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ABSTRACT 

Development of Heuristic Model-Based Predictive Control Strategies for an 

Institutional Net-Zero Energy Building 

 

Emil Jalilov 

 

This thesis presents the development of heuristic model-based predictive control strategies for an 

institutional NZEB building archetype with the Varennes Library selected as a case study. A 

heuristic model-based predictive control strategy is applied to a radiant floor heating system. 

Depending on anticipated weather scenarios, developed near-optimal heating temperature 

setpoint profiles are selected. A generalized methodology for building energy model 

development to be used by model predictive control (MPC), demonstrating a step-by-step 

approach of more details addition to the model, is presented. The resulting explicit finite 

difference 10th order lumped parameter resistance-capacitance (RC) thermal network model is 

used to describe the dynamic behaviour of the building. The selected model is validated using 

on-site measurements.  

The thesis then develops an approach for generalizing the heuristic predictive control strategies. 

The proposed strategy showed the possibility of 25% energy saving on an extremely cold sunny 

day. Another strategy emphasizing energy flexibility displaces nearly 100 % of heating power 

during the morning peak and approximately 80% of the heating power during the evening peak 

demand event once the one-day ahead notification from the utility is received. Acceptable indoor 



iv 
 

thermal conditions recommended by ASHRAE Standard 55 are maintained under proposed 

strategies. 

Finally, the thesis analyzes the building-integrated photovoltaic/thermal (BIPV/T) system 

installed in the library as a potential solution to increase energy flexibility and energy efficiency, 

proposes subsystem data-driven control-oriented model development and evaluates the possible 

enhancements of the installed system both in terms of design and control perspective.  
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Chapter 1 

 

Introduction 

In the last decade or so, the confluence of the demand for innovation with the necessity for 

significant reductions in energy usage and greenhouse gas (GHG) emissions in the construction 

industry altered the way buildings and their energy systems are perceived. The pursuit of an 

integrated design approach, more efficient envelope and lighting heating, ventilation and air 

conditioning (HVAC) systems, mass installation of on-site renewable technology, more stringent 

energy codes, and the emergence of green building certification programs are evidence of this. 

Nowadays, buildings and grids are independently pushing various energy efficiency innovations; 

nevertheless, these initiatives are not well integrated enough to fully exploit the new prospects. 

Combining and managing a varied set of demands from both the building and the local utility 

requires more controlled, adaptable, and integrated building operations. Many electrical loads in 

buildings may be handled flexibly and can be regulated to run at specified times and varying 

output levels using advanced controls. The capacity to implement more complex continuous 

energy management solutions at the building level can assist utilities in addressing peak demand 

issues, which are becoming increasingly significant. Therefore, this thesis proposes moving 

beyond simple grid-integration techniques (such as demand response) to create integrative 

solutions that result in substantial long-term savings for building owners, grid operators, utilities, 

and other stakeholders without compromising occupants’ comfort.  

The reasons for greater demand-side engagement in electric grid operation, the routes via which 

this may occur, and the role buildings can play are all covered in the introduction chapter. 
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Following the motivation, the introduction concludes with the thesis' general objectives and 

structure of this thesis.  

1.1 Motivation 

1.1.1 The role of Buildings in Climate Change and Grid 

Regulation 
 

Scientific evidence supporting the occurrence of shifts in global climate trends has accumulated 

over the previous century. Still, data collected in the last 25 years demonstrates that we are 

amidst a rapid and globally happening movement toward increasing average temperatures 

(Houghton et al., 2015). The building industry is the largest source of worldwide greenhouse gas 

(GHG) emissions; buildings consume around 40% of global energy and produce roughly 30% of 

GHG emissions (LEED, 2014). If current trends continue, these emissions are expected to double 

by 2050. (UNEP, 2019). Though statistics vary per building, studies show that over 80% of 

greenhouse gas emissions occur during the operational phase of buildings to fulfill different 

energy demands such as air conditioning and lighting, but especially space heating (IEA, 2020). 

Several measures are being taken in the right direction, even though present policies lack 

ambition for climate change mitigation to the desired targets. At the international level, the Paris 

agreement reached at the end of the Conference of the Parties' 21st meeting in 2015 resulted in 

the framework of an overarching plan of action (UNFCC, 2015). On 16 November 2020, the 

Quebec government adopted the 2030 Green Economy Plan (PEV 2030), according to which 

$6.7 billion are going be invested in building and transportation sectors over the next five years 

targeting the GHG emissions (2030 Plan for a Green Economy, 2020). But it will not be enough. 

As indicated by its implementation plan, the envisaged results will reduce emissions by just 12.4 
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million tons (Mt) of the 29 Mt that should be eliminated annually to reach the target of 37.5% 

under the 1990 level in 2030. It will therefore be necessary to do much more from 2021 to 

achieve our targets. To do more, building owners must comprehend their buildings' value 

proposition. There is a necessity for analysis based on reliable data; however, achieving this task 

has become a challenge in recent years due to federal changes in Canada that impose limitations 

on the availability, frequency of publication and access to specific critical energy data. Statistics 

Canada recognizes the challenges present with the data and actively collaborates with its partners 

to identify possible solutions. Ultimately, a reform of the Statistics Act will need to be carried 

out to correct these gaps (The state of energy in Quebec, 2021). 

1.1.2 Demand-Side Energy Generation and Flexibility 

In many countries, renewable energy sources (RES) are growing with the widespread demand for 

electrification. Hydropower already plays a crucial role in adopting renewable energy in several 

regions, such as Quebec. Still, it is geographically confined to a few locations where it is already 

primarily utilized. Solar and wind power are the fastest-growing RES sectors today due to 

significant cost reductions that have made them cost-competitive with the other fossil or nuclear 

fuels, resulting in their rapid adoption (IRENA, 2018). However, on the other hand, their 

intrinsic intermittency poses particular challenges to the grid's stability, increasing supply 

volatility. Indeed, these two power sources are highly dependent on climatic circumstances, 

which leads to a mismatch between fluctuating supply and demand when the use of renewable 

energy sources is widespread. Installing small-scale PV panels or windmills and injecting 

electricity into the grids allows buildings to affect the energy exchange of the grid and become 

prosumers. However, the electricity network was not designed to handle unpredictable power 

flows, and this might cause system congestion. The most famous example of this issue is 
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California's “duck curve” (Lawrence Berkley National Laboratory, 2017). The impacts of high 

penetration of renewable energy sources (RES) were also observed in Germany where, according 

to New York Times (Reed, 2017), the negative pricing due to excess renewable energy supply 

occurred over 100 times per year in 2017 (Figure 1-1).  

In such circumstances, curtailment of RES is a simple and common remedy, although it 

essentially consists of squandering free available energy resulting in economic and zero-carbon 

electricity losses. 

 Going back to the challenges of integrating renewable energy, besides the surplus, the 

intermittent nature of these sources also means that the output may be inadequate to meet the 

Figure 1-1: Power market scenario in Germany; addition of renewables and inflexible 

conventional power plants led to a negative power price (The Causes and Effects of 

Negative Power Prices, 2018). 
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demand, necessitating additional peak power units. These facilities must be easily dispatchable, 

and their primary energy source is usually natural gas or nuclear. Such peak power facilities must 

be kept operational all year to ensure that their power capacity is available when solar and wind 

power output is not enough. Some financial issues arise due to their profitability: they would 

only be used for a few hours per year when the RESs are not accessible. Or, if the significant 

baseload power production is nuclear, such as in Ontario or California, it can be challenging to 

modulate its supply.  

The two peak demand periods for the grid in Quebec are shown in Figure 1-2 above. There are 

several potential solutions to address the mismatch of power generation by RES and building 

demand. Opportunities exist from both the utility side and consumer side. Exhausting excess 

generated energy to restore the plant's stability, as discussed above, might not be the optimal 

solution. To compensate for a shortage of renewable energy output, grid-side flexibility can be 

used, but it does not make financial sense to maintain those plants only for a little time of use. 

Building/upgrading new power plants and transmission lines can be economically not warranted 

either. However, expanding transmission lines to exchange energy between the countries of 

Figure 1-2: Estimate of Quebec's average hourly electricity demand. 

(Delcroix et al., 2014). 
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different weather conditions (and consequently different available renewable energy sources) is a 

promising solution for the future. There are ongoing talks between the countries to overcome the 

political and technical barriers. Electricity surplus can be stored for later use, where batteries, 

thermal storage, hydrogen systems and aqueous reservoirs are popular solutions. However, these 

solutions remain not cost-effective, and significant research breakthrough is required for their 

profitability. Now, what about the flexibility from the prosumer, such as, building side? 

Buildings are essential to energy management since they constitute approximately 40% of the 

total end-use of energy globally and 32% in Quebec (The state of energy in Quebec, 2021). 

In recent years, a substantial amount of research has focused on improving the flexibility of 

buildings through optimal controls and demand management. One of those is the proposal of the 

new research annex by the International Energy Agency’s (IEA) Energy in Buildings and 

Communities (EBC) Program "Annex 67 — Energy-flexible buildings".  Experts in this project 

described buildings' energy flexibility as the “capacity to regulate their requirement and 

generation under local climatic circumstances, user demands and network requirements” (IEA, 

2017). Various aspects of a building can be considered as a source of flexibility. Thermal mass, 

such as gypsum board or a thick radiant floor, can act as passive thermal storage and be utilized 

to shift the energy demand without impacting indoor thermal comfort significantly. Onsite 

renewable energy generation sources, such as solar systems, must be addressed as well, both in 

terms of design and operation and finding synergies with ventilation, heat pumps, and thermal 

storage systems. Electric vehicles and batteries can also provide the building’s energy flexibility. 

Furthermore, the Building Management Systems (BMS) for commercial buildings provide 

coordinated, supervisory management of all systems in the building, allowing for effective 

demand management while providing adequate services to occupants and guaranteeing system 
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functioning within operating constraints. Consistent model development must be deployed to 

assist in estimating potential energy flexibility available to the grid from buildings (Date et al., 

2020).  

1.1.3 Enhancement of energy flexibility opportunities in buildings 

Buildings can provide considerable flexibility services to the grid by an integrated design and 

control of their thermal and electrical energy systems. Given that buildings are the highest 

energy consumers globally, the trend for enhancing energy flexibility in the building sector is 

rising. Considering the general issue of global warming and energy conservation, more and more 

incentives and programs are being proposed to promote the construction of high-performing 

buildings that achieve nearly Zero Energy Buildings (nZEB) or Net-Zero Energy Building 

(NZEB) status, which implies a net-zero energy consumption in a yearly balance. While these 

buildings are designed to be energy-efficient and require much less energy import from the grid 

than traditional buildings, given the generation and storage systems integrated within their 

design, they are also potentially a significant source of energy flexibility. The majority of zero 

energy buildings have some form of energy storage in the form of active, passive thermal 

systems or/and batteries, on-site renewable generation systems such as solar power, wind power 

and bioenergy; efficient HVAC systems such as heat pumps and heat recovery and Building 

Automation Systems (BAS) which allow implementation of sophisticated control logic, data 

collection and remote control. One of such typical buildings studied in this thesis as an archetype 

example is the Varennes Library – the first institutional Net-Zero Energy Building in Canada. 

The library, inaugurated in 2015 and located in Varennes, Quebec, Canada, comprises the 

majority of technologies discussed above, some of which, as shown in Figure 1-3 below, serves 

as an excellent archetype for non-residential buildings with similar performance.  
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The building is described in detail in Chapter 3, but it is worth noting it comprises building-

integrated photovoltaic/thermal (BIPV/T) and building-integrated photovoltaic (BIPV) for 

electricity and heat generation, passive and active thermal storage in the form of the concrete 

floor exposed to south-oriented windows, radiant hydronic pipes embedded in the floor structure, 

electrical storage through 2 EV charging stations, ground source heat pump (GSHPs) for 

heating/cooling and operable windows for free cooling and more. These are only the potential 

Figure 1-4: Principles to be adopted by buildings during design and operation to maximize 

flexibility that building can provide to the grid (Grid-Interactive Efficient Building, 2019). 

Figure 1-3: Varennes Library’s energy system schematic (Amara, 2019). 
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sources of energy flexibility, and optimal operation with further design enhancements are 

required to activate and maximize that potential. 

There are three step-by-step principles, as shown in Figure 1-4, that building owners and utilities 

must undertake to conserve energy and to enhance the energy flexibility in buildings: 

1) Design an energy-efficient building. Reduction of energy consumption and demand 

charges requires considering the building as a whole integrated system utilizing the 

advantages of the surrounding nature from the concept design phase and integrating the 

storage in its structure.  

2) Adding on-site intermittent renewable energy generation sources. Solar PV is the most 

popular option, it reduces loads around noontime, but it also leads to steep load ramping 

and grid modulation issues. In cold climates like Quebec, peak energy demand occurs 

when solar energy is not available. Simply installing rooftop solar panels does not 

provide many benefits, if not creates more problems to the grid unless step 3 is 

undertaken.  

3) The net load curve is successfully flattened by shifting load to periods of high renewable 

energy supply, as shown in Figure 1-4, resulting in a reduced daily peak and a more 

consistent demand profile. A smoother demand profile with less daily peaks implies that 

a surge in demand above reference loads would be smaller and have less impact on the 

grid. Lower peak demand means less frequent use of inefficient, expensive, and polluting 

power plants. Load matching alongside other techniques adjusts building loads to match 

generation, smoothening peak loads. It improves energy efficiency and reduces demand 

charges while ensuring grid stability and resilience. Having the capacity to respond to 

demand during grid peak scenarios generates additional income. 
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The Varennes Library, selected as an institutional NZEB archetype for this study, is currently 

implementing the first two principles of an energy-efficient design and generation; this thesis 

will mainly focus on the application of the last principle to increase the energy flexibility of the 

building through predictive controls and design.  

1.2 Objective  

The discussion above highlights the need for optimal operation in buildings to exploit the 

possible sources of flexibility. We must establish a coordinated power usage strategy. This 

coordination must consider future or anticipated demands, flexibility availability, and 

restrictions, which may vary depending on tenant activity, schedules, weather and a grid’s state. 

Most research proposes solutions through model predictive controls to achieve an optimal 

integrated operation, especially in complex structures with a large quantity of integrated thermal 

storage (Vallianos et al., 2019; Finck et al., 2019; Saberi & Athienitis, 2021). The common 

practice to reduce the peak demand in urgent situations in buildings is the demand response (DR) 

strategy, which is an expertise-driven rule-based technique. However, when considering such 

strategies, several challenges arise, each with its own set of obstacles to resolve. Thus, this thesis 

aims to quantify and utilize the energy flexibility potential of institutional/commercial buildings 

that can be provided to the grid based on an institutional Net-zero energy building (NZEB) 

archetype example through predictive controls by resolving issues of modelling and limited 

availability of data. The objectives can be summarized as follows: 

1. Develop and validate a generic step-by-step control-oriented modelling methodology that 

is fast to develop to estimate the building's indoor air and concrete slab temperature. 
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2. Develop a heuristic MPC methodology to maximize energy efficiency and/or the 

flexibility potential of the library, where the latter aims to reduce the demand during the 

two daily peak winter periods for the grid in Quebec. 

3. Design and control study of enhancing the energy efficiency of the building through a 

BIPV/T system. 

1.3 Thesis Outline 

The thesis is structured in chapters in the following way: 

Chapter 1 briefly introduces the role of buildings in climate change, the downsides of taken 

initiatives, the challenge of obtaining the data, and the concept of energy flexibility concerning 

building-grid interaction.  

Chapter 2 consists of two parts. The first part reviews the literature and current state-of-the-art 

control methods tailored to the need for predictive control and energy flexibility. The second part 

examines the current knowledge and developments in the BIPV/T systems as a possible solution 

to increase energy flexibility in buildings, their large-scale application and the existing 

challenges towards wide-scale adoption. Both parts of the literature review wrap up with the 

research needs and methodology. 

Chapter 3 describes the institutional NZEB archetype, its role in providing energy flexibility 

services to the grid, and the steps required to achieve it. Key architectural and mechanical 

features, as well as operational sequences, are also overviewed.  

Chapter 4 introduces the step-by-step approach for model development of institutional NZEB 

for heuristic predictive control strategies. The methodology is generic and can be applied to other 

buildings with significant thermal mass. This is followed by the introduction and development of 
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the heuristic MPC control strategies with an objective to maximize energy flexibility and/or 

energy efficiency. Performance of different scenarios is analyzed and compared with the baseline 

data.  

Chapter 5 starts with a detailed overview of the BIPV/T system, its mechanical integration with 

AHU and controls. Exploratory data analysis is performed based on an example of two typical 

clear days. Then control-oriented data-driven modelling of the BIPV/T is introduced for whole-

building and subsystem MPC, followed by the evaluation of alternative design and control 

options.  

Chapter 6 concludes with the final remarks, the contribution of this thesis and direction towards 

expected future work. 
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Chapter 2 

 

Literature review 

Energy flexibility studies at the whole building scale can be separated into two phases: design 

and operation. During the design stage, the general objective is modelling and parametric design 

analysis to achieve the best synergies between the generation and storage systems and a building 

design. Maximizing energy flexibility at the operational phase includes predictive control 

strategies evaluations. These strategies can be optimal or heuristic, model-based or model-free 

and be implemented online or offline. 

The literature review consists of two major parts, each concluding with its own research needs 

and methodologies. The first part covers the operational phase to address the energy flexibility in 

buildings through predictive control practices and demand-side management. The second part 

deals with the flexibility at the design phase, covering the design, thermal enhancements and 

large-scale applications of BIPV/T systems, which besides the generation of electrical energy, 

provides energy flexibility through the generation and in-place storage of thermal energy.  

2.1 State-of-the-art in the buildings control 

The control functions in the building system can be divided into two parts: local level and 

supervisory level. Local controls' fundamental and automation tasks enable the building systems 

to work correctly and offer appropriate services. Local control may be further split into two 

divisions being process control and sequencing control. While sequencing control determines the 

logic of which the system components should operate (such as open outdoor air damper when the 
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fan is energized, shut off the valve when the fan is off, timeclocks, and so on), process control 

modifies the controlled variables to achieve specified process objectives. Most of the existing 

building process control algorithms are based on simple feedback loops; once the error signal is 

detected, that is, when the measured output (feedback) deviates from a reference value, 

corrective action is taken (PID controller). The control action of these local controllers is 

inherently reactive, configured to provide an adequate minimal service by following the provided 

setpoints and usually, are not optimal or energy efficient. The majority of large commercial and 

institutional buildings are slow-responding systems accommodating concrete slabs, electrical and 

thermal storage systems and other technologies with significant time constants where reactive 

controls fail (Dermardiros, 2020). 

Supervisory control is responsible for the overall system monitoring and control of the local 

subsystems. It aims to reduce or maximize an objective function by selecting variable values 

within acceptable ranges directly. Supervisory control of building systems strives to provide 

pleasant interior comfort and a healthy indoor environment with the least energy input or running 

cost possible, considering the constantly changing indoor and outdoor conditions and pricing 

schemes and demand charges. From a supervisory control point of view, there is a need for 

control strategies that can use the building’s thermal inertia to increase energy flexibility. 

Incorporating weather and occupancy behaviour prediction patterns can help to take preventative 

measures to maximize energy efficiency and flexibility. 

Most buildings nowadays utilize rudimentary rule-based control techniques (RBC), which 

provide limited energy efficiency (Prívara et al., 2013). However, the uprise of the digital age 

provides increased opportunities in computation and data collection, unleashing the potential 

application of complex control strategies, such as model predictive control (MPC) (Athienitis, 
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A., & O'Brien, W. 2015). MPC has been a dominating control methodology in research on smart 

buildings in the previous decade. While RBC and MPC have their own merits, they come with 

limitations discussed in the following sections.  

2.1.1 Rule-based predictive controls 

The use of rules and heuristics-based expertise and best practices can be used to derive easy-to-

apply supervisory control strategies. It is common practice in the BAS to develop a series of if-

then-else rules to implement near-optimal operating points for the system. RBC techniques are 

usually realized by manipulating temperature setpoint or schedule, such as pre-conditioning, 

optimal start/stop, temperature reset for supply air, and so on. Albeit rule-based approaches are 

simple and can find only near-optimal operation points, they can achieve a substantial energy 

efficiency if correctly applied (Mařík et al., 2011). Besides the ease of practical implementation, 

the other advantages of RBC are logic with a distinct physical meaning and flexibility to be 

modified for a specific sub-type of the system component. Furthermore, if a rule cannot be used 

owing to a lack of sensors, a simpler rule (requiring simpler or virtual sensors) can be applied. 

However, customized solutions are implemented on a project-by-project basis, with methodology 

needed to make them more general and reproducible.  

The rule-based approach is typically used to compute better setpoints and/or better scheduling 

(optimal start/stop, pre-cooling, and so on.). When the building operators aim to attain a 

particular objective beyond comfort, they generally specify specific goals to achieve. These 

targets are not usually clearly defined in RBC, but an implicit objective can be determined most 

of the time.                                                                                                                                     

The most common form of rule-based control to maximize energy flexibility is expertise-derived 

load shifting with fixed scheduling. For example, Carvalho et al. (2015) turned off a heat pump 
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over peak heating hours from 9:00 to 10:30 and from 18:00 to 20:30, saving up to 34 % on 

energy costs. Lee et al., (2015) modulated set points during peak evening demand hours, 

reducing the energy consumption by 80 % in cooling and 64 % in heating during that period. De 

Cornick et al. (2013) used RBC schedule to charge a thermal energy storage tank optimally. 

Given that heat pumps operate more efficiently when the source and sink temperatures are 

closest, he charged the tank with a heat pump from 12:00 to 19:00, including raising setpoint 

until 16:00 and achieved better results than other standard expertise-based controls.  Rule-based 

controls were also used for peak shaving strategies in several studies (Dar et al., 2014; de Salis et 

al., 2014; Halfmann et al., 2017; Hida et al., 2010; Lu et al., 2021; Moghimi et al., 2016). In 

these instances, the building's power transaction with the utility is tracked, and power import and 

export cutoff can be set. When the thresholds are exceeded, the controller acts to halt or activate 

the operation of the specific parts, such as mechanical systems, batteries and others, in order to 

keep peak demand below the predetermined level. In a NZEB with a photovoltaic system, for 

example, Dar et al., (2014) established an import restriction of 2.5 kW and an export limit of 5 

kW, whereas (De Coninck et al., 2010) proposed alike “grid-load” approach with 3.5 kW import 

and export cutoff. Some control techniques are aimed at lowering end-user energy expenses. 

These techniques, in general, rely on time-varying energy costs, with the controller aiming to 

operate energy-consuming equipment during low-price times or avoid them during high-price 

ones. Identification of the low and high-price thresholds is one of the most critical aspects of 

these RBC methods. Schibuola et al., (2015) used a predictive rule-based approach, where based 

on the forecasted electricity price for the next 12 hours, a controller responded to the price. He 

achieved cost savings of around 15%. Clauß et al., (2019) studied three rule-based predictive 

control strategies to reduce cost, CO2 and energy usage during peak demand hours in a 
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lightweight timber residential building in Norway. He reported that in all three cases, the 

potential cost savings for the proposed strategies were outweighed by the increased heating 

electricity usage. The schedule-based control, where the temperature setpoint was raised for 

heating 3 hours before the peak demand, proved to be the most efficient strategy for load 

shifting.  

A model-based approach was presented by Athienitis et al., (1988), who developed a predictive 

control algorithm for heating massive buildings with high solar gains in the frequency domain. 

The amplitude of a half-sinusoidal curve for solar radiation and the amplitude of a sinusoidal 

curve for temperature were determined using temperature and clearness index predictions for the 

following days. These predictions were then applied to the building's linear model. Five different 

setpoint ramps were developed, and the one that provided the least energy consumption was 

selected for the day. 

While RBC is relatively simple to develop, it does not consider weather and occupancy 

behaviours predictions in most cases. They are usually model-free and rely purely on supervisory 

control expertise. Therefore, it is challenging to guarantee that the comfort constraints on the 

control output will always be maintained.  An expert system is used as a supervisory controller 

may identify energy-efficient or cost-effective control settings for a near-optimal HVAC system 

operation based on the current working conditions. These energy or cost-effective control 

settings are discovered using a mix of knowledge-based rules and data from BAS. An expert 

system's knowledge base is generated from one or more humans' specialized expertise. Based on 

the knowledge base, an expert system may replicate human thinking to make judgments for a 

specific working situation. It is also capable of deducing appropriate solutions from incomplete 

data collection. It is simple to set up and maintain; however, because the rules are static, the 
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depth of the knowledge database affects the application of an expert system, posing a 

considerable risk of mistakes. Other alternative techniques do not employ a model in the 

decision-making, such as reinforcement learning, where a controller tries to improve the 

operation based on the outcomes of past actions. However, making the controller “learn” 

requires an excessive amount of time and data collection. Many aspects influence the controller's 

performance, including the state-action selection and learning settings. 

