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Abstract

Mathematical Modeling of Lactate Metabolism in the Brain

Milad Soltanzadeh

It is well established that the primary substrate for brain energy metabolism is glucose, but

accumulating evidence suggests that lactate can also be considered as an energy substrate for the

brain. Additionally, it has been shown that lactate is linked to memory, epilepsy, and traumatic

brain injury, which emphasizes the importance of lactate. Considering the effects of lactate and the

complexity of imaging its dynamics in neurons and glial cells, researchers are motivated to explore

lactate dynamics using mathematical modeling. In this thesis, we propose a new mathematical

model for brain lactate exchanges which includes four compartments. In summary, our model

consists of four ordinary differential equations explaining interactions between neuronal, astrocytic,

capillary, and extracellular space compartments. We simulate this model to assess its abilities to

reproduce different qualitative behaviors of lactate dynamics in the brain. These scenarios include

increased lactate transport to the brain due to physical exercise and increased lactate production

inside neurons and astrocytes. Also, parameter estimation becomes crucial for these types of models

due to its effect on the model’s ability to reproduce correct physiological and pathological behavior

of the brain. Some parameters can be determined from the experiments in the literature. However,

for some of them, there is not a consensus over the values. In this case, an optimization can be done

to determine the parameters. In this thesis, we fixed the parameter values for lactate transport and

optimized the lactate production and consumption parameters.
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Chapter 1

Introduction

This chapter provides a summary of key components of the thesis. A comprehensive literature

review is presented in chapters 2 and 3.

1.1 Mathematical Modeling of Brain Metabolism

The brain is an organ with high energy demands compared to other organs in the human body.

Brain energy needs are primarily provided through glucose, but lactate and ketone body are alter-

native sources of brain energy in certain circumstances [5]. Energy substrates are transported to the

brain by blood vessels. They are utilized in case of energy demand in which cerebral blood flow

(CBF) increases to supply more nutrients to the activated brain regions [6, 1].

Due to the emphasis on the importance of lactate over the past years and the lack of direct access

to the physiological processes in the lower level, mathematical models are proposed to capture the

possible mechanisms of lactate metabolism in the brain. These models are utilized to provide math-

ematical evidence for a specific hypothesis, study intermediary variables involved in a physiological

process, and predict the system’s behavior, which can help design experiments.

Over the past years, some models for brain metabolism have been proposed, but new models are

required to take into account our updated physiological knowledge. These updates are reflected in

the compartmentalization, equations, and parameters of the models. Also, some of these models did

not consider the effect of parameters on their conclusion on the lactate behavior in the brain. They
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also have parameters that are biased toward a specific direction of lactate uptake or release, such as

astrocyte-neuron lactate shuttle.

1.2 Contribution of the Thesis

This thesis proposes a mathematical model for lactate metabolism in the brain based on the cur-

rent physiological literature. This model consists of four ordinary differential equations (ODEs),

each tracking lactate concentration in one of the four compartments considered for this lactate

model. These compartments include pyramidal neuron, extracellular space, astrocyte, and capil-

lary. We analyze the possible behaviors of the model in resting and its transients to different states

by varying a few parameters. We also simulate the equations over time to test the output of the

model in different scenarios. We specifically test the effect of artery lactate on neuronal lactate

metabolism in the energy demand situation.

1.3 Organization of the Thesis

In chapter 2, a more detailed review on the brain metabolism of lactate is presented. Chapter

3 reviews concepts of mathematical modeling and optimization. Then a review of other models

of brain metabolism is included. In chapter 4, we present the proposed model and then we in-

clude results of optimization in resting and simulation of different scenarios. Finally, chapter 5 will

summarize the findings and future work.

1.4 Publications

• Soltanzadeh M, Blanchard S, Benali H. A computational model for brain lactate exchanges

in neuro-glio-vascular coupling. Organization for Human Brain Mapping (OHBM); 2021;

Online.

• Soltanzadeh M, Benali H, Blanchard S. A physiologically-based computational model to

study brain lactate exchanges. Organization for Human Brain Mapping (OHBM); 2020; On-

line.
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• Soltanzadeh M, Blanchard S, Benali H. Optimization study of a new computational model

for brain lactate exchanges at rest. Organization for Human Brain Mapping (OHBM); 2020;

Online.

• A journal article is in preparation including the model and its analysis and will be submitted

soon to the Journal of Cerebral blood flow and Metabolism.
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Chapter 2

Physiological Background

2.1 Introduction

In this chapter, we first briefly introduce neurons and astrocytes and their interactions, and then

elaborate on brain metabolism. Finally, we review mechanisms of lactate transport and production

and its potential roles in the brain.

2.2 Brain Compartments and Energy Metabolism

Main types of brain cells are glial cells and neurons. Neurons are considered the main compo-

nents of the brain. Different networks of neurons are connected, and the generated action potential

is propagated along their axons. The action potential is an electric signal that is created by the

imbalance in the equilibrium of ions between extracellular and intracellular space. This signal is

created when the neurons are stimulated more than a certain threshold. This is called firing of neu-

rons. When the signal reaches the point where two neurons are connected and created a synapse,

neurotransmitters are released in the joint area that is called synaptic cleft. These neurotransmitters

will activate receptors in the following neuron, and the action potential continues to move along the

next neuron’s axon [7].

Neurons are divided into different categories based on their functionality, structure, shape, and

axon length. In a classification, neurons are classified as excitatory or inhibitory. Excitatory neurons
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release neurotransmitters, which causes the receiving neuron to increase the potential and get closer

to the firing voltage threshold of the neurons. If enough excitatory signals arrive at a neuron, the

action potential is generated. Contrary to the excitatory neurons, inhibitory ones reduce the potential

and inhibit the postsynaptic potential in the subsequent neuron. So, they decrease the chance of

firing in the receiving neuron. The most numerous type of excitatory neurons are pyramidal neurons

and they mainly release glutamate as neurotransmitter, so they are called glutamatergic neurons. On

the other hand, inhibitory neurons are GABAergic neurons as they release gamma-aminobutyric

acid (GABA) as neurotransmitter [7, 5].

Glial cells mainly include astrocytes, microglia, Schwann cells, and oligodendrocytes. Glial

cells are the most abundant cells in the brain, and they are known as the supporters of neurons.

Contrary to the neurons, they do not produce action potential nor form dendrites. Microglial cells

are part of the immune system in the central nervous system. Schwan cells and oligodendrocytes

form myelination around axons, which boosts the propagation of action potential. The difference

between Schwann cells and oligodendrocytes is that the former act in the peripheral nervous system

and the latter in the central nervous system [7].

Astrocytes interact with the neurons in many ways, including synapse formation, uptaking neu-

rotransmitters from the synaptic cleft, regulation of k+ ion, and nourishing neurons’ energetic de-

mands. Astrocytes’ end-feet surround blood vessels and uptake nutrients such as glucose and lactate

[7]. For instance, if glutamate uptake by the astrocytes stops working, the concentration of gluta-

mate in the extracellular space increases and leads to the death of neurons. This phenomenon is

called neurotoxicity [8].

2.2.1 Glycolysis

Glucose is the main energy substrate of the brain, which produces Adenosine Triphosphate

(ATP) due to a metabolic reaction network called glycolysis. Glycolysis is the process in which

pyruvate is produced from glucose. This process involves several intermediary reactions and en-

zymes as shown in a simplified format in Figure 2.1 and a more detailed format in Figure A.1

[9, 4, 5].

Then pyruvate has two ways to be converted. First, in the presence of enough oxygen, it can
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Figure 2.1: This figure shows different pathways of glucose utilization and provision. It shows
oxidative phosphorylation and aerobic and anaerobic glycolysis. Glucose can also be derived from
glycogen. (taken from [1])

be oxidized to water and carbon dioxide and produce ATP. In mitochondria, pyruvate is oxidized

by entering the tricarboxylic acid cycle (TCA cycle), also known as the Krebs cycle. As a second

option, it can produce lactate with the help of the lactate dehydrogenase (LDH) enzyme. The former

is called oxidative phosphorylation. The latter pathway, producing lactate, happens when there is

not sufficient oxygen delivery to fully oxidize glucose [5]. In this case, this pathway is called

anaerobic glycolysis. In some circumstances, reduction of pyruvate to lactate can also happen

when the oxygen level is normal and is called aerobic glycolysis. Aerobic glycolysis can happen

in cells such as astrocyte and cancer cells [1]. Even though oxidative metabolism results in more

ATP production (30 ATP molecules vs. 2 molecules in glycolysis), but glycolysis happens at a

faster rate. Therefore, it is suited to the sudden energy demands of Na+/K+-ATPase. Aerobic

glycolysis varies over different brain regions that can be due to the differences in the percentage of

non-neuronal cells [10, 5]. In this thesis, we are focused on modeling only lactate dynamics.

Most shreds of evidence are compatible with the fact that glycolytic activity and lactate utiliza-

tion happens in the glutamatergic neurons and not in the GABAergic neurons [1, 11]. Chatton et al.

[12] studied the relationship between GABA uptake and metabolic activity in the astrocytes. They

did not find an association between increased glycolytic activity and GABA release by the neurons.

Based on these pieces of evidence, we only consider pyramidal neurons in our model.
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2.3 Lactate

Lactate is a substrate produced and metabolized in the human body, especially in the muscles

during physical exercise or in the brain. For instance, muscles produce lactate during physical

exercise, and then lactate is transported to the heart to be used as an energy substrate. In addition

to the energetic role of lactate, studies have found other functions for lactate. According to [13],

lactate is effective in retrieving memory in rats, while in another study, Sada et al. [14] suggested

that inhibiting lactate production inside the brain can potentially reduce epileptic seizures. In the

next sections, we will introduce some of the lactate contributions in more detail.

