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Abstract 

 

Distortional Buckling Formulation for the Analysis of Composite thin-walled beams 

MohammadHossein Moradpoor Sheikhkanloo, M.A. Sc. 

 

Thin-walled beams are widely used in construction with various restraint arrangements and sizes. 

While lateral torsional buckling is a major design concern for thin-walled beams used as girders 

distortional effects may become important depending on restraint conditions as well as for beams 

with slender webs, stocky flanges, and/or shorter spans. This thesis introduces a novel beam-type 

nonlinear Finite Element formulation that is applicable for the analysis of I-sections that are prone 

to lateral-torsional buckling and distortion. A linearized buckling formulation has been derived as 

a special case of the nonlinear beam formulation under the assumption of no pre-buckling 

deformations. The material is assumed elastic. The formulation was also applied for composite 

laminated thin-walled beams. The effect of shear deformation on the flexural and lateral-torsional 

buckling predictions of composite-laminated thin-walled beams were illustrated without the 

distortional effects. For the analysis of composite-laminated thin-walled beams the finite element 

formulation has the flexibility to choose one of the alternative members of the Doyle-Ericksen 

family of strains. As such the developed formulation is an extension of both Engesser and Haringx 

column buckling formulas to shear deformable thin-walled beams with rigid webs. It is shown that 

alternative strain definitions lead to changes in the geometric stiffness matrices in finite element 

buckling analysis of thin-walled beams. The effect of the selected strain definition on the elastic 

buckling load predictions is illustrated in numerical tests including short sections and beams with 

low shear modulus. 
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1. Chapter 1: Introduction 

1.1.  General View  

Thin-walled beam structures constituted from connecting thin plates are extensively used in many 

fields such as civil construction because of their high stiffness to weight ratios. Thin-walled 

members can be defined as members with large depth to thickness ratio i.e., 
𝑑

𝑡
≥ 10 (Figure 1.1). 

A number of theories were developed for the analysis of the behavior of the thin-walled members 

which are elaborated in section 1.4. Thin-walled beams with open cross-sections such as I-shaped 

wide flange beams suffer from inherently low torsional stiffness and therefore they are prone to 

several elastic buckling modes depending on their size and restraint conditions. Lateral-torsional 

buckling of steel joists is a major concern in building design while in bridge design girders of 

composite beam are prone to distortion of their web due to restraint conditions. Distortional effects 

gain significance in girder beams with slender webs, stocky flanges, and/or shorter spans. Shear 

deformation also becomes important as the beam spans get relatively short comparison to cross-

sectional sizes. For safe and economical design modelling approaches that capture necessary 

modes of deformation for accurate analyses of thin-walled beams are required. 

 

 

 

 

 

 

 

 

1.2.  Motivation 

The primary objective of the current thesis is to capture the effect of web distortion which is 

neglected in conventional beam theories plus considering the incorporation of shear deformation 

effects in buckling and static analysis of wide flange beams given that such effects can be eminent 

d 

t 

d 

t 

Figure 1.1 Thin-walled members with open cross-section 
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in cross-sections with deep-slender webs. Therefore, it is rational to develop a computer program 

for numerical modelling thin-walled beams able to perform buckling analysis.  

Developing a finite element formulation capable for a reliable elastic buckling behavior in steel 

structures incorporates the effects of web distortion which have commonly been neglected in 

buckling solutions. Adopting classical approaches in buckling analysis which ignore distortional 

effects on the cross-section were observed overpredict the buckling capacity of the member leading 

to unconservative buckling response predictions. A linearized buckling eigenvalue analysis is 

conducted to obtain critical load of thin-walled steel beams and results are verified with shell 

analysis model.  

1.3.  Thesis Organization 

The current thesis presented a new finite element formulation for thin-walled members with open 

cross-section to predict their elastic buckling resistance which captures web distortional effects in 

order to avoid limitations in the conventional beam theories for static and buckling analysis. The 

present chapter includes introduction and provides a review of fundamental concepts of thin-

walled beam kinematics and contains a literature review conducted on web flexibility. 

Chapter 2 describes the beam kinematics and related displacement fields and correspondent first 

order and second order strain tensor in the buckling stages. 

Chapter 3 the differential equilibrium equations for the condition of neutral stability for buckling 

consistent with the kinematics are developed based on the principle of virtual work.  

Chapter 4 the finite element formulation for distortional beam as a treatment for classical 

approaches (rigid web assumption) is explained and expressions for the nodal displacements vector 

are presented. Additionally, finite element formulation for thin-walled beam with non-bendable 

web is represented as a special case for non-distortional buckling.  

Chapter 5 the validity of the formulations is assessed for static analysis of a mono-symmetric cross-

section throughout solving numerical examples and comparison with results based on shell FEA 

and thin-walled models, and other conventional beam solutions is conducted as well.  

Chapter 6 several examples are provided to investigate the effect of web bending on buckling 

analysis of doubly symmetric sections incorporation thin-walled beam formulation which neglects 
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cross-sectional distortion to address the limitations of classical solutions and comparisons are 

provided against shell FEA solutions to verify the presented theory.  

Chapter 7 is written in a paper format with its standalone literature review, a unified finite element 

formulation is developed for shear deformable FRP pultruded thin-walled beams with low shear 

modulus. In this chapter, however, the distortional effects are suppressed due to some 

complications of combining shear deformability with distortions effects in buckling analysis. 

1.4.  Theory of thin-walled members 

1.4.1.  Beam theories kinematics 

This section is reviewing a few important bending theories for beams by describing their kinematic 

assumptions, related displacement fields and correspondent strains expressions. A right-handed 

coordinate system (x, y, z) is designated (see Figure 1.2), where z is directed along the longitudinal 

axis of the beam, the x axis is along the width of the beam, and the y axis is along the height of the 

beam which is considered positive in a downward direction. The corresponding displacement 

fields along the three axes of x, y, z are u, v, and w, respectively. Subsequently, the kinematics of 

deformation and displacement fields for various theories for steel beams such as Euler-Bernoulli, 

Timoshenko, Higher-order beams, Vlasov are presented. 

 

 

 

 

 

 

 

 

 

1.4.2.  Euler-Bernoulli Beam Theory  

The Euler-Bernoulli beam theory or classical beam theory is the simplest beam theory for analysis 

of thin-walled structural components. This theory is developed on the basis of two primary 

assumptions: 

X, U 

Z, W 

Y, V 

O 

Figure 1.2 Right-handed coordinate system 
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• Cross-section of a beam remains planar and normal to the neutral axis of the beam after the 

beam deforms. 

• Deformed angles (slopes) of the beam are assumed small. 

According to the first assumption it can be seen that the angle of rotation of the cross-section and 

the slope angle of the neutral axis (𝑑𝑣 𝑑𝑥⁄ ) are equal to each other (see Figure 1.3), and 

corresponding displacement fields can be written as below:  

 

 

 

 

 

 

 

 

 

             a) Beam Deflection 

 

 

 

 b) Kinematics  

 

  

 

 

𝑢(𝑥, 𝑦, 𝑧) = 0 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) − 𝑦 𝑠𝑖𝑛 𝜃 

1.1 

y 

y 
𝜃 

𝑤0 

𝑤 

𝑣0 
𝑣 

Deformed  Undeformed 

Z 

Y 

F 

N.A 

𝜃𝑋 = 𝑑𝑣/𝑑𝑥 

𝑑𝑣/𝑑𝑥 

Figure 1.3 A cantilever beam subjected to a 

tip load (Euler-Bernoulli theory assumption), 

a) Beam Deflection, b) Kinematics 
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𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑧) + 𝑦 𝑐𝑜𝑠 𝜃 − 𝑦 

Where 𝑢(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧) and 𝑣(𝑥, 𝑦, 𝑧) are the displacement fields of an arbitrary point on a 

cross-section along x, z, and y directions, respectively, and 𝑤0(𝑧) and 𝑣0(𝑧) is the longitudinal 

and transvers displacement of a point on the beam centroidal axis located at (0, 0, z). 

Simultaneously, 𝜃𝑋 denotes the angle of rotation of the cross-section which is equal to the slope 

of the neutral axis (𝜃𝑋 = 𝑑𝑣/𝑑𝑥). 

According to the assumption of small deformation, we have 

𝑐𝑜𝑠 𝜃 ≈ 1 

𝑠𝑖𝑛 𝜃 ≈ 𝜃 

Therefore, the equation 1.1 can be simplified as:  

𝑢(𝑥, 𝑦, 𝑧) = 0 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) − 𝑦𝜃 = 𝑤0(𝑧) − 𝑦𝑣0
′ 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑧) 

 

1.2 

The corresponding normal and shear strains can be written as below: 

휀𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) = 0 

휀𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) = 0 

휀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= −𝑦𝑣0

′′ 

 

1.3 

Furthermore, the bending moment about x axis due to the applied tip load can be calculated in 

terms of displacements as ∫ 𝑦𝑑𝐹 , and based on the Hook’s law 𝜎𝑧𝑧 = 𝐸휀𝑧𝑧 , in which 𝐸 refers to 

elasticity modulus:  

𝑀𝑥 = ∫𝑦𝑑𝐹 = ∫𝑦(𝜎𝑧𝑧𝑑𝐴)
𝐴

= ∫𝐸휀𝑧𝑧𝑦𝑑𝐴

𝐴

= 𝐸∫(−𝑦𝑣0
′′)𝑦𝑑𝐴

𝐴

= −𝐸𝐼𝑥𝑣0
′′ 

1.4 
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Where 𝐼𝑥 and A are the second moment of inertia about x axis and area of the cross-section, 

respectively.  

The shear internal force cannot be calculated from kinematics because it will lead to zero, and 

must be found from equilibrium equation: 

𝑄𝑦 = ∫ 𝜏𝑦𝑧𝑑𝐴 = ∫(𝐺휀𝑦𝑧)𝑑𝐴 = 0
𝐴𝐴

 
1.5 

In Euler-Bernoulli beam theory, the shear deformation effects are completely ignored which states 

that the centroidal axis of the beam remains perpendicular to the cross-section after the 

deformations, and this can result in a stiffer behavior against those theories which include effects 

of shear deformation.  

1.4.3.  Timoshenko Beam Theory 

Numerous investigations have been conducted by researchers for developing beam theories by 

including effect of shear deformation and rotary inertia which were the main limitations of the 

Euler-Bernoulli beam theory. Timoshenko [1] introduced a shear correction factor as a function of 

the shape of the cross-section as a treatment of the Euler-Bernoulli beam theory. He presumed that 

plane section remains plane, but normality condition between the cross-section and centroidal axis 

of the beam is relaxed (see Figure 1.4). Thus, due to considering the shear deformation effects, the 

angle of rotation of the cross-section is not equal to the slope of the neutral axis (𝜃𝑋 ≠ 𝑑𝑣/𝑑𝑥). 

Based on the kinematic assumptions of the Timoshenko beam theory, displacement fields can be 

expressed as  

𝑢(𝑥, 𝑦, 𝑧) = 0 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) − 𝑦 𝑠𝑖𝑛 𝜃𝑋 = 𝑤0(𝑧) − 𝑦𝜃𝑋 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑧) 

1.6 

In the above equations, 𝜃𝑋 is the rotation angle of the cross-section about the axis of bending, and 

𝑢(𝑥, 𝑦, 𝑧), 𝑤0(𝑧) and 𝑣0(𝑧) are the lateral, longitudinal and vertical displacements terms.  

And the normal and shear strain components can be written as: 

휀𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) = 0 

1.7 



 

7 
 

휀𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) =

1

2
(𝑣0

′−𝜃𝑋) 

휀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= −𝑦𝜃𝑋

′
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

The bending moment can be determined by the integration of normal stress of the area of the cross-

section, and considering the Hook’s law 𝜎𝑧𝑧 = 𝐸휀𝑧𝑧 as blow: 

𝑀𝑥 = ∫𝑦𝑑𝐹 = ∫𝑦(𝜎𝑧𝑧𝑑𝐴)
𝐴

= ∫𝐸휀𝑧𝑧𝑦𝑑𝐴

𝐴

= 𝐸∫(−𝑦𝜃𝑋
′)𝑦𝑑𝐴

𝐴

= −𝐸𝐼𝑥𝜃𝑋
′
 

1.8 

Alternatively, many researchers calculated different values for the shear coefficient (e.g., Mindlin 

and Deresiewicz [3], Cowper [4], Reddy [5]) in order to predict more accurate response for the 

beam behaviors for engineering purposes. Therefore, the internal shear force over the area can be 

found as below: 

𝑄𝑦 = ∫ 𝜏𝑦𝑧𝑑𝐴 = ∫𝑘𝑠(𝐺휀𝑦𝑧)𝑑𝐴 = 𝑘𝑠𝐺𝐴(𝑣0
′−𝜃𝑋)

𝐴𝐴

 
1.9 

Z 

Y 

F 

N.A 

𝜃𝑋 ≠ 𝑑𝑣/𝑑𝑥 

𝑑𝑣/𝑑𝑥 

Figure 1.4 A cantilever beam subjected to a tip load (Timoshenko theory assumption) 
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Where A is the area of the cross-section, G is the elastic shear modulus and 𝑘𝑠 is the shear 

correction factor as an approximate modification for traction boundary conditions (e.g., Batoz [10], 

Pilkey [7]) can be evaluated by: 

𝑘𝑠 =
𝐴

𝐼𝑥2
∫ (
𝑆𝑥
𝑡
)
2

𝑑𝐴
𝐴

 
1.10 

Where 𝑡 is the thickness and 𝑆𝑥 is the first moment of area of the cross-section.  

Generally, Timoshenko beam’s theory shows more flexibility which means larger deflection 

comparison to Euler-Bernoulli beam. However, according to 휀𝑦𝑧 in equation 1.7, the shear strain 

is distributed uniformly over the cross-section of the beam and the correspondent constant shear 

stress distribution which are not zero at the top and bottom surface of the beam. As a result, 

Timoshenko beam theory violates the traction boundary conditions at the top edge and bottom 

edge of the beam. Hence, to remedy this limitation and having more accurate kinematic 

assumption, higher order beam theory was developed to satisfy traction boundary conditions which 

will be discussed in the next section.  

1.4.4.  Higher-order Beam Theory 

Shear deformation in Timoshenko beam is first order, and shear strain is constantly distributed 

along the beam’s height which implies that the shear stress at the top and bottom surface of the 

beam does not vanish and that violates the shear stress-free boundary conditions at the top and 

bottom surface of the beam. Higher order shear deformation beam theory has been introduced by 

many researchers to remedy the limitation of first order shear deformation to get the zero-shear 

stress at the top and bottom surface of the beam. In higher order beam theory, nonlinear shear 

strain variation along the depth of the beam causes the cross-section to warp. As a result, not only 

the normality condition between the centroidal axis and the section is relaxed, but also the plane 

section will not remain plane after deformation.  

It is interesting to note that in the mentioned higher order beam theories the transverse shear strain 

is distributed parabolically along the thickness of the plates, and in order to satisfy the shear free 

boundary conditions on the surfaces of the plate the longitudinal displacement of the beam take a 

cubic distribution. The assumed displacement fields can be written as below: 
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𝑢(𝑥, 𝑦, 𝑧) = 0 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) + 𝑦𝜃𝑋(𝑧) + 𝑦
3𝜓(𝑧) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑧) 

1.11 

And 𝜓(𝑧) which represent warping function can be obtained as: 

𝜓(𝑧) = −(
4

3ℎ2
) [𝜃𝑋(𝑧) +

𝑑𝑣

𝑑𝑥
] 

1.12 

Thus, the longitudinal displacement in the equation 1.11 is simplified as below: 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) + 𝑦𝜃𝑋(𝑧) − (
4𝑦3

3ℎ2
) [𝜃𝑋(𝑧) +

𝑑𝑣

𝑑𝑥
] 

1.13 

Where 𝜃𝑋(𝑧) and ℎ represent the angle of rotation about bending axis and height of the cross-

section, respectively. Also, the corresponding normal and shear strain components are: 

휀𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) = 0 

휀𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) =

1

2
(1 −

4𝑦2

ℎ2
) (𝜃𝑋 + 𝑣0

′) 

휀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= 𝑦 (1 −

4𝑦2

3ℎ2
)𝜃𝑋

′ −
4𝑦3

3ℎ2
𝑣0
′′ 

1.14 

Which 휀𝑦𝑧 implies the quadratic distribution of the shear strain and the correspondent shear stresses 

which will vanish at the top and bottom surfaces of the beam (𝑦 = ±
ℎ

2
). Hence, there is no need 

for shear correction factor in higher order beam theory. However, these developments are only for 

beams with rectangular cross-sections. 

The bending moment can be determined directly by integration of the normal stresses 𝜎𝑧𝑧 = 𝐸휀𝑧𝑧 

over the cross-sectional area 𝐴 as: 
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𝑀𝑥 = ∫𝜎𝑧𝑧𝑦𝑑𝐴 = ∫𝐸휀𝑧𝑧𝑦𝑑𝐴 =𝐸∫[(𝑦
2 −
4𝑦4

3ℎ2
)𝜃𝑋

′ −
4𝑦4

3ℎ2
] 𝑣0

′′𝑑𝐴

=
4

5
𝐸𝐼𝑥𝜃𝑋

′ −
1

5
𝐸𝐼𝑥𝑣

′′ 

1.15 

The internal shear force can be expressed as (Reddy [5]): 

𝑄𝑦 = ∫ 𝜏𝑦𝑧𝑑𝐴 −
4

ℎ2
∫ 𝜏𝑦𝑧𝑦

2𝑑𝐴 +
4

3ℎ2
∫
𝑑𝜎𝑧𝑧
𝑑𝑧𝐴𝐴𝐴

𝑦3𝑑𝐴

= ∫ 𝜏𝑦𝑧 (1 −
4

ℎ2
𝑦2) 𝑑𝐴

𝐴

+
4

3ℎ2
∫ 𝑦3

𝑑𝜎𝑧𝑧
𝑑𝑧𝐴

𝑑𝐴

= 𝐺 (𝐴 −
28

5ℎ2
𝐼𝑥) (𝜃𝑋 + 𝑣0

′) +
𝐸𝐼𝑥
21
(𝜃𝑋

′′ + 𝑣0
′′′) 

1.16 
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b) 

 

 

F 

F 

Figure 1.5 Deflection of a cantilever beam under a tip load, a) Without cross-

sectional warping (Plane section remains plane), b) With cross-sectional 

warping (Plane section will not remain plane) 
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Figure 1.5 represents the major discrepancy between the deformed shape of the cross-section 

according to the elementary beam theories (e.g., Euler-Bernoulli and Timoshenko) and the higher 

order beam theory (e.g., Levinson [6], Bickford [8], and Heyliger and Reddy [9]). As illustrated, 

Figure 1.5a it is demonstrated that based on the elementary beam theories the plane section remains 

plane during the deformation, while in Figure 1.5b it can be observed that the plane section does 

not remain plane during the deformation and the longitudinal displacement of the plane section is 

non-uniform because of cross-sectional warping effect. 