2.1.2 Model Predictive Control (MPC) 

Another growing field of research in predictive control strategies to maximize building energy 

flexibility is Model Predictive Control (MPC). As the name suggests, these controllers require a 

building model for the whole building and/or its subsystems to forecast thermal behaviour such 

as energy loads or thermal comfort. The type of modelling approach is usually classified into 

three categories: white-box, grey-box and black-box.  White box models, or physics-based 

models, are developed from the first principles and implemented widely in building energy 

modelling (BEM) tools such as DOE-2, EnergyPlus and IES-VE. In general, they comprise 

energy balance equations applied to each surface and zone in a detailed geometry which yields 

comprehensive analysis of the model for the design decision and retrofitting purposes. The 

disadvantages of these models are the time and cost required to build them and the need for 

complete knowledge of buildings physics which is not always available. Thus, they are rarely 

used for controls, although there are some applications in the literature where offline MPC uses 

such models (Gomez-Romero et al., 2019; Kontes et al., 2018). Since white-box modelling of 

subsystems is computationally cheap, they are frequently used to model certain components 

within a building (Mirakhorli & Dong, 2018). On the other hand, black-box modelling methods 

do not model buildings using physics laws and are entirely data-driven. Developing these models 
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requires large and rich datasets, capturing a large variety of conditions throughout the whole 

season. This is, usually, the biggest challenge in deploying black-box models. When dealing with 

big datasets with numerous features (variables or sensors in this example), feature evaluation and 

selection become crucial in developing an accurate and efficient model. Data-driven building 

models used to estimate energy flexibility range from the simple regression models (Yin et al., 

2016) to the artificial neural network (ANN) and the support-vector networks (SWN) (Kara et 

al., 2014). There is also a combination of first-principle and data-driven models, called grey-box 

modelling. The most common form of those models is Resistance-Capacitance (RC) thermal 

network models. Depending on the resolutions, the parameters can be determined either from the 

measured data through system identification techniques or meaningful physics-based parameters 

can be used. Prívara et al., (2013) studied a method for developing and selecting a predictive 

control model that focused solely on the grey-box approach. He concluded that the performance 

of semi-physical models worsens as a building becomes more complex, proposing a black-box 

subspace alternative as a viable solution. The advantages of grey-box models are cited in the 

literature as the ease of interpretation of the model parameters and some of the underlying 

physical processes that describe building behaviour. 

MPC often formulates an online convex optimization problem to determine the optimal reference 

input for lower-level controllers and uses a model to do so. Reduced-order models have been 

used in most research, with state-space formulation being the most prevalent. State-space models 

have a well-established theory and are widely utilized in MPC applications in many fields, 

including the process industry. A state-space (SS) formulation is a collection of first-order 

differential equations (possible for an RC network) that describes the relationship between input, 

output, and state variables. One of the most significant advantages of MPC is the explicit 
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definition of the objective function, which is absent in RBC. Objective functions are commonly 

defined in cost or energy consumption while specifying the comfort constraint (usually 

maintaining a specified temperature range). The efficacy of the pricing signal is critical in 

activating and encouraging the use of a building's energy flexibility. Ruusu et al., (2019) used 

MPC to determine the most efficient operation of a building's energy system in order to reduce 

operational energy costs. The flexibility included optimal management of local renewable energy 

sources by using battery and thermal energy storage. He concluded that MPC had a better 

performance than a conventional rule-based approach with no forecast. Pedersen et al., (2017) 

utilized thermal mass for the MPC with the objective to minimize the cost of space heating and 

compared the performance with a conventional controller. The MPC strategy resulted in cost 

savings of up to 6% and a power shift from peak load periods of 2 kWh/m2 of heated area. By 

combining real-time prices (RTP) and economic model predictive control (E-MPC) of an AC 

unit in a single residence, Avci et al., (2013) reported a 13 % cost reduction and a 23.6 % 

reduction in peak-hour energy consumption when compared to a baseline controller. Vrettos et 

al., (2013) used predicted upcoming prices in MPC to study the energy flexibility potential of a 

residential house. Compared to a rule-based controller, the energy consumption was reduced by 

20%, and the cost was reduced by 28%.  

MPC controller usually requires a linear model due to the convexity of the optimization problem; 

however, some researchers also examined nonlinear building models. A totally linear model 

usually yields poor performance in buildings partly due to the non-linear behaviour of convective 

heat transfer in spaces with substantial temperature differences. The challenges of model 

development for MPC prompted researchers to look at data-driven methods that preserve MPC's 

predictive power without the cost of significant computation efforts.  
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Over the last several years, there has been an increase in black-box techniques targeted at 

capturing building thermal dynamics. These comprise decision tree learning, k-means, Gaussian 

processes, and reinforcement learning (RL) algorithms. Some of the approaches maintained the 

optimization problem linear, for example, through the Fourier variable separation technique 

(Behl et al., 2016; Bünning et al., 2020; Jain et al., 2016), while others addressed the non-

linearity by using heuristic search algorithms, such as Genetic Algorithm (GA) (Reynolds et al., 

2018). 

Chen et al. (2020), Yamaguchi et al. (2015), Dermardiros et al. (2019) Also investigated the 

application of "reinforcement learning" algorithms, which combine an ANN with algorithms that 

extract information from the system's operation to develop an optimal control strategy in real-

time. Instead of using a model, the cost of each control action was determined by the system's 

operation. The penalty of each control action was assigned through the system's operation rather 

than using a model. The RL approach's limitation is the large availability of data to train the 

agents, which requires a lot of time.  

Overall, the MPC strategies are usually superior to RBC. They incorporate a building model that 

considers the synergy between building dynamics and HVAC by utilizing thermal mass and 

exogenous inputs such as weather and occupancy. May-Ostendorp et al., (2011) managed to 

reproduce the common heuristic rules such as pre-heating of spaces and demand response but did 

so in an automated, more optimal and cheaper manner than expertly-derived supervisory-level 

controls. The most significant disadvantage of the MPC technique lies in its requirement of a 

simple yet accurate model, which is costly to build, train and monitor. Furthermore, extra 

hardware is needed to accommodate MPC calculations and automatically access the day-ahead 
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electricity prices and weather forecast. Smart meters must be implemented to enable 

communication between the grid and end-customer (Péan et al., 2019).  

2.1.3 Research needs and methodology 

While RBC strategies can significantly enhance building energy flexibility, they are usually 

model-free and do not incorporate weather predictions. On the other hand, MPC strategies can 

formulate the objective explicitly and utilize the incorporated model to derive optimal control 

action. However, the cost of the stringent modelling requirement and extra hardware are among 

the main barriers to its wide-scale adoption. This thesis proposes combining both approaches, 

which inherits the benefits of numerical MPC for using building model and RBC for practicality 

and cost-effectiveness of implementation, leading to the introduction of the heuristic MPC 

concept. The study will focus on developing model-based rule-based predictive control strategies 

applied to the radiant floor heating system of the institutional NZEB. Depending on anticipated 

weather scenarios, the pre-developed optimal room temperature setpoint profiles will be selected 

to save energy and/or increase the building energy flexibility by reducing power demand during 

the two critical periods for the grid in the heating season. The uncertainties associated with 

predictions are addressed using the data from on-site PV production and ambient temperature in 

the last 3 hours.  
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2.2 Developments in BIPV/T 

2.2.1 BIPV as a predecessor of BIPV/T technology 

Building-integrated photovoltaics (BIPV) are photovoltaic modules that are aesthetically and 

functionally incorporated into the building envelope, substituting standard and/or premium 

building materials, including roof shingles, wall cladding, windows, and overhangs (Yang & 

Athienitis, 2016). BIPV, as opposed to rack-mounted PV systems, is a multipurpose technology. 

BIPV can therefore serve as a weather and noise barrier, generate usable heat (BIPV/thermal – 

BIPV/T) and allow daylight transmission (semitransparent BIPV), potentially converting up to 

roughly 80% of incoming solar radiation into usable energy in the form of electricity, heat, and 

daylight (Athienitis & O’Brien, 2015). As it can be used to cover large roof and façade surfaces, 

BIPV is projected to be a primary technology for generating on-site power in high-performing 

buildings. On-site energy generation by BIPV may fulfill a portion of daily electricity demand in 

commercial and institutional building applications while avoiding grid distribution losses 

associated with transferring the same amount of electricity across large distances from the power 

plants. It can also assist in minimizing power demand during peak demand events when 

precooling or preheating the space. 

 
2.2.2 Historical development of BIPV/T  

To assure energy sustainability, supply of expanding power demand and reduce environmental 

concerns of GHG, replacing the polluting fossil fuel sources with eco-friendly counterparts is a 

critical task.  As a result, tremendous efforts have been focused in recent decades on developing 

innovative renewable energy solutions. The photovoltaic system can convert incoming solar 
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irradiation into electrical power with a restricted efficiency of roughly 11–20%, based on 

geographical and design factors (Agrawal & Tiwari, 2010; Lamnatou & Chemisana, 2017). By 

January 2020, the worldwide accumulative capacity of installed PV amounted to approximately 

627 GW, with the capacity expected to increase to 1,520 GW by 2030 and 4,274 GW by 2050, 

accounting for more than 15% of global energy generation (IRENA, 2019). The part of incident 

solar energy not transferred to electrical power progressively accumulates as thermal energy 

raising the temperature of the PV cells and consequently reducing their electrical efficiency 

(Chowdhury et al., 2020). Therefore, it is necessary to develop PV module technologies that 

improve long-term electrical efficiency by lowering the temperature of the surface through a 

cooling medium. This also extends the life of solar modules by reducing silicon degradation due 

to overheating (Sathe & Dhoble, 2017). As a result, PV/T systems using various mediums, 

mostly air or water, were developed to absorb and recover the lost solar energy collected in PV 

modules, leading to a considerable increase in electrical efficiency and module’s life expectancy 

in addition to an extra heat recovery (Rounis et al., 2018; Waqas & Jie, 2018; Liu & Yang, 2018 

). A lot of efforts in the literature were made to analyze the design options and efficiency of those 

systems. In the last ten years, PV/T systems achieved a substantial upgrade through the various 

design configurations. The photovoltaic/thermal system (PV/T) can be integrated into residential 

and non-residential buildings serving multiple functions. Effectively integrating the PV/T into 

the building envelope, which results in building-integrated photovoltaic-thermal (BIPV/T) 

systems, requires early collaboration and communication efforts at the building concept design 

phase.  
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2.2.3 Advantages and limitations of BIPV/T 

Environmental consequences such as greenhouse gas (GHG) emissions and noise are reduced 

and partially mitigated by locating power plants away from the metropolitan regions and cities 

and more towards the countryside. This, nevertheless, leads to energy losses during power 

transmission and distribution, which significantly influences the price of electricity (O’Brien & 

Athienitis, 2015). Applying BIPV/T systems reduces the need for electrical energy transmission 

across large distances, potentially lowering investments in grid infrastructure and its operation 

(Gholami et al., 2020). Overall, the advantages of BIPV/T solutions in the building can be 

summarized as follows:  

1. Onsite electrical energy production: reduced transmission losses, reduced the building's 

carbon and land footprint and diminished the heat island effect. 

2. On-site heat generation: increased HVAC efficiency, better equipment performance 

(reduced thermal demand). 

3. Enhanced energy flexibility: integration with electrical and/or thermal storage, thermal 

storage in manifolds. 

4. Provision of aesthetics, enhancement of building envelope function and structural 

integrity. 

5. Increase in the building value. 

Nevertheless, there are some barriers to widespread BIPV/T adoption, including thermal 

integration difficulties, overheating issues, dust and snow accumulation on module surfaces, 

reliability concerns, and a mismatch in the life duration of BIPV/T systems and the underlying 

architectural elements, such as the roof (Gautam & Andresen, 2017).  
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Despite the abundance of data supplied by the research, most studies are focused on PV/T 

systems, which are small-scale or stand-alone systems that do not represent a complete picture of 

the integration of BIPV/T and operation. More research is also required to design simulation 

software that can accurately model the energy behaviour of BIPV and BIPV/T systems and 

optimize their performance. As a result, the biggest challenge to the widespread adoption of the 

BIPV/T system is the lack of expertise, planning, operating and maintenance, standardized 

technologies, and commissioning. 

Rounis et al., (2021) examined the state-of-the-art and listed the following major challenges in 

the research of BIPV/T technology: 

- Deficiency in the practical consideration of the designs, thermal improvements, and 

experimental performance in their integration to building envelope and mechanical 

systems and the inconsistent testing conditions between experiments. 

- Lack of critical review of BIPV/T modelling, specifically, the lack of equations 

accurately describing the convective heat transfer phenomena appropriate for BIPV/T. 

- The need for creating a common testing methodology for PV/T and BIPV/T systems. 

Therefore, narrowing down the system assumptions to practical considerations is critical for 

improved design and operation.  

Another challenge preventing the increase in BIPV/T adoption is the lack of systematic 

modelling. Wind-driven convection accounts for most of the system energy balance, and despite 

the abundance of proposed correlations in the literature, no single equation can accurately predict 

that effect. The most commonly used equations used to characterize the wind-driven convective 
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phenomena include, but are not limited to correlations developed by Sharples & Charlesworth 

(1998), McAdams (1954), Palyvos (2008) and Duffie & Beckman (1994).  

2.2.4 Thermal enhancement techniques 

Air-based BIPV/T systems are preferable to water-based systems for envelope integration due to 

technical considerations such as avoiding leaks, which could be detrimental to the building 

envelope. However, they are less effective at heat extraction. There is extensive literature on 

strategies to improve the thermal performance of air-based configuration applied either on 

customized prototypes or PV/T systems. Most approaches incorporate control optimization, 

design alternative, or attachment of material components, such as fins, to increase a heat transfer. 

The addition of several air inlets along the collector's channel is a relatively modern method for 

thermal enhancement, proposed by Yang & Athienitis (2012). This approach is based on 

breaching the thermal boundary layer and exploiting the resultant entry effects. By adjusting the 

flow distributions to each inlet, the convective heat transfer from the PV layer to the channel 

increases, and more uniform module temperatures may be attained. The advantages of multi-inlet 

systems are numerous and studied experimentally by Yang & Athienitis (2015).  Due to entry 

effects, the convective heat transfer coefficient increases near the intake along the flow cavity 

below the PV layer, which improves heat transfer from the PV to the air. In a traditional BIPV/T 

system, the PV panel warms both air beneath the channel and free air on top of its surface, where 

the latter is usually lost to ambient. The addition of extra inlets increases the chance to draw the 

heated air into the channel that otherwise would have been lost to ambient unless an inward wind 

direction prevails. In addition, cold air enters the channel near the PV panel, resulting in a larger 

temperature differential between the air and the PV than in the traditional single-inlet systems. 

As a result of the temperature differential, the BIPV/T may extract more heat. The performance 
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of a two-inlet system was simulated using convective heat transfer correlations derived from the 

testing of an experimental single-inlet prototype inside a solar simulator facility by Yang & 

Athienitis (2012). The installation of a second intake enhanced the system's thermal efficiency 

by 5-7%, lowered the maximum PV temperatures and slightly improved the electrical efficiency. 

Rounis et al., (2016) developed a flow distribution model to simulate the performance of 

multiple-inlet BIPV/T and compared its performance with the traditional one-inlet system in 

office space conditions. Results showed improved electrical and thermal efficiencies 

(approximately 1% and 20%) and more uniform PV surface temperatures. 

2.2.5 Practical applications 

Large-scale practical applications of the BIPV/T have been investigated experimentally in 

residential and commercial /institutional buildings. Ahmed-Dahmane et al., (2018) 

experimentally investigated the integration of BIPV/T with an air handling unit (AHU) under 

both cold (T_ambient around 15ºC) and hot weather (T_ambient around 30ºC) conditions in 

Algeria. In cold weather, the output from the BIPV/T system would be used to preheat the 

ventilation air, whereas in hot weather, instead of ambient air, cold air from the building's 

conditioned areas was used to cool the PV cells. When exhaust air at 24 C° was used as a coolant 

for the PV, the temperature of the PV cells was reduced by 5 ºC. Chen et al., (2010) investigated 

an air-based open-loop BIPV/T system installed at EcoTerra house, a high-performing 

prefabricated home in Quebec, Canada. The system was connected to a vented concrete slab, 

allowing warm air from the BIPV/T system to flow via a tubing within the slab, preheating it and 

using concrete's thermal storage capacity. A finite-difference model was created for this system, 

and field tests were used to validate it. The temperature of the PV panels was discovered to be 

substantially lower, and that the system can dramatically contribute to space heating.  Athienitis 
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et al., (2011) designed a prototype system where he used an appropriate attachment mechanism 

to integrate specifically designed photovoltaic modules to the unglazed transpired collector 

(UTC), which constituted approximately 70% of PV panels and BIPV/T system on the side. 

Combining unglazed transpired collectors with connected photovoltaic panels on facades can be 

a promising solution for building applications with a substantial requirement to heat ventilation 

air in the winter. This BIPV/T prototype was built as a demonstration project at Concordia 

University's  John Molson School of Business building. 

Another well-known full-scale application of BIPV/T is the Solar XXI office building in 

Portugal (Aelenei & Gonçalves, 2014). The fundamental concept of the building is to maximize 

thermal efficiency via the use of passive heating and cooling systems, as well as energy 

efficiency through the use of renewable energy technologies. BIPV/T and BIPV panels cover 

most of the building's south-facing facade, producing around 12 MWh/year, about 67% of the 

primary energy and 70% of total power demand.  

Agrawal & Tiwari (2010b) carried out energy and exergy analysis on BIPV/T used as the rooftop 

of an experimental laboratory at the Centre for Sustainable Technology, Indian Institute of 

Science Bangalore, with an effective area of 65 m2. 

2.2.6 The role of BIPV/T in energy flexibility 

BIPV/T systems are promising low-grade heat recovery solutions, which is an added benefit to 

the primary purpose of electricity generation. Besides displacing heating/ventilation loads and 

enhancing the energy efficiency of the buildings, these technologies are also a potential source of 

energy flexibility. When optimally controlled, the recovered heat can be stored and utilized at 

times of peak demand.  Integrating BIPV/T systems with an air-source heat pump and TES or 
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PCM is another possible solution; when controlled in a predictive manner, the power demand at 

peak periods can be reduced. However, there is still a lot of work to be done to turn these ideas 

into viable, scalable design alternatives. While BIPV/T is a relatively new technology, there is a 

need for consistent control-oriented modelling, large-scale practical applications for data 

collection and optimal controls to optimize the recovery fan operation. 

2.2.7 Research needs and methodology 

While BIPV/T systems can generate a significant amount of electric and thermal energy, the lack 

of standardized technology, expertise, and commissioning are the main barriers to faster adopting 

this technology. Most of the literature on BIPV/T is based on the lab-scale PV/T prototypes, 

where assumptions lack practical consideration. The deficiency in simulation technology is also 

part of the challenge, partially due to ambiguity in the systematic modelling of convective heat 

transfer coefficients.  

This thesis analyzes the configuration and the collected data of one of the first large-scale 

installations of BIPV/T, proposes a control-oriented data-driven modelling approach and lastly, 

suggests alternative design and control options that can potentially increase the building energy 

flexibility and meet the enhanced ventilation demands cost-effectively in buildings to mitigate 

the spread of viruses. 
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Chapter 3 

Varennes Library as an Institutional Net 

Zero Energy Building Archetype 

3.1 Overview 

The NZEB concept encourages the exploitation of the grid as an effective energy storage 

medium in buildings. NZEBs rely significantly on the energy transfers with the grid in order to 

maintain their annual zero balance. However, the grid’s energy import and export capacity may 

be limited; it can simultaneously accommodate only a certain amount for such buildings. 

Fortunately, besides energy conservation, the NZEBs also have the potential to provide 

substantial flexibility services to the grid by managing their thermal and electrical energy loads 

intelligently since a design principle incorporates a wide range of storage and on-site energy 

generation capabilities. One of such institutional buildings chosen as an archetype example in 

this study is the Varennes Library, the first institutional Net-Zero Energy building in Canada, 

which will be analyzed in terms of further design and control perspectives to estimate and 

maximize the available energy flexibility. The library is an excellent choice for the study since it 

represents the typical high-performing institutional building with vast available energy flexibility 

sources installed in places such as building-integrated photovoltaic-thermal (BIPV/T) and 

building-integrated photovoltaic (BIPV) for electricity and heat generation, passive and active 

thermal storage in the form of exposed concrete and hydronic radiant slab, thermal storage 

through BIPV/T manifold,  electrical storage through 2 EV charging stations, high-efficient 

ground source heat pumps for heating/cooling, operable windows for free cooling and a BAS for 
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remote supervisory control and data collection. Some of those technologies are shown in Figure 

3-1. Constructed in 2014 and inaugurated on May 16, 2016, the library received LEED Gold 

certification alongside many other awards (Dermardiros et al., 2019). The library’s mass has 

dimensions of 54.9 m x 19.1 m x 6.8 m in (length x width x depth). It is considered highly well-

insulated, spanning two floors and covering a total area of 2100 m2. 

Figure 3-1: Varennes Library, exterior view (top); energy systems cross-sectional view (bottom) 

(Amara, 2019). 
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The library's design was carried out in close collaboration among many specialists, including 

architects, engineers in various disciplines, and solar engineering experts, due to the necessity for 

an integrated approach.  

A team from Concordia University represented the Smart Net-Zero Energy Buildings Research 

Network (SNEBRN), which guided the creation of the energy concept for the library. A key 

aspect of the building is its integrated approach in the design and adoption of a wide range of 

technologies that substantially reduced the energy demand of the library and enabled it to be the 

first net-zero institutional energy building in Canada. 

From the concept design phase, it was decided to spread the library across two levels, providing 

for the optimum light penetration and cross ventilation due to its long-form and narrow depth. 

The form is oriented to provide the fenestration and roof surfaces with the optimal southern 

exposure to maximize the incoming solar gains in winter. The roof's southern side has an 

extensive area of 711 m2, accommodating 425 solar photovoltaic panels pitched at 37° with a 

total capacity of 110.5 kW. 60% of the PV area, or 428 m2, is vented naturally through a gap of 

150 mm between the PV panels and the roof membrane to prevent overheating and maximize 

electrical efficiency. The remaining 40% are actively vented with a fan through an air gap of 

only 70 mm. An area of 173 m2 (66 panels) of the total BIPV area is BIPV/T that actively 

recovers heat through the outdoor air intake, controlled by variable-speed fans. The heat is 

recovered during the heating demand period only and is exhausted outside in the summer.  

The building’s heating and cooling needs are supplied from four ground-source heat pumps 

(GSHP) connected to eight 152 m deep boreholes, with a total cooling capacity of 105 kW and a 

heating capacity of 80 kW. Electric heating coils with a capacity of 20 kW are also available on 
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demand. Space heating and cooling are distributed by hydronic radiant slabs on the southern 

perimeter of the building, as shown in Figure 3-2, supplemented by 18 fan-coil units (FCUs).  

The library operates on a different fixed schedule on weekdays and weekends. When occupied, 

the heating setpoint temperature is set at 22 ºC and switched to 18º C on an unoccupied period.  

Underfloor air distribution (UFAD) systems are used for the air distribution at the building's 

upper floor and overhead diffusers on the ground floor. The ventilation is demand-based, 

controlled with a CO2 setpoint of 850 ppm.  

The building's fenestration is designed to take full advantage of natural light. Low-e double- and 

triple-glazed windows with high insulation were installed. Occupancy sensors are installed in 

Figure 3-2: Architectural plan view with yellow area highlighting 

hydronic radiant slab (Dermardiros, 2020). 
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each zone for lighting control. A weather station is also mounted on the roof to provide data on 

outdoor illumination levels to a centralized DALI (digital addressable lighting interface) 

management system, allowing lighting fixtures to be controlled based on daylight availability. 

The majority of the energy consumption accounts for fans and pumps (40%), followed by the 

heating/cooling (29%) and lighting (25%) applications. A control system monitors the solar 

photovoltaic panels' energy usage and power output in real-time and displays the data on a screen 

at the library entrance. 

