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Examiner
Dr. Tse-Hsun Chen

Examiner
Dr. Jamal Bentahar

Supervisor
Dr. Emad Shihab

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

22 November 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science



Abstract

Effective Dependency Management for the JavaScript Software Ecosystem

Suhaib Mujahid, Ph.D.

Concordia University, 2021

Open source software ecosystems are essential to software development. Developers

depend on packages from the ecosystems to utilize their functionalities and avoid having to

reinvent the wheel. On the one hand, this allows developers to write less code, increasing

productivity, improving quality, and delivering more features. On the other hand, the pack-

age dependencies themselves must be maintained. The overhead starts with the process of

selecting a quality package to use out of a large set of packages, going through updating

the dependencies and avoiding breakage-inducing versions, ending with replacing obsolete

dependencies and finding better alternatives. Neglecting the maintenance of the dependen-

cies can have an expensive negative impact on the software quality. Hence, in this thesis,

we propose facilitating dependency management activities, encouraging developers to keep

healthy dependencies in their projects.

We employ information extracted from the software ecosystem to help developers better

manage their software dependencies. We first present an empirical study on the factors used

by developers to select dependency packages from the npm software ecosystem. Next, we

propose an approach that leverages tests from the ecosystems to help identify breakage-

inducing versions, which increase developers’ confidence in updating the dependencies

and help them to make more informed decisions when they update dependencies. Also, we

propose an approach to identify packages in decline as early as possible. The underlying
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rationale of our approach is that the decline in community interest leads to having packages

used less over time, becoming less frequently maintained, and eventually, could become

abandoned. Furthermore, we propose an approach to find alternatives to replace packages

in decline. Finally, we empirically evaluated our approach and characterized the alternative

packages.
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Chapter 1

Introduction and Research Statement

Software ecosystems are the backbone of modern software development. The increase

in the popularity of open source software ecosystems has encouraged the reuse of third-

party packages and turned it into prevailing practice. Nowadays, developers spend less time

implementing common functionalities. Instead, they reuse functionalities from the software

ecosystems, where other developers publish reusable code as packages. Thus, developers

commonly publish their packages to the community (Wittern, Suter, & Rajagopalan, 2016),

making an ecosystem such as Node.js Package Manager (npm)1 the host of more than 1.7

million packages (DeBill, 2021).

Prior work shows that depending on third-party packages has many advantages. The

advantages include allowing developers to build software systems faster, deliver richer fea-

tures, and even achieve higher quality (Abdalkareem, Nourry, Wehaibi, Mujahid, & Shi-

hab, 2017; Abdalkareem, Oda, et al., 2020). However, these advantages often come at an

increased cost of selecting and managing the dependencies (Mirhosseini & Parnin, 2017).

Given the massive number of packages from which to choose, selecting a suitable package

can be challenging, especially considering that many packages provide the same function-

ality. The large size and rapid evolution of these ecosystems have other downsides as

1https://www.npmjs.com
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Figure 1.1: Dependency management activities and the studied topics in this thesis.

well. For example, new packages are continuously being introduced (Abdalkareem, Oda,

et al., 2020; den Besten, Amrit, Capiluppi, & Robles, 2020; Kula, German, Ouni, Ishio, &

Inoue, 2017; Wittern et al., 2016), making other packages obsolete, dormant, or even dep-

recated (Valiev, Vasilescu, & Herbsleb, 2018). Consequently, it is becoming increasingly

important for software developers to ensure that they are using well-maintained packages

from the ecosystem. Also, as the software evolves (and its dependencies do as well), updat-

ing these dependencies can become more challenging (Bogart, Kästner, & Herbsleb, 2015;

Decan, Mens, & Claes, 2017; Decan, Mens, & Grosjean, 2019).

Dependency management is essential for maintaining well-functioning projects. As

described in Figure 1.1, the dependency management activities typically start by the de-

velopers selecting a set of suitable packages from a wide range of available packages in

the software ecosystem to perform the required tasks. Then, developers must integrate the

packages with their codebase and interact with them through their APIs. Next, develop-

ers check for available version updates that could fix bugs, patch security vulnerabilities,

introduce new features, or improve the performance of the packages. Finally, to maintain

well-functioning dependencies that support software evolution, developers evaluate their

dependencies and take required actions to adopt better solutions when necessary (He et al.,

2021).
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The grey boxes in Figure 1.1 represent the dependency maintenance challenges with

proposed mitigations that are the focus of this thesis:

(1) How to select packages? When developers want to use a package to perform a

specific task, it is common to find several packages that meet their requirements. De-

velopers must pick only one package. The decision becomes even more challenging

when the developers have no experience with using the alternative packages. An

empirical study to help developers select packages is presented in Chapter 4.

(2) Should we adopt a newer package version? Packages release new versions to

fix bugs, add new features, or patch security vulnerabilities. However, adopting a

newly released version risk introducing a breakage behavior. An approach to help

developers detect breakage-inducing versions is presented in Chapter 5.

(3) Should we migrate from this package? Packages over time could become vulner-

able, obsolete, dormant, or even deprecated (Coelho & Valente, 2017; Valiev et al.,

2018). Identifying obsolete packages that should be replaced is not a trivial task,

especially when having a long list of dependencies. An approach to identify such

packages is presented in Chapter 6.

(4) What package should we migrate to? When a developer needs to replace an obso-

lete package that has lost community interest, finding the best alternative candidates

is essential. An approach to help developers in finding alternatives for packages

should be replaced is presented in Chapter 7.

1.1 Research Statement

Motivated by the challenges described in the previous section, the goal of this thesis is

to propose mitigations for each of the challenges. We believe that crowd wisdom can be
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employed to help developers manage their open source software dependencies. We state

our research statement as follows:

Given the challenges of depending on third-party open source packages, developers

need techniques to effectively select dependencies, update dependency versions, and

avoid outdated dependencies. We employ information extracted from software ecosys-

tems to help developers better manage their software dependencies.

1.2 Thesis Overview

In this section, we provide a brief overview of the thesis. The thesis consists of seven

chapters, which can be classified into three main parts. In the first part (Chapters 2 and 3),

we provide a background and present the related work. In the second part (Chapter 4), we

present an empirical study about the factors that developers should take into consideration

when selecting a package. The last part (Chapters 5 to 7), presents our contribution to assist

developer in managing their package dependencies. Finally, Chapter 8 concludes the thesis

and discusses future work.

Chapter 4: An Empirical Study on the Characteristics of Highly-Selected

Packages

With the popularity of software ecosystems, the number of open source packages has

been growing rapidly. Identifying high-quality and well-maintained packages from a large

pool of packages is an important problem since it is beneficial for various applications,

such as package recommendation systems, package search engines, etc. However, there

is no systematic and comprehensive work so far that focuses on addressing this problem

except in online discussions or informal literature and interviews. Therefore, we investi-

gate the characteristics of highly-used packages. More specifically, in this chapter, we use
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a mixed-method approach to examine the characteristic of highly-used npm packages. We

start by identifying packages selection factors from the literature review and existing online

package search tools. Then, we try to qualitatively understand the factors that developers

look for when choosing an npm package to use through surveying JavaScript developers.

Next, we quantitatively examine these factors by building a logistic regression model us-

ing a dataset of highly-used and low-used packages. Our results indicate that developers

mainly consider packages that are well-documented, popular, and do not suffer from secu-

rity vulnerabilities.

Chapter 5: An Approach to Identify Breaking Updates

After a developer select and use a package, as any actively maintained project, the

package will typically have new versions. The question of whether the developers should

update to a newly released version is a vital development decision. On the one hand,

updating the package version means that developers will receive the newest features, bug

fixes, and security patches (Cadariu, Bouwers, Visser, & van Deursen, 2015; Decan, Mens,

& Constantinou, 2018b). On the other hand, the fear of breaking an existing functionality

often lingers on the minds of developers (Decan, Mens, & Constantinou, 2018a; Kula et

al., 2017; Zerouali, Constantinou, Mens, Robles, & González-Barahona, 2018).

To ensure the stability and quality of newly released dependency versions, develop-

ers often run their own tests. This has proven to be a good solution and some tools (e.g.,

Dependabot2, Snyk3, Renovate4 and Greenkeeper5) support the automation of such ap-

proaches. However, in many cases, developers are still forced to ”roll back” dependency

updates because they introduce regressions in their system functionality (Cogo, Oliva, &

Hassan, 2019). Indeed, Mirhosseini and Parnin (2017) found that there is a need for new
2https://dependabot.com
3https://snyk.io
4https://renovatebot.com
5https://greenkeeper.io
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techniques to increase the confidence in automated dependency updates. Therefore, in

this chapter, we propose a technique to detect breakage-inducing versions of third-party

dependencies. More specifically, we propose a crowd-based approach that leverages the

automated test suites of other projects that depend on the same dependency to test newly

released versions.

Our empirical evaluation shows that the proposed approach can improve the test cover-

age of the dependencies. More importantly, our approach was able to detect six out of ten

real-world breakage-inducing versions that were not detectable by running the test suites

from the packages themselves. This work was published in the proceedings of the 17th

International Conference on Mining Software Repositories (MSR) 2020.

Chapter 6: An Approach to Identify Packages in Decline

Even with updating the dependencies to the latest releases and avoiding breakage-

inducing versions as explained in Chapter 5, dependencies could become obsolete (Valiev

et al., 2018). Ecosystems evolve rapidly and developers add new packages every day to

solve new problems or provide alternative solutions, causing obsolete packages to decline

in their importance to the community. Developers should avoid depending on packages

in decline, as these packages are reused less over time and may become less frequently

maintained. However, current popularity metrics are not sufficient to provide this informa-

tion to developers. Thus, the goal of this chapter is to detect packages in decline. More

specifically, we propose a scalable approach that uses the centrality of the packages in the

ecosystem to identify packages in decline.

Our empirical evaluation shows that our approach aptly detects packages in decline

months before they become deprecated or their ranking significantly decreases. Notably,

none of the other metrics (i.e., number of dependents, downloads, stars, and forks) pro-

vided the same indications. A manuscript based on this work has been accepted in the
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Special Issue on Collaboration and Innovation Dynamics in Software Ecosystems, IEEE

Transactions on Engineering Management journal (TEM).

Chapter 7: An Approach to Find Alternative Packages

After identifying packages in decline as in Chapter 6, selecting better alternatives is a

challenging decision. Knowledge about better solutions requires close involvement or ac-

tive investigation and searching. Since popular packages in software ecosystems are used

by a large base of developers, this chapter aims to use crowd knowledge to suggest bet-

ter alternative packages. More specifically, we propose an approach that uses the package

dependency migration patterns combined with the centrality trends to suggest alternative

packages. Then, we empirically evaluate our approach on the npm ecosystem. The eval-

uation that our approach that the proposed approach accurately suggests alternatives for

packages in decline. Also, the evaluation shows that developers support having a tool that

utilizes our approach to suggest alternative packages, and the majority of them will use the

suggested alternatives.
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1.3 Thesis Contributions

The main contributions of the thesis are:

• We identify the essential factors that software developers should consider when se-

lecting an npm package to use.

• We propose an approach to detect breakage-inducing versions, which helps develop-

ers make more informed decisions before updating to a newly released version.

• We propose an approach that detects packages in decline before they become obsolete

or deprecated. Also, we implement a tool that utilizes our approach to make it more

accessible for practitioners.

• We propose an approach to find alternative packages to replace packages in decline.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a background related to this

thesis. Chapter 3 presents the literature review. In Chapter 4, we present our empirical

study related to selecting packages from software ecosystems. Chapters 5 to 7 propose ap-

proaches to support maintaining package dependencies in software ecosystems. Chapter 8

summarizes the thesis and discusses some directions of future work.
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Chapter 2

Background

In this chapter, we present the concept of the software ecosystem, its related terminolo-

gies, and the most popular ecosystems. Also, we explain the package dependencies in the

context of the software ecosystems.

2.1 Software Ecosystems

A software ecosystem is a collection of software packages that are developed, dis-

tributed, and evolved in the same environment, e.g., with the same package manager (Lungu,

Lanza, Gı̂rba, & Robbes, 2010). A package manager is a software tool that automates the

process of installing, configuring, upgrading or removing software packages in a consistent

process (Burrows, 2017; Decan et al., 2019). The following are some of the most popular

software ecosystems and their package managers:

• CRAN (cran.r-project.org), the Comprehensive R Archive Network. It constitutes the

official repository of the statistical computing environment R. The repository hosts

more than 18 thousand packages (DeBill, 2021).

• npm (npmjs.com), started in 2010, is the official package registry for the JavaScript
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runtime environment Node.js. The npm registry is considered the largest, hosting

more than 1.7 million packages (DeBill, 2021).

• PyPI (pypi.org), the Python Package Index, an official third-party software reposi-

tory for Python. It is the default source of packages for Python’s standard package

manager (pip). The repository hosts more than 330 thousand packages (DeBill,

2021).

2.2 Package Dependencies

Packages in software ecosystems can depend on other packages by reusing some or all

of their functionalities. Dependencies can be direct (e.g., when a package explicitly de-

pends on another package) or transitive (e.g., when a package depends on another package

that itself depends on a third package).

2.2.1 Semantic Versioning

Semantic Versioning (referred as semver) is a simple set of rules and requirements

that dictate how version numbers are assigned and incremented for releases of packages.

Given a version number MAJOR.MINOR.PATCH, it should increment as follows (Preston-

Werner, 2020):

• MAJOR version when introduce incompatible API changes.

• MINOR version when add functionality in a backward-compatible manner.

• PATCH version when make backward compatible bug fixes.

• Additional labels for pre-release and build metadata can be added as extensions to

the MAJOR.MINOR.PATCH format.

10



Semantic Versioning allows dependent software to be aware of possible “breaking

changes” (Bogart, Kästner, Herbsleb, & Thung, 2016). Developers can use semantic ver-

sioning constraints to allow package managers to automatically apply version updates by

specifying the allowed version ranges. For example, a developer can restrict to allow only

patch versions and ignore minor and major versions.

Unfortunately, while it is easy to adopt a semantic versioning policy, many studies

show that the semantic versioning is not always correctly followed by package develop-

ers (Mezzetti, Møller, & Torp, 2018; Møller & Torp, 2019; Raemaekers, van Deursen, &

Visser, 2014). In this thesis, we will shed light on the issues related to semantic versioning

policy violation and the possible mitigation.

2.2.2 Technical Lag

Managing healthy dependencies require keeping them up-to-date. Hence, ignoring a

dependency update creates a technical lag. Technical lag refers to the increasing lag be-

tween the latest release of a package and the used version of the same package if no version

updating actions are taken. Such technical lag makes the package dependencies outdated,

which can be transferred to their dependents as a ripple effect. Developers must balance

between the technical lag that their software acquire as time passes and the effort and is-

sues caused by upgrading their dependencies (Gonzalez-Barahona, Sherwood, Robles, &

Izquierdo, 2017)

2.2.3 Dependency Migration

The term migration is commonly used in software engineering research. However, the

term migration may refer to different development activities. Common cases of migrations

in software development include migrating between:

• Programming languages (Bui, Yu, & Jiang, 2019; Dorninger, Moser, & Pichler, 2017;
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Nguyen, Tu, & Nguyen, 2016).

• Platforms (Fleurey, Breton, Baudry, Nicolas, & Jézéquel, 2007; Verhaeghe et al.,

2019).

• APIs (C. Chen, Xing, Liu, & Xiong, 2021; Gokhale, Ganapathy, & Padmanaban,

2013; Kapur, Cossette, & Walker, 2010; Nita & Notkin, 2010).

• Versions (Cossette & Walker, 2012; Kula et al., 2017).

• Packages (Alrubaye, Mkaouer, & Ouni, 2019a; Teyton, Falleri, & Blanc, 2012; Tey-

ton, Falleri, Palyart, & Blanc, 2014).

In this thesis, we use the term dependency migration to refer to the process of replacing

one package with another package of similar functionalities, as in many of the previous

research (Alrubaye, Alshoaibi, Alomar, Mkaouer, & Ouni, 2020; Alrubaye, Mkaouer, &

Ouni, 2019b; He et al., 2021; Kabinna, Bezemer, Shang, & Hassan, 2016).
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Chapter 3

Related Work

In this section, we present the work most related to this thesis. We divide the prior work

into three main areas; work related to the study of reusing packages in software ecosystems,

API breakage changes, and API testing.

3.1 Reusing Packages from Software Ecosystems

Researchers studied the challenges in managing software ecosystems (Barbosa, dos

Santos, Alves, Werner, & Jansen, 2013; Bosch, 2010; van den Berk, Jansen, & Luinen-

burg, 2010; Yu & Deng, 2011). Further, the increasing trend of depending on software

ecosystems has motivated researchers to understand the developer perspective about using

third-party packages.

Haefliger, von Krogh, and Spaeth (2008) studied the reuse pattern and practices in open

source applications. Their study shows that experienced developers reuse more code than

less experienced developers. Abdalkareem et al. (2017) studied an emerging code reuse

practice in the form of lightweight packages in the software ecosystem. Their study was

conducted to understand why developers use trivial packages. Their results showed that
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these packages are prevalent in PyPI (Python Package Index), but 70.3% of the devel-

opers consider using these packages is a bad practice. Xu, An, Thung, Khomh, and Lo

(2019) studied the reason behind the reusing and re-implementing of external packages

in software applications. They found that developers often replace their self-implemented

methods with external libraries because they were initially unaware of the library or it was

unavailable back then. Later on, when they become aware of a well-maintained and tested

package, they replace their own code with that package. Although developers prefer to

reuse code than re-implement it, they replace an external heavy package with their imple-

mentation when they believe that they are only using a small part of its functionalities or if

it becomes deprecated. Haenni, Lungu, Schwarz, and Nierstrasz (2013) conducted a survey

with developers about their decision-making while introducing a dependency to their appli-

cations. Surprisingly, the study found that developers generally do not apply rationale while

selecting the packages; they use any package that accomplishes the required tasks. More

recently, Y. Ma, Mockus, Zaretzki, Bichescu, and Bradley (2020) performed an empirical

study to investigate how developers choose between two comparable packages.

Other work also focused on examining the popularity growth of packages within an

ecosystem. For example, S. Qiu, Kula, and Inoue (2018) studied the growth of popular

npm package. Their finding shows that lifetime, number of dependents, and added new

functionalities play significant roles in popularity growth. Chatzidimitriou., Papamichail.,

Diamantopoulos., Oikonomou., and Symeonidis. (2019) use network analysis and infor-

mation retrieval techniques to study the dependencies that co-occur in the development of

npm packages. Then, they use the constructed network to identify the communities that

have been evolved as the main drivers for npm’s exponential growth. Their findings show

that several clusters of packages can be identified. Zerouali, Mens, Robles, and Gonzalez-

Barahona (2019) examined a large number of npm packages by extracting nine popularity

metrics. They focused on understanding the relationship between the popularity metrics.
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They found that the studied popularity metrics were not strongly correlated. Dey, Kar-

nauch, and Mockus (2021) proposed the concept of skill space which allow measuring

distances between APIs, repositories, programing languages, and developers to provide the

ability to assess relationships among them.

Other work focused on understanding the process used by developers to select pack-

ages and attempted to provide some guidelines. Pano, Graziotin, and Abrahamsson (2018)

focued on understanding factors that developers look for when selecting a JavaScript frame-

work (e.g., react). Based on interviewing 18 decision-makers, they observed a list of fac-

tors when choosing a new JavaScript framework, including the community’s size behind

the framework. del Bianco, Lavazza, Morasca, and Taibi (2011) provided a list of factors

that influence the trustworthiness of open source software components. Their list had five

categories, including quality and economic categories. Also, in their study, Hauge, Oster-

lie, Sorensen, and Gerea (2009) observed that many organizations apply informal selection

process based on previous experience, recommendations from experts, and information

available on the Internet. Franch and Carvallo (2003) adapt the ISO quality model and

assign metrics to be used as a measure for selecting software components. Their study

suggested that relationships between quality entities must describe explicitly.

The main goal of our work in Chapter 4 is to examine the characteristics of highly-

selected packages within the npm ecosystem. In many ways, our study is complemen-

tary to prior work because we focus on understanding factors that make a package highly-

selected. Our study is one of the only studies to use mixed research methods, which provide

us with a more complete and synergistic utilization of data than any separate quantitative

and qualitative data collection and analysis.
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3.2 Studying API Breakage Changes

Several studies investigated API evolution and stability and proposed techniques to

detect breakage changes (Dig & Johnson, 2006; Kapur et al., 2010; Mostafa, Rodriguez,

& Wang, 2017; Xavier, Brito, Hora, & Valente, 2017). Recently, Xavier et al. (2017)

performed a large-scale analysis on 317 real-world Java libraries with 9K releases and 260K

client projects. Their results show that 14.78% of the API changes are incompatible with

previous versions and 2.54% of their clients are impacted. They also found that libraries

with a higher frequency of breaking changes are larger, more popular, and more active.

Bogart et al. (2016) empirically studied three software ecosystems, including npm, and

found that fixing bugs, efficiency improvements, and addressing technical debt are the main

reasons for inducing breakage changes API. Also, Businge et al. (Businge, Serebrenik, &

van den Brand, 2012, 2015) studied Eclipse interface usage by Eclipse third-party plug-ins

and evaluated the effect of API changes and non-API changes. Dig and Johnson (2006)

proposed a catalog of API breaking changes and non-breaking changes. They found that

80% of the changes that break dependent projects are related to refactoring tasks.

Raemaekers et al. (2014) investigate the use of semantic versioning in Java libraries.

They found that breakage changes are prevalent in Java libraries. Zhong and Mei (2018)

conducted an empirical study on API usages focusing on how different types of APIs are

used. Their empirical results showed that single API class usages are mostly strict orders,

while multiple API class usages are more complicated because they include both strict

orders and partial orders. Also, Kula et al. (2017) studied more than 4,600 open source

projects and found that 81.5% of studied projects are keeping their outdated dependencies

libraries.

Mostafa et al. (2017) performed an investigation to gain insight on the behavioral back-

ward incompatibilities of Java libraries. They proposed a method that use regression test-

ing of 68 version pairs of 15 Java libraries, and examine more than 120 real world bugs.
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Their results showed that behavioral backward incompatibilities are not well understood by

libraries developers and rarely documented. Kim, Nam, Yeon, Choi, and Kim (2015) pro-

pose a tool called Remi that predicts high-risk APIs in terms of producing potential bugs

in the dependent projects. The main goal of Remi is to assists developers in writing more

test cases for the high risky APIs. Rodrı́guez-Baquero and Linares-Vásquez (2018) present

the use of 43 mutation test operations to test Node.js and JavaScript projects and leverage

the npm platform to run test suites. They found that the proposed operations provide a

mutation test coverage of 70.59% on average. Taneja, Zhang, and Xie (2010) proposed

an automated test generation for database applications using mock objects, demonstrating

that with this technique they could achieve better test coverage. Abdalkareem et al. (2017)

studied the use of trivial packages on npm and found that even though developers believe

that trivial packages on npm are well-test, their qualitative analysis showed that only 45%

of the trivial packages have test case written for them.

The work by Mezzetti et al. (2018) is closest to our work in Chapter 5. In their

work, the authors proposed a technique to detect packages that break the types of their

public interface in the npm ecosystem. The study leverage the test suites of dependent

projects and uses a dynamic analysis to learn models of the package interface types. Our

work complements the prior work because we propose a technique that leverages tests from

dependent projects to detect semantic and behavioral breakage-inducing versions of target

dependency.

3.3 Studying Package Evolution in Software Ecosystems

Several studies examine the overall growth of software ecosystems. For example, Wit-

tern et al. (2016) did the first large-scale study of the npm ecosystem. They study the

evolution of the npm ecosystem regarding growth and development activities. The study

found that only 27.5% of packages in the npm ecosystem are depended upon, indicating
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that developers largely depend on a core set of packages. Decan et al. (2019) also em-

pirically compare the evolution of the dependency network in seven software packaging

ecosystems. Their results show how fast each packaging ecosystem and packaging depen-

dency network is growing over time. They observe the continuing growth of the number of

packages and their dependency relationships. Some other work also studies the evolution

of software ecosystems (e.g., (German, Adams, & Hassan, 2013; Kikas, Gousios, Dumas,

& Pfahl, 2017)). In the same line with these existing studies, our work in Chapter 6 exam-

ines the evolution of npm ecosystem in terms of its dependency graph. However, we focus

on employing the npm dependency graph and calculate the centrality for each package to

identify npm packages that are in decline.

Other work has been done to examine software projects that are not active anymore.

For example, Coelho, Valente, Silva, and Shihab (2018) use machine learning classifiers to

identify unmaintained GitHub projects. They also examine the level of maintenance activ-

ity of active GitHub projects to detect unmaintained projects. In a following work, Coelho,

Valente, Milen, and Silva (2020) developed a metric to alert developers about the risks of

depending on a given GitHub project based on the built ML classifiers. In the context of the

Python ecosystem, Valiev et al. (2018) studied the factors that affect the sustainability open

source projects. Their results show that the centrality of a project in the ecosystem depen-

dency network has a high impact on the project activities. Other works also investigate the

overall popularity of open source projects. For example, Borges, Hora, and Valente (2016)

studied the popularity of GitHub repositories. They identified four patterns of popularity

growth, which relate to factors such as stars and forks. As shown in the work mentioned

above, examining the level of activity of an open source project is of critical importance, in

particular, for packages in software ecosystems to maintain healthy dependencies. Hence,

our work in Chapter 6 addresses this issue by detecting which npm packages are in

decline.
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There is also a body of research that investigates specific aspects of packages in a soft-

ware ecosystem, including the source code size of packages (Abdalkareem, Oda, et al.,

2020), the impact of forks on the popularity of packages (Zhu, Zhou, & Mockus, 2014),

conflicts between used JavaScript packages (Patra, Dixit, & Pradel, 2018) or Python pack-

ages (Y. Wang et al., 2020), identifying breaking updates in npm package (Mezzetti et al.,

2018; Møller & Torp, 2019), and studying cross-project bugs that may impact a large part

of a software ecosystem (W. Ma et al., 2020). Similar to these aforementioned studies, we

focus on one aspect of the used packages in the npm ecosystem: the package centrality.

We propose in Chapter 6 the use of package centrality to identify packages in decline and

evaluate its effectiveness in the npm ecosystem.