1.4.5.  Thin-walled members under torsion 

When a thin-walled member which is free to warp is subjected to opposite external torques at each 

end, the member undergoes uniform twisting along its longitudinal axis (z) which is passing 

through the shear center of the cross-section 𝑆 (𝑥𝑠, 𝑦𝑠) under the assumption of the plane section 

will remain plane after the torques applied. This type of torsional behavior of a beam is known as 

pure torsion which was initially developed by Saint Venant and it is commonly the predominant 

behavior in beams with closed cross-sections such as circular hollow sections where the shear 

stresses distributed linearly through the thickness of the wall with zero value on the middle surface 

(see Figure 1.6).  

 

 

 

 

 

 

 

 

 (a)    (b) 

 

 

T 

T 

𝜏𝑠𝑣 

Figure 1.6 (a) A thin-walled member with closed cross-section 

under pure torsion, (b) Saint Venant’s shear stress variation along 

the thickness 

 

(b) Saint Venant’s shear stress variation along the thickness 
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Based on the uniform torsion (Saint Venant) assumptions, the expression of the displacement field 

is: 

𝑢(𝑥, 𝑦, 𝑧) = −(𝑦 − 𝑦𝑠)𝜃𝑧(𝑧) 

𝑤(𝑥, 𝑦, 𝑧) = −𝜔(𝑥, 𝑦)𝜃𝑧
′  

𝑣(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥𝑠)𝜃𝑧(𝑧) 

1.17 

Where 𝜔(𝑥, 𝑦) is the warping function and 𝜃𝑧 is the angle of twist which is linear. Therefore, the 

axial displacement (𝜔(𝑥, 𝑦)𝜃𝑧
′) is constant with respect to z. The strain components deduced from 

displacement field can be written as: 

휀𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) =

1

2
(𝑦𝑠 − 𝑦 −

𝜕𝜔

𝜕𝑥
)𝜃𝑧

′(𝑧) 

휀𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) =

1

2
(𝑥 − 𝑥𝑠 −

𝜕𝜔

𝜕𝑦
)𝜃𝑧

′(𝑧) 

휀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= 0 

1.18 

The normal strain (휀𝑧𝑧) and normal stress (𝜎𝑧𝑧) of the cross-section vanish since the second 

derivative of the twist angle (𝜃𝑧
′′(𝑧)) is zero. 

Based on the elastic and isotropic materials assumptions, the internal torque 𝑇𝑆𝑉 due to the applied 

torques can be calculated as  

𝑇𝑆𝑉 = ∫[𝜏𝑦𝑧(𝑥 − 𝑥𝑠) − 𝜏𝑥𝑧(𝑦 − 𝑦𝑠)]
𝐴

𝑑𝐴 
1.19 

Where shear stresses are 𝜏𝑦𝑧 = 𝐺(2휀𝑦𝑧) and 𝜏𝑥𝑧 = 𝐺(2휀𝑥𝑧), so the above equation can be 

simplified in terms of strain components as below: 
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𝑇𝑆𝑉 = 𝐺∫[2휀𝑦𝑧(𝑥 − 𝑥𝑠) − 2휀𝑥𝑧(𝑦 − 𝑦𝑠)]
𝐴

𝑑𝐴

= 𝐺𝜃𝑧
′(𝑧)∫ [(𝑥 − 𝑥𝑠 −

𝜕𝜔

𝜕𝑦
) (𝑥 − 𝑥𝑠) − (𝑦𝑠 − 𝑦 −

𝜕𝜔

𝜕𝑥
) (𝑦 − 𝑦𝑠)]

𝐴

𝑑𝐴

= 𝐺𝜃𝑧
′(𝑧)∫ [(𝑥 − 𝑥𝑠)

2 + (𝑦 − 𝑦𝑠)
2 − (𝑥 − 𝑥𝑠)

𝜕𝜔

𝜕𝑦
+ (𝑦 − 𝑦𝑠)

𝜕𝜔

𝜕𝑥
]

𝐴

𝑑𝐴 

1.20 

In which 𝐺 is the shear modulus, 𝐽 is the Saint Venant torsional constant which can be found as 

(Saade [11]) 

𝐽 = ∫ [(𝑥 − 𝑥𝑠)
2 + (𝑦 − 𝑦𝑠)

2 − (𝑥 − 𝑥𝑠)
𝜕𝜔

𝜕𝑦
+ (𝑦 − 𝑦𝑠)

𝜕𝜔

𝜕𝑥
]

𝐴

𝑑𝐴 
1.21 

Consequently, by substituting equation 1.21 into equation 1.20, the Saint Venant’s internal torque 

can be obtained as  

𝑇𝑆𝑉 = 𝐺𝐽𝜃𝑍
′  1.22 

1.4.6.  Vlasov open thin-walled beam theory (non-uniform torsion) 

In contrast to closed cross-sections, when a torque applied to a thin-walled beam with open cross-

section, the member twisted non-uniformly and the distribution of the angle of twist 𝜃𝑧(𝑧) is not 

linear anymore like the uniform torsion which gives rise to non-uniform longitudinal 

displacements called warping of the plane section. If the cross-section is restrained at some 

locations along the member to warp out of its plane, then it will induce normal warping stress 

𝜎𝜔and shear warping stress 𝜏𝜔 along the beam. These stresses due to restrained warping should be 

considered in addition to bending stresses in the combined torsional flexural analysis of thin-

walled members. Hence, the torsional moment is consisting of two parts, one induced by Saint 

Venant torsion (𝑇𝑆𝑉) and the other by warping torsion (𝑇𝑊). The effect of warping restrained due 

to non-uniform torsion for a doubly symmetric wide flange beam is depicted in Figure 1.7. 

𝑇 = 𝑇𝑆𝑉 + 𝑇𝑊  

𝑇𝑊 = −𝐸𝐼𝑤𝜃𝑍
′′′ 

𝑇 = 𝐺𝐽𝜃𝑍
′ − 𝐸𝐼𝑤𝜃𝑍

′′′ 

1.23 
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Figure 1.7 Global warping deformation of doubly symmetric I-shaped wide flange section, 

(a) Longitudinal displacements of the flanges, (b) Cantilever beam under torsion (restrained 

warping)  
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Where 𝐺𝐽 is related to torsional stiffness and 𝐼𝑤 is the warping constant and 𝐸𝐼𝑤 is known as the 

warping rigidity of the cross-section. 

Vlasov [2] presented the simplest theory for prismatic thin-walled beams with open sections under 

the combination of flexure and torsion. His theory is based on 2 fundamental principles: 

1) Every point on a given cross-section undergo the same angle of twist and the section acts as a 

rigid disk in its own plane. 

2) The shear strains can be assumed to be equal to zero at the middle surface of the beam’s cross-

section. 

As depicted in Figure 1.8, a doubly symmetric I-shaped beam undergoes deformation and rotates 

around z axis 𝜃𝑧. The origin 𝑂 is chosen on the centroid of the cross-section which is coincide with 

the shear center. According to the Vlasov assumptions, the displacement fields of any generic point 

on the middle surface of the thin-walled segment can be expressed in terms of the shear center 

displacements 𝑢0, 𝑣0 along x and y axis, and 𝜃𝑧 which is the angle of twist through  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑧) − 𝑦𝜃𝑧(𝑧) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) − 𝑥𝑢0
′ (𝑧) − 𝑦𝑣0

′ (𝑧) − �̅�(𝑥, 𝑦)𝜃𝑧
′(𝑧) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑧) + 𝑥𝜃𝑧(𝑧) 

1.24 

Where �̅�(𝑥, 𝑦) is the global warping function due to twisting of the cross-section which caused by 

twisting of the section and can be calculated as �̅�(𝑥, 𝑦) = 𝑥𝑦. As a result of restrained warping, 

the twisting of the cross-section will induce each flange to bend about its local strong axis in 

opposite directions, one bends clockwise and the other one counterclockwise. Hence, both flanges 

move laterally, and in opposite signs, this pair of moments induced by warping restrained known 

as bimoment or moment couple (see Figure 1.7). This torsional-warping behavior of the beam give 

rises to warping constant which is a section property and can be defined as  𝐼𝑤 = ∫ �̅�
2𝑑𝐴.  
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While Vlasov covered the out-of-plane displacements of the cross-section called warping induced 

by twisting of the member but neglected possible distortional effects on the cross-section which 

can be significant for beams with short spans, slender webs and stocky flanges. As depicted in 

Figure 1.8, when the cross-section undergoes deformation the top and bottom flanges have the 

same angle of twist 𝜃𝑧, however; in reality, for many cases especially those with slender web and 

stocky flanges, the web has a tendency to bend in its own plane, so the angle of twist of the top 

flange differs from the angle of twist of the bottom flange (see distortional buckling configuration 

in Figure 1.9). Hence, ignoring web distortion can lead to inaccurate results in stability problems.  

1.5.  Gjelsvik thin-walled beam theory 

Gjelsvik [12] pursued the Vlasov theory assumptions besides considering another kinematic 

assumption which is thickness warping function (secondary warping) when the thickness of the 

plates constituted the cross-section (web and flanges) increased, so local warping effects should 

be taken to account. Moreover, his hypothesis obeys the Kirchhoff theory of plates assumption 

whereby a straight line initially normal to the mid-surface remaining normal to the mid-surface 

after deformation. Hence, as the elements of the cross-section become thicker, each flange can 
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O 𝜃𝑧 

𝜃𝑧 
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Y 

𝑢0 

𝑣0 

Middle Surface  
𝜽𝑻 = 𝜽𝑩 = 𝜽𝒁 

Undeformed Shape Deformed Shape 

Figure 1.8 Vlasov’s theory kinematics (rigid disk movement) 
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move out of its own plane. This behavior is captured in Gjelsvik theory as local warping effects of 

the section. As depicted in Figure 1.9, For a wide flange beam, two corners of the flange move in 

the longitudinal direction of the beam referring to Z axis here, and the other two corners move in 

the opposite direction. A right-handed local coordinate system (s, t) is introduced, and the origin 

of the coordinate system is at a generic point located on the middle surface of the segment where 

s is the coordinate along the mid-surface and t is along the thickness of the wall.  

 

 

 

 

 

 

 

For a doubly symmetric I-shaped section s coordinate is along the x global axis for the flanges and 

s is along the Y global axis for the web. According to the third assumption of the Gjelsvik theory 

(Kirchhoff plate theory) the additional axial displacement of point B offset from the middle surface 

by a distance t is 

𝑤 = −𝑡
𝜕𝑣

𝜕𝑧
 

1.25 

Therefore, the total longitudinal displacement of the flange can be obtained as  

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑧) − 𝑥𝑢0
′ (𝑧) − (𝑦 + 𝑡)𝑣0

′ (𝑧) − [�̅�(𝑥, 𝑦) + �̿�(𝑥, 𝑡)]𝜃𝑧
′(𝑧) 1.26 

In which �̿�(𝑥, 𝑡) = 𝑥𝑡 is the additional thickness warping function of the flange. Thus, the total 

warping function is composed of two components of global warping function �̅�(𝑥, 𝑦) and local 

warping function �̿�(𝑥, 𝑡), i.e.,  

𝜔 = �̅� + �̿� 1.27 

Middle Surface  

Figure 1.9 Local warping deformation of the flange (Gjelsvik theory) 

o s 

t 

B t 

o 

s 

t 
B 

t 

𝜕𝑣

𝜕𝑧
 



 

18 
 

The existence of the local warping in addition to the global warping can cause to increase the 

warping constant of the related cross-section.  

1.6.  Lateral Torsional Buckling  

Thin-walled open cross-sections such as I-shaped wide flanges steel beams and beam-columns 

inherently suffering from low torsional stiffness. Therefore, they are generally prone to various 

instability phenomena involving torsion depending on the slenderness of the beam and components 

of the section (e.g., flanges, web). One of the prevalent buckling modes of failure in beams is 

Lateral Torsional Buckling (LTB) by which an unconstrained (laterally unsupported) steel beam 

subjected to transverse loads tends to move laterally and twist about shear center besides its 

bending about the beam’s major axis, and the beam is no longer considered able resist any extra 

load because of the failure mode sustained. Lateral Torsional Buckling (LTB) has been assessed 

by modern steel design standards (i.e., Canadian Code CSA-S16, American Code ANSI/AISC 

360-16, Euro Code EN-1993-1-1). The current Canadian code for bridge design does not provide 

clear guidance for evaluating the capacity of steel-bridge girders under the combined action of 

bending moment and torsion, and this combination give rises to considerable reduction in the 

strength of the steel girder beams. In other words, it can be assumed that the Lateral Torsional 

Buckling (LTB) is a dominant mode of failure in steel-bridge girders. 

1.6.1.   Kinematics in Lateral Torsional Buckling 

Deformations in lateral torsional buckling for a laterally unsupported beam with doubly symmetric 

cross-section include four states which are shown in Figure 1.10, and these states are: 

1. Undeformed State 

2. Equilibrium State 

3. Onset of Buckling State 

4. Buckling State 

For a prismatic thin-walled beam as depicted in Figure 1.10, beam is initially in the undeformed 

stage where no load is applied. Under transvers load  𝑄𝑦, the beam undergoes vertical displacement 

𝑣(𝑍) and moves from initial configuration 1 to equilibrium configuration 2. The applied reference 

load is assumed to increase gradually by a scalar 𝜆 and the associated vertical displacement 𝑣(𝜆, 𝑧) 

is increasing linearly, and the beam reaches to neutral equilibrium state at configuration 3.  
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At the onset of buckling, without increasing the applied load 𝜆𝑄𝑦 the member buckles and 

suddenly undergoes lateral displacement and twist at the same time (i.e., goes from configuration 

3 to configuration 4).  

The classical solution for the analysis of LTB is formed on the kinematics of the well-known 

Vlasov thin-walled beam theory (Vlasov [2]) which is based on two fundamental assumptions 

(e.g., Section 1.4.6). As illustrate in Figure 1.10, classical approaches such as Vlasov neglect the 

distortional effects of the cross-section throughout the deformation while in reality for thin-walled 
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Figure 1.10 Stages of buckling deformation 
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beams particularly for those with slender web and stocky flanges, distortional buckling mode can 

be observed where the web bending take place. Ignoring the effect of web distortion can lead to 

overestimating the critical buckling capacity of the beam. Several research have been conducted 

to consider the web distortional effects. This includes the work of Bradford [13], Hancock et al 

[14] and Z. Vrcelj and M.A. Bradford [15] who demonstrated that neglecting the web distortion 

can be detrimental particularly in short spans beams.  
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1.8.  Literature review 

One of the prevalent buckling modes of failure in thin-walled beams is lateral-torsional buckling 

by which an unconstrained steel beam subjected to vertical transverse loads tends to move laterally 

and twists. Since the early theoretical works of Timoshenko [1] and Bleich [2] there has been a 

vast amount of work on the lateral-torsional buckling analysis of thin-walled beams. Early 

numerical studies for the lateral-torsional buckling analysis of thin-walled beams include 

Krajcinovic [3], Barsoum and Gallagher [4], and Bazant and Nimeri [5] who developed 

displacement based finite element formulations. The effect of pre-buckling deformations on 

lateral-torsional buckling of thin-walled beams was investigated by Roberts and Azizian [6], 

Attard [7], and Pi and Trahair [8]. Effect of shear deformation on buckling behaviour of thin-

walled members were investigated in displacement-based formulations by Saade et al. [9], Kim et 

al [10], Wu and Mohareb [11] and Erkmen and Attard [12]. Erkmen et al. [13] developed a 

complementary energy-based finite element formulation for torsional buckling analysis of thin-

walled columns and Erkmen and Mohareb [14,15] included the shear deformation effects in 

lateral-torsional buckling by using a complementary energy-based finite element formulation. 

Based on the Hellinger-Reissner principle, Erkmen [16] and Erkmen et al [17] developed hybrid 

finite element formulations that can capture shear deformation effects in the buckling analysis of 

steel and FRP pultruded thin-walled beams. The effect of shear deformation can gain significance 

especially in the buckling behaviour of beams with built-up or composite sections [18,19] or 

alternatively when materials with low shear modulus is used such as FRP [20] whose usage in 

engineering structures is increasing. 

To capture the cross-sectional deformations such as web distortions in thin-walled beam behaviour 

shell element models have been frequently used e.g., [22-26]. Hancock [27] and Adani and Schafer 

[28] developed finite strip methods to capture the distortional behaviour of the web in the buckling 

analysis of thin-walled beams. Beam-type Finite Element (FE) formulations that can capture web 

distortion were developed by Roberts and Jhita [29], Wang et al [30], Ronagh and Bradford [31], 

and Pezeshky and Mohareb [32]. For the modelling of thin-walled beams, beam-type FE 

formulations with nodes only at the ends of their longitudinal axis are computationally the most 

efficient choice as model sizes and accordingly computational time, as well as modelling effort 

can be kept relatively small compared to shell and finite strip-type modelling approaches. 

Furthermore, beam behaviour is easier to interpret as the dominant modes of behaviour can be 
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more easily identified in reduced size models. In fact, beam formulations can be sufficiently 

equipped to capture any predetermined modes of deformations including web distortions as in the 

generalized beam theory [33]. For the buckling analysis of thin-walled beams FE formulations 

based on the generalized beam theory were developed by Camotim et al [34]. However, in 

generalized beam theory there is significant computational effort required in determining the active 

modes of deformation and only then the beam element DOFs can be decided for an accurate 

analysis [35]. A technique for the buckling analysis of thin-walled beams that introduces the modes 

of deformations in a hierarchical sequence have been presented in [36], which however requires 

mode orthogonalization adding extra cost to the numerical formulation. The additional modes that 

are sought in the generalized beam theory are generally the modes that include distortion and local 

deformations of the cross-section, and kinematically speaking, many thin-walled beam 

formulations including those with web-distortion can be categorized as special instances of the 

generalized beam theory where the deformations modes are pre-determined by ignoring the local 

deformations. As such, the proposed distortional beam formulation falls into a category, where 

local buckling is not an expected mode of deformation. 

One important aspect that is often overlooked in buckling analysis is that the material description 

for nonlinear strains depends on the choice of strain definition even when the material is elastic. 