3.2 Operational Sequence 

3.2.1 Ventilation 

The schematic of the dedicated outdoor air system, located 3.3 m below the ground, is shown in 

Figure 3-3. The general ventilation system supplies fresh air to VAV terminal boxes which feed 

18 fan-coil units in the building. After being fully conditioned in the fan-coil units, the fresh air 

is supplied to the space through diffusers. The fresh air is distributed to the first floor by 

overhead diffusers, while the second floor is predominantly by an underfloor air distribution 

system (UFAD). However, several overhead diffusers exist also on the second floor as well. The 

ventilation air is preheated by the heat recovered from the building-integrated 

photovoltaic/thermal (BIPV/T) system and by heat from the thermal wheel. Supply fans shut off 

when windows are open, enabling natural ventilation. Supply temperature set point is readjusted 

between 13 °C and 18 °C depending on the average demand of the rooms. The heating/cooling 

coil located after the thermal wheel is activated when the supply temperature to the FCUs 

deviates from this setpoint boundary. In winter, the return air temperature sensor sequentially 

modulates the thermal wheel and the heating coil valve. When the air from BIPV/T is directed to 
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the system, the BIPV/T fan provides at least the same flow rate as the general supply fans. 

Supply and exhaust fans are equipped with an ECM motor and can be modulated directly by a 0-

10 VDC signal. The supply pressure is maintained by starting the four supply fans in sequence 

and modulating them to ensure the flow to all the fresh air terminal boxes so that the most open 

one is at a minimum of 90%. The room humidity set point is maintained to a minimum of 30 %; 

however, a high limit in the supply set to 85% turns off the humidifier to prevent condensation.  

The speed of the BIPV/T recovery fan is modulated sequentially between 33% and 80% to 

maintain the BIPV/T outlet temperature below 25 ° C. When the outlet temperature of air from 

BIPV/T is above 25 ° C for more than 60 minutes, the fan will switch its speed from 80% to 

33%. The fresh air supplied to the fan-coil unit is controlled between the minimum and the 

maximum by the CO2, with the highest threshold set to 850 ppm in the room. When the fan coil 

Figure 3-3: The mechanical layout of the primary and BIPV/T air streams. 
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unit is stopped, or the library is unoccupied, the fresh air damper is closed. BIPV/T system’s 

operation and configuration are discussed in more detail in Chapter 5.  

3.2.2 Heating / Cooling 

The zones are heated and cooled by fan coil units, and a hydronic radiant slab (both shown in 

Figure 3-4) supplied with cold water at 9.4 ºC and hot water at 37.2 ºC by the GHPs. In all cases, 

heating or cooling is prioritized by the radiant floor; FCUs are either condition the ventilation air 

(followed by VAV box terminals) or assist the radiant slab in keeping the temperature in the 

room within the setpoint. The position of the coil valves is sequenced according to the demand.  

On a call for heating, the cooling outlet valve closes so that simultaneous heating and cooling are 

avoided. Upon a call for closure, the supply valve can modulate. For the radiant floor, however, 

the action on the valve changes depending on whether the water supplied is hot or cold. The 

maximum floor temperature measured by the sensors, located approximately 4 cm below the 

surface, is limited to 32°C (so the maximum surface temperature is limited to around 29°C by 

ASHRAE Standard 55.1) and the minimum temperature to 18°C. The radiant slab serves 11 

zones and is controlled by the zone air temperature only. The ground floor has five zones and a 

hydronic slab area of 240.61 m2, whereas the upper floor comprises six zones with a total area of 

Figure 3-4: Fan coil unit provides both ventilation and heating/cooling demand. Hydronic radiant 

slab is the main system for heating/cooling (right) 
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hydronic slab of 433 m2. In each room, the zone air temperature sensor continuously controls the 

6-way valve of the radiant floor and the fan-coil unit at two-stage, to maintain the heating set 

point at 22°C in winter and the cooling setpoint at 25°C in summer. The zone supply fan speed is 

adjusted between the minimum of 10% and the maximum according to the higher of the two 

inside temperature or CO2 signals to satisfy the greatest demand. Fans will stop in areas outside 

of offices if there is no CO2 demand or the temperature setpoint is met.  In an unoccupied period, 

the heating setpoint is lowered to 18°C, and the air conditioning is stopped. The library is also 

equipped with motorized windows for natural ventilation, which open automatically in the 

cooling season when the outside temperature is between 13°C and 22°C. During unoccupied 

periods, only the motorized windows located in the upper part of the building can be opened. 

Windows are automatically closed upon the detection of the rain.  

3.3 Conclusion 

To conclude, the Varennes library is intelligently designed in an integrated manner comprising 

renewable generation systems and efficient HVAC and storage systems that allow it to achieve a 

net-zero energy balance yearly. However, in a grand scheme of electrification and 

accommodation of larger scale of renewables mission, the timing of net energy balance is more 

valuable than the absolute amount. NZEBs must be optimized with anticipated operation in 

mind, resulting in a grid impact that is mainly predictable and manageable. With this objective, 

the next chapter will focus on optimizing the current baseline operation by shifting the power 

from the two peak demand periods of the grid and maximizing self-consumption.  
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Chapter 4 

Modelling methodology and heuristic MPC 

This chapter is structured as follows: First, a step-by-step control-oriented model development 

and calibration methodology for heuristic MPC in the NZEB are proposed. Both data-driven and 

physics-based parameter identification approaches are evaluated and verified with the measured 

data. This is followed by developing heuristic model-based predictive control strategies to 

maximize energy efficiency and/or energy flexibility with the approach of handling uncertainties 

in weather forecasts from the collected data. The performance of proposed control strategies is 

assessed and compared with the current baseline, followed by the conclusion. 

4.1 Modelling approach 

For control-oriented models, there is always a trade-off between the requirements for adequate 

detail of the processes, precision in the modelling and a high time resolution alongside 

minimizing the number of inputs and maximizing the ease of use, reliability, and the model's 

computational efficiency. Thermal Resistance-Capacitance (RC) network models based on the 

heat balance equation usually meet those criteria and are often used for control-oriented 

modelling. Due to the computational requirements above, low-order models are often proposed, 

which parameters are identified through various system identification techniques. This 

subchapter discusses the methodology to develop a grey-box RC capacitance model for the 

heuristic MPC in the Varennes library. Although we live in the era of data analysis and data-

driven methodologies, the lack of availability of monitored data in buildings is one of the issues 

hindering the full potential of applying traditional MPC in buildings. Instead, the availability of 
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extensive BAS databases in buildings, such as the Varennes library, provides an opportunity to 

develop and verify different building modelling approaches.  

The first step is to identify zone arrangements and structure of the model that would capture the 

average thermal behaviour in the whole building. For this purpose, measured indoor temperature 

data is analyzed, and variation in the area-weighted average indoor temperature between zones 

exposed to the most different conditions: south and north orientations and 1st and 2nd floors are 

Figure 4-1: The variation of the area-weighted average indoor air temperature 

between upper and bottom zones (top); south and north zones (bottom). 
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calculated and shown in Figure 4-1. The data indicates a higher variation in indoor temperature 

between the top and bottom zones than the south and north zones. This can be explained by the 

open space interior design, underfloor air distribution system, ceiling fans installed in the library, 

and buoyancy effects. Following this analysis, a 6th order model zoned on the floor level basis is 

initially proposed. The heuristic MPC, which will utilize the developed model, can accept 

higher-order models than the traditional MPC since it does not require solving the optimization 

problem in real time. Thus, it is decided to start with a 6th order model to avoid excessive 

simplification so that close to meaningful parameters can be used, but, at the same time, simple 

enough to capture the dynamic behaviour of a building to the desired degree in a short time 

resolution.  The structure of the initially proposed base case 6th order model is shown in Figure 

4-2. It has 24 parameters, 6 of which represent the capacitances of the floor at two levels. Two 

capacitances model the part of the floor slab incorporating hydronic radiant tubes and once 

capacitance conventional concrete slab. The following are some of the critical assumptions used 

to build simplified RC thermal networks: 

• Each surface is isothermal.  

• Each zone has an even air distribution, and the air temperature is uniform 

(represented by one node). 

• Air is transparent to radiation. 

• For the windows, parallel heat flow paths are assumed for the framing and the 

glazing. 

• The floor absorbs 70 % of incoming solar radiation and the remaining 30 % by the 

other surfaces. 
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Two approaches have been undertaken and compared to identify model parameters: numerical 

approach and physics-based approach (closer to white-box).  

4.2 Numerical approach  

4.2.1 State-space representation 

The common way to describe systems of linear differential equations is through compact state-

space representation to facilitate a mathematical treatment of a problem. One of the drawbacks of 

this form is that it cannot contain algebraic differential equations; that is, all state variables have 

Figure 4-2: Thermal network of the library. Each zone is represented by nodes 

indicating wall (6 & 15), conventional slab surface (7 & 16), hydronic radiant slab 

surface (2 & 11), interior hydronic radiant slab (3, 4 & 12, 13), bottom of the 

conventional slab (8 & 17), bottom of the hydronic radiant slab (5 & 14). 
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to be in the form of linear ordinary differential equations (ODEs). Thus, to describe the 

suggested 6th order model discussed above in canonical state-space shape, all the temperature 

nodes must be assigned with some negligible capacitance, which increases the intended model 

complexity. Another disadvantage of this method is the inability to incorporate nonlinearities. As 

will be seen later, the nonlinearities will significantly affect the performance of the physics-based 

model. The state-space representation of this model can be found in Appendix E.  

System Identification. The area-weighted average zone air and slab surface temperature data, 

available from the Varennes Library, were used as a reference output for the model. First, the 

linear grey-box model estimation function – “greyest” in the MATLAB Model Identification 

Toolbox was used to identify model parameters. The ‘fmincon’ search method was chosen. The 

solver did not even run, claiming the model is “unstable”. The same error was encountered when 

using another function in the Model Identification Toolbox for estimation of state-space model 

with structured parametrization – “ssest”.  

After a series of errors, it was decided to define the optimization problem explicitly. The 

difference between the measured reference outputs and the output from the proposed state-space 

RC thermal model was quantified by the 2-norm operator: ‖𝑇 − Ť‖ = √∑ [𝑇(𝑖) − Ť(𝑖)]
2𝐾

𝑖=1 . The 

cost function was quantified as follows:  

𝐽(𝑃) = 2‖𝑇1,𝑎 − Ť1,𝑎‖ + 2‖𝑇2,𝑎 − Ť2,𝑎‖ + ‖𝑇1,𝑓 − Ť1,𝑓‖‖𝑇1,𝑓 − Ť2,𝑓‖ 

Where subscripts denote: “a” – air, “f” – floor, “1” – 1st floor, 2 – 2nd floor. 

The parameters to be identified are the following: U12, U17, U1011, U1016, C3, C5, C8, C12, 

C14 and C17 (the notations could be found in Figure 4-2 above). The search space of parameters 
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is constrained so that the maximum allowable capacitances are nominal capacitances increased 

by a factor of 10 and conductivities by a factor of 3. The minimum allowable capacitances are 

nominally divided by 10 and for conductivities divided by 3. The other 10 extra capacitances that 

were added due to state-space representation were defined with extremely small values to ignore 

the effects. However, as a result, the intended 6th order model was simulated as 16th order. Due to 

increased model complexity, simulation was taking too long, and a fit was extremely poor. 

Figure 4-3 shows the simulation result with calibrated parameters. On the second day, there is an 

accumulating effect of extra ten capacitances; the dynamic behaviour is not captured. One of the 

reasons is that as infinitely small capacitances have been assigned to the additional nodes, the 

time step of simulation became extremely small due to decreased critical time constant. So even 

a very small timestep can lead to a significant change in T, leading to errors in the solver.  

Figure 4-3: Simulation of the average indoor temperature with 16th order (formally 6th order) 

model represented in a state-space form. 
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4.2.2 Explicit representation.  

In this case, all algebraic-differential equations describing the thermal behaviour of the model 

were written in an explicit form. It resulted in a reasonable response in terms of time constant 

and led to a faster solution of the cost function. The dynamic behaviour of the building was 

captured to a better degree, as shown in Figure 4-4 below. To minimize the cost function defined 

above, ‘fmincon’ – a local nonlinear optimization solver available in MATLAB Optimization 

Toolbox was used. The results showed improvement in the fit; however, estimated parameters 

were very close to the initial guesses. Due to model complexity and non-smoothness of the 

function, the solutions stuck in attraction basins when using local solvers like “fmincon”. To 

solve this complex constrained non-linear optimization problem, the Surrogate Optimization 

algorithm from MATLAB Global Optimization Toolbox was first used to assist in setting up the 

initial guesses, which were fed to the Pattern Search algorithm in order to avoid local minima. 

Pattern Search is essentially a grid search algorithm on the parameters where an initial guess is 

Figure 4-4: 6th order model represented in an explicit form with nominal physical parameters; 

indoor air temperature simulation. January 13, 2018. 
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made, and points in a grid around the guess are evaluated for a more optimal solution. The 

algorithm continues to search in the grid until no more optimal solutions can be found, and it 

reduces the size of the grid and searches locally around the current most optimal solution 

identified by the larger grid. The identified parameters are shown in Table 4-1 below. The 

performance of calibrated model both for training and test data for the consecutive periods of 2 

very cold days (outside Temperature ~ -20 °C) is shown in Figures 4-5 and 4-6, respectively. 

Table 4-1: Parameters identified with hybrid Surrogate Optimization + Pattern Search 

algorithms.  

Parameter Nominal Calibrated 

C3 (J/K) 5e+7 2.3e+8 

C5 (J/K) 5e+7 3e+7 

C8 (J/K) 1.25e+7 2e+9 

C12 (J/K) 2.8e+7 3e+8 

C14 (J/K) 2.8e+7 3e+7 

C17 (J/K) 1.7e+8 8.4e+8 

U01 (W/K) 670 543 

U010 (W/K) 714 795 

U12 (W/K) 5012 8312 

U1011 (W/K) 2904 9320 
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Figure 4-5: Performance of explicitly represented 6th order model calibrated with hybrid 

Surrogate Optimization + Pattern Search solvers in terms of the area-weighted average of indoor 

temperature. First floor (top) and second floor (bottom). Training data; January 25-26, 2018. 
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Figure 4-6: Performance of explicitly represented 6th order model calibrated with hybrid 

Surrogate Optimization + Pattern Search solvers in terms of area-weighted average indoor air 

temperature. First floor (top) and second floor (bottom). Test data; January 3-4, 2018. 
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4.3 Physics-based approach – towards white-box   

modelling  

While the model remains the main limitation of MPC, this subsection provides a solution 

through a close-to-white-box physics-based model. As was mentioned, the heuristic MPC 

proposed in the next section does not simulate the incorporated building model in real-time to 

find optimal control action. Thus, the model can be several orders of higher complexity with 

parameters derived from the first principles. The arrangement of zones of the west partition of 

the library is shown in Figure 4-7 below. The upper zone’s dimensions are 17.1 m by 4 m by 3.2 

m, the bottom zone’s 17.1 m by 4 m by 2.8 m.  

The step-by-step procedure used to select the level of resolution and to calibrate the model is as 

follows:  

➢ Baseline model (Case 1): 6th order model, a hydronic radiant slab in each floor is 

represented by two capacitances, conventional slab with one, resulting with a total of 

three capacitance in each zone. A key feature of the model is that the conductance 

Figure 4-7: Cross-sectional view of the Library with upper and lower zones considered. 
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associated with radiative and convective heat transfers are combined and constant. The 

baseline model does not integrate the thermal mass present in the walls made of gypsum 

board, assuming that these effects would not significantly impact the model's dynamics 

and accuracy since the thermal capacity of these walls is much less than the concrete. 

➢ Case 2: 6th order model, conductance associated with radiative and convective 

coefficients are nonlinear and time-variant as a function of respective temperatures. All 

the capacitances are increased by 20% representing “effective” thermal capacitance, 

essentially accounting for thermal capacitance in walls and furniture. The idea of 

“effective” capacitance is usually suggested and applied to use a low-resolution model 

while still achieving sufficient accuracy predictions. This hypothesis is based on the idea 

that it is possible to increase the precision of a low-order model by assuming that the 

substance has a higher capacitance than the physical (Date, 2016). It is important to note 

that this does not represent any alternation in the material; it is just a modelling 

approximation. 

➢ Case 3: 8th order model_1. It incorporates the capacitance of the gypsum board present 

in walls.  

➢ Case 4: 8th order model_2 Same as Case 2, but the “effective” air node capacitance is 

included. The capacitance of air was increased by a factor of 20 to account for books, 

book stands, furniture and other objects which store heat. The factor of 20 is found 

through the numerical calibration with the collected data set. The iterative calibration 

approach yielded similar results. 
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➢ Case 5: 10th order model. Combination of Case 3 and Case 4 – both “effective” air and 

wall capacitance are included. The detailed thermal network model for this case is shown 

in Figure 4-8.  

The heat and weather input from the collected data and the resulting indoor air temperatures are 

used to analyze and compare the performance of proposed models.  Figure 4-9 shows the 

performance comparison of all 5 models on a typical cold day in winter. Case 5 (10th order 

model) and Case 4 (8th order model with “effective” air capacitance) achieve significantly better 

performance in predicting indoor air temperature compared to other considered cases.  

Figure 4-8: 10th order thermal network model of the library. Each zone is represented 

by air node (1 & 10), wall (6 & 15), conventional slab surface (7 & 16), hydronic 

radiant slab surface (2 & 11), interior hydronic radiant slab (3, 4 & 12, 13), bottom of 

conventional slab (8 & 17), bottom of hydronic radiant slab (5 & 14). 
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For model validation, the statistical indices CV (RMSE) and NMBE were calculated. ASHRAE 

Guideline 14 (ASHRAE Guideline 14-2014) recommends CV (RMSE) and NMBE values to be 

below 30% and 10% on an hourly basis, respectively, for a calibrated model to be satisfactory. 

To take a more conservative approach, Table 4-2 compares these indices calculated on a 15-

minute basis for the proposed 5 model cases on the typical cold sunny day. It can be observed as 

the model’s detail increases, the correlation between data and model increases. The 10th order 

Table 4-2: Statistical indices showing model validation against area-weighted average 

zone air temperature. January 23-26, 2018 

Figure 4-9: Performance of models in terms of average zone air temperature over a 

typical very cold sunny day in Montreal (T_outside < -10°C). January 26, 2018. 
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model, which accounts for wall and indoor objects’ thermal mass effects, performs significantly 

better than the 6th order baseline.  

Both the 8th order model accounting for “effective” air node capacitance and the 10th order 

models perform well over a long time horizon; thus, any of those can be chosen depending on the 

application. The largest effect on the model performance accuracy was the incorporation of 

‘effective’ air node capacitance, where CV(RMSE) and NMBE dropped from 7% and 6.2% to 

3.3% and 3%, respectively. Thus, a 2-zoned 8th order model for institutional buildings like 

Varennes library can be effectively used for practical applications. As the control strategy 

proposed in this study can adopt a more complex model, Case 5 – 10th order model, which 

includes air and wall capacitance, is used for further study. Figure 4-10 above shows its 

performance on the three other very cold days.  

 

 

Figure 4-10: Performance of 10th order model in terms of average zone air temperature over three 

typical very cold days. 23-25 January, 2018. 

-20

-15

-10

-5

0

5

18

20

22

24

26

00:00 12:00 00:00 12:00 00:00 12:00 00:00

O
u

ts
id

e 
Te

m
p

er
at

u
re

 °
C

In
d

o
o

r 
Te

m
p

er
at

u
re

 °
C

Time, h

Model

Measured data

Outdoor Air Temp



54 
 

4.4 Predictive control strategies 

The need for rigorous design and operation of a building as an integrated energy system is a core 

requirement of a high-performance building (Athienitis & O’Brien, 2015). Energy-efficient 

buildings must be operated in an anticipated manner, leading to a predictable and reasonable grid 

impact. Predictive control strategies have not been generally implemented on a wide scale, 

partially owing to a lack of collaboration among the A/E team and facility energy manager, given 

the prevalence of the design-bid-build project procurement method. In that respect, incorporating 

the building model and its associated slow responding systems into optimal control strategies has 

a significant influence on the performance of the buildings. Furthermore, apart from cost savings 

due to dynamic energy pricing, predictive control strategies may be used to prevent the 

oversizing of the HVAC capacity, as will be shown in this section on the example of the design 

day. As a result, both the life-cycle operating and initial cost can be effectively minimized if an 

integrated approach is taken.  

The following sections propose the development of heuristic model-based predictive control 

strategies for the near-optimal operation of the library’s passive and active thermal storage at the 

supervisory level. The strategies are derived from the physics principles and iterative 

simulations. Prediction is based on the forecasted next-day outdoor temperature and the sun 

availability; possible expected weather conditions are clustered into 9 possible scenarios, and 18 

daily heating setpoint profiles are developed for each scenario. For each type of day, two sets of 

predictive controls are developed with targets to maximize: i) Energy-efficiency and ii) Energy 

flexibility. The energy-efficiency strategy aims to minimize daily energy consumption and 

reduce daily maximum power demand, whereas the objective of the energy-flexibility case is to 

shift the load at two peak demand periods in Quebec, given one day ahead of notice. Peak 
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demand events in the winter period for the grid in Quebec occur from 6 am to 9 am and from 4 

pm to 8 pm, and the majority of that accounts for space heating.  The uniqueness of each 

building is recognized, so that developed setpoint profiles may not apply to others, but the main 

principles can be generalized to other passively designed buildings supplied by a hydronic 

radiant slab.  

Peak demand for the grid in Quebec occurs throughout the winter; thus, very cold days with the 

mean outdoor temperature between -20°C and -10°C are of particular importance. Other days 

considered in the winter season include cold and mild days with the dry air temperature in the 

range of -10°C and 0°C and above 0°C, respectively. These days are further clustered into three 

subcategories depending on one day ahead sun availability prediction: sunny, semi-

cloudy/intermediate and cloudy type of days. Thus, overall there are 9 types of days with 2 

strategies to be developed for each. On a local level, heat pumps are controlled through a PI 

feedback controller as an inner local loop, with the associated deadband acting as an outer 

closed-loop reset. Ground source heat pumps continuously modulate between 20% and 100%, 

turning on/off based on the reset. The principle of this reset is the following: if the controller was 

previously on, heating continues until the difference between the reference setpoint and actual 

room temperatures reaches zero. Once it is turned off, it remains at an off state until the 

controlled temperature drops 1°C below the setpoint. The building is thermally massive, and the 

heat pumps have a wide range of modulation, so short cycling is not expected, as shown in the 

next section. An important consideration should also be given to selecting the appropriate 

minimum proportional parameter for a PI controller. As a rule of thumb, for the predictive 

strategies, the coefficient should be chosen such that room temperature tracks the setpoint 

increase of ramp slope 1°C within a maximum of 1 hour. 
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4.4.1 Prediction uncertainties and high-level controls 

As noted in the previous section, the optimal setpoint profile is selected based on the predicted 

outdoor temperature and sun availability. Initially, from 12 am to 9 am, the weather forecast 

from a reliable weather station is used to select the appropriate setpoint. To address the 

uncertainties with the initial prediction, at 9 am and 12 pm, verification of the initial prediction 

based on the actual outdoor temperature and the amount of energy produced from installed 

building-integrated photovoltaic systems (BIPV) systems in the last 3 hours is performed. The 

corrections are applied during those times if the initial weather forecast happens to be wrong. 

For example, if it is expected to have a very cold sunny day, the setpoint developed for the very 

cold sunny day (shown in the next section) is initially used. At 9 am, the electricity generation 

from on-site BIPV and the actual outside temperature are compared against the forecasted value. 

For example, if the PV production is much less than projected, the profile developed for the 

cloudy day is selected. If it is close to the predicted value, then the initial weather forecast is 

confirmed, and the previously selected profile for the sunny day remains unchanged. The 

projected PV power generation is different for each day and has to be calculated daily, as there 

are many factors to consider, including, but not limited to, location (latitude & longitude), 

calendar day (incidence angle) and tilt angle. Various software is available for that purpose. In 

this study, the projected PV generation is derived from Hottel’s clear sky model (Hottel, 1976).  