3.4 Recommending Package Dependencies

Several studies proposed approaches to recommend packages to developers. Thung,

Lo, and Lawall (2013) proposed an approach to recommend packages for projects based on

their current dependencies, using association rule mining and collaborative filtering. Other

studies targeted the same problem by using different approaches, such as multi-objective

optimization (Ouni et al., 2017), and pattern mining and hierarchical clustering (Saied et

al., 2018). Recently, Nguyen, Di Rocco, Di Ruscio, and Di Penta (2020) proposed a more

efficient approach as it generates recommendations in a comparably less historical data.

The main goal of these approaches is to tap in the missed opportunities of using available

packages, based on the project’s package dependencies and characteristics. However, our

goal in Chapter 7 is to recommend migration opportunities of better alternatives than

packages already in use.

Chen, Gao, and Xing (2016) proposed an approach for mining Stack Overflow tags to

find semantically similar packages. Even though this approach can return a set of similar

packages, it has no evidence of the feasibility of migrations between the alternatives (He et
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al., 2021). Thus, researchers proposed mining historical migrations from existing software

repositories, which rely on the crowd’s wisdom in performing migrations to alternative

packages (Alrubaye et al., 2019a; Teyton et al., 2012, 2014). However, their approaches

suffer from either low recall (Alrubaye et al., 2019a; Teyton et al., 2012), or low precision

(Teyton et al., 2012, 2014). He et al. (2021) improved the performance by utilizing multi-

ple metrics to capture different dimensions of evidence from development histories when

recommending dependency migrations extracted from other software repositories. This ap-

proach relies on analyzing the commits and their messages to extract migration patterns, it

is sensitive to how developers divide their changes across commits and the clarity of com-

mit messages. In contrast, our approach extracts dependency migrations based on versions

without considering the individual commits, which overcome the previous limitation. Also,

our approach in Chapter 7 targets migration suggestions for packages in decline only,

avoiding overwhelming the developers with undesired suggestions (Erlenhov, Neto, &

Leitner, 2020).

Researchers empirically investigated dependency migrations. Kabinna et al. (2016)

highlight the challenges in migrating to new logging packages. Alrubaye et al. (2020)

analyzed several code quality metrics before and after applying dependency migrations.

de la Mora and Nadi (2018) studied the role of common metrics in developer selection of

packages. He et al. (2021) proposed new four metrics (i.e., Rule Support, Message Support,

Distance Support, and API Support) to rank the migration suggestions. They all use project

level metrics in their approaches, while we are the first to use the centrality in the context of

dependency migrations (i.e., an ecosystem level metric), which emphasizes the community

interest in performing the dependency migrations.
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Chapter 4

An Empirical Study on the

Characteristics of Highly-Selected

Packages

4.1 Introduction

In recent years, the proliferation of software ecosystems has led to a vast and rapid

growth of the number of open source packages.1 As of September 2021, there were over

1.7 million packages available on the registry of the Node Package Manager (npm), one

of the largest software ecosystems. Furthermore, the number of packages grew by around

60% between September 2019 and September 2021 (DeBill, 2021).

With the massive number of packages out there, finding the right package to use can

be challenging, considering that many packages provide similar functionalities. However,

there are packages that standout and experience high interest from developers. We believe

that understanding the characteristics of these highly-selected packages is very important

1In this chapter, we use the term package referring to open source components published on software
ecosystems.
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since it helps developers answer the question: which packages a developer should choose

among many existing choices. In addition, it can be used to improve the performance

of package recommendation systems (de la Mora & Nadi, 2018; Semeteys, 2008; Stack-

Overflow, 2017; Zheng, Zhang, & Lyu, 2011) and enhance the user experience of pack-

age search engines (Abdellatif, Zeng, Elshafei, Shihab, & Shang, 2020; Cruz & Duarte,

2018; StackOverflow, 2017). For package developers, understanding the factors of choos-

ing highly-selected packages can be helpful for various purposes, such as improving the

aspects that the developer look for, acquiring the community attention, and eventually in-

crease the package usage. The potential implications of understanding these factors moti-

vate our work.

Previous studies examine different aspects of packages in software ecosystems, such

as centrality and popularity (Abdalkareem, Oda, et al., 2020; Abdellatif et al., 2020; Lar-

ios Vargas, Aniche, Treude, Bruntink, & Gousios, 2020; S. Qiu et al., 2018), and some

examine the selection factors of relevant packages (Jadhav & Sonar, 2009; Larios Vargas

et al., 2020). The main limitation of prior works is that they are based on a purely quanti-

tative analysis of popular packages or only interviewing developers in a specific industrial

context. In addition, understanding the characteristics of highly-selected packages is still

the subject of much discussion and refinement. This is because several facts include per-

sonality aspects and examining different data modalities from several sources, in which a

developer is typically a familiar user of a specific package. Thus, in this chapter, we divide

the study into two parts - qualitative and quantitative (John, Creswell, & CLARK, 2000).

Figure 4.1 shows an overview of our study design. In the first part (referred from now on

as qualitative analysis), we conduct a user study survey that involves 118 JavaScript de-

velopers. We ask our survey participants to fill-in a form composed of 17 statements about

factors they use when selecting npm packages. Then, we qualitatively analyze the answers

to the 17 questions using descriptive statistics.
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Qualitative Study 

1. Qualitative Analysis: surveying  
Javascript developers about package 
usage factors.

2. Quantitative Analysis: using a logistic 
regression model to validate the 
developers’ perceptions.

Survey: 118 JavaScript 
Developer responses.

Github Data: we collected 
repository level factors.

Snyk Data: we collected 
security vulnerability factors. 

npm Data: we collected 
package level factors.

Figure 4.1: An overview of our study design.

To provide explanations to the findings of the qualitative analysis, we conduct quan-

titative analysis on a set of 2,427 npm packages grouped into highly-selected and not

highly-selected packages. Similar to prior work (Bavota et al., 2015; Lee et al., 2020;

Tian, Nagappan, Lo, & Hassan, 2015), we estimate the highly-selected packages based

on the number of dependent packages (i.e., clients packages) within the npm ecosystem.

Then, we analyze the selected packages and collect quantitative data to present the factors

studied in our survey. Next, we use regression analysis to quantitatively explain which of

the studied factors are the most important.

The survey results show that JavaScript developers believe that when selecting a pack-

age to use, they look for packages that are: well-documented, receive a high number of

stars on GitHub, have a large number of downloads, and do not suffer from security vul-

nerabilities. Moreover, our regression analysis complements the results of our survey about

highly-selected packages. Also, it describes the differences between the developers’ per-

ceptions about highly-selected packages and the characteristics of highly-selected pack-

ages. In general, our work makes the following key contributions:

• We perform a mixed qualitative and quantitative analysis to investigate the character-

istics of highly-selected packages on the npm ecosystem. We present our results from
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surveying 118 JavaScript developers and validate the survey result through a quantitative

analysis of 2,427 npm packages.

• We identify the most important factors that packages’ users should consider when select-

ing an npm package to use in their projects.

• We provide practical implications for packages’ maintainers, the npm ecosystem’s main-

tainers, and researchers and outline future research avenues.

The remainder of this chapter is structured as follows. Section 4.2 describes the study

design and presents the results of the qualitative analysis. Section 4.3 describes the study

design and presents the results of the quantitative analysis. We discuss the implications of

our study in Section 4.4. We discuss the threats that may affect the validity of the results in

Section 4.5. Finally, Section 4.6 concludes our work.

4.2 Qualitative Analysis

This analysis aims to survey JavaScript developers to understand the characteristics of

packages that JavaScript developers look for when selecting an npm package to use. In this

study, we surveyed 118 JavaScript developers.

4.2.1 Study Design

This section presents our survey design, participant recruitment, and data analysis meth-

ods.

Survey Design

To understand which factors developers look for when selecting an npm package, we

design a survey containing three main parts. The first part contains questions related to the
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background of the participants. We ask these questions to ensure that our survey partici-

pants have sufficient experience in software development and in selecting and using npm

packages. In this part, we ask the following questions:

(1) How would you best describe yourself? A question with the following choices and the

last choice is a free-text form: Full-time, Part-time, Free-lancer, and Other.

(2) For how long have you been developing software? A selection question with the follow-

ing options: <1 year, 1−3, 4−5, more than 5 years.

(3) How many years of JavaScript development experience do you have? A selection ques-

tion with the following options: <1 year, 1−3, 4−5, more than 5 years.

(4) How many years of experience do you have using the Node Package Manager (npm)?

A selection question with the following options: <1 year, 1−3, 4−5, more than 5 years.

(5) How often do you search for npm packages? A question with the following options:

Never, Rarely (e.g., once a year), Sometimes (e.g., once a month), Often (e.g., once a

week), Very often (e.g., everyday).

(6) Which search engine interface do you use to find relevant npm packages? A question

with the following multiple choices and the last choice is a free-text form: Online search

on the npm web page (i.e., npms), Command line search, Google or other general web

search engines, and Other.

In the second part of the survey, we have a list of statements that present seventeen

factors that can affect selecting npm packages. In particular, we ask the question “How

important are the following factors when selecting a relevant npm package?” Table 4.1

reports the seventeen factors statements. For each statement, the table presents each fac-

tor’s definition and the rationale behind asking about it. In the survey, we ask participants

to rate these statements using a Likert-scale ranges from 1 = not important to 5 = very
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Table 4.1: List of factors used in selecting a packages from the npm ecosystem.

Factor The survey statements Rationale

Forks The number of forks for the pack-
age’s source code on GitHub.

The number of forks that a package receives gives an indication that the pack-
ages are active and many developers are contributing to these packages (Gousios,
Pinzger, & Deursen, 2014).

Watchers The number of watchers of the
package’s GitHub repository.

Developers can watch package repositories on Github so they can receive noti-
fications about package development activities (Sheoran, Blincoe, Kalliamvakou,
Damian, & Ell, 2014). The higher the number of watchers on a package indicates
that the package is well-known and used by many developers. We consider that
packages with an increased number of watchers refer to highly-selected packages.

Contributors The number of contributors to a
package’s GitHub repository.

The higher the number of contributors to a package shows that the package is more
likely to attract developers (Yamashita, Kamei, McIntosh, Hassan, & Ubayashi,
2016). Thus, it indicates that the package is highly-selected.

Downloads The number of downloads the
package has.

The package that has a higher number of downloads indicates that the packages to
selected and used (Abdellatif et al., 2020).

Stars The number of stars of a pack-
ages on GitHub.

The npm package that received a high number of stars on GitHub could indicate to
developers that a package is more likely popular, which may attract them to use the
package (Borges & Valente, 2018; Dabbish, Stuart, Tsay, & Herbsleb, 2012).

Dependencies The number of dependencies the
npm package has.

A larger number of dependencies could not attract more developers to use the pack-
ages since prior work shows that packages with a more considerable dependency
may lead to dependency hell (Abdalkareem et al., 2017).

License Wether the npm package has a
permissive or restrictive software
license.

When evaluating a package, it is also essential to consider non-functional require-
ments, such as the license. Using a package with no license or with a license that
does not match the developer organization’s usage and policies can quickly become
a problem (Meloca et al., 2018; Team, 2019).

Documentation Whether the npm package repos-
itory has online documentation,
e.,g. README file.

The package that is well-documented and has a very organized README file is
more likely to be used by many developers (Begel, Bosch, & Storey, 2013; Hata,
Todo, Onoue, & Matsumoto, 2015).

Test Code Whether the npm package has
test cases written.

Packages that have test code written are more likely to attract developers to use
them since it indicates that the packages are well-tested (Abdalkareem et al., 2017).

Build Status The build status of the npm pack-
age for example from Travis CI.

The presence of a high number of failed builds in the package repository may lead
developers not to use the package (Abdellatif et al., 2020).

Vulnerabilities If the npm package depends on
vulnerable dependencies.

If a npm package is affected by vulnerabilities, it may concern developers and deter
them from using the package (Abdalkareem, Oda, et al., 2020; Abdellatif et al.,
2020).

Badges If the package repository has
badges.

The presence of badges in the package repository indicates that the package is of
good quality that attracts developers to use the package (Trockman, Zhou, Kästner,
& Vasilescu, 2018).

Website If the package has a custom web-
site.

The presence of a website for the package indicates that the package is supported by
an organization, which is usually a signal that there is more than one maintainers or
major contributor (i.e., there is support by an organization) (H. S. Qiu, Li, Padala,
Sarma, & Vasilescu, 2019).

Releases The release frequency of the
package.

A package with several releases indicates that the package is well maintained, which
may increase the application’s maintenance overhead.

Closed Issues The number of closed issues in
the package’s repository.

The number of closed issues indicates how well-maintained the package is and
reveals how maintainers of the package respond to issues. Packages with a large
percentage of closed issues attract more developers to use the package (Abdellatif
et al., 2020).

Commit
Frequency

The commit frequency in the
package repository.

Developers mainly look for well-maintained and active packages to use. Prior work
also shows that the number of commits a package receives gives a good indication
of how active the package is, which results in high usage (Abdellatif et al., 2020).

Usage The number of projects using the
package on GitHub.

Packages that are used by many other developers are more likely to attract more
developers to use (Abdalkareem, Oda, et al., 2020).
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important (Oppenheim, 1992). We choose to investigate these factors since: 1) our litera-

ture review indicates that these factors are known to impact the usage and selection of npm

packages, 2) we focus on studying factors that developers can easily observe through ex-

amining the package source code or its software repository, e.g., from the GitHub website.

In the last part of our survey, we ask the participants an open-ended question about

whether they have any additional comments or other factors that they look for when they

select a package. We ask this open-ended question to give our survey participants maximum

flexibility to express their opinion and experience with the selection of npm packages,

which also comply with the survey design guidelines (Dillman, 2011).

Once we had our survey questions, we shared the survey with three colleagues who are

experts in JavaScript developers who use packages from npm. We did this to discover po-

tential misunderstandings or unexpected questions early on and improve our survey (Dill-

man, 2011).

Participant Recruitment

To identify the participants in our survey, we need to reach out to developers who are the

experts in selecting and using JavaScript packages. Thus, we resort to the public registry of

npm (npm, 2017b). The registry contains information on each package published on npm,

including the developers maintaining the package. We use the npm registry to collect a list

of emails and names of JavaScript developers who use a large number of npm packages.

To do so, we analyze the npm registry, and for each package, we extract its dependencies

and the contacts of the developers who maintaining the package. Then, we select the top

thousand developers based on the number of their distinct package dependencies. It is

important to note that we select developers who use a high number of packages since they

likely went through the process of selecting npm packages many times.

Once we identified this initial sample of developers, we examined all the names and
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Table 4.2: Participants’ position, experience in software development, JavaScript and usage
of the npm package manager.

Developers’
Position Occurrences Development

Experience Occurrences Experience
in JavaScript Occurrences Experience in

Using npm Occurrences

Full-time 84 < 1 2 < 1 0 < 1 0
Part-time 9 1 - 3 21 1 - 3 25 1 - 3 59
Freelancer 15 4 - 5 15 4 - 5 37 4 - 5 20
Other 10 > 5 80 > 5 56 > 5 39

email addresses of the identified developers to exclude duplicated emails and names. Based

on this step, we identified 931 unique JavaScript developers. Next, we sent email invitations

of our survey to the 931 unique developers. However, since some of the emails were

returned for several reasons (e.g., invalid emails), we successfully reached 895 developers.

In the end, we received 118 responses for our survey after having the survey available

online for ten days. This number of responses translates to a 13.18% response rate, which

is comparable to the response rate reported in other software engineering surveys (Smith,

Loftin, Murphy-Hill, Bird, & Zimmermann, 2013).

Survey Participants

Table 4.2 shows the positions of the participants, the development experience of the

participants, the JavaScript experience of the participants, and their experiences in using

npm ecosystem.

As for the participants’ positions, 84 participants identify themselves as full-time de-

velopers and 9 participants as part-time developers. Interestingly, 15 participants identify

themselves as freelancers. The remaining ten participants identify themselves as having

other positions not listed in the question including, open source developer, IT specialist,

and PhD student.

Of the 118 participants in our survey, 80 participants have more than 5 years of devel-

opment experience and 15 responses have between 4 to 5 years. Also, 21 participants claim

to have between 1 to 3 years of experience, and only two participants have less than two
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Figure 4.2: Survey responses regarding how often our survey participants search for npm
packages. In our survey, the question has the following answers: never, rarely (e.g., once a
year), sometimes (e.g., once a month), often (e.g., once a week), very often (e.g., everyday).

years of development experience. In addition, 56 participants have more than 5 years of

experience in JavaScript, 37 participants have experience in using JavaScript between 4 to

5 years, and 25 participants claim to have between 1 to 3 years of experience.

We also ask our survey participants about their experience in using packages from the

npm ecosystem. The majority of our survey participants indicate that they have more than

one year of experience using npm. Specifically, 39 participants have more than 5 years of

experience using npm and 20 responses have between 4 to 5 years. Also, 59 participants

claim to have between 1 to 3 years of experience.

In addition, to inquire our survey participants about their development experience, we

ask them how often they search for npm packages and which search engine they used to

perform their search. Figure 4.2 reports the result related to participants’s habits about

how often they search for npm packages. Of the 118 participants, 15% indicate that they

search for npm packages very often, and 42% indicate that they often search for new npm

packages. Almost all other participants (38%) indicate they sometimes look for npm pack-

ages. Interestingly, only 4% of our survey participants report that they rarely do search

for packages, and no one indicates they she/he never looks for npm packages. Our survey

participants also report that they use mainly web search engines (e.g., Google) when they
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search for npm packages to use. Interestingly, only 20% of them indicate they use other

search engines.

Overall, the background information about the developers who participated in our sur-

vey shows that they are experienced in JavaScript and selecting npm packages, which gives

us confidence in the finding based on their experiences.

Analysis Method

To analyze our survey responses about the different factors used to select npm packages,

we show the distribution of the Likert-scale for each factor, which ranges from 1 = not

important to 5 = very important (Oppenheim, 1992). Also, for responses of each factor,

we calculate values of the median, the interquartile range (IQR), the mean, and the standard

deviation (SD).

In addition, to analyze the free-text answers from the open-ended question related to

developers’ opinions, we perform an iterative coding process to understand whether the

responses show any other factors that we did not consider in our survey (Rea & Parker,

2014). The first two authors iteratively developed a set of codes based on an inductive

analysis approach (Seaman, 1999). In total, the authors manually examined 30 responses

from the developers who answered the optional open-ended question. Based on this analy-

sis, we did not find any new factors that we did not consider in our survey. In fact, all the

responses to this open-ended question support the developers’ opinions about the studied

factors.

4.2.2 Study Results

Table 4.3 shows the factors’ name and their survey statements and 5-point Likert-scale

distribution for each factor from our survey responses. The table also shows the scale’s me-

dian alongside IQR and mean alongside SD. Overall, based on the results, we can divide the
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Table 4.3: Survey results of the factors used in selecting a package from the npm ecosystem.

Factor Distribution Median IQR Mean SD
1 2 3 4 5

Documentation 5.0 0.0 4.64 0.77
Downloads 4.5 1.0 4.30 0.88
Stars 4.0 2.0 3.97 1.13
Vulnerabilities 4.0 2.0 3.70 1.24
Release 4.0 1.0 3.48 1.10
Commit frequency 3.0 1.0 3.33 1.23
Closed issue 3.0 1.0 3.29 1.09
License 3.0 3.0 3.26 1.39
Usage 3.0 2.0 3.19 1.33
Test Code 3.0 2.0 3.14 1.31
Dependencies 3.0 2.0 3.12 1.33
Contributors 3.0 2.0 3.03 1.40
Build Status 3.0 2.0 2.89 1.31
Website 3.0 3.0 2.67 1.32
Watchers 3.0 3.0 2.53 1.25
Badges 2.0 2.0 2.25 1.20
Forks 2.0 2.0 2.12 1.25

factors used by developers when selecting packages into three groups: 1) important factors

(e.g., documentation, downloads, and stars), 2) somewhat important factors (e.g., license

and testing), and 3) unimportant factors (e.g., watchers and badges). In the following, we

discuss the developers’ perceptions in more detail:

Documentations: on a 5-point scale, participants indicated that the most important

factor when looking for an npm packages to use is how well a package is documented.

Table 4.3 shows that the majority 93% (median = 5.00 and mean = 4.65) of the responses

agree with the statement that the GitHub repository of a npm package that they are ex-

amining should have some online documentation. In addition, to confirm this statement,

developer P40 stated that “Sample code documentation on its usage” are important factors

when selecting an npm package to use. Interestingly, one of the developers (P44) men-

tioned that the quality is an essential factor when they examine the documentation of a
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package: “the documentation quality, many sites have generic readme that does not help.”

Downloads: the second most important factor reported by our survey participants is

the number of downloads that the packages have. More than 85% (median = 4.5 and

mean = 4.30 on the 5-point scale) of the responses say that they consider the number of

downloads a package has when searching for a package to use. These results give a high

indication that developers still consider the download count of packages as a sign of the

community interest, which means that the package is a good option to select.

Stars: our survey showed that developers also look for the number of stars that the

packages have. On the 5-points scale, developers believe that the reputation of the packages

in terms of start count is an important indicator with median = 4 and mean = 3.97. For

example, developer P74 states that “reputation/popularity” are the most important factors

when selecting an npm package to use.

Vulnerabilities: the fourth most important factor developers consider when searching

for a new npm package to use is that the packages do not depend on vulnerable or outdated

dependencies. On a 5-point scale, 62% of the developers see vulnerabilities as an essential

factor when finding relevant npm packages. Furthermore, some developers emphasize the

essentiality of this factor, participant P58 said “... not dependent on other out of date or

vulnerable packages.” Also, participant P45 stated that they look for packages that are free

of vulnerable code and use tools to scan for vulnerabilities such as Snyk and dependabot

tool.

Our survey also reveals that there are some other factors that developers do not have

an agreement on whether they are essential when they search for packages to use or not.

We found that factors such as release (median = 4.0 and mean = 3.48), commits frequency

(median = 3.0 and mean = 3.33), and test code (median = 3.0 and mean = 3.14) do not

have a consistent agreement between the participants in our survey. However, some par-

ticipants explicitly highlighted the importance of some of these factors, such as developer
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P69, who said “examining the package repository and see the recent and historical ac-

tivity/commits/updates would help making the decision”. Another developer, P1 explain

that “. . . the test coverage status is useful, but can be verified manually in the code when

deciding to use the package. The last date a commit was made is very important. The more

recent the better. The last date a release was made is very important. The more recent the

better.” In addition, we observe from Table 4.3 that developers do not have a consistent

agreement about factors such as license and number of dependent applications, number of

dependencies that the package uses, the number of closed issues, and the number of con-

tributors, which have, on a 5-point scale, values with a mean of 3.26, 3.19, 3.12, and 3.29,

respectively.

The other interesting group of the studied factors that developers tend not to consider

when examining an npm package to use are: forks, badges, watchers, website, and build

status. Our analysis shows that these factors received median values between 3.0 and 2.0

and mean values between 2.89 and 2.12 on 5-point scale. However, only one developer

from our survey supported the idea that examining the build status is essential when select-

ing a package to use and said P1 “The build status is important no matter if it comes from

Travis CI or other providers ...”.

Finally, we found that developers use some other factors when looking for npm pack-

ages. Our survey participants indicated that if there is a big software company that sup-

ports the package. For example, developers P39 said “The source of the package, if it is by

a company that actively supports open source and maintains their open source packages

(ex: Facebook, Formidable labs, Infinite Red), brings more points”. Also, another partici-

pant stated the same, such P11 “Private support for big companies in open source projects

or libs (angular-google, react-facebook, etc) that means the package usually follow good

practices, test, linter, ci, etc, and the team that maintains the package is really good.”

In addition, two other developers in our survey indicated that support of community
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discussions about the packages matters. For example, P94 mentions “Whether the package

is actively maintained by developers well known and reputed in the community & whether

the package has good typescript support” and P60 said “If the library is supported with an

online community where usage is discussed”. Another developer, P20 stated “References

on other professional webpages about the package”.

In summary, JavaScript developers have access to a wealth of information about a large

number of npm packages that can be used when deciding which packages to use. Our

survey shows that developers mainly consider packages that are well-documented, pop-

ular, and do not suffer from security vulnerabilities. Moreover, when we conducted our

survey, among the 118 respondents, 73 (62%) provided their emails and showed inter-

est in our findings. This indicates the strong relevance and importance of the findings

to the practitioners and the overall JavaScript development community.

4.3 Quantitative Analysis

The goal of this analysis is to triangulate our qualitative findings. In particular, we

want to quantitatively validate the developers’ perception about the factors that highly-

selected npm packages possess. In this analysis, we examined 2,592 npm packages divided

into highly-selected and not highly-selected packages. For each package in our dataset,

we collected quantitative data to present the factors studied in our survey. Then, we used

regression analysis to quantitatively investigate which of the studied factors are the most

important.
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4.3.1 Study Design

In this section, we describe our methodology of collecting a dataset of highly-selected

and not highly-selected npm packages. We also describe how we collect the studied fac-

tors, which serve as the dependent variables in our study. Finally, we present our analysis

method and steps.

Data Collection

To quantitatively examine the factors that make some npm packages highly-selected,

we want to have a sufficient number of packages that present both highly-selected and not

highly-selected packages. To do so, we resort to study packages from the npm ecosystem.

We start by retrieving the metadata information of all the npm packages that are published

on the npm ecosystem. In particular, we wrote a crawler to interact with the npm registry

and download the package.json file of every npm package as of December 23, 2020 (npm,

2017b). It is important to note that the package.json contains all the package information,

including the names of other packages that the package depends on them. Once we have

the package.json, we start recursively analyzing the package.json file of every package to

extract its dependencies. After that, for each package in the npm ecosystem, we count the

number of other packages that list it as a dependency, i.e., number of dependent packages.

