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Abstract 

 

Midbrain Dopamine Neurons During Appetitive and Aversive States 

 

Anna-Lena B. Schlenner 

 

 

 

A key role ascribed to midbrain dopamine (DA) neurons rests with learning about 

rewarding events by reflecting reward prediction errors (RPE). Research has shown that 

during reward learning a positive prediction error (e.g. surprising reward), leads to phasic 

excitation, while a negative prediction error (e.g. omission of an expected reward) leads to 

phasic inhibition in DA neurons. It remains unclear, however, how DA regulates learning 

about aversive events. Using behavioral electrophysiology we recorded from DA neurons in 

the ventral tegmental area (VTA) during a Pavlovian task in which auditory cues were trained 

as predictors of either an appetitive sucrose reward or aversive footshock. Our analyses 

confirmed a role for VTA DA neurons in tracking reward prediction error (RPE), that is, 

elevation in firing rate (FR) to the reward predictor and depression in FR at time of reward 

omission in a correlated fashion. Further, our goal was to determine whether DA firing would 

represent reward and aversion in line with a valence-based prediction error signal. We found 

that cue related phasic DA activity to both reward and aversion predicting cues contained 

both information about stimulus identity, as well as valence. Additionally, outcome omission 

was represented as state of opposite valence. These results support the hypothesis that 

midbrain DA neurons support learning by signaling valence-based prediction errors. 
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Introduction 

Associative Learning Through Reward Prediction Errors. 

In traditional Pavlovian conditioning experiments, a neutral cue (conditioned stimulus 

[CS]) such as a light or tone is paired with an outcome of biological significance 

(unconditioned stimulus [US]) of biological relevance. This could either be a rewarding event 

like a food pellet or an aversive event like a foot shock. Such pairings establish the cue as a 

predictor for the outcome and thus elicits conditioned responding. This could be observed as 

an approach behavior to where food is delivered, or depression of ongoing behavior in 

anticipation of the aversive event. While classical conditioning emphasizes the contiguous 

presentation of the cue and outcome, the field of associative learning has long known that the 

establishment of an association between cue and outcome critically depends on prediction 

error. In the absence of prediction error, even temporal contiguity does not ensure association 

formation.  

Prediction error (PE) is defined by the discrepancy between received and expected 

outcomes (Rescorla & Wagner, 1972). Early in learning PE is maximal, leading to large 

changes in associative strength. As the associative strength increases, that is, late in learning, 

the discrepancy between the expectation and the outcome is reduced, leading to smaller or no 

changes in learning. This means the increments in trial-by-trial learning become smaller as 

training progresses. Additionally, the sign (positive or negative) of the error affects the 

directionality of the change in association. An outcome exceeding expectations results in a 

positive PE, leading to an increase in associative strength between cue and outcome. On the 

other hand, if an outcome is worse than expected, this causes a negative PE, resulting in a 

decrease in associative strength.  
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The blocking design best exemplifies the teaching role of PE in associative learning 

(Kamin, 1968, 1969). The blocking paradigm consists of two phases. During the first phase, a 

cue (A) is conditioned to predict an outcome (e.g., sugar pellets, footshock). During the 

second phase, A is presented simultaneously with a novel cue (X) and reinforced with the 

same outcome as during phase 1. To determine how much associative strength had accrued to 

the blocked cue X, a control group is trained identically to the blocking groups with the 

exception of no phase 1 pretraining. In a within subjects design this means that the control 

compound consists of two novel stimuli, B and Y, reinforced with the same outcome as that 

used for AX. On test, Y elicits a stronger conditioned response compared to X, suggesting 

that learning about the association between the former cue and the outcome is greater 

compared to learning about the latter. It is said that the pretrained cue A blocked learning 

about the X→outcome association because it already predicted outcome delivery. In other 

works, there was little or no error in prediction in the blocking (AX) group, hindering the 

establishment of an association between X and the outcome. On the other hand, neither B nor 

Y had previously been associated with reward, therefore prediction error was maximal on BY 

conditioning trials, resulting in learning the Y→outcome (and B→outcome) association. 

Learning about the blocked cue X can be restored, however, by increasing the prediction 

error by delivering an unexpected (e.g. larger) outcome during AX training.  

On the other hand, presenting a previously reinforced cue without reinforcement, 

generates a negative prediction error at the time of the outcome (Bouton & Bolles, 1979). 

Over multiple non-reinforced presentations of the cue, one can observe a continuous decline 

of the conditioned response (Rescorla & Wagner, 1972). This is called an extinction effect. A 

negative PE therefore results in a decline in associative strength, leading to reduction of the 

conditioned response.  
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These procedures provide insight into how alterations in environmental contingencies 

generate PEs and thereby influence learning and behavior. How the brain computes 

environmental input and regulates appropriate responses, however, cannot be understood 

from these studies. It is therefore crucial to investigate the neural mechanisms underlying the 

changes in behavior following errors in prediction.  

Phasic firing of VTA DA neurons tracks reward PE (RPE). 

Electrical stimulation of dopamine (DA) neurons in the ventral tegmental area (VTA) 

and substantia nigra pars compacta (SNc) has been found to reinforce behavior (Olds & 

Milner, 1954). Additionally, these neurons have been linked to tracking PEs in reward 

studies. Across species, VTA DA neurons show a bidirectional activity pattern that matches 

the sign of the PE signal (Eshel et al., 2016; Mirenowicz & Schultz, 1994; Pan et al., 2005). 

Electrophysiological studies have reported a brief phasic increase in firing rate at the time of 

an unexpected reward in accordance with a positive PE (Mirenowicz & Schultz, 1994; Waelti 

et al., 2001). As a result of pairings between the rewarding outcome and antecedent cue, the 

latter become reliable predictors of outcome delivery. In turn, the VTA DA neuron phasic 

activity shifts from the now well-predicted outcome to the cue that signals its delivery 

(Mirenowicz & Schultz, 1994; Waelti et al., 2001). When a negative PE is introduced by 

omitting an expected reward, the VTA DA neurons briefly cease their firing altogether 

(Schultz et al., 1997). While the magnitude of the neuronal responses change with in 

accordance with reward valence (e.g. probability (Fiorillo et al., 2003) and size (Bayer et al., 

2007)), the underlying bidirectional activity patterns remain the same.  

Waelti et al. (2001) demonstrated in their study, that the activity of individual 

dopamine neurons corresponds to the presence of prediction errors. They presented monkeys 

with two stimuli (A and B) during phase 1 of the blocking paradigm. However only A was 
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reinforced, leading to a conditioned response to A, but not B. During the blocking phase, A 

was presented together with X, and B with Y. Both compounds were reinforced equally. The 

researchers only observed an increase in dopamine firing at the time points that represented a 

PE. According to formal learning theories (Rescorla & Wagner, 1972; Sutton, 1988), these 

occur at the time of an unexpected outcome, like the reward following the presentation of 

BY. In addition, the PE backpropagates to the earliest reliable predictor, which was evidence 

in phasic firing of VTA DA neurons to the AX compound but not to the reward that followed 

this compound. On test, the researchers observed a phasic increase in dopamine activity at the 

onset of stimulus Y, but not to X. These patterns reflect the behavioral differences between 

blocked (X) and unblocked stimuli (Y). In addition, this non-reinforced test resulted in phasic 

VTA DA neuron firing inhibition at time of reward delivery following Y but not X, 

indicating that a reward was expected following Y but not X. The authors also conducted a 

reinforced test, which also revealed higher level of VTA DA phasic activity to reward 

delivery after the blocked stimulus X compared to Y. This suggests that receiving a reward 

was surprising following X, but not following Y.  Overall, VTA DA phasic activity tracked 

positive and negative reward PEs in a bidirectional manner and this activity predicted 

associative learning.  

Causal evidence for the role of VTA DA neuron activity in PE. 

PEs are critical to learning. To determine whether the RPE profile of VTA DA neuron 

firing has a causal role in associative learning, Steinberg et al. (2013) used optogenetics to 

artificially boost the VTA DA signal at time of the expected reward in a blocking design. As 

Waelti et. al. (2001) found, no PE occurs at the time of the US following presentation of AX 

(A - conditioned, X - novel) during a regular blocking experiment. In the Steinberg et. al. 

(2013) study, they hypothesized that if the dopamine transient signals a PE, activating 
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dopamine neurons during the US would artificially introduce a PE, preventing blocking of X. 

Indeed, animals responded more strongly to X if stimulation had occurred during its paired 

US. This suggests that stimulation of dopamine neurons mimics a positive PE. 

To fully link positive as well as negative PEs to the bidirectional dopamine activity, it 

needs to be causally shown that inhibition of dopamine activity results in the same changes in 

activity as a negative PEs. To test this, Chang et al. (2016) prevented the dopamine transient 

at the time of an unexpected additional reward during the blocking phase. They hypothesized 

that if inhibition of dopamine signals a negative PE, the blocking effect should remain intact, 

despite the additional reward. Their data showed comparable responding to the stimulus 

associated with the manipulated reward and a blocked control stimulus. This confirmed their 

hypothesis, suggesting the bidirectional dopamine activity does indeed represent bidirectional 

PEs. 

Even though the phasic increase in dopamine activity at the onset of a conditioned 

stimulus has been observed across the board by studies investigating midbrain dopamine 

activity, the actual function of that activity pattern has been debated. Two hypotheses could 

account for the cue evoked phasic DA activity. The temporal difference learning theory 

(Sutton, 1988) states that the current state of the animal (t) is compared with the previous 

state (t-1). Therefore, the onset of a cue would generate a prediction error. The second 

hypothesis suggests that phasic DA activity at cue onset signals the prediction of a future 

reward. To distinguish between these two options, Maes et. al. (2020) conducted a blocking 

experiment. They optogenetically shunted dopamine activity during cue onset of the blocking 

phase. The authors hypothesized that preventing the increase in dopamine activity at the 

onset of a conditioned stimulus during the compound phase will leave blocking intact if the 

phasic activity indeed signals a cue-evoked prediction error. If on the other hand the phasic 

DA activity signaled not a prediction error, but was simply predicting a future reward, 



6 
 

blocking would be disrupted, leading to learning about the novel stimulus (X). They indeed 

found that shunting dopamine activity in the VTA at the onset of a conditioned stimulus 

leaves the blocking effect intact. These data therefore provide causal evidence for the 

hypothesis that the dopamine transient at the onset of a conditioned stimulus serves as a 

temporal difference prediction error. 