2.3.1 Lactate Contributions

Energy Substrate

Lactate was initially considered the waste product of physical exercise with no specific role in

the brain, but this view has changed over the past decades. First, it was shown that lactate could be

metabolized by the neurons [15, 16] and then Pellerin et al. [17, 18] provided evidence in favor of

glutamate uptake and lactate release by the astrocytes upon activation. They suggested a mechanism

in which astrocytes produce lactate from glucose during stimulation to provide energy substrates

for the neurons. They called it the astrocytes-neuron lactate shuttle, which will be introduced in the

subsequent sections.

In a later study, Wyss et al. [15] provided in-vivo evidence concerning the energetic roles of

lactate. Their results suggested that neurons preferably consume lactate rather than glucose in the

presence of both substrates, which can help the neuronal activity to be maintained despite a drop in

glucose levels.

Epilepsy

Epileptic seizures are associated with the sudden and synchronized activity of neurons. An

essential aspect of seizures is their high energy demands which can be met by lactate and glucose.

So, one mechanism to suppress seizures is to inhibit the energy supply to neurons [19].
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In a series of experiments, Sada et al. [14] investigated the effect of inhibiting lactate pro-

duction on controlling epileptic seizures. First, they hyperpolarized neuron membrane by using

β-hydroxybutyrate (a ketone body) and removal of glucose. Then by administration of lactate,

hyperpolarization reversed, meaning that lactate can be converted to pyruvate resulting in ATP pro-

duction. They also inhibited LDH to stop lactate production, and they observed that it causes mem-

brane voltage to decrease. Altogether, their results propose that inhibition of LDH could be helpful

to suppress seizures as it reduces membrane potential and decrees the chances of neurons to fire.

Plasticity and Memory

In a study by Suzuki et al. [13], they investigated the effect of inhibiting glycogen-derived lactate

production inside astrocytes on memory consolidation in rats. They showed that this inhibition of

lactate production impaired rat’s memory in avoiding a dark room with an electric shock. Figure

2.2 displays the experimental procedure and the results. In addition, in some studies deficits in the

expression of specific lactate transporters resulted in impaired memory [1].

Exercise and Lactate

Some studies proposed lactate metabolism during exercise as an alternative for glucose [20].

Rasmussen et al. [21] analyzed several published experiments that investigated arterio-venous lac-

tate concentration differences and concluded that a net lactate uptake by the brain during exercise.

Quistorff et al. [22] proposed lactate as an alternative energy substrate during exhaustive exercise

by analyzing cerebral metabolic ratio (CMR). CMR is defined as the cerebral molar uptake ratio of

oxygen
glucose+0.5lactate .

Matsui et al. [20] examined the role of glycogen-derived lactate in fueling the brain during

exercise. Their findings suggest that inhibiting glycogen phosphorylation reduces lactate and, as a

result, hippocampal ATP concentration at the exhaustion level of physical exercise. They also stated

that slighter levels of exercise increases levels of monocarboxylate transporters in the brain.
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(a) Experimental protocol

(b) Proposed mechanisms

Figure 2.2: (a) This figure shows the experimental protocol to test for the effect of lactate on mem-
ory. The rat face an electric shock in the dark room and when they again tested it after 24 hours,
it moved to the dark room with a delay. Inhibition of lactate production, removed this delay and
then by injecting lactate the rat could do the task with a delay again after 24 hours. (b) This fig-
ure shows the proposed mechanism of lactate production and increased plasticity-related molecules
(ARC, pCREBs, pCFL1) (taken from [1]).

Lactate as a Signaling Molecule

Lactate has also been proposed to have a signaling role in the brain. They act on the receptors

called G-protein coupled receptors (GPR81), also known as HCAR1, and results in the production

of cyclic adenosine monophosphate (cAMP) that regulates the metabolism of glucose inside neurons

[1]. This signaling role of lactate can also change the excitability of neurons by acting on the N-

Methyl-D-aspartate (NMDA) receptors and intake of Ca2+ ions [23].

9



2.3.2 Monocarboxylate Transporters

Lactate can be transported between brain compartments via monocarboxylate transporters (MCTs).

There exist several isoforms of MCTs. MCT isoforms 1–4 are proton-coupled transporters that fa-

cilitate the transport of lactate and pyruvate across the membrane [24].

Main lactate transporters in the brain are MCT1, MCT2 and MCT4 [25, 26, 27]. Even though

there are some discrepancies in the placement of these transporters in the brain but according to

our literature review, there is an agreement about different types of the MCTs in the interface of

different cells: ([28, 29])

(1) Neuron-Extracellular space interface (MCT2 representation)

(2) Astrocyte-Extracellular space interface (MCT4 representation)

(3) Astrocyte-Capillary interface (MCT1 representation)

They act in a bidirectional pathway and transport substrates by facilitated diffusion with co-

transport of H+ ions [30]. Facilitated diffusion is a passive transport of metabolites without ATP

consumption and is based on the gradient of the concentrations.

2.3.3 Lactate Production/Consumption

The LDH reaction mentioned in 2.2.1, is a bi-directional near-equilibrium reaction which pro-

duces lactate/pyruvate catalyzed by the LDH enzyme:

pyruvate+NADH
LDH
� lactate+NAD+ (1)

There are different subtypes of LDH, but evidence suggests that LDH1 is more present in neurons

while LDH5 is more found in the astrocytes. LDH1 favors lactate consumption to produce pyruvate.

In contrast, LDH5, which favors lactate production [31]. Experimental studies suggest that neurons

have more capacity to produce pyruvate, and astrocytes are adapted to produce more lactate [32].

In [2], they showed that more than 60% of neurons are lactate consumers while all the examined

astrocytes were net lactate producers. The procedure included blocking MCTs to stop lactate trans-

port to the cells and then measuring the lactate concentration dynamics. According to 2.3 those with
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increasing dynamics are net producers that cannot export their surplus lactate. At the same time,

those with decreasing curves are net consumers and, due to the blockade of MCTs, cannot import

enough lactate. Few cells do not react to the MCT block.

Figure 2.3: This figure illustrates an example response of neurons and astrocytes to lactate trans-
porter (MCT) blockage. It shows if they are net producers or consumers of lactate (taken from
[2])

2.3.4 Astrocyte-Neuron Lactate Shuttle (ANLS)

Pellerin et al. [18] first introduced the concept of lactate shuttling from astrocytes to neurons.

They proposed this hypothesis based on an experiment in which astrocytes released lactate upon

stimulation. Specifically, the release of lactate was triggered by glutamate uptake, a neurotransmit-

ter released by the neurons when activated.

The existence of different transporters and enzymes in neurons and astrocytes has also rein-

forced the ANLS hypothesis. One example is what we mentioned in section 2.3.3 about the local-

ization of LDH1 and LDH5 in neurons and astrocytes. Table 2 of [33] summarized evidences in

favour of ANLS until 2004. Sotelo-Hitschfeld et al. [34] used a FRET sensor to evaluate the re-

lease of lactate from astrocytes in-vivo. They observed that increasingK+ in the extracellular space

cause membrane depolarization and observed a rapid fall in lactate concentration inside astrocytes.

In addition, there is evidence that the baseline concentration of lactate inside astrocytes is higher

than neurons, and it might enable them to create a gradient of lactate towards neurons [35].
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On the other hand, there are pieces of evidence that emphasize the opposite direction (Neurons-

Astrocyte Lactate Shuttle (NALS)) or at least suggest that astrocyte lactate is not necessary for

neurons’ metabolism [3]. NALS is also known as the classic view of lactate metabolism. Schurr

and Payne [36] concluded that the share of astrocytic lactate from lactate consumption by neurons

is low (15%). In another study, Based on the model proposed in [37] and using fMRS data, Mangia

et al. [38] suggested that the glucose utilization capacity should be 12-fold higher to make ANLS

possible.

Figure 2.4: A proposed hypothesis that challenges ANLS view. Based on this hypothesis, glycol-
ysis inside neurons is mainly responsible for providing energy substrate for the brain, and lactate
produced in the neurons is possibly transported to the astrocytes (taken from [3])

Combining the two views on lactate shuttling, some researchers believe that there is a switch

between these two different mechanisms [33, 39, 31]. [40] considered different roles for the aerobic

and anaerobic glycolysis and suggested that the latter’s role is more related to the maintenance

of synaptic potentials. While [41] believes that the switch from glucose to lactate happens when

neurons need more energy, [31] states that the neurons switch from glucose to lactate in some cases,

like when the concentration of lactate is higher.
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2.4 Challenges and Debates

There is a consensus over the importance of lactate, but there are still questions about the ex-

tent of its contributions and its mechanisms in the brain. One of the challenges is the direction of

lactate shuttling (ANLS vs. NALS) that was addressed in section 2.3.4. In fact, the experiments

and models aim to find if both directions exist and when the switch to each of them happens. This

behavior can vary among species, different brain regions, and the level of activation. There are also

questions about the role of blood lactate in the brain. It is well established that lactate uptake by the

brain increases during physical exercise [21, 42]. However, researchers are still investigating how

much this contributes to neuronal energy demands compared to glucose and brain lactate produc-

tion. Understanding the mechanism of lactate contribution in physical activity can decipher the link

between physical exercise, lactate, and the brain.

