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Abstract

Modeling of dielectric elastomer actuators with a conical shape

Niloufarsadat Nouhi

Dielectric elastomer actuators (DEAs) have received a lot of attention in the last

decade due to their outstanding actuation strain, high energy density, high degree of

freedom, electromechanical coupling and low price. However, modelling of dielectric

elastomer actuators is complicated because of time-dependent viscoelasticity, complex

geometry, electromechanical coupling and material nonlinearity. For these reasons,

just a few research results focusing on modeling of the DEAs have been published.

In this research, taking into account the influence of viscoelasticity, we present

a physical and phenomenal based model to characterize the behaviour of a conical

DEA made of polydimethylsiloxane. The nonequilibrium thermodynamic framework

is used to characterize the mechanical coupling of DEA. Also free energy and viscoelas-

tic characteristics of DEA are described using the Gent model and the generalized

Kelvin model, respectively.

The differential evolution approach is used to find the model parameters based

on the experimental data. The model’s validity and generalization are proved by

comparing experimental results with model predictions, for both different driving

input frequencies and amplitudes. The experimental results demonstrate a high level

of agreement with developed model.
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Chapter 1

Introduction

1.1 Objective of the thesis

Since the rapid development of soft robotics, the dielectric elastomer actuators (DEAs)

have become more popular due to their overall low cost, attractive inherent charac-

teristics include high energy density, fast response speed, high efficiency and high

deformability. However, DEAs have shown viscoelastic behaviour, which makes them

very nonlinear and time-dependent.

The majority of the previous studies developed some static or quasi-static models

to explicate the material behavior of DEA with simple configurations. However, the

dynamic behavior of DEA has been neglected due to some challenges such as nonlin-

ear viscoelasticity, electromechanical coupling and complex shape.

Concerning the DEA with complex shape, this study offers a phenomenal model

that can accurately characterize viscoelasticity and motion responses of a conical

DEA . First we use the nonequilibrium thermodynamics theory to describe the elec-

tromechanical behviour of DEA. Then, the Gent model and the generalized Kelvin

model have been used to describe the free energy and viscoelastic behaviour of the

DEAs, respectively. Finally, the experimental identification and validation procedure

performed to test the effectiveness of the model over different voltages and frequencies.
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1.2 Thesis overview

This thesis consists of 5 chapters, which are organized as follows:

r Chapter 1 is delegated to introduce the idea of modeling of DEA.

r Chapter 2 reviews previous studies, including review of the soft robots and

working priciple of dielectric elastomer actuator and discuss the state of the

art.

r Chapter 3 develops a dynamic model for a conical dielectric elastomer actuator

based on the nonequilibrium thermodynamic.

r Chapter 4, the experimental setup and model identification are conducted. The

theoretical and experimental comparisons are discussed as well in this chapter.

Finally the effectiveness of the model is validated by the experiment test.

r Chapter 5, concludes all results and addresses future works.
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Chapter 2

Literature review

2.1 Soft robotics

Nowadays, soft robotics is becoming an increasingly important field due to its growing

applications beyond industrial automation into areas such as health care, biomedical

and human robots [3]. Therefore the development of soft robots is necessary; these

developments includes some aspects such as materials, actuators, design, modelling

and applications [4]. From the material perspective, we can categorize robots into

hard or soft. Traditionally, engineers preferred to manufacture robots with rigid ma-

terials, like aluminum, metal and steel, because of high stiffness characteristics, which

allow them to generate massive forces. Also, the structure of conventional robots has

provided engineers with precise control and predictable behaviour [5, 6, 7].

However, the limited degrees of freedom and rigid structure of hard robots cause

their movement to be more challenging when interacting with humans and nature.

Hence, scientists by inspiration of biological mechanisms, have invented soft robots

using flexible joints and soft materials [7, 8]. Soft materials have larger deformations

and flexible structure which allow robots to safely move and be more compatible and

adaptable when maneuvering in different spaces, such as interacting with humans and

nature [9]. These innovations have made significant development on applications of

robots as you can see in Figure 1. One of the important applications of soft materials

is soft actuator.
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Figure 1: applications of soft robots

2.2 Actuators

During the past decade, many researchers have studied various soft robots that use

different actuation technologies and mechanisms [10]. An actuator is a mechanical

device that converts input energy to mechanical output energy. In contrast to the

traditional robots actuated with rigid motors, rotational and linear actuation systems,

most soft robots are actuated in two ways: the tendon-driven actuation and soft smart

materials actuation [11].

2.2.1 Tendon-driven actuation

The first category, tendon-driven actuation, also known as continuum robot has a

multiple joints which driven by a cable that passes through the joints resulting in

infinite degrees of freedom and continuum deformation Figure 2. Also they can deliver

a controlled force to deform the segment in a desired way, such as tension cables

actuators. The practical applications of this kind of robots are existed in medical and

rescue fields [11]. However, such soft robots primarily employs conventional motors

and solid mechanisms, leading to not being completely soft robots. For example in

[12] , a tendon-driven manipulator made of silicone inspired by the octopus arm is
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presented, reader may refer to [13] for more details about this kind of robots.

Figure 2: A tendon-driven robot

2.2.2 Smart materials actuation

The second group is smart materials actuation Figure 3. In contrast to continuum

robots, soft smart materials actuation has the ability to convert energy directly. There

are two common types of soft smart materials actuations include fluidic actuators

(such as pneumatic and hydrolic ) and intelligent material actuators (electroactive

polymers (EAPs)), which are popular because of the advantages of light weight and

low cost [5, 14, 15] .

Figure 3: A smart material robot
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Recently, EAPs have significantly been noticed by researchers because of their

potential uses and outstanding features. The electro-active polymer technology has

made actuators which are lightweight, energy efficient, and scalable. Also, EAPs

can mimic the properties of biological muscle, when stimulated by the input energy;

they show high fracture, large actuation strain and inherent vibration damping[16].

Considering the various stimuli processes, EAPs can generally divide into two major

groups based on their methods of actuations: ionic EAPs and electronic EAPs.

Ionic EAPs can generally respond to different external stimuli; the most com-

monly used are chemical and electrolytic reactions that require low voltage to have a

large bending displacement. However, the main issues of these systems are their slow

actuation rates. A detailed description can be found in [17].

The electronic EAPs are polymer with polar side groups. They have the advan-

tages of high energy density, rapid response time (in the range of milliseconds) and

the larger force compared to the ionic type. The typical sorts of EAPs is dielectric

elastomer (DE) which is mostly implemented in practical applications [18, 19]. In the

next part, we present more detail about dielectric elastomer actuator (DEA).

2.3 Dielectric elastomer actuator

Compare to other smart materials, dielectric elastomer (DE) has shown attractive

characteristics, which have made them very popular in application of soft robots.