The degree of sun availability in the verification stage is classified through k-clustering 

(Equation 4–1): 

𝑐𝑖 = min
𝑗=1,2,3

‖𝑥𝑖 − 𝑧𝑗‖                                                                                                 (4–1) 

Where, 
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ci is a clustering group, 

𝑥𝑖 is the vector 
𝑃𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑃𝑉𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦
 in the last 3 hours, 

𝑧𝑗 is a representative vector for types of days obtained from the k-means algorithm. 

The algorithm used to train the 𝑧𝑗 vectors is the following: 

1. A preliminary list of representative 𝑧1,2,3 vectors with nominal values based on modelling 

experience are made. 

2. The vectors 𝑥𝑖 from the collected 2 months data (from January 1st to February 28th) are 

divided into 3 clusters according to the nearest representative vector 𝑧𝑗. 

3. Revise representatives 𝑧1,2,3. For every cluster j = 1,2,3, update 𝑧𝑗 to be the average of the 

vectors in cluster j. 

One of the assumptions included in this strategy is that the type of day identified during the 

verification period will stay constant throughout the rest of the day after 12 pm. This uncertainty 

Figure 4-11: High-level control algorithm for very cold days. Initial one-day ahead weather 

prediction is verified through PV power generation data at 9 am and at noon. 
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is alleviated by the high thermal mass of the building and the availability of renewable 

production for the latter part of the day unless the cloudy day turns out to be a false negative.  

The flowchart of the high-level control algorithm under the assumption of the continuous very 

cold day is shown in Figure 4-11 above. Table 4-3 indicates the resultant possible scenarios for 

very cold days. The same pertains to warm and mild days. 

4.4.2 Sunny days 

This subsection discusses the principles used to derive the supervisory heating setpoint strategies 

to maximize energy efficiency as a first case and maximize energy flexibility as a second while 

maintaining the minimum thermal comfort conditions. On these days, heat in the form of solar 

radiation transmits through the window, and a substantial portion of it gets absorbed in the 

thermal slab. Depending on the temperature profile of the slab and the ambient room 

temperature, part of absorbed heat penetrates to the bottom of the floor, increasing the interior 

temperature of the slab and another part is immediately released to the room by convection and 

radiation means, thus contributing to the short-term indoor temperature rise. Majority of reactive 

controls which do not anticipate this effect have a high risk of overheating on sunny days. A 

predictive control strategy can utilize the floor’s thermal mass in anticipation of solar gains to 

Table 4-3: Resultant control scenarios due to sun availability prediction 

uncertainty in the form of a selection matrix. Off-diagonal entries represent an 

error in initial prediction. Very cold days are considered. 
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store the energy for future use, thus providing the energy flexibility. In the case of energy 

efficiency, the strategy is to fully utilize the anticipated solar radiation to displace heating loads 

by keeping the thermal slab as cold as possible in the early morning. A rapid setpoint change 

from a night setback to a daytime setpoint is well understood to cause a rise in peak demand. 

Several studies (Candanedo et al., 2015; Date et al., 2015) explored the impact of using ramps 

for transition between setpoints. This study, therefore, uses ramps to transition from one setpoint 

to another.  

Figure 4-12: Near-optimal heating setpoint profile on a sunny day to maximize energy 

flexibility (top) and energy efficiency (bottom). 



60 
 

In the energy efficiency case, right after the library is closed, the temperature setpoint on a very 

cold day is set at a low night setback, to around 14°C, and it is maintained until 4 am. From 4 am 

to 6 am, the setpoint is increased by using a linear ramp until 16°C. Given the warm floor from 

the previous day, usually, no heating is expected at this time. Starting from 6 am set the setpoint 

is linearly raised to 18.5°C by 8 am. At this period, depending on how cold the inside 

temperature is, heating may or may not start; if it is equal to or higher than 17.5°C, it will not 

start. Starting from 8 am, the projected room air temperature is between 17-18°C, and solar 

radiation intensifies.  By 9 am the setpoint is increased to 19.5°C, and at this time, the projected 

zone temperature is between 19°C and 20.5°C. 

To mitigate this uncertainty and ensure the library meets the minimum required temperature at 

10 am (opening time), the setpoint is increased to 21.5ºC from 9 am to 10 am. From 10 am to 2 

pm, reference input is lowered to 21°C. This serves multiple purposes considering all possible 

scenarios. In the first scenario, if heating is on before 10 am, it will try to bring the inside to 

21°C as soon as possible, likely in less than half an hour, and then will go off expecting high 

solar gains and avoiding possible overheating. In the second case, if heating is off, the building is 

already above 21°C (given the setpoint of 21.5°C from 9 am to 10 am as mentioned above) 

before 10 am and considering incoming solar radiation, no heating will be initiated. In any case, 

the heating will continue until 10:30 am maximum, and then the heat pump will turn off. From 2 

pm till 5 pm, the solar radiation level generally falls and assuming heating is off before 2 pm, the 

setpoint is now set at 22°C. Considering the differential deadband discussed above, when the 

pump is at off state, it will not initiate unless room temperature drops below 21°C. This allows to 

still effectively use the incoming solar gains for the remainder of the day as a means of space 

heating. Only when it is not enough to maintain the minimum comfort conditions, the heating 
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will initiate. This typically will occur after 4 pm, but it may vary on a case-by-case basis. At 8 

pm, 1 hour before the building becomes unoccupied, the setpoint is decreased to 21.5°C. The 

energy flexibility strategy for the clear sunny days utilizes the same principles with slight 

modification. There is no – to low expected electricity demand in the morning period, and thus 3 

hours of preheating is recommended. However, from 10 am to 3 am, the setpoint is set at 24°C 

and then decreased to 22°C for the peak evening period.  On sunny days the preheating of 5 

hours instead of 7 is preferred. There are several reasons for that. Firstly, there is a risk of 

overheating, and due to incoming solar gains, there is already low power demand in the baseline 

scenario for the second part of the day, which is difficult to fully displace without the risk of 

overheating. Also, when starting preheating from 9 am, the temperature will reach the setpoint 

24°C well before the evening peak demand event (approximately at 12 pm - 1 pm), so the heating 

will turn off, and due to the deadband, it will stay off until it drops below 23°C. As a result, the 

displaced load at the peak demand window will be less if preheating was instead continuously 5 

hours before the event. After 4 pm, heating will start once room temperature drops below 21°C. 

Figure 4-12 above shows temperature setpoint profiles for cold and mild sunny days as well.  

4.4.3  Cloudy days 

These are design days, the days when maximum loads are expected and for which HVAC 

capacity is designed for. The following section shows that the library is strongly underheated on 

cloudy very cold days while not continually operating at maximum load. This is one of the cases 

where even self-tuning reactive controllers can fall short in buildings. The aim of energy 

efficiency strategy on these days is to bring the inside air temperature to 21°C at 10 am while 

avoiding high power demands. The strategy for the energy efficiency case is elaborated further.  
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 From midnight the heating setpoint is set slightly higher than usual night setback, at 19°C until 3 

am (on very cold days). Depending on the thermal mass of the building and airtightness, heating 

may or may not start. From 3 am to 8 am, the setpoint is linearly increased up to 20°C. The heat 

pump is most likely to start at this time frame, and by 10 am, the setpoint is ramped to 22°C. 

Heating is not expected to stop on a very cold cloudy day, and the setpoint can be kept at 21.5°C 

till the end of the occupancy. For an energy flexibility strategy, heating should start much earlier 

to minimize the electricity heating consumption for morning peak demand events. From 11 pm 

on the previous day till 6 am on the next day, the floor is preheated at a setpoint of 24 °C to 

increase the demand at the off-peak time and, consequently, shift the load from the peak demand 

Figure 4-13: Near-optimal heating setpoint profile on a cloudy day to 

maximize energy flexibility (top) and energy efficiency (bottom). 
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event. From 6 am to 9 am, the setpoint is decreased to 20°C and ideally, heating stops during this 

time. Right after this period, the setpoint is adjusted back to 24°C until 3 pm. Afterwards, 

heating is turned off at 4 pm for one hour by setting a low setpoint, for example, 20°C, and then 

ramping it back to 23°C so the heating would start only when the inside temperature drops below 

21°C. Once the heating turns on, it should operate at a setpoint of 21.5°C. See Figure 4-13 for 

the setpoint profile developed for cloudy very cold, cold and mild days. 

4.4.4 Intermediate days and general algorithm 

Intermediate days are the most common days and, for practical purposes, can be subdivided into 

two further categories: semi-cloudy and semi-sunny. However, for simplicity, in this thesis, only 

one category for this type of day is considered – intermediate days.  

Figure 4-14: Near-optimal heating setpoint profile on a semi-cloudy day to maximize 

energy flexibility (top) and energy efficiency (bottom). 
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The proposed near-optimal control strategy for intermediate days is the mixture of principles 

described above, and the resultant setpoint profile is approximately the average of the clear and 

sunny days. The profiles targeting both energy efficiency and energy flexibility are shown below 

in Figure 4-14. 

Overall, based on the above discussion, the following low-level implementation algorithm and 

process schematic for BAS are produced as shown in Figures 4-15 and 4-16 below. 

Figure 4-16: Control architecture with supervisory control feeding temperature setpoint into 

the local control loop. 

Figure 4-15: Low-level control algorithm of selection near-optimal setpoint profile on very cold 

days. Ramp # indicates the slope. 
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4.4.5 Key Performance Indicators  

Several performance metrics are assessed and compared to estimate the effect of proposed 

control strategies:  

- Thermal energy load for heating [kWh]. It includes the heating load to be supplied by the 

geothermal heat pump with a heating capacity of 80 kW and COP of 4 and an auxiliary 

electric heater with a capacity of 40 kW and COP of 1. It does not include energy 

consumption associated with distribution fans and circulation pumps. 

- Building Thermal Energy Flexibility Index (BEFI) [kW]. It quantifies the average available 

power throughout a specified length of time, usually at times of peak demand, compared 

to the reference profile. BEFI is calculated as follows defined by Athienitis and Dumont; 

(2020): 

𝐵𝐸𝐹𝐼̅̅ ̅̅ ̅̅ ̅(𝑡, 𝐷𝑡) =  
∫ 𝑃𝑟𝑒𝑓𝑑𝑡−∫ 𝑃𝑓𝑙𝑒𝑥𝑑𝑡

𝑡+𝐷𝑡
𝑡

𝑡+𝐷𝑡
𝑡

𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑
                                                                (4-2)        

Where,  

BEFI - the mean energy flexibility Index at time t over period Dt, 

Pref – average power demand at time t over period Dt under reference strategy, kW, 

Pflex – average power demand at time t over period Dt under energy flexibility control 

strategy, kW. 

- Building Thermal Energy Flexibility Index Percentage (BEFIP) [%]. Indicates the average 

power reduction relative to the baseline reference in terms of % (Equation 4-3): 

𝐵𝐸𝐹𝐼𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑡, 𝐷𝑡) =  
∫ 𝑃𝑟𝑒𝑓𝑑𝑡−∫ 𝑃𝑓𝑙𝑒𝑥𝑑𝑡

𝑡+𝐷𝑡
𝑡

𝑡+𝐷𝑡
𝑡

∫ 𝑃𝑟𝑒𝑓𝑑𝑡
𝑡+𝐷𝑡
𝑡

                                                            (4-3)                                

- Load shifting [kWh]. The amount of thermal energy displaced over peak demand hours 

considering indoor thermal comfort as a constraint. 
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- Imported electricity power [kW]. The amount of power imported from the grid under a 

proposed strategy by calculating the energy balance of the building where the building 

footprint is the energy boundary. As described in section 2, the building has an installed 

PV capacity of 110.5 kW, where generated energy displaces building loads with the excess 

being exported to the grid. The energy balance for new imported power, given the 

availability of measured imported power, is calculated as follows:  

Importnew = Importmeasured – (Load,measured –Loadnew ) – Exportmeasured                    (4-4)    

Where, 

Import measured – measured imported power to the library from the grid under current 

control strategy, kW, 

Importnew – resultant imported power from the library to the grid under proposed control 

strategy, kW, 

Loadmeasured – electrical load of the library under current control strategy, kW, 

Loadnew – electrical load of the library under proposed control strategy, kW, 

Exportmeasured – measured exported power to the grid from the library under current 

control strategy, kW.                

4.5 Results and discussion 

4.5.1 Indoor thermal conditions 

Monitoring the indoor thermal conditions of the space on the design days is critical to evaluate the 

effectiveness of the control strategy and sizing of the air conditioning system. Data collected over 2 

months span (January-February, 2018) were analyzed, and the indoor temperature on very cold days 

was selected for further comparison and performance analysis. The air temperature of the zones is 
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averaged based on weighted areas and presented here as a single variable. Figures 4-17 and 4-18 

show the measured and resulting inside temperature under proposed control strategies alongside 

outdoor thermal conditions. On sunny days (Figure 4-17), the energy-efficiency strategy steadily 

brings and maintains the space temperature slightly above 21ºC throughout the day. 

 In contrast, the energy flexibility case reaches a peak of 23ºC at 2 pm, followed by a gradual 

decline to the end of the library’s operation. The highest temperature difference is 2.5 ºC 

throughout the day and all strategies, including the current one, satisfy the thermal comfort 

requirements recommended by ASHRAE 55 (ASHRAE, 2016). Temperature profiles on cloudy 

and semi-cloudy design days are shown in Figure 4-18. Collected data shows that the library is 

strongly underheated on both days and current conventional reactive controls fall short. Both 

proposed predictive control strategies achieve minimum acceptable indoor thermal comfort 

conditions since the first hour of the library’s operation and maintain it throughout the day.  

Figure 4-17: Indoor air temperature on a sunny day under proposed and current control 

strategies. 
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4.5.2 Thermal load and load shifting 

Figure 4-19 illustrates the impact of proposed control strategies on the thermal energy load over 

24 hours on extremely cold days. On sunny days, the heating loads are decreased by 25% under 

the energy-efficiency strategy, whereas the energy flexible case saves only 4% of energy. On 

Figure 4-18: Indoor air temperature on cloudy (top) and semi-cloudy days (bottom) 

under proposed and current control strategies. 
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cloudy and semi-cloudy days, energy savings with the energy-efficiency strategy are only 15% 

and 8%, respectively, but they also satisfy thermal comfort conditions, as was discussed above.  

 Figures 4-20, 4-21, 4-22 show the load shifting potential from two peak demand periods for all 

three strategies on sunny, semi-cloudy and cloudy days, respectively. On very cold sunny days, 

the energy-flexibility strategy shifts on average 68% of load during peak demand events 

compared to the current and energy-efficiency strategy. However, 100% of the energy demand is 

shifted from both peak periods on cold and mild sunny days.  On a very cold semi-cloudy day, 

76 % of the peak energy demand relative to the current baseline strategy and 78 % relative to the 

energy efficiency strategy is displaced. Similar to sunny days, on cloudy cold and mild days, 

100% of demand is displaced.  The energy-flexibility strategy is highly effective on very cold 

cloudy days as well, reducing the power demand by almost 81 % in peak demand events. Like 

semi-cloudy and sunny days, 100% of demand is shaved at the mild and cold types of days. 

Figure 4-19: Thermal loads under proposed and current (measured) control strategy 

on very cold days. 
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Overall, the energy-flexibility strategy leads to a substantial demand decrease in peak hours, 

between 70% and 100%, while increasing energy use for heating by approximately 30% 

compared to the energy-efficiency strategy.  

Figure 4-20: Thermal load during peak and off-peak demand periods on sunny 

days. 

Figure 4-21: Thermal load during peak and off-peak demand periods on semi-

cloudy days. 
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4.5.3 Energy Balance and Flexibility Index 

Figures 4-23 and 4-24 show the continuous building energy balance profile on a very cold sunny 

day. The majority of excess energy associated with the energy flexibility strategy is met by on-

site renewable electricity production. As a result, the energy-flexibility case has 15% less total 

energy import from the grid than the measured case. Analogous results for the other 8 types of 

days are shown in Appendix D.  The reason why currently implemented reactive controls fail to 

achieve thermal comfort on cold cloudy days is now apparent. Although heating is operating 

continuously and eventually consumes more energy than the predictive energy-efficiency 

strategy, it is working below the available heating capacity for a continuous period of time. The 

heat loss at an instantaneous point in time outweighs the required energy input from heating.  

One of the reasons for this behaviour is that the tuning of the control loop is done in one 

Figure 4-22: Thermal load during peak and off-peak demand periods on cloudy 

days. 
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condition, which is no longer valid under extreme conditions. Even self-tuning techniques do not 

always solve the problem as there are challenges associated with disturbances that skew the 

results when a step test is in progress. Predictive controls overcome this issue by predicting the 

load based on anticipated exogenous inputs and disturbances and reacting before the event 

occurs as long as the embedded model is accurate enough.  

Figure 4-23: Energy balance on a very cold sunny day under proposed energy flexibility strategy; 

PV production, electrical heating load (top); resultant imported power (bottom); January 26, 

2018. 
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Figure 4-25 below compares the averaged BEFIP of all 9 energy flexible strategies. Evidently, 

on cold and mild days, it is possible to achieve nearly 100% of BEFIP if the appropriate setpoint 

profile is chosen. The scenarios of the biggest importance, very cold days, also show promising 

results by reaching the BEFIP on cloudy and semi-cloudy days 78% and 87%, respectively. On 

an analogous sunny day, BEFIP is only 65% on average (83% in the morning and 48% in the 

evening peak period) since there is already a low demand to displace beforehand.  

Figure 4-24: Energy balance on a very cold sunny day under proposed energy efficiency 

strategy; PV production, electrical heating load (top); resultant imported power (bottom); 

January 26, 2018. 
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Table 4-4 below compares the control strategies in terms of thermal energy flexibility index, 

BEFI, for two peak demand periods in Quebec. The results show that with predictive heuristic 

model-based control strategies with the objective to maximize energy flexibility, it is possible to 

reduce daily average power demand during 3 hours of the morning and 4 hours of peak period by 

an average of 90% and 60%, respectively if a building is passively designed and optimally 

operated. 

 

Table 4-4: BEFI index in kW electrical load under proposed control strategies. % indicates the 

BEFI relative to the reference average power demand. 

Figure 4-25: Resultant BEFIP % for all 9 scenarios under energy flexibility strategy. 
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4.5.4 Preheating length analysis 

The effect of varying preheating periods for the energy-flexibility strategy on the example of a 

cloudy day is also investigated. The lengths of 4, 5, 6 and 7 hours of preheating are considered. 

Table 4-5 presents the BEFI and electrical energy consumption on a very cold cloudy day. 

Results show that 7 hours of preheating ahead of both peak periods yields significantly higher 

BEFI, displacing 95% and 78% average power, respectively, at the cost of only 15% increased 

energy consumption. While for the morning peak, 5 hours of preheating are close to the optimal, 

for the second peak demand event, 7 hours is recommended. 

Table 4-5: BEFI at different preheating lengths alongside daily energy consumption on a very 

cold cloudy day, January 3, 2018. 
 

Strategy BEFI Energy 

 Morning 

peak 

Evening 

peak 

 

Current 

(Reference) 

80 kW 99 kW 363 kWh 

4 hours 55 kW 

(68%) 

50 kW 

(51%) 

374 kWh 

5 hours 64 kW 

(83%) 

52 kW 

(53%) 

396 kWh 

6 hours 69 kW 

(86%) 

55 kW 

(56 %) 

420 kWh 

7 hours 76 kW 

(95%) 

78 kW 

(78%) 

442 kWh 
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4.6 Conclusion 

This chapter presented heuristic model-based predictive control strategies applied on an 

archetype institutional NZEB building incorporating active and passive charging of hydronic 

radiant slab. The methodology for developing and calibrating a control-oriented model derived 

from the first principles was also investigated. The critical lessons learned from this study 

include the following:  

• It was found that incrementally increasing the complexity of the model with nominal 

parameters improves the model accuracy. The incorporation of “effective” air node 

capacitance has a significant effect on the model's short-term indoor air prediction 

performance. The 10th order RC model, which comprised air and wall thermal capacity 

and nonlinear heat transfer coefficients, can accurately predict the dynamic thermal 

behaviour of the library (CV-RMSE < 3%). 8th order model, which considered indoor 

objects’ (such as furniture, book stacks and so on) thermal mass effect, was the second-

best choice (CV-RMSE of 3.3%).    

• It was shown that a building with effective integration of renewable energy technologies 

(BIPV/T, geothermal) and passive design features could achieve nearly 100% of energy 

flexibility in the majority of the heating season (cold and mild days) throughout the 

whole peak demand period. 

• On a very cold sunny day, applying a low-temperature setback strategy at night, a smooth 

transition in a setpoint closer to the library’s opening time and anticipation of the solar 

gains during the day resulted in 25% energy savings. Using the same approach in the 

morning but preheating the slab 5.5 hours before the peak demand event displaced 

approximately 65% of average power over the two peak periods. Considering the library's 
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energy generating capacity, the bulk of displaced energy was replaced by on-site PV 

production, resulting in only a 15% rise in heating energy consumption.  

• Simple reactive controls with a fixed night setback result in a strongly underheated 

building on a design day. The use of predictive controls allows initiation of the heating at 

the right time and power intensity to meet the thermal comfort conditions of the building. 

A predictive control strategy also prevents the potential overheating on sunny days by 

anticipating solar gains and taking appropriate actions to reduce the heating loads.  

• It was shown that it is possible to displace approximately 85 % of the peak demand on 

cold cloudy days by preheating the slab 5 hours before morning peak and 7 hours before 

evening peak demand event or reduce the energy consumption by more than 15% 

considering the optimal preheating period, smooth morning transition, projected 

operation of heating equipment and occupancy.  

• Using onsite PV production data at 9 am and noon and comparing it with the projected 

value can be an effective strategy to alleviate the uncertainties associated with the 

weather prediction and effectively choose a predeveloped model-based predictive control 

strategy. 

Results show that a heuristic MPC can be a successful alternative to the fully optimized MPC as 

a solution to significantly improve energy efficiency, enhance energy flexibility, enhance load 

management and thermal comfort while reducing computational needs. The proposed strategy 

combines the benefits of numerical MPC for using the building model and RBC for practicality 

and cost-effectiveness of implementation to minimize the energy consumption and maximize the 

energy flexibility provided to the grid. 
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Chapter 5 

BIPV/T modelling, design and optimization 

5.1 Archetype system analysis 

When zero-energy buildings are considered, it is referred to buildings that incorporate energy-

saving measures and renewable energy technologies to meet their energy needs. Therefore, 

integrating PV systems into buildings becomes critical. To enhance energy flexibility and push 

energy efficiency even further, upgrading the BIPV system to BIPV/T can be a viable solution, 

especially in a heating-dominated climate. Besides acting as a generation system, they can store 

heat in a manifold, couple with heat pumps and any active storage technology such as hot water 

storage or ventilated slab. As was discussed in Chapter 2, there are not many large-scale 

applications of the BIPV/T currently in practice. One of such archetype systems is installed in 

the Varennes Library as a prototype. Approximately 1/6th portion of the roof is covered with the 

BIPV/T, integrated with the AHU to preheat the ventilation air during the heating period. It 

serves as an excellent archetype system to analyze the collected data and provide a methodology 

for control-oriented modelling to study alternative design and control options. The arrangement 

of the BIPV/T installed on the roof of the Varennes library is shown in Figure 5-1. 

The air passing through the BIPV/T cavity enters the Air Handling Unit (AHU) to preheat the 

ventilation air if there is a demand for heating; otherwise, it exhausts outside. When the air enters 

the AHU, it mixes with the incoming outdoor fresh air, followed by proceeding through the heat 

recovery unit (Figure 5-2). The heat recovery unit installed is the Heat Wheel modulated 

between 0% and 100% with nominal efficiency of 40%. It recovers heat from the return air 
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stream and terminates when the return temperature is lower than the supply temperature or when 

the system demands cooling.  

Sensors in the AHU continuously record the data every 15 minutes, including BIPV/T, mixture, 

supply, exhaust temperatures; the state of BIPV-to-outside, BIPV/T-to-AHU, outdoor air 

dampers; the modulation of all supply and exhaust fans and the modulation of the valve in 

Figure 5-1: BIPV/T layout on the south-facing roof of the Varennes Library. 

Figure 5-2: Mechanical arrangement of the BIPV/T and AHU. 
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heating /cooling coils. The detailed view of the BIPV/T system configuration is shown in Figure 

5-3. To analyze the operation and performance of the system, two cold (ambient temperature 

around -10 ºC) sunny days are selected: February 5th and March 20th (Figure 5-4).  Solar 

irradiation data is obtained from the CanmetENERGY-Varennes PV research measurement 

station, whereas hourly wind velocity data is acquired from the L'Assomption weather station. 

