
AN EMPIRICAL ASSESSMENT OF THE

CONTRIBUTING FACTORS FOR VULNERABILITY

DETECTION USING MACHINE LEARNING

Esma Mouine

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Electrical and

Computer Engineering)

Concordia University

Montréal, Québec, Canada

December 2021

© Esma Mouine, 2022

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Esma Mouine

Entitled: An Empirical Assessment of the Contributing Factors for

Vulnerability Detection using Machine Learning

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. A. Hamou-Lhadj

Examiner
Dr. J. Clark (CIISE)

Examiner
Dr. A. Hamou-Lhadj

Supervisor
Dr. Y. Liu

Approved by
Dr. Yousef R. Shayan,
Chair of Department or Graduate Program Director

Dr. Mourad Debbabi,
Dean of Gina Cody School of Engineering and Computer Science

Abstract

An Empirical Assessment of the Contributing Factors for

Vulnerability Detection using Machine Learning

Esma Mouine

There is an increasing trend to mine vulnerabilities from software repositories and

use machine learning techniques to detect software vulnerabilities automatically. A

fundamental but unresolved research question is: how do di↵erent factors in the min-

ing and learning process impact the accuracy of identifying vulnerabilities in software

projects of varying characteristics? Substantial research has been dedicated in this

area, including source code static analysis, software repository mining, and NLP-

based machine learning. However, practitioners lack experience regarding the key

factors for building a baseline model of the state-of-the-art. In addition, their lack

of experience regarding how transferable the vulnerability signatures from a project

to another are. This study investigates how the combination of di↵erent vulnerabil-

ity features and three representative machine learning models impact vulnerability

detection accuracy in 17 real-world projects. This thesis proposes di↵erent machine

learning methods to detect software vulnerabilities. The first part of this work con-

sists of establishing a baseline model for vulnerability prediction using NLP. For that,

two types of vulnerability representations are examined: 1) code features extracted

through NLP with varying tokenization strategies and three di↵erent embedding tech-

niques (bag-of-words, word2vec, and fastText) and 2) a set of eight architectural

metrics that capture the abstract design of the software systems. The four machine

learning algorithms include a random forest model, a support vector machine model,

and a residual neural network model. The second part of the study is an e↵ort to

evaluate the baseline model su�ciently and fairly by using it to evaluate the perfor-

mance of another model. More experiments are performed using a bidirectional long

short-term memory (BiLSTM) combined with word2vec. The results are compared

to the baseline results.

iii

Overall, the first set of experiments, the models returned the following results.

95% of the learning metrics (precision, recall, f1 score, etc.) are above 0.77 in the

experiments out of 10 hypothesis tests and 408 experiments. Further analysis shows a

recommended baseline model with signatures extracted through bag-of-words embed-

ding, combined with the random forest, consistently increases the detection accuracy

by about 4% compared to other combinations in all 17 projects. The observations

also show the limitation of transferring vulnerability signatures across domains based

on the experiments. Furthermore, the baseline model is shown to perform better than

the BiLSTM model.

iv

Acknowledgments

I would like to thank all the people who contributed in some way to the work described

in this thesis. First and foremost, I would like to express my sincere gratitude to my

advisor Prof. Yan Liu for the continuous support, guidance, motivation, and immense

knowledge and financial support during my Master’s studies and research. I would

also like to thank all people that contributed as co-authors of my paper. Finally, I

would like to pay earnest gratitude to my family and friends for their love, support,

and encouragement.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Problem statement . 1

1.2 Contribution . 3

1.3 Outline . 4

2 Background 5

2.1 Software vulnerabilities and Code Analysis 5

2.2 Natural Language Processing and Source Code 7

2.3 Architecture metrics and Source Code Analysis 8

3 Related Work 10

3.1 Static Vulnerability Detection . 10

3.2 Machine Learning and Natural Language Processing Detecting Vulner-

abilities . 11

3.3 Software Architecture and Security 13

4 Research Methodology 15

4.1 Vulnerability Detection Process . 17

4.2 Tokenization . 19

4.3 Token Embeddings . 20

4.3.1 Bag-of-words . 21

4.3.2 Word2vec . 21

4.3.3 FastText . 21

vi

4.4 Architectural Metrics . 22

4.5 Machine Learning Models . 24

4.5.1 Random Forest . 24

4.5.2 Support Vector Machines . 24

4.5.3 Residual Neural Network . 25

4.6 Experiments Design . 27

5 Datasets and Metrics 29

5.1 Datasets . 29

5.1.1 OWASP Benchmark Project 29

5.1.2 Test Suite for Java . 29

5.1.3 Android Study . 31

5.1.4 Analysis of the Vulnerabilities 31

5.1.5 Analysis of Tokens . 32

5.2 Evaluation Metrics . 37

6 Experiments and Analysis 39

6.1 Evaluate the Combinations of the Di↵erent Aspects 39

6.1.1 Experiment Design and Hypotheses 44

6.1.2 Experiment Results for Tokenization (RQ1) 44

6.1.3 Experiment Results for Feature Extraction (RQ2) 45

6.1.4 Experiment Results using Architectural Metrics (RQ3) 46

6.1.5 Experiment Results on Classification models (RQ4) 47

6.2 Cross Validation . 47

6.2.1 Train-One-Predict-Multiple 48

6.2.2 Train-Multiple-Predict-One 48

6.2.3 Cross Domain Validation . 50

6.3 Discussion . 51

7 Use of the Baseline Model 52

7.1 Purpose of a Baseline Model . 52

7.2 Bidirectional Long Short-Term Memory for Vulnerability Detection . 53

7.3 Comparing the BiLSTM to the Baseline model 56

7.3.1 Singular Project Vulnerability Detection 56

7.3.2 Cross Validation . 57

vii

7.4 Discussion . 60

8 Threats to Validity 61

9 Conclusion 63

viii

List of Figures

1 The process of learning software vulnerability as a classification task . 18

2 Example of a file from the OWASP project after tokenization with

keeping all the tokens. 19

3 Example of a file from the OWASP project after the prepossessing

(that consists on removing the comments and the symbols) and the

tokenization. 20

4 The data flow of the feature engineering and learning. The feature

engineering is consistent for all the classification models. The modeling

part illustrates the structure of the revised ResNet model that consists

of one convolutional layer, one dense layer and 7 ResNet blocks. Each

ResNet block is composed of 16 layers. 26

5 OWASP token distribution. Most of the tokens have fewer than 20

occurrences. 34

6 Juliet token distribution. Most of the tokens are have fewer than 25

occurrences. 35

7 All Android projects token distribution. The majority of the tokens

have fewer than 500 occurrences. 36

8 The data flow for the classification task performed by the BiLSTM

model. This figure shows the data flow of the feature engineering and

learning for the BiLSTM model. It illustrates the di↵erent layer that

defines the model in this thesis. 55

ix

List of Tables

1 This table summarizes the research questions and their related aspects

that are explored with the experiment. 28

2 OWASP vulnerability Types . 30

3 Juliet Test Suite Vulnerability Types 30

4 Common vulnerabilities in the three datasets 31

5 Dataset Vulnerability Statistics . 32

6 Number of tokens in each dataset according to the vulnerability of the

files and number of the common tokens in the vulnerable files and non

vulnerable files. 32

7 Singular project vulnerability detection with tokenization while keep-

ing all the comments and symbols across embeddings and machine

learning models. The z value in the table aggregate the evaluation

metrics. The value is calculated according to all the experiments. The

higher the value, the better the results. If z equals 1, the experiment

performed the best among all. If it is equal to 0, it performed the worst. 41

8 Singular project vulnerability detection with tokenization after remov-

ing the comments and symbols across embeddings and machine learn-

ing models. The z value in the table aggregate the evaluation metrics.

The value is calculated according to all the experiments. The higher

the value, the better the results. 42

9 Singular project vulnerability detection with Bag-of-words and the Ar-

chitectural metrics. The z value in the table aggregate the evaluation

metrics. The value is calculated according to all the experiments. The

higher the value, the better the results. If z equals 1, the experiment

performed the best among all. If it is equal to 0, it performed the worst. 43

10 p-value obtained from the Wilcoxon Test for the 10 hypotheses 44

x

11 Training-One-Predicting-Multiple compared with the LSTMmodel in [19]

with the threshold value settings. 48

12 The cross project validation from 15 Android projects, with 5 projects

having both precision and recall higher than 80% (ConnectBot, Email,

Coolreader, Crosswords, AnkiDroid) 49

13 Cross domain comparison to observe how transferable the vulnerability

signature is . 50

14 Singular project vulnerability detection results. Comparison of the

baseline model (Random Forest + Bag-of-words) with the BiLSTM

model (BiLSTM + Wor2Vec). The z value in the table aggregate

the evaluation metrics. The value is calculated according to all the

experiments. The higher the value, the better the results. If z equals

1, the experiment performed the best among all. If it is equal to 0, it

performed the worst. 57

15 Training-One-Predicting-Multiple. Comparison of the baseline model

(Random Forest + BOW) to BiLSTM model (BiLSTM + W2V) with

the threshold of 0.7. The table contains the number of projects with

precision and recall higher or equal to 70% that each model trained

with only one project predicted. 58

16 Training-Multiple-Predicting-One. Comparison of the baseline model

(Random Forest + BOW) to BiLSTM model (BiLSTM + W2V). Each

model is trained with all the projects minus one. The table contains

the results of predicting the project that was not used in the training

with the model trained with all the other projects. The z value in

the table aggregate the evaluation metrics. The value is calculated

according to all the experiments. The higher the value, the better the

results. If z equals 1, the experiment performed the best among all. If

it is equal to 0, it performed the worst. 59

17 Cross domain comparison to observe how transferable the vulnerability

signature is for the BiLSTM model 60

xi

Chapter 1

Introduction

The National Institute of Standards and Technology (NIST) defines security vulner-

ability as a weakness in an information system, system security procedures, internal

controls, or implementation that could be exploited or triggered by a threat source [51].

Software source code usually contains multiple vulnerabilities and errors, including

syntax, semantic, communication, calculation, and logic errors. A single error is often

enough to cause software failure. In software engineering, static code analysis helps

to identify these bugs and flaws in the source code.

1.1 Problem statement

As software scales expand, vulnerability detection with su�cient accuracy and e�-

ciency remains a challenge from both research [19, 37, 22, 66] and industrial perspec-

tives [61, 78].

Currently, there is a wide variety of analysis tools that attempt to uncover common

vulnerabilities in software. In software engineering, static code analysis helps to

identify bugs or flaws in the source code. Code analysis techniques are embedded

in security scanners and raise alerts when vulnerabilities are detected [35, 57, 2,

47, 73, 15, 30]. However, softwares have significantly increased in both size and

complexity. Identifying security vulnerabilities in code is highly di�cult since they

are rare compared to other types of software defects. While these tools exist for

program analysis, they typically only detect a limited subset of possible errors based

on predefined rules. One case study [44] performed using a static analysis tool on

1

Java source files showed that 45.7% of discovered vulnerabilities were false positives.

Beyond these traditional tools, research has been conducted to build a feature

engineering methodology that improves the precision and recall of detecting vulner-

abilities. With the availability of large amounts of open-source code repositories, it

has become possible to use data-driven techniques to learn the patterns of software

vulnerabilities directly from mined data. Clang [74] is a static analyzer that uses a

memory modelling method for static analysis of C programs. Basili et al. [9] used

source code metrics to classify the C++ code as vulnerable or not vulnerable in 1996.

Nagappan et al. [45] utilize complexity metrics on some Microsoft software systems

to identify faulty components. The work of Perl et al. [56] classifies if commits are

related to a CVE or not using machine learning.

An emerging approach is treating software code as a form of text and leveraging

Natural Language Processing (NLP) techniques to extract features automatically.

Dam et al. [19] used a Long Short Term Memory (LSTM) model to capture the re-

lationships between code elements. Likewise, Russel et al. [61] developed a fast and

scalable vulnerability detection tool for C and C++ based on deep feature representa-

tion learning that interprets source code. Hovsepyan et al. [29] analyzed Java source

code using bag-of-words and support vector machines to classify vulnerabilities.

To test the learning of a model, a baseline model is needed. This work wants to

test the learning of the vulnerability signatures and the ability of a model to classify

a vulnerable file according to some factors. Such a baseline helps to establish a base

to investigate techniques on feature representation, learning models, factors such as

code structure, and complexity in learning vulnerability patterns. A baseline model

is commonly used as in the artificial intelligence community [72, 25]. It serves as a

reference point to compare the performances of other models that are usually more

complex. It also relies on understanding the key factors contributing to discovering

vulnerability signatures through a combination of techniques and machine learning

models.

This thesis evaluates the di↵erent factors that can identify the vulnerability sig-

natures in the source code. It investigates how the combination of di↵erent features

from source code and di↵erent representative machine learning models can impact

vulnerability detection accuracy in 17 real-world projects. The ultimate goal is to

2

develop a learning method that takes input as code embeddings from project reposi-

tories so that the learning is transferable to other projects. Hence, this thesis answers

the following research question : What are the contributing factors in learning

processes that impact the accuracy of identifying vulnerabilities across

software projects?

1.2 Contribution

In this work, a corpus composed of tokens from software repositories is created. These

tokens are then used to learn vulnerability patterns. The source code tokens are

embedded as numerical features for learning vulnerability classification. First, this

work focuses on four aspects of the learning process: (A1) the tokenization of the

source code, (A2) the generation of embeddings, (A3) architectural metrics

and (A4) machine learning models.

For tokenization two tokenization approaches are considered —with and with-

out symbols and comments. For embeddings, three types of embedding methods

are investigated (namely bag-of-words [76]; word2vec [41], and fastText [34]). For

architectural metrics, eight file-based metrics are considered to augment vulnera-

bility representations. They measure how source files are connected to each other in

a system. This is for the purpose of examining whether adding architectural metrics

helps to improve detection accuracy. For machine learning models, three machine

learning algorithms are considered, including a weak learner-based model (random

forest [70]), a kernel vector-based model (support vector machines [17]), and a neural

network model (residual neural network [27]).

First, this thesis evaluates the combined e↵ects of the above four aspects on the

accuracy of vulnerability classification over 17 Java projects. The results of 408 exper-

iments are compared using a statistical test. The combination that returns the best

results allows establishing a baseline model. The baseline model is further evaluated

for its transferability through cross-validation and cross-domain experiments. And

finally, the baseline model is used to evaluate another model more complex. Since

LSTM has been dominating most NLP tasks in the last few years, achieving the state

of the art results. Further experiments are performed with a BiLSTM model, which

results are compared to the baseline.

3

1.3 Outline

The thesis is structured as follows. Chapter 2 gives background information about

software vulnerabilities, natural language processing, architecture metrics and their

relation to machine learning. Chapter 3 presents the studies and work previously

conducted related to this thesis. Chapter 4 describes the research methodology. It

starts by exposing the problem statement through 5 research questions, then discusses

the detection process and the di↵erent aspects of each research question that can

identify the vulnerability signatures and the di↵erent machine learning models used.

Chapter 5 is a review of the datasets and the evaluation metrics used to evaluate

the experiments. Chapter 6 includes an analysis of the results related to a first

set of experiments that end by identifying the baseline model. Chapter 7 outlines

further experiments performed to evaluate a BiLSTM model using the previously

defined baseline model. Chapter 8 highlights some of the limitations in the threats

of validity. Finally, Chapter 9 concludes and summarizes this thesis.

4

Chapter 2

Background

This chapter introduces essential terms of the research, such as the definition of

software vulnerabilities and architecture metrics and their relation with code analysis

and how natural language processing can be used in source code analysis.

2.1 Software vulnerabilities and Code Analysis

According to NIST [51] a software vulnerability is A security flaw, glitch, or weak-

ness found in software code that could be exploited by an attacker (threat source).

These flaws can impact the performance and security of the software. They can al-

low untrustworthy attackers to gain access to private data. That is why software

vulnerabilities must be identified and prevented.

Despite academic and industrial e↵orts in improving software quality, vulnerabil-

ities remain a big problem. Multiple vulnerabilities are reported every year in the

Common Vulnerabilities and Exposures (CVE) database. This database is used to

collect and share publicly disclosed information about security vulnerabilities. Like-

wise, Common Weakness Enumeration (CWE) is a community-developed list of com-

mon software and hardware security weaknesses [16]. The Open Web Application

Security Project (OWASP) Benchmark is a Java test suite that contains thousands

of exploitable test cases where each one maps to a specific CWE. NIST’s Software

Assurance Reference Dataset (SARD) [50] provides a set of known security flaws for

researchers and software security assurance developers.

Within SARD, a set of test suites exist, including the Juliet Tests for Java and

5

C++ [49], mobile apps and Web apps [48]. These sources of information can be used

to search for known vulnerabilities to identify potential exploits as part of a forensics

process.

Over the last decade, researchers in software engineering have developed many

source code analysis tools and techniques for handling and identifying bugs or vul-

nerabilities in software. These automated tools scan the code looking for potential

flaws and raise alerts when vulnerabilities are detected [35, 57, 2, 47, 73, 15, 30].

These tools are called security scanners. Some are static analyzers that have the

most impact when used early in the development process. These scanners scan the

code before it is compiled. They can help developers identify vulnerabilities in the

initial stages of development. Other tools perform dynamic analysis by exercising the

application and testing it for weak spots through the user interface. They take the

approach of a real attacker from the outside.

While they are undoubtedly necessary as part of any security program and despite

their abundance, no tool can accurately find all weaknesses, so they typically only

detect a limited subset of possible errors. Most of the static code analysis scanners

are based on predefined rules. These rule-based techniques of pattern matching [73,

15, 30] are usually defined by security experts and consist in enumerating known

vulnerabilities. The vulnerabilities identified by the scanner have to be confirmed by

security engineers. However, these tools have shown to be limited in e↵ectiveness.

