the experimentally obtained results. It was found that adding

these salts increased the storage capacity of the device, although the introduction to these mate-

rials had several important practical complications. Lavigne (2006) carried out a highly refined

discretization of the energy storage medium (with hundreds of control volumes) and the air in

the channels. This approach –which emphasized the comparison of design options- also consid-

ered a detailed analysis of convective heat transfer from the solid to the fluid circulating in the

channels, and radiative heat transfer between the surfaces of the control volumes for the energy

storage medium. Moreau & Steffes (2009) presented an application of the ETS technology in

a 4,000-m2 building in Québec City. It was shown that two energy storage devices managed to

keep the load of the building within a maximum value of 160 kW, versus 400 kW before their in-

stallation. Other researchers have looked at the ETS coupled with smart grid features and have

examined how the ETS can be used with hydroelectric and abundant wind resources to meet

load growth in isolated electric grids (Wong et al., 2017, Wong & Pinard, 2017). They found

that the ETS, especially when controlled dynamically through Smart Grid signals, is effective

in reducing diesel consumption by capturing the wind and hydro potential that would otherwise

be lost. The operation of an ETS device sized for residential applications (22 kW) was also
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investigated (Cooke et al., 1980). The models used for the design of the device were based on

one-dimensional lumped parameter equations for heat conduction and energy conservation. The

authors chose to neglect many of the dynamic terms, hence they dealt with quasi steady-state

models. The models calculated the average brick temperature in the average air passage, thus

they assumed uniform heat and air distribution. These very simple models may be good for

devices with steady input and output, but are not suitable for more transient operating modes,

thus further need for studies on control-oriented modelling was identified.

Effective advanced control strategies utilize the thermal inertia that is present in the building

structural components and coordinate the operation of different systems such as thermal storage,

electrical storage, on-site renewables, and heat pumps (Junker et al., 2018, Liu & Heiselberg,

2019, Reynders et al., 2017). The fluctuations in weather and occupancy directly affect the oper-

ation of a building, which can result in significant load variations between daytime and nighttime

and thus large demand variations. To manage these fluctuations, proper energy management and

solid knowledge of the dynamic behaviour of buildings are crucial.

2.6 Research needs in control-oriented modeling & enhanced oper-

ation of buildings

Despite the intensive research outlined in this chapter, the transfer of MPC or other enhanced

building operation strategies is still largely in its early stages. There are four main reasons for

this outlined by Cigler et al. (2013a):

1. An accurate yet simple building model is required, however, obtaining such a well-performing

model is often a difficult and time-consuming task.

2. The design and tuning of MPC controllers are challenging. Commission engineers are

often not trained or familiar with complex control systems based on numerical optimiza-

tion. Also, contrary to the prevalent application of MPC in the industrial sector, buildings

are not operated with on-site engineers monitoring and supervising the control system.
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3. There is also a strong need for data availability and processing power as the computation

of MPC control actions for complex systems can be easily based on hundreds or even

thousands of parameters/states.

4. The online solution of the corresponding optimization problem and the extensive data pro-

cessing imposes considerable challenges on hardware and software infrastructure, which

is not a standard in today’s buildings.

Further studies were conducted that use models to test different operating approaches and

control strategies. Control-oriented models will be used, along with knowledge of future con-

ditions (such as electricity pricing, occupancy, weather forecasts etc.) to plan the operation

strategies to better regulate electrical heating loads at hours that are critical for the electric grid

(for example in the morning between 6am and 9am).

Though MPC is an established control technique in other fields and has received increasing

attention in buildings research, it has yet to become common in buildings operations. Due to

the majority of buildings having unique designs, and different types of heating systems (e.g.,

convective considered in this study vs radiant), differing construction qualities and other factors,

it is difficult to automate the model development step in the MPC and model-based energy

management process in buildings.

There is still a need to further develop rapid deployment of thermal models of buildings

that are accurate, simple, and robust, which can be used to predict operational processes, power

demand, energy consumption and comfort, in such a way that an energy modelling expert is not

needed for every building. Future research should focus on evidence that directly compares the

performance of specific optimization algorithms, parameters such as time-step and prediction

horizon, and climate forecast accuracy.

In this work, specific research needs were touched upon, though there is still left further

opportunities for advancements in this area. This work focused on the development of control-

oriented thermal models for buildings with convective heating systems, and convective active

thermal energy storage devices, as well as the development of improved control strategies,

mainly in the form of set point modulation. These models are intended to be used within a

model-based control strategy methodology for energy and load management in typical Québec
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buildings during the heating season. Appropriate grey-box thermal network models for typi-

cal buildings and a dedicated thermal storage device were identified and compared, with some

auto-generation of a model in the methodology, though a fully automated model development

methodology is still needed. Some important features of the developed methodology are calibra-

tion of models with existing measured data and periodic checking of the model against real-time

operation, though it is expected that measured real-time data from the BAS will eventually play

a key role in continuous calibration of the reduced-order models developed, but research is still

needed on how to make this feasible.
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Methodology: Control-Oriented Modelling and Analysis of

Buildings with Convective Heating Systems & Thermal Storage

In this chapter, the thermal modelling approach used for the studies is presented as part of an

overall modelling methodology that can be applied to buildings equipped with convective heat-

ing systems and an active thermal storage device. This modelling approach may be applied

for model-based control and building energy flexibility quantification, utilizing simulation and

model predictive control (MPC). The focus of this research is on the winter operation of archety-

pal buildings found in Québec, mainly low-mass and low-rise buildings. Radiant floor heating

and other types of heating systems apply to these buildings; however, only convective heating

systems will be considered in this work and in the case studies. Also, there is an emphasis on

modelling thermal mass and thermal storage devices, while devices containing advanced mate-

rials such as phase change materials (PCM) are not considered.

The main approach for modelling heat transfer in the enclosure (building or zone) is a low-

order lumped parameter explicit finite difference method that can incorporate parameter cali-

bration and/or parameter identification techniques, such as optimization. The control-oriented

models for building zones and thermal storage devices are based on one- or two-dimensional

lumped parameter equations for heat conduction and energy conservation. These models use

a grey-box modelling approach, in which physically-meaningful parameters can be calibrated

with measured data or identified using optimization techniques. A model-based approach has

the important following advantages:
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3.1 Background: thermal modeling approaches for model-based

control in buildings

Thermal networks, in which thermal phenomena are modelled based on electric network analo-

gies, are commonly used for building energy modelling. Conduction heat transfer through

opaque building surfaces is modelled by two common approaches: (1) conduction transfer func-

tions (CTF) and (b) control volume finite difference methods (CVFD). Data-driven reduced-

order thermal models (ROMs) for archetype zones, buildings, and system configurations are

useful for developing and quantifying energy flexibility strategies in the context of improved

building-grid interaction. A low order RC model allows to rapidly assess the energy flexibility

of a building. An appropriate and suitable modelling methodology is integral when the target is

an in-depth study of the system. A thermal model of a system allows to simulate design con-

ditions (e.g., for new design or retrofit) and to study the thermal response of a building and/or

systems.

Conduction Transfer Functions (CTF): CTFs are time series equations for heat transfer

through a wall or surface. In the CTF calculation, the current heat transfer rate is a function

of previous temperatures on both sides of the wall/surface, going back 24 hours. Obtaining the

coefficients for CTF calculations can be challenging, as they depend on the wall construction.

However, once the coefficients are determined, it is a powerful and quick method for simulations.

CTF calculations are linear and can be found in popular building performance simulation tools,

or even implemented in excel, etc.

The control-oriented modelling methodology for buildings and thermal storage devices de-

tailed below is intended to have general applicability and will be demonstrated with case studies,

which have been introduced in Chapter 1. Modelling performance results and capabilities are

shown in subsequent chapters. Simulation and analysis of thermal and energy fluxes in a build-

ing facilitate the choice of the materials, subsystems and control strategies for the local climatic

characteristics and building function (Athienitis & O’Brien, 2014). Many thermal processes are

relevant in the assessment of building thermal behaviour, such as:

• Heat conduction through exterior walls, roofs, ceilings, floors, and interior partitions.
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• Solar radiation through transparent surfaces.

• Latent and sensible heat generated in the space by occupants, lights, and appliances.

• Heat transfer through ventilation and infiltration of outdoor air and other miscellaneous

heat gains.

3.2 Lumped parameter finite difference method

The one-dimensional heat transfer process for a wall without heat-generating sources is gov-

erned by the following diffusion-type partial differential equation, which is parabolic in time

and elliptic in the space coordinates (Patankar, 1980):

ρcp

∂T

∂ t
=

∂

∂x

(

k
∂T

∂x

)

(3.1)

If k, the thermal conductivity is assumed constant, the equation becomes:

ρcp

∂T

∂ t
= k

∂ 2T

∂x2
(3.2)

The right-hand side of the Equation (3.2) represents all the heat coming or leaving the

control volume depending on the temperatures at surrounding control volumes and the left-

hand side describes how the temperature of the node changes over time. It is typical for RC

models of a building envelope system to be one-dimensional, however, the following studies

and methodology carried out here are not necessarily limited to 1-dimensional analysis or model

development, and the one-dimensional equation has been introduced above for clarity purposes.

If ρ , k and cp are constant, the equation is simplified to:

∂T

∂ t
= α

∂ 2T

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (3.3)

where thermal diffusivity α = k/(ρcp) m2/s, k is thermal conductivity (W/(m·K)), ρ is the

density (kg/m3) and cp is the specific heat capacity (J/K). The domain of the solution is a semi-

infinite strip of width L that continues indefinitely in time. In practical computation, the solution

56



Chapter 3. Control-Oriented Modeling Methodology

is obtained only for a finite time (tmax) and a building wall with thickness L. Specified boundary

conditions at x = 0 and x = L, and initial conditions at t = 0 are required for the solution to

Equation 3.3.

Typical boundary conditions of a wall of thickness L will include convective heat transfer,

absorbed solar radiation (heat source) and long-wave radiations exchange with other surfaces.

The boundary conditions (x = 0 corresponds to exterior surface) are:

(i) At x = 0

q =−k
∂T

∂x
= G+ho (To −T1) = ho (Teo −T1) (3.4)

where sol-air temperature Teo = To +αsG/ho.

(ii) At x = L (thickness of the wall, at the interior surface)

q = hi (T2 −Tr) (3.5)

where q is the heat flux, h is the heat transfer coefficient and G is solar radiation.

Focusing on the formulation as shown in Equation (3.2), and using the explicit finite dif-

ference schemes, the explicit finite difference discretization of the right side of Equation 3.2 can

be written as:

k
∂ 2T

∂x2
= k ·

T n
i+1 −T n

i

(∆x)2
+

T n
i−1 −T n

i

(∆x)2
(3.6)

Multiplying both sides of Equation (3.2) by the differential of volume and knowing that the

thermal capacitance C = ρcpAdx [J/K] we get:

C ·
dT

dt
= Q̇ (3.7)
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Where Q̇ [W] is all the incoming heat into the control volume. The main advantage of

explicit finite difference methods is that they are relatively simple and computationally fast.

However, the main drawback is that stable solutions are obtained only when:

0 <
α∆t

∆x2
< 0.5 (3.8)

If this condition is not satisfied, the solution becomes unstable and starts to oscillate (Crank,

1975, Morton & Mayers, 2005). One-dimensional conduction through the walls is generally

assumed, as well as uniform irradiation of their surfaces by solar radiation (Athienitis & Santa-

mouris, 2002). However, when thermal bridges are present, such as at corners in rooms and for

heat loss through the floor, two-dimensional or three-dimensional analysis could be required.

For a multi-layered wall, an energy balance is applied at each node at regular time intervals

to obtain the temperature of the nodes as a function of time. These equations may be solved with

the implicit method as a set of simultaneous equations or with the explicit method in which we

march forward in time from a set of initial conditions. Wall transient thermal response analysis

with finite difference techniques may generally provide a more accurate estimation of tempera-

tures and heat flows owing to the capability to model non-linear effects such as convection and

radiation. This method is also suitable if easily adjusting the simulation time step is desired,

whereas, in the CTF method, the coefficients must be recalculated for each chosen simulation

time step (Delcroix et al., 2013). One disadvantage is that the initial conditions are usually

unknown, thus, the simulation must be repeated until a steady periodic response is obtained.

The thermal modelling approach used is the common lumped parameter finite difference

method. This approach is based on a space discretization of the material into control volumes.

A node is located at the centroid of the control volume. The heat flux between adjacent nodes is

described by using resistance analogies: the flux is calculated as proportional to the difference

between the temperature of the two nodes. Between control volumes, the conductance U is

calculated as kA/L, where k is the thermal conductivity of the material, A the area of the surface

of contact and L is the distance between adjacent nodes. If the node has considerable thermal

mass, it may be assigned a thermal capacitance, which represents the heat storage capacity of the
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control volume. By performing a heat balance on the control volume, the differential Equation

(3.7) of a node can then be written as (Athienitis & Santamouris, 2002):

Ci

dTi

dt
= Qi +

n

∑
j=1

(Tj −Ti)

Ri, j
(3.9)

where Qi represents the heat generated at a node i or received directly by it from source(s),

Ri, j represents the thermal resistance between nodes i and j (either conductive or convective

terms), T is the temperature at node i or adjacent node j, and C is the thermal capacitance at

node i (C = ρcpAdx). n is the total number of adjacent nodes to node i.

The strategy commonly implemented to determine the transient solution is the application

of time discretization (Athienitis & Santamouris, 2002). A fully explicit finite difference ap-

proach was used to solve the energy balance equations at each node in the models. The fully

explicit approach assumes that the current temperature of a given node depends only on its tem-

perature and the temperature of the surrounding nodes at a previous time step. The term with

the time derivative can then be discretized as follows:

Ci

dTi

dt
≈Ci

∆Ti

∆t
=Ci

T
p+1

i −T
p

i

∆t
(3.10)

By solving for the temperature at the next time step, the general Equations (3.11) and (3.12)

are derived for control volumes with and without capacitance terms, respectively.

T
p+1

i = T
p

i +
∆t

Ci

[

Q
p
i +

n

∑
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(T p
j −T

p
i )

Ri, j

]

(3.11)

T
p+1

i =
Q

p
i +∑

n
j=1

T
p
j

Ri, j

∑
n
j=1

1
Ri, j

(3.12)

An important part of a thermal model of a zone or building (and sometimes a system) is

the radiative and convective heat transfer, which are nonlinear processes. However, it is com-

mon practice to linearize the heat transfer coefficients to ease solving the system of energy
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balance equations using linear algebra techniques and represent them with a linear thermal net-

work. When constant average values for radiative and convective heat transfer coefficients do

not capture the system dynamics adequately, the following simplified convective and radiative

heat transfer coefficient equations were employed (American Society of Heating Refrigerating

and Air-Conditioning Engineers”, 2009):

hconv = 1.26 · |Ts1 −Troom|
1/3 (3.13)

hrad = εσ ·
(

T 2
s1 +T 2

s2

)

· (Ts1 +Ts2) (3.14)

where Ts1 is a surface, Ts2 is another surface and Troom is the room air temperature.

The following three types of approximations are commonly introduced in mathematical

models to facilitate representation of the building thermal behaviour (Athienitis & O’Brien,

2014):

1. Linearization of heat transfer: Convective and radiative heat transfer are nonlinear pro-

cesses and the respective heat transfer coefficients are usually linearized so that the system

energy balance equations can be solved by direct linear algebra techniques and, if desired,

represented by a linear thermal network. Linearization generally introduces less error

for long-wave radiant exchanges between surfaces than convection between surfaces and

room air. A linear lumped parameter system can be represented by a set of ordinary dif-

ferential equations and thermal networks. An important subset of linear systems is those

with time-varying coefficients - an important case in building energy analysis, where we

can often represent thermal conductances such as a known variable level of natural venti-

lation or time-varying infiltration. It should be noted that when thermal storage undergoes

a phase change (e.g., phase change materials (PCM)) a linear approximation may not be

possible in most cases and specialized modelling will be required.

2. Spatial and/or temporal discretization: Transient heat conduction is described by a

parabolic, diffusion-type partial differential equation. Thus, when using finite difference
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methods, a conducting medium with significant thermal capacity such as concrete or brick

must be discretized into several regions, commonly known as control volumes, which may

be modelled by lumped network elements (thermal resistances and capacitances). Also,

time-domain discretization is required in which an appropriate time step is employed.

3. Approximations for the reduction in model complexity - (establishing appropriate

model resolution): These approximations are employed to reduce the number of simul-

taneous equations to be solved and the required data input or to enable the derivation of

closed-form analytical solutions. They are the most important approximations according

to Athienitis & O’Brien (2014). Examples include combining radiative and convective

heat transfer coefficients, assuming that surfaces are at the same temperature, or consider-

ing certain heat exchanges as negligible. These approximations must be carefully selected

and applied by considering the expected temperature variations (spatial and temporal) in a

zone. As an example, a zone with large windows or floor heating may exhibit large spatial

temperature variations, in which case the use of combined film coefficients would result

in high errors in room operative temperature or floor heating rate calculations.

The Biot Number, Bi = hL/k, is a dimensionless parameter that plays a fundamental role in

conduction problems that involve surface convection effects. If Bi << 1, the resistance to con-

duction within the solid is much less than the resistance to convection across the fluid boundary

layer, thus an assumption of uniform temperature distribution in the solid is reasonable. Com-

monly, when Bi < 0.1, it is said that the error associated with using the lumped capacitance

method is small (less than 5%) (Incropera et al., 2006).

3.3 Development of low-order thermal models

Reduced-order thermal models are often custom-made using general-purpose mathematical pro-

gramming tools, which offer flexibility compared to commercial simulation tools. MATLAB

and Python programming language was used in this work.
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3.3.1 Programming tools

MATLAB is a mathematical programming environment that has its own programming language

which allows the user to create subroutines (The MathWorks, Inc, 2015). MATLAB is com-

monly the choice of various engineering disciplines. MATLAB is based on the Ph.D. thesis of

Cleve Moler and its initial release was in 1967. It has a GUI designed for controls and simu-

lation of dynamical systems SIMULINK where a control schematic can be built with relative

ease. MATLAB includes built-in modules for continuous and discrete transfer functions, dif-

ferent types of signals, a system identification toolbox, a MPC toolbox, and even a fuzzy logic

toolbox. MATLAB has an extensive interdisciplinary user-base.

Python is an open-source general-purpose programming language with a design philosophy

emphasizing code readability (Python Software Foundation, 2020). Python is the third most

popular programming language (behind Java (Arnold et al., 2005) and C (Kernighan & Ritchie,

1988)). The creator Guido van Rossum began working on the programming language in the

late 1980s and the first Python 0.2.0 was released in 1991. Libraries such as NumPy (The

SciPy community, 2020), SciPy (The SciPy community, 2019) and Matplotlib (The Matplotlib

development team, 2020) allow the effective use of Python in scientific computing.

3.3.2 Considerations for control-oriented modelling: order selection, adjustable

models, model reset

Adjustable Model Order: The low-order models of the thermal storage device are based on

two-dimensional lumped parameter heat conduction and energy conservation equations. These

models adopt a grey-box modelling approach, where physically meaningful model parameters

are calibrated or identified using measured data from the real building. The developed MATLAB

code was written to quickly adjust the order of the model by specifying how many rows and

columns of brick nodes will be used and thus changing the number of brick thermal capacitance

nodes (i.e., increase or decrease the model order). The model order becomes the number of

rows multiplied by the number of columns specified. Each brick node has a capacitance term,

Cbricks, electric power input, Qsource, and convective heat extraction through the air channels,

Qconv. The heat transfer from bricks to the airflow of the ETS system was modelled using the
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general equation for heat exchange through a channel (Lienhard Iv & Lienhard V, 1986), which

is introduced in a following sub-section in this chapter.

Model reset: The main goal of these control-oriented models is the accelerated simulation

of the ETS device to assess load management strategies and aid in decision-making for system

operation. These low-order thermal models, suitable for controls, are intended to be used simul-

taneously with knowledge of future conditions (such as electricity pricing, occupancy, weather

forecasts etc.) to plan the operation strategies within the Building Automation System (BAS)

for better performance, which could include the regulation electrical loads or ensuring building

energy flexibility. Continuous comparison of the model with actual results from BAS points

is expected. Thus, the concept of “model reset” was developed, which could be considered a

simple alternative to the Kalman filter technique (Huchuk et al., 2014), which gives satisfactory

results (presented in Chapter 5).

These models are designed for short-term control (e.g., 1-2 days) and optimization (e.g.,

hours) within the control sequences of a BAS, therefore, it is reasonable to conclude that the

model can “check” itself against the real available measured values (of brick temperature, outlet

air temperature etc.) periodically and update or “calibrate” its variables.

At the specified reset interval (e.g., 6 hours), the model checks the current state of cor-

responding sensor points and re-initializes the brick temperature model parameter value. The

main reason a 6-hour model reset interval was chosen is because that is how often the available

weather forecasts are typically updated and released by the national weather service (Canadian

Meteorological Service (Environment Canada), 2019).

3.4 Modelling of heat transfer in thermal storage device

For the specific electric thermal storage device used in this study, the focus was on the method-

ology for control-oriented modelling. The device considered, shown in Figure 3.4, consists of

an insulated heat storage tank containing 3,121 kg of magnesite (MgCO3) bricks. Magnesite

bricks have mainly been used for high-temperature schemes, where brick temperatures can go
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up to 871 ◦C, while water and solutions of water and sodium sulphate have been used for low-

temperature (less than 100 ◦C) energy storage (Lavigne, 2006). Electric wire heating elements

are placed between the rows of bricks. The storage device considered is rated for a maximum

brick temperature setpoint of 871 ◦C and the maximum storage capacity of this device is ap-

proximately 640 kWh. A fan controls the fraction of total airflow that is driven through the ETS

device to retrieve heat from the bricks. The air either passes through the bricks or bypasses the

device.

Figure 3.4: (a) Thermal electric storage device, reprinted with permission from Karine Lavigne

(Lavigne, 2006) and (b) brick charging and discharging schematic

The general equation for heat exchange through a channel (Lienhard Iv & Lienhard V,

1986) was used to model the heat transfer from the storage bricks to the airflow in the brick

channels:

Tbout
−Tbin

Tw −Tbin

= 1− exp

(

−
hPL

ṁcp

)

(3.15)

Tw is the channel wall surface temperature, h is the convective heat transfer coefficient

between air and channel surface, P is the perimeter of the channel, L is the length of the channel.

Equation (3.15) is also a simplification, as it assumes that the walls of the channel are at a

uniform temperature throughout the length, and results in the temperature of airflow following

the form of an exponential curve, approaching the wall temperature asymptotically. The above

equation can give the variation of air bulk temperature (Tbout
and Tbin

) along the channel as a

function of the distance from the inlet (x) if Tbout
is replaced by Tb(x), L is replaced by Z(i), and
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h is adjusted accordingly. Temperatures at each control volume would therefore be calculated

as follows:

Tbout
(p, i) = Tw (p)+ [Tbw

(p, i)−Tw (p)] · e
−2·Z(i)

a(p) (3.16)

where a(p) =
M(p)cpρ

Wh̄(p)
and the convective heat transfer term can be calculated with this

equation, h = Nu·k
DH

, or estimated/calibrated as often there is not enough information available.

Nu is the Nusselt number, k if the conductivity of the air and DH is the hydraulic diameter of

the air channel. The energy extracted from the bricks in the air channels (which is subtracted

from the brick node energy balance equation) is calculated as follows:

Qconv (p) = 4 ·M (p)cpρ [Tbout
(p,L)−Tbin

(p,0)] (3.17)

3.5 Parameter identification and model calibration

Kummert et al. (2006) stated that parameter identification on a detailed building model is a

complex problem due to the large number of parameters and to the possibility of achieving

the same result through different actions (e.g., increasing the infiltration rate or increasing the

thermal conductivity of a low-mass wall or window). The large number of parameters in the

building model makes parameter identification a complex problem, and typically the desired

level of accuracy is high - where performance differences of less than 10% must be reproduced.

For those reasons, among others, a simpler model may be an attractive alternative to complex

building simulation tools.

An optimization algorithm can be used to determine unknown parameters, therefore having

fewer equations is helpful. Several methods are available to reduce the complexity of a model:

merging thermal zones, reducing the discretization of the walls, and merging several walls to

combined surfaces. An optimization routine is used to find the parameter values that minimize

an objective function. In one of the case studies outlined in Chapter 4, the objective function

chosen was the coefficient of variation of the root-mean-square error (CV(RMSE)) between

measured power and the prediction at 15-minute intervals, similar to (Lavigne et al., 2014).
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Sequential Least Squares Programming (SLSQP) was used for this study using the Python pro-

gramming language (Python Software Foundation, 2020). The SLSQP algorithm within SciPy

(SciPy, 2021) is used here; other algorithms can replace it depending on the user’s preference.

The objective function CV-RMSE used is shown in Equation (3.18):

CV −RMSE(y, ŷ)[%] =
1

y

√

1

n

n

∑
i=1

(ŷi − yi)2 (3.18)

where y is the experimentally measured data (usually energy or power) and ŷ is the model

predictions. The building was modelled using the fully explicit finite difference method to solve

the energy balance equations. Initial values of model parameters are based on the known build-

ing material properties and estimates for infiltration, inter-zonal convective transfer, and air

capacitance multipliers.

The normalized mean bias error is also a common index when evaluating a model’s ability

to accurately predict the energy consumption of a building. CV-RMSE and NMBE are usually

used for whole-building energy consumption at hourly or monthly time steps, and there are

no agreed-upon indices for evaluating sub-hourly data. The common threshold for hourly data

assigned by ASHRAE for CV-RMSE is 30%, while NMBE is 10% (Gillespie et al., 2002b).

The performance of the models can be evaluated in terms of several other statistical in-

dices, such as the root-mean-square error (RMSE), Equation (3.19), and the mean absolute error

(MAE), Equation (3.20). Also, the infinity norm (i.e., the biggest difference between the model

results and measured data) of the absolute error between modelled brick temperature and the

measured brick temperature was used to evaluate the accuracy of models with different levels of

detail and to give another data point, Equation (3.21)).

RMSE (y, ŷ) [◦C] =

√

∑
n
i=1(ŷi − yi)2

n
(3.19)

where y is the measured sensor data of the brick temperature, ŷ represents model predictions

of brick temperature and n is the number of samples.
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MAE (y, ŷ) [◦C] =
∑

n
i=1 |ŷi − yi|

n
(3.20)

∥ f ∥∞ [◦C] =∥ ŷi − yi ∥∞ (3.21)

3.5.1 “Effective” brick conductivity:

In the study of control-oriented modelling of an active thermal storage device using bricks as

a storage medium, the concept of “effective” brick conductivity was also proposed and investi-

gated to use a model with a relatively low order while still obtaining adequate predictions. This

concept consists of the proposition that it is possible to improve the accuracy of a low-order

model if it is assumed that it behaves as if the material had a higher conductivity (Date et al.,

2016b). It is worth pointing out that this does not reflect any change in the material: it is only a

modelling artifice when the objective is to assess the average temperature of the material as an

indication of its state of charge.

An optimization routine used for the model identification study of an active thermal storage

device had an objective function of the RMSE between measured brick temperature and the

prediction at a simulation interval 5 minutes. In this case, the MATLAB function fmincon –

which finds the minimum of a constrained nonlinear multi-variable function – is used here. The

objective function chosen was RMSE and is shown in Equation (3.19).

