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ABSTRACT

Inference Procedures for Copula-Based Models of Bivariate Dependence

Magloire Loudegui Djimdou, Ph.D.

Concordia University, 2021

In this thesis, we develop inference procedures for copula-based models of bivariate dependence. We
first investigate the distribution of Kendall’s functions for joint survivors since Kendall’s functions
are important for identifying Archimedean copula models. We then provide two estimators for the
generator of an Archimedean copula. We also propose a plug-in estimator for Kendall’s tau and a
maximum pseudo-likelihood estimation for the copula model parameters in cases where the survival
times are subject to bivariate random censoring. These tests are based on the usual (univariate)
Kaplan-Meier estimator and a recently proposed estimator for the bivariate case.
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Chapter 1

Introduction

1.1 Motivation

The need for bivariate survival analysis arises in domains where we must consider two dependent
lifetimes. Such problems occur for example in insurance where pension contracts with reversion
clauses depend on two random lifetimes (for instance, that of the policyholder and that of the spouse).
Although some may assume independence for simplicity and use the results from the univariate case,
such an assumption may be unrealistic: the spouses share a common environment, their survivals
are therefore related. In this thesis, we use copulas to model bivariate dependence.

1.2 Background on copulas

A copula is a useful technique for modeling a joint distribution in terms of its marginals. Analytically,
C:10,1]¢ — [0,1] is a d-dimensional copula if

(1) C(ul,...,u,-_l,O,u,-H,...ud) = 0,
@) c(1,...,Lul,...1) =u,

(3) and C is d-nondecreasing, i.e, for each hyperrectangle [T [xi,yi| [0, l]d:

/ dC(u) >0, with u= (u,...,uq). (1.1)
[T [xinil

In the bivariate case (d = 2), the d-nondecreasingness property (1.1) becomes, for 0 < vy <vjp <1
and 0 < vy <wvpp < 1:

C(via,va2) +C(vi1,v21) > C(viz,v21) + C(vi1,v22) (1.2)

1



Chapter 1. Introduction

Consider a pair (X1,X) of real valued random variables with joint distribution
F(x1,x) =P(X; <x1,X2 <x2),
and marginal distribution functions
Fi(x;) =P(X; <xp)
and
F(x) =P(X) <x).

Sklar’s theorem (Sklar, 1959) states that the joint distribution F, if continuous, can be expressed as a
unique copula:

F(x1,x0) =P (X; <x1,X; <xp) =C(Fi(x1),F(x2)) for xj,x €R. (1.3)
When X; and X; are independent, their copula is
C(u,uz) :H(ul,uz) = ujuy. (1.4)
The converse also holds. (1.4) is the independence copula.

Copulas are invariant under monotonic transformations on the marginals: the copula of the pair
(X1,X>) is the same as that of (g;(X;),82(Xz)) for g; and g, increasing transformations (Genest
and Favre, 2007).

A particular class of copulas is the Archimedean family. They are copulas such that C(uy,uy) =
o (o(u1) +@(u2)), where ¢ : [0,1] — [0,e0) is a continuous, decreasing convex function such
that (1) = 0. The information about the copula is contained in a univariate function ¢. For

_1
example, the Clayton copula is given by C(uj,up) = (ufe +uy ® — 1) ’ with6 € (0,00), and has

generator @(t) = 4 (+7% —1),r € (0,1].

The distribution function K of C(Uy,U,) is known as the Kendall function of the copula:
K(t):=P(C(Uy,Up) <t) for te€][0,1]. (1.5)

This function is related to the (population) Kendall tau 7, the probability of concordance minus the
probability of discordance, i.e

T=P ((X11 —X12) (X21 —X22) > 0) =P ((X11 — X12) (X21 — X22) < 0), (1.6)

2



1.2. Background on copulas

by the relation

T=3_ 4/ £)di = 4/ 1K (dr) — (1.7)

Genest and Rivest (1993) established that the Kendall function of an Archimedean copula
Clurux) =@~ (@(ur) + ¢ (u2)) is

_ . 9@)
K(t)=1— o (0) forr e (0,1). (1.8)

Ghoudi, Khoudraji, and Rivest (1998) and Capéraa, Fougeres, and Genest (2000) provide Kendall
function formulas for various other dependence models (Archimax copulas).

A natural non-parametric estimator for C is the empirical copula (Deheuvels, 1979)
1 & N N
n (11,12 :ZZ {Uliéul,Uziéuz} (1.9)

where the pseudo-observations are U i = H”?Fn j (X ji) and Fy,; is the empirical distribution function
of Fj, j € {1,2},i € {1,...,n}. The empirical copula is consistent and has a weak limit under some
regularity conditions (Fermanian, Radulovic, and Wegkamp, 2004). Many rank-based statistics
available in the literature are functions of the empirical copula: they can be written in the form

/J(ul,uz)an(ul,uz) (1.10)

for some suitably regular score function J. For example, J(uj,up) = ujup gives Spearman’s p
and J(uj,up) = Cy(uy,up) yields the sample Kendall tau, 1, (see Equation (4.12) below for the
equivalent formula with the population Kendall 7). Genest and Verret (2005) review methods taking
advantage of this link between the empirical copula and statistical measures of dependence to
provide the most powerful independence testing procedures. Deheuvels (1981) and Genest and
Rémillard (2004) treat other general tests of independence based on the empirical copula process

\/ﬁ(Cn - C)'

Taking advantage of the invariance property of copulas and the fact that rank statistics are functions
of data that exhibit the same property, Genest and Rivest (1993) advise us to draw inference from
rank statistics. They develop a parameter estimation procedure for Archimedean copulas from the
link between Kendall’s 7 and the Kendall function (in Equation (1.7)). Such an estimate is shown to
be consistent and its asymptotic variance formula to be tractable.



Chapter 1. Introduction

Another direction for copula inference is the maximum likelihood maximization. Shih and Louis
(1995) develop two-stage parametric and two-stage semi-parametric estimation procedures for the
association parameter in copula models for bivariate survival data, in complete data as well as
censored data. The two-stage semi-parametric likelihood maximization method optimizes the full
likelihood function

1(0) = [T{ (co P ). Fip(z))) ™ ((200est2)

i=1

8C9 (ul,uz)
8142

81i(1-8)
(uy.u2)=(FY, (Zli)»FSz(ZZi))>

(1.11)

(1*511')521' _ _ s s
) (ol Fzm) )

(Ml,uz):(i"gl (21:).F% (2

where

o the observations {(Z1;,Z2;, 81, 6) }'=" are realizations of Z; = min(X;,Y;), §; = 1{X;,Y;},
from the non-negative real-valued random variables of interest X; and the censoring random
variables Y; (non-negative and real-valued too), for j € {1,2};

e Cy(.,.) is the copula family indexed by the parameter of interest 6;
e cy(.,.) is the density of the copula Cy(.,.);
o FV j(Z ;i) is the univariate Kaplan-Meier estimate at Zj;.

In conformity with the rank-based approach to copula inference, Genest, Ghoudi, and Rivest (1995)
suggest maximizing, in the case of complete data, the pseudo-likelihood

L(0) = [Jco(Fu(X1i). Fa(Xa)), (1.12)
i=1
where
~ 1 n 1 & _
Fij(xji) = pa gﬂ{xﬁ <x;}= 1% gﬂ{xﬁ <x;} for je{1,2} (1.13)

are rescaled versions of the usual empirical distribution functions. The rescaling aims at avoiding
numerical issues that may arise when the copula has arguments (values of the empirical distribution)
that are too close to the boundaries of [0, 1].



1.2. Background on copulas

Let 6, be the parametric estimate of 6 obtained under the null hypothesis. Denote Ky(t) :=
P (C@ (Fl (Xl),Fz (Xz)) < l) and Kgn (l) =P (an (F1 (Xl ),F2 (Xz)) < l). Estimate the Kendall dis-
tribution by the empirical distribution

| L
Ka(t) =~} Vi <1} (1.14)
i=1
of the pseudo-observations
~ 1 1
V,-:n+1];ﬂ{X1i§x1j,X2iszj},l:1...n. (115)

Wang and Wells (2000b) used the functional

/ |K,, (2 )] dr where & is an arbitrary cutoff point in (0,1) (1.16)

to develop a goodness-of-fit test for right censored data with an Archimedean copula structure.
Although the limiting distribution of this statistic is available, it is hard to derive analytically. A
bootstrap method was proposed as an alternative in their paper, but it proved to be ineffective.

Genest, Quessy, and Rémillard (2006) have since offered two improvements on the statistic S¢ ,:

n—n/ Ko(1) — Ka, (1)2 Ko, (1) (1.17)
and
T, = sup | /n(Ky(t) — Ko, (1))]. (1.18)
t€[0,1]

There is currently a significant literature that offers an overview of survival analysis. We would like
to suggest some readings for the reader interested in the field.

Genest and Favre (2007) provide an easy access to rank-based inferential methods about copulas.
Two noteworthy monographs on copulas are Nelsen (2006) and Joe (2014). Nelsen (2006) is an
introduction to copula theory and focuses mainly on bivariate cases, though multivariate cases are
sketched out at the end of the chapters. It presents properties of copulas, methods for constructing
them and the important role they play in modeling dependence. Joe (2014) is a comprehensive
reference work on copula modelling. The book provides an overview of the different constructions
that give rise to copulas. Known parametric models are presented with their dependence and tail
properties. As a book driven mainly by applications, it also provides inference, diagnostics and
model selection for copula applications.



Chapter 1. Introduction

1.3

Outline of the thesis

This thesis tackles several problems with regards to inference using copulas, in the cases of complete
and right censored data. It is organized as follows:

In Chapter 2, we derive the distribution for the joint survival function of two standard uniform
random variables with (joint) distribution given by an Archimedean copula. This is achieved
by observing that C*(U}, U, ) has the same distribution as 1 — @' (WT) — @~ (1 -W)T) +
@~ 1(T) where W and T are independent. W has a uniform distribution on (0,1) and 7 is
from some density g(.). T is linked to the copula by the fact that C(U;,U,) has the same
distribution as @' (7'). Note that in the univariate case, if X is a continuous random variable
with cumulative distribution function F(.), then both F(X) and 1 — F(X) are uniformly
distributed over [0, 1]. This result is known as the probability integral transformation (PIT).
Extension of the PIT to 2 or more dimensions is not at all straightforward. Genest and
Rivest (1993) proved an analogue of the PIT for C (F;(X)),...,F;(X;)) in the case of an
Archimedean copula. We complement their result for C* (F; (X)), F>(Xz)) in the bivariate
case.

In Chapter 3, we develop two estimators, ¢, and ¢, for the generator ¢ of an Archimedean
copula. This is made possible by taking advantage of the relationship between the Kendall
function and the generator (in Equation (1.8) above) and by making two assumptions about ¢.
¢, 1s obtained as a solution to a differential equation whereas @, is solution to an integral
equation. The limiting behaviour of those estimators is also given, by making use mainly of
the limiting distribution of the Kendall process established in Barbe, Genest, Ghoudi, and
Rémillard (1996).

Chapter 4 is dedicated to presenting a plug-in estimator (7,) for the Kendall tau (7) in the
case of right censored data. This plug-in estimator for 7 is based on a new multivariate
Kaplan-Meier estimator developed by Sen and Stute (2013) and presented in the first part
of the chapter. The asymptotic variance of 7, is obtained using its linearization form. The
performance of 7, is compared to Wang and Wells (2000a)’s plug-in estimator, both on
simulated and real-world data (kidney patients’ data).

In Chapter 5, a likelihood maximization procedure for copula parameters under right cen-
soring is introduced. The maximum likelihood estimator thus obtained is also based on the
multivariate Kaplan-Meier estimator of Sen and Stute (2013). The asymptotic variance of the
estimator is established through linearization. The estimator is compared to that of Shih and
Louis (1995) on simulated data as well as on a Canadian life insurance and kidney patients’
datasets.

Chapter 6 recapitulates the main findings of the thesis and discusses further research that may
be considered to complement this work.



Chapter 2

Distribution of the joint survival function of
an Archimedean copula

2.1 Introduction

In survival analysis, interest often bears on the chances of an individual living beyond some time. If
the lifetime is denoted by the real-valued non-negative random variable X of distribution function F,
the probability of surviving beyond the threshold x is the survival function (other names: survivor
function, reliability function) given by F (x) :=P(X > x) =1 —F(x).

Consider a pair (X1, Xz) of real valued random variables with joint distribution F (x1,x2) = P(X; <
x1,X> < x3), and marginal distribution functions Fy (x;) = P(X; < x;) and F>(x) = P(X; < xp).

By Sklar’s theorem (Sklar, 1959), the joint distribution F, if continuous, can be expressed as a
unique copula C on the unit square:

F(x1,x0) =P(X) <x1,X2 <x2) =C | Fi(x1),B(x2) | =C(u1,u2) (2.1)
=uy =up

When considered as random variables, the distribution function F (X;,X5) and the copula C(Uy,U,)
(where U; and U, are two uniform random variables with joint distribution C) have the same
distribution function, which is known as the Kendall distribution function of the pair (X 1,X2):

K(z) :=P(C(U;,Up) <z), forzel0,1]. (2.2)



Chapter 2. Distribution of the joint survival function of an Archimedean copula

The joint survival function of two standard uniform random variables Uy, U, with (joint) distribu-
tion the Archimedean copula C is

C*(Ul,Uz)Z1—U1—U2—|—C(U1,U2). (2.3)

It is important to note that C* is not a copula: C* (% 0) = % # 0. It is linked to the survival copula
6(u1,u2) =uj +u2—1+C(l —ul,l—uz) by
Clup,up) = C* (1 —uy, 1 —up). (2.4)

The survival copula C is the copula bonding the marginal survival functions. It is also the copula
associated with the random vector (1 — Uy, 1 —Us).

The relation (2.3) between C* and C comes from

]P(Ul >uy, Uy > uz) :]P(Ul <ui,Up Suz)-l—]P(U] >u1)—|—IP(U2 >u2)—1
=1-PU; <uy) —PUs <up) +P(U; <uy,Up < up).

(2.5)
(2.6)

Chakak and Ezzerg (2000) provided a general formula for the distribution of a copula C(Uy,U;):
L/ ry(zu)
K(Z)=Z+/ (/ c(ul,uz)stz) du;, 0<z<1,
z 0

where c(uj,up) = %C(ul,uz) is the copula density of the pair (X;,X;) ~ C and y(z,u;) =

(2.7)

inf{up :C (z, up) >z} for 0 < z <wuy <1 is the quantile function of the copula C. However, for
numerical applications, the quantile function ¥ is not always available.

A particular class of copulas is the Archimedean family. They are copulas such that C(uy,u;) =
¢ ' (o(u1) +@(u2)), where ¢ : [0,1] — [0,0) is a continuous, decreasing convex function such
that (1) = 0. The information about the bivariate distribution function in this family is contained
in a univariate function @, called the generator of the copula.

TABLE 2.1: Examples of Archimedean copulas

name bivariate copula Cg (u1,u) generator @y () (forz € (0,1]) | parameter 6
Independence uiiy —log(t)
T
Clayton (u® +u,®—1) °° s9-1) 6 € (0,)
T
Gumbel exp [ ((log(ul))9+(log(u2))9)e] (—1log(1))? 6 € [1,)
N Tt 1-0(1—1)
Ah-Mlkhall-Haq W 10g< ! ) 0c [—1 1]




2.1. Introduction

Genest and Rivest (1993) established that the Kendall distribution function of an Archimedean
copula C(u1,u2) = @~ (@(u1) + @ (u2)) is

¢(z)
K(z) =z— forz € (0,1). (2.8)
@) == 55 forze (0.1)
As
< dv )
®(z) o< exp / ————| for an arbitrary constant 0 < zg < 1, (2.9)
2V K(V)

K is important for identifying C in the case of Archimedean copulas.

d
Figures (2.1a) — (2.1d) display the density k(z) = d—K (z) of the Kendall function K(z) for some
z

Archimedean copulas.
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(c) Gumbel: k(z) = §(—log(z) +6 —1) (d) Ali-Mikhail-Haq:

k(z) _ (1—0+62(2—z))(e—log(z)+0—1)

FIGURE 2.1: Density k(z), z € (0,1), of the Kendall distribution for some Archi-
medean copulas



Chapter 2. Distribution of the joint survival function of an Archimedean copula

Though the Kendall function for copulas has been known for decades, there is still no equivalent
result for the survival distribution of copulas. The goal of this chapter is to obtain the density
function of the joint survival function C*.

In Section 2.2, we present our result for the bivariate case, i.e., for C*(Uy,U,), as well as examples
from the models mentioned in Table 2.1. In Section 2.3.1, plots of densities of C* from these models
and comparison with simulated values of C* are provided. In Section 2.3.2, we present an alternative
representation that may be useful in simulating C*(Ul, ...,Ud) for general d > 1. However, the
formula for the density does not seem to be tractable when d > 2.

Our result complements Equation (2.8) of Genest and Rivest (1993) and can be used for copula-based
goodness of-fit procedures (see Genest et al., 2006). Another use for obtaining such a result would
be the derivation of the weak convergence of the corresponding empirical process (supplementing
the Kendall process result of Barbe et al., 1996), namely the empirical process of

1 n
Win =~ WUy > Uy, Uz > Uy}, 1 <i <,
=

where (Uy;,Up;), 1 < i< n are independent and identically distributed (i.i.d.) with distribution
C(uy,uz). Note that the limiting covariance of /n <% o Y Wi} — K (z)> ,0<z<1, will be
of the form K* (z1 Az2) + D (z1,22) (D(.,.) to be worked out), where K*(z) = [ k*(w)dw.

2.2 Density of the survival function of a copula
Theorem 2.1. Let Uy and U, be two uniform random variables with joint distribution the Archime-

dean copula C(uy,uz) = @' (¢(u1) + @(u2)). The density of the survival distribution C*(Uy,Uy)
is

3 P
k*(z) = 2/02 g (v, '(2)) (a—zllla_l(z)) da for ze|0,1], (2.10)
where
__19"(e' (1)) 2.11
)= o) .
and
yu(b) =P (<p(211) <b, "i(fi) < b) (2.12)
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is the distribution function of max (@, %) for a given value 0 < a < 1.

The proof of the theorem is available in Appendix A.2.

Corollary 2.1.1. C*(Uy,U,) has the same distribution as that of 1 — @~ '(WT) — @' (1 -W)T) +
@~ '(T) where W and T are independent, W has Uniform (0,1) distribution and T has density g(.),
whereas C(Uy,U,) has the same distribution as that of ' (T).

However, the quantile function v, !(z) of the distribution of (¢(U;),9(U>)) (see Equation A.25 in
the appendices) may not have a closed form expression, hindering numeric applications.

2.2.1 Examples

Let us illustrate our formula (2.10) for the density of the survival distribution through some examples.