Theory of opposing appetitive and aversive systems 

Temporal difference learning theory is not restricted to reward learning. In fact, it can 

be applied to learning about any predicted outcomes, as long as predictor and outcome are 

temporally related. This means that both appetitive and aversive outcomes should be able to 

be predicted by temporal difference PEs. However, it would be of importance for a biological 

system to be able to distinguish between aversive and appetitive outcomes. A theory was 

brought forward by Dickinson and Dearing (1979) on how this can be achieved. They 

proposed appetitive and aversive systems that are integrated with each other in an inhibitory 

manner. They suggested that the appetitive system would get activated by an attractive 

excitor like an unexpected reward or a stimulus predicting a reward. The aversive system on 

the other hand would get activated by an aversive excitor like an unexpected aversive event 

or a stimulus predicting such event. At the same time, the omission of an anticipated event 

would be expected to activate the opposing motivational system: Omission of a reward 

(frustration) would induce an aversive state, while omission of a shock (relief) would induce 

an appetitive state. Behavioral experiments, both Pavlovian and instrumental, support this 

opponent-state model. One example that has been successfully demonstrated is 

counterconditioning.  

During counterconditioning a stimulus is first conditioned to predict an appetitive 

outcome. Hereby, the conditioned stimulus becomes a conditioned excitor for the appetitive 
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system, eliciting an appetitive conditioned response such as salivating and swallowing 

(Konorski & Szwejkowska, 1956; Scavio, 1974), or entries into the food port (Nasser & 

McNally, 2012). In the next stage, the same stimulus then precedes an aversive outcome such 

as a footshock. Comparing the speed of acquisition of a conditioned fear response of this 

counterconditioned stimulus to a naïve stimulus that has only been paired with shock or a 

stimulus which was previously presented non-reinforced shows a retardation effect. Animals 

are slower to acquire the fear response to a cue that has been trained as a good predictor for 

reward. The same is observed when the stimulus is first trained to predict an aversive 

outcome, conditioned excitor of the aversive motivational state, before coming to predict an 

appetitive outcome. This retardation in the acquisition of a conditioned response supports the 

idea that the two opposing states are integrated in an inhibitory manner. A reward predicting 

stimulus would activate the appetitive system, preventing activation of the opposite, aversive 

system, and thereby preventing a defensive response appropriate for an aversive outcome. 

Similarly, a conditioned inhibitor of one motivational state serves as facilitator for the 

acquisition of a conditioned response representing the state of opposite valence, as seen in 

superconditioning (Dickinson, 1977; Nasser & McNally, 2012; Rescorla, 1981).  

Superconditioning occurs when a novel cue is presented in compound with a 

conditioned inhibitor (Rescorla, 1981) or a conditioned excitor of opposite valence 

(Dickinson, 1977), resulting in increased levels of the conditioned response. PE theory 

suggests that contrasting to a classical blocking design, learning to the novel cue is here 

extrapolated rather than blocked. When instead of receiving an anticipated reward (negative 

appetitive PE) an aversive outcome occurs (positive aversive PE), the two errors are added, 

leading to a larger PE. In their superconditioning experiment, Nasser and McNally (2012) 

trained rats to expect a food reward following a light cue. During the next stage of the 

experiment, the light was presented in compound with a novel tone cue and reinforced with 
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an aversive footshock. When the conditioned freezing response was evaluated to non-

reinforced presentations of the tone cue alone, elevated levels of freezing were observed as 

compared to a control group that had received fear conditioning to only the tone cue. 

While this behavioral evidence suggests an interaction between appetitive and 

aversive motivational states underlying learning, this does not discount the prediction error 

theory. Combining the two theories might be able to paint a completer and more accurate 

picture. Establishing a stimulus as conditioned excitor for the appetitive motivational system 

could lead to a positive, appetitive PE, while associating another stimulus with the aversive 

motivational system could result in a positive, aversive PE. Relating this to neural activity, 

neurons representing an appetitive motivational system would be expected to be phasically 

excited by a reward predicting stimulus, while neurons representing an aversive motivational 

system would be anticipated to be phasically excited by cues predicting aversive outcomes. 

Dopamine Activity During Aversion. 

Dopamine neurons have been studied extensively during reward learning, but less is 

known about their firing patterns during aversive learning. Investigating the dopaminergic 

response during aversive learning will provide us with necessary insight into whether the PE 

signal carried by VTA DA neurons is exclusive to reward or extends to the aversive domain. 

Midbrain DA neurons could only represent reward, but not aversion. Another option could be 

modulation to both reward and aversion in a valence independent manner. The third 

possibility would be a valence-based PE signal, with DA neurons representing reward and 

aversion with oppositely signed PEs.  

DA neurons only signal reward. A study by Fiorillo (2013) supports this single-dimension 

hypothesis. The author found that midbrain DA neurons were excited to a surprising juice 

reward and inhibited to omission of a predicted reward, in line with a RPE signal. However, 



9 
 

DA neurons showed no difference in modulation to delivery of aversive air puffs and a bitter 

solution compared to the omission of these aversive outcomes. Similarly, a second study 

(Mirenowicz & Schultz, 1996) found the majority of midbrain DA neurons did not respond to 

cues predicting aversive outcomes, while exhibiting phasic excitation to cues predicting 

appetitive outcomes. Low levels of activation to aversion predicting cues by a minority of 

neurons was attributed to generalization to appetitive stimuli. It needs to be noted that both 

studies used air puffs as the aversive outcome. An air puff might be considered less aversive 

than a footshock used by other studies, and therefore not elicit modulation in firing rates 

signaling an event of biological significance. 

DA neurons signal valence independent PEs. Guarraci & Kapp (1999) found the majority of 

recorded VTA dopamine neurons responded with a significantly higher firing rate at the onset 

of a stimulus that predicted a footshock compared to a non-reinforced stimulus. This suggests 

that DA neurons are modulated not only by reward predicting, but also by aversion predicting 

cues. A study by Joshua et al. (2008) compared activity patterns of dopamine neurons in the 

midbrain to unexpected aversive air puffs as well as omitted air puffs. They found the 

neurons seemed to be activated by both aversive and appetitive outcomes, even though the 

magnitude of excitation was larger for the food reward. At omission of both outcomes, 

dopamine neurons did not show a significant modulation. Similarly, Matsumoto and 

Hikosaka (2009b) reported that a large number of putative DA neurons recorded in the VTA 

and SNc responded similarly to reward and aversion. They found that the majority of 

recorded neurons were excited by both unexpected juice rewards and unexpected air puffs. In 

addition, DA neurons also exhibited phasic excitation at the onset of both reward and 

aversion predicting cues. Only the probability of receiving an outcome changed the 

magnitude in modulation. Additionally, studies have found an increase in DA release 

downstream from the VTA following both a water reward and an aversive foot shock (Sorg 
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& Kalivas, 1991; Young et al., 1993). The same was found to stimuli predicting appetitive 

and aversive outcomes. Using a microdialysis technique, extracellular levels of DA in the 

nucleus accumbens (NAcc) were found to be elevated to stimuli predicting a footshock 

(Young et al., 1993). These findings suggest that midbrain DA neurons signal PEs 

independent of valence. 

DA neurons represent valence-based PEs. The possibility that midbrain DA neurons signal 

signed PEs corresponding to valence has found most support. A study by Salinas-Hernandez 

et. al. (2018) conditioned mice to expect an aversive footshock following a 10 second 

auditory cue. They found that omission of the expected footshock during fear extinction 

elicited increased activity of dopamine neurons in the VTA, in line with a positive prediction 

error. In line with a negative PE, Ungless et al., (2004) observed inhibition of dopamine 

firing in response to an aversive tail pinch. A causal study in rats (Luo et al., 2018) found 

evidence that both inhibition at time of an aversive event and excitation at time of omission 

of the aversive event are required for learning. When optogenetically inhibiting VTA DA 

neurons at the time of an aversive footshock during fear learning, the researchers found 

increased fear response compared to a control group. Optogenetically shunting dopamine 

activity at the time of omission of an anticipated footshock, just like optogenetic activation at 

time of reward omission (Steinberg et al., 2013), in return led to retardation in extinction 

learning. This indicates the positive prediction error elicited by shock omission to be 

necessary for updating learned contingencies. 

Based on the contradicting findings of the field, as well as results from their own 

study, Mileykovskiy and Morales (2011) came to the conclusion that the phasic dopamine 

signal is more complicated than a simple excitation or inhibition at the cue onset. They found 

dopamine neurons fell into three different categories of activity patterns. Some only showed 

inhibition to an aversive stimulus. Others responded with a slight inhibition at the onset as 

https://www.zotero.org/google-docs/?Vg0UHV
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well as offset of the cue and return to baseline firing during the majority of the stimulus. A 

third group of neurons showed initial excitation, similar to the response to an appetitive 

stimulus. However, this brief excitation was directly followed by inhibition. They emphasize 

that all three types of responses always included inhibition at some time during the cue.  

 

Based on these prior findings, we wanted to investigate whether the midbrain DA 

signal to predictors of appetitive and aversive events, as well as to the omission of these 

events are in line with a valence-based PE signal. We therefore hypothesized that VTA DA 

neurons would show phasic excitation above baseline activity to appetitive excitors such as 

cues predicting reward, as well as the omission of an aversive outcome (footshock). At the 

same time, we hypothesized to find phasic inhibition to aversive excitors (e.g. aversion 

predicting stimulus or omission of a rewarding outcome). To achieve this, we recorded VTA 

DA neurons during a task in which two counterbalanced auditory stimuli were conditioned to 

either predict an appetitive outcome (sucrose pellets) or an aversive outcome (footshock). 

Following appetitive and aversive conditioning, we assessed phasic activity of VTA DA 

neurons during non-reinforced presentations of the two cues, as well as the time of outcome 

omission. Our goal was to determine how DA in the midbrain represents appetitive and 

aversive events relative to one another, and whether the activity patterns correspond with a 

valence-based PE signal. We predicted that the phasic activity at cue onset, which has 

previously been indicated to carry the error signal (Maes et al., 2020), provides information 

about stimulus identity. Additionally, we hypothesized that the phasic activity also contains 

valence information, and that omission of an anticipated outcome would be represented as the 

state of opposite valence. 
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Materials and Methods 

Subjects 

Seven male Long Evans rats were obtained from Charles River Laboratory at 3.5 

months of age, weighing 300-350g. Rats were double housed prior to surgery and single 

housed from the date of surgery and throughout the experiment in a standard clear cage 

(44.5cm x 25.8cm x 21.7cm; with beta chip bedding). The animal cages were located in a 

climate-controlled colony room and maintained on a 12h reverse light-dark cycle (lights off 

at 9am). Food and water were available ad libitum prior to surgery and during recovery. 