It is important to note that we choose to use the number of dependent packages as a

proxy of highly-selected packages over other measurements, particularly download count,

for two main reasons: 1) npm provides an accumulated download count over time, 2) the

download count that npm provides could include crawlers and downloads due to transi-

tive dependencies. Furthermore, our process consider only the direct dependent packages

from the npm registry, avoiding including dependent applications from other platforms like

GitHub. We do this since our goal is to proxy how many times a developer went through
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the process of selecting a package and decided to select the subject package. However, plat-

forms like GitHub hosts millions of applications created using predefined project templates

or bootstrapping tools. For example, as of October 5th, 2020, the tool Create React App

alone bootstrapped 4.8 million public applications on GitHub. Considering such applica-

tions will amplify the decision taken by the creators of such tools or templates to overtake

the decisions of millions of developers. For the same reason, we do not consider the num-

ber of transitive dependents because it does not reflect how many times developers have

selected a package.

In total, we analyzed the package.json file of 1,423,956 npm packages. After that, we

choose to study 6,924 packages that have more than 100 dependent packages, i.e., the num-

ber of packages that depend on the selected packages. We decided to study npm packages

that have more than 100 dependent packages for two main reasons. First, we found that

prior work indicates that npm ecosystem has many packages that are not used, e.g., toy

packages. Thus, selecting packages with more than 100 dependent packages eliminates

incompetent packages. Second, since we want to examine highly-selected npm packages,

we focus on packages that can potentially be used and appear as an option for developers

when searching for an npm package to use, for example, packages that are adopted by other

packages. In addition, we select this threshold after examining the distribution of number

of dependent packages across all packages in the npm ecosystem.

Next, we sorted the selected npm packages based on their number of dependent pack-

ages (Chatzidimitriou. et al., 2019). Figure 4.3 presents the distribution of the number of

dependent packages. We consider the top 20% as highly-selected packages and the bottom

20% as not highly-selected packages. We resort to using these thresholds to have an es-

sential distinction between the two samples, which element gray area between them. Also,

prior studies used a similar sampling technique (Bavota et al., 2015; Lee et al., 2020; Tian et

al., 2015). In the end, we had 1,385 highly-selected packages and 1,385 not highly-selected
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Figure 4.3: A histogram for the used npm packages.

packages. We use these packages in quantitative analysis.

Package Usage Factors

Since we want to use regression analysis to understand the most important factors in

determining highly-selected packages, we collect seventeen package factors. Since these

factors present information that developers can observe by examining online sources about

the npm packages, we resort to extracting these factors from four different sources: 1)

GitHub, which presents the package source code and other development activities such as

issues and commits, 2) npm, which contains information about npm packages that devel-

opers can examine on the npm website, 3) npms, which is the official search engine used

by the npm platform and provides metadata about the packages, and 4) Snyk, which is a

service that provides a dataset of vulnerable npm packages and their versions. Table 4.4

shows the factors with their names, value types, and descriptions. In the following, we

present the detailed process of extracting the studied factors from each data source:

GitHub: to collect the repository level factors, we use the official GraphQL API (GitHub,

2021a) to collect the number of forks, watchers, stars, and closed issues for each npm

package in our dataset. Since GraphQL API does not provide direct access to the num-

ber of contributors and build status of each package repository, we use the GitHub REST
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Table 4.4: List of factors values with their description.

Factor Type Description

Forks Number Forks count on GitHub
Watchers Number Watcher count on GitHub
Contributors Number Contributors count on GitHub
Downloads Number Downloads count from npm
Stars Number Stars count on GitHub
Dependencies Number Count of dependencies from package.json
License Boolean Weather has a permissive license
Documentation Number Size of README file
Test Code Boolean Whether has a test script
Build Status Number Percentage of failed jobs on last commit
Vulnerabilities Number Percentage of vulnerable versions
Badges Number Count of badges in the README file
Website Boolean Weather has a website
Releases Number Frequency of releases
Closed Issues Number Count of closed issues on GitHub
Commit Frequency Number Count of commits in the last year
Usage Number Count of dependent repositories on GitHub

API (GitHub, 2021b) to count the number of contributors, and the list of build status. In

addition, to measure the commits frequency, we cloned the GitHub repositories for each of

the selected packages and count the number of commits on all branches that was commit-

ted in the latest year. Finally, we wrote a web crawler to collect the package usage factor

from the GitHub web interface, which presents the number of other GitHub repositories

that depend on the package.

npm: from the official npm registry, we retrieve the list of releases for each package

in our dataset. Then, we calculate the release frequency factor by dividing the number of

releases by the number of days. Likewise, to present the dependencies factor, we use the

registry to count the number of dependencies that a package uses in its last version. Also,

to calculate the documentations factor for each package, we consider the size of the readme

file. We then measure its size in terms of the number of its characters.
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Also, we use both the npm registry and GitHub GraphQL API consecutively to re-

trieve the name of the license that a package declares. We then classify the licenses into

three categories: 1) permissive licenses, 2) semi-permissive licenses, and 3) restrictive li-

censes (Team, 2019). Finally, we retrieve the list of badges for each package using a tool

called detect-readme-badges2. Once we have the list of badges, we calculate the badges

factor by counting the number of badges used by the package.

npms: for the download factor, we use the official npm search (npms3) through its API

to collect the number of downloads. Next, we examine whether the package has test code to

represent the test code factor. Additionally, we use the npms API to determine the website

factor. To do so, we extracted the website URL for each package in our dataset. Since some

packages refer to their GitHub repository as their main website, we filter out those URL

addresses.

Snyk: to collect the vulnerabilities factor for each package in our dataset, we wrote a

web crawler to collect the list of vulnerable releases from the Snyk web interface. Then, we

divide the number of vulnerable releases by the total number of releases for each package

to calculate the vulnerabilities factor.

Table 4.4 shows the name, value type, and description of the factors that we use to build

our logistic regression models. Since some packages do not have values for some factors,

we filter out these packages from our dataset. In the end, we were able to collect factor

values for 1,332 highly-selected packages and 1,195 not highly-selected packages.

4.3.2 Analysis Method

To quantitatively examine the most impactful factors that determine highly-selected

packages, we use logistic regression analysis. In our study, we examine the selected 2,427

packages, which we classified into highly-selected and not highly-selected packages. We

2https://www.npmjs.com/package/detect-readme-badges
3https://npms.io
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then build a logistic regression to model the dependent variable, whether a package is

highly-selected or not highly-selected. In the following sections, we describe the steps

used to build the logistic regression model.

Correlation Analysis

Since the interpretation of the logistic regression model can be affected by the highly

correlated factors (Midi, Sarkar, & Rana, 2010), we first start by removing highly cor-

related factors in our dataset. Thus, we compute the correlation among the independent

variables using Spearman’s rank correlation coefficient. We used Spearman correlation be-

cause it is resilient to non-normally distributed data, which is the case for our independent

variables (Kendall, 1938). We consider any pair of independent variables that have a Spear-

man’s coefficient of more than 0.8 to be highly correlated. We selected the cutoff of 0.8

Spearman since prior work suggested and used the same threshold for software engineering

data (Li, Shang, Zou, & Hassan, 2017; Tian et al., 2015). Figure 4.4 shows the hierarchi-

cal clustering based on the Spearman correlation among our independent variables. From

Figure 4.4, we observe that three factors are highly correlated, which are stars, forks, and

watchers. Finally, for these three factors, we only keep one factor, which is the number of

stars. After this analysis, we end up having fifteen unique variables.

Redundancy Analysis

Once we remove the highly correlated factors, we also apply redundancy analysis to

detect variables that do not add information to the regression analysis (Harrell Jr, 2015).

Thus, we remove them, so they do not affect the interpretation of our logistic regression

model. In our dataset, we did not find redundant variables among the remaining fourteen

factors.
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Figure 4.4: The hierarchical clustering shows the factors that present highly-selected pack-
ages. We apply the Spearman correlation test and use a cut-off value of 0.8, to eliminate
highly correlated factors. This analysis left us with fifteen factors that is used in the regres-
sion analysis.

Logistic Regression

To build our logistic regression model, we follow steps that have been applied in prior

studies (Lee et al., 2020). After identifying the factors that may impact the selection of

an npm package, we used logistic regression to model the highly-selected packages. Since

prior studies show that using logistic regression may be affected by the estimated regression

coefficient (Harrell Jr, 2015; Lee et al., 2020), we train our model using several bootstrap

iterations. Similar to prior work (Lee et al., 2020), we create 100 rounds of bootstrap

samples with a replacement for training and testing sets that ensure the testing samples are

not included in the training set and vice versa. Then, we build a logistic regression model

on the created bootstrap training samples, one for each iteration (i.e., 100 times) and test it

on the testing samples. In the end, we calculate the mean of the sample statistics out of the

100 bootstrap samples.
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Evaluating Performance

Once we build our logistic regression model, we want examine the performance of

the built model. Hence, we use the area under the receiver operating characteristic curve

(ROC-AUC), an evaluation measurement known for its statistical consistency. An ROC-

AUC value ranges between 0 and 1, where 1 indicates perfect prediction results, and 0

indicates completely wrong predictions. Prior studies show that achieving a 0.5 ROC-AUC

value indicates that the model’s predictions are as good as random. However, an ROC-AUC

value equal to or more than 0.7 indicates an acceptable model performance for software

engineering datasets (Lessmann, Baesens, Mues, & Pietsch, 2008; Nam & Kim, 2015; Yan

et al., 2019). Our logistic regression model achieved an ROC-AUC value of 0.74.

Usage Factors Importance

To investigate which of the examined factors are the most impactful in our logistic

regression modeling of highly-selected packages, we use the Wald χ2 maximum likelihood

tests value of the independent factors in our model (Harrell Jr, 2015). The higher the

Wald χ2 statistics value of an independent factor, the greater the probability that its impact

is significant.

We also generate nomogram charts to present the studied factors’ importance on our lo-

gistic regression model (Harrell Jr, 2015; Iasonos, Schrag, Raj, & Panageas, 2008). Nomo-

grams are easy to explain charts that provide a way to explore the explanatory power. Since

Wald χ2 test provides us with only the explanatory power, we use the nomogram to show

us the exact interpretation of how the variation in each factor influences the outcome of the

regression model. The Wald χ2 also does not indicate whether the studied factors have pos-

itive or negative roles in determining highly-selected packages or not, while the nomogram

provides such information.

Figure 4.5 shows the nomogram of the logistic regression model. The line against each

42



factor in the figure presents the range of values for that factor. We use the points line at the

top of the figure to measure the volume of each factor contribution, while the total points

line at the bottom of the figure presents the total points generated by all the factors. In our

analysis, the higher the number of points assigned to a factor on the x-axis (e.g., the number

of stars has 100 points), the larger its impact is on the logistic regression model.

To examine whether the difference in factor values between highly-selected and not

highly-selected npm packages is statistically significant, we performed a Mann-Whitney

test to compare the two distributions for each factor and determine if the difference is

statistically significant, with a p-value < 0.05 (Mann & Whitney, 1947). We also use

Cliff’s Delta (d), which is a non-parametric effect size measure to interpret the effect size

between highly-selected and not highly-selected packages. As suggested by Grissom and

Kim (2005), we interpret the effect size value to be small for |d| < 0.33 , medium for

0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474.

4.3.3 Study Results

Table 4.5 shows the values of the Wald χ2 and the p-value for the selected fifteen factors

that may impact the highly-selected npm packages. Figure 4.5 also shows the estimated

effect of our factors using nomogram analysis (Iasonos et al., 2008). In addition, Table 4.6

shows the Mann-Whitney test’s p-value and the effect size for each of the examined factors.

Overall, we observe that the regression analysis supports the main qualitative findings.

However, it controverts with the importance of some factors.

From Table 4.5, we observe that the number of downloads has the most explanatory

power with a Wald χ2 value equal to 63.00 when we model the probability of highly-

selected npm packages. The second most important factor in modeling highly-selected

packages is the number of stars a package has (Wald χ2 = 24.21). Figure 4.5 also shows

that npm packages that have a high number of downloads and received a high number of
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Table 4.5: The result of our logistic regression analysis for investigating the most important
factors.

Factors Wald χ2 p-value

Downloads 63.00 0.000 ***
Stars 24.21 0.000 ***
Closed Issue 17.62 0.000 ***
Vulnerabilities 16.47 0.000 ***
Badges 12.21 0.001 ***
Documentation 11.61 0.001 ***
Dependencies 8.04 0.005 **
Build Status 5.54 0.019 *
Test Code 4.62 0.032 *
Contributors 4.41 0.036 *
Commits Frequency 2.34 0.126
Release 2.32 0.127
License 1.68 0.196
Usage 1.15 0.283
Website 0.02 0.880

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

stars have a high chance to be highly-selected packages. Table 4.6 shows that the Mann-

Whitney test also indicates that the number of downloads and stars of highly-selected and

not highly-selected packages are statistically significantly different, with a large Cliff’s

delta effect size.

Our regression analysis shows that documentation and vulnerability factors also have

explanatory power as well. Developers report these two factors in our survey to have a

high impact when selecting npm packages. With a Wald χ2 value equal to 16.47, packages

that have a high percentage of vulnerable versions have higher impact power and the same

apply for the size of the readme files with Wald χ2 = 11.61. In addition, Figure 4.5 con-

firms that documentation and vulnerabilities have a positive contribution to the probability

of a npm package being highly-selected. The Mann-Whitney test also confirms that the

percentage of vulnerable releases and the documentation of highly-selected and not highly-

selected packages are statistically significantly different, but with negligible Cliff’s delta
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Table 4.6: Highly-selected Vs. Not highly-selected packages: Mann-Whitney test (p-value)
and Clff’s Delta (d).

Factor p-value Cliff’s Delta (d)

Usage 0.000 0.814 (large)
Downloads 0.000 0.548 (large)
Stars 0.000 0.498 (large)
Contributors 0.000 0.464 (medium)
Documentation 0.000 0.128 (negligible)
Vulnerabilities 0.000 0.071 (negligible)
Website 0.000 0.069 (negligible)
Build Status 0.000 0.067 (negligible)
License 0.001 0.022 (negligible)
Test Code 0.091 0.022 (negligible)
Releases 0.000 0.278 (small)
Commit Frequency 0.000 0.244 (small)
Badges 0.000 0.223 (small)
Dependencies 0.000 0.189 (small)
Closed Issues 0.000 0.159 (small)

effect sizes.

Interestingly, our regression analysis shows two of the studied factors that have an ex-

planatory power when they are used to model the probability of highly-selected npm pack-

ages, which are the number of badges that the package has and the number of closed issues

on Github. However, our survey results show that developers tend not to consider these fac-

tors when searching for an npm package to use. Table 4.5 shows that the number of closed

issues is the third most important factor with a Wald χ2 value equal to 17.62 while the

number of badges is placed fifth, having a value of Wald χ2 equal to 12.21. Furthermore,

Figure 4.5 shows the number of badges has a positive contribution with the probability

that the package will be highly-selected packages. When we examine whether the differ-

ence in these factors values between highly-selected and not highly-selected packages is

statistically significant, we found they are significant but with a small effect size.

In addition, our nomogram analysis shows that the number of contributors as a factor

has a negative contribution to the probability of a package being highly-selected, while
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Figure 4.5: The nomogram visually presents the impact of each of the studied factors in
determining highly-selected npm packages. The logistic regression model used to gener-
ate this nomogram achieved a median ROC-AUC of 0.74 on 100 out-of-sample bootstrap
iterations.

the regression analysis shows that this factor has a modest explainable power (Wald χ2 =

4.41).

4.3.4 Lifetime Analysis

Our quantitative analysis investigated the factors that make an npm package a highly-

selected one. Our analysis used the cumulative number of dependent packages in the npm

ecosystem as a proxy to select the highly-selected packages. Thus, the age of the pack-

ages may impact our results. For example, a young package with 100 dependent packages

gained in one month tends to be more highly-selected than a package with 200 dependents

gained in two years.

To examine the effect of the package lifetime on our results, we normalized the depen-

dent factor (i.e., number of dependent packages) in our analysis by the package age (i.e.,

number of days since the first release of the package). We then follow the same approach
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Table 4.7: The result of our logistic regression analysis for investigating the most important
factors considering lifetime of the studied packages.

Factors Wald χ2 p-value Shift

Downloads 60.66 0.000 *** -
Badges 16.83 0.000 *** ↑ 3
Closed Issue 16.65 0.000 *** -
Stars 15.83 0.000 *** ↓ 2
Vulnerabilities 12.63 0.000 *** ↓ 1
Dependencies 8.94 0.003 ** ↑ 1
Build Status 6.98 0.008 ** ↑ 1
Documentation 6.80 0.009 ** ↓ 2
Contributors 2.92 0.087 . ↑ 1
Test Code 2.91 0.089 . ↓ 2
Commits Frequency 1.90 0.168 -
Usage 1.54 0.214 ↑ 2
License 1.53 0.217 -
Release 1.28 0.257 ↓ 2
Website 0.00 0.954 -

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

as in Section 4.3.2. First, we regroup the studied packages into highly-selected and not

highly-selected groups based on the number of dependent packages after normalizing the

values by the age of the packages. We consider the top 20% packages as a highly-selected

package and the low 20% as low-used packages. We ended up with 1,214 highly-selected

and 1,213 low-used packages. Second, we apply correlation and redundancy analysis to

the data. Finally, we apply the same analysis steps described in Section 4.3.2 to build

our regression model. The model that we built based on the normalized dependent factor

achieves ROC-AUC value of 0.74.

Table 4.7 shows the result of our logistic regression analysis for investigating the most

important factors after the normalization along side with the shift in the ranking compared

to the original analysis. From Table 4.7, we see that results before and after the normal-

ization are similar. In particular, we observe that number of downloads, stars, and docu-

mentation are still among the most important factors. Overall, this analysis shows that our
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observations still hold.

In summary, our quantitative analysis complements developers’ perceptions about the

factors that they look for when selecting an npm package to use. In particular, our

results show that highly-selected npm packages tend to possess characteristics that in-

clude a high number of downloads, stars, and a higher ratio of closed issues. Lastly, in

contrast to our qualitative analysis results, our regression analysis shows that a higher

number of badges is an essential characteristic of highly-selected npm packages.

4.4 Discussion and Implications

Our study has many direct benefits for the ecosystem maintainers and the npm commu-

nity, particularly package owners and developers who use the npm packages. We discuss

these implications and benefits in the following.

The npm software ecosystem maintainers should pay attention to certain aspects

of the packages when building package search or recommendation tool. Several pack-

age search tools have been proposed and deployed, which can be classified into two main

categories. The first category based on keyword search (Kashcha, 2017; npm, 2017a; Tem-

ple, 2017). These tools are limited because they do not take into consideration the quality

aspect of the packages. Tools from the second category provide package search while con-

sidering some quality aspects of the packages, e.g., the npms tool (Cruz & Duarte, 2018).

While npms is the official search tool used by the official npm website, it has some limita-

tions. The main limitation of npms is that it assigns different weights of the used aspects

without a clear justification, which negatively affects the quality of the search engine (Ab-

dellatif et al., 2020). Our examination of npms’ source code and documentation shows that

npms arbitrarily gives weights to certain aspects when ranking the packages.

We recommend that the npm ecosystem could use our results to build more robust
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search tools. npm maintainers can integrate our rank of the important factors to weigh

each factor’s contribution when used in a search tool, which they are based on developers’

perceptions.

Several package characteristics should be carefully examined by developers when

choosing an npm package to depend on in their projects. As mentioned earlier, our

results indicate that highly-selected packages possess specific characteristics. For example,

our regression analysis results show that the number of closed issues in the package reposi-

tory is commonly related to highly-selected packages. We believe that JavaScript develop-

ers can use our results to build systematic guidelines for choosing an npm package to use.

In fact, there have been several attempts to help developers create such a guideline (Franch

& Carvallo, 2003; Semeteys, 2008; Wasike, 2010). However, their main drawback is that

they focus on selecting packages in a specific context or propose general guidelines to se-

lect open source components. In addition, they do not consider package characteristics that

npm provide, such as the number of downloads.

To promote their packages, the owner of npm packages should provide a clear

indication of their packages’ characteristics. Gaining more popularity within the soft-

ware ecosystem requires putting more effort into signaling the published packages’ quality.

Overall, all the package factors that our qualitative and quantitative results highlight are

essential factors that package owners can employ to attract more users. For example, many

responses indicate that package documentation is an important factor when looking for a

package to use. Based on these findings, we recommend developers invest more effort in

making their package documentation, particularly readme files, clearer and up to date.

4.5 Threats to Validity

In this section, we discuss the potential threats to the validity of our work.
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4.5.1 Internal Validity

Internal validity concerns factors that could have influenced our results. To qualitatively

understand the factors that may impact the use of an npm package, we survey JavaScript

developers. While we carefully design our survey based on the guideline provided in (Dill-

man, 2011), our survey may have been influenced by some factors. First, our survey partic-

ipants may poorly understand some of the factor statements. To mitigate this limitation, we

conducted a pilot survey where we gave our survey to three expert JavaScript developers

and incorporated their feedback about the survey. Second, we have a list of well-defined

factors that may impact selecting an npm package. Even though we choose to study these

factors since they are used in the literature, we may miss some other factors. To mitigate

this threat, we have one open-ended question, where we ask developers to provide us with

any factors that are missed in our survey (Dillman, 2011). That said, none of our survey

responses report any new factors that can be quantitative.

To recruit participants in our survey, we resort to developers who publish and use pack-

ages from the npm ecosystem. At the beginning of the survey, we articulated that the pur-

pose of our study is to understand how developers select npm packages. This description

may attract more attention from developers, who use npm packages more.

4.5.2 Construct Validity

Construct validity considers the relationship between theory and observation in case

the measured variables do not measure the actual factors. In our study on npm ecosystem,

we used npms platform (Cruz & Duarte, 2018) to measure various quantitative factors

related to testing, community interest, and download counts. Our measurements are only as

accurate as npms; however, given that it is the main search tool for npm, we are confident in

the npms metrics. We also use Snyk (Snyk, 2021) to calculate the number of vulnerabilities

that affect the studied packages, and our measurements are as accurate as libraries.io. We
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resort to using the Snyk data since it has been used by other prior work (Mahmoud Alfadel,

2021; Zapata et al., 2018). In addition, we wrote a crawler to extract factors from the

Github platform through the use of Github API, so our collected data may be affected

by the accuracy of these public APIs. Furthermore, In our study, we investigate package

factors that can be observed in a mechanical way (e.g., examine the Github repository of

the package). However, developers may select npm packages based on a discussion or

recommendation by other developers. Thus, our studied factors may not present the whole

picture.

4.5.3 External Validity

Threats to external validity concern the generalization of our findings. In our study, we

investigate the factor that impacts highly-selected packages that are published on the npm

ecosystem. Our results may not be generalized to other software ecosystems such as maven

for Java or PyPi for Python. However, since npm ecosystem is the most popular software

ecosystem, this gives us confidence in our results. Also, scientific literature shows that

studying individual cases has significantly increased our knowledge in areas such as eco-

nomics, social sciences, and software engineering (Flyvbjerg, 2006). Second, our dataset

used in the quantitative analysis presents only open source packages hosted on GitHub that

do not reflect proprietary packages or packages that are hosted on other platforms such as

GitLab and BitBucket. Furthermore, we surveyed 118 JavaScript developers, so we do not

claim that our results are generalized to other developers how do not know JavaScript or

the npm software ecosystem.

Finally one criticism of empirical studies results is “I know it all along” thought or

nothing new is learned. However, such common knowledge has rarely been shown to be

trusted and is often quoted without scientific and research evidence. Our work provides
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such evidence and supports common knowledge (e.g., “packages with good documenta-

tions tend to be highly-selected packages”) while some is challenged (e.g., “developers do

not consider the number of badges when selecting a new package to use.”).

4.6 Chapter Summary

In this work, we use a mixed qualitative and quantitative approach to investigate the

characteristic of highly-selected npm packages. We start by identifying seventeen packages

selection factors based on our literature review and used by existing online package search

tools. Then, we qualitatively investigate the factors developers look for when choosing an

npm package by surveying 118 JavaScript developers. Second, we quantitatively examine

these factors by building a logistic regression model using a dataset of 2,427 npm packages

divided into highly-selected and not highly-selected packages.

Among our main findings, we highlight that JavaScript developers believe that highly-

selected packages are well-document, receive a high number of stars on GitHub, have a

large number of downloads, and do not suffer from security vulnerabilities. Moreover, our

regression analysis complements what developers believe about highly-selected packages

and shows the divergences between the developers’ perceptions and the characteristics of

highly-selected packages.

Our results help in deciding how to select package dependencies. Actively maintained

packages frequently receive updates to patch security vulnerabilities, fix bugs, or add new

features. However, updates could introduce bugs that break the existing functionalities.

Hence, in the next chapter, we propose a technique to detect breakage-inducing versions of

third-party dependencies.
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Chapter 5

An Approach to Identify Breaking

Updates

An earlier version of this chapter is published In Proceedings of the 17th International Con-
ference on Mining Software Repositories (MSR) 2020.

5.1 Introduction

Today’s software systems are large and complex. Many of these software systems are

not built from scratch, but rather leverage others’ code that has been built in the past to

accelerate their own development. One particular driver of this code reuse is the growing

popularity of software ecosystems such as Node.js Package Manager (npm),1 which pro-

vides a platform for developers to share their own and use others’ code. Thus, developers

commonly publish their reusable code as packages on npm, which can be used in current

and future projects developed by members of the npm ecosystem (Wittern et al., 2016).

Code reuse has many advantages, including allowing software systems to be developed

faster, include richer features, and even achieve higher quality (Abdalkareem et al., 2017;

1https://www.npmjs.com
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Abdalkareem, Oda, et al., 2020). However, this often comes at an increased cost of having

to manage these dependencies (Mirhosseini & Parnin, 2017). Specifically, as the software

evolves (and its dependencies do as well), updating these dependencies can become more

risky (Bogart et al., 2015; Decan et al., 2017, 2019).

The question of whether one should update to the newest released version is an im-

portant development decision. On the one hand, updating means that developers will get

the newest features and important patches (Cadariu et al., 2015; Decan et al., 2018b). On

the other hand, the fear of an update breaking existing functionality often lingers on the

minds of developers, making them resort to version pinning their dependencies, or other

suboptimal solutions (Decan et al., 2018a; Kula et al., 2017; Zerouali et al., 2018).

To ensure the stability and quality of newly released dependencies, developers often run

their own tests. This has proven to be a good solution and some tools (e.g., Greenkeeper2)

support the automation of such approaches. However, in many cases, developers are still

forced to “roll back” updates to packages because they introduce regression in their system

functionality. Indeed, Mirhosseini and Parnin (2017) found that there is a need for new

techniques to increase the confidence in automated dependency updates.