One of the limitations is the high false-positive rate [44]. For example, one case

study [44] performed using a static analysis tool on Java source files showed that

45.7% of discovered vulnerabilities were false positives.

With the spread of open-source repositories and databases like CVE, it has become

possible to use machine learning techniques to discover vulnerability patterns. For

improvement, Clang [74] is a static analyzer that uses a memory modelling method

for static analysis of C programs. In recent years, many works have used machine

learning for program analysis [22]. Using machine learning to build a vulnerability

prediction model, several features that represent the software are selected. The most

frequent features are software metrics and developers’ activity. Basili et al. [9] used

source code metrics to classify the C++ code as vulnerable or not vulnerable in 1996.

Nagappan et al. [45] utilize complexity metrics on some Microsoft software systems

to identify faulty components. The work of Perl et al. [56] classifies if commits are

6

related to a CVE or not using machine learning. They combine code metrics analysis

with metadata gathered from code repositories.

This work uses di↵erent machine learning techniques for classifying vulnerabilities

in the source code while minimizing the false positive rate.

2.2 Natural Language Processing and Source Code

Natural language processing (NLP) refers to the automatic computational processing

of human languages. Machines can use NLP to extract information from natural

languages. The last decade has witnessed significant progress in deep learning in

NLP applications.

Natural language is known to be repetitive and predictable, and that is the same

for software code. Programming languages, in theory, are complex, flexible and pow-

erful. However, a lot of the programs that people write are simple and somewhat

repetitive. Thus they have usefully predictable statistical properties that can be

captured in statistical language models and leveraged for software engineering tasks.

In addition to that, the growing availability of open-source repositories creates new

sources of data, thus, new opportunities for using machine learning to process source

code en masse.

Methods based on NLP treat the source code as a form of text to extract features

have emerged. As mentioned before, software repositories contain a large amount

of source code that can form a corpus. The concept of a corpus, originating in

linguistics, is a collection of text in one or multiple languages. Therefore, a repository

is considered a corpus that contains the source code that is considered a form of text

upon which feature representations can be learned. In NLP, the corpus is used to

train learning models. For example, in the classic Word2Vec [41] model, a corpus is

used to produce the embeddings. The tokens’ contexts are learned from a corpus—the

context forms the relations between the tokens in a multidimensional space.

Many research have emerged that use NLP on source code [6, 77, 19, 29, 56]. Alon

et al. [6] leverages the syntactic structure of programming languages to summarize

source code using Abstract Syntax Trees (AST). Zhou and Sharma [77] use commit

messages and bug reports from repositories to identify software flaws. Dam et al. [19]

used a Long Short Term Memory (LSTM) model to capture the relationships between

7

code elements. Likewise, Russel et al. [61] developed a fast and scalable vulnerability

detection tool for C and C++ based on deep feature representation learning that

interprets source code. Hovsepyan et al. [29] analyzed Java source code using bag-of-

words and support vector machines to classify vulnerabilities. Other recent research

has focused on machine learning models to mine feature representations from software

repositories [56].

This work uses di↵erent NLP-based methods for feature extraction for vulnera-

bility classification.

2.3 Architecture metrics and Source Code Analy-

sis

Software metrics can also be used for source code analysis. Using metrics can help to

see how the system is growing and expanding. According to the IEEE Standard for

a Software Quality Metrics Methodology, [1] software metric is defined as A function

whose inputs are software data and whose output is a single numerical value that can

be interpreted as the degree to which software possesses a given attribute that a↵ects

its quality.

Having tools to analyze software code according to software metrics is essential

to characterize the design of things that are being created, evaluate their ideas, and

detect aspects of quality in order to keep it as maintainable and extensible as possible.

Software architectures are the high-level abstract of a software system. They con-

sist of the body of a system. They include all the components and how they interact

with each other, and the environment in which they operate. Software architectures

are the most important determinant to systematically achieve quality attributes in

a software system, including software security [13]. Poor software architectural deci-

sions are responsible for various software quality problems, including security flaws

and vulnerabilities. Software security is, for many systems, the most essential quality

attribute driving the design.

Numerous previous research has underscored the impact of software architecture

on security. Due to the intrinsic connections between software architecture and se-

curity, prior studies have also focused on how architecture impacts the security of a

system [20, 62, 67, 5] finding an intrinsic connection between software architecture

8

and security. Metrics can be measured to capture the complexity of software archi-

tecture entities [20, 62, 67, 5, 65, 43]. These di↵erent architecture metrics can be used

as a representation of the source code for machine learning models to detect software

vulnerabilities.

Using metrics helps to evaluate how the system is growing with higher complexity

and could give a hint of where maintainability will be chaos due to package relation-

ships and can cause software flaws.

9

Chapter 3

Related Work

Di↵erent techniques have been used for vulnerability detection in source code, from

using predefined rules to di↵erent machine learning techniques. This chapter presents

other works that attempt to detect software vulnerabilities using machine learning,

NLP techniques and software architectures.

3.1 Static Vulnerability Detection

The constantly increasing number of security vulnerabilities have become an es-

sential concern in the software industry and the field of cybersecurity. The two

mainly approaches are static scanners that are mainly rule-based [73, 15, 21] and

ML-based [19, 59, 9, 45] detection systems.

Rule-based tools are based on pattern matching using rules predefined by security

experts. Each vulnerability type has its own rule, and the violation of the prede-

fined rule raises an alert and reports the location and the type of vulnerability. For

example, some open source tools such as Flawfinder [73], RATS [30], ITS4 [71], and

other commercial tools like Checkmarx [15] generate their patterns from source code.

However, these tools cannot always accurately distinguish between various vulnerable

codes, resulting in high false positives or high false negatives [37].

Several approaches have been developed aiming to improve the detection of vul-

nerabilities (e.g., [75, 19, 29, 54, 42]). One example is applying pattern recognition

techniques to detect malware [46]. This technique [46] consists of visualizing malware

binary gray-scale images and classifying these images according to observations that

10

show that malware from the same families appears to be very similar in layout and

texture.

There have been a wide array of ML-based vulnerability prediction research [19,

59, 9, 45, 56, 37]. The most frequent features used in previous works are software

metrics [59, 9, 45] and developers activity [66]. Basili et al.[9] used source code metrics

to classify the C++ code into binary code vulnerabilities back in 1996. Nagappan

et al. [45] used complexity metrics like module metrics that consist of the number

of classes, functions and variables in the module M, in addition to per-function and

per-class metrics. They used those metrics with some Microsoft systems to identify

faulty components.

Perl et al. [56] considered metrics from developer activities by analyzing if commits

were related to a vulnerability or not. The methodology of this work [56] consists

of combining machine learning using a support vector machine (SVM) classifier with

code metrics gathered from repository metadata. Li et al.[37] used multi-class SVM

to detect a di↵erent class of vulnerabilities.

Russell et al. [61] proposed a large-scale function-level vulnerability detection sys-

tem to learn deep feature representation of source code after lexical analysis. It

combined the neural feature representations of function source code with a random

forest as a classifier. Harer et al. [26] used machine learning methods to perform the

data-driven vulnerability detection and compared the e↵ectiveness of using the source

code and the compiled code.

Other machine learning models provide alternative solutions for automating the

vulnerability detection task. This method is potentially more e�cient in vulnerability

discovery [18, 23, 39, 69].

More specific feature representations using natural language processing and archi-

tecture metrics from previous work are described in the following sections.

3.2 Machine Learning and Natural Language Pro-

cessing Detecting Vulnerabilities

This research aims to identify the factors contributing to the learning of software

vulnerabilities from source code repositories using some NLP techniques. Machines

can use NLP to extract information from natural languages. Considering source code

11

as a form of language, NLP techniques can be used to analyze source code. In addition

to the large number of public repositories. It is easier now to look for vulnerability

patterns in the code. Many methods that treat code as a form of text and use natural

language processing-based methods for code analysis have emerged.

Zhou and Sharma [77] used commit messages and bug reports from repositories to

identify software flaws using NLP techniques such as word2vec to create the embed-

dings used as features and machine learning classifiers. Hovsepyan et al.[29] analyzed

Java source code from Android applications using a bag-of-words representation and

SVM for vulnerability prediction.

Pang et al. [54] further include n-grams in the feature vectors and used SVM for

classification. Jackson and Bennett [31] using the Python Natural Language Toolkit

(NLTK) to develop a machine learning agent that uses NLP techniques to convert

the code to a matrix and identify a specific flaw—SQL injection—in Java byte code

using decision trees and random forests for classification.

Other works focus more on using deep learning techniques. Russel et al. [61]

attempt to identify vulnerabilities using C and C++ source code at the function level

based on deep feature representation learning that directly interprets lexed source

code. Dam et al.[19] present an approach based on deep learning using an LSTM

model to learn both semantic and syntactic features of code automatically.

Apart from the work of Hovsepyan et al. [29] most of these approaches focus on

the feature engineering part like Russel et al. [61] that uses a convolutional neural

network to build the feature vectors.

A recent survey [38] summarizes the techniques, datasets and results obtained

from vulnerability detection research that uses machine learning. According to their

categories, this work falls in the text-based category since a convolutional neural

network (ResNet) is used.

This thesis focuses on detecting vulnerabilities in source code using machine learn-

ing and natural language processing techniques. However, general NLP-based tech-

niques (bag-of-word, word2vec, fastText, and tokenizing code) are used associated

with di↵erent machine learning models to identify the key factors contributing to the

learning of the software flaws from code.

12

3.3 Software Architecture and Security

Software architecture is the high-level abstract of a software system. Poor software ar-

chitectural decisions are responsible for various software quality problems. Numerous

previous research has underscored the impact of software architecture on security.

Software architecture is the most important determinant to systematically achieve

quality attributes in a software system, including software security [13]. Software

security is, for many systems, the most essential quality attribute driving the design.

Due to the intrinsic connections between software architecture and security, prior

studies have investigated how software architecture impacts the security of a sys-

tem [20, 62, 67, 5]. However, little work has investigated leveraging software architec-

ture characteristics and metrics in machine learning processes to discover vulnerabil-

ities. Researchers in software architecture have developed some measures to capture

the complexity of software architecture entities [20, 62, 67, 5, 65, 43]. For example,

Fan-In and Fan-Out of source files and classes are shown to impact the propagation

of software quality issues through the inter-dependencies among software entities [65].

What remains unclear is whether and how di↵erent architecture metrics can be used

as vulnerability representations for machine learning models to detect software vul-

nerabilities.

Previous research mainly focused on security assessment and evaluation from an

architectural perspective. For example, Feng et al. found that software vulnerabilities

are highly correlated with flawed architectural connections among source files [20].

Sohr and Berger found that software architecture analysis helps to concentrate on

security-critical software modules and detect certain security flaws at the architec-

tural level, such as the circumvention of APIs or incomplete enforcement of access

control [68]. Brian and Issarny showed how software architecture benefits security by

encapsulating security-related requirements at design-time [11]. Antonino et al. [52]

evaluated the security of existing service-oriented systems on the architectural level.

Their method is based on recovering security-relevant facts about the system and in-

teractive security analysis at the structural level. Alkussayer and Allen [4] proposed

a security risk evaluation approach by leveraging the architectural model of a system,

assuming that components propagate their security risks to higher-level components

in the architecture model. Alkussayer and Allen [3] assessed the level of security

supported by a given architecture and qualitatively compared multiple architectures

13

with respect to their security support.

Despite the high recognition of an architecture’s impact on security, the is little

focus on using architectural metrics as vulnerability signatures for machine learning

models [40, 32]. Alshammari et al. [7] is one of the few studies that investigated

security metrics based on the composition, coupling, extensibility, inheritance, and

design size of an object-oriented project. However, these metrics have not been com-

pared with other vulnerability signatures, such as code features extracted using NLP.

In addition, these metrics tightly tie into object-oriented concepts and may not be

easy to transfer to other programming paradigms.

Motivated by the work of Feng et al., this study focuses on eight architectural

metrics that capture how software elements, i.e. source files, are interdependent on

each other [20]. Moreover, these metrics are generally applicable to software projects

of di↵erent characteristics, such as the programming language used. In addition,

although they are measured at the file level in this work, it is easy to roll up and

down to the component level or method level following the same rationale to detect

vulnerabilities at di↵erent granularities in future studies. Most importantly, this work

is the first to compare architectural metrics with code features extracted through NLP

as vulnerability representations to the best of our knowledge.

14

Chapter 4

Research Methodology

The research method considers the learning task as a classification problem to the

vulnerability signature. This research considers four relevant aspects of the learning

process, including:

(A1) Tokenization: Regarding how tokens are extracted from software, it allows to

evaluate if code comments and symbols as tokens impact the detection results;

(A2) Embedding: Tokens are transformed into numerical values. The e↵ects of dif-

ferent embedding techniques are investigated;

(A3) Architectural metrics: This aspect focuses on architectural metrics that measure

the complexity of the inter-dependencies among fine-grained software architec-

ture elements at the file level. Eight architecture metrics are considered, which

will be detailed later;

(A4) Machine learning algorithm for classification: three di↵erent models are consid-

ered.

The software is considered as a corpus to develop the feature representation

through token encoding. The tokens are the terms from the software code separated

according to the spaces and special characters. The corpus is formed of software

code from open repositories. Then the encodings are embedded in machine learning

models for vulnerability detection on datasets such as OWASP benchmark, Juliet test

suite for Java, and Android Study. The architectural metrics are used as additional

feature representations, along with code-based representations. Based on the above

rationale, the following research questions are answered:

15

RQ1: How does the filtering of tokens a↵ect source code vulnerability

detection?

When using NLP techniques to extract features, an essential preprocessing step

is the tokenization of the source code. This step involves separating the code into

tokens before creating the embeddings. Generally, special symbols (including , . ; :

[]) (+ - = — & ! ? * ˆ \¡ ¿ @ ” ’ # %) should be filtered out from the source

code before separating it into tokens. Another question is: do the comments contain

meaningful features and a↵ect the features representations? To answer this question,

the vulnerable files are used with all the tokens and also after removing the symbols

and the comments, the classification results are compared.

RQ2: Does a specific embedding technique perform better across soft-

ware projects?

Embeddings are the process that maps each token to one vector, and the vector

values are learned using a class of techniques such as bag-of-words [76], word2vec [41]

and fastText [12]. This research question evaluates whether a particular embedding

technique constantly improves the performance of vulnerability detection across all

17 software projects.

RQ3: Can architectural metrics that measure the structural complex-

ity of software improve vulnerability detection?

This question is answered in two ways. First, by comparing the learning perfor-

mance separately using the NLP-based token embedding and using the architectural

metric representation, respectively. Next, these representations are merged into the

learning process to observe if the combination improves vulnerability detection com-

pared to using either of them alone.

RQ4: Which machine learning model performs better across di↵erent

projects?

The three kinds of machine learning models, namely, decision tree-based (Ran-

dom Forests), kernel-based (Support Vector Machines), and deep neural networks

(Residual Neural Networks), are compared. Each model is combined with the fea-

ture representation extracted through di↵erent tokenization techniques, embedding

techniques, and architectural metrics. The goal is to discover whether a particular

machine learning model performs best in terms of vulnerability detection in di↵erent

settings and across software projects.

16

RQ5: How transferable is the learning in predicting vulnerabilities of

projects in cross-validation?

For this last research question, which aims to evaluate the transferability of the

learned features in vulnerability prediction, the learning model is fine-tuned by train-

ing projects in cross-validation. Di↵erent sets of experiments are defined where the

models are trained with a project and predict the vulnerabilities of other projects.

4.1 Vulnerability Detection Process

The process of vulnerable code detection, as shown in Figure 1, contains a software

repository, which provides the corpus for developing a vocabulary. Any project (even

without vulnerable code labels) can be used for this purpose. Such a vocabulary

is used to build the embedding of software tokens. The vocabulary is created by

pre-training word2Vec and fastText with the corpus. The tokens are then converted

to numerical representations by running the embedding. In addition, architecture

metrics can be extracted from projects with tags. Next, architectural metrics and

embedding of code tokens are the features used as input to a supervised classification

model. The vulnerability detection is considered under two sources of vulnerability

code labels:

(1) The labels are from code within the same project and domain as the target

software for vulnerability detection (Tables 7, 8 and 9);

(2) The models are trained with software code in one project and domain with

vulnerability labels and used to classify software code in a di↵erent project and

domain. For example, a model is learnt with the dataset from the Juliet dataset,

then used to predict the vulnerability of source code in Android projects (Tables

12, 11 and 13).

17

Figure 1: The process of learning software vulnerability as a classification task

18

4.2 Tokenization

Tokenization is a common pre-processing step in natural language processing to trans-

form the raw input text into a format that is more easily processed. The raw code

contains 1) special symbols include punctuation characters (such as, . , : ; ?) (]

[’ ” } {), 2) mathematical and logical operators (such as, + - / = * & ! % — ¡

¿); and 3) others (such as # \@ ˆ), in NLP special characters add no value to text-

understanding and can induce noise in algorithms. In addition to other meta text

that usually appears as code comments. These comments are any text that starts

with two forward slashes (//) and any text between /* and */. To determine if those

special characters and comments are essential in the vulnerability prediction in the

source code, regular expressions are used to remove the code comments and special

symbols. The Figures 2 and 3 shows an example of the two tokenization techniques.

Figure 2: Example of a file from the OWASP project after tokenization with keeping
all the tokens.

19

Figure 3: Example of a file from the OWASP project after the prepossessing (that
consists on removing the comments and the symbols) and the tokenization.