Additionally, there are questions about the end product of glycolysis. It is widely accepted that

pyruvate enters mitochondria as the end product of glycolysis. But some observations and inter-

pretations suggest lactate, not pyruvate, transport to mitochondria and then conversion of lactate

to pyruvate with the help of mitochondrial lactate dehydrogenase (mLDH) enzyme [43]. In other

words, lactate is not only the end product of anaerobic glycolysis but also the end product of aerobic

glycolysis [42]. In a review by [6], they argued that based on their previous experiments and obser-

vations, considering lactate as the end product of glycolysis is a more consistent view. In chapter 4,

we try to answer part of these questions from the perspective of our model.
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Chapter 3

Mathematical Modeling of Brain

Metabolism and Optimization

Mathematical modeling is widely used in neuroscience to simulate brain readouts and under-

stand intermediary processes in the brain. Hodgkin and Huxley’s model is a pioneer model that

tried to model action potential propagation along axons. Another type of model called compartmen-

tal models assumes a ”compartment” which is a well-mixed part of the system with no difference

in the concentration of what we want to study. These types of models have been initially used in

pharmacokinetics, and drug delivery studies [44]. Another important consideration in modeling is

the level of abstraction. We can model a process in the level of a single cell, a region, or the whole

brain as a unique system.

Even though, there has been a focus on neurons as the most important components of the

brain, but in recent years, astrocytes have also grabbed the attention of neuroscientists. Their non-

negligible role in the maintenance, metabolism, and regulation of neurons and synapses have made

them an essential part of some recent computational models for the analysis of brain function. There

are computational models that in addition to the neurons include astrocytes that recycle neurotrans-

mitters and exchange other metabolites with the extracellular space. Some of these models can

generate the local field potentials as an output [45]. Adding astrocytes can help to us decipher some

hidden intermediary mechanisms and also we can observe the effect of them on the brain data such
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as EEG or fMRI.

This chapter introduces mathematical modeling of chemical reactions and reviews other pro-

posed mathematical models for brain metabolism with a focus on lactate and optimization used for

model’s parameters estimation.

3.1 Mass Action Law

According to this intuitive law, rate of a reaction is determined in proportion to the product of the

concentrations of the reactants that take part in the reaction [46]. This gives us a quantitative model

to determine the reaction velocity and final concentrations starting with a specific initial condition.

The following sections will present applications of this law with a few examples.

3.1.1 Chemical Reactions rate

For a basic reaction in which A is converted to B in an uni-directional way, we can derive the

reaction rate as follows:

A
k1−→ B so, Ḃ = rate = k1[A] (2)

In which Ḃ is the time derivative of the product that shows the rate at which the reaction is happening

and k1 is known as the rate constant. This reaction rate is written based on the law of mass action

[47]. For more complex settings the reaction rate will become [46, 48]:


A+B

k1−→ C so, Ċ = k1[A][B]

2D
k2−→ E so, Ė = k2[D]2

(3)

according to these examples, the rate for products is positive, while for reactants, we use a negative

sign because they decay over time. Solving these differential equations, we can obtain the transition

and steady state concentrations of a reactant or product.
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Enzymatic reactions

In enzymatic reactions, the enzyme affects the reaction rate, but it is present without changes

at the equilibrium. In the case of enzyme-substrate reactions, the enzyme (E) forms an enzyme-

substrate complex (ES) which then is converted to the product (P ) (Equation 4).

E + S
k1
�
k−1

ES
k2→ P + E (4)

Writing reaction rates at each step gives us a system of ODEs (Equation 5). Solving this system

enables us to obtain the rate at which product is formed as a function of rate constants and substrate

concentration. 

˙[S] = −K1[S][E] +K−1[ES]

˙[E] = −K1[S][E] +K−1[ES] +K2[ES]

˙[ES] = K1[S][E]−K−1[ES]−K2[ES]

˙[P ] = K2[ES]

. (5)

In equation 5, [X] refers to the concentration of species involved in the reaction and Ki is the rate

constant for each direction. To solve this ODE system, we make two simplifying assumptions [46]:

(1) Total enzyme concentration is constant. So:

[Etotal] = [E] + [ES]→ ˙[Etotal] = 0 (6)

(2) Substrate concentration is considerably higher than enzyme concentration ([S] >> [Etotal])

The first assumption leads to the following ODE system:



˙[S] = −K1[S]([Etotal]− [ES]) +K−1[ES]

˙[ES] = K1[S]([Etotal]− [ES])−K−1[ES]−K2[ES]

˙[P ] = K2[ES]

. (7)
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The second assumption results in the fast equilibrium of enzyme complex, a situation known as

quasi steady state. So we can set its time derivative equal to zero:

0 = −k−1[ES]qss + k1[S]([Etotal]− [ES]qss − k2[ES]qss) (8)

meaning that [ES]qss =
k1[Etotal][S]

K−1+k2+k1[S]
.

By doing this, we can reduce the problem to a 2-D ODE problem:




˙[S] = − k2k1[Etotal]S
k−1+k2+k1S

˙[P ] = k2k1[Etotal]S
k−1+k2+k1S

. (9)

Based on equation 9 and combining parameters we can obtain the conversion rate of S to P as:

rate = Vmax
S

KM + S
(10)

In which Vmax = k2[Etotal] and kM = (k−1 + k2)/k1

Equation 10 is called Michaelis-Menten equation and can describe behavior of many chemical

reactions. In this equation Vmax is the maximum reaction velocity happening in saturation while

KM is the concentration at which the reaction velocity is Vmax/2. KM is called Michaelis constant

[47]. Figure 3.1 represents a typical Michaelis-Menten curve and its parameters.

Figure 3.1: An illustration of the Michaelis-Menten kinetic equation and the parameters Vmax and
KM . 1

1from wikipedia.org
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Similar to this analysis, one can obtain rates for other types of reactions that are more compli-

cated. Suppose that the product can reversibly be converted to the substrate:

E + S
k1
�
k−1

ES
k2
�
k−2

P + E (11)

In this case according to [48], the reaction velocity can be written as:

rate = e0
k1k2s− k−1k−2p

k1s+ k−2p+ k−1 + k2
(12)

In facilitated diffusion, we have a carrier protein that binds the substrate and transports it across

the membrane. This phenomenon has similar properties to a reversible catalyzed reaction, except

that product is the transported substrate without a chemical change. With some manipulations, the

reaction rate for facilitated diffusion is written as [46]:

rate =
Vm1[S1]/Km1 − Vm2[S2]/Km2

1 + [S1]/Km1 + [S2]/Km1
(13)

S1, S2 represent the substrate inside and outside of the membrane. Vm1 = [Etotalk2], Vm2 =

[Etotalk−1] are the maximum transport rates andKm1 = (k−1+k2)/k1,Km2 = (k−1+k2)/k−2 are

the Michaelis constants for each side of the membrane. This is also known as reversible Michaelis-

Menten equation.

3.2 Review of Lactate Models

In this section, we will briefly review some of the brain metabolism models with a more detailed

explanation of the Aubert-Costalat reduced model proposed in [49].

3.2.1 Aubert-Costalat Model

In 2005, Aubert and Costalat [49] proposed a reduced model for lactate based on their previous

works since 2002 on the brain metabolism modeling [50, 51].

In [49], they considered lactate dynamics and interactions between two compartments: capillary
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and extracellular space. They validated their results by fitting the output of their model to the

experimental data in the extracellular space published in [52]. The following ODEs modeled the

dynamics of lactate: 
Ve ˙Lace = Jmb − JDiff − JBBB

Vc ˙Lacc = JCap + JBBB

(14)

Where, Jmb refers to the superposition of the rate of lactate release/uptake from/by neurons and

astrocytes while JDiff represents the rate of lactate diffusion. JBBB is the rate of lactate transported

through the blood-brain barrier (BBB). Finally, JCap shows the contribution of blood flow to the

changes in capillary lactate concentration [49]. Ve and Vc are volume fractions of the extracellular

space and capillary, respectively. Expanded equations for these intermediate variables are written in

equation 15. 

Jtissue = Jmb − JDiff = J(t) + β(Lace0 − Lace)

JBBB = Tmax( Lace
Kt+Lace

− Lacc
Kt+Lacc

)

J(t) =


(1 + αJi)J0 for 0 ≤ t ≤ ti

(1 + αJ)J0 for ti + tJ ≤ t ≤ tend

J0 for t < tstart or t ≥ tend + tJ

(15)

In equation 15, Tmax is the maximum reaction velocity and Kt is the Michaelis constant for the

lactate exchange between capillary and extracellular space. Lace0 is the extracellular lactate con-

centration at rest. αx are the scaling parameters for the input J(t). J(t) linearly increases between

ti and ti + tJ while linearly decreases in the interval of tend and tend + tJ . Table 3.1 contains the

parameter values and their units.

Table 3.1: Parameter set for the simulation of reduced Aubert-Costalat model

Ve Vc β J0 Tmax Kt CBF0 Laca Lace0 Lacc0
- - s−1 mM.s−1 mM.s−1 mM s−1 mM mM mM

0.2 0.0055 0.001 0.001 0.0061 3.5 0.01 0.3 1.19 0.35
αF tF αJi ti αJ tJ tend tstart

- s - s - s s s

0.8 5 -0.8 18 4.73 5 190 120
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They simulated the model by setting up a single and repetitive increase of CBF and increased

neuronal activity. neuronal activity is increased by changing Jtissue. As visualized in Figure 3.2, we

re-simulated their single stimulation scenario. They also examined the effect of pH on the dynamics

and found no considerable effect.

(a)

(b) (c)

Figure 3.2: Simulation of the Aubert-Costalat reduced model. (a) Represents extracellular lactate
concentration with an initial dip. (b) CBF changes in a 70-second period that given as an input to the
model. (c) Dynamical transitions of the intermediary variables including Jtissue, Jcap, and JBBB .

Figure 3.2a shows dynamics of extracellular lactate concentration obtained by 70-s increase in

CBF amplitude and a specific form for Jtisssue as shown in Figure 3.2c. Their model was able to re-

produce the experimental results of [52]. They specifically created the initial dip in the extracellular

lactate concentration upon stimulation using appropriate parameters and inputs. This initial dip has

been one of the most important experimental evidence of neurons’ need to lactate upon stimulation.
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3.2.2 Simpson Model

Considering six compartments of serum, endothelial cells, basal lamina, interstitium, astrocytes,

and neurons, Simpson et al. [37] developed a model to investigate lactate and glucose dynamics.