To tackle the aforementioned issues, we set out to leverage knowledge from the crowd

to provide insights about the risk of a newly released version of a package. Specifically, we

propose a technique that runs the tests of other projects that depend on a specific version

and use their test outcome(s) as crowd-sourced indicators of the risk of adopting a newly

released package.

The technique runs tests from dependent projects before and after updating a target

dependency from a prior version to a newer version. Unless an update is intentionally

breaking backwards compatibility (e.g., a major release), the tests from the prior version

should continue to pass in the newer version (npm Documentation, 2018; Raemaekers, van

2https://greenkeeper.io
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Deursen, & Visser, 2017).

To detect breakage-inducing versions, we execute the tests of dependent projects that

depend on the prior version of the target dependency. For those tests that pass on the prior

version, we re-execute them after updating the target dependency to the newer version.

Tests that pass the execution on the prior version but not the execution on the newer version

may indicate that the newer version has introduced a breakage.

To evaluate the proposed technique, we perform an empirical study of ten cases where

an upgrade was rolled back because of a breakage-inducing version. Our study evaluates:

1) the coverage of the tests from other dependent projects and 2) the ability of the technique

to indicate potential problems with a newer version of a target dependency.

We find that the tests from other dependent projects have varying test coverage, and in

some cases, this coverage can be as high as 55%. Also, we find that of the 10 cases where

a dependency was rolled back, tests from other dependent projects were able to indicate a

failure in 60% of the time. The following are the key contributions of our work:

• We propose an approach to detect breakage-inducing versions of third-party packages

by leveraging tests from “the crowd”.

• We perform an empirical study of ten cases of real word breakage-inducing versions

to demonstrate the effectiveness of our approach.

• We make our dataset publicly available to facilitate further research (Mujahid, Ab-

dalkareem, Shihab, & McIntosh, 2019).

The remainder of this chapter is structured as follows. We start by describing the back-

ground information using a motivational example in Section 5.2. Section 5.3 provides an

overview of the study design. Section 5.4 presents the results of our research questions. We

discuss our results in Section 5.5. Section 5.6 presents the threats to validity of our study.

Finally, Section 5.7 draws conclusions.

55



5.2 Background and Motivating Example

To help illustrate how our approach works and the challenges of updating the depen-

dencies in the context of the npm ecosystem, we provide a simple motivating example.

Amy is as a web developer that is responsible for developing and maintaining web ap-

plications for three projects in her company. Her projects depend on open source projects

from npm to leverage backend and frontend functionalities for her company’s applications.

Each of the applications uses on average 50 npm dependencies. As with many packages on

npm, the dependencies she uses get updated frequently. Amy wants to be more proactive

in managing her software dependencies, so she uses Greenkeeper, a tool that automatically

checks for dependency updates. If a dependency has a newer version available, Green-

keeper updates the dependency to the newer version and runs the tests that Amy wrote for

her application. If the newer version passes the tests, Greenkeeper creates a pull request to

update the dependency.

One day, Amy started to receive complaints from her application’s users about unex-

pected behaviour. When she debugged the issue, she found that a recent change that she

made by updating to a newer version (0.14.0) of the cheerio dependency introduced

the issue. Even though all tests passed, the tests that Amy wrote were not able to detect

the breakage behaviour in the updated dependency - the tests simply did not cover the

case causing the unexpected behaviour. The immediate solution was to rollback the depen-

dency update to the prior version (0.12.4). Even though this procedure fixes the issue,

Amy starts to become concerned about breakage-inducing versions. Through a quick web

search, Amy finds that she is not the only one that suffers from this breakage-inducing

version problem.

Our proposed technique aims to help developers like Amy, be more confident when

they update their dependencies. In this example, Amy’s tests did not detect the breakage-

inducing version, however, as we illustrate in Figure 5.1, Amy is not the only one that uses
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Figure 5.1: Motivating example overview and used terminology.

the target dependency. Other developers also use the same dependency in their projects.

If Amy’s tests failed to detect the breakage-inducing version, other’s tests may have po-

tentially caught that breakage-inducing version. When a newer version of a dependency

is out, why not wait until other developers update to the newer version and based on their

test results determine whether or not we should update. If the newer version breaks others’

code, there is a high chance that it may break Amy’s code as well.

Our technique simulates something similar, but at a very high level. Rather than waiting

for others to update, we update the target dependency from the prior version to the newer

version for the dependent projects that use the target dependency and check whether it

breaks their tests or not. If the update breaks the tests, we flag the newer version of the

target dependency as a breakage-inducing version. Even though when we mark a version

as a breakage-inducing version, it may not mean it will be a breakage-inducing version for

every target dependency, however it means that newer version might be risky since it broke

other’s tests. Hence, Amy, for example, should be careful when she wants to update to this

specific newer version.
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5.3 Study Design

In this section, we discuss the main data used in our study and its collection process.

5.3.1 Corpus of Candidate Packages

Since the main goal of our study is to detect breakage-inducing versions of packages in

npm, we first collect a large dataset of packages that are published on npm. Even though,

the main intent of packages published on npm is to be used as third-party libraries by other

JavaScript projects, these packages also depend on other packages to perform their tasks.

To perform our study, we retrieve the list of all packages published on npm thorough its

registry (npm Documentation, 2019). We were able to collect a total of 664,204 of npm

packages as March 29th, 2018.

We choose to study packages on npm that are written in JavaScript since 1) we manually

examine the source code changes of some packages and to give us confidence, we choose

a programming language that the authors have expertise in, 2) JavaScript is one of the

most popular programming languages on GitHub and also npm the most growing packages

management systems in recent years (Decan et al., 2019; Vasilescu, Yu, Wang, Devanbu,

& Filkov, 2015). In addition, npm has a well structured software ecosystem with a large

amount of packages.

That said, it is essential to highlight that our approach is not language or platform

dependent and can be applied on dependencies written in any languages and published on

any dependency ecosystem. Figure 5.2 illustrates the steps used to build our data corpus.

We describe each step in more detail next.

Apply Data Filtering (Step 1). After obtaining the list of 664,204 packages, we want

to analyze the commit history and then use the packages’ tests to detect the breakage-

inducing versions. However, the suggested/common practice on npm is to exclude the tests
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Figure 5.2: Data collection overview

and non-production code files from the published packages (npm Documentations, 2018).

To recover the missed data, we rely on the git repositories of the packages to retrieve their

test code and their development history. Thus, we filter out packages that do not have a git

repository. We found 391,553 npm packages in our dataset that have a valid link to their

GitHub repository.

To eliminate immature and dummy packages, we filtered out packages that have less

than two commits that touch the package.json file, which is the dependency configu-

ration file. It is worth mentioning that this filtering process is important to allow us to keep

only packages that do update their dependencies. After applying this filter, we were left

with 290,417 repositories to analyze and use as our set of dependent projects.

Once we obtain the lists of 290,417 GitHub repositories, we extracted their dependen-

cies and tracked all changes that the developers performed on their dependency versions.

Specifically, we tracked all commits that touch the package configuration file (package.json),

which we explain next.

Extract Dependencies and Versions (Step 2). Since our approach relies on identify-

ing dependent projects to test the candidate update of a dependency, we need to iden-

tify the dependencies of the dependent projects. However, dependencies and versions can

change across the history of a project. Thus, we want to collect these changes for two

reasons: 1) to extract dependency downgrade cases, which indicate problematic updates

i.e., breakage-inducing versions, and 2) to build a precise dependency graph between the

dependent projects and the dependencies based on different points in the history, which

will be used later to select the dependent projects.
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In order to extract the dependencies and their versions across the history of a project,

we analyze all commits that touch the package.json file, which is a file that npm use it

to recognize the package dependencies and its versions. We use the GitHub GraphQL API3

to collect all commits that touch the packages.json file for each project in our dataset.

As a result, we collected 4,200,936 commits that touch the package configuration file. On

each commit, we retrieve two versions of the packages.json file, one showing the file

before the commit (FileP ) and the other showing the file after the commit (FileC). We

parse the files and extract the dependency list from FileC . For each dependency in FileC ,

we extract its version from FileC and FileP . At the end of this process, we were able to

extract more than 53,019,774 dependency records across the history of the projects.

Identify the Explicit Versions (Step 3). Developers of JavaScript projects usually do not

specify the explicit version number for each of their dependencies. Instead, it is popular to

use version ranges for their dependencies. Hence, we cannot link these dependency ranges

to a specific version. In such cases, it is not possible to pin point the exact dependency

version that was used. For example, if the range is 1.2.x and the latest version is 1.2.1,

npm will point the dependency to this version. Later, if a newer version, e.g., 1.2.2, is

released, npm will point the dependency to it, and so forth. npm ensures that the updates

respect the version ranges specified by developers. For example, if the newer version is

1.3.0, then npm will not update to it since it does not satisfy the specified version range

1.2.x.

Thus, to identify the version of a dependency that was used to satisfy a version range,

we map version ranges to the latest satisfied version that is released before the date of the

commit that introduces FileC . In order to perform this step, we: 1) replicated the npm

registry locally; and 2) built a registry proxy that takes the commit date as an argument

and simulates the registry as if it was at that specific date. Then, we use the built proxy to

3https://developer.github.com/v4/
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Table 5.1: The Selected Ten Downgrading Cases.

Package Downgraded
From To

ESLint 2.4.0 (ˆ2.2.0) 2.2.0 (∼2.2.0)
Express 3.4.0 3.3.4
Express 4.2.0 (ˆ4.0.0) 3.4.8 (∼3.4.x)
Intl.js 1.2.5 (ˆ1.2.4) 1.2.4
jQuery 2.2.0 (ˆ2.1.1) 2.1.4 (∼2.1.4)
Marked 0.3.5 (ˆ0.3.2) 0.3.3
Marked 0.3.9 (ˆ0.3.6) 0.3.7
Nodemon 1.12.1 (ˆ1.11.0) 1.11.0
Passport 0.3.0 (ˆ0.3.0) 0.2.0
Request 2.83.0 (ˆ2.53.0) 2.81.0

intercept the result from the npm registry and remove versions that are newer (i.e., come

after the date of the analyzed snapshot). The proxy helps us simulate the status of npm

result at the snapshot time (commit date). Using this approach, we were able to determine

the exact version of each dependency, which we later use to determine dependency down

grades and provide us with a precise list of dependent projects.

5.3.2 Selection of Case Studies

In order to examine the practicality of our proposed approach, we want to extract a

baseline of breakage-inducing versions. Since the normal behaviour is upgrading the de-

pendencies, a dependency downgrade can be a perfect indicator of unusual behaviour i.e.,

upgrades that break the tests of the dependent projects. Thus, in this study, we resort to use

the downgraded cases to select our studied breakage-inducing versions that have cases of

breakage-inducing versions

For every commit in our dataset, we compare the explicit versions for the ranges ex-

tracted form FileP and FileC . If the explicit version of the dependency on FileP is greater

than the explicit version on FileC , we consider this as a downgrade case. We were able

61



to identify 9,046 possible breakage-inducing versions from 3,255 npm dependency pack-

ages by analyzing the commits form their dependent projects and detect dependency down-

grades.

To isolate the downgrade behaviour from other changes, we only kept commits that do

not perform any other changes besides the dependency downgrade change. In other words,

we select downgrade cases where the commit only changes one line, which is the line

that changes the dependency version. By adding this constraint, we were left with 1,880

possible breakage-inducing versions from 909 npm dependency packages.

In addition, to make sure the process correctly identifies cases of downgrade versions,

the first two authors also performed a sanity check of randomly selected 100 downgrading

commits by checking the commit messages and examining the packages.json. In all

cases, the commit messages confirmed our results that the commits were only downgrading

the dependencies.

Since the number of identified packages is a large number and it does not make sense

to examine all of these cases, we decide to focus our analysis on cases that we can manage

to analyze manually and perform an in-depth analysis. To evaluate our proposed approach

using different real-word npm dependencies and breakage-inducing versions, we randomly

selected ten downgrade cases to be used as the baseline in the evaluation of our proposed

technique. In the selected cases, we consider the prior versions that the developers down-

graded from as the breakage-inducing versions and the newer versions that they downgrade

to as the stable versions.

Table 5.1 presents the ten randomly selected cases. The second column shows the

breakage-inducing versions that the developers downgrade from as it was specified in

FileP (version ranges is shown in brackets). In the third column, the table shows the

versions that the developer downgrade to, as specified in FileC (version ranges is shown in
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Figure 5.3: The approach overview.

brackets). Table 5.1 shows that the selected cases belong to eight npm dependency pack-

ages that are well-known and commonly used within the JavaScript developer community.

5.3.3 Detection of Breakage-Inducing Versions

To detect a breakage-inducing version, we rely on running the tests of projects that

depend on the prior version before and after updating the target dependency to the newer

version. We argue that the tests of the dependent projects can reveal the breakage-inducing

versions. To do that, we propose an approach that is composed of three main steps that

include, 1) identify the projects that use the prior version of the target dependency, 2)

prioritize the dependent projects to run sufficient tests, and 3) automatically run the tests of

dependent projects. Figure 5.3 presents our proposed approach and next, we explain these

steps in more details.

Identify Dependent Projects. To identify dependent projects that have candidate tests

for our selected ten breakage-inducing versions, we use the records of explicit package

dependencies that we explained earlier in Section 5.3.1. To checkout the code on a specific

point in history, i.e., where it depended on a prior version, we retrieve all commits that

point to that prior version. In most cases, a project’s repository history can have several

commits that point to the same version. In such case, we choose the first commit that

introduces the prior version. Then, we checkout the work directory based on that commit.

We were able to find 5,853 dependent projects that use the prior version of the selected

cases. Finally, we want to exclude projects that do not have tests. To do so, we examine the

63



the package.json file of each project and check whether it specifies a test script. This

process left us with with 3,473 dependent projects that expose test scripts. Later, we use

these scripts to run the the tests.

Prioritize Dependent Projects. The number of dependent projects can scale to thousands

of projects. Building all of them may add no value. Therefore, in practice, a budget of num-

ber of builds needs to be specified, which will impact how many dependent projects projects

one can consider. To include the most valuable dependent projects, for each breakage-

inducing version in our case studies, we order its dependent projects in a queue based on

their test coverage percentage. To retrieve the test coverage of the dependent projects, we

rely on the API of the npm search engine (npms).4 If more than one package has the same

test coverage percentage, we prioritize the package that has a higher ranking score in npms.

The npms scores are based on quality, maintenance and popularity - more details about how

these scores are calculated can be found on npms (npms, 2016).

Run Dependent Project’s Tests. To detect breakage-inducing versions, we need to build

the dependent projects, which include installing their dependencies and running their tests.

To perform this process, we build the dependent projects in an isolated environment us-

ing Docker containers. Our implementation keeps a record of the output for every stage,

the time that each stage spent and the detailed test coverage reports. We achieve this by

performing the following.

First, for each prior version of our selected cases, we build and run tests of its dependent

projects. Our proposed approach relies on builds and tests of dependent projects that pass

the prior version. The build requires installing the dependencies. However, the fact that

developers can specify version ranges can be an additional point of failure. For example,

a dependency could have a newer version that break backward compatibility. If a newer

version satisfies the specified version range, our build will install the newer version which

4https://npms.io
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is incompatible. To mitigate the problem, we used the registry proxy that we implement

(Section 5.3.1) to emulate the registry as it was on the commit date of FileC . In this

case, our replayed build(s) will install the version or versions that were available before the

commit date. The dependent projects whose tests are already failing on the stable version

are not useful since they do not provide useful information (and would not provide useful

information in a real-life scenario). Therefore, we exclude dependent projects whose builds

fail on the prior version. In our case study, we use a budget of 80 successful builds to be

the limit. This means that if a target dependency passed tests of 80 dependent projects, we

stop running more test and flag its newer version as non breakage-inducing version. At this

budget, we built 1,447 dependent projects from the 3,473 projects in our dataset. Out of all

builds we were able to successfully build 904 cases.

Second, for dependent projects that passed the previous building and testing stage, we

update their prior version of the target dependency to the newer version. We run the same

tests from the dependent projects based on the newer version and save the result. Then,

we examine the saved results and if a test failed after updating the target dependency from

the prior version to the newer version, we flag that version as a breakage-inducing version.

This is meant to be reported to developers in an effort to help them adopt a more data-driven

decision about updating to a newer version of their dependencies.

5.4 Case Study Results

In this section, we present the results of our empirical study with respect to our two re-

search questions. For each research question, we present our motivation, approach, results

and implications.
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Figure 5.4: The distribution of test coverage for the studied cases based on running the tests
of their dependent projects.

RQ1. Do the tests of dependent projects complement each other in

terms of coverage?

Motivation. Previous work showed that JavaScript tests tend to have low coverage (Fard &

Mesbah, 2017). Therefore, we would like to know if better test coverage can be achieved by

considering the tests of dependent projects. Achieving improved coverage using such tests

would suggest that our technique has the potential to detect additional breakage-inducing

versions. In this research question, we examine whether the tests of the dependent projects

contribute to improving the test coverage of a package that they depend on.

Approach. To answer this question, we use an approach that depends on measuring

how the tests of dependent projects contribute to cover a target dependency. We use the
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Istanbul5 tool to measure test coverage. We configure the tool to track the test execu-

tion for the target dependency. After running all the tests of the dependent projects, we

collect the detailed test coverage reports. Then we aggregate the test report based on the

paths of the covered files, including the percentages of statements, branches, functions, and

lines. In cases where the same file is covered by test code of more than one dependent

project, we aggregate based on the coverage map of the file, i.e., we check the coverage

map for each statement, branch, and function, if an element is covered in one report but not

the other, we consider it as a covered element, so we count it only once. Finally, we mea-

sure the increase in test coverage based on the order of dependent projects that we produce

using the prioritization described in Section 5.3.1.

Results. Figure 5.4 shows the distribution of test coverage for each selected case based on

statements, functions and branch test coverage. The tests of dependent projects individually

covered, on median, up to 22% statement test coverage of the target dependency’s code.

However, in one particular case (nodemon 1.11.0), we found one dependent project

that covers approximately 50% of its code. Figure 5.4 also shows that there is a case

(jquery 2.1.4) where crowd-based testing does not improve test coverage.

We also examine the effect of the number of dependent projects on the amount of

test coverage that they provide. Figure 5.5 shows the cumulative statement test cover-

age achieved by running the dependent projects’ tests. Overall, we observe that adding

more dependent projects increases the statement test coverage of the target dependency.

Figure 5.5 shows that eight dependencies have an increase in the test coverage when we

increase the number of dependent projects. However, the trend of statement test coverage

of most of the dependencies remains stable after running the tests of approximately 20

dependent projects.

5https://istanbul.js.org
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Figure 5.5: The cumulative statement test coverage for the selected ten cases based on
running the testes of their dependent projects.

Moreover, we examine the degree to which test coverage is improved by adding crowd-

based test results. Figure 5.6 shows the cumulative statement test coverage when the tests

of the target dependency itself and the dependent projects’ tests are combined. Overall, we

see that in the majority of the cases (9 out of 10) there is an improvement in the statement

test coverage. In fact, in some cases, the cumulative coverage reaches as high as approx-

imately 80%. However, in one specific case (jquery 2.1.4), we see that there is no

improvement, we investigate the case and we found that to run its tests, we need to setup a

local server that supports PHP (jQuery Foundation, 2019).

It is important to note that the coverage in this RQ is measured in terms of the covered

statements. In addition, we also compared the percentage of covered statements, branches

and functions and we did not observe a noticeable difference between them.

Implications. The results show that the tests of dependent projects individually and cumu-

latively can cover the target dependencies up to 47% and 55%, respectively. These results
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Figure 5.6: The cumulative statement test coverage for the selected ten cases based on
running the testes of their dependent projects companied with their own tests.

highlight the importance of using the dependent projects to improve the capacity for detec-

tion of breakage-inducing versions. Such an approach could also improve test generation

tools to produce more effective tests in the context of the ecosystem dependency network.

The dependent projects’ tests can individually cover 23% on median and up to 47%

of the code for the target dependency. However, leveraging the tests of the dependent

projects can cover up to 55% of target dependency code.

RQ2. How effectively can the proposed technique detect real-world

breakage-inducing versions?

Motivation. In the previous research question, we found that dependent projects can pro-

vide tests that cover up to 55% of target dependency code. In this research question, we
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Table 5.2: Builds and Tests Summary.

Cases Number Succeessful Passed First Tests (%) Failed After the Caught as
of Builds Builds (%) (#) (%) Dependency Update Risky Version

eslint 2.2.0 34 61.8 2 9.5 0 No
express 3.3.4 63 54.0 19 55.9 15.8 Yes
express 3.4.8 196 45.9 38 42.7 5.3 Yes
intl 1.2.4 19 63.2 4 33.3 0 No
jquery 0.3.3 364 37.9 42 30.4 0 No
marked 0.3.3 214 67.8 64 44.1 4.7 Yes
marked 0.3.7 73 83.6 28 45.9 7.1 Yes
nodemon 1.11.0 98 77.6 21 27.6 0 No
passport 0.2.0 74 52.7 13 33.3 7.6 Yes
request 2.81.0 312 92.6 83 28.2 2.4 Yes

All 1,447 62.4 314 34.7 4.1 60%

set out to see if using tests provided by dependent projects can catch real-world breakage-

inducing versions.

Approach. To examine the effectiveness of the proposed approach in detecting breakage-

inducing versions, we perform an experiment using the ten studied examples of breakage-

inducing versions that are shown in Table 5.1. For each case, we build and run the tests of

dependent projects using the prior version and once again based on the newer version using

our approach described in Section 5.3.3. Cases where tests pass on the prior version(s), and

have at least one failure on the newer version are flagged as breakage-inducing versions.

Results. The build results for all cases are shown in Table 5.2. Of the 904 successful

builds, 314 builds passed the tests on the prior version. For each case, the second column

shows the number of builds from dependent projects that proceed to the building stage.

The third column shows the percentage of them that have a successful build, which range

between 37.9% and 93.6%. In the fourth and fifth columns, we present the count and the

percentage of dependent projects that passed the tests before updating the target depen-

dency. Finally, the sixth column shows the percentage of dependent projects that failed the

tests after updating the target dependency, which we use in the seventh column to flag if

the newer version is a breakage-inducing version or not.
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Table 5.2 shows that our proposed technique detects six of the ten studied breakage-

inducing versions. For the four cases that our techniques failed to detect, we performed a

manual investigation to gain insight into the reason why our proposed technique was not

able to detect these cases.

eslint 2.2.0: ESLint is a tool that is used to identify and report problematic patterns

or code that does not adhere to style guidelines in JavaScript code (Zakas, 2018). The tool

is mainly used as a development dependency, which is not used in the production code. In

our approach, we select the dependent projects based on their production dependencies. As

a result, we were left with a small number of dependent projects.

In addition, the dependency package has the lowest percentage (9.5%) of passed tests

from its dependent projects in the first testing stage. Out of the 19 dependent projects

that had their tests fail, 16 of them produce the following error (Cannot find module

‘internal/fs’). This error has a known workaround in the Node.js community. Ap-

plying this workaround may have helped, if it was known and applied in advance. Thus, we

were left with only two dependent projects to test the update based on. Unfortunately, these

two dependent projects only improve coverage by 0.8%, and thus, are unlikely to detect the

breakage-inducing version.

intl 1.2.4: Intl.js is a package with five years of development history. The package is

mostly used in client-side web applications to support legacy web browsers. Since web ap-

plications are not reusable dependencies by themselves, developers usually do not publish

them on npm. Since we only used the dependent projects that are published on npm with-

out considering dependent projects outside npm, we could only find 19 dependent projects

for the target dependency version. Out of the 19 dependent projects, only four of them

had their tests pass on the prior version before updating to the newer version. Including

dependent projects in addition to the ones from npm (e.g., GitHub or Bitbucket) can help

to increase the population for this case. We plan to investigate this in future work.
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jquery 2.1.4: jQuery is a JavaScript library designed to simplify the client-side script-

ing of HTML. The package is mainly used to manipulate the Document Object Model

(DOM) in web browser environments. Previous work showed that the DOM makes it hard

for developers to test effectively (Artzi, Dolby, Jensen, Møller, & Tip, 2011; Fard, Mesbah,

& Wohlstadter, 2015; Mirshokraie, Mesbah, & Pattabiraman, 2015). Our result confirms

the finding of a previous study by Fard and Mesbah (2017), which shows that DOM-related

tests lack proper coverage. In the case of jquery 2.1.4, the library test suite itself does

not achieve any test coverage and also the dependent projects do not improve test coverage.

This is due to a missing configuration setup (see RQ1). Hence, our approach cannot de-

tect any breakage-inducing versions that is not covered by the test suites of the dependent

projects.

nodemon 1.11.0: This case has 21 dependent projects that passed the tests of the prior

version. However, all of them also passed the tests after updating the newer version. We

investigated the case to figure out why our approach did not flag the case as a breakage-

inducing version. By checking the commit messages for changes that the developers down-

grade from the newer version (nodemon 1.12.1) to the prior version (nodemon 1.11.0), we

find that developers downgrade to the prior version to maintain backward compatibility

with older JavaScript standards (ECMAScript 5 (Sebestyen, 2009)). The following quote is

an example of a commit message.

“Restrict version to pre-1.12 as it includes a dep requiring const” (Brierton, 2017)

In other words, the newer version of the target dependency depends on a language fea-

ture that is not available in older JavaScript standards (ECMAScript 5). In our experimental

setting, we only use the latest version of Node.js. Our experiment runs on the ECMAScript

6. Hence, downgrades that are performed due to incompatibility with ECMAScript 6 can-

not detected. Note that this is a limitation of our experimental setup and not our approach.
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In theory, if one were to extend the experimental configuration to include ECMAScript 5

environments, our approach would detect such cases.

Implications. With respect to the mentioned limitations, the results show that our tech-

nique is capable of detecting breakage-inducing versions in six of the ten real-world exam-

ples. The developers of both of the dependent projects and the dependencies themselves

can benefit from our technique. Developers of dependent projects can use the approach to

examine their dependency versions before applying the updates. Similarly, dependency de-

velopers can use the approach to check if version updates are likely to introduce regression

into their codebases.

The proposed approach was able to detect six of ten real-world breakage-inducing ver-

sions. However, our technique needs to have enough dependent projects.