Independence copula

The independence copula C(uy,uy) = ujuy, where uy,uy € [0,1], has generator ¢ (1) = —log(z),r €
(0,1].

We calculate:

G)=—1, @)= 97 ) =exp(~1), for 1€ (0.1];
—L
g(t) = (exp(—1)) 3 = texp(—t), fort > 0;
1
<_exr)(—t)

Va(b) = 1—exp(—ab) —exp(—(1 —a)b) +exp(—b) = (1 —exp(—ab)) (1 —exp(—(1 —a)b)),
for a€[0,1],b € [0,00).

The density of C*(U;,U>) is

1
k*(z)=2/02%1(z)exp(—%1(z)) <0.%1Val(z)>da for ze[0,1]. (2.13)

Clayton copula

The Clayton copula

Co(uy,up) = (ul_e +uy® — 1) , for 6 € (0,00),uy € [0,1],u; € [0,1]

=

11



Chapter 2. Distribution of the joint survival function of an Archimedean copula

has generator
@o(t) = %(t" —1) with 7 € (0,1].
Then:
Oh(t) =~ (1) =(0+ 1) 92 @5 (t) = (6t +1)"® fort € (0,1];
1\ —6-2
1(0+1) ((9t—|—1)‘§>

(~(er) "

Vao(b) =1—(8ab+1)" —(8(1—a)b+1)" +(8b+1)"¢ forac [0,1],b € [0,00).

go(t) =— = (0+1)t(0r+1)"2% fort > 0;

—_

The density of C*(U;,U>) is

1
-2-%

K ( 2(6+1) / ‘/’ae (z)—l—l) (%%’9( )) da for ze€[0,1]. (2.14)

Gumbel copula

The Gumbel copula is

1
2]

Co(u1,u2) = exp [— <(—log(u1))9—I—(—log(uz))e) ] for 6 € [1,00).

Its generator is given by
0o (1) = (—log(r))® wheret € [0,1]

Then, for 7 € (0,1],

D=
N~—

oh(1) =2 (~log(1))"", 9}(1) = <—log<r>>9-2<—log<r>+e—1>, 00" (1) = exp(—

=0 %o exp(—t )(tG +6—1) wheret > 0;

1

Vao(b) = 1 —exp (—(ab) ¥ ) —exp (— (1 —a)b)%) +exp(—b?) forae [0,1],b € [0,0).

12



2.2. Density of the survival function of a copula

The density of C*(U,,U,) is

e0=20 [ (vs0) o (- (b)) (vd0) +o-1) (Zvdo)aa a9

for 6 € (1,0), z€[0,1].

Ali-Mikhail-Haq copula

The Ali-Mikhail-Haq copula

uiuy
= for 6 1,14, 0,11,ur € 0,1
C(ui,up) 00 —u) (1 =) or €| |,u1 €10,1],uz € [0,1]

has generator

Po(1) =log (ﬁ) with 7 € [0,1].

Then:
/ 1-0 . (1-0)(1-0+061(2—1)) 4 1-6
) = — . )= s ) = ;
()=~ en—n)y %W 2(1-6(1-1)) %o )= S0
(1-0) (1-0+0 555 (2~ t5))
b} 2
eolt) = — (ﬁ) (1—9(1—6,(;(7)9_9)) _ (1—0)r(exp(2t) —0)exp(r)
’ ol : CrOED
soits (00— 5i15))

T el R
Vaol?) = exp(ab) —0 exp((1—a)b)—06 exp(b)—6’

The density of C*(U,U>) is

kK (z) :2(1_9)/0 (exp (WJé@) _9>4

for 6 € [-1,1), z€[0,1].

Q

—1 ex " U)X X
$¥as (e (2065)) ~0)ew (s ) (5vahe))o

13
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Chapter 2. Distribution of the joint survival function of an Archimedean copula

2.3 Illustration

In this section, we give the results of our method.

2.3.1 Ilustration of our method

Figures (2.2) and (2.3) below (as well as Figures A.1 and A.2 in Appendix A.l) show graphs
of the distribution function y, and the numerically determined quantile function (') of B =

o (U1) + ¢(U,) for some values of a = _ olm) __,

@)+ (u2)
1F 8 1 10 .
0.8 b 0.8} b 0.8 b
0.6 |- b 0.6 - b 0.6 - b
Ya Ya Ya
0.4 b 0.4 B 0.4 B
0.2 B 0.2 b 0.2 B
ol . of ol .
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
b b b
(@) Vo1 () Yo.25 (©) Voas
20F
a0l 8 0l i
15 - b
30 E 81 7
vl 9ol ot 10 vt O )
4 |- .
10 - b 5
21 i
or I | | | | | | 0r ) ) ) ) ) ) o I | | | | L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z . : z
(d) Yot © Wy, ) Vo4
0.11 0.25 0.45

FIGURE 2.2: Distribution function v, and its estimated inverse ¥, ! fora = 0.11,
a =0.25, and a = 0.45 in the case of the independence copula
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1 T 1
0.8
0.8 , 0.8
0.6 -
0.6 B 0.6
Va 0.4} ) VPa
Ya ol B 04
0.2} o0zl | 0.2
of 0 ol
v Il Il Il Il Il Il L L L L L L
0 10 20 30 40 50 0 0 20 30 40 30 0 10 20 30 40 50
b b b
(@) Yo.11 (b) Wo.25 (©) Wous
800 - B 400 |- e 300 |-
600 - B 300 -
200 |
va' 400 | 1 vat 200f 4wt
100 |-
200 | i 100 |-
0 ol 0
Il Il Il Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
z z z
CIRTs @ Vs () ¥4
0.11 0.25 0.45

FIGURE 2.3: Distribution function ¥, and its estimated inverse V¥, U'fora =0.11,
a = 0.25, and a = 0.45 in the case of the Clayton copula with 6 =1

For the independence copula,

C*(Ul,Uz):l—Ul—U2+U1U2 2.17)
=(1-U)(1-) (2.18)
= exp (—log(1 —U;) —log(1 —U>)) (2.19)

As U, and U, are uniformly distributed on [0, 1], it follows that log(1 — U;) +1log(1 —U,) ~T'(2,1)
(gamma distribution of shape 2 and scale 1) and C*(U;,U,) has density

(—log(2)) exp (— (—log(2))) % — log(z), forz € (0,1]. (2.20)

Knowing the density of C* , we can evaluate in this case how our method performs. The estimated
density is satisfactorily close to the true density (Figure 2.4a).

Figures (2.4b) to (2.4d) show the density of C*(U;,U,) (from Theorem 2.1) for some Archimedean
copulas:

15
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true density
4l estimated density |
oy
0+ ,
| | | | |
00 02 04 06 08 1.0
Z
(a) Independence
i o=1 |
4 —06=15
— 0=3
— 0=5
> —0=10
Z 2| |
Q
N g_
0rF ,
| | | | |
00 02 04 06 08 1.0
Z
(c) Gumbel

| | | | |
00 02 04 06 08 1.0
<
(b) Clayton
41 i
2 - -
0 ]

\ \ \ \ \
00 02 04 06 038
Z

(d) Ali-Mikhail-Haq

FIGURE 2.4: Density of C* for some Archimedean copulas

2.3.2 Simulating values of C*

With U ~ % [0,1],V ~ % |0,1], (U;,U,) ~ C and (Uy,U}) an independent copy of (U;,U>),

C*=C"(U,Uz) =P(U] 2 U1,.U; 2 U2|U1,U2) =P((U7) < @(U1),9(U3) < ¢(U2)|U1,U2)

Taking advantage of the calculations in Appendix A.2, we have

C =P(p(U1) SWT.@(U2) <(1=W)TW.T) =1—¢ ' (WT)— @~ (1-W)T) + ¢~ '(T),

16
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2.3. Illustration

where

W =

T can be simulated by observing that ¢ ~'(7') = S has density k(s) =

is of course the density of the Kendall distribution function K (s); see page 7 and Figures (2.1a) —
(2.1d), page 9. For example, the density of S is %(1 —s%) (with 8 € (0,0)) for a Clayton copula

¢(U1)
o(U1) + (L)

~ 0,1 and T = @(U;) + ¢(U,) ~ G are independent.

(9/(s))°

and —%log(s) +(1— %) (with 8 € [1,00)) for a Gumbel copula.

Then, from the simulated values of W and T', we can compute the values of C*.

Figures (2.5a) to (2.5d) compare the densities obtained from the application of Theorem 2.1 to those

obtained from simulated values of C*(Uj,U,) for some Archimedean copulas:

0f B

T T T T
—— density from Theorem 2.1
density from simulated values

00 02 04 06 08 1.0
Z

(a) Clayton copula with 8 =1

density from simulated values

O,

—— density from Theorem 2.1 -

Z

(c) Gumbel copula with 6 = 1.5

00 02 04 06 08 1.0

density

density

10

T T T T
—— density from Theorem 2.1 |

151 density from simulated values

00 02 04 06 08 1.0
b4

(b) Clayton copula with 6 = 3

M for 0 <s <1, which

—— density from Theorem 2.1
—— density from simulated values

00 02 04 06 O 1.0
z

(d) Gumbel copula with 6 =3

FIGURE 2.5: Comparison of the density from application of Theorem 2.1 and the
density simulated using Corollary 2.1.1
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Chapter 2. Distribution of the joint survival function of an Archimedean copula

Remark 2.3.1. Letd > 2 be an integer;, (Uy,--- ,Uy) a d-tuple of standard uniform random variables
whose joint distribution is given by a multivariate Archimedean copula C with generator Q.

LetTj = @(U;j),j = 1,...d. Then (T1,...,T;) has joint survival function Ot + ...+ 1)

WithT =Ty + ...+ Ty, C(Uy,...,Uy) is distributed as o~ (T) and C*(Uy,...,Uy) is distributed as
1+Y, (1) o (Ti 4.+ T).

However, a formula for the densities or simulation of C or C* does not seem to be tractable.

2.4 Conclusion

Inspired by the importance of Kendall functions for identifying Archimedean copula models, we
decided to examine the distribution of the survival functions from Archimedean copulas in this
chapter. We were able to derive a formula for the density. This was achieved by observing that
C*(Uy,Us) has the same distributionas 1 — @' (WT) —@~' ((1=W)T)+¢ ' (T) where W and T
are independent, W has a uniform distribution on (0, 1) and T is from some density g(.). Moreover,
the approach used allows a representation that is useful in simulating the values of the survival
distribution function of copulas. But the difficulty in finding an analytical form of quantile functions
in general limits the reach of the formula.

18



Chapter 3

Estimation of the generator of an
Archimedean copula

3.1 Introduction

Because they allow us to model the dependence between different random variables without consid-
eration of the marginal distributions, copulas are useful tools in multi-dimensional statistics. In the
case of Archimedean copulas, of the form C(u1,uz) = @' (¢(u1) + ¢(u>)), the Kendall function

k@) =1— 29 o e (0.1), 3.1)

provided in Genest and Rivest (1993) allows some inference methods.

Using a stochastic representation of Archimedean copulas discovered by McNeil and Neslehova
(2009), Genest, Neslehov4, and Ziegel (201 1) provide a non-parametric estimator for ¢ ~!. From
the sample {Wy,...,W,} taking the distinct values 0 < w; < ... <w,, < 1 and the values 0 < r; <
... < ry < oo, the estimator is

m d—1
yalt) = Zmax{(l—i> ;O}pk, (32)
k=1

Tk

with the weights
1 n
Pe= " Z Liwi=wy 41} (3.3)
i=1

and

19



Chapter 3. Estimation of the generator of an Archimedean copula

d is the dimension of the copula.

The w;’s and r;’s are obtained by solving the system of equations

w; =0, (3.4)
r d—1

wy = (1— m”) P (3.5)
m
Finn d—1 Fin o d—1

w3 = <1 - = ) Pm+ (1 . ) Pm—1, (3.6)
Im Ym—1

d—1 d—1

r r

wm:<1——) pm—i—...—i—(l——) P2 (3.7
Im rn

Even if y, gives a unique estimator for the copula, it is not an estimator of ¢! per se, since ¢!
and c¢~!, with ¢ > 0, both generate the same Archimedean copula. It is also computationally hard.
Moreover, its limiting behaviour is not available.

In this chapter, two non-parametric methods for properly estimating the generator of an Archimedean
copula and their asymptotic variances are provided. The derivation of the estimators relies on
assumptions about the generator. The assumptions are presented in Section 3.2. Sections 3.3 and
3.4 present the estimators and their asymptotic distributions. The last section (3.5) of the chapter
illustrates the performance of the estimators.

3.2 Assumptions

From the relation (3.1) above, one can derive

0,
ki) = (1)
— S (togo) =L — i 38)

For some € € (0,1):

20



3.2. Assumptions

[ S e (o) =g (90)) || 39)
= —log(¢(1—¢))+log(p(w)) (3.10)

Then:

ew ([ ) e ([ Cloeolnar) = 2L

1 — 1—e ¢
— qv(W)ZMRXp( i Wt—;) (3.12)

We make the following assumptions about the generator of the copula in order to derive the
estimators.

Assume that

Assumption 3.2.1.

—¢'(1)=1
That assumption is equivalent to:
(p(lg—s) —1 as € —=0.
Assume also that
Assumption 3.2.2.
1586(18_ =0y >0
where

o(w) =T(w,w) = lim V (Vn (K, (w) —K(w))) for 0<w<1

n—yoo

is the asymptotic variance of the Kendall process (Barbe et al., 1996) and K,(.) is the empirical
distribution of the pseudo-sample of variables

1 i .
Vin = Y, X <Xii.Xp; < Xoi}, fori=1,....n,

n—1 ;T
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Chapter 3. Estimation of the generator of an Archimedean copula

based on a sample {(X11,X21),- -, (X1, Xon)}, n > 2.

For Archimedean copulas (see Barbe et al., 1996), the asymptotic variance of the Kendall process is
given by

T(w,w) = K(w) (1— K(w)) +k(w) [k(w)R(r.1) — 2 (1— K (w))]. (3.13)

where

R(t,t) = E {(p_l (max ((p(t)Uz(l), (p(t)U3(1)> +max ((p(t)Uz(z), qo(t)U3(2)>> } 2, (3.14)

. _ (/) 7,(2) _ (/) 7,(2) . . .
with U, = (U, ", U, and Uz = (U; ",Uy two independent copies of a random vector uni
formly distributed in [0, 1]?. This variance seems not derivable except for the independence copula.

Let us check the Assumptions 3.2.1 and 3.2.2 on some Archimedean copulas. Due to the difficulty
in obtaining an analytic form of the variance 3.13 for copulas other than the independent one, 3.2.2
is examined only for the independence case.

Independence copula

The independence copula C(uy,u;) = ujuy, where uy,up € [0,1], admits the generator ¢(t) =
—log(t),t € (0,1].

We have

and
—¢'(1) =1.
The limiting standard deviation of the Kendall process is o (1) = /t> —t —tlogt.

So that
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Clayton copula

The Clayton copula

Co(up,up) = (ul_e +uy ¥ — 1) for 6 € (0,00),u; € [0,1],up € [0,1]

=

has generator

0o () = é(rﬁ 1) with 1 € (0,1].
Then:
Qp(t) =17
and

Gumbel copula

The Gumbel copula is

Co(u1,u2) = exp {— <(—10g(u1))9 + (—log(uz))e)
It admits the generator given by

0o (1) = (—log(1))® where € [0,1]

Then

and

Ali-Mikhail-Haq copula

The Ali-Mikhail-Haq copula

uiuy
1—9(1—141)(1—142)

Cluy,up) = for 6 €[—1,1],u; €[0,1],uy € [0,1]

23



Chapter 3. Estimation of the generator of an Archimedean copula

admits the generator

Po(r) = l_lelog(l_egl_t>) with ¢ € [0,1].

Then:

and

Frank copula

The Frank copula

(exp(—0u;) —1) (exp(—0uz) — 1)
exp(—0)—1

1
C(ur,up) = —Elog 1+ } , for 6 #0,u; € [0,1],uy € [0, 1],

admits the generator

o(t) = 1_e;p(e)log <M) when 6 > 0.

6 exp(—6)—1
Then,
oo (I—exp(0))exp(—01)
()=~ exp(—01) —1
and
—-¢0'(1)=1.

3.3 An estimator from a differential equation point of view

In light of Equation (3.12), we propose this estimator for ¢:

=& dr
= ——F | for O 1, 3.15
On1 (W) = grexp (/w A0 —t) or 0<w< (3.15)
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where
o & —0asn— o

e K,(.) is the empirical distribution of the pseudo-sample {V;, E’f, with

1 ! .
Vin = " Z H{XU SX”,ij Sle'}, fori=1,...,n,

j=1,j#i
based on a random sample {(X11,X21), ..., (X1, Xon)}, n > 2.

Remark 3.3.1. In (3.15), we have the limit:

For 0<w<1: e /1_8" S /1 dr 0
or w . X e re— X as n
PUL Kl —1 P\ K@) =
1

=exp| — log‘w‘ —log‘(p(w)‘

=0
= 400

Thus, @,1(w) does not vanish as n — oo.
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Chapter 3. Estimation of the generator of an Archimedean copula

From ordered distinct values V(1)s- -2V (m) of the pseudo-sample {V,-,,,}i’f, we compute @, (w) as
follows:
e For0<w<1-—g¢g,, define (k) 1= tmax< v(j),j =1,...,mand V() = 1—¢g,.
S. v(j)_w
Then
=& dt
.1 (W) = g,ex _— 3.22
(Pl( ) n p(/w Kn(t)—t) ( )
V() dr
= g, exp —_— (3.23)
n n K, (l‘) — t)
= v dr
—gep| Y [ e (3.24)
e\L L, RO
l*l V( A+l) dt
= &, €Xp Z/ ! m (325)
=kvG) n\V(j)

—1 v —
—gexp( - Y [ (”')¢> (3.26)

= &,exp _Z<10g(|Kn(V(j))_V(j+l)|)_log(|Kn(V(j))_v(j)D>> (3.27)

j=k
-1 K,(vin) —v;

= g, exp Zlog) (V(J)) V(J))’ (3.28)
= K(vg) = vien)

-1 N)— Vs
T h () 329

(3.30)

e Forl—¢g, <w<l1,

@1 (w) = 0. (3.31)

We turn now to the asymptotic behaviour of the estimator.
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3.4. An estimator from an integral equation point of view

3.3.1 Asymptotic distribution

Barbe et al. (1996) showed that, under some regularity conditions, the Kendall process
v/n (K,(t) —K(t)) converges in distribution to a continuous, centered Gaussian process. The
required regularity conditions are shown to be met with Archimedean copulas such as independence,
Clayton, Franck, Gumbel and Ali-Mikhail-Haq copulas.