The recovery fan (VE04 fan from Figure 5-2), which ventilates the PV cells of BIPV/T, has a 

flowrate capacity of 1142 L/s. 

Figure 5-3: Cross-sectional view of the air stream from the BIPV/T. Air from the BİPV/T either 

enters the AHU or exhausts outside. 
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The speed of the BIPV/T fan is controlled by the outlet temperature from the air channel of the 

BIPV/T only. The overriding control of the fan is based on the energy generation of the 

overlying BIPV system. When there is no energy production, the fans are stopped, and the 

BIPV/T-to-AHU damper is closed. When there is an energy generation and if there is a demand 

for heating, the BIPV/T-to-AHU damper opens, followed by the start of the BIPV/T fan (VE-04 

fan). The BIPV/T fan operates sequentially; once ON, its capacity is discretely modulated 

between 33% or 80% to maintain the outlet temperature from BIPV/T under 25°C. When the 

outlet temperature of the air is below 25°C for more than 60 minutes, the fan switches its speed 

Figure 5-4: Direct Normal Irradiance and wind velocity on February 5 (top) and March 20 

(bottom). 
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from 80% to 33%. The modulation algorithms of the BIPV/T recovery fan and thermal wheel are 

summarized as follows: 

𝐵𝐼𝑃𝑉/𝑇_𝑓𝑎𝑛𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [
0.33 𝑖𝑓 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 < 25°𝐶
0.8 𝑖𝑓 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 ≥  25°𝐶

] ;      ∆𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑 =  60 𝑚𝑖𝑛                        (5-1) 

𝐻𝑒𝑎𝑡_𝑤ℎ𝑒𝑒𝑙𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [
0 𝑖𝑓 𝑇𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑇𝑚𝑖𝑥  ≤ 0°𝐶
1 𝑖𝑓 𝑇𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑇𝑚𝑖𝑥 >  0°𝐶

] ; ∆𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑 =  30 𝑚𝑖𝑛                      (5-2) 

 where, 

Toutlet – outlet air temperature from the BIPV/T, ºC, 

Treturn – temperature of the return airstream, ºC, 

Figure 5-5: Daily fan operation, BIPV/T outlet and outside temperatures (°C) on February 5 (top) 

and March 20 (bottom). 
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Tmix – temperature of the mixture of air from the BIPV/T and unconditioned outside air, ºC, 

∆tdeadband – bidirectional delay in the controlled VFD; if the controlled variables are outside of 

setpoint by more than ∆tdeadband, the control action is taken; otherwise, modulation does not 

change. 

This is well illustrated in Figure 5-5 above. On a clear cold windy day, February 20, the outlet 

temperature from the BIPV/T fluctuates between -6°C and 12°C and the recovery fan operates at 

33% modulation unless there is no energy generation. On March 20, however, when the weather 

is more moderate, the temperature of the BIPV/T channel reaches 28ºC. Once the temperature 

exceeds 25°C for more than 60 minutes, the fan modulates from 33% to 80%. One of the 

challenges associated with this integrated system was identifying the actual amount of air 

incoming from each source: outdoor air and recovered BIPV/T air. Having the measured data, 

the total incoming flow rate and individual fresh air and BIPV/T outlet air temperatures and 

temperature of the mixture before passing through the heat wheel made this task straightforward. 

The total incoming flow rate equals the total exhaust air from the building, which is recorded in 

the dataset. Then, the following equation of the mixture's temperature can be used (Equation 5-

3). 

𝑇𝑚𝑖𝑥 = 
𝑇𝐵𝐼𝑃𝑉𝑇∗𝑉𝐵𝐼𝑃𝑉𝑇+𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟∗𝑉𝑜𝑢𝑡𝑑𝑜𝑜𝑟

𝑉𝑒𝑥ℎ𝑎𝑢𝑠𝑡
                                                                               (5-3) 

Figure 5-6 below shows the proportion of the BIPV/T flowrate out of the total volumetric flow 

passing through the AHU on the two selected days. It can be observed that the fraction of the 

BIPV/T flow is consistently above 75%, even when the recovery fan operates at only 33% of the 

capacity. This implies that the general supply fans, VA-01.1-VA01.4, significantly contribute to 

air suction from the BIPV/T channel once the BIPV-to-AHU damper is open. One of the possible 
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reasons is that the outside damper is not 100% open, and the discrete recordings of the sensor at 

the gates do not fully represent the complete picture of the damper state.  The velocity in the air 

channel fluctuates between 0.3 m/s and 0.8 m/s. The effect of the heat wheel on the supply air 

temperature is shown in Figure 5-7. It can be seen that on March 20th, the supply temperature due 

to recovered heat from the BIPV/T approaches the inside temperature, after which heat recovery 

stops its operation. The temperature after the heat wheel is calculated by the following 

relationship (Equation 5-4).  

Figure 5-6: Total ventilation, BIPV/T flowrate (L/s) and average velocity over the channel 

(m/s) on February 5 (top) and March 20 (bottom). 
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Ƞ =
𝑇𝑜𝑢𝑡−𝑇𝑖𝑛

𝑇𝑟𝑒𝑡𝑢𝑟𝑛− 𝑇𝑖𝑛
                                                                                                          (5-4) 

The thermal performance of the BIPV/T on two clear days is shown in Figure 5-8 below. On a 

sunny windy day (February 5), the heat recovered by the BIPV/T significantly contributes to 

preheating the ventilation air by supplying peak thermal power of 20 kW from 10 am to 2 pm 

and outweighing the additional heat provided by the heating coil most of the time. On a still clear 

Figure 5-7: Temperature of mixed air from BIPV/T outlet and outdoor air before and after 

passing through thermal wheel (°C) on February 5 (top) and March 20 (bottom). 
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day (March 20), heat provided by the BIPV/T entirely displaces the ventilation load from 11:45 

am till 5 pm, after which the recovered thermal energy gradually drops till 7 pm. Thermal 

efficiency in the morning and evening periods is skewed by the day before preheated AHU and 

unrealistically aims for infinity. The practical thermal efficiency identified at stable conditions 

throughout the day fluctuates between 20 – 25%. Considering the electricity production, the 

Figure 5-8: Heat recovered by the BIPV/T and thermal wheel (kW), heat added to bring the 

ventilation air to indoor air temperature (kW) and thermal efficiency of the BIPV/T on 

February 5 (top) and March 20 (bottom). 



87 
 

combined efficiency of the installed BIPV/T system, if coupled with an air-source heat pump 

(ASHP), is potentially above 80%. Overall, the thermal energy recovered on February 5 and 

March 20 equals 127 kWh and 180 kWh. The following section will cover a wind-driven 

convective transfer correlation study and control-oriented model development. This will be 

followed up with the alternative design and control suggestions and conclusion.  

5.2 Control-oriented model development  

To evaluate the thermal behaviour of the BIPV/T, the RC thermal network model is used (Figure 

5-9). The network comprises a BIPV panel, the air in the cavity below the PV layer, bottom 

insulation and ambient which interaction achieves a steady state in a relatively short term due to 

insignificant thermal capacitance of the PV panel.  As air flows through the BIPV/T channel, 

heat is extracted from both the top and bottom surfaces of the cavity. Air is heated as it flows 

through the channel, and its temperature increases along the flow route. To model this 

phenomenon, the roof is discretized into 100 one-dimensional control volumes in a streamwise 

direction. Each control volume is divided into 100 points to model the subsection. The outlet 

Figure 5-9: RC thermal network representing the PV later, air channel beneath it and back 

surface insulation. 
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temperature of each control volume is equal to the inlet temperature for the following one. In 

both vertical and horizontal directions, 1D heat transfer and steady-state are assumed. As several 

studies showed, the temperature difference across the PV layer can be significant (Amori & Abd-

AlRaheem, 2014; Candanedo, 2010), conduction heat transfer through the module is thus 

considered. The model was developed and simulated in MATLAB. 

Air in each control volume extracts a total amount of thermal energy given by Equation 5-5: 

𝑄𝑎𝑖𝑟 = 𝑚̇𝑐𝑝(𝑇𝑒𝑥𝑖𝑡 −𝑇𝑖𝑛)                                                                                                      (5-5) 

Where, 

Qair – heat gained by air while passing through the channel of the BIPV/T, W,  

ṁ - mass flowrate of air through the channel, kg/s, 

cp – specific heat capacity, J/(K kg), 

Texit – outlet temperature of the air from the BIPV/T, ºC, 

Tin – inlet temperature of the air, ºC. 

For PV surface, air channel and bottom insulation, the following energy balance equations are 

defined (Equations 5-6, 5-7, 5-8):  

𝑆𝑃𝑉 =
𝐴𝜎(𝑇𝑃𝑉

4 −𝑇𝑖𝑛𝑠
4 )

1

𝜀𝑃𝑉
+

1

𝜀𝑖𝑛𝑠
−1

+ 𝐴ℎ𝑎𝑚𝑏(𝑇𝑝𝑣 −𝑇𝑎𝑚𝑏) + 𝐴ℎ𝑡𝑜𝑝( 𝑇𝑝𝑣 − 𝑇𝑎𝑖𝑟)                                         (5-6) 

Where, 

SPV – total heat gained by the PV surface, W, 

A – area of the PV layer, m2, 
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𝜎– Stefan-Boltzmann constant, 5.67 × 10-8 W/m2 K4, 

TPV, Tins, Tamb, Tair – respective average PV layer surface, insulation surface, ambient air and 

channel air temperatures, ºC, 

hamb, htop – convective heat transfer coefficients between ambient and PV surface;  a top surface 

of the channel and flowing air in the channel respectively, W/K m2, 

εPV, εins – total hemispherical emissivity of the PV and insulation layers, respectively. 

𝑚̇𝑐𝑝(𝑇𝑒𝑥𝑖𝑡 −𝑇𝑖𝑛) = 𝐴ℎ𝑡𝑜𝑝( 𝑇𝑝𝑣 − 𝑇𝑎𝑖𝑟) +𝐴ℎ𝑏𝑜𝑡( 𝑇𝑖𝑛𝑠 − 𝑇𝑎𝑖𝑟)                                               (5-7) 

𝐴𝜎(𝑇𝑃𝑉
4 −𝑇𝑖𝑛𝑠

4 )
1

𝜀𝑃𝑉
+

1

𝜀𝑖𝑛𝑠
−1

= 𝐴ℎ𝑏𝑜𝑡( 𝑇𝑖𝑛𝑠 − 𝑇𝑎𝑖𝑟)                                                                                          (5-8) 

The interior convective heat transfer coefficient, htop, is calculated based on the local Nusselt 

number. A Nusselt number is a dimensionless number that is defined as a ratio of convective 

heat transfer to conduction within the flow (Equation 5-9): 

𝑁𝑢 =  
ℎ𝐿

𝑘
                                                                                                                                 (5-9)   

Where, 

h – convective heat transfer coefficient, W/K m2, 

L – characteristic length of the flow, the diameter of the pipe, m,  

k – thermal conductivity of the air, W/K m. 

Reynolds and Prandtl numbers are conventionally used to calculate the Nusselt number for the 

forced convection. Many studies in the literature suggest different Nu correlations under various 

conditions for BIPV/T, the Dittus-Boelter equation (Dittus & Boelter, 1985) is commonly used 
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by researchers. However, in a multi-inlet system considered in this thesis, the Dittus-Boelter 

equation underpredicts the Nu number due to the additional entrance and turbulence effects 

(Rounis, 2020).  

Yang & Athienitis (2015b), thus, experimentally developed correlation for the Nusselt number 

between the rear surface of the PV layer and the channel air for the two-inlet systems (Equations 

5-10 and 5-11):  

1st inlet: 𝑁𝑢𝑝𝑣−𝑎𝑖𝑟 = 0.0149𝑅𝑒0.9𝑃𝑟0.43           1453 < Re < 14322                             (5-10) 

2nd inlet: 𝑁𝑢𝑝𝑣−𝑎𝑖𝑟 = 1.451𝑅𝑒0.44𝑃𝑟04             3600 < Re < 19034                             (5-11) 

Where, 

Re – Reynolds number, the dimensionless number which equates to the ratio of inertial to 

viscous forces; characterizes the flow patterns in the channel of fluid flow, 

Pr – Prandtl number, the dimensionless number which equates to the ratio of momentum 

diffusivity to thermal diffusivity. 

For the original one-inlet system, the calculated Reynold number in the channel is equal to 3270, 

indicating the turbulent fully mixed flow. Since the turbulent flow reaches the fully developed 

conditions fast enough, the average Nu equation can be used. Thus, the average Nu correlation 

for both the top and bottom surface of the air channel developed experimentally by Candanedo et 

al., (2011) is used.  

The next step is to identify the exterior convective heat transfer coefficient driven by wind. For 

that, several correlations available in the literature are tested, and their effect on the outlet 
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BIPV/T temperature versus collected data is obtained and plotted in Figure 5-10. The exterior 

convective coefficient developed by Palyvos (2008) yields the most accurate prediction of outlet 

BIPV/T temperature, followed by the Sharples & Charlesworth correlation. However, this result 

is specific for this case, and it is possible that the accuracy of wind-driven convection strongly 

correlated to the Nu number. More detailed research is needed to develop an independent 

variable that would formulate this relationship. For this study, the correlation developed by 

Palyvos will be used for the modelling.  

To develop a simple control-oriented model, the critical inputs identified based on the virtual 

experiment with a more detailed model are solar irradiance (S), outside temperature (To), 

flowrate over the channel (Q) and wind velocity (W). The challenge is to identify whether there 

is a need to include variable wind speed and wind direction, given that wind data is unavailable 

from the nearest weather station. The assumption of a single average wind velocity in Quebec 

Figure 5-10: Comparison of outlet temperature predictions with different exterior convective 

heat transfer coefficient correlations with the actual data. 
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(around 3.5 m/s) yielded a significant simulation error. The wind data from the L’Assomption 

weather station, which is 10 km away from Varennes, was inspected for correlation with BIPV/T 

temperature. The results are plotted in Figure 5-11. The relationship between temperature rise 

across the channel and wind speed is evident. At the same time, the wind direction did not show 

a strong correlation and was ignored in this study.  

A system identification technique is used after collecting the vectors of input and output data 

from a more detailed model. A black box regressive model is proposed, where the parameters 

identified do not hold any physical significance. If the measured output from the developed 

model is denoted as y, the prediction of the regressive model is defined as ŷ and is represented as 

follows: 

ŷ(𝑡)  = 𝑥(𝑡 + 1)  =  𝑎𝑥(𝑡)  +  𝑏𝑆(𝑡)  +  𝑐𝑇𝑜(𝑡)  +  𝑑𝑄(𝑡)  +  𝑒𝑊(𝑡)  +  𝑓                (5-12) 

where, 

Figure 5-11: Channel air temperature rise over two consecutive days with variable wind 

speed but similar irradiance intensity. The impact of wind speed on outlet temperature can 

be observed. 9-10 January, 2018. 

can be observed. 
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ŷ(𝑡)  - is a BIPTV/T outlet temperature, variable that we are trying to predict (ºC), 

x(t) – previous exit temperature of BIPV/T channel (ºC), 

S(t) – solar irradiance (W/m2), 

To(t) – outside temperature (ºC),  

Q(t) – flowrate (m3/s), 

W (t) – wind speed (m/s). 

The resulting objective function is then defined as:  

𝐽(𝑦1, ŷ1, 𝑦𝑖, ŷ𝑖)  =  𝑚𝑖𝑛 ∑ ‖𝑦𝑛 − ŷ𝑛‖𝑛=𝑖
1                                                                            (5-13) 

This optimization problem is solved using MATLAB Optimization Toolbox, and parameters are 

identified.  

The conditions of applicability of the model were chosen iteratively by varying the training 

dataset, and the best fit was achieved when the inputs were narrowed down to the following 

constraints:  

600 < 𝑆 < 1000;  

0.7<Q<1.142;  

1 < W < 4. 

The model was trained using acquired data between January 13 and January 20, 2018, and tested 

with the measured data between  January 23 and January 26, 2018. The performance of the 

regressive model on the test dataset is shown in Figure 5-12 below. As shown in the graph, over 

three consecutive days from 24th to 26th January, the prediction of the channel outlet temperature 

accurately matches the measured data from the BIPV/T system. However, on the first day of test 

data, 23 January, the model overpredicts the outlet temperature from BIPV/T. The possible 

reason is non-compliance with the applicable conditions of the model specified above, both in 

terms of solar irradiation and wind speed, which is one of the limitations of the approach. 
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Overall, it can be concluded that the regressive model with the static parameters has a limited 

predictive capacity and cannot fully describe a daily variation; several models must be developed 

for different sets of conditions. More complex models, which can capture nonlinearities, such as 

deep neural networks, may also describe this behaviour. 

5.3 Design and control suggestions 

With a new reality set by the COVID – 19 pandemics, the importance of enhanced ventilation is 

emphasized more than before. An optimally designed and controlled BIPV/T system can 

effectively enhance ventilation with little to no disturbance to the building energy profile. The 

BIPV/T system installed in the Varennes library provides one of the first large-scale prototype 

examples demonstrating how this system could potentially operate and the efficiency it can 

achieve. Since it is one of the pioneers of large-scale installation, it is designed and operated far 

from optimal manner while providing invaluable data and insights about the operation. Due to 

being a novice technology and resultant natural concern of involved stakeholders during the  

Figure 5-12: Performance of regressive control-oriented model in predicting of outlet air 

temperature from BIPV/T on a test set over four consecutive days. 23-27 January, 2018. 
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design phase, the only one-sixth portion of the roof was covered with a BIPV/T. One of the first 

design alternatives inspected in this study is to examine the potential performance of different 

coverage areas of BIPV/T, namely half roof and entire roof with areas of 360 m2 and 711 m2, 

respectively, which can potentially increase the energy flexibility available in the building. As a 

thermal enhancement option, multi-inlet systems are proposed. In double-inlet design, the size of 

the second inlet is assumed to be 1/3rd of the original channel gap size (which is 7 mm), whereas 

in triple-inlet, each inlet is sized as 1/10th to avoid the significant heat loss while still benefiting 

from the entrance effects. Energy and mass balance are conserved. Figure 5-13 above illustrates 

Area 

(m2) 

Design 

(number of inlets) 

Maximum Fan speed 

(m/s) 

Maximum Flowrate 

(L/s) 

110 (1/6 of the 

roof, original) 

1-inlet 1 1142 

360 (half roof) 2-inlet 1 3240 

711 (full roof) 2 - inlet  

1 

 

3470 
3 - inlet 

 Table 5-1: Alternative design configuration cases of BIPV/T. 

Figure 5-13: Alternative design configurations in terms of BIPV/T area coverage. 
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configurations of the considered cases. The detailed parameters of the design cases are shown in 

Table 5-1. Another modification suggested is the fan control strategy. Currently, the BIPV/T fan 

speed is controlled by the temperature of the BIPV/T outlet only. As was mentioned at the 

beginning of the chapter, if the outlet temperature is above 25°C, the fan modulates to 80%; 

otherwise, it sequences back to 33% unless there is no electricity generation. When considering 

BIPV/T for preheating the ventilation air applications, the alternative strategy of the control 

sequence of the BIPV/T fan is to link the fan speed to the current occupancy. Dynamic 

occupancy demand is defined as exhaust rate (m3/s)/total exhaust capacity (m3/s), where both 

of the variables are known from the collected dataset. Then, the proposed fan speed control 

algorithm is the following:  

 Strategy 1: both occupational needs and BIPV/T surface temperature are considered: 

𝐹𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑜𝑐𝑐 =  𝑣𝑚𝑎𝑥𝑐1𝑐2                                                    (5-14) 

where vmax – maximum speed of the fan, m/s 

𝑐1 =

[
 
 
 
 

0.33 𝑖𝑓 𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 ≤ 25°C
0.5 𝑖𝑓 25°C < 𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 ≤  30°C
0.6 𝑖𝑓 30°C < 𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 ≤  35°C
0.7 𝑖𝑓 35°C < 𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 ≤  40°C

0.8 𝑖𝑓 𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 > 40°C ]
 
 
 
 

 

𝑐2 = 
𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 (𝑚3/𝑠)

1.142 (𝑚3/𝑠)
 

Strategy 2: Only BIPV/T temperature is considered, same equation as before but c2 = 0. 

The results of the performance of all cases are shown in Figures 5-14, 5-15 and Table 5-2 below. 

Overall, it can be concluded that when occupancy is taken into account, less total heat is 

recovered; however, the fraction of the useful heat (when T_outlet > 20°C) is substantially 
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higher, so it can be directly used for space heating applications or integration with air-to-air heat 

pumps. 

Figure 5-14: The resulting flowrate (L/s) of all cases. “half”, “full” in the legend bar imply the 

BIPV/T portion of the roof coverage. “T”, “occ” indicate temperature-based control (Strategy 2) 

and occupancy + temperature-based control (Strategy 1), respectively. 18-19 January, 2018. 

 

 

 

 

Figure 5-15: The resulting BIPV/T outlet temperature (°F) of all cases. “half”, “full” in the 

legend bar imply the BIPV/T portion of the roof coverage. “T”, “occ” indicate temperature-based 

control (Strategy 2) and occupancy + temperature-based control (Strategy 1) respectively. 18-19 

January, 2018. 
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Cases Recovered heat 

(kWh) 

 Average flowrate 

(L/s) 

% of 

useful heat 

Useful heat 

(kWh) 

Current 2454 413 5.7 141 

Current, T controlled 2310 396 8.2 192 

Current, T + 

occupancy controlled 

1894 280 17 343 

Half roof, 2-inlet, T 

controlled 

7099 1131 8.7 617 

Half roof, 2-inlet, T + 

occupancy controlled 

5743 814 16.1 928 

Full roof, 2-inlet, T 

controlled 

8512 1223 13.72 1167 

Full roof, 2-inlet, T + 

occupancy controlled 

6704 883 20.03 1343 

Full roof, 3-inlet, T 

controlled 

8829 1237 14.9 1316 

Full roof, 3-inlet, T + 

occupancy controlled 

6919 887 21.4 1481 

Table 5-2: Performance of suggested 8 alternative cases in terms of total recovered heat, useful 

heat and flowrate. Useful heat assumes heat extracted above 20°C. 
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5.4 Conclusion 

To increase the energy flexibility in the building, a BIPV/T system that can generate, store, and 

enhance HVAC efficiency can be a viable solution if optimally designed and operated. In this 

chapter, a detailed analysis of the installed large-scale BIPV/T system was followed by the 

control-oriented data-driven model development, concluding with the study on alternative design 

and control options that can potentially increase building energy flexibility. The modelling 

approach used a data-verified detailed thermal network-based grey-box model with physical 

parameters to visualize the real system. The relevant input parameters were then identified, and 

different wind-driven convective heat transfer correlations were tested. Exterior convective heat 

loss in the BIPV/T system has the most significant effect on the energy balance, and its accurate 

description is critical for adequate evaluation. After creating an accurate visualization of the 

BIPV/T system and identifying critical input parameters, a black-box regressive model was 

proposed with parameters of no physical significance. Upon verification, the model performed 

satisfactorily (± 1.5°C) when the input constraints were met and underperformed in the other 

cases. Overall, the black-box modelling technique is a promising solution in modelling BIPV/T 

and other more comprehensive models that can capture nonlinearities, such as those 

incorporating deep-neural networks, can be more robust. This chapter is wrapped up with the 

alternative design and fan control strategy proposal. Multi-inlet design and occupancy-based 

control for ventilation air preheat resulted in more than 20% higher useful heat extraction than 

the current baseline case. Whereas baseline yielded the most recovered heat due to a higher flow 

rate, 94.3% of it is delivered at a temperature less than 18°C. The integration with an air source 

heat pump can make the proposed strategy for energy flexibility even more effective. 
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Chapter 6 

Conclusion 

6.1 Summary and future work 

This thesis presented heuristic model-based predictive control techniques developed for an 

institutional NZEB archetype example with an active and passive hydronic radiant slab system. 

A rigorous step-by-step generic control-oriented modelling methodology and calibration was 

proposed. A heuristic MPC combined the benefits of numerical MPC by using the building 

model and RBC for practicality and cost-effectiveness of implementation to minimize the energy 

consumption and/or maximize energy flexibility in the building. The heuristic MPC drastically 

eased the computational requirements of the model while still necessitating generic methodology 

of model development. Albeit the generalization of the approach was a priority, specific inherent 

features of each building remained unique and required an indoor temperature analysis to 

identify the structure of the model. Several modelling approaches were attempted, and the RC 

thermal network-based grey-box 10th order model with physics-based parameters showed 

promising results in capturing the basic thermal behaviour in the institutional NZEB archetype. 