5.5 Discussion

In this section, we discuss various aspects of our technique and how they might impact

the technique’s outcomes.

5.5.1 Technique Scalability

The first research question suggests that using more dependent projects to test a target

dependency can extend the test coverage of the target dependency, which increases the

chance to detect breakage-inducing versions. However, running these test cases, especially

when there is a large number of dependent projects, can introduce a large overhead.

To investigate the scalability of our proposed technique, we perform an analysis to

understand the time required to run the tests. To do so, we calculate the time required for

tests of each dependent project and compare it to the percentage of dependent projects that
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Figure 5.7: The distribution of the time that tests consume to pass or fail the builds.

we built. Figure 5.7 shows the distribution of time consumed to pass or fail the builds in our

case study. We observe that the majority of passed builds consume more time than failed

ones. Also, Figure 5.7 shows that the consumed time when the build pass is 66 seconds on

average (median = 9).

Moreover, Figure 5.8 shows the accumulation of builds over time. Based on this, we

observe that 90% of the builds consume less than 50 seconds. However, some builds con-

sume over 890 seconds. Thus, setting a time limit for running builds can reduce the overall

consumed time. For example, in our cases study, considering a time limit of 50 seconds of

the total time, we can build 90% the candidate cases.
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5.5.2 Failed Builds

The results in Section 5.4 show that we were not able to build 37.6% of the candidate

builds. Thus, we want to investigate the reasons behind the failed builds. To do so, the first

two authors reviewed the logs of the failed builds and setup four classification categories.

Then, they manually classified all logs and extracted the main error message. Based on

the manual classification of each build log, we wrote specific regular expression to ignore

the variable parts of the error messages. Then, we executed the regular expression to catch

similar builds failures and classify them.

The result of the classification process is shown in Figure 5.9. In total we classify

543 failed builds. The most common reason (40.8%) is the failing in satisfying the de-

pendencies. The next more frequent reason (22.2%) is missing a JavaScript environment

requirement. For example, some projects depend on Yarn6, which is a dependency man-

ager that uses the npm registry to retrieve the dependencies. For such cases our setup fails

to build and run the tests successfully.

In future work we are planning to mitigate some of these issues by considering the build

6https://yarnpkg.com
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Figure 5.9: The classification of the failed builds

configuration of the continous integration systems, if possible. For example, some of the

projects use Travis CI7, such projects include a configuration that specify pre steps and

environment requirements for the build. For such cases we could satisfy the missed build

requirements and increase the successful build percentage.

5.6 Threats to Validity

In this section, we disuses threats to validity that might influence our study.

5.6.1 Threats to Internal Validity

Internal validity concerns factors that could have influenced our analysis and findings.

First, to evaluate our technique, we select a sample of downgraded cases to be examined.

However, downgrading the dependency can be triggered for many different reasons. There-

fore the results can be affected by introducing invalid evaluation cases. To mitigate this

threat, we have a restricted approach to select these cases 1) we selected cases where the

commits perform only one specific change, which downgrades the dependency version and

2) we make sure that the commit message of the selected cases mentions that a dependency
7https://travis-ci.org
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downgrade as the main reason for the change. Second, we randomly selected only ten cases

of breakage-inducing changes. Even though this number seems to be modest, our analysis

shows that using these cases we were able to systematically evaluate the practicality of

our technique. Also, in the future we plan to perform a large-scale study considering the

lessons learned from our current experiences.

We only use download measurement to prioritize the selected dependent projects. Other

measurements could have been used, such as number of stars for the project. That said, we

believe the selection of our measurement is right since it gives us a clear indication of the

quality of the dependent projects (low quality projects will probably not be downloaded

much). Finally, to measure the test coverage that our technique achieves through running

the test from dependent projects, we use the Istanbul tool. Thus, our analysis heavily

relies on the accuracy of the Istanbul tool. That said, its popularity and common usage

gives confidence in our results.

In our experimental evaluation we examine ten cases and our technique was able to

catch 60% of the breakage-inducing versions. This result is highly dependent on the build-

ing of dependent projects.

5.6.2 Threats to External Validity

Threats to external validity concern the generalization of our technique and findings. In

our study, we only examine packages and dependent projects mainly written in JavaScript.

Thus our findings may not generalize to other programming languages. We also examine

packages published on the npm package manager and hosted on Github. However, using

other dependency ecosystems may provide different result.

To prioritize the selected dependent projects that we use their tests, we rely on the

measurement (i.e., number of downloads) provided by npms. Thus, our prioritization is

heavily impacted by npms. That said, since npms is the main search engine for npm and its
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data has been used in prior work (e.g., (Abdalkareem et al., 2017)), these reasons gives us

confidence in the data provided by npms.

5.7 Chapter Summary

Updating dependencies is an essential part of any software project. However, in open

source ecosystems, where anybody can contribute by publishing reusable packages, the

risk associated with updating dependencies could be problematic (Decan et al., 2017). Pre-

vious work has shown that managing dependencies is one of the most cited drawbacks of

using npm packages (Abdalkareem et al., 2017). In this work, we propose a technique to

detect breakage-inducing versions of third-party dependencies. The technique leverages

tests from dependent projects to warn software teams about breakage-inducing versions.

We evaluate our technique through an empirical study of 391,553 npm packages. We use

the dependency network from these packages to identify candidate tests. We find that our

proposed technique can detect six of the ten studied breakage-inducing versions. However,

we can perfom better if we include more dependent projects.

This chapter encourages developers to update their dependencies by empowering them

with more insight into newly released versions. However, keeping healthy dependencies

by updating to the latest versions of the package dependency is a good practice as long as

the package is maintained. However, packages can decline and become less maintained,

obsolete, or even deprecated. Hence, in the next chapter, we will mitigate this issue by

proposing an approach to discover these packages as early as possible.
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Chapter 6

An Approach to Identify Packages in

Decline

An earlier version of this chapter is accepted to be published in the IEEE Transactions on
Engineering Management Journal (TEM) 2021.

6.1 Introduction

Depending on packages from software ecosystems can boost development productiv-

ity (Abdalkareem et al., 2017), and improve software quality (Zerouali & Mens, 2017).

However, large size and rapid evolution of these ecosystems has its downsides as well.

For example, new (and often better) packages are continuously being introduced (Abdalka-

reem, Oda, et al., 2020; den Besten et al., 2020; Kula et al., 2017; Wittern et al., 2016),

making other, once popular packages, obsolete, dormant or even deprecated (Valiev et al.,

2018). As such, it is becoming increasingly important for application developers to ensure

that they choose the right packages from the ecosystem.

Although prior work examined projects that are unmaintained (Coelho et al., 2020,

2018), to the best of our knowledge, little attention has focused on identifying packages
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that lose popularity over time (i.e., are in decline). At the same time, current popularity

metrics that are commonly used by developers to select packages, such as downloads and

stars, are not adequate to capture a shift in community interest. For example, the number

of downloads represents not only the number of times a package is installed on its own,

but also the number of times it is installed as a dependency of other packages. Hence, the

popularity of a dependent package could heavily impact the number of downloads of its

dependencies (Dey & Mockus, 2018). Also, the number of stars a package is linked to its

repository, which may include many other packages and is unlikely to decrease to reflect

interest shift over time (Borges & Valente, 2018; Zhou, Vasilescu, & Kästner, 2019).

Therefore, in this chapter we use the package’s centrality as a proxy of community in-

terest. Community interest drives packages to evolve, i.e., include better features driven by

community needs, keep up the package maintenance by reporting bugs to maintainers, mo-

tivate maintainers to continue supporting the package, and some times even financially sup-

port the maintainers on platforms such GitHub Sponsors,1 Open Collective,2 and Tidelift.3

On the other hand, packages that are declining in community interest are reused less over

time, may become less actively maintained, and in more extreme cases, even become aban-

doned (Khondhu, Capiluppi, & Stol, 2013; Valiev et al., 2018). Furthermore, the decline in

community interest of a package may indicate that a better solution is drawing attention in

the ecosystem, and developers are migrating to a package that better suits their needs.

Hence, our aim is to effectively identify packages that may be in decline. To do so, we

use the package centrality to identify declining community interest. By definition, central-

ity is a measure of the prominence or importance of a node in a social network (Wasserman

& Faust, 1994). Centrality has been used in many fields e.g., in finance to measure the

1https://github.com/sponsors
2https://opencollective.com
3https://tidelift.com
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stability of banks in financial networks (J. Wang, Guo, & Szeto, 2017), in electrical engi-

neering to rank the importance of components in network infrastructures (Cadini, Zio, &

Petrescu, 2009; Stergiopoulos, Theocharidou, Kotzanikolaou, & Gritzalis, 2015), and other

fields including computer science and software engineering (Hong, Kim, & Haqiq, 2014;

Maharani, Adiwijaya, & Gozali, 2014). In our context, centrality allows us to rank the

packages based on the popularity/importance of packages that depend on them. Specifi-

cally, we use the PageRank algorithm to evaluate the shift in their centrality over time. The

intuition is that packages that have a consistent decrease in the centrality ranking are likely

to be packages in decline. Hence, package developers should be careful when depending

on such packages.

The popularity and scale of the npm ecosystem makes it an ideal candidate for our study.

We evaluate the effectiveness of using package centrality in identifying npm packages that

are in in decline. We formalize our study through the following research questions:

• RQ1: How effective is our approach in detecting packages that are in decline?

• RQ2: How early can our approach detect packages that are in decline?

• RQ3: How does our approach compare to other metrics in detecting packages that

are in decline?

Our findings show that our approach can detect 87% of packages in decline with high

accuracy, on average 18 months before current popularity metrics show the decline. Also,

we find that our approach can detect packages in decline more than 16 months (on aver-

age) before such packages are deprecated. Lastly, we find that our approach complements

commonly used popularity metrics such as dependents, downloads, stars, and forks when

detecting packages in decline.

Our work makes the following contributions:
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• Propose a scalable approach to detect packages in decline using package centrality.

• Empirically evaluate our approach on the npm ecosystem.

• Create a tool prototype to facilitate the usage of our approach by practitioners.

• Make all of our dataset (i.e., the collected data, analysis results, scripts) publicly

available to support replication and future research (Mujahid, Costa, Abdalkareem,

& Shihab, 2021a).

The remainder of this chapter is organized as follows: We motivate our work in Sec-

tion 6.2 with an example of a popular package in decline. Section 6.3 details our approach,

from data collection to computing centrality trends to find packages in decline. In Sec-

tion 6.4 we explain how we collect and curate the baselines we use to evaluate our ap-

proach. Section 6.5 presents the findings of our empirical study by answering our three

research questions. We present a tool prototype to utilize our approach in Section 6.6.

Section 6.7 describes the threats to validity. Finally, we conclude in Section 6.8.

6.2 Motivation Example

To illustrate the idea of using package centrality in determining a shift in community

interest, we present the example of the Moment.js package. Moment.js is a JavaScript

library for parsing, validating, manipulating, and formatting dates. This is a highly-used

package, used in more than 1 million websites, including major companies4 such as CNN,

Microsoft Teams, LinkedIn and Dropbox. Moment.js was developed using a now old-

fashioned JavaScript packaging method, including all its functionalities in a single bloated

JavaScript class. Consequently, all websites that use Moment.js have to include the entire

package regardless of the feature used, which incurs in an unnecessary overhead for website

applications (Johnson-Pint, 2020).
4Reported by wappalyzer.com in January 2021
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Figure 6.1: Evolution of the Moment.js package on the centrality (PageRank), the number
of downloads, and the number of dependents. The red vertical line indicates the time where
maintainers reported Moment.js is now a legacy project. We normalize metric values using
the min-max method where values range from 0 and 1 (Codecademy, 2021).

“Moment was built for the previous era of the JavaScript ecosystem. The modern web

looks much different these days.”

Since 2018, alternatives to Moment.js (e.g. date-fns and Day.js) have become more and

more popular by providing similar functionality without incurring the overhead that Mo-

ment.js incurs. Hence, the npm community started shifting towards using more lightweight

packages. This shift includes migrating well-established open source projects like Google

Chrome’s Lighthouse, Vault by HashiCorp, and Web Stories by Google from Moment.js to

other alternative packages (Birchler, 2020; Daley, 2018; Nanavati, 2020).

The popularity of the alternative packages led to a consistent decrease in Moment.js’s

centrality in the ecosystem starting in September 2018, which can be seen clearly in Fig-

ure 6.1. On September 15th, 2020, the maintainers of Moment.js issued a statement in

the README file indicating that the package is now a legacy project. While maintainers

have committed to still maintain the project, they recommend that users choose a different

package.
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The community’s shift from using one of npm’s most used packages to other alterna-

tives was public knowledge; however, none of the common popularity metrics, including

the metrics used by the npm search engine (npms) were able to capture this phenomenon.

In fact, the number of downloads of Moment.js continued to increase (as shown in Fig-

ure 6.1) as well as the number dependent packages. As of January 2021, the npm registry

shows that 49,544 npm packages depend on Moment.js and it is downloaded more than

16 million times a week. The only metric that showed Moment.js’s important decrease in

npm was centrality, which started to decrease as early as October 2018, the same year that

alternative packages started to become more popular.

There are a couple of possible reasons why the number of downloads and dependents

did not capture the decline of Moment.js. First, since thousands of projects already use

Moment.js, it will continue to be downloaded every time any of these projects get installed.

Even when these projects migrate to use alternative packages, it will take much longer to

reflect on the number of downloads due to technical lag where developers take a long time

to update their dependencies (Decan et al., 2018a). Second, as npm continues its exponen-

tial growth, newly created packages may still depend on Moment.js and substitute the core

community that has migrated to the alternative solutions. Package centrality, calculated

with PageRank, accounts for not only the sheer number of dependents, but the importance

of dependents in the network, which aptly captures the decline of Moment.js. This exam-

ple motivated us to investigate if package centrality trends can be used to identify packages

that have declined in the community interest.

6.3 Approach

In this section, we explain our approach that uses the trend in the package’s centrality

in the npm ecosystem and detect packages in decline.
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Figure 6.2: The approach to calculate centrality trends.
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Figure 6.3: Illustration of our dependency graph build process

6.3.1 Calculating Centrality Trends

Since the core idea of our approach is to use centrality, we need to efficiently calcu-

late the centrality trends of packages. We first build a dependency graph containing all

packages in npm as nodes, and their dependency relationships as edges. We update this

graph monthly with newly established dependencies and packages and compute the cen-

trality metric for all packages. Each month, we rank the packages based on the value of

their centrality metric. In the following, we explain the attributes of our dependency graph,

then, we describe our approach, illustrated in Figure 6.2, which includes how we: i) collect

and format the required metadata to build the dependency graph incrementally, and ii) build

the dependency graph each month to compute the centrality metric for all packages in the

npm ecosystem.
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Attributes of Our Dependency Graph. In order to use the package centrality as an indica-

tor for packages in decline, our dependency graph needs to have two important properties:

(1) Version insensitive nodes: the nodes in our graph represent npm packages, regard-

less of their versions. For instance, the popular package React has 298 distinct ver-

sions released in the npm registry, but we represent it by only one node in our de-

pendency graph. We do this because we are interested in capturing the usage shift

without being affected by the technical lag in the dependency network, caused by

developers taking a long time to update a dependency version (Decan et al., 2018a;

Zerouali et al., 2018).

(2) Release sensitive edges: an edge A → B in our graph represents the dependency

between the latest released version of package A on any version of package B. Once

a new release of package A no longer depends on B, our dependency graph needs

to reflect that by removing the A → B edge. However, we do not consider backport

versions as the latest released versions since they are not consistent with the package

evolution time series.

To better illustrate how this dependency graph is built, Figure 6.3 presents an example

of one package’s dependencies and how they are reflected in our dependency graph. As

shown in Figure 6.3, the graph in each month (January and February) uses the latest ver-

sion of Package A to add the edges from node A to its dependencies, but disregards the

versions of the dependencies (packages B and C). Once package B is removed from A’s

dependencies (in February), we remove the edge A → B in the dependency graph. It is

important to note that, by not accounting for versions in the nodes, this dependency graph

is different from the dependency graph that npm resolves to install new package versions

when running the npm install command (npm Docs, 2021).

Extracting Dependency Change Events. To build the npm dependency graph, we need
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to extract and process all events that changed dependencies for all npm packages. In our

study, we need to process two types of dependency change events for all npm packages:

1) the addition of a new package dependency and 2) the removal a package dependency.

Since our dependency graph does not consider the package versions in their nodes, there

is no need to account for events updating a package dependency version. We use the npm

registry database to extract all the package dependency change events. The npm registry

keeps a copy of the package.json file of all npm packages in its database for all pack-

age versions. The package.json file includes the list of maintainers, package descrip-

tion, keyword, license, the address of the source code repository, and the list of package

dependencies. The registry stores each package as a document that contains its metadata.

The npm registry is powered by an Apache CouchDB database, which has a feature to

set up a continuous stream of its data (npm Documentation, 2019). The feature is typically

used to set up continuous replication from the registry database. We utilize this feature to

retrieve a stream of all documents from the npm registry (Step 1 ). For each document

in the stream, we filter out the irrelevant documents (e.g., design documents) and for each

package we collected the package.json file for each of its versions.

When we build the monthly dependency graph, we only use the most recent version

of each package version to create our dependency graph. Hence we order every package

release by its release date. However, not all releases represent the stage of the package

project at the target time. Backports are commonly employed by package maintainers to

fix older releases, and they could include old dependencies that no longer appear in the

package’s latest releases. Hence, we filter out any release with a lower semantic version

than its predecessor in relation to their respective release date (Step 2 ). For example,

package A has released the version 3.6.0 in March 2020, but released a backport fix

2.1.0 in April 2020. Because the version 2.1.0 is smaller than version 3.6.0, we

disregard the version 2.1.0 in our analysis.
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Finally, we extract the changes in the list of dependencies between versions (Step 3 ).

We represent each change in the dependencies list as a dependency change event, which can

be either an add or a remove event. When a package releases its first version, we consider

each of the dependencies required by that version as an add dependency change event. In

the following versions, we compare the list of dependencies on each version with the list in

the previous version. If the dependency is absent in the newer version, we consider it to be

a remove event; conversely, if the dependency is absent in the older version, we consider it

an add event.

Computing Monthly Centrality. To obtain monthly snapshots of the centrality trends, we

compute the centrality for the packages in the npm ecosystem each month. Consequently,

we need to build a dependency graph at each month of analysis. Building separate graphs

from scratch for every month can be an expensive operation and unpractical option, par-

ticularly for npm, which contains more than a million packages. To address this, we build

the dependency graphs incrementally using the add and remove dependency change events

that we explained previously.

In this study, we are interested in investigating the package centrality trends since the

creation of the npm ecosystem. In particular, we study the period from December 2010

to December 2020. To do so, we build the first graph up to December 2010 and calculate

the centrality for every package in that graph (Step 4 ). Then, for each month, we update

the graph snapshot to reflect the monthly changes in the ecosystem. In total, we build 121

different versions of the dependency graph for the npm ecosystem, one for each month

between December 2010 and December 2020.

We use the monthly dependency graphs to compute the centrality of packages in the

npm ecosystem (Step 5 ). In order to compute the centrality, we use the Google PageRank

algorithm (Brin & Page, 1998; Page, Brin, Motwani, & Winograd, 1999). The algorithm

is commonly used to rank software artifacts, e.g., JavaScript packages (Kashcha, 2017;
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Wittern et al., 2016) and Java components (Inoue, Yokomori, Yamamoto, Matsushita, &

Kusumoto, 2005). The PageRank algorithm is a variant of the Eigenvector Centrality met-

ric, which measures the importance of each node within the graph based on the number of

incoming edges and the importance of the corresponding source nodes. The underlying as-

sumption of PageRank is that a node is only as important as the nodes that link to it (Gleich,

2015; Manaskasemsak & Rungsawang, 2005). In our study and through the use of PageR-

ank, the package centrality score is affected by both the number of dependent packages and

the score of the dependent packages themselves. Thus, packages obtain higher scores if

their dependent packages themselves have high scores.

However, the centrality value of nodes in PageRank decays over time as the network

grows (Berberich, Bedathur, Weikum, & Vazirgiannis, 2007). This may impact the evo-

lution analysis and means it is not meaningful to compare centrality values of packages

on different periods as these will always tend to decrease (at least for growing networks).

To address this, we focus instead on analyzing the ranking of the nodes’ centrality. Once

we compute the centrality for all packages on a particular month, we rank the packages

based on their centrality values (v1, v2, ..., vn) where v1 is the most central package and vn

is the least central package similar to prior work (Wittern et al., 2016). Finally, we invert

the ranking in negative values (−1 × n) to give a higher ranking value to the more central

packages, and make the centrality ranking comparable to other metrics (e.g. downloads),

where a higher value means higher importance. With this, we have the centrality rank-

ing position evolution for each package in the npm ecosystem since its creation up until

December 2020.

6.3.2 Detecting Packages In Decline

Now that we have the evolution of all packages’ centrality rankings, we use it to provide

a reliable method to identify packages in decline. To classify a package as in decline, we
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Figure 6.4: Example of a package trend in decline.

use its centrality trend of the latest six months. We fit a linear function using the least-

squares regression (NIST/SEMATECH, 2012), then we analyze the slope (m) of the trend

to identify a package in decline. In our study, a package is classified in decline if its

centrality trend shows a significant negative slope:

(1) Slope: the slope of the centrality trend for the last six months should be m < v, with

default v = 0.

(2) P-Value: to test whether the negative slope is statistically significant, we perform

the Wald Test with a conservative p-value (p) threshold, i.e., p < α, with default

α = 0.001 (Judge, Griffiths, Hill, Lutkepohl, & Lee, 1985). The Wald Test is a way

of testing the significance of particular explanatory variables in a statistical model.

In practice, our approach classifies packages as in decline when they have consistently

fallen down in the npm centrality rankings for six months. Figure 6.4 shows an example of

the package istanbul-api, which is classified as in decline, with a clear decrease in the cen-

trality rankings starting from mid 2018. This decline can be justified by the incompatibility

of the package with new Javascript features (Farrell, 2019b), which led to the deprecation

of the package later in April 2019 (Farrell, 2019a).
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6.4 Evaluation Datasets

To obtain a baseline for our approach, we devise a dataset containing packages in de-

cline and packages not in decline, so we can evaluate if our approach can reliably report

packages in decline. Unfortunately, there is no existing large dataset that captures the shifts

in community interest we aim to evaluate.

To compensate for the absence of this ideal dataset, we build three different baseline

datasets. First, we build a corpus using metrics from the official search engine of npm

(npms) to evaluate if centrality can detect packages in decline before npms (Section 6.4.1).

Second, we collect data from the largest survey of the JavaScript community conducted

by Benitte and Greif (2021), which asked the opinion of more than 20 thousand developers

about 20-30 popular npm packages (Section 6.4.2). With this baseline we aim to evalu-

ate if centrality can capture the satisfaction/dissatisfaction of developers using the trend in

centrality right before the survey took place. Third, we craft a dataset of deprecated pack-

ages to evaluate if our approach can help identify the decline in popularity well before the

maintainers deprecated the packages (Section 6.4.3).

6.4.1 Extracting npms Validation Baseline Corpora

One of the most reliable platforms developers use to select npm packages for their

projects is the official npm search engine, npms (Abdellatif et al., 2020; npms, 2016). The

npms engine continuously analyzes the npm ecosystem, and collects 27 package metrics

from different sources (e.g. package repositories on GitHub). Using the collected metrics,

a final score for each package is calculated based on three different aspects i.e., quality,

popularity, and maintenance (Abdellatif et al., 2020; npms, 2016). The higher the score of

a package, the more popular, better quality and better maintained the community perceives

the package to be. Hence, a steep decline in a package score can be used as an indicator of

a package in decline and a stable or increasing score can be an indicator of a package not
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Figure 6.5: Timeline used to select validation baseline from npms.

in decline.

It is important to note however that we want to evaluate the hypothesis that centrality

can better identify shifts in community interest than currently used metrics. Hence, we want

to craft a dataset that allows us to use npms score as validation, but is not directly influenced

by the npms score. To this aim, we craft the dataset using a multi-phase approach, as

illustrated in Figure 6.5. We first select packages that have shown a stable npms score

during a period (Phase 1), and use this same period to evaluate the centrality of a package.

Because the score metric is stable during this period, one would not be able to classify the

packages in decline from not in decline just by analyzing npms score, and we can be sure

centrality is not influenced by already reported metrics. Then, in the subsequent period

(Phase 2), we label packages in decline as the ones that have experienced a sharp decline

in the npms score and label packages not in decline as the ones that have either remained

stable or increased their npms score. Using this process to craft the baseline, we also have

a starting date for packages in decline given by the npms score, which is at the earliest the

start of Period 2. We can use this point in time, to evaluate how much in advance (if any)

our approach can detect that a package is in decline before the decline is shown in the npms

score.

One limitation of using the npms metrics is that npms does not store the historical values
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of its packages’ score. We cannot pick any period interval for Phase 1 and Phase 2 and are

limited by the snapshots of the entire npms score ranking we collected in the past. We

collected npms packages’ scores on December 2018, April 2019, and June 2019 and we

use the period of December 2018 to April 2019 as Phase 1, and use the period of April

2019 to June 2019 as Phase 2 of our dataset baseline.

All npms scores vary from 0 (very low) to 1 (perfect score). We start crafting our dataset

by selecting packages that have a score 0.7 or higher, to prevent our analysis from focusing

on very low-quality packages. As we showed in Figure 6.5, in Phase 1 we consider all

packages that have a score variation smaller than 0.01, which indicates to be relatively

stable. Then, we label as packages in decline, all packages that have exhibited a negative

change in the npms score between S2 and S3 by more than 0.2 score points. We label as

packages not in decline, all packages that have exhibited the same score or higher between

S2 and S3. At the end of this process, this dataset contains a total of 4,457 packages, with

2,259 being labeled as in decline and 2,198 labeled as not in decline.

The three thresholds used in the above methodology were determined as follows: the

first threshold of 0.01 is the tolerance in the npms score deltas in Phase 1. This threshold

equals the mean value of changes in the npms score between S2 and S3 and it is small

enough to guarantee that package scores are stable for at least 6 months before April 2019.