3.6 Building energy flexibility & contingency quantification

Building load flexibility can be described as a building’s potential to adjust its power demand at

specific times by postponing or shifting consumption when compared to a reference scenario (or

“Business as Usual” (BAU)). The concept of energy flexibility is useful to estimate the amount

of energy (or energy flexibility) that a building can provide to the utility grid since the utiliza-

tion of this flexibility can help lessen the strain on the grid when the demand approaches or

exceeds what can be safely supplied. Annex 67, of the International Energy Agency Energy in
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BEFI (t,∆t, tnotice) =

∫ t+∆t
t Pre f dt −

∫ t+∆t
t Pf lexdt

∆t
(3.22)

where BEFI is the Building Energy Flexibility Index, t is the start time of the event, ∆t

is the duration of the event, tnotice is the time of notification for the event, Pre f (kW) is the

power demand from the reference scenario during an event, and Pf lex (kW) is the power demand

from a flexibility case during an event. The BEFI is the average difference between the power

demand of the reference case, Pre f (kW), and the power demand of the alternative “flexibility

scenario”, Pf lex (kW), for the given event duration ∆t, shown in Equation 3.22. BEFI could also

be represented as a percentage by dividing it by the value of Pre f .

3.6.2 Contingency reserve:

The contingency reserve is an amount of power that the utility may call from its customers when

there is a loss of a generation unit or other unexpected load unbalances. One solution to address

this power need is that real-time available thermal load flexibility must be quantified beforehand

or continuously calculated during the event and available at short notice (e.g., 10 min) over a

period of an hour, up to a few hours. This energy flexibility can be enabled by actions in response

to a signal from the grid to the customer.

3.6.3 Prediction uncertainty:

Uncertainty in future predictions from low-order thermal models is an important consideration

when evaluating different design or control scenarios. By offering a range of reasonable operat-

ing predictions that incorporate uncertainties related to weather forecasting and identified model

parameter values, decision-makers can better understand and evaluate the risk associated with

the operation options available to them (or rather, the operation options that were considered).

Uncertainty in weather forecasts of solar radiation can be as high as 30% (Natural Resources

Canada, 2019), and modelling uncertainty can be in that range as well.
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3.7 Model predictive control in buildings

Model Predictive Control (MPC) could be described as a “repeated solution” of a finite-time

optimal control problem: at each controller time step, a system model and optimization algo-

rithm are used to find the optimal set of values for each control variable at each time step over

a prediction horizon. The first time step of the solution is implemented and then the process

is repeated at the next controller time step with updated initial state values (which are obtained

from the real building) and disturbance forecasts (i.e., weather and occupancy). Variations of

this general procedure are also possible, such as implementing two or more time steps of inputs

and performing the optimization less often, or having different control and prediction horizon

lengths.

Model Predictive Control (MPC) in buildings is a multi-variable control algorithm that

involves (repeatably) solving a constrained optimization problem to choose the control action,

using a model of the system, forecasts of future disturbances (i.e. weather forecast), future

costs, and constraints, and a cost function that is minimized over a moving time horizon (i.e.,

the period for which future information is available, ranging from a few hours to a few days).

In general, MPC in buildings uses knowledge of forecast weather and anticipated occu-

pancy schedules which can enable better control of the building energy systems, for example,

by better managing thermal storage capabilities. Once the optimization algorithm determines

the optimal control actions, these actions are applied to a “control horizon”, a time period that

is often shorter than the prediction horizon. Figure 2.7, first presented in (Blum, 2019), is an

informative depiction of the concept of MPC for building operation and Figure 3.6, taken from

(Drgoňa et al., 2020), provides a visual example of the characteristic behaviour of MPC for a

building.

Setting up a suitable control-oriented thermal building or system model is crucial for MPC.

However, the level of modelling effort and knowledge is difficult to estimate as each model is

often designed for one specific building. MPC design requires a certain degree of knowledge of

building modelling and heat transfer, such as a good understanding of what details are important

to include, and which details can be excluded in the control model while still obtaining adequate

70





Chapter 3. Control-Oriented Modeling Methodology

The following are examples of the relevant developed cost functions when the aim is to

reduce cost and/or peak demand (which may or may not be during specific times of the day).

1. Cost function using a utility rate with a fixed energy consumption component and

an electric demand charge component: formulation of this optimization problem is

shown in Equation (3.23). As an example, the Hydro-Québec utility rate M, intended

for medium-sized commercial buildings, is suitable for this formulation (Hydro-Québec,

2020b).

min
TSP

JPH =

(

N

∑
i=1

Pi∆t

)

·
(

CostEnergy

)

+max(P) · (CostDemand)

subject to TSP,min ≤ TSP ≤ TSP,max

0 ≤ P ≤ Pmax

(3.23)

2. Cost function using a utility rate with a dynamic energy consumption component

and an electric demand charge component: the second optimization problem in con-

sideration is shown in Equation (3.24), which is a special case of Equation (3.23) that has

an added dynamic energy cost, specified by the sub-index i.

min
TSP

JPH =

(

N

∑
i=1

Pi∆t

)

·
(

CostEnergy,i

)

+max(P) · (CostDemand)

subject to TSP,min ≤ TSP ≤ TSP,max

0 ≤ P ≤ Pmax

(3.24)

Where PH is the prediction horizon (24, 36, 48 hours etc.), N is the number of time steps

over the prediction horizon, Pi is the power demand at time i and ∆t is the simulation

time step. The temperature setpoint is constrained by a lower and upper bound to ensure

comfort for the occupants. The objective is to identify a setpoint schedule for the room

temperature, TSP. The demand due to space heating P is constrained by the size of the

heating equipment Pmax.

3. Cost function using Building Energy Flexibility Index (BEFI) maximization during

a specified time of peak demand: the last optimization problem example is using BEFI

as the cost function.
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max
TSP

JPH = avg[Pre f −Pf lex],during DR event

subject to TSP,min ≤ TSP ≤ TSP,max

0 ≤ P ≤ Pmax

(3.25)

Equation (6.5) shows a more formal representation of the BEFI (Athienitis et al., 2020).

BEFI (t,∆t, tnotice) =

∫ t+∆t
t Pre f dt −

∫ t+∆t
t Pf lexdt

∆t
(3.26)

where BEFI is the Building Energy Flexibility Index, t is the start time of event, ∆t is

the duration of event, tnotice is time of notification for the event, Pre f (kW) is the power

demand from the reference scenario during an event, and Pf lex (kW) is the power demand

from a flexibility case during an event. The BEFI is the average difference between the

power demand of the reference case, Pre f (kW), and the power demand of the alterna-

tive “flexibility scenario”, Pf lex (kW), for the given event duration ∆t, shown in Equation

(3.26). BEFI could also be represented as a percentage by dividing it by the value of Pre f .

Real-time optimizing algorithm: The MATLAB function fmincon finds the minimum of a

constrained nonlinear multivariable function. The optimization algorithm identifies a setpoint

schedule at hourly intervals. These identified values are then fed to the simulation model (“real

building”) and linearly interpolated to a specified time interval. Set-point optimization is just

one example of how MPC can be employed in buildings and is the only method used in this

research.

Prediction and control horizons: Typically, in MPC, the optimal control problem is solved at

each defined control step by looking ahead at forecasts such as weather and occupancy schedules

over the prediction horizon, PH. The prediction horizon is a time period where we have reason-

ably reliable information, ranging from a few hours to a couple of days. Using data available

from the prediction horizon period, an optimization routine is solved, and an optimal sequence

of control moves is identified through the implementation of MPC. The identified schedules

and control moves are applied to the building over a “control horizon”, which can be the same

length or be shorter than the prediction horizon. Once the current control horizon has ended, the
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optimization exercise is performed again for the following prediction horizon. This process is

repeated until the end of the simulation time (e.g., one day or one year).
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Control-Oriented Modelling of Case Study Buildings with

Convective Heating Systems

4.1 Introduction

In this chapter, two simulation-based applications of control-oriented building modelling are

presented. The first study is a multi-level control-oriented modelling approach for a detached

residential house (Date et al., 2016b) while the second study pertains to MPC model develop-

ment of a smaller commercial retail building (Date et al., 2017). The application of the detached

house presents the development of a multi-level approach to the problem of modelling different

thermal zones in a house for control applications. This problem has been treated before by mod-

elling the whole house with a single, all-inclusive RC thermal circuit which may have different

levels of resolution. The core feature of the proposed methodology allows the user to switch

back and forth between models representing different control levels according to the modelling

objectives. The second study determined if the implementation of MPC is useful for lowering

electricity bills in small commercial buildings under the typical rates applied in Québec. For an

electrically heated building, it was investigated if it is possible to reduce the annual energy bills

associated with the combined effect of energy price, demand charges, and a minimum monthly

billing charge based on the winter peak. While other MPC studies have used an objective func-

tion combining both an energy price and a demand charge (Braun, 1990, Cai et al., 2016a), our

goal was to examine how an MPC algorithm with a short-term horizon can offer benefits in the

long-term electricity bill.
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4.1.1 Control-oriented modelling of thermal zones in a house: a multi-level ap-

proach

This section presents the use of a multi-level simplified linear thermal modelling approach based

on the electrical analogy for the development of control strategies in conventional detached

residential homes equipped with convective electric heating systems1. These models are de-

veloped with parameter identification techniques of results obtained through comparison with

whole building measured data. Although detailed building simulation models can be used di-

rectly for testing control strategies, this approach can be quite computationally intense and time-

consuming thus simplified models become advantageous. The work presents a methodology to

allow a user to switch back and forth between thermal models representing different control

levels according to modelling objectives. Different control levels include, but are not limited to,

community simulation studies, whole building studies, or zone-level studies. Zone-level models

take into account inter-zonal heat transfer. From these simple models, useful information can be

extracted without performing any simulation, and this is also explored.

For the development of specific control algorithms for each zone, a house can be treated

as a collection of interconnected zonal models, as opposed to a single, large model. This mod-

elling approach has the advantage of maintaining a simple structure for each zone, while also

considering the heat transfer between zones; at this control level, issues such as occupancy, ther-

mal comfort or setpoint profiles can be examined in more detail. On the other hand, if a quick

estimate of global variables is of interest (e.g., overall thermal load over the next 24-hr) then

different zones or entire house may be combined into a single low-order model. In summary,

this multi-level approach allows the user to “zoom in and out” so that models at each control

level remain manageable, easy to calibrate and easy to physically interpret.

Suitable simplified multi-zone thermal models enable a rapid assessment of control strate-

gies targeting energy reduction, or occupant thermal comfort and advanced control strategies

could greatly benefit from adequate, simple models. Model predictions should be meaningful

for energy and power results for the whole building level or at the zone level. Zone level detail

1This work is based on the published refereed conference papers: (a) Date, J., Candanedo, J., Athienitis, A.

K., & Fournier, M. (2016a). Simplified multi-zone thermal modelling of a house for demand reduction & control

applications. In Proceedings of CLIMA 2016 Conference Aalborg, Denmark and (b) Date, J., Candanedo, J. A.,

& Athienitis, A. K. (2016b). Control-oriented modelling of thermal zones in a house: a multi-level approach. In

Proceedings of International High Performance Buildings Conference West Lafayette, IN, USA.

76







Chapter 4. Case Study Buildings with Convective Heating Systems

• A detailed zone-level model was developed to represent the real building and used as a

benchmark.

• A Simplified zone-level model was created and the connections between zones are stud-

ied.

• Unknown values of parameters of the building models were identified through system

identification.

• The simplified thermal model predictions were compared with measured experimental

data and the zone-level detailed model predictions.

4.1.4 Building thermal modelling assumptions

Thermal models based on the physics of the system (typically in the form of resistance-capacitance

(RC) models) are useful for control studies in buildings. Values of parameters are identified

through an optimization technique and should be interpreted as “effective” values rather than

“exact” physical parameters (Candanedo et al., 2013). Model details could be added or taken

away depending on the needs of the user. For this case, important assumptions used to construct

simplified thermal RC networks include:

• The temperature of each surface or cross-section is uniform (e.g., walls, floors, etc).

• The air in each zone is well mixed.

• Radiative and convective heat transfers are combined and constant.

• Air is a non-participating medium with respect to radiation.

• Conduction between each window and window frame is neglected.

An optimization algorithm is used to determine unknown parameters, therefore having fewer

equations is helpful. Several methods are available to reduce the complexity of a model: merging

thermal zones, reducing the discretization of the walls, and merging several walls to combined

surfaces.
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Figure 4.6: Multi-zone thermal network whole building schematic

4.1.6.2 Whole building-level model

At the whole building-level, a first-order (i.e. one capacitance) model is developed and model

parameters are identified using the optimization algorithm. Figure 4.7 depicts the system inputs

and outputs for the whole building thermal model. Figure 4.8 shows the thermal circuit at the

whole building-level, modelled as one equivalent zone with one effective capacitance and one

effective resistance, creating a 1R1C model. As the setpoint of each zone within the house may

not be the same, an effective whole house setpoint temperature can be defined as:

Te f f ,set point =
n

∑
j=1

(

Tset point, j ·A j

Atotal

)

(4.1)

Using Equation (4.1) to estimate the effective setpoint for the building (when individual

zones are controlled differently), this model structure can be useful to obtain quick estimates of

whole building loads and operation or for district/community scale simulation studies.
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J(y, ŷ) =
1

ȳ

√

1

n

n

∑
i=1

(ŷi − yi)2 (4.2)

where y is the experimentally measured data (thermal power) and ŷ represents the model

predictions. The building was modelled using the fully explicit finite difference method to solve

the energy balance equations. Initial values of model parameters are based on the known build-

ing material properties and estimates for infiltration, inter-zonal convective transfer, and air

capacitance multipliers. A comparison between the benchmark model, the zone-level control-

oriented model and the building-level control-oriented model is shown in Figures 4.9 and 4.10,

and a table outlining the modelling error (CV-RMSE) is given in Table 4.1.

4.1.7.1 Calibration of benchmark model and floor-level model

The parameter values of the benchmark (detailed) floor-level model and simplified floor-level

model were identified, and the power use predictions were compared. The focus was on the ac-

curacy of power prediction rather than room temperature prediction, as most building simulation

models are calibrated against the power or energy consumption of the whole building. Results

after calibration using 5.4 days of model training data are found in Table 4.1.

Table 4.1: Calibration of multi-zone models

Multi-zone models Detailed Model Floor Level Model

CV-RMSE - Zone 1 (Top Floor) 23% 26%

CV-RMSE - Zone 2 (Main Floor) 25% 23%

CV-RMSE - Zone 3 (Basement) 19% 26%

CV-RMSE - Zone 4 (Garage) 7% 6%

CV-RMSE - Whole Building 13% 15%

4.1.7.2 Calibration of building-level model

Table 4.2 shows the values for the parameters R and C of the 1R1C thermal model of the whole

house. Initial and second guesses were made based on geometry and material properties of the

building and then an optimization routine was conducted to identify R and C values which results
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in the lowest CV-RMSE, when model predictions are compared to experimentally measured

data. For the initial guess of the 1R1C model, R and C were determined by adding the resistances

according to the series and parallel circuit laws and capacitances were added together. In the

second guess, a capacitance multiplier of 15 was chosen.

Table 4.2: 1R1C global model calibration results

1R1C model Initial Guess Second Guess After Identification

R (Kelvin/kW) 7.1 7.1 6.4

C (MJ/Kelvin) 49.1 57.7 17.2

Effective air capacitance multiplier 1 15 N/A

CV-RMSE 51% 55% 20%

Time Constant (τ = RC) 97 Hours 114 Hours 31 Hours

One noteworthy result from the identification process of the 1R1C model using an opti-

mization routine is the value of the C parameter, as it is much smaller (almost 3 times smaller)

than what the expected “effective” C value based on the geometry and material properties of the

building. These results suggest that new, revised methods are needed to estimate effective capac-

itances of buildings. Figure 4.9 shows the predictions of the floor-level model and experimental

heating power data. For visual clarity, only one day of data and predictions is shown here. The

predictions of each zone’s power demand contribution are shown, and the simple whole house

1R1C power profile is overlaid (dashed line).

The concept of the multi-level thermal modelling approach for different control applica-

tions can be summarized as follows. The top benchmark model is the most detailed version of

the building thermal model. From there, one can choose to look at optimal control at the zone

level by using the simplified zone-level models or at global whole building operation by using

the building level model. It is a simple procedure to interchange between the different modelling

levels depending on the needs or interests of the model user. The characteristics and results

of the three thermal modelling levels are summarized in Table 4.3. A comparison between the

benchmark model, the zone-level control-oriented model and the building-level control-oriented

model is shown in Figure 4.10.
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Figure 4.13: Model error (CV-RMSE) for different prediction horizons and training data 5.4

days

Figure 4.14: Model error (CV-RMSE) for different prediction horizons and training data 1 day
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Figure 4.15: Model error (CV-RMSE) for different prediction horizons and training data 6

hours

Figure 4.16: Model error (CV-RMSE) for different prediction horizons and training data 3

hours

4.1.9 Frequency domain analysis

Frequency domain analysis of these systems could prove useful in comparatively evaluating a

model’s accuracy, almost by inspection, without the need for a simulation. After solving for the

state-space representation of the three models (refer to (Candanedo et al., 2013) for procedure),

the frequency response of the indoor air temperature Tin output to the electric heating input
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while a very detailed benchmark floor-level model is developed and can be used for verification

and MPC-based simulation studies. For the development of specific control algorithms for each

zone, an adequate simplified zone-level model must be identified. It was found that if zone-level

accuracy is of importance, one must incorporate into the model the thermal mass of the structure

between zones. Work remains to be done on how to improve the guidelines for the initial guess

of the grey-box model parameters.

4.1.11 Conclusion: multi-level modelling of a house

This study outlined a methodology for multi-level control-oriented modelling for buildings with

several zones. This multi-level approach allows the user to “zoom in and out” so that models

at each control level remain manageable, easy to calibrate and easy to physically interpret. A

global low-order model (1R1C) is developed and used to rapidly calculate the thermal load of

the building, while a very detailed benchmark floor-level model is developed and can be used

for verification and MPC-based simulation studies. For the development of specific control

algorithms for each zone, an adequate simplified zone-level model must be identified. It was

found that if zone-level accuracy is of importance, one must incorporate into the model the

thermal mass of the structure between zones.

Three building-level models were then evaluated to investigate the effect of incorporating

additional capacitance terms. Using these three building-level models, the effects of different

lengths of training data periods on the accuracy of different prediction horizons were explored.

It was found that a 1R1C whole-house model can perform well for either longer horizon or

short ones, but not simultaneously for both. Frequency analysis was used to quickly evaluate

the whole building models without the need to perform a simulation. Interesting differences

emerged in the phase angle predicted by the different models. Work remains to be done on how

to improve the guidelines for the initial guess of the grey-box model parameters.
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4.2 Predictive setpoint optimization of a small commercial build-

ing subject to a winter demand penalty affecting 12 months of

utility bills

This study looked at the implementation of MPC in a small commercial building in a heating

dominated climate and developing suitable models for model-based control studies2. The goal

of this study is to investigate the potential of MPC for lowering electricity bills in commer-

cial buildings under the typical rates applied in Québec, which include a demand charge that

heavily penalizes winter peaks. Two slightly different cost functions target the minimization of

the utility rate during each prediction horizon while meeting upper and lower indoor tempera-

ture constraints. A parametric study indicated that despite minor differences all studied MPC

scenarios result in significant reductions in both yearly utility bills and peak power demand.

This study investigated how MPC can be used to lower electricity bills in commercial build-

ings under the typical rates applied in Québec. The goal was to evaluate the potential of MPC

in buildings of common construction, without any high-tech features, technologies, or systems.

In Québec, Canada, where greater than 99.8% of the electric power is generated through hy-

droelectric plants (Hydro-Québec, 2016), it is not unusual to find commercial buildings using

electricity as their only energy source.

This is a result of low electricity rates, high fuel prices and limited distribution of gas in

certain regions. It is estimated that heating in the commercial and institutional building sector

accounts for 9% of the province’s winter peak demand (Hydro-Quebec Distribution, 2012).

These buildings represent a significant portion of the electric load in the province. During winter,

peak loads associated with space heating impose a heavy burden on the grid. Thus, there is

increasing interest in demand response strategies, especially on cold winter days.

A particular aspect of commercial customer rates in Québec is that the building’s winter

peak demand can affect the utility bill for an entire year. The minimum billing demand charged

in the electricity bill is set at 65% of the peak power recorded during the winter (Dec 1 – Mar

2This work is based on the published refereed conference paper: Date, J., Candanedo, J., Athienitis, A. K.,

& Lavigne, K. (2017). Predictive Setpoint Optimization of a Commercial Building Subject to a Winter Demand

Penalty Affecting 12 Months of Utility Bills. Proceedings of Building Simulation 2017 Conference. San Francisco,

California.
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31) falling within the previous 12-month period. This rule means that special attention must

be given to the control strategies over the winter period. MPC is an established control tech-

nique in other engineering fields such as chemical processing and electrical engineering (Qin

& Badgwell, 2003) and is a promising strategy for improved controls in buildings. It has re-

ceived increasing attention in buildings research but has yet to become a mainstream practice.

MPC is a multivariable control algorithm that uses an internal dynamic model of the system,

a history of past control moves, forecasts of future disturbances (i.e., weather forecast) and an

optimization cost function that is minimized over the receding prediction horizon. The basic

principle of MPC in buildings is that knowledge of forecast weather and anticipated occupancy

enables better control of the building energy systems, for example, by better managing thermal

storage capabilities. Because of the number of variables and constraints that must be consid-

ered, optimization can become quite complex. Setting up a suitable building control model is

crucial for MPC. The degree of modelling effort is difficult to assess in advance as each model is

typically tailored for one specific building. MPC design requires expert knowledge on building

modelling, such as a good understanding of what details are appropriate to include or exclude

in the control model. Several modelling environments are suitable for MPC studies, all with

their advantages and disadvantages. This point has been addressed by (Perera et al., 2016) in a

paper comparing MATLAB and Modelica. However, one major aspect still incomplete in the

field of MPC and building control research is an effective way to visualize the process flows,

which hinders the ability to easily convey research results to a wide audience. This is a topic of

ongoing research and development.

4.2.1 Objectives

As mentioned above, the goal of this study is to determine if the implementation of MPC can

be useful for lowering electricity bills in commercial buildings under the typical rates applied

in Québec. This work investigated, for the case of an electrically heated building, the reduction

of the annual energy bills associated with the combined effect of energy price, demand charges,

and a minimum monthly billing charge based on the winter peak. While other MPC studies have

used an objective function combining both an energy price and a demand charge (Braun, 1990,
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Cai et al., 2016a), our goal was to examine how an MPC algorithm with a short-term horizon

can offer benefits in the long-term electricity bill.

The building introduced in this study was previously investigated by Lavigne et al. (2014),

who used an offline demand response approach to optimize the operation of the building to

reduce the building’s total power demand during peak periods while maintaining comfort for

occupants.

Simulink, MATLAB’s graphical environment, is used in this study to model and visualize

the MPC process. Simulink is a graphical programming environment for modelling, simulat-

ing, and analyzing multi-domain dynamic systems. Its primary interface is a graphical block

diagramming tool and a customizable set of block libraries.

The main objectives of this study include:

• To investigate the performance of an MPC algorithm for the planning of setpoint trajec-

tories in a commercial building under utility rates commonly used in Québec, and in a

heating-dominated climate.

• To investigate how a short-term optimization of a few days might impact annual electrical

energy bills. For instance, a high peak in winter affects the electricity bill even in the

summer months.

• To perform a sensitivity study on how the length of the prediction horizon affects the

overall cost.

• To explore the potential of a graphical interface (Simulink) to test predictive control and

showcase its performance, for example, the simulation will continuously display the pro-

jected monthly bill based on energy use and the maximum power measured since the end

of the last billing period.

4.2.2 Building description

This study is based on an existing 427 m2 (4,600 ft2) single storey commercial building built in

2009, shown in Figure 4.21. The building is located 150 km north of Montreal in Trois-Rivières,
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Table 4.4: Structure of utility Rate M

Rate M (Medium Sized Business Customers)

Demand Charge (CostDemand): $14.37 / kW

Price of energy (CostEnergy)

- First 210,000 kWh 4.93¢/ kWh

- Remaining 3.66¢/ kWh

Rate M has a demand charge and two different energy prices: one for the first 210,000 kWh

and a second for any remaining consumption. In this rate structure, there is a minimum demand

charge of 65% of the winter peak load, where this minimum is set at all times throughout the

year. Therefore, control strategies during the winter months can affect the bill during non-winter

months, and thus special attention should be given.

4.2.4 Retail bank building - MPC methodology

This study makes use of MATLAB and Simulink (MATLAB’S graphical simulation environ-

ment), as a tool to investigate and evaluate MPC strategies.

For this exercise, a simple Resistance-Capacitance (RC) thermal network is used to model

the building using the explicit finite difference method and is employed as the “simulation

model” (i.e., intended to represent as accurately as possible the building’s response). The model

is based (calibrated) on real measurement data at 15-min intervals of whole-building power

demand.

A second low-order model (a “control-oriented” model) is used to search for a near-optimal

temperature setpoint schedule over a prediction horizon of 1-2 days, thus leveraging the thermal

mass of the building. A fully explicit finite difference approach was used to solve the energy

balance equations at each node in the model. Equations (4.3) and (4.4) were used for nodes with

and without a thermal capacitance term, respectively.
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Table 4.5: Details of the two RC thermal models

Control Model Simulation Model

Order 4 5

Time Step 5 minutes 15 seconds

Controller settings PI controller coded in MATLAB script Simulink controller block

CV-RMSE 14.1% 10.4%

NMBE -2.8% 2.2%

results based on the objective function that incorporates the Rate M electricity cost structure and

it suffices to have two slightly different models to illustrate this point. The intention is to analyze

whether whole-year utility charges can be reduced when this cost function is implemented into

the optimization routine of the control model.

The MPC simulation was “warmed up” for several days before gathering the results for the

whole year simulations. This allows enough time for the models to thermally stabilize and give

suitable representative results. At the beginning of each control horizon, the current states of the

simulation model are fed to the control model as initial conditions. This allows the control model

to have knowledge of the current building operation at the start of the new control horizon.

The statistical indices of CV-RMSE and NMBE were used for the model validation process.

ASHRAE Guideline 14 (Gillespie et al., 2002a) suggests that a CV-RMSE below 30% and

NMBE below 10% on an hourly basis ensures a calibrated model (shown in Table 4.5).

4.2.4.3 System disturbances

Real and predicted disturbances (namely weather data for this investigation) typically differ

slightly from one another. To consider the inaccuracies of weather forecast into the prediction

control model, noise was added to the real weather data of outdoor air temperature and solar

radiation using the rand() and randi() functions within MATLAB, as shown in Figure 4.24 and

Figure 4.25 for four winter days.

4.2.4.4 Cost functions & constraints

MPC studies have often focused on the operation of active energy storage (ice banks, chilled

water tanks, etc.), mostly for cooling applications, and under time-of-use rates, but in this study,
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a.m. and 9 a.m. and weekday evenings between 4 p.m. and 8 p.m. For this study, the morning

peak was investigated, as evening peaks largely occur from residential customer demands.

The objective function that incorporates a demand penalty between 6 a.m. and 9 a.m. is

shown in (4.8).

JPH =

(

N

∑
i=1

Pi∆t

)

·(CostEnergy)+0.5 ·max(P)PeakHours ·(CostDemand)+0.5 ·max(P) ·(CostDemand)

(4.8)

An objective function such as the one proposed in Equation (4.8) should be applied with

some caution, as it might result in shifting the peak to a different time.