An essential aspect of the Simpson model is that their simulations support the release of lactate by

the neurons through the extracellular space and NALS hypothesis. They state that the astrocyte’s

capacity to transfer lactate is not enough to make it the primary lactate producer and transporter.

Similar to Aubert-Costalat, they also optimized the model to reproduce experimental data in [52].

Jolivet et al. [53], reviewed recent models of that time, such as the Simpson model. Specifically,

they computed the ratio of glucose uptake in neurons and astrocytes for this model. According to

their results ratio of astrocyte glucose uptake is 0.132 and decreases to 0.018 in activation mode.

They argued that this is not in agreement with the physiological and modeling literature in which

the astrocytes mainly capture glucose, and it increases during activation . In response to this com-

mentary, Mangia et al. [54] debated the claim that more glucose uptake by the astrocytes is a reason

that the Simpson model did not predict ANLS. They argued that even by increasing this ratio, they

still observe NALS. They also mentioned that it had been shown that glycolytic activity in both

astrocytes and neurons increases upon activation [55]. In a later study, a modified Simpson model

proposed that could reproduce ANLS behavior under some conditions [38].

3.2.3 Cloutier Model

Cloutier et al. [56] proposed this model as an extension to the metabolic models in [50, 51] by

adding glycogen dynamics. They modeled the dynamics of several metabolites and intermediary

processes involved in brain metabolism. Regarding lactate, in Cloutier’s model, neurons only in-

teract with the extracellular space and can produce and consume lactate. However, astrocytes can

also exchange lactate with the capillary. Equations and parameters for the LDH and MCT kinetics

in this model are taken from [50, 51]. In the first scenario, they simulated a 5-minute sharp stimu-

lation which caused more lactate production inside astrocytes and more lactate consumption inside

neurons. In their model at the baseline, neurons are net lactate consumers, and their results support

ANLS.
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3.2.4 Rangel Model

In a recent model proposed in [57] they explored the link between hemodynamics, metabolism,

and electrical activity of the brain in resting and activation. In their model, astrocytes act as an

intermediary compartment between blood vessels and neurons, and all compartments interact with

the extracellular space. They modeled the rates for reactions using Michaelis-Menten kinetics equa-

tions, and they defined arterial lactate and CBF as inputs to the model.

Results that are shown in Figures 4 and 5 of [57] indicate an increase in the lactate production

inside neurons upon increased activation and a switch to pyruvate production in the astrocytes upon

the start of activation. These results are not in favor of the ANLS hypothesis. Additionally, lactate

transfer from extracellular space to neurons is reversed during activation, which supports NALS.

3.2.5 Other Models

There are other models in the literature that dealt with the various physiological hypothesis and

different analysis techniques. In a study by Somersalo et al. [11], they reviewed known metabolic

models and proposed a probabilistic approach for analyzing their previous developed model [58]. in

this method, instead of fixing the model’s parameters, a probability distribution is assumed around

the flux rates and reaction kinetics. The mean of this distribution is chosen based on the literature.

Their results, as depicted in Figure 7 of [11], show that the ratio of glucose compartmentalization

between neurons and astrocytes is crucial in determining the direction of the lactate shuttle. Later

they applied the Markov chain Monte Carlo (MCMC) method for uncertainty quantification in a

spatio-temporal model of brain metabolism [55].

Patsatzis et al. [59] analyzed a computational model for lactate kinetics using the computational

singular perturbation (CSP) method. This algorithm can distinguish between the parameters based

on their contribution to the fast/slow dynamics. Therefore, CSP can quantify the influence of a

parameter or metabolite on the temporal evolution of the system. They analyzed the lactate model

proposed in [37] and [38]. They concluded that lactate transport between astrocytes and interstitium

determines whether ANLS will emerge from a model or NALS. In fact contribution of this factor

to the fast dynamics results in ANLS and vice versa. Jolivet et al. [60] proposed a multi-scale
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model to simulate links between excitation and metabolism in the neuro-glio-vascular coupling.

From the lactate perspective, their equations and compartmental organization are the same as those

in [56, 51].

3.2.6 Discussion and Conclusion

Even though the introduced models might differ in compartmentalization, equations, parame-

ters, and analysis methods, they have common terms. For instance, the models proposed by Cloutier

[56] and Jolivet [60], are both the same as the model proposed in [51] in terms of equations and some

parameter values.

One important consideration is that most of these introduced models pay less attention to the

variability of parameters and how this can affect their conclusions. Additionally, there is usually

more focus on the simulation of the model in an activation period and the resting state condition

is fixed. At the same time, there are also variabilities in resting that affect the activation results as

well.

The Aubert-Costalat reduced model’s result is fitted to the data by Hu and Wilson [52] and it can

precisely reproduce the initial dip in the extracellular lactate concentration. This result is promising

and shows the model’s physiological capabilities. However, looking back at Figure 3.2c, we see that

this is partly due to how they chose their inputs. They added an initial dip to Jtissue, which causes

the demand in the beginning and results in a good fitting.

In addition, it should be noted that fitting the results does not guarantee the validity of all the

conclusions. For instance, When we compare Simpson and Aubert-Costalat model, we see that

both models fitted their results to the experimental data by Hu and Wilson. Nevertheless, they have

opposite conclusions about the direction of lactate transport between neurons and astrocytes.

Also, to build a physiologically-plausible model, we need to have adequate and updated physi-

ological knowledge. Therefore, we have to take into account new experiments and findings. These

experiments can add to our knowledge about the parameters and underlying mechanisms. Finally,

according to our review, even though artery lactate exists in other models, its contribution to brain

energy metabolism is not studied explicitly.
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3.3 Parameter Estimation

A challenging part of mathematical modeling is parameter estimation, especially when it comes

to the brain. The parameters are determined by the experiments that have their limitations in cap-

turing the exact dynamics and properties of the physiology. In any modeling problem, some of the

parameters should be fixed using an optimization framework in steady state or using temporal data.

Several techniques can be used depending on the complexity of the model’s equations, number of

desired parameters, and convexity of the equations.

3.3.1 Optimization

Mathematically, optimization means finding acceptable variables’ values in order to minimize

or maximize an objective function (cost function) of the desired variables, f(x), and is formulated

as;

min(x)(f(x)), x = (x1, x2, ..., xn) (16)

subject to:

gi(x) ≤ ai, i = 1, 2, ..,m

hj(x) = bj , j = 1, 2, .., p

lb ≤ xk ≤ ub, k = 1, 2, ..., n

(17)

gi and hj are the ith and jth inequality and equality constraints on variables and similar to f(x)

can be either linear or non-linear while ai and bi are constant. Also each desired variable should

lie in a plausible interval specified by its lower bound (lb) and upper bound (ub). Equations 16 and

17 together describe a constrained optimization problem. In some optimization problems, we have

more than one objective function to optimize, which is called multi-objective optimization. Instead

of solving a multi-objective optimization problem, we can build a scalar function from the weighted

sum of squares of the cost functions [61].
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Local vs. Global Optimum

Local optimum is an optimum point limited to its sufficiently close vicinity. A function can

have more than one local minimum, but there is only one global minimum, which is also a local

minimum. Figure 3.3a visualizes the difference between local and global minimum by an example

in one dimension.

Based on this concept, functions can be categorized as convex (concave), in which there is only

one global minimum (maximum), and non-convex. Mathematically, they are defined as functions

with non-negative second derivatives. When the objective function is convex, The local and global

optimum are the same. The problem becomes more complicated when it is non-convex. In this

case, especially when there are multiple local optima, we should find the best local minimum as

the global minimum. Figures 3.3b-3.3c are two examples of the functions with multiple local min-

ima. These non-convex functions are harder to optimize because contrary to the convex problems,

moving toward one direction does not guarantee convergence to the global minimum, which we are

normally interested in.

3.3.2 Optimization Techniques

In this part, we briefly introduce some optimization techniques. the first two algorithms are

gradient-based, and the others are heuristic methods.

Multi start

Multi Start (MS) is a gradient-based algorithm that exploits the Gauss-Newton approach. In

this method, multiple sets of initial points are chosen in the parameter space. Then starting from

the initial points and using a specific solver, it tries to approach the optimum point. At each step,

MS updates the optimum parameter vector based on the cost function’s gradient calculated for each

parameter until it reaches the threshold [62, 63]. We can reduce the dependency of solutions on the

initial guess by randomly choosing starting points, which helps the algorithm test different regions

in the parameter space and not being trapped in the same local minimum.
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Figure 3.3: Local vs. global minimum

Global Search

Global Search (GS) is similar to MS because they both do the local optimization for several

starting points and then pick the best solution. The difference is that in GS, the starting points

are generated by a scatter-search procedure. GS estimates basins of attraction (BOA) based on the

user’s provided initial point and then generates several sets of starting points based on the estimated

BOA. Then it runs the local solver on each starting point [63].

Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) is the genetic algorithm’s sociopolitical counterpart,

which utilizes the metaphor of imperialist competition. In this metaphor, countries are the param-

eter sets which we initially choose. An imperialist is a parameter set with minimum cost, and the
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colonies in each empire have a higher cost compared to their associated imperialist [64].

First, several parameter sets are generated, and some are picked to be the imperialist and some

as colonies. Then colonies are replaced toward imperialists, as shown in figure 3.4. There is also

the probability of revolution in each iteration, meaning that newly generated ones may replace some

sets in an empire. Finally, ICA converges to a single set of parameters with the minimum cost

[65, 64]. The complete algorithm is depicted in Figure 3.3.2.