The incorporation of “effective” air capacitance, which considers the effects of furniture and 

book stacks, had resulted in a significant improvement in model accuracy. Next, the concept of 

heuristic MPC was introduced, and step-by-step development of near-optimal strategies to 

maximize energy efficiency and/or energy flexibility was demonstrated. Anticipated types of 

days were classified into very cold, cold, mild and sunny, semi-cloudy, and cloudy clusters. For 

every 9 combinations of weather scenarios, 2 sets of heating setpoint profiles were developed. 

Nearly 100% of BEFIP was achieved on cold and mild days, while this value was around 80% 
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for very cold days. Results showed that heuristic MPC could be a successful alternative to a 

traditional MPC as a solution to significantly improve energy efficiency, enhance energy 

flexibility, enhance load management and thermal comfort while reducing computational needs. 

The thesis concluded with a small study focused on the increasing energy flexibility potential 

through the enhanced BIPV/T design.  After an exhaustive analysis of the collected data from the 

installed BIPV/T system in the Varennes library, a simple black-box regressive model was 

derived. The parameters were calibrated through optimization techniques with constrained input 

conditions. Upon verification, the model performed satisfactorily (± 1.5°C), concluding that the 

black-box modelling technique is a promising solution in control-oriented modelling of BIPV/T 

and models trained by more sophisticated system identification techniques can potentially be 

more robust. This was followed up by the alternative design and fan control proposal, where 

multi-inlet design and occupancy-based control for preheating ventilation air resulted in a more 

than 20% higher useful heat extraction than the current baseline. 

As future work, the proposed predictive control strategy to maximize energy flexibility is 

expected to be practically applied to the BAS of the library for test purposes in December. To 

avoid possible discomfort and visitors' dissatisfaction, the initial plan is to test the control 

algorithm on holidays when the library is unoccupied. After better understanding the impacts of 

proposed control strategies on the system from the tests, the next step is to refine the control 

algorithm further by considering more clustered cases and the cooling season. For instance, the 

intermediate days can be subdivided into two further categories: semi-sunny and semi-cloudy 

days. Having more predefined cases allows the strategy to be more robust since the cost of the 

error in the prediction is minimized. 
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Moreover, the control strategies developed in this study are based on the weather forecast only; 

however, another major driver of the future demand in buildings is occupancy behaviour, which 

was not considered in this thesis. The impact of various occupancy behaviour on energy 

flexibility must be quantified; the relation of the occupants on the selection of control algorithms 

in the available literature is significantly unexplored. Lastly, the proposed 10th order model did 

not include the air conductance between the zones. Incorporation and calibration of that effect 

must be further studied. 

This work is also a part of a research incentive by the International Energy Agency’s (IEA) 

Energy in Buildings and Communities (EBC) Annex 81 “Data-driven Smart Buildings” program 

where the Varennes library has been modelled in the Modelica software (Appendix D) and is 

expected to be introduced to the framework for simulation-based testing and comparison of 

building advanced control strategies, called BOPTEST - Building Optimization Performance 

Test. The primary advantage of Modelica over other component-based modelling software such 

as Simulink and TRNSYS is that the Modelica supports multidomain modelling, which means it 

can define and link model components corresponding to objects from a variety of domains, 

including electrical, mechanical, thermodynamic, hydraulic, biological, and control applications. 

Also, Modelica relies heavily on equations rather than assignment statements. Since equations do 

not define a particular data-flow direction, this allows acausal modelling, enabling greater class 

reuse and enhanced modelling flexibility compared to Simulink. The ultimate objective of this 

project is to make Varennes Library the first Canadian building accepted as a case study in the 

BOPTEST emulator, which will serve as an institutional NZEB archetype so that different 

advanced control and modelling strategies can be tested, which will establish and benchmark the 
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state-of-the-art performance of control for building energy systems by avoiding the challenges of 

individualized studies and cost of developing a building emulator. 

 

6.2 Contributions 

The main contributions of this thesis can summarize as follows: 

1) The generic and step-by-step methodology for control-oriented model development with 

little to no required data was shown. The addition of “effective” air capacitance ensures 

increased accuracy in the short-term response as buildings usually contain mass objects 

inside, which yield an accumulative thermal mass effect. Linearization of the 6th order 

RC model, especially the convective coefficients, can significantly affect short-scale 

temperature prediction. 

2) The thesis showed the formulation of a unique rule-based MPC technique as an 

alternative to the numerical MPC. Results showed it might significantly enhance energy 

flexibility, improve load management and energy efficiency, and ensure thermal comfort 

while decreasing computing requirements of traditional MPC and providing predictive 

capacity and effectiveness to the RBC. 

3) Prediction uncertainty and robustness are innovatively handled through the verification 

with on-site PV production data. The appropriate corrections are applied if the 

verification test does not pass and the best matching temperature setpoint profile is 

selected. 

4) Introduction of a BEFIP index to estimate the flexibility in terms of percentage that the 

buildings can provide to the grid. It was shown that buildings with effective integrated 
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technologies and passive design features could achieve nearly 100% of energy flexibility 

in the majority of the heating season throughout the peak demand period. 

5) Detailed data analysis and control-oriented model development for installed large-scale 

BIPV/T technology from the original nonlinear system formulation. The computing cost 

of a black-box model, such as linear regression, is significantly lower than that of a 

comprehensive white-box and can be used for whole-building and subsystem MPC 

development.  

6) Based on the study proposed in this thesis, one conference paper has been written and 

presented at the international conference of Sustainable Development of Energy, Water 

and Environment Systems 2021 (SDEWES 2021). A journal paper based on this work is 

also planned and has already received an invitation from the Energies journal.: 

• Jalillov, E. and Athienitis, A. K. (2021). "Heuristic model-based predictive 

control strategies for an institutional net-zero energy building", Abstract 

submitted to 16th Conference on Sustainable Development of Energy, Water, and 

Environment Systems, Dubrovnik, Croatia, October 10 – 15 (Accepted). 
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Appendix  

1.4 A. 

Varennes Library was modelled in TRNSYS to provide a twin model of the Library. It was used 

to analyze alternative design options such as removal of the east-west partition wall, effect of 

coupling air-source heat pump with BIPV/T and its control strategy and impact of motorized 

shading 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A-1: 3D model of the Varennes Library 
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Figure A-2: Effect of removal of internal wall partition between east and west portions of the envelope on 

the heating load in the 1-week winter period 

Figure A-3: Air-source heat pump selection based on heating and cooling loads 
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Figure A-5: Performance of air-source HP on 21st February 

 

Figure A-4: Air damper control strategy of the ASHP 
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Figure A-6: Power consumption on Summer period with air-source HP and the studied effect of 

motorized shading 

Figure A-7: BIPV/T performance in winter period after coupling with Air source HP 
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1.5 B 

Floor slab thickness analysis 

The original floor thickness was decreased from 12.5 cm down to 8 cm, and the results are 

compared below. When the capacity of the hydronic heating system is undersized for the 

thickness, it is more efficient to have a thinner slab rather than thicker on extremely cold days. 

This stems from the higher temperature difference between slab and interior 

 

Figure B-1: Thermal slab; thickness 12.5 cm; thermal load 1011 kWh; T_ambient ~ -15  ̶  -20 °C 

Figure B-2: Thermal slab; thickness 8 cm; thermal load 792 kWh; T_ambient ~ -15  ̶  -20 ° 
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1.6 C 

Proposed control strategy - results 

 

Figure C-1: Energy balance over very cold semi-cloudy day under proposed controls 

strategies, January 13, 2018 

Figure C-2: Energy balance over very cold -cloudy day under proposed controls strategies, 

January 3, 2018 
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Figure C-3: Energy balance over cold cloudy day under proposed controls strategies, February 

10, 2018 

 

Figure C-4: Energy balance over cold semi-cloudy day under proposed controls strategies, 

February 1, 2018 
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Figure C-5: Energy balance over cold sunny day under proposed controls strategies, February 12, 

2018 

 

Figure C-6: Energy balance over mild sunny day under proposed controls strategies, February 

26, 2018 
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Figure C-7: Energy balance over a mild semi-cloudy day under proposed controls strategies, 

January 20, 2018 

 

Figure C-8: Energy balance over a mild semi-cloudy day under proposed controls strategies, 

February 20, 2018 
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1.7 D. 

Modelica Model 

Figure D-1 Bottom floor-zone detailed model in Modelica 

Figure D-2: Whole-building level model comprised of two zones and detailed solar irradiance 

calculations 
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1.8 E. 

Matlab Codes 

#State-Space representation of Building model 

U06=1000/6.21; 

U01=1000/1.458; 

U61=100000/5.93; 

U67=10000/2.367; 

U62=10000/2.367; 

U17=100000/8.607; 

U12=100000/8.607; 

U23=100000/3.713; 

U78=100000/4.774; 

U34=100000/7.426; 

U810=1000/1.626; 

U45=100000/7.426; 

U510=1000/3.719; 

U015=0.012; 

U010=1000/1.363; 

U1516=10000/2.367; 

U1510=10000/1.359; 

U1511=10000/2.367; 

U1016=100000/8.607; 

U1011=100000/8.607; 

U1617=100000/4.774; 

U1112=100000/3.713; 

U1213=100000/7.426; 

U1314=100000/7.426; 

C1=0.01; 

C2=0.01; 

C3=3.346*10^7; 

C4=0.01; 

C5=3.346*10^7; 

C6=0.01; 

C7=0.01; 

C8=1.562*10^8;  

C10=0.01; 

C11=0.01; 

C12=3.346*10^7; 

C13=0.01; 

C14=3.346*10^7; 
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C15=0.01; 

C16=0.01; 

C17=1.562*10^8; 

A=[-(U61+U01+U17+U12)/C1 U12/C1 0 0 0 U61/C1 U17/C1 0 0 0 0 

0 0 0 0 0; 

    U12/C2 -(U12+U23+U62)/C2 U23/C2 0 0 U62/C2 0 0 0 0 0 0 

0 0 0 0; 

    0 U23/C3 -(U34+U23)/C3 U34/C3 0 0 0 0 0 0 0 0 0 0 0 0; 

    0 0 U34/C4 -(U34+U45)/C4 U45/C4 0 0 0 0 0 0 0 0 0 0 0; 

    0 0 0 U45/C5 -(U45+U510)/C5 0 0 0 U510/C5 0 0 0 0 0 0 

0; 

    U61/C6 U62/C6 0 0 0 -(U06+U61+U67+U62)/C6 U67/C6 0 0 0 

0 0 0 0 0 0; 

    U17/C7 0 0 0 0 U67/C7 -(U67+U17+U78)/C7 U78/C7 0 0 0 0 

0 0 0 0; 

    0 0 0 0 0 0 U78/C8 -(U78+U810)/C8 U810/C8 0 0 0 0 0 0 

0; 

    0 0 0 0 U510/C10 0 0 U810/C10 -

(U810+U510+U1016+U1011+U1510+U010)/C10 U1011/C10 0 0 0 

U1510/C10 U1016/C10 0; 

    0 0 0 0 0 0 0 0 U1011/C11 -(U1011+U1112+U1511)/C11 

U1112/C11 0 0 U1511/C11 0 0; 

    0 0 0 0 0 0 0 0 0 U1112/C12 -(U1112+U1213)/C12 

U1213/C12 0 0 0 0; 

    0 0 0 0 0 0 0 0 0 0 U1213/C13 -(U1213+U1314)/C13 

U1314/C13 0 0 0; 

    0 0 0 0 0 0 0 0 0 0 0 U1314/C14 -(U1314)/C14 0 0 0; 

    0 0 0 0 0 0 0 0 U1510/C15 U1511/C15 0 0 0 -

(U015+U1516+U1510+U1511)/C15 U1516/C15 0; 

    0 0 0 0 0 0 0 0 U1016/C16 0 0 0 0 U1516/C16 -

(U1516+U1016+U1617)/C16 U1617/C16; 

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 U1617/C17 -U1617/C17]; 

B=[U01/C1 1/C1 0 0; 

    0 0 0 0.08/C2; 

    0 0 0 0; 

    0 0.876/C4 0 0; 

    0 0 0 0; 

    U06/C6 0 0 0.15/C6; 

    0 0 0 0.27/C7; 

    0 0 0 0; 

    U010/C10 0 0.124/C10 0; 

    0 0 0 0.08/C11; 

    0 0 0 0; 

    0 0 0.876/C13 0; 
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    0 0 0 0; 

    0 0 0 0.15/C15; 

    0 0 0 0.27/C16; 

    0 0 0 0]; 

  

C=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 

       0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

        

       ]; 

D=[0 0 0 0; 

   0 0 0 0 

    

   ]; 

sys = ss(A,B,C,D); 

% step(sys) 

data2=xlsread('Input_3_wi.xlsx','A:D'); 

data1=xlsread('Output_3','A:D'); 

x0 = ones(16,1)*10; 

sys1 = chgTimeUnit(sys,'minutes'); 

[y_out, time] = lsim(sys1,data2,0:15:5745,x0); 

figure(1) 

p1=plot(time,y_out(1:end,1)) 

title('air T') 

hold on 

y1 = data1(1:end,1); 

d1=plot(time,y1) 

h=[p1; d1]; 

legend(h,'Simulation','Data'); 

hold off 

  

% plot(t,y) 

% lsim(sys,data2,0:288) 

% t = 0:300; 

%initial condition of system states 

% [y,x] = lsim(A,B,C,D,data2,t); %do the simulation 

% plot(t,y,t,u) 

% legend('Response','Input')    
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#Explicit representation of 10th order model with ADEs 

% define energy balance model 

function dTdt = 

Heat_test_original_pure_air(t,var,To_inp,Q1_inp,Q2_inp,S_in

p,Tg_inp) 

To = interp1(1:900:86400*4,To_inp,t); 

Q1 = interp1(1:900:86400*4,Q1_inp,t); 

Q2 = interp1(1:900:86400*4,Q2_inp,t); 

S = interp1(1:900:86400*4,S_inp,t); 

Tg=interp1(1:900:86400*4,Tg_inp,t); 

T1=var(1); 

T2=var(2); 

T3=var(3); 

T4=var(4); 

T5=var(5); 

T6=var(6); 

T7=var(7); 

T8=var(8); 

T10=var(9); 

T11=var(10); 

T12=var(11); 

T13=var(12); 

T14=var(13); 

T15=var(14); 

T16=var(15); 

T17=var(16); 

U06=2.09; 

c2=1.2*1.3; 

c1=0.8*2.9; 

c=2; 

U01=6.3216*0.7*c2*1.1; 

U61=abs(433)*6; 

U67=0.56*1056*6; 

U62=0.44*1056*6; 

% U17=abs(0.56*1056)*4; 

U17=abs((0.56*1056)*(1.52*(T7-T1)^(1/3))); 

% U17=20000; 

% U12=abs(0.44*1056)*4; 

U12=abs((0.44*1056)*(1.52*(T2-T1)^(1/3))); 

% U12=20000; 

U23=3.9525; 

U78=1.676; 

U34=1.975; 
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U810=((0.56*1056)*(1.01*(abs(T10-T8))^(1/3))); 

U45=1.9751; 

U510=((0.44*1056)*(1.01*(abs(T10-T5))^(1/3))); 

U015=8.5623; 

U010=6.3216*0.7*c1;  

U1516=0.75*1056*6; 

U1510=(433)*6; 

U1511=0.25*1056*6; 

% U1016=abs(0.75*1056)*4; 

% U1011=abs(0.25*1056)*4; 

U1016=abs((0.75*1056)*(1.52*(T16-T10)^(1/3))); 

U1011=abs((0.25*1056)*(1.52*(T11-T10)^(1/3))); 

% U1016=20000; 

% U1011=20000; 

U1617=2.2447; 

U1112=2.2447; 

U1213=1.12; 

U1314=1.12; 

C3=6.98*c; 

C5=6.98*c; 

C8=1.774*c; 

C12=3.962*c; 

C14=3.96*c; 

C17=2.38*c; 

C1=4.22; 

C10=4.22; 

kef=1.3; 

C6=5.3; 

C15=5.3; 

scf2=1.2*1.2; 

scf1=1; 

  

dTdt(1,1) = (1.0/(C1*6e+6))*((T6-T1)*U61+(To-

T1)*U01*100+(T7-T1)*U17+(T2-T1)*U12+0.5*Q2); 

dTdt(2,1)=(T1*U12+T3*U23*10000+T6*U62+0.154*S*scf2)/(U12+U2

3*10000+U62)-T2; 

dTdt(3,1) = (1.0/(kef*C3*1e+7))*((T4-T3)*U34*10000+(T2-

T3)*U23*10000); 

dTdt(4,1)=(T3*U34*10000+T5*U45*10000+0.625*Q1)/(U34*10000+U

45*10000)-T4; 

dTdt(5,1)=(1/(kef*C5*1e+7))*((T4-T5)*U45*10000+(T10-

T5)*U510); 

dTdt(6,1)=(1.0/(kef*C6*6e+6))*((To-T6)*U06*100+(T1-

T6)*U61+(T7-T6)*U67+(T2-T6)*U62+0.15*S*scf2) 
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dTdt(7,1)=(T6*U67+T1*U17+T8*U78*10000+0.196*S*scf2)/(U67+U1

7+U78*10000)-T7; 

dTdt(8,1)=(1/(kef*C8*1e+8))*((T7-T8)*U78*10000+(T10-

T8)*U810); 

dTdt(9,1)= (1/(C10*6e+6))*((T8-T10)*U810+(T5-

T10)*U510+(T16-T10)*U1016+(T11-T10)*U1011+(T15-

T10)*U1510+(To-T10)*U010*100+0.5*Q2); 

dTdt(10,1)=-

T11+(T10*U1011+T12*U1112*10000+T15*U1511+0.08*S*scf1)/(U101

1+U1112*10000+U1511); 

dTdt(11,1)=(1/(kef*C12*1e+7))*((T11-T12)*U1112*10000+(T13-

T12)*U1213*10000); 

dTdt(12,1)=(T12*U1213*10000+T14*U1314*10000+0.375*Q1)/(U121

3*10000+U1314*10000)-T13; 

dTdt(13,1)=(1/(kef*C14*1e+7))*((T13-T14)*U1314*10000+(To-

T14+6)*0*U010/2); 

dTdt(14,1)=(1/(kef*C15*1e+6))*((To-T15)*U015*10+(T16-

T15)*U1516+(T10-T15)*U1510+(T11-T15)*U1511+0.15*S*scf1); 

dTdt(15,1)=(T15*U1516+T10*U1016+T17*U1617*10000+0.27*S*scf1

)/(U1516+U1016+U1617*10000)-T16; 

dTdt(16,1)=(1/(kef*C17*1e+8))*((T16-T17)*U1617*10000+(To-

T16+6)*0*U010/2); 

end 

 

#Simulation of above-mentioned model 

range = [1:900:86400*4]; 

data2=xlsread('Input_3_2','A:D'); 

data1=xlsread('Output_3','A:D'); 

a=3; 

b=5; 

ICs=[data1(1,1),data1(1,3)+a,data1(1,3)+a+b,data1(1,3)+a+b,

data1(1,3),data1(1,1),data1(1,3)+a,data1(1,3)+a,data1(1,2),

data1(1,4)+a,data1(1,4)+a+b,data1(1,4)+a+b,data1(1,4)+a+b,d

ata1(1,2),data1(1,4)+a,data1(1,4)+a]; 

To_inp=data2(1:end,1); 

Q1_inp=data2(1:end,2); 

Q2_inp=data2(1:end,3);  

S_inp=data2(1:end,4); 

Tg_inp=data2(1:end,1)+7; 

% opts = odeset('MaxStep',300) 
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[t,T]=ode15s(@(t,var) 

Heat_test_wall_air_draft2(t,var,To_inp,Q1_inp,Q2_inp,S_inp,

Tg_inp),range,ICs); 

figure(1) 

x = t(1:end); 

y1 = T(1:end,1); 

p1=plot(x,y1); 

title('2nd floor air T') 

hold on 

  

x = t(1:end); 

y1 = data1(1:end,1); 

d1=plot(x,y1) 

h=[p1; d1]; 

legend(h,'Simulation','Data'); 

hold off 

  

figure(2) 

x = t(1:end); 

y1 = T(1:end,9); 

p2=plot(x,y1) 

title('1st floor air T') 

hold on 

x = t(1:end); 

y1 = data1(1:end,2); 

d2=plot(x,y1) 

d=[p2; d2]; 

legend(d,'Simulation','Data'); 

hold off 

  

 

#BIPV/T 2-inlet model with different wind and channel CHTC, 100 CVs each with 10 

subdivisions 

%% 

clear all 

clc 

%% 

Tamb = 2.797;             

G =514;  

m_kg_hr = 15000; 

Tzone = 20;    

V_w = 3.6;               

Tamb_K = Tamb+273.15; 
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Tsky = 284.15; 

F_sky = 1;                     

Tsur = Tamb+273.15;              

F_sur = 1;                     

  

m = m_kg_hr/3600;             

  

wind_mode = 6;           

ho_mode = 1;             

Nu_mode = 1;             

                         

Nu_expression = 1;       

  

c = 1000 

rho = 1.2;              

mi = 18*10^(-6);         

k = 0.0247;              

Pr = c*mi/k;                

sigma = 5.67E-8;       

  

L = 13;                

W = 55.4;                

D = 0.07;                

A = W*L;                 

Ac = W*D;                

Dh = 2*Ac/(W+D;     

  

ab = 0.95;               

h0 = 0.061;               

e1 = 0.9;                

e2 = 0.8;               

e_glass = 0.8;           

  

tg = 0.95;               

  

Rtop = 0.0042;           

Rbot = 0.0072;           

Rins = 100;              

  

 

Q = m/rho;               

V = Q/Ac;                
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Re = rho*V*Dh/mi;        

  

if Re>2800 

    f = (0.79*log(Re)-1.64)^(-2); 

else 

    f = 64/Re; 

end 

w_outlet =  W;                         

h_outlet = 0.07;                           

A_outlet = w_outlet * h_outlet;           

V_outlet = V*Ac/A_outlet;                

K_entrance = 0.5;                         

  

DP_entrance = K_entrance*rho*(V_outlet^2)/2; 

  

e_glass = 0.0015;                         

e_mullion = 0.035;                        

e_back = 0.15;                            

  

e_average = (e_glass*W + e_mullion*2*D + 

e_back*W)/(2*W+2*D);   

numb = -1.8*log(6.9/Re+(e_average/(3.7*Dh))^1.11); 

f = 1/(numb^0.5); 

  

DP_friction = f*(L/Dh)*rho*(V^2)/2; 

  

DP_total = DP_friction + DP_entrance; 

  

W_pumping = Q*DP_total; 

  

n = 100;                  

dx = L/n;                

i = 1:n; 

x = i*dx; 

  

Acv = W*dx;              

  

l = 10;  

j = 1:l; 

  

Vwind = 0.1307.*((x-dx/2).^4)-1.053.*((x-

dx/2).^3)+3.219.*((x-dx/2).^2)-4.525.*((x-dx/2))+3.759; 

ho_Yang = 13.45.*Vwind;                   

Vwind_avg_Yang = sum(Vwind)/n; 
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ho_Yang_avg = sum(ho_Yang)/n; 

  

if wind_mode == 1 

    ho = ho_Yang;               

elseif wind_mode == 2 

    ho = ones(1,n)*(13.42*V_w); 

elseif wind_mode == 3 

    ho = ones(1,n)*(11.9+2.2*V_w); 

elseif wind_mode == 4 

    ho = ones(1,n)*(3.8*V_w); 

elseif wind_mode == 5 

    ho = ones(1,n)*(3*V_w+2.8); 

elseif wind_mode == 6 

    ho = ones(1,n)*(4*V_w+7.4); 

end 

  

ho_avg = sum(ho)/n; 

 