The second threshold 0.2 is the minimum decrease in the npms score to label a package as

in decline. This threshold is equal to the value of standard deviation over the npms scores

and it is large enough to capture the significant score changes. The last threshold, 0.7, is

the minimum npms score for a package on S3 to be considered in our baseline dataset. This

will minimize the risk of mislabeling our baseline by including low-quality packages with

very low npms scores and it is a good compromise between the dataset size and quality.
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6.4.2 Survey Validation Baseline Corpus

We want to evaluate if our approach can capture the shifts on the interest and satisfaction

of the npm community with popular packages. While we cannot craft a dataset that reliably

captures the npm community interest without surveying a very large sample of JavaScript

developers, we opted to use the data from the largest survey available on the JavaScript

ecosystem: the State of JavaScript survey (Benitte & Greif, 2021).

The State of JavaScript survey is an extensive survey conducted by Benitte and Greif

(2021) to assess the JavaScript community’s views. In 2019, the survey had a total of

21,717 respondents all across the globe (Greif & Benitte, 2019). The survey’s primary

focus is to ask JavaScript developers their opinion on a set of popular npm packages. Then,

the survey ranks each package according to four categories:

(1) Awareness: share of total respondents that reported to have heard about the package.

This category includes both developers who have experience using the package and

developers never use the package before.

(2) Usage: share of total respondents that have used the package in their projects. This

category does not consider if the developer is satisfied with using the package.

(3) Interest: share of respondents who did not use the package but are interested in using

it in the future.

(4) Satisfaction: share of respondents that have used the package in the past and will

continue to use it.

To use the survey results, we use its GraphQL API5 to retrieve the summary of the

responses for each package.

5https://graphiql.stateofjs.com
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6.4.3 Deprecated Packages Corpus

With this third corpus, we want to evaluate if our approach can help identify packages in

decline that have eventually been deprecated by maintainers. Deprecated packages should

not be reused by other packages or JavaScript applications and npm warns developers when

they install deprecated packages. The goal of our analysis is to evaluate if centrality trends

can capture the decline in the community interest well before the package is flagged as

deprecated, which can help developers to migrate from these packages while they are still

being maintained.

To craft this dataset, we need to collect a list of deprecated packages from the npm

ecosystem. Similar to Section 6.3, we started by retrieving the metadata for all packages

from the npm registry. Then we capture metadata for packages with a deprecation message,

which left us with a list of 44,857 packages. However, developers use the npm depreca-

tion feature for various reasons, including renaming or merging packages. The following

quote is an example of a deprecation message for a package whose maintainers used the

depreciation feature to change the package name.

“Jade has been renamed to pug, please install the latest version of pug instead of

jade (Lindesay, 2016).”

To create a valid list of deprecated packages, we select the top 1,000 deprecated pack-

ages based on their npms score on June 16th, 2019. Then we manually classify packages to

filter out cases where they are not an actual deprecation. For this aim, first, we verify if the

deprecation note discloses clearly that a package is actually deprecated. If the deprecation

message is not clear, we check the project status from the package’s readme file, then the

repository’s readme file. If needed, we follow relevant links in the deprecation messages or

the readme files to remove ambiguity. Finally, if the deprecation message mentions another

package’s name, we check if both are pointing to the same repository; if so, we examine

the repository and its history to classify the case as a rename or not. After applying our
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manual classification process, we find that only 556 out of the 1,000 packages are actual

package deprecation cases. We use these 556 packages in our analysis later in the study.

6.5 Results

This section describes our research questions. For each research question, we explain

its motivation, illustrate our approach to answer the question, and discuss the findings.

RQ1: How effective is our approach in detecting packages that are in

decline?

Motivation. In this question, we investigate the performance of our approach of using the

centrality trend to identify packages in decline. The decline of package centrality could

be a symptom that better alternatives have emerged or a shift happened in the community

interest. In the scientific literature, centrality has been used in many disciplines such as

social networks to identify the central node of a network (e.g., (Cadini et al., 2009; Hong

et al., 2014; Maharani et al., 2014; Stergiopoulos et al., 2015)) and software engineering

to understand the significance of software components (e.g., (Inoue et al., 2005; Wittern et

al., 2016)). If the approach can aptly capture packages in decline, it can be embedded in

package search engines, such as npms, to increase developers’ awareness of the community

interest and help them make a better-informed decision to select or reevaluate their package

dependencies.

Approach. We craft a baseline as described in Section 6.4.1 to evaluate our approach as

a binary classification problem. Then we use our approach to classify packages into two

classes: in decline and not in decline.
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As mentioned in Section 6.4.1, packages labeled in decline are packages that have ex-

perienced a sharp decline in the npms ranking in a short period of two months, i.e., between

S2 and S3. We calculate the centrality in the last six months before S2, when the packages

were still stable in the npms rankings. This ensures that we evaluate if the centrality can be

used as an early detector of packages in decline that only later will be observed in the npms

rankings. Then, as described in Section 6.3.2, we classify packages that have a negative

centrality trend slope (i.e., m < v with default v = 0) as in decline and other packages as

not in decline.

To evaluate the performance of our approach in identifying packages in decline, we

report the well-know performance measures: precision (P ), recall (R), and F1 score. In the

context of our evaluation, precision is the percentage of packages classified as in decline

that are actually in decline (i.e., Precision = Tp

Tp+Fp
), where Tp is the number of packages

labeled as in decline that are correctly classified as in decline; Fp denotes the number of

not in decline packages classified as in decline. Recall is the percentage of packages that

correctly classified as in decline relative to all of the packages that are labeled as in decline

(i.e., Recall = Tp

Tp+Fn
), where Fn measure the number of packages in decline that classified

as not in decline. We then combine both precision and recall using the well-known F1 score

(i.e., F1 = 2× P×R
P+R

).

In addition, to mitigate the limitation of choosing a fixed slope threshold (i.e., v =

0) when calculating precision and recall, we also present the Area Under the Receiver

Operating Characteristic Curve (ROC-AUC) value. ROC-AUC is computed by measuring

the area under the curve that plots the Tp rate against the Fp rate while varying the slope

threshold used to determine if the approach should classify a package as in decline or not.

The ROC-AUC’s main merit is that it reports the performance independently from the used

threshold; it is also robust toward imbalanced data since its value is obtained by varying

the classification threshold over all possible values (Lessmann et al., 2008; Nam & Kim,
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Table 6.1: Results of using the centrality trend to classify packages from the npms valida-
tion baseline.

Dataset
Total cases 4,457
In decline 2,259
Not in decline 2,198

Performance

True Positive (Tp) 1,969
False Positive (Fp) 498
Precision (P ) 0.80
Recall (R ) 0.87
F1 score 0.83
ROC-AUC 0.90
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Figure 6.6: ROC curve with the AUC value for the evaluation based on the npms baseline.

2015). The ROC-AUC has a value that ranges between 0 and 1, where a higher ROC-AUC

value indicates better classification performance.

Results. As shown in Table 6.1, we evaluate our approach on 4,457 npm packages where

2,259 are labeled as in decline and 2,198 are labeled as not in decline. The results show

that our approach of using the centrality trends correctly identifies 87% of the packages

in decline with a precision equal to 0.80. That is, for every five packages classified as in

decline, four were correctly classified and one was wrongly flagged as in decline. This

indicates that our approach can aptly identify packages in decline before they are actually

shown in the npms rankings, with an F1 score of 0.83 and ROC-AUC of 0.90 As shown in
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Figure 6.7: Examples of packages that our approach only detected the decline after the
npms score. The red vertical line indicates the time of S2.

Figure 6.6. The figure shows the false positive rate on the x-axis and the true positive rate

on the y-axis, while the solid line represents the value of each of them based on a range of

possible thresholds.

We analyze the 290 packages that were in decline, but where our approach could not

identify their decline using centrality. Out of the 290 cases, 217 (74.83%) packages exhib-

ited a centrality decrease only after April 2019 (S2), showing that in these cases the npms

metrics decrease before the centrality. Figure 6.7 shows examples of packages that our

approach could not detect packages in decline in advance of npms. In the figure, both pack-

ages show a decrease in centrality before April 2019 (S2). However, our approach requires

a statistically significant decrease over a six months period, with a very conservative default

threshold α = 0.001 to detect the packages as in decline. Hence, our approach detected the

packages as in decline after S2, when the decline became statistically significant.

We also examine the 498 packages that were not in decline, but where our approach

wrongly identifies them as in decline. We observe that out of the 498 cases, 384 (77.11%)

packages have less than 100 dependent packages. In the rest of the false positive cases,
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we observe that most of the packages (112 out of 114) have their number of dependents

increasing, however their centrality is decreasing. For example, the package mongoose is a

popular object modeling tool whose dependents increased from 4,995 to 5,568, whereas its

centrality ranking declined from -443 to -484. The main factors behind these false positive

cases can be explained by the following:

(1) The dynamic of the centrality ranking tends to punish packages that do not gain more

dependents (directly or indirectly) on them compared to other packages in the same

ranking tier. In the mongoose example, even with the 11.47% increase in the number

of dependents, the number of dependents and their centrality were not enough to

maintain the centrality ranking compared to other packages in the same ranking tier.

(2) In packages with a small number of dependents, the centrality trend can be affected

by a small number of community members that do not reflect the overall community

interest. This could explain 52 (17.93%) of the 498 false negative cases and 384

(77.11%) of the 498 false positive cases.

Impact of Moving Averages. Simple moving averages (SMA) is a technique used to

reduce the noise in the time-series data (James, 1968). In this RQ, we use the trend of

the monthly centrality rankings to detect packages in decline. However, using the SMA

to smoothen the trends may result in improving the performance of our approach. In our

context, we experiment using the technique to reduce the effect of noise in the monthly

centrality data. To do so, we re-run our experiments on the npms validation baseline. For

each package in the baseline, we compute the simple moving averages (based on 4 months

average) for its monthly centrality rankings. Next, we apply our approach in detecting the

centrality decline on the SMA values. The result of the experiment shows that incorporating

the moving averages improved the precision of our approach from 0.80 to 0.85. However,

it slightly decreases our approach’s recall from 0.87 to 0.83, while keeping the F1-score
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almost constant (from 0.83 to 0.84). Finally, since using the moving averages requires

more extended history, the number of packages that our approach can be applied on is

reduced slightly from 4,457 to 4,272 packages.

The result shows that our approach can correctly detect 87% of packages in decline

with a precision of 0.80, an F1-score of 0.83 and an ROC-AUC of 0.90.

RQ2: How early can our approach detect packages that are in decline?

Motivation. Once we learned that our approach is effective in identifying packages in de-

cline, we would like to know how early in advance can our approach detect the decline.

Identifying packages in decline as early as possible is essential for taking proactive action

to mitigate the decline of the package. Also, it increases the awareness of the community

about possible better alternatives by allowing developers to avoid selecting declining pack-

ages and to pay more attention to the alternatives that are increasing in centrality. Package

maintainers can also use our approach as a sign of a decrease in community interest in their

package, which can motivate them to remediate possible causes of dissatisfaction or make

them focus on other solutions altogether. Furthermore, developers that reuse packages can

use the centrality trend as an early indicator of decline to look for alternatives long before

their dependencies become unmaintained.

Approach. To evaluate how early our approach can detect packages in decline, we employ

a sliding window technique. Since we calculate centrality at the granularity of months, we

slide the analysis window back in time, sliding our window of six months one month at

a time. We recalculate the in decline analysis after each window sliding (i.e., month) by

applying the same method explained in Section 6.3.2. We continue this process as long as

the in decline analysis continues to identify the package as in decline.
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Note that since we use a 6-month window to detect the deceline, when we report that

our approach captured a package in decline 4 months in advance, this means that the slope

of the centrality trend consistently decreased in the 6 months prior to these 4 months. That

is, the package is exhibiting a decrease in the centrality rankings for up to 10 months.

We used our three different dataset baselines to evaluate how early our approach can

detect packages in decline. We evaluate how early our approach can detect packages in

decline based on all packages that our approach classifies as packages in decline.

(1) npms dataset: This dataset was crafted from the npms rankings, as explained in

Section 6.4.1. In this dataset, we start measuring the packages in decline before

April 18th, 2019, where the npms score was still stable.

(2) Deprecated dataset: This dataset was crafted from the deprecated npm packages, as

explained in Section 6.4.3. In this evaluation, we aim to assess how far in advance we

can use our approach to identify packages that have become deprecated. In this eval-

uation, we use the deprecation date of each package as the starting point to measure

whether the package is in decline.

(3) State of JavaScript dataset: We collect this dataset from the State of JavaScript

survey of 2019 (Greif & Benitte, 2019), as explained in Section 6.4.2. We label

packages with a share of satisfaction less than 50% as in decline and the rest of the

packages as not in decline. In this evaluation, we measure the packages in decline

before November 25th, 2019, which is the date of receiving the first survey response.

Results. Table 6.2 presents the results of our experiment, showing how far in advance our

approach can detect packages in decline. The first row in the table shows that our approach

classifies 2,467 packages from the npms dataset as in decline with an average of 18.35

(median = 12.57) months before April 2019 (S2). To reiterate, only after the S2 date, these

packages have shown a steep decline in the npms scores. Our results show that half of the

102



Table 6.2: Results of three datasets on how early in months our approach can detect pack-
ages in decline.

Dataset
Labeled as
in decline

Classified as
in decline

Time (months)
Mean Median

npms 2259 2467 18.35 12.57
Deprecated 552 446 16.15 13.29
Survey 4 3 13.13 4.80

packages were experiencing consistent centrality decline for more than a year before this

decline was captured by the npms metrics.

The second row in Table 6.2 shows the results for the deprecated dataset. Our approach

was able to identify the centrality decline on average more than a year (16.15 months) be-

fore the packages became deprecated. Also, the decrease in the centrality rankings captures

the decline of 446 out of 552 deprecated packages. Our results indicate that the centrality

trend can be used as an early indicator of deprecated packages, with a good recall, capturing

80% of the deprecated packages.

Finally, the third row in Table 6.2 shows the results of our evaluation using the State of

JavaScript survey dataset. Our approach correctly classified three out of the four labeled in

decline packages with an average of 13.13 (median = 4.80) months before the first survey

response date without any false alarms.

Figure 6.8 shows the distribution of time in months for how early our approach can

detect packages in decline across the three datasets. The figure shows that our approach

detects 25% of packages in decline more than 31 months before the significant npms score

decrease, and 22 months before a package got deprecated.

The results show that our approach can detect packages in decline on average 18.35

months before the npms score declines. Also, it detects packages in decline on average

16.15 months before a package gets deprecated.
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Figure 6.8: Letter-value plots for the distribution of how early our approach can detect
packages in decline.

RQ3: How does our approach compare to other metrics in detecting

packages that are in decline?

Motivation. After determining our approach’s effectiveness in detecting packages in de-

cline, months in advance, we would like to know if other widely used metrics already cap-

ture (or complement) the information centrality indicates. There are already several met-

rics, e.g., as the number of GitHub stars from their repository project, that aim to provide a

popularity indicator of npm packages and have been used by prior work, (e.g., (Abdellatif

et al., 2020; Borges et al., 2016; Borges & Valente, 2018; Papamichail, Diamantopoulos,

& Symeonidis, 2016; Zerouali et al., 2019; Zhu et al., 2014)). If centrality is already prop-

erly captured by other widely used metrics, there is no incentive to incorporate centrality

in the current package platforms. If the centrality trends, however, provide a new perspec-

tive on the popularity and community interest of a package, there is a good motivation to

make the centrality information more accessible to developers to improve their community

awareness.

Approach. We are particularly interested in assessing how much of the centrality is already

captured by metrics that the npms analyzer uses. In particular, we studied metrics that
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present the number of dependents, number of package downloads, Github stars, and Github

forks. We evaluate if the centrality trend correlates with these metrics and whether we

could use these previously used metrics to detect packages in decline, with similar or better

performance than our centrality trends.

To compare our approach with the other metrics, we start by collecting the monthly

number of dependents, downloads, stars, and forks of 40,619 packages in npm. We retrieve

the number of monthly dependents using the dependency graphs we build to measure the

centrality, explained in Section 6.3.1. For the number of downloads, we use the npm REST

API6 to collect the daily number of downloads for the time between each package creation

date (not before February 2015, which earliest data that the API keeps) until December

2020. Then we aggregate the daily downloads for every month.

The GitHub API does not provide an endpoint to retrieve the historical number of stars

and forks. To overcome this challenge, we rely on the API of Porter.io,7 a service that

analyzes Github continuously and retrieves the historical number of stars and forks for a

wide range of repositories. Thus, we use Porter.io’s API to collect the historical number

of Github stars and forks for package repositories with more than 100 stars in npms at

December 27th, 2020. We omit packages with fewer than 100 stars, to prevent our analysis

from being dominated by packages that are seldom used by the community.

After collecting the metrics for all packages with more than 100 stars, we notice that

not all packages have sufficient data for our analysis. For instance, some packages lack

sufficient historical data or one or more of their metrics have all the data points as zero,

e.g., packages that have no dependents. Therefore, to simplify our analysis and report

results from a uniform dataset, we exclude packages that do not have sufficient information

for all metrics. This step excluded 21,201 packages from the initial set of 40,619; thus, our

analysis is based on 19,418 packages.

6https://api.npmjs.org
7https://porter.io
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Figure 6.9: The distribution of the correlation between centrality and the metrics.

To evaluate if the other metrics’ trends indicate the same trend as centrality rankings,

we test the correlation between the monthly centrality trend and each of the other metrics’

monthly trends. We use Spearman’s rank correlation test, and we apply the correlation test

on the metrics for each package separately. We use Spearman’s rank correlation coefficient

since our dataset is not normally distributed (Kendall, 1938). Spearman’s rank correlation

coefficient (ρ) has a value that ranges between +1 and -1. In our context, +1 means that

a metric value always increases when the centrality increases and -1 means that a metric

value always decreases when the centrality increases. A Spearman (ρ) of zero indicates no

correlation between the metic and the centrality (Fowler, Cohen, & Jarvis, 2009; Kendall,

1938).

Results. Figure 6.9 shows the distribution of Spearman’s rank correlation coefficient (ρ)

between the centrality trend and the trend of each of the other popular metrics. Follow-

ing the guidelines of Fowler et al. (2009), we group the correlation distribution into five

intervals: very weak correlation (0.00 to 0.19), weak correlation (0.20 to 0.39), moder-

ate correlation (0.40 to 0.69), strong correlation (0.70 to 0.89) and very strong correlation

(0.90 to 1.00). The figure plots the correlation results for 19,418 packages. We observe

that centrality and the evaluated metrics have correlations that spread all the spectrum from

a perfect positive correlation (ρ = +1) to a perfect negative correlation (ρ = −1). Overall,

this shows that centrality is not aligned to the other metrics for most packages, indicating

that centrality may provide new information that is not captured by the other metrics. Next,
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Figure 6.10: Examples of packages with strong negative correlation between the centrality
trend and the number of dependents trend. We normalize metric values to range between
0 and 1.

we discuss the comparison to each metric and its implications.

As shown in Figure 6.9, the dependents metric shows the strongest correlation with

centrality amongst the evaluated metrics. Roughly a third of the packages (34%) have a

strong or very strong correlation between its number of dependents and centrality. This

is somehow expected since packages with high centrality tend to have many dependents

and vice versa. Still, this strong correlation does not hold for the majority of packages

that we evaluated because our approach to calculate the centrality uses an algorithm that

considers not only the number of dependents but also the importance of each of them. This

explains why 13% of the packages have a strong negative correlation between the number

of dependents and centrality. Such packages, such as the examples in Figure 6.10, have

shown a steady increase in the number of dependents but an equally steady decrease in

their centrality in npm.

The number of downloads also has a strong positive correlation with centrality in 22%
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of the packages. Similar to the case of the number of dependents, it is expected that pack-

ages that rise in the centrality ranking will have an increase in the number of downloads.

In 36% of the cases, however, the centrality and the number of downloads are only weakly

correlated (positively and negatively), and in 10% of the packages, they have shown a

strong negative correlation. As shown in the Moment.js example (Section 6.2), these are

the packages that, albeit having a constant increase in their downloads, are falling in the

ranking and becoming less central in the npm network. These are the packages in which

centrality can work best as an indicator of community interest. The number of downloads

depends on the number of installed systems, which may take a longer time to reflect the

package’s actual community interest.

The stars and forks metrics have approximately half the packages positively correlated

with centrality and half the packages negatively correlated with centrality. This is a conse-

quence of the monotonic characteristic of stars and forks. Projects tend to always increase

their number of stars/forks, as contributors only rarely remove stars from a project. In fact,

in our dataset only 2.39% of the packages showed a substantial decrease in the number of

stars and forks in their life cycle. Centrality, on the other hand, may increase and decrease

as the community shifts its interest to the package or away from it.

To gain a better understanding of how these metrics are different, we use the following

process to select four package examples: 1) We use the State of JavaScript 2019 survey

that we explain in Section 6.4.2 to select popular packages. 2) The survey includes 28 npm

packages; we order them based on the community satisfaction score and select a package

from each quartile, i.e., Sails.js, Jasmine, React, and Jest with satisfaction scores 26%,

67%, 89%, and 96%, respectively. Figure 6.11 plots each of the four packages with their

monthly trend for all metrics.

With the decrease in maintenance activities and the increase in the number of unfixed

bugs, developers start discussing the quality and health of the package Sails.js (Hacker
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Figure 6.11: Line plots showing the trend of centrality alongside with the trend of other
metrics. We normalize metric values using the min-max method where values range from
0 and 1 (Codecademy, 2021).

News, 2015a, 2015b). We observe from Figure 6.11 that the package Sails.js has a de-

creasing centrality trend since 2015; however, all other metrics continued to increase. The

centrality trend is more consistent with the survey results, where 74% of the developers

(1,166 developers) that said they used the package Sails.js responded that they would not

use the package again. Even though the package decreases in centrality, the package is still

increasing in the number of downloads and other metrics.

Conversely, the packages Jasmine and React, which have relatively higher satisfaction

scores, show a consistent increase in the centrality trend. The package Jest showed an

interesting change in the centrality evolution. The package had known performance issues

until mid 2016 (Jest Blog, 2016b), where the centrality decreased. After the maintainer

of Jest performed a complete rewrite of the package to overcome its issues (Jest Blog,

2016a), and having these changes well-received by the community (Hacker News, 2016),

Jest started showing a significant increase in centrality. By looking at Figure 6.11, we see

that only the centrality measure captures the changes of the community’s interest toward

Jest.

Centrality tends to provide trends that are different from those provided by other met-

rics such as dependents, downloads, stars, and forks.
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Figure 6.12: A screenshot of the npm website showing the package underscore with the
integrated centrality information from our Chrome extension.

6.6 Tool Prototype

The main implication of our study is that reporting the centrality trends of packages

as a popularity metric in npm can be very informative for developers. Developers should

use the centrality trend, together with other popularity metrics, to have a better informed

assessment on which packages to select. To enable this, we build a prototype web browser

extension called Centrality Checker that uses our approach of detecting package in

decline. Our prototype extension helps inform developers about the centrality trend when

they browse a package on the official npm website.8

We build the tool as a Chrome Extension. Users can activate our extension in their

Chrome browser. Once they browse a package on the npms website, our extension includes

the package centrality trends and the result of examining if the package is in decline into

the npm website. The initial view when a user browses a package on npm shows the

centrality trend of the last year. Users can hover over the centrality trend chart to explore

8https://www.npmjs.com/
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Figure 6.13: The time required to update the dependency graph and calculate the centrality
for all packages. The experiment was performed on a conventional machine with an Intel
Core i5 processor and 16GB of memory.

the monthly centrality ranking values from the last year. Figure 6.12 shows an example of

an npm package with the proposed Chrome extension enabled. In this example, we show

the package underscore 1 with the centrality information embedded 2 .

When a user browses a package on the npm website, the extension sends a request to a

backend server to retrieve the needed data to render and embed the centrality ranking into

the npm website. The backend continuously retrieves the dependency change events from

the npm registry and calculate the centrality once every month as described in Section 6.3.1.

The backend then determines whether each package is in decline using the approach de-

scribed in Section 6.3.2. Finally, the backend caches the results to be served efficiently to

our web browser extension. The tool is publicly available and can be installed through the

Chrome Web Store.9 Also, we open sourced the tool on Github.10

Scalability. With the exponential growth in the number of packages in the npm ecosys-

tem (Decan et al., 2019), the time required to incrementally build the monthly dependency

graph and calculate the centrality for all packages increases over time. In particular, as

9https://chrome.google.com/webstore/detail/centrality-checker/
bmpafkghbmojppjoeienibieljacdoaj

10https://github.com/centrality-checker/chrome-extension
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shown in Figure 6.13, the time required to update the dependency graph increased from

1 minute in January 2019 to 2 minutes in December 2020. The same goes for the time

needed for calculating the centrality and detecting packages that are in decline, which in-

creased from 50 seconds to 100 seconds. However, even with this increase, the cost of

running our approach is relatively low and it can scale to handle the rapid growth of the

npm ecosystem.

6.7 Threats to Validity

In this subsection, we discuss threats to the validity of our study.

6.7.1 Threats to Internal Validity

Threats to internal validity are related to experimenter bias and errors. A limitation

of our approach is that it only considers dependencies between packages in npm. This

limitation will impact the centrality of packages that are not meant to be reused by other

packages, but other JavaScript applications. Future work should investigate how to incor-

porate JavaScript applications in the network and how to attribute their importance in the

npm network (e.g., using the number of stars in GitHub). In our approach, the package

importance is calculated by the centrality of its dependents, however, applications are not

meant to be reused by other projects.

Another important threat to internal validity concerns the datasets that we used as base-

lines when evaluating our approach. In our baseline datasets, we used various thresholds

that impact which packages to include and their labeling. Since having a gold standard

for npm’s community interest is very difficult, we combine evaluations made from three

datasets to mitigate for the lack of a large-scale ground truth. Still, there is a need for

a long term evaluation of the centrality as a complementary metric for current popularity
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metrics. Future work could investigate if developers find centrality a useful metric when

selecting packages. Finally, our approach may contain bugs that may have affected our

results. We made our scripts and dataset publicly available to be fully transparent and have

the community help verify (and enhance) our approach (Mujahid, Costa, Abdalkareem, &

Shihab, 2021a).