Characteristics, such as high deformation, high energy density, high electromechanical-

coupling efficiencies, low cycling hysteresis, lightweight and low costs [20]. Also, DEAs

are able to both actuate and generate power in different geometries [1].

2.3.1 DEAs applications

Nowadays, DEAs are used to develop soft robots that can carry out sophisticated

manipulation tasks. The flexible structure of DEAs, allow them to deal with uncer-

tainty in a manner comparable to the natural organisms which make them safe for

human interactions and complex environment. Also, their resemblance to biological

6



muscles have made scientists to use them as an artificial muscle in biomedical appli-

cations [21]. The followings present some of the applications of DEAs as grippers and

humanoid robots.

Grippers

One of the most challenging problems in robotics is gripping objects with complex

shapes. Researchers are looking into DEAs as a possible answer to this problem.

With a DEA, the inherent flexibility allows for close contact between an object and a

gripper while maintaining an effective grabbing arrangement. Also DEA’s lightweight

and high energy density is critical to developing a high weight ratio of gripper mass

to grasping capability. Different varieties of DE grippers have been produced with

diverse configurations based on a simple working concept and large actuation strain

of the DEA.

G. Kofod et al [22] introduced DE grippers in 2007, based on a dielectric elastomer

minimum energy structure. In which a pre-stretched DE is laminated to a flexible

plastic frame to create an out-of-plane arrangement When the pre-stretched DE’s

tension shrinks its own structure, releasing elastic energy. Then, a portion of the

released energy is retained in the flexible plastic frame, resulting in bending. The

tension of the DE lowers as voltage is added to it, and the entire structure opens up

enough to grip a target object.

Humanoid robots

DEA is one of the promising actuation technologies which can mimic real human mus-

cles in terms of appearance, actuation strain, actuation density and response time.

Over the past two decades, several studies have been spent to use DEAs as humanoid

robots.

One of the importatnt part of humanoid robot is visual system. In [23], a bioin-

spired actuation mechanism was proposed for the construction of simple bioinspired

actuation mechanisms to mimic the eyeballs of an android robotic face. The actuators’

configuration and functionality were designed to resemble those of rectus-type human

ocular muscles. They also developed a buckling DEA with constrained boundaries
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to achieve the maximum displacement for actuation of robotic eyeball mechanism [24].

In another recent study, artificial muscles have been built utilising DEAs to drive

a robotic jaw . The human jaw movements are driven by several groups of muscles

including temporalis, masseter, digastric, medial pterygoid muscles and lateral ptery-

goid muscles. In order to mimic the real human jaw movement, the two DEAs are

installed on a robotic skull, at the same positions to those of the masseters in a hu-

man jaw. The linear planar DEAs can provide precise and controllable deformations

of varied amplitudes and frequencies, which are comparable to real-world human jaw

movement capabilities such as talking. The fibres are found to significantly improve

the actuator’s performance. Experiments reveal that the jaw’s highest vertical dis-

placement corresponds to the real human jaw’s maximum movement. This research

adds to the development of a viscoelastic actuator with controllable motions and mas-

sive voltage-induced deformation. A viscoelastic nonlinear dynamic model for the jaw

is also built to improve control effect or accuracy, and the nonlinear feedforward con-

troller constructed based on the model is capable of monitoring desired trajectories

and emulating human jaw actions in a speech with high accuracy [25].
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2.3.2 DEAs configuration

Based on the different configurations, dielectric elastomers can be employed in various

applications, from industrial to medical, for example, tuning stages for soft diffractive

grating [26, 27], tunable organic lasers [28], stretchable electronics [29], energy har-

vesters [30, 31, 32], soft computers and soft motors [33, 34], human-machine interface

structural health monitoring for buildings [35, 36].

The functioning, capability, and reliability of actuators made of DEs are highly

dependent on actuator configuration. Different boundary constraints result in various

configurations and modes of deformation. Therefore, DEAs can be configured in many

ways, including planar (in-plane, framed, diaphragm), rolled (tubular, cylindrical),

laminated (stacked or folded), conical and so on [22, 37, 38, 39]. As an illustration,

Figure 4 presents some typical configurations of DEAs [1]. Generally, DE films can be

stretched over a frame or rolled into a scroll, in which they can be configured to make

in-plane or out-of-plan deformation to achieve muscle-like behavior for thin elastomer

or memberane.

Figure 4: Diffrent configurationd of DEAs (adopted from [1]).
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Diaphragm

A diaphragm actuator is typically made up of a circular membrane that is expanded

in both directions and has its boundary restricted by a rigid frame that can produce

out of plane deformation [40]. This type of configuration is employed in pumps,

loudspeakers, controllable surface roughness for aerodynamics [41]. Follador et al.

recently created a new suction cup employing DEs that was able to produce up to 6

kPa of pressure in water with a fast response, inspired by octopus suckers [42].

Rolled

Tube DEs are rolled actuators with one fixed end that can actuate in both axial and

radial directions, used in peristaltic pumps [43]. When a DE tube exposes an external

field, a reduction in thickness accompanied by elongation in the axial can be observed.

Moreover, DE structures or devices with various configurations have multi-degrees of

freedom upon actuation. Antagonistically driven linear actuator (ANTLA) developed

by Choi et al. also investigates the concept of varied configurations to achieve multiple

degrees of freedom [44].

Laminated

Stacking or laminated configurations consist of several layers of dielectric elastomer,

which offer linear contractile actuation and provide larger forces in the thickness

direction compare to thin films. Carpi et al. [45] devised this new configuration, which

consists of two helical compliant electrodes separated by an elastomeric insulator [46].

The stacked configuration is ideal for compact, versatile, and compliant systems, as

well as noise-free actuation [6, 37]. However, the non-uniform distribution of strain

along the length of stacking actuators with flexible electrodes is the key disadvantage

of this multi-layer design.

Conical

Among various configurations in dielectric elastomer actuators, conical DEA are one

of the most popular actuators for their multi- degree-of-freedom design, which allows

them to actuate more than one degree of freedom [47]. For this reason, we are going

to use the conical configuration.

10



2.3.3 DEs material

One of the most important aspects of DEAs is DE material selection. DE materials

should have a low elastic modulus, low viscosity, high dielectric constant, and strong

electrical breakdown strength to improve DEA performance. Currently, polyacrylate

and polydimethylsiloxane are the two most popular DE materials [48].

Many researchers [49, 50] employ VHB, (3M VHB4905/4910), a kind of polyacry-

late material manufactured by 3M in the United States, to make the DEA because it

is readily available and inexpensive. Also, VHB have lower DE constants than poly-

dimethylsiloxane or PDMS , requiring greater electrical fields to create high strain [51].