An accurate hyperelastic material description leads to complicated expressions because the 

material parameters depend on finite deformations. To avoid complications in material description 

direct adaptation of the generalized Hooke’s material, where deformation independent moduli is 

used, is often justified by assuming that deflections are large, but strains are small. However, 

literature has shown that when shear deformations are involved contradictory buckling predictions 

can be produced by adopting the Hooke’s material directly as in the case of Engesser versus 

Haringx column buckling formulas. The difference between two methods has been attributed to 

different assumptions for the internal normal force orientations at the deformed state of the column 

[37]. Engesser assumes that the normal force is parallel to the beam axis in the loading state 

whereas in Haringx theory, the normal force is assumed to be perpendicular to the cross section of 

the beam. This difference in the assumption of force directions can indeed be traced down to 

differences in the definitions of adopted strains within the Doyle-Ericksen family of strains and 

conjugate stresses [38-39]. Although several shear deformable finite element formulations have 

been proposed for the buckling analysis of thin-walled beams the differences that alternative stress-
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strain definitions might cause were not identified in the finite element context. This paper develops 

a novel beam-type nonlinear Finite Element formulation that is applicable for the analysis of 

doubly symmetric I-sections that are prone to lateral-torsional buckling, distortion and shear 

deformation. A linearized buckling formulation has also been derived as a special case of the 

nonlinear beam formulation under the assumption of no pre-buckling deformations. The 

formulation is developed in terms of a generic member of the Doyle-Ericksen family of strains, 

while elastic Hooke’s material is adopted for the constitutive relations. As such the developed 

formulation is an extension of both Engesser and Haringx buckling formulas to thin-walled beams 

with deformable webs. It is shown that alternative stress-strain definitions lead to changes in the 

geometric stiffness matrices of thin-walled beam finite element formulations. The effect of 

changes in the geometric stiffness matrix on the lateral-torsional-distortional buckling load 

predictions of thin-walled beams is illustrated in numerical tests. 

The current thesis is organized as follows; Kinematic relations of the thin-walled beams including 

web distortion and shear deformations, and adaptation of Doyle-Ericksen family of strains 

according to the beam kinematics are presented in chapter 2. The weak forms of equilibrium 

equations and the variational formulation for nonlinear and buckling analyses are generated in 

chapter 3. The interpolation scheme and the associated finite element formulation, and also a 

special case of the beam formulation where web distortions are suppressed are given in chapter 4. 

Case studies for linear static analysis are introduced and verified in chapter 5, where effects of web 

distortion, and shear deformations are depicted. Buckling case studies are presented in chapter 6, 

where effects of web distortion are illustrated. Alternative strain tensor of the Doyle-Ericksen 

family are illustrated for thin-walled composite materials are developed and written in paper 

format in chapter 7. Conclusions are drawn in chapter 8. 
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2. Chapter 2: Distortional Thin-walled Beam Kinematics 

2.1.  Coordinate System  

For a prismatic thin-walled beam with an open cross-section the Lagrangian approach is adopted 

based on which a material coordinate system (x, y, z) that changes with the deformation is used, 

and the corresponding lateral, transversal and longitudinal displacement fields are (u, v, w) where 

according to the dependence of the displacement fields on all three dimensions it leads to 

discretization in three coordinates, i.e., w=w(x, y, z), etc. The benefit of applying material (or 

Lagrangian) coordinates is that, not only it is simple to keep track of a point as its material 

coordinate never changes after initial identification, but also boundary conditions and interface 

conditions are easily applied due to the fact that boundary nodes remain on the boundary. 

Moreover, a set of right-handed local curvilinear coordinate system (s, r) is defined to each 

segment which moves along the mid-surfaces of the undeformed plate segments that is tangent to 

the contour along the middle surface of the section and through thickness direction which is normal 

to the tangent to the contour respectively referred as coordinates s and r. An arbitrary local 

coordinate pole (𝑎𝐿𝑥, 𝑎𝐿𝑦) located at (x, y) called R is chosen for each segment. Adaptation of s-r 

coordinate system allows us to impose the kinematic assumptions on the thin-walled segments 

more directly and characterizes the coordinates of a point offset from the mid-surface by a distance 

r and s is a coordinate tangential to the mid-surface. Accordingly, following coordinates 

transformation rules can be determined for relating the coordinates of (x, y) to (s, r): 
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Figure 2.1 A general thin-walled beam segment and the coordinate systems – see ref [37] 



 

26 
 

2.2.  Assumptions and kinematics 

The material is assumed to be linearly elastic, homogeneous, and isotropic and therefore it obeys 

Hooke’s law. Also, the formulation is restricted to prismatic members and cross-sections are open 

and doubly symmetric. Strains are assumed small, but rotations are assumed second-order, thus 

nonlinear strain components due to the rotation effects are maintained in the formulation.   

2.3.  Displacements in the plane of the cross-sections    

For the introduced global right-handed coordinate system, the origin is located at the mid-height 

of the web. Considering a generic point that offset from the middle surface of the related segment 

(e.g., flanges, web), the lateral and transverse displacements, each divided into two components: 

a) the horizontal or vertical displacement component at the origin lying on the middle surface 

pertaining to rigid body movement which is denoted by single bars, �̄�(𝑧) and �̄�(𝑧) respectively, 

and b) a component because of the rotation of the offset distance from the mid-surface of the 

segment. 

At a given cross-section, based on the right hand rule the rotation of the cross-section around the 

longitudinal axis (z) can cause a generic point in the plane of x-y to move to the left side. Therefore, 

the horizontal component of the displacement vector is a function of y and z only, i.e.  

( ), d
Gy

y

a
u y z u u y= + 

 
2.2 

where ( ) ( ),Gyu z u a z= is generally defined at a selected reference point Ga , which is called herein 

as the global pole and are conveniently selected at the shear center on the web. In 2.2, ( ) indicates 

derivative along the web direction, i.e., with respect to y. The angle of twist around the z-axis 

( ),z y z  is also a function of both y and z, and it is related to the horizontal displacement as 

( ) ( ), ,z y z u y z =− . The web is allowed to bend about the longitudinal axis z due to change in the 

twist angle along the web; however, the flanges stay rigid within the plane of the cross-section, 

therefore the twist angle is constant on the flanges. In a similar manner, the ( ),z y z  gives rises to 

an arbitrary point in the plane of the cross-section to move upward. As a result, the vertical 

component of the displacement vector can be written as 
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( ), ,v x y z ( ) d
Lx

x

z
a

v z x= + 
 2.3 

in which ( ) ( ), ,Gx Gyv z v a a z= . In equations 2.2 and 2.3 Lxa  and Lya  are respectively the x and y 

coordinates at the middle of each segment.  

 

      

                  a) b) 

 

 

2.4.  Longitudinal displacement 

The axial displacement field w of a point x, y, z on the cross-section can be expressed as 

𝑤(𝑥, 𝑦, 𝑧) = �̅� − 𝑥𝜑𝑦 + 𝑦𝜑𝑥 − �̂�𝜙𝑧
′  2.4 

In which ( ) ( ), ,Gx Gyw z w a a z=  characterizes the longitudinal displacement because of elongation 

of the centroidal axis of the beam, also second and third terms are due to the bending about weak 

axis and strong axis respectively while the last item which is ̂  specifies local warping function 

due to Saint Venant’s uniform torsion. From the Saint Venant’s elasticity solution under uniform 

torsion assumption, in the limit case of thin segments, i.e., 0t b → , the local warping function 

simplifies to (Oden [24])  

0

ˆ
L

t b
q r

→
=

 2.5 

Before warping

Vlasov warping

sr

h

Pole

z

e1

q

Pole

x

y

z

w(x,y,z)

u(y,z)

v(x,y,z)

s r

t
b

Before warping

g
sr

z

Local warping

s

z

(aGx,aGy)

(aLx ,aLy)

g z
s

 



Negative

Negative

Negative

point on the 
top flange

point 

 Positive point 

Positive
point on the 
top flange

(aGx,aGy)

(aLx,aLy)

t

z(y,z)
x(z)

y(y,z)

Figure 2.2 Displacement field of a doubly symmetric I-section, 

a) Displacement functions b) Warping of the cross-section - 

See ref [37] 



 

28 
 

in which ( )sin ( )cosLx Lyr x a y a =− − + −  and ( )cos ( )sinL Lx Lyq x a y a = − + − . For a segment where 

coordinates ( , )Lx Lya a  and ( , )Gx Gya a  are identical, q and h can be shown as in Figure 2.3 and r is 

again the coordinate through thickness direction as previously shown in Figure 2.1 and Figure 2.2. 

 

 

 

 

 

 

 

For the rotation angles x  and y , by including the second order terms of the Euler-Rodriguez 

rotation tensor [25], from equation 2.4, one obtains:  

( )
1 1

ˆ, ,
2 2

y x z z zw x y z w x y xv yu      = − + − − +
 

2.6 

in which 0.5x x zu  = +  and 0.5y y zv  = +  are due to Euler-Rodriguez rotation tensor. In 

equation 2.6, the last two terms include the second order twist effect on the bending related 

rotations around both x and y axes, which might have significant influence on lateral-torsional 

buckling predictions [26]. The bending related rotation function around x axis, stays constant at 

any point on the cross-section and therefore it is only a function of the z coordinate, i.e., 

( ) ( )x xz z = . Our aim is to develop a distortional thin-walled beam formulation in a hierarchical 

manner so that classical rigid-cross-section thin-walled beam formulation can be easily identified 

as a special case. For that purpose, we introduce the global warping function of Vlasov [28], i.e. 

d cos d sin dh s h x h y  = = +    (see Figure 2.2). The coordinate h for a general cross-section can 

be calculated as ( )sin ( )cosGx Gyh x a y a = − − −  in which ( , )Gx Gya a  are the coordinates of the 

global pole (see Figure 2.1). We define a global warping related general displacement as 

x

y



(ax,ay)

h

q

x-ax

ay-y





s

Figure 2.3 Thin-walled beam segment and the coordinate system – see ref [37] 
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( ) ( ), ,yy z y z = − , which takes the value ( ) ( ),Gyz a z =  at the global pole, i.e. 

( ) ( ), d
Gy

y

a
y z z y  = +   and ( ), d

Gy

y

y y
a

y z y  = −  in which ( ) ( ),y y Gyz a z = . Similarly, the 

rotation field around z axis can be written as ( ) ( ), d
Gy

y

z z z
a

y z z y  = +  where ( ) ( ),z z Gyz a z =  is 

the angle of twist around the z-axis at the global pole Ga . Accordingly, equation 2.6 can be re-

written as 

( ) ( ) 1 1
ˆ, , d d

2 2Gy Gs

y s

y x z z z
a a

w x y z w x y x s y xv yu        = − + − + − − + 
 

2.7 

in which ( )Gyx y a = − −  was used.  

2.5.  Expressions for Strains 

For the Doyle-Ericksen finite strain tensor definition in continuum, we refer to Bazant and Cedolin 

[28], i.e. ( )2 2m = −ε U I , where I is the unit tensor, and U is the right-stretch tensor of polar 

decomposition of the deformation gradient. Majority of the strain tensors used in stability theories 

are produced in terms of the Green-Lagrange strain tensor. For calculating the critical loads in 

buckling, only the second-order approximations to the strain tensor matters. Therefore, we limit 

ourselves to second order accuracy and the pre-buckling deformation effects are not considered. 

They can be considered in a nonlinear analysis. We can express the second order approximation 

to the Green-Lagrange strain tensors as 

m = +ε ε e
mxx mxy mxz

myx myy myz

mzx mzy mzz

e e e

e e e

e e e

 
 

=  
 
 

 

 

2.8 

which consists of a first order strain tensor ε , and a second order strain tensor e . The first and 

second order components of the strain tensor can be written respectively as 
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2

1
2

2

2

xx xy xz

yx yy yz

zx zy zz

u u v u w

x y x z x

v u v v w

x y y z y

w u w v w

x z y z z

e e e

e e e

e e e

     
+ + 

      
       

= = + +  
      

       
+ + 

      

ε

 

2.9 

2 2 2

2 2 2

1

2

xx xy xz

yx yy yz

zx zy zz

u v w u u v v w w u u v v w w

x x x x y x y x y x z x z x z
e e e

u u v v w w u v w u u
e e e

y x y x y x y y y y z
e e e

                   
+ + + + + +     

                   
 
                  

= = + + + + +      
                

 

e

2 2 2

v v w w

y z y z

u u v v w w u u v v w w u v w

z x z x z x z y z y z y z z z

 
 
 
 

   +
    
 
                    

+ + + + + +      
                       

 2.10 

Although some accuracy is compromised due to omission of third and higher order terms in the 

strain tensor, this is a convenient form as the strain components are in terms of derivatives of 

displacements with respect to fixed directions. It should be noted that one of the simplifying 

assumptions of beam kinematics is adopted, that is the shear deformations within the cross-

sectional plane are omitted i.e., 0xy xyee = = . As the flange mid-surfaces are placed within the z-x 

plane and that the flanges are assumed rigid in their own plane, we also impose that 0xx xxee = = . 

As a result, out of six linear strain components in equation 2.9 only four components are non-zero, 

which can be written in terms of displacement derivatives as 

( )d d
Gy Gs

y s

zz y x
a a

w x y x s ye        = − + − +  
 

2.11 

yy zre = −
 2.12 
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( )1
ˆd d d` `

2 Gy Gy Gs

y y y

xz z y z
a a a

u y y ye       = − − − + − 
   

 
2.13 

1
ˆ ˆd d

2 Gx Gy

x y

yz z x z z
a a

v x x ye         = + + − + − − 
  

 
 

2.14 

in which (), ( ), ()`   indicate derivatives with respect to x, y, z respectively, and ( )Gyx y a = − −  

was used. We assume that ( ) ( ),y z z = −  is constant in the y direction, i.e., 

( ) ( )dy c z y c z  = + =− +  in which ( )c z  is the integration constant. We will employ an 

interpolation scheme in Section 4 consistent with this assumption. Accordingly, from the relations  

( ) ( )2 2d 0.5
Gy

y

Gy Gy
a

y y a c y a =− − + −  and d
T

B

y

T B
y

y  = − , the integration constant can be 

identified as 
( )

( )
( )

2

T B

T B

T B

c y y
y y

  −
= + +

−
, where T  and B  are the values of the function

( ),y z  at the top and bottom flanges, respectively. By using 

( ) ( ) ( ) ( )
2

2
3 3d d

6 2 2Gy Gs

y y Gy

Gy Gy Gy
a a

a c
y y y a y a y a


 =− − + − + −   in equation 2.13, one obtains: 2.13 

( ) ( )2 22
6 2

zz y x Gy Gy Gy

c
w x y y a y a y a


e     

 
   = − + − + + − − −

 
2.15 

in which the last two terms are due to the effect of web bending. It is also important to note that in 

obtaining equation 2.10 and consequently equation 2.15, the derivative of the sixth term in 

equation 2.7with respect to z was assumed zero, i.e., ( )ˆ 0z z   =  under the assumption of 

uniform torsion. This is because contribution of local warping to the axial displacement field is 

based on the Saint Venant elasticity solution under uniform torsion assumption, in which case 

constantz = as discussed in section 2.3. Thus, local warping should not cause normal strains along 

the z or y directions. Therefore, an ad-hoc adjustment is needed within the thin-walled beam theory 

so that the thin-walled beam behaviour can be captured as a special case of unification of plate 

segments. To contrast the beam and plate kinematics; in plate kinematics twist action results with 
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angle change in both z and q directions shown in Figure 2.4. In (Kirchhoff or Mindlin-Reissner) 

plate kinematics, it is assumed that under twist action in the limit case of an infinitesimal element, 

i.e., dz z → , twist curvature is 4 z = , mid-surface is rigid and surfaces above or below deform 

due to shear within their own plane without bending (see Figure 2.4). This kinematics is imposed 

as a result of the selected displacement field, i.e., u r= , ( , ,0)v v z q  and w r= − . As a result, 

under pure twist plate theory avoids any contribution to axial strains, i.e. 0z w ze =   =  and 

0q u qe =   =  since the mid-surface is rigid, i.e. 0q z   =   =  and the fiber lengths stay the 

same before and after deformation. It should be noted that both (Kirchhoff or Mindlin-Reissner) 

linear plate theories and Saint Venant thin-walled plate solution predict the shear strains, i.e., 

0.5u z w q rg =   +   =   and as a result the twisting moment-angle of twist relations i.e.,

t zM GJ=  identically, where tM  is the twisting moment acting around the z axis, G is the shear 

modulus and 
3 3J bt=  is the torsional constant of the section perpendicular to z axis in which b is 

the width and t is the thickness of the plate (see Figure 2.2 for b and t of the flanges). 

 

 

 

 

 

On the other hand, in beam kinematics there is no assumption imposed along the axial direction of 

the beam. However, it is not meaningful to generate normal strains under uniform torsion that 

cannot be obtained either from the plate theories or Saint Venant elasticity solution. Accordingly, 

the first order shear strain, i.e., 2 cos 2 sinxz yzg e  e = +  can be obtained from equations 2.13 and 

2.14 considering the orientation of the thin-walled segment, i.e.,  



z

2z

q

2q



Twist curvature  =         =  
z

4




 
q

 -4

Layers parallel to 

mid-surface

z,w
q,u

r,v

v=v(z,q,r=0) w=-ru=r



-   q1

4

-   q1

4

-   q1

4

-   q1
4

    z1

4

    z1

4

    z1
4

    z1

4

Fibre on top surface after deformation

Shear strain     g = -r      -

Fibre on top surface before deformation

z
  

q[        ]

Figure 2.4 Uniform twist action of a plate segment – see ref [37] 
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( ) ( ) ( )cos sin 2y x z zu v h rg         = − + + − − −
  

2.16 

In obtaining equation 2.16, the coordinate transformation rules, i.e., ˆ ˆsin cos`r    = +  and 

cos sin`h    = +  were used. Note that the term sin   vanishes since 0 =  on the web and 

sin 0 =  on the flange. We have also used ( ) ( ), d
Gy

y

z z z
a

y z z y    = + . To eliminate the shear strains 

along the contour directions, we assume that yu = , xv = −  and 
z  = , and we will adopt an 

interpolation scheme for the numerical solution accordingly. Thus, only the shear strains produced 

by the St. Venant torsion are considered, i.e., 2 zrg  =− , which is a widely used approximation in 

thin-walled beam formulations considering their slenderness, e.g. [18-20]. 