Theorem 3.1. Under the Assumptions 3.2.1 and 3.2.2, we have the limiting distribution of our
estimator @y, in (3.15):

If LN n— oo, then, for 0<w<1,
Jn

Vn

(@u1(w) —@(w)) = 0o (W)Z in distribution, as n — o,
loge,

o(l—¢)

. 2 . o
- with 0“ being the limiting

where Z is a standard Gaussian random variable and 6y = limg
variance of the Kendall process (Barbe et al., 1996).

The reader may refer to Appendix B.1 for a proof of this theorem.

3.4 An estimator from an integral equation point of view

From the relation (3.1), one can also derive

— 9= K(t; — o= K(S —1 /zl (=o' )av (332
With (1) :== —¢'(2),
h(r) = K(t;_t/t]h(v)dv
1 1
- 0o /K KO K (@) (3.33)

Denote by Z; the jump points of K(.), the empirical distribution of the pseudo-sample {Vln}i’l1
based on a sample {(Xll,X21), . (Xln,XZn) }2 Vzn = n+127:l,j¢i]l {le S Xll‘,X2j S le‘} ,i =
1,...,n,,n>2.
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Att = é, Equation (3.33) becomes:

n (i) _ ;1 / ilh(Kn(w))Kn(dw) (3.34)

n K, (f)—4in
1 I & '
- -V h(l> for1 <i<n—1, (3.35)
K(3) —an S \n
By defining
0 1 1 1 1 1 T
nKn(%)—l nk,(1)—1 nk,(1)—1 nk,(1)—1 nk,(1)—1
o 0 f f f f
nk,(2)-2 nk,(2)-2 nk,(2)-2 nk,(2)-2
K:= : : : :
1
0 Ko (=D~ (nT)
0 0 0 0 1
L 4 nXxn
and
N
h(g)
h(3)
h:= : ,
—1
h (")
L h(l) Jdnx1
Equation (3.35) can be rewritten in the following matrix notation:
h =Kh (3.36)

Thus, h is an eigenvector of K associated with the eigenvalue 1, similarly to the mass-shifting
estimator (see Equation 4.36).

Recursively,
e 1,(1) =1 (from Assumption (3.2.1))

e fori=n—1,...,1:

N Ly, (]
hn (n> = k(D) —i,-_,zilhn (n) (3.37)



3.4. An estimator from an integral equation point of view

Or
o 1,(1)=1
o fori=n—-1,...,1:

h(i)—;’ﬁ — L (3.38)
"\n ”Kn(ﬁ)_ijﬁiﬂ l’lKn(,%)_j .

This estimator is thus a product-limit estimator, a property that exhibits the Kaplan-Meier estimator
for the survivor function too (see Equation 4.21).

For L <t < ™l(i=1,...,n—1), we interpolate the value of &, () as a step-function:

h(t) = hy (i) . (3.39)

Then, we suggest the estimator
1 12 ]
Pina(t) = / ha(s)ds ==Y h, (= ). (3.40)
t r—

3.4.1 Asymptotic distribution

With basic calculations, it is possible to derive the limiting distribution of ¢,> in Theorem 3.2 below.
The reader may refer to Appendix B.2 for the algebra details.

Theorem 3.2. Under the Assumption 3.2.2 and denoting the weak limits \/n(@mn(w) —@(w)) —
©o(w) and \/n(K,(w) —K(w)) = Ko(w) (when n — ), we have

! 2 !
)= [ (200) prman— [ £ qwan. can

The covariance function S(s,t) := cov (@o(s), @o(t)) satisfies the equation
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sts0)= / 20 ()T (w,)gp (v) iy

" / | /, 29 ()G (1A (w,)go () dwdy
i / | /, | Go(w)gp(v)A(w,v)ge(v)dwdy
4 [ [ GolnGp(S(o gy (awar.

where

N 2 !
8o = (%) ¢, Gg:= %, A(w,v) :=cov(Ko(w),p0(v)), T(w,v)=cov(Ko(w),Ko(v)).

Further, A(s,t) satisfies

Als,t) = — /, 00 (W) (5, w)dv — /t G (W)A (5, ) dw.

3.5 Illustration

We simulate n values of two random variables X and X; from a Weibull distribution of shape ot = 2
and scale B = 2, with density

X x\2
f(x) = Sexp (- (5) ) for x > 0, (3.42)
and joint distribution an Archimedean copula.
Using the programming language R (R Core Team), the functions mvdc and rMvdc (in the package
copula) allow us to build a copula object with specified marginal distributions and to simulate

observations from it.

Figures (3.1a) - (3.1f) show the performance of our two estimators for three Archimedean copulas,
with sample size of n = 100 and n = 500. We choose &, = ,ll The x-axis values are from 0.001 to 1
with a step of 0.001.
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3.5. Illustration
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FIGURE 3.1: Estimation of the generator ¢

The estimates improve as the sample size increases. The estimation is less accurate for small values
of t (near 0). The integral estimator (¢, ) is slower to approach the true generator than the differential
estimator (¢y).

Though the difficulty of obtaining an analytic formula for the variance of the Kendall process limits
the derivation of 0y, it is possible to have an idea of the convergence in Theorem 3.1. Figures (3.2a) -
(3.2a) show the convergence of W\/{Zg&, (@a1(w) — @(w)), with & = 1, for some Archimedean
copulas. As expected from Theorem 3.1, that quantity approaches a flat line due to asymptotic

degeneracy, as n grows. However, the convergence is particularly hard for values of w close to the
boundary 1.
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FIGURE 3.2: Convergence of Wi\lfzgg (@n1(w) — @(w)) (from Theorem 3.1)

3.6 Conclusion

Taking advantage of the formula of the Kendall distribution of Archimedean copulas, we have
been able to derive two non-parametric estimators for the generator ¢ of a bivariate Archimedean
copula. The derivation was made possible by admitting two assumptions about the generator and the
limiting distribution of the Kendall process. The first estimator, ¢,1, was obtained from a differential
equation point of view and the second one,,;, from an integral equation standpoint. Asymptotic
behaviours for both were established: ¢, is faster in its convergence (in /n) compared to @,

o Wn
(convergence in Mogey] ).
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Chapter 4

A plug-in estimator for Kendall’s tau under
right censoring

4.1 Introduction

Kendall’s tau is a non-parametric criterion for measuring the dependence between random variables.
Let (X11,X>1) and (X2,X27) be two independent and identically distributed (iid) copies of a vector
(X1,X>) of non-negative real-valued random variables. The population Kendall’s tau is the probability
of concordance minus the probability of discordance. When X and X, are continuous, it is

T= T(X1,X2) =P ((XH —X12)(X21 —X22) > 0) —P ((XH —Xlz)(le —X22) < 0). 4.1)

In absence of censoring, 7 is estimated by the U-statistics

. 2
T =

n(n—1) 1<;j<nSigﬂ((X1i—le)(Xzi—ij)) 4.2)

where {(X1;,X2;) }'=" is a sample from (X;,X).
% is an unbiased estimator of 7. Moreover, /n(f — 7) is asymptotically normal (Hoeffding, 1948).
In this chapter, we propose an estimator for 7 in the presence of right-censored data.

Let
o F(x1,x2) =P (X; <x1,X2 <x7) be the joint distribution function of (X,X>),

e F(x1,x2) =P (X; > x1,Xz > x;) be the joint survival function,
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

e Fi(x;) =P (X; <xi) be the (marginal) distribution of X,
e F>(x3) =P (X, < x;) be the (marginal) distribution of X;.

As (X11,X71) and (X)2,X2;) are iid copies of the same vector (X;,X>),

P ((X11 —X12) (X21 — X22) > 0)

=P (X11 —X12>0,X1 —X2p >0)+ P (X11 —X12 <0,X21 — X2 <0) 4.3)
=P (X11 > X12,X21 > X22) + P (X11 < X12,X21 < X22) 4.4)
=2P (X11 > X12,X01 >X22). (4.5)

Integrating over the distribution of (X2,X2,):

P (X1, > Xi2,Xo1 > X22) ://nv(x“ > X1, Xo1 > x2) F(dx, dva) (4.6)
- / / F(x1,30) F (dxy,dva). 4.7)

Then:
P ((Xi1 - X12) (X21 — Xo2) > 0) = 2//F(x1,xz)F(dx1,dx2) 4.8)

From the continuity of X and X»,
P ((Xll _XIZ)(XZI —X22) < O) =1-P ((XH _XIZ) (X21 —X22) > 0) . (49)

Therefore, Equation (4.1) can be written as

- :2//F(x1,x2)F(dx1,dx2)—(1—2//F(x1,x2)F(dx1,dx2)> (4.10)
:4//F(x1,x2)F(dx1,dx2)—1. @.11)

Denoting by C the copula representation for the distribution of (X;,X>), the Kendall tau coefficient
is

1 1
T ) = T = 4/0 /0 Cur,u2)dC (ur,u2) — 1 = 4E (C(UL, Un)) — 1. 4.12)

34



4.2. Mass-shifting estimator

In terms of the distribution function K of C(U,U>),

1 1
T = 4/0 1K (dt)—1=3 —4/0 K(1)dr. (4.13)

Genest and Rivest (1993) proved that the Kendall distribution function K of an Archimedean copula,
i.e a copula that can be written as C(uy,uy) = ¢! (¢(u1) + ¢ (uz)) with a convex non-increasing
function @ : [0, 1] — [0,0) such that (1) =0, is

()
K(t)=1t— forr € (0,1). 4.14)
()=t gy fort € O.1)
This chapter presents an estimator for the Kendall tau based on a novel estimator for the bivariate

survival function developed by Sen and Stute (2013). Before introducing the Kendall tau estimator,
it is useful to present that survival function estimator, called mass-shifting estimator in this thesis.

4.2 Mass-shifting estimator

Since the late 1980s, the estimation of the bivariate survival function F (x1,x2) =P(X; > x1,X2 > x7)
of a pair of censored non-negative random variables has received some attention in survival analysis.

Dabrowska (1988) generalized the product integral representation of the univariate case to the
bivariate case. She also established the almost sure consistency of the estimator. However, the
estimator gives negative masses at some points (Pruit, 1991).

Prentice and Cai (1992) provide an estimator for the bivariate survival function based on the marginal
survivor functions and the covariance function of counting process martingales.

Gill, Laan, and Wellner (1995) examine properties of three estimators (Dabrowska’s product integral
representation, the Volterra estimator and Prentice and Cai’s estimator). They showed the efficiency
of the Dabrowska and Prentice-Cai estimators for the bivariate censoring model under independence.
Bootstrap validity for estimating the variance of Dabrowska’s estimator is also provided.

Lopez (2012) develops a nonparametric estimator of the bivariate survival function using an addi-
tional mass at (eo,00), to make the estimator a proper survival function.
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

4.2.1 Univariate case: the Kaplan-Meier estimator

Let X be a non-negative real-valued random variable with (unknown) distribution function F, right
censored by another non-negative real-valued random variable ¥ with (unknown) distribution G.
Suppose further that X and Y are independent. Define Z := min(X,Y) and § := 1{X <Y}.

We observe a sample: (Z;,6;),i = 1,...,n.
How would we estimate the tail probability F (x) = P(X > x)?

Note that censored observations have density

d _
d—]P(5 0,Z<z)=F(z)G(dz), where F(z) =P(X >7z) (4.15)
b4
and uncensored observations have density
d — _
d—]P(5 =1,Z<z) =G(z)F(dz), where G(z) =P(Y > z) (4.16)
z

So that the likelihood of a sample (Z;, 6;),i = 1,...,n is:

H{F z)G(dz) } 15"{c_;(z,-)F(dz,-)}5"ocﬁF(z,-)lf‘sfF(dz,-)@ (4.17)

i=1
Order the observed durations z;’s as z1.,;, (minimum), 2.5, ..., Zn:» (Maximum) and denote by p; the
mass of the observation z;.,,.

Then

n

HF z) 7O F (dz;) :H Zp] )= 5pl5 (4.18)

i=1 j=i

The likelihood is maximized with

fo)
pL= —1, (4.19)
n

— 5
j for i=2,... 4.2

Those weights define the Kaplan-Meier estimator for the survival function F:

H{Zi:ngx}
J ) (4.21)

FKM sz]l{zzn>x} H( n—it1
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4.2. Mass-shifting estimator

4.2.2 Bivariate case: the mass-shifting estimator

The bivariate survival function F (x1,x2) = IP(X; > x1,X, > x7) is a solution to the integral equation

- - F(dt —

F(x) = / 7Y i F(0) = 1 4.22)
x<t<oo F(t)

where, and from now on, bold cases denote (bivariate) vectors and inequalities involving vectors are

considered componentwise.

The problem here is that, unlike the univariate case, a bivariate survival function is not identifiable
through its hazard function %. Let F{ = 1 —F; and F, = 1 — F, be univariate survival functions
on the positive real line with densities f; and f> respectively. Define F as F (x1,x2) := F1(x1)F2(x2)

(independence case). Then the hazard function of F is

_ filx) fo(x2)
h(X1,X2) = Fl(xl) F2(x2) (4.23)

hi(x1)  ha(x2)

Now, note that for any real number a > 0: h(x1,x2) = (ahi(x1)) (a 'ha(x2)), i.e there exists a
whole collection of different distributions on the plane with the same hazard function A.

To avoid this identifiability issue, Sen and Stute (2013) consider the mass-shifted survival function:

_ {(1—8)F(x)+s if xeR? 424)

Fe(x) = € if X=Xeo

where 0 < € < 1 and X. is a vector, possibly (eo,o), which exceeds all x componentwise in the
support of F.

Xoo

FIGURE 4.1 : Infinity point X
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F¢(x) is then solution to the integral equation:

_ o (1—e)F(dt) - .
F x:/ Fe(t = + Fe(Xs), with Fe(0) =1 4.25

8( ) << 8()(1—8)F(t)+8 8( ) 8( ) ( )
For right censored X = (X,X,) ~ F, we can only observe realizations of (8;,,,Z;,Z;), where
0; =1{X; <Y;} and Z; = min(X;,Y;), for j = 1,2, with 1, Y being the censoring variables. As in
the univariate case, an important assumption is the independence of X; and Y;, j = 1,2. Under that
assumption,

i — (4.26)

where G(y1,y2) =P (Y1 > y1.Y2 > y2), H'(X) = H'' (x1,x) =P(Z, <x1,Z, <x2, 6, = 1,8, = 1)
and f_l(xl,XQ) = ]P(Zl > Xx1,2» ZXQ).

The joint survival function under (right) censoring F2(x) is then solution to the integral equation

Fi(x) = / e FO(t) ((11__:))5(1:)(?:1 + F9(x.), with F2(0) = 1 (4.27)

Conjecture 4.2.1. Equations (4.27) and (4.25) are equivalent, i.e, they have the same solutions.

Empirically, given a sample (0y;, 8,2Z1i,Z2i),i = 1,...,n, Equation (4.27) becomes, with € = 1

n+1°
- - H}(dt) -
FO (x :/ FO (t)—= + ,with F2 (0) =1 4.28
Sn( ) X<t<Xeo E,I’l( )Hn(t)-'—% n+1 E,I’l( ) ( )
where
1 1 <
H, (t)=H, (t1,n) = " 01:02i1{Z1; <11, Z5i <t} (4.29)
i=1
_ _ 1 &
Hn(t) = Hn(l‘l,lz) = r_l Z {le >1,2y > Z‘Q} (4.30)
i=1
Define
)it Zik > Zyi and Zyy > Zy;
dik = { 0 otherwise (4.31)
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4.2. Mass-shifting estimator

and extend the definition to g; ,+1 = 1for1 <i<nori=n+1

Denote by pi the mass given to the observation (Zl,-,Zz,-),i = 1,...,n by the estimator F g’n and

Pnt1 =5, +1 the mass of X... And

- 1
F?' Fen 21i,2n;) = ZazkpkﬂL?

Let

. AH,%I(ZU,ZQ,') . 51i32i

U HW(ZiuZy) + Y nHW(Z4:.Z0i) + 1

With x = (x1,x2) = (Z1;,Z2i), Equation (4.28) becomes:

n n n
Y awri=), (Z aikbkakl> P
k=1

=1 \k=1

In matrix notation:

n
Ap=ABAp,) pi=1,

i=1

where

A= ((aik))lgi,kgn’B = diag(bl, e ,bn)

With F = (F?,...,F?), Equation (4.35) may be written as

n
F' = ABF’. ) bF} =1.
i=1

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

By ordering the pairs (Z};,Z,;) in the increasing order of the first coordinate and with a convention

for the ties, A becomes an upper-triangular matrix because
0 if k<i

ay = 1 if k=i
0orl if k>i
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Thus, A is invertible and Equation (4.35) is equivalent to

n+1

p=BAp.) pi=1. (4.38)
i=1

Sen and Stute (2013) showed that the equations (4.35) and (4.36) admit a unique solution:

n n n
pi=c¢i (1 + Z ajxCk + Z Z AagCrC+ ...+ i 1@ 1,42 - - - A1 pCit1Cit2 - - .C,,) Pn+1 (4.39)
k=i+1 [=i+1k=i+1

::di

where
bi
; = 4.40
Ci 1—b; ( )
and the updated mass at X is
-1
n
Pnt1= |1+ Z Cidi] . (4.41)
i=1
Our estimation path is as follows:
e Our target: F
e What we got through mass-shifting: F,
e Considering censoring, we had: F g
e Our estimator: FQ,
How do we make sure that we have a consistent estimator? By triangle inequality:
[Fgn(x) = F(x)| < [Fg,,(x) = FY(x)| +|F2(x) = Fe(x)| + |Fe(x) = F(x)| (4.42)

:o(l);s e—0 :g(]—FE;)):O(E)

The part F2 ,(x) — F2(x) is handled by linearization, through the influence function (Sen and
Stute, 2013), that is by writing

F2,(x) —F2(x) = Lx(F?,) + op (%) : (4.43)
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4.2. Mass-shifting estimator

where Ly(F?2 ) is solution to

H! 0

F,) /]l{t>xt;t<x>}Lt( /ll{t>xt;too}\f< ,é((t)t)_H”(t)FH((ctl;))
’ A 0 (4.44)

/ll{t>0t¢oo}l4( F dt /]1{t>0t¢°o}\f< nG(()t)H”<t)FH(((:;)>

4.2.3 The influence function and its covariance

The influence function is a measure of the effect of a small perturbation at some point on an estimator.
In addition to being a measure of robustness, the influence function is useful for calculating the
asymptotic variance: under some conditions, the asymptotic variance of the estimator equals the
integral of the square of the influence function (Hampel, Rousseeuw, Ronchetti, and Stahel, 1986).