On the other hand, VHB have a higher viscosity than PDMS, which make PDMS

are better suited to high-frequency applications. They can be employed to make

dielectric elastomers actuators (DEAs), and their use in actuators and sensors has

gotten much attention.

Unfortunately, there are few researchers exploring the dynamic characteristics of

the DEA based on PDMS [2, 48]. In this study we choose the PDMS to fabricate a

conical DEA as an illustration for the further investigation.

2.3.4 Challenges

Despite these promising applications, there are still major challenges between the

developed robots and real biological examples. These technical challenges make the

applications of DEA limited in complex soft robots. For instance, how to model

the actuator with dissipative and nonlinear behaviour of DEs such as the inherent

viscoelasticity, creep and time dependent performance of dielectric elastomers.
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Figure 5: The graph of behaviour of DEA under the voltage stimuli.

In Figure 5, you can see the plot of input voltage versus output displacement,

which is multi valued or for each voltage we have different displacement. Also the

dependency of plot one the different amplitudes driving voltage is obvious. Therefore

modelling of this graph is too complicated because of the obvious viscoelasticity.

Inherent viscoelasticity

The dielectric elastomer has a strong nonlinear viscoelasticity, which is a common

challenge for DEs. During actuation, viscoelasticity causes an elastomer’s internal

stress and strain to fluctuate over time, resulting in a time-dependent deformation,

creep and relaxation.

Complex geometery

DEAs can be designed in different configurations with complex shapes which make

them difficult to analyse the dynamic behavior. For example, for the conical DEA,

the actuator geometery is circular which result to dynamic nonlinearities.

12



2.4 Modeling approaches

In terms of modeling the nonlinear behaviour of DEA, many studies have been de-

veloped.

For instance, Suo [20] presented the theory of DEA on the basis of thermodynam-

ics framework for a planar DEA. In 2017, Gu et al., [49] developed a constitutive

modeling approach to properly predict the complex viscoelastic phenomenon in a

clamped DEA membrane undergoing cyling load and homogenous deformation. In

[25] for a DEA experiencing homogenous deformation, A simplified physics based

model was proposed to take into account the effect of viscoelasticity, which was then

used to design precise controllers.

Concerning DEA with conical configuration, some studies have been developed.

For example, a quasi-static analytical model for a conical DEA, based on thermody-

namic equilibrium and neo-Hookean material model is developed in [52]. Also, Wang

et al., [53], developed a viscoelastic model for a conical dielectric elastomer actuator

connected by a spring which undergoes a large out-of-plane inhomogeneous deforma-

tion by applying the electro-mechanical loadings.

In 2018, an analytical model [47] based on optimization for a conical DEA with

three biassing elements has presented and the goal was to optimise the geometry and

pre-stretch ratio of a conical DEA to get the highest work output.

However, in these papers, the DE material has been employed is mostly VHB,

because VHB is commonly available. The VHB has a defect of high viscoelasticity.

Although, PDMS is a good replace for the VHB. There are few researchers exploring

the dynamic characteristics of the DEA based on the PDMS.

Huang [2] has proposed a dynamic model based on nonequilibrium thermody-

namics to describe the complex motion characteristics of a conical DEA made of

polydimethylsiloxane and taking into account the effects of inertia. The differential

evolution algorithm has been used to identify the indeterminate parameters on the

basis of the experimental data. Although these studies have made huge development

13



to model the behaviour of conical DEAs, they mostly used constitutive and neo-

Hookean model.

In this study we propose a dynamic model for a conical DEA made of PDMS

based on Generalized kelvin model and nonequilibrium thermodynamics. But first,

we need to understand the working principle of a DEA to properly characterize the

motion and characteristics of DEAs.

2.4.1 Working principle

Basic theories of DEs

DEAs are soft smart materials that deform dramatically and reversibly when exposed

to an electric field. A dielectric elastomer actuator typically consists of a thin film

of elastic polymer covered on both sides by compliant electrodes that can transduce

electrical stimuli to mechanical energy. A difference in voltage between the compliant

electrodes causes deformation and polarization on the DEA simultaneously, in which

an expansion in the length and compression in thickness occur to keep a constant

volume (incompressible) [54]. The DE membrane recovers its original configuration

when the voltage is removed.

The basic element of a DE-based transducer is a dielectric elastomer membrane

coated with two compliant electrodes on its two surfaces. When exposed to a voltage,

the majority of the opposing charges from the power source collect on the compliant

electrodes. While a portion of them leak through the membrane due to elastomer

defects or impurities. The opposing charges accumulating on the electrodes generate

an electric field in the DE, which results in contracts along DEAs thickness and in-

creases in area due to attractive electrostatic forces. Dielectric elastomer is inevitably

accompanied by the generation of forces and changes in shape, which can be used to

move or deform an object placed on the membrane.
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Figure 6: Working principle of a planar DEA.

Dielectric elastomers are believed to be incompressible, implying that the mem-

brane volume remains constant regardless of deformation state.

Consider a planar DEA as shown in Figure 6. The original dimensions of the

DE membrane are x0, y0, and z0. When the two electrodes set voltage φ, the DE

membrane is subjected to forces Fx, Fy, and Fz. Therefore, the new dimension of

the membrane become x, y and z, respectively. Then, the elastomer is stretched by

λx = x
x0
, λy =

y
y0

and λz =
z
z0
, in Cartesian coordinate system. Then if the volume is

constant, we obtain:

λxλyλz = 1 (1)

Ideal DEA

The behaviour of dielectric elastomers is considered to be well described by using

idealisation. According to experimental findings in [21, 55], the permittivity ε of

various DEs is practically constant throughout deformation. As a result, the true

electric displacement, D, and true electric field, E, have a relationship [56].

D = εE (2)
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2.4.2 Linear electromechanical modeling

In 2000, Pelrine and Kornbluh created the first physical model to explain the elec-

tromechanical actions of DEAs [57]. They discovered that the Maxwell stress causes

electromechanical transduction effects in DEs, in which the electrostatic pressure or

the generated stress, also known as Maxwell stress, p, is produced when a voltage

applied between the electrodes. p can be expressed as below:

p = ε0εr × E2 (3)

where ε0 and εr are the absolute permittivity and relative permittivity of dielectric

elastomers, respectively. While E is the nominal electric field applied. Pelrine and

his colleagues have provided a simple method to predict DEA strains by applying

Hooke’s law to Equation (3).

sz = −p/Y = −ε0εr · E2/Y (4)

where sz is thickness strain and Y is the elastic modulus relating to the strain. Pel-

rine’s approach mentioned in Equation (3) and Equation (4) is a pioneering and

well-known method for understanding and predicting the electromechanical response

in the field of DEAs.