Thereafter, the rats were food restricted to 85% of their preoperative weight. All experimental 

procedures took place during the dark cycle and were in accordance with the approval 

granted by the Canadian Council on Animal Care and the Concordia University Animal 

Research Ethics Committee. 

Surgical Procedure 

All rats underwent surgery to implant a chronic electrode array consisting of 16 

tetrodes (four 20µm tungsten wires spun together; California Fine Wire, Grover Beach, CA). 

Prior to surgery, the tetrode tips were electroplated with gold (Neuralynx, Bozeman, MT) at 

1kHz to lower the impedance to 60kΩ using the nanoZ multi-electrode impedance tester 

(White Matter LLC., Seattle, WA) controlled by a computer (Windows OS) running the 

nanoZ software (nanoZ 1.4). The custom designed implant was configured so that 8 

electrodes would reach the ventral tegmental area (VTA) at a 10 degree angle (see below for 

details), and the other 8 the nucleus accumbens (NAcc; data not included). During surgery, 

all animals were anesthetized with Isoflurane gas (1-2.5% in O2), hair removed and placed in 

a stereotactic frame (David Kopf Instruments, Tujunga, CA). Before making the incision, 

animals were injected subcutaneously with 10mg/kg Rimadyl (Pfizer, Kirkland QC, 
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50mg/ml) as an analgesic. To target the VTA a craniotomy was created at 5.84 mm posterior 

and 2.1 mm lateral of bregma, and dura was completely removed. Upon placement of the 

electrode array, one drop of sterile 0.5% sodium alginate solution was combined with two 

drops of sterile 10% calcium chloride solution at the craniotomy to form a gelatinous seal. 

Electrodes were slowly lowered to 5.8mm DV. Eight stainless steel screws placed on the top 

and on the sides of the skull and dental cement secured the electrode array to the skull.  

The rats were allowed to recover for 7 days during which they were handled, 

weighed, and received a 1ml oral dose of Cephalexin daily. 

Electrode turning 

In the days following the surgery, all tetrodes were slowly lowered 6.9mm DV. Upon 

the start of behavioral training, the electrodes were advanced 40-80µm every other day after 

the session. Tetrode locations were confirmed post-mortem. 

Behavioral Apparatus 

Behavioral procedures were conducted in four operant-training chambers (Med 

Associates, St. Albans, VT, USA). Each chamber measured 31.8 cm in height, 26.7 cm in 

depth and 25.4 cm in width. The modular left and right walls were made of aluminum, and 

the back wall, front door, and ceiling were made of clear Perspex. Their floors consisted of 

stainless-steel rods, 4 mm in diameter, spaced 15 mm apart, center to center, with a tray 

below the floor. A metal mesh and a metal door were attached to the outside of the behavioral 

chamber to form a Faraday cage in order to reduce electrical noise during recordings. Two 

auditory stimuli (see below) were delivered via two speakers mounted on opposite sides on 

the outside of the behavioral chamber. Food reward (see below) was delivered into a 

magazine. The magazine was equipped with an infrared sensor to detect head entries. Each 

chamber was enclosed in a ventilated cabinet, lined with sound-proofing foam. Illumination 

of the cabinet was achieved by an infrared light mounted at the back of the cabinet. Below 
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the light, a camera was mounted which was connected to a monitor located in another room 

of the laboratory where the behavior of each rat was observed by an experimenter. Delivery 

of stimuli and reinforcement was controlled by Med Associates software (Version 4.2) on a 

computer located outside the experimental room. Behavioral chamber, grid floor and tray 

were cleaned with water after each animal. 

Stimuli 

Two 10 sec long auditory stimuli, a 1kHz tone at 73dB and white noise at 75dB 

(measured inside the chamber) were generated by the Med Associates software and delivered 

via two speakers mounted on opposite sides on the outside of the behavioral chamber. Each 

auditory stimulus was reinforced by either two chocolate flavored sucrose pellets (Product# 

F07256, Bio-Serv, Flemington, NJ) delivered into the magazine, or a mild foot shock 

(0.5mA) delivered through the grid floor. Stimulus-reinforcement combinations were 

counterbalanced between animals. 

Behavioral Procedures 

One day prior to the start of behavioral training, animals received 20 chocolate-

flavored sucrose pellets in their home cage in order to reduce neophobia.  

Magazine training. All rats received magazine training in the behavioural chambers. 

Each session lasted 40min and consisted of one pellet delivery every 60s (40 pellets in total). 

No other stimuli were presented during this session. The animals had to consume 20 or more 

pellets to advance to Phase 1 – Appetitive Conditioning.  

Phase 1 - Appetitive conditioning. All rats received Pavlovian conditioning for eight 

consecutive days between one of the auditory cues (tone or white noise; counterbalanced) and 

two sucrose pellets in the behavioural chambers. The session lasted 65min, and consisted of 

16 conditioning trials, 3.5min apart on average (range: 180s-240s). Five minutes following 

placement in the chamber (acclimation), the first conditioning trial began, and five min 
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following the last conditioning trial the animals were removed from the chambers. Each 

conditioning trial consisted of a 10s auditory cue (A) followed by the delivery of 2 sucrose 

pellets at 9.5s and 10.5s after cue onset. 

Phase 2 Appetitive and Aversive (fear) conditioning. On days 8-12, rats received 

appetitive (as described above) and aversive (fear) conditioning. The session lasted 75-80 

min and consisted of 16 appetitive and 4 aversive conditioning trials on average 3.5 min apart 

(range: 180-240sec). Five minutes following placement in the chamber (acclimation), the first 

conditioning trial began, and five minutes following the last conditioning trial the animal 

were removed from the chambers. Appetitive and aversive trials were presented in a pseudo-

randomized order, which assured the occurrence of 1 aversive trial for 5 appetitive trials and 

prevented the clustering of all aversive trials. Aversive trials consisted of a 10sec novel 

auditory cue B (tone of white noise; counterbalanced) followed by a 0.5 sec long, 0.5mA foot 

shock at 9.5 sec after cue onset.  

 

Test. On Day 13 all rats received a Test session, which consisted of four reminder 

trials (three appetitive and one aversive, in the order AABA) followed by 16 non-reinforced 

test trials. During the non-reinforced test trials each cue was presented alone in the absence of 

its associated outcome 8 times in a pseudo-randomized order (ABBABAAB etc.). The 

acclimation and cool-down period, total number of trials, and the ITI were identical to Phase 

2 above. 

The 5-day period of Phase 2 and Test was repeated 1-4 times per rat. For each 

repetition, the stimulus-outcome pairings remained consistent within animal. Only neuronal 

activity recorded during Test was analyzed. 
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Single-Unit Recordings 

Extracellular in-vivo recordings were conducted using a custom-built electrode array. 

The array contained a total of 16 tetrodes (four 20µm tungsten wires spun together; 

California Fine Wire, Grover Beach, CA). Two individually drivable bundles containing 8 

tetrodes each were located to reach the VTA and NAcc. The neuronal signals and their 

timestamps were amplified and digitized at the headstage and recorded at 25kHz using an 

eCube recording system (White Matter LLC, Seattle, WA). Real-time neural activity was 

monitored by the experimenter on a computer outside the behavior room using Open Ephys 

software (Siegle et al., 2017). 

Spike Sorting 

The continuous recorded signal was sorted offline into single units using the 

automated clustering framework Kilsort (https://github.com/cortex-lab/KiloSort; Pachitariu et 

al., 2016) in Matlab2016b (MathWorks Inc.). All clusters identified by the Kilosort algorithm 

were manually identified as single units using the Phy GUI-template (Rossant et al., 2016) 

and the following criteria: Single units had to be well isolated from the noise floor (amplitude 

of detected spikes formed at least 90% of a normal distribution) and had to produce an 

autocorrelation in accordance with an inter-spike interval. Only clusters that met all 

mentioned criteria were used in subsequent analyses. 

Post-mortem Histology 

After completing the experiment, all rats received a lethal dose of sodium 

pentobarbital diluted 1:1 with 0.9% sodium chloride (1ml). Rats were then perfused using 

200 ml of 0.9% sodium chloride solution and 150ml of 4% paraformaldehyde solution. Two 

hours after perfusion, the electrodes were retracted from their final recording location and the 

brains removed. Sequential, coronal sections of the VTA region were collected and stained 

https://github.com/cortex-lab/KiloSort
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with cresyl violet. The final location of the electrode tips was determined under a microscope 

using the boundaries defined by the rat brain atlas (Paxinos & Watson, 2006) 

Quantification 

Behavioural data: Conditioned responding was measured by the number of head 

entries made into the magazine during the 9.5 sec of the cue preceding reward delivery. 

Percent time spent in the magazine was calculated for each trial for each phase of the 

experiment. Response ratio was calculated by comparing responding during the cue to 

baseline, which was defined as the average responding across all trials during the 60s period 

preceding cue onset (CS/(CS+ITI)). 

Neural data: All neuronal data were analyzed using Matlab (MathWorks Inc.). 

Dopamine neurons were identified by analyzing the neuronal waveforms as done previously 

(Roesch et al., 2007; Takahashi et al., 2011, 2017). Neurons were clustered according to their 

amplitude ratio (amplitude of first negative and first positive segment) and half duration (time 

from trough to second peak). Neurons that fell within 2SD of the cluster with smaller 

amplitude ratio and longer half duration were considered dopaminergic. Neurons that fell 

within 2SD of both clusters were not considered. Firing rate of these neurons was normalized 

to a 10 sec baseline period (-20 to -10 sec before cue onset). Baseline firing was first 

averaged across trials for each 100ms bin and then a mean and SD was calculated across the 

100 bins.  

Behavioral analyses and statistical tests 

Repeated measures ANOVAs were used to analyze changes in behavior across days 

during Phase 1, as well as across days and between stimuli for Phase 2. A paired t-test was 

performed to compare responding between the two stimuli during the Test session.  
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Neural analyses and statistical tests 

Firing rate analysis: In order to normalize firing rates, the pre-cue period (-10 to 0 

sec) was divided into 100ms bins, and each bin normalized to the baseline values 

[(pre_cue_bin - baseline_mean)/baseline_SD]. The same was done for the cue (0-10sec) and 

outcome period (10-15sec). 