The non-zero second order strain components can be written in terms of displacement derivatives 

by substituting the relation ( )d
Gx

x

z Gx z
a

v v x v x a     = + = + −  into ( )2 21

2
zze u v = +  as 

( ) ( ) ( ) ( )
22 2 21 1 1 1

2 2 2 2
zz Gx z z z z z Gx ze u v a v x v v y u u x a               = + − − − + + + −

 
2.17 

and 

2 21 1

2 2
yy z xe   

 
= + 

 

 
2.18 

Note that in obtaining equation 2.17, the relation ( ) ( )Gy z Ly z zy a y a h  − = − −  and the fact that Lxa  

coincides with Gxa  were used. The strains due to second order effects of the extensions of the 

beam axis and the web, i.e., 0w w vv vv  = = =  and the second order shear strains are omitted. 

One would come across equation 2.17 in thin-walled buckling formulations with rigid web e.g. 

[29]. On the other hand, equation 2.18 contributes to web buckling, which however should be used 

with caution considering the pressures applied in the web direction. There will be more discussions 

within the numerical studies in chapter 6 regarding the necessity or possible consequences of 

equation 2.18. Therefore, we put an on/off switch to equation 2.18 by introducing the parameter 

 which is either zero or one. Unless stated otherwise   is taken as 0. 
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2.6.  Variations of Strains 

From the linear strain components in equations 2.15, 2.12 and 2.16, the first variations of the non-

zero linear strain tensor components can be written as  

( ) ( )2 2δ δ
δ δ δ δ δ 2

6 2
zz y x Gy Gy Gy

c
w x y y a y a y a


e      

 
   = − + − − + − − −

 
2.19 

δ δyy zre = −
 2.20 

δ 2 δ zrg  = −
 2.21 

Similarly, from the second order strain components in equations 2.17 and 2.18, the first variations 

of the non-zero second order strain tensor components can be written as 

( ) ( )
21 1 1 1

δ δ δ δ δ δ δ δ δ
2 2 2 2

1 1 1 1
δ δ δ δ

2 2 2 2

zz Gx z Gx z z z z z Gx z z

z z z z

e u u v a v a v yu y u yu y u x a

xv x v xv x v

       

   

              = + − − + + + + + −

     − − + +
 

 2.22 

 

( )δ δ δyy z z x xe     = +
 2.23 

The second variations of the second order strain can be written as 

( ) ( ) ( )
22 2 2 2δ δ δ 2 δ δ δ δ δ δ δ δ δ δ δzz Gx z z z z z Gx ze u v a v x v v y u u x a               = + − − − + + + −

 2.24 

( )2 2 2δ δ δyy z xe   = +
 2.25 

Voigt notation is used as the strain tensor have symmetry properties. Accordingly, the strain tensor 

can be expressed in vector form as 
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0 0

0

2 cos 2 sin

mxz mzz mzz

m myy myz myy myy

mzx mzy mzz mxz myz m

e e e

e e e e

e e e e  e  g

     
     

 → =    
     +    

ε

 

2.26 

Similar to equation 2.8, we decompose the strains as m = +ε ε e  where  

T

zz yye e g=ε
 

2.27 

T

0zz yye e=e
 

2.28 

Strain components in equations 2.27 and 2.28 can be identified from equations 2.12, 2.15-18. 

2.7.  Strain decomposition using matrix-vector multiplications 

For numerical implementation purposes, in the following the variations of the strain expressions 

are organized in the form of matrix-vector multiplications.  In Voigt notation one can express the 

first variation of the linear strain as δ δ L=ε s χ , in which 

( ) ( )2 2 2 21 2 0 0 0
6 2

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 2

Gy Gy Gyx y y a y a y a x y

r

r

 


 
− − − + − − − + 

 
= − 

 −
 
 

s

 

2.29 

and  

T

0 0L y x z zw c           = −χ
 

2.30 

Similarly, in Voigt notation, the first variation of the second order strains can be written as 

δ δ A=e sA χ , in which 

T

A x z zu v u v      =χ
 

2.31 

and 
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( )2 20 0 0 0

0 0 0 2 0

0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Gy z Gx z Gy Gx Gx Gy z

Gx z z

Gy z z

z

x z

u a v a a u a v a a

v a

u a

  

 

 



   

       + − − + +
 

  
  − −
 
 
 
 =
 
 

 
 
 
 
 
 

A

 

2.32 

The second variation of equation 2.28 can be re-written as  

( )2 T T T

1 1 2 2 2 2δ δ δ δA A G G A= +e s t χ G t χ t G t χ
 

2.33 

in which 
T

1 1 91 =t 0 , 
T

2 1 7 1 21 =t 0 0 , 

( )

1

2

1 0 0 0 0 0
2

0 1 0 0 0 0
2

0 0 0 0 0 0 0

0 0 0 0 0
2 2

0 0 0 0
2 2

0 0 0 0 0 0
2

0 0 0 0 0 0
2

Gx

Gx Gx

y

x
a

y x

y x
a x a

y

x

 
 
 
 −
 
 
 
 

− =
 
 

− −
 
 
 
 
 
 −
 

G

 

2

1 0

0 1

 
=  

 
G   and  T

2

0 0 1 0 0 0 0

0 0 0 1 0 0 0
G

 
=  

 
t . 

2.34 
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3. Chapter 3: Weak Form of Equilibrium Equations 

3.1.  Constitutive relation 

We develop the constitutive relations under plane stress assumption as:  

( )
( )

2

1 0

1 0
1

1
0 0

2

mzz

m a m myy

m

ε
E

ε

γ








 
   
   

= =    
−    −   

  

σ E ε

 

 

3.1 

in which 
T

m mzz myy m  =σ  and aE  is the matrix of elastic constitutive properties Note that 

equation 3.1 is written for the web because of the plane stress assumption in y-z plane. However, 

the same constitutive relations can be applied to flanges by simply rotating the local coordinate 

system 90 degrees around the z axis, i.e., replacing subscripts 4 with 5 in x-z plane. To avoid 

repetition in the derivations of the constitutive equations the flange equations are not explicitly 

shown.  

It should be noted that due to the assumption of non-extensible web or flange segments, the 

constitutive relations in equation 3.1 would cause unrealistic overly stiff behaviour and significant 

stresses would build up within the plane of the web due to Poisson ratio effect. In fact, the flanges 

are generally not restraint against extension and web are partially restraint depending on the 

boundary conditions. In fact, in-extensible cross-section assumption is a simplification of the beam 

theory. To continue with our formulation under the in-extensible cross-section assumption and yet 

avoid overly stiff behaviour, the stresses due to Poisson ratio effect can be eliminated by using the 

constitutive matrix below, i.e., 

0 0

0 0

0 0

b

E

E

G

 
 

=
 
  

E

 

3.2 

Generally, for the web a=E E  and for the flanges b=E E  is used (e.g., see Pezeshky and Mohareb 

[19]). chapter 6 will introduce parametric studies and discussions on the consequences of the 

adopted constitutive relations. 
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3.2.  Non-linear Equilibrium Equations Based on the principle of virtual work  

The principle of virtual work can be written as 

int extδ δ δ 0W W = − =  3.3 

where intδW  is the variation of the internal work, i.e., 

int Tδ δ d dm m

L A

W A z=   ε σ
 

3.4 

The virtual work done by the external loads can be written as 

ext T extδ δW = d P  3.5 

where 
ext

P  is the vector of the external nodal forces and d is the vector of corresponding 

displacements. In the finite element form, we refer to vector d as the nodal displacement vector. 

A relation can be directly built between the variations of strains and the variations of nodal 

displacements in the form of 

δ δm n=ε sB d
 

3.6 

Details of the matrix nB  depends on the selected interpolation scheme which will be provided in 

Chapter 4. By the virtue of virtual work, we can write the nonlinear equilibrium equation as 

T T T T extδ δ d d δ 0n m

L A

A z = − = d B s σ d P

 

3.7 

3.3.  Consistent Linearization and Tangent Stiffness  

The linearized equilibrium equations can be obtained from the Gateaux derivative of the functional 

in equation 3.7 as  

int T T T T T T Tδ δ δ δ δ δ d d δ δ d d δ δn m n m t

L A L A

W A z A z  =  = + =   d dd d d B s σ d B s σ d K d

 

3.8 

where tK is the tangent stiffness matrix, i.e. 
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T T T T T T Tδ δ δ d d δ δ δ d dt n n n m

L A L A

A z A z= +   d K d d B s EsB d d B s σ

 

3.9 

in which δ δ δm m n= =σ E ε EsB d  was used. In equation 3.9, the variation of matrix nB  appear due 

to the second variation of the strain, i.e., 
2δ δ δm n=ε s B d . To obtain the stiffness matrix and the stress 

resultants, the integrations over the cross-sectional area A are performed at every integration point 

along the span L. This is because the displacement functions in equations 2.2 to 2.4 and 

accordingly, the strains mε , the matrix nB and the stresses mσ are general functions of the cross-

sectional coordinates as well as the axial coordinates. Thus, in equation 3.8 both nB or mσ  are 

shown inside the first integral over the cross-section A as they cannot be analytically carried out 

of the integral. The nB  matrix generally depends on the displacement vector d which can be 

decomposed into two components as n l G= +B B B , where lB is the component that is independent 

of d, i.e., δ δL l=χ B d  and δ 0l =B . The component GB  can be obtained from the relation 

δ δA G=A χ B d , i.e. G B=B AN  and thus, BN  is such that δ δA B=χ N d . The second term in equation 

3.9 can be re-written such that  

T T Tδ δG m B G B=B s σ N M N d
 

3.10 

in which GM  is a symmetrical matrix which can be written as 

T T T

G m=M G t s σ
 

3.11 

As a result, the tangent stiffness matrix is ( ) ( )T T T T d dt l G l G B G B

L A

A z= + + + K B B s Es B B N M N .  

3.4.  Linearization Buckling Analysis  

The equations of the linearized buckling analysis can be obtained from equation 3.9 by neglecting 

the pre-buckling deformations as 

δ δ 0e b g b− =K d K d
 

3.12 

in which  
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T T d de l l

L A

A z=  K B s EsB

 

3.13 

is the elastic stiffness matrix without the pre-buckling deformation effects, i.e. 0G =B  and 

T d dg B G B

L A

A z=  K N M N

 

3.14 

is the geometric stiffness matrix. In equation 3.12,   is the buckling load factor and δ bd  is the 

corresponding eigenvector. The explicit expressions of the stiffness matrices depend on the 

interpolation scheme which is explained in Chapter 4. It should also be noted that the discretized 

equilibrium equations have been presented only in the context of a single element model. However, 

standard finite element assemblage procedures can be easily employed for structural models of 

multiple elements. Also note that proper boundary conditions need to be imposed. Details of the 

assemblage and the boundary condition imposition procedures are not presented herein.  
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4. Chapter 4: Finite Element Formulation  

4.1.  Interpolation Function  

A beam type finite element with nodes only at both ends of the element is developed. The 

components of an element’s nodal displacement vector shown in Figure 4.1 can be written as 

T

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2x B yB zB B T yT zT T x B yB zB B T yT zT Tw v u u w v u u             =d  

 

in which, the first eleven components are defined at the front end as shown in Figure 4.1 and the 

last eleven components are at the back end.  

 

 

 

 

 

 

 

Accordingly, element displacement field vector becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

, , , , , ,x y zw z v z z u y z y z y z y z y z y z   = = =u N d N d
 

4.2 

in which the matrix of shape functions was introduced as   
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Figure 4.1 Nodal displacements according to interpolation scheme – see ref [37] 
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( ) 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

,

f

f

u u u u

u u u u

t t t t

t t t t

y z H H H H

H H H H

H H H H

H H H H

 
 
 
 
 

=  
 
 
 
 
 

N 0 0 0 0 0

0 L 0 0 0 0

0 M 0 0 0 0

N 0 0 L L L L

0 0 M M M M

0 0 L L L L

0 0 M M M M
 

4.3 

Note that in equation 4.2, vector d  is used instead of d  to change the order of displacement vector 

components so that the matrix of shape functions can be expressed in an organized compact form 

as in equation 4.3. In the nodal displacement vector d , the components are collected in the order 

of axial, vertical, bottom flange lateral, bottom flange twist, top flange lateral and top flange twist 

related terms, respectively i.e., 

T

B B T T=d w Ω Λ Γ Λ Γ
 

4.4 

in which 
T

1 2w w=w , 
T

1 1 2 2x xv v =Ω , 
T

1 1 2 2B B yB B yBu u =Λ , 

T

1 1 2 2B zB B zB B   =Γ , 
T

1 1 2 2T T yT T yTu u =Λ  and 
T

1 1 2 2T zT T zT T   =Γ .  

In equation 4.3, the axial displacement field in z direction is interpolated by using usual linear 

functions. Thus, the components of the vector N  in equation 4.3 can be explicitly written as  

1

L z
N

L

−
=

        
2

z
N

L
=

 

4.5 

For the transverse displacement and rotational fields around the x axis, the components of the 

vectors fL   and fM  used in equation4.3 can be written as 

( ) ( ) ( )

2 3

1 2 3

3 2
1

1 1 1

f

f

f f f

z z z
L

L L L



  
= − − +

+ + +
     

( )
( )

( )
( ) ( )

2 3

2 2

1 0.5 2 1 0.25

1 1 1

f f

f

f f f

z z z
L

L L

 

  

+ +
= − +
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and 
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4.7 

where f  is a shear parameter. Components of the vectors uL  , uM , tL   and tM  in in equation 

4.3 are identical to those given for fL  and fM  in equations 4.6 and 4.7, except the fact that f  is 

replaced with u  and t  for the interpolation of lateral and torsional displacements, respectively. 

By default shear parameters are selected as selected as 
212f xx yEI GA L =  and 

212u t yy xEI GA L = =  in which 
44 d

x

(k)*

x

A

GA Q A=  , 
44 d

y

(k)*

y

A

GA Q A=   
xA  and yA  are shear areas in x 

and y directions, respectively,  2

33 d(k)*

xx

A

EI Q y A=  , 2

33 d(k)*

yy

A

EI Q x A=   and L is the span of the 

element. The selected interpolation functions allow first order shear deformation effects to be 

captured based on the fact that in general 0yu −  , 0xv +   and 0z  −   which generates linear 

shear strains in equation 2.14 unless 0f u t  = = = . It is interesting to note, however, that in finite 

element formulations where multiple fields are coupled numerical locking is a potential problem 

which may cause degradation in optimal convergence rate. So-called kinematic interpolation 

scheme has been previously suggested to alleviate shear-locking in Timoshenko beam elements 

by Tessler and Dong (1981). They have used interdependent polynomial orders for the deflection 

and rotations fields which were related to each other using Euler-Bernoulli-type kinematic 

constraints so that a locking-free analysis can be performed with two-node Timoshenko beam 

elements when 0f → . A similar idea re-appeared in Reddy (1997), where the interdependent 

polynomial functions were directly obtained from the homogenous solution of the equilibrium 

equations of the Timoshenko beam formulation, which led to interpolation functions for the 

transverse deflection and rotation fields as given in equations 4.6 and 4.7, respectively. 

In equation 4.3, the interpolation along the web is based on Hermitian functions, i.e. 
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4.8 

where w T Bh y y= − . The components of the vector iH  in equation 4.3 can be written as 

( ) ( )00.5i i w iH H y h H y= − −
 

4.9 

where 1, ,4i =  and ( )0 2T By y y= + . Indeed, the additions to Hermitian functions in equation 

4.9 are not activated in the Distortional Beam Formulation (DBF) developed herein and thus, 

0 =  is used. However, when rigid web assumption is imposed as a special case of the distortional 

beam formulation, interpolation can be modified by using 1 =  so that 

( )3 1 2 40.5 0wh H H H H− + + =  which results with a standard interpolation scheme for the rigid-web 

Thin-walled beam formulation as explained in the next section. 

It is important to note that when shear deformations are included the shape functions along the 

beam axis depend on the cross-sectional properties due to the involvement of the parameters f , 

u  and  . However, cross-sectional properties are not meaningful for the lateral and torsional 

behaviour unless the cross-section is rigid, which is generally not the case in the distortional beam 

formulation presented herein. The flexibility of the web influences the lateral-torsional behaviour. 

Therefore, we modify the shape functions for lateral and torsional behaviour by proposing a 

formula for   considering the flexibility of the web, i.e.,    

2

2

d

d

GJ L

EI GJ L

 =
+

 

 

4.10 

in which L is the span of the element. Equation 4.10 is developed based on the fact that contribution 

of the St. Venant’s uniform torsion component sv d zT GJ = −  within the total torsion carried, i.e., 

sv wT T T= +  is an indication of web rigidity. The warping torsion w zT EI=  is due to shear force 

couple TfV  and BfV  acting on the top and bottom flanges, respectively. The St. Venant’s uniform 
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torsion component svT  (Figure 4.2a) increases as the web becomes thicker and the beam becomes 

longer, in which case distortion of the web diminishes. In the limit case of zero-web rigidity St. 

Venant torsion also vanishes both on the flanges and the web. The twist rates of flanges vanish 

because of the loss of interaction between the flanges and as a result the total torsion is carried 

only by the warping torsion wT . This is consistent with the fact that in the limit case of 0 → , 

the St. Venant component is negligible comparison to the warping torsion and the corresponding 

the differential equation becomes ( )iv

zEI t z = . It can be verified that for 0 → , one obtains 

0k L → , in which case the interpolation functions become Hermitian polynomials (see [38]), 

which is the solution for 0iv

z = . On the other hand, in the case of 1 →  the warping torsion is 

negligible comparison to the St. Venant component and the corresponding differential equation 

becomes ( )d zGJ t z− = . It can be verified that for 1 → , one obtains kL →  , in which case 

the interpolation functions become linear (see [38]), which is the solution for 0z = . Therefore, 

we interpolate   between the two limit cases shown in Figure 4.2 according to how the total 

torsion is shared between the St. Venant torsion and warping torsion components. 

 

By using the expression for warping and St.Venant’s torsion of the Vlasov [28] in finite difference 

form and considering symmetry conditions at zi (Figure 4.2) i.e.,  ( ) ( ) 2

z i z iz z z   −  , one 

obtains  

Figure 4.2 Components of torsional moment and their dependence on web rigidity 
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2w

d

EI
T T

EI GJ z
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2

2

d
sv

d

GJ z
T T

EI GJ z




+    

4.11 

From the definition of   as the contribution of the St. Venant component comparison to the total 

torsion carried, i.e., svT T  equation 4.11 produces equation 4.10. It is our observation that the 

upper bounds that is provided by equation 4.11 generally suppresses the shear deformation effect 

for the torsional behaviour. Therefore, when distortional deformations are activated the shear 

effects are not significant in the tortional behaviour.  