However, Pelrine’s approach cannot be used to tackle for the large deformation

and strong nonlinear behavior of DE. Due to the viscoelasticity of DEs, they show

nonlinear behavior which cause Pelrine’s method not be enough to characterize DEAs

behaviour.
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2.4.3 Nonlinear electromechanical modeling

The thermodynamic nonequilibrium framework is one of the most widely used model-

ing frameworks for analyzing DEA dynamics. In 2010, Suo [20] presented the theory

of DEA on the basis of thermodynamics framework. According to nonequilibrium

thermodynamics, under an isothermal process, the increase in Helmholtz free energy

of a DEA must be less or equal the sum of the work done by external forces and ac-

tuation voltages. Based on [20], the Helmholtz free energy G, in Figure 6, is defined

as:

δG ≤ Fxδx+ Fyδy + Fzδx+ φδQ (5)

where, δG is the work done by Helmholtz free energy and φδQ is the work done by

electric charges, in which φ is the input voltage and Q is the accumulated electric

charge . Fxδx, Fyδy and Fzδz are the work done by external forces, which δx, δy and

δz are the memberane deformations, respectively (see Figure 6).

Baesd on the definition of the the Helmholtz free energy density in W , is defined

as:

W =
G

V
(6)

In which, V is the volume of the DEA’s membrane. Then by dividing the volume

of the DEA’s membrane, l1l2l3 form both sides in Equation (5), and assuming that

the DEA has the ideal dielectric elastomer membrane, the free energy density, can be

expressed as:

W = Ws +D2/2ε (7)

where Ws is the strain energy density associated with the in-plane stretches of the

material, and D2/2ε term is the Helmholtz free energy density associated with electric

polarization and the permitivity of the elastomer ε = ε0εr is a constant independent

of deformation. Note that the condition of incompressibility is implied throughout

the analyses [15].

Choosing a correct strain energy function, Ws, is the basic process for modeling

the electromechanical behaviours of DEA [56]. In order to find the best one, we

compare different strain energy functions.
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Elastic material model

Over the decades, various strain energy functions have been created. Commonly used

strain energy functions include neo-Hookean model, Ogden model and Gent model.

The neo-Hookean model has the advantage of predicting the stress-strain behavior

of hyperelastic materials undergoing large deformation. However at large strains, it

is not accurately practical [20, 58]. The free energy density of an incompressible

neo-Hookean hyperelastic material is given by:

Ws = −µ0

2
(λ2x + λ2y + λ−2

x λ−2
y − 3)

where µ0 is the strain shear modulus which is constant; λx and λy are the pre-

stretches of length and width, respectively.

Ogden model, [59], is also one of the popular hyperelastic material models, which

can be used to describe the non-linear stress-strain behaviour of materials like poly-

mers, which expresses as:

Ws =
N∑
i=1

−µilim
αi

log(λαi
x + λαi

y + λ−αi
x λ−αi

y − 3)

where N is the number of model order, and µi and αi are the parameters of the

material, which can be verified by experiments.

Among these models, the Gent model, [60], is a commonly used energy function

for DEs that consist of long and flexible polymer chains. In contrast to Ogden model,

Gent model has phisical desccription for the material, which makes it physical based.

Also this model accurately predicts the strain-stiffening effect unlike the neo-Hookean

model. The Gent model for isotropic incompressible elastomers is fairly straightfor-

ward. To account for the stretching limit, the Gent model assumes that:

Ws = −µ0Jlim
2

log(1−
λ2x + λ2y + λ−2

x λ−2
y − 3

Jlim
) (8)

where µ0 is shear modulus, and Jlim is a dimensionless parameter representing the

extension limit of the polymer chains. Huang and Suo, [61], used this description to

create a schematic for the electromechanical phase transition in an ideal DE mem-

brane, predicting that a certain crucial transition point would occur.
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Viscoelasticity of DEs

Material models alone are insufficient to accurately describe the DE’s strain behaviour

[62]. DEs have nonlinear material properties, which undergo time-dependent dissipa-

tive processes, due to the viscoelastic behaviours of the materials. It mainly happens

when a dielectric elastomer undergoing voltages over a characteristic time [27, 56].

Viscoelasticity can adversely impact on the dynamic response of DEAs, which would

limit their use [63]. In order to accurately model the dynamic behaviour of DEAs,

material viscoelasticity has to be considered.

During the last decades, various models have been developed to reflect the mate-

rial viscoelasticity of DEs such as rheological model, also called Maxwell model, [64]

and generalized Kelvin model [65].

One of the most popular method that researchers have used is rheological model

which is shown in Figure 7. Rheological model consists of springs and dashpots with

many parallel units has been used to examine viscoelastic dielectrics theoretically; the

elastic springs are in series with viscous dashpots. The first unit contains an elastic

spring, whereas the remaining units contain elastic springs as well as viscoelastic units.

The basic rheological elements, springs and dashpot components, can be connected in

series or parallel to describe elastic springs [66]. Hong, [67], created a model capable of

adopting most hyperelastic constitutive models for viscoelastic solids. This approach

provides a convenient way to construct the constitutive relations of viscoelastic DEs.

Figure 7: Generalized Maxwell model
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The generalized Kelvin model, (see Figure 8), have flexible mechanisms, which

makes it popular. This model consists of two parts, which part one is composed of

elements including a spring and the other part composed of the springs and dampers

in the parallel. In [48], generalized Kelvin model has been used to describe the

viscoelastic characteristics of DEA, in order to establish a dynamic model based on

thermodynamic theory.

Figure 8: Generalized Kelvin model
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Chapter 3

Dynamic modeling of conical DEA

Based on the literature, there are many different methods to describe the complex

nonlinear behavior of dielectric elastomer. However, most of the previous studies

ignored the complex configuration and used rheological models to describe the non-

linear viscoelasticity. Therefore, the dynamic analysis of DEA with conical geometry

based is still a great challenge, which needs to develop.

This section presents a dynamic model of DEA made of PDMS with conical shape

to relate the input voltage to the displacement. The model is based on physical phe-

nomena, in which we use thermodynamic nonequilibrium in order to describe the

complex nonlinear motion. Also, in this study we choose Gent model and the gener-

alized Kelvin model to describe the elastic energy and the viscoelasticity, respectively.

However, when the geometry is complicated like conical configuration, the nonlin-

ear characteristics such as inhomogenous stress-starin, time-dependent viscoelasticity,

and electromechanical coupling become difficult to model [68]. For this reason, the

following assumptions are recommended to reduce the model’s complexity:

• The radial strain is homogenous along the radial axis.

• The membrane and electrode mass is low in comparison to the biasing weight

mass.
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3.1 Model description

Figure 9 shows the three states of the DEA; The first state is called undeformed state,

the second state is called prestretched state, and the third state is called deformed

state [2].