6.7.2 Threats to External Validity

Threats to external validity are related to the generalizability of our findings. Our inves-

tigation focused entirely on the npm ecosystem, which has very particular characteristics: a

centralized package registry, hundreds of thousands of software packages, and a very active

and popular programming language. Also, the size of packages in the npm ecosystem is

relatively small compared to the size of modules and software components in other ecosys-

tems and programming languages. The small package size in the npm ecosystem could

lead to different dynamics compared to other ecosystems, which might significantly affect

packages’ characteristics such as the maintenance lifetime, release span, and barriers to

migrate to other packages. While centrality is a commonly employed metric to evaluate the

importance in highly-connected systems, such as software ecosystems, the performance of

our approach might be linked to the highly dynamic characteristics of npm. Future work

needs to investigate if a similar approach can also help identify packages in decline in other

ecosystems such as PyPi and Maven.

6.8 Chapter Summary

This chapter presents a novel and scalable approach for using the centrality of packages

to identify packages in decline. Our evaluation showed that the centrality trends were ef-

fective at identifying packages in decline (RQ1). When classifying packages as in decline
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and not in decline, our approach can distinguish between the two classes with an AUC

of 0.9. Our approach correctly classified 87% of the packages in decline, on average 18

months before the npms aggregated score (RQ2). By evaluating the correlation between

centrality and current popularity metrics (e.g., number of downloads), we have shown that

centrality trends can provide new information, not currently captured by npms (RQ3). We

implemented our approach in a tool that can be used by developers to complement current

npms popularity metrics with our centrality trends. Our approach can provide a more accu-

rate depiction of the shifts the community interest makes and help inform developers when

selecting packages for their software projects.

Our work outlines some directions for future work. First, in this chapter, we use cen-

trality as an indicator of packages in decline. We believe investigating and understanding

why packages’ centrality is rising or declining is critical because it helps developers make

more informed decisions. Another interesting followup work is to propose an automated

approach to finding future central packages so they can receive the attention needed to

boost their evolution as early as possible. Finally, after identifying packages in decline, the

next step should be assisting developers in replacing them. Thus, in the next chapter, we

propose an approach that finds alternative packages for those in decline.
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Chapter 7

An Approach to Find Alternative

Packages

7.1 Introduction

Since software, like people, get old (Parnas, 1994), developers need to keep up with the

changes in the ecosystem to avoid depending on packages that became obsolete, dormant,

or even deprecated (Valiev et al., 2018). Community interest uphold packages to improve,

i.e., include better features driven by community needs, keep up the package maintenance

by reporting bugs to maintainers, motivate maintainers to continue supporting the package,

and some times even financially support the maintainers on platforms such GitHub Spon-

sors,1 Open Collective,2 and Tidelift.3 Packages that show a decline in community interest

are usually used less over time, become less frequently maintained, and eventually, could

become abandoned (Khondhu et al., 2013; Valiev et al., 2018). Moreover, a package’s de-

cline in community interest may indicate that a better solution is drawing attention in the

ecosystem, and developers are migrating to a package that better suits their needs.

1https://github.com/sponsors
2https://opencollective.com
3https://tidelift.com
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Prior work examined projects that are unmaintained (Coelho et al., 2020, 2018). In

Chapter 6, we proposed an approach identified packages that lose popularity over time

(i.e., are in decline). Other studies proposed approaches for mining dependency migrations

from software repositories to suggest alternatives (Alrubaye et al., 2019a; He et al., 2021;

Teyton et al., 2012, 2014). However, to the best of our knowledge, little attention has

focused on suggesting alternatives to packages that are in decline, especially in the context

of dynamic programming languages such as JavaScript.

Therefore, in this chapter, we leverage the crowd wisdom in the software ecosystem

to suggest alternatives to packages that are in decline. Our approach uses dependency mi-

grations from real-world projects to identify alternative packages. Moreover, our approach

suggests dependency migrations based on the community interest of the packages. Thus,

our approach suggests replacing the packages that are in decline with alternative packages

that still maintain the community interest.

We evaluate our approach on the npm ecosystem, the largest growing ecosystem to

date (Decan et al., 2019), and the host of JavaScript reusable packages, currently the most

popular programming language (Stack Overflow Developer Survey 2018, 2018). The popu-

larity and scale of the npm ecosystem make it an ideal candidate for our study. We evaluate

the accuracy and the usefulness of our approach in generating alternatives for packages in

decline, through the following three research questions:

RQ1: How accurate is our approach to suggest alternative npm packages? (Sec-

tion 7.3) We manually evaluate the accuracy of our approach in suggesting alter-

native packages that perform comparable functionality. We found that our approach

provided valid alternative packages in 96% of the generated suggestions.

RQ2: How useful is our approach to JavaScript project maintainers? (Section 7.4)

We survey JavaScript developers to assess the usefulness of our approach. We found

that our approach provided new information about alternative packages for 54% of

116



the developers. On a 5-points Likert scale, developers recommend having a tool

that utilizes our approach to suggest alternative packages with median = 4. More

importantly, 67% of the developers confirmed that they would use our suggested

alternative packages in their projects.

RQ3: When and why maintainers migrate to depend on the alternative npm pack-

ages? (Section 7.5) We manually examine pull requests that perform dependency

migrations that match the generated suggestions by our approach. We found that

the majority of migrations (69%) occurred during dependency management tasks,

however, 31% of migrations occur during other development tasks, i.e., fixing bugs

(16%), adding new feature (8%) and code refactoring (7%). Also, we found that

the primary motivation (74% of the cases) of dependency migrations was to replace

unmaintained dependencies.

Our findings show that our approach is accurate and helpful to JavaScript developers.

The following are the key contributions of our work:

• Propose an approach to suggest alternatives for packages in decline.

• Empirically evaluate our approach accuracy on the npm ecosystem.

• Surveyed expert JavaScript practitioners to assess the usefulness of our approach.

• Illustrate the characteristics of the dependency migrations suggested by our approach.

• Support the replication and future research by making all of our datasets (i.e., col-

lected data, analysis results, scripts) publicly available (Mujahid, Costa, Abdalka-

reem, & Shihab, 2021b).

The remainder of this chapter is organized as follows: Section 7.2 details our approach

in suggesting alternatives for packages in decline. In Section 7.3, we evaluate the accu-

racy of our approach. Then, in Section 7.4, we survey JavaScript developers to assess the
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Figure 7.1: Our approach to suggest package alternatives.

usefulness of our results. Section 7.5 presents the characteristics of the suggested package

alternatives. In Section 7.6, we describes the threats to validity. Finally, we present the

conclusion of our work in Section 7.7.

7.2 Approach

In this section, we explain our approach that uses the dependency migration patterns in

the npm ecosystem and the packages’ centrality trends to suggest alternative packages for

the ones that are in decline. Figure 7.1 shows our overall approach, which starts by detect-

ing dependency change events from the npm ecosystem. Then, we analyze these events to

extract dependency migration patterns and calculate the centrality trends for all packages

in the npm ecosystem. Next, we filter the dependency migration patterns to select migra-

tion suggestions that are more likely to recommend better alternative packages. Finally, we

extract pull request examples that match the dependency migration suggestions generated

by our approach.
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7.2.1 Detect Dependency Change Events

The core of our approach lies in identifying frequent dependency migration patterns

occurring in the ecosystem to better inform or recommend practitioners. To extract depen-

dency migration patterns or compute the centrality trends, we need to detect dependency

change events in the npm ecosystem. In our study, we consider two events as dependency

change events: 1) the addition of a new package dependency and 2) the removal of a pack-

age dependency. Hence, dependency change events do not include updating the version

of a dependency, since our approach aims to suggest dependency migrations regardless of

their versions. Later in our process (in Section 7.2.2), we use dependency change events to

detect the dependency replacements, i.e., in which one dependency is removed and another

one is added. Also, we use the dependency change events to update the npm ecosystem’s

dependency graph and calculate the centrality trends (in Section 7.2.3).

To extract dependency change events for all packages in the npm ecosystem, we analyze

the entire npm registry database. The npm registry maintains a record of the packages’

dependencies for each version of every package. For each package in the registry, we start

by sorting the package versions in ascending order by their release time. Then, on each

version (vn), we compare the list of dependencies with the previous version (vn−1). If the

dependency is absent in the version vn−1, we consider it to be a dependency addition event;

conversely, if the dependency is absent in the version vn, we consider it a dependency

removal event.

It is crucial to notice that package releases can be nonlinear. Package maintainers com-

monly employ backports to fix older release versions (Decan, Mens, Zerouali, & De Roover,

2021). In such cases, the chronological order of the versions will be polluted by backports,

as these versions could include old dependencies no longer used in the main release branch.

Hence, in our process, we filter out any release with a lower semantic versioning than its

predecessor in relation to their respective release date. For example, the developers of
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the package react have released the version 16.13.1 in March 2020, then in October

2020 released the backport version 15.7.0 to fix an older major version, where the latest

version was 15.6.2 (Inc., 2121). Since the version 15.7.0 is smaller than the version

16.13.1, we exclude the version 15.7.0 from our analysis.

7.2.2 Extract Dependency Migration Patterns

We extract dependency migration patterns by identifying recurring dependency replace-

ments in the npm ecosystems. First, we use the dependency change events to retrieve

changes in the packages’ dependencies across all their versions. Then, we consider each of

the added dependencies as a potential replacement for each of the removed dependencies.

Listing 7.1 show an example of dependency changes in a package.json file between

two package versions. The dependency changes in the example are represented as four

dependency change events. Three dependencies are removed (i.e., removal change events),

and one dependency is added (i.e., an addition change event). By applying this on the

example in Listing 7.1, we extract three dependency replacements: less → lodash,

underscore → lodash and utf-8-validate → lodash. In our process, we

do not mix runtime dependencies with development dependencies. Thus, we consider the

added runtime dependencies as potential replacements for only the removed runtime de-

pendencies, not the development dependencies, and vice versa. We do this since the devel-

opment and runtime dependencies are typically used in different contexts and should not

be recommended as alternatives to each other.

When a package releases a new version and replaces more than one dependency, our

approach has no way to identify which dependency has been replaced nor its replacement.

Thus, as explained earlier, we consider each added dependency a potential replacement for

each deleted dependency (combination). Since we want to reduce the odds of combinatorial

explosion of dependency replacements, we filter out releases with massive or imbalanced
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Listing 7.1: Dependency changes taken from the version 0.2.16 of the package
@jpmorganchase/perspective.

"dependencies": {
"@babel/polyfill": "ˆ7.0.0",
"@babel/runtime": "ˆ7.1.5",
"bufferutil": "˜3.0.0",
"d3-array": "ˆ1.2.1",
"detectie": "1.0.0",
"flatbuffers": "ˆ1.10.2",

- "less": "ˆ2.7.2",
+ "lodash": "ˆ4.17.4",

"moment": "ˆ2.19.1",
"papaparse": "ˆ4.3.6",
"text-encoding-utf-8": "ˆ1.0.2",
"tslib": "ˆ1.9.3",

- "underscore": "ˆ1.8.3",
- "utf-8-validate": "˜4.0.0",

"websocket-heartbeat-js": "ˆ1.0.7",
"ws": "ˆ6.1.2"

},

number dependency changes. We only consider dependency change events from releases

where the difference between the number of added dependencies (Da) and removed depen-

dencies (Dr) are close, i.e., |Da − Dr| ≤ 1. Also, we avoid considering change events

where there is a large number of added and removed dependencies, i.e., Da + Dr ≤ x̃,

where x̃ is the median value for Da + Dr across all the releases in the npm registry. We

do this filtering since a large number of dependency changes indicates a significant code

refactoring more than a simple dependency replacement.

We consider a dependency migration pattern, a dependency replacement that frequently

occurs in the ecosystem, which is more likely to indicate a trend. Hence, after identifying

the dependency replacements, we consider replacements that reoccur at least 10 times in

our dataset as dependency migration patterns. That is, at least the developers of 10 distinct

projects must have performed the same dependency replacement.
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7.2.3 Calculate Centrality Trends

Centrality has been used as a proxy of community interest, where packages that show a

decline in centrality are usually used less over time, become less frequently maintained, and

eventually could become abandoned. Thus, our approach uses the centrality to target sug-

gesting alternatives for packages that are in decline to replace them with packages deemed

not in decline. To determine if a package is in decline or not, we use the approach that we

proposed Chapter 6 which requires dependency change events to calculate the centrality

and detect packages in decline. A package considered in decline if it shows statistically

significant declines in the centrality over a specific period of time.

Our approach requires the centrality trends for packages engaged in the extracted de-

pendency migration patterns. However, calculating the centrality rankings requires com-

puting the centrality for every package in the ecosystem. Thus, we use the dependency

change events (extracted in Section 7.2.1) to calculate the monthly centrality rankings for

each package in the npm registry.

7.2.4 Select Package Alternatives

Once we have both the dependency migration patterns (Section 7.2.2) and centrality

trends for all packages (Section 7.2.3), we select the most promising dependency migration

patterns to recommend to practitioners. To do so, we use the following criteria:

• The replaced package is in decline: we select only patterns where the removed

package is in decline. Since the decline can vary based on the examined period, we

measure the decline over three different periods: the last six months, the last year,

and the package’s overall lifetime. If the package shows a decline based on one of

the measured periods, we consider it an in decline package.
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• The alternative package is not in decline: to ensure that we suggest better alterna-

tives, we select only patterns where the added package is not in decline.

• The migrations pattern is performed recently: to avoid recommending outdated

migration patterns, we considering only the patterns performed at least once in the

last 90 days.

• Performed by a popular project: to avoid considering patterns performed only by

immature projects, a migration pattern should be performed by a popular project in

order to be considered. In this context, we consider a project as popular if the project

is in the top 10% of most central packages in the npm ecosystem.

When our approach finds more than one package alternative, we select the dependency

migration pattern with the highest support, i.e., performed more frequently.

7.2.5 Extract Pull Request Examples

We aim to provide developers with examples of pull requests that performed the sug-

gested dependency migration. Exemplary pull requests may provide insights on the mi-

gration’s efforts, reasons for the dependency migration, and help practitioners understand

the differences between the alternatives. To extract pull requests examples, we check the

npm registry to find packages that performed any of the candidate dependency migration

patterns. For these packages, we collect their repository addresses on GitHub. Then, we

use the GitHub API4 to extract all the merged pull requests from the selected repositories.

Once we retrieve the pull requests from a repository using the GitHub API, we select

only the pull requests that perform the suggested dependency migrations. To do so, we

consider only the pull requests that modify a package.json file, which is the file where

projects declare their dependencies. Then, we compare the content of the package.json

4https://docs.github.com/graphql
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file as it is on the merge commit with the content of the files as it was on the parent com-

mit. Next, we exclude pull requests that are extremely big, i.e., change more than 100

files, which is 7 times more that average number (mean = 13.62) of changed files in pull

requests (Gousios & Zaidman, 2014).

7.3 Accuracy of the Approach

In this section, we investigate the performance of our approach in suggesting alternative

packages for those in decline. The decline of package centrality could be a symptom that

better alternatives have emerged or a shift in the community interest. However, developers

have little information to grasp where the community has shifted its interest. Suppose our

approach can aptly capture valid package alternatives. In that case, it can be embedded in

dependency management tools, such as the npm CLI, to increase developers’ awareness of

alternative packages and help them reevaluate their package dependencies.

To measure the accuracy of our approach, we first use our approach to generate depen-

dency migration suggestions to alternative packages. Then, manually evaluate whether the

suggested alternative packages perform comparable functionalities to the original ones.

7.3.1 Generate Dependency Migration Suggestions

We generate the suggestions to alternative packages using the approach described in

Section 7.2. We start by detecting the dependency change events as of December 22, 2020.

We collected in total 18,459,923 dependency change events from 1,148,720 packages from

the npm ecosystem. From these change events, we extracted 2,434 dependency migration

patterns. After filtering the migration patterns based on the centrality trend of the pack-

ages and the criteria described in Section 7.2.2, we end up with 152 package alternative

suggestions.
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7.3.2 Manual Evaluation Process

Once we generate the dependency migration suggestions, we manually evaluate the

correctness of the suggested alternative packages by assessing whether both packages pro-

vide similar functionalities or not. We manually examine the documentation (e.g., readme

file, homepage, and website) of the package to be replaced and the suggested alternative

package to understand their functionalities. We start by inspecting the documentation of the

package homepage on the official npm website5. If the description is not descriptive enough

for our classification, we examine other available sources such as the readme file, the pack-

age website, and the package repository. Once we have a comprehensive understanding of

both packages, if the suggested alternative package performs comparable functionalities to

the original package, we consider the suggested alternative package as a valid alternative

package. For example, the packages commander and yargs share similar functional-

ities, helping in building command-line interfaces for Node.js. Hence, we consider the

package commander as an alternative for yargs.

In total, two of the authors independently examined the documentations of 256 pack-

ages for 152 dependency migration suggestions. Since this process involves human judg-

ment, it is prone to human bias. We assess the agreement of both examiners using the

Cohen-Kappa inter-rater reliability. Cohen-kappa inter-rater reliability is a well-known

statistical method that evaluates the inter-rater reliability agreement level. The result is a

scale that ranges between -1.0 and 1.0, where a negative value means poorer than chance

agreement, zero indicates exactly chance agreement, and a positive value indicates better

than chance agreement (McHugh, 2012). In our analysis, we found that both authors have

an excellent agreement (kappa=0.79). After the initial classification, any disagreement was

examined and discussed by both examiners to reach consensus (Fleiss & Cohen, 1973).

5https://www.npmjs.com
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Table 7.1: Summary of the suggested alternatives categorize by their functionalities.

Category Suggestion Example TP FP

Building browserify → webpack 39 3
Utilities moment → dayjs 26 -
Testing vows → mocha 16 -
User Interface jade → pug 12 -
Linter jshint → eslint 10 2
Client Library redis → ioredis 10 1
Networking request → axios 10 -
Parser esprima → acorn 9 -
CLI optimist → yargs 4 -
Other memory-fs → memfs 10 -

Total 146 6

7.3.3 Results

Based on the manual evaluation of our approach, Table 7.1 shows a summary of the

migration suggestions generated by our approach. We categorize and group the suggestions

by their abstracted functionalities. Each category of suggestions in the table has an example

of a package migration suggestion generated by our approach. The third column presents

the number of True Positive cases (TP), where our approach accurately finds the alternative

packages. The last column shows the number of False Positive cases (FP), where our

approach suggested invalided alternatives.

Overall, we examine 152 dependency migration suggestions generated by our approach.

We found that 146 (96%) of the generated dependency migration suggestions include valid

alternative packages and 6 (4%) of them do not. Furthermore, we found that the packages

performing functionality related to building the JavaScript projects have the highest share

(28%) of the generated dependency migration suggestions. For example, our approach

suggests replacing the JavaScript bundler package browserify with a more popular,

scalable, and feature rich one, the webpack package. The next category in our results

is the utility tools (17%), where our approach suggests replacing obsolete utility packages
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such as moment with a more modern solution like dayjs. Next categories include testing

tools, and user interface components and helpers with share of 11% and 8% respectively.

Also, among others, the categories include linters to enforce rules on the JavaScript code,

clients drivers to interact with other services, and networking utilities.

Out of the 6 invalid dependency migration suggestions that we found, only one invalid

suggestion belongs to replacing runtime dependency, where the remaining 5 cases suggest

replacing development dependencies. An example of invalid dependency migration sug-

gestion, is the suggestion of replacing the development dependency ember-cli-eslint

with eslint. However, ember-cli-eslint is a plugin to identify and report patterns

found in Ember6 projects using the package eslint, which we consider an invalid alter-

native package of eslint.

Since runtime dependencies and development dependencies are treated differently by

developers, we separate the results of our tool performance based on the dependency type.

Interestingly, we found that the accuracy of our tool in suggesting package alternatives for

development dependencies is 93%, where it is 99% for development dependencies.

Summary of RQ1: Out of the 152 dependency migration suggestions generated by

our approach, we found that 96% of them are valid alternative package suggestions.

Most frequent suggestions recommend alternatives for building, utilities and testing

packages.

7.4 Usefulness of the Approach

After finding our approach provides accurate recommendations, we evaluate if practi-

tioners find our suggestions practical. More specifically, we want to know if our approach

6https://emberjs.com
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presents new information to practitioners: Are practitioners aware of the suggested migra-

tions? Do practitioners believe our approach is valuable? Would practitioners act upon the

suggested changes and migrate packages in their own projects?

To evaluate the usefulness of our suggested package alternatives, we conducted a survey

to collect feedback from JavaScript project maintainers. In the following, we will present

our survey design, participant recruitment process, the background of the participants, and

the survey results.

7.4.1 Survey Design

We design a survey to evaluate the usefulness of the suggested dependency migration to

JavaScript developers that use the packages in decline in their projects. That is, we target

our survey to developers that have used the packages our approach recommends replac-

ing. Our survey contains three main parts. We ask JavaScript practitioners about: 1) their

software development background, 2) if they are aware of the suggested alternatives, and

3) their perceptions about our results. Table 7.2 shows the questions we ask along with the

type of accepted answers for each question.

In the first part, the survey contains questions related to the surveyed participants’ expe-

rience and background. We ask these questions to ensure that our survey participants have

sufficient experience using npm packages in software development and maintenance. In the

second part of the survey, we ask the participants whether they know the suggested pack-

age alternative and are aware of the JavaScript community’s migration trend toward the

suggested alternative package. We inform the participants about the dependency migration

suggestion in the survey invitation email.

In the last part of our survey, we want to understand the participants’ perceptions about
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Table 7.2: Questions in our survey about the alternative package suggestions.

Category Question Accepted Answers

Background

How would you best describe your-
self?

Single selection options: Full-time, Part-time,
Free-lancer, or Other.

For how long you have been devel-
oping software?

Single selection options: Less than 1 year, 1 to 3
years, 4 to 5 years, or More than 5 years.

How many years of JavaScript de-
velopment experience do you have?

How many years of experience do
you have using the Node Package
Manager (npm)?

How often do you search for npm
package alternatives?

Single selection options: Never, Rarely (e.g., once a
year), Sometimes (e.g., once a month), Often (e.g.,
once a week), or Very often (e.g., everyday).

Awareness

Are you aware of the alternative
package mentioned in the email?

Single selection options: Yes or No.

Are you aware of the JavaScript
community’s migration trend men-
tioned in the email?

Usefulness

Do you think that a tool that helps
generate potential alternative pack-
ages would be useful?

Likert-scale: ranges from 1 = Not useful, to
5 = Extremely useful.

Do you believe that providing an
example of Pull Requests of migra-
tions from other projects would be
helpful?

Multiple selection options: Help in estimating the
dependency migration efforts, Help in justifying the
dependency migration, Help in understanding the re-
quired API changes, Not helpful, and Other.

Future Actions

In your future new projects, will
you use the alternative package?

Single selection options: Yes or No.

If the previous answer was ”No”,
why not?

Free text

In your current projects, will you
advise to migrate to the alternative
package?

Likert-scale: ranges from 1 = Keep the current
package, to 5 = Strongly advise migrating.

our suggested dependency migrations. Thus, we ask the participants two groups of ques-

tions: 1) how useful they found our suggested dependency migrations and 2) their will-

ingness to take actions related to our suggestions. In the first group (two questions), we

ask if the participants think there is a need for a tool to generate suggestions for alternative

packages. Also, since our approach provides real-world dependency migration examples

in the form of pull requests, we asked how helpful was the provided pull request examples
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in evaluating the dependency migration. In the second group (two questions), we ask if the

participants will use the suggested alternative package in their future projects. If the an-

swer is No, we request the participants to explain why. We ask this open-ended question to

give our survey participants maximum flexibility to express their opinion and experience as

recommended in survey design guidelines (Dillman, 2011). In addition, we asked the par-

ticipants if they think their current projects should migrate to use the suggested alternative

packages.

7.4.2 Participant Recruitment

To select our survey participants, we reach out to experienced developers who have

adopted the packages that we suggest to be replaced with alternatives. We retrieve a list of

JavaScript projects hosted on GitHub that have at least 100 stars. We use the project stars

as a filtering criteria, as commonly done in the related literature (Abdalkareem, Oda, et al.,

2020; Borges et al., 2016; Golubev, Eliseeva, Povarov, & Bryksin, 2020), and by selecting

highly-starred projects we mitigate the chances of including immature and personal projects

in our survey. We were able to retrieve a list of 35,719 projects using the GitHub search

API.7

Next, we use the GitHub raw content API8 to retrieve the list of dependencies from the

package.json file of each project. If a project has any dependencies that our approach

suggests to be replaced, we clone the project’s repository to be analyzed. To select par-

ticipants with experience in using the dependencies that our approach suggests replacing,

we target the developers who introduced these dependencies in their projects. Thus, we

use git9 to retrieve the change history of the package.json file. On each commit that

modifies the package.json file, we detect the dependencies that were added. We do so

7https://docs.github.com/rest/reference/search
8https://raw.githubusercontent.com
9https://git-scm.com
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by comparing the dependencies as it appears in the examine commit and dependencies ap-

pears in the previous commit, i.e., its parent commit. If the commit is adding a dependency

that our approach suggest to be replaced, we retrieve the author contacts from the commit

metadata.

Since it is common for developers to use multiple email addresses (Zhu & Wei, 2019),

we avoid selecting multiple contacts with the same name even if they have different email

addresses. Also, to prevent distrusting teams with multiple survey invitations and to diver-

sify our participants, we avoid selecting more than one developer per GitHub organization.

Based on these steps, we were able to identify 4,696 unique JavaScript developers. Then,

we randomly selected 1,000 developers to participate in our survey.

Finally, we send email invitations of our survey to 1,000 JavaScript developers. How-

ever, some email invitations were not able to be delivered, e.g., email address not found.

Thus, we successfully delivered email invitations to 886 unique developers. As a result,

we received 52 responses for our survey after having the survey open for a month, where

we received all responses within the first two weeks. This number of responses translates

to a 6% response rate, which is comparable to the response rate reported in other software

engineering surveys (Buse & Zimmermann, 2012; Smith et al., 2013).

7.4.3 Survey Participants

Table 7.3 shows the background of our survey participants, including the positions

and experience of the participants, specifically, their experience in software development,

JavaScript development, and the use of the npm packages.