Figure 3.4: Assimilation in ICA

Figure 3.5: ICA algorithm
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Pattern Search

Pattern Search (PS) falls under the algorithms that do a direct search for the optimization. In

direct search, the algorithm does a grid search around a specific point to find the solution and does

not need any orders of derivative. More specifically, PS chooses one point as the current point and

calculates the objective function. Then it produces new points close to the current point by adding

a vector to it to see if they can have a lower value compared to the current point’s output or not. If

so, then the current point will be updated to the point with lower function output, and if not, PS will

start searching a closer vicinity of the current point. PS is useful for non-smooth objective functions

[63].

Genetic Algorithm

Genetic algorithm (GA) is a heuristic method inspired by the theory of evolution. In this method,

the space of parameters is encoded in the gene strings and then the populations of the possible

solutions are created. These candidate solutions evolve, and in each step, the parameter sets with

the lowest cost (fittest solutions) survive [61, 62].

Goal attainment method

The goal attainment method (GT) can be used for multi-objective optimization without using the

sum of squares of the objectives. In multi-objective problems, sometimes there is a conflict between

optimizing two functions simultaneously i.e., all objectives cannot be minimized at the same time

[66]. GT is expressed as [63]:

minimize γ (18)

Such that:

Fi(x)− wiγ ≤ F ∗i , i = 1, ...,m (19)

F ∗i is the ith objective. The term wiγ adds a flexibility to the problem. The weighting vector, w,

enables the user to inject a relative trade-off between the objectives. For example, setting w equal

to the initial goals indicates that the same percentage under- or overachievement of the goals, F ∗, is
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achieved [63]. One implementation of goal attainment that I used in Matlab is fgoalattain (FG).
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Chapter 4

Proposed Lactate Model and Analysis

4.1 Introduction

In this chapter, we introduce the proposed lactate model with the equations and parameters.

Then the preliminary results of optimization and resting state analysis are included. Finally, we

tested the model’s ability to simulate different scenarios.

4.2 Overview of the Model and Compartments

Our proposed model comprises four different compartments, namely pyramidal neuron, astro-

cyte, capillary, and extracellular space. The model is neutral concerning the direction of lactate

transport, meaning that there is the possibility of both uptake and release of lactate for all the com-

partments. The model includes two primary sources of lactate: (1) local production inside the pyra-

midal cells and astrocytes, and (2) lactate from arteries, and can be consumed by the pyramidal cells

and astrocytes. According to the current literature, access of neurons to the blood-brain barrier is re-

stricted, and astrocytes’ endfeet is mainly in contact with the capillaries. It is suggested that 90% of

glucose metabolism taking place in the gray matter happens in the astrocytes [67, 68]. Therefore, in

our model, we consider astrocytes as the only compartment in touch with the capillaries. Compared

to other models of lactate, (1) we introduced new equations for the exchange of lactate between

compartments and lactate production/consumption, (2) we analyzed the extent of lactate transport
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rates in resting state as a result of choosing a different set of physiological parameters, and (3) we

focused on analyzing the effect of arterial lactate changes on tissue lactate dynamics. The scale of

the model is 1-gram brain tissue. Figure 4.1 is a schematic illustration of the proposed model

Figure 4.1: This figure is a schematic representation of the proposed lactate model. The astro-
cytic compartment works as a gate for exchanging lactate with the capillary, and this lactate uptake
from the capillary increases during exercise or due to injection. MCTs carry lactate across the cell
membrane and can be found in different isoforms, including MCT1, MCT2, and MCT4. The ar-
rows show the pathways. LDH is the enzyme that catalyzes the reaction of lactate production and
consumption.

In the following sections, we will introduce each compartment and its corresponding equations

for lactate turnover. LacX , X = P,E,A,C are system’s states (variables) and show lactate con-

centration inside pyramidal neuron, extracellular space, astrocyte, capillary, and artery, respectively.

In the rest of this thesis, we refer to transport and production-consumption equations/parameters as

MCT and LDH equations/parameters, respectively. To distinguish between system’s states and pa-

rameters, we use bold notation for the states and normal notation for the parameters.

4.2.1 Pyramidal Neuron

As discussed in chapter 2, we only consider pyramidal neurons. In this model, there is the

chance of release and uptake of lactate between pyramidal neurons and extracellular space through
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a bidirectional pathway. We model this process by a simplified version of reversible Michaelis-

Menten similar to an enzymatic reaction rate as described in [67]. The rate is given by:

VEP =
V m
E→P (LacE −LacP )

Km
E→P +LacE +LacP

(20)

V m
E→P is the maximal rate of transport between extracellular space and pyramidal cells, andKm

E→P

Figure 4.2: Reversible Michaelis-Menten model of VEP

is its corresponding Michaelis constant. When VEP > 0, it means that lactate is transported from

extracellular space to the neuronal compartment and vice versa. The plot for equation 20 for certain

range of LacP and LacE is visualized in Figure 4.2.

As mentioned in section 2.2.1 of chapter 2, lactate is produced from pyruvate in the last step

of glycolysis, and the consumption of lactate happens in the opposite direction. We model this

conversion by a double Michaelis-Menten equation [69]:

ProdP =
V prod
P PyrP

Kprod
P + PyrP

, ConsP =
V cons
P LacP

Kcons
P +LacP

(21)
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With V prod
P and V cons

P being the maximal rate andKprod
P andKcons

P being the Michaelis constant for

the production and consumption, respectively. PyrP is the concentration of pyruvate in pyramidal

neuron compartment. Combining both terms, we can represent the net lactate production as:

JP = ProdP − ConsP (22)

Parameter values for the equations 20, 21 are included in Table 4.1.

Table 4.1: Parameter values for equations 20 and 211

Parameter Unit Value
V m
E→P mM.min−1 1

Km
E→P mM 0.7
V prod
P mM.min−1 0.5
Kprod

P mM 0.0454
V cons
P mM.min−1 3.2234
Kcons

P mM 8.5

In the following when we refer to neurons, we mean pyramidal neurons.

4.2.2 Astrocyte

Based on the current literature, it is widely accepted that astrocytes play a critical role in the

brain’s metabolism, even though there exist debates about the mechanism of its contributions. So,

we consider astrocytes as part of our model. Astrocytes exchange lactate with the capillaries and

extracellular space and have a significant contribution to lactate production. We modeled their

interactions with the extracellular space by the following equation similar to VEP as follows:

VAE =
V m
A→E(LacA − LacE)

Km
A→E +LacA + LacE

(23)

V m
A→E is the maximal rate of transport between extracellular space and pyramidal cells, and Km

A→E

is the Michaelis constant. VAE > 0 means that there is lactate release by the astrocyte compartment

to the extracellular space and vice versa.
1Values for V m

E→P and Km
E→P are based on the experiments in [70, 71]. Parameter values for LDH equations are

obtained after an optimization process explained in section 4.3.2.
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For the lactate transport between astrocytes and capillaries, we considered a model of double

Michaelis-Menten kinetics compared to the reversible model of VEP and VAE . Because in this case,

we have two different pathways of release and uptake. This transport equation is written as:

VAC =
V m
A→CLacA

Km
A→C +LacA

, VCA =
V m
C→ALacC

Km
C→A +LacC

(24)

V m
A→C and V m

C→A represent maximal rate of transport for the lactate transport from astrocyte to

capillary and from capillary to the astrocyte, respectively. Km
A→C andKm

C→A are Michelis constants

of the astrocyte-capillary transport rate. When VAC − VCA > 0, astrocyte releases lactate to the

capillary while having VAC − VCA < 0 means that there is a net lactate uptake by the astrocyte.

Finally, two Michaelis-Menten equations are proposed (equation 25) to model lactate produc-

tion and consumption. Even though astrocytes mainly produce lactate and their consumption is

considerably lower, we still need the consumption term to regulate their production when there is

an excess of lactate in the extracellular space or capillary.

ProdA =
V prod
A PyrA

Kprod
A + PyrA

, ConsA =
V cons
A LacA

Kcons
A +LacA

(25)

With V prod
A and V cons

A as the maximal rate and Kprod
A and Kcons

A as the Michaelis constants for

the production and consumption, respectively. PyrA is the concentration of pyruvate in pyramidal

neuron. The net lactate production becomes:

JA = ProdA − ConsA (26)

Table 4.2 summarizes the parameter values for the equations 23-25.

4.2.3 Extracellular Space

Extracellular space is shared between astrocytes and pyramidal neurons. Its corresponding dy-

namics are modeled in the equations 20 and 23.
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Table 4.2: Parameter values for equations 23-252

Parameter Unit Value
V m
A→E mM.min−1 5

Km
A→E mM 28

V m
A→C mM.min−1 0.1

Km
A→C mM 1.9

V m
C→A mM.min−1 0.4

Km
C→A mM 5.1
V prod
A mM.min−1 0.6835
Kprod

A mM 0.084
V cons
A mM.min−1 0.08
Kcons

A mM 1

4.2.4 Capillary

As mentioned above, capillaries interact with the astrocytes, and we mathematically represented

this process in equation 24. The next part that contributes to the dynamics of the capillary compart-

ment is CBF and artery lactate. This is represented by a model that is called the balloon model, and

we took it from [51]. It is written as follows:

Vcap =
2CBF (t)

VC
(LacJ −LacC) (27)

In this equation, LacJ is the artery lactate concentration, and VC is the capillary volume. CBF is

the cerebral blood flow. Parameter values for this equation are represented in Table 4.3.