4.3 Token Embeddings

Token embeddings are learned numerical representations for text where the same

value approximates tokens or words with similar meanings. In the domain of NLP,

a corpus is a collection of texts. All tokens or words in the multiple corpora form

a high-dimensional space. The learning model calibrates the positions of each word

or token according to its relations with all other tokens. Finally, each token has a

numerical vector representation called an embedding.

In this work, the corpus is formed with software projects selected from the Github

repositories. Three models are trained as follows to create the numerical vector rep-

resentation of the source code tokens:

20

4.3.1 Bag-of-words

Bag-of-words (BOW) is a representation of the text [76]. It represents the text as a

vector where each element is an index of a token from the vocabulary. Each token is

associated with its frequency in the text. Hence, the resulting vector has the same

length as the number of unique tokens. The BOW vectors are limited to the size of

the text that is used for the training.

4.3.2 Word2vec

Word2vec (W2V) is a method to create word embeddings that have been around

since 2003 [41]. The algorithm uses a neural network associated with a large corpus

of text. Word2vec can use skip-gram or CBOW to learn the representations of tokens.

Skip-gram aims to predict the context of a word given its surrounding words. Given a

context, CBOW is the same as BOW, but instead of using sparse vectors (a vector with

a lot of 0) to represent words, it uses dense vectors. CBOW predicts the probability

of a target word. This work uses Skip-gram since it is trying to maintain the context

of the token. The model takes a target term and creates a numerical vector from the

surrounding terms.

4.3.3 FastText

FastText (FT) is a library for learning word embeddings and text classification created

by Facebook’s AI research lab [34]. Akin to word2vec, fastText supports CBOW and

skip-gram. Instead of feeding individual tokens into the neural network, fastText

exploits the subterms information, which means each token is represented as a bag

of characters in addition to the token itself. This allows the handling of unknown

tokens, which aids cases where the internal structure of the words is considered and

the unseen words handled.

Word2vec and fastText use the same parameters. The dimensionality of the fea-

ture vectors equal 300, and a window size of 5 and words with a total frequency lower

than two are ignored. To obtain the source code embeddings of the files, the token

21

vectors of the terms of the file are averaged using tf-idf1 weighting. These embed-

dings are calculated by multiplying each vector by the tf-idf weight of the related

term before calculating the average.

The resulting vector is the length of the vocabulary size. The feature extractor

uses the Python scikit-learn [55] library to generate the bag-of-words vector, and the

Gensim [60] library for word2vec and fastText models. To train these models, source

code from large repositories is used to learn the similarities between the source code

tokens. The vocabulary is created from the source code of three large projects: (1)

the IntelliJ community project[33], (2) the Android repository [8] and (3) the Android

framework project. These repositories contain more than 70,000 Java files.

4.4 Architectural Metrics

Software architecture refers to software elements, their relationships, and the proper-

ties of both [10]. As discussed in Section 3.3, prior research has revealed the significant

impact of architecture design decisions on software security. In particular, the study

in [20] reported that complicated architectural connections among source files in

a project contribute positively to the propagation of software vulnerability issues.

Hence there is a motivation to investigate whether metrics that measure the com-

plexity of architectural connections at the file level contribute positively to detecting

software vulnerabilities using machine learning models.

A set of architectural connections are modelled as a graph, namely G = {F,D},
where F is the set of source files in the system, and D is the set of structural de-

pendencies among the source files. The graph G of a software system can be reverse-

engineered using existing tools, such as Scitool Understand 2.

For each source file, f 2 F , eight metrics are captured to measure the file’s

connections with the rest of the system G. These metrics are feature representations

to learn more vulnerabilities. These eight metrics are from three di↵erent but related

aspects of software architecture:

First, Fan-in and Fan-out are measured of a file f , which counts the number of

direct dependencies with f , and are commonly used for various analysis:

1Term Frequency - Inverse Document Frequency
2https://scitools.com/

22

https://scitools.com/

1. Fan-in: The number of source files in G that directly depends on f .

2. Fan-out: The number of source files in G that f directly depends on.

Next, the position of f is measured in the entire dependency hierarchy of G. Cai

et al. proposed an algorithm to cluster source files into hierarchical dependency layers

based on their structural dependencies in G [14]. The key features of the layers are:

1) source files in the same layers form independent modules, and 2) the source files

in a lower layer structurally depend on the upper layer, but not vice-versa. This

layered structure is called the Architectural Design Rule Hierarchy (ArchDRH). The

rationale is that source files in a higher layer structurally impact the source files in

the lower layers. Therefore, the higher the layer of f , the more influential it is for the

rest of the system.

3. Design Rule Hierarchy Layer: the layer number of f in the ArchDRH clustering.

Finally, the complexity of the transitive connections to each f in G is measured.

For any f 2 F , the Butterfly Spacef = {f, UpperWing, LowerWing} is defined,

where f is the center of the space. UpperWing is the set of source files that directly

and transitively depend on f . Similarly, LowerWing is the set of source files that

f directly and transitively depends on. For any f 2 G, five metrics based on the

Butterfly Space notions are calculated:

4. Space Size: the total number of source files in

Butterfly Spacef . This measures the total number of source files that f is con-

nected to directly and transitively. The higher this value, the more significant

is f connected to the rest of the system.

5. Upper Width: the width of the UpperWing. This measures the maximal num-

ber of branches that depend on f .

6. Upper Depth: the length of the longest path in the UpperWing. This measures

the most far-reaching transitive dependency on f .

7. Lower Width: the width of the LowerWing. This measures the maximal num-

ber of branches that f depends on.

23

8. Lower Depth: the length of the longest path in the LowerWing. This measures

the most far-reaching transitive dependency from f .

This study investigates whether and to what extent these metrics contribute to

the learning of software vulnerabilities.

4.5 Machine Learning Models

This work performs a classification task to predict if a file is vulnerable or not. The ob-

jective is to observe the e↵ects of machine learning models. Since a machine learning

model is part of the decision process of the classification task, the model’s trans-

parency to the classification is considered. A random forest model has one form of

transparency as the feature importance to the classification performance. A kernel-

based Support Vector Machine is useful for data with irregular distribution or un-

known distribution. The residual neural network (ResNet) model has been used to

examine explainability methods[24]. Three kinds of machine learning models, decision

tree-based Random Forests, kernel-based SVMs and deep neural networks as ResNet,

are compared.

4.5.1 Random Forest

The Random forest (RF) is an ensemble learning method for supervised classifica-

tion [70]. This model is constructed from multiple random decision trees. Those

decision trees vote on how to classify a given instance of input data, and the random

forest bootstraps those votes to prevent overfitting.

4.5.2 Support Vector Machines

Support Vector Machines (SVM) uses a kernel function to perform both linear and

non-linear classifications [17]. The SVM algorithm creates a hyper-plane in a high-

dimensional space that can separate the instances in the training set according to

their class labels. SVM is one of the widely used machine learning algorithms for

sentiment analysis in NLP.

24

4.5.3 Residual Neural Network

Residual Neural Network (ResNet) is a deep neuronal network model with residual

blocks carrying linear data between neural layers. In this case, the structure of a

ResNet model is composed of one convolutional layer, one dense layer and 7 ResNet

blocks. Each ResNet block is composed of 16 layers. The detailed ResNet structure

is depicted in Figure 4. The residual block has the following structure:

xl+1 = h (xl) + F
⇣
f̂ (xl) ,Wl

⌘
(1)

Where x is the input to the residual block and l indicates the l� th residual block.

f̂ is the activation function which uses ReLU here. F is the residual function that

contains two 1⇥ 3 convolutional layers. W stands for the corresponding parameters.

The short cut h is defined as one 1⇥ 1 convolutional layer if the dimension of xl and

xl+1 doesn’t match, otherwise h will be:

h (xl) = xl (2)

25

F
ig
u
re

4:
T
h
e
d
at
a
fl
ow

of
th
e
fe
at
u
re

en
gi
n
ee
ri
n
g
an

d
le
ar
n
in
g.

T
h
e
fe
at
u
re

en
gi
n
ee
ri
n
g
is
co
n
si
st
en
t
fo
r
al
l
th
e
cl
as
si
fi
ca
ti
on

m
od

el
s.

T
h
e
m
od

el
in
g
p
ar
t
il
lu
st
ra
te
s
th
e
st
ru
ct
u
re

of
th
e
re
vi
se
d
R
es
N
et

m
od

el
th
at

co
n
si
st
s
of

on
e
co
nv

ol
u
ti
on

al
la
ye
r,

on
e
d
en
se

la
ye
r
an

d
7
R
es
N
et

b
lo
ck
s.

E
ac
h
R
es
N
et

b
lo
ck

is
co
m
p
os
ed

of
16

la
ye
rs
.

26

4.6 Experiments Design

Multiple experiments are performed to answer the research questions and evaluate

each aspect (more details about these experiments and the results can be found

in Chapter 6). For each research question, the aspect is evaluated using a set of

experiments.

For the tokenization aspect, the experiments are performed using the two tok-

enization techniques combined with each machine learning model and each embed-

ding technique. First, all the tokens from the source files are used. Then, only the

tokens that are not comments or symbols.

For the embedding aspect, the tokes extracted are transformed into numerical

vectors. The obtained vectors are used as input features to the three di↵erent models.

For the fourth aspect, the experiments aim to improve the learning using the archi-

tecture metrics. In the first place, the experiments use the metrics only. The second

set of experiments for this aspect uses the metrics and the embeddings combined.

The embedding method chosen is the one that performed the best in the previous

experiments.

The three machine learning models classify the vulnerabilities with the di↵erent

combinations of the four previously described aspects for the fifth aspect.

All these experiments are evaluated and compared using a set of metrics described

in Section 5.2.

In total, 21 experiments per project are performed to evaluate which combination

builds the best vulnerability prediction model for the used datasets. Table 1 summa-

rizes the research questions and their related aspects that are explored in the next

chapter with the experiments.

27

T
ab

le
1:

T
h
is
ta
b
le

su
m
m
ar
iz
es

th
e
re
se
ar
ch

qu
es
ti
on

s
an

d
th
ei
r
re
la
te
d
as
p
ec
ts

th
at

ar
e
ex
p
lo
re
d
w
it
h
th
e
ex
p
er
im

en
t.

R
es
ea
rc
h
Q
u
es
ti
on

A
sp
ec
t

E
xp

er
im

en
ts

R
Q
1

H
ow

d
oe
s
th
e
fi
lt
er
in
g
of

to
ke
n
s

a↵
ec
t

so
u
rc
e

co
d
e

vu
ln
er
ab

il
it
y

d
et
ec
ti
on

?
T
ok
en
iz
at
io
n

S
in
gu

la
r
p
ro
je
ct

tr
ai
n
in
g
an

d
te
st
in
g
u
si
n
g
th
e
tw

o
to
ke
n
iz
a-

ti
on

te
ch
n
iq
u
es
.

•
A
ll
th
e
to
ke
n
s

•
T
h
e
to
ke
n
s
af
te
r
re
m
ov
in
g
th
e
co
m
m
en
ts

an
d
sy
m
b
ol
s

R
Q
2

D
oe
s
a
sp
ec
ifi
c
em

b
ed
d
in
g
te
ch
-

n
iq
u
e
p
er
fo
rm

b
et
te
r
ac
ro
ss

so
ft
-

w
ar
e
p
ro
je
ct
s?

T
ok
en

em
b
ed
d
in
gs

S
in
gu

la
r
p
ro
je
ct

tr
ai
n
in
g
an

d
te
st
in
g
u
si
n
g
th
e
th
re
e
em

b
ed
-

d
in
g
m
et
h
od

s:

•
B
ag
-o
f-
w
or
d
s

•
W
or
d
2V

ec

•
F
as
tT

ex
t

R
Q
3

C
an

ar
ch
it
ec
tu
ra
l
m
et
ri
cs

th
at

m
ea
su
re

th
e
st
ru
ct
u
ra
l
co
m
p
le
x-

it
y
of

so
ft
w
ar
e
im

p
ro
ve

vu
ln
er
a-

b
il
it
y
d
et
ec
ti
on

?

A
rc
h
it
ec
tu
re

m
et
ri
cs

S
in
gu

la
r
p
ro
je
ct

tr
ai
n
in
g
an

d
te
st
in
g
u
si
n
g:

•
O
n
ly

ar
ch
it
ec
tu
re

m
et
ri
cs

•
A
rc
h
it
ec
tu
re

m
et
ri
cs

co
m
b
in
ed

w
it
h
em

b
ed
d
in
gs

R
Q
4

W
h
ic
h

m
ac
h
in
e

le
ar
n
in
g

m
od

el
p
er
fo
rm

s
b
et
te
r
ac
ro
ss

d
i↵
er
en
t

p
ro
je
ct
s?

M
ac
h
in
e

le
ar
n
in
g

m
od

el
s

S
in
gu

la
r
p
ro
je
ct

tr
ai
n
in
g
an

d
te
st
in
g
u
si
n
g
th
e
th
re
e
m
od

el
s:

•
R
an

d
om

F
or
es
t

•
S
u
p
p
or
t
V
ec
to
r
m
ac
h
in
es

•
R
es
id
u
al

N
eu
ra
l
N
et
w
or
k

R
Q
5

H
ow

tr
an

sf
er
ab

le
is

th
e

le
ar
n
-

in
g
in

p
re
d
ic
ti
n
g
vu

ln
er
ab

il
it
ie
s
of

p
ro
je
ct
s
in

cr
os
s-
va
li
d
at
io
n
?

T
ra
n
sf
er
ab

il
it
y

an
d

G
en
er
al
iz
at
io
n

•
T
ra
in
-O

n
e-
P
re
d
ic
t-
M
u
lt
ip
le

•
T
ra
in
-M

u
lt
ip
le
-P
re
d
ic
t-
O
n
e

28

Chapter 5

Datasets and Metrics

In this chapter, the di↵erent datasets used in this work are presented in the first

section. The second section contains the definition of the evaluation metrics used to

evaluate the experiments presented in the following chapters.

5.1 Datasets

The three datasets are labelled with vulnerabilities, including the OWASP Benchmark

project [53], the Juliet test suite for Java [49] and 15 Android applications from the

previous Android study [58]. OWASP and Juliet have the vulnerability types available

online. Android study follows the labels published in the paper [58].

5.1.1 OWASP Benchmark Project

The OWASP Benchmark is a free test suite designed to evaluate automated software

vulnerability detection tools. It contains 2740 test cases with 1415 vulnerable files

(52%) and 1325 non-vulnerable files (48%). Table 2 enumerates the di↵erent types of

vulnerabilities found in the OWASP project.

5.1.2 Test Suite for Java

This test suite contains 217 vulnerable files (58%) and 297 non-vulnerable files (42%).

There are 112 di↵erent vulnerabilities and errors such as bu↵er overflow, OS injection,

hard-coded password, absolute path traversal, NULL pointer dereference, uncaught

29

exception, deadlock, missing releases of resource and others listed in Table 3. The

Juliet dataset has the most diversified vulnerability types among the datasets that

are used in this work.

Table 2: OWASP vulnerability Types
Vulnerability Area CWE # of files

Command Injection 78 251
Weak Cryptography 327 246
Weak Hashing 328 236
LDAP Injection 90 59
Path Traversal 22 268
Secure Cookie Flag 614 67
SQL Injection 89 504
Trust Boundary Violation 501 126
Weak Randomness 330 493
XPath Injection 643 35
XSS (Cross-Site Scripting) 79 455

Table 3: Juliet Test Suite Vulnerability Types
Vulnerability Area CWE # of files

Integer Overflow or Wraparound 190 115
Integer Underflow 191 92
Improper Validation of Array Index 129 72
SQL Injection 89 60
Divide By Zero 369 50
Uncontrolled Memory Allocation 789 42
Uncontrolled Resource Consumption 400 39
HTTP Response Splitting 113 36
Numeric Truncation Error 197 33
Basic Cross-site scripting 80 18
Use of Externally-Controlled Format String 134 18
XPath Injection 643 12
Assignment to Variable without Use 563 12
Unchecked Input for Loop Condition 606 12
OS Command Injection 78 12
Relative Path Traversal 23 12
Unsafe Reflection 470 12
LDAP Injection 90 12
Absolute Path Traversal 36 12
Configuration Setting 15 12
Others 67

30

5.1.3 Android Study

The Android Study is a public dataset that contains 20 di↵erent Java applications

that cover a variety of domains. This dataset is used in the work of Scandariato et

al. [63]. According to [63], the source code was scanned using the Fortify Source Code

Analyzer, a security scanning tool to mark the vulnerable files. The vulnerabilities

that could be found are cross-site scripting, SQL injection, header manipulation,

privacy violation and command injection. In total, the Android Study contains 2321

vulnerable files. Since Fortify itself may produce errors in the vulnerability scanning,

the quality of labelling is not thoroughly evaluated. This is a potential threat to

validity.

The labels of this dataset are binary (is vulnerable or not vulnerable), without

the exact type of vulnerability for each file.

The application names, versions, and the file’s paths with its vulnerable label

are collected. With these references, a script is developed to retrieve 15 projects for

evaluation.

5.1.4 Analysis of the Vulnerabilities

As shown in Table 4, the common vulnerabilities between the three datasets are the

SQL injection (CWE 89) and the command injection (CWE 78). The vulnerabilities

in common between OWASP and Juliet are command injection (CWE 78), LDAP

injection (CWE 90), SQL injection and XPATH injection (CWE 643). And the

vulnerability type that can be found in all three projects is Cross-site scripting (CWE

79 & 80).

Table 4: Common vulnerabilities in the three datasets
Vulnerability Area CWE OWASP Juliet Android

Cross-Site Scripting 79 X X X
SQL injection 89 X X X
Command Injection 78 X
XPath Injection 643 X X
OS Command Injection 78 X X
LDAP Injection 90 X X

Table 5 shows the 17 applications used in this project and the vulnerability rate

of the labelled source code for each. On average, 43% of the files contain at least one

31

vulnerability.