Sen and Stute (2013) show that /n (F gn(x) — F9(x)) has influence function Ly(F?,,) satisfying

- dt) — . FO(dt)
_ / ]l{tZX}Lt(an = / I{t = { G(t) Hi(0 H(t) (4.45)

Equation (4.45) may be rewritten as:

/ 1{t > x}L(F / 1{t > x}doy,(t) (4.46)
/ 1{t > 0} Ly(F / 1{t > 0}day (1), (4.47)

where
dog,(t) = {H(l_; ((3‘) () F;I((‘tl;)] >0, (4.48)

Our goal is to obtain an estimator for the asymptotic covariance function, denoted by
v(x.y) = E [Lx(F¢,,)Ly(Fe )] . .y € [0,0) x [0,0). (4.49)

For convenience, rewrite the above equations (4.46) and (4.47) for a point y:
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= [ Us = yIL(F 0 )ds) R RS [P% —Hn(s)FO(ds)} @50

FO(s) (s) H(s)
FO(ds) H'(ds) — ,  F°(ds)
/Il{s>0}L ) o) —/]l{s20} {W—Hn(s) 7 } 4.51)
Multiplying only the left-hand sides of Equations (4.46) and (4.50) and taking expectation we obtain
0 s
v(X,y) —/Il{t > x}yv(t,y) F dt) /Il{s yiv(x,s) = ((ds))
O(ds
+//]1{t>xs>y} (t,s) 0((t)) 1;_70({1))
H' dt H'!(ds) (+32)
—/ll{t > x}pv(t,y) /]l{s > yhv(x,s) i)
H11 (dt) H'(ds)

—|—//11{t>xs>y} (t,s) A0 T(s) ,Xx#0,y#0.

Similarly, the multiplications of the left-hand sides Equation (4.46) x Equation (4.51), Equa-
tion (4.47) x Equation (4.50), Equation (4.47) x Equation (4.51) give, respectively,

_ / s > 0}v(x,s)H;ql ((:;S) + / / 1t > x,s > 0}v(t,s)H; ((St) H; ((:)S), x#0;  (4.53)
11 11 11 S
— /ll{t > 0}v(t,y)Hﬁ((St) +//11{t >0,s > Y}v(t,s)HH((td)t) HH((:) ) y#0; (4.54)
H''(dt) H'!(ds)

/ / e 052 0)v(ts) ot T (459

On the other hand, the right-hand side of Equation (4.45) is

/Il{t>x}docn - —IZ{M{Z”} /II{Z >t>x) (()) forallx >0. (4.56)

So, multiplying for x,y € R3 := [0,0) x [0,0) and taking expectation,
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4.2. Mass-shifting estimator

a [/]l{t XVY} /ll{t>x}FO(t\/y)F0 _./.H{SZY}FO(SVX)F;I((:)
0
+f [res s>y}H<tvs>FH(<f§) o)

FO(dt) Fo(ds)}

! [ [aie= xvy} o am H(t) H(s)

+//Il{t >x,s>yH(1-T1{t>s} —1{t <s})H(tVs)
H'!'(dt)
H?(t)

=n! [/ll{t > xVy}F2(t)

H'!'(dt )H“(ds)} 4.57)

+//l{t>xs>y}(l ez o) (1=t < ) AV P OF6) T e,

Note that the second term in Equation (4.57) is identically zero in dimension 1.

Now equate the expressions in Equations (4.52) — (4.55) with the corresponding terms from Equa-
tion (4.57); for instance, Equation (4.52) is equated with Equation (4.57) for x # 0, y # 0, whereas
Equation (4.53) is equated with Equation (4.57) for x # 0, y = 0, and so on. This gives

v(x,y) — /]l{t > x}y(t,y) — /11{5 > y}v(x,s)H;((:)S)
H''(dt) H' (ds)
+//]1{tzx,szy}v(t,s) OB
11
=n"! { / 1{t > x Vy}F(t) HHZ((f)t)

H''(dt) H'!(ds)
H*(t) H?(s)

+//11{t >x,5 >y} (1-1{t>s}) (1-1{t < s}) H(tVs)FO(t)FO(s)

H''(dt) H' (ds)
/ll{s > 0}v(x,s) —i—//ﬂ{t > x,8 > 0}v(t,s) H(t) H(s)
11
{ / ]1{t>x}F2(t)H ((f)t) (4.58)
+//11{t2x,s20}(1—ﬂ{t2s}><1—Jl{t<sDFI(Ws)FO(t)FO(S)H;z((f)t) Hél({i?

43
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H11 H''(dt) H'! (ds)
_/]l{tZO}v(t +//]1{t>05>y}v( s) H(t) H(s)
|:/]l{t>Y}F2(t) (((tl;:) (4.59)

H''(dt) H'!(ds)
H*(t) H3(s)

+//]l{t20,s2y}(1—11{t25})(1—]l{t<s}) (tvs)FO(t)FO(s)

and

Hll(dt) Hll( )

//l{tzo,szo}v(t )

H(t) H(s)
11
{ / Il{t>0}F2() ((f)t) (4.60)
H''(dt) H'!(ds)

+//]1{t20,s20}(1—ﬂ{tzs})(1—]1{t<s})ﬁ(tVs)FO(t)F0(s) 0

Sample covariance function

We now obtain the empirical version of Equations (4.58)—(4.60) by replacing every function by
its sample version. Replace FO(-),H(-),H"'!(-) respectively by F2,(-),H,(-),H}'(-) and denote
the corresponding solutions to Equations (4.58)—(4.60) by v,(+,-). Further, specialize only to x =
Z;, y = Z; and denote

Vij = Vn(Z,',Zj), 1<i,j<n.

Recalling the definitions of a;;, b; from Equation (4.36), we have, for 1 <1, j <n,

H,(Z;VZ;) Z aid jk (4.61)

11
/ 1t = z,} 2 (d)t) — nb? (4.62)
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4.2. Mass-shifting estimator

Thus, we obtain the following sample versions of Equations (4.58)—(4.60):

Z Aikbpvij — Z ajibvi + Z Z aixajibrbivi
= I= —1i=1

— ! Uﬂ{t > xVy}(FL,(1)° H;;]%Ef)t)

' 11 1 (ds
b 1z 520 (1230 ) (-2 < DRV FL 07, 0) 2 )]

n
= [ Zalkajk Fk) bk +n2 Z Za,ka][ l—akl)(l—alk (I’l1 Zakra1,> FgF?b]%blz
k=1 k=11l= r=1
n

non
Z aikd jk Fk Zbk + Z Z aikajldle,?F?b,%b,z, (4.63)
k=11=1

where
n
dy = (1—ap)(1—ay) Z arrar (= 0in 1 dimension), 1 <kl <n. (4.64)

r=1

Similarly,

aid FYF)bby; (4.65)

M=
M=

n
aviabeby =Y aw(F})bj +

|
ngE
NS
»
~
4
ngE
M:

k=1 k=11=1 k=1 k=11=1
n n n n n
— Z Vljbl Z Z jlvklbkbl = Z ajp (F?)zblz + Z Z ajldlegF?b%bz; (4.66)
k=11=1 =1 k=1/=1
IR - 0\272 5y 0507272
Y ) bbb =Y (F))’bi+ Y. Y duFF)bib;. (4.67)
k=11=1 =1 k=11=1

Matrix equation

Define the matrices

V = ((vij))1<ijens D= ((dij))1i jen B = diag(FY,....F}).
Then Equations (4.63) — (4.67) can be written as

ABIF?

I1-AB
[ V[ (I_AB)T —b ]nx(n+1) = [ bTE

Y } (I+BDB) [ F'BA” F% ]. (4.68)

:|(11+1)><n
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

Thus, we have the asymptotic covariance matrix V of the mass-shifting estimator by solving the
Equation (4.68).

The Kaplan-Meier estimator presented above will be used in the following section to build a plug-in
estimator for the Kendall tau in the case of bivariate right-censored data.

4.3 Estimation of Kendall’s 7

Some estimators for Kendall’s tau in the presence of censoring have been suggested in the literature.
Brown, Hollander, and Korwar (1974) proposed an estimator based on the marginal Kaplan-Meier
estimators. Even though the estimator accounts for some configurations of censoring, it ignores
joint information for pairs of doubly censored observations (Wang and Wells, 2000a). Weier and
Basu (1980) proposed to impute censored observations by their expected values obtained by using
Kaplan-Meier estimates. These estimators rely mainly on the marginal survivor estimates and so
miss some information about the joint distribution.

Wang and Wells (2000a) investigated the properties of plug-in estimators based on formula (4.11).
They showed that such functional estimators have estimable bounds on the bias in estimation.

In light of Equation (4.11), we suggest the plug-in estimator
T, =4 / FY,(x)F2,(dx) — 1 (4.69)
for the Kendall tau in presence of right censoring
T=4 / FO(x)FO(dx) —1, (4.70)

where
e FY is the joint distribution function of (X;,X;) under right censoring,

e F?, is the mass-shifting estimator for the survival function of (X;,X,) under right censoring
(see Section 4.2.2),

o x = (x1,X2)

Remark 4.3.1. The estimator (4.69) is computed as

T, =4Y Fipi—1.
i=1
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4.3. Estimation of Kendall’s T

As the values of the mass-shifting estimator F ? and its weights p; (see Section 4.2.2) are obtained
through vector and matrix basic operations, the estimation is relatively easy in programming
languages like R.

Lopez (2012) used a similar estimator based on an estimator of the survivor that puts an excess mass
at an additional point. However, his paper did not provide an asymptotic variance for the estimator.

In the next section, we will estimate the asymptotic variance of +/n(7, — 7) using its linearization.

4.3.1 Asymptotic variance of 7,

Let us recall that (X1, X>) is a pair of censored non-negative random variables with joint distribution
function F (and survivor F°) and F g’n is our estimator for the survival function. The censoring
variables are (Y},Y;), with joint distribution G and joint survival function G.

The observations are then {(le,Zz,,Sl,,Sz,) —1, realizations of (Z,Z,,61,6,), where Z; =

i=

min(X},Y;), Z, = min(Xz,Y2), 6 = 1{X; < Y;} and & = 1{X, < Y»}.

Define also H'!(x) ::H“(xl,xz) =P(X; <x1,X2 <x,6, = 1,8, =1) and H (x1,x) :=P(X; >
x1,X2 > x2).

As previously decided, cases in bold font will continue to denote two-component vectors and
inequalities between vectors will be considered componentwise.

Let us rewrite:

%\/ﬁ (/F x)FO, (dx) /FO Fo(dx)>

_\f(/F x)FL, (dx) /F —i—/an )FO(dx) /FO Fo(dx)>

— n / O, (x) (2, (dx) — FO(dx)) + / Vi (F2,,(x) — FO(x)) FO(dx)

= Vit [ (FL(0) = FO(x) + FO(x) (FS, (dx) ~ F*(x))
+ f(FO (x) = F(0) FO(d)

= Vit [ (FL,(x) = FO(x)) (R, (¢x) — F°(ex) @.7)
+vn / FO(x) (F2,(dx) — F(dx)) (4.72)
+ / Vi (F2,(x) — FO(x)) F(dx). 4.73)
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

As
F{,(x) - F'(x) = Op (%) (4.74)

and
/ (FO,,(dx) — FO(dx)) = Op (%) : (4.75)

the term (4.71) is negligible. And we can focus on the linearization of (4.72) and (4.73).

From Equation (3.9) of Jin, Sen, and Stute (2013), we know that

N / FO(x) (F2, (dx) — FO(dx)) = \/ﬁ( / FO(x)F?, (dx) - / FO(X)FO(dx)>

has the influence function Lzo(FY,) given by

Lo (F2) / Le(F2,)FO(dt) + / FO(t) o (dt), (4.76)
where
H(dt FO(dt
(dt) = ';_}(ﬁ))— a0 P_f(t)) @.77)
Moreover,

has the influence function
/ Ly(F2,)F°(dt).
So that the influence function of § v/n(1, —T) is
=2 / Ly(F2,)FO(dt) + / FO(t) i, (dt). (4.78)
Rewrite for s:
=2 / Ly(F2,)F°(ds) + / FO(s)a,(ds). (4.79)
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4.3. Estimation of Kendall’s T

Then, the asymptotic variance of § /n(7, — 7) is:

oV (Vi) =5 { (2 [ LR @) [ F0(a) (2 [ PP o)

+/f%w%w@)}

— 4 (/Lt(F /LS FO( ds))
48 ( [LFLIP @) [Fls)aes) )
+E( [P [Foe).

Taking advantage of the Fubini-Lebesgue theorem, we can rewrite each of these expectation-terms
in an easily estimable form. This is performed in Appendix C.1. We can thus derive a formula for
the asymptotic variance of the Kendall tau estimator:

Theorem 4.1. The asymptotic variance of \/n(t, — ), Va5 (\/n(7, — 7)), is given by

1
Rvas ( \/;l(rn - T))

H“(d ) H'(ds)
=4/ [FPwrs S TR0 +4 (e

H''(dt) H'(ds)
H(t) H(s)

! Uﬂ(t)H;(t)z +//(1—ll{tZS})(l—ﬂ{t<S})H(tVS)FZ( t)F2(s)

with

v(t,s) = (L(F,)Ls(F?,))

e wy is the solution to the inhomogeneous Volterra equation of the second kind:

wg — /ﬂ{u > thwy I;jo((dl;l)) =FE </]l{u > thay,(du) /FO(S) Oy (ds)) , with condition wy=0. (4.80)
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

4.3.2 Estimation of the variance of 7,

Estimation of wy

Just as with Equation (4.57), the right-hand side of Equation (4.80) can be written as:

E ( / /ll{u > t}FO(s)a,,(du)ocn(ds))

[ [1taz 0 () 0

+ [ [Uuz g1 -1uz ) (1-1u<sh Huvs) (Fw)* (F(s))

(4.81)

3 H''(du) H'(ds)
H2(u) H2(s)

Replace FO(.),H(.),H'!(.) by their respective sample counterparts F2 ,(.),H,(.),H,'(.) and put
u=1%2;,s=12;.

Then:
Hy(uvs)=H,(Z;VZ;) Za,kajk (4.82)
and
Hll
[ru=zy B e (4.83)
Hi(u)
where
o 1 if Zix > Zyi and Zy > Zy;
dik { 0 otherwise (4-84)
and
ANH(Z41, 25 01;62;
b= — N (Zi22) _ b (4.85)

Hn(Zli,ZZi) + rlz an(Zli,ZZi) +1
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4.3. Estimation of Kendall’s T

Equation (4.80) is now equivalent to:

H,'(du)
Wi —/Il{u > thwy 7, (w)
11
—_— { / 1{u >t} (F°(u))’ HHZ(((ljll)l) (4.86)
B B _ 0/ 2 =0, 3 H'(du) H!!(ds)
+ //]l{u 2 (1 -1z ) (1= < s Aavs) () (7)) Tt )
H,'(du)
_ /]l{u > 0}wy ()
. Hll d
- { / 1{u > 0} (F2,,(u))’ ;12Eul)l) 4.87)
_ _ o 70 270 (o3 Ha' (du) Hy'(ds)
+ [ [ =011 -1u =) (1 = Uu < sh H(avs) (F, W) (FL(6) ) M
Let
° /W = (Wzl,. .. ,WZH),
e I be the n x n identity matrix,
o (A)ij=aij=WZj > 7Z;,Zjp > Zp;} for 1 <i,j<n,
e b= (bl,...,bn),
e F'=(F,....F0) = (F2,(Z11.Z12),....F2 ,(Zn.Zn2)).
o F=diag(FY,....,F?),
o (D)ij=dij=(1—aij)(1 —a;i) L} airajr.
W is the solution to the equation in matrix notation:
_ — E? o
{I_l‘;‘TB] W= ﬁ?%:o} (I+BDB)F'BF. (4.88)
(n+1)xn
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Chapter 4. A plug-in estimator for Kendall’s tau under right censoring

Variance estimation

With the estimator of W above (in 4.88), we can provide an estimator for V, (/n(7, — 7)) as:

————

Vs (V(T— 1)) = 16 ( (FO)TBVBF® +2(F*)TBW + (F*)"BE®(I + BDB)]F"BF") . (4.89)

4.3.3 Illustration using simulated data

We simulate two random variables X; and X; from a Weibull distribution with density

X

x 2
flx)= 7 CXP (— (5) ) for x > 0 (shape=scale=2)

and linked by a Clayton copula

_1
Ce(ul,uz) = <uf9+u£9—l> ¢ for O < uy,upy <1.

The Kendall tau coefficient of the couple (X1, X>) is given by

0

_ v 4.90
=12 (4.90)

X; and X, are both censored by an exponential random variable with rate parameter A (mean = %).

e

In Table 4.1, we compare the asymptotic variance c;;n = %Was (v/n(t, — 1)) of 7, from the variance
estimator (4.89) calculated on a sample of n values, to the mean squared error (MSE) of the estimator
Ty, IE [(Tn — 7)2}. To calculate the MSE, we simulated M = 100 samples, each one of size n. We

also give the decomposition of the MSE in bias and variance components:

E[(5,- )] = E (%~ E(5)’| + (E(m) - )’

-

v~

) 2
variance bias

By trying different combinations of the values of the sample size, the parameter 6 of the copula and
the rate A of the censoring variable, we can evaluate the effects of the sample size, the dependence
between X| and X, and the censoring on the variance.

The performances of 7, are contrasted with that of Wang and Wells (2000a)’s estimator, denoted 7.
7Y is obtained by plugging Dabrowska (1988)’s estimator for the bivariate survivor in Equation (4.11)
and correcting for possible ties in the data.
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4.3. Estimation of Kendall’s T

With the programming language R (R Core Team), the functions mvdc and rMvdc (in the package
copula) allow us to build a copula object with specified marginal distributions and to simulate
observations from it. Dabrowska (1988)’s estimator is available through the function KM2 of the
package mhazard.

TABLE 4.1: Asymptotic variance of 7,: simulation results

Model Criterion n =400 n =500
T400 Y 7500 Y
o2  |232025-10°% 1.31420-10°%
MSE | 0.01421 0.00524 | 0.00809 0.00373
A=1 bias? 0.00674 0.00012 | 0.00353 0.00016
0—1 (79% of censoring) | variance | 0.00747 0.00512 | 0.00456 0.00357
G%n 0.00068 0.00235
MSE | 0.10017 0.03301 | 0.08442 0.02103
A=2 bias? 0.07487 0.00003 | 0.06544 0.00085
(94% of censoring) | variance | 0.02530 0.03299 | 0.01897 0.02018
oz |279125-10°% 1.59180-10"%
MSE | 0.00939 0.00697 | 0.00560 0.00532
A=1 bias? 0.00585 0.00001 | 0.00323 0.00004
0—3 (77% of censoring) | variance | 0.00354 0.00696 | 0.00238 0.00528
G%n 0.00078 0.003 84
MSE | 0.04369 0.05602 | 0.05151 0.02370
A=2 bias® 0.01657 0.00002 | 0.02582 0.001 82
(93% of censoring) | variance | 0.02712 0.05601 | 0.02569 0.02188

Wang and Wells (2000a)’s plug-in estimator () performs better on the bias aspect, although its
variability is comparable to our plug-in estimator’s (7,). The difference in the bias diminishes as the
correlation between the variables grows.