Cumulative sum: To identify periods of excitation and inhibition for individual 

dopamine neurons a cumulative sum analysis was used (cumsum). For this, the number of 

spikes that occurred during 100ms bins were added to the sum of spikes of all previous bins 

across the cue period (0-10sec). Therefore, the change in cumulative sum (slope) from one 

epoch to the next was steep when the FR during an epoch was high and flat when no spikes 

occurred during an epoch. In addition, the cumulative sum of the pre-cue period (-10 to 0 sec) 

was calculated and bootstrapped 200 times. A 99% confidence interval (CI) was calculated 

for each time step of the bootstrapped pre-cue period and the slope of the cue period 

compared to the change in lower and upper bounds of the CI. If the cue slope was shallower 

than the slope of the lower bound of the CI for at least three consecutive 100ms bins, the 

neuron was considered inhibited for this period, if the cue slope was steeper than the slope of 

the upper bound for at least three consecutive 100ms bins, the period was considered excited.  

Cue decoder models: For each of 1,000 permutations, a random subset of 40 

dopamine neurons was selected. For each of the one hundred 100ms epochs of the 10 sec cue 

the following was performed: A principal component analysis (PCA) was conducted on the 

FR during the epoch for the subset of randomly selected neurons. The mean-centered FR of 

the cue epoch was mapped on the coefficients of the top 8 principal components (PCs). An 

Elastic Net regularized logistic generalized linear model (GLM; lassoglm) and a linear 

discriminant analysis (LDA; fitcdiscr) were then used to decode stimulus type. Maximum-

likelihood for the GLM was determined as follows: 
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, 

where 

 

with α = 0.5. 

•  is the number of observations 

•  is the intercept 

•  are the predictor coefficients 

•  is the nonnegative regularization parameter 

•  is the penalty term 

 

 

Discriminant classification of the LDA was determined as follows: 

 

 where 

•  is the predicted classification. 

•  is the number of classes. 

•  is the posterior probability of class k of observation x. 

•  is the cost of classifying an observation as y when its true class is k. 

 

The GLM and LDA models were trained on 50% (8 out of 16 test trials) of trials using k-fold 

cross-validation. The algorithm trained on data from 7 trials and validated on the 8th trial. 

https://www.codecogs.com/eqnedit.php?latex=%5Cmin_%7B%5Cbeta_0%20%2C%5Cbeta%7D%20%5Cleft(%20%5Cfrac%7B1%7D%7BN%7D%7BDeviance%7D%20(%5Cbeta_0%2C%5Cbeta)%20%2B%20%5Clambda%20P_%5Calpha%20(%5Cbeta)%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=P_%5Calpha%20(%5Cbeta)%20%3D%20%5Cfrac%7B(1-%5Calpha)%7D%7B2%7D%20%7C%7C%5Cbeta%7C%7C_2%5E2%20%2B%20%5Calpha%20%7C%7C%5Cbeta%7C%7C_1%20%3D%20%5Csum_%7Bj%3D1%7D%5Ep%20%5Cleft(%20%5Cfrac%7B(1-%5Calpha)%7D%7B2%7D%20%5Cbeta%5E2_j%20%2B%20%5Calpha%7C%5Cbeta_j%7C%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_0#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=P_%5Calpha(%5Cbeta)#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7By%7D%20%3D%20%5Carg%5Cmin_%7By%3D1%2C...%2CK%7D%20%5Csum_%7Bk%3D1%7D%5EK%20%5Chat%7BP%7D(k%7Cx)C(y%7Ck)#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7By%7D#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BP%7D(k%7Cx)#0
https://www.codecogs.com/eqnedit.php?latex=C(y%7Ck)#0
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This was repeated until each trial had been used for validation once (8-fold cross-validation), 

optimizing the β weights. Performance of the model was then tested on the held-out data and 

evaluated by calculating the percent of trials that were classified correctly. In addition, the 

models were compared to random validation models (see “Validation Models”) to identify 

periods where model performance was better or worse than the random model.  

Cross-temporal/outcome decoder: Permutations, selection of 40 neurons and PCA 

were conducted as for the cue decoder. An Elastic Net regularized classifier model (GLM; 

lassoglm) and a linear discriminant analysis (LDA; fitcdiscr) were used to predict stimulus 

type from neural activity during the outcome omission period. Maximum likelihood and 

discriminant classification were determined as in the cue decoder. The GLM and LDA 

outcome decoder models were trained on the FR of all 16 trials during the 500ms period of 

outcome omission and cross-validated 16 times. Performance of the model was tested on one 

hundred 100ms epochs of firing during the cue period and evaluated by comparing to a 

random validation model (see below). 

Validation Models: To validate the performance of both cue and outcome decoders, 

the trained models were tested on 16 trials from epochs of the 10 seconds preceding cue 

onset. An average 95% CI was calculated across the 10 sec period. If the average cue or 

outcome decoder accuracy of a 100ms epoch fell above the upper bound of the CI, decoder 

performance was determined to be better than a random model. If the average accuracy fell 

below the lower bound of the CI, model performance was considered worse than a random 

model. 

By-neuron GLM & identification of distinct decoding populations: To receive 

accuracy values for individual neurons, we trained an Elastic Net regularized GLM on 

outcome omission activity of each neuron and tested the model on activity from cue epochs 

of the same neuron. This was repeated for each neuron. Additionally, model performance was 
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validated by testing the model on randomized activity during the 10 sec pre-cue period. An 

average 95% CI was calculated for each neuron’s validation model. Accuracy was then 

compared to the CI of the validation model. Neurons that performed better than the validation 

model (accuracy > upper CI bound) for at least one epoch between 300-800ms after cue onset 

were assigned to the population “Better”. Neurons that had accuracy values below the CI for 

at least 100ms during the cue onset period were assigned to the population “Worse”. To 

compare cue to outcome omission activity of the two populations, the inverse averaged FR of 

A and B trials was calculated. For this, the FR to B trials of each neuron was multiplied by -1 

(inversed), added to the FR to A trials of that neuron and divided by 2 (averaged). This was 

done for both periods of cue and outcome omission and lead to one modulation value per 

neuron and time period. 

Statistical tests: A two-sample t-test was conducted to identify the neurons with a 

significantly longer spike duration and smaller amplitude ratio (dopamine neurons; see 

“Neural Data”). A Spearman correlation was used to compare normalized firing rates (FRs), 

as well as the inversed average FRs of “Better” and “Worse” populations (see above) 

between cue and outcome omission periods. To compare the distribution of FRs between 

stimuli, as well as the duration of excitatory and inhibitory periods (see “Cumulative sum”) a 

two-sample Kolmogorov-Smirnoff (KS) test was used. A Cox regression was utilized to 

compare differences in timing of events (time of maximum/minimum FR & onset of 

excitation/inhibition) between trial types. To compare the distribution of FRs to A and B 

stimuli to baseline firing and to each other, a Mann-Whitney U test was used.  
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Results 

Behavioural analyses 

Phase 1 - Appetitive conditioning. Rats were conditioned to associate an auditory cue 

(A) with the delivery of two sucrose pellets over 8 days (n = 7). The conditioned response 

was measured as response ratio which compared the number of times an animal entered the 

magazine during cue presentation (0-9.5 sec) to the number of magazine entries during an ITI 

period (1 min before cue onset). Behavioural data from this phase are presented in Figure 1b. 

The repeated measures ANOVA revealed a significant linear trend (F(7,21) = 3.99, p = .006) 

with the response ratio increasing across training days. Increased response ratios suggest 

reward anticipatory behavior, indicating the successful acquisition of an association between 

the cue (conditioned stimulus [CS]) and outcome (unconditioned stimulus [US]). 

Phase 2 – Appetitive & Aversive conditioning. During Phase 2, cue A continued to be 

reinforced with sucrose pellets. In addition, a novel auditory cue (B) was presented and 

reinforced with a footshock. The response ratio was calculated comparing the number of 

magazine entries during the cue to the average magazine entries during the inter-trial 

intervals (ITI). The animals were readily able to distinguish between the two cues (Fig. 1c). 

A repeated measures ANOVA revealed a main effect of cue (F(1,19) = 438.28, p < .001), no 

effect of days (F(3,57) = 0.67, p = .573) and no cue x day interaction (F(3,57) = 1.60, p = .199). 

Test. During Test sessions, the two cues were presented without reinforcement. Figure 

1d shows the average response ratio to the two cues during Test. All animals were able to 

differentiate between the two cues seen in the lower response ratio to the cue predicting the 

aversive footshock compared to the cue predicting the sucrose pellets (paired t-test; t(18) = 

20.44, p < .001). In addition, the response ratio to cue A significantly exceeded 0.5 (paired t-

test: t(18) = 7.51, p < .001), indicating reward expectant behavior. The response ratio to the B 
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cue on the other hand fell significantly below 0.5 (paired t-test: t(18) = -41.65, p < .001), 

indicating suppression of ongoing behavior. 

 

 

 

 

Figure 1: Conditioning paradigm and changes in conditioned response across experimental phases. 

Response ratio is calculated as the average percent of time spent in the magazine during the cue (0-9.5 

sec) for each trial compared to the %time in the magazine during 1 min of ITI averaged over all trials 

of the session. a Schematic displaying the three phases of the conditioning paradigm. b Change in 

conditioned response across conditioning days during appetitive conditioning. Line displays response 

rate to cue A across conditioning days (mean ± SEM). Repeated measures ANOVA: F(7,21) = 3.99, p = 

.006. c Response ratio to cues A (teal) and B (magenta) across days of appetitive and aversive 

conditioning. Lines display average response rate to cues A and B (mean ± SEM). Repeated measures 

ANOVA: cues: F(1,19) = 438.28, p < .001; days:  F(3,57) = 0.67, p = .573; days x cues: F(3,57) = 1.6, p = 

.199. d Average response rate to cue predicting reward (A; teal) and cue predicting shock (B; 

magenta) during Test sessions. Bar plots display the mean ± SEM. paired t-test; t(18) = 20.44, p < .001. 
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Neural Analyses 

All analyses were done on neural data collected during the Test session. 