Where PH is the prediction horizon (24, 36, 48 hours etc.), N is the number of time steps

over the prediction horizon, Pi is the power demand at time i and ∆t is the simulation time step.

The setpoint is constrained by a lower and upper bound to ensure comfort for the occupants. An

optimized setpoint schedule is identified at 1-hour intervals, from prediction control simulations

at 5-minute intervals. This optimization is repeated at periodic intervals (e.g., 6 hr).

4.2.4.5 Real-time optimizing algorithm

The MATLAB function fmincon finds the minimum of a constrained nonlinear multivariable

function. The optimization algorithm identifies a setpoint schedule at hourly intervals. These

identified values are then fed to the simulation model (“real building”) and linearly interpolated

to a time interval of 15 seconds (the time step used in Simulink).

4.2.4.6 Prediction and control horizons

Periodically, the control problem is solved optimally by incorporating knowledge of expected

weather over the “prediction horizon”. Then, by solving an optimization algorithm based on the

data corresponding to the prediction horizon, the MPC strategy determines an optimal sequence

of control moves. These moves are applied to a “control horizon”, which is often shorter than

the prediction horizon. The simulation proceeds by applying the calculated “moves” over the
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duration of the control horizon. Next, the optimization routine is executed again for the follow-

ing prediction horizon. This sequence is repeated until the end of the simulation time (e.g., one

day, one year, etc.).

It was assumed that operation of the building during the months from May through Septem-

ber is always the same as the original operation. In other words, the MPC set up for this study

was only applied to the winter operation (because of the rate M structure, this also affects the

summer energy bill). The topic of enhanced operation during the summer will be studied in

future work.

4.2.5 Results and discussion

A parametric analysis has been performed on combinations of the control horizons (update

frequency) and prediction horizons. First, different combinations were evaluated with the first

cost function in Equation (4.7) under temperature constraints. These scenarios are shown in

Table 4.6. Next, the same combinations were evaluated with the cost function in Equation (4.8),

shown in Table 4.7.

The yearly utility bill and peak power reduction (in percentage) are outlined in both above

tables. In general, all MPC scenarios result in similar significant reductions in both utility bills

and peak power demand. For example, it is seen that scenario 2 with a control horizon of 12

hours and a prediction horizon of 24 hours results in a cost savings of 25% and a peak power

reduction of 38%, by implementing a new optimized temperature schedule every 12 hours.

The cost per square meter would change from $30.19/m2 to $22.57/m2, or a yearly savings

of $7.62/m2.

Figure 4.26 shows a comparison between typical operation and MPC scenario 2 of the

heating load for four winter days. The weather details of these four days are shown previously

in the System Disturbances section.

Figure 4.26 shows the optimized setpoint of scenario 2. The main difference between the

typical temperature setpoint schedule and the optimized setpoint schedule is a preheating of the

building in the hours prior to the start of occupation and a slightly reduced temperature during

occupied times.
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Table 4.6: MPC results for varying update frequencies and prediction horizons

Scenario

#

Control

Horizon

(hr)

Prediction

Horizon

(hr)

Yearly

Utility

Bill ($)

Peak

Reduction

(%)

REF N/A N/A $12,889 N/A

1 6 24 $9,709 36%

2 12 24 $9,647 38%

3 24 24 $9,684 38%

4 6 36 $9,828 35%

5 12 36 $9,695 36%

6 24 36 $9,722 36%

7 36 36 $9,648 37%

8 6 48 $9,783 36%

9 12 48 $9,646 36%

10 24 48 $9,637 36%

11 36 48 $9,649 37%

12 48 48 $9,659 37%

Table 4.7: MPC results for varying update frequencies and prediction horizons (add penalty

during peak hours)

Scenario

#

Control

Horizon

(hr)

Prediction

Horizon

(hr)

Yearly

Utility

Bill ($)

Peak

Reduction

(%)

REF N/A N/A $12,889 N/A

13 6 24 $10,019 36%

14 12 24 $9,825 37%

15 24 24 $9,773 37%

16 6 36 $10,058 36%

17 12 36 $9,916 35%

18 24 36 $10,048 30%

19 36 36 $9,779 35%

20 6 48 $10,037 36%

21 12 48 $10,048 35%

22 24 48 $10,148 30%

23 36 48 $9,789 36%

24 48 48 $9,738 36%

4.2.5.1 Effects of MPC on the monthly utility bill

Shown in Figure 4.26 for MPC scenario 2 is a significant peak reduction during every winter

month, and the effect of this on the yearly utility bill is shown in Figure 4.27. By reducing

the 12-month winter peak (from 54.5 kW to 33.9 kW), not only are the winter months utility

bills reduced, a reduction in the summer month utility bills is also observed (Figure 4.28). Even

though the peak demands in the summer months have not been reduced, the summer month bills
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over the year and reduction of the peak demand. There are several possible reasons for these

results, such as discrepancies between the simulated forecast and the real weather. Another

cause could be due to the control model ”initializing” more often when a shorter control horizon

is used, resulting in an increase of model warm-up periods (“stabilization”) which occur at the

beginning of each prediction horizon.

In addition, it is seen that by incorporating increased future information with longer pre-

diction horizons, there are diminishing improvements. The longer prediction horizons (48-hr

vs. 24-hr) may have more significant results in a building with a large thermal mass within the

building materials than the building used for this study.

Realistically, a prediction horizon longer than a few days could not be employed due to the

limitations of the accuracy of the weather forecast over longer periods of time. A multi-zone

control model will be used in a future study to obtain more accuracy and control options.

The reader should keep in mind that the building used in this study is rather small and is a

very standard and basic construction. There are no special features, systems, or storage technol-

ogy, but by simply implementing an optimized setpoint schedule based on weather forecast over

a day or two, occupancy schedules and comfort constraints, significant savings and peak power

reductions can be achieved. These results could be even more notable in a building ten times

larger (e.g., 50,000 ft2) and could result in tens of thousands of dollars of savings in electric

utility charges per year.

If MPC is widely adopted in the building operation sector, several advantages can be en-

visioned. Firstly, as seen from this study, the utility bill of the customer can be reduced by up

to 25%. The occupants of the building can obtain improved comfort, and the stability of the

electric grid is improved as large heavy loads are now smoothed out over time. For the utility

provider, another advantage is the overall energy consumption of the customer is not necessarily

lower, while peaking times can be reduced. This allows the utility provider to consider increas-

ing its customer base by inviting customers from out of province, as the surplus of supply will

be available any time of the year. Currently, peaking power days where the demand is greater

than supply only occur a few times per year in the winter in Québec.
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If this trend continues and peaking days were to increase due to things such as population

increase or infrastructure growth, the province may need to buy electricity from out-of-province

utility companies (which would likely come from non-renewable sources) or Hydro-Québec

may need to invest in infrastructure to increase the grid capacity, such as new hydroelectric

dams.

4.2.6 Conclusion: small commercial building MPC study

This study presented an example of implementing MPC in a conventional building (a building

of basic construction, systems, and technologies) to reduce the yearly utility bill and avoid the

summer peak load penalty given to the customer. Through the software program Simulink, two

cost functions were studied with different control and prediction horizons.

The cost function aimed to minimize the utility rate during each prediction horizon while

meeting upper and lower indoor temperature constraints. Through a parametric study, it was

seen that longer control horizons (greater than six hours), produced better results for this build-

ing. A cost savings of 25% on the yearly electric utility bill and a peak power reduction of 38%

were achieved, simply by implementing a new optimized temperature schedule for the building

every 12 hours. The cost per square meter would change from $30.19/m2 to $22.57/m2, or a

yearly savings of $7.62/m2.

The main difference between the typical operation temperature schedule and the optimized

setpoint schedule is a preheating of the building the few hours prior to the start of occupation.

The development of self-learning control models for both building response and optimization

represents an area of research that has yet to be fully explored in relation to buildings. Learning

techniques should help overcome system challenges such as building-use hours, or a change

in HVAC equipment that alters the building response. Further research should focus on evi-

dence that directly compares the performance of specific optimization algorithms, parameters

(timestep, horizon), and climate forecast accuracy for the same scenario. It is suggested that the

sensitivity analysis of timestep and horizon, and climate forecast accuracy be further explored to

understand the effects they have on performance. This will enable better methods to minimize

and deal with these uncertainties in using MPC for building control. The topic of enhanced

operation during the summer months will also be studied in future work.
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As there is no standard software available to test and develop control strategies in buildings

(Candanedo et al., 2013), Simulink, or a similar tool with a graphical interface, may be an

option for this problem. In theory, once a flexible and robust structure has been established for

the connections between the weather forecast, the control model and the building simulation,

Simulink could be used to rapidly test MPC in different buildings (via simulation) by easily

swapping out control models and building models within the Simulink file. However, much work

is still needed to improve the user-friendliness and flexibility of this approach. For example,

considerable care is needed in keeping track of the time scales of the various data. The weather

data, control model time step, identified schedule time step, and building simulation time step

may all be different and thus proper time synchronization is crucial for obtaining reliable MPC

simulation results.

4.3 Conclusion

In this chapter, two control-oriented building modelling applications through simulation stud-

ies were presented. The first study investigated a multi-level control-oriented modelling ap-

proach for a detached residential house (Date et al., 2016b) while the second study pertains to

MPC model development of a smaller commercial retail building (Date et al., 2017). The study

on the detached house presented the development of a multi-level approach to the problem of

modelling different thermal zones in a house for control applications. The core feature of the

proposed methodology allows the user to switch back and forth between models representing

different control levels according to the modelling objectives. The goal of the second study was

to determine if the implementation of MPC is useful for lowering electricity bills in commercial

buildings under the typical rates applied in Québec. For an electrically heated building, it was

investigated if it is possible to reduce the annual energy bills associated with the combined effect

of energy price, demand charges, and a minimum monthly billing charge based on the winter

peak. Work remains to be done on how to improve the guidelines for the initial guess of the grey-

box model parameters. There is also no standard software available to test and develop control

strategies in buildings, which presents an area of further research and development (Blum et al.,

2019).
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Development of a Control-Oriented Model of an Active Thermal

Energy Storage Device

5.1 Introduction

One of the major challenges associated with buildings and integration of intermittent distributed

renewable energy sources is that the peak consumption periods seldom coincide with the avail-

ability of power generation from these renewable sources. This supply-demand mismatch has

been illustrated by the concept of the “duck curve” (Denholm et al., 2015): peak consumption

periods (morning and evening) do not coincide with the period of maximum solar generation in

the middle of the day. Furthermore, the price and the available power supplied by the electric

grid are often significantly variable. Building load flexibility – which may be enhanced by the

incorporation of energy storage devices (Jensen et al., 2017, Reynders et al., 2018) – coupled

with advanced control strategies is a key factor to optimize energy consumption to match the

availability of renewable energy. The implementation of advanced control strategies is essential

for the optimization of energy consumption while preserving occupant comfort.

Effective control strategies should be able to manage the various systems of a building,

including thermal and/or electrical storage devices, and should take advantage of the thermal

inertia of the building structure (Junker et al., 2018, Liu & Heiselberg, 2019, Reynders et al.,

2018, 2017). The operation of a building is directly affected by the fluctuations in weather

and occupancy, which result in large load fluctuations between day and nighttime (which in

turn yield large fluctuations in the electricity demand). To deal with these fluctuations, a good
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understanding of the dynamic behaviour of buildings and a focus on energy management (rather

than simply indoor temperature control), is necessary.

The study in this chapter focuses on the development of a control-oriented thermal model

for an electrically heated thermal Energy Storage Device (ETS)1. This model is intended to be

used within an advanced control strategy methodology for energy and load management in typ-

ical Canadian commercial and institutional buildings during the heating season. While most

research efforts have often focused on improvements to the building envelope and energy effi-

cient HVAC systems, advanced control strategies have a largely unexploited potential for saving

energy, improve load regulation and optimize thermal comfort. The control-oriented model

presented here is intended to facilitate the development and deployment of predictive control

strategies for an ETS. This study focuses on an air-based electrically-heated high temperature

thermal storage device.

5.2 Description of thermal energy storage device

ETS systems convert electrical power to heat that is stored during low electricity price periods

(or when demand on the grid is low) and can deliver heat to the building during peak demand

periods that may have higher electricity prices (Moffet et al., 2012). Total energy consumption is

not reduced when this device is deployed, however, it can provide a significant reduction of the

electricity bill when there exists a demand charge in the utility pricing structure (Bedouani et al.,

2001, Syed, 2011) or operate strategically when dynamic tariffs exist. With a well-designed mix

of on-peak and off-peak electric heating, the load can be levelled, and the addition of new

generating capacity can be delayed (Cooke et al., 1980). ETS systems use bricks as a medium

to store heat from electricity when the electric grid may benefit from a higher consumption

(for example during off-peak periods) and release heat from the bricks to the building when the

electricity supplies are expensive, such as during peak demand periods.

1This work is based on a published refereed conference paper and a peer-reviewed journal article: (a) Date, J.

A., Candanedo, J. A., Athienitis, A. K., & Lavigne, K. (2018). Control-oriented modeling of an air-based electric

thermal energy storage device. In Proceedings of ASHRAE Winter Conference 2018 Chicago, Illinois and (b) Date,

J. A., Candanedo, J. A., Athienitis, A. K., & Lavigne, K. (2020a). Development of reduced order thermal dynamic

models for building load flexibility of an electrically-heated high temperature thermal storage device. Science and

Technology for the Built Environment.
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Thermal energy storage devices suitable for buildings can be categorized into either low-

temperature, or high-temperature storage schemes. For low-temperature energy storage (less

than 100 ◦C), water and solutions of water and sodium sulphate have been used. For high-

temperature schemes, magnesite bricks have mainly been used, where the brick temperature can

safely reach up to 871 ◦C. A focus on forced-air electric heat storage with bricks as the storage is

seen in this thesis, as this storage device is found in different areas in Canada (Québec, Yukon,

Prince Edward Island), and the developed model can be modified in the future for the water-

based device that contains the same brick storage mechanism with an additional air to water

heat exchanger.

The storage device comprises an insulated heat storage tank containing 3,121 kg of magne-

site bricks, where electric wire heating elements are placed between rows of bricks. The device

is rated for a maximum brick temperature setpoint of 871 ◦C, however, at the time the data was

extracted from the BAS, the maximum brick temperature setpoint was set at 750 ◦C. The device

is rated for a storage capacity of 640 kWh. Air is driven through the ETS device by a control-

lable fan and extracts heat from the bricks. The air can either pass through the bricks or bypass

the device and get delivered to the conditioned zone. Figure 5.1 shows schematics of the device,

while specific device specifications are shown in Table 5.1.

Figure 5.1: Thermal electric storage device, reprinted with permission from Karine Lavigne

(Lavigne, 2006)

The control of the ETS device requires more detail than those for typical heating systems.

The following considerations are needed for adequate control of the ETS: 1) control during the

time when the storage medium is being heated/charged, 2) determination and control of the
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Table 5.1: Electric Thermal Storage (ETS) device specifications

Electric Thermal Storage (ETS) device specifications

Parameter Value

Charging Input 106 kW

Storage Capacity 640 kWh

Storage Material High-density ceramic brick

Number of Heating Elements 24

Maximum Brick Temperature 750 ◦C

Weight of Bricks 3,121 kg

maximum allowable brick temperature during brick charging, and 3) control of the total heat

to be stored in the storage medium. During the thermal storage discharge cycle (releasing heat

from the bricks to the air in the HVAC duct), proper control to maintain consistent outlet air

temperature under possible large fluctuations in the brick temperature.

A key goal is to match the amount of stored thermal energy to the predicted energy use

requirements during the following discharge cycle. The control strategy should estimate the

heat requirements of the building or conditioned zone for the following day and determine how

much heat energy to charge and store in the device and at what temperature. Another goal is to

reduce the utility cost incurred by the building owner.

The current control of the air-based ETS looks at the outdoor ambient temperature and

available power of the building. The outdoor air temperature at a given time the night before

is used to set the maximum brick storage temperature, while the maximum allowed delivered

power to the ETS for heating the bricks is determined by the available power (which is the

difference between the maximum “allowed” power demand of the building minus the actual

power demand). The maximum allowed power demand is specified by the building operators,

as a measure to reduce electricity bills that are incurred from peak building loads.

The outdoor temperature can fluctuate significantly between nighttime and daytime, es-

pecially during shoulder seasons. These devices are often equipped with owner-selectable set

point control that facilitates the adjustment of the storage capacity (Cooke et al., 1980). Ther-

mocouples are embedded in the thermal storage material and are used for controlling heat input.

During the discharge cycle, air heated from the bricks is mixed with ambient air in a controllable

manner.
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5.3 Methodology

5.3.1 Adjustable model order

The proposed control-oriented models of the ETS described below are based on two-dimensional

lumped parameter equations for heat conduction and energy conservation. These models use a

grey-box modelling approach, in which physically meaningful parameters are calibrated with

measurement data.

The developed MATLAB code was written to easily modify the order of the model: adjust-

ment of the two-dimensional grid of brick thermal capacitance nodes can be done quickly and

easily by defining the number of brick node rows and columns. Multiplying the number of rows

by columns gives the resulting number of brick capacitance nodes for the model.

An example of the 1-capacitance model is shown in Figure 5.2. The thermal network is

made of one row of resistances and nodes along the x-axis of the bricks, one column along the

y-axis and a convective conductance to the room air node. This thermal network structure of

rows and columns allows for rapid modification of model order by the user without having to

re-write or add any equations to the simulation. When the user specifies a model with 2 rows and

2 columns, the result is a 4-capacitance thermal network model for the device, which is depicted

in Figure 5.3. Higher row and column amount and configurations can be readily evaluated.

Each brick node has an associated capacitance term, Cbricks, electric power input, Qsource and

convective heat extraction via air channels, Qconv.

Figure 5.4 shows the side view schematic of the bricks in the ETS. The heat transfer from

bricks to the airflow of the ETS system was modelled using the general equation for heat ex-

change through a channel (Lienhard Iv & Lienhard V, 1986).

5.3.2 Measured data used for model development and analysis

Measured data from an air-based ETS device installed in a building located in Sherbrooke,

Canada are used for model development and analysis. This two-storey building, built in 1989,

has a total floor area of roughly 9,000 m2. Measurements at 15-min intervals have been collected
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Figure 5.2: Top view example of brick charging thermal network (2-dimensional heat transfer)

Figure 5.3: Top view example of brick charging thermal network (2-dimensional heat transfer)

at this building since 2014. The building, located in Sherbrooke (QC), Canada, had a peak

demand in February 2015 of 600 kW, with a consumption of 166 MWh for that month. The

on-site ETS has a heating load capacity of 106 kW and can supply hot air to a warehouse zone

within the building.
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Figure 5.4: Side view example of brick charging thermal network (2-dimensional heat transfer)

Figure 5.5: HVAC system with ETS and temperature sensor locations

The warehouse zone is conditioned by the air-based system shown in Figure 5.5. Air tem-

peratures are measured throughout the HVAC system and brick temperatures are measured in

four locations. When the ETS is in use, part of the air supply is drawn through the device to pro-

vide additional heat energy to the zone. The control variable options of the system are depicted

in Figure 5.6.

The control variables are:

• the electric power to the ETS, Pelec,ET S which provides heat to the bricks;
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mass, it may be assigned a thermal capacitance, which represents the heat storage capacity of the

control volume. By performing a heat balance on the control volume, the differential equation

of a node can then be written as (Athienitis & Santamouris, 2002):

Ci

dTi

dt
= Qi +

n

∑
j=1

(Tj −Ti)

Ri, j
(5.1)

Where Qi represents the heat generated at a node i or received directly by it from source(s),

Ri, j represents the thermal resistance between nodes i and j (either conductive or convective

terms), T is the temperature at node i or adjacent node j, and C is the thermal capacitance at

node i (C = ρcpAdx). n is the total number of adjacent nodes to node i.

The strategy commonly implemented to determine the transient solution is the application

of time discretization (Athienitis & Santamouris, 2002). A fully explicit finite difference ap-

proach was used to solve the energy balance equations at each node in the models. The fully

explicit approach assumes that the current temperature of a given node depends only on its tem-

perature and the temperature of the surrounding nodes at a previous time step. The term with

the time derivative can then be discretized as follows:

Ci

dTi

dt
≈Ci

∆Ti

∆t
=Ci

T
p+1

i −T
p

i

∆t
(5.2)

By solving for the temperature at the next time step p+1, the general equations (5.3) and

(5.4) are derived for control volumes with and without capacitance terms, respectively.

T
p+1

i = T
p

i +
∆t

Ci

[

Q
p
i +

n

∑
j=1

T
p
j −T

p
i

Ri, j

]

(5.3)

T
p+1

i =
Q

p
i +∑

n
j=1

T
p
j

Ri, j

∑
n
j=1

1
Ri, j

(5.4)

Due to high brick temperatures of 750 ◦C, non-negligible heat losses from the ETS device

to the air of the mechanical room occur. There are both convective and radiative losses from the

ETS to the room which are calculated at each time step using simplified convective and radiative
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heat transfer coefficient Equations (5.5) (ASHRAE: American Society of Heating Refrigerating

and Air-Conditioning Engineers, 2009), and (5.6), where Tsur f ace is the mean value of the sur-

faces of the walls in the mechanical room (Tsur f ace is assumed to be the same temperature as

room air temperature).

hconv = 1.26 · |Tint −Troom|
1/3 (5.5)

hrad = εσ ·
(

T 2
int +T 2

sur f ace

)

· (Tint +Tsur f ace) (5.6)

Thermal energy storage device heat transfer from bricks to airflow: The heat transfer

from bricks to the airflow of the ETS system was modelled using the general equation for heat

exchange through a channel (Lienhard Iv & Lienhard V, 1986) as shown here:

Tbout
−Tbin

Tw −Tbin

= 1− exp

(

−
hPL

ṁcp

)

(5.7)

Tw (temperature of the wall surface of the channel) is taken as the average brick tempera-

ture Tbrick. h is the convective heat transfer coefficient between channel surface and air in the

channel, P is the perimeter of the channel and L is the length of the channel. The above equation

can give the variation of air bulk temperature (Tbout
and Tbin

) along the channel as a function of

the distance from the inlet (x) if Tbout
is replaced by Tb(x), L is replaced by Z(i), and h is adjusted

accordingly. Control volume temperatures are calculated as follows:

Tbout
(p, i) = Tw(p)+ [Tbin

(p, i)−Tw(p)] · e
−2·Z(i)

a(p) (5.8)

where a(p) =
M(p)cpρ

Wh̄(p)
and h = Nu·k

DH

Nu is the Nusselt number, k if the conductivity of the air and DH is the hydraulic diameter

of the air channel. h may be calibrated as not all needed information may be available. The

energy extracted from the bricks in the air channels (which is subtracted from the brick node

energy balance equation) is calculated as follows:
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Qp
conv = 4 ·M(p)cpρ [Tbout

(p,L)−Tbin
(p,0)] (5.9)

The airstream model for this application has 6 sections lengthwise along the air channel.

Uniform temperatures are assumed at the brick surfaces within each section. A section detail of

a typical control volume is shown in Figure 5.4. The exit temperature of each channel section,

Tbout
(p, i), is used as the inlet temperature of the next section, Tbin

(p, i+1). It was found that a

model with at least six sections was necessary to follow the measured data and produce accurate

outlet air temperature results.

For example, in the case of Figure 5.2 (1-capacitance model) the following Equation (5.10)

calculates the temperature at the next time step of the brick node:

T
p+1

bricks = T
p

bricks +
∆t

Cbricks

[

Qp
source −Qp

conv +4 ·
1

Rbricks

(

T
p

ins −T
p

bricks

)

+
1

Rin f

(

T p
room −T

p
bricks

)

]

(5.10)

For the case of the 1-capacitance brick model shown in Figure 5.2, Tbricks represents the

temperature of the entirety of the bricks in the device, Cbricks is the total thermal capacitance

of the bricks, Qsource is the electrical power input via the electric wires embedded in the bricks,

Qconv is the heat extracted to the air from the bricks in the air channel, Rbricks is the resistance

of the bricks (divided into 4 components), Tins is the surface temperature of the insulation layer,

Rin f is the infiltration losses to the mechanical room and Troom is the air temperature of the

mechanical room.

Model reset: The main purpose of these control-oriented models is the quick and easy simu-

lation of the ETS device in order to estimate load management strategies. These models suitable

for control are intended to be used, along with information of future conditions (such as elec-

tricity pricing, occupancy, weather forecasts etc.), to plan future operation strategies within the

BAS to improve electrical loads and associated peaks and to provide building energy flexibility

for improved building-grid interaction. Continuous comparison of the model with actual re-

sults is expected. Thus, the concept of “model reset” was also developed as part of the overall
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5.4.1 Modelling results: heat transfer in bricks

Different orders of thermal model resolutions of the ETS system are studied. The model order

of highest resolution model 140 (14 rows and 10 columns). This 140-capacitance node model is

compared to measured data from the BAS and two low-resolution models suitable for control.

The first low-resolution model consists of four brick capacitances (2 rows and 2 columns); while

the second low-resolution model consists of one single capacitance (1 row and 1 column). The

time step used in the simulation is far below the critical time step of the models (5 hours for the

140 resistance-capacitance model).

The results of three days of charging are shown in Figure 5.8: The model output of average

brick temperatures predicted by the models is compared to the measured data obtained from

the BAS. The fan operation (which is at 0% operation during the charging data period) and the

power input to the bricks are also taken from measured data from the BAS. While Figure 5.8

shows results for the model running continuously without using feedback to adjust the model

predictions, Figure 5.9 incorporates a “reset” of the models at 6-hour intervals. In other words,

every 6 hours the model “checks” the real measured brick temperature value and re-initializes

the brick temperature in the model at that point in time.

The performance of the models was evaluated in terms of several statistical indices (Table

5.2), such as the root-mean-square error (RMSE) and the mean absolute error (MAE). Also,

the infinity norm (i.e., the biggest difference between the model results and measured data)

of the absolute error between modelled brick temperature and measured brick temperature is

presented.

Table 5.2: Heat transfer in bricks modeling – statistical indices (January 6 to 8. 2017)

Model

Bricks

RMSE

[◦C (◦F)]

Bricks

MAE

[◦C (◦F)]

Bricks

|| T̄model − T̄measured ||∞
[◦C (◦F)]

1-Capacitance 95 (203) 91 (196) 120 (248)

4-Capacitance 85 (185) 81 (178) 108 (226)

140-Capacitance 34 (93) 31 (88) 65 (149)

With Model Reset every 6 Hours

1-Capacitance 18 (64) 12 (54) 60 (140)

4-Capacitance 17 (63) 11 (52) 57 (135)

140 Capacitance 15 (59) 11 (52) 53 (127)
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Figure 5.8: Three days of heat transfer in bricks modelling results. Results are shown for 3

models: a 1 brick capacitance model, a 4 brick capacitances model and a detailed 140 brick

capacitances model

Figure 5.9: Three days of heat transfer in bricks modelling results with model reset at intervals

of 6 hours

When no reset is applied, the high-resolution model (140 brick capacitance nodes) per-

forms significantly better than the two low order models, with an RMSE of 34 ◦C compared

to 85 ◦C for the 4-capacitance model and 95 ◦C for the 1-capacitance model. However, when
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a model reset at 6-hour intervals is introduced, all the models perform quite well; the predic-

tions of even the single capacitance model are satisfactory and only slightly less accurate than

the higher resolution (RMSE of 18 ◦C for the 1-capacitance model vs. 15 ◦C for the detailed

140-capacitance model).