4.2.  Thin-walled Beam Formulation as a special case  

Bending of the web within the plane of the cross-section can be suppressed by using Multiple-

Point Constraints (MPCs). As the web is assumed rigid in the plane of the cross-section, the 

number of angle of twist z  and warping   Degrees-Of-Freedoms (DOFs) should be reduced 

from two to one at both ends of the beam element. As a result, the DOFs related to lateral 

displacement u  and rotation angle y  are reduced from two to one at both ends as top and bottom 

DOFS can be related as  

1 1 1z zB zT  = =   
1 1

1
T B

zT

w

u u

h


−
=    1 1 1B T  = =    

1 1

1

y yB

wh

 


−
=   

2 2 2z zB zT  = =                   
2 2

2
T B

zT

w

u u

h


−
=         2 2 2B T  = =  

2 2

2

y yB

wh

 


−
=  

4.12 

From equation 4.12, one obtains the following eight conditions which reduces the 22DOF element 

to a 14DOF element, i.e., 

1
1 1

2

w z
T

h
u u


= +

   

1
1 1

2

w z
B

h
u u


= −

      

1
1 1

2

w
yT

h
u


 = +

         

1
1 1

2

w
yB

h
u


 = −

 

2
2 2

2

w z
T

h
u u


= +

              

2
2 2

2

w z
B

h
u u


= −

           

2
2 2

2

w
yT

h
u


 = +

                  

2
2 2

2

w
yB

h
u


 = −

 

4.13 

For implementation purposes equation 4.13 can be introduced using a constraint matrix T such 

that 
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=d Td  4.14 

in which  

T
=d w Ω Λ Γ

 
4.15 

and 
T

1 2w w=w , 
T

1 1 2 2x xv v =Ω , 
T

1 1 2 2y yu u =Λ , 
T

1 1 2 2z z   =Γ . 

The matrix T  in equation 4.14 can be obtained by using equations 4.4, 4.13 and 4.15 as 

2 2 2 4 2 4 2 4

4 2 4 4 4 4 4 4

4 2 4 4 4 4 4 4

4 2 4 4 4 4 4 4

4 2 4 4 4 4 4 4

4 2 4 4 4 4 4 4

0.5

0.5

w

w

h

h

   

   

   

   

   

   

 
 
 
 −

=  
 
 
 
  

I 0 0 0

0 I 0 0

0 0 I I
T

0 0 0 I

0 0 I I

0 0 0 I
 

4.16 

It can be verified that under the assumption of rigid cross-section by using matrix T  given in 

equation 4.16,the independent displacement field components can be reduced to seven as 

( )

( )

( )

( )

( )

( )

( )

x

y

z

w z

v z

z

u z

z

z

z









  
  
    
    
    

−= =    
     −
         

  
   

N 0 0 0

0 L 0 0
w

0 M 0 0
Ω

0 0 L 0NTd
Λ

0 0 M 0
Γ

0 0 0 L

0 0 0 M
 

4.17 

in which N  is as given in equation 4.3 and obtained by using 1 =  in equation 4.9. In obtaining 

equation 4.17, the following properties of the shape functions have been used for when 1 = , i.e. 

( )1 3 1H H+ =
     

( )1 3 0H H+ =
                

( )3 1 2 40.5 0wh H H H H− + + =
  

( )3 1 2 40.5 1wh H H H H− + + =
   

( )3 1 2 40.5 0wh H H H H− + + =
         

4.18 
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Indeed, equation 4.17 is a standard interpolation scheme for a 2-node, 14DOF Thin-walled beam 

finite element formulations, e.g. [3-8]. The nodal DOF-generalized displacement field relations 

obtained in equation 4.17 assume non-bendable rigid web kinematics. The strain expressions for 

the thin-walled beam with rigid web can be obtained simply by replacing y  with  y  and z  

with z  in equations 2.15-2.17. However, it is important to note that in equation 2.17, the lateral 

displacement expression considering rigid web, i.e., ( )Gy zu u y a = − −  should be used to obtain 

the second order strains of the Thin-walled beam with rigid web correctly. Thus, under rigid web 

assumption the second order strain expression in equation 2.17 becomes 

( ) ( ) ( ) ( ) ( )
222 2 21 1 1 1

2 2 2 2
zz Gx z z z z z Gx Gy ze u v a v x v v y u u x a y a                = + − − − + − + − + −

    

4.19 
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5. Chapter 5: Case Studies  

For the case studies various types of analysis options are employed including the developed 

Distortional Beam Formulation (DBF), the rigid web thin-walled beam formulation as a special 

case (TBF); and a Shell Element Formulation (SEF) formed by combining plate and membrane 

elements whose details are explained further. For accurate numerical integration 4-point Gauss 

integration along the beam span, 8-point Gauss integration along the contour direction and 20-

point trapezoidal rule across the thickness were used. The material is assumed steel in all cases, 

therefore the modulus of elasticity and Poisson ratio were taken as E=200GPa and n=0.3, 

respectively. 

5.1.  The employed Shell Formulation (SEF)  

The employed Shell Element Formulation has four-nodes and six-degree-of-freedom-per-node 

which is a combination of Discrete Kirchhoff Plate developed in [31] and the membrane with 

drilling degrees of freedom developed in [32]. For numerical integration 2x2 Gauss integration 

scheme is used as suggested for both membrane and plate components in [31] and [32]. The 

interpolation functions and implementation details of the SEF can be found for the buckling and 

nonlinear analyses in [33]. Similar shell formulations were formed for buckling analysis of thin-

walled beams by combining plate and membrane elements in [34,35]. In SEF adopted herein the 

strains sε  are due to linear plate bending deformations bε , linear membrane in-plane deformations 

iε  and second order membrane and plate bending action Nε , i.e. 

s b i N= + +ε ε ε ε
 

5.1 

where  

T

b r
z q q z

      
= − +

   
ε

 

5.2 

T

i

w u w u

z q q z

   
= +

   
ε

 

5.3 

And 
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T
2 22 2

1
2

2
N

v u v w v v

z z q q z q

           
= + +      

            
ε

 

5.4 

in which the strain components in equations 5.2 to 5.4 are given in terms of local coordinates z, q, 

r, deflections w, u, v and rotations b, f previously introduced in Figure 2.4.  

We first compare the SEF results with the Euler-Buckling formula so that reliability of the SEF 

used for comparison purposes can be confirmed. For that purpose, a thin strip is subjected to axial 

compressive load. To prevent local buckling rigid links are imposed using MPCs to tie the 

neighbouring nodes to load application points and support locations in the middle node as shown 

in Figure 5.1. Support conditions in the case of Figure 5.1a are kept minimal to impose simply 

supported boundary conditions and allow buckling about the weak axis Y. In the second case as 

shown in Figure 5.1c extra supports are imposed to prevent weak axis buckling so that the buckling 

occurs about the strong axis Z. While in the first case only plate component of the shell element is 

active, in the second case only membrane component is active. In both cases, 2 elements were used 

across the width and alternatively 8 or 16 elements were used along the span. The thickness of the 

strip is t=1mm, the width is a=40mm and the is span L=400mm. The Euler formula, i.e. 

2 2

crP LEI=  predicts the weak and strong axes buckling loads as 41.12N  and 
365.79 10 N , 

respectively. The corresponding buckling load predictions by the SEF model are 41.65N  and 

366.74 10 N  when 8 elements are used along the span, respectively. Thus, the error is around 

1.3% and 1.4% respectively. When the number of elements along the span are increased to 16 the 

weak and strong axis buckling loads predicted by the SEF model are 41.29N and 
366.256 10 N , 

respectively. The error reduces to less than 0.8% in both cases.  
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  (a) Plate under compression         (b) Support definitions       (c) Membrane under compression   
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Figure 5.1 Support and loading conditions for buckling analysis of plate and membrane models 
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5.2.  Numerical Examples 

Several numerical examples are solved based on the present theory to assess the validity and 

illustrate the capability of the present formulations. Obtained results compared against various 

solutions including Shell FEA, Thin-walled beam, and conventional beam theories such as Euler-

Bernoulli which neglects shear deformation effect and Timoshenko capturing shear deformability 

to show the validity and correctness of the implementation of the distortional beam solution. In all 

examples, a mono symmetric WRF1000×340 cross-section is considered (Figure 5.3a) with steel 

material properties of 𝐸 = 200,000 𝑀𝑃𝑎, 𝜈 = 0.3 . 

5.2.1  Example 1: Cantilever beam under tip load 

For verification of the results according to the present solution, a 6.00 m span cantilever beam is 

subjected to a transverse tip load P=1,000 KN at the mid-surface of the beam, Figure 5.2. A mono-

symmetric WRF1000×340 steel cross-section is selected which the cross-sectional dimensions are 

shown in Figure 5.3a, and the transverse displacements and strong axis rotations are predicted 

through present theory in the existence of both distortional and shear effect and compared them 

against various solutions (see Figure 5.5). The predicted response for transverse displacement 

through Euler-Bernoulli beam theory can obtain from 𝑉𝐸𝐵 = −
𝑃𝑍2

6𝐸𝐼𝑥
(3𝐿 − 𝑍) which ignores shear 

deformation effects, and under the Timoshenko beam theory the displacement by considering shear 

correction factor 𝐾𝑥𝑥 can be calculated as 𝑉𝑇 = −
𝑃𝑍2

6𝐸𝐼𝑥
(3𝐿 − 𝑍) −

𝑃𝑍

𝐺𝐴𝐾𝑥𝑥
 . In the Shell FE 

modelling, the cross-section is divided into six elements buy assuming two elements for the web 

and two elements for each top and bottom flange (see Figure 5.3b), and 20 elements are taken along 

the cantilever beam span. 

 

 

 

 

  

 

 

 

1,000 KN 

L = 6.00 m 

z 

y 1,000 KN 

Figure 5.2 Tip load at the mid-surface of the cantilever 
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𝑡𝑓 = 40 𝑚𝑚 

𝑡𝑓 = 40 𝑚𝑚 

𝑡𝑤 = 10 𝑚𝑚 

d = 1000 𝑚𝑚 

550 mm 
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5 4 

7 

Figure 5.3 a) WRF1000×340 Cross-sectional Geometry, 

b) Cross-section finite element mesh 

Figure 5.4 Finite element modelling of the cantilever beam under a tip load 
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Under Timoshenko theory, the mentioned shear correction factor can be obtained as below: 

𝐾𝑥𝑥 = [(
𝐴

𝐼2
)∫(

𝑄𝑥
2(𝑠)

𝑡(𝑠)
)𝑑𝑠]

−1

= 0.23  (𝑒. 𝑔. , 𝐼𝑦𝑒𝑟 (2005)). 

Where 𝐴 = Cross-sectional area 

            𝐼 = Second area moment of inertia about bending axis 

            𝑄𝑥 = First area moment of inertia above or below the centroidal axis about x axis 

            𝑡(𝑠) = Thickness of the section  

The employed shell-type element formulation has four nodes with six-degrees of freedom per node 

which is composed of Discrete Kirchhoff Plate and membrane element with drilling degrees of 

freedom which can be result in 24 degrees of freedom for each shell element.  

In all above-mentioned solutions, the vertical displacement along the cantilever beam is measured 

at the middle of the web, and the vertical displacement at the tip of the cantilever beam is compared 

against all solutions in Table 5-1, where the present theory is perfectly agreed with the shell FE 

Figure 5.5 Vertical deflection for transversely loaded cantilever 
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solution within 0.21% and shows a good agreement with the Timoshenko beam theory. 

Additionally, the Thin-walled beam solution and the Euler-Bernoulli beam theory demonstrates 

lower response predictions since they neglect shear deformation effects which can be significant 

for beams with long web. The applied load at the tip of the cantilever beam causes rotation around 

the strong axis due to bending which is provided Figure 5.6 as a comparison among all other 

solution in the literature. It can be seen a well agreement between the present theory and other 

solutions in terms of angle of rotation due to strong axis bending of the cantilever beam.  

Table 5-1. Tip deflection at the mid-surface of the 6.00m span cantilever 

Type of Solution Vertical Displacement (mm) 
Percentage difference relative to 

Shell FE solution 

Shell FE 52.889 0% 

Thin-walled Beam 44 16.81% 

Euler-Bernoulli Beam 44.888 15.13% 

Timoshenko Beam 52.676 0.403% 

Present Theory (D+S) 53 -0.21% 

Figure 5.6 Angle of rotation due to strong axis bending of the cantilever beam 
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5.2.2  Example 2: Cantilever beam under weak axis bending  

A 6.00 m span cantilever with mono symmetric WRF1000×340 steel cross-section is subjected to 

two horizontal parallel 50 KN forces at the free end (see Figure 5.7) with the same directions, one 

at the top flange and the other one at the bottom flange inducing lateral deflection and weak axis 

rotation along the beam. 

 

 

 

 

 

 

 

 

 

 

 

50 KN 

50 KN 

960 𝑚𝑚 

Figure 5.8 Finite element modelling of the cantilever beam subjected to horizontal parallel forces 

Figure 5.7 Horizontal parallel forces on top and bottom flanges 
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For bending about the weak axis, the lateral displacements which measured at the middle of the 

web based on the present theory whether consider distortion and shear or not are in a good 

agreement with those predicted by the Shell model. The predicted response at the tip is based on 

the present theory and it is capturing distortional effects. The lateral deflection at the top flange 

95.5 mm and while the shell response is 89.84 mm corresponding to 6.3% difference. Also, the 

predicted respond under the present theory without considering distortion and shear effects is 81 

mm while thin-walled response is 81 mm showing greatly matched.  

 

 

 

Figure 5.9 Lateral deflection for horizontally loaded cantilever 



 

58 
 

Moreover, for another assessment of the present solution the angle of rotation due to weak axis 

bending of the beam verified against other solution. The angle of rotation at the tip according to 

the present theory with distortion and shear effect is 2.4 × 10−2 radian while the corresponding 

response predicted by Shell is 2.1428 × 10−2 comparable to 12% difference. Also, the weak axis 

angle of rotation based on the present theory without distortion is perfectly match with the thin-

walled response as illustrated in Figure 5.10.  

 

 

 

Figure 5.10 Angle of rotation due to weak axis bending of the cantilever beam 
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5.2.3  Example 3: Cantilever beam under torsion  

A 4.00 m span cantilever with mono-symmetric WRF1000×340 steel cross-section is subjected to 

two horizontal parallel 20 KN forces at the tip (see Figure 5.11) in the opposite directions, one at 

the top flange and the other one at the bottom flange inducing a 19.2 KN-m twisting moment at 

tip of the cantilever beam. It is required to check the angle of twist and lateral displacement of 

each flange under present theory with shell finite element and thin-walled beam solutions. 

  

 

 

 

 

 

 

 

 

 

20 KN 

20 KN 

960 𝑚𝑚 

Figure 5.11 Applied twisting moment 19.2 KN-m 

Figure 5.12 Finite element modelling of the cantilever beam under twisting moment 
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For the shell FEA and present theory solution which capture distortion, the angle of twist is not 

the same for the entire section. Hence, it is more appropriate to define web average angle of twist 

as 𝜃𝑤 =
𝑈𝑇−𝑈𝐵

ℎ
 where 𝑈𝑇 and 𝑈𝐵 are lateral displacements of top and bottom flanges respectively 

and h is distance between the flanges centerlines. The predicted angles of twist base on the present 

theory are very close to those predicted by the Shell FEA model. For a span of 4.00 m, for the web 

average angle of twist at the tip of the cantilever beam there is only 1.59% difference between the 

present theory and Shell model. Furthermore, by considering distortional effect, very good 

agreements between the angle of twist of top flanges of present theory and Shell model also the 

bottom flanges of the present theory and the Shell model can be observed in Figure 5.13. 

Table 5-2. Angle of twist of the free end at the mid-surface of the 4.00m span cantilever 

Type of Solution Angle of Twist (Radian) 
Percentage difference relative to 

Shell FE solution 

Shell FE -0.02392 0% 

Thin-walled Beam -0.018 -24.75% 

Present Theory (D+S) -0.0243 1.59% 

Figure 5.13 Angle of twist along the cantilever beam due to applied twisting moment 
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5.2.4  Example 4: Cantilever beam with restrained top flange  

A 3.00 m span steel composite cantilever beam with the similar cross-section as previous examples 

is fully restrained by a lateral-torsional support at top flange. The continues restrained beam is 

subjected to a concentrated lateral force 40 KN at the bottom flange of cantilever tip Figure 5.14. 

The lateral deflection and longitudinal rotation are totally fixed for the top flange along the whole 

span (𝑈𝑇(𝑧) = 0, 𝜃𝑇(𝑧) = 0). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

40 KN 

Concrete Slab 

Continuous Lateral-Torsional 

                Restraint 

x 

y 

Restrained Top Flange B.C 

40 KN 

Figure 5.14 cantilever beam with restrained top flange under laterally applied load and related B.C 

Figure 5.15 Cross-section deformed 

configuration at the tip with restrained 

top flange 
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Figure 5.15 represents the shape of the cross-section at the tip of the cantilever after deformation 

due to lateral applied load base on the present theory and the Shell model which captures the 

distortion of the web while it is worthwhile to note that under the thin-walled beam theory and 

Vlasov theory which do not capture distortional effect and the angle of twist for the entire section 

is the same, in this example which the top flange is totally fixed for the whole span the lateral 

displacement for the bottom flange and the angle of twist will be yield to zero.  

The lateral displacements of the bottom flange are shown in Figure 5.16 where an excellent 

agreement can be observed between the present theory solution and the Shell model. The lateral 

displacement of the bottom flange at the tip base on the present theory is 19 mm while for the Shell 

is 18.295 mm corresponding to a 3.85% difference.  

 

 

 

Figure 5.16 Bottom flange lateral deflection along the cantilever beam 
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6. Chapter 6: Validation of the Developed Distortional Beam Formulation 

(DBF), Buckling Response Predictions 

The material is assumed steel and therefore the modulus of elasticity and Poisson ratio are taken 

as E=200GPa and v=0.3, respectively. A general description of thin-walled cross-sections, and 

boundary and loading conditions is given in Figure 6.1. For each section along the span, the SEF 

requires meshing of the cross-section. On the other hand, the DBF requires meshing only along 

the beam span. Degrees-of-freedoms of DBE and their locations on the cross-section were 

previously described in Figure 4.1. For numerical integration of DBF 4-point Gauss integration 

along the element span, 8-point Gauss integration along the contour direction and 20-point 

trapezoidal rule across the thickness were used. For numerical integration of SEF, 2x2 Gauss 

integration scheme is used as suggested in [30,31]. Shell formulations similar to SEF that were 

formed by combining plate and membrane elements and used for buckling analysis of thin-walled 

beam structures can be found in [32-34]. 