Identification of Dopamine Neurons. Dopamine neurons show characteristically wide 

waveforms. We utilized a waveform analysis (Takahashi et al., 2017) to identify putative 

dopamine neurons from VTA neurons recorded during the Test session. Out of 189 recorded 

VTA neurons, the cluster analysis identified 69 putative dopamine neurons (Fig. 2b). These 

neurons displayed a significantly smaller amplitude ratio and longer spike duration (Two-

sample t-test; amplitude ratio: t181 = -14.35, p < .001; spike duration: t181 = 16.53, p < .001). 

Reward Prediction Error (RPE) in VTA dopamine neurons. As a first step we 

analyzed the firing patterns of the putative dopamine neurons to the reward predicting trials. 

We observed the well-documented RPE signal: Phasic excitation at cue A onset (median = 

1.61; Mann-Whitney-U test: U = 5.46, p < .001), phasic inhibition at reward omission (Fig. 

3a; median = -0.54; Mann-Whitney-U test: U = -4.31, p < .001) and a negative correlation 

between these epochs (Fig. 3b; Spearman correlation: r = -0.49, p < .001). The higher the FR 

at cue onset, the lower the FR at US omission, suggesting the presence of a reward prediction 

error and confirming findings of previous studies (Matsumoto et al., 2016; Schultz et al., 

1997; Takahashi et al., 2011). The inverse of the RPE signal observed to the A cue was not 

observed to cue B. At the onset of the B cue, we observed phasic excitation of average 

population firing above baseline activity (median = 1.21; Mann-Whitney-U test: U = 5.90, p 

< .001), while average activity at shock omission was not significantly different from 

baseline (median = 0.13; Mann-Whitney-U test: U = 1.22, p = 0.221). A comparison between 

cue B onset and shock omission revealed no correlation (Fig. 3d; Spearman correlation: r = 

0.10, p = .422). These results confirm a well-established RPE signal but show that an 

aversive PE (APE) is not immediately clear.  



25 
 

 

 

Figure 2: Classification of VTA neurons based on waveform characteristics. a Schematic of a 

waveform. Amplitude values of the first positive (fp) and first negative (fn) segments are used to 

calculate the amplitude ratio. Half duration (d) describes the time between fn and second positive 

segment (sp). b Cluster analysis was conducted using the two waveform characteristics amplitude 

ratio and half duration to classify dopamine (red) and non-dopamine (blue) neurons. Only neurons 

within 2 s.d. of one cluster’s centroid were considered as classified. Neurons that fell within 2 s.d. of 

both clusters or were more than 2 s.d. away from at least one centroid were not considered and are 

displayed as open circles. 
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Figure 3: Comparison of firing rates to cues A and B. a 3D heatmap of average normalized FR to cue 

A across trials. Time axis is aligned to cue onset, with a 5 sec pre-cue period being displayed. Cue 

presentation ranges from 0-10 sec, followed by the outcome omission period. FR is normalized using 

a z-score based on the distribution of inter-trial interval activity. b Correlation of DA activity 

comparing reward predicting cue A (0-500ms) to time of reward omission. (Spearman correlation: r = 

-0.49, p < .001) c 3D heatmap of average normalized FR to cue B across trials. FR is normalized to 

activity from the inter-trial interval. The cue period ranges from 0-10 sec, followed by the outcome 

omission period. d Correlation of DA activity comparing shock predicting cue B (0-500ms) to time of 

shock omission (Spearman correlation: r = 0.10, p = .422). 
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Magnitude, duration, and timing of modulation do not differ between cues. To 

understand whether and how cues predicting appetitive and aversive events are distinguished 

by midbrain DA neurons, we compared neural activity between cues A and B on a population 

and single neuron level. A two-sample Kolmogorov-Smirnoff test revealed that while the 

distributions of normalized firing rates differ significantly between reward omission and 

shock omission (Fig. 4b; two-sample KS test: k = 0.33, p = .001), there is no difference 

between dopamine activity at the onset of A compared to B (Fig. 4a; two-sample KS test: k = 

0.13, p = .55) on a population level. Even though the average population activity does not 

seem to differ between A and B, individual neurons could still differentiate between the cues. 

We therefore calculated the absolute difference in normalized FR between A and B trials for 

individual neurons across baseline, cue, and outcome omission periods, we observed that 

neurons respond most differently during the first second of cue presentation and the first 

500ms of outcome omission (Fig. 4d).  

We examined the magnitude, duration, or timing of normalized FR to A and B in 

order to determine whether these modalities of DA activity could underly the animals’ ability 

to discriminate between cues of opposite valance. For this, we first identified the maximum 

and minimum normalized FR for each neuron throughout the 10 sec of cue presentation. 

Analysis of the empirical cumulative density function (eCDF) showed no significant 

difference in distribution of maximum (Fig. 5a; Two-sample KS test: k = 0.13, p = .57) and 

minimum (Fig. 5b; Two-sample KS test: k = 0.09, p = .95) normalized FR between the two 

cues. In addition, we identified the exact time at which maximum and minimum firing 

occurred. A Cox regression determined that the majority of DA neurons were maximally 

modulated during the first second of cue presentation. However, there was no significant 

difference in timing of maximum (Fig. 5c; Cox regression: eb = 1.00, p = .18) or minimum 

FR (Fig. 5c; Cox regression: eb = 1.00, p = .90) between A and B trials. 
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Figure 4: Comparison of firing rates to reward and shock predicting cues. a Empirical cumulative 

density function (eCDF) of the average normalized FR to the onset (0-500ms) of reward predicting 

cue A (teal) and shock predicting cue B (magenta). Two-sample KS test: k = 0.13, p = .550. b eCDF 

of the average normalized FR to A (teal) and B (magenta) at time of outcome omission. Two-sample 

KS test: k = 0.33, p = .001. c Peristimulus time histogram of population normalized FR throughout 

baseline, cue and outcome omission periods (mean ± SEM). cue onset and offset are displayed as 

vertical, black lines at 0 and 10 sec. d By-neuron absolute difference in normalized FR throughout 

baseline and cue period (mean ± SEM). Period of outcome omission is aligned to time of expected 

outcome offset.  
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Figure 5: Magnitude and timing of maximal modulation during A (teal) and B (magenta) trials. a 

Distribution of maximum FR observed during cue presentations. Two-sample KS test: k = 0.13, p = 

.57. b Distribution of minimum FR observed during cue presentations. Two-sample KS test: k = 0.09, 

p = .95. c Time during cue presentation at which maximum FR was observed as function of 

proportion of DA neurons. Cox regression: eb = 1.00, p = .18. d Time at which minimum FR was 

observed during cue presentation as function of proportion of DA neurons. Cox regression: eb = 1.00, 

p = .90. 
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Next, we identified periods during which dopamine activity was significantly 

modulated above or below baseline. Using the cumulative sum of FRs to each cue and 

baseline period (see Methods), we determined periods of excitation and inhibition for each  

neuron. Adding all periods that were identified in such a way, we calculated the overall 

duration of excitation and inhibition by neuron. Comparing the total duration of significant 

modulation between reward- and shock-predicting cues, we found no difference between the 

two cues for either duration of excitation (Fig. 6a; two-sample KS test: k = 0.19, p = .15) or 

inhibition (Fig. 6b; two-sample KS test: k = 0.16, p = .32). Most dopamine neurons that 

showed excitation at some point during the presentation of the reward- or shock-predicting 

cue, were first excited during the first half of the cue presentation. The Cox regression 

revealed that the onset of excitation occurred at similar times to A as to B (Fig. 6c; eb = 1.00, 

p = .90). The same was true for periods of inhibition. The majority of dopamine neurons 

showing inhibition were inhibited during the first half of cue presentation, for A and B (Fig. 

6d; Cox regression: eb = 1.02, p = .60). 

 These data suggest that modulation occurs early during both cues. However, neither 

magnitude nor timing of maximal modulation of DA firing underlie the distinction of reward 

and aversion predicting cues. In addition, total duration and onset of significant modulation 

does not differ between A and B.   
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Figure 6: Duration and onset of significant excitatory and inhibitory periods to cue A (teal) and B 

(magenta). a eCDF of the total duration of excitation throughout the cue period in seconds. Two-

sample KS test: k = 0.19, p = .15. b eCDF of the total duration of inhibition throughout the cue period 

in seconds. Two-sample KS test: k = 0.16, p = .32. c Onset of excitation across the cue period as a 

function of proportion of DA neurons. Cox regression: eb = 1.00, p = .90. d Onset of inhibition across 

cue periods as a function of proportion of DA neurons. Cox regression: eb = 1.02, p = .60. 
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Dopamine neurons can be divided into subpopulations based on activity patterns. 

Next, we identified the overall proportion of neurons that were phasically modulated to A and 

B. Neurons were segregated according to their responses to at onset of A and B, which 

showed that within the DA population, 45% of neurons only showed excitation during the 

start of A trials., 28% showed only inhibition, and 16% were both exited and inhibited, and 

12% were not modulated. By comparison, 35% of neurons were phasically excited, 33% 

inhibited, 13% were both excited and inhibited, and 19% were not modulated by B 

(Supplemental Fig. 1a; Chi-square test of independence: X2 = 2.66, p = .457). Next, we 

focused on the neurons that showed one type of modulation (excitation or inhibition, but not 

both)  and examined whether and how many of these neurons displayed the same or opposing 

activity patterns during the start of A and B. Out of 69 dopamine neurons, 12 were 

significantly excited, 3 neurons were significantly inhibited to both A and B, 9 were  excited 

to A and inhibited to B, and 7 were inhibited to A and excited to B. That is, 21% of neurons 

were modulated in the same direction, and 23% in the opposing direction to A and B 

(Supplemental Fig. 1b; Fisher’s exact test: Odds Ratio = 0.57, 95% CI [0.115, 2.845], p = 

.697). Neurons that fall into the second group, exhibiting excitation to one cue and inhibition 

to the cue of opposite valence, fit with the integrated appetitive-aversive systems model.  

Cue activity accurately represents cue identity. To determine whether midbrain 

dopamine neurons discriminate between appetitive and aversive events at the pseudo 

ensemble level, we used two classification algorithms, a logistic generalized linear model 

(GLM) and a linear discriminant analysis (LDA). We used a principal component analysis 

(PCA) on the FR segregated into 100ms epochs throughout A and B (Supplemental Fig. 2a). 