Figure 9: (a) Undeformed state of DEA. (b)prestretched DEA. (c)Deformed state of

DEA.

in Figure 10(a), undeformed state, the film with radial length L0 and thickness

h0 is fixed in a frame of rigid plastic with outer radius b and inner radius a. Then

in order to increase the actuator displacement, a weight is put on the center of the

frame which objected with the gravity P , that provides a constant loading force.

As shown in Figure 10(b), beacuse of the quasi-static actuation principle, the

tension-induced force and the biassing mass force are balanced in the vertical axis,

which cause displacement of d1 in the center to reach the equilibrium point at pre-

stretch state. Therefore the conical DEA has prestreatches in radial length, λ1,pre and

in thickness λ3,pre. Lead to new dimensions of L1 = λ1,preL0 and h1 = λ3,preh0, which

are prestretched radial lentgh and thickness, respectively.

When an input voltage φ is applied across the DE membrane, Figure 10(c), the

electrostatic pressure (Maxwell pressure), induced by the electric field, reduces the
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tension on the membrane, which results in a force imbalance. The membrane is then

deformed out-of-plane by d2 until a new equilibrium state is achieved. So we have an

expansion in the length, L2 and a decrease in thickness, h2, at deformed state. If an

AC voltage is applied, the DEA will oscillate around its equilibrium point and the

amplitude of this oscillation is a function of the voltage amplitude and frequency.

Figure 10: (a) Undeformed state of DEA. (b)prestretched DEA. (c)Deformed state

of DEA.

3.2 Model development

As shown in Figure 10, the conical dielectric elastomer, has the initial radial length of

L0 = b− a, and the deformed radial length can be obtained by L2 =
√

d2 + (b− a)2.

The volume of DEA for undeformed (Vund) and deformed (Vdef ) states are:

Vund = πh0(b
2 − a2) (9)

Vdef = πh2L2(b+ a) (10)

Since the DEA is assumed to be homogenous and incompressible [20], the volume, V

remains constant during actuation. Therefore we have:

V = Vund = Vdef (11)

πh0(b
2 − a2) = πh2L2(b+ a) (12)
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By simplisizing Equation (12) and considering L0 we obtain:

h0L0 = h2L2 (13)

So the stretches of the membrane in radial, circumferential and thickness directions,

λ1, λ2, λ3, respectively, becomes

λ1 =
L2

L0

=

√
d22 + (b− a)2

(b− a)
(14)

λ2 =
2π

2π
= 1 (15)

λ3 =
h2
h0

(16)

Since the material is incompressible and based on the Equations (9)-(16) we have:

λ1λ2λ3 = 1, λ1 =
1

λ3
(17)

which agrees with Equation (13). Considering θ as the angle between DE membrane

and horizontal direction, as shown in Figure 10(c), by doing some simple algebraic

manipulation based on 17 the relationship between λ1 and d2 can be expressed as.

sin θ =
d2
L2

=

√
λ21 − 1

λ1
(18)

3.3 Dynamic model

To calculate the electromechanical deformation, the princible of nonequilibrium ther-

modynamics is used. Based on the free energy of DEA and nonequilibrium thermo-

dynamics, the sum of the works done by mechanical force and electric field force is

equal or less than the change of the free energy of the DEA. As it shows in Figure

10(c), we only have the mechanical force of P and the vertical displacement of d2,

which is the model’s output. As a result, the change of the free energy of the DEA,

δG, expresses as:

δG ≤ Pδd2 + φδQ (19)
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where Pδd2 is the work done by mechanical force and φδQ is the work done by electric

field. Q is the accumulated charge, which have a relation with the input voltage, φ

as below

Q = φC = φ
επl(b+ a)

h2
=
εφπ(b2 − a2)λ21

h0
(20)

where C and ε is the capacitance and the permittivity of DE material, respectively.

From Equations (17) and (20) the charge varies by

δQ =
επ(b2 − a2)

h0
(λ21δφ+ 2φδλ1) (21)

By substituting Equations (9) and (11) in Equation (6), the free energy density for a

conical DEA is:

W =
G

πh0(b2 − a2)
Therefore by substituting Equation (21) into Equation (19) and combing with W we

obtain:

δW ≤ P

πh0(b2 − a2)
δd2 + ε

φ

h20
(λ21δφ+ 2φδλ1) (22)

According to Equations (13)–(18), the relationship between δλ1 and δd2 is

δd2 =
(b− a)λ1√
λ21 − 1

δλ1 =
(b− a)

sin θ
δλ1 (23)

Considering (16)-(17), by submitting Equation (23) into Equation (22) we can get

δW ≤ P

πh2(b+ a) sin θ

δλ1
λ1

+ ε
φ

h20
(λ21δφ+ 2φδλ1) (24)

By deviding L2 from Vdef in Equation (9), we can obtain the radial area, Aradial =

πh2(b + a). Therefore, in Figure 10(c), by balancing forces in the vertical direction,

the radial stress of DEA, σ1 is defined as

σ1 =
P

πh2(b+ a) sin θ
(25)

By substituting Equation (24) in Equation (25) we can get

δW ≤ σ1
λ1
δλ1 + ε

φ

h20
(λ21δφ+ 2φδλ1) (26)

In order to solve (26), we need to describe the free energy density and visoelastic

behaviour of DEA. Therefore, we have choosen the Gent model and generalized Kelvin
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model [48, 65] to describe the free energy density and nonlinear visoelastic behaviour

of DEA. As shown in Figure 11, the generalized kelvin model consists of two parts: the

part A includes the spring characterized by the Gent model and part B includes series

elements which have parallel springs and dashpots to describes the rate-dependent

hysteresis in the strain-stress function.

Figure 11: The generalize Kelvin viscoelastic model of the elastomer.

As you can see in figure 7, the dashpot has the same strain as the nonlinesr

spring. So ξij is the elastic deformation of each element where (i = 1, 2, 3, ...) rep-

resents the number of springs in the generalized Kelvin model and j(= 1, 2) defines

the vertical direction and horizontal direction, respectively. Since, all elements are in

series, DEA’s total deformation equals the sum of each element’s deformation, that

is λ1 =
∑n

i=1 ξi1, λ2 =
∑n

i=1 ξi2

Using the generalized Kelvin model to Equation (7), the free energy density of the

ideal DEA is function of ξij and the electric displacement D = εE, where E = φ/h is

the electric field.

W (D, ξ11, ξ12, ξ21, ξ22, . . .) = Ws(ξ11, ξ12, ξ21, ξ22, . . .) +
D2

2ε
(27)

ε is the permitivity of the dielectric elastomer and the internal free energy density of

DEA Ws can be expressed based on the Gent model [48].