 

 

 

 

 

For the case studies various types of analysis options are employed including the developed 

Distortional Beam Formulation (DBF), the rigid web thin-walled beam formulation as a special 

case (TBF); and a Shell Element Formulation (SEF) formed by combining plate and membrane 

elements whose details are already explained in section 5.1. Various analysis options that can be 
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adopted using DBF have also been tested which includes the selection of the second order yye  

strains effects by exclusion 0=  or inclusion 1= . 

For each case, we present the critical first mode buckling load predictions and the corresponding 

mode shapes against the number of elements as well as the first mode lateral deflections and twist 

angles in the middle of top and bottom flanges. 3D deformed shapes for the first buckling load are 

also presented in each case. 

6.1.  Case A: Cantilever beam 

We first analyse a series of cantilever beams whose span are ranging between 2m to 8m. The 

reason of selection short beam is to amplify distortion effect, on the other hand even though the 

8m cantilever may not be very practical by selecting such a long beam we would like to avoid the 

error in distortional behaviour and show the agreement with the shell model. A vertical load is 

applied at the tip of the cantilever and a W310x39 section (class 2) is used for which the cross-

sectional dimensions are bT=bB=165mm, h=300.3mm, t=9.7mm and tw=5.8mm (see Figure 6.1). 

We use 150 and 600 element SEF models. In 150 element model, the cross-section is divided into 

6 elements by using two elements for the web and two elements for each flange, and the span is 

divided into 25 elements. In 600 element SEF model, the cross-section is divided into 12 elements 

by using four elements for the web and four elements for each flange, and the span is divided into 

50 elements. It should be noted that in the SEF-based analysis, in order to prevent local buckling 

due to local stress concentration at the tip where the load is applied, MPCs were imposed to keep 

the web rigid in vertical direction only at the free end.  

In Pezeshky and Mohareb [19] a similar beam formulation that also captures distortional buckling 

has been developed in which the effects of pre-buckling deformations on the buckling predictions 

were optionally considered. Our 2m cantilever beam case is identical to one of the cases presented 

in Pezeshky and Mohareb [19] and we compare our results with that based on no-pre-buckling 

deformation effect which was designated as MD in their paper. They have used Euler-Rodrigues 

rotation angles in their formulation. It is interesting to note that their formulation uses second order 

yye  strains along the web direction which will be shown to be overly conservative in some cases 

especially due to the fact that the pre-buckling stress analysis does not include web extensibility 

related degrees-of-freedoms, and therefore can only determine yy  stress due to Poisson ratio 
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effect on a constraint web. Comparison to the developed formulation herein, Pezeshky and 

Mohareb [19] have also included axial strains induced by local (Gjelsvik) warping in their analysis, 

which we intentionally eliminated as discussed in Section 2.5. Their interpolation scheme for the 

lateral displacement field is based on cubic shape functions along the web in y direction and up to 

quintic interpolation along the span in z direction resulting with nodal curvatures included within 

the active degrees-of-freedom. For comparison purposed, by using a matrix notation similar to 

Chapter 4, their interpolation of the lateral displacement field can be described as 

( ) 1 2 3 4, B B T Tu y z H H H H= + + +QΛ LΓ QΛ LΓ , in which 
T

1 1 1 2 2 2B B yB B B yB Bu u u u  =Λ  and 

T

1 1 1 2 2 2T T yT T T yT Tu u u u  =Λ  differs from our vectors 
T

1 1 2 2B B yB B yBu u =Λ , 

T

1 1 2 2T T yT T yTu u =Λ  used in equation 4.1 due to their addition of nodal curvatures, and 

Q is a vector of Quintic functions, i.e. 

3 4 5

1 3 4 5

10 15 6
1

z z z
Q

L L L
= − + −

 

3 4 5

2 2 3 4

6 8 3z z z
Q z

L L L
= − + −

  

2 3 4 5

3 2 3

3 3

2 2 2 2

z z z z
Q

L L L
= − + −

 
3 4 5

4 3 4 5

10 15 6z z z
Q

L L L
= − +

    

3 4 5

5 2 3 4

4 7 3z z z
Q

L L L
= − + −

              

3 4 5

3 2 3

3

2 2

z z z
Q

L L L
= − +

 

6.1 

All possible analysis options developed herein were considered and results were obtained for 2, 4, 

8, 16, 32 and 64 element models when beam formulations are used. Alternatively, 150 and 600 

element SEF solutions are also presented in the same graph. In addition, Figure 6.2 contains the 

results from Pezeshky and Mohareb [19] for which the authors used 2,3,4,5, 15, 25 and 35 element 

solutions. 

Figure 6.2 shows that compared to the DBF solutions TBF formulation always overestimates the 

buckling load due to rigid web assumption. However, considering that the cantilever is short and 

therefore, it is prone to distortional buckling TBF formulation is not reliable for this case. Indeed, 

the first mode shapes of SEF as shown in Figure 6.11 and Figure 6.12 confirms that web is bending 

involved in the buckling behavior. The effect of rotation angle on Lateral buckling predictions of 

cantilevers has been an issue of debates as discussed in detail in [27]. Distortional beam 

formulation of Pezeshky and Mohareb [19], agrees well with the SEF results. 
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It is interesting to note that when the second order strains yye in equation 2.18 of DBF is included, 

the buckling load decreases significantly as shown in Figure 6.3. That is because interaction of 

compressive stresses along the web contour yy with yye cause early buckling. In DBF, there is 

no degrees-of-freedom capturing web expansion or contraction, and therefore the only reason for 

yy  to occur in pre-buckling analysis is the Poisson ratio effects, i.e. ( )21yy zzE e = − (see 

equation 3.1) under non-extensible web assumption). As Figure 6.3 shows, this approach may lead 

to overly conservative results. There is around 43% drop in the predicted buckling load when yye  

is included in the DBF-based solution. Unless sufficient degrees of freedoms are defined to capture 

web extension or contraction, it is not possible to generate accurate pre-buckling stresses in y 

direction yy . This requires separate DOFS in vertical directions at the top and bottom flanges 

which is not included in the current formulation. Therefore, for consistency in the analysis, it is 

suggested that DBF should be used after removing yye  from the equations, i.e. 0 =  to avoid 

overly conservative predictions. However, it should be noted that the current formulation may not 

be accurate when there is significant pressure along the vertical direction within the web.  

Figure 6.2 Critical tip load for the L=2m cantilever beam 
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A similar observation can be made when the beam span is increased twice to L=4m. The problem 

is otherwise identical, i.e., a vertical load is applied at the tip of the beam and a W310x39 section 

was used for which the cross-sectional dimensions are b=165mm, h=300.3mm, t=9.7mm and 

tw=5.8mm (see Figure 6.1). The linearized buckling analysis results for this case are shown in 

Figure 6.4. Comparison to the L=2m cantilever case, when the span is increased the distortional 

effects are reduced which can be verified by the fact that TBF and DBF results becomes much 

closer. However, as shown in, the drop in the predicted buckling load due to inclusion of yye  has 

increased to 46%. Thus, even though the distortional effects are reduced, the drop in the buckling 

load due to yye  term is quite significant.  

 

 

 

 

Figure 6.3 Effect of second order vertical strain on buckling load predictions for the 

L=2m cantilever Beam 
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Figure 6.5 Critical tip load for the L=6m cantilever beam 

Figure 6.4 Critical tip load for the L=4m cantilever beam 
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It can be verified from Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6 that the 

difference between the DBF and TBF formulations tend to decrease as the beam span increases. 

However, when m=1, DBF results significantly drop and underestimates buckling load comparison 

to SEF. Therefore, it is the authors opinion to DBF is not reliable as the span increases due to the 

fact that yy  effect on the first mode buckling load should diminish. 

Figure 6.7 shows the lateral deflections of the top and bottom flanges based on the first mode 

shape. For comparison purposes the amplitudes of the top flange in DBF formulation was forced 

to match with that of the SEF formulation. For that purpose, a proportionality factor was identified 

and all other deflections including the angle of twist was multiplied with the same factor. However, 

in drawing 3D shapes in Figure 6.15, the intention is to qualitatively inspect the modes, i.e., 

whether there is web bending, lateral buckling or the DBF shapes agree with SEF etc., and 

therefore amplitudes were not adjusted. Only 2m and 8m results are shown for the buckling mode 

shapes. Results of the 16 element and 600 element analyses were used for DBF and SEF mode 

shapes respectively. Also note that the graphical tool used for the 3D Figs is such that, the grids in 

Figure 6.6 Critical tip load for the L=8m cantilever beam 
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Figure 6.15e-f indicate the number of elements for the SEF results, while grids are only related to 

the number of integration points in Figure 6.15a-b-c-d for the DBF results. 

For the 2m beam, it can be verified from Figure 6.7 that DBF lateral deflections agree well with 

those of SEF. On the other hand, discrepancies can be observed in Figure 6.8 for the angle of twist 

results between DBF and SEF formulations which is due to the applied Euler-Rodriguez rotation 

tensor (beta=0.5). However, those discrepancies tend to decrease as the beam span gets longer as 

can be seen in Figure 6.9 and Figure 6.10, in which case the results of DBF and SEF almost match. 

It is also interesting to note that the angle of twist results of the top and bottom flange differs 

significantly when the beam span is short which is due to the fact that the buckling mode is 

distortional for short beams. As the beam span increases to 8m, the angle of twist for both top and 

bottom flanges come closer to each other in both DBF and SEF results. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 First mode shape for L=2m - Top and Bottom flange Lateral Displacement 

(beta=0.5) 
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Figure 6.8 First mode shape for L=2m - Top and Bottom flange Angle of Twist 

(beta=0.5) 

Figure 6.9 First mode shape for L=8m - Top and Bottom flange Lateral Displacement 

(beta=0.5) 
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It is interesting to note that the mentioned discrepancies for the lateral deflection results between 

DBF and SEF formulations in 2-meter and 8-meter cantilever beams are due to the selection of 

rotation angles i.e., we used 0.5 for our results which is based on Euler-Rodrigues rotation tensor, 

however as long as the rotation angle is changed to 1 which is adopted by Pi et al [27, 37] a good 

agreement can be observed between DBF and SEF results (see Figure 6.11 to Figure 6.14). 

The load application points in Figure 6.15, are shown with red, which is at the middle of the web 

at the tip of the cantilever. On the other hand, blue arrows show where the restrains are applied at 

the root of the beam. It can be verified from Figure 6.15b that when the beam span is 2m the 

buckling mode involves web bending. However, the web is almost straight when the span is 

increased to 8m as can be seen from Figure 6.15c-d. 

 

 

Figure 6.10 First mode shape for L=8m - Top and Bottom flange Angle of Twist 

(beta=0.5) 
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Figure 6.11 First mode shape for L=2m - Top and Bottom flange Lateral Displacement 

(beta=1) 

Figure 6.12 First mode shape for L=2m - Top and Bottom flange Angle of Twist 

(beta=1) 
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Figure 6.13 First mode shape for L=8m - Top and Bottom flange Lateral Displacement 

(beta=1) 

Figure 6.14 First mode shape for L=8m - Top and Bottom flange Angle of Twist 

(beta=1) 
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a) DBF for the L=2m Cantilever (beta=0.5)                    b) DBF for the L=2m Cantilever (beta=1) 

 

c) DBF for the L=8m Cantilever (beta=0.5)                    d) DBF for the L=8m Cantilever (beta=1) 

e) SEF for the L=2m Cantilever                                             f) SEF for the L=8m Cantilever 

Figure 6.15 3D Figures for the buckled shapes of the first mode 
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6.2.  Case B: Fixed-fixed beam 

Fixed-fixed beams of span 5m and 10m are analyzed using DBF and the results are compared with 

those of TBF and SEF-based analyses. Vertical load is applied at the mid-span of the beam and a 

W1000x222 section (class 2) is used for which the cross-sectional dimensions are bT=bB=300mm, 

h=970mm, t=21.1mm and tw=16mm (see Figure 6.1). In 288-element SEF model, the cross-section 

is divided into 6 elements by using two elements for the web and two elements for each flange, 

and the span is divided into 48 elements. In 400 element SEF model, the cross-section is divided 

into 8 elements by using four elements for the web and two elements for each flanges, and the span 

is divided into 50 elements. Figure 6.16 shows the critical buckling load predictions of the 5m span 

beam. Figure 6.17 shows the critical buckling load predictions of the 10m span beam. DBF results 

are generally in very good agreement with SEF-based results compared to TBF. For the 5m span 

beam, the web distortion effects in the buckling behavior are significant therefore TBF 

significantly over-estimates the buckling load and especially. Again, the differences between DBF 

and TBF formulations reduce as the beam span increases, and all of the analysis are based on the 

Euler-Rodriguez rotation tensor (beta=0.5). 

 

 

 

 

 

 

 

 

 
Figure 6.16 Critical mid-span load for the L=5m fixed-fixed beam 
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Mode shapes are demonstrated for DBF and SEF in Figure 6.18 and Figure 6.19 The agreement of 

mode shapes between the DBF and SEF is generally good, however gets slightly better as the span 

increases (see Figure 6.20 and Figure 6.21). 

Considering the fact that the angle of twist for the top and bottom flanges show some differences 

even for the 10 m span, the distortion effects are still involved in the buckling behavior. This is 

because the height of the web is relatively large in this example, as also can be visually inspected 

from Figure 6.22. 

 

Figure 6.17 Critical mid-span load for the L=10m fixed-fixed beam 
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Figure 6.18 First mode shape of the L=5m beam - Top and Bottom flange Lateral 

Displacement (beta=0.5) 

Figure 6.19 First mode shape of the L=5m beam - Top and Bottom flange Angle of 

Twist (beta=0.5) 
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Figure 6.20 First mode shape of the L=10m beam - Top and Bottom flange Lateral 

Displacement (beta=0.5) 

Figure 6.21 First mode shape of the L=10m beam - Top and Bottom flange Angle of 

Twist (beta=0.5) 
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In drawing the mode shapes, results of the 16 element and 288 element analyses were used for 

DBF and SEF, respectively. 

 

a) DBF for the L=5m fixed-fixed beam (beta=0.5)              b) SEF for the L=5m fixed-fixed beam 

           

c) DBF for the L=10m fixed-fixed beam (beta=0.5)            d) SEF for the L=10m fixed-fixed beam 

 

 

Figure 6.22 3D Figures for the buckled shapes of the first mode 
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6.3.  Case C: Beam restraint continuously at top-flange  

A 6m span beam is analyzed under uniformly distributed load q (see Figure 6.1) and the cross-

section was selected as W250x33 (class 2) for which the dimensions are b=146mm, h=248.9mm, 

t=9.1mm and tw=6.1mm. The beam is pinned at the left end and roller supports are imposed at the 

mid-span and at the right end of the beam (see Figure 6.1). Also, the top flange of the beam is 

continuously restraint against lateral deflection and rotation, which is a commonly encountered 

situation for girders of composite highway bridges as their top flanges are generally connected to 

concrete decks along the span. The critical uniform load qcr is calculated based on the linearized 

buckling analysis based on Euler-Rodriguez rotation tensor (beta=0.5) and the results are shown 

in Figure 6.23 for different number of elements. 

 

 

 

 

 

 

 

 

 

 

 

 

Such a case cannot be modelled by using TBF as restraining top flange would also prevent any 

lateral buckling mode. Therefore, in Figure 6.23, only DBF and SEF results were shown. In this 

example SEF results are particularly sensitive to the number of elements in the web direction as it 

can be seen from Figure 6.23 that when 2 elements are used along the web, the results significantly 

differ that of the 1200 element SEF. On the other hand, it can be verified that the predictions of 

the distortional beam DBF agree well with those of the SEF-based analysis. 

Figure 6.23 Buckling load predictions for the continuous beam under uniform vertical load 
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Figure 6.24 First mode of the continuous beam - Bottom flange lateral displacement 

Figure 6.25 First mode shape of the continuous beam - Bottom flange Angle of Twist 
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The lateral deflected shape and angle of twist of the bottom flange according to the first mode are, 

respectively shown for both DBF and SEF in Figure 6.24 and Figure 6.25. The agreement between 

the SEF and DBF mode shapes are very good for the bottom flange lateral deflections in Figure 

6.24, while slightly more fluctuations occur in the angle of twist results of DBF compared to that 

of SEF in Figure 6.25. 

Figure 6.26 shows that fluctuations of the web are significant near the middle support. 

 

a) DBF for the L=6m beam (beta=0.5)             b) SEF for the L=6m beam 

 

6.4.  Case D: Mono-symmetric simply supported beam 

We analyse mono-symmetric (class 2) simply supported beams with 4m and 8m spans. A vertical 

load is applied at the mid-span as shown in Figure 6.1. The cross-sectional dimensions are 

h=300.3mm, t=9.7mm, tw=5.8mm, bT =165mm and bB= 85mm (see Figure 6.1). We use 144 and 

300 element SEF models. In 144 element model, the cross-section is divided into 6 elements by 

using two elements for the web and two elements for each flange, and the span is divided into 24 

elements. In 300 element SEF model, the cross-section is divided into 6 elements by using two 

elements for the web and two elements for each flange, and the span is divided into 50 elements. 

Again, we use Euler-Rodriguez rotation tensor (beta=0.5) in this case study. 

 

Figure 6.26 3D Figures for the buckled shapes of the first mode 
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Figure 6.27 Critical mid-span load for the L=4m span 

Figure 6.28 Critical mid-span load for the L=8m span 
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For the 4m beam, it can be verified from Figure 6.29 and Figure 6.30 that DBF lateral deflections 

and angle of twist agree well with those of SEF. Some discrepancies can be observed; however, 

they diminish as the beam span is increased to 8m as can be seen in Figure 6.31 and Figure 6.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29 First mode shape of the L=4m beam - Top and Bottom flange Lateral Displacement 

Figure 6.30 First mode shape of the L=4m beam - Top and Bottom flange Angle of Twist 



 

86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.31 First mode shape of the L=8m beam - Top and Bottom flange Lateral Displacement 

Figure 6.32 First mode shape of the L=8m beam - Top and Bottom flange Angle of Twist 
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In drawing the mode shapes, results of the 16 element and 175 element analyses were used for 

DBF and SEF, respectively. Corresponding 3D buckled mode shapes can be seen in Figure 6.33a-

d. 