Table 5: Dataset Vulnerability Statistics
Projects Vulnerability rate Number of files # of tokens

1 QuickSearchBox 23% 654 4301
2 FBReader 30% 3450 6589
3 Contacts 31% 787 13438
4 Browser 37% 433 9561
5 Mms 37% 865 7965
6 Camera 38% 475 7851
7 KeePassDroid 39% 1580 2872
8 Calendar 44% 307 8003
9 ConnectBot 46% 104 4109
10 Crosswords 46% 842 4223
11 K9 47% 2660 13175
12 Deskclock 47% 127 2163
13 Coolreader 49% 423 5424
14 OWASP 52% 2740 6154
15 Email 54% 840 15454
16 Juliet 58% 514 1268
17 AnkiDroid 59% 275 8408

5.1.5 Analysis of Tokens

Each line of code is parsed to produce tokens, including variables, preserved keywords,

operators, symbols and separators. Table 6 shows the number of tokens in each

dataset in the vulnerable and non-vulnerable files.

Table 6: Number of tokens in each dataset according to the vulnerability of the files
and number of the common tokens in the vulnerable files and non vulnerable files.

Dataset
of tokens in # of tokens in # of tokens in
vulnerable files non vulnerable files common

Owasp 2982 3599 605
Juliet 678 764 460
Android 54196 28698 18339

First, the analysis of the token statistics and observation of the notable characters

of the tokens. For each dataset OWASP, Juliet, and Android project, the tokens

are separated according to the vulnerability of the files and the token frequency

distribution is plotted in Figure 5, Figure 6, and Figure 7 respectively.

32

For the OWASP project (shown in Figure 5), tokens are mostly grouped in the

counts of occurrence that are less than 20. Beyond 20 occurrences, the counts of tokens

are significantly smaller. In Juliet source code (shown in Figure 6), the distribution

of the token frequency has more peaks than the OWASP token distribution. In all

the Android source code (shown in Figure 7), the tokens are mostly grouped with

occurrences of less than 30.

The charts show two facts:

(1) The frequency distribution of each project varies. This could be a factor in

downgrading the accuracy of cross-domain learning;

(2) The high-frequency tokens are neutral such as “main”, “string builder”. This

indicates that the feature representation is learnt mainly from tokens with less

frequency. These two facts relate to the experimental results presented in section

6.1.1.

33

Figure 5: OWASP token distribution. Most of the tokens have fewer than 20 occur-
rences.

34

Figure 6: Juliet token distribution. Most of the tokens are have fewer than 25 occur-
rences.

35

Figure 7: All Android projects token distribution. The majority of the tokens have
fewer than 500 occurrences.

36

5.2 Evaluation Metrics

For each experiment, the evaluation of the performance for the vulnerability detec-

tion is made using traditional Information Retrieval metrics. In the context of this

study, true positives (TP) are the correct identification of source files with vulner-

abilities. True negatives (TN) are the correct identification of source files without

vulnerability. False positives (FP) are the incorrect identification of source files with

vulnerabilities. False negatives (FN) are the incorrect identification of source files

without vulnerability. Based on these metrics, the following metrics are defined to

measure the performance of vulnerability detection:

• The precision (P), which is the probability that a sample of code is classified

vulnerable, is truly vulnerable.

P =
TP

(TP + FP)
(3)

• The recall (R) which is the probability that a vulnerable sample of code is

classified as vulnerable.

R =
TP

(TP + FN)
(4)

• The f-measure (F1) is the harmonic average of precision and recall.

F1 = 2 ⇤ 1
1
P + 1

R

(5)

• The false positive rate (FPR) is the proportion of negative cases incorrectly

identified as positive cases.

FPR =
FP

(FP + TN)
(6)

• The area under the precision-recall curve (PR AUC) summarizes the informa-

tion in the precision-recall curve.

• The area under the receiver operating characteristic curve (ROC AUC) shows

the model’s capability to distinguish between classes.

37

To compare the di↵erent experiments and evaluate the hypothesis, an aggregation

formula of all the metrics is defined bu equation 7. All the metrics that are auditioned

are defined above. The value is then normalized using the equation 8.

8s 2 S{P,R, F1, FPR,ROCAUC,PRAUC}

xi =
X

si (7)

zi =
xi �min8k2[1,N](xk)

max8k2[1,N](xk)�min8k2[1,N](xk)
(8)

The z value is calculated according to all the experiments. The min and the max

values are the minimum and maximum overall for the compared experiments. The

higher the value, the better the results. If z equals 1, the experiment performed the

best among all. If it is equal to 0, it performed the worst.

38

Chapter 6

Experiments and Analysis

In this Chapter, the di↵erent experiments are performed to evaluate various aspects

presented in the previous chapters. The experiments’ results are presented and ana-

lyzed. Also, cross-validation experiments are carried out to assess the transferability

of the model across projects and domains.

6.1 Evaluate the Combinations of the Di↵erent As-

pects

The evaluations are based on the following tasks:

1. Defining hypotheses to answer each research question;

2. Preparing appropriate datasets;

3. Defining metrics to evaluate the learning e↵ects;

4. Running experiments and collecting results to test the hypotheses.

The hypotheses mentioned in the 4th task allow to evaluate if tokenization tech-

niques, embedding techniques, architectural metrics, and machine learning models

have significant e↵ects on the ability to learn software vulnerabilities.

The results of these experiments are included in Table 7, Table 8, and Table 9.

Table 7 contains the results obtained from the experiments using the source code files

with all tokens. Table 8 gives the results obtained from the experiments using the

39

source code files without comments and symbols. Table 9 shows the results of using

the architectural metrics as features compared to bag-of-words.

40

T
ab

le
7:

S
in
gu

la
r
p
ro
je
ct

vu
ln
er
ab

il
it
y
d
et
ec
ti
on

w
it
h
to
ke
n
iz
at
io
n
w
h
il
e
ke
ep
in
g
al
l
th
e
co
m
m
en
ts

an
d
sy
m
b
ol
s
ac
ro
ss

em
b
ed
d
in
gs

an
d
m
ac
h
in
e
le
ar
n
in
g
m
od

el
s.

T
h
e
z
va
lu
e
in

th
e
ta
b
le
ag
gr
eg
at
e
th
e
ev
al
u
at
io
n
m
et
ri
cs
.
T
h
e
va
lu
e
is
ca
lc
u
la
te
d

ac
co
rd
in
g
to

al
l
th
e
ex
p
er
im

en
ts
.
T
h
e
h
ig
h
er

th
e
va
lu
e,

th
e
b
et
te
r
th
e
re
su
lt
s.

If
z
eq
u
al
s
1,

th
e
ex
p
er
im

en
t
p
er
fo
rm

ed
th
e

b
es
t
am

on
g
al
l.
If
it
is
eq
u
al

to
0,

it
p
er
fo
rm

ed
th
e
w
or
st
.