Table 4.3: Parameter values for equation 27

Parameter Unit Value
VC - 0.0055

CBF0 min−1 0.012
LacJ mM.min−1 0.88

Values of VC and CBF0 are derived from [51, 56] and value of LacJ is based on [21]

Now that we have introduced modeled lactate kinetics in each compartment, we can write the
2Values of V m

A→E and Km
A→E are based on the experiments in [71, 72, 73]. For V m

A→C , Km
A→C , V m

C→A, and Km
C→A

values are derived from [74, 69]. Value of Kprod
A , V cons

A , and Kcons
A are obtained from [75, 32] while V prod

A is obtained
after an optimization process explained in section 4.3.2.
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summarized system of ODEs that describe behavior of this system as follows:



F1(t) = dLacP
dt =

V m
E→PLacE−LacP

Km
E→P+LacE+LacP

+
V prod
P PyrP

Kprod
P +PyrP

− V cons
P LacP

Kcons
P +LacP

F2(t) = dLacE
dt = −1

rEP

V m
E→P (LacE−LacP )

Km
E→P+LacE+LacP

+ 1
rAE

+
V m
A→E(LacA−LacE)

Km
A→E+LacA+LacE

F3(t) = dLacA
dt = − V m

A→ELacA−LacE
Km

A→E+LacA+LacE
+

V prod
A PyrA

Kcons
A +PyrA

− V cons
A LacA

Kcons
A +LacA

− V m
A→CLacA

Km
A→C+LacA

+
V m
C→ALacC

Km
C→A+LacC

F4(t) = dLacC
dt = 2CBF (t)

VC
(LacJ −LacC)− 1

rAC
(− V m

A→CLacA
Km

A→C+LacA
+

V m
C→ALacC

Km
C→A+LacC

)

(28)

And the short form would become:

F1(t) = dLacP
dt = VEP + JP

F2(t) = dLacE
dt = −1

rEP
VEP + 1

rAE
VAE

F3(t) = dLacA
dt = −VAE + JA − VAC + VCA

F4(t) = dLacC
dt = Vcap − 1

rAC
(−VAC + VCA)

(29)

Fi(t), i = 1, ..., 4 in equations 28 and 29, corresponds to changes in lactate concentration in each

compartment over time and is equal to the superposition of all transport and production/consumption

rates.Except Vcap, which is a linear function of LacC , other terms are non-linear functions. for

instance VEP is a non-linear function of LacE and LacP . The coefficients rEP , rAE , and rAC are

called volume fractions and they will be introduced in more details in section 4.3.1.

4.3 Parameters

After defining the equations, 22 parameters of the model should be determined. In this work,

they are fixed based on the existing literature and experiments and optimization. In fact, for the MCT

equations, we set the parameters to the more common values published in experimental literature

for MCT parameters and some of the LDH parameters. However, for the other parameters in LDH

equations, because the extent of the most parameters is large and the literature is poor on the subject,

we defined an optimization problem constrained by the range of those parameters from the literature
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and ran the optimization to have all the four ODEs equal to zero. In this case, there is not any

change in the concentrations over time. Unknown parameters to be determined by optimization are

as follows:

Φ = {V prod
P ,Kprod

P , V cons
P ,Kcons

P , V prod
A } (30)

This set includes all the LDH parameters for the pyramidal neuron compartment and one out of

four parameters of the astrocytic compartment. The optimization procedure will be discussed later

in section 4.3.2 in more detail.

4.3.1 Volume Fractions

Looking back at F2 and F4 in equation 28and 29, we can see that exchange rate equations are

multiplied by a few coefficients. These values correspond to the ratio of the volume occupied by

each compartment in the brain tissue. In the computational models of brain metabolism, this is

done to confine the space of the model to a specific well-mixed volume of the brain. This volume

of the brain is usually chosen to be 1-gram brain tissue, and by having the density of the brain as

1.04 gr
cm3 , this brain mass is equivalent to 0.96 cm3. So, each equation will be scaled by a real-valued

parameter as follows [57]:

Vr
dL

dt
= F (L), Vr =

VL
V0

(31)

Where L is the metabolite concentration, Vr is the ratio of the modeled compartment volume to

volume of 1-gram brain tissue. In another notation proposed in [50, 51], instead of scaling each

ODE by the volume ratio factor, they only used the volume fraction scaling factor for the capillary

and extracellular space compartment. In the next paragraph, we will explain that they are both equal.

Take VEP as an example. Using the first notation, it would become V0
VP
VEP in F1(t) and

− V0
VE
VEP in F2(t). On the other hand in equation 28, we have the coefficient V m

E→P in VEP .

Based on the first notation, what we used in our model is V m
E→P = V0

VP
V m′
E→P . So for F2(t), we need

to multiply this coefficient by volume fractions. In fact it is multiplied by VP
V0

V0
VE

= VP
VE

. In other

words, F1(t) is taken as the reference, and then by this coefficient, we can return it to the correct

scale. A similar logic is applied to other equations. We used the second formulation as it is widely

utilized in the current literature of lactate models. Table 4.4 includes the values of volume fractions
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used in the model and is based on [51].

Table 4.4: Volume fraction values

rEP rAE rAC

0.444 0.8 0.022

4.3.2 Optimized Parameters

As mentioned before, due to the high variability in some LDH parameters in the literature,

we only took the ranges of parameter values from previous experimental papers and optimized

the resting state. We built an optimization problem to find the best values for them in neurons

and astrocytes in order to minimize Fi, i = 1, ..., 4 in equation 28. Because we are doing the

optimization in the resting state, the goal is to have Fi = 0. To solve this problem, we leveraged an

auxiliary function to scalarize the objective function as shown in equation 32:

fobj =

4∑
i=1

f2i

goal : fobj = 0

(32)

subject to:

LB ≤ Φ ≤ UB (33)

LB and UB are the lower and upper bound of the unknown parameters derived from the published

experiments and is summarized in Table 4.53.

Table 4.5: Ranges of unknown LDH parameters in neurons and astrocytes

Parameter V prod
P Kprod

P V cons
P Kcons

P V prod
A

lb ub 0.5 60 0.03 0.07 0.24 28 0.3 8.5 0.5 70

In addition to these unknown LDH parameters, we have also four undetermined steady state

concentrations. Therefore, we have 9 variables to optimize. By concatenating Φ and these 4 steady
3Ranges for V prod

P and Kprod
P are taken from [76, 75], for V cons

P and Kcons
P from [76, 75, 32], and for V prod

A from
[75],
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states, our new set of unknown variables would become:

Φ′ = {Φ,LacSS
P , LacSS

E , LacSS
A , LacSS

C } (34)

with the ranges specified in Table 4.6. These ranges are based on typical values in the published

models.

Table 4.6: Ranges of unknown steady states

Parameter LacSS
P LacSS

E LacSS
A LacSS

C

lb ub 0.2 5 0.44 0.88 0.8 1.2 0.8 1.2

Since our optimization problem is a high dimensional and non-linear problem, it will have

multiple local minima, and the algorithm might trap in one of them. In order to prevent this, we do

the following:

(1) running the optimization algorithm for several times to obtain as many solutions as we can,

(2) when the algorithm needs initialization of the unknown parameters, we randomly choose

it from the range specified for them. So in each iteration of the algorithm, a new set of

parameters is randomly chosen from the space of parameter values.

This will add to the diversity of solutions found in the optimization. Considering all these points,

we might still have solutions that are not close to zero and will make the system drift from a steady

state. In order to avoid this, we set a threshold and discard the parameter sets that result in the

objective function to values higher than the threshold. The whole process is summarized in Figure

4.3.

4.3.3 Comparison of Optimization Algorithms

After defining the optimization problem, we ran each algorithm 2000 times to better under-

stand their convergence behavior. We compare the behavior of the following algorithms: genetic

algorithm (GA), pattern search (PS), global search (GS), multi start (MS), imperialist competitive

algorithm (ICA), and fgoalattain (FG). Figure 4.4 is attached in order to compare the algorithms in

terms of finding the global minimum. It shows the best cost achieved during these 2000 simulations
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Defining optimization 

problem with a scalarized 

cost function

Running optimization 

algorithms for 2000 times

cost function<T
Discard the 

parameter set
No

Calculate the transport 

rates for each parameter set 

Yes

Figure 4.3: Procedure to optimize and analyze the model’s resting parameters. T is a certain thresh-
old which is set to 10−15

of each algorithm. For all the algorithms except FG, the objective function is the scalarized one

defined in equation 32. Because FG does a multi-objective, its objective function is a 4-by-1 vector,

and it returns four values for the objective functions. So, the sum of squares of all returned objective

function values is calculated to make its results comparable to other methods.

According to figure 4.4, in terms of reaching the minimum, FG, ICA, MS, and GS outperform

GA and PS and converge to almost zero. Table 4.7 is also added in order to see the results in more

detail. It includes the mean and the best cost of each method and also the average time it takes for

the technique to do one iteration. As can be seen, ICA was able to return the lowest value, and in

the next place, FG returns the most optimum objective value. MS and GS are similar in terms of the

objective function value, but GS is a bit faster. According to this table, the fastest algorithm is FG

and GA takes more time than the other methods to converge.

Another aspect of the solutions to discuss is their variations. As observable from the results, GA

and PS show a higher difference between average and best cost, while this happens less in MS, GS,

and ICA.

Table 4.7: Cost and time consumption of the algorithms

GA PS GS MS ICA FG
Mean
cost 0.0156 0.0054 5.80e-7 3.22e-7 2.00e-12 2.73e-7

Best
cost 3.18e-7 6.81e-7 6.28e-8 3.98e-8 1.55e-17 2.08e-14

Timing
(S) 25.90 0.44 7.38 12.33 8.50 0.02
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Figure 4.4: Comparison of different optimization algorithms in terms of value of objective function.

Based on the results in this section, we decided to use ICA as the optimization algorithm. How-

ever, it does not mean that using FG will affect the consequent results. In the next section, we

analyze the general behavior of the system based on the obtained parameters in the optimization

iterations.