Ws = −
n∑
i=1

µiJi
2

ln(1− ξ2i1 + ξ−2
i2 + ξ−2

i1 ξ
−2
i2 − 3

Ji
) (28)
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where µi and Ji represent the shear modulus of the ith spring, and the deformation

limit of the ith spring, respectively (see Figure 10). ξi1 and ξi2 are the stretches re-

lated to each element.

Therefore by combining Equations (27) and (28), we get

W = −
n∑
i=1

µiJi
2

ln(1− ξ2i1 + ξ−2
i2 + ξ−2

i1 ξ
−2
i2 − 3

Ji
) +

D2

2ε
(29)

According to the Newtonian law of mechanics for figure 6, the stress along is the

same for each elemnt [69]. Therefore, for element 1, the true stress is σ1. Combining

Equations (26) and (29) the true stress can be expressed as

σ1 =
µ1(ξ

2
11 − ξ−2

11 ξ
−2
12 )

1− (ξ211 + ξ212 + ξ−2
i1 ξ

−2
12 − 3)/J1

− ε( φ
h2

)2 (30)

Considering the viscoelastic coefficient of damper, defined as ηi, where i represent the

number of dampers, the mechanical relationship of each element in the generalised

Kelvin model can be expressed as:

σ1 = σi1 + ηi
dξi1
dt

(31)

where σi1 represent the elastic stress related to ith element in Figure 10. According

to Equations (30)-(31), we have

dξi1
dt

= − 1

ηi
(µ1

ξ211 + ξ−2
11 ξ

−2
12

1− (
ξ211+ξ

2
12+ξ

−2
11 ξ

−2
12 −3

J1
)
− µi

ξ2i1 + ξ−2
i1 ξ

−2
i2

1− (
ξ2i1+ξ

2
12+ξ

−2
i1 ξ

−2
i2 −3

Ji
)
) (32)

where (i = 1, 2, 3, ...) represents the number of springs in the generalized Kelvin

model. When φ = 0, we just have the prestretching stress, so λ1 = λ1p, λ2 = 1,

then ξi1 = λ1p, ξi2 = 1, substituting into these parameters into Equation (30), we can

obtain

σ1 = µ1(
λ21p − λ−2

1p

1− (λ21p + λ−2
1p − 2)/J1

) (33)

When φ = 0, we have λ1 = λ1p, and based on (18), sin θ =

√
λ21p+(b−a)2

λ1p
and h2 = h0.

Therefore, by substituting Equation (33) into Equation (25), When φ = 0, P can be

calculated as

P = πh0(a+ b)

√
λ21p − 1

λ21p
µ1(

λ21p − λ−2
1p

1− (λ21p + λ−2
1p − 2)/J1

) (34)
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Also, we can find the relation between P and φ, by substituting Equation (25) in

equation (30), which can be presented as

P = πh0(a+ b)

√
λ21 − 1

λ21
µ1(

ξ211 − ξ−2
11 ξ12

−2

1− (ξ112 + ξ122 − ξ11−2ξ12−2 − 3)/J1
− εφ2

h22
) (35)

Since, all elements are in series, DEA’s total deformation is λ1 =
∑n

i=1 ξi1. So we can

rewrite equation (35) as

P = πh0(a+b)

√
(
∑n

i=1 ξi1)
2 − 1

(
∑n

i=1 ξi1)
2

µ1(
ξ11

2 − ξ11−2ξ12
−2

1− (ξ112+ξ122−ξ11−2ξ12−2−3)
J1

−εφ
2(
∑n

i=1 ξi1)
2

h20
) (36)

Taking derivative of both sides of Equation (36) with respect to time, we can get

dP

dt
=
∂P

∂φ

dφ

dt
+

n∑
i=1

∂P

∂ξi1

dξi1
dt

+
n∑
i=1

∂P

∂ξi2

dξi2
dt

(37)

Since P given by (32) is constant, then dP
dt

= 0. Also there is no change in the

horizontal stretch of DEA respect to time, then dξi2
dt

= 0. Thus, Equation (37) can be

rewritten as
dξ11
dt

= −(
∂P

∂φ

dφ

dt
+

n∑
i=1

∂P

∂ξi1

dξi1
dt

)/
∂P

∂ξ11
(38)

3.4 Model summary

Combining Equations (32), (38), and considering the fact we just have the vertical

force and displacement, the dynamic model of the conical DEA can be described as

dξ11
dt

= −(
∂P

∂φ

dφ

dt
+

n∑
i=1

∂P

∂ξi1

dξi1
dt

)/
∂P

∂ξ11

dξ12
dt

= 0

dξi1
dt

= − 1

ηi
(µ1

ξ211 + ξ−2
11

1− (
ξ211+ξ

−2
11 −2

J1
)
− µi
ηi

ξ2i1 + ξ−2
i1

1− (
ξ2i1+ξ

−2
i1 −2

Ji
)

(39)

dξi2
dt

= 0

This model represents the dynamics of the conical DEA and builds the relationship

between the input voltage and the displacement of the actuator. In the next section

the model parameters are determined by fitting the data to the experimental results

using a differential evolution algorithm in MATLAB.
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Chapter 4

Experimental set up and model

validation

4.1 Experimental set up

In this section, the process for fabrication of the conical DEA is briefly illustrated.Then

the experimental model validation is discussed. The dynamic model’s correctness is

illustrated by comparing the modelled and experimental results.

4.1.1 Fabrication and experimental characterization

Figure 12 shows the five components to fabricate the conical DEA which includes:

• DE membrane which is made of Polydimethylsiloxane msterial (PDMS); Wacker

Chemie AG, Germany; Undeformed thickness: h0 = 200µm.

• Frame with Polymethyl methacrylate material (PMMA) and inner circle radius

of R = 6cm.

• Load-bearing plate (Material: PMMA; Radius: R0 = 3cm)

• Electrode (Material number: DD-10; Manufacturer: Saidi Technology, China).

• Weight
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Figure 12: Structure of conical DEA (adopted from [2]).

To eliminate the wrinkle of the DE film, we repeatedly adjusted the pose of the

load-bearing plate. Meanwhile, the DEA was left standing for a long period before

each trial to allow the wrinkle to disappear gradually. The DE film has less wrinkles

in the experiment as a result of the foregoing methods; the effect of wrinkling on

electrical deformation is minimised; and the validity of experimental data is ensured.

4.1.2 Experimental method

The detailed experimental setup is described as follows (see Figure 13).

• A high voltage amplifier (Model number: 10/40A-HS-H-CE; Manufacturer:

TREK, USA) on the DEA during deformation to amplify the original voltage

signal by 1000 times and apply it to the electrodes of the DEA.