B
ag
-o
f-
w
or
d
s

W
or
d
2v
ec

F
as
tT

ex
t

P
ro
je
ct

C
la
ss
ifi
er

P
R

F
1

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z
P

R
F
3

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z
P

R
F
2

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z

1
O
W
A
S
P

R
F

1.
00

1.
00

1.
00

0.
21

1.
00

1.
00

0.
95

0.
68

0.
76

0.
72

0.
21

0.
70

0.
63

0.
60

1.
00

1.
00

1.
00

0.
21

1.
00

1.
00

0.
95

R
es
N
et

0.
99

0.
92

0.
95

0.
10

0.
96

0.
95

0.
92

0.
95

0.
93

0.
94

0.
04

0.
94

0.
92

0.
92

0.
76

0.
96

0.
84

0.
04

0.
85

0.
87

0.
82

S
V
M

0.
99

0.
99

0.
99

0.
24

0.
99

0.
99

0.
93

0.
91

0.
93

0.
92

0.
19

0.
93

0.
89

0.
86

0.
82

0.
90

0.
86

0.
08

0.
93

0.
92

0.
85

2
Ju

li
et

R
F

1.
00

1.
00

1.
00

0.
08

1.
00

1.
00

0.
98

0.
07

0.
05

0.
05

0.
06

0.
29

0.
41

0.
02

0.
12

0.
09

0.
10

0.
04

0.
30

0.
40

0.
05

R
es
N
et

1.
00

0.
73

0.
84

0.
13

0.
86

0.
84

0.
80

0.
21

0.
18

0.
20

0.
02

0.
34

0.
38

0.
13

0.
38

0.
68

0.
49

0.
11

0.
44

0.
64

0.
42

S
V
M

1.
00

1.
00

1.
00

0.
07

1.
00

1.
00

0.
98

0.
17

0.
05

0.
07

0.
05

0.
50

0.
42

0.
10

0.
42

0.
23

0.
29

0.
84

0.
50

0.
42

0.
07

3
A
n
ki
D
ro
id

R
F

0.
80

0.
89

0.
84

0.
15

0.
84

0.
76

0.
76

0.
85

0.
97

0.
91

0.
10

0.
89

0.
84

0.
85

0.
85

0.
97

0.
91

0.
10

0.
89

0.
84

0.
85

R
es
N
et

0.
79

0.
85

0.
82

0.
21

0.
82

0.
75

0.
72

0.
88

0.
50

0.
64

0.
08

0.
71

0.
71

0.
62

0.
80

0.
13

0.
23

0.
06

0.
55

0.
57

0.
35

S
V
M

0.
80

0.
89

0.
84

0.
13

0.
86

0.
78

0.
78

0.
80

0.
93

0.
86

0.
34

0.
83

0.
78

0.
73

0.
82

0.
93

0.
87

0.
63

0.
85

0.
80

0.
69

4
B
ro
w
se
r

R
F

0.
97

0.
93

0.
95

0.
08

1.
00

1.
00

0.
95

0.
97

0.
94

0.
95

0.
06

0.
96

0.
93

0.
92

0.
89

1.
00

0.
94

0.
06

0.
97

0.
92

0.
92

R
es
N
et

0.
94

0.
88

0.
91

0.
09

0.
92

0.
87

0.
87

0.
38

0.
97

0.
55

0.
10

0.
56

0.
38

0.
47

0.
83

0.
91

0.
87

0.
02

0.
90

0.
88

0.
85

S
V
M

0.
91

0.
94

0.
93

0.
10

0.
94

0.
88

0.
88

0.
82

0.
90

0.
86

0.
17

0.
90

0.
78

0.
79

0.
88

0.
72

0.
79

0.
46

0.
90

0.
85

0.
69

5
C
al
en
d
ar

R
F

0.
87

0.
87

0.
89

0.
00

0.
92

0.
82

0.
85

0.
89

0.
86

0.
88

0.
00

0.
88

0.
84

0.
85

1.
00

0.
86

0.
93

0.
00

0.
92

0.
95

0.
92

R
es
N
et

0.
85

1.
00

0.
92

0.
00

0.
95

0.
85

0.
90

0.
58

0.
97

0.
73

0.
00

0.
67

0.
58

0.
66

0.
88

0.
48

0.
62

0.
00

0.
71

0.
80

0.
65

S
V
M

0.
88

0.
95

0.
91

0.
00

0.
94

0.
85

0.
89

0.
86

0.
86

0.
86

0.
00

0.
87

0.
81

0.
83

0.
84

0.
72

0.
78

0.
00

0.
88

0.
91

0.
80

6
C
am

er
a

R
F

0.
94

0.
91

0.
93

0.
08

0.
94

0.
89

0.
89

0.
89

0.
83

0.
86

0.
08

0.
89

0.
80

0.
81

0.
82

0.
75

0.
78

0.
11

0.
95

0.
84

0.
77

R
es
N
et

0.
91

0.
91

0.
91

0.
10

0.
93

0.
87

0.
87

0.
55

1.
00

0.
71

0.
05

0.
77

0.
55

0.
65

0.
92

0.
46

0.
61

0.
10

0.
72

0.
76

0.
62

S
V
M

0.
91

0.
94

0.
93

0.
04

0.
94

0.
88

0.
90

0.
82

0.
77

0.
79

0.
06

0.
80

0.
67

0.
72

0.
72

0.
75

0.
73

0.
37

0.
90

0.
82

0.
66

7
C
on

n
ec
tB

ot
R
F

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

0.
80

0.
89

0.
04

0.
90

0.
90

0.
87

1.
00

0.
80

0.
89

0.
00

0.
90

0.
90

0.
88

R
es
N
et

1.
00

1.
00

1.
00

0.
00

1.
00

0.
90

0.
98

1.
00

0.
07

0.
13

0.
12

0.
53

0.
55

0.
33

1.
00

0.
80

0.
89

0.
12

0.
90

0.
90

0.
85

S
V
M

1.
00

1.
00

1.
00

0.
02

1.
00

1.
00

0.
99

1.
00

0.
80

0.
89

0.
06

0.
90

0.
90

0.
87

1.
00

0.
80

0.
89

0.
12

0.
90

0.
90

0.
85

8
C
on

ta
ct
s

R
F

0.
90

0.
96

0.
93

0.
11

0.
96

0.
88

0.
89

0.
83

0.
86

0.
85

0.
06

0.
89

0.
76

0.
80

0.
89

1.
00

0.
94

0.
06

0.
99

0.
97

0.
94

R
es
N
et

0.
78

0.
90

0.
83

0.
08

0.
89

0.
73

0.
78

0.
56

1.
00

0.
72

0.
15

0.
81

0.
56

0.
65

0.
79

0.
67

0.
73

1.
00

0.
79

0.
79

0.
48

S
V
M

0.
90

0.
96

0.
93

0.
21

0.
96

0.
88

0.
86

0.
80

0.
78

0.
79

0.
36

0.
87

0.
77

0.
69

0.
85

0.
80

0.
82

1.
00

0.
93

0.
82

0.
58

9
C
oo

lr
ea
d
er

R
F

1.
00

0.
98

0.
99

0.
09

1.
00

1.
00

0.
97

1.
00

1.
00

1.
00

0.
03

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

0.
05

1.
00

1.
00

0.
99

R
es
N
et

1.
00

0.
93

0.
96

0.
12

0.
96

0.
98

0.
93

0.
80

0.
73

0.
76

0.
08

0.
80

0.
69

0.
70

0.
83

0.
91

0.
87

0.
30

0.
89

0.
79

0.
76

S
V
M

0.
97

0.
97

0.
97

0.
03

0.
96

0.
93

0.
95

1.
00

1.
00

1.
00

0.
11

1.
00

1.
00

0.
97

1.
00

1.
00

1.
00

0.
39

1.
00

1.
00

0.
91

10
D
es
kc
lo
ck

R
F

0.
89

1.
00

0.
94

0.
02

0.
97

0.
89

0.
92

0.
86

1.
00

0.
92

0.
02

0.
93

0.
86

0.
89

0.
90

1.
00

0.
95

0.
02

0.
99

0.
98

0.
95

R
es
N
et

0.
88

0.
88

0.
88

0.
03

0.
91

0.
80

0.
84

0.
46

1.
00

0.
63

0.
05

0.
50

0.
46

0.
53

0.
35

1.
00

0.
51

0.
01

0.
50

0.
67

0.
54

S
V
M

0.
89

1.
00

0.
94

0.
02

0.
97

0.
89

0.
92

0.
80

1.
00

0.
89

0.
04

0.
93

0.
86

0.
87

0.
82

1.
00

0.
90

0.
02

1.
00

0.
99

0.
93

11
E
m
ai
l

R
F

0.
97

0.
98

0.
97

0.
30

0.
99

0.
99

0.
91

0.
98

0.
98

0.
98

0.
00

0.
99

1.
00

0.
98

0.
91

0.
95

0.
93

0.
00

0.
98

0.
97

0.
94

R
es
N
et

0.
96

0.
90

0.
93

0.
23

0.
93

0.
96

0.
87

0.
74

0.
88

0.
81

0.
33

0.
75

0.
84

0.
69

0.
76

0.
91

0.
83

0.
56

0.
80

0.
86

0.
67

S
V
M

0.
95

0.
82

0.
88

0.
23

0.
94

0.
95

0.
84

0.
79

0.
84

0.
81

0.
27

0.
88

0.
89

0.
75

0.
80

0.
92

0.
86

0.
27

0.
91

0.
90

0.
79

12
F
B
R
ea
d
er

R
F

0.
96

0.
93

0.
94

0.
01

0.
98

0.
98

0.
95

0.
96

0.
95

0.
95

0.
01

0.
99

0.
99

0.
96

0.
97

0.
94

0.
95

0.
06

0.
99

0.
99

0.
95

R
es
N
et

0.
95

0.
96

0.
96

0.
10

0.
97

0.
93

0.
92

0.
96

0.
94

0.
95

0.
00

0.
96

0.
96

0.
94

0.
97

0.
90

0.
93

0.
01

0.
94

0.
95

0.
93

S
V
M

0.
95

0.
97

0.
96

0.
00

0.
97

0.
93

0.
95

0.
76

0.
72

0.
74

0.
00

0.
91

0.
83

0.
75

0.
84

0.
91

0.
87

0.
05

0.
95

0.
92

0.
87

13
K
9

R
F

0.
97

0.
99

0.
98

0.
00

1.
00

1.
00

0.
99

0.
99

1.
00

0.
99

0.
00

1.
00

1.
00

0.
99

0.
99

1.
00

1.
00

0.
01

1.
00

1.
00

0.
99

R
es
N
et

0.
94

1.
00

0.
97

0.
00

0.
97

0.
97

0.
96

0.
94

0.
85

0.
89

0.
01

0.
90

0.
94

0.
88

0.
99

1.
00

0.
99

0.
01

0.
99

1.
00

0.
99

S
V
M

0.
99

1.
00

0.
99

0.
01

0.
99

0.
99

0.
99

0.
83

0.
88

0.
85

0.
00

0.
92

0.
92

0.
86

0.
98

0.
98

0.
98

0.
01

0.
99

0.
99

0.
98

14
K
ee
P
as
sD

ro
id

R
F

0.
99

1.
00

1.
00

0.
01

1.
00

1.
00

1.
00

1.
00

0.
99

1.
00

0.
01

1.
00

1.
00

0.
99

0.
98

0.
99

0.
98

0.
01

1.
00

1.
00

0.
99

R
es
N
et

0.
99

0.
99

0.
99

0.
05

0.
99

0.
98

0.
97

0.
97

0.
84

0.
90

0.
03

0.
91

0.
94

0.
89

0.
99

1.
00

0.
99

0.
08

1.
00

0.
99

0.
97

S
V
M

0.
99

0.
99

0.
99

0.
02

0.
99

0.
98

0.
98

0.
90

0.
82

0.
86

0.
07

0.
95

0.
92

0.
85

0.
98

1.
00

0.
99

0.
42

1.
00

0.
99

0.
89

15
M
m
s

R
F

0.
98

0.
97

0.
98

0.
22

1.
00

0.
99

0.
93

0.
98

0.
97

0.
98

0.
01

0.
98

0.
96

0.
97

0.
94

1.
00

0.
97

0.
01

0.
98

0.
93

0.
96

R
es
N
et

0.
98

0.
93

0.
96

0.
44

0.
96

0.
94

0.
84

0.
57

0.
98

0.
72

0.
17

0.
78

0.
56

0.
64

0.
86

0.
95

0.
90

0.
32

0.
94

0.
91

0.
82

S
V
M

0.
98

0.
97

0.
97

0.
12

0.
97

0.
95

0.
93

0.
98

0.
95

0.
97

0.
08

0.
97

0.
95

0.
94

0.
89

0.
93

0.
91

0.
07

0.
98

0.
95

0.
90

16
C
ro
ss
w
or
d
s

R
F

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

0.
97

0.
99

0.
00

0.
99

0.
99

0.
98

0.
99

1.
00

0.
99

0.
00

1.
00

0.
99

0.
99

R
es
N
et

1.
00

1.
00

1.
00

0.
01

1.
00

1.
00

1.
00

0.
94

0.
91

0.
92

0.
11

0.
93

0.
89

0.
88

0.
88

0.
89

0.
88

0.
09

0.
90

0.
82

0.
83

S
V
M

1.
00

0.
99

0.
99

0.
15

0.
99

0.
99

0.
96

0.
97

0.
92

0.
95

0.
00

0.
97

0.
95

0.
95

0.
95

1.
00

0.
97

0.
05

0.
98

0.
95

0.
95

17
Q
u
ic
kS

ea
rc
h
B
ox

R
F

0.
95

0.
87

0.
91

0.
01

0.
93

0.
85

0.
96

0.
77

0.
89

0.
83

0.
07

0.
91

0.
71

0.
85

0.
94

0.
94

0.
94

0.
03

0.
96

0.
90

1.
00

R
es
N
et

1.
00

0.
78

0.
88

0.
00

0.
89

0.
82

0.
93

0.
58

0.
96

0.
72

0.
18

0.
89

0.
56

0.
72

0.
85

0.
79

0.
82

0.
06

0.
87

0.
74

0.
84

S
V
M

0.
95

0.
87

0.
91

0.
01

0.
93

0.
85

0.
96

0.
74

0.
63

0.
68

0.
06

0.
79

0.
54

0.
66

0.
86

0.
86

0.
90

0.
06

0.
94

0.
84

0.
92

41

T
ab

le
8:

S
in
gu

la
r
p
ro
je
ct

vu
ln
er
ab

il
it
y
d
et
ec
ti
on

w
it
h
to
ke
n
iz
at
io
n
af
te
r
re
m
ov
in
g
th
e
co
m
m
en
ts

an
d
sy
m
b
ol
s
ac
ro
ss

em
-

b
ed
d
in
gs

an
d
m
ac
h
in
e
le
ar
n
in
g
m
od

el
s.

T
h
e
z
va
lu
e
in

th
e
ta
b
le

ag
gr
eg
at
e
th
e
ev
al
u
at
io
n
m
et
ri
cs
.
T
h
e
va
lu
e
is

ca
lc
u
la
te
d

ac
co
rd
in
g
to

al
l
th
e
ex
p
er
im

en
ts
.
T
h
e
h
ig
h
er

th
e
va
lu
e,

th
e
b
et
te
r
th
e
re
su
lt
s.

B
ag
-o
f-
W
or
d
s

W
or
d
2v
ec

F
as
tT

ex
t

P
ro
je
ct

C
la
ss
ifi
er

P
R

F
1

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z
P

R
F
3

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z
P

R
F
2

F
P
R

R
O
C

A
U
C

P
R

A
U
C

z

1
O
W
A
S
P

R
F

0.
99

1.
00

0.
99

0.
21

0.
99

0.
99

0.
94

0.
71

0.
73

0.
72

0.
21

0.
72

0.
65

0.
60

0.
75

0.
83

0.
79

0.
21

0.
89

0.
89

0.
75

R
es
n
et

0.
82

1.
00

0.
90

0.
17

0.
89

0.
82

0.
83

0.
79

0.
93

0.
86

0.
19

0.
85

0.
77

0.
77

0.
57

0.
58

0.
58

0.
19

0.
57

0.
68

0.
48

S
V
M

0.
99

0.
99

0.
99

0.
24

0.
99

0.
99

0.
93

0.
88

0.
90

0.
89

0.
31

0.
89

0.
84

0.
78

0.
60

0.
79

0.
68

0.
19

0.
68

0.
67

0.
58

2
Ju

li
et

R
F

0.
03

0.
02

0.
03

0.
04

0.
26

0.
42

0.
00

0.
12

0.
09

0.
10

0.
04

0.
30

0.
40

0.
05

0.
23

0.
18

0.
20

0.
02

0.
52

0.
36

0.
17

R
es
n
et

0.
33

0.
05

0.
08

0.
04

0.
35

0.
42

0.
11

0.
22

0.
09

0.
13

0.
03

0.
43

0.
40

0.
12

0.
47

0.
34

0.
37

0.
07

0.
54

0.
54

0.
34

S
V
M

0.
41

0.
02

0.
03

0.
04

0.
68

0.
54

0.
21

0.
20

0.
09

0.
13

0.
03

0.
47

0.
42

0.
13

0.
42

0.
16

0.
23

0.
02

0.
62

0.
46

0.
27

3
A
n
ki
-A

n
d
ro
id

R
F

0.
81

0.
96

0.
88

0.
08

0.
88

0.
80

0.
83

0.
78

0.
93

0.
85

0.
08

0.
84

0.
76

0.
78

0.
84

0.
96

0.
90

0.
08

0.
90

0.
83

0.
85

R
es
n
et

0.
82

1.
00

0.
90

0.
11

0.
90

0.
82

0.
84

0.
78

0.
93

0.
85

0.
05

0.
84

0.
76

0.
79

0.
82

0.
52

0.
64

0.
00

0.
71

0.
66

0.
61

S
V
M

0.
81

0.
96

0.
88

0.
16

0.
90

0.
82

0.
82

0.
80

0.
89

0.
84

0.
13

0.
84

0.
76

0.
77

0.
77

0.
85

0.
81

0.
09

0.
65

0.
57

0.
66

4
B
ro
w
se
r

R
F

0.
94

0.
91

0.
93

0.
04

0.
94

0.
89

0.
90

0.
94

0.
94

0.
94

0.
04

0.
95

0.
90

0.
91

0.
93

0.
84

0.
89

0.
04

0.
96

0.
87

0.
87

R
es
n
et

0.
88

0.
85

0.
87

0.
03

0.
89

0.
81

0.
83

0.
88

0.
91

0.
90

0.
03

0.
92

0.
84

0.
86

0.
81

0.
91

0.
86

0.
07

0.
89

0.
77

0.
81

S
V
M

0.
91

0.
91

0.
91

0.
05

0.
94

0.
88

0.
89

0.
89

1.
00

0.
94

0.
07

0.
96

0.
89

0.
91

0.
90

0.
82

0.
86

0.
06

0.
88

0.
80

0.
81

5
C
al
en
d
ar

R
F

0.
88

0.
95

0.
91

0.
00

0.
94

0.
85

0.
89

0.
73

0.
70

0.
71

0.
00

0.
77

0.
62

0.
65

0.
81

0.
74

0.
77

0.
00

0.
82

0.
70

0.
73

R
es
n
et

0.
78

0.
95

0.
86

0.
00

0.
90

0.
76

0.
82

0.
76

0.
70

0.
73

0.
00

0.
78

0.
64

0.
68

0.
78

0.
89

0.
83

0.
00

0.
84

0.
75

0.
79

S
V
M

0.
88

0.
95

0.
91

0.
00

0.
94

0.
85

0.
89

0.
71

0.
74

0.
72

0.
00

0.
78

0.
62

0.
67

0.
77

0.
74

0.
76

0.
00

0.
80

0.
67

0.
71

6
C
am

er
a

R
F

0.
87

0.
91

0.
93

0.
07

0.
94

0.
89

0.
88

0.
87

0.
83

0.
85

0.
05

0.
89

0.
77

0.
81

0.
92

0.
88

0.
90

0.
05

0.
97

0.
94

0.
90

R
es
n
et

0.
88

0.
88

0.
88

0.
92

0.
90

0.
83

0.
64

0.
78

0.
88

0.
82

0.
05

0.
89

0.
72

0.
77

0.
81

0.
85

0.
83

0.
07

0.
88

0.
85

0.
80

S
V
M

0.
91

0.
91

0.
91

0.
04

0.
94

0.
88

0.
89

0.
88

0.
92

0.
90

0.
07

0.
93

0.
93

0.
88

0.
81

0.
81

0.
81

0.
08

0.
89

0.
74

0.
76

7
C
on

n
ec
tb
ot

R
F

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

R
es
n
et

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

0.
82

0.
90

0.
00

0.
91

0.
93

0.
90

S
V
M

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

8
C
on

ta
ct
s

R
F

0.
85

0.
96

0.
90

0.
06

0.
98

0.
95

0.
90

0.
93

0.
91

0.
92

0.
05

0.
94

0.
88

0.
89

0.
96

0.
89

0.
92

0.
06

0.
93

0.
89

0.
89

R
es
n
et

0.
83

0.
92

0.
87

0.
08

0.
92

0.
89

0.
85

0.
90

0.
67

0.
77

0.
15

0.
81

0.
72

0.
70

0.
81

0.
87

0.
84

0.
06

0.
88

0.
74

0.
78

S
V
M

0.
80

0.
67

0.
73

0.
07

0.
90

0.
84

0.
73

0.
86

0.
77

0.
81

0.
14

0.
85

0.
76

0.
75

0.
85

0.
83

0.
84

0.
14

0.
74

0.
62

0.
70

9
C
oo

lR
ea
d
er

R
F

1.
00

0.
97

0.
99

0.
04

0.
99

0.
99

0.
97

1.
00

1.
00

1.
00

0.
01

1.
00

1.
00

1.
00

1.
00

0.
98

0.
99

0.
04

0.
99

0.
99

0.
98

R
es
n
et

1.
00

0.
97

0.
99

0.
04

0.
99

0.
99

0.
97

0.
98

1.
00

0.
99

0.
01

0.
99

0.
98

0.
98

1.
00

1.
00

1.
00

0.
10

1.
00

1.
00

0.
98

S
V
M

0.
97

0.
97

0.
97

0.
09

0.
96

0.
93

0.
94

0.
98

1.
00

0.
99

0.
00

0.
99

0.
98

0.
98

1.
00

0.
98

0.
99

0.
03

0.
99

0.
99

0.
98

10
D
es
kC

lo
ck

R
F

0.
89

1.
00

0.
94

0.
02

0.
97

0.
89

0.
92

0.
91

0.
83

0.
87

0.
02

0.
88

0.
83

0.
84

0.
92

0.
79

0.
85

0.
02

0.
93

0.
87

0.
84

R
es
n
et

0.
98

1.
00

0.
89

0.
01

0.
94

0.
80

0.
91

0.
75

0.
75

0.
75

0.
01

0.
77

0.
68

0.
69

0.
50

0.
07

0.
13

0.
01

0.
49

0.
54

0.
23

S
V
M

0.
89

1.
00

0.
94

0.
01

0.
97

0.
89

0.
93

0.
83

0.
83

0.
83

0.
02

0.
85

0.
77

0.
79

0.
80

0.
57

0.
67

0.
02

0.
86

0.
88

0.
71

11
E
m
ai
l

R
F

0.
97

0.
98

0.
97

0.
50

1.
00

1.
00

0.
86

0.
93

0.
99

0.
96

0.
00

0.
98

0.
97

0.
96

0.
97

0.
98

0.
97

0.
00

0.
97

0.
96

0.
97

R
es
n
et

0.
93

1.
00

0.
96

0.
41

0.
95

0.
97

0.
86

0.
97

0.
75

0.
85

0.
47

0.
86

0.
87

0.
72

0.
91

0.
99

0.
95

0.
45

0.
93

0.
91

0.
82

S
V
M

0.
96

0.
85

0.
90

0.
50

0.
96

0.
97

0.
80

0.
97

0.
98

0.
97

0.
45

0.
97

0.
96

0.
86

0.
94

0.
95

0.
94

0.
45

0.
93

0.
92

0.
82

12
F
B
R
ea
d
er
J

R
F

0.
96

0.
96

0.
97

0.
01

0.
98

0.
95

0.
96

0.
98

0.
95

0.
97

0.
02

0.
97

0.
95

0.
95

0.
97

0.
95

0.
96

0.
02

1.
00

0.
99

0.
96

R
es
n
et

0.
96

0.
96

0.
96

0.
01

0.
97

0.
93

0.
95

0.
95

0.
90

0.
93

0.
00

0.
94

0.
89

0.
91

0.
92

0.
82

0.
87

0.
01

0.
90

0.
90

0.
86

S
V
M

0.
95

0.
97

0.
96

0.
02

0.
97

0.
93

0.
94

0.
93

0.
85

0.
89

0.
01

0.
91

0.
83

0.
86

0.
75

0.
50

0.
60

0.
01

0.
86

0.
69

0.
62

13
K
9M

ai
l

R
F

0.
99

1.
00

0.
99

0.
00

0.
99

0.
99

0.
99

0.
98

0.
99

0.
98

0.
00

1.
00

1.
00

0.
99

0.
99

0.
99

0.
99

0.
00

1.
00

1.
00

0.
99

R
es
n
et

0.
99

0.
99

0.
99

0.
00

0.
99

0.
99

0.
99

1.
00

0.
94

0.
97

0.
00

0.
97

0.
97

0.
96

0.
92

0.
91

0.
91

0.
01

0.
91

0.
94

0.
90

S
V
M

0.
99

1.
00

1.
00

0.
01

0.
99

0.
99

0.
99

0.
98

1.
00

0.
99

0.
00

0.
98

0.
97

0.
98

0.
77

0.
88

0.
82

0.
00

0.
85

0.
80

0.
79

14
K
ee
P
as
sA

n
d
ro
id

R
F

1.
00

1.
00

1.
00

0.
01

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

0.
01

1.
00

0.
99

0.
99

0.
99

1.
00

1.
00

0.
01

1.
00

1.
00

1.
00

R
es
n
et

1.
00

1.
00

1.
00

0.
03

1.
00

1.
00

0.
99

0.
99

1.
00

1.
00

0.
03

1.
00

0.
99

0.
99

1.
00

0.
99

0.
99

0.
03

0.
99

1.
00

0.
98

S
V
M

0.
98

0.
97

0.
97

0.
03

1.
00

1.
00

0.
97

0.
99

1.
00

1.
00

0.
03

1.
00

0.
99

0.
99

0.
83

0.
86

0.
84

0.
01

0.
92

0.
84

0.
83

15
M
M
S

R
F

0.
98

0.
97

0.
97

0.
01

0.
98

0.
96

0.
96

0.
96

0.
98

0.
97

0.
01

0.
98

0.
95

0.
96

0.
96

0.
98

0.
97

0.
01

0.
98

0.
95

0.
96

R
es
n
et

0.
98

0.
91

0.
94

0.
28

0.
95

0.
96

0.
87

0.
96

0.
67

0.
79

0.
00

0.
82

0.
76

0.
76

0.
91

0.
95

0.
93

0.
00

0.
95

0.
89

0.
92

S
V
M

0.
98

0.
97

0.
97

0.
12

0.
98

0.
96

0.
94

0.
96

0.
98

0.
97

0.
04

0.
97

0.
94

0.
95

0.
96

0.
98

0.
97

0.
09

0.
98

0.
95

0.
94

16
X
w
or
d
s

R
F

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

0.
99

1.
00

0.
99

0.
00

0.
99

0.
99

0.
99

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

R
es
n
et

1.
00

0.
99

0.
99

0.
00

0.
99

0.
99

0.
99

0.
86

1.
00

0.
92

0.
00

0.
92

0.
86

0.
90

0.
95

0.
25

0.
40

0.
01

0.
62

0.
62

0.
49

S
V
M

1.
00

0.
99

0.
99

0.
01

0.
99

0.
99

0.
99

1.
00

0.
99

0.
99

0.
00

0.
99

0.
98

0.
99

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

1.
00

17
Q
u
ic
kS

ea
rc
h
B
ox

R
F

0.
95

0.
87

0.
91

0.
01

0.
93

0.
85

0.
96

0.
88

0.
81

0.
85

0.
03

0.
89

0.
76

0.
87

0.
93

0.
95

0.
94

0.
03

0.
96

0.
90

1.
00

R
es
n
et

0.
95

0.
91

0.
93

0.
01

0.
95

0.
89

0.
99

0.
77

0.
89

0.
83

0.
07

0.
91

0.
71

0.
85

0.
86

0.
99

0.
92

0.
07

0.
96

0.
86

0.
97

S
V
M

0.
95

0.
87

0.
91

0.
01

0.
93

0.
85

0.
96

0.
89

0.
89

0.
89

0.
03

0.
90

0.
82

0.
92

0.
85

0.
88

0.
86

0.
07

0.
89

0.
77

0.
88

42

Table 9: Singular project vulnerability detection with Bag-of-words and the Architec-
tural metrics. The z value in the table aggregate the evaluation metrics. The value
is calculated according to all the experiments. The higher the value, the better the
results. If z equals 1, the experiment performed the best among all. If it is equal to
0, it performed the worst.