5.4.2 Modeling results: heat transfer from bricks to airflow

Figure 5.10 shows the model results corresponding to the heat transfer from bricks to the airflow

over a period of several hours. It is worth mentioning that the available dataset for the heat trans-

fer mode from bricks to airflow is much shorter than the dataset corresponding to the “charging”

mode (heating the bricks with the electric coils). A comparison is done between measured data

and the model outputs of average brick temperature and outlet air stream temperature. Three

data points are taken from the BAS and used for comparison: 1) the fan operation, 2) the power

input, and 3) the inlet air stream temperature. Figure 5.10 shows results for the model running

continuously for the entire period without reset incorporated; while Figure 5.11 incorporates a

6-hour interval model reset of 6-hour.

Table 5.3 shows the statistical indices for modelling of heat transfer from bricks to airflow

without model reset and with reset at 6-hour intervals. The RMSE associated with the airflow

through the bricks ranges from 3.5 ◦C (140-capacitance model with reset) up to 4.1 ◦C (1-

capacitance model without reset). The three introduced models perform well when simulating

without model reset but have considerable improvements when model reset is incorporated.

Table 5.3: Statistical indices for modeling heat transfer from bricks to airflow (January 9, 2017)

Model

Bricks

RMSE

[◦C (◦F)]

Bricks

MAE

[◦C (◦F)]

Bricks

[◦C (◦F)]

Outlet Air

RMSE

[◦C (◦F)]

Outlet Air

MAE

[◦C (◦F)]

1-Capacitance 54 (129) 46 (115) 80 (176) 4.1 (39.4) 2.8 (37.0)

4-Capacitance 52 (126) 45 (108) 77 (171) 4.0 (39.2) 2.7 (36.9)

140-Capacitance 42 (108) 38 (100) 75 (167) 3.5 (38.3) 2.4 (36.3)

With Model Reset every 6 Hours

1-Capacitance 36 (97) 25 (77) 70 (158) 3.4 (38.1) 2.2 (36.0)

4-Capacitance 34 (93) 24 (75) 65 (149) 3.4 (38.1) 2.2 (36.0)

140-Capacitance 33 (91) 25 (77) 75 (167) 3.0 (37.4) 2.0 (35.6)

In the next section, modelling of several days, the different model resolutions are tested

against data from several days of operation. There is a mix of different operating modes in the
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Figure 5.10: Several hours of modelling heat transfer from bricks to airflow, a) Brick temper-

ature, b) outlet air temperature and c) power input and fan operation

data, with periods of only heat transfer in bricks (i.e., no fan operation) and periods of heat

transfer from bricks to airflow.

5.4.3 Modelling of several days

Figure 5.12 and Figure 5.13 show modelling results from December 30th, 2016, through Jan-

uary 9th, 2017, with and without model reset. During this period, all modes of operation for

the ETS took place (i.e., heat transfer to bricks, free floating and heat transfer from bricks to

airflow). Therefore, this dataset provides a good example to test the usefulness of the ETS

control-oriented models developed in this study under different dynamic conditions.

The three models predict well the brick temperatures and the outlet air temperatures; the

performance of the models improves when model reset is introduced. The concept of resetting

the model periodically with available sensor data can be easily implemented during the operation

128



Chapter 5. Control-Oriented Model of a Thermal Energy Storage Device

Figure 5.11: Several hours of modelling heat transfer from bricks to airflow with model reset

at intervals of 6 hours, a) Brick temperature, b) outlet air temperature and c) power input and

fan operation

of the system. Table 5.4 shows the error analysis of the three models with and without model

reset at 6 hours intervals.

Table 5.4: Several days of simulation – statistical indices (December 30, 2016 – January 9,

2017)

Model

Bricks

RMSE

[◦C (◦F)]

Bricks

MAE

[◦C (◦F)]

Bricks

[◦C (◦F)]

Outlet Air

RMSE

[◦C (◦F)]

Outlet Air

MAE

[◦C (◦F)]

1-Capacitance 58 (136) 46 (115) 114 (237) 1.2 (34.2) 0.4 (32.7)

4-Capacitance 51 (124) 41 (106) 104 (219) 1.2 (34.2) 0.4 (32.7)

140-Capacitance 27 (81) 22 (72) 70 (158) 1.1 (34.0) 0.4 (32.7)

With Model Reset every 6 Hours

1-Capacitance 18 (64) 13 (55) 71 (160) 1.2 (34.2) 0.4 (32.7)

4-Capacitance 17 (63) 12 (54) 65 (149) 1.1 (34.0) 0.4 (32.7)

140-Capacitance 16 (61) 11 (52) 60 (140) 1.0 (33.8) 0.3 (32.5)

When there is no reset, the high-resolution model (140 brick node capacitances) has an
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Figure 5.12: Several days of operation of the ETS showing model performances. Results of

a model with 1 brick capacitance, a model with 4 brick capacitances and a model with 140

brick capacitances, a) Brick temperature, b) outlet air temperature and c) power input and fan

operation

RMSE of 27 ◦C compared to 51 ◦C for the 4-capacitance model and 58 ◦C for the 1-capacitance

model. When the models are reset at 6-hour intervals with measured data, all the models perform

almost the same and the errors are all reduced. The RMSE is decreased by 40%, MAE by 33%

and infinity norm by 43% for the 1-capacitance model, while the RMSE is decreased by 34%,

MAE by 29% and infinity norm by 39% for the 4-capacitance model and for the detailed 140-

capacitance model the RMSE is decreased by 11%, MAE by 11% and infinity norm by 10%. In

the next section, different model reset interval lengths are investigated to determine if a 6-hour

interval is adequate or necessary for this purpose.
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Figure 5.13: Several days of model results with model reset at 6-hour intervals. Results of

a model with 1 brick capacitance, a model with 4 brick capacitances and a model with 140

brick capacitances, a) Brick temperature, b) outlet air temperature and c) power input and fan

operation

5.4.4 Investigation of model reset interval length

Simulation results corresponding to model reset intervals from 3 hours up to 24 hours were

investigated. Figures 5.14, 5.15, and 5.16 show the statistical analysis of several days of simu-

lation for different model resolutions and model reset lengths.

Table 5.5 shows the details for the parametric study of the model reset interval length.

Model performance improves when model reset is introduced into the simulation, thus showing

that the concept of resetting or calibrating a control model periodically with available sensor

data is a useful way to improve the performance of the model while keeping its resolution low

and structure simple; it is also a realistic and practical approach when the intent is to apply the

model for control purposes and feedback data is collected continuously. Even a model reset

with an interval as long as 24 hours can significantly reduce the error observed for the lower
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Figure 5.14: Simulation RMSE results of three thermal models with different reset intervals

ranging from 3 to 24 hours

Figure 5.15: Simulation MAE results of three thermal models with different reset intervals

ranging from 3 to 24 hours

resolution models: for example, for the 1-capacitance model with a 24-hour reset interval when

compared to simulating with no reset, the MAE has a percent difference of 48%, and is reduced

from 46 ◦C to 28 ◦C. The reset interval does not have a significant impact on the results of the

more detailed models.

Next, parameter identification of the brick conductivity was studied to determine whether

using an “effective” brick conductivity value would improve the model predictions, just as in-

corporating a model reset has improved the model results.
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Figure 5.16: Simulation infinity norm results of three thermal models with different reset

intervals ranging from 3 to 24 hours

Table 5.5: Results with different model reset intervals from no reset up to 24 hour reset interval

(several days of simulation)

Model

Reset

Interval

[Hours]

Bricks

RMSE

[◦C (◦F)]

Bricks MAE

[◦C (◦F)]

Bricks

[◦C (◦F)]

1-Capacitance 3 13 (55) 9 (48) 70 (158)

6 18 (64) 13 (55) 71 (160)

12 27 (81) 19 (66) 83 (181)

24 36 (97) 28 (82) 84 (183)

No Reset 58 (136) 46 (115) 114 (237)

4-Capacitance 3 13 (55) 9 (48) 66 (151)

6 18 (64) 12 (54) 65 (149)

12 26 (79) 18 (64) 81 (178)

24 34 (93) 26 (79) 81 (178)

No Reset 51 (124) 41 (106) 104 (219)

140-Capacitance 3 12 (54) 8 (46) 52 (126)

6 16 (61) 11 (52) 59 (138)

12 20 (68) 15 (59) 67 (153)

24 24 (75) 18 (64) 73 (163)

No Reset 27 (81) 22 (72) 70 (158)

5.4.5 Identification of “effective” brick conductivity

The concept of “effective” brick conductivity was also proposed and investigated to use a model

with a relatively low order while still obtaining adequate predictions. This concept consists of

the proposition that it is possible to improve the accuracy of a low-order model if it is assumed

that it behaves as if the material had a higher conductivity (Date et al., 2016b). It is worth
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pointing out that this does not reflect any change in the material: it is only a modelling artifice

when the objective is to assess the average temperature of the material as an indication of its

state of charge.

An optimization routine is used to find the brick conductivity values that minimize an

objective function. In this case, the objective function chosen was the root-mean-square-error

(RMSE) between measured brick temperature and the prediction at a simulation interval of

5 minutes. Model reset was not incorporated into the conductivity identification process. The

MATLAB function fmincon – which finds the minimum of a constrained nonlinear multivariable

function – is used here; other algorithms may replace this function depending on the user’s

preference. The objective function chosen was RMSE. The optimization problems are described

as follows:

min
kbrick

√

∑
n
i=1 (ŷi − yi)

2

n

subject to kbrick,min ≤ kbrick ≤ kbrick,max

(5.11)

Where y is the measured sensor data of the brick temperature, ŷ represents model predic-

tions of brick temperature and n is the number of samples. For a given number of capacitances,

the conductivity k is adjusted until the RMSE is minimized. The different “effective” brick con-

ductivity values versus the number of brick nodes (i.e., model detail resolution) are plotted in

Figure 5.17 for ten (10) different thermal models with different levels of resolution.

Having an effective brick conductivity related to the number of brick nodes in the model,

the error can be reduced in the lower resolution models. Figure 5.20 and Table 5.6 show the

overall results for the “effective” brick conductivity study. For the case of the 1-capacitance

model, the RMSE is reduced by 34% when a brick conductivity of 97.1 W/m·K rather than 4.3

W/m·K is used, while the MAE is decreased by 28%.

If there is no reset and the real brick conductivity value of 4.3 W/m·K is used in the 1-

capacitance model, an RMSE of 58 ◦C, an MAE of 46 ◦C and an infinity norm of 114 ◦C is

observed. However, by using a 1-capacitance model with 6-hour model reset and incorporating

an “effective” value for the brick conductivity, the error values improve, with an RMSE of 16

◦C, an MAE of 11 ◦C and an infinity norm of 59 ◦C. These results can be compared to that of
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Figure 5.17: Simulation results of models using effective conductivity compared to real con-

ductivity = 4.3W/m·K

Figure 5.18: Simulation RMSE results of models using effective conductivity compared to real

conductivity = 4.3W/m·K

the 140-capacitance model where model reset is not incorporated (RMSE of 27 ◦C, MAE of 22

◦C and an infinity norm of 70 ◦C), Therefore, this simple model with slight modifications gives

satisfactory predictions and thus can aid with control and decision making of the ETS device

and operation of the building.
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Figure 5.19: Simulation MAE results of models using effective conductivity compared to real

conductivity = 4.3W/m·K

Figure 5.20: Simulation infinity norm results of models using effective conductivity compared

to real conductivity = 4.3W/m·K

5.5 Control scenarios of ETS for building load flexibility

This section will focus on the potential of the ETS storage system to enhance the flexibility of the

electric load of the building. This example will help in the long-term objective of earning a better

understanding of the thermal behaviour of buildings and heating systems under different control
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Table 5.6: “Effective” conductivity based on number of brick nodes (several days of simula-

tion)

Model

Brick

conductivity

[W/m·K]

Brick

conductivity

[BTU/(hr·ft·◦F)]

Bricks

RMSE

[◦C (◦F)]

Bricks

MAE

[◦ C (◦F)]

Bricks

[◦C (◦F)]

1-capacitance 97.1 (“effective”) 56.1 (“effective”) 24 (75) 18 (64) 67 (153)

4.3 (real) 2.5 (real) 58 (136) 46 (115) 114 (237)

4-capacitance 31.9 (“effective”) 18.4 (“effective”) 24 (75) 18 (64) 67 (153)

4.3 (real) 2.5 (real) 52 (126) 41 (106) 104 (219)

12-capacitance 18.6 (“effective”) 10.7 (“effective”) 24 (75) 18 (64) 67 (153)

4.3 (real) 2.5 (real) 46 (115) 37 (99) 93 (199)

20-capacitance 14.4 (“effective”) 8.3 (“effective”) 24 (75) 18 (64) 68 (154)

4.3 (real) 2.5 (real) 43 (109) 35 (95) 87 (189)

35-capacitance 11.0 (“effective”) 6.4 (“effective”) 24 (75) 18 (64) 68 (199)

4.3 (real) 2.5 (real) 38 (100) 32 (90) 79 (174)

48-capacitance 9.5 (“effective”) 5.5 (“effective”) 25 (77) 19 (66) 68 (154)

4.3 (real) 2.5 (real) 36 (97) 30 (86) 75 (167)

70-capacitance 7.9 (“effective”) 4.6 (“effective”) 25 (77) 19 (66) 68 (154)

4.3 (real) 2.5 (real) 33 (91) 27 (81) 70 (158)

88-capacitance 7.0 (“effective”) 4.0 (“effective”) 25 (77) 19 (66) 68 (154)

4.3 (real) 2.5 (real) 31 (88) 26 (79) 70 (158)

117-capacitance 5.3 (“effective”) 3.1 (“effective”) 26 (79) 20 (68) 69 (156)

4.3 (real) 2.5 (real) 29 (84) 24 (75) 70 (158)

140-capacitance 4.3 (“effective”) 2.5 (“effective”) 27 (81) 22 (72) 70 (158)

4.3 (real) 2.5 (real) 27 (81) 22 (72) 70 (158)

scenarios. This study evaluates the amount of heat modulated by the ETS and the duration of

the effect on the grid. This characterization will then be used to set simple control strategies to

exploit the thermal storage potential, considering both energy consumption and thermal comfort.

In this case, there is a zone in the building that needs to be heated; the controller’s objec-

tive is to minimize energy/power using simple control scenarios while keeping the zone within

thermal comfort boundaries. Other objectives in the future could include minimization of cost

under diverse scenarios (demand charge penalty, fluctuations of energy price, utility-triggered

cost incentive). Figure 5.21 shows the temperature setpoint profile, occupied hours of the zone,

and outdoor air temperature that were used for the control study.

This two-storey building, built in 1989, has a total floor area of roughly 9,000 m2. The

building, located in Sherbrooke (QC), Canada, had a peak demand of 600 kW in February

2015. The on-site ETS can supply heated air to a warehouse zone within the larger building.

The warehouse zone serviced by the ETS has dimensions 55 m by 30 m, with a floor area of
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1650m2. Three control scenarios are evaluated for the system consisting of an air duct heating

coil, ETS and warehouse building zone (refer to Figure 5.5).

Figure 5.21: Control study on cold day: outdoor air temperature and zone temperature setpoint

5.5.1 Control scenario 1: building zone without active thermal Storage (reference

case)

Control scenario 1 (Figure 5.22) is the warehouse zone operating on a cold day without any

use of the ETS. All heating for the zone is provided by the standard HVAC heating coil with a

heating peak of 67 kW (228 kBTU/hr).

5.5.2 Control scenario 2: building zone with active thermal storage device (typi-

cal operation)

The typical operation of the ETS and warehouse zone is shown in Figure 5.23. The ETS is

charged in the night during off-peak hours and is then used during morning peak hours of 6a.m.-

9a.m. to supplement the HVAC heating of the zone by supplying part of its heating load re-

quirement. The zone temperature setpoint has a nighttime setback of 18 ◦C; when the setpoint

is increased from 18 ◦C to 22 ◦C at 7a.m., a heating load peak of 60 kW (205 kBTU/hr) in the

mornings occurs. The ETS provides approximately 170 kWh (580 kBTU) of heating, or “energy

flexibility”, to the warehouse during this occupied time.
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Figure 5.22: Control scenario 1- cold winter day heating without use of ETS

Figure 5.23: Control scenario 2 – cold winter day heating with supplemental heating by ETS

during morning peak period 6a.m.-9a.m. (simulation)

5.5.3 Control scenario 3: building zone with active thermal storage device and

limiting heating coil)

With an adequate control-oriented model of the ETS and zone, and available day-ahead weather

predictions, it is feasible to quickly perform control scenario studies to determine if there is

an alternative control strategy that would improve the building operation, energy use, or peak

demand. In control scenario 3, the heating output from the heating coil is limited and the ETS is

used during the morning peak hours of 6a.m.-9a.m. When the heating coil output is limited, its
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peak demand is 31 kW (106 kBTU/hr) during peak hours and 58 kW (198 kBTU/hr) later in the

day. Again, the ETS provides approximately 170 kWh (580 kBTU) of heating to the warehouse

during this occupied time. Results for two days are shown in Figure 5.24, while the results for

the three scenarios are shown for comparison in Figure 5.25.

Figure 5.24: Scenario 3 – building zone with thermal storage device and limiting heating coil

(simulation)

Figure 5.25: Heating from coil for the three control scenarios

It should be noted that the zone serviced by the heating coil and ETS is quite large (1650

m2) and slow in terms of its thermal response. When the setpoint changes from 18 ◦C to 22 ◦C,

it takes practically the entire day to reach to 22 ◦C. Another main advantage of the ETS is aiding
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Table 5.7: Heating use of different control scenarios (24 hr period)

Scenario 1 – without ETS Scenario 2 – with ETS Scenario 3 – with ETS & limiting heating coil

Electricity to bricks [kWh (kBTU)] 0 382 (1,200) 382 (1,200)

Heat from bricks [kWh (kBTU)] 0 170 (534) 170 (534)

Heat from coil [kWh (kBTU)] 1145 (3,598) 1016 (3,192) 998 (3,136)

Coil peak [kW (kBTU/hr)] 67 (229) 60 (205)
58 (198)

31 (106) during peak hours

Total kWh (kBTU) in 24 hours 1145 (3,598) 1397 (4,389) 1380 (4,335)

Energy Flexibility [Wh/m2 (BTU/ft2)] N/A 103 (33) 103 (33)

in reaching a zone air temperature of 22 ◦C more rapidly on very cold days, thus improving the

thermal comfort for the occupants.

If the ETS was used during peak load hours of 6a.m.-9a.m. and with the anticipation of the

rise in zone setpoint temperature from 18 ◦C to 22 ◦C, power peak at peak load time is reduced

by 7 kW or 11%. While, when the heating coil is limited during peak times, the peak load can

be reduced by 36 kW or 73% (Figure 5.25). This is equivalent to 103 Wh/m2 of flexibility and

represents 14% of the total energy consumption due to space heating and ETS charging in the

24-hour period (or 17% of only space heating). Additional results of the control studies are

shown in Table 5.7. The potential of peak demand reduction is related to the installed storage

system size, so further peak reduction would be possible if storage capacity sizing is chosen as

a function of desired peak demand reduction. This is one example of how a control-oriented

model could be used to rapidly study and decide on alternative control strategies for the zone

and ETS device.

5.6 Conclusion

This thesis section presented a general methodology for the development and analysis of control-

oriented models for the enhancement of operation of an electric thermal storage device (ETS)

and energy use within a building. The ETS presented is one available size, though other sizes

with different storage capacities exist. The developed control-oriented modelling methodology

applies to different system sizes of the active storage device. The modelling results for the

different operating conditions – the heat transfer to bricks and heat transfer from bricks to airflow

– show that even a low-resolution thermal model with 1-capacitance which represents all the

brick medium could be adequate for the control to optimize charging and discharging of the

ETS device. The 1-capacitance model can predict the temperature of the bricks over several
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days with an average difference of 58 ◦C between modelled brick temperature and measured

brick temperature, while with the 140-capacitance model an average difference of 27 ◦C was

observed. Incorporating periodic model reset based on measured sensor data values significantly

improves the model performance. As an example, the RMSE is reduced from 58 ◦C to 18 ◦C for

the 1-capacitance model when model reset is integrated into the model methodology for control.

The concept of “effective” brick conductivity was also examined, and the conductivity

changes based on the detail level of the ETS model (i.e., the number of brick nodes). By having

an “effective” brick conductivity that varies according to the number of brick nodes in the model,

the error can be reduced in the low-resolution models. In other words, simpler models can be

used if an “effective” conductivity is applied. By using a 1-capacitance model with model reset

and applying an “effective” value for the brick conductivity, the RMSE is 24 ◦C and the MAE

is 18 ◦C, which are comparable to the errors of the 140-capacitance model where model reset is

not incorporated (RMSE of 27 ◦C, MAE of 22 ◦C and an infinity norm of 70 ◦C). Combining the

two concepts of model reset and “effective” brick conductivity, low-resolution models that are

fast and easy to develop are robust contenders for control-oriented applications such as Model

Predictive Control.

If the ETS was used and the heating coil is limited during peak of 6a.m.-9a.m. and with

the anticipation of the rise in zone setpoint temperature from 18 ◦C to 22 ◦C, the peak load can

be reduced by 36 kW or 73%.

An energy flexibility amount of up to 103 Wh/m2 floor area is provided to the building

during the critical time for the grid and represents up to 17% of the energy consumption due

to space heating for the zone. The control examples shown here illustrate the potential of the

ETS storage system to enhance the flexibility of the electric load of the building and helps in the

long-term objective of getting a better understanding of the thermal behaviour of buildings and

heating systems under different control scenarios.
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Chapter 6

Energy Flexible Building: Predictive Load Management of Passive

and Active Energy Storage under a Demand Response Program

6.1 Introduction

There is a continuing global focus targeted at decreasing Greenhouse Gas (GHG) emissions,

with a strong push for electricity from cleaner sources (rather than coal or gas, for example);

however, as an increasing percentage of electricity production comes from renewable and in-

termittent sources, a greater strain is being put on electric grids. As utility grids have recently

been integrating more clean renewable energy generating resources such as photovoltaics (PV)

or wind turbines, this increase in intermittent production results in a variable supply, which has

created new obstacles for both utilities and their customers.

As more distributed renewable energy sources are being incorporated into existing utility

grids, a challenge is created where there is a mismatch between times of high consumption from

buildings and times of peak power generation from these intermittent renewable sources. While

peak solar generation occurs midday, the typical time where peak consumption from buildings

can be morning, evening (for the residential sector), or afternoon (for the commercial sector).

The well-known “duck curve” for the California market depicts this mismatch well (Denholm

et al., 2015). This supply-demand mismatch is also observed in other regions but for different

reasons (for instance in heating-dominated climates). To incentivize electricity customers and

building owner/operators to alter their electricity demand to off-peak times, different demand-

side management and DR programs are offered by many utilities.

143



Chapter 6. Predictive Load Management of Passive and Active Energy Storage

Recently in the research field, the concept of energy flexibility (i.e., the capacity of the

building to respond to the needs of the electric grid) has received significant attention. By

estimating the amount of energy flexibility a building can provide to the grid, this flexibility

can be used to alleviate the burden on the grid when the electricity demand from customers

approaches or exceeds what the grid is capable of supplying. International Energy Agency

Energy in Buildings and Communities Programme’s (IEA EBC) Annex 67 introduced the notion

of “Energy Flexible Building”, defined by the Annex as a building able to manage its demand

and generation in accordance with local climate conditions, user needs and grid requirements

(International Energy Agency, 2020).

The majority (over 99.8%) of electric power generated in Québec, Canada is by hydroelec-

tric plants, where commercial buildings often use electricity as the main or only heating and

energy source. This abundant and stable source of hydroelectricity has fostered low electric-

ity rates in the region while elevating fuel prices due to limited gas distribution infrastructure

in some areas. During very cold winter days, a heavy demand on the grid is observed and is

partially due to space heating peak loads. The heating of commercial and institutional (C & I)

buildings accounts for about 9% of the province’s winter peak load, and this amount can be con-

sidered a meaningful portion of the electric load in the province (Hydro-Québec Distribution,

2012). Due to these mentioned issues related to peak demand, there is increasing activity in

quantifying the energy flexibility of buildings and increasing participation in demand response

programs.

The electric energy system includes many aspects spanning from generation units to the

final electricity end-uses by customers. It is worthwhile and feasible to consider optimizing this

entire electric energy system, and not only restricting this endeavour to the grid. Buildings are

part of this system as end-uses and are capable of supply some form of energy flexibility to

the electric system. To achieve energy flexibility, building science and advanced system control

must be incorporated to the design and operation of flexible buildings. Using the models that

were presented in the previous chapter, this chapter evaluates MPC for buildings in cold climate

regions with dedicated dispatchable thermal storage and outlines a methodology for identifying

and evaluating the efficacy of a control strategy.
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A notable feature of some Québec commercial customer rates is that each monthly bill

throughout the year can be affected by the building’s highest winter demand. The minimum

monthly electric billing demand is set at 65% of the peak power reported during the winter

months. Thus, appropriate consideration should be given to the demand management strategies

of a building during winter since it can affect the bills over the year.

This chapter presents an evaluation of the energy flexibility potential of a zone equipped

with a dedicated thermal storage device1. One aim is to match stored thermal energy in a dedi-

cated storage device to the zone heating energy demand for the following day. To achieve this,

an estimate of the heat requirements of the conditioned zone for the following day is needed and

optimal controls through MPC are evaluated. Prediction uncertainties due to model parameter

identification and weather forecasts are also considered.

6.2 Concept of Building Energy Flexibility Index (BEFI)

Building control can take advantage of thermal mass to shift power consumption from one crit-

ical period to another. Different end-uses can be rescheduled before or after a specific period

without adverse impacts, such as a reduction of thermal comfort. We can think also of specific

systems within HVAC (active thermal storage or batteries) or embedded in the building – like

heavy radiant floor – that can be used to shift energy consumption without affecting occupant

comfort. When coordinating these different systems, future or expected needs, availabilities and

constraints that may depend on occupant activity schedule, weather, grid state, day of the week,

etc. must be considered. MPC is an optimal tool to achieve this.

The most relevant application of energy flexibility is demand response during peak periods

of the grid. A Building Energy Flexibility Index (BEFI) could be used to quantify the potential

participation of a customer for such a demand response event. A preliminary introduction and

description of the concept of a BEFI with case studies can be found in two previous conference

papers on the topic (Athienitis et al., 2020, Date et al., 2020b).

1This work is based on a published refereed conference paper and a peer-reviewed journal article: (a) Date, J.,

Candanedo, J. A., & Athienitis, A. K. (2021). A methodology for the enhancement of the energy flexibility and

contingency response of a building through predictive control of passive and active storage. Energies, 14(5) and (b)

Date, J. A., Candanedo, J. A., Athienitis, A. K., & Lavigne, K. (2020b). Energy flexible building: predictive load

management of passive and active energy storage under a demand response program. In Proceedings of eSIM 2020

Conference Vancouver, BC.
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The BEFI is the average difference between the power demand of the reference case, Pre f

and the power demand of the alternative “flexibility scenario”, Pf lex, for the given event duration

∆t, shown in Equation 6.1. BEFI could also be represented as a percentage by dividing it by the

value of Pre f .