Censoring noticeably increases the variability of the estimates. The increase is both in the variance

and the bias components of the MSE. Figures (4.2a) - (4.2b) illustrate that change. The effect of the
dependence in (X,X;) on the variability is much more subtle.
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FIGURE 4.2: Estimates of the Kendall tau for models with Clayton copula (6 = 3)
and censoring parameter A

4.3.4 Illustration using kidney patients’ infection data

We use the data in McGilchrist and Aisbett (1991) for estimating Kendall’s tau. The data are
provided in the package SurvCorr of the software R (R Core Team).

The data are from a study of the recurrence time of infection in kidney patients who use portable
dialysis machines. The catheter is removed when an infection occurs. Once the infection is clear,
the catheter is reinserted.

Two recurrence times (in days), from an infection until the next one, are recorded. The median times
to infection are 46 (days) and 39 (days) for the 1% and 2" infections respectively. Figure 4.3a shows
the dispersion of the two time-to-events.

Right censoring happens at the end of the study or when the catheter is removed for some other
reason. 38 patients were observed, 6 first recurrence times are censored, 12 second recurrence times
are censored and 3 observations are doubly censored.
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FIGURE 4.3: Kidney patients’ data

The Kendall tau estimate using (4.69) is 7, = 0.359. Wang and Wells (2000a)’s estimate is Y = 0.218,
Brown et al. (1974)’s is 0.209. Our variance estimate is 5.947 - 107, that is a standard deviation of
0.008. Wang and Wells (2000a) obtained a standard deviation of 0.072 through bootstrap.

4.4 Conclusion

The need for an efficient multivariate Kaplan-Meier estimator guided Sen and Stute (2013) to develop
a new estimator for the joint survival distribution function for right-censored data. The estimator,
referred to as the mass-shifting estimator throughout this thesis, is described at the beginning of
this chapter. It inspires the plug-in estimator for Kendall’s tau (7,) presented in the second part of
the chapter. The asymptotic distribution of 7, was provided, using the influence function approach.
The estimator was illustrated and compared to other available estimators (like Wang and Wells,
20002a’s ) using both simulated and real-life data. On simulated data, we noticed that censoring
noticeably increases the mean squared error (MSE) of our Kendall’s tau estimator 7,,. The increase
occurs both in variance and bias components of the MSE. The effect of the dependence between the
time-to-event variables on the variance is much more elusive.
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Chapter 5

Copula likelihood maximization under right
censoring

5.1 Introduction

Consider a pair of right censored random variables (X;,X») ~ (Fj,F>) with some continuous
bivariate copula dependence Cy with density cg. Genest et al. (1995) provided a semiparametric
estimator for the pseudo-likelihood in two steps:

e first estimate the marginal distributions by the rescaled empirical distributions

~ 1 & i
Fi(x) = w1 Y 1{X;i <x},j = 1,2 from an uncensored sample{ (X1;,X2;) }i={
i=1

e then take

6= arggnaleog (co (Fy (Xli)’FZ(XZi))l (5.1
=~ -

1

:=1(0,F1(X1),F>(X2))

Under regularity conditions, the authors showed that the estimator 8 is consistent and that /7(6 — 6)
is asymptotically normal with variance
2 — Vil (0.5 (X1). B2(Xo)} + Wi (X1) + W2 (Xa))
E {13 (6.F(X1).F>(X2))}

(5.2)
where
VV,(X,) = /]I{F,(X,) S u,-}lg’,-(e,ul,ug)ce(ul,ug)dulduz for ]: 1,2 (53)
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5.1. Introduction

and the indices 0, 1,2 on the log-likelihood / denote its partial derivatives with respect to 0, uy,u;
respectively.

A consistent estimator for the variance v? is provided by using pseudo-observations and the empirical
copula function. The estimator 6 is also showed to be efficient under independence.

The goal of this chapter is to establish similar results in the case of censored data: instead of
the sample {(Xy;,X>;) }'=!, we have access to { (01, 02, Z1,,Z2;) }'="|, where 8;; = 1{X;; < Yj;} and

Zj;=min(X;;,Yj;), fori=1,...,n,j = 1,2, with ¥, Y, being the censoring variables. We want to

estimate 6 by maximizing the pseudo-likelihood
Hce % (Z11), Y (Z2))" (5.4)

where

e cg(uy,uy) is the density of some copula family with parameter 6,

e FY(Z;1) and F%(Z,;) are the estimated marginal distributions obtained by using the Kaplan-
Meler weights (section 4.2.1),

e the p;’s are the weights of the mass-shifting estimator (section 4.2.2).

As

0 = argmax L(0) = argmax log (L(9)), (5.5)
0 0

we will work with the log-pseudo-likelihood

log (L( Zp,log ce( (Zl,),Fnz(Zzl))) (5.6)
i=1

Remark 5.1.1. First of all, note that log (L(0)) in Equation (5.6) is of the form

log (L(6)) = / log (o (FS (x1).FS (x2)) FO(dxy.dxy)) 5.7)
where FY(.,.) is the bivariate Kaplan-Meier estimator of Sen and Stute (2013) introduced in the
previous chapter. It follows that log (L(0)) is a consistent estimator of the expected log-pseudo-
likelihood for complete data, viz.,

10g(L(6))—>/log(cQ (Fi(n1), Fa(2) ) F(dxy,dna)) s n—s oo. (5.8)
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Chapter 5. Copula likelihood maximization under right censoring

This is the motivation behind our proposal to use log (L(6)).

Let us call the pseudo-log likelihood in Equation 5.6 the compact log-likelihood. Shih and Louis
(1995) considered the full log-likelihood in this case, namely,

log (L*(0)) = znll {81:6210g (co (Fy (Z11), Fn(Z21)))

+ 61 (1 — &) log <M)

duy (1.2)=(FO, (213).F (221)) (59)
9Co (uy,u2)
1—-6 i il Y & 2
+ ( 1 ) dilog < duy (ul,uz):(Fgl(Zli)’FQZ(ZZi))

+ (1-8;) (1—8%)1og (Co(FY (Z1,),F% (22:))) }

Note then that for d-dimensional data, the full log-likelihood (under d-dimensional censoring) will
have 2¢ terms, whereas the compact log-likelihood will have one term in any dimension.

Moreover, we present a comparison between the two likelihoods based on simulated data in Section
5.6, and it appears to show that the compact likelihood outperforms the full likelihood under strong
dependence.

0 is such that

d
5 log(L(6)) ‘9:@ — 0. (5.10)

Taylor expansion of the score function 5 log (L(8)) at the true value 6 of the parameter 6:

d d d?
—log(L(6)) = —log(L(6 ——log (L(6 6—6 5.11
5108 (L(0) = gglos(LO)| -+ ggrlos((@))]  (0—a)+ (5.11)
Then, from Equation (5.10) above:
d d? A
—log (L(0)) + 5 log (L(6)) (6—6p) ~0 (5.12)
519 =60 fle =6,
::vAn ::‘—,Bn
Thus:
A A
V(0= )~ Y (5.13)



5.2. Asymptotic behaviour of A,,

In the next two sections, we investigate the limits of the quantities A, and B,,. Once those limits
are obtained, the limit of our maximum likelihood estimator is readily available (Section 5.4). The
estimation of its limiting variance is presented in Section 5.5. Sections 5.6, 5.7 and 5.8 show the
performance of our estimator compared to Shih and Louis (1995)’s, on simulated data and real-world
datasets.

5.2 Asymptotic behaviour of A,

d d
An: @log( (6)) = sz d0 log (CQ( (le)’FnZ(ZZI))) (514)
0=6) i=1 0=6,
Z:q) (FO (ZI‘),,FSZ(ZZ);G())
=//¢(721(21)J7 2(22):60) Fe(dz1,dz2) (5.15)
A, has limit
A= //‘P 1(21),F3(22); 60) F°(dzy,dz2) (5.16)
—// log (co (F(21),F(2))) F%(dz;,dz) (5.17)
6=6,
5o (FY(21),FY(22)) 0 0
/ / co ( Fo Z)RZ) |, , (F(21), 7, (22)) dz1dz (5.18)
://@Ce (F)(21).F(2))|  dzdzn (5.19)
0=6,
~de //Ce F(21).F, (22)) dz1dz (5.20)
=1 6="6)
—0. (5.21)

We claim that:

Claim 5.2.1.
VA, — A (0,0%) in distribution as n — +oo.

2

We will estimate the variance 0“ using the linearization of /nA,.
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By Taylor expansion at (F(l) (z1 ),1_78 (Zz)):

¢ (F)i(z1),F(22): 60) (5.22)

~ ¢ (F(21).F3(z2): 60) (5.23)
0 0 i .

" (Fnl(ZI) FI(ZI)) alll(IJ(MI’Mz’GO) (u1,u2)=(F9(21).F3(22)) 29

+ (Fia(z2) = F5(22)) i</>(u1,u2;9o) (5.25)

8u2

(uru2)=(F(z1),F3(2))

So that:
= f//(b w1 (21) 2);60) Fey(dz1,dz2)
= i [ [ 16 (Fo(er). Faler): 60) — 0 (F2(er).F3(ea): o) +0 (FO(a). FR(22):0)] FS, (dar )

= v [ [lo (Fgl(m),ng(zz);eo)—¢(F?(ZI),F3<ZZ) 60)] 2, (dz.dzp)

+ \/ﬁ//q)(F?(Zl)fg(m);90)Feo,n(dzladzz)
— d

- 0 0 AP

N \f//(F () = Fia) auld)( 1:12: 6) (uru2)=(F9(21).F9(z2))
+ \/ﬁ// Foz(@)—Fg(zz))ifp(uuuz;eo)‘ F (dzy,dz))

" J (u1.u2)=(F9(21).F3(22)) en

+ \[//(I) 1(z1) FO (z2) 90)( gn(dzl,dm)—Fo(dzl,d22)+F0(dZ1,dZ2))

0
= F ) —FY( -— ,u2; 0
\/ﬁ// m(z1) —Fi(z1) aul(P(Ml u2;6p) (1) (PO a1 FS(2))
_ _ 0
+ // (F} —F) —— 0 (u1,uz; 6 o
Vn 2(22) —F3(22)) 3 2¢(M1 23 6p) (o) = (PO o) F2)

+ f//q) ).F9(22); 00) (F2,(dz1,dz) — F°(dz1,dz0))
+\f//¢ ).F9(22); 60) F°(dzy1,dz2)

=A=0

Fgon (le ,dzz)

(F,(dz1,dz) — FO(dz1,dz) + FO(dz1,dz))

(F2,(dz1,dz) — FO(dz1,dz2) + FO(dz1,dz2))
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VA,
N f// Zl )a w2 o) (ur.u2)=(F{(21).F9(z2)) (an(dm’dzz)7F0(dz1’dzz>) (5.26)
6 FO(dz;.d 5.27
+ f// 9 (z1) = FY(z )a O (u1,u2;60) ()= (P o) F32)) F°(dzy,dzp) (5.27)
+ ﬁ//(F22(22)—Fg(ZZ)) Tuz(b(m,uz;ﬂo) (en )= (O P20 (an(dzhd@)—Fo(dzl,d@)) (5.28)
70 ) J _ 0
+ ﬁ//(Fnz(Zz) F)(z2)) 8u2¢(ul’u2’60> (u1,uz)=(F?(z1),F2(z2))F (dz1,dz2) (5.29)
+ ﬁ//‘b (F?(Zl)jg(zz);eo) (an(dm,de) —FO(thde)) (5.30)
As
=0 70 1
en - =Up| —F= .
F;,(z)—F°(z) 0(\/ﬁ> (5.31)
and

0 |
_— ,Un; 6 FO (d ,dzo) — FO(d ,d O ( ) 5.32
//8u1¢(u1 u2; ) (ul,uz):(ﬁ?(zl)’ﬁg(z2))( en(dz1,dz2) (dzy Zz)) P i (5.32)

the term (5.26) is negligible. A similar argument holds for (5.28) as well.
Recalling that FO, (z1) = F2,(21,0) and F9(z1) = F°(z1,0), we observe that (5.27) has linearization

FOd 533
(uru2)=(F(z1).F3(22)) (@) o

o\ 0
[ La(F) 56 i)
where

e z) =(21,0), 2= (21,22)

o Ly(F?,), linearization of 2, atx, is solution to

) — ,  FO(dt)
/ 1{t > x} L (F / Il{t>x}( L IO > .
0 11 0 :
/ 14t > 0} (F2, )= dt / Il{t>0}( ((C;t) —Hn(t)FH((f;)>
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Chapter 5. Copula likelihood maximization under right censoring

Similarly, (5.29) has linearization

F°(dz), 5.35
()= (P Ry () -3

— d
/ng(Fg,n)g—uzMul,uz;@o)

where 23 = (0,2,).

From Equation (3.9) of Jin et al. (2013), we know that the functional (5.30), which can be rewritten
as

\[//(b ),F9(22);60) (Fe,(dz1,dz2) — FO(dzy,dz0))

- - (5.36)
_ ﬁ{//¢ F‘f(zl),Fz(zz);eo)Fg{n(dzl,dzz)—//¢(F‘f(a),FS(zz);eo)FO(dm,dzz)},
has linearization
), F(22);600) Lo (FY Gl (F(z1),F3(22); 60) ot(d 5.37
¢ (F 2(22): 60) La( )FO ) 4 ¢ (F7(21),F3(22);60) 0 (dz). (5.37)
We conclude that /nA,, has linearization
d
Lo(F2 60) + L —— ¢ (u1,u2; 6 F(d
/< 4l )8 0 (123 0) + Lg(Fea) 50 (- 0)) (i =(Pe) ) (538)
+/¢ ).F9(22); 60) Lo (F2,, )FO (d2) +/¢(FO(Z1) F9(22); 60) o (dz) ‘
2 FO(Z) 1 LR s n
Rewrite that linearization for s = (s1,0), s3 = (0,5;) and s = (s1,52):
- 0 - d
Lo(FY)=—o(uy,u;0 LFQ,;G) FO(d
/( alFen) g Ol @)+ byFen) g 00w I r g (5.39)

FO(ds)

s +/q> (FO(s1),F3(s2): 60) o, (dls)

+ [0 (Fs0). FY(s2):0) L(F,) 5
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5.2. Asymptotic behaviour of A,,

Multiplying (5.38) x (5.39) (as in Appendix D.1) and taking expectation, the asymptotic variance of
\/nA, obtains:

c —]E{//(Lo (F2,) 8 ¢>(u1 u; 60)+Lo( )aauzwul,uz;eo))

<Ls‘1’ (Fg,n)fm¢(”1»”2§ 6o) +Lsg<F(£),n) Tuzﬁb(ul,uz; 90))

X
(ur,2)=(F9(21).,F3(22))
Fo(dz)FO(ds)}

(r.u2)=(F(51).,F3(52))
— p) B Py
+2IE {/ (Lzll)(Fg,n)(M(P(m,uz; 6o) +ng (Fg,n)a—uqu(ul,uz; 90)>

0(ds
/‘P (F?(S1),F(2)(Sz);90)L5(F2’”)1;0(fs)) }
0

_ J _

F%(dz) x
(uy.02)=(F(21).F3(22)) (dz)

F(dz) (5.40)

(u1,u2)=(F(21).F3(z2))

/¢ (F(l)(sl)fg(sz);eo) Ocn(ds)}
+E{ [0 (i) File)ion) L7, >F0 L) / 0 (F (1), P (52):60) Lo (F2, >F0(ds)}

FO dz

/¢ (FO(51).FY(52): )(xn(ds)}

LR { [0 (R F(22)s0) £,(F,)
-HE{

[ ¢ F).Fh(e:en) a(ao) / 0 E(snfz(sz);eo) 0,05}

We can work out each of these expectations to get expressions that will be more easily estimated
from data. This task is carried out in Appendix D.2. From that, we obtain that:
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Chapter 5. Copula likelihood maximization under right censoring

Theorem 5.1. The limiting variance of \/nA, is
2]
=—¢ (u1,u2: 6p)

0
2= [ o s
v(z:s) au1¢(ul uzi ) (u2)=(F9(21).F(22) ) QU2

11 7 11

/] (v<z?,s>;3,1¢<m,uz;eo>+v<zg,s>;2¢<m,m;eo>)

H''(dz) H" (ds)

(uru2)=(F(51).,F3(s2))

(ur.u2)=(F(21).F3(22))

0 (FY(51). F3(s2):00) F*(2) =705= =57 = G40
11 Z
+2/ (g +r)FO(2 )HH((:))
+//v(z,s)¢ (FQ(21),F3(22):60) ¢ (F(s1),F5(s2); 60) I—II_I((:))HII_II((S)
[l H“ +E ( [ [0 (FO@). Fz):00) ¢ (F3(s1). Fi(52):0) an<dz>an<ds>)
5.3 Asymptotic behaviour of B,
B,, was defined as
d2
By=— 157102 (L(6)) Zpl 10g (co (F) (Z1).Fp(Za1)))
9:90 i= 6="06
Then:
Proposition 5.1. As n — oo, in probability,
d2
B, —+B=—-E (dezlog(ce (F1(Z1),F(Zy))) >
6=6o
. 2
—FE <@log(ce (F1(Z1).F(Z2))) >
6=69
— E{0? (F)(21).F3(22):60) } (5.4
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5.4 Asymptotic behaviour of 6

From the results of the previous two sections, we have the asymptotic behaviour of the maximum
likelihood estimator:

Theorem 5.2.

2
V(6 —6y) — A (0,v%), where v* = %, with 6% given by (5.41) and B by (5.42).

Proof. The result comes from the approximation (5.13) and Slutsky’s theorem. O

5.5 Variance estimation

We turn now to the estimation of the variance v* above.