Metrics only Metrics + bag-of-words
Project Classifier P R F1 FPR ROC AUC PR AUC z P R F1 FPR ROC AUC PR AUC z

1 OWASP
RF 0.66 0.78 0.71 0.38 0.70 0.62 0.56 0.82 0.85 0.84 0.17 0.95 0.96 0.73
Resnet 0.48 1.00 0.65 1.00 0.50 0.48 0.32 0.70 0.89 0.79 0.34 0.77 0.82 0.51
SVM 0.57 0.93 0.70 0.66 0.64 0.56 0.48 0.67 0.74 0.70 0.74 0.82 0.85 0.30

2 Juliet
RF 0.50 0.41 0.45 0.23 0.59 0.42 0.33 1.00 0.88 0.93 0.00 0.94 0.92 0.88
Resnet 0.35 0.97 0.52 1.00 0.48 0.35 0.21 1.00 0.81 0.90 0.00 0.91 0.88 0.82
SVM 0.00 0.00 0.00 0.00 0.50 0.36 0.01 1.00 0.84 0.92 0.00 0.94 0.92 0.86

3 Anki-Android
RF 0.62 0.73 0.67 0.26 0.74 0.55 0.55 0.87 0.91 0.89 0.08 0.92 0.82 0.76
Resnet 0.36 1.00 0.53 1.00 0.50 0.36 0.23 0.83 0.86 0.84 0.10 0.88 0.76 0.67
SVM 0.71 0.23 0.34 0.05 0.50 0.36 0.32 0.88 0.95 0.91 0.08 0.94 0.85 0.81

4 Browser
RF 0.72 0.62 0.67 0.16 0.73 0.60 0.59 0.94 0.91 0.93 0.04 0.94 0.89 0.84
Resnet 0.00 0.00 0.00 0.00 0.50 0.40 0.02 0.91 0.91 0.91 0.06 0.93 0.87 0.81
SVM 0.00 0.00 0.00 0.00 0.50 0.40 0.02 0.89 0.94 0.93 0.06 0.94 0.88 0.83

5 Calendar
RF 1.00 0.94 0.97 0.00 0.97 0.98 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.90 0.53 0.67 0.08 0.72 0.75 0.66 0.75 0.88 0.81 0.42 0.73 0.85 0.50
SVM 0.90 0.53 0.67 0.08 0.72 0.75 0.66 1.00 0.88 0.94 0.00 1.00 1.00 0.94

6 Camera
RF 0.57 0.60 0.59 0.20 0.70 0.46 0.47 0.90 0.96 0.93 0.05 0.96 0.88 0.85
Resnet 0.39 0.56 0.46 0.39 0.59 0.35 0.28 0.84 0.88 0.86 0.07 0.90 0.77 0.71
SVM 0.00 0.00 0.00 0.00 0.50 0.30 0.00 0.90 0.96 0.93 0.05 0.96 0.88 0.85

7 Connectbot
RF 0.80 0.76 0.78 0.15 0.80 0.71 0.71 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.45 0.46 0.45 0.46 0.50 0.45 0.26 1.00 0.97 0.99 0.00 0.99 0.99 0.98
SVM 0.65 0.54 0.61 0.47 0.43 0.04 0.25 0.92 0.93 0.93 0.06 0.98 0.97 0.88

8 Contacts
RF 0.89 1.00 0.94 0.06 0.97 0.89 0.95 0.89 1.00 0.94 0.06 0.89 0.92 0.85
Resnet 0.31 1.00 0.47 1.00 0.50 0.31 0.19 0.80 1.00 0.89 0.11 0.94 0.80 0.76
SVM 0.54 0.88 0.67 0.33 0.77 0.51 0.55 0.89 1.00 0.94 0.06 0.89 0.92 0.85

9 CoolReader
RF 0.83 0.86 0.84 0.20 0.83 0.79 0.77 0.99 0.96 0.97 0.01 0.97 0.97 0.94
Resnet 0.61 0.84 0.71 0.62 0.61 0.60 0.48 0.98 0.96 0.97 0.03 0.97 0.96 0.93
SVM 0.63 0.77 0.69 0.52 0.62 0.61 0.49 0.98 0.96 0.97 0.03 0.97 0.96 0.93

10 DeskClock
RF 0.83 0.68 0.75 0.06 0.81 0.67 0.71 0.98 0.96 0.97 0.01 0.97 0.95 0.94
Resnet 0.46 0.53 0.49 0.29 0.62 0.39 0.35 0.98 0.91 0.94 0.01 0.95 0.92 0.89
SVM 0.00 0.00 0.00 0.00 0.50 0.32 0.00 0.97 0.97 0.97 0.01 0.97 0.94 0.93

11 Email
RF 0.00 0.00 0.00 0.00 0.50 0.42 0.03 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.41 1.00 0.60 1.00 0.50 0.42 0.28 1.00 0.98 0.99 0.00 0.99 0.99 0.98
SVM 0.00 0.00 0.00 0.00 0.50 0.42 0.03 1.00 1.00 1.00 0.00 1.00 1.00 1.00

12 FBReaderJ
RF 0.80 0.82 0.81 0.20 0.81 0.74 0.73 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.47 0.38 0.42 0.41 0.48 0.48 0.25 1.00 0.98 0.99 0.00 0.99 0.99 0.98
SVM 0.64 0.86 0.74 0.47 0.70 0.62 0.56 0.99 1.00 0.99 0.01 0.99 0.99 0.98

13 K9Mail
RF 0.90 0.83 0.86 0.07 0.88 0.82 0.84 0.99 0.99 0.99 0.01 0.99 0.98 0.98
Resnet 0.71 0.27 0.39 0.08 0.59 0.51 0.39 0.46 1.00 0.63 0.90 0.55 0.46 0.00
SVM 0.00 0.00 0.00 0.00 0.50 0.43 0.03 0.99 0.99 0.99 0.01 0.99 0.98 0.98

14 KeePassAndroid
RF 0.86 0.83 0.84 0.07 0.88 0.77 0.81 0.98 0.97 0.97 0.01 0.98 0.96 0.95
Resnet 0.43 0.71 0.54 0.45 0.63 0.40 0.36 0.95 0.95 0.96 0.01 0.97 0.95 0.92
SVM 0.57 0.55 0.56 0.20 0.68 0.68 0.50 0.98 0.97 0.97 0.01 0.97 0.95 0.94

15 MMS
RF 0.52 0.89 0.65 0.82 0.54 0.51 0.37 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.51 0.49 0.50 0.46 0.51 0.50 0.31 1.00 1.00 1.00 0.00 1.00 1.00 1.00
SVM 0.50 1.00 0.66 1.00 0.50 0.50 0.33 0.99 0.99 0.99 0.01 0.99 0.99 0.98

16 Xwords
RF 0.86 0.87 0.87 0.16 0.86 0.82 0.82 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Resnet 0.61 0.92 0.74 0.65 0.64 0.61 0.51 0.98 0.95 0.96 0.03 0.96 0.98 0.93
SVM 0.75 0.67 0.70 0.25 0.71 0.68 0.60 1.00 0.93 0.96 0.00 0.99 0.99 0.95

17 QuickSearchBox
RF 0.65 0.74 0.69 0.08 0.83 0.53 0.67 0.95 0.87 0.91 0.01 0.93 0.85 0.96
Resnet 0.50 0.04 0.08 0.01 0.52 0.19 0.16 0.95 0.87 0.91 0.01 0.93 0.85 0.96
SVM 0.00 0.00 0.00 0.00 0.50 0.18 0.00 0.95 0.87 0.91 0.01 0.93 0.85 0.96

43

6.1.1 Experiment Design and Hypotheses

To answer the research questions, experiments were performed as a singular project

experiment, then as cross-validation experiments. The singular project experiments

consist of training and testing using the same project. The cross-validation was

performed in three di↵erent ways:

1. Training-One-Predict-Multiple consists of training with one project and testing

on multiple.

2. Training-Multiple-Predict-One, training with many projects and testing on one.

3. Cross-domain validation, where the projects are divided according to their do-

mains. The projects from the same domain are used to train a model. This

model is used to predict the vulnerabilities in projects from a di↵erent domain.

The metric described in Section 5.2 are used to calculate the z values. The zi

value is used to compute the p-value from a Wilcoxon Sign-Ranked Test for each

comparison. When ↵ � 0.05, the hypothesis is accepted to be significantly di↵erent.

Otherwise, the hypothesis is rejected. Table 10 shows the di↵erent p-values obtained

for each hypothesis. A detailed analysis is presented in the following sections.

Table 10: p-value obtained from the Wilcoxon Test for the 10 hypotheses
Tokenization Embeddings Architectural metrics Models

Hypothesis 1 2 3 4 5 6 7 8 9 10
p-value 0.15 4.6e�15 2.9e�12 0.4 1.9e�08 0.26 3.06e�06 8.08e�07 4.4e�11 3.9e�06
Conclusion Reject Accept Accept Reject Accept Reject Accept Accept Accept Accept

6.1.2 Experiment Results for Tokenization (RQ1)

Observation: These experiments aim to observe whether tokenization with removing

code comments and/or special symbols may improve or create noise for the detec-

tion. The experiments are run with the tokens, including the comments and symbols

(Table 7) and compared to tokens without them (Table 8). Each table shows the

learning scores of 153 experiments (= (3 models ⇥ 3 embeddings) per project ⇥ 17

projects). Each experiment produces six scores that compute the value of z. Totally

306 (= 153 ⇥ the two tokenization techniques) data points of z are used to compute

p-value from a Wilcoxon Test. The p-value is compared to the significance level ↵.

Hypothesis Analysis: Hypothesis (1) is defined as follows:

44

1. There is a statistically significant di↵erence between the results obtained from

using all tokens vs. using tokens without comments and symbols.

According to Table 10, the p-value obtained for hypothesis (1) is less than the signifi-

cance level 0.05. This hypothesis is then rejected, which means there is no statistically

significant di↵erence between the two tokenization strategies.

Conclusion: Comments and symbols do not a↵ect the learning of software vul-

nerabilities from the source code in the experiments.

6.1.3 Experiment Results for Feature Extraction (RQ2)

Observation: Feature extraction techniques convert tokens into a vector of features.

In this experiment, the goal is to observe the e↵ects of three feature extraction tech-

niques, including (1) bag-of-words, (2) word2vec embedding and (3) fastText. the

experiments are run with features obtained from bag-of-words (Table 7 and Table 8).

For each embedding technique, there are 102 experiments (= (3 models ⇥ 2 tokeniza-

tion methods) per project ⇥ 17 projects). Each experiment produces six scores that

compute the value of z. Totally 306 data points of z are used to compute p-value

from the Wilcoxon Test. The p-value is compared to the significance level ↵.

Hypothesis Analysis: To compare those three vector representation techniques,

the following hypotheses are considered:

2. There is a statistically significant di↵erence between the results obtained from

using bag-of-words and word2vec as embeddings.

3. There is a statistically significant di↵erence between the results obtained from

using bag-of-words and fastText as embeddings.

4. There is a statistically significant di↵erence between the results obtained from

using word2vec and fastText as embeddings.

According to the Table 10 the p-values obtained fromWilcoxon Test of hypothesis

(2) and hypothesis (3) are accepted, but hypothesis (4) is rejected. This means

there is a statistically significant di↵erence between bag-of-words and word2vec and

also between bag-of-words and fastText. However, there is no statistically significant

di↵erence between word2vec and fastText. Additionally, the results obtained from the

classification show that, on average, the precision and recall of the experiments with

45

bag-of-words are 6% more than the performance of the other embedding methods.

That indicates that bag-of-words is better than the other two models in the learning

process of vulnerabilities in the experiments.

Conclusion: Bag-of-words is the best way to generate embeddings for the re-

mainder of the experiments.

6.1.4 Experiment Results using Architectural Metrics (RQ3)

Observation: In addition to the NLP-based method, architectural metrics are used

as structural features to learn vulnerability patterns from the software repositories.

The features are compared with code tokens only. The experiments use the architec-

ture metrics only and are used to compare them to the architecture metrics with the

bag-of-words features. The Table 9 shows the learning score of 51 (= 3 models ⇥ 17

projects) experiments for each feature used. Totally 102 data points of z are used to

compute p-value from the Wilcoxon Test. The p-value is compared to the significance

level ↵.

Hypothesis Analysis: The e↵ects of using architecture metrics, extracted from

the structures of the project, are explored via three hypotheses:

5. There is a statistically significant di↵erence between 1) the results obtained from

using tokens vs. 2) the results obtained from using the architectural metrics.

6. There is a statistically significant di↵erence between 1) the results obtained

from only using tokens vs. 2) the results obtained from using the combination

of architectural metrics and tokens.

7. There is a statistically significant di↵erence between 1) the results obtained

from only using the architectural metrics vs. 2) the results obtained from using

the combination of tokens and architectural metrics.

As shown in Table 10, the p-values indicate hypotheses (5) and (7) are accepted,

while hypothesis (6) is rejected. This means there is no significant di↵erence when

using tokens as input features with or without architectural metrics. Hypotheses (5)

and (7) further indicate that the tokens have a stronger influence on the learning

performance than the architectural metrics.

Conclusion: The tokens without architectural metrics are used for the remainder

of the experiments.

46

6.1.5 Experiment Results on Classification models (RQ4)

Observation: Identification of whether a certain machine learning model produces

better vulnerability detection. The experiments are performed with each of the three

models to compare them (Table 7 and Table 8). For each model, the table shows 102

experiments (= (2 tokenization methods ⇥ 3 embeddings) per project ⇥ 17 projects).

Each experiment produces six scores that compute the value of z. Totally 306 data

points of z are used to compute p-value from the Wilcoxon Test. The p-value is

compared to the significance level ↵.

Hypothesis Analysis: To compare the models, these three hypotheses are de-

fined:

8. There is a statistically significant di↵erence between the performance of the

random forest model and the SVM.

9. There is a statistically significant di↵erence between the performance of the

random forest model and the ResNet.

10. There is a statistically significant di↵erence between the performance between

the SVM and the ResNet.

According to Table 10, the p-values of the three hypotheses (8), (9), and (10) are less

than the significance level, ↵. All three hypotheses are accepted. Overall the random

forest model performs better than the SVM and ResNet in most experiments with a

precision and recall higher by an average of 8%.

Conclusion: The random forest is used as the model to learn the patterns of

vulnerabilities in the cross-project validation experiments.

6.2 Cross Validation

This evaluation explores the answer to the question ”How transferable is the learning

method in predicting vulnerabilities in new projects?”. Two sets of experiments are

defined to investigate this question.

47

6.2.1 Train-One-Predict-Multiple

In this test, a learning model is trained with source code from a single project and

then tested on other projects. Its learning performance is compared with existing

work [19]. The 15 projects used in this experiment overlap with those used in [19].

The same score as in [19] is used to evaluate the learning performance: the number of

projects with the classification metrics of precision and recall with a certain threshold

is counted. Table 11 reports comparison between this work and learning with LSTM

models. With the threshold value of 0.7, the results of this work are comparable to

the results in [19]. With a threshold of 0.8, the results with the Random Forest

degrade to the average value of 1.4 projects with both a precision and a recall equal

to or greater than 80%.

Table 11: Training-One-Predicting-Multiple compared with the LSTM model in [19]
with the threshold value settings.

Projects
Random Forest Random Forest LSTM1 [19]
(precision �70%, (precision� 80%, (precision�80%,
recall � 70%) recall � 80%) recall � 80%)

1 Camera 7 4 6
2 FBReader 6 3 6
3 Mms 6 2 6
4 Contacts 6 2 2
5 KeePassDroid 6 2 4
6 ConnectBot 6 2 5
7 AnkiDroid 5 1 5
8 Email 5 0 4
9 Crosswords 4 1 1
10 Browser 4 1 1
11 Coolreader 4 1 6
12 Calendar 4 0 5
13 K9 3 2 8
14 DeskClock 0 0 1
15 QuickSearchBox 0 0 3

6.2.2 Train-Multiple-Predict-One

To further improve the learning performance, a 15-fold cross-validation is conducted

by choosing 14 projects from the same domain of the Android project for training.

The remaining project is reserved for testing. Table 12 contains the cross-validation

results, ordered by precision and recall values. 5 out of the 15 experiments have both

precision and recall values equal to or greater than 80%; 10 out of 15 experiments

48

have both precision and recall equal to or greater than 70%. Referring to Table 5,

the five experiments with precision and recall below 70% have the ratio of vulnerable

files below 40%.

Referring to Table 12, cross-project validation improves the learning performance

under the threshold of 80% to 5 projects out of 15 projects. This approach of transfer

learning, in which the features are combined from the Android project repository to

tune the random forest model, achieves comparable learning performance to the deep

learning models ResNet and LSTM [19] (4.2 projects out of 15 projects).