  

    if Re<2300 

       Nu_PV_Yang = 0.6883*((Re)^0.7)*(Pr^0.8).*exp((-(x-

dx/2).^(0.3))/(6.45*Dh))+0.0124*((Re^0.7)*(Pr^0.8)); 

    else 

       Nu_PV_Yang = 8.188*((Re)^0.77)*(Pr^3.85)*exp((-(x-

dx/2).^(0.2))/(2.8*Dh))+0.061*((Re^0.77)*(Pr^3.85)); 

    end 

  

    if Re<2300 

        Nu_ins_Yang = 50*((Re)^0.5)*(Pr^0.2)*exp((-(x-

dx/2).^(0.3))/(1.37*Dh))+0.428*(Re^0.5)*(Pr^0.2); 

    else 

        Nu_ins_Yang = 4.02*((Re)^1.09)*(Pr^19.3)*exp((-(x-

dx/2).^(0.2))/(14*Dh))+0.005*(Re^1.09)*(Pr^19.3); 

    end 

  

    if Re<2400 

       Nu_PV_Cand = 0.039*(Re^0.78)*(Pr^0.4).*exp((-(x-

dx/2).^(0.2))/(20*Dh))+0.034*((Re^0.78)*(Pr^0.4)); 

    else 

       Nu_PV_Cand = 0.012*(Re^0.78)*(Pr^0.4).*exp((-(x-

dx/2).^(0.2))/(9.09*Dh))+0.049*((Re^0.78)*(Pr^0.4)); 

    end 
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    if Re<2400 

        Nu_ins_Cand = Nu_PV_Cand; 

    else 

        Nu_ins_Cand = Nu_PV_Cand; 

    end 

  

Nu_PV_avg_Yang = sum(Nu_PV_Yang)/n;                

Nu_ins_avg_Yang = sum(Nu_ins_Yang)/n;              

  

Nu_PV_avg_Cand = 0.052*(Re^0.78)*(Pr^0.4); 

Nu_PV_avg_Cand_check = sum(Nu_PV_Cand)/n; 

Nu_ins_avg_Cand = 1.017*(Re^0.471)*(Pr^0.4); 

  

Nu_PV_avg_DB = 0.023*(Re^0.8)*(Pr^0.4); 

Nu_ins_avg_DB = Nu_PV_avg_DB; 

  

Nu_PV_Ath_1 = 0.014*((Re*2/3)^0.9)*(Pr^0.43); 

Nu_PV_Ath_2= 1.451*((Re*1)^0.44)*(Pr^0.4); 

  

if Nu_expression == 1 

    Nu_PV = Nu_PV_Yang; 

    Nu_ins = Nu_ins_Yang; 

elseif Nu_expression == 2 

    Nu_PV = Nu_PV_Cand; 

    Nu_ins = Nu_ins_Cand; 

elseif Nu_expression == 3 

    Nu_PV = ones(1,n) * Nu_PV_avg_Cand; 

    Nu_ins = ones(1,n) * 1.017*(Re^0.471)*(Pr^0.4); 

elseif Nu_expression == 4 

    Nu_PV = ones(1,n) * Nu_PV_avg_DB; 

    Nu_ins = ones(1,n) * Nu_PV_avg_DB; 

elseif Nu_expression == 5 

    Nu_PV = ones(1,n) * 

0.0158*(Re^0.8)+(0.00181*Re+2.92)*exp(-0.0379*(L/Dh)); 

    Nu_ins = ones(1,n) * 

0.0158*(Re^0.8)+(0.00181*Re+2.92)*exp(-0.0379*(L/Dh)); 

elseif Nu_expression == 6 

    Nu_PV = ones(1,n) * (((Re-

1000)*Pr*(f/8))/(1+12.7*((f/8)^0.5)*((Pr^(2/3))-

1)))*(1+(Dh/L)^(2/3)); 

    Nu_ins = ones(1,n) *(((Re-

1000)*Pr*(f/8))/(1+12.7*((f/8)^0.5)*((Pr^(2/3))-

1)))*(1+(Dh/L)^(2/3)); 

elseif Nu_expression == 7 
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    Nu_PV = ones(1,n)*(12*V+3)*Dh/k; 

    Nu_ins = ones(1,n)*(12*V+3)*Dh/k; 

elseif Nu_expression==8 & i>n/2 

    Nu_PV=ones(1,n)*Nu_PV_Ath_1;  

    Nu_ins=Nu_PV; 

elseif Nu_expression==8 & i>n/2 

    Nu_PV=ones(1,n)*Nu_PV_Ath_2;  

    Nu_ins=Nu_PV; 

end 

  

  

TPV = zeros(1,n);              

Tb = zeros(1,n);               

T = zeros(l,n);                

Ttop = zeros(1,n);             

Tlow = zeros(1,n);             

E_el_cv = zeros (1,n);         

S_pv_cv = zeros (1,n); 

E_th_cv = zeros(1,n);          

E_th_check = zeros(1,n); 

h = zeros(1,n);                

hrad = zeros(1,n); 

hrad_sky = zeros(1,n); 

hrad_sur = zeros(1,n); 

Tma = zeros(1,n);              

Ten = zeros(1,n);              

Tm1 = zeros(1,n); 

Tm_sky = zeros(1,n); 

Tm_sur = zeros(1,n); 

Uo = zeros(1,n); 

U1 = zeros(1,n); 

U2 = zeros(1,n); 

Urad = zeros(1,n); 

Urad_sky = zeros(1,n); 

Urad_sur = zeros(1,n); 

  

for i = 1:n; 

    if i<20 

        Re = 2/3*rho*V*Dh/mi; 

        x(1,i) = i*dx; 

        m1=m*2/3; 

    else 

        Re=rho*V*Dh/mi; 

        x(1,i) = (i-19)*dx; 
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        m1=m; 

    end 

     

    if Re<2300 

       Nu_PV_Yang = 0.6883*((Re)^0.7)*(Pr^0.8).*exp((-(x-

dx/2).^(0.3))/(6.45*Dh))+0.0124*((Re^0.7)*(Pr^0.8)); 

    else 

       Nu_PV_Yang = 8.188*((Re)^0.77)*(Pr^3.85)*exp((-(x-

dx/2).^(0.2))/(2.8*Dh))+0.061*((Re^0.77)*(Pr^3.85)); 

    end 

     

    if Re<2300 

        Nu_ins_Yang = 50*((Re)^0.5)*(Pr^0.2)*exp((-(x-

dx/2).^(0.3))/(1.37*Dh))+0.428*(Re^0.5)*(Pr^0.2); 

    else 

        Nu_ins_Yang = 4.02*((Re)^1.09)*(Pr^19.3)*exp((-(x-

dx/2).^(0.2))/(14*Dh))+0.005*(Re^1.09)*(Pr^19.3); 

    end  

  

    Nu_PV = Nu_PV_Yang; 

    Nu_ins = Nu_ins_Yang; 

     

   

    hc_PV = Nu_PV*k/Dh;          

    hc_ins = Nu_ins*k/Dh;        

    hc = (hc_PV+hc_ins)/2;       

  

    hc_PV_avg = sum (hc_PV)/n;    

    hc_ins_avg = sum(hc_ins)/n; 

    hc_avg = sum(hc)/n; 

  

    al = m1*c./(W.*hc); 

            TPV(1,i) = Tamb 

            Ttop(1,i) = Tamb; 

            Tlow(1,i) = Tamb; 

            Tb(1,i) = Tamb;   

            if i==1; 

                Ten(1,i) = Tamb; 

            elseif i==20; 

                Ten(1,i)=0.66*(T(l,i-1))+0.34*(Tamb); 

            else 

                Ten(1,i) = T(l,i-1); 

            end 

    error_toll = 0.001; 
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        while abs(error_toll)>=0.0001 

            Tprevious = TPV(1,i); 

            I_total = G;                               

            h(1,i) = h0*(1-0.0045*(TPV(1,i)-25));       

            S_tot_cv = tg*ab*Acv*I_total;                  

            E_el_cv(1,i) = h(1,i)*Acv*I_total;          

            S_pv_cv(1,i) = S_tot_cv - E_el_cv(1,i);       

             

            Tm1(1,i) = 

((Tlow(1,i)+273.15)^2+(Tb(1,i)+273.15)^2).*(Tlow(1,i)+273.1

5+Tb(1,i)+273.15); 

            F = 0.78;                                    %  

            hrad(1,i) = sigma.*F*Tm1(1,i)/((1/e1)+(1/e2)-

1);      

             

            Tm_sky(1,i) = 

((Ttop(1,i)+273.15)^2+(Tsky)^2).*(Ttop(1,i)+273.15+Tsky); 

            hrad_sky(1,i) = 

sigma*F_sky.*Tm_sky(1,i).*e_glass;      

             

            Tm_sur(1,i) = 

((Ttop(1,i)+273.15)^2+(Tsur)^2).*(Ttop(1,i)+273.15+Tsur); 

            hrad_sur(1,i) = 

sigma.*F_sur.*Tm_sur(1,i).*e_glass;      

  

             

            Uo = ho*Acv;                       

            U1(1,i) = hc_PV(1,i)*Acv;              

            U2(1,i) = hc_ins(1,i)*Acv;             

            Urad = hrad*Acv;                   

            Urad_sky = hrad_sky*Acv; 

            Urad_sur = hrad_sur*Acv; 

             

            Rglass = Rtop;                    

            Uglass = (1/Rglass)*Acv; 

             

            Rmix = Rbot; 

            Umix = (1/Rmix)*Acv; 

            Uins = (1/Rins)*Acv; 

             

            for j = 1:l; 

               xx(j) = j*dx/l; 

               T(j,i) = 

(hc_PV(1,i).*Tlow(1,i)+hc_ins(1,i).*Tb(1,i))./(hc_PV(1,i)+h



142 
 

c_ins(1,i))+(Ten(1,i)-

(hc_PV(1,i).*Tlow(1,i)+hc_ins(1,i).*Tb(1,i))./(hc_PV(1,i)+h

c_ins(1,i))).*exp(-

W.*(xx(j).*(hc_PV(1,i)+hc_ins(1,i))./(m*c))); 

            end 

            Tma(1,i) = sum(T(1:l,i))/l; 

  

            Tb(1,i) = 

(Tma(1,i).*U2(1,i)+Tlow(1,i).*Urad(1,i)+Uins*Tzone)./(U2(1,

i)+Urad(1,i)+Uins); 

            

TPV(1,i)=(Uo(1,i).*Tamb+U1(1,i).*Tma(1,i)+Urad(1,i).*Tb(1,i

)+S_pv_cv(1,i))./(Uo(1,i)+Urad(1,i)+U1(1,i)); 

            Tlow(1,i) = 

(Umix.*TPV(1,i)+U1(1,i).*Tma(1,i)+Urad(1,i).*Tb(1,i))./(Umi

x+U1(1,i)+Urad(1,i)); 

  

            E_th_cv(1,i) = m*c*(T(l,i)-Ten(1,i)); 

  

             

            E_th_check(1,i) = (U1(1,i)*(TPV(1,i)-

Tma(1,i))+U2(1,i)*(Tb(1,i)-Tma(1,i))); 

            error_toll = (TPV(1,i)-Tprevious)/Tprevious 

        end 

end 

  

  

  

  

hrad_sky_avg = sum(hrad_sky)/n; 

hrad_sur_avg = sum(hrad_sur)/n; 

hrad_avg_sur = hrad_sky_avg+hrad_sur_avg; 

  

TPV_avg = sum(TPV)/n; 

Tb_avg = sum(Tb)/n; 

Tma_avg = sum(Tma)/n; 

Tma_max = max(Tma); 

T_out = T(l,n)-2; 

T_out 
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1.9 F. 

Data used 

Date 
Import 
(kW) 

Export 
(kW) 

Production 
(kW) 

T_slab  
( ͦC) 

heating_total  
(kW) 

T_int 
( Cͦ) 

DNI 
(kW) 

Outside 
Temp 

( ͦC) 

23.01.2018 00:00 11.2 0 0 21.809 19.489 20.415 0.026 -4.61 

23.01.2018 00:15 8.4 0 0 21.799 7.845 20.388 0.095 -4.327 

23.01.2018 00:30 12.8 0 0 21.762 5.478 20.364 0 -4.217 

23.01.2018 00:45 13.2 0 0 21.732 6.81 20.324 0 -4.063 

23.01.2018 01:00 10.4 0 0 21.693 8.06 20.28 0 -3.94 

23.01.2018 01:15 8.8 0 0 21.649 7.096 20.25 0.081 -3.88 

23.01.2018 01:30 12 0 0 21.607 4.689 20.189 0.011 -3.863 

23.01.2018 01:45 12.8 0 0 21.558 7.138 20.163 0 -3.803 

23.01.2018 02:00 9.6 0 0 21.533 8.137 20.124 0 -3.767 

23.01.2018 02:15 9.6 0 0 21.478 5.832 20.095 0 -3.837 

23.01.2018 02:30 12.8 0 0 21.445 4.609 20.042 0 -3.783 

23.01.2018 02:45 12.8 0 0 21.395 7.617 20.033 0 -3.88 

23.01.2018 03:00 7.6 0 0 21.35 8.754 19.982 0 -3.96 

23.01.2018 03:15 10.4 0 0 21.349 5.61 19.976 0 -4.033 

23.01.2018 03:30 13.6 0 0 21.314 5.875 19.939 0 -4 

23.01.2018 03:45 11.2 0 0 21.274 7.646 19.908 0 -4.17 

23.01.2018 04:00 9.2 0 0 21.224 10.046 19.885 0 -4.22 

23.01.2018 04:15 12.8 0 0 21.203 5.46 19.858 0 -4.283 

23.01.2018 04:30 12.8 0 0 21.155 6.847 19.812 0 -4.25 

23.01.2018 04:45 12.4 0 0 21.139 8.31 19.788 0.034 -4.133 

23.01.2018 05:00 12.8 0 0 21.102 7.748 19.781 0 -3.947 

23.01.2018 05:15 14 0 0 21.084 7.255 19.779 0 -3.7 

23.01.2018 05:30 18 0 0 21.058 6.873 19.776 0 -3.47 

23.01.2018 05:45 19.2 0 0 21.027 10.469 19.773 0 -3.313 

23.01.2018 06:00 17.6 0 0 21.022 16.834 19.787 0 -3.157 

23.01.2018 06:15 17.2 0 0 21.014 34.238 19.812 0 -2.977 

23.01.2018 06:30 17.6 0 0 21.02 44.39 19.852 0 -2.843 

23.01.2018 06:45 17.2 0 0 21.029 46.869 19.886 0 -2.933 

23.01.2018 07:00 23.6 0 0 21.035 50.915 19.941 0 -3.16 

23.01.2018 07:15 27.2 0 0 21.047 64.957 19.975 0 -3.253 

23.01.2018 07:30 34.4 0 0 21.079 70.999 20.08 0 -3.387 

23.01.2018 07:45 32 0 0 21.085 73.114 20.102 0 -3.597 

23.01.2018 08:00 29.6 0 0.08 21.09 71.398 20.163 0 -4.27 

23.01.2018 08:15 29.6 0 0.56 21.131 73.249 20.264 0 -4.44 
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23.01.2018 08:30 26.8 0 0.6 21.148 70.892 20.323 0 -4.587 

23.01.2018 08:45 31.6 0 0.12 21.166 73.001 20.346 0 -4.84 

23.01.2018 09:00 33.6 0 0.12 21.182 69.783 20.374 0 -5.037 

23.01.2018 09:15 30 0 1.76 21.202 50.056 20.428 0.014 -5.157 

23.01.2018 09:30 27.6 0 1.64 21.212 69.333 20.498 0.149 -4.89 

23.01.2018 09:45 30.4 0 1.24 21.23 51.879 20.526 0.069 -4.423 

23.01.2018 10:00 30.4 0 1.32 21.255 66.573 20.528 0 -4.08 

23.01.2018 10:15 32 0 1.24 21.286 77.028 20.584 0.378 -3.92 

23.01.2018 10:30 34.8 0 1.52 21.311 79.45 20.612 0.31 -3.677 

23.01.2018 10:45 30.4 0 2.16 21.345 75.459 20.64 0 -3.723 

23.01.2018 11:00 29.2 0 2.6 21.358 75.651 20.656 0.012 -3.693 

23.01.2018 11:15 23.6 0 2.28 21.39 77.616 20.716 0 -3.58 

23.01.2018 11:30 27.2 0 1.2 21.413 53.026 20.764 0.039 -3.377 

23.01.2018 11:45 32.8 0 2.12 21.43 55.547 20.807 0.094 -3.367 

23.01.2018 12:00 27.2 0 4 21.462 68.762 20.833 0 -3.763 

23.01.2018 12:15 23.6 0 6.04 21.47 45.698 20.876 0 -3.51 

23.01.2018 12:30 26 0 3.4 21.503 48.765 20.894 0 -3.257 

23.01.2018 12:45 28.4 0 2.12 21.536 47.185 20.954 0 -3.297 

23.01.2018 13:00 29.2 0 2.24 21.566 69.68 20.922 0 -3.267 

23.01.2018 13:15 34.8 0 1.16 21.577 70.532 20.953 0 -3.397 

23.01.2018 13:30 37.2 0 0.88 21.601 72.179 20.986 0.135 -3.277 

23.01.2018 13:45 30.4 0 2.84 21.625 71.148 20.991 0.341 -2.973 

23.01.2018 14:00 29.2 0 2.4 21.63 68.644 20.988 0.001 -2.883 

23.01.2018 14:15 27.2 0 2.32 21.656 54.108 21.038 0 -2.87 

23.01.2018 14:30 28.4 0 1.56 21.68 52.875 21.104 0 -2.837 

23.01.2018 14:45 27.2 0 1.32 21.703 50.447 21.116 0 -3.007 

23.01.2018 15:00 29.6 0 0.72 21.737 46.352 21.151 0 -3.13 

23.01.2018 15:15 29.6 0 0.68 21.77 44.947 21.145 0 -3.02 

23.01.2018 15:30 28 0 1.08 21.771 45.42 21.143 0 -2.997 

23.01.2018 15:45 28.4 0 0.88 21.798 44.196 21.136 0 -2.983 

23.01.2018 16:00 30 0 0.04 21.819 44.074 21.149 0.165 -2.963 

23.01.2018 16:15 31.2 0 0 21.836 44.035 21.155 0 -3.023 

23.01.2018 16:30 28.8 0 0 21.84 45.015 21.176 0 -3.053 

23.01.2018 16:45 29.2 0 0 21.865 45.174 21.183 0 -3.147 

23.01.2018 17:00 28.8 0 0 21.885 46.486 21.21 0 -3.227 

23.01.2018 17:15 28.4 0 0 21.9 62.515 21.196 0.372 -3.103 

23.01.2018 17:30 26.8 0 0 21.919 46.459 21.172 0.946 -2.987 

23.01.2018 17:45 30.4 0 0 21.939 20.992 21.215 0.21 -3.023 

23.01.2018 18:00 26.8 0 0 21.954 44.082 21.219 0.231 -2.98 

23.01.2018 18:15 28 0 0 21.959 55.857 21.203 0.374 -2.85 

23.01.2018 18:30 28 0 0 21.974 55.644 21.189 0.087 -2.773 

23.01.2018 18:45 26.8 0 0 21.991 52.363 21.176 0.033 -2.697 

23.01.2018 19:00 29.6 0 0 22 51.279 21.175 0 -2.647 
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23.01.2018 19:15 28 0 0 22.014 45.983 21.175 0 -2.66 

23.01.2018 19:30 28.4 0 0 22.021 46.186 21.188 0.002 -2.603 

23.01.2018 19:45 28.4 0 0 22.023 46.089 21.19 0 -2.6 

23.01.2018 20:00 28.4 0 0 22.028 44.627 21.181 0 -2.483 

23.01.2018 20:15 27.2 0 0 22.057 45.257 21.174 0 -2.507 

23.01.2018 20:30 28 0 0 22.066 42.968 21.195 0 -2.543 

23.01.2018 20:45 28 0 0 22.069 42.927 21.206 0 -2.553 

23.01.2018 21:00 25.2 0 0 22.083 41.905 21.193 0 -2.57 

23.01.2018 21:15 18.8 0 0 22.081 21.335 21.19 0 -2.567 

23.01.2018 21:30 12.8 0 0 22.076 6.164 21.131 0 -2.49 

23.01.2018 21:45 9.2 0 0 22.042 7.693 21.061 0 -2.343 

23.01.2018 22:00 10 0 0 22.013 5.936 20.991 0 -2.093 

23.01.2018 22:15 14.4 0 0 21.979 5.221 20.931 0 -1.54 

23.01.2018 22:30 13.2 0 0 21.95 5.75 20.883 0 -0.393 

23.01.2018 22:45 8 0 0 21.896 7.624 20.799 0 1.025 

23.01.2018 23:00 9.6 0 0 21.871 5.752 20.749 0 1.957 

23.01.2018 23:15 13.6 0 0 21.826 4.203 20.732 0 2.193 

23.01.2018 23:30 11.6 0 0 21.794 6.985 20.684 0 2.223 

23.01.2018 23:45 9.2 0 0 21.758 11.585 20.642 0 2.21 

24.01.2018 00:00 12.4 0 0 21.734 6.111 20.597 0 2.26 

24.01.2018 00:15 14 0 0 21.682 1.031 20.565 0 2.26 

24.01.2018 00:30 10 0 0 21.639 7.473 20.53 0 2.24 

24.01.2018 00:45 8 0 0 21.593 7.392 20.517 0 2.143 

24.01.2018 01:00 14.4 0 0 21.573 6.041 20.503 0 2.067 

24.01.2018 01:15 14 0 0 21.537 5.931 20.491 0 2.047 

24.01.2018 01:30 8.4 0 0 21.503 7.701 20.467 0 2.06 

24.01.2018 01:45 9.6 0 0 21.471 6.111 20.436 0 1.89 

24.01.2018 02:00 14.8 0 0 21.443 4.673 20.41 0 1.823 

24.01.2018 02:15 11.6 0 0 21.409 5.873 20.376 0 1.803 

24.01.2018 02:30 8 0 0 21.372 8.327 20.351 0 1.673 

24.01.2018 02:45 10.4 0 0 21.347 5.944 20.344 0 1.378 

24.01.2018 03:00 14 0 0 21.313 2.523 20.333 0 0.409 

24.01.2018 03:15 11.2 0 0 21.288 7.126 20.327 0 -0.577 

24.01.2018 03:30 8.8 0 0 21.257 6.93 20.252 0 -1.417 

24.01.2018 03:45 14.4 0 0 21.23 4.917 20.221 0 -2.653 

24.01.2018 04:00 13.6 0 0 21.197 7.218 20.198 0 -3.413 

24.01.2018 04:15 12.8 0 0 21.17 7.524 20.14 0 -3.863 

24.01.2018 04:30 13.6 0 0 21.155 7.242 20.137 0 -4.603 

24.01.2018 04:45 13.6 0 0 21.144 8.264 20.134 0 -5.297 

24.01.2018 05:00 13.6 0 0 21.125 7.933 20.136 0 -5.827 

24.01.2018 05:15 13.6 0 0 21.108 7.605 20.119 0 -6.387 

24.01.2018 05:30 16.8 0 0 21.103 7.734 20.099 0 -6.777 

24.01.2018 05:45 17.2 0 0 21.089 10.265 20.113 0 -7.03 



146 
 

24.01.2018 06:00 16.8 0 0 21.097 13.412 20.11 0 -7.243 

24.01.2018 06:15 17.6 0 0 21.103 15.766 20.117 0 -7.463 

24.01.2018 06:30 18 0 0 21.105 18.946 20.141 0 -7.757 

24.01.2018 06:45 17.6 0 0 21.109 40.178 20.161 0 -8.09 

24.01.2018 07:00 23.2 0 0 21.121 46.48 20.195 0 -8.2 

24.01.2018 07:15 26 0 0 21.126 65.374 20.225 0 -8.263 

24.01.2018 07:30 23.6 0 0 21.154 61.602 20.258 0 -8.533 

24.01.2018 07:45 32.4 0 0.12 21.168 64.032 20.294 0 -8.643 

24.01.2018 08:00 25.2 0 3.6 21.169 71.506 20.361 0.093 -8.94 

24.01.2018 08:15 22 0 8.4 21.193 75.692 20.458 43.917 -9.197 

24.01.2018 08:30 23.6 0 10.76 21.215 79.812 20.547 557.723 -9.347 

24.01.2018 08:45 21.2 0 12.56 21.227 74.323 20.745 693.547 -9.41 

24.01.2018 09:00 20 0 14.24 21.254 73.833 20.873 736.643 -9.543 

24.01.2018 09:15 18.8 0 15.56 21.297 77.594 21.069 695.347 -9.617 

24.01.2018 09:30 22 0 13.96 21.347 77.478 21.184 418.6 -9.59 

24.01.2018 09:45 20.4 0 16.16 21.442 66.024 21.298 425.56 -9.477 

24.01.2018 10:00 16.4 0 16.96 21.537 72.088 21.385 95.029 -9.5 

24.01.2018 10:15 14 0 18.52 21.619 56.123 21.5 38.364 -9.623 

24.01.2018 10:30 15.2 0 16.32 21.713 52.326 21.615 65.591 -9.59 

24.01.2018 10:45 18.8 0 13.16 21.801 48.517 21.716 117.93 -9.517 

24.01.2018 11:00 14.8 0 17.56 21.88 43.673 21.79 474.657 -9.347 

24.01.2018 11:15 12 0 18.92 21.979 43.263 21.863 737.943 -9.197 

24.01.2018 11:30 13.2 0.22 14.32 22.085 41.925 21.934 522.69 -8.877 

24.01.2018 11:45 0.4 1.552 21.08 22.154 37.736 21.956 290.569 -8.713 

24.01.2018 12:00 7.6 0.212 18.04 22.218 26.895 22.087 100.18 -8.963 

24.01.2018 12:15 7.6 0.14 16.84 22.261 28.906 22.13 17.914 -8.833 

24.01.2018 12:30 12.4 0.024 13.36 22.332 14.587 22.172 6.524 -8.777 

24.01.2018 12:45 16.4 0 8.44 22.413 25.38 22.197 27.167 -8.73 

24.01.2018 13:00 9.6 0 16.6 22.48 24.252 22.137 135.947 -8.51 

24.01.2018 13:15 5.6 0 17.32 22.521 10.838 22.155 387.587 -8.177 

24.01.2018 13:30 8.4 0 15.52 22.528 21.132 22.171 665.81 -8.017 

24.01.2018 13:45 7.6 0 15.64 22.545 20.104 22.238 788.187 -7.943 

24.01.2018 14:00 9.6 0 13.48 22.57 20.573 22.289 437.363 -8.013 

24.01.2018 14:15 12.8 0 12.28 22.569 19.908 22.327 375.957 -8.017 

24.01.2018 14:30 18 0 11.2 22.576 19.425 22.393 621.653 -7.717 

24.01.2018 14:45 21.6 0 7.96 22.577 18.334 22.406 724.853 -7.643 

24.01.2018 15:00 23.2 0 6 22.576 19.381 22.421 610.193 -7.7 

24.01.2018 15:15 23.6 0 6.04 22.576 19.595 22.378 527.923 -7.62 

24.01.2018 15:30 24.4 0 3.8 22.586 18.4 22.345 503.71 -7.577 

24.01.2018 15:45 27.6 0 1.72 22.587 18.184 22.329 450.907 -7.463 

24.01.2018 16:00 30.4 0 0.8 22.586 17.506 22.276 127.269 -7.55 

24.01.2018 16:15 29.6 0 0.12 22.578 15.349 22.198 65.997 -7.64 

24.01.2018 16:30 25.6 0 0 22.567 16.784 22.123 24.08 -7.857 
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24.01.2018 16:45 24 0 0 22.557 18.331 22.05 6.262 -7.967 