6.3 Methodology

Data-driven reduced-order thermal models (ROMs) for different archetype zones and system

configurations are useful tools to identify strategies for developing and quantifying energy flex-

ibility in the building-grid interaction. These models, which account for thermal mass and the

inherent thermal delay, are typically first- to third-order Resistance-Capacitance (RC) thermal

networks and can be calibrated with a smart meter and weather data or more detailed data from

building automation systems (BAS) and smart thermostats.

An MPC-based simulation study is presented in this chapter, where estimated heat require-

ments of the conditioned zone for the following day and optimal control schedules are identified

for the thermal storage device and zone temperature setpoint. Several other simulation studies

are carried out to assess the versatility of the optimal schedules, and different weather forecasts,

control horizons, and cost functions are evaluated. The subsequent MPC studies were carried

out in the following steps, as shown in Figure 6.2:

1. Real building measurement data was collected from the BAS. Data includes variables

such as building power [kW], zone air temperature, weather data, and specific data points

for the ETS device. Data is collected at 15-minute intervals.

2. Numerical thermal building or device control-oriented models were developed. These

models are physics-based ROM grey-box RC thermal networks. These models were cal-

ibrated using the collected data from the first step. Critical parameters were identified

using the gradient descent-based optimization function fmincon in MATLAB. A detailed

explanation of the model development process and performance for the ETS device is

found in Chapter 5 (Date et al., 2018, 2020a,b).
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6.3.1 Québec commercial customer electricity rates

In Québec, Canada, some utility rates carry a charge related to energy consumption and one

related to the peak power demand of a building (or group of buildings) owned by the customer.

Rate M, which is for the large commercial building sector, has a demand charge and two energy

prices (Hydro-Québec, 2020b), as outlined in Table 6.1. At any given month, the minimum

demand charge applied is set to 65% of the peak winter load, which is a special feature for this

type of rate. Appropriate attention should be given to the building heating and general operation

over the winter period when peak demand is experienced due to large space heating loads.

Table 6.1: Pricing structure of utility Rate M and Rate Flex M

Rate M

Large Commercial Building Sector

Demand Charge $14.58 / kW

First 210,000 kWh energy consumed 5.03¢/ kWh

Remaining energy consumed 3.73¢/ kWh

Rate Flex M

Large Commercial Building Sector

Winter Dec. 1-Mar. 31

Demand Charge $14.58 / kW

Price of energy consumed outside peak events 3.17¢/ kWh

Price of energy consumed during peak events 50.00¢/ kWh

Summer Apr. 1-Nov. 30

Demand Charge $14.58 / kW

First 210,000 kWh energy consumed 5.03¢/ kWh

Remaining energy consumed 3.73¢/ kWh

6.3.2 Predictive load management scenarios

The current control for setting the maximum allowable power of charging input to the ETS is

based on a linear scale function which relates the current outdoor temperature to this power

input, as shown in Table 6.2 and Figure 6.3. The outdoor temperature is read once per day at

6p.m. and used for the next 24 hours of control.

Table 6.2: Control of ETS power input: scale function

Text PETS Brick Temperature

0 ◦C 0% 93 ◦C

-18 ◦C 100% 871 ◦C
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which is indicated with the subindex i, and has a higher cost during peak times (Table

6.1).

min
TSP, PET S,maxSP

JPH =

(

N

∑
i=1

Pi∆t

)

·
(

CostEnergy,i

)

+max(P) · (CostDemand)

subject to TSP,min ≤ TSP ≤ TSP,max

0 ≤ P ≤ Pmax

0 ≤ PET S,maxSP ≤ PET S,max

(6.3)

N is the number of time steps over the prediction horizon PH (24, 36, 48 hours etc.), Pi

is the power demand at time i, and ∆t is the time step. The objective is to identify two

variables that minimize the cost associated with the utility rate charge: 1) an optimized

setpoint schedule for the room temperature TSP, and 2) the maximum charging power

input to the ETS, PET S,maxSP. The temperature setpoint is constrained by a lower (TSP,min)

and upper (TSP,max) bound, to maintain a level of thermal comfort for the zone occupants.

The demand due to space heating P is constrained by the size of the heating equipment

Pmax. Similarly, the maximum charging power input to the ETS is constrained by the

device specifications, PET S,max. MPC simulations are at 5-minute intervals to produce

more detailed time granularity while optimized values are identified at 1-hour intervals,

so schedule identification can be accomplished quicker.

3. Cost-function using BEFI Maximization during peak demand. The third and final

optimization problem under consideration was using BEFI as the cost function. The value

of BEFI is to be maximized during a demand event corresponding with a peak demand

period.

max
TSP, PET S,maxSP

JPH = avg[Pre f −Pf lex],during DR event

subject to TSP,min ≤ TSP ≤ TSP,max

0 ≤ P ≤ Pmax

0 ≤ PET S,maxSP ≤ PET S,max

(6.4)

Equation (6.5) shows a more formal representation of the BEFI (Athienitis et al., 2020).
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6.4.1 Predictive load management simulation

Table 6.3 shows the results from simulation for the different scenarios. The scenarios 1) BAU

with ETS, 2) MPC Rate M, 3) MPC Rate Flex M, and 4) MPC BEFI have been compared to

the “Business as Usual (BAU)” case without ETS.

Table 6.3: MPC Simulation Results for improved operation of ETS and zone temperature

setpoint on a very cold day

BAU without

thermal storage

BAU with

thermal storage

MPC:

Rate M

MPC:

Rate Flex M

MPC:

BEFI

12 hours ahead notification of DR event (18:00)

Event Peak [kW] (6a.m.-9a.m.) 73 33 31 0 0

Wh/m2 in PH 763 1170 905 1034 1321

BEFI [kW] (6a.m.-9a.m.) – 36 36 65 65

BEFI [%] (6a.m.-9a.m.) – 55 56 100 100

4 hours ahead notification of DR event (2:00)

Event Peak [kW] (6a.m.-9a.m.) 73 33 28 25 0

Wh/m2 in PH 659 844 641 633 945

BEFI [kW] (6a.m.-9a.m.) – 36 38 48 65

BEFI [%] (6a.m.-9a.m.) – 55 59 74 100

The first scenario with a 12-hour notification time is shown in Figure 6.6, while Figure

6.7 shows results for the case with 4 hours notification time. By carrying out MPC with active

thermal storage, an increase of BEFI is observed during critical peak events, as well as improved

energy flexibility available to the grid. Table 6.3 shows that with a notification from the utility

to the customer given at 6p.m. (12 hours ahead of a 6a.m. event) a BEFI ranging from 55% to

100% is capable. This correlates to a reduction of peak demand during the critical event hours

by an average of 36 kW (63%) to 65 kW (8%) for 3 hours, depending on the utility rate structure.

Two identified scenarios saw that no power demand for heating was required during the critical

morning hours of 6a.m. to 9a.m., resulting in a BEFI of 100%.

It was found that Rate Flex M is the most advantageous for reducing the peak demand,

while a greater reduction of energy consumption on a 24-hour period is seen with Rate M. A

longer notification time also results in a higher BEFI during the critical times, as there is more

time for the MPC to identify improved operation strategies or implement preheating. When the

equation for BEFI is used as the objective function, favourable results for peak reduction are

found and are comparable with the scenario of the Rate Flex M; however, one disadvantage is

that there is no incentive to reduce energy within the objective function formulation, and thus for
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investigation. From these studies, one can make general recommendations for specific objec-

tives: if the cost to the customer is most important then remaining with Rate M may be the most

advantageous, if peak demand reduction during the peak event times is most important, then

using a MPC cost function of either Flex Rate M or BEFI would be recommended, but if a best

compromise between those objectives is desired, it is seen that use of Flex Rate M as the utility

rate and cost function results in the best compromise in (DR event) peak reduction and cost to

the customer.

6.5 Shoulder season performance: cold day followed by a warm

day

Shoulder season building energy performance is also an important consideration as consuming

unnecessary energy on warmer days is easy to do with an inadequate or simple control strategy.

When a milder shoulder-season day is on the horizon after a cold day, the thermal storage device

often consumes excess energy by charging the bricks and storing more energy than needed for

the next day. Currently, the ETS measures the weather once per day at 6p.m. to determine the

charging amount needed during the night to store energy that is to be used the next day. When a

cold day is followed by a warm day, this determined charging amount may be unnecessary and

excess electricity would be used to store thermal energy when the actual required thermal energy

for space conditioning for the next day is lower. Energy use could be improved by incorporating

weather forecasts into the decision-making process for establishing the charging input amount.

An example of a cold day followed by a warm day during the shoulder season is shown in Figure

6.13, where at 6p.m. the outdoor temperature is below 0 ◦C, while it is seen that the next day is

warmer going up to 10 ◦C.

Results of the shoulder season MPC study are shown in Figure 6.14 and Table 6.6. The

studies evaluate the performance using the three previously studied objective functions (Rate M,

Rate Flex M and BEFI) with notifications at 12-hour and 4-hour ahead of an event. It is seen

that even a milder shoulder-season day can benefit from well thought out MPC strategies, where

energy consumption can be lowered by up to 43% and a BEFI of up to 100% can be achieved. It

is seen that both Rate M and Rate Flex M give improved results, however, an objective function
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Figure 6.22: Contingency strategy 1) re-

duce zone temperature setpoint for a du-

ration of 3 hours at each hour - BEFI at

hourly intervals

Figure 6.23: Contingency strategy 2) dis-

charge ETS for a duration of 3 hours at

each hour - BEFI at hourly intervals

back to the nighttime setback value. There is zero heating demand with current operation, and

thus the power cannot be lowered any further as the zone air temperature is free-floating until it

reaches the lower nighttime value.

6.8 Conclusion

This chapter presented the developed methodology for implementing MPC strategies for space

heating to a warehouse zone equipped with a dedicated active thermal storage device. The goal

was to predict and maximize the Building Energy Flexibility the building could provide to the

electric grid by evaluating the BEFI for the different strategies. Three MPC cost functions were

studied: 1) the minimization of electricity cost subject to a utility rate with peak demand charge

(Rate M), 2) the minimization of electricity cost subject to a utility rate with dynamic pricing

(Rate Flex M), and 3) the maximization of BEFI during the critical DR event.

The two notification times of four and 12 hours ahead of a DR event with set duration were

analyzed, and an MPC routine was implemented at hourly intervals to identify two schedules: 1)

an optimized zone temperature setpoint profile and 2) an optimized dynamic maximum allow-

able power input for charging the ETS. MPC with thermal storage was shown to increase BEFI

and provide energy flexibility to the grid during peak times and can perform superior to manual

BAU control. As an example, a BEFI of 55% to 100% is achieved when the notification from

the utility to the customer is 12 hours ahead of a 6a.m. event. Depending on the objective func-

tion, this means that the average demand during the critical times can be reduced by an amount
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between 36 kW (55%) and 65 kW (100%). It was found that Rate Flex M is more effective in

reducing the peak demand, while Rate M achieves a greater reduction of energy consumption on

a 24-hour period. When the equation for BEFI is used as the objective function peak reduction

is found that are comparable with the scenario of the Rate Flex M, however, one disadvantage

is there is no incentive to reduce energy, and thus this scenario consumes the most. Optimizing

not only the zone profile is important as well as optimizing (limiting) the maximum allowable

power to the thermal storage device aids in reducing both peak demand and energy consumption

of the building.

It should be noted that thermal comfort conditions of the zone are different than that of

BAU case for the different scenarios are different and that should be weighed when choosing a

strategy. Since the zone in this study is a warehouse, it could be argued that there is more room

for flexibility in the comfort limits compared with an office or residential building.

It is observed that the utility cost to the customer can be reduced by 12-30% when com-

pared to the BAU operation with ETS under the Rate M. When comparing BAU with ETS under

Rate M to MPC with Flex Rate M as the cost function and utility rate structure, the cost can

be reduced and the event peak demand is eliminated, as shown in Figure 6.9. As this problem

is multi-faceted with competing objectives such as monthly energy costs, peak demand charges

that can affect whole year costs, and specific peak demand event times that are pertinent to the

utility, choosing the optimal strategy depends on what the main objective is, thus one strategy

and/or utility pricing structure may not result in the best outcome for all the objectives under

investigation. From these studies, one can make general recommendations for specific objec-

tives: if the cost to the customer is most important then remaining with Rate M may be the most

advantageous, if peak demand reduction during the peak event times is most important, then

using a MPC cost function of either Flex Rate M or BEFI would be recommended, but if a best

compromise between those objectives is desired, it is seen that use of Flex Rate M as the utility

rate and cost function results in the best compromise in (DR event) peak reduction and cost to

the customer.

Uncertainty of prediction results due to variations in weather forecasts and model param-

eter uncertainty was also evaluated. Six scenarios of ±10% deviation from the identified brick

166



Chapter 6. Predictive Load Management of Passive and Active Energy Storage

conductivity and ±3◦C deviation from the weather forecast were considered for the cost func-

tions of Rate M, Rate Flex M and BEFI.

A building equipped with dedicated active thermal storage is a compelling contender for

participating in contingency events. The strategies studied for contingency reserve were 1)

reducing the zone temperature setpoint temperature by 2 ◦C for 3 hours, and 2) using the stored

thermal energy in the dedicated thermal storage device by discharging the device for 3 hours.

Encouraging results were found, where a BEFI of up to 47 kW (97%) is achieved for 3 hours.

Future work could include using this methodology to design optimal utility pricing struc-

tures, rather than the design optimal control strategies. This methodology could be used for

other similar convectively conditioned buildings and clusters of buildings for participation in

community-scale energy aggregator events. A greater focus on occupancy modelling could

eventually be incorporated into this methodology. There is still work to be done in terms of

implementation of the methodology into real Building Energy Management Systems.
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Conclusion

This thesis explored the development of a methodology for modelling buildings and zones with

convective heating systems and a dedicated active high-temperature thermal storage device. The

models were also used within studies on model predictive control and building energy flexibility

strategies to improve building-grid interaction in the context of Québec winter (heating season)

operation of buildings equipped with convective heating systems.

A multi-level thermal building modelling methodology was developed and tested on a res-

idential case study and commercial building case study. Extensive research was done to develop

suitable reduced order (and detailed) thermal models for an active thermal storage device (ETS),

where different concepts such as “model reset”, fast order reduction and evaluation and “effec-

tive” model parameters were presented. A methodology suitable for testing and implementation

of MPC, including building energy flexibility potential evaluation and uncertainty analysis was

presented and outlined in Chapter 6. A new useful index called the Building Energy Flexibility

Index (BEFI) was developed in collaboration with several colleagues and industry partners and

was explained and show-cased in a simulation study.

The “grey-box” resistance-capacitance (RC) thermal network modelling approach was the

focus for the developed reduced-order models suitable for control applications. Using the ex-

plicit finite difference method and incorporating calibration techniques, a multi-level modelling

approach was developed for a detached residential home, and several other models for commer-

cial buildings and an active thermal energy storage device were developed, investigated, and
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used in simulation-based improved heuristic and predictive control studies. Lastly, the Build-

ing Energy Flexibility Index (BEFI) was introduced, and different flexibility and contingency

studies were evaluated and presented.

The main approach for modelling heat transfer in the enclosure (building or zone) is a low-

order lumped parameter explicit finite difference method which can incorporate parameter cal-

ibration and/or parameter identification techniques, such as optimization. The control-oriented

models for building zones and thermal storage devices are based on one- or two-dimensional

lumped parameter equations for heat conduction and energy conservation. These models use

a grey-box modelling approach, in which physically meaningful parameters can be calibrated

with measured data or identified using optimization techniques. As reduced-order thermal mod-

els are often custom-made using general-purpose mathematical programming tools, which offer

flexibility compared to commercial simulation tools, the programming languages MATLAB and

Python were used in this work.

The developed methodology includes several steps. First, data from a real building should

be collected and analyzed. Choosing appropriate typical buildings and sensor points are integral

steps of the methodology, for the eventual creation of generalized archetypical models. The

building envelope elements of the building (walls, floor, ceiling) are represented as a thermal

network of resistances and capacitances. Internal partitions should also be included if they have

considerable thermal mass. The level of model complexity of the network will depend on each

case. Physics-based models of important HVAC elements (convective systems in this case) were

developed. These models are physics-based ROM grey-box RC thermal networks. Calibration

of model parameters is carried out either manually or effective parameters are identified using

an optimization routine. Calibration of these models was carried out using the collected data

from the first step. The gradient descent-based optimization function fmincon in MATLAB or

SLSQP in Python was used to identify important parameter values. Model-based operational

strategies were tested and developed using the developed thermal models for better load man-

agement and/or improved occupant comfort. Heuristic approaches were compared to optimized

control MPC using fmincon in MATLAB for some of the case studies. In the last case study,

model prediction uncertainty due to identified model parameters and the weather forecast was

accounted for by evaluating various uncertainty scenarios and plotting the uncertainty bounds
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for the duration of the identified operation schedule. Contingency strategies were evaluated

(on one case study) to quantify the energy flexibility available from the building to the grid at

specific times.

The study on the residential building outlined a methodology for multi-level control-oriented

modelling for buildings with several zones. This multi-level approach allows the user to “zoom

in and out” so that models at each control level remain manageable, easy to calibrate and easy

to physically interpret. A global low-order model (1R1C) was developed and used to rapidly

calculate the thermal load of the building, while a very detailed benchmark floor-level model

was developed and can be used for verification and MPC-based simulation studies. For the de-

velopment of specific control algorithms for each zone, an adequate simplified zone-level model

must be identified. It was found that if zone-level accuracy is of importance, one must incorpo-

rate into the model the thermal mass of the structure between zones. It was found that a 1R1C

whole-house model can perform well for either longer horizon or short ones, but not simulta-

neously for both. Frequency analysis was used to quickly evaluate the whole building models

without the need to perform a simulation. Interesting differences emerged in the phase angle

predicted by the different models. Work remains to be done on how to improve the guidelines

for the initial guess of the grey-box model parameters.

In another case study, a small commercial bank building, an example of implementing

MPC in a conventional building (a building of basic construction, systems, and technologies)

to reduce the yearly utility bill and avoid the summer peak load penalty given to the customer

was presented. Through the software program Simulink, two cost functions were studied with

different control and prediction horizons. The cost function aimed to minimize the utility rate

during each prediction horizon while meeting upper and lower indoor temperature constraints.

Through a parametric study, it was seen that longer control horizons (greater than six hours),

produced better results for this building. A cost savings of 25% on the yearly electric utility bill

and a peak power reduction of 38% were achieved, by implementing a new optimized tempera-

ture schedule for the building every 12 hours. The main difference between the typical operation

temperature schedule and the optimized setpoint schedule is a preheating of the building in the

few hours prior to the start of occupation. With the new optimized operation, the cost per square

meter for the bank would change from $30.19/m2 to $22.57/m2, or a yearly savings of $7.62/m2.
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The last case study that was looked at in this thesis comprises a 1650 m2 warehouse facility

equipped with a dedicated active high-temperature thermal energy storage device. A general

methodology was presented for the development and analysis of control-oriented models for the

enhancement of operation of an electric thermal storage device (ETS) and energy use within

a building. The modelling results for the different operating conditions – the heat transfer to

bricks and heat transfer from bricks to airflow – show that even a low-resolution thermal model

with 1-capacitance, which represents all the brick medium, could be adequate for the control

to optimize charging and discharging of the ETS device. The 1-capacitance model can predict

the temperature of the bricks over several days with an average difference of 58 ◦C between

modelled brick temperature and measured brick temperature, while with the 140-capacitance

model an average difference of 27 ◦C was observed. Incorporating periodic model reset, based

on measured sensor data values, significantly improves the model performance. As an example,

the RMSE is reduced from 58 ◦C to 18 ◦C for the 1-capacitance model when the model reset is

integrated into the model methodology for control.

The concept of “effective” brick conductivity was also examined, and the conductivity

changes based on the detail level of the ETS model (i.e., the number of brick nodes). By having

an “effective” brick conductivity that varies according to the number of brick nodes in the model,

the error can be reduced in the low-resolution models. In other words, simpler models can be

used if an “effective” conductivity is applied. By using a 1-capacitance model with model reset

and applying an “effective” value for the brick conductivity, the RMSE is 24 ◦C and the MAE is

18 ◦C, which are comparable to the errors of the 140-capacitance model where model reset is not

incorporated (RMSE of 27 ◦C, MAE of 22 ◦C and an infinity norm of 70 ◦C ). Combining the

two concepts of model reset and “effective” brick conductivity, low-resolution models that are

fast and easy to develop are robust contenders for control-oriented applications such as Model

Predictive Control.

Lastly, the developed methodology for implementing MPC strategies for space heating to

a warehouse zone equipped with a dedicated active thermal storage device was presented. The

goal was to predict and maximize the Building Energy Flexibility the building could provide to

the electric grid by evaluating the BEFI for the different strategies. Three MPC cost functions

were studied: 1) the minimization of electricity cost subject to a utility rate with peak demand
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charge (Rate M), 2) the minimization of electricity cost subject to a utility rate with dynamic

pricing (Rate Flex M), and 3) the maximization of BEFI during the critical DR event. The two

notification times of four and 12 hours ahead of a DR event with set duration were analyzed, and

an MPC routine was implemented at hourly intervals to identify two schedules: 1) an optimized

zone temperature setpoint profile and 2) an optimized dynamic maximum allowable power in-

put for charging the ETS. MPC with thermal storage was shown to increase BEFI and provide

energy flexibility to the grid during peak times and its performance is superior to manual BAU

control. As an example, a BEFI of 55% to 100% is achieved when the notification from the util-

ity to the customer is 12 hours ahead of a 6a.m. event. Depending on the objective function, this

means that the average demand during the critical times can be reduced by an amount between

36 kW (55%) and 65 kW (100%). It was found that Rate Flex M is more effective in reduc-

ing the peak demand, while Rate M achieves a greater reduction of energy consumption on a

24-hour period. When the equation for BEFI was used as the objective function peak reduction

was found that are comparable with the scenario of the Rate Flex M, however, one disadvantage

found was that there is no incentive to reduce energy, and thus this scenario consumes the most.

Optimizing not only the zone profile is important as well as optimizing (limiting) the maximum

allowable power to the thermal storage device aids in reducing both peak demand and energy

consumption of the building. A building equipped with dedicated active thermal storage is a

compelling contender for participating in contingency events. The strategies studied for contin-

gency reserve were 1) reducing the zone temperature setpoint temperature by 2 ◦C for 3 hours,

and 2) using the stored thermal energy in the dedicated thermal storage device by discharging

the device for 3 hours. Encouraging results were found, where a BEFI of up to 47 kW (97%) is

achieved for 3 hours.

7.1 Contributions

The major contributions from this thesis are listed below:

• Development of a comprehensive methodology for modelling of typical Québec build-

ings and zones with convective heating systems and a dedicated active high-temperature

thermal storage device during winter operation.
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• Development and evaluation of a multi-level simplified linear thermal modelling approach

based on the electrical analogy for the development of control strategies in conventional

detached residential homes equipped with convective electric heating systems.

• MPC evaluation using Québec utility rates to improve peak demand, lower consumption

and lower utility costs for the customer.

• Development of a control-oriented model of an electrically heated thermal energy storage

device (ETS).

• Introduction of the concepts of “model reset” and targeted “effective” model parameter

values.

• Development of a new index, Building Flexibility Index (BEFI), to be used to evaluate

potential flexibility control scenarios for improved building-grid interaction. This was a

collaborative effort with Hydro-Quebec researchers, my supervisor, and other students in

the lab.

• Predictive control strategies for very cold days were identified for improved management

of peak loads and building energy flexibility. The BEFI was quantified depending on

when a notification signal is given to the building owner from the utility.

• Model prediction uncertainty associated with the weather forecast and identified model

parameters is accounted for by evaluating numerous uncertainty scenarios and visually

presenting the uncertainty bounds.

• Contingency strategies were assessed to quantify the available energy flexibility for the

grid by the building at specific times.

7.1.1 Publications

The published papers from this thesis, as well as the papers that are under development and a

contribution to the ASHRAE Applications Handbook, are listed below:

Journal articles:
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1. Date, J., Candanedo, J. A., & Athienitis, A. K. (2021). A methodology for the enhance-

ment of the energy flexibility and contingency response of a building through predictive

control of passive and active storage. Energies, 14(5).

2. Date, J., Candanedo, J. A., Athienitis, A. K. & Lavigne, K. (2020) Development of re-

duced order thermal dynamic models for building load flexibility of an electrically-heated

high temperature thermal storage device, Science and Technology for the Built Environ-

ment, 26:7, 956-974, DOI: 10.1080/23744731.2020.1735260

3. Candanedo, J.A., Athienitis, A. K., Delcroix, B., Saberi, A., John, C., Morovat, N., Date,

J. A., Vallianos, H. C. (In Progress). Towards a methodology for the development of

grey-box control-oriented models for building operation. Science and Technology for the

Built Environment.

Refereed conference papers:

1. Date, J. A., Candanedo, J. A., Athienitis, A. K., and Lavigne, K. (2021). Energy flexible

building: predictive load management of passive and active energy storage under a de-

mand response program. In Proceedings of eSIM 2020/2021 Conference, Vancouver, BC

(Virtual).

2. Athienitis, A. K., Dumont, E., Morovat, N., Lavigne, K., and Date, J. (2020). Develop-

ment of a dynamic energy flexibility index for buildings and their interaction with smart

grids. In Proceedings of ACEEE Summer Study 2020 Conference, Virtual.

3. Date, J. A., Candanedo, J. A., Athienitis, A. K., and Lavigne, K. (2018). Control-Oriented

Modeling of an Air-Based Electric Thermal Energy Storage Device. In Proceedings of

ASHRAE Conference 2018. Chicago, Illinois.

4. Date, J. A., Candanedo, J., and Athienitis, A. K. (2017). Predictive setpoint optimization

of a commercial building subject to a winter demand penalty affecting 12 months of utility

bills. In Proceedings of Building Simulation 2017. San Francisco, California.

5. Date, J. A., Candanedo, J., and Athienitis, A. K. (2016). Control-oriented modelling of

thermal zones in a house: a multi-level approach. In Proceedings of 4th International

High-Performance Buildings Conference at Purdue. West Lafayette, IN.

174



Chapter 7. Conclusion

6. Date, J. A., Candanedo, J., Athienitis, A. K., and Fournier, M. (2016). Simplified multi-

zone thermal modelling of a house for demand reduction & control applications. In Pro-

ceedings of CLIMA 2016 Conference. Aalborg, Denmark.

Chapter Section of ASHRAE Handbook:

1. American Society of Heating Refrigerating and Air-Conditioning Engineers (2019). Sec-

tion 3.9 Predictive HVAC Control Strategies. In ASHRAE Handbook—HVAC Applica-

tions, Chapter 43 Supervisory Control Strategies and Optimization, pages 43.39–43.40.

Atlanta, Ga.

7.2 Recommendations for future work

Work remains to be done on how to improve the guidelines for the initial guess of the grey-

box model parameters. As there is no standard software available to test and develop control

strategies in buildings (Candanedo et al., 2013), Simulink, or a similar tool with a graphical

interface, may be an option for this problem. In theory, once a flexible and robust structure

has been established for the connections between the weather forecast, the control model and

the building simulation, Simulink (or another suitable alternative) could be used to rapidly test

MPC in different buildings (via simulation) by easily swapping out control models and building

models within the Simulink file. However, much work is still needed to improve the user-

friendliness and flexibility of this approach. For example, considerable care is needed in keeping

track of time scales of the various data. The weather data, control model time step, identified

schedule time step, and building simulation time step may all be different and thus proper time

synchronization is crucial for obtaining reliable MPC simulation results.