The GLM and LDA models were trained on 50% of A and B trials of one 100ms epoch and 

tested on the remaining left-out trials from the same epoch (see Methods for details). This 

was done for every epoch throughout the 10sec of cue presentation. A random model was 
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created by using the same analyses on shuffled baseline data. Cue identity was best decoded 

at cue onset (Fig. 7a&c). During the first second of cue presentation, more than 80% of trials 

were correctly classified by both GLM and LDA models (μ̂decoder > μ̂ random ± 95% CI; GLM: 

avg. 95% CI: [0.319; 0.703]; Accuracymin >CI = 0.706; LDA: avg. 95% CI: [0.290; 0.719]; 

Accuracymin >CI = 0.726; no epochs fell below the lower CI bound of the respective model). 

Decoding accuracy at later time points during the cue period was similar to the random model 

and did not exceed the 95% CI. The confusion matrixes show that this effect is not driven by 

one particular trial type. Analyzing the average classification accuracy of the models during 

the first second of cue presentation, we saw that 82% of A trials are correctly classified as the 

reward predicting cue by the GLM, with 18% misclassified trials. Similarly, 92% of trials 

predicting shock were correctly identified as B trials, with only 8% misclassification rate 

(Fig. 7b). The LDA achieved 78% correct classification of reward predicting trials during the 

first second of cue presentation, while shock predicting trials were 80% correctly classified. 

Only 22% of A trials and 20% of B trials were misclassified by the LDA (Fig. 7d). These 

data suggest that information about cue identity is contained primarily in DA activity at cue 

onset, corresponding with phasic activity patterns. However, it does not provide information 

about whether this phasic activity represents valence. 

Activity at outcome omission misclassifies cue activity as events of opposite valence. 

To identify whether information about valence is coded by midbrain DA neurons at the time 

of outcome omission, we conducted a cross-temporal analysis, comparing FRs at time of 

outcome omission to activity throughout the cue period. We conducted a PCA on the period 

of reward and shock omission (Supplemental Fig. 2b) and trained the GLM and LDA models 

on FRs from the same period. The two models were then tested on activity from 100ms 

epochs throughout the cue period. Surprisingly, decoder performance of both GLM and LDA 

models was significantly worse than the random model at the start of the cue (μ̂decoder < μ̂random 
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± 95% CI). Following this initial period, decoder performance flipped and exhibited periods 

of significantly better performance than the random model, which disappeared towards the 

latter half of cue presentation (Fig. 7e&g; μ̂ decoder < μ̂random ± 95% CI; GLM: 95% CI: [0.304; 

0.726]; Accuracymin <CI = 0.202; Accuracymin >CI = 0.743; LDA: 95% CI: [0.307; 0.731]; 

Accuracymin <CI = 0.232; Accuracymin >CI = 0.793). By analyzing the average accuracy of the 

outcome decoders during the first 500ms of cue presentation, we observed that 71% of A 

trials and 72% of B trials were misclassified by the GLM decoder during the first 500ms of 

the cues. Only 29% of reward predicting and 28% of shock predicting trials were accurately 

classified as such by activity from US omission. Similarly, 68% of A trials and 71% of B 

trials were misclassified by the LDA model, while only 32% of reward predicting and 29% of 

shock predicting trials were correctly identified as such during at the start of cue presentation 

(Fig. 7f&h). It appears as if opposite information is contained in DA activity during the first 

500ms of reward and shock predicting cues compared to reward and shock omission.  

This suggests that on a population level, valence information about a predicted event 

is represented by phasic DA firing at cue onset, and omission of this outcome is represented 

as event of opposite valence. However, the reason for the switch in accurate decoding, 

leading to better performance compared to a random model remains unclear. Based on 

extensive research into the role of VTA DA in associative learning (Cohen et al., 2012; 

Tobler et al., 2005; Wang & Tsien, 2011), one possible explanation could be that there exists 

a valance prediction error signal represented by a signed change in phasic firing at cue onset, 

followed by an unsigned prediction signal (see Maes et al., 2020). Therefore, we examined 

whether this bimodal signal seen in the population is represented in individual neurons, or in 

different neurons resulting in two distinct populations.  
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Figure 7: Dopamine neurons decode cue identity from firing during the cue and at outcome omission. 

a Generalized linear model (GLM) decoding cue identity from cue firing, comparing model 

performance to a random model (95% CI: [0.319; 0.703]; Accuracymin >CI = 0.706). b Confusion 

matrix of GLM cue decoder indicating percent of correctly and incorrectly classified A and B trials 

based on decoder accuracy of epochs between 0-1sec. c Linear discriminant analysis (LDA) decoding 

cue identity from cue firing. Cue decoder accuracy exceeds that of a random model at cue onset (95% 

CI: [0.290; 0.719]; Accuracymin >CI = 0.726). d Confusion matrix of cue decoder LDA indicating 

percent of correctly and incorrectly classified A and B trials based on average decoding accuracy of 

the epochs between 0-1 sec. (Figure legend continues on the next page)  
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(Continuing legend; Figure 7) e GLM outcome decoder accuracy when model trained on outcome 

omission FR is tested across cue epoch FR (95% CI: [0.304; 0.726]; Accuracymin <CI = 0.202; 

Accuracymin >CI = 0.743). f Confusion matrix of outcome decoder GLM during the first 500ms of cue 

presentation indicating the percent of correctly and incorrectly classified trials. g Cross-temporal LDA 

trained on FR at outcome omission and tested on FR of cue epochs. Accuracy of the model at each 

cue epoch is indicated as black line (95% CI: [0.307; 0.731]; Accuracymin <CI = 0.232; Accuracymin >CI 

= 0.793. h Confusion matrix of LDA outcome decoder performance during epochs between 0-500ms 

of cue presentation indicating correctly and incorrectly classified A and B trials. Black lines indicate 

average accuracy of models, grey lines indicate validation models based on baseline firing. Dotted 

lines indicate the 95% CI of validation models. Epochs of better than random performance are 

indicated as blue squares, epochs of worse than random performance are indicated as red squares. 

 

 

 

Separate populations of DA neurons code a valence prediction error and prediction. 

To identify possible populations underlying the switch in decoder performance, we used a 

by-neuron cross-temporal classifier model. This GLM was trained on activity during outcome 

omission of each neuron and tested on cue epoch activity of the same neuron. We then 

compared the accuracy for each neuron to a validation model which was tested on 

randomized baseline activity. Based on earlier results from the population decoder, we saw 

that on a population level, decoder accuracy was worse than a random model between 300-

800ms after cue onset. We therefore investigated whether decoding accuracy of individual 

neurons was better or worse than accuracy of the random by-neuron model between 300-

800ms after cue onset. Interestingly, we found two separate populations that show distinct 

decoding as well as distinct firing patterns throughout the cue. One population performed 

better than a random model not just at cue onset, but throughout the whole cue period (Fig. 

8a; n=28; neuron with smallest difference to its 95% CI: [19.00%; 53.19%], Accuracy: 

62.50%). This population displays more sustained activity during cue presentation (Fig. 8b; 

Mann-Whitney-; A vs. BL: Umin = -1.99; p = .046; B vs. BL: Umin = -1.97, p = .049) and 
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during the outcome omission period (Mann-Whitney-; A- vs. BL: Umin = -1.97; p = .049; B- 

vs. BL: Umin = -1.97, p = .049). Calculating the absolute difference in z-scores between the 

two trial types revealed slight but sustained differences throughout the cue period and very 

minimal differences between activity to reward and shock omission (Fig. 8c). Firing rates did 

not differ between the reward predicting and shock predicting cue (300-800ms; Fig. 8i; 

Mann-Whitney U: U = -1.02, p = .306). Interestingly, also firing rates at time of outcome 

omission were not different between reward- (A-) and shock-omission (B-; Fig. 8j; Mann-

Whitney-U: U = -1.01, p = .314). Comparing the average FR of the two cues at cue onset to 

the time of omission of the incongruent outcome (A to B- and B to A-), the two events were 

not significantly correlated (Fig. 8d left; Spearman correlation: r = -0.16, p = .235). Only 

when comparing cue onset activity to the congruent outcome omission (A to A- and B to B-) 

revealed a positive relationship (Fig. 8d right; Spearman correlation: r = 0.28, p = .040). 

The second population on the other hand, performed worse than a random model at 

cue onset only and decoded the cues at the level of a random model throughout the rest of cue 

presentation (Fig. 8e; n=18; neuron with smallest difference to its 95% CI: [28.13%; 

75.69%], Accuracy: 25.00%). These DA neurons exhibited firing patterns that coincide with 

a valence prediction error signal. Between 300-800ms after cue onset, neurons from this 

population responded with significantly different firing rates to A and B cues (Fig. 8k; Mann-

Whitney-U: U = 3.88, p < .001). Neurons in this population showed phasic excitation to A 

(Mann-Whitney-U: A vs. BL: Umin = 2.01, p = .045) and inhibition to B (Fig. 8f; Mann-

Whitney-U: B vs. BL: Umin = -1.98, p = .048). At time of outcome omission, these neurons 

were phasically inhibited to reward omission (Mann-Whitney-U; A- vs. BL: Umin = -2.04, p = 

0.041) and phasically excited to shock omission (Mann-Whitney-U; B- vs. BL: Umin = -2.04, 

p = .041). Firing rates to reward and shock omission differed from each other (Fig. 8l; Mann-

Whitney-U; A- vs. B-: U = -4.57, p < .001). This was also reflected by the absolute difference 
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in z-scores revealing pronounced, phasic differences between A and B cues, as well as 

reward and shock omission, while the remainder of the cue period showed differences 

comparable to baseline (Fig. 8g). As expected in a prediction error population, activity at 

time of cue onset (300-800ms) was negatively correlated with incongruent (A to B- and B to 

A-) activity at time of outcome omission (Fig. 8h left; Spearman correlation: r = 0.60, p < 

.001). Interestingly, cue activity was also positively correlated with congruent activity (A to 

A- and B to B-) at time of outcome omission (Fig. 8h; Spearman correlation: r = -0.53, p = 

.001).  

To summarize, we found two separate populations of VTA DA neurons that exhibited 

distinctly different activity patterns to reward and shock predicting cues, as well as omission 

of both reward and shock. The population that displayed similar activity patterns between A 

and B correctly decoded cue identity based on activity from the outcome omission period. 

While this makes cue decoding based on valence by this population unlikely, we do not have 

sufficient evidence for an informed hypothesis about this subpopulation of VTA DA neurons. 