24.01.2018 17:00 23.2 0 0 22.546 17.559 21.974 0 -7.997 

24.01.2018 17:15 24.8 0 0 22.525 7.78 21.889 0 -8.043 

24.01.2018 17:30 26.4 0 0 22.502 16.586 21.859 0 -8.227 

24.01.2018 17:45 25.2 0 0 22.475 21.206 21.788 0 -8.523 

24.01.2018 18:00 23.2 0 0 22.45 19.41 21.716 0 -8.807 

24.01.2018 18:15 24 0 0 22.433 20.174 21.664 0 -9.3 

24.01.2018 18:30 28.4 0 0 22.418 22.477 21.636 0 -9.64 

24.01.2018 18:45 31.6 0 0 22.402 30.227 21.544 0 -9.79 

24.01.2018 19:00 30.8 0 0 22.368 33.187 21.532 0 -9.977 

24.01.2018 19:15 28.8 0 0 22.331 35.332 21.511 0 -10.333 

24.01.2018 19:30 28.4 0 0 22.312 36.404 21.513 0 -10.5 

24.01.2018 19:45 29.6 0 0 22.285 13.689 21.451 0 -10.333 

24.01.2018 20:00 31.2 0 0 22.267 25.673 21.396 0 -10.667 

24.01.2018 20:15 27.2 0 0 22.248 40.881 21.36 0 -10.667 

24.01.2018 20:30 28 0 0 22.232 42.494 21.346 0 -10.733 

24.01.2018 20:45 26.4 0 0 22.201 40.675 21.333 0 -10.833 

24.01.2018 21:00 22.4 0 0 22.191 45.044 21.294 0 -11.1 

24.01.2018 21:15 20.8 0 0 22.18 11.991 21.242 0 -11.367 

24.01.2018 21:30 16.8 0 0 22.146 7.544 21.167 0 -11.467 

24.01.2018 21:45 12 0 0 22.121 8.559 21.092 0 -11.6 

24.01.2018 22:00 10.8 0 0 22.083 7.385 20.988 0 -11.733 

24.01.2018 22:15 14.8 0 0 22.046 4.499 20.887 0 -11.9 

24.01.2018 22:30 14.8 0 0 22.012 7.406 20.834 0 -11.933 

24.01.2018 22:45 14.4 0 0 21.992 8.164 20.778 0 -12.033 

24.01.2018 23:00 14.8 0 0 21.941 8.539 20.723 0 -12.167 

24.01.2018 23:15 18.4 0 0 21.905 8.157 20.704 0 -12.367 

24.01.2018 23:30 19.2 0 0 21.884 10.83 20.629 0 -12.567 

24.01.2018 23:45 19.2 0 0 21.874 15.798 20.633 0 -12.733 

25.01.2018 00:00 13.2 0 0 21.846 18.603 20.616 0 -12.933 

25.01.2018 00:15 11.6 0 0 21.838 6.822 20.59 0 -13.067 

25.01.2018 00:30 14.4 0 0 21.811 4.718 20.529 0 -13.233 

25.01.2018 00:45 14.4 0 0 21.77 7.467 20.472 0 -13.267 

25.01.2018 01:00 13.2 0 0 21.732 8.544 20.398 0 -13.5 

25.01.2018 01:15 9.6 0 0 21.696 8.78 20.345 0 -13.7 

25.01.2018 01:30 12.8 0 0 21.659 5.927 20.286 0 -13.8 

25.01.2018 01:45 14.4 0 0 21.604 6.468 20.232 0 -14 

25.01.2018 02:00 15.2 0 0 21.577 7.884 20.174 0 -14.167 

25.01.2018 02:15 14 0 0 21.536 8.64 20.142 0 -14.3 

25.01.2018 02:30 9.6 0 0 21.515 8.516 20.101 0 -14.5 

25.01.2018 02:45 12.8 0 0 21.455 5.346 20.025 0 -14.7 

25.01.2018 03:00 14 0 0 21.429 6.805 19.991 0 -14.867 

25.01.2018 03:15 15.6 0 0 21.373 8.123 19.933 0 -14.733 
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25.01.2018 03:30 14.8 0 0 21.334 8.089 19.875 0 -14.767 

25.01.2018 03:45 10.4 0 0 21.294 9.012 19.827 0 -14.933 

25.01.2018 04:00 14 0 0 21.253 5.318 19.802 0 -15.267 

25.01.2018 04:15 14 0 0 21.216 6.761 19.731 0 -15.467 

25.01.2018 04:30 14 0 0 21.17 8.034 19.689 0 -15.533 

25.01.2018 04:45 15.6 0 0 21.146 7.811 19.668 0 -15.667 

25.01.2018 05:00 15.6 0 0 21.106 11.983 19.637 0 -15.733 

25.01.2018 05:15 15.6 0 0 21.078 2.905 19.617 0 -15.833 

25.01.2018 05:30 18.8 0 0 21.057 19.149 19.586 0 -15.967 

25.01.2018 05:45 18.4 0 0 21.032 13.493 19.569 0 -16.133 

25.01.2018 06:00 19.2 0 0 21 16.518 19.582 0 -16.167 

25.01.2018 06:15 25.2 0 0 20.99 17.752 19.602 0 -16.167 

25.01.2018 06:30 24 0 0 20.995 36.096 19.605 0 -16.267 

25.01.2018 06:45 24 0 0 20.989 37.279 19.654 0 -16.333 

25.01.2018 07:00 20.8 0 0 20.995 37.22 19.669 0 -16.4 

25.01.2018 07:15 26.4 0 0.12 20.998 53.439 19.71 0 -16.4 

25.01.2018 07:30 24.8 0 2 21.009 68.84 19.729 0 -16.5 

25.01.2018 07:45 29.6 0 4.2 21.027 58.881 19.763 310.843 -16.433 

25.01.2018 08:00 26.8 0 6.52 21.018 73.583 19.823 521.52 -16.4 

25.01.2018 08:15 19.2 0 8.48 21.026 79.736 19.93 605.97 -16.333 

25.01.2018 08:30 19.6 0 10.68 21.039 60.517 20.067 657.19 -16.233 

25.01.2018 08:45 18.8 0 12.48 21.048 56.227 20.206 733.8 -16.033 

25.01.2018 09:00 18 0 14.16 21.069 75.704 20.358 775.55 -15.9 

25.01.2018 09:15 14.8 0 15.64 21.109 82.648 20.611 806.883 -15.8 

25.01.2018 09:30 13.2 0 17.08 21.163 51.121 20.786 836.107 -15.8 

25.01.2018 09:45 8.4 0 18.36 21.236 56.996 20.915 862.55 -15.633 

25.01.2018 10:00 8 0 19.44 21.31 71.089 21.024 882.073 -15.4 

25.01.2018 10:15 6.4 0 20.24 21.407 69.159 21.138 895.137 -15.333 

25.01.2018 10:30 0.4 0.42 21.08 21.506 50.808 21.277 905.41 -15.2 

25.01.2018 10:45 1.2 0.12 21.68 21.599 51.948 21.383 915.363 -14.9 

25.01.2018 11:00 3.6 0 22.16 21.699 51.874 21.497 921.85 -14.7 

25.01.2018 11:15 7.2 0 22.36 21.8 52.754 21.584 922.083 -14.567 

25.01.2018 11:30 6 0 22.24 21.897 50.762 21.677 927.417 -14.233 

25.01.2018 11:45 6.4 0 22.36 21.999 45.962 21.723 927.28 -14 

25.01.2018 12:00 7.6 0 22.32 22.103 44.212 21.784 929.913 -13.8 

25.01.2018 12:15 6.8 0 21.84 22.21 40.121 21.832 932.07 -13.6 

25.01.2018 12:30 12 0 21.52 22.285 36.792 21.898 931.237 -13.4 

25.01.2018 12:45 14.8 0 20.88 22.357 38.632 21.91 923.143 -12.9 

25.01.2018 13:00 10.4 0 20.28 22.431 39.716 21.986 917.47 -12.7 

25.01.2018 13:15 12 0 19.2 22.503 24.888 22.04 910.517 -12.467 

25.01.2018 13:30 15.2 0 18.36 22.534 16.809 22.081 898.137 -12.267 

25.01.2018 13:45 14.4 0 16 22.56 38.522 22.11 884.847 -12 

25.01.2018 14:00 12.4 0 14.72 22.573 36.858 22.125 817.927 -11.6 
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25.01.2018 14:15 16.8 0 13.36 22.574 29.958 22.135 802.273 -11.4 

25.01.2018 14:30 23.6 0 6.28 22.58 32.622 22.174 662.733 -11.233 

25.01.2018 14:45 23.2 0 2.52 22.589 12.558 22.161 53.043 -11.533 

25.01.2018 15:00 22.8 0 1.36 22.588 22.755 22.101 2.754 -11.5 

25.01.2018 15:15 23.2 0 1 22.595 26.03 21.991 7.79 -11.5 

25.01.2018 15:30 24.4 0 1 22.575 21.672 21.906 6.624 -11.5 

25.01.2018 15:45 23.2 0 0.64 22.571 21.596 21.8 0.482 -11.433 

25.01.2018 16:00 27.2 0 0.16 22.545 20.704 21.684 7.984 -11.3 

25.01.2018 16:15 28.4 0 0 22.522 32.195 21.636 0.464 -11.233 

25.01.2018 16:30 27.6 0 0 22.506 33.453 21.553 58.019 -11.2 

25.01.2018 16:45 27.6 0 0 22.462 33.123 21.507 7.813 -11.167 

25.01.2018 17:00 29.2 0 0 22.464 35.434 21.448 0 -11.067 

25.01.2018 17:15 29.2 0 0 22.446 37.232 21.398 0 -11 

25.01.2018 17:30 29.2 0 0 22.436 39.049 21.351 0 -10.933 

25.01.2018 17:45 28.4 0 0 22.424 43.294 21.333 0 -10.9 

25.01.2018 18:00 32 0 0 22.409 45.28 21.306 0 -10.8 

25.01.2018 18:15 32.4 0 0 22.392 57.988 21.291 0 -10.833 

25.01.2018 18:30 34 0 0 22.38 56.327 21.258 0 -10.833 

25.01.2018 18:45 30 0 0 22.385 58.015 21.223 0 -11 

25.01.2018 19:00 29.6 0 0 22.379 46.807 21.236 0 -11 

25.01.2018 19:15 29.2 0 0 22.37 47.598 21.233 0 -11.033 

25.01.2018 19:30 30.4 0 0 22.372 46.784 21.233 0 -11.1 

25.01.2018 19:45 32.8 0 0 22.345 47.715 21.222 0 -11.167 

25.01.2018 20:00 31.6 0 0 22.333 62.644 21.21 0 -11.3 

25.01.2018 20:15 36.8 0 0 22.33 60.093 21.206 0 -11.3 

25.01.2018 20:30 33.2 0 0 22.327 61.655 21.227 0 -11.333 

25.01.2018 20:45 34 0 0 22.309 61.477 21.218 0 -11.5 

25.01.2018 21:00 23.2 0 0 22.311 62.088 21.176 0 -11.5 

25.01.2018 21:15 20.8 0 0 22.316 9.656 21.13 0 -11.5 

25.01.2018 21:30 19.6 0 0 22.264 7.957 20.995 0 -11.567 

25.01.2018 21:45 19.2 0 0 22.221 8.702 20.921 0 -11.533 

25.01.2018 22:00 20.4 0 0 22.178 8.993 20.828 0 -11.633 

25.01.2018 22:15 20 0 0 22.144 7.998 20.79 0 -11.7 

25.01.2018 22:30 16.4 0 0 22.121 8.115 20.747 0 -11.7 

25.01.2018 22:45 19.6 0 0 22.096 7.601 20.677 0 -11.667 

25.01.2018 23:00 14.8 0 0 22.08 10.353 20.59 0 -11.567 

25.01.2018 23:15 18 0 0 22.05 7.775 20.566 0 -11.6 

25.01.2018 23:30 18 0 0 22.033 13.053 20.522 0 -11.6 

25.01.2018 23:45 18.8 0 0 22.012 16.808 20.514 0 -11.8 

26.01.2018 00:00 13.2 0 0 22 18.522 20.478 0 -11.933 

26.01.2018 00:15 10.4 0 0 21.988 6.185 20.449 0 -11.933 

26.01.2018 00:30 14.4 0 0 21.941 4.727 20.351 0 -11.933 

26.01.2018 00:45 14 0 0 21.907 8.091 20.284 0 -11.933 
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26.01.2018 01:00 13.2 0 0 21.864 8.779 20.229 0 -12 

26.01.2018 01:15 10.8 0 0 21.821 8.894 20.189 0 -12.333 

26.01.2018 01:30 11.2 0 0 21.777 6.456 20.148 0 -12.433 

26.01.2018 01:45 13.6 0 0 21.722 4.772 20.077 0 -12.7 

26.01.2018 02:00 13.2 0 0 21.684 8.009 20.033 0 -12.8 

26.01.2018 02:15 13.6 0 0 21.619 8.357 19.963 0 -12.7 

26.01.2018 02:30 12.4 0 0 21.587 7.994 19.927 0 -12.967 

26.01.2018 02:45 8.8 0 0 21.529 9.162 19.865 0 -13.233 

26.01.2018 03:00 12.4 0 0 21.499 5.455 19.827 0 -13.533 

26.01.2018 03:15 13.6 0 0 21.446 7.778 19.783 0 -14.233 

26.01.2018 03:30 13.6 0 0 21.409 7.939 19.73 0 -14 

26.01.2018 03:45 13.6 0 0 21.358 7.976 19.695 0 -13.733 

26.01.2018 04:00 10.8 0 0 21.321 8.902 19.646 0 -14.1 

26.01.2018 04:15 11.2 0 0 21.27 5.543 19.583 0 -14.267 

26.01.2018 04:30 13.6 0 0 21.236 6.931 19.529 0 -15.233 

26.01.2018 04:45 17.2 0 0 21.194 7.542 19.501 0 -15.8 

26.01.2018 05:00 14.4 0 0 21.162 10.464 19.492 0 -16.1 

26.01.2018 05:15 16.4 0 0 21.126 6.433 19.461 0 -16.333 

26.01.2018 05:30 18 0 0 21.09 12.472 19.437 0 -16.433 

26.01.2018 05:45 18.4 0 0 21.071 15.846 19.437 0 -16.433 

26.01.2018 06:00 22.8 0 0 21.047 17.426 19.414 0 -16.933 

26.01.2018 06:15 23.6 0 0 21.038 36.099 19.435 0 -17.2 

26.01.2018 06:30 24 0 0 21.028 37.415 19.46 0 -16.8 

26.01.2018 06:45 23.6 0 0 21.03 37.682 19.511 0 -17.033 

26.01.2018 07:00 20.4 0 0 21.026 37.546 19.533 0 -16.867 

26.01.2018 07:15 22 0 0.24 21.025 54.045 19.556 0 -17.267 

26.01.2018 07:30 25.6 0 1.52 21.04 69.226 19.6 0.39 -17 

26.01.2018 07:45 25.2 0 3.88 21.027 67.149 19.605 306.033 -16.867 

26.01.2018 08:00 25.2 0 6.64 21.031 76.771 19.64 478.293 -16.367 

26.01.2018 08:15 22.4 0 9.12 21.025 77.282 19.719 566.29 -16.8 

26.01.2018 08:30 20 0 11.56 21.025 77.216 19.874 645.597 -17.233 

26.01.2018 08:45 18 0 13.56 21.035 76.604 19.987 700.837 -17.133 

26.01.2018 09:00 16 0 15.48 21.064 93.05 20.151 742.023 -17.133 

26.01.2018 09:15 12.8 0 17.28 21.102 94.191 20.386 775.977 -15.667 

26.01.2018 09:30 11.6 0 19 21.15 93.929 20.616 804.26 -15.033 

26.01.2018 09:45 7.2 0 20.6 21.215 59.715 20.795 826.767 -13.9 

26.01.2018 10:00 8.4 0 22.12 21.309 79.005 20.908 842.833 -13.533 

26.01.2018 10:15 4.4 0 23.48 21.404 77.113 21.024 844.13 -14.267 

26.01.2018 10:30 3.6 0 25.16 21.513 73.41 21.115 851.99 -14.767 

26.01.2018 10:45 4 0 25.24 21.583 66.714 21.191 812.44 -14.7 

26.01.2018 11:00 0 2.28 28.12 21.691 68.068 21.25 832.777 -14.333 

26.01.2018 11:15 0 6.64 29.56 21.796 54.07 21.366 867.553 -13.833 

26.01.2018 11:30 0 6.328 31.08 21.874 56.49 21.41 874.293 -13.4 
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26.01.2018 11:45 0 8.392 32.36 21.974 47.65 21.48 878.08 -12.967 

26.01.2018 12:00 0 9.804 33.44 22.071 55.758 21.562 881.09 -13.167 

26.01.2018 12:15 0 12.796 35.28 22.173 45.214 21.649 869.807 -12.8 

26.01.2018 12:30 0 8.744 36.44 22.259 42.193 21.713 878.717 -12.4 

26.01.2018 12:45 0 7.168 36.2 22.369 42.508 21.764 829.53 -10.733 

26.01.2018 13:00 0 11.412 36.8 22.452 42.366 21.833 828.36 -9.453 

26.01.2018 13:15 0 11.052 37.2 22.54 32.793 21.899 813.88 -9.32 

26.01.2018 13:30 0 9.52 36.84 22.582 40.561 21.929 781.61 -9.197 

26.01.2018 13:45 0 7.856 35.72 22.597 39.07 21.979 809.803 -8.75 

26.01.2018 14:00 0 6.136 33.24 22.606 38.448 22.047 791.713 -9.537 

26.01.2018 14:15 0 3.256 30.44 22.598 20.748 22.123 748.267 -9.427 

26.01.2018 14:30 1.6 0.004 27.96 22.618 18.717 22.162 727.51 -9.647 

26.01.2018 14:45 4.4 0 24.56 22.618 23.986 22.165 714.46 -9.387 

26.01.2018 15:00 10 0 20.6 22.606 22.315 22.155 657.523 -9.867 

26.01.2018 15:15 12 0 16.44 22.602 21.721 22.155 602.337 -9.953 

26.01.2018 15:30 10 0 12.44 22.595 20.558 22.143 507.093 -9.73 

26.01.2018 15:45 14.4 0 8.12 22.585 17.814 22.076 437.17 -9.363 

26.01.2018 16:00 19.6 0 3.48 22.572 16.162 21.991 247.463 -8.73 

26.01.2018 16:15 22.8 0 0.88 22.569 15.762 21.88 69.591 -9.483 

26.01.2018 16:30 23.6 0 0.04 22.567 15.994 21.785 11.991 -10.027 

26.01.2018 16:45 23.6 0 0 22.558 17.705 21.686 10.449 -10.6 

26.01.2018 17:00 24.8 0 0 22.528 17.984 21.643 0 -10.967 

26.01.2018 17:15 26 0 0 22.506 21.382 21.521 0 -11.1 

26.01.2018 17:30 27.2 0 0 22.487 38.044 21.476 0 -11.3 

26.01.2018 17:45 27.6 0 0 22.442 37.129 21.389 0 -11.567 

26.01.2018 18:00 28.4 0 0 22.45 40.669 21.367 0 -11.7 

26.01.2018 18:15 30.4 0 0 22.42 38.124 21.354 0 -11.867 

26.01.2018 18:30 24.4 0 0 22.379 52.948 21.283 0 -12.033 

26.01.2018 18:45 20.8 0 0 22.365 53.554 21.253 0 -11.967 

26.01.2018 19:00 20 0 0 22.361 46.201 21.194 0 -11.833 

26.01.2018 19:15 20.4 0 0 22.356 48.245 21.122 0 -12.633 

26.01.2018 19:30 26.4 0 0 22.335 47.202 21.055 0 -12.4 

26.01.2018 19:45 30.4 0 0 22.324 65.449 21.003 0 -12.533 

26.01.2018 20:00 30.4 0 0 22.32 71.07 21 0 -13.467 

26.01.2018 20:15 28.4 0 0 22.33 67.062 20.998 0 -13.5 

26.01.2018 20:30 26.4 0 0 22.322 66.269 20.985 0 -13.267 

26.01.2018 20:45 25.6 0 0 22.3 66.647 20.95 0 -13.9 

26.01.2018 21:00 21.6 0 0 22.289 68.321 20.901 0 -14.267 

26.01.2018 21:15 14 0 0 22.283 16.896 20.887 0 -14.3 

26.01.2018 21:30 14 0 0 22.262 8.435 20.813 0 -14.5 

26.01.2018 21:45 13.2 0 0 22.223 8.416 20.686 0 -14.5 

26.01.2018 22:00 8.8 0 0 22.188 9.374 20.627 0 -14.5 

26.01.2018 22:15 12.4 0 0 22.122 6.121 20.51 0 -14.567 
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26.01.2018 22:30 13.2 0 0 22.084 7.646 20.42 0 -14.5 

26.01.2018 22:45 17.6 0 0 22.037 7.477 20.408 0 -14.3 

26.01.2018 23:00 18.8 0 0 22.011 10.741 20.343 0 -14.4 

26.01.2018 23:15 18 0 0 21.985 10.012 20.278 0 -14.633 

26.01.2018 23:30 19.2 0 0 21.958 14.83 20.28 0 -14.8 

26.01.2018 23:45 19.6 0 0 21.95 17.212 20.285 0 -14.8 
 

 

 

 

 

 

 

 

  