Of the 52 participants in our survey, 41 participants identified themselves as full-time

developers and only one as part-time developer. Also, 9 participants consider themselves as

freelancers. As for the participants’ experience, 47 participants have more than 5 years of

development experience, where the remaining 5 participants have between 4 to 5 years. In
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Table 7.3: Participants’ position and experience in software development, JavaScript de-
velopment, and using npm.

Developers’
Position Occurrences Development

Experience Occurrences Experience
in JavaScript Occurrences Experience in

Using npm Occurrences

Full-time 42 1 - 3 0 1 - 3 3 1 - 3 3
Part-time 1 4 - 5 5 4 - 5 8 4 - 5 9
Freelancer 9 > 5 47 > 5 41 > 5 40

Very often Often Sometimes Rarely Never
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Figure 7.2: Survey responses regarding how often our survey participants search for pack-
age alternatives. In our survey, the question has the following answers: never, rarely (e.g.,
once a year), sometimes (e.g., once a month), often (e.g., once a week), very often (e.g.,
everyday).

addition, 41 participants have more than 5 years of experience developing using JavaScript,

8 participants claim to have between 4 to 5 years of JavaScript experience, and 3 partici-

pants claim to have between 1 to 3 years of JavaScript experience. We also asked our survey

participants about their experience in using npm packages. Most of our survey participants

(77%) have more than 5 years of experience using npm packages. Only 9 participants have

between 4 to 5 years, and 3 have between 1 to 3 years of experience using npm.

Finally, we ask the participants how often they search for alternatives npm packages,

to evaluate their interest and experience in searching for alternative packages Figure 7.2

show that out of the 52 participants, 92% of them do search for alternatives npm packages.

Specifically, 6% of the participants search for alternatives npm packages very often, and

another 6% claimed that they often search for alternatives npm packages. The majority

of other participants (52%) state they sometimes look for alternative npm packages, and
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29% mentioned that they rarely search for alternatives npm packages, e.g., once a year.

Interestingly, only 8% of our survey participants report that they never search for alternative

packages.

Overall, the information from the background sections shows that all of our survey

participants are experienced developers, and the vast majority of them have long experience

in JavaScript and npm packages. Also, from the background sections, we see that most of

our survey participants have experience searching for alternative npm packages. This gives

confidence in the quality of our survey responses.

7.4.4 Results

We measure our approach usefulness along three complementary dimensions: 1) devel-

opers awareness of the generated suggestions, 2) developers perceptions of our suggestions,

and 3) developers willingness to take future actions based on our suggestions.

Developer Awareness. We assess the awareness about the generated suggestions by asking

the participants 1) if they know the alternative package and 2) whether they are aware of

the migration trend in the JavaScript community toward the alternative packages. Based on

our survey responses, our approach were able to inform participants about the alternative

packages and the JavaScript community’s migration trend. Specifically, Figure 7.3 shows

that 37% of the participants are not aware of suggested alternative packages, and 48% of

the participants are not aware of the dependency migration trend in the JavaScript com-

munity. Given our suggestions are based on migrations that have been performed many

times in the npm ecosystem, we found it surprising that 37% of participants have not heard

of the alternative package before. To put things into perspective, all of our survey partic-

ipants are familiar with the original package and 92% have reported to regularly look in

the ecosystem for alternative packages. This indicates that even experienced developers

are frequently unaware of the ecosystem’ trends and need tools to be better informed about
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Figure 7.3: The awareness of participants about the suggested alternative packages and the
community’s migration trends.
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Figure 7.4: Survey responses regarding the usefulness of having a tool that generate al-
ternative suggestions using our approach. The usefulness rated on a 5-points Likert-scale
ranges from 1 = Not useful, to 5 = Extremely useful.

their development community.

Developer Perceptions. To understand the perception of the project maintainers of our ap-

proach’s results, we ask the participants if they think that a tool that helps generate potential

alternative packages would be useful. As Figure 7.4 shows, most participants believe that

the suggestions generated by our approach are useful and support the idea of having a tool

to generate such suggestions. On a 5-points Likert scale, the support of such a tool has a

median = 4 and mean = 3.37, where only 10% of the participants claimed it is not useful

for them, and 15% indicate that it is extremely useful.

In the survey invitation, we provide the participates with pull request examples of de-

pendency migrations from other projects. We ask the participants if they found the pull

request examples helpful. In this question, participants can select more than one option or
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Table 7.4: Participants’ responses on how helpful are the examples of dependency migra-
tions from other projects?

Helpfulness Frequency

Understanding the required API changes 79%
Estimating the dependency migration efforts 75%
Justifying the dependency migration 52%
Other 6%

Not helpful 11%

even enter their own answer. Table 7.4 shows the participants’ responses. We can observe

that the majority of the participants (88%) believe that the provided examples of depen-

dency migrations from other projects are helpful. Specifically, 79% of the participants find

that the provided examples are helpful in understanding the differences and the required

changes in the API usage between the alternative package and the current package. Also,

75% of the participants indicate that the migration examples from other projects can help in

estimating the efforts needed to migrate to the alternative package in their projects. Inter-

estingly, 52% of the participants mentioned that the explanation in the provided examples

helps justify the dependency migration within their teams. Finally, only 12% of the partici-

pants claim that the provided dependency migration examples are not helpful. For example,

participant P3 expressed a disagreement with the justification given in the pull request ex-

ample. The participants believe that the alternative package has more dependencies, which

is the opposite to what was explained in the pull request example, “Just reading briefly,

but yargs has way more dependencies than commander, contrary on what is reported in

the PR”. Another participant mentioned that a pull request example would only be useful

to them if it illustrates solving a security issue (P50: “I would never bother migrating un-

less there were a severe and applicable security concern ...”). Also, participant P42 states

“Helpful in giving an idea of the change, but not much beyond that (every project likely

requires custom things).”

135



1 2 3 4 5
0

5

10

15

R
es

po
ns

es
 C

ou
nt 25%

17% 17% 15%

25%

Figure 7.5: Survey responses regarding the support of migration their current projects to
use the alternative packages. The support rated on a 5-points Likert-scale ranges from
1 = Keep the current package, to 5 = Strongly advise migrating.

Future Actions. Whether developers would act upon our suggestions is a strong indica-

tion of our approach’s usefulness. Thus we ask the participants 1) if they plan to use the

alternative packages in their future projects and 2) how likely are practitioners to migrate

to alternative packages in their current projects. The responses from our survey shows that

67% of the participants will use the alternative packages in their future projects. However,

participants are split between supporting the dependency migrations and keeping current

packages in their current project. Figure 7.5 shows the distribution of the participants’

responses. On a 5-point Likert-scale, participants rate their support to migrate to the alter-

native package in their current projects in median = 2 and mean = 2.98.

To understand why participants opt for retaining current packages, even if the package

has been declining in the community, we analyze the free-text justifications from our sur-

vey participants on why they will not use the alternative package. In total, we manually

examined 17 responses (out of the 52 responses) from the participants who indicated that

they would not use the alternative package. Based on this analysis, we observe different

reasons why they will not use the alternative package. Six participants mentioned that they

would not use an alternative package as long as the current one is working. As one re-

spondent P2 summarizes “If it ain’t broke, don’t fix.” While migrating to a dependency
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with more functionalities can be helpful, the benefits of migrating will only be achieved if

the project needs the extra functionality. One of our participants (P47) expressed this con-

cern and said “The alternative packages bundles many functions, I need just the one that

the old package uses.” In contrast, P3 prefers not to use a package that has more depen-

dencies, and state “Because I value packages with little to none dependencies, one reason

(of many) is the Dependabot’s alerts hell, which is a huge waste of time, more often than

not.” Other participants indicated having less priority to migrate packages that perform a

minor functionality or packages that they do not use in the production. For example, P9

said “It’s just a small development time dependency used during build...as long it works - it

works.” Interestingly, some participants will not use the alternative packages because their

current projects have low priority. For example, P13 said “The project is mostly deprecated

and will be moving to a new golang based system ...” Also, P28 said “... that was for an

open source project, I already need to spend time with user issues and such, so using the

shiny latest version of a package is not really what I want to spend my free time on. For a

paid/work project, that would be different.”

Summary of RQ2: On a 5-points Likert scale, the developers support having a tool that

utilizes our approach to suggest alternative packages with median = 4 and mean = 3.37.

Out of our 52 participants, 67% will use our suggested alternative packages in their

future projects. Moreover, our approach helped 48% of the participants learn about the

community trend toward migrating to the alternative packages.

7.5 Characteristics of the Suggestions

We are also interested in understanding when and why developers do the kind of pack-

age dependency migrations that our approach suggests. Answering the question when aims

to discover the type of maintenance activities that developers are performing when they
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migrate to the alternative packages. While answering the question why targets finding out

the reasons that motivate the developers to migrate to the alternative packages. Answering

both questions will provide insights on how to employ our approach in the development

process e.g., development tools and CI pipelines.

To understand the developers’ behavior about performing dependency migrations to

replace packages, we manually classified pull requests that perform dependency migrations

that match the migration suggestions by our approach.

7.5.1 Manual Classification

We start by extracting pull requests that perform dependency migrations that match the

dependency migration suggestions generated by our approach. To this aim, we utilize the

approach described in Section 7.2.5. As a result, we obtain a list of 225 pull requests that

perform dependency migrations from 155 different GitHub repositories.

Once we have the dependency migration pull requests, we perform an iterative coding

process to classify and group pull requests. We gradually develop two sets of codes based

on an inductive analysis approach (Seaman, 1999). The first set of codes concerned the

purpose of the pull request (activity) and the second set of codes concerned the motivation

of the dependency migration performed in the pull request.

In the process of classifying the activity of a pull request, we focus on the primary goal

of the pull requests, as described in its title and description. Thus, we tag each pull request

with only one activity type. Also, we examine the pull request description and discussion

to find the motivation of the dependency migration. However, not all pull requests include

an explanation to justify the dependency migration. For the ones that have a justification,

we tag them with the migration motivation. Two authors independently tag each of the 225

pull requests with a single activity type, and applicable pull requests are also tagged with

the migration motivation.
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Table 7.5: The activities of the pull requests that performed the dependency migrations.

Activity Description Frequency

Dependency update Intended mainly to update dependency versions. 42%
Dedicated migration The main goal is to migrate to a different package. 27%
Bug fixing Aims to resolve issues in the project. 16%
New feature Adds a new functionality or feature to the project. 8%
Refactoring The objective is refactor existing code. 7%

As with any other manual classification activity, there is some level of subjectivity

that may generate disagreement between the annotators. To account for this, we applied a

Cohen’s Kappa to measure the level of agreement between the two individual classifications

(Cohen, 1960). In our analysis, we found that both authors have an excellent agreement

(kappa=0.93) on classifying the pull request activates. Also, the authors have an excellent

agreement (kappa=0.90) on classifying the motivation of the dependency migrations.

7.5.2 Results

Based on the manual classification of the pull requests, we organize the results into

two parts. The first part discusses the type of maintenance activities that were performed

when developers migrate their dependencies. The second one discusses the motivation of

the dependency migrations.

When developers perform dependency migrations? Table 7.5 shows our classification

results of the pull request activities. We found that 42% of the pull requests perform de-

pendency migrations as part of a dependency update. For example, in one of the projects,

the developer created a pull request to update multiple dependencies, and in the same time

migrated from using the package node-uuid to uuid (Bernhardt, 2019). Interestingly,

we found that only 27% of the pull requests are dedicated to performing a dependency

migration activity. In a dedicated migration, the main goal of the pull request is to just
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Table 7.6: The motivations of 62 pull requests that performed the dependency migrations.

Motivation Description Frequency

Maintenance Better quality and better maintained alternative. 74%
Compatibility Increase compatibility with other packages or systems. 15%
Performance Faster execution, less dependencies, or smaller bundle size. 8%
Features Providing missed features or flexible API. 3%

replace a dependency with another. In contrast, a pull request tagged with dependency up-

date activity aims to update the version of one or more dependencies, but it replaces other

dependencies in the same pull request.

From our analysis, we identified that 16% of the dependency migrations were a part of

a bug fixing activity. For example, in one of the projects, a developer created a pull request

to fix a bug by migrating to an alternative package (Quixada, 2017). He describes the issue

as the following: “isomorphic-fetch has a bug that prevents it from running in a react native

environment. Since it is no longer maintained, it will never be fixed. That also means

dependencies are outdated. cross-fetch is React Native compatible.” In 8% of the cases,

we observe that the dependency migration occurs when developers add a new feature. An

example of such a case, a developer migrated to an alternative package to support the out

of the box installation on more platforms (Pakers, 2019): “And I am not arguing that it is

not possible to install keystone on Windows, but this is far from a simple npm install. And

as bcrypt is the problem, switching to bcryptjs would make it easier.” In the remaining

cases (6%), we notice that the dependency migration was a part of refactoring activity.

For example, in on of the projects, a developer performed a major refactoring to use plain

TypeScript locally, in the same pull request, he migrated from depending on the package

rimraf to the package del-cli.

Why developers migrate the dependencies? Our manual assessment found that 62 (24%)

of the 225 pull requests provide an explicit justification of the dependency migration. In

Table 7.6, we show the results of our manual classification.
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In 74% of the cases, dependency migrations are motivated by the need for better main-

tained alternative packages. Even when the package is not officially deprecated, developers

migrate from packages that are not well maintained, for example (Silbermann, 2020): “Re-

moves isomorphic-fetch from the dependencies which doesn’t seem to be maintained any-

more.” Even when a package has maintenance activities, developers were not satisfied with

the quality level of the maintenance, one of the developers said (Hardcastle, 2019): “Sentry

is moving away from the Raven library we are using and while it says it’s maintained, not

every feature is working anymore.”

The second most frequent motivation for dependency migrations in our dataset is the

compatibility with other packages or systems (15%). In these cases, developers migrate

to use alternative packages that are more compatible with other project dependencies or to

support more systems and platforms. For example, in one of the pull requests the th de-

veloper migrated from the package uglifyjs to the package terser to be compatible

with the new version of webpack package (Parsa, 2018): “Webpack requires uglifyjs-

webpack-plugin@1.x. thus uglifyjs-webpack-plugin@2.x may not resolve correctly. Also,

the webpack team decided to go with terser-webpack-plugin.” In another case, the migra-

tion performed to improve the support for the Windows operation system (Pakers, 2019):

“It is a nightmare to run this project on Windows as it uses bcrypt.”

We observe that 8% of the dependency migrations are motivated by improving the per-

formance of the project. Performance metrics mentioned include faster execution time,

smaller bundle size shipped to production, and lower number of transitive dependencies.

For example, one of the developers improved the performance by migrating from the pack-

age moment to the package dayjs (Waterloo, 2020): “dayjs, after webpacking, is about

7 KB compared to about 700 KB for moment. This will mean faster load times and smaller

packed VSIXs.”

In the remaining of the pull requests (3%), we observe that the motivation is to use
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features offered by the alternative packages. For example, a developer migrated from

sanitize-html to dompurify in order of allowing for more HTML tags after san-

itizing HTML content (Slagle, 2016): “dompurify prevents XSS but allows more tags

and attributes than our previous sanitizer.”

Summary of RQ3: The majority of migrations (69%) are performed during depen-

dency management activities, where 27% of the pull requests are dedicated to depen-

dency migration. 31% of the pull requests perform dependency migrations alongside

other activities such as bug fixing (16%), adding new features (8%), and refactoring

(7%). Also, we found that 74% of the dependency migrations are performed to move

to well-maintained alternative packages.

7.6 Threats to Validity

In this section, we discuss threats to the internal and external validity of our study.

7.6.1 Threats to Internal Validity

Threats to internal validity are related to experimenter bias and errors. A limitation of

our approach is that it only considers dependencies between packages in the npm registry.

This limitation will affect the centrality and migration patterns of packages that are not

meant to be used by other packages, but other JavaScript applications, i.e., top-level pack-

ages. However, previous work has shown that using the npm registry as the sole source

of changes in the dependency graph can serve as a proxy for the overall (Cogo et al.,

2019; Cogo, Oliva, & Hassan, 2021). Future work should investigate how to incorporate

JavaScript applications on the generated suggestions.

Another threat concerns the process we used to filter dependency change events to our

approach. To reduce noise, we opted to remove dependency change events from massive
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or imbalanced number dependency changes, as explained in Section 7.2.1. This may affect

our recommended patterns, as they will more likely based in projects that perform small de-

pendency changes over time. We mitigate this effect by only considering migration patterns

that reoccur across many projects.

Finally, our approach may contain bugs that may have affected our results. We made

our scripts and dataset publicly available to be fully transparent and have the community

help verify (and improve) our approach (Mujahid, Costa, Abdalkareem, & Shihab, 2021b).

7.6.2 Threats to External Validity

Threats to external validity are related to the generalizability of our findings. Our eval-

uation focused entirely on the npm ecosystem, which has very particular characteristics: a

centralized package registry, hundreds of thousands of software packages, and a very active

and popular programming language. Also, packages in the npm ecosystem are relatively

small compared to modules and software components in other ecosystems and program-

ming languages. The small package size in the npm ecosystem could lead to different

dynamics than other ecosystems, significantly affecting the dependency migration patterns

such as and barriers to migrating to other packages. Future work needs to investigate if a

similar approach can also help generate dependency migration suggestions in other ecosys-

tems such as PyPi and Maven.

7.7 Chapter Summary

This chapter presents an approach to extract dependency migration trends in the soft-

ware ecosystem and suggest alternatives for packages that are in decline. We evaluate our

approach in npm, one of the largest and most popular software ecosystems. Our evaluation

showed that our approach were accurate at suggesting alternative packages (RQ1). Out of
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the 152 dependency migration suggestions generated by our approach, we found that 96%

of them are valid alternative package suggestions. We evaluate the usefulness of our ap-

proach through a survey with JavaScript developers (RQ2). We found that it helped 52%

of the developers to learn about the alternative packages. Also, on a 5-points Likert scale,

the developers support having a tool that utilizes our approach to suggest alternative pack-

ages with median = 4. Moreover, 67% of the developers will use our suggested alternative

packages in their future projects. Finally, we investigated the activities and the motivation

of performing our suggested dependency migrations (RQ3). We found that 73% of the pull

requests perform dependency migrations alongside other activities such as dependency ver-

sion update, bug fixing, refactoring. Also, we found that 74% of the dependency migrations

are performed to move to well-maintained alternative packages.

Our work outlines some directions for future work. First, in this chapter, we generate

suggestions for one-to-one dependency migrations, where one package replaces another.

We believe it is valuable for future work to support one-to-many and many-to-many de-

pendency migrations, where one or more packages are replacing one or more packages.

Another exciting follow-up work is to propose an automated approach that uses the depen-

dency migration examples to perform the suggested dependency migrations.
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Chapter 8

Conclusions and Future Work

Software ecosystems have become an essential part of today’s software development.

The work proposed in this thesis is influenced by the rapid growth of software ecosystems,

with which reusing third-party code in the form of packages has become a widespread

practice. In this thesis, we focused on helping developers mitigating the challenges in man-

aging open source package dependencies. We started by conducting an empirical study

to understand the characteristic of highly-used packages and the factors used to select the

packages. Next, we proposed multiple approaches to help developers manage their depen-

dencies, including making an informed decision when updating dependencies, evaluating

the packages, identifying packages that could be useful to replace, and finding alternative

packages.

8.1 Conclusion and Findings

Recent studies have shown that reusing packages from software ecosystems improves

productivity, reduces time-to-market, and enhances quality. However, like any solution,

using open source dependencies from software ecosystems has challenges such as quality

issues, risk of breakage-inducing versions, maintenance issues, and even added complexity.
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The research presented in this thesis focuses on helping software developers, who depend

on packages from the ecosystem, overcome the challenges in managing their dependencies.

More specifically, the presented research provides the following main contributions:

Chapter 4: An Empirical Study on the Characteristics of Highly-Selected

Packages

In this chapter, we conducted a mixed qualitative and quantitative study to understand

how developers identify and select relevant open source packages. Specifically, we started

by surveying 118 JavaScript developers from the npm ecosystem to qualitatively under-

stand the factors that make a package to be highly used within the ecosystem. The sur-

vey results showed that JavaScript developers believe that highly-used packages are well-

documented, receive a high number of stars on GitHub, have a large number of downloads,

and do not suffer from security vulnerabilities. Then, we conducted an experiment to quan-

titatively validate the developers’ perception of the factors that make a highly-used package.

Our findings can help improve the package search engines and package recommendation

systems.

Chapter 5: An Approach to Identify Breaking Updates

Software dependencies are constantly evolving with newly added features and patches

that fix bugs in older versions. However, updating dependencies could introduce new

bugs or break backward compatibility. In this chapter, we proposed an approach to de-

tect breakage-inducing versions of third-party dependencies. The underlying rationale is

that the test suites of dependent projects can cover more real-world scenarios than the pack-

age’s tests alone. Thus, our approach leverage the automated test suites of other projects

that depend upon the same dependency to test newly released versions. We conjecture that
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this crowd-based approach will help detect breakage-inducing versions because it broad-

ens realistic usage scenarios of the packages. To evaluate our conjecture, we performed an

empirical study of 391,553 npm packages. We used the dependency network from these

packages to identify candidate tests of third-party packages. We mined the history of this

dependency network to identify ten breakage-inducing versions. We found that our pro-

posed technique can detect six of the ten studied real-world breakage-inducing versions.

Our findings can help developers to make more informed decisions when they update their

dependencies.

Chapter 6: An Approach to Identify Packages in Decline

Packages that show a decline in community interest are usually used less over time,

become less frequently maintained, and eventually become abandoned. Thus, this chapter

proposes a scalable approach that uses the packages’ centrality in the ecosystem to identify

packages in decline. We evaluated our approach on packages from the npm ecosystem. The

results showed that our approach can correctly detect 87% of packages in decline. More

crucial, our approach can detect packages in decline on average 18.35 months before their

npms scores reflecting the decline. Also, it detects packages in decline on average 16.15

months before a package gets deprecated. In general, the results showed that our approach

provides trends that are different from those provided by other metrics such as dependents,

downloads, stars, and forks. We implemented a tool that utilizes our approach to help

developers avoid packages in decline when reusing packages from the npm ecosystem.

Chapter 7: An Approach to Find Alternative Packages

The decline in community interest may indicate that a better solution is drawing at-

tention in the ecosystem, and developers are migrating to a package that better suits their

requirements. This chapter aims to use the crowd knowledge extracted from the software
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ecosystem to suggest alternative packages to those in decline. Therefore, we propose an

approach that extracts dependency migration patterns and utilizes the centrality trends to

suggest package alternatives. Our evaluation shows that our approach suggested valid al-

ternative packages in 96% of the cases. Further, 67% of the developers confirmed that they

would use our suggested alternative packages. Also, on a 5-points Likert scale, the devel-

opers support having a tool that utilizes our approach to suggest alternative packages with

median = 4.

8.2 Limitations

A limitation of our work is that we study data mainly from the npm ecosystem. Thus,

we cannot assert whether our results are generalizable to other software ecosystems. An-

other limitation is that we restrict our study to the packages published on npm ecosystem,

while external projects (e.g., published only on Github) can also depend on npm packages.

To analyze the dependencies of these external projects, data collection challenges beyond

this thesis’s scope must be resolved first. It is difficult to collect a comprehensive view of

the external projects and their dependency changes over time.

8.3 Future Work

Although this thesis has made many contributions towards facilitating the dependency

maintenance activities, many different avenues for future work remain unexplored. We

summarize some of the main directions for future work.

8.3.1 Replication on Other Software Ecosystems

Our work focuses on the npm ecosystem. However, other software ecosystems have

unique characteristics resulted from the variations in policies, practices, use cases, and
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tools. Future research that replicates and adapts our work on other software ecosystems

would generalize our approaches and results to help a broader range of developers. To

support such future work, through this thesis, we detailed the technical implementations

of our experiments and approaches. In addition, we have published our data and scripts to

support future replications.

8.3.2 Extend Scope of Dependent Projects

Our proposed approaches rely on observing the dependency network of the packages

in the software ecosystem. However, other projects out the ecosystem also depend on the

packages in the ecosystem. Extending the scope of the dependency network to include

other projects that are not published as packages in the ecosystem can help advance our ap-

proaches. In Chapter 5, our approach uses test suites from dependent projects to test newly

released package versions. Extending the scope to other projects can increase the number

of dependent projects, which improves the accuracy and the applicability of our approach.

This improvement will be helpful especially for top-level packages, i.e., packages that are

used mainly by applications, not other packages. Likewise, our approaches in Chapters 6

and 7 monitor the changes in the dependency network to calculate the centrality and extract

migration patterns. Extending the scope of dependent could improve the quality of the cen-

trality rankings. Also, it will increase the number of extracted migration patterns, which

could improve the alternative package suggestions. Future work should explore solving the

technical challenging in expanding the scope of the dependency network. Also, it should

investigate the impact of extending the scope of the dependency network on the quality of

our results.
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8.3.3 Investigate Why a Package Is in Decline

The Chapter 6 of this thesis proposes an approach to detect packages in decline, and

Chapter 7 proposes an approach to find alternatives for them. An important question left

to answer is: why do packages become in decline. Future research should investigate and

characterize the reasons that drove packages to become in decline. Furthermore, future

work should explore developing an approach to quantitative the reasons for a package to

become in decline, which supports developers to make more informed decisions.

8.3.4 Predict Future Central Packages

In Chapter 6, we focus on detecting package in decline as early as possible. However,

another important direction is to predict the future central package. Finding future central

packages can be used by open source contributors to find packages that will acquire the

community’s interest. On the other side, these packages can receive the attention needed

to boost their evolution as early as possible. Future work should develop an approach to

predict the future central packages. Furthermore, it should investigate the impact of such

an approach on the practices in the software ecosystems.

8.3.5 Expand Dependency Migration Suggestions

In Chapter 7, our approach generates one-to-one dependency migration suggestions,

where one package replaces another. However, more complex dependency migrations

could involve replacing multiple packages. Future work should explore supporting one-

to-many and many-to-many dependency migrations, where one or more packages are re-

placing one or more packages.
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8.3.6 Automate Dependency Migrations

In this thesis, we propose an approach to suggest dependency migrations, which include

real-world examples for open source projects that perform the suggested migrations. How-

ever, developers are still required to perform the suggested migrations manually. Future

work should explore proposing an automated approach that uses the dependency migration

examples to perform the suggested dependency migrations.
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