Further development of an ETS model for wider use (TRNSYS, Modelica etc.) and work

should be done to expand the model to be suitable for the hydronic version of the ETS device.

Within the developed methodology, incorporation of real weather forecast into uncertainty study

and visualization (e.g., CanMETEO (Natural Resources Canada, 2019)) aspects should be con-

sidered. There is much interest in building cluster studies in terms of building energy flexibility

studies, thus the methodology should be expanded and generalized for assessment of BEFI for
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larger buildings, building clusters, neighbourhood feeders, etc. Further work into automating the

model development and continuous calibration of control-oriented grey-box models is a worthy

topic for future research. Lastly, this problem set up could be used for evaluating or identifying

new electric utility rate structures that would encourage the use of model predictive control by

utility customers, and/or further improve demand response performance.
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J., Wetter, M., Vrabie, D. L., & Helsen, L. (2020). All you need to know about model

predictive control for buildings. Annual Reviews in Control, 50, 190–232.
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Appendix A: Experimental Houses for Building Energetics (Twin

Houses)

Building Details & Description

The homes used for the experiments are the Experimental Houses for Building Energetics

(EHBE) (Fournier & Leduc, 2014, Le Bel & Gelinas, 2012). The test bench consists of two

2-storey detached homes with excavated basements, each with a 60m2 footprint, excluding the

single detached garage. Floor plans are shown in Figures A1, A2 and A3. The houses are 25 ft

x 26 ft, three bedrooms, one and a half bathroom cottages with a full basement and a 15 ft x 24

ft attached garage. The wall assemblies of the building were chosen to represent a typical light-

weight wood framed house in Québec. The total fenestration area is 19m2, consisting of vinyl

framed windows with double glass and air gap. The construction of the homes was completed

in February 2011.

The homes are located in Shawinigan, Québec (46◦34’N 72◦45’W) and are oriented 35◦

west of south. The homes are heated with baseboard space heating in each room with individ-

ual electronic room thermostats. There is also electric radiant floor heating in the kitchen and

bathroom.
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Appendix A: Experimental Houses for Building Energetics

Figure A1: Main Floor - Twin Houses

Figure A2: Second Floor - Twin Houses
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Appendix A: Experimental Houses for Building Energetics

Figure A3: Basement - Twin Houses

The homes are of normal construction for Québec with a building envelope consisting of

(from exterior to interior) vinyl cladding or brick, air-space, air barrier, fibreboard, R-20 glass-

fiber, Enermax, air-space, drywall and R-30 insulation in the roof instead of R-20. The windows

are of double clear glass with an air gap and no coatings, with a total window area of 208 square

feet for each house. The interior of the houses is finished with drywall and wood floors except

for the kitchen and bathrooms which have ceramic tile floor.

The baseboard heater in each room is controlled by a line-voltage (204 V) electronic ther-

mostat with pulse width modulation at 15 second cycles. The heating capacity in the basement

is 4000 W, 4750 W each for the main and second floor, and 2000 W in the garage. The bedrooms

each have a rated capacity of 1250 watts. The houses have been fitted with all the air ducts nec-

essary for a central heating/cooling system, though the system is not yet installed. In addition,

the kitchen and second storey bathroom are equipped with electric radiant floor heating.

199



Appendix A: Experimental Houses for Building Energetics

There are approximately 500 sensors in each house with recordings every 15 minutes. The

thermocouples instrumented in the homes are special T type and the data acquisition equipment

and computers are located in the garage of each house. The sensors measure the following:

• Weather (temperature, solar etc.)

• Room by room electric baseboard heating (in Wh)

• Plug and lighting loads

• Air temperature, relative humidity, air velocity, globe temperature

• Surface temperatures of structure (walls, floors, ceiling layers etc.)

• Temperatures and water content of surrounding soils in several locations
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Appendix A: Experimental Houses for Building Energetics

Sample Python Code of Detailed Twin House Model
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"""
@author: Jennifer
4 zone model of the twin homes
Zone 1: upper floor
Zone 2: main floor
Zone 3: basement
Zone 4: garage

All walls and windows modelled separately
"""

"""
NumPy adds efficient vectors and matrices to Python that support vectorized 
operations
"""
import numpy as np
from scipy.interpolate import interp1d

"""
Matplotlib adds Matlab-style graphics to Python and is well-integrated with 
the IPython notebook
"""
from matplotlib import pyplot as plt
import matplotlib.patches as mpatches
import math

import time
start_time = time.time()

deltaT     = 15.

# Number of days
No          = 1.;
NT          = No*86400./deltaT # number of time steps in a day

p           = np.arange(0,NT)
p1          = np.arange(0,NT-1)
t           = p*deltaT

"""
Import Data for:
1. Year OAT at 15 minute intervals
2. Temperature set point profile at 15 minute intervals

linearlize to time step interval (15 second intervals)
"""

Nfinal      = int(NT*12) # )
p2          = np.arange(0,Nfinal-1)
dT          = 1. # Temperature
u           = 0.
j           = 1.

qaux1       = np.zeros(Nfinal)

1



qaux2       = np.zeros(Nfinal)
qaux3       = np.zeros(Nfinal)
qaux4       = np.zeros(Nfinal)

qmax1       = 3792.
qmax2       = 4596.
qmax3       = 3868.
qmax4       = 1344.

#Height of building
Hh          = 2.489
#Length of building
Lh          = 7.823
#Width of building
Wh          = 7.224
       
# Exterior Surfaces:
#    Surface 1 = South Wall (Interior) 0
#    Surface 2 = East Wall (Exterior) 1
#    Surface 3 = North Wall (Exterior) 2
#    Surface 4 = West Wall (Interior) 3
#    Surface 5 = Ceiling (Exterior) 4
#    Surface 6 = Floor (Interior) 5
#Internal Height
Hi       = 2.4*2. 

# Garage
Hg       = 2.489
Lg       = 7316./1000
Wg       = 4572./1000

# window areas

Wkit     = (915./1000.)*(1015./1000.) #kitchen window
Wdin     = (1830./1000.)*(2080./1000.) # dining room glass door
Wlivside = (610./1000.)*(1420./1000.) # living room side window
Wlivfr   = (2135./1000.)*(1420./1000.) # living room front window
Wbath    = (915./1000.)*(1420./1000.) # upstair bathroom window
Wbed1    = (1220./1000.)*(1420./1000.) # bedroom1 window
Wbed3    = (915./1000.)*(1420./1000.) # bedroom 3 window
Wbed2    = (915./1000.)*(1420./1000.) # bedroom 2 window
Wbase    = (915./1000.)*(610./1000.) # basement back
Wbase2   = ((1220./1000.)*(610./1000.))+((1400./1000.)*(610./1000.)) # basement side
Wgar     = (610./1000.)*(1220./1000.)

# Window Areas ZONE 1(m^2)
Aw1    = np.array([Wbed2 + Wbed3,0.0,Wbath + Wbed1,0.0]) 
 # Net Wall Areas (m)
A1      = np.array([Lh*Hh-Aw1[0], Wh*Hh-Aw1[1], Lh*Hh-Aw1[2], Wh*Hh-Aw1[3], 
                    Wh*Lh, Wh*Lh]) 

# Window Areas  ZONE 2(m^2)
Aw2    = np.array([Wlivfr, Wlivside, Wkit + Wdin,0.0]) 
 # Net Wall Areas (m)
A2      = np.array([Lh*Hh-Aw2[0], Wh*Hh-Aw2[1], Lh*Hh-Aw2[2], Wh*Hh-Aw2[3], 
                    Wh*Lh, Wh*Lh]) 
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# Window Areas ZONE 3(m^2)
Aw3    = np.array([0.0, Wbase2, Wbase, 0.0]) 
 # Net Wall Areas (m)
A3      = np.array([Lh*Hh-Aw3[0], Wh*Hh-Aw3[1], Lh*Hh-Aw3[2], Wh*Hh-Aw3[3], 
                    Wh*Lh, Wh*Lh]) 

# Window Areas ZONE 4(m^2)
Aw4    = np.array([0.0,0.0,0,Wgar]) 
 # Net Wall Areas (m)
A4      = np.array([Lg*Hg-Aw4[0], Wg*Hg-Aw4[1], Lg*Hg-Aw4[2], Wg*Hg-Aw4[3], 
                    Wg*Lg, Wg*Lg]) 

#Zone volume
Vol1 = Hh*Lh*Wh
Vol2 = Hh*Lh*Wh
Vol3 = Hh*Lh*Wh
Vol4 = Hg*Lg*Wg

#Window Resistance (U=3)
Rw   = 0.35 #m^2*degC/watt

#interior film coefficient of surfaces walls
h        = 6.1 #watt/(m^2*degC)

#zone air changes
ach1  = 0.019/3
ach2  = 0.019*2
ach3  = 0.019*22
ach4  = 0.019*37
ach12 = 6
ach23 = 5

#specific heat of air
cp = 1000. #joule/(kg*degC)
#density of air
rho = 1.2 # kg/m^3

# infiltration
Uinf1    = ach1*Vol1*cp*rho/3600.
Uinf2    = ach2*Vol2*cp*rho/3600.
Uinf3    = ach3*Vol3*cp*rho/3600.
Uinf4    = ach4*Vol4*cp*rho/3600.
Uinf12   = ach12*Vol1*cp*rho/3600.
Uinf23   = ach23*Vol3*cp*rho/3600.

#For Air flow calculations
beta_air = 0.00343 #coefficient of thermal expansion 1/K
mu_air   = 0.00001827 # dynamic viscosity kg/m s
Pr_air   = 0.71 #Prandtl number
k_air    = 0.0251 #conductivity of air kW/m K
g        = 9.807 #acceleration due to gravity m/s2

"""
THERMAL RESISTANCE OF WALLS (incl air films)
"""
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#vertical exterior walls
#gypsum board layer
Lgyp    = 0.0127 #m
rhogyp  = 640. #kg/m^3
kgyp    = 0.16 # watt/(m*degC)
cgyp    = 1150. # joule/(kg*degC)
#Airgap and enermax
Rener   = 0.708 # (m^2*degC)/watt
#Insulation layer
Rins    = 3.89 #(m^2*degC)/watt
#Air gap, Fiberboard, plywood, vinyl
Rsid    = 0.48 #(m^2*degC)/watt
#Exterior film
ho      = 22.  #watt/(m^2*degC)
#15% framing area
ff      = 0.25 #percentage
#Wood stud
Rf      = 1.1667 #(m^2*degC)/watt

#Exterior wall resistance
Rext    = 1./(((1.-ff)/((Lgyp/kgyp)+Rener+Rins+Rsid+(1./ho)+(1./h)))+
              (((ff)/((Lgyp/kgyp)+Rener+Rf+Rsid+(1./ho)+(1./h))))) #(m^2*degC)/watt

#Ceiling
Rinsc = 5.28 #(m^2*degC)/watt
#attic air film
ha      = 12. #watt/(m^2*degC)
#Ceiling resistance
Rc      = 1./(((1.-ff)/((Lgyp/kgyp)+Rener+Rinsc+(1./ha)+(1./h)))+
              (((ff)/((Lgyp/kgyp)+Rener+Rf+(1/ha)+(1/h))))) #(m^2*degC)/watt

#Roof
#shingle backer board
Rb     = 0.14 #(m^2*degC)/watt
#Wood shingles
Rsh    = 0.078 #(m^2*degC)/watt
#Roof resistance
Rr     = 1./(((1.-ff)/(Rb+Rsh+(1./ho)+(1./ha)))
             +(((ff)/(Rb+Rf+Rsh+(1./ha)+(1./ho))))) #(m^2*degC)/watt

#Assume 30 degree roof slope, calculate ceiling-roff combined resistance
#per unit ceiling area (Assuming no attic ventilation)

#ZONE 1
Ar1    = A1[4]/math.cos(30*3.14/180) #m^2
#Combined Celining-roof resistance ZONE 1
Rroof1  = ((Rc/A1[4])+(Rr/Ar1))*A1[4] #(m^2*degC)/watt

#ZONE 4
Ar4    = A4[4]/math.cos(30*3.14/180) #m^2
#Combined Celining-roof resistance ZONE 1
Rroof4  = ((Rc/A4[4])+(Rr/Ar4))*A4[4] #(m^2*degC)/watt

# Interior floors
# insulation and plywood and truss
rhoply   = 650.
cply     = 2200.
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Lply     = 0.0347
Rfl      = 0.34 #(m^2*degC)/watt
Rjoi     = 2.5
kply     = 0.12

Rair     = 0.18
Rflo     = 1./(((1.-ff)/((Lply/kply)+Rair+(1./h)+(1./h)))
               +(((ff)/((Lply/kply)+Rjoi+(1./h)+(1./h))))) #(m^2*degC)

# Interior walls
Rintw    = 1./(((1.-ff)/((2.*Lgyp/kgyp)+Rair+(2./h)))
               +(((ff)/((2.*Lgyp/kgyp)+Rf+(2./h)))))

#concrete floor
rhocon   = 2240. #kg/m^3
cconf     = 0.75*1000 #joule/kgK
Lconf     = 100./1000. 
kcon     = 0.8 #W/mK conductivity

Ragr     = 0.2 #m^2K/W

Rflc     = (Lconf/kcon)+0.2 #(m^2*degC)/watt
cconc    = rhocon*cconf*Lconf

#basement walls
Lgypb    = 0.0127
Lextrinb = 0.050
Lconb    = 0.200
kextrinb = 0.022

cconcw   = rhocon*cconf*Lconb + rhogyp*cgyp*Lgypb

Rwb     = (Lgypb/kgyp)+(Lconb/kcon)#(m^2*degC)/watt

#WALL CAPACITANCES
c        = rhogyp*cgyp*Lgyp #%Joule/m^2 GYPSUM
cply     = cply*rhoply*Lply;
#C        = [c*A(1); c*A(2); c*A(3); c*A(4); c*A(5); cply*A(6)]; %Joule

#Zone 1 resistances

R1inf   =  1./Uinf1       #Infiltration to zone 1
R15     =  1./(A1[2]*h) + 1./(kgyp*A1[2]*2/Lgyp)      #North Wall resistance to half way into gypsum board degC/watt      #North Wall resistance
R5o     =  1./(kgyp*A1[2]*2/Lgyp)+(1/((A1[2])/Rext)) #North Wall resistance
Rw1oN   =  1/(((Aw1[2]/Rw)))                          #North window resistance
R16     =  1./(A1[0]*h) + 1./(kgyp*A1[0]*2/Lgyp)      #South Wall resistance
R6o     =  1./(kgyp*A1[0]*2/Lgyp)+(1/((A1[0])/Rext))  #South Wall resistance
Rw1oS   =  1/(((Aw1[0]/Rw)))                          #South window resistance
R17     =  1./(A1[1]*h) + 1./(kgyp*A1[1]*2/Lgyp)      #East Wall resistance
R7o     =  1./(kgyp*A1[1]*2/Lgyp)+(1/((A1[1])/Rext))  #East Wall resistance
R18     =  1./(A1[3]*h) + 1./(kgyp*A1[3]*2/Lgyp)      #West Wall resistance
R8o     =  1./(kgyp*A1[3]*2/Lgyp)+(1/((A1[3])/Rext))  #West Wall resistance
R19     =  1./(A1[5]*h) + 1./((kply*A1[5]*2/Lply))    #resistance between zones 1 & 2
R29     =  1./(kply*A1[5]*2/Lply)+(1/((A1[5])/(Rflc)))    #resistance between zones 1 & 2
R127    =  1./(A1[4]*h) + 1./(kgyp*A1[4]*2/Lgyp)    #resistance between zone 1 and attic (ceiling)
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R27o    =  (Rroof1)/A1[4]    #resistance between ceiling and outside
R12inf  =  1./Uinf12  #Infiltration to zone 1 from zone 2

#Zone 2 resistances
 
R2inf   =  1./Uinf2 #Infiltration to zone 2
R210    =  1./(A2[2]*h) + 1./(kgyp*A2[2]*2/Lgyp)     #North Wall resistance
R10o    =  1./(kgyp*A2[2]*2/Lgyp)+(1/((A2[2])/Rext)) #North Wall resistance
Rw2oN   =  1/(((Aw2[2]/Rw)))                         #North window resistance
R211    =  1./(A2[0]*h) + 1./(kgyp*A2[0]*2/Lgyp)     #South Wall resistance
R11o    =  1./(kgyp*A2[0]*2/Lgyp)+(1/((A2[0])/Rext)) #South Wall resistance
Rw2oS   =  1/(((Aw2[0]/Rw)))                         #South window resistance
R212    =  1./(A2[1]*h) + 1./(kgyp*A2[1]*2/Lgyp)     #East Wall resistance
R12o    =  1./(kgyp*A2[1]*2/Lgyp)+(1/((A2[1])/Rext)) #East Wall resistance
R213    =  1./(A2[3]*h) + 1./(kgyp*0.25*A2[3]*2/Lgyp)     #West Wall resistance
R13o    =  1./(kgyp*A2[3]*2/Lgyp)+(1/((0.25*A2[3])/Rext)) #West Wall resistance
R214    =  1./(A2[5]*h) + 1./((kply*A2[5]*2/Lply)) #Convective transfer between zones 2 & 3
R314    =  1./(kply*A1[5]*2/Lply)+(1/((A1[5])/Rflo)) #Convective transfer between zones 2 & 3
R226    =  1./(0.75*A2[3]*h) + 1./(kgyp*0.75*A2[3]*2/Lgyp)#Convective transfer between zones 2 & 4
R426    =  1./(kgyp*0.75*A2[3]*2/Lgyp)+(1/((0.75*A2[3])/Rintw))#Convective transfer between zones 2 & 4
R23inf  =  1./Uinf23 #Infiltration to zone 2 from zone 3

#Zone 3 resistances
 
R3inf   =  1./Uinf3 #Infiltration to zone 3
R315    =  1./(0.25*A3[2]*h) + 1./(kgyp*0.25*A3[2]/Lgyp)
+1./(kextrinb*0.25*A3[2]/Lextrinb)+1./(kcon*0.25*A3[2]*2/Lconb) #North Wall resistance
R15o    =  1./(kcon*0.25*A3[2]*2/Lconb)+ 1./(0.25*A3[2]*ho)#North Wall resistance
R315g    =  1./(0.75*A3[2]*h) + 1./(kgyp*0.75*A3[2]/Lgyp)
+1./(kextrinb*0.75*A3[2]/Lextrinb)+1./(kcon*0.75*A3[2]*2/Lconb) #North Wall resistance
R15g    =  1./(kcon*0.75*A3[2]*2/Lconb)+1./(0.75*A3[2]*ho)
Rw3oN   =  1/(((Aw3[2]/Rw)))#North window resistance
R316    =  1./(0.25*A3[0]*h) + 1./(kgyp*0.25*A3[0]/Lgyp)
+1./(kextrinb*0.25*A3[0]/Lextrinb)+1./(kcon*0.25*A3[0]*2/Lconb)#South Wall resistance
R16o    =  1./(kcon*0.25*A3[0]*2/Lconb)+ 1./(0.25*A3[0]*ho)#South Wall resistance
R316g    =  1./(0.75*A3[0]*h) + 1./(kgyp*0.75*A3[0]/Lgyp)
+1./(kextrinb*0.75*A3[0]/Lextrinb)+1./(kcon*0.75*A3[0]*2/Lconb)#South Wall resistance
R16g    =  1./(kcon*0.75*A3[0]*2/Lconb)+1./(0.75*A3[0]*ho)
R317    =  1./(0.25*A3[1]*h) + 1./(kgyp*0.25*A3[1]/Lgyp)
+1./(kextrinb*0.25*A3[1]/Lextrinb)+1./(kcon*0.25*A3[1]*2/Lconb)#East Wall resistance
R17o    =  1./(kcon*0.25*A3[1]*2/Lconb)+ 1./(0.25*A3[1]*ho)#East Wall resistance
R317g    =  1./(0.75*A3[1]*h) + 1./(kgyp*0.75*A3[1]/Lgyp)
+1./(kextrinb*0.75*A3[1]/Lextrinb)+1./(kcon*0.75*A3[1]*2/Lconb)#East Wall resistance
R17g    =  1./(kcon*0.75*A3[1]*2/Lconb)+1./(0.75*A3[1]*ho)
Rw3oE   =  1/(((Aw3[1]/Rw)))#East window resistance
R318    =  1./(0.1*A3[3]*h) + 1./(kgyp*0.1*A3[3]/Lgyp)
+1./(kextrinb*0.1*A3[3]/Lextrinb)+1./(kcon*0.1*A3[3]*2/Lconb)#West Wall resistance
R18o    =  1./(kcon*0.1*A3[3]*2/Lconb)+ 1./(0.1*A3[3]*ho)#West Wall resistance
R318g    =  1./(0.75*A3[3]*h) + 1./(kgyp*0.75*A3[3]/Lgyp)
+1./(kextrinb*0.75*A3[3]/Lextrinb)+1./(kcon*0.75*A3[3]*2/Lconb)#West Wall resistance
R18g    =  1./(kcon*0.75*A3[3]*2/Lconb)+1./(0.75*A3[3]*ho)
R319    =  1./(0.15*A3[3]*h) + 1./((kgyp*0.15*A3[3]*2/Lgyp))#Convective transfer between zones 3 & 4
R419    =  1./(kgyp*0.15*A3[3]*2/Lgyp)+(1/((0.15*A3[3])/Rintw))#Convective transfer between zones 3 & 4
R325    =  1./(A3[5]*h) + 1./((kcon*A3[5]*2/Lconf))#ground resistance to zone 3
R25g    =  1./(kcon*A3[5]*2/Lconf)+(1/((A3[5])/Rflc))#ground resistance to zone 3

#Zone 4 resistances
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R4inf   =  1./Uinf4 #Infiltration to zone 4
R420    =  1./(A4[2]*h) + 1./(kgyp*A4[2]*2/Lgyp)#North Wall resistance
R20o    =  1./(kgyp*A4[2]*2/Lgyp)+(1/((A4[2])/Rext))#North Wall resistance
R421    =  1./(A4[0]*h) + 1./(kgyp*A4[0]*2/Lgyp)#South Wall resistance
R21o    =  1./(kgyp*A4[0]*2/Lgyp)+(1/((A4[0])/Rext))#South Wall resistance
R422    =  1./(A4[1]*h) + 1./(kgyp*A4[1]*2/Lgyp)#East Wall resistance
R22o    =  1./(kgyp*A4[1]*2/Lgyp)+(1/((A4[1])/Rext))#East Wall resistance
R423    =  1./(A4[3]*h) + 1./(kgyp*A4[3]*2/Lgyp)#West Wall resistance
R23o    =  1./(kgyp*A4[3]*2/Lgyp)+(1/((A4[3])/Rext))#West Wall resistance
Rw4oW   =  1/(((Aw4[3]/Rw)))#West window resistance
R424    =  1./(A4[5]*h) + 1./((kcon*A4[5]*2/Lconf))#ground resistance to zone 4
R24g    =  1./(kcon*A4[5]*2/Lconf)+(1/((A4[5])/Rflc))#ground resistance to zone 4
R428    =  1./(A4[4]*h) + 1./(kgyp*A4[4]*2/Lgyp)    #resistance between zone 1 and attic (ceiling)
R28o    =  (Rroof4)/A4[4]    #resistance between ceiling and outside

#ADD SOUTH GARAGE DOOR EVENTUALLY

#Temperatures

T1      = np.zeros(Nfinal)# Zone 1 air temperature
T2      = np.zeros(Nfinal)# Zone 2 air temperature
T3      = np.zeros(Nfinal)# Zone 3 air temperature
T4      = np.zeros(Nfinal)# Zone 4 air temperature
T5      = np.zeros(Nfinal)# Zone 1 NORTH wall
T6      = np.zeros(Nfinal)# Zone 1 SOUTH wall
T7      = np.zeros(Nfinal)# Zone 1 EAST wall
T8      = np.zeros(Nfinal)# Zone 1 WEST wall
T9      = np.zeros(Nfinal)# Zone 1 FLOOR (connection to zone 2)
T10     = np.zeros(Nfinal)# Zone 2 NORTH wall
T11     = np.zeros(Nfinal)# Zone 2 SOUTH wall
T12     = np.zeros(Nfinal)# Zone 2 EAST wall
T13     = np.zeros(Nfinal)# Zone 2 WEST wall
T14     = np.zeros(Nfinal)# Zone 2 FLOOR (connection to zone 3)
T15     = np.zeros(Nfinal)# Zone 3 NORTH wall
T15g    = np.zeros(Nfinal)# Zone 3 NORTH wall in contact with ground
T16     = np.zeros(Nfinal)# Zone 3 SOUTH wall 
T16g    = np.zeros(Nfinal)# Zone 3 SOUTH wall in contact with ground
T17     = np.zeros(Nfinal)# Zone 3 EAST wall
T17g    = np.zeros(Nfinal)# Zone 3 EAST wall in contact with ground
T18     = np.zeros(Nfinal)# Zone 3 WEST wall
T18g    = np.zeros(Nfinal)# Zone 3 WEST wall in contact with ground
T19     = np.zeros(Nfinal)# Zone 3 wall connection to zone 4
T20     = np.zeros(Nfinal)# Zone 4 NORTH wall
T21     = np.zeros(Nfinal)# Zone 4 SOUTH wall
T22     = np.zeros(Nfinal)# Zone 4 EAST wall
T23     = np.zeros(Nfinal)# Zone 4 WEST wall
T24     = np.zeros(Nfinal)# Zone 4 connection to ground
T25     = np.zeros(Nfinal)# Zone 3 ground connection
T26     = np.zeros(Nfinal)# Zone 2 connection to zone 4
T27     = np.zeros(Nfinal)# ZONE 1 Ceiling (connection to outside through roof)
T28     = np.zeros(Nfinal)# ZONE 4 Ceiling (connection to outside through roof)
Tg      = np.ones(Nfinal)*20.# Ground temperature
To      = np.zeros(Nfinal)# Outdoor Air temperature
T1[0]    = 20.5
T2[0]    = 20.5
T3[0]    = 20.5
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T4[0]    = 20.5
T5[0]    = 20.5
T6[0]    = 20.5
T7[0]    = 20.5
T8[0]    = 20.5
T9[0]    = 20.5
T10[0]   = 20.5
T11[0]   = 20.5
T12[0]   = 20.5
T13[0]   = 20.5
T14[0]   = 20.5
T15[0]   = 20.5
T15g[0]  = 20.5
T16[0]   = 20.5
T16g[0]  = 20.5
T17[0]   = 20.5
T17g[0]  = 20.5
T18[0]   = 20.5
T18g[0]  = 20.5
T19[0]   = 20.5
T20[0]   = 20.5
T21[0]   = 20.5
T22[0]   = 20.5
T23[0]   = 20.5
T24[0]   = 20.5
T25[0]   = 20.5
T26[0]   = 20.5
T27[0]   = 20.5
T28[0]   = 20.5

# Capacitances of air

#C1       = 11*cp*rho*Vol1 #Joule
#C2       = 9.*cp*rho*Vol2 #Joule
#C3       = 7.*cp*rho*Vol3 #Joule
#C4       = 5.*cp*rho*Vol4 #Joule

C1       = 1.*cp*rho*Vol1 #Joule
C2       = 15*cp*rho*Vol2 #Joule
C3       = 36.*cp*rho*Vol3 #Joule
C4       = 5.*cp*rho*Vol4 #Joule