• A laser distance sensor (Model number: LK-H152; Manufacturer: Keyence,

Japan) to detect the displacement measurements of membrane undergoing high

voltage power.
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• I/O module (Model number: PCIe-6361; Manufacturer: National Instruments,

USA) to record real-time displacement data from the laser sensor and output

an original voltage signal for the high voltage amplifier.

• The DEA (Material: Polydimethylsiloxane (PDMS)) to do the experimental

test on it.

• Finally a Computer (CPU: i7-8700; Memory: 16G; Manufacturer: Hewlett

Packard, USA) to analyze the data.

Figure 13: Block diagram of experimental platform, which includes five components:

computer, high voltage amplifier, laser distance sensor, I/O module and conical DEA.
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4.2 Parameter identification and validation

In this section, experiments were conducted to verify the analytical model. First, the

undetermined parameters are identified based on the differential evolution algorithm

using MATLAB/Simulink to implement the algorithms with various patterns of volt-

age and frequencies. Next, the model simulations are tested and compared with the

experimental results.

Driving voltage

Based on the real experiments, the dynamic behavior of the DE was actuated under

different driving voltages.

where ai and fi, (i = 1, 2, . . ., 5), are the amplitudes and the frequencies,

respectively. t ∈ [0,+∞) is time and rem(m,n) is the remainder of m divided by n,

in which tm = rem(t,
∑5

i=1 1/fi). Therefore, by changing the values of ai and fi, a

periodic driving voltage with different frequency and amplitude is generated.
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The amplitudes of the driving voltages are chosen to be ai = 5.5 + 0.5i(kV ) and

the frequencies are chosen to be fi = 0.2i(Hz). Figure 14 shows, the diagram of

driving voltage, where the period is T =
∑5

i=1 1/fi.

Figure 14: The driving voltage used in parameter identification

Model identification

In this part, the parameters of the dynamic model in (39) are identified based on the

experimental results, using the differential evolutionary algorithm. Differential evolu-

tion is a method for solving nonlinear and multidimensional problems by finding ap-

proximate solutions, optimising real parameters, and evaluating real-valued functions.

In this model we do not have any prior knowledge about the values of Ji, µiand

ηi, so we use the differential evolutionary algorithm to identify the optimal solution.

The parameter identification process by using the differential evolutionary algorithm

is shown in Algorithm 1.
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Algorithm 1 differential evolutionary algorithm

Input : Input voltage signal, material and geometrical parameters.

Output: Predictions of time-dependet electromechanical response of the actuator

1: begin
2: Input the dielectric permitivity ε of the material.
3: Input the geometrical parameters, L0, L1, h0, d1 in Table (1)
4: Input the voltage signal in Figure (14),
5: Define the serache ranges of variable µi, ji and ηi as Ω1, Ω2 and Ω3, respectively.

Then, initialize g=0.
6: According to Ω1, Ω2 and Ω3, randomely initialize the initial population as
xk(0)(k = 1, 2, ..., N), where xk(0) = {µ̃ki (0), j̃ki (0), η̃ki (0)}

7: for g = 0 : G do
8: substituting xk(g) into (39). Then, call ode15s solver to get ξ̃ki1(g) and ξ̃ki2(g)

by solving (39).
9: According to the experimental data and ξ̃ki1(g), ξ̃ki2(g), calculate error.
10: if erms ≤ δ then (δ is a small positive constant),
11: The parameters in dynamic model (39) are obtained.

That is µi = µ̃ki (0), ji = j̃ki (0) and ηi = η̃ki (0)

12: end if
13: According to the mutation rate pmr and the crossover rate pcr, update xk(g)

by executing mutation operation, crossover operation and selection operation in
turn.

14: end for=0

As a part of the initialization step, the search ranges of the values (maximum and

minimum) of the required parameters should be defined. Therefore the search ranges

of µi, ji and ηi are set as Ω1 ∈ (102, 6 ×108), Ω2 ∈ (100, 8 ×106) and Ω3 ∈ (102 ,

9× 107), respectively. The population size is 240 and the maximum number of evolu-

tion is set to be G = 115. The constant, δ is set as 0.001. The mutation rate pmr and

crossover rate pcr are set to be 0.6 and 0.9, respectively. Moreover, the permittivity

of DEA is ε = 4.7εair, where εair = 8.85 × 10−2 is the permittivity of vacuum. The

geometrical parameters, which are used in differential evolution algorithm are listed

in the Table 1.
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Initial parameters Value

b 0.03 (m)

a 0.06 (m)

L0 0.03 (m)

h0 0.0002 (m)

L1 0.0325 (m)

h1 0.000216 (m)

d1 0.01256 (m)

λ0 1.084

x0 (1.084, 0, 1.084, 0.922, 1.084, 0.922, 1.084, 0.922, 1.084, 0.922)

m 0.21 (kg)

P 2.058 (N)

Table 1: Definition of the different parameters used to describe the geometry and
mechanical properties of the frame and the membrane.

In order to obtain the accuracy of the presented model in (39), the root-mean-

square error of the modelling and the maximum modelling error are defined as below:

where DEi andDMi represent the experimental data and the model predicted value

of the displacement in the vertical direction. Figure 15, shows the error between the

model prediction and the experimental result DEi −DMi.
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Figure 15: Error between model prediction and experimental result.

i µi ji ηi

1 3.149×105 3.109×104 no dashpot

2 5.552×106 1.016×106 555.205

3 5.232×108 7.817×106 5.232×104

4 100 7.927×106 8.103×107

5 1.573×105 2 1.573×105

Table 2: Parameter identification results of conical DEA.

The root-mean-square error erms is 2.42% and the maximum tracking error em is

4.53%. Therefore, using the differential evolution algorithm in MATLAB (SIMULINK),

we identify the dynamic model parameters as presented in the Table 2. Figure 16

show the comparison of model prediction and experimental result with different driv-

ing voltage amplitudes and different frequencies.
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Figure 16: Comparison of model output and experimental result with different am-
plitudes and frequencies.
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4.3 Model validation

In this section, the generalization of dynamic model (39) is verified by setting different

values of ai and fi. The validation includes two sets of experiments. First, the model

is verified with different driving voltage frequencies. Then, the model is verified with

different driving voltage amplitude

4.3.1 Model validation with different voltage frequencies

In the first set of experiments, the amplitudes of the driving voltage are set to ai =

6.0, 6.5, 7.0, 7.5, 8.0(kV ), respectively. Meanwhile, the frequencies are set to be fi =

0.2(Hz), where (i = 1, 2, ..., 5). Thus, the driving voltage has various frequencies but

single amplitude in each test experiment. Figures 17 to 21 show the comparisons of the

model prediction and the experimental data with different driving voltage frequencies.