4.4 Resting State Results

According to the optimization procedure explained in section 4.3.2 and Figure 4.3, we ran the

optimization for 2000 iterations. Then 496 parameter sets out of all the obtained parameter sets were

chosen conditional upon the minimization level. Each chosen parameter set results in the system’s

states remaining steady and their time derivative becoming zero. Figure 4.5 shows the distribution

of the parameters and resting state concentrations using these parameters. Then, these are used to

calculate intermediate variables such as lactate exchange rates between compartments and the dif-

ferences between lactate production and consumption in the neuronal and astrocytic compartment.

They are visualized in Figure 4.6. Finally, Figure 4.7 is included to specifically compare LacSS
P

and LacSS
A .
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Figure 4.5: Distribution of obtained parameters in resting state optimization

Figure 4.6: Distribution of calculated intermediary variables using 496 parameters obtained from
optimization in resting state.

4.4.1 Discussion

According to Figure 4.5, obtained parameters are distributed over the specified range, and except

for the resting concentrations, the optimization finds diverse sets of solutions. As can be seen from

Figure 4.6, in our model in resting state, ANLS exists. Specifically, with VEP being distributed

on the positive side, neurons uptake lactate for the simulated physiological parameter sets. Also,

42



Figure 4.7: mean±std of LacSSP and LacSSA for the 496 parameter sets

we have positive values for VAE , meaning that, on average, the astrocyte compartment releases

lactate to the extracellular compartment. Consequently, we can say that in our model, in resting, we

have ANLS to be functional in resting state. By having JP < 0, neurons are, on average, lactate

consumers. These observations are in accordance with the experiments in [2, 35, 34].

We also observed net lactate production inside astrocytes compatible with the physiological

literature showing astrocytes to be more glycolytic [34]. For the astrocyte-capillary interface, we

observe a negative quantity for the VAC − VCA meaning that there is a net lactate uptake by the

astrocyte compartment. This uptake is smaller compared to VEP and VAE . This observation is

consistent with some of the values of resting lactate exchange rates between blood and the brain

reviewed in [21]. However, there are values in this review showing the opposite direction, i.e.

lactate is released to the blood from the brain in resting conditions.

Finally, According to Figure 4.7, we see a significant difference between the resting concentra-

tions of neurons and astrocytes. Resting concentration of lactate in the astrocytes is higher and this

is in agreement with the results of many experiments such as [35, 34].

4.4.2 Effect of Changing PyrP , PyrA

In our proposed model, as we did not explicitly model dynamics of pyruvate, we fixed its con-

centration in the neuron and astrocyte compartments. For resting state, based on the literature, we

choose PyrP,0 to be 1/18 of LacSSP and PyrA,0 to be 1/100 of LacSSA [77, 50, 51]. To assess the
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effect of fixing different values of PyrP and PyrA of the equations 21 and 25, on the resting state

behavior of the model, we tried a wide range of values. In this process, we assigned different values

to pyruvate concentration and ran the ODE solver for a long time to converge to the new resting

state concentrations. In these simulations, we tested the concentrations in the following range:

0.05PyrX,0 ≤ PyrX ≤ 10PyrX,0, X = A,P

As a result, a grid of different model behaviors based on various pyruvate concentrations is obtained.

In this grid, we see four different regions corresponding to four different behaviors as depicted in

Figure 4.8. To summarize the figure, VAE is not included because in resting its sign is the same as

VEP (refer to F2(t) in equation 28).
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Figure 4.8: Grids of PyrP and PyrA that categorizes system’s behaviour in resting state into four
different regions shown by different colors.

R1 is a region representing usual characteristics that we already observe in the model. In this

region, lactate is released from astrocyte to the extracellular space and neurons uptake and consume

lactate. By increasing PyrA, the system switches to region R2 where it keeps ANLS but with only

astrocytes’ production as source of lactate. In this region, part of astrocyte’s lactate is released to the

capillaries. For the same value of PyrA, this effect is reinforced by increasing PyrP . By decreasing

pyruvate concentration inside astrocytes to low values, the model’s response moves to region R3. In

R3, we see a switch from ANLS to NALS, where neurons become lactate producers and astrocytes
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switch to a consumer which is not a typical behaviour. In some rare cases region R4 is seen where

the model enters a situation that both neurons and astrocytes become lactate consumers. R3 and R4

are regions with atypical behavior where astrocyte compartment consumes lactate. This behavior

is due to considering very low values for PyrA that can be beyond the physiological range. These

two regions might also resemble a situation where astrocyte function is impaired in production of

pyruvate from glucose or less glucose uptake. In the next sections we will analyze the behavior of

the model where pyruvate concentration changes in a short period of time.

4.5 Temporal Dynamics Simulations

After analyzing the model’s behavior in resting state, we can explore its response over time

in a limited period of perturbation. The built-in solvers of the MATLAB, including ODE45 and

ODE15s, were used to simulate the model in the dynamic mode, the

We consider the following scenarios to examine:

(1) increased lactate production in the neurons and the possibility of a switch to NALS,

(2) increased lactate production in the astrocytes,

(3) increased energy demand in the neurons and increased artery lactate

The simulations are done to evaluate the validity of the model’s response and to understand the

extent of observations we can have from the proposed model. We define some input functions for a

few model parameters that can change over time for these simulations. They are introduced in the

next section.

4.5.1 Time Dependant Parameters

In our lactate model, some parameters can vary over time. For instance, when the neurons are

activated, blood flow increases to support elevated activity. We also fixed the pyruvate concentration,

which does not hold in all the cases and can change. In the following, we will introduce the functions

and their parameters used as inputs to run the dynamical simulations.
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CBF

We consider a double exponential model for CBF similar to [60]:

CBF (t) =


CBF0 + CBF1(exp((−t+ t1)/2)− exp((−t+ t1)/0.1)), t1 ≤ t ≤ tend

CBF0(1 + (CBF (tend)− CBF0)exp(tend − t/20)), t > tend

CBF0 tend << t < t1

(35)

This curve is shown in Figure 4.9a.

(a) (b)

Figure 4.9: Chosen functions for time-dependant parameters. (a) Trapezoid function used for
PyrP , PyrA, and LacJ , (b) double exponential function used to model CBF over time.

Neuronal and Astrocytic Pyruvate (PyrP , PyrA)

To test the effects of perturbing pyruvate concentration on lactate dynamics, we simulate mul-

tiple scenarios which resembles different physiological conditions. This variability include either

increase or decrease over time. The general model we use for them is a trapezoid function with
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linear slope:

PyrX(t) =



PyrX,0, 0 < t < t1 and tend < t < L

PyrX,0 + (PyrX,1 − PyrX,0)(t− t1)/td, t1 < t < t1 + td

PyrX,1, t1 + td < t < tend

PyrX,1 + (PyrX,1 − PyrX,0)(t− tend)/td, tend < t < tend + td;

(36)

where PyrX,1 is the elevated value of pyruvate concentration which we will determine according

to the simulation scenario.

Artery Lactate (LacJ )

As mentioned before, artery lactate varies due to injection or physical exercise. So by changing

its corresponding parameter in the model (LacJ ) over time we can asses its effect on brain tissue.

Similar to pyruvate, we consider a trapezoid function for artery lactate as shown in Figure 4.9b.

Temporal parameters are summarized in Table 4.8.

Table 4.8: Parameter values of dynamical simulations. All values are in minutes.

t1 td tend L dt

3 0.2 6 30 0.005

For the following simulations we use the parameter values mentioned in Tables 4.1-4.4. As

mentioned before, some of these parameters are set by using experiments in the literature. Others

are determined based on the optimization procedure explained in section 4.3.2. As we want to use

one parameter set for the rest of our analysis, we chose the one with the lowest objective function

value. Values of these parameters can be seen in Tables 4.1-4.2. The resting concentrations that

arise as a result of this combination of parameters are included in Table 4.9.

Table 4.9: Resting state lactate concentrations in mM for the chosen parameter set

LacSSP LacSSE LacSSA LacSSC
0.8121 0.8522 1.0349 0.7273

We also tested the effect of disturbances on the resting states. In fact, we started the ODE solver
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at different initial points and checked their convergence to the chosen resting states as shown in

Figure 4.10.

Figure 4.10: Convergence of steady states to the initial chosen resting states by 50% perturbation

4.5.2 Scenario I: Elevated PyrP

For the first scenario to simulate, we increased pyruvate concentration inside neurons to 5 differ-

ent values for a 3-minute interval as indicated in Figure 4.11a. This scenario resembles a situation

where conversion of glucose to pyruvate increases due to activation and we have more glycolysis

activity. We also increased CBF to 1.5 times its baseline value during activation.

A trivial result of this set of inputs is that concentration of lactate in each compartment increases.

According to the blue curves in Figure 4.11b (corresponding to no pyruvate change), CBF causes

only a slight increase in the concentrations. Additionally, we can see that lactate increase inside

neurons is higher than astrocytes because the latter is directly affected by CBF increase. When

pyruvate is elevated, we see more increases in the concentrations.

To have a closer look at what happens to the intermediary variables, Figures 4.11c and 4.11d

are included. Due to the escalated pyruvate concentration, lactate production in neurons grows, and

after a certain threshold, it becomes positive and makes the neurons a net lactate producer. Kinetics
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(a)

(b) (c)

(d)

Figure 4.11: Simulation results of elevated PyrP scenario. Dashed lines represent the activation
period and different colors correspond to different levels of PyrP . (a) Shows the inputs of the
model. There are only changes in PyrP and CBF . (b) Includes the dynamics of lactate concentra-
tion inside all compartments, (c) contains the temporal evolution of lactate exchange rates, and (d)
visualizes the LDH curves for neuronal and astrocytic compartment.
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of VAE show that by increasing PyrP , lactate release by astrocytes decreases but does not become

negative, which means that there is still lactate release by the astrocytes. A reason might be the time

interval of simulations because according to F2 in equation 28, VAE follows VEP in reaching the

equilibrium. If we extend the time of activation, VAE reaches negative values meaning that astrocyte

uptakes lactate from the extracellular space.