On the other hand, we found a second population that exhibited opposite, phasic activity 

patterns between reward and shock predicting cues, as well as between reward and shock 

omission. These DA neurons decode activity at cue onset as the opposite cue, based on 

activity from the outcome omission period, in line with a valence-based prediction error. 
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Figure 8: Two distinct populations of midbrain DA neurons exhibit different decoder and activity 

profiles. a Average accuracy ± SEM of the population decoding cue identity better (population 

“Better” - blue line) than a validation model (dark grey line) at 300-800ms after cue onset based on 

FR from the outcome omission period. Inlay displays a histogram of the average accuracy of each 

neuron in this population between 300-800ms. b PSTH of normalized FR of population “Better” (n = 

28) throughout the second half of baseline FR (BL; -10 – 0 sec), presentation of A (teal) and B 

(magenta), as well as reward (A-) and shock omission (B-). Lines represent mean ± SEM. Epochs 

which are significantly different from BL FR are indicated as squares on the top (A cue and reward 

omission; teal) and bottom (B cue and shock omission; magenta) x axes. Mann-Whitney-U test; A vs. 

BL: Umin = -1.99, p = .046; B vs. BL: Umin = -1.97, p = .049; A- vs. BL: Umin = -1.97, p = .049; B- vs. 

BL: Umin = -1.97, p = .049. c Absolute difference in z-scores throughout baseline, cue and outcome 

omission period of “Better” subpopulation. Line displays mean ± SEM. d Average normalized cue FR 

(300-800ms) compared to incongruent (left; A vs B- and B vs. A-) and congruent (right; A vs. A- and 

B vs. B-) outcome omission FR of neurons from subpopulation “Better”. Spearman correlation: 

Incongruent: r = -0.16, p = .235; Congruent: r = 0.28, p = .040. e Population of neurons decoding cue 

identity worse (population “Worse” - red line) than a validation model (dark grey line) at cue onset 

(300-800ms) based on FR from the outcome omission period. Average accuracy is plotted as mean ± 

SEM. Inlay represents a histogram of average accuracy of each neuron in this population during 300-

800ms. (Figure legend continues on next page) 
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(Continuing legend; Figure 8) 

f PSTH of population “Worse” (n = 18) during baseline FR (BL; -10 – 0 sec), presentation of A (teal) 

and B (magenta), as well as reward (A-) and shock omission (B-). Lines display mean ± SEM. Epochs 

which are significantly different from BL FR are indicated as squares on the top (A cue and A-; teal) 

and bottom (B cue and B-; magenta) x axes. Mann-Whitney-U test; A vs. BL: Umin = 2.01, p = .045; B 

vs. BL: Umin = -1.98, p = .048; A- vs. BL: Umin = -2.04, p = .041; B- vs. BL: Umin = -2.04, p = .041.  g 

Absolute difference in z-scores throughout baseline, cue and outcome omission period of “Worse” 

subpopulation. Line represents mean ± SEM. h Average normalized cue FR (300-800ms) compared 

to incongruent (left; A vs B- and B vs. A-) and congruent (right; A vs. A- and B vs. B-) outcome 

omission FR of neurons from subpopulation “Worse”. Spearman correlation: Incongruent: r = 0.60, p 

< .001; Congruent: r = -0.53, p = .001. i-l Histograms of average normalized FR of neurons to cue A 

and reward omission (A-; teal) as well as cue B and shock omission (B-; magenta). i Average 

normalized FR of population “Better” during 300-800ms after cue onset. Mann-Whitney-U: A vs. B: 

U = -0.62, p = .537. j Average normalized FR during outcome omission of population “Better”. 

Mann-Whitney-U test; A- vs. B-: U = -0.33, p = .740. k Histogram of average normalized FR of 

population “Worse” during cue onset (300-800ms). Mann-Whitney-U: A vs. B: U = 3.98, p < .001. l 

Distribution of average normalized FR during outcome omission of population “Worse”. Mann-

Whitney-U: A- vs. B-: U = -3.60, p < .001.  
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Discussion and Future Directions 

The current study investigated whether activity patterns of dopamine (DA) neurons in 

the ventral tegmental area (VTA) represent a valence-based prediction error in the brain. 

Further, we wanted to understand if the reason previous studies found conflicting results 

when researching DA activity during aversion was due to DA subpopulations representing 

opposing appetitive and aversive systems. We therefore analyzed activity patterns of 

midbrain DA neurons during cues predicting appetitive and aversive events as well as during 

omission of these expected events. Our data showed modulation to both appetitive and 

aversive cues, however, magnitude, duration and timing of the modulation was not different 

between the opposing cues. On a population level, we found that cue identity is decoded by 

DA neurons only at the start of cue presentation, and outcome omission is misclassified as 

event of opposite valence during the same cue period. So far, these findings support both the 

prediction error and opposing systems theories. However, we identified two subpopulations 

of VTA DA neurons that behave differently. One group of neurons correctly identified cue 

identity throughout the whole cue period based on activity at outcome omission and did not 

show differences in modulation between reward and aversion predicting cues or reward and 

shock omission. This suggests a valence-free prediction that is carried through the whole 

period of cue presentation. On the other hand, the second population of DA neurons showed 

valence decoding only at cue onset and exhibited bidirectional phasic activity at the start of 

cue presentation and at outcome omission. This population’s activity, excitation to reward 

predicting cues and shock omission and inhibition to shock predicting cues and reward 

omission, is in line with a valence-based PE theory. Interestingly, we did not find evidence 

for a third population representing an aversive system, decoding valence-based information 

through excitation to aversive events and inhibition to rewarding events. Together, our data 
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suggest that not all, but a subpopulation of midbrain DA neurons support learning by coding 

a valence-based prediction error. 

Ventral tegmental area dopamine – key player in reinforcement learning. The ventral 

tegmental area (VTA) and more specifically phasic dopamine (DA) activity in the VTA have 

been implicated to play a key role in reinforcement learning and motivation (Bayer et al., 

2007; Chang et al., 2016; Maes et al., 2020; Steinberg et al., 2013; Waelti et al., 2001). This 

is not surprising given the various projection targets of VTA DA neurons, most notably the 

nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC) (Lammel et al., 2011, 

2014). Particularly DA inputs to the NAcc are necessary for motivational, goal-directed, and 

drug-seeking behaviors (Cheer et al., 2007; Mannella et al., 2013; Robbins & Everitt, 1996; 

Yun, 2004), while inputs to the mPFC are implicated in decision making and promote 

avoidance in fear learning (Vander Weele et al., 2018). However, goal-directed behaviors and 

decisions do not only entail behavior towards rewarding outcomes, but also avoiding negative 

outcomes. Therefore, VTA DA activity is thought to play a role not only in learning about 

rewards, but also aversive events (Brischoux et al., 2009; Cohen et al., 2012; Lammel et al., 

2012; H. Matsumoto et al., 2016; M. Matsumoto & Hikosaka, 2009b; Zweifel et al., 2011). 

With such widespread projections of DA neurons to key regions, a valence-based prediction 

error (PE) signal would be the most economic and clear form of transmitting valence 

information across the brain to drive decisions and behaviors that ensure survival. However, 

this is only true if the receiving region requires an influx of DA elicited by excitation of DA 

neurons in the VTA to rewarding events and a decrease in DA elicited by inhibition of DA 

neurons in the VTA to aversive events in order to elicit the appropriate behavioral response. 

Another possibility would be that some target regions require an influx of DA to 

appropriately avoid aversive events. This would require two separate populations of neurons, 

one encoding aversive information through inhibition and the other through excitation. The 
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field has found diverse firing patterns of VTA DA neurons to aversive events (Brischoux et 

al., 2009; Cohen et al., 2012; H. Matsumoto et al., 2016; M. Matsumoto & Hikosaka, 2009b; 

Salinas-Hernández et al., 2018; Wang & Tsien, 2011; Zweifel et al., 2011). We therefore 

wanted to gather information on whether midbrain DA neurons show activity patterns in line 

with a valence-based prediction error, in addition to understanding whether these 

contradicting findings could be due to subpopulations of DA neurons representing opposing 

aversive and appetitive systems. 

Prediction error in midbrain dopamine neurons. It has been shown many times that 

dopamine neurons signal the reward PE by bidirectional modulation of firing rate during 

reward learning (Cohen et al., 2012; Fiorillo et al., 2008; Schultz et al., 1997; Waelti et al., 

2001; Wang & Tsien, 2011). Most studies using in-vivo electrophysiology focus on a 500ms-

1sec time window after cue onset, as this has been shown to capture the phasic response 

during reward learning (H. Matsumoto et al., 2016; Schultz, 2007; Takahashi et al., 2017). 

Utilizing this information from previous studies, we compared DA activity during the first 

500ms of cue presentation to activity during a window at outcome omission of the same size. 

We found the reward predicting cue and reward omission to be negatively correlated. This 

suggests the presence of a reward PE in the recorded population of midbrain DA neurons, as 

shown by previous studies.  

However, if dopamine neurons signal a valence-based PE, one would expect to find a 

reverse response to aversive cues. An unexpected aversive event would be predicted to cause 

an inhibition in firing, compared to excitation to reward. Additionally, the omission of an 

anticipated aversive event would be predicted to cause excitation compared to inhibition 

observed at the omission of an expected reward. Some studies found evidence supporting a 

valence PE hypothesis by observing inhibition to aversive events (H. Matsumoto et al., 2016; 

Mileykovskiy & Morales, 2011; Ungless et al., 2004) or excitation to the omission of an 
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aversive event (H. Matsumoto et al., 2016; Salinas-Hernández et al., 2018), others claimed 

that midbrain DA neurons only code reward PE (Fiorillo, 2013; Mirenowicz & Schultz, 

1996). In this study, comparing DA activity during the onset of the shock predicting cue to 

activity during shock omission, the two events were not related in a negative fashion. Instead, 

we found a non-significant positive correlation. At first glance, this would suggest the 

absence of a valence-based PE.  

Differentiation between reward and aversion predicting cues. DA neurons could still 

drive learning in general, as observed by differential behavioral output to appetitive and 

aversive cues. For this, DA activity patterns would need to distinguish between these cues, 

but the firing patterns would not have to represent a PE signal. Two studies suggested that the 

magnitude of modulation could underly the differentiation between cues (Joshua et al., 2008; 

Tobler et al., 2005). Similarly, timing of activity could provide a way to signal differing cues. 