 

a) DBF for the L=4m beam (beta=0.5)              b) SEF for the L=4m beam 

 

c) DBF for the L=8m beam (beta=0.5)             d) SEF for the L=8m beam 

 

 

 

Figure 6.33 3D Figures for the buckled shapes of the first mode 
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6.5.  Conclusions 

A beam-type Finite Element formulation was developed for the elastic buckling and nonlinear 

analyses of thin-walled members including web distortion effects. The formulation was validated 

against shell-element based models and known solutions from the literature. It was shown that the 

mode shapes and the buckling loads agree very well with the results of shell element models. The 

applicability of the developed beam formulation was illustrated on practical case studies where 

web bending mode is the dominant buckling mode. It was illustrated that when using distortional 

beam formulations, the second order strains in the web contour direction should be included only 

if the pre-buckling stress analysis includes web extensibility related degrees-of-freedoms, and 

otherwise, the buckling load predictions considering web bending might be significantly 

conservative. The developed element was shown to be an accurate and efficient tool and might be 

especially useful for preliminary analysis when distortional-lateral-torsional buckling is a primary 

design concern.  
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7. Chapter 7: Including Shear Deformation Effects in Buckling Analysis of 

Thin-walled Laminated Composite Members 

EFFECT OF USING ALTERNATIVE STRESS-STRAIN DEFINITIONS ON 

THE BUCKLING LOAD PREDICTIONS OF THIN-WALLED MEMBERS 

Abstract: Thin-walled structural components are widely used in many industries including 

aerospace, building, aircraft, and shipbuilding. These types of structures are susceptible to 

buckling and it is important to predict their response accurately. Effect of shear deformation on 

buckling behaviour of thin-walled members can become significant, especially for short and stocky 

sections and/or when materials with relatively low shear modulus are used. There are two well-

known approaches in the literature that produce contradictory results when elastic Hooke’s 

material is adopted for the shear deformable buckling analysis of columns. The first one is 

developed by Engesser and the second one by Haringx. The difference between the two methods 

has been attributed to different assumptions for the axial force orientation at the deformed state of 

the column. Engesser assumes that the axial force is parallel to the beam axis in the loading state 

whereas, in Haringx theory, the axial force is assumed to be perpendicular to the cross-section of 

the beam. This difference in the assumption of force directions can be traced down to the difference 

in the definitions of adopted stress-strain pairs within the Doyle-Ericksen family of strains. 

Although several shear deformable finite element formulations have been proposed for the 

buckling analysis of thin-walled beams the differences that alternative stress-strain definitions 

might cause were not identified in the finite element context. In this paper, it is shown that 

alternative stress-strain definitions lead to changes in the geometric stiffness matrices of thin-

walled beam finite element formulations. The effect of changes in the geometric stiffness matrix 

on buckling capacity predictions of thin-walled beams is illustrated through numerical tests on 

short FRP pultruded beams with low shear modulus.  

7.1.  Introduction 

The use of fibre-reinforced polymer composite-laminated thin-walled members as a construction 

material has increased in recent years. The primary reason for this increase is their non-corrosive 
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nature and long-term durability, high tensile strength-to-weight ratio, electromagnetic neutrality, 

and resistance to chemical attack. Because of their high strength-to-weight ratios, slender structural 

components may be formed by using composite laminates. One of the primary design concerns for 

such components, however, is their susceptibility against buckling due to their slenderness; 

therefore, it is important to predict their buckling loads accurately for a reliable design. For fibre 

reinforced laminates, a thin-walled beam formulation was developed by (Bauld and Tzeng 1984), 

which also includes geometrically nonlinear analysis. Closed-form analytical solutions for various 

cases of flexural and lateral-torsional type buckling were developed by researchers including 

(Pandey et al. 1995, Kollar 2001, Sapkas and Kollar 2002, Kim et al 2007, and Roberts 2002 and 

Roberts et al. 2003). However, these formulations are limited to certain boundary and loading 

conditions. On the other hand, finite element method can be used to obtain solutions that are 

applicable to general cases. For the buckling analysis of thin-walled composite beams, finite 

element formulations were developed by (Omidvar and Ghorbanpoor 1996, Lee et al. 2002, Lee 

2006, Back and Will 2008, and Cardoso et al. 2009). 

The effect of shear deformation can gain significance in the buckling behaviour of beams when 

materials with low shear modulus are used, such as FRP pultruded beams. The effect of shear 

deformation on buckling behaviour of thin-walled members was investigated in displacement-

based formulations by (Saade et al. 2004, Kim et al. 2003, Wu and Mohareb 2011, and Erkmen 

and Attard 2011. In (Erkmen et al. 2009) a complementary energy-based finite element 

formulation was developed for torsional buckling analysis of thin-walled columns and in (Erkmen 

and Mohareb 2008a,b) shear deformation effects were included in lateral-torsional buckling 

analysis by using a complementary energy-based finite element formulation. Based on a Hellinger-

Reissner principle adopted for thin-walled beams, hybrid finite element formulations that can 

capture shear deformation effects in the buckling analysis were developed in (Erkmen 2014 and 

Erkmen et al. 2020).  

One important aspect that is often overlooked in buckling analysis is that the material description 

for nonlinear strains depends on the choice of strain definition even when the material is elastic. 

An accurate hyperelastic material description leads to complicated expressions because the 

material parameters depend on finite deformations. To avoid complications in the material 

description, a direct adaptation of the generalized Hooke’s material, where deformation 

independent moduli are used, is often justified by assuming that deflections are large, but strains 
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are small. However, literature has shown that when shear deformations are involved, contradictory 

buckling predictions can be produced by adopting Hooke’s material directly, as in the case of 

Engesser versus Haringx column buckling formulas. The difference between the two methods has 

been attributed to different assumptions for the shear force orientations at the deformed state of 

the column (e.g., Attard 2003). Engesser assumes that the shear force is perpendicular to the beam 

axis in the loading state whereas, in Haringx theory, the shear force is assumed to be tangential to 

the cross section of the beam. This difference in the assumption of shear force directions can indeed 

be traced down to differences in the definitions of adopted strains within the Doyle-Ericksen 

family of strains and conjugate stresses (e.g., Bazant 2003, Attard and Hunt 2008). 

In this study, we develop a shear-deformable finite element formulation that is applicable for the 

buckling analysis of thin-walled composite beams. The element can be used in the modelling of 

composite beams of any open section. The element consists of various laminates with different 

mechanical properties and unidirectional continuous fibres directed in arbitrary directions. The 

effect of fibre orientation on the buckling behaviour of thin-walled composite beams is illustrated 

using the developed finite element formulation for the analysis. The formulation is developed in 

terms of a generic member of the Doyle-Ericksen family of strains, while elastic Hooke’s material 

is adopted for the constitutive relations. As such, the developed formulation is an extension of both 

Engesser and Haringx buckling formulas to thin-walled beams. 

7.2.  Methodology 

7.2.1  Strains 

The strain components can be written in terms of deflections 𝑢(𝑧), 𝑣(𝑧) and 𝑤(𝑧) of the beam 

axis that are parallel to x, y, z directions respectively, and the angle of twist 𝜙𝑧(𝑧) of the cross-

section (Figure 7.1a) and additionally 𝜙𝑥(𝑧) and 𝜙𝑦(𝑧) are rotation angles around the x and y axes 

respectively and 𝜓(𝑧) is the Vlasov warping function for thin-walled beams 

   
 
 
 
 
 
 
 

         (a) Thin-walled beam     (b) Fibre orientations            (c) Laminates across the thickness 
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For the Doyle-Ericksen finite strain tensor definition in continuum, we refer to (Bazant and Cedolin 

2010), i.e.  𝜺𝑚 =
(𝑼𝑚−𝑰)

𝑚
,, where m is a real parameter deciding on which member of the family, I 

is the unit tensor, and U is the right-stretch tensor of polar decomposition of the deformation 

gradient. In particular, m=2 produces the commonly used Green-Lagrange strain tensor, m=1 

produces the Biot strain tensor, m=0 produces Hencky strain tensor and m=−2 produces the 

Almansi strain tensor. For calculating the critical loads in buckling, only the second-order 

approximations to the strain tensor matters. Therefore, we limit ourselves to second order accuracy 

in which case the strains can express as 𝜺𝑚 = 𝜺 + 𝒆 − 𝜂𝜺
𝑇𝜺 which consists of six components in 

3D and contains a first order strain tensor 𝜺, a second order strain tensor 𝒆, and 𝝃 = 𝜺𝑇𝜺 where 𝜂

= 1 − 0.5𝑚 determines which member of the Doyle-Erickson family is chosen.  The formulation 

is restricted to prismatic thin-walled members of arbitrary cross-sections and it is based on the 

kinematic assumptions that; cross-section does not change its shape during deformation. 

Therefore, some of the strain components that causes deformations within the plane of the cross-

section can be eliminated directly, i.e., 휀𝑥𝑦 = 0, 휀𝑥𝑥 = 0, 휀𝑦𝑦 = 0 . As a result, only the axial 

strain in the z direction 휀𝑧𝑧and the shear strains 𝛾𝑥𝑧 on the flanges and𝛾𝑦𝑧 on the web survive. We 

define a common shear strain considering the orientation of the thin-walled segments, 𝛾 =

𝛾𝑥𝑧 𝑐𝑜𝑠 𝛼 + 𝛾𝑦𝑧 𝑠𝑖𝑛 𝛼 where a is shown in Figure 7.1. Accordingly, the non-zero components of 

the linear strain 𝜺 = ⟨휀𝑧𝑧 𝛾⟩𝑇 can be written as  

 휀𝑧𝑧 = 𝑤
′ − 𝑥𝜙𝑦

′ + 𝑦𝜙𝑥
′ − 𝜔𝜓′ 7.1 

 𝛾 = (𝑢′ − 𝜙𝑦) 𝑐𝑜𝑠 𝛼 − (𝑣
′ + 𝜙𝑥) 𝑠𝑖𝑛 𝛼 + ℎ(𝜙𝑧

′ − 𝜓) − 2𝑟𝜙𝑧
′  

7.2 

In equations 7.1 and 7.2, x and y identify coordinates of a point on the cross-section, and r is the 

normal distance from the mid-surface (Figure 7.1a). Sectorial area coordinate of the Vlasov theory 

was used, i.e. 𝜔 = ∫ℎ𝑑𝑠 in which h is the normal distance to the tangent of the point on the section 

contour from the arbitrarily located pole A with x and y coordinates (𝑎𝑥, 𝑎𝑦), i.e. ℎ =

(𝑥 − 𝑎𝑥) sin 𝛼 − (𝑦 − 𝑎𝑦) cos 𝛼 (Figure 7.1a), where 𝛼 is the angle between x and s axes. As 

shown in Figure 7.1a, s axis is tangent to the mid-surface of the cross-section and directed along 

the contour line. In equations 7.1 and 7.2, prime denotes derivative with respect to the axial 
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coordinate z, i.e. ()′ = 𝑑()/𝑑𝑧 .The non-zero components of the nonlinear strain tensor 𝒆 =

⟨𝑒𝑧𝑧 𝑔⟩𝑇 can be written as 

𝑒𝑧𝑧 =
1

2
(𝑢′2 + 𝑣′2) − 𝑥𝑣″𝜙𝑧 − 𝑎𝐺𝑥𝑣

′𝜙𝑧
′ + 𝑦𝑢″𝜙𝑧 + 𝑎𝐺𝑦𝑢

′𝜙𝑧
′

+
1

2
[(𝑥 − 𝑎𝐺𝑥)

2 + (𝑦 − 𝑎𝐺𝑦)
2
] 𝜙𝑧

′2 

7.3 

𝑔 = (𝑣′𝜙𝑧 − 𝜙𝑦𝑤
′) 𝑐𝑜𝑠 𝛼 − (𝑢′𝜙𝑧 −𝜙𝑥𝑤

′) 𝑠𝑖𝑛 𝛼 + 𝑞𝜙𝑧𝜙𝑧
′  7.4 

where 𝑞 = (𝑥 − 𝑎𝑥) 𝑐𝑜𝑠 𝛼 + (𝑦 − 𝑎𝑦) 𝑠𝑖𝑛 𝛼. The non-zero components of the nonlinear strain 

tensor 𝝃 = ⟨𝜉𝑧𝑧 𝜑⟩𝑇 can be written as 

𝜉𝑧𝑧 =
1

4
(𝑢′ − 𝜙𝑦)

2
+
1

4
(𝑣′ + 𝜙𝑥)

2 

7.5 

𝜑 = 𝑤′(𝑢′ − 𝜙𝑦) 𝑐𝑜𝑠 𝛼 + 𝑤
′(𝑣′ + 𝜙𝑥) 𝑠𝑖𝑛 𝛼 7.6 

7.2.2  Constitutive relations 

For a laminate composed of n orthotropic layers, the orientation of the local  

𝑥𝑘𝑧𝑘-plane with respect to the global xz-plane is determined by angle 𝜙 about the 𝑦-axis (Figure 

7.1b). Assuming that perfect interlaminar bond exists between the layers, the stress-strain 

relationship for the kth layer can be written as follows; 

𝝈(𝑘) = {
𝜎𝑧
(𝑘)

𝜏(𝑘)
} = �̄�(𝑘)𝜺𝑚 

7.7 

where 

�̄�(𝑘) = [
�̄�11
∗(𝑘) �̄�16

∗(𝑘)

�̄�16
∗(𝑘) �̄�66

∗(𝑘)
]    

7.8 

in which 

�̄�∗11
(𝑘)
= �̄�11

(𝑘) −
�̄�12
(𝑘)2

�̄�22
(𝑘)                �̄�

∗
16

(𝑘)
= �̄�16

(𝑘) −
�̄�12
(𝑘)
�̄�26
(𝑘)

�̄�22
(𝑘)             �̄�

∗
66

(𝑘)
= �̄�66

(𝑘) −
�̄�26
(𝑘)2

�̄�22
(𝑘)   

7.9 
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𝑄11
(𝑘)
= 𝑄11

(𝑘) 𝑐𝑜𝑠4 𝜙 𝑘 + 2(𝑄12
(𝑘) + 2𝑄66

(𝑘)) 𝑠𝑖𝑛2 𝜙 𝑘 𝑐𝑜𝑠
2 𝜙 𝑘 + 𝑄22

(𝑘) 𝑠𝑖𝑛4 𝜙 𝑘 
7.10 

𝑄16
(𝑘)
= (𝑄11

(𝑘) − 𝑄12
(𝑘) − 2𝑄66

(𝑘)) 𝑠𝑖𝑛 𝜙 𝑘 𝑐𝑜𝑠
3 𝜙 𝑘

+ (𝑄12
(𝑘) − 𝑄22

(𝑘) + 2𝑄66
(𝑘)) 𝑠𝑖𝑛3𝜙 𝑘 𝑐𝑜𝑠 𝜙 𝑘   

7.11 

𝑄66
(𝑘)
= (𝑄11

(𝑘) + 𝑄22
(𝑘) − 2𝑄12

(𝑘) − 2𝑄66
(𝑘)) 𝑠𝑖𝑛2 𝜙 𝑘 𝑐𝑜𝑠

2 𝜙 𝑘

+ 𝑄66
(𝑘)(𝑠𝑖𝑛4𝜙 𝑘 + 𝑐𝑜𝑠

4 𝜙 𝑘) 

7.12 

and 

𝑄11
(𝑘)
=

𝐸1
(𝑘)

1−𝑣12
(𝑘)
𝑣21
(𝑘)           𝑄12

(𝑘)
=

𝑣12
(𝑘)
𝐸2
(𝑘)

1−𝑣12
(𝑘)
𝑣21
(𝑘)           𝑄22

(𝑘)
=

𝐸2
(𝑘)

1−𝑣12
(𝑘)
𝑣21
(𝑘)        𝑄66

(𝑘)
= 𝐺12

(𝑘)
  

7.13 

where 𝐸1
(𝑘)

 and 𝐸2
(𝑘)

 are Young’s moduli of the kth layer in the local  𝑧𝑘 and  𝑥𝑘 directions, 

respectively, 𝐺12
(𝑘)

is the shear moduli in 𝑥𝑘𝑧𝑘 plane of the kth layer, 𝑣12
(𝑘)

 is the Poisson’s ratio 

defined as the ratio of the transverse strain in the 𝑥𝑘 direction to the axial strain in  direction, 

and 𝑣21
(𝑘)

 is the Poisson’s ratio defined as the ratio of the transverse strain in the 𝑧𝑘 direction to the 

axial strain in 𝑥𝑘 direction. The laminate configuration is limited to symmetric angle-ply stacking 

sequence with respect to mid-plane (Figure 7.1c). Moreover, in this research work it is assumed 

that all the layers are perfectly bond together and there is no delamination.  

7.3.  Energy functional for static and buckling analyses 

For the buckling analysis herein the pre-buckling deformations are neglected. In this case the 

analysis can be performed in two steps. Firstly; linear static analysis is performed under applied 

loads for which the equilibrium equations can be obtained from the first variation of the total 

potential energy functional, i.e. 𝛿𝛱 = 0 . Secondly; the internal forces obtained from the linear 

static analysis are used in the stability condition, which can be obtained from the second variation 

of the total potential energy functional, i.e. 𝛿2𝛱 = 0. 

7.3.1  Energy functional for static analysis 

The equilibrium equations for linear static analysis can be obtained in the weak form using the 

total potential energy functional, i.e. 

kz



 

99 
 

𝛿𝛱 = ∫∫ 𝛿𝜺𝑚
𝑇 �̄�(𝑘)𝜺⏟  

𝝈(𝑘)

𝑑𝐴
𝐴

𝑑𝑧
𝐿

−∫𝛿𝜟𝑇𝒑
𝐿

𝑑𝑧    
7.14 

where the first integral term is due to strain energy stored, 𝒑 is the vector of applied loads, 𝜟 is the 

displacement vector of the load application point and 𝛿 denotes variation. Note that in equation 

7.14, only the linear part of the strain tensor was used and based on which the stress distribution  

𝝈(𝑘) can be obtained. 

7.3.2  Energy functional for buckling analysis 

The neutral equilibrium equations for buckling analysis can be obtained from the vanishing of the 

second variation of the total potential energy functional [17], i.e. 𝛿2𝛱 = 0 , where 

𝛿2𝛱 = ∫∫𝛿𝜺𝑇�̄�(𝑘)𝛿𝜺𝑑𝐴
𝐴

𝑑𝑧
𝐿

+∫∫ 𝛿2𝒆𝑇 �̄�(𝑘)𝜺⏟  
𝝈(𝑘)

𝑑𝐴
𝐴

𝑑𝑧
𝐿

− 𝜂∫∫ 𝛿2𝝃𝑇 �̄�(𝑘)𝜺⏟  
𝝈(𝑘)

𝑑𝐴
𝐴

𝑑𝑧
𝐿

 7.15 

in which pre-buckling deformations are ignored. Note that 𝝈(𝑘) has been obtained from the linear 

static analysis in equation 7.14 and substituted into equation 7.15. The first term in equation 7.15, 

leads to the elastic stiffness matrix, while the second and third terms leads to the geometric stiffness 

matrix.  