Table 12: The cross project validation from 15 Android projects, with 5 projects
having both precision and recall higher than 80% (ConnectBot, Email, Coolreader,
Crosswords, AnkiDroid)

Projects P R F1 FPR ROC AUC PR AUC

1 ConnectBot 0.90 0.86 0.88 0.08 0.89 0.84
2 Email 0.90 0.81 0.85 0.10 0.86 0.83
3 Coolreader 0.88 0.82 0.85 0.11 0.86 0.81
4 Crosswords 0.81 0.87 0.84 0.14 0.86 0.76
5 K9 0.94 0.60 0.74 0.05 0.78 0.78
6 AnkiDroid 0.81 0.86 0.83 0.29 0.78 0.78
7 Calendar 0.75 0.88 0.81 0.24 0.82 0.71
8 Camera 0.74 0.87 0.80 0.32 0.77 0.71
9 FBReader 0.73 0.71 0.72 0.11 0.80 0.61
10 Contacts 0.69 0.92 0.79 0.39 0.77 0.67
11 KeePassDroid 0.64 0.90 0.75 0.34 0.78 0.62
12 Deskclock 0.64 0.88 0.74 0.33 0.77 0.61
13 Browser 0.70 0.70 0.70 0.17 0.76 0.60
14 Mms 0.68 0.70 0.70 0.20 0.76 0.59
15 QuickSearchBox 0.45 0.93 0.60 0.46 0.74 0.44

49

6.2.3 Cross Domain Validation

A final set of cross-validation experiments is performed. These one consider the trans-

ferability across the domain. The three datasets presented in this paper—OWASP,

Juliet, and Android—are from di↵erent domains. According to this, three models

are trained, one with each domain. The models are used to predict projects from

other domains. Table 13 shows the results of these experiments. Table 13 shows the

learning performance has degraded. A key contributing factor is the disparateness of

vulnerability signatures. The previous discussion of the vulnerable files and types in

Table 2, Table 3 and Table 5 show this heterogeneity.

Table 13: Cross domain comparison to observe how transferable the vulnerability
signature is

XXXXXXXXXXXXTrain
Predict

Juliet OWASP Android

Juliet Table 7
P: 0.54
R: 0.77

P: 0.44
R: 0.53

OWASP
P: 0.4
R: 0.8

Table 7 1 out of
15 project
(precision
and recall
greater than
0.7) P: 0.74
R: 0.39

Android
P: 0.4
R: 0.46

P: 0.49
R: 0.64

Table 7

50

6.3 Discussion

The approach in this thesis consists of comparing the di↵erent factors that contributed

to the detection of vulnerabilities in source code. Tables 7, 8 and 9 show the results

of the 408 experiments performed to evaluate the classification on three domains of

the source code.

These tables and the statistical test performed in section 6.1.1 demonstrate 95%

of the learning metrics are above 0.77 after over 400 experiments. The tokenization

choice, which consists of removing the comments or not, shows that the comments

and symbols do not a↵ect the learning of the vulnerabilities by the model. Using

the architectural metrics as features, in this case, has no significant improvement on

the learning of vulnerabilities. One reason is that the complexity of the code and its

dependencies are not captured by the tokens only. As a result, a baseline emerges

with feature representations extracted through bag-of-words embedding and using the

random forest model. This baseline increases the accuracy by about 4% compared to

other combinations of examined factors.

Further cross-validation experiments were conducted to observe how transferable

across domains the vulnerability signatures are. The training of a single project

and predicting multiple projects method achieves an average of 4.4 projects with

a precision and recall higher than 70%. With the 15-fold cross-validation method

of training multiple projects and predicting one project, the baseline model slightly

outperforms the LSTM model [19] with a proprietary embedding method.

51

Chapter 7

Use of the Baseline Model

In the following sections, the baseline model is the random forest combined bag-

of-words since it is the model that achieves the best performances in the previous

experiments. In this Chapter, the baseline model established in the previous Chapter

is used to evaluate the performances of a BiLSTM model with word2vec as embedding

to transform the source code.

7.1 Purpose of a Baseline Model

A baseline model serves as a reference point to compare the performances of other

models that are usually more complex. Experimenting with a baseline model is usually

quick, and low cost, so the model has to be simple to set up and has a reasonable

chance of providing decent results. It is commonly used as in the artificial intelligence

community [72, 25].

In this case, the baseline model relies on understanding the key factors contribut-

ing to the discovery of vulnerability signatures through a combination of techniques

and machine learning models. A baseline model can be used to evaluate the classi-

fication performance of another model in learning the vulnerability signatures. Such

a model helps to establish a base to investigate techniques on feature representation,

learning models, factors such as code structure, and complexity in learning vulnera-

bility patterns.

52

According to Chapter 6, the baseline model is established according to the com-

bination of factors that show the best performance in learning the vulnerability sig-

natures. The model that shows the best performance is the Random Forest model

that takes as input source code files with all the tokens transformed into numerical

values using bag-of-words. This chapter aims to use the predefined baseline model

to observe how well a model performs. A Bidirectional Long Short-Term Memory

model is built to perform the classification task, and the results are compared to the

baseline.

7.2 Bidirectional Long Short-Term Memory for Vul-

nerability Detection

For this part of the thesis, a Bidirectional Long Short-Term Memory (BiLSTM) model

is used. A BiLSTM consists of two Long Short-Term Memory (LSTM) models [64].

LSTM has been shown to be e↵ective in learning the structure of source code. Karpa-

thy et al.[36] train an LSTM to predict the next character in a sample sequence of

characters from the Linux source code, then look for interpretable activations within

the LSTM. They found that the LSTM model has the ability to understand the un-

derlying structure of statements for loops, while loops, functions, and nesting, among

other things.

An LSTM[28] model is a type of recurrent neural network (RNN) that is able to

capture long-term dependencies. It consists of a sequence of connected cells where

each cell takes a vector as input and outputs a vector state. Since the code files in

the dataset can relatively be long sequences of text compared to other common NLP

tasks, a BiLSTM is used for this work.

A traditional LSTM goes through a sequence forward, so it can only see each input

once and from one direction. That can lead to the loss of important information at the

beginning of long sequences by the time the LSTM reaches the end of the sequence.

BiLSTMs solve this problem by running two separate LSTMs, one that goes through

the sequence from start to end and another that goes backward through the sequence

from end to start.

The model in this work is constructed of one embedding layer that is responsible for

converting the tokens into their vector representation, one BiLSTM layer that learns

53

the context of words and carries the contextual meaning, one convolution layer that

creates a convolution kernel, one global max-pooling operation that down-samples

the input representation by taking the maximum value over di↵erent dimensions, and

finally one dense. The last dense layer has a sigmoid activation to transform the input

to a number between 0 and 1. The detailed structure is depicted in Figure 8.

The embedding layer provides the numerical representation of the tokens and their

meaning according to the context. The word’s context is learned from a corpus of

code created and used to train an embedding model. Here, to initialize the embedding

layer, a pre-trained word2vex model is used (More details are in section 4.3). Using

this embedding model allows saving time in training the classification model.

54

F
ig
u
re

8:
T
h
e
d
at
a
fl
ow

fo
r
th
e
cl
as
si
fi
ca
ti
on

ta
sk

p
er
fo
rm

ed
by

th
e
B
iL
S
T
M

m
od

el
.
T
h
is

fi
gu

re
sh
ow

s
th
e
d
at
a
fl
ow

of
th
e
fe
at
u
re

en
gi
n
ee
ri
n
g
an

d
le
ar
n
in
g
fo
r
th
e
B
iL
S
T
M

m
od

el
.
It

il
lu
st
ra
te
s
th
e
d
i↵
er
en
t
la
ye
r
th
at

d
efi
n
es

th
e
m
od

el
in

th
is

th
es
is
.

55

7.3 Comparing the BiLSTM to the Baseline model

7.3.1 Singular Project Vulnerability Detection

In this section, singular project training experiments are performed. The model is

trained and tested using the same project. The experiments are run using all the

tokens of the files, including comments and symbols, and the embedding layer of the

BiLSTM model is initialized with a pre-trained word2vec model.

Observation: These experiments aim to observe how well the BiLSTM performs

compared to the baseline model. Table 14 shows the results of the 17 experiment.

Each experiment produces six scores that are used to compute the z values. The

value is calculated according to all the experiments. The higher the value, the better

the results. If z equals 1, the experiment performed the best among all. If it is equal

to 0, it performed the worst.

Analysis of the results: According to Table 14, overall, the performance of the

two models are comparable. For 10 out of 17 projects, the BiLSTM precision and

recall are higher than 80%. However, the average of the z for the baseline model

is equal to 0.91, compared to 0.69 for the BiLSTM model. For Juliet, the z value

equals 0; it is the project that performs the worst compared to the other experiments

(according to both baseline and BiLSTM). Juliet has the lowest number of tokens

and the project with the more diversified vulnerability types (more than 12 according

to Table 3). The model has trouble learning the signature of each type.

Conclusion: The baseline model performs better than the BiLSTM model asso-

ciated with word2vec in the case of singular project vulnerability detection.

56

Table 14: Singular project vulnerability detection results. Comparison of the base-
line model (Random Forest + Bag-of-words) with the BiLSTM model (BiLSTM +
Wor2Vec). The z value in the table aggregate the evaluation metrics. The value is
calculated according to all the experiments. The higher the value, the better the
results. If z equals 1, the experiment performed the best among all. If it is equal to
0, it performed the worst.

Projects
Baseline BiLSTM

P R F1 FPR ROC AUC PR AUC z P R F1 FPR ROC AUC PR AUC z

1 OWASP 1.00 1.00 1.00 0.01 1.00 1.00 1.00 0.85 0.92 0.88 0.19 0.87 0.82 0.68
2 Juliet 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.08 0.14 0.00 0.54 0.54 0.00
3 Anki-Android 0.80 0.89 0.84 0.21 0.84 0.76 0.60 1.00 0.89 0.94 0.00 0.94 0.96 0.90
4 Connectbot 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.94 0.97 0.00 0.97 0.99 0.95
5 CoolReader 1.00 0.98 0.99 0.00 1.00 1.00 0.99 0.97 0.97 0.97 0.02 0.98 0.96 0.94
6 Xwords 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.97 0.99 0.98 0.03 0.98 0.96 0.94
7 FBReaderJ 0.96 0.93 0.94 0.02 0.98 0.98 0.92 0.88 0.96 0.92 0.05 0.95 0.85 0.82
8 K9Mail 0.97 0.99 0.98 0.02 1.00 1.00 0.97 0.96 0.99 0.98 0.04 0.98 0.96 0.93
9 KeePassAndroid 0.99 1.00 1.00 0.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 1.00 1.00 1.00
10 Camera 0.94 0.91 0.93 0.04 0.94 0.89 0.84 0.78 0.75 0.75 0.17 0.81 0.68 0.49
11 Browser 0.97 0.93 0.95 0.02 1.00 1.00 0.94 0.74 0.76 0.75 0.16 0.80 0.65 0.45
12 Calendar 0.87 0.87 0.89 0.08 0.92 0.82 0.74 0.88 0.70 0.78 0.05 0.83 0.71 0.57
13 Contacts 0.90 0.96 0.93 0.05 0.96 0.88 0.84 0.68 0.68 0.68 0.15 0.77 0.56 0.34
14 DeskClock 0.89 1.00 0.94 0.06 0.97 0.89 0.87 0.73 0.92 0.82 0.29 0.82 0.71 0.52
15 Email 0.97 0.98 0.97 0.04 0.99 0.99 0.95 0.89 0.92 0.90 0.12 0.90 0.86 0.76
16 MMS 0.98 0.97 0.98 0.01 1.00 0.99 0.96 0.91 0.91 0.91 0.05 0.93 0.86 0.80
17 QuickSearchBox 0.95 0.87 0.91 0.01 0.93 0.85 0.82 0.86 0.73 0.79 0.03 0.85 0.69 0.59

Average 0.95 0.96 0.96 0.03 0.97 0.94 0.91 0.89 0.83 0.83 0.08 0.88 0.81 0.69

7.3.2 Cross Validation

The cross-validation experiments are separated into three sets of experiments: Train-

One-Predict-Multiple, Train-Multiple-Predict-One and finally, the cross-domain val-

idation. These are conducted to further analyze the transferability of the learned

vulnerability signatures of the BiLSTM compared to the baseline model.

Train-One-Predict-Multiple Results

Observation and Analysis: In this test, a learning model is trained with source

code from a single project and then tested on other projects. The learning perfor-

mance is compared to the baseline model. 15 models are built, each trained with one

of the Android projects. The number of tested projects that have a good performance

is counted. The model has good performance if the precision and recall are higher

than or equal to 0.7. Table 15 reports the comparison between the baseline model

and the BiLSTM model.

The prediction results of the baseline model are better than the BiLSTM. The

average value of 2.13 for the BiLSTM and 4.28 for the baseline is twice as good. The

only case where BiLSTM performs better than the baseline model is when trained

57

with the QuickSearchBox project files.

Conclusion: The baseline outperforms the BiLSTM model in predicting vul-

nerabilities in files from other projects in the case of Train-One-Predict-Multiple.

Table 15: Training-One-Predicting-Multiple. Comparison of the baseline model (Ran-
dom Forest + BOW) to BiLSTM model (BiLSTM + W2V) with the threshold of 0.7.
The table contains the number of projects with precision and recall higher or equal
to 70% that each model trained with only one project predicted.

Projects
Baseline BiLSTM

(P �70%, R � 70%) (P �70%, R � 70%)

1 Camera 7 3
2 FBReaderJ 6 0
3 Contacts 6 5
4 KeePassAndroid 6 1
5 Connectbot 6 4
6 Anki-Android 5 3
7 Email 5 1
8 Xwords 4 3
9 Browser 4 1
10 CoolReader 4 2
11 Calendar 4 3
12 K9Mail 4 3
13 DeskClock 3 1
14 MMS 0 0
15 QuickSearchBox 0 2

Average 4.27 2.13

Train-Multiple-Predict-One Results

Observation and Analysis: As an attempt to improve the learning performance,

multiple projects are used for training the models. The experiments consist of 15-

fold cross-validation using the 15 projects of the android study. Table 16 reports

the experiments results. By comparing the z values averages, the baseline performs

better with 0.64 compared to 0.3 for the BiLSTM. For the BiLSTM, 4 out of the 15

experiments have both precision and recall values equal to or greater than 70%. In

comparison to 7 out of 15 for the baseline model. This indicates that the baseline

model generalizes better than the BiLSTM model on these datasets.

Conclusion: In this case and training and testing using the Android project

58

dataset, the baseline model outperforms the BiLSTM.

Table 16: Training-Multiple-Predicting-One. Comparison of the baseline model (Ran-
dom Forest + BOW) to BiLSTM model (BiLSTM + W2V). Each model is trained
with all the projects minus one. The table contains the results of predicting the
project that was not used in the training with the model trained with all the other
projects. The z value in the table aggregate the evaluation metrics. The value is
calculated according to all the experiments. The higher the value, the better the
results. If z equals 1, the experiment performed the best among all. If it is equal to
0, it performed the worst.

Projects
Baseline BiLSTM

P R F1 FPR ROC AUC PR AUC z P R F1 FPR ROC AUC PR AUC z

1 Anki-Android 0.81 0.86 0.83 0.29 0.78 0.78 0.74 0.80 0.67 0.73 0.13 0.77 0.68 0.61
2 Connectbot 0.90 0.86 0.88 0.08 0.89 0.84 1.00 0.70 0.70 0.70 0.29 0.72 0.63 0.42
3 CoolReader 0.88 0.82 0.85 0.11 0.86 0.81 0.91 0.71 0.83 0.77 0.27 0.78 0.67 0.60
4 Xwords 0.85 0.73 0.78 0.11 0.81 0.74 0.75 0.82 0.60 0.69 0.10 0.75 0.66 0.56
5 FBReaderJ 0.72 0.68 0.70 0.11 0.78 0.59 0.53 0.53 0.68 0.60 0.27 0.70 0.46 0.20
6 K9Mail 0.92 0.82 0.87 0.07 0.88 0.85 0.99 0.79 0.72 0.75 0.23 0.75 0.72 0.60
7 KeePassAndroid 0.72 0.55 0.63 0.14 0.71 0.58 0.38 0.61 0.34 0.44 0.15 0.60 0.48 0.00
8 Camera 0.77 0.60 0.67 0.08 0.76 0.58 0.50 0.78 0.62 0.69 0.21 0.72 0.68 0.49
9 Browser 0.70 0.69 0.70 0.17 0.76 0.60 0.49 0.60 0.67 0.63 0.35 0.70 0.53 0.24
10 Calendar 0.74 0.82 0.78 0.22 0.80 0.68 0.65 0.58 0.65 0.61 0.38 0.63 0.53 0.16
11 Contacts 0.66 0.71 0.68 0.17 0.77 0.55 0.45 0.64 0.54 0.58 0.29 0.63 0.57 0.18
12 DeskClock 0.91 0.50 0.65 0.04 0.73 0.69 0.57 0.75 0.75 0.75 0.17 0.79 0.66 0.62
13 Email 0.90 0.81 0.85 0.10 0.86 0.83 0.93 0.81 0.67 0.74 0.20 0.73 0.73 0.56
14 MMS 0.67 0.67 0.70 0.22 0.76 0.59 0.44 0.61 0.85 0.71 0.33 0.76 0.57 0.44
15 QuickSearchBox 0.79 0.41 0.54 0.03 0.69 0.46 0.28 0.50 0.57 0.53 0.23 0.67 0.41 0.08

Average 0.80 0.70 0.74 0.13 0.79 0.68 0.64 0.68 0.66 0.66 0.24 0.71 0.60 0.39

Cross Domain Validation

These cross-domain validation experiments are performed to evaluate the transferabil-

ity across the domain of the learning. The three datasets presented in this paper—

OWASP, Juliet, and Android—are from di↵erent domains. According to this, three

models are trained, one with each domain. The three models are used to predict

each of the domains. Table 17 shows the results of these experiments. The learn-

ing performance has degraded. The learning performance has degraded due to the

disparateness of vulnerability signatures.