Rewrite Equation (D.79) as:

H'"!'(du)
rl—/]l{u>z(1)}ru () =0y <
H'"'(du) 64
—/]l{u>0}rll () =09

Just as with Equation (4.57) in Section 4.2.3:

oz(l):]E{//]l{uZZ'l)}aaul¢(u1,u2;90) ¢ (FQ(s1).F5(s2): 60) (xn(du)(xn(ds)} (5.44)

(u1.u2)=(F9(21).F3(22))

_ 1 0 9 . 200N FO( Y. o) (502 H(dw)
=n [./1{“ > 2} 5, -0 (w12 60) (ul,uz):(f‘f(zl)fg(@))¢ (FY(u1), F3(u2): 60) (F°(u)) H2(u)
0 i . 0 0 .
+ //ll{u 2 Z1}8M1 0 (1 12: 6o) (ul,uz):(F?(m)fg(zz))¢ (Fl (Sl)’FZ(s”’GO) 4:49)
_ —0, ~=0, H'"(du) H'(ds)
_ _ 0( )70
X(1=1H{u>s})(1-1{u<s})H(uVs)F’(u)F"(s) ) 72(5) ]
Let us denote by r1 = (77, 0),---»7(z,,.0)) the vector of estimates of -
ry is then the solution to the equation
_ E° _
P ;:’TB} = {A]TSQF(,} (I4+BDB)E'B®(d})T (5.46)
- (n+1)xn b'
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Chapter 5. Copula likelihood maximization under right censoring

where

I is the n x n identity matrix

(A)ij=aij =WZj1 > Z1;,Zrj > Z»;}

AHN(Z1,,75;) 51:5;
° b , — b — 2n 042i) __ 1:92i
(b); ' Hy(ZuZo)+L T nHu (20, 20i)+1

B = diag(by,...,by)

F° = diag(FY,...,F?)
(D)ij = dij = (1 —aij) (1 —a;i) ] airajr
(@) = ¢ (F{(Z1:), F3(Za:); 60)

o (@)= a%lq)(ul,uz;ﬂo)

(ur,u2)=(F(211).F3(Za1) )

and

2= (F0z,)>-- - (02,))
is the solution to the equation

[I—AB

. [ABIF®
_pT =

) bT]FO}(I+BDB)11_3°B<I>(<I>§)T,

:| (n+1)xn

where

o (®3);= a%(b(ul,uz;(?o)

(ur.2)=(F(211).FS(221))

Similarly, from Equation (D.81), &€ = (éZp .. ,ézn) is the solution to the equation

o>

{I—AB

{ABH—:O
_pT =

bT]FO} (I+BDB)F'BOd’ .

:| (n+1)xn
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5.5. Variance estimation

Replacing terms in Equation (5.41) with their sample counterparts, we have an estimate for 62, the
asymptotic variance of /nAy:

(u1,u2;0)

(ul,uz>:(F°1<m (22)) Otz

(uru2)=(F, (s1).F ) (s2) )

s
+2//(Vn(Zl,S)aiule,uz,é)—|—vn(zg,s)a_u2¢(ul Mz,é)> (MIM):(F&(Zl)’ng(Zz))><
11( g
+2/(fzg+fzo)_2n( )ngln((i))

b [ [ om0 (P Fa(c)i) o (F2 50, Flp(520:8) ™

11
w2 [o, St o (Phuta). Fha(e:8) (R (2)" T
+f / 0 (Fiy(21) ,F,?z(zz);éwfsmsl) Fia(52):0) (1 -1{z>s}) (1-1{z <s})

H!'(dz) H!'(ds)
H}(z) Hi(s)

xH,(zVs)FY,(2)F2, (s) =2

(5.49)
where
e v,(z,s) is the sample covariance of L,(FY,,) (see section 4.2.3).

Each summand in Equation (5.49) is rewritten in matrix notation in Appendix D.3. This operation
yields that:

/\
02 =(&9)TF*BVBE'®; + 2b” V'E'b + 2(F; + ) '

(5.50)
+ ®TBVB® + 2b” & + &7 BF’(F'b + BDBF'B®),

where, fori,j=1,...,n

A

CD* ;= i s ;9 )
d ( 1) 3”1(])(1/!l “2 ) (ul,uz):(F?(Zli)»F(z)(ZZi))
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Chapter 5. Copula likelihood maximization under right censoring

3)i = 5 ;0
d ( 2) 9M2¢(u1 “2 )(ul,uz) (F?(le) Fz(ZZt))

o F=diag(FY,....,F?);

Ry . MM ZuZy) 016
(] B —dlag(bl,o~-9bn)9W1th bl - Hn(zli’ZZi)+ T nH i

e b= (bl,...,bn);

d N
= (u1,u2;60)

(V)ij =va ((Z1:0).(S1.S25)) du;

(uru2)=(F3, (211).F 3 (Z2i))

d N
+vu ((0,22:), (S1,52;)) O—,—uzcb(ul,uz; 9)

b

(Ml,Mz)I(Fgl (Zli)ﬁgz(zzi))

o D)ij=dij=(1—a;j)(1 —a;) X)_ airaj, with a;j = W{Zj1 > Z1;,Z2; > Zn;};

e 1, is the solution to the equation

rp = b O

[I —AB
—bT

RO
} r {AB]F } (I—i—BDB)FOBCI)(CI);)T, for p € {1,2}, (5.51)
(n+1)xn

with I being the n x n identity matrix and (A);; = a;; = W{Z1; > Z1;,Z2j > Z»;};

e ¢ is the solution to the equation

_ O _
{I lfTB} é= [A;;QFO} (I+BDB)F'BOd7; (5.52)
- (n+1)xn b' I
L] (q))z - (P (F?(Z]i),Fg(Zzl');é).
We estimate the variance of /n(0 — 6p) by

AN

A~ 2
vi= 2 . (5.53)

Zmﬂ 0(211),F9(22);0)
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5.6 Illustration using simulated data

To evaluate the performance of our maximum pseudo-likelihood estimator using two dependence
structures for two independent real-valued random variables X; and X», we explore two scenarios:

(1) X; and X, are linked by a Clayton copula:

_1
Cg(ul,uz) = (ul_e —i—u2_9 — 1) 0 , (ul,uz) S [0,1]2,9 € (0,00)

and have a marginal Weibull distribution of scale and shape 2, that is with density

Jx(x) = gexp <— ()—26)2) x> 0.

3.0F

X2

1.0

0.0f

0.0 0.5 1.0 15 2.0 25
X1

FIGURE 5.1: Clayton copula with 6 =2 (7= 1), n =500

The censoring variables are both chosen from an exponential distribution of rate A (mean =
%), with density

Jr(y) = Aexp(—Ay), y=>0.

From a sample {(Z;,Z;, 01 52,~)}fj1', we can evaluate the log-pseudo-likelihood based on
the mass-shifting estimator (compact maximum log-likelihood function) as (see Appendix D.4

for the derivation)
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Chapter 5. Copula likelihood maximization under right censoring

Di (log(e +1)—(6+1)log (Fno1 (Zu)F,?z(Zzi)) — (2+ é) log (F”U1 (Z1;)~? (5.54)

-

log (L(8)) =

1
+F(Z2) 0 - 1))

1

where we recall that

e p; is the weight given by the mass-shifting estimator (section 4.2.2)
o 1— Fnoj (zji) =F° 1(Zji), j € {1,2}, is the univariate Kaplan-Meier estimate at the point
Zj.
In the approach developed by Shih and Louis (1995), the log-likelihood function (full log-
likelihood function) is (see Appendix D.4 for the derivation):

log (L*(B)) = i {61,‘52i10g(9 + 1) — (9 + 1) (51,-10g (Fgl (Z]i)) + &ilog (FSZ(ZZi)))
= (5.55)

- <; + 61+ 52i) log ((Fgl(zl))ie + (ng(zﬁ)ie - 1)}

0-10° | ]
o) )
g g

= < —5-10% | ]

g0 go—1-10° | ]
i 2

~1.5-103 ]

0 0
(a) compact log-likelihood (5.54) (b) full log-likelihood (5.55)

FIGURE 5.2: Log-likelihood functions for a model with a Clayton copula depen-
dence structure of parameter 6 = 2 and 9% censoring (A = 0.05), n = 500 observations
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5.6. lllustration using simulated data

(2) X1 and X, are linked by an Ali-Mikhail-Haq copula

ujuy
1—9(1 —ul)(l —uz)

Co(u1,u2) = . (u,up) €[0,1]%,0 € [-1,1].

6.0/
50/
40/

X2 300
20|

1.0+

0.0f

00 10 20 30 40 50 60
FIGURE 5.3: Ali-Mikhail-Haq copula with § = —1 (7~ —0.1), n = 500

The censoring variables are random variables uniformly distributed in [0,a| (where a > 0),
with density fy (y) = %ﬂ[O,a] (y).
The compact log-likelihood is then

log (L Zpl{ 3log (1-6(1—F(Z11)) (1 - Fy(Za)) 5:56)

+10g(1—29+92+6(1—6)( \(Z1) + FA(Z2:)) +8(0 + 1) ES (Z1) A (Za1)) )

and the full log-likelihood is
log (L* (6 i{&,ﬁz,log 1-2040%+0(1—0)(Fo,(Z1;) + Foy(Z2:)) + 6(8 + 1)Fo, (Z1:)F oy (Z2))
—(1+51i+52i)10g(1—9(1—F21(Zli))(1—F22(Zzi)))
+ (1= 811) log(F1 (Z1) + (1 = 8x) log (F 5 (Z1))

+ (1= 81) Sulog (1 - 6(1—Fp)y(Z1i))) + 81 (1 — 8x) log (1 - 6(1 = F»(Z21))) }

(5.57)
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Chapter 5. Copula likelihood maximization under right censoring

The reader may refer to Appendix D.4 for the calculation details.

—1log(L(6))--- 6- - 6 —log (L*(8))--- 6-- 6
T T T T T T T T
i Z | ~50 | ; :
2 : g :
o _ - L} | L]
= : = 100 : 1
2 : < :
E‘Q —0.2 : B EO—ISO | : N
—0.3 L T | | [ | T | | |
—1 —-0.5 0 0.5 1 —1 —-0.5 0 0.5 1
2] 0
(a) compact log-likelihood (5.54) (b) full log-likelihood (5.55)

FIGURE 5.4: Log-likelihood functions for a model with an Ali-Mikhail-Haq (8 =
—%), 6% censoring (a = 30) and n = 500 observations

In each scenario, we simulate M = 500 samples of n observations each. The performances are
assessed on the criterion of the mean squared error (MSE):

E[(6-6)2) =E [(6-E(8))*] + (E() - &),
NI

N -

v . 2
variance bias

where 0 is the estimator for the true parameter value 6.

Choosing different parameter values of the censoring variable distributions (A in the first scenario, a
in the second one) enables us to assess the effect of censoring on the performance of the estimators.
The performance of the maximum likelihood estimation procedure based on the mass-shifting
estimator (compact likelihood approach) for the survival function is compared to that developed in
Shih and Louis (1995) (full likelihood approach).

Using the programming language R (R Core Team), the functions mvdc and rMvdc (in the package
copula) allow us to build a copula object with some marginal distributions and to simulate observa-
tions from it. We estimate the (univariate) Kaplan-Meier curves using the functions survfit and Surv
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5.6. lllustration using simulated data

of the package survival. The optimize function (stats package) is used to determine the maximum of
the log-likelihood functions. The results of the simulations are summarized in Tables 5.1 and 5.2.

In the first scenario (Table 5.1), the maximum likelihood estimator based on the mass-shifting
estimator performs better than the full likelihood approach. The former estimator seems to benefit
more from the increase in the sample size (from n = 200 to n = 500). The more correlated the
variables X and X, are, the more striking the advantage of the compact likelihood approach is. The
advantage gained lies mainly in the bias component of the MSE. The variance aspects are more
comparable between the two estimators.

TABLE 5.1: Simulation results for a Clayton copula

Model Criterion n =200 n =500

compact full compact full
4 =005 MSE 0.0199 0.0555 | 0.0073 0.0577
6=1 bias* | 0.0011 0.0438 | 6.9200-107% | 0.0530
(7% — 8% censoring) variance | 0.0188 0.0117 | 0.0072 0.0046
A =05 MSE 0.0363 0.0415 | 0.0129 0.0242
(t=1) bias* | 8.1300-107% | 0.0098 | 8.3000-10~% | 0.0130
(52% — 55% censoring) | variance | 0.0362 0.0318 | 0.0128 0.0112
4 =005 MSE 0.0364 0.2186 | 0.0138 0.2414
6=1 bias® 0.0013 0.2042 | 7.5800-107% | 0.2359
(7% — 8% censoring) variance | 0.0351 0.0144 | 0.0137 0.0056
A =05 MSE 0.0625 0.1038 | 0.0223 0.0830
(t=1) bias* | 3.0800-107% | 0.0506 | 0.0001 0.0660
(52% — 55% censoring) | variance | 0.0625 0.0532 | 0.0222 0.0170
2 =005 MSE 0.0864 1.1238 | 0.0324 1.2110
6=2 bias®> | 0.0007 1.1015 | 2.0000-107% | 1.2026
(7% — 8% censoring) variance | 0.0857 0.0223 | 0.0324 0.0084
A =05 MSE 0.1386 0.4498 | 0.0468 0.4577
(t=1) ‘ bias’ | 0.0002 0.3380 | 0.0004 0.4196
(52% — 55% censoring) | variance | 0.1384 0.1118 | 0.0464 0.0381

Note: compact refers to the MLE based on the mass-shifting estimator. full refers to the MLE
using the Shih and Louis (1995)’s estimator

For lightly linked variables (Kendall tau smaller than 0.2 in absolute value), the full MLE technique
of Shih and Louis (1995) achieves better results (Table 5.2). The advantage of the full MLE is more
pronounced when the weak correlation is combined with heavy censoring.
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Chapter 5. Copula likelihood maximization under right censoring

TABLE 5.2: Simulation results for an AMH copula

Model Criterion n =200 | n =500

o _3 a =30 MSE of compact MLE 0.055 0.027
-4 (6% censoring) | ratio compact MSE/full MSE 0.864 1.007
(T~ —0.14) a=3 MSE of compact MLE 0.302 0.286
(50% censoring) | ratio compact MSE/full MSE 4.088 8.089

0— _1 a =30 MSE of compact MLE 0.072 0.028
2 (6% censoring) | ratio compact MSE/full MSE 1.195 1.398
(7 —0.1) a=3 MSE of compact MLE 0.278 0.233
' (50% censoring) | ratio compact MSE/full MSE 4.085 9.113

01 a=30 MSE of compact MLE 0.027 0.009
2 (6% censoring) | ratio compact MSE/full MSE 1.071 1.002
(t~0.13) a=3 MSE of compact MLE 0.169 0.058
' (50% censoring) | ratio compact MSE/full MSE 5.707 5.583

03 a =30 MSE of compact MLE 0.011 0.004
-4 (6% censoring) | ratio compact MSE/full MSE 0.484 0.247
(t~021) a=3 MSE of compact MLE 0.067 0.012
' (50% censoring) | ratio compact MSE/full MSE 3.549 1.452

Note: compact refers to the MLE based on the mass-shifting estimator. full refers to the MLE using the
Shih and Louis (1995)’s estimator

5.7 Illustration using Canadian life insurance data

These data were first used in Frees, Carriere, and Valdez (1995) and are now available in the package
CASdatasets in the software R.

The data concerns 14,889 contracts in force with a large Canadian insurer during the period December
29, 1988 - December 31, 1993. The contracts were joint and contained last-survivor annuities in the
payout status over the observation period. 5 columns are available:

e EntryAgeM: entry age (years) of the male
e EntryAgeF': entry age (years) of the female

e DeathTimeM: time of death (years from December 29, 1988) of the male (zero if not applica-
ble)
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5.7. Illustration using Canadian life insurance data

e DeathTimeF: time of death (years from December 29, 1988) of the female (zero if not
applicable)

o AnnuityExpiredM: date (years from December 29, 1988) that the annuity guarantee expired (if
applicable).

3 observations have values of entry age that are abnormally low: observation 8446 has EntryAgeF =
0.2676, observation 8484 has EntryAgeM = 0.0657 and EntryAgeF = 0.4906, and observation 13815
has EntryAgeF = 1.1326. These observations are excluded from the analysis. Due to computational
limits, we restrict our analysis to 3000 observations randomly sampled from the remaining 14886.
Of those 3000 observations,

e 50 were uncensored (death has been observed for both individuals),
e 2,625 were doubly censored,
e 262 were only censored on the female death time,

e 63 were only censored on the male death time.

We are interested in the lifetimes from birth. The median male lifetime in our sample is 68.12. The
female median lifetime is 65.53. Figure (5.5) shows the dependence in lifetime in the couples.

Our data is {(Zy;,Z2i, 61, 02;) }22%000, with
o 7, = EntryAgeM + DeathTimeM,
o 7, = EntryAgeF + DeathTimeF,
o 8, = 1 if DeathTimeM > 0,

e & = 1 if DeathTimeF > 0.
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100F | | | | | | | —
90| 1
2 80f |
g
2
= 700 1
g
S 60f 1
©
£ 50 1
HQ-‘) o . . .
40 e |
30| 1

20 30 40 50 60 70 80 90 100
male lifetime (years)

FIGURE 5.5: Lifetimes of a sample from the Canadian life insurance data

We assume a Clayton copula distribution for the pair of lifetimes. Although not as good a fit for the
data as Nelsen (2006)’s copula number 4.2.20 (Luciano, Spreeuw, and Vigna, 2008), the Clayton
copula allows relatively easier computations'. We estimate the (univariate) Kaplan-Meier curves
using the functions survfit and Surv of the package survival of R (R Core Team). The optimize
function (stats package) is used to determine the maximum of the log-likelihood functions.

The compact pseudo-likelihood maximum is obtained with 0.38 and the full pseudo-likelihood
maximum estimator is 1.84 for a Clayton copula family structure.

5.8 [Illustration using kidney patients’ infection data

Let us also illustrate the two MLE procedures on the kidney patients’s infection data, described in
Section 4.3.4. Here too, like with the previous data (Canadian life insurance dataset), let us assume
a Clayton copula dependence structure. We find that the compact MLE is 0.10 and the full MLE
is 0.11. These values both yield a Kendall 7 coefficient of approximately 0.05. This very weak
dependence coefficient may indicate that the Clayton copula is not a good fit for the data.

ICf. calculations in Appendix D.4 for the log-likelihood formulas with Nelsen (2006)’s copula number 4.2.20
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5.9. Conclusion

5.9 Conclusion

The mass-shifting estimator presented in Section 4.2.2 stimulated the derivation of the semi-
parametric likelihood estimator presented in this chapter. Under some mild assumptions about
functionals of the mass-shifting estimator, the asymptotic distribution of this compact MLE was
obtained. The maximization procedure was illustrated on simulated data and on the Canadian life
insurance data. Our procedure was compared to the two-stage semi-parametric estimator of Shih and
Louis (1995). The comparison on simulated data showed that our new maximum pseudo-likelihood
estimator performs better as the correlation between the censored variables grows. Our estimator
also seems to benefit more from the increase in the sample size. The advantage gained lies mainly
in the bias component of the MSE. The variance aspects are more comparable between the two
estimators.
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Chapter 6

Conclusion and discussions

6.1 Concluding notes

At the outset of this thesis, our objective was to develop some inference procedures for copula-based
models in the case of bivariate dependence. This has been done in both the uncensored and censored
data cases.

The importance of Kendall functions for identifying Archimedean copula models led us to examine
the distribution of the Kendall functions for survival functions from copulas in Chapter 2. We were
able to derive a formula for the density. Moreover, the approach used allows for a representation that
is useful in simulating the values of the survival function. But the difficulty in finding an analytical
form of quantile functions in general limits the reach of the formula.

The well-known relation linking the Kendall function to the generator of Archimedean copulas
allowed us to derive, in Chapter 3, two estimators for the generator: one based on a differential
equation perspective and the other on an integral equation viewpoint. Asymptotic distributions of
the estimators could be established under some conditions.