7.4.  Finite element formulation 

The finite element formulation is obtained by interpolating the displacement fields u, v, w, rotation 

fields 𝜙𝑥, 𝜙𝑦 and 𝜙𝑧, and the warping function 𝜓 using polynomial functions of the axial 

coordinate z, i.e., 

{
 
 
 

 
 
 
𝑤(𝑧)

𝑣(𝑧)

𝜙𝑥(𝑧)

𝑢(𝑧)

𝜙𝑦(𝑧)

𝜙𝑧(𝑧)

𝜓(𝑧) }
 
 
 

 
 
 

=

[
 
 
 
 
 
 
𝑵 𝟎 𝟎 𝟎
𝟎 𝑳𝑓 𝟎 𝟎

𝟎 𝑴𝑓 𝟎 𝟎

𝟎 𝟎 𝑳𝑡 𝟎
𝟎 𝟎 𝑴𝑡 𝟎
𝟎 𝟎 𝟎 𝑳𝑡
𝟎 𝟎 𝟎 𝑴𝑡]

 
 
 
 
 
 

{

𝒘
𝜴
𝜦
𝜞

}   

7.16 

where, 𝒘 = ⟨𝑤1 𝑤2⟩𝑇 , 𝜴 = ⟨𝑣1 𝜙𝑥1 𝑣2 𝜙𝑥2⟩
𝑇, 𝜦 = ⟨𝑢1 𝜙𝑦1 𝑢2 𝜙𝑦2⟩𝑇, 𝜞 =

⟨𝜙𝑧1 𝜓1 𝜙𝑧2 𝜓2⟩
𝑇 are the vectors of nodal values and 𝑵 = ⟨𝑁1 𝑁2⟩, 𝑳𝑓 =

⟨𝐿𝑓1 𝐿𝑓2 𝐿𝑓3 𝐿𝑓4⟩,  𝑴𝑓 = ⟨𝑀𝑓1 𝑀𝑓2 𝑀𝑓3 𝑀𝑓4⟩, 𝑳𝑡 = ⟨𝐿𝑡1 𝐿𝑡2 𝐿𝑡3 𝐿𝑡4⟩, 𝑴𝑡 =

⟨𝑀𝑡1 𝑀𝑡2 𝑀𝑡3 𝑀𝑡4⟩ are the vectors of corresponding interpolation functions in which 
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   𝑁1 =
𝐿−𝑧

𝐿
             𝑁2 =

𝑧

𝐿
      

7.17 

𝐿𝑓1 = 1 −
𝑧𝛼𝑓

𝐿(1 + 𝛼𝑓)
−

3𝑧2

𝐿2(1 + 𝛼𝑓)
+

2𝑧3

𝐿3(1 + 𝛼𝑓)
      

7.18 

𝐿𝑓2 =
𝑧(1 + 0.5𝛼𝑓)

(1 + 𝛼𝑓)
−
2𝑧2(1 + 0.25𝛼𝑓)

𝐿(1 + 𝛼𝑓)
+

𝑧3

𝐿2(1 + 𝛼𝑓)
 

7.19 

𝐿𝑓3 =
𝑧𝛼𝑓

𝐿(1 + 𝛼𝑓)
+

3𝑧2

𝐿2(1 + 𝛼𝑓)
−

2𝑧3

𝐿3(1 + 𝛼𝑓)
                

7.20 

𝐿𝑓4 = −
0.5𝑧𝛼𝑓

(1 + 𝛼𝑓)
+
𝑧2(0.5𝛼𝑓 − 1)

𝐿(1 + 𝛼𝑓)
+

𝑧3

𝐿2(1 + 𝛼𝑓)
    

7.21 

𝑀𝑓1 = −
6𝑧

𝐿2(1 + 𝛼𝑓)
+

6𝑧2

𝐿3(1 + 𝛼𝑓)
 

7.22 

𝑀𝑓2 = 1 −
𝑧(4 + 𝛼𝑓)

𝐿(1 + 𝛼𝑓)
+

3𝑧2

𝐿2(1 + 𝛼𝑓)
 

7.23 

𝑀𝑓3 =
6𝑧

𝐿2(1 + 𝛼𝑓)
−

6𝑧2

𝐿3(1 + 𝛼𝑓)
 

7.24 

𝑀𝑓4 =
𝑧(𝛼𝑓 − 2)

𝐿(1 + 𝛼𝑓)
+

3𝑧2

𝐿2(1 + 𝛼𝑓)
 

7.25 

where 𝛼𝑓 is a shear parameter approximated as 𝛼𝑓 =
12𝐸𝐼𝑥

𝐺𝐴𝑦𝐿2
 where 𝐸𝐼𝑥is the bending rigidity of the 

composite cross-section around the x axis and 𝐺𝐴𝑦 is the shear rigidity in direction y. Components 

of the vectors 𝑳𝑡  and 𝑴𝑡 in equation 7.17 are identical to those given for 𝑳𝑓  and 𝑴𝑓 in equations 

7.18 to 7.25 except the fact that 𝛼𝑓 should be replaced with 𝛼𝑡 which is approximated as 𝛼𝑡 =

12𝐸𝐼𝑦

𝐺𝐴𝑥𝐿2
. As a result of the interpolation scheme, one obtains equation 7.15 in the discretised form as   

[𝑲 + 𝜆𝑲𝐺]𝛿𝒅𝒃  = 0    7.26 
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in which 𝜆 is the buckling load factor, 𝑲 and 𝑲𝐺 are the assembled elastic stiffness and geometric 

stiffness matrices, respectively, and 𝛿𝒅𝒃  is the vector of buckle mode shape. It should be noted 

that the solution for 𝜆 and the corresponding 𝛿𝒅𝒃 depends on the selected strain parameter 𝜂. 

7.5.  Applications 

7.5.1  Lateral-torsional buckling of mono-symmetric thin-walled beam under uniform moment 

A simply supported mono-symmetric section under uniform bending moment is analysed herein 

for validation purposes. Figure 7.2 shows the loading and boundary conditions of a 4m span beam, 

and the dimensions of the cross-section of the analysed beam.  

 

              

 

 

 

                                      (a) Simply supported beam                       (b) Cross-section 

       

Flanges and the web are laminated symmetrically with respect to their mid-plane using 16 layers 

of equal thickness. For the examples considered herein the material of the beams is glass-epoxy 

and the values of material properties are provided in Table 7-1.  

Table 7-1. Values of material properties for glass-epoxy composite (GPa) 

E1 E2 G12  12  21 

53.78 17.93 8.96 0.25 0.25 

Stacking sequence of the layers and the corresponding buckling moments based on the current 

study and those based on ABAQUS shell element model used in (Kim et al. 2007) are shown in 

Table 7-2. It can be verified that the results are in good agreement and thus lateral buckling 

behaviour can be captured with the proposed finite element formulation without requiring 

sophisticated shell element models. 

Table 7-2. Critical moments for the simply supported beam in Figure 7.2 (Nmm) 

Stacking 

sequence 

This study 

sixteen 

elements-No 

shear effect 

This study 

sixteen 

elements-Shear 

effect with m=2  

This study 

sixteen 

elements-Shear 

effect with m=-2  

Kim et al 

(2007)  

[0]16 47.30 47.30 47.30 46.560 

[15/-15]4S 46.76 46.76 46.76 48.794 

4m

Mcr Mcr

50mm

30mm
2.08mm

2.08mm

2.08mm
50mm

x
y

Figure 7.2 Mono-symmetric beam under uniform bending moment 
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[30/-30]4S 42.9 42.90 42.90 49.624 

[45/-45]4S 36.57 36.57 36.57 44.611 

[60/-60]4S 32.6 32.6 32.6 37.730 

[75/-75]4S 30.1 30.1 30.1 31.359 

[0/90]4S 39.48 39.48 39.48 38.792 

[0/-45/90/45]2S 38.44 38.44 38.44 41.970 

It should be noted that by selecting m=2 or m=-2, one obtains Green-Lagrange or Almansi strains, 

respectively. Effect of fibre-orientation on the buckling moment predictions of both simply 

supported beam is illustrated in Figure 7.3.  

  

 

              

 

 

 

 

 

 

 

 

7.5.2  Lateral-torsional buckling of simply supported symmetric I-section under uniform load 

In this example the buckling predictions are illustrated by using the developed formulation for the 

analysis of a simply supported symmetric I-section under uniform distributed load as shown in 

Figure 7.4. 

     
         
 
 
 
 
 
      

                                 (a) Boundary conditions and loading          (b) Cross-section 
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Figure 7.3 Critical buckling moments according to lay-up [      ]4S 
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800mm

50mm
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Figure 7.4 Symmetric simply supported beam under distributed load 
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The material properties are same as in the previous example and given in Table 7-1. The distributed 

load is applied at the beam’s centroidal axis. Results are compared with those based on (Sapkas 

and Kollar 2002) in which a formulation was suggested as 

𝑞𝑐𝑟 =
8

𝐿2
× 1.13𝑀𝑦𝑧   

7.27 

where  𝑀𝑦𝑧 = √(𝜋2𝐸𝐼𝑦/𝐿2)(𝐺𝐽𝑑 + 𝜋2𝐸𝐼𝑤/𝐿2) . Results are shown for various different stacking 

sequences in Table 7-3.  

Table 7-3. Critical uniform loads for the simply supported beam in Figure 7.4 (N/m) 

Stacking 

sequence 

This study sixteen 

elements-No shear 

effect 

This study sixteen 

elements-Shear effect 

with m=2 

This study sixteen 

elements-Shear 

effect with m=-2 

Eq.7.27 

 

[0]16 3.60 3.59 3.59 3.88 

[15/-15]4S 3.35 3.35 3.35 3.78 

[30/-30]4S 2.70 2.70 2.70 3.42 

[45/-45]4S 2.06 2.06 2.06 2.85 

[60/-60]4S 1.76 1.76 1.76 2.26 

[75/-75]4S 1.63 1.63 1.63 1.85 

[0/90]4S 2.61 2.61 2.61 2.81 

[0/-45/90/45]2S 2.34 2.34 2.34 2.80 

Effect of fibre orientation is shown in Figure 7.5.  
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7.5.3  Flexural buckling of simply supported symmetric I-section under compressive load                     

In the literature one can find two different classical formulas suggested for the buckling analysis 

of shear deformable columns, namely by Engesser and Haringx. The buckling predictions based 

on Engesser PE  and Haringx PH can be expressed, respectively as follows: 

𝑃𝐸 =
𝑃𝑠𝑃𝑏
𝑃𝑠 + 𝑃𝑏

 
7.28 

and 

𝑃𝐻 =
1

2
(√𝑃𝑠2 + 4𝑃𝑠𝑃𝑏 − 𝑃𝑠)    

7.29 

in which 

𝑃𝑏 = 𝜋
2𝐸𝐼/𝐿2   7.30 

is the Euler buckling load where EI is the flexural rigidity and L is the effective length, and Ps = 

GA is the shear buckling load in which GA is the shear rigidity. For very large shear rigidity cases, 

the critical load will approach Pb in both methods. However, in shear-weak cases, Engesser 

solution yields PE = Ps and Haringx theory obtains a significantly different result as   𝑃𝐻 = √𝑃𝑠𝑃𝑏. 

In this example, the simply supported beam shown in Figure 7.6 below is analysed under 

compressive load. The material properties are the same as in the previous examples as given in 

Table 7-1. The span is 100mm and buckling occurs around the y axis.  The flexural buckling load 

predictions based on the proposed solution strategy herein are compared with those based on Euler, 

Engesser and Haringx column buckling solutions in Table 7-4.  

 

        

 

 

 

 

            (a) Boundary conditions and loading                 (b) Cross-section 
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Figure 7.6 Symmetric simply supported beam under compressive load 
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Table 7-4. Critical compressive loads for the simply supported beam in Figure 7.6 (N) 

Stacking 

sequence 

This study-sixteen 

elements-Shear 

effect with m=2 

This study-sixteen 

elements-Shear 

effect with m=-2 

This study-

sixteen elements-

No shear effect 

Engesser 

PE 

Eq. 7.28 

 

Haringx 

PH 

Eq. 7.29 

 

Euler 

Pb 

Eq. 7.30 

 

[0]16 352.24 383.03 513.77 351.97 382.69 513.68 

[15/-15]4S 333.38 356.34 462.50 333.11 356.03 462.16 

[30/-30]4S 269.38 279.48 338.85 269.23 279.30 338.80 

[45/-45]4S 197.40 201.27 231.40 197.35 201.21 231.43 

[60/-60]4S 161.79 164.05 184.51 161.70 163.95 184.45 

[75/-75]4S 150.92 153.13 172.75 150.84 153.04 172.71 

[0/90]4S 262.34 275.08 342.48 262.15 274.87 342.46 

[0/-45/90/45]2S 232.74 240.18 286.94 232.60 240.02 286.89 

 

The effect of fibre orientation is shown in Figure 7.7. 

 

  

 

 

 

 

 

 

 

 

 

 

 

7.6.  Conclusions, and Recommendations  

7.6.1  Conclusions 

The proposed formulation for buckling analysis of thin-walled beams was validated against known 

solutions from the literature. In the case of long slender beams under uniform bending moment 

loading the results agree well with those of a shell-type model from literature and including shear 

deformations have no effect on the results. The effect of shear deformation and stress-strain 

definitions in buckling load predictions were not significant in the analysed lateral-torsional 

buckling problems. However, in the case of a short column problem, it was shown that Engesser 
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Figure 7.7 Critical buckling loads according to lay-up [       ]4S 
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and Haringx solutions lead to significantly different result. In the finite element analysis context, 

this difference is due to differences in the definitions of adopted stresses which affect the geometric 

stiffness matrix within the linearized eigenvalue problem. The finite element results based on the 

proposed methodology exactly match with those based on the analytical results of Engesser, 

Haringx, and Euler when corresponding stress-strain definitions are used. That confirms that the 

formulation is capable of capturing the shear deformation effects very accurately. The Engesser’s 

formula provided more conservative results comparison to that of the Haringx and as Euler’s 

formula neglects shear deformation effects, it is unconservative when shear deformations are 

significant. The effect of the fiber orientation on the buckling predictions was also illustrated in all 

three cases studied herein. 

7.6.2  Recommendations for Future Work 

Recommendations for future work include:  

1. The present distortional theory can be utilized for thin-walled beams to consider the effect of 

pre-buckling deformation and shear deformation effects in buckling analysis which can lead 

to improved design rules. 

2. The present finite element solution can be applied to determine the distortional buckling 

response of fibre-reinforced polymer composite-laminated thin-walled members which was 

limited to rigid web assumption in chapter 7. 

3. The developed formulation can be extended for tapered beams and thin-walled channels.  

4. The formulation can be extended for inelastic nonlinear analysis of thin-walled beams. 
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List of Symbols 

x, y, z     Cartesian coordinates 

s    Coordinate in the tangential direction of the plate segment 

r    Coordinate in the thickness direction of the plate segment  

     Angle between x and s directions 

Ga     Global pole   

( ),u y z    Horizontal displacement of a point 

( )u z     Horizontal displacement of the global pole 

( ), ,v x y z    Vertical displacement of a point 

( )v z     Vertical displacement of the global pole 

( ), ,w x y z    Axial displacement of a point 

( )w z     Axial displacement of the global pole 

x     Rotation angle around the x-axis    

y     Rotation angle around the y-axis    

( ),z y z    Angle of twist around the z-axis   

( ),y z    Generalized global warping displacement    

     Parameter to decide on the contribution of the second order rotation  

̂     Local warping function 

     Global warping function 

q    Coordinate in the tangential direction of the plate segment w.r.t. the pole 

h    Coordinate in the thickness direction of the plate segment w.r.t. the pole 

I    Unit tensor 

U    Right stretch tensor 

mε     Green-Lagrange strain tensor 

ε    First order strain tensor 

e    Second order strain tensor 
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zze , yye , xze , yze       Non-zero components of the strain tensor    

g     Shear strain 

     Switch of interpolation functions along the web direction. 

     Twist curvature of the plate segment 

     Angle of rotation of the plate segment around z-axis 

     Angle of rotation of the plate segment around q-axis 

 , skr     Angle of rotation of the plate segment around r-axis 

J    Torsional constant of the plate segment around z-axis 

tM    Twisting moment acting on the plate segment around z-axis 

b   Width of the plate segment 

t   Thickness of the plate segment 

wh     Height of the web 

    Parameter to decide on the contribution of yye  

δ    Variation operator 

s    Matrix of cross-sectional coordinates 

Lχ , Aχ    Vector of displacement derivatives 

A    Matrix of displacement derivatives to compute first variations of strains 

1t , 2t , 2Gt    Matrices to re-order displacement derivatives 

1G , 2G    Matrix of displacement derivatives to compute second variations of strains 

mσ    Stress tensor 

aE , bE    Constitutive matrices 

A   Cross-sectional area 

L   Element span 

    Total potential energy functional 

intW    Internal strain energy functional 

extW    External load potential functional 
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    Modified energy functional 

ext
P    External load vector 

nB , lB , GB    Matrices of discrete strain-displacement relations 

GM    Matrix relating displacements and strains 

BN , N , L, M, N Matrices of interpolation functions 

1 2 3 4, , ,H H H H             Hermitian functions 

1 2 3 4, , ,H H H H   Modified Hermitian functions 

tK , eK , gK    Stiffness matrices 

T    Matrix to impose rigid web constraint 

u    Vector of displacement functions 

,d d    Nodal displacement vectors 

1w ,
2w    Nodal axial displacements 

1v ,
2v    Nodal vertical displacements 

1x ,
2x    Nodal rotations around x-axis 

1Bu ,
2Bu    Nodal horizontal displacements of the bottom flange 

1yB ,
2yB               Nodal rotations around y-axis of the bottom flange 

1zB ,
2zB               Nodal rotations around z-axis of the bottom flange 

1B ,
2B               Nodal generalized warping displacements of the bottom flange 

1Tu ,
2Tu    Nodal horizontal displacements of the top flange 

1yT ,
2yT   Nodal rotations around y-axis of the top flange 

1zT ,
2zT               Nodal rotations around z-axis of the top flange 

1T ,
2T    Nodal generalized warping displacements of the top flange 

w    Vector of nodal axial displacements 

Ω    Vector of nodal vertical displacements and rotations around x-axis 

BΛ , TΛ   Vector of nodal horizontal displacements and rotations around y-axis 
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BΓ , TΓ   Vector of nodal angle of twist and global warping 
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