The modeling error for all test experiments with different driving voltage frequencies

are shown in Table 3.

i fi erms er

1 0.2 3.66 7.41

2 0.4 4.03 6.74

3 0.6 4.18 7.11

4 0.8 3.82 6.38

5 1 3.50 5.86

Table 3: Modeling errors with different driving voltage frequencies.

According to the above results, the root mean-square error of the modeling for

test experiments with different driving voltage frequencies is less than 4.18%. The

maximum modeling error for any test experiment is less than 7.41%. For higher fre-

quencies, the maximum modelling error is reduced except for the frequency of 0.2Hz.

The reason for this is because when the driving voltage frequency is higher, external

disturbances have less of an impact on data collecting. Although the maximum mod-

eling error is high, it is still within the allowable range. Therefore, the validation of

the proposed dynamic model is verified.
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Figure 17: Comparison of model output and experimental result with driving voltage
frequency 0.2Hz.
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Figure 18: Comparison of model output and experimental result with driving voltage
frequency 0.4Hz.
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Figure 19: Comparison of model output and experimental result with driving voltage
frequency 0.6Hz.
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Figure 20: Comparison of model output and experimental result with driving voltage
frequency 0.8Hz.
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Figure 21: Comparison of model output and experimental result with driving voltage
frequency 1Hz.
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4.3.2 Model validation with different voltage amplitudes

In the second set of experiments, the amplitudes of the driving voltage are set to be

ai = 5.5 + 0.5i(kV ), where (i = 1, 2, . . ., 5). Moreover, fi = 0.2, 0.4, 0.6, 0.8, 1(Hz),

respectively. So, the driving voltage has various amplitudes but single frequency in

each test experiment. Figures 22 to 26 shows the comparisons of the model prediction

and the experimental data with different driving voltage amplitudess. The modeling

errors for all test experiments with different driving voltage amplitudes are shown in

Table 4.

i ai erms er

1 6 1.91 1.93

2 6.5 1.81 3.22

3 7 2.53 3.84

4 7.5 3.74 4.07

5 8 5.03 5.45

Table 4: Modeling errors with different driving voltage amplitudes.

According to the above results, by increasing the amplitude of driving voltage,

both the root mean-square error and the modeling error are increased. Where the

maximum root mean-square error and the maximum modeling error is for ai = 8,

which are 5.03% and 5.45% respectively. Despite the fact that the maximum mod-

elling error is large, it is still within the acceptable range. As a result, the proposed

model’s generalisation is acceptable.

In the above works, we verify the model driving by the voltage with different ampli-

tudes and frequencies, respectively.
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Figure 22: Comparison of model output and experimental result with driving voltage
amplitude 6kv.

45



Figure 23: Comparison of model output and experimental result with driving voltage
amplitude 6.5kv.
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Figure 24: Comparison of model output and experimental result with driving voltage
amplitude 7kv.
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Figure 25: Comparison of model output and experimental result with driving voltage
amplitude 7.5kv.
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Figure 26: Comparison of model output and experimental result with driving voltage
amplitude 8kv.
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Chapter 5

Conclude all results and future

works

5.1 Conclusions

This paper presented a physics-based dynamic model for a dielectric elastomer actu-

ator (DEA) with a conical shape. The dynamic model relates the voltage provided

to the electrodes to the vertical displacement of the center. Firstly, to describe elec-

tromechanical coupling of DEA, a dynamic description of the the elastic energy was

obtained based on the theory of nonequilibrium thermodynamics. Then a combi-

nation of Gent model with Generalized Kelvin element are employed to describe

the elastic energy and viscoelasticity, respectively. Secondly, the undetermined pa-

rameters in the dynamic model of the DEA are identified by using the differential

evolution algorithm. Finally, two-step technique was used to verify the presented dy-

namic model, by comparing the experimental result and the model prediction output

for different input frequencies and amplitudes, respectively. The result demonstrated

that the proposed dynamic model can describe the complex nonlinear characteris-

tics and time dependent viscoelastic behavior of the conical DEA. Therefore, the

proposed model can effectively describe the nonlinear behaviours and the complex

motion characteristics of the conical DEA.
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5.2 Future works

In this study, assumed that the DEA is homogeneous in radial direction. However,

the inhomogeneous behavior of DEA was observed during experiment, which lead to

more nonlinear behavior. Therefore, in future work, to accurately predict the DEA

motion, we need to consider the inhomogeneousity. Also, during the experiments a

large amount of hystersis and creep was observed, which needs to considered in future

studies to have a more precise model.

Furthermore, in the developed model the DEA only has one degree of freedom in

vertical direction. However, when the operating environment becomes complicated,

DEA should have more directions of motion (more degrees of freedom). Thus, based

on the research conducted on this paper, we plan to further study the DEA with

multi-directions of motion in the future.
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[28] Sebastian Döring, Matthias Kollosche, Torsten Rabe, Joachim Stumpe, and

Guggi Kofod. Electrically tunable polymer dfb laser. Advanced materials,

23(37):4265–4269, 2011.

[29] Christoph Keplinger, Jeong-Yun Sun, Choon Chiang Foo, Philipp Rothemund,

George M Whitesides, and Zhigang Suo. Stretchable, transparent, ionic conduc-

tors. Science, 341(6149):984–987, 2013.

[30] Anders Lei, Ruichao Xu, Anders Thyssen, Adam Carsten Stoot,

Thomas Lehrmann Christiansen, K Hansen, R Lou-Moeller, Erik Vilain

Thomsen, and Karen Birkelund. Mems-based thick film pzt vibrational en-

ergy harvester. In 2011 IEEE 24th international conference on micro electro

mechanical systems, pages 125–128. IEEE, 2011.

[31] Karsten Ahnert, Markus Abel, Matthias Kollosche, Per Jørgen Jørgensen, and

Guggi Kofod. Soft capacitors for wave energy harvesting. Journal of materials

chemistry, 21(38):14492–14497, 2011.

[32] Thomas G McKay, Benjamin M O’Brien, Emilio P Calius, and Iain A Anderson.

Soft generators using dielectric elastomers. Applied physics letters, 98(14):142903,

2011.

[33] Alison Perry, Karen Anderson, Ruth Lean, and Susan Cotton. Elevation of the

soft palate in speech and swallowing in normal female participants and females

with motor neuron disease: an innovative procedure for measuring palatal eleva-

tion. International journal of language & communication disorders, 37(2):197–

214, 2002.

[34] Iain A Anderson, Todd A Gisby, Thomas G McKay, Benjamin M O’Brien, and

Emilio P Calius. Multi-functional dielectric elastomer artificial muscles for soft

and smart machines. Journal of applied physics, 112(4):041101, 2012.

[35] Na Ni and Ling Zhang. Dielectric elastomer sensors. Elastomers; Çankaya, N.,
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