A novel estimator by Sen and Stute (2013) for the bivariate survival function in the case of right-
censored random variables inspired the work in Chapters 4 and 5.

A plug-in estimator for Kendall’s tau is derived in Chapter 4. Its asymptotic distribution was
provided, using the influence function approach. The estimator was illustrated using both simulated
and real-life data.

In Chapter 5, a maximum likelihood estimation for copula model parameters was developed using
the estimator for the bivariate survival function. The maximization procedure was illustrated using
simulated data and a Canadian life insurance dataset and compared to the estimator of Shih and
Louis (1995). The comparison on simulated data showed that our new maximum pseudo-likelihood
estimator shows performs better as the correlation between the censored lifetimes increases.
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6.2. Future work

6.2 Future work

This thesis suggests some goodness-of-fit tests. First, a test for selecting among different Archi-
medean copula families may be derived by investigating the asymptotic behaviour of S, (in 1.17)
and 7, (in 1.18) in the case of right censored data. An estimator for the Kendall distribution (in
replacement of 1.14) would be

Ka(t) =Y pl{FL, (211, 22:) <1}, (6.1)
=1

1
with the mass-shifting estimator an and the weights p; defined in section 4.2.2.

Secondly, another goodness-of-fit test may take advantage of either estimator of the generator
provided in Chapter 3.

Some results of this thesis were achieved by making an assumption: Conjecture (4.2.1) was needed
to derive the bivariate Kaplan-Meier estimator (mass-shifting estimator). Although reasonable, that
assumption need to be formally established as a result.

Finally, with regards to the numerical analysis, the computation of the variance of the compact
MLE presents some difficulty. More specifically, calculating the score function (formula (D.88)
for a Clayton copula) with the software R sometimes yields divisions of the type 0/0. A thorough
examination of those specific situations and an appropriate treatment for them are necessary to allow
for the calculation of the variance of the compact MLE.
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A Density of the survival function of a copula

Appendices

A.1 Graphs of the distribution function v, and its inverse ¥/, !
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FIGURE A.1: Distribution function y, and its estimated inverse ¥, ! fora = 0.11,

a =0.25, and a = 0.45 in the case of the Gumbel copula with 8 =5
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FIGURE A.2: Distribution function y, and its estimated inverse ¥, Ufora=0.11,
a = 0.25, and a = 0.45 in the case of the Ali-Mikhail-Haq copula with 6 = 0.5
A.2  Proof of Theorem 2.1

With an integrable function / defined on [0, 1]:

E (h(C*(U1,02)))
:/Ol/olh(l—ul—u2+C(u1,u2))dC(u1,u2) (A2)

_(P//((p—l(q) ur)+ o(u ) e di
[0/ (¢ 1(‘P(u1)+(P(u2)))]3(p D¢ w)dudiy (A3

:./O'l/olh(l—ul—uzﬂp*‘(<P(u1)+<P<uz)))

Writing t; = @ (u;),t2 = @(uz), we have:

—¢" (7' (11 +12))

drds,. A4
P IR S TE

E (h(C*(U1.U2)) // (1= (1)~ 9 ' (n) + 9 (11 +1))
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From the properties of the generator, ¢! is decreasing with ¢! > 0,907 1(0) = 1,9 !(e) = 0.
Like @, ¢! is also continuous. Let us recall with Joe (2014) (page 32) that these properties suffice
to make ¢! a survival function. Let ¢~ (¢) = IP(T >1t) = Fy(t) for some random variable 7 > 0.
It has density

1
= A5
I CRI) ()
Further: ( 1( ))
¢" (¢ (1
_f’ (l) = — (A.6)
T @ 0)
So that fj is decreasing and
(pfl(tl +1n)= Fo(tl +1)= /°° /°° —f(')(sl + 57)dsds». (A.7)
1 [5)

— fo(s1+52) is the joint density of (@ (U;),@(U>)) on [0,00) X [0,00). To see that, note first that the
joint density of (U;,U>) is

2
3u§8ulc(ul’u2) = aiuza%l (97" (9(u1) + 9(u2))) (A8)
L o)

— J du1

~ 0w ) ' (0 (@(u)) + 9(u2))) (A.9)

_ 9 o' (ur)

R {rp'(wl (o(ur) +<p(u2)>)} (A-10)

o d 1

_(P(l/ll)aMZ (p/((P_l (@(u1) + 0 (2))) (A.11)
% (o7 (@(ur) + @(u2)))

=9') g~ (A.12)

(¢ (9~ (p(u1) + 9(u2))))’
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A. Density of the survival function of a copula 83

P = )<P”(<P(M1)+<P(uz))aim¢ ' (9(m) +9()) v
duduy T (@ (9~ (9(w1) + 9(12))))> (A1
/ u 1 u 1
:_(p/(ul)(P( 2)0" (o(ur) +@(u2)) o (0 (@u) + o(m2))) N
(@' (o~ (@(u1) +9(u2))))
o (w0 (1 9" (9(u) +@(u2)) ALS
7ot 2)(<p’(<p“(so(u1)+qo(uz)))) (A1)
Then derive the density of (77,72) = (@ (U),9(U>)) as
—¢' (07" (1)) ¢/ (¢ o'(tn) i leemy O
Pe e (o7 ) (¢' (97 (11 +1))) dt[q) K ¢ (o7 (n2))
(] rro1 ¢’ (11 +12) 1
=)l ) W @) e o ) A
___ 9"(ntn) (A.17)
(¢' (97! (11 +10)))’
= —fi(n+n) (A18)
Further:
l—o ') —o () +o (11 +1) :/Otl /Otz —fi(s1+52)ds1ds,. (A.19)

(Recall that 1 —IP(Xl > Xl) —]P(Xz > Xz) —|-]P(X1 > x1,Xp > )C2) = ]P(Xl <x1,Xp < )CQ))

Thus:

E (h(C*(Uy,Un))) = ‘/om./omh (1—9 () — ¢~ (1) + 9 (1 +102)) (—fi (11 +12)) drrdrz. (A.20)

As any decreasing density on [0,o0) can be represented as a scale mixture of uniform densities
(Williamson, 1956), fy(¢) is of the form

fo(t) =/tde—(s)=/lm@ds, (A.21)

S S
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where G is a distribution function on [0, o), assumed to be absolutely continuous with density g. It
is clear from Equation (A.6) that

19" (9~ 1(1))

. (A.22)
(¢ (9~'(1)))’

g(t) = —tfolt) = —

With
a= . :1—t2 and b =1 +1,
E(h(C'(U1U2) = [ / (1- 9" (ab) — o~ (1-a)b) + ¢~ (b)) g(b)dadb

:2/0 /O h(1— @~ (ab)— @~ (1-a)b) + ¢~ (b)) g(b)dadb. (A.23)
Let

v(a,b) =1—¢ (ab) — @ ' (1 —a)b)+ ¢ ' (b). (A.24)
Fix a and let y,(b) = y(a,b).
As

(6) = P (p(01) <abo(Uy) < (1-a)p) =P (P < BT <p) - (a2s)

we have that y,(b) is increasing in b.

Put

va(b) =7z <= b=y, ' (2).

We can then rewrite Equation (A.23) as

E (h(C*(U,U»)) —2/ / (5 v ())dzda for z€[0.1]
Hence, the density of C*(U;,U,) is
* % —1 a —1
k() =2 /0 (') (5v'(2) ) da. where ze[o.1] (A.26)
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B Limiting distribution of the generator estimators
B.1 Differential estimator ¢,;: proof of Theorem 3.1
We assumed that (Assumption 3.2.1):
im0 =€) oy =
€l0 )
Consider the estimator in (3.15):
T for 0
» = A — <w<l.
On1 (W) Snexp(/w Kn(t)—t) or w
Further, using (3.12) with € = g,
o (1-¢) /1—8n dr
p(w) = . €, exXp . K= (B.27)
Thus
1-&, 1—¢, 1-¢, d
o) -0t s ([ i ) - e ([ )
1 & 1— 1—-¢&, d
e ([ i) - eo ([ )
1 & 1-¢, d
reo( =) o (L =)
1—- -& g
:(1 ‘p( )> snexp(/w K(Iil) (B.28)
o(1 —s,,) =& dr =& dr
Consider the second term above (B.29). We have by Taylor’s expansion:
1—g, dr B 1—-&, dr >:|
&, |exp /W 71(”0) — exp /W 7K(r) —
=& dr =& dr =& dr : 1
= | K0 DL =L = ) v N B0
B =& =& (K,(t)—K(t))dt
([ =) L mo e ) ®30
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Vvn (K, (t) — K(t)) is weakly convergent (Barbe et al., 1996). Then,

V() K (1)

Jnax =0) < oo almost surely. (B.32)
Recalling also that K, (1) —t — K(¢t) —t = —%, we have
=& (K,(t)—K(t))dt
_ (B.33)
/w (Ka(1) —1)(K(2) —1)

1 =& o(r)  /n(Kn(r)—K(r))dt
RV Ay ey (B39

—g, / 2
<oz [ 20 (200) )

(B.35)

Equation (B.35) can be justified as follows: denote the integral in (B.33) by Z,(w). Then
lim V ( Vn n(w))
n—yeo —logg,

1 1-& [l-g ! 2 / 2
— lim . / (‘P (t)) T(t.5) (90 (s)> dsdt (B.36)
n—e\ (loge,)” Jw w o(1) o(s)
2
1 1—¢, ! t 2
< lim / 0 (‘p ( )) dr) (B.37)
n—eo \ log &, Jw o(t)
since, by Cauchy-Schwartz inequality,
I(t.5) = lim Cov (v/n(Kx(r) = K(1)), vV (Ka(s) = K(s))) < o(t)a(s) (B.38)
n—oo
From
1— 1—
im 28—y assumption 32.1)  and  1im "8 — 6, (Assumption 3.2.2).
el0 £ el0 £
it follows that
max () < oo, (B.39)
w<i<1 @(t)
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Then
e o'\
1 t dr /1 B.40
ngl’olo/w G()((P(t)) /og&‘n ( )
/ 1 2
= lim o (1—¢,) (Z’;((I_Z))) &, by L'Hospital’s rule (B.A1)
2
, g o(l—¢g,)
— —lim (¢'(1—g,))’ " " B.42
tim (¢'(1-8))” (o) 2V B.42)
1\2
= —(—1)%x (—1) X 0 (B.43)
= —0) (B.44)
Thus,
| Vi )
r}l_r)rolo\/ (—logenzn(w) <0y, (B.45)
i.e, the sequence \fﬁi’ég ), n — oo, is tight. Again, by L’Hospital’s rule,
lim\/( vn Zn(w)>
n—yeo —loge,
X X ! 2 / 2
—im [ 24 / / <‘P (t)> T(1,5) (‘p (S)) dsdr (B.46)
%\ Zloge, ax | J Uo) o(s) L
8]’! 1—8,, 1—8”
= li 1— 1—g,)dt B.47
ng{}o (210g8n [/w f( en,s)ds—i—/w f(t’ 8,,) }) ( :
. 871 I*Sn
= nl_r& (logé‘n /W f(1— Sn,s)ds> , (B.48)
where
I 2 / 2
Flt,s) = (‘p (t)) T(t,s) <¢ (s)> (B.49)

is the integrand above; note that f(¢,s) = f(s,7).
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Now, applying L’Hospital’s rule one more time to

1 1—¢,
logen/w f(1—g,,s)ds,
we get
: Vn e o2 _ 2
lim V (_loggnz,,(w) = lim £2/(1 - &,1- &) = o7, (B.50)
since T (1 —g,,1—¢&,) =0%(1—¢,).
Remark B.1. For continuous f(x1,x;)
/x/xf()q,xz)dx]dxz = F(x,x) — F(w,x) — F(x,w) + F(w,w), (B.51)
where
82
aXIasz(xl,XQ) = f(X],Xz).
Thus, for h > 0:
x+h px+h
/w /W fx1,x2) dxldxz—/w f(x1,x2)dx1dxp (B.52)
= [F (e byt h) — F(2)] — [F (w4 B) — Fw,2)] = [F (e ) — F ()]
It follows that
1 x+h rx+h X X
1}3101%[ / f(x1,x2)dx1dx2—/ / f(xl,XZ)dxldx2:|
1 w w 1 w Jw (B.53)
= [ floxa)de+ [ f(xr,x)dx.
So that
1—¢, —
[ ot VK0 (00, g, (105 s
W (@(t)/¢'(1)) vn

From the previous calculations and the fact that

1

m\/ﬁ(Kn(t)—K

(1)) = Z foreach w<r<1,
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we derive the asymptotic behaviour:

If 1%’7’81”%0 as n— oo, then, for 0<w<1,

Vn

oge (@u1(w) —@(w)) = 0p@(w)Z in distribution, as n — oo,

where Z is a standard normal random variable.

B.2 Integral estimator ¢,;: proof of Theorem 3.2

Consider h,(t), estimator of h(t) = —¢'(t), given by

1 1
W) = e /t I (v)dv, (B.55)
whereas
1 1
h(r) = K(I)_t/t h(v)dv. (B.56)

on(t)=| & ) = w (B.57)
I o(w)
Hence
Vi (@ (w) —o(w))
_ L on(w) o(w)
B \/ﬁ/t <Kn(vi)—w_K(w —W) dw (B.59)
Lo (w) (K(w) —w) — @(w) (Ku(w) —w)
SR R (A R TR B
1

w (B.61)

w (B.62)
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Vi (@ (w) —o(w))
_\f/ <¢n2w (K(w) ( ) nz(wvz ‘PW))dw (B.63)

(
:/tl( K, (w) — ! — )(PHZ( )\/E(K( ) W))dw—i—/t1 \/ﬁ((P”z(W)_(P(W))dW (B.64)

K(w)—w

C Kendall’s tau estimation

C.1 Variance in a readily estimable form

Asymptotic variance of + v/n(1, — T):

1_16vas(\/ﬁ( {( /Lt 2 /FO oc,,dt)(/L ) FO(ds)
_4E ( / L(F,)F / Ly(FQ,)FO( ds) (C.65)

+4E ( / Ly(F2,,)F°(dt) / FY (s)ocn(ds)> (C.66)
+E ( / FO(t) ot (dt) / Fo(s)an(ds)) . (C.67)

Square term 1 (C.65)

E < / L(F2,)FO(dt) / Ly(F9,)FO(ds) ) ( / FO(t)Ly(FO, Foo(dt) / FO(s)Ls(FO,) ;O(gs))) (C.68)
B H“ (dt) H'(ds)
/ / FO()F°(s)v(t,s ORI (C.69)
with
v(t,s) = E (L(F2,)Ls(F2,)) (C.70)
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Cross term (C.66)

From Sen and Stute (2013), the influence function Li(F2 ) of v/n (F2,,(t) — FO(t)) satisfies

FO(du)

/l{u > t}Ly(FY,) () /ll{u > t}ot,(du) with initial condition Lo(FY,) =0,

where
u H!'(du) _ uFO(du)
= 6w Y W)
Multiply Equation (C.71) by [ F%(s)ot,(ds):
FO(du) [

L(PL) [ FOs)oulds) — [ 1w (L) G [ FO)aos)
— [1{u=t)an (du) [ F(s)an (ds)

Take expectation:

( / FO(s) s, ds) ( / 1{u > t} Ly (F )F; 0((du)) / Fo(s)an(ds)>

_E ( / 1{u > t} oz, (du) / FO(s)an(ds))

Rearrange as:

IE( /FO ot (ds) ) /]l{u > t}]E( g,n)'/.FO(S)an(ds)> 12)0(2;1))

=y =Wy

=F (/Il{u > t}ot, (du) /Fo(s)an(ds)>

wy is the solution to the inhomogeneous Volterra equation of the second kind:

Wwe— / 1{u> t}wu};jo(((ﬂl)) —F ( / 1{u >t} (du) / FO(s)an(ds)) with condition g = 0.
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Square term 2 (C.67)

Just as with Equation (4.57) in Section 4.2.3,

E ( / FO(t) o (dlt) / Fo(s)an(ds)>
H''(dt) H' (ds)

11
! [/F4(t)HH(E;l;>—|—//(1—ﬂ{t>s})(l—ﬂ{t<s})H(t\/s)F2(t)F2(s) TN

(C.77)
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D Maximum Pseudo-Likelihood Estimation

D.1 Multiplication (5.38) x (5.39)

70 J . 70 i . 0
{/ (Lzo(Fs’n)a—ul(P(ul,uz,Go) +L O(F )8u2¢(u1,u2,90) ( uz):(F(l)(Zl),F(z)(Zz))F (dz)
+/¢ Fz Z2 GO)LZ(FO +/¢ FO Zl ( ) 90) OCn(dZ)}
{/ (L 0(F0 )8 O (uy,uz;6p) + L 0(F2")8 ¢ (uy,uz; 60) (u1,u2)—(F(f(sl),Fg(Sz))Fo(dS)

+/(P(FO Sl),F(Z)(Sz);Qo) (FO FO dS +/¢ FO Sl 0(32);90) an(ds)}

/(L()FO 9 ¢u1u290)+L0( a ¢u1u290)

— d —
/(LS(I)(Fg’n)a—ul(])(ul,uz;eo)—f-Lsg( O (uy,uz;60)

F(d
) ) (dz) x

FO(ds)

(u1,u2) : s1 FO sz))

FY(dz)x
(uru2)=(F(21).F3(22))

+2 [ (Lg(F2,) gl eo>+Lo<F2n> gl )|

FO(ds)
FO(s)

(
+2/ Lo(FY )i¢(u u2;600) + Lo (F2 )i¢(u u2;60)
Z‘l) &n 8u1 1,42, V0 zg &n auz 1, 42,90
[0 (F3(s1). P (s2):60) aa(ds)

+/¢(F?(Zl)j’(z)(m);@o)Lz(FO )FO (d2) /‘P (FY(s1).F3(s2): 60) Ls(F? ) 7

FQ(s1),F3(s2); 60) Ls(F?,,)

B B Fo(dz)
(uru2)=(F(21).F3(22))

d
+2/(]) F2 Zz FO - /(]) S1 FO S2 Go)ocn(ds)

+/¢ (FO(21).F(22): 80) ot (dz) /¢ 0(51).F9(52): 8) 0t (dls)
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D.2 Variance of A, in a readily estimable shape

Expectation 1

o X
(uru2)=(F(21).F3(z2))

FO(dz)FO(ds)}

{// <L0 FO (ul,u2,90)+L 0( )8(9142(])(1413142;60))
(Ls(l;(Fg,n)aq)(ul,uz;@o) +Lso(Fg’n)(M¢(u17u2;90)>

—1}3{//<L0 (F2,) 8 —— 0 (u1,u2;60)

_ d _
0\ Y .
+Lz(1'(Fe,n)aul‘/’(u1,uz,90) (112) = (FO(ZI)FO(ZZ))L (F )8 ¢ (u1,u2;60)