# Thermal mass capacitance
#Zone 1
C15      = c*A1[2] # North wall
C16      = c*A1[0] # South wall
C17      = c*A1[1] # East wall
C18      = c*A1[3] # West wall
C19      = cply*A1[5] # floor
C127     = c*A1[4] # ceiling
#Zone 2
C210     = c*A2[2] # North wall
C211     = c*A2[0] # South wall
C212     = c*A2[1] # East wall
C213     = c*0.25*A2[3] # West wall
C214     = cply*A2[5] # floor
C226     = c*0.75*A2[3] # connection to zone 4
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#Zone 3
C315    = cconcw*0.25*A3[2] # North wall
C315g   = cconcw*0.75*A3[2] # North wall connected to ground
C316    = cconcw*0.25*A3[0] # South wall
C316g   = cconcw*0.75*A3[0] # South wall connected to ground
C317    = cconcw*0.25*A3[1] # East wall
C317g   = cconcw*0.75*A3[1] # East wall connected to ground
C318    = cconcw*0.1*A3[3]  # West wall
C318g   = cconcw*0.75*A3[3]  # West wall connected to ground
C319    = cconcw*0.15*A3[3] # connection to zone 4
C325    = cconc*A3[5] # connection to ground
#Zone 4
C420    = c*A4[2] # North wall
C421    = c*A4[0] # South wall
C422    = c*A4[1] # East wall
C423    = c*A4[3] # West wall
C424    = cconc*A4[5] # connection to ground
C428    = c*A4[4] # ceiling

## WHOLE YEAR SIMULATION
#data        = np.genfromtxt("OATyear.txt", unpack=True) # To outdoor air temperature at 1 hour for whole year
#t_new       = np.linspace(1,len(data),240*len(data), endpoint=True)
#To_set      = interp1d(np.arange(1,len(data)+1),data)
#To          = To_set(t_new) # To at 15 second intervals
#
#days = 365
#
#data1       = np.genfromtxt("Tsp1found.txt", unpack=True) # Set point temperature at 15 minutes for 1 day
#t_new1      = np.linspace(1,len(data1),240/4*len(data1), endpoint=True)
#Tsp_set     = interp1d(np.arange(1,len(data1)+1),data1)
#Tsp1        = Tsp_set(t_new1) # Tsp at 15 second intervals
#Tsp1         = np.tile(Tsp1,days)
#
#data2       = np.genfromtxt("Tsp2found.txt", unpack=True) # Set point temperature at 15 minutes for 1 day
#t_new2      = np.linspace(1,len(data2),240/4*len(data2), endpoint=True)
#Tsp_set     = interp1d(np.arange(1,len(data2)+1),data2)
#Tsp2        = Tsp_set(t_new2) # Tsp at 15 second intervals
#Tsp2         = np.tile(Tsp2,days)
#
#data3       = np.genfromtxt("Tsp3found.txt", unpack=True) # Set point temperature at 15 minutes for 1 day
#t_new3      = np.linspace(1,len(data3),240/4*len(data3), endpoint=True)
#Tsp_set     = interp1d(np.arange(1,len(data3)+1),data3)
#Tsp3        = Tsp_set(t_new3) # Tsp at 15 second intervals
#Tsp3         = np.tile(Tsp3,days)
#
#data4       = np.genfromtxt("ss.txt", unpack=True) # Set point temperature at 15 minutes for 1 day
#t_new4      = np.linspace(1,len(data4),240/4*len(data4), endpoint=True)
#Tsp_set     = interp1d(np.arange(1,len(data4)+1),data4)
#Tsp4        = Tsp_set(t_new4) # Tsp at 15 second intervals
#Tsp4         = np.tile(Tsp4,days)

### SIMULATION FOR EXPERIMENT 2
## Outdoor air temperature
data3       = np.genfromtxt("To2014-2.txt", unpack=True) # experiment 2
data3       = data3.astype(float)
t_new3      = np.linspace(1,len(data3),240/4*len(data3), endpoint=True)
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Tout_15sec  = interp1d(np.arange(1, len(data3)+1), data3)
To          = Tout_15sec(t_new3)

#Solar radiation on South facade
data5       = np.genfromtxt("SR2014-2.txt", unpack=True) # experiment 2 in Wh/m2
data5       = data5/0.25 # in W/m2
xxx         = np.arange(0,len(data5)-1)
    
data5       = data5.astype(float)

for kkk in xxx:
    if data5[kkk] < 0:
        data5[kkk] = 0
    else:
        data5[kkk] = data5[kkk]  

t_new5      = np.linspace(1,len(data5),240/4*len(data5), endpoint=True)
SR_15sec  = interp1d(np.arange(1, len(data5)+1), data5)
SR          = SR_15sec(t_new5)

days        = 12

#Zone 1 Tsp2014-2.txt
data9       = np.genfromtxt("Tsp2014-2.txt") # experiment 2
t_new9      = np.linspace(1,len(data9),240/4*len(data9), endpoint=True)
Tsp_set9    = interp1d(np.arange(1,len(data9)+1),data9)
Tsp9        = Tsp_set9(t_new9) # Tsp at 15 second intervals
Tspp9       = np.tile(Tsp9,days)

#Zone 1 qaux measured
data10       = np.genfromtxt("qaux1-2014-2.txt") # experiment 2
t_new10      = np.linspace(1,len(data10),240/4*len(data10), endpoint=True)
q_aux10    = interp1d(np.arange(1,len(data10)+1),data10)
qaux10        = q_aux10(t_new10) # Tsp at 15 second intervals

#Zone 2
data6       = np.genfromtxt("Tsp2014-2.txt") # experiment 2
t_new6      = np.linspace(1,len(data6),240/4*len(data6), endpoint=True)
Tsp_set6    = interp1d(np.arange(1,len(data6)+1),data6)
Tsp6        = Tsp_set6(t_new6) # Tsp at 15 second intervals
Tspp6       = np.tile(Tsp6,days)

#Zone 2 qaux measured
data11       = np.genfromtxt("qaux2-2014-2.txt") # experiment 2
t_new11      = np.linspace(1,len(data11),240/4*len(data11), endpoint=True)
q_aux11      = interp1d(np.arange(1,len(data11)+1),data11)
qaux11       = q_aux11(t_new11) # Tsp at 15 second intervals

#Zone 3
data7       = np.genfromtxt("Tsp2014-2.txt") # experiment 2
t_new7      = np.linspace(1,len(data7),240/4*len(data7), endpoint=True)
Tsp_set7    = interp1d(np.arange(1,len(data7)+1),data7)
Tsp7        = Tsp_set7(t_new7) # Tsp at 15 second intervals
Tspp7       = np.tile(Tsp7,days)

#Zone 3 qaux measured
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data12       = np.genfromtxt("qaux3-2014-2.txt") # experiment 2
t_new12      = np.linspace(1,len(data12),240/4*len(data12), endpoint=True)
q_aux12      = interp1d(np.arange(1,len(data12)+1),data12)
qaux12       = q_aux12(t_new12) # Tsp at 15 second intervals

#Zone 4 Tsp2014-2_ZONE4.txt
data8       = np.genfromtxt("Tsp2014-2_ZONE4.txt") # experiment 2
t_new8      = np.linspace(1,len(data8),240/4*len(data8), endpoint=True)
Tsp_set8    = interp1d(np.arange(1,len(data8)+1),data8)
Tsp8        = Tsp_set8(t_new8) # Tsp at 15 second intervals
Tspp8       = np.tile(Tsp8,days)

#Zone 4 qaux measured
data13       = np.genfromtxt("qaux4-2014-2.txt") # experiment 2
t_new13      = np.linspace(1,len(data13),240/4*len(data13), endpoint=True)
q_aux13      = interp1d(np.arange(1,len(data13)+1),data13)
qaux13       = q_aux13(t_new13) # Tsp at 15 second intervals

qaux_all = data10 + data11 + data12 + data13

Tsp1        = Tsp9
Tsp2        = Tsp6
Tsp3        = Tsp7
Tsp4        = Tsp8

#Solar radiation incident on the south windows
SR_south1   = Aw1[0]*SR*0.1 #in W
SR_south2   = Aw2[0]*SR*0.1
SR_south3   = Aw3[0]*SR*0.1
SR_south4   = Aw4[0]*SR*0.1

Teq1        = To + SR*1/ho
Teq2        = To + SR*1/ho
Teq3        = To + SR*1/ho
Teq4        = To + SR*1/ho

Teq1 = To
Teq2 = To
Teq3 = To
Teq4 = To

# Controller parameters

Prop1        = np.zeros(Nfinal)
Int1         = np.zeros(Nfinal)
I1           = np.zeros(Nfinal)
PID1         = np.zeros(Nfinal)
Error1       = np.zeros(Nfinal)
Tsperr1      = np.zeros(Nfinal)

Prop2        = np.zeros(Nfinal)
Int2         = np.zeros(Nfinal)
I2           = np.zeros(Nfinal)
PID2         = np.zeros(Nfinal)
Error2       = np.zeros(Nfinal)
Tsperr2      = np.zeros(Nfinal)
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Prop3        = np.zeros(Nfinal)
Int3         = np.zeros(Nfinal)
I3           = np.zeros(Nfinal)
PID3         = np.zeros(Nfinal)
Error3       = np.zeros(Nfinal)
Tsperr3      = np.zeros(Nfinal)

Prop4        = np.zeros(Nfinal)
Int4         = np.zeros(Nfinal)
I4           = np.zeros(Nfinal)
PID4         = np.zeros(Nfinal)
Error4       = np.zeros(Nfinal)
Tsperr4      = np.zeros(Nfinal)

q15          = np.zeros(Nfinal)
q16          = np.zeros(Nfinal)
q24          = np.zeros(Nfinal)
q34          = np.zeros(Nfinal)
q20          = np.zeros(Nfinal)
q21          = np.zeros(Nfinal)
q22          = np.zeros(Nfinal)
q23          = np.zeros(Nfinal)
q24          = np.zeros(Nfinal)
q28          = np.zeros(Nfinal)
q12          = np.zeros(Nfinal)
q12_2        = np.zeros(Nfinal)
q23_2        = np.zeros(Nfinal)
Rzn12        = np.zeros(Nfinal)
Rzn23        = np.zeros(Nfinal)
test         = np.zeros(Nfinal)
test2         = np.ones(Nfinal)*1.
test3         = np.ones(Nfinal)*1.

Q21         = np.zeros(Nfinal)
Q32         = np.zeros(Nfinal)

# grashof number
L12  = 0.001*Hh
L23  = 0.001*Hh
A12  = A1[4]*0.001
A23  = A2[4]*0.001
Gr12      = np.zeros(Nfinal)
Gr12[0]   = g*beta_air*L12**3/(mu_air**2)
Gr23      = np.zeros(Nfinal)
Gr23[0]   = g*beta_air*L23**3/(mu_air**2)
#inter-zonal convection
Uzn12     = np.zeros(Nfinal)
Uzn12[0]  = (0.3*(Gr12[0]**0.5)*Pr_air*k_air*A12)/L12
Uzn23     = np.zeros(Nfinal)
Uzn23[0]  = (0.3*(Gr23[0]**0.5)*Pr_air*k_air*A23)/L23
Rzn12[0]  =1./Uzn12[0]
Rzn23[0]  =1./Uzn23[0]

dd           = 1.
ddd          = 1.

Kp           = 1400. # watt/degC
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Kp1          = 2000.  
Kp2          = 1900.
Kp3          = 2000.
Kp4          = 1600.
Ki           = 0.1
i            = 1.

############################################################
#==========================================================#
############################################################
#CVRMSE - Nelder-Mead OPTIMIZED

##Step C
R4inf = 0.05000652
#
##Step D

##Step E
C2 =     2576625.54
R2inf =   0.67219284    
R23inf =     0.00210612
#
##Step F
C1 =    704023.9937
R1inf =   4.77769937
R12inf =  0.00195504487

############################################################
#==========================================================#
############################################################ 

# Energy balance equations at air nodes using explicit finite difference method
#def cv(parm, qaux_all, p2):
#    C1 = parm
#    Int1       = np.zeros(Nfinal)
#    I1       = np.zeros(Nfinal)
#    Int2       = np.zeros(Nfinal)
#    I2       = np.zeros(Nfinal)
#    Int3       = np.zeros(Nfinal)
#    I3       = np.zeros(Nfinal)
#    Int4       = np.zeros(Nfinal)
#    I4       = np.zeros(Nfinal)
for j in p2:
    if j > 1:
        if abs(Tsp1[j]- Tsp1[j-1]) > 0.01:
            # check to see when setpoint is changed
            Tsperr1[j] = abs(Tsp1[j] - Tsp1[j-1])
            Int1       = np.zeros(Nfinal)
            I1         = np.zeros(Nfinal)
        else:
            pass
    else:
        pass
    if Tsp1[j] > T1[j]:
        # set Error parameter to temperature error
        Error1[j+1]    = Tsp1[j] - T1[j]
    else:
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        Error1[j+1]    = 0
    Prop1[j+1]         = Error1[j+1] # set Prop parameter to Error
    Int1[j+1]          = (Error1[j+1]+Error1[j])*deltaT/2. # set Int parameter to average error multiplied by time step
    I1[j+1]            = np.sum(Int1) # sum of Int terms
    PID1[j+1]          = Kp1*Prop1[j]+Ki*I1[j+1] # value of actuator (auxiliary heater)
    # threshold of 0.1 degree C
    if PID1[j+1] > qmax1 and Error1[j+1] > 0.1:
        qaux1[j+1]     = qmax1
    elif Error1[j+1] > 0.1:
        qaux1[j+1]     = PID1[j+1]
    else:
        qaux1[j+1]     = 0
################################
    if j > 1:
        if abs(Tsp2[j]- Tsp2[j-1]) > 0.01:
            # check to see when setpoint is changed
            Tsperr2[j] = abs(Tsp2[j] - Tsp2[j-1])
            Int2       = np.zeros(Nfinal)
            I2         = np.zeros(Nfinal)
        else:
            pass
    else:
        pass
    if Tsp2[j] > T2[j]:
        # set Error parameter to temperature error
        Error2[j+1]    = Tsp2[j] - T2[j]
    else:
        Error2[j+1]    = 0
    Prop2[j+1]         = Error2[j+1] # set Prop parameter to Error
    Int2[j+1]          = (Error2[j+1]+Error2[j])*deltaT/2. # set Int parameter to average error multiplied by time step
    I2[j+1]            = np.sum(Int2) # sum of Int terms
    PID2[j+1]          = Kp2*Prop2[j]+Ki*I2[j+1] # value of actuator (auxiliary heater)
    # threshold of 0.1 degree C
    if PID2[j+1] > qmax2 and Error2[j+1] > 0.1:
        qaux2[j+1]     = qmax2
    elif Error2[j+1] >0.1:
        qaux2[j+1]     = PID2[j+1]
    else:
        qaux2[j+1]     = 0
################################
    if j > 1:
        if abs(Tsp3[j]- Tsp3[j-1]) > 0.01:
            # check to see when setpoint is changed
            Tsperr3[j] = abs(Tsp3[j] - Tsp3[j-1])
            Int3       = np.zeros(Nfinal)
            I3         = np.zeros(Nfinal)
        else:
            pass
    else:
        pass
    if Tsp3[j] > T3[j]:
        # set Error parameter to temperature error
        Error3[j+1]    = Tsp3[j] - T3[j]
    else:
        Error3[j+1]    = 0
    Prop3[j+1]         = Error3[j+1] # set Prop parameter to Error
    Int3[j+1]          = (Error3[j+1]+Error3[j])*deltaT/2. # set Int parameter to average error multiplied by time step
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    I3[j+1]            = np.sum(Int3) # sum of Int terms
    PID3[j+1]          = Kp3*Prop3[j]+Ki*I3[j+1] # value of actuator (auxiliary heater)
    # threshold of 0.1 degree C
    if PID3[j+1] > qmax3 and Error3[j+1] > 0.1:
        qaux3[j+1]     = qmax3
    elif Error3[j+1] > 0.1:
        qaux3[j+1]     = PID3[j+1]
    else:
        qaux3[j+1]     = 0    
################################
    if j > 1:
        if abs(Tsp4[j]- Tsp4[j-1]) > 0.01:
            # check to see when setpoint is changed
            Tsperr4[j] = abs(Tsp4[j] - Tsp4[j-1])
            Int4       = np.zeros(Nfinal)
            I4         = np.zeros(Nfinal)
        else:
            pass
    else:
        pass
    if Tsp4[j] > T4[j]:
        # set Error parameter to temperature error
        Error4[j+1]    = Tsp4[j] - T4[j]
    else:
        Error4[j+1]    = 0
    Prop4[j+1]         = Error4[j+1] # set Prop parameter to Error
    Int4[j+1]          = (Error4[j+1]+Error4[j])*deltaT/2. # set Int parameter to average error multiplied by time step
    I4[j+1]            = np.sum(Int4) # sum of Int terms
    PID4[j+1]          = Kp4*Prop4[j]+Ki*I4[j+1] # value of actuator (auxiliary heater)
    # threshold of 0.1 degree C
    if PID4[j+1] > qmax4 and Error4[j+1] > 0.1:
        qaux4[j+1]     = qmax4
    elif Error4[j+1] > 0.1:
        qaux4[j+1]     = PID4[j+1]
    else:
        qaux4[j+1]     = 0
    if Tsp2[j] < Tsp1[j] and T2[j] < T1[j] :
        Q21[j] = 0
    else:
        Q21[j] = ((T2[j]+0.6-T1[j])/R12inf)
    if Tsp3[j] < Tsp2[j] and T3[j] < T2[j]:
        Q32[j] = 0
    else:
        Q32[j] = ((T3[j]+1.-T2[j])/R23inf)
    T1[j+1]      = (deltaT/C1)*(qaux1[j]+((((To[j]-T1[j])/R1inf)+Q21[j]
                    +((T5[j]-T1[j])/R15)+((To[j]-T1[j])/Rw1oN)
                    +((T6[j]-T1[j])/R16)+((Teq1[j]-T1[j])/Rw1oS)
                    +((T7[j]-T1[j])/R17)+((T8[j]-T1[j])/R18)
                    +((T9[j]-T1[j])/R19))+((T27[j]-T1[j])/R127)))+T1[j]
    T2[j+1]      = (deltaT/C2)*(qaux2[j]+((((To[j]-T2[j])/R2inf)-Q21[j]
                    +Q32[j]+((T10[j]-T2[j])/R210)+((To[j]-T2[j])/Rw2oN)
                    +((T11[j]-T2[j])/R211)+((Teq2[j]-T2[j])/Rw2oS)
                    +((T12[j]-T2[j])/R212)+((T13[j]-T2[j])/R213)
                    +((T14[j]-T2[j])/R214))+((T26[j]-T2[j])/R226)))+T2[j]
    T3[j+1]      = (deltaT/C3)*(qaux3[j]+((((To[j]-T3[j])/R3inf)-Q32[j]
                    +((T15[j]-T3[j])/R315)+((T15g[j]-T3[j])/R315g)
                    +((To[j]-T3[j])/Rw3oN)+((T16[j]-T3[j])/R316)
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                    +((T16g[j]-T3[j])/R316g)+((T17[j]-T3[j])/R317)
                    +((T17g[j]-T3[j])/R317g)+((To[j]-T3[j])/Rw3oE)
                    +((T18[j]-T3[j])/R318)+((T18g[j]-T3[j])/R318g)
                    +((T19[j]-T3[j])/R319))+((T25[j]-T3[j])/R325)))+T3[j]
    T4[j+1]      = (deltaT/C4)*(qaux4[j]+((((To[j]-T4[j])/R4inf)
                    +((T20[j]-T4[j])/R420)+((T21[j]-T4[j])/R421)
                    +((T22[j]-T4[j])/R422)+((T23[j]-T4[j])/R423)
                    +((To[j]-T4[j])/Rw4oW)+(((T19[j]-T4[j])/R419))
                    +(((T26[j]-T4[j])/R426))+((T24[j]-T4[j])/R424))))+T4[j]  
    T5[j+1]      = (deltaT/C15)*(((T1[j]-T5[j])/R15)+((To[j]-T5[j])/R5o))+T5[j]
    T6[j+1]      = (deltaT/C16)*(((T1[j]-T6[j])/R16)+((Teq1[j]-T6[j])/R6o))+T6[j]
    T7[j+1]      = (deltaT/C17)*(((T1[j]-T7[j])/R17)+((To[j]-T7[j])/R7o))+T7[j]
    T8[j+1]      = (deltaT/C18)*(((T1[j]-T8[j])/R18)+((To[j]-T8[j])/R8o))+T8[j]
    T9[j+1]      = (deltaT/C19)*(((T1[j]-T9[j])/R19)+((T2[j]-T9[j])/R29))+T9[j]
    T10[j+1]     = (deltaT/C210)*(((T2[j]-T10[j])/R210)+((To[j]-T10[j])/R10o))
                    +T10[j]
    T11[j+1]     = (deltaT/C211)*(((T2[j]-T11[j])/R211)+((Teq2[j]-T11[j])/R11o))
                    +T11[j]
    T12[j+1]     = (deltaT/C212)*(((T2[j]-T12[j])/R212)+((To[j]-T12[j])/R12o))
                    +T12[j]
    T13[j+1]     = (deltaT/C213)*(((T2[j]-T13[j])/R213)+((To[j]-T13[j])/R13o))
                    +T13[j]
    T14[j+1]     = (deltaT/C214)*(((T2[j]-T14[j])/R214)+((T3[j]-T14[j])/R314))
                    +T14[j]
    T15[j+1]     = (deltaT/C315)*(((T3[j]-T15[j])/R315)+((To[j]-T15[j])/R15o))
                    +T15[j]
    T15g[j+1]    = (deltaT/C315g)*(((T3[j]-T15g[j])/R315g)
                                   +((Tg[j]-T15g[j])/R15g))+T15g[j]
    T16[j+1]     = (deltaT/C316)*(((T3[j]-T16[j])/R316)+((Teq3[j]-T16[j])/R16o))
                    +T16[j]
    T16g[j+1]    = (deltaT/C316g)*(((T3[j]-T16g[j])/R316g)
                                   +((Tg[j]-T16g[j])/R16g))+T16g[j]  
    T17[j+1]     = (deltaT/C317)*(((T3[j]-T17[j])/R317)+((To[j]-T17[j])/R17o))
                    +T17[j]
    T17g[j+1]    = (deltaT/C317g)*(((T3[j]-T17g[j])/R317g)
                                   +((Tg[j]-T17g[j])/R17g))+T17g[j]  
    T18[j+1]     = (deltaT/C318)*(((T3[j]-T18[j])/R318)+((To[j]-T18[j])/R18o))
                    +T18[j]
    T18g[j+1]    = (deltaT/C318g)*(((T3[j]-T18g[j])/R318g)
                                   +((Tg[j]-T18g[j])/R18g))+T18g[j]
    T19[j+1]     = (deltaT/C319)*(((T3[j]-T19[j])/R319)+((T4[j]-T19[j])/R419))
                    +T19[j]
    T20[j+1]     = (deltaT/C420)*(((T4[j]-T20[j])/R420)+((To[j]-T20[j])/R20o))
                    +T20[j]
    T21[j+1]     = (deltaT/C421)*(((T4[j]-T21[j])/R421)+((Teq4[j]-T21[j])/R21o))
                    +T21[j]
    T22[j+1]     = (deltaT/C422)*(((T4[j]-T22[j])/R422)+((To[j]-T22[j])/R22o))
                    +T22[j]
    T23[j+1]     = (deltaT/C423)*(((T4[j]-T23[j])/R423)+((To[j]-T23[j])/R23o))
                    +T23[j]
    T24[j+1]     = (deltaT/C424)*(((T4[j]-T24[j])/R424)+((Tg[j]-T24[j])/R24g))
                    +T24[j]
    T25[j+1]     = (deltaT/C325)*(((T3[j]-T25[j])/R325)+((Tg[j]-T25[j])/R25g))
                    +T25[j]
    T26[j+1]     = (deltaT/C226)*(((T2[j]-T26[j])/R226)+((T4[j]-T26[j])/R426))
                    +T26[j]
    T27[j+1]     = (deltaT/C127)*(((T1[j]-T27[j])/R127)+((To[j]-T27[j])/R27o))
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                    +T27[j]
    T28[j+1]     = (deltaT/C428)*(((T4[j]-T28[j])/R428)+((To[j]-T28[j])/R28o))
                    +T28[j]
    q15[j+1]     = (T5[j]-To[j])/(R5o)
    q16[j+1]     = (T6[j]-To[j])/(R6o)
    q24[j+1]     = (T4[j]-T2[j])/(R426+R226)
    q34[j+1]     = (T4[j]-T3[j])/(R419)
    q20[j+1]     = (T4[j]-To[j])/(R20o)
    q21[j+1]     = (T4[j]-To[j])/(R21o)
    q22[j+1]     = (T4[j]-To[j])/(R22o)
    q24[j+1]     = (T4[j]-Tg[j])/(R24g)
    q28[j+1]     = (T4[j]-To[j])/(R28o)
    Gr12[j+1]    = ((T2[j]+1-T1[j])*g*beta_air*(L12**3))/(mu_air**2)
    Gr23[j+1]    = ((T3[j]+2-T2[j])*g*beta_air*(L23**3))/(mu_air**2)
    Uzn12[j+1]   = (0.3*(Gr12[j]**0.5)*Pr_air*k_air*A12)/L12
    Uzn23[j+1]   = (0.3*(Gr23[j]**0.5)*Pr_air*k_air*A23)/L23   
    q12[j+1]     = (abs(T2[j]+1-T1[j]))*Uzn12[j]   
    q23[j+1]     = (abs(T3[j]+2-T2[j]))*Uzn23[j]
    q12_2[j+1]   = (abs(T2[j]+1-T1[j]))/R12inf 
    q23_2[j+1]   = (abs(T3[j]+2-T2[j]))/R23inf
    Rzn12[j+1]   = 1./Uzn12[j]
    Rzn23[j+1]   = 1./Uzn23[j]
    if Rzn23[j+1] > R23inf:
        Rzn23[j+1] = R23inf
    else:
        pass
    test[j+1] = 0.*((abs(T3[j]+2-T2[j]))/Rzn23[j])
    test2[j+1] =abs(T2[j]+1-T1[j])
    test3[j+1]= abs(T3[j]+1-T2[j])

TT1 = np.mean(T1.reshape(-1, 60), axis=1)
TT2 = np.mean(T2.reshape(-1, 60), axis=1)
TT3 = np.mean(T3.reshape(-1, 60), axis=1)
TT4 = np.mean(T4.reshape(-1, 60), axis=1)

TTavg = ((TT1*(A1[5]))/(A1[5]+A2[5]+A3[5]+A4[5])) + 
        ((TT2*(A2[5]))/(A1[5]+A2[5]+A3[5]+A4[5]))+ 
        ((TT3*(A3[5]))/(A1[5]+A2[5]+A3[5]+A4[5]))+
        ((TT4*(A4[5]))/(A1[5]+A2[5]+A3[5]+A4[5]))

qqaux1 = np.mean(qaux1.reshape(-1, 60), axis=1)
qqaux2 = np.mean(qaux2.reshape(-1, 60), axis=1)
qqaux3 = np.mean(qaux3.reshape(-1, 60), axis=1)
qqaux4 = np.mean(qaux4.reshape(-1, 60), axis=1)
qqauxall = qqaux1 + qqaux2 + qqaux3 + qqaux4
N1 = len(data10[625:1151])-1
N2 = len(data11[625:1151])-1
N3 = len(data12[625:1151])-1
N4 = len(data13[625:1151])-1
Nall = len(qaux_all[625:1151])-1
meas_mean1 =np.mean(data10[625:1151])
meas_mean2 =np.mean(data11[625:1151])
meas_mean3 =np.mean(data12[625:1151])
meas_mean4 =np.mean(data13[625:1151])
meas_meanall =np.mean(qaux_all[625:1151])    
CVRMSE1 = np.sqrt(np.sum((data10[625:1151]-qqaux1[625:1151])**2)/N1)/meas_mean1 
CVRMSE2 = np.sqrt(np.sum((data11[625:1151]-qqaux2[625:1151])**2)/N2)/meas_mean2 