To understand whether and how exactly DA neurons differentiate between events and cues 

predicting these events requires analysis of not just a brief period of 500ms-1sec, but a 

detailed investigation of different time points throughout the cue presentation. Analyzing the 

whole duration of cue presentation, we found evidence that VTA DA neurons are modulated 

by both appetitive and aversive events and cues predicting these events. Importantly, 

magnitude, duration, and timing of modulation did not differ between reward and shock 

predicting cues. This suggests that a different mechanism must underly the differentiation of 

cues. 

Another option would be that different brain regions support learning about events of 

opposite valence, with the ventral tegmental area only being involved in reward learning and 

not representing valence information. In this case however, midbrain DA neurons should still 

show different activation to appetitive and aversive cues – modulation to appetitive events 

and no modulation to aversive events. Only in the case that the VTA DA signal is only 
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utilized to form associations between cues and predicted events, with other brain regions and 

neural populations providing valence information, would the activity pattern not differ 

between opposing cues. In this case, DA neurons would not distinguish between cues. Along 

with previous studies (H. Matsumoto et al., 2016; M. Matsumoto & Hikosaka, 2009b; 

Takahashi et al., 2011; Wang & Tsien, 2011), we found clear evidence that DA neurons in 

the VTA distinguish between two opposing cues, correctly identifying trial type. We 

identified FRs to be most different at cue onset and at outcome omission between reward and 

shock predicting cues. In addition, two separate classifier models showed that the trial types 

were very well identified by neural firing. However, this was only true early in cue 

presentation. Later during the cue, classifier accuracy did not exceed that of a random model, 

hovering around 50% correct/incorrect identification.  

VTA DA neurons represent valence information of both appetitive and aversive 

events. We also found evidence that midbrain DA neurons do indeed represent valence. By 

comparing activity during reward and shock omission to activity during the cues presenting 

these events, we found that outcome omission firing coincided with activity to the cue 

predicting the opposite outcome. Two separate models classified cue firing as the opposite 

cue when trained on activity from outcome omission, suggesting reward predicting cues and 

reward omission just as shock predicting cues and shock omission represent opposing 

valences. This would be in line with both a valence PE theory and a hypothesis of two 

opposing systems. Additionally, our results support findings of previous studies (Guarraci & 

Kapp, 1999; H. Matsumoto et al., 2016; M. Matsumoto & Hikosaka, 2009b)  that valence 

about both the cue and the outcome might be integrated within the same neurons. However, 

our data suggest that this is only true for a subpopulation of DA neurons. These neurons not 

only decoded reward and shock omission as events of opposite valence, but also exhibited 

phasic activity patterns both at time of cue onset and during outcome omission that are in line 
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with a valence-based prediction error theory. These PE neurons were phasically excited to the 

reward predicting cue and shock omission, while being phasically inhibited by the shock 

predicting cue and reward omission. The second population of DA neurons exhibited similar 

modulation to outcome omissions and the two opposing cues that was extended beyond 

classic phasic activity. In addition, cue type was decoded very well from outcome omission 

firing by these neurons throughout the whole cue period, suggesting this population 

differentiated between cues without valence information. This indicates separate populations 

of DA neurons within the VTA serving different roles.  

VTA DA neurons do not represent opposing appetitive and aversive systems in the 

brain. We did observe a small group of DA neurons that could represent an aversive system 

in the brain by signaling aversion through excitation and reward through inhibition. However, 

we found evidence against the hypothesis that VTA DA populations represent appetitive and 

aversive systems. The subpopulation of DA neurons that represented valence information 

through their activity patterns, showed very clear firing rates in line with a positive PE signal 

to cues predicting reward as well as shock omission and at the same time a negative PE signal 

to cues predicting aversive events and omission of reward. The population that did not 

contain valence information on the other hand exhibited large variability in firing rates to 

reward and shock predicting cues. This suggests that the small number of neurons that could 

have represented an aversive system fall into a population of neurons not representing 

valence at all. While this suggests that DA neurons in the VTA do not represent opposite 

motivational systems in the brain, it does not disprove the theory overall. Instead, appetitive 

and aversive systems could be represented by different structures in the brain, or different 

subregions within the VTA. As Lammel et. al. suggested (2011, 2014), medial and lateral 

areas within the VTA might contain subsets of DA neurons with differing response profiles 

and varying projection targets. While the recording location of DA neurons from the current 
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study has been confirmed to be within the VTA, the exact location of each recorded neuron 

along the medio-lateral axis is not known. We observed two distinct subpopulations of 

neurons of differing behavioral relevance. However, this does not negate the possibility of 

further distinct DA populations within the VTA. Future studies should further investigate 

firing patterns to reward and aversion predicting cues based on their projection targets and 

recording locations within the region.  

Based on current data, the firing patterns of the valence-based PE population of DA 

neurons observed in this study could indicate VTA DA to represent an appetitive system. The 

first candidate one might think of is the amygdala, more specifically the basolateral amygdala 

(BLA), as decades of research have found this brain region necessary for fear learning 

(LeDoux et al., 1990; Tang et al., 2020; Weiskrantz, 1956; Yau et al., 2021). Some studies 

have found neurons in the BLA to show activity patterns in line with an aversive PE signal 

(Yau et al., 2021) and found dopaminergic input from the VTA modulating this signal (Tang 

et al., 2020), suggesting opposing integration of the two signals. Another possible candidate 

representing an aversive system could be the lateral habenula (LHb). Studies have found that 

LHb neurons exhibit firing patters in line with an aversive PE (M. Matsumoto & Hikosaka, 

2009a; Stamatakis & Stuber, 2012). Additionally, LHb and VTA are integrated (Jhou, 

Geisler, et al., 2009) in that electrical stimulation of LHb neurons elicited inhibition of VTA 

DA neurons (M. Matsumoto & Hikosaka, 2007) and stimulation of LHb connections with 

VTA GABAergic interneurons produce conditioned place aversion (Lammel et al., 2012). A 

third option would lie within the VTA. GABA interneurons in this region are known to have 

inhibitory connections with DA neurons (Tan et al., 2012; van Zessen et al., 2012), as well as 

opposing activity patterns to rewarding and aversive events and cues predicting such events 

(Barrot et al., 2012; Jhou, Fields, et al., 2009). 
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Future studies should aim to further dissect these circuits and identify whether one of 

the above-mentioned regions or neural populations could represent an aversive system in the 

brain. To align with Dickinson & Dearing’s theory (1979), the neurons in question would 

need to have inhibitory connections with VTA DA neurons, while being inhibited by DA 

activity in return. Additionally, excitation of the appetitive system would have to occur 

slightly before inhibition of the aversive system and the other way around, as an appetitive 

event is thought to directly activate the appetitive system, which in turn would prevent 

activation of the aversive system. This would lead to a delay the length of time it would take 

for neural transmission of the appetitive system to reach the aversive system. The same 

would be true for aversive to appetitive system connections. 

Salience and valence signals within DA firing. While analyzing DA firing patterns in 

our experiment, we noticed some neurons exhibiting a very brief but strong increase in firing 

rate to both reward and shock predicting cues before activity diverged. This was especially 

apparent in the PE population. Interestingly, we also observed that both the prediction error 

and prediction populations showed classification accuracy similar to a random model during 

the first 200ms of cue presentation. Most strikingly, on both a population and by-neuron 

level, cue identity was not able to be determined from cue related firing during the same 

200ms. This period coincides with the period of initial excitation to both reward and shock 

predicting cues observed in the peristimulus time histograms. Activity patterns such as initial 

excitation followed by inhibition during a cue predicting an aversive event have been 

observed by others (Fiorillo et al., 2013; Mileykovskiy & Morales, 2011). Such more 

complex activity patterns could hint to different temporal resolutions and signals provided by 

midbrain dopamine neurons. The initial response could provide information about salience, 

while the secondary response could signal the valence of the cue. This would mean dopamine 
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neurons provide a lot more information to the downstream networks than we initially 

thought.  

Unfortunately, the current study did not include a neutral cue, to which firing to 

reward and shock predictive cues could have been compared. This would have provided the 

opportunity to investigate whether this brief excitation that could possibly be a salience signal 

would also be present at the start of a neutral cue. Future studies should expand on the 

question whether the valence PE population of VTA DA neurons signal both salience and 

valence. This can be achieved by recording midbrain dopamine activity during presentation 

of appetitive and aversive cues of different salience that are reinforced with the same valence. 

Here, cues would need to be controlled for both salience and sensory modality. In addition to 

varying the salience of cues predicting events, the modality of especially aversive events 

could be represented by DA neurons. A footshock might be more salient than a mild air puff 

and therefore evoke a more pronounced response. This could be the reason underlying the 

heterogeneity in findings regarding DA responses to aversive events and should therefore be 

investigated. 

In conclusion, we were able to provide further evidence that at least a subpopulation 

of midbrain DA neurons represent a valence-based prediction error signal (Eshel et al., 2016; 

H. Matsumoto et al., 2016; Salinas-Hernández et al., 2018) in line with the classical PE 

model thought to underly learning (Rescorla & Wagner, 1972). We can now appreciate that 

DA neurons can serve multiple functions, which could be the reason underlying contradicting 

findings observed by studies investigating DA activity during aversion. Additionally, our data 

suggest that VTA DA neurons only represent an appetitive system but does not disprove a 

hypothesis of opposing appetitive and aversive systems. More research is required to 

understand how exactly aversion is represented in the brain and the impact each part of the 
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network has on the whole. Only then can we hope to truly understand what underlies drug 

addiction, anxiety and post traumatic stress disorders and how to prevent and treat them. 
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Supplemental Figures 

 

 

 

 

Supplemental Figure 1: DA neurons form subpopulations of activity patterns to reward and shock 

predicting stimuli. a Pro-portion of DA neurons exhibiting excitation, inhibition, both or no 

modulation to stimuli A and B. X2 = 2.66, p = .457. b Proportion of neurons exhibiting one activity 

pattern to reward predicting stimulus A that exhibits the same of different activity pattern to shock 

predicting stimulus B. Fisher’s exact test: Odds Ratio = 0.57, 95% CI [0.115, 2.845], p = .697. 
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Supplemental Figure 2: Variance explained by each principal component. a Average variance 

explained across principal components when PCA is conducted on FRs of CS epochs. Bars represent 

mean ± SEM. b Average variance explained by principal components when the PCA is conducted on 

FR during US omission. Bars presented as mean ± SEM. 

 

 

  

  

  

      

                   

 
 
  
 
 
 
 
  
  

  
  
 
 
  
 
 

          

      

                   

 

  

  

  

  

 
 
  
 
 
 
 
  
  
  
  
 
 
  
 
 

          
  