Even though there is a sharp increase in the lactate production in neurons, but it settles down as

the system passes the onset of activation (Figure 4.11d). Another observation from the LDH curves

is that convergence of JA is slower compared to other rates. We can also see a tendency toward

saturation when the pyruvate concentration reaches its maximum values, which is expected because

of the nature of Michaelis-Menten equations used in the model.

4.5.3 Scenario II: Elevated PyrA

For the next paradigm, we increased astrocyte pyruvate gradually until 5 times its initial value

(Figure 4.12a). This case represents increased glycolysis in the astrocytes that in the first place

contributes to the lactate production inside astrocytes. Similar to section 4.5.2, CBF is stimulated

to reach 1.5 times its resting value. Consequently, lactate concentration inside all compartments

increases as shown in 4.12b. This time, we see a considerably larger rise in the LacA compared to

LacP .

Based on the results in Figure 4.12c, transport of lactate from extracellular space to the neuronal

compartment grows as a function of PyrA and emphasizes the role of ANLS. Two different phases

for (VAC − VCA) can be considered. First, due to the initial increase in CBF and consequently

in VCAP , (VAC − VCA) experiences an initial decrease which remains stable until the end of the

paradigm when there is no rise in PyrA (blue curve). Nevertheless, in other cases, it will change to

a rise in (VAC − VCA) which leads us to the second phase, in which transport of lactate is retrieved

and even rises to the values higher than its basal concentration. Finally, because we stabilized

neuronal pyruvate during activation, we will see more lactate consumption in them and an increase

in astrocytes, as visualized in Figure 4.12d.

50



(a)

(b) (c)

(d)

Figure 4.12: Simulation results of elevated PyrA scenario. Dashed lines represent the activation
period and different colors correspond to different levels of PyrA. (a) Shows the inputs of the
model. There are only changes in PyrA and CBF . (b) Includes the dynamics of lactate concentra-
tion inside all compartments, (c) contains the temporal evolution of lactate exchange rates, and (d)
visualizes the LDH curves for neuronal and astrocytic compartment.
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4.5.4 Scenario III: Increased Energy Demand

In the third scenario, we first analyze the effect of artery lactate on energy demand in neurons

and then compare that to the impact of PyrA. The inputs are shown in Figure 4.13a. We gradually

increased artery lactate to 8.8 mM while keeping a 2% drop in PyrP . The former can happen due to

lactate injection or physical exercise. The latter indicates less pyruvate production from glucose and

energetic needs in neurons due to activation. An increase in LacJ is considered variable depending

on the injection level, exercise intensity, and personal traits, so we simulated different concentrations

to capture all possible situations.

In the first place, we can examine neuron’s response to the decrease in PyrP without any change

in LacJ as shown in blue curves in Figures 4.13b-4.13d. In this case, lactate is less produced, and

lactate transport cannot compensate for it. So, we see a slight but constant decrease in LacP as

depicted in Figure 4.13b. The increased transport of lactate can be seen in the rise of VEP and the

decay in LacE curve.

Next, by raising the value of LacJ , we observe that even though the initial dip in LacP still

exists, the delivered lactate from arteries and through the ANLS mechanism compensated the ini-

tial dip. This phenomenon can be seen by looking at the increase in the transport of lactate from

capillary to the astrocyte and then to the neuron via extracellular space as shown in Figure 4.13c.

Finally, we see that lactate consumption grows and results in pyruvate production, which then can

be used in energy production.

To compare the impact of lactate production and artery lactate on the initial dip, we constructed

a set of inputs as shown in Figure 4.14a. Astrocyte pyruvate is swept from its baseline to 5 times

more while LacJ changes from its resting concentration to 8.8 mM. PyrP is kept at 98% of its

basal concentration.

According to Figure 4.14b, a trivial conclusion is that the higher the artery lactate, the less the

initial dip is. The initial dip decreases exponentially with the increased artery lactate. Nevertheless,

this effect saturates by increasing astrocyte pyruvate. We observe that the initial dip drops dramat-

ically by the first increase in PyrP , but it does not vary too much after that. Notably, our model

suggests that lactate production inside astrocytes can diminish the effect of lactate coming from
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(a)

(b) (c)

(d)

Figure 4.13: Simulation results of increased energy demand scenario. Dashed lines represent the
activation period and different colors correspond to different levels of LacJ . (a) Shows the inputs of
the model. (b) Includes the dynamics of lactate concentration inside all compartments, (c) contains
the temporal evolution of lactate exchange rates, and (d) visualizes the LDH curves for neuronal
and astrocytic compartment.

arteries.
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(a)

(b)

Figure 4.14: (a) Shows how the time dependant parameters are organized in the paradigm of in-
creased energy demand, and (b) is a curve depicting the effect of PyrA and LacJ in reducing the
initial dip seen in LacP in increased energy demand scenario. Different colors are associated with
different levels of PyrA.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we proposed a novel mathematical model for brain lactate exchanges. We modeled

lactate dynamics in pyramidal neuron, astrocyte, extracellular space, and capillary compartments

using double Michaelis-Menten and reversible enzyme kinetics. We considered both transport and

production/consumption of lactate. For the model parameters, we leveraged experiments in the

literature to either fix or determine the physiological ranges of the parameter values. Using an

optimization in resting state, we obtained acceptable parameter sets and analyzed possible behaviors

of the model with these parameters.

In the next step, we tested the robustness of the model’s responses when perturbing a few param-

eters. For this aim, we first swept the values for pyruvate concentration inside neuron and astrocyte.

We qualified the system’s behavior in resting i.e., when the system has enough time to converge to

its new resting state. Second, we examined the robustness when there are temporary perturbations

that resemble physiological scenarios. These scenarios include: (1) escalating PyrP as an indicator

of increased glycolysis in neuron, (2) elevating PyrA as a representative of increased glycolysis in

astrocyte, and (3) increased LacJ , as a result of lactate injection or physical exercise.

In general, our results show that even though the dominant behavior of the model is ANLS, the

model is also capable of showing the opposite direction of lactate transport from neurons to astro-

cytes (NALS). In particular, in resting conditions, the model shows net lactate uptake by neurons.

55



This lactate comes from the lactate production inside astrocytes and the blood supply to the brain

through the artery. This behavior is compatible with current literature [2, 78, 42]. We also found a

net lactate uptake by the astrocytes from capillaries. Referring to [21], we see that even though a

net release is seen in most experiments, in some cases, uptake can take place. We can also see that

the values of arterio-venous difference are close to zero as in our model.

On the other hand, in some situations, there is the possibility of a switch to NALS where neu-

rons release lactate and astrocytes uptake this excess lactate. This happens when glycolysis in the

astrocytes decreases, which can be due to the lower supply of glucose. This switch is reported in

the literature [33, 39]. It can also be a pathological behavior of the astrocyte. Finally, based on

our results we showed that in situations with higher energy demand in neurons, artery lactate can

compensate for the initial drop in lactate concentration in neurons with a delay. In this case, lactate

is behavior is achieved with the lactate shuttling property of astrocytes. This suggests that lactate

increase due to injection or physical exercise can affect neurons and their metabolism, compatible

with the experimental studies reviewed in [21].

5.2 Future Work

This work can be extended in terms of modeling and analysis. Here are some research direc-

tions:

• This model can be extended to include glucose and pyruvate metabolism to build a complete

metabolic model. In this case, instead of fixing time variations of pyruvate as an indicator

of glycolysis, its dynamics can be determined by the kinetics of glucose and we can directly

modify glucose uptake as the main energy substrate of the brain. The next step would be to

integrate the metabolic and electrophysiological models to examine the connection between

metabolism and brain activity. This link is physiologically embedded in the synchronization

of glutamate uptake, and lactate release by the astrocytes and also CBF [18, 34]. These

models can also extend to study specific brain networks and include variations in different

brain nodes’ metabolism.
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• We can rearrange the model in order to embed other features of transporters such as transac-

celeration. Transacceleration is a property of MCTs that can cause release of a substrate (e.g.

lactate) when another monocarboxylate molecule (e.g., pyruvate) is present in the extracel-

lular [79]. By modeling pyruvate and considering the same transporters for that, this feature

can be investigated.

• One of the challenges in modeling brain metabolism is having access to the real temporal

dynamics of metabolites to validate the model’s results. A technique which is used in recent

years to measure lactate dynamics is using genetically-encoded Forster Resonance Energy

Transfer (FRET)-based lactate sensor [80]. The problem is that the sensor’s output is not

quantitatively comparable with the model because its values are not concentrations. An in-

vivo calibration is needed to convert it to acceptable units but this calibration needs new

experimental data. Having that, by doing an optimization in the dynamical state, one can fit

the model’s results to the experimental data and compare the outputs to real data.

• Sensitivity analysis can be done to quantify the impact of perturbing each parameter on the

model’s temporal outputs [81]. Additionally, probabilistic methods such as Markov chain

Monte Carlo can be used in order to take the noise and uncertainty over the parameters and

states into account.
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Appendix A

Glycolysis Pathways

Figure A.1: In this figure different steps of glycolysis in the cytoplasm is shown. Glucose is first
phosphorylated and finally is converted to pyruvate. The enzyme for each step is written under the
step number. There are reactions in which ATP is produced and reactions with net ATP consump-
tion. Step 11 is where the lactate is produced from pyruvate. This scheme is taken from [4].
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