59

Table 17: Cross domain comparison to observe how transferable the vulnerability
signature is for the BiLSTM model

XXXXXXXXXXXXTrain
Predict

Juliet OWASP Android

Juliet Table 14
P: 0.50
R: 0.50

P: 0.13
R: 0.44

OWASP
P: 0.42
R: 0.94

Table 14
P: 0.51
R: 0.70

Android
P: 0.42
R: 0.73

P: 0.53
R: 0.74

Table 14

7.4 Discussion

In this chapter, the baseline model is used to evaluate the performance of a more

complex model, a BiLSTM, in detecting vulnerabilities. In Table 14 that contains the

results for the singular project detection, 10 out of 17 projects have precision and recall

above 80%. Moreover, in 90% of the cases, those metrics are above 70%. The results

are comparable to the baseline model. However, the baseline model outperforms the

BiLSTM by an average precision and recall of 10%. The results presented in cross-

validation (Table 15 and Table 16) shows that the baseline model performs better in

most of the cases. In training a single project and predicting multiple experiments,

the baseline model achieves twice as well as the BiLSTM. Moreover, the 15-fold

cross-validation, the baseline model, performs better on three more projects than the

BiLSTM.

60

Chapter 8

Threats to Validity

This section summarizes the di↵erent threats to validity, including the datasets and

limited architectural metrics relative to internal validity; and the domains of exper-

iments relative to external validity. In the following, some threats to the validity of

this study are discussed.

Regarding the threats to external validity, the study is limited to specific

projects, and thus, the results in this work might not be generalizable to other projects

or contexts. In this section, further Cross-Domain Validation experiments are per-

formed to evaluate if the model is transferable to other projects and if the obtained

results are generalizable over projects from di↵erent domains. The study is limited

to 17 java projects. Fifteen real Android applications are used; however, the results

might not be generalizable to other projects or contexts.

Cross-domain validation means training a model on datasets from one domain and

predicting vulnerabilities on datasets from a di↵erent domain. The three datasets

presented in this work—OWASP, Juliet, and Android—are from di↵erent domains.

The previous discussion of the vulnerable files and types in Table 2, Table 3 and

Table 5 show this heterogeneity.

Table 13 and Table 17 show the learning performance has degraded. A key con-

tributing factor is the disparateness of vulnerability signatures. The cross-domain

validation is also limited because it only assesses three di↵erent domains.

Regarding construct validity, the choice was to use publicly available datasets

that were previously labelled. The OWASP dataset and the Juliet dataset contain

both source code files and vulnerability labels. The Android Study dataset only

61

includes information on the tagged file but without the source code files. The source

code files have to be retrieved according to the file names and project versions. In

addition to that, the vulnerable code labels for the Android Study project followed the

data in [63]. The labels are determined by Fortify [21]. It has been recognized that

static code analysis tools may contain false-positive labels. In the literature, [56, 77]

path and commit data have been mined to identify vulnerable code. In the security

development and operation process, this was addressed by manual correction. This

work focuses on the factors that contribute to creating a baseline and thus assumes

that the labels are of stable quality.

Regarding internal validity, this work only considers source code files written

in Java because many C++ source codes lack data labels. The number of projects

examined for transferability is still limited to reach a statistically significant conclu-

sion. Also, the token-based feature representation is considered a flattened structure.

Such a token-based feature representation is combined with aggregated architectural

metrics. The architecture metrics have not contributed significantly to the learning,

which indicates either the current learning representation has not utilized the archi-

tectural metrics in the optimal embedding or other kinds of learning models should

be applied to architectural metrics. This remains further research.

62

Chapter 9

Conclusion

The work in this thesis proposes to reveal the most contributing factors for detecting

software vulnerabilities. The observations from 17 Java projects and over 400 experi-

ments led to define a model that can be used as a baseline by comparing tokenization

techniques, embedding methods, and machine learning models. The baseline model

under a cross-validation training approach on the same project domain achieves com-

parable and slightly better learning performance than the models using deep learning

networks. This provides the reference as the minimum learning performance that a

future vulnerability detection approach should achieve. Further experiment to eval-

uate a BiLSTM using the established baseline model shows that the defined baseline

model outperformed it. The observations show that cross-domain learning is sub-

ject to the extent of vulnerability signature disparateness. This work envisions a

promising research direction that integrates transfer learning techniques to a soft-

ware DevOps process and feeds target domain inputs to augment the training from

the source domain.

63

Bibliography

[1] Ieee standard for a software quality metrics methodology. IEEE Std 1061-1992,

pages 1–96, 1993.

[2] Acunetix. Acunetix web vulnerability scanner, .

[3] A. Alkussayer and W. H. Allen. A scenario-based framework for the security

evaluation of software architecture. In 2010 3rd International Conference on

Computer Science and Information Technology, volume 5, pages 687–695, July

2010.

[4] A. Alkussayer and W. H. Allen. Security risk analysis of software architecture

based on ahp. In 7th International Conference on Networked Computing, pages

60–67, Sep. 2011.

[5] Mohamed Almorsy, John Grundy, and Amani S Ibrahim. Automated software

architecture security risk analysis using formalized signatures. In 2013 35th

International Conference on Software Engineering (ICSE), pages 662–671. IEEE,

2013.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating

sequences from structured representations of code, 2019.

[7] B. Alshammari, C. Fidge, and D. Corney. Security metrics for object-oriented

designs. In 2010 21st Australian Software Engineering Conference, pages 55–64,

April 2010.

[8] Android. Android development platform - git repository, .

64

[9] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software Engineering,

22(10):751–761, Oct 1996.

[10] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.

Addison-Wesley Professional, 3 edition, 2012.

[11] C. Bidan and V. Issarny. Security benefits from software architecture. In David

Garlan and Daniel Le Métayer, editors, Coordination Languages and Models,

pages 64–80, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[12] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. arXiv preprint arXiv:1607.04606,

2016.

[13] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Automated extraction of

architecture-level performance models of distributed component-based systems.

In 2011 26th IEEE/ACM International Conference on Automated Software En-

gineering (ASE 2011), pages 183–192. IEEE, 2011.

[14] Yuanfang Cai, Hanfei Wang, Sunny Wong, and Linzhang Wang. Leveraging

design rules to improve software architecture recovery. In Proceedings of the 9th

international ACM Sigsoft conference on Quality of software architectures, pages

133–142. ACM, 2013.

[15] Checkmarx. Checkmarx software security platform, .

[16] MITRE Corporation. The common weakness enumeration community, 2006.

[17] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,

20(3):273–297, September 1995.

[18] Rory Coulter, Qing-Long Han, Lei Pan, Jun Zhang, and Yang Xiang. Data-

driven cyber security in perspective—intelligent tra�c analysis. IEEE transac-

tions on cybernetics, 50(7):3081–3093, 2019.

[19] Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham, Shien Wee Ng, John

Grundy, and Aditya Ghose. Automatic feature learning for predicting vulnerable

software components. IEEE Transactions on Software Engineering, 2019.

65

[20] Qiong Feng, Rick Kazman, Yuanfang Cai, Ran Mo, and Lu Xiao. Towards

an architecture-centric approach to security analysis. In 2016 13th Work-

ing IEEE/IFIP Conference on Software Architecture (WICSA), pages 221–230.

IEEE, 2016.

[21] Fortify. Fortify, .

[22] Seyed Mohammad Gha↵arian and Hamid Reza Shahriari. Software vulnerability

analysis and discovery using machine-learning and data-mining techniques: A

survey. ACM Comput. Surv., 50(4):56:1–56:36, August 2017.

[23] Seyed Mohammad Gha↵arian and Hamid Reza Shahriari. Software vulnerability

analysis and discovery using machine-learning and data-mining techniques: A

survey. ACM Computing Surveys (CSUR), 50(4):1–36, 2017.

[24] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter,

and Lalana Kagal. Explaining explanations: An overview of interpretability of

machine learning, 2019.

[25] Google. Machine learning glossary, .

[26] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R

Kosta, Akshay Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R

Key, Paul M Ellingwood, et al. Automated software vulnerability detection with

machine learning. arXiv preprint arXiv:1803.04497, 2018.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition, 2015.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, 11 1997.

[29] Aram Hovsepyan, Riccardo Scandariato, Wouter Joosen, and James Walden.

Software vulnerability prediction using text analysis techniques. In Proceedings

of the 4th international workshop on Security measurements and metrics, pages

7–10. ACM, 2012.

[30] Secure Software Inc. Rough audit tool for security, .

66

[31] K. A. Jackson and B. T. Bennett. Locating sql injection vulnerabilities in java

byte code using natural language techniques. In SoutheastCon 2018, pages 1–5,

April 2018.

[32] Smriti Jain and Maya Ingle. A review of security metrics in software development

process. 2011.

[33] JetBrains. Jetbrains/intellij-community, Jun 2019.

[34] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of

tricks for e�cient text classification. CoRR, abs/1607.01759, 2016.

[35] Stefan Kals, Engin Kirda, Christopher Krügel, and Nenad Jovanovic. Secubat:

a web vulnerability scanner. pages 247–256, 01 2006.

[36] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding

recurrent networks. CoRR, abs/1506.02078, 2015.

[37] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun

Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulner-

ability detection. arXiv preprint arXiv:1801.01681, 2018.

[38] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. Software

vulnerability detection using deep neural networks: A survey. Proceedings of the

IEEE, 108(10):1825–1848, 2020.

[39] Liu Liu, Olivier De Vel, Qing-Long Han, Jun Zhang, and Yang Xiang. Detecting

and preventing cyber insider threats: A survey. IEEE Communications Surveys

& Tutorials, 20(2):1397–1417, 2018.

[40] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. A comparison

of software design security metrics. In ECSA ’10, 2010.

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[42] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Machine

learning aided android malware classification. Computers & Electrical Engineer-

ing, 61:266 – 274, 2017.

67

[43] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. Decoupling

level: A new metric for architectural maintenance complexity. In 2016 Interna-

tional Conference on Software Engineering (ICSE). IEEE, 2016.

[44] Muhammad Nadeem, Byron J. Williams, and Edward B. Allen. High false posi-

tive detection of security vulnerabilities: A case study. In Proceedings of the 50th

Annual Southeast Regional Conference, ACM-SE ’12, page 359–360, New York,

NY, USA, 2012. Association for Computing Machinery.

[45] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to

predict component failures. In Proceedings of the 28th International Conference

on Software Engineering, ICSE ’06, pages 452–461, New York, NY, USA, 2006.

ACM.

[46] Lakshmanan Nataraj, Shanmugavadivel Karthikeyan, Grégoire Jacob, and

B. Manjunath. Malware images: Visualization and automatic classification. 07

2011.

[47] Netsparker. Netsparker web vulnerability scanner, .

[48] National Institute of Standards and Technology. Applications, 2015.

[49] National Institute of Standards and Technology. Juliet test suite for java v1.3,

2017.

[50] National Institute of Standards and Technology. Software assurance reference

dataset, .

[51] National Institute of Standards and Technology. Vulnerability definition. Com-

puter Security Resource Center, . [online] https://csrc.nist.gov/glossary/

term/vulnerability.

[52] Pablo Oliveira Antonino, Slawomir Duszynski, Christian Jung, and Manuel

Rudolph. Indicator-based architecture-level security evaluation in a service-

oriented environment. pages 221–228, 01 2010.

[53] OWASP. Owasp benchmark project, 2018.

68

https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/vulnerability

[54] Y. Pang, X. Xue, and A. S. Namin. Predicting vulnerable software components

through n-gram analysis and statistical feature selection. In 2015 IEEE 14th In-

ternational Conference on Machine Learning and Applications (ICMLA), pages

543–548, Dec 2015.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[56] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,

Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder: Finding potential

vulnerabilities in open-source projects to assist code audits. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and Communications Security,

CCS ’15, pages 426–437, New York, NY, USA, 2015. ACM.

[57] PortSwigger. Burp suite web vulnerability scanner, .

[58] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Android study, 2014.

[59] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Soft-

ware fault prediction metrics: A systematic literature review. Information and

software technology, 55(8):1397–1418, 2013.

[60] Radim Řeh̊uřek and Petr Sojka. Gensim: Software Framework for Topic Mod-

elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New

Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA.

http://is.muni.cz/publication/884893/en.

[61] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur

Ozdemir, Paul Ellingwood, and Marc McConley. Automated vulnerability de-

tection in source code using deep representation learning. In 2018 17th IEEE In-

ternational Conference on Machine Learning and Applications (ICMLA), pages

757–762. IEEE, 2018.

[62] Adam Sachitano, Richard O Chapman, and JA Hamilton. Security in software

architecture: a case study. In Proceedings from the Fifth Annual IEEE SMC

Information Assurance Workshop, 2004., pages 370–376. IEEE, 2004.

69

http://is.muni.cz/publication/884893/en

[63] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting vulnerable

software components via text mining. IEEE Transactions on Software Engineer-

ing, 40(10):993–1006, Oct 2014.

[64] Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks. Sig-

nal Processing, IEEE Transactions on, 45:2673 – 2681, 12 1997.

[65] Robert Schwanke, Lu Xiao, and Yuanfang Cai. Measuring architecture quality

by structure plus history analysis. In 2013 35th International Conference on

Software Engineering (ICSE), pages 891–900. IEEE, 2013.

[66] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. Eval-

uating complexity, code churn, and developer activity metrics as indicators of

software vulnerabilities. IEEE transactions on software engineering, 37(6):772–

787, 2010.

[67] Karsten Sohr and Bernhard Berger. Idea: Towards architecture-centric security

analysis of software. In International Symposium on Engineering Secure Software

and Systems, pages 70–78. Springer, 2010.

[68] Karsten Sohr and Bernhard Berger. Idea: Towards architecture-centric security

analysis of software. In Fabio Massacci, Dan Wallach, and Nicola Zannone, edi-

tors, Engineering Secure Software and Systems, pages 70–78, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

[69] Nan Sun, Jun Zhang, Paul Rimba, Shang Gao, Leo Yu Zhang, and Yang Xiang.

Data-driven cybersecurity incident prediction: A survey. IEEE communications

surveys & tutorials, 21(2):1744–1772, 2018.

[70] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International

Conference on Document Analysis and Recognition, volume 1, pages 278–282

vol.1, 1995.

[71] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw. Its4: A static

vulnerability scanner for c and c++ code. In Proceedings 16th Annual Computer

Security Applications Conference (ACSAC’00), pages 257–267. IEEE, 2000.

70

[72] Sida Wang and Christopher Manning. Baselines and bigrams: Simple, good

sentiment and topic classification. pages 90–94, 07 2012.

[73] D. A. Wheeler. Flawfinder, .

[74] Zhongxing Xu, Ted Kremenek, and Jian Zhang. A memory model for static

analysis of c programs. In Proceedings of the 4th International Conference on

Leveraging Applications of Formal Methods, Verification, and Validation - Vol-

ume Part I, ISoLA’10, pages 535–548, Berlin, Heidelberg, 2010. Springer-Verlag.

[75] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. Vulnerability extrapola-

tion: Assisted discovery of vulnerabilities using machine learning. In Proceedings

of the 5th USENIX Conference on O↵ensive Technologies, WOOT’11, pages 13–

13, Berkeley, CA, USA, 2011. USENIX Association.

[76] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model:

A statistical framework. International Journal of Machine Learning and Cyber-

netics, 1:43–52, 12 2010.

[77] Yaqin Zhou and Asankhaya Sharma. Automated identification of security issues

from commit messages and bug reports. In Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages 914–

919, New York, NY, USA, 2017. ACM.

[78] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching

for a needle in a haystack: Predicting security vulnerabilities for windows vista.

In Proceedings of the 2010 Third International Conference on Software Testing,

Verification and Validation, ICST ’10, pages 421–428, Washington, DC, USA,

2010. IEEE Computer Society.

71

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Contribution
	Outline

	Background
	Software vulnerabilities and Code Analysis
	Natural Language Processing and Source Code
	Architecture metrics and Source Code Analysis

	Related Work
	Static Vulnerability Detection
	Machine Learning and Natural Language Processing Detecting Vulnerabilities
	Software Architecture and Security

	Research Methodology
	Vulnerability Detection Process
	Tokenization
	Token Embeddings
	Bag-of-words
	Word2vec
	FastText

	Architectural Metrics
	Machine Learning Models
	Random Forest
	Support Vector Machines
	Residual Neural Network

	Experiments Design

	Datasets and Metrics
	Datasets
	OWASP Benchmark Project
	Test Suite for Java
	Android Study
	Analysis of the Vulnerabilities
	Analysis of Tokens

	Evaluation Metrics

	Experiments and Analysis
	Evaluate the Combinations of the Different Aspects
	Experiment Design and Hypotheses
	Experiment Results for Tokenization (RQ1)
	Experiment Results for Feature Extraction (RQ2)
	Experiment Results using Architectural Metrics (RQ3)
	Experiment Results on Classification models (RQ4)

	Cross Validation
	Train-One-Predict-Multiple
	Train-Multiple-Predict-One
	Cross Domain Validation

	Discussion

	Use of the Baseline Model
	Purpose of a Baseline Model
	Bidirectional Long Short-Term Memory for Vulnerability Detection
	Comparing the BiLSTM to the Baseline model
	Singular Project Vulnerability Detection
	Cross Validation

	Discussion

	Threats to Validity
	Conclusion