17



CVRMSE3 = np.sqrt(np.sum((data12[625:1151]-qqaux3[625:1151])**2)/N3)/meas_mean3 
CVRMSE4 = np.sqrt(np.sum((data13[625:1151]-qqaux4[625:1151])**2)/N4)/meas_mean4 
CVRMSEall = np.sqrt(np.sum((qaux_all[625:1151]-qqauxall[625:1151])**2)/Nall)/meas_meanall
#CVRMSE = CVRMSE1
#    #        return CVRMSE
#
#np.savetxt('qqaux1-DM.txt',qqaux1,delimiter=',')
#np.savetxt('qqaux2-DM.txt',qqaux2,delimiter=',')
#np.savetxt('qqaux3-DM.txt',qqaux3,delimiter=',')
#np.savetxt('qqaux4-DM.txt',qqaux4,delimiter=',')
#np.savetxt('qqauxall-DM.txt',qqauxall,delimiter=',')

#ONE DAY CVRMSEall

qaux_all1 = qaux_all[625+96*3:625+96*4]
qqauxall1 = qqauxall[625+96*3:625+96*4]
Nall1 = len(qaux_all[625+96*3:625+96*4])-1
meas_meanall1 = np.mean(qaux_all[625+96*3:625+96*4])    
CVRMSEall1 = np.sqrt(np.sum((qaux_all[625+96*3:625+96*4]-
                             qqauxall[625+96*3:625+96*4])**2)/Nall1)/meas_meanall1

#6 Hours CVRMSEall

qaux_all6 = qaux_all[625+96*3:(625+96*3)+(6*4)]
qqauxall6 = qqauxall[625+96*3:(625+96*3)+(6*4)]
Nall6 = len(qaux_all[625+96*3:(625+96*3)+(6*4)])-1
meas_meanall6 = np.mean(qaux_all[625+96*3:(625+96*3)+(6*4)])    
CVRMSEall6 = np.sqrt(np.sum((qaux_all[625+96*3:(625+96*3)+(6*4)]-
                             qqauxall[625+96*3:(625+96*3)+(6*4)])**2)/Nall6)/meas_meanall6

#3 Hours CVRMSEall

qaux_all3 = qaux_all[625+96*3:(625+96*3)+(3*4)]
qqauxall3 = qqauxall[625+96*3:(625+96*3)+(3*4)]
Nall3 = len(qaux_all[625+96*3:(625+96*3)+(3*4)])-1
meas_meanall3 = np.mean(qaux_all[625+96*3:(625+96*3)+(3*4)])    
CVRMSEall3 = np.sqrt(np.sum((qaux_all[625+96*3:(625+96*3)+(3*4)]-
                             qqauxall[625+96*3:(625+96*3)+(3*4)])**2)/Nall3)/meas_meanall3

np.savetxt('qqauxall_detailed.txt',qqauxall[625:1151],delimiter = ',')
np.savetxt('qqauxall_measured.txt',qaux_all[625:1151],delimiter = ',')
#np.savetxt('TTavg_detailed.txt',TTavg[625:1151],delimiter = ',')

####################  optimization  ###################

#p0 = [C11]
#
#from scipy.optimize import minimize
#res = minimize(cv, p0, args=(qaux_all, p2), method='nelder-mead', options={'xtol': 0.3, 'disp': True})
#print (np.array(p0))
#print (res.x)

#################### ^^ optimization ^^ ###################
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p2               = np.arange(0.,No*60.*24./deltaT)

TT1              = np.mean(T1.reshape(-1, 60), axis=1) # Averages every 60 values to get 15 minute average value
TT2              = np.mean(T2.reshape(-1, 60), axis=1) # Averages every 60 values to get 15 minute average value
TT3              = np.mean(T3.reshape(-1, 60), axis=1) # Averages every 60 values to get 15 minute average value
TT4              = np.mean(T4.reshape(-1, 60), axis=1) # Averages every 60 values to get 15 minute average value

qqaux1           = np.mean(qaux1.reshape(-1, 60), axis=1)
qqaux2           = np.mean(qaux2.reshape(-1, 60), axis=1)
qqaux3           = np.mean(qaux3.reshape(-1, 60), axis=1)
qqaux4           = np.mean(qaux4.reshape(-1, 60), axis=1)

Q1               = qqaux1*0.25
Q2               = qqaux2*0.25
Q3               = qqaux3*0.25
Q4               = qqaux4*0.25

Tssp1            = np.mean(Tsp1.reshape(-1, 60), axis=1)
Too              = np.mean(To.reshape(-1, 60), axis=1)
peak1            = max(qqaux1)
peak2            = max(qqaux2)
peak3            = max(qqaux3)
peak4            = max(qqaux4)

TotalE1          = np.sum(Q1)
TotalE2          = np.sum(Q2)
TotalE3          = np.sum(Q3)
TotalE4          = np.sum(Q4)

TotalQ           = Q1 + Q2 + Q3 + Q4
TotalP           = qqaux1 + qqaux2 + qqaux3 + qqaux4

#plt.plot(qqaux4)
p1 = plt.plot(q23,'blue')
p2 = plt.plot(q23_2,'green')
q_23 = mpatches.Patch(color='blue', label='q23')
q_23_2 = mpatches.Patch(color='green', label='q23_2')
plt.legend(handles=[q_23,q_23_2])
plt.show()
np.savetxt('TT1.txt',TT1,delimiter=',')
np.savetxt('TT2.txt',TT2,delimiter=',')
np.savetxt('TT3.txt',TT3,delimiter=',')
np.savetxt('TT4.txt',TT4,delimiter=',')

if days > 12:
    day              = 57
    v                = 0+24*(day-1)
    b                = 24+24*(day-1)
    d                = 0+96*(day-1)
    e                = 96+96*(day-1)
    peakdayE         = np.sum(TotalQ[d:e])/1000;
    
    Tairpeak1=TT1[d:e]
    Tairpeak2=TT2[d:e]
    Tairpeak3=TT3[d:e]
    Tairpeak4=TT4[d:e]
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    qauxpeak1=qqaux1[d:e]
    qauxpeak2=qqaux2[d:e]
    qauxpeak3=qqaux3[d:e]
    qauxpeak4=qqaux4[d:e]
    qauxpeak=TotalP[d:e]
    
    Topeak=Too[d:e]
    Tsppeak1=Tssp1[d:e]

print("--- %s seconds ---" % (time.time() - start_time))
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Appendix A: Experimental Houses for Building Energetics

Identifying Parameters: An Example

A pseudocode for implementation within Python environment and SciPy is shown below in Al-

gorithm 1. The R and Ca values are identified for a 1R1C thermal network model with inputs of

1) heating power (Pmeasured) and 2) outdoor air temperature (Tout) and model output of indoor air

temperature Tzone.

Algorithm 1: R, C Parameter Identification

Data: Tmeasured : Indoor air temperature vector of length l

Pmeasured : Input heating power vector of length l

Tout : Outdoor air temperature vector of length l

Result: R and C values of model

1 Initialization: x0 = [R0;C0]: Initial parameter vector;

2 Initialization: Tzone [1]: Initial indoor air temperature value;

3 Function cv(x0, Tmeasured , Pmeasured , Tout):

4 R, C = x0;

5 for i = 1 to l do

6 Tzone [i+1] = ∆t
C
×
(

Pmeasured [i]+
Tout [i]−Tzone[i]

R

)

+Tzone [i];

7 end

8 J =

√

∑
n
i=1(Tzone[i]−Tmeasured [i])

2

n
;

9 /* The objective function to minimize is RMSE of indoor air temp

*/

10 return J;

11 End Function;

12 res = minimize(cv, x0, args=(Tmeasured , Pmeasured , Tout));

13 /* ‘minimize’ is a SciPy function */

14 /* The output of ’res’ is the identified R and C values */

These control-oriented models are intended to be used, along with knowledge of future

conditions (such as electricity pricing, occupancy, weather forecasts etc.) to plan the opera-

tion strategies within the BAS to achieve such goals as demand reduction, energy reduction,

improved occupancy comfort or enhanced energy flexibility of the building, to name a few.
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Appendix B. MATLAB Code - Sample of Bank Building MPC Model

Sample of MATLAB Bank Building MPC Code
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function

 bank5minTEST_allinoneYR(trigger,time,T7R,T8R,T9R,T10R,T11R,T12R,qauxR,Phorz2)

    global index

    global index2

    global index3

    global dt

    global Tspid

    global Tout

    global a

    global Tsp

    global ACH

    global SRWIN

    global SR_global

    global Tspid1

    global UB2

    global LB2

    global simout

    global simout1

    global troom

    global troom1

    global troom2

    global qauxx

    global qauxxx

    global Tspidfound

    global ACHYear_15min

    global LBYear_15min

    global ToutYear_15min

    global UBYear_15min

    global SRYear_15min

    global ACHYear_15sec

    global ACHYear_5min

    global LBYear_15sec

    global LBYear_5min

    global ToutYear_15sec

    global ToutYear_5min

    global UBYear_15sec

    global UBYear_5min

    global SRYear_15sec

    global SRYear_5min

    global TspYR

    global Phorz

    global qaux

    global qauxid

    global ToNoise

    global XNoiseold

    global noise

    global SRNoise

    global y2

    global Tspid3
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    global EcostYear_15sec

    Phorz = Phorz2;

     index = floor(time/15)+1;

     day = floor(time/3600/24)+1;

    function [Pmax] = Bank_5min1(Tsp2)

        Hh=3.05; %m

        Lh=18.5; %m       %Length of room (South/North Wall)

        Wh=23; %m %Width of room (West/East Wall)

        Hi=3.05; %m

        Aw=[4.209;0;14.03;3.39]; %m^2 %Window Areas (N/E/S/W)

        A=[Lh*Hh-Aw(1); Wh*Hh-Aw(2); Lh*Hh-Aw(3); Wh*Hh-Aw(4); Wh*Lh;

 Wh*Lh]; %m^2 %Net Wall areas

        Vol=A(5)*Hi; %m^3 %room volume

        Rw=0.33; %m^2*degC/watt %Window Resistance (U=3)

        h=8.3; %watt/(m^2*degC) %interior film coefficient of surfaces

 walls

        hc=[h; h; h; h; 9; 9.3];%watt/(m^2*degC) %interior film

 coeffients

        ach=0.5; % air change per hour for infiltration/exfiltration

        cp=1000; %joule/(kg*degC) %specific heat of air

        rho=1.2; %kg/m^3 %density of air

        Uinf=ach*Vol*cp*rho/3600; %watt/degC %U of infiltration

 exterior

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        %THERMAL RESISTANCES OF WALLS (incl air films)

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        %Vertical Exterior Walls

        Lgyp=0.013; %m %Gypsum board layer

        rhogyp=640; %kg/m^3

        kgyp=0.16; %watt/(m*degC)

        cgyp=1150; %joule/(kg*degC)

        Rener=0;

        Rins=3; %(m^2*degC)/watt %Insulation layer

        Rsid=0.48; %(m^2*degC)/watt %Air gap, Fiberboard, plywood,

 vinyl

        ho=32; %watt/(m^2*degC) %Exterior film

        ff=0.25; %percentage %15% framing area

        Rf=1.1667; %(m^2*degC)/watt %Wood stud

        R(2)=1/(((1-ff)/((Lgyp/kgyp)+Rener+Rins+Rsid+(1/ho)+(1/

h)))+(((ff)/((Lgyp/kgyp)+Rener+Rf+Rsid+(1/ho)+(1/h))))); %(m^2*degC)/

watt %Exterior wall resistance

        R(3)=R(2); %(m^2*degC)/watt

        R(1)=R(2);

        R(4)=R(2);
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        Rinsc=4.67;%(m^2*degC)/watt %Ceiling

        ha=12; %watt/(m^2*degC) %attic air film

        Rc=1/(((1-ff)/((Lgyp/kgyp)+Rener+Rinsc+(1/

ha)+(1/hc(5))))+(((ff)/((Lgyp/kgyp)+Rener+Rf+(1/ha)+(1/

hc(5))))));%(m^2*degC)/watt %Ceiling resistance

        Rb=0.14;%(m^2*degC)/watt %Roof %shingle backer board

        Rsh=0.078;%(m^2*degC)/watt %Wood shingles

        Rr=1/(((1-ff)/(Rb+Rsh+(1/ho)+(1/ha)))+(((ff)/(Rb+Rf+Rsh+(1/

ha)+(1/ho)))));%(m^2*degC)/watt %Roof resistance

        Ar=A(5)/cos(30*3.14/180); %m^2

        R(5)=((Rc/A(5))+(Rr/Ar))*A(5); %(m^2*degC)/watt %Combined

 Celining-roof resistance

        Lcar=0.02;%m %FLOOR        %Concrete slab with carpet       

 %carpet and underpad

        kcar=0.06;%watt/mdegC

        rhocar=800;%kg/m3

        Lcon=0.2; %m

        kcon=1.9; %watt/mdegC

        rhocon=2200; %kg/m3

        cins=800;

        Rair=0.18;

        ccon=800;

        R(6)=(Lcon/kcon)+(Lcar/kcar)+(1/ho)+(1/hc(6));%(m^2*degC)

 %Floor resistance

        Rcon=Lcon/kcon;

        c=rhogyp*cgyp*Lgyp; %Joule/m^2 GYPSUM %WALL CAPACITANCES

        c6=ccon*rhocon*Lcon;

        C=[c*A(1); c*A(2); c*A(3); c*A(4); c*A(5); c6*A(6)]; %Joule

        Cair=7*cp*rho*Vol; %Joule

        Aint = 360.25; %m % Interior wall area - sum of all areas

        Cint = rhogyp*cgyp*2*Lgyp*Aint;

        C9=C(1)+C(2)+C(3)+C(4)+C(5); %C9 in Mathcad %Joule/degC    

     %Thermal Network %thermal capacitance of interior layer of the

 exterior walls

        C11=C(6)/2; %C11 in Mathcad %Joule %Thermal capacitance of

 interior layer of floor

        C12=C11;

        R78=1/

((A(1)*hc(1))+(A(4)*hc(4))+(A(2)*hc(2))+(A(3)*hc(3))+(A(5)*hc(5))); %degC/

watt %Convective thermal resistance form air node to exterior wall

 surfaces

        R710=1/(kcar*A(6)/Lcar)+1/((A(6)*hc(6)));%degC/watt %Convectiv

 thermal resistance from air node to floor surface

        R7o=1/(Uinf+(sum(Aw)/Rw));%degC/watt %Infiltration and window

 thermal resistance
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        R89= 1/((kgyp*A(1)*2/Lgyp)+(kgyp*A(4)*2/Lgyp)+(kgyp*A(2)*2/

Lgyp)+(kgyp*A(3)*2/Lgyp)+(kgyp*A(5)*2/Lgyp));%degC/watt %resistance

 from inside wall surface to half way into gypsum board

        R9o=(1/((A(1)/R(1))+(A(4)/R(4))+(A(2)/R(2))+(A(3)/R(3))+(A(5)/

R(5))))-R89-R78;%degC/watt %resistace from half way into gypsum board

 to outside

        R1011=0.25*Lcon/(kcon*A(6));%degC/watt %resistance to 1/4 into

 concrete

        R1112=0.5*Rcon/A(6);%degC/watt

        R12g = R1011;

        TS=[(C9/((1/R89)+(1/R9o))); (C11/((1/R1011)+(1/R1112))); C12/

((1/R1112)+(1/R12g))]; %seconds

        detlaTcrit=min(TS); %seconds

        deltaT = 300; %seconds

        T_low=21; %step down night time temperature USER INPUT

        T_high=23; %step up day time temperature USER INPUT

        T_out=-23;

        No=1; %Number of days

        NT=No*86400/deltaT; %number of time steps in a day

        p=1:1:NT;

        t=p.*deltaT;

        if day <=178

            qmax=55000; %watt

        elseif day >=363

            qmax=55000; %watt

        else

            qmax = 22000;

        end

        qmin = -21000;

        Kp=50000/5.5; %watt/degC %proportional control constand of

 baseboard heater

        Ki=0.8;

        Ki=0.05;

        i=1;

        %         SR = importdata('SR_5min.mat');

        %         To = importdata('To_5min.mat');

        %         ach = importdata('ach_5min.mat');

        if Phorz >24 && Phorz < 48

            H = 1.5;

        else

            H = floor(Phorz/24);

        end

        To = ToNoise(index:index+(H*5760-1));

        ach = ACHYear_15sec(index:index+(H*5760-1));
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        SR = SRNoise(index:index+(H*5760-1));

        z=300/15;

        xx=reshape(To,z,[]);

        To=sum(xx,1)./size(xx,1);

        z=300/15;

        xx=reshape(ach,z,[]);

        ach=sum(xx,1)./size(xx,1);

        z=300/15;

        xx=reshape(SR,z,[]);

        SR=sum(xx,1)./size(xx,1);

        t_new3=linspace(1,numel(Tsp2),12*numel(Tsp2));

        Tsp_5min = interp1(Tsp2, t_new3);

        Tsp3 = Tsp_5min;

        Uinf=ach*Vol*cp*rho/3600;

        R7o=0.9*(1./(Uinf+(sum(Aw)/Rw)));

        %effective transmittance-absorptance of windows

        ta=0.4;

        Teq_15sec = To+0*SR*ta/ho;

        Teq=Teq_15sec;

        days = Phorz/24;

        %Solar radiation incident on the window

        SRwin=Aw(3)*SR; %watts

        Nfinal=NT*days; %second

        dT=1; %second

        u=0;

        j=1;

        qaux=zeros(Nfinal,1)+4000;

        T7=zeros(Nfinal,1);

        T8=zeros(Nfinal,1);

        T9=zeros(Nfinal,1);

        T10=zeros(Nfinal,1);

        T11=zeros(Nfinal,1);

        T12=zeros(Nfinal,1);

        Tg=ones(Nfinal,1)*20; %13 ground temp from ecoterra

 measurements. ref: Xiang Chen. 20 from Michael Fournier from HQ

        qaux(1)=4000; %watt

        if time > 0

            %troom1 = troom2(index3-1);

            T7(1)=T7R; %degC

            T8(1)=T8R; %degC

            T9(1)=T9R; %degC
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            T10(1)=T10R; %degC

            T11(1)=T11R; %degC

            T12(1)=T12R;

%             qauxx = squeeze(simout1.Data);

%             qauxxx = qauxx(index3-1);

            qaux(1) = qauxR;

        else

            T7(1)=T_low; %degC

            T8(1)=T_low; %degC

            T9(1)=T_low; %degC

            T10(1)=T_low; %degC

            T11(1)=T_low; %degC

            T12(1)=T_low;

        end

        %Controller parameters

        Prop=zeros(Nfinal,1);

        Int=zeros(Nfinal,1);

        I=zeros(Nfinal,1);

        PID=zeros(Nfinal,1);

        Error=zeros(Nfinal,1);

        Tsperr=zeros(Nfinal,1);

        %Cair = ones(Nfinal,1)*7*cp*rho*Vol;

        dd=1;

        ddd=1;

        u=0;

        dd=1;

        ddd=1;

        Int=zeros(Nfinal,1);

        I=zeros(Nfinal,1);

        u=0;

        aaa=1;

        for aaa = 1:4

        for j=1:Nfinal-1

            if j>1

                if abs(Tsp3(j)- Tsp3(j-1)) > 0.5

                    Tsperr(j) = abs(Tsp3(j)- Tsp3(j-1));

                    Int=zeros(Nfinal,1);

                    ddd=ddd+1;

                else

                    dd=dd+1;

                end

            end

            Error(j+1)=Tsp3(j)-T7(j);

            Prop(j+1)=Error(j+1);

            if Error(j+1) > 0

                Int(j+1)=(Error(j+1)+Error(j))*deltaT/2;

            elseif Error(j+1) > 0

                Int(j+1)=(Error(j+1)+Error(j))*deltaT/2;

            else

                Int(j+1)=0;
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            end

            I(j+1)=sum(Int);

            PID(j+1)=Kp*Prop(j)+Ki*I(j+1);

            if T7(j)> 24 || any(To>20)

                if PID(j+1)<qmin

                    qaux(j+1)=qmin;%watt

                else

                    qaux(j+1) = PID(j+1);

                end

            elseif PID(j+1)>qmax && Error(j+1)>0.1

                qaux(j+1)=qmax;%watt

            elseif PID(j+1)<qmin && Error(j+1)<0.1

                qaux(j+1)=qmin;%watt

            elseif PID(j+1) < 4000 && PID(j+1) > 0

                qaux(j+1) = 4000;

            elseif Error(j+1)>0.1

                qaux(j+1)=PID(j+1);%watt

            else

                qaux(j+1)=4000;%watt

            end

            if time > 0

                if j>1 && j < 10

                    if qaux(j) <= 5000

                        qaux(j) = qaux(j-1);

                    end

                end

            end

            T7(j+1)=(deltaT/Cair)*(qaux(j+1)+((((T8(j)-T7(j))/

R78)+((Teq(j)-T7(j))./R7o(j))+((T10(j)-T7(j))/R710))))+T7(j);

            T8(j+1)=((T7(j)/R78)+0.5*SRwin(j)+(T9(j)/R89))/((1/

R78)+(1/R89));%degC

            T9(j+1)=(deltaT/C9)*(((T8(j)-T9(j))/R89)+((Teq(j)-T9(j))/

R9o))+T9(j);%degC

            T10(j+1)=((T7(j)/R710)+0.5*SRwin(j)+(T11(j)/R1011))/((1/

R710)+(1/R1011));%degC

            T11(j+1)=(deltaT/C11)*(((T12(j)-T11(j))/R1112)+((T10(j)-

T11(j))/R1011))+T11(j);%degC

            T12(j+1)=(deltaT/C12)*(((T11(j)-T12(j))/R1112)+((Tg(j)-

T12(j))/R12g))+T12(j);%degC

            j=j+1;

        end

        dT=abs(T7(Nfinal)-T7(1));

        u=u+1;

        one = 1;

        two = one/3;

        three = 0;

        if aaa<4

        T7(1)=T7(Nfinal-1);

        T8(1)=T8(Nfinal-1);

        T9(1)=T9(Nfinal-1);

        T10(1)=T10(Nfinal-1);
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        T11(1)=T11(Nfinal-1);

        T12(1)=T12(Nfinal-1);

        end

        end

        absqaux = abs(qaux);

        if index > 1

            isit = rem(index-1,5760);

            if rem(index-1,5760) == 0

                Pmax = 0.5*max(absqaux(72:108))*14.37/1000 +

 0.5*max(absqaux)*14.37/1000 + (sum(absqaux)/1000)*(300/3600)*0.0493;

            else

                if day > 1

                    test = floor((index-1-5760)/(day-1));

                    instance = floor(288-288*(test)/5760);

                else

                    test = floor((index-1)/(day));

                    instance = floor(288*(test)/5760);

                end

                if instance > 72

                    instance2 = 288-(instance-72);

                elseif instance == 72

                    instance2 = 1;

                else

                    instance2 = 72-instance;

                end

                if instance2 + 36 > 288

                    instance3 = 288;

                else

                    instance3 = instance2+36;

                end

                Pmax =

 0.5*max(absqaux(instance2:instance3))*14.37/1000 +

 0.5*max(absqaux)*14.37/1000 + (sum(absqaux)/1000)*(300/3600)*0.0493;

            end

        else

            Pmax = 0.75*max(absqaux(72:108))*14.37/1000 +

 0.25*max(absqaux)*14.37/1000 + (sum(absqaux)/1000)*(300/3600)*0.0493;

        end

        Ecost = EcostYear_15sec(index:index+(H*5760-1));

        z = 300/15;

        xx=reshape(Ecost,z,[]);

        Ecost3=sum(xx,1)./size(xx,1);

%

         Pmax = 0.5*max(absqaux)*14.37/1000 +

 0.5*(sum(absqaux)/1000)*(300/3600)*0.0493;

         Pmax = sum(Ecost3(1:Nfinal)*absqaux)/1000;
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    end

    if trigger == 1

        %wait = waitbar(time/(3600*24*4),'Running

 Optimization...','Position', [1.0928e+03, 367.5000, 270, 56.2500]);

        %qaux = transpose(zeros(length(Tsp(index:index

+((1440*4)-1))),1));

        Pmax = 0;

        if Phorz >24 && Phorz < 48

            H = 1.5;

        else

            H = floor(Phorz/24);

        end

        Tsp1 = TspYR(index:index+(H*5760-1))-5;

        z = 3600/15;

        xx=reshape(Tsp1,z,[]);

        Tsp2=sum(xx,1)./size(xx,1);

        UB1 = UBYear_15sec(index:index+(H*5760-1));

        z = 3600/15;

        xx=reshape(UB1,z,[]);

        UB3=sum(xx,1)./size(xx,1);

        UB3 = zeros(length(UB3),1)+24;

        LB1 = LBYear_15sec(index:index+(H*5760-1));

        z = 3600/15;

        xx=reshape(LB1,z,[]);

        LB3=sum(xx,1)./size(xx,1);

        noise = 10*rand()*(rand()-1/2);

        noise = 0.75*noise + 0.25*XNoiseold;

        aa = randi([0,15]);

        b = randi([0,15]);

        while aa == b

             b = randi([0,15]);

        end

        r = (b-aa).*rand(10,1)+aa;

        r1 = (rand()-1/2)*r;

        t_new5=linspace(1,numel(r),576*numel(r));

        r3 = interp1(r1,t_new5,'spline');

        y2 = 0.25*r3+0.75*XNoiseold;

        options = optimset('MaxFunEvals',100000,'TolFun',

 1.e-4, 'TolX',1.e-4 );
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        Tspid1 = fmincon(@Bank_5min1, Tsp2, [],[],[],[], LB3, UB3, [],

 options);

        if day >2

            while abs(Tspid1(1) - Tspid(index-1))>0.25

                Tspid1(1) = (Tspid(index-1)+Tspid1(1))/2;

                Tspid1(2) = (Tspid1(1)+Tspid1(2))/2;

                Tspid1(3) = (Tspid1(2)+Tspid1(3))/2;

            end

        end

        t_new5=linspace(1,numel(Tspid1),240*numel(Tspid1));

        Tspid2 = interp1(Tspid1, t_new5);

        Tspid(index:index+(H*5760-1)) = Tspid2;

        t_new11=linspace(1,numel(qaux),20*numel(qaux));

        qaux2=interp1(qaux, t_new11);

        qauxid(index:index+(H*5760-1))=qaux2;

        XNoiseold = mean(y2);

        a = a + 1;

        if qauxid == 4000

            g=1;

        end

    end

end

Not enough input arguments.

Error in bank5minTEST_allinoneYR_forprint (line 55)

    Phorz = Phorz2;

Published with MATLAB® R2018a
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