(u1,u2) (F (51).F3(s2))

Ly (F )& ¢ (u1,u2;60)

(ur.u2)=(F(21).F9(z2)) ° (uru2)=(F(s1).,F9(52))

(uru2)=(F(s1).F9(52))

) _
049 . 0y 9 .
+ Ly (Fep) g, (w2 60) _ Ls'l)(FS,n)aul ¢ (ur,u2; 60)

(ul,Ltz):(F?(zl),Fg(zz)) (”1,“2):(?1)(51 ),Fg(SZ))

P) 2
— @ (uy,uz; 0 L Fon— uj,uy; 6 )
51y # (11123 60) () = (F(21).FS (22)) 3 (Fen) 3,70 (11,123 60) ()= (FY(51).F(52))

F°(dz) F°(ds)
FO(z)F(s) F0(z) FO(s) }
://(V(z(l],s(l))+v(z(1),s3)+v( $0) +v(2L, Sg))
a .
(“1’“2):(‘??&1)?8(@)) aiuqu(ul’uz’ 6)
H(z) H(s)

+Lyg(Fe,)

0
aT“(P(m,uz; 6o)

(u1,u2)=(FO(s1),F3(s2) )

F(2)F(s)

From the linearity of the covariance, this last term becomes

P 9
s N s ;9 ’ ;9 F F
| [y 0O e 3 O . 00)

(D.78)

where
o v(z,s) = E (L,(F2,)Ls(F?,)) is the covariance of the influence function of FQ ,
o H''(x) = H (x1,00) =P(Z; < x1,Z0 < x2,81 = 1,8, = 1)
o H(x) =H(x1,x2) =P(Z) > x1,Z > x3).
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Expectation 2

F%(dz) x

_ 0 - 0
E FO . FO .
{/ (Lz‘l)( 8’n>3u 9 (1,123 6) ng( s’n)&uzq)(ul,uz,@o)) (u1,2)=(F(21).F3(z2))

0 S
[ (Fits). Fa(s) %)u(@,ﬂ’}é&f}

d - — d
~[[E (Lo (FOL(F) i 0) + L (P L(FL) i)

F9(dz) FO(ds)
F) FO(s)
-/ (v<z2,s>jm¢<u1,uz;eo>+v<z3,s>jw¢<u1,uz;eo>)

B B X
(u1.u2)=(F9(21).F3(22))

¢ (F)(s1).F3(s2): 60) F'(z)

B B X
(uy.2)=(F(21).F3(z2))

H''(dz) H" (ds)
H(z) H(s)

¢ (FQ(s1).F3(s2):60) F'(z)

Expectation 3

FO(dz
(ur.u2)=(F9(21).F3(22)) (dz)

E {/ <L10 (Fg,n)aiﬂuhuz; 60) + Ly (Fe,) aiuzﬁb(ul,uz; 90)>

/¢ F2 S2 90) Otn(ds)}
-/ E{Lzowgn)amm,uz;eo)
1 up

/ 0 (FO(s1).F2(52): 60) an(ds)}FO(dz)
(uy,up)= zl FO Zz

l

+/1E{ng(Fg,n);m(b(ul,uz:GO) 2))/‘?(??(51)»173@2)?90) an(ds)}FO(dZ)

(”1a“2):(F0(ZI) Fy

0(dz
- [y P 5

= [yt

H(z)

From

/]l{u > 29} Ly (F? /ll{u >z o, (du),
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we have

9 _ _
0 . 0 0 .
E {Lz(l)(Fs,n)au] ¢ (u1,u2;60) (ir)= (P P2 /¢ (F§(s1).F3(s2):60) “n(ds)}

—o F%(du) 9 .
—]E{/H{UZZ?}%(FSM F(u) afmfb(ul’uz,%)

/¢ (F9(s1).FY(s2): 60) t (ds)}

(ur.u2)=(F9(21).F3(22))

:]E{/ll{uZZ(l]}an(du)aaul¢(u1,u2;90) /¢ F?(sl),FQ(sz);Bo) Otn(ds)}.

(u1.u2)=(F9(21).F3(22))

The equation can be rearranged as:

— 0
E {Lz?(Fg,n)am¢(ul7u2;60)

/‘P (F{(s1),F3(s2):60) Otn(ds)}

(uru2)=(F(21).F3(z2))

=
FO(du)
/]I{UZZ(I)}IE{LU( 811)8 ¢(u1 uz; 90) (ul 0) (FO(Zl F() 22 /¢ FO Sl) FZ(SZ) 90) a”(ds)} Fo(ll)
_E /Il{u>z0}(x (du) =20 (a1, 1 60) /¢> ).F2(52): 60) s (ds)
=t duy Y (urup)=(F(z1).F3( Zz 2 "
ZO
1
I is solution to the inhomogeneous Volterra equation of second kind:
0 Fo(du) cq e el .-
rg) = 050 + / 1H{u> zl}ruFO—() with initial condition rg =0 (D.79)
u
Similarly, r 2] is solution to:
FO(d
I =on+ / 1{u > zg}ruFO(—(uu) with initial condition r¢ = 0 (D.80)
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Expectation 4

{/¢ i(z1) F212 (FO

_// z,s) F0 (21),F3(22):680) ¢ (FQ(s1), F3(52); 60)

F(s1).F9(52): 60) Ls(F? ) 7

H''(dz) H' (ds)
H(z) H(s)

Expectation 5

0 Fodz

E{ [0 (FYeFYa)ion) LlF) T ) [0 (PGo) Phon: ) ()
FO(dz)

_/]E{ (21),F3(22); 60) Lo (F2,) /‘P (FY(s1).F5(s2): 60) O‘n(ds)} FO(z)

~
1=ey

H'!'(dz)
H(z)

€z

From

/ﬂ{u > 2} Ly (F? /Il{u >z} oy, (du),

we have

]E{(p(F (z1),F3(22); 60) /¢ 0(51),FY(s2): Qo)an(ds)Lz(an)}

—IE{d)(FO(Zl) F2 Zz ;6 /(]) Sl) FZ(Sz) 90) OCn dS /]l{u>Z}L ( ) —
—lE{q)( 0(21),F9(22): 6o /¢ (51).F2(52): 60) cta (ds) /]1{u>z}ocn(du)}

The equation can be rearranged as:
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/ll{u z}euF_O du)

(u)
_]E{(])( (Zl) F2 Z2 ;6 /(P S1 FZ(SQ) 90 OCn dS /]1{u>z}o¢n(du)}
::hz
e, 18 solution to:
FO(d
/ 1H{u> z}eu — u)) h, with the initial condition ¢y =0 (D.81)

Expectation 6

This term is already in readily estimable form, since, similarly to Equation (4.57) in Section 4.2.3,

(//q) ). F3(22):60) ¢ (F§(s1).F3(s2): 60) Otn(dZ)an(ds))
— [/(p (F?(Z1),F8(12);60) (Fo(z))z H_ll(dZ)

7(2)
+ [ [0 (B8 Fe2):00) ¢ (Fs1). Fi(s2): 60) (1 =1z = 5}) (1 =Yz <)

11 z 1 S
AEvsF@F °<S>Hm(<‘i>) Hﬁ:((ZI))]

D.3 Variance estimate of A,, in matrix form

Summand 1
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Summand 2

d N 0 .
/] (vn<z?,s>a—m¢<u1,uz;e>+vn<z3,s>a—w¢<u1,uz;e>)

H,'(dz) H,'(ds)
H,(z) Hy(s)

- Z )} (V”((Z”’O)’(Slj’SZj))%(”(uuuz;é) +

X

d N
Vn((OaZZi),(SljaSZJ))a—uz¢(ul,u2»9)) (w102) = (FO, (215),F%, (Z1))

¢ (Fyy(s17),Fry(s2;);0) pibib;
= b V*IF',

where

0 N
(V9)ij =vn ((Z1:,0), (S1,52;)) a_m¢(”1’”2; 6)

(“1a“2):(F21 (Zli)aFSQ(ZZi))

+ v ((0,Z2:), (S1),52/)) i‘l’(ul’uz; 6)

duy (ur.a2)=(FS, (Z11) FO (Z21))
Summand 3
/(A +7 )FO (Z) Hr}l(dz) (l' 4 )T]FOb
7 7 i =
o) M) en H, (Z) 1 2

Summand 4

where (V);; = vij = vu(Z;,Z;) is the sample covariance of Ly(F2,) at (Z;,Z;).
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Summand 5

Summand 6

+ / / 0 (F3y (21)-Fia(:2):0) 0 (Fin (51).Fp (52):6) (1 -1z > ) (1 - 1z < 5))

11 z 11 S
xﬁn<zvs>F2,n<z>F2,n<s>H£,z(<i>)H%z(g))

= ®"B(F)’b + ®"BF’BDBF’B®
= ®"BF’(F’ + BDBF’B®)

D.4 Likelihood function derivation

Clayton copula
Clayton copula:

_1
Co(uy,up) = (ul_e —|—u2_0 — 1) ° (uy,up) € [0,1]2,9 € (0,)

The density of a Clayton copula is, for u1,us € [0,1],0 € (0,00),
J’ 8
: 1) D.82
6(”1 uZ) au]auz ( + l/l2 ( )

= (6 + 1) (uju)~O+D (u;" +uy® — 1) (727a). (D.83)

The score function is
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d
(])(ul,uz) = Elog (09(u1 uz)) (D.84)
d _ - (-2-%)
— 5 log <(9+1)(u1u2) (6+1) <u19+u26—1> > (D.85)
d 1 -6, -6
log(0+1)— (0 +1)log(ujuz) — | 24+ = | log (”1 +u, —1) (D.86)
~de 0
1 1 _o 1\ —u; ®log(ur) — uy ® log(un)
= 5~ log(um) - ( o log (ul uyf - 1) + <2+ 9> P (D.87)
1 1 o . _o 1\ —u 9log(ul) —u2 log(uz)
= m—log(mug)—&—@log <u1 +u, —1) — (2—|— 0) e (D.88)

From a sample, we can evaluate the compact log-pseudo-likelihood as

log (L(6)) = iipi (log(G +1)— (0 +1)log (F (Z1:)FA(Z2)) — (2 + %) log <F;?1 (21;)~°

B (22) " ~1)).

(D.89)
And the full log-likelihood as:
log (L*(0)) = Y_ {81:6xi10g (co (u1inuz)) (D.90)
i=1

) ) 8Cg (ul,uz)
+81i (1 - &) log < duy ) (u,u)=(u,u2;) @51

8C9 (Ml,uz)
(1—081;) &ailog (auz > R, (D.92)

+
+ (1—081;) (1 — &) log (Co (urisuzi)) } (D.93)
i {51,521 <10g (0+1)— (8 +1)log (uriuz:) — (2+ ;) log (u;,." usf - 1)) (D.94)

~ 5 (1— 8) ((9 + 1) log (ur;) + (; + 1) log (u;,." Fugf - 1)) (D.95)

—(1—81;) & ((9 +1)log (uy;) + (é + 1) log (ufie +uy® — 1)) (D.96)
1

— (1= 81) (1= &) 5 log (s +uz® 1) } (D.97)
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n

log (L*(0)) =) {81:62i108(6 + 1) — 81;6(6 + 1) log (u1;) — 61:6,i(6 + 1) log (u) (D.98)
i=1
— 51,' (1 — 52,) (9 =+ 1) log (Lil,') — (1 — 61,’) 52,'(9 =+ l)log (Ltz,‘) (D.99)
- (51i<162i> (;H) (1= 81) 8 (;H) (18 (1 8) &+ 5ub ( 6)) <
(D.100)
tog (u? +uz® 1) | (D.101)
Zn:{&ﬁzz log(6+1) (D.102)
i=1
—(041) ((61; (1= &) + 61:62i) log (u1;) + ((1 — 81;) 62 + 61;62;) log (u2;)) (D.103)
_ (1“2;52 81+ By — 2816 + 8116 (2+ ;)) tog (1 + 15" — 1)} (D.104)
=Y {61:6log(6+1) — (6 +1) (81;log (u1;) + &rilog (usi)) (D.105)
i=1
(L s e) (*9+ *"—1) D.106
5 1i i |1og\uy; Uy; (D. )
i=1
—(041) ((81i (1 = &) + 61:62i) log (u1;) + ((1 — 81i) &2i + 01:02:) log (u2;)) (D.108)
_ <1 Z0U0 S 2618+ 811 <2 + é)) log (ul—i@ tuyf — 1) } (D.109)
2{51152,105:{ 6+1) (9+1)(81i10g(u1i)+52i10g (uz,')) (D.110)
i=1
- <6+51i+52i> log (u;f’ﬂz—i"—l)} (D.111)
=Y {81:6ilog(6+1)— (6 +1) (8i7log (Fy, (Z1i)) + Sailog (Fi)y(Z2))) (D.112)
i=1
_ (9 1ot 52,) log (Fgl (Z1i) "0 + F% (o)~ — 1) } (D.113)

Ali-Mikhail-Haq copula
Ali-Mikhail-Haq copula:

uiuy
1—9(1—u1)(1—u2)

Co(up,up) = upun € [0,1)%,0 € [-1,1]. (D.114)
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D. Maximum Pseudo-Likelihood Estimation 103

aiulce(ul,uz)
4 Uiy
- 8u1 1—9(1—141)(1—112) (D.115)
ai(uluz)X(I—Q(l—ul)(l—uz))—uluzxai(l—e(l—ul)(l—uz))
= 24 - (D.116)
(1—9(1—u1)(1—u2))
_ uz(l—9(1—ul)(l—uz))—uluz(l—uz)e (D.117)
(1—6(1—u;)(1—up))?
_ ug((l—@(l—ul)(l—uz))—ul(l—uz)e) (D.llS)
(1—0(1—u)(1—up))?
_ u2(1+(—9—|—9u1)(1—u2)—ul(l—uz)G) (D.119)
(1—0(1—up)(1—up))?
u2<1—9(1—u2)+w
= 5 (D.120)
(1—9(1—u1)(1—u2))
 w(1-6(1—u))
C(1=0(1—uy)(1—up))? (D120
Similarly:
a . u1(1—9(1—u1))
8_uzce(ul’u2)_ (1_9(1_u1)(1_u2))2 (D.122)

103



104

The density of the copula is:

co(ur,uz)

Jd 0
=—Co(u,uz)

(971/!] 8u2

8 ul(l—B(l—ul))

dur (1-0(1—up)(1—u2))’

2 (1—=0(1—u)) x (1—6(1 —u)(1—u3))?

_ 8u1

(1—0(1—u)(1—u))*

uy (1—0(1—up)) x iu—e(l —up)(1—up))?

8u1

(1—0(1—u)(1—u))*
(1—0(1—u)+6u) (1—60(1 —uy) (1 —up))*

(1—0(1—u)(1—u))*

up (1—9(1—u1)) Xzi(l—e(l—ul)(l—uz)) X (1—9(1—u1)(1—u2))

8u1

(1—0(1—u)(1—u))*

(1—04260u;) (1—6(1 —u;)(1—uy))?

(1-0(1—u)(1—u))*

2y (1-0(1—u1) x 8(1—up) x (1= 6(1 —u1) (1 —wp))

(1—0(1—u)(1—u))*
(1—9(1 —Ml)(l—uz))

(1—0(1—u)(1—up))*
1

(1—-0(1—u)(1—u))’

1

(1-0(1—u)(1—u))’

1

(1—-0(1—u)(1—u))’
1

(1—0(1—uy)(1—u))’

((1 —6+29u1)(1 —6(1 —ul)(l —uz)) —2u (1 —9(1 —ul))e(l —Mz))

(1=6)(1=6(1—ur)(1-u2))
+20u1 (1= 6(1—u1) (1 —u2)) = 2u1 8(1 — uz) +26%uy (1 —ur) (1 — u2))
(1=6)(1—6(1—ur)(1—uz))

+26u; —26%u (T —up) —2u1 6(1 —uy) +W

((1 — 9) (1 — 9(1 —ul)(l —Mz)) —|—29u1 —29u1(1 —uz))

(1—0(1—u)(1—u2) — 8+ 60%(1—uy) (1 —u2) +260u; —20u; (1 —uz))
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(D.123)

(D.124)

(D.125)

(D.126)

(D.127)

(D.128)

(D.129)

(D.130)

(D.131)

(D.132)

(D.133)

(D.134)

(D.135)

(D.136)

(D.137)
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1

coluy,up) = 1—0(1 —u; —ur +uyup) — 6 + 62 1—uy—up+uuy (D.138)
o(u1,uz) (1—6(1—u1)(1—u2))3( ( 1— U 1U2) ( )
+20u; —26u; (1 —up)) (D.139)
1

e ))3(1—e+6u1+9u2—9u1u2—9+92—62u1—92u2+62u1u2+M
—0(l—u)(l —u

(D.140)
2647 +20u1u;) (D.141)
1

= (-6 (1 ))3 (1—9+6u1+6u2—6u1u2—9+92_92u1_92u2+62u1u2+26mu2>
— — U —up

(D.142)

T (-6 1)(1 ))3(1_26+92+9(1_9)(“1+”2)+9(9+1)u1u2) (D.143)
001 —u) (1 —us

Compact log-likelihood (for (u1;,uz;) = (FQ (Z1i), F(Z2i))):

log(L(6)) =log (ﬁce(uli,uzi)”f>

i=1

pilog (ce (u1j,u2;))

|
-

Il
—-

pi{—310g(l — 9(1 —Mli)(l —MZi)) +10g(1 —26—|—92—|—9(1 — 6)(”1[“‘”2,’) + 9(9 + 1)”1,’”2,’)}

I
=

s |l
-

pi{=3log (1-6(1—F;(Z1:)) (1~ F)(Za))

+log (1-26+6+0(1—6) (F) (Z11) + Fp(Zai)) + 0(6 + 1) E) (Z11) Fy (Z2:)) }
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Full log-likelihood (for (u;,u;) = ( (Z1i), Fnz(ZZi)))i

81i(1-8)
(uy ,’42)_(””’“21))

(1-81;)8
> X C9(uli,bl2,~)(1*5u)(1752[.)
(ur,un)=(uyj.u2;)

i {51,52,10g co(ui,uzi)) + 61:(1 — &) log (;Ce(m uz)

i=1

)
+(1—68y;)log ((yulCe(m,uz)

1 d
log (L*(0)) = log (HCO(uli,uzi)aliazi X (aulce(ula”Z)

d
X (aMZCQ (u] ,I/lz)

(“1:“2)(”1:‘»“21‘))
) +(1-8)(1 - &) log (ce(uu,m)}

(uy,u2)=(uyjsu;)

= i6],’52,’{—310g(1 — 9(1 —Ltli)(l _M2i)) +10g(1 —20+ 92—|—9(1 - 9)(M15+M2,-) ~|—9(9—|— 1)141,'112,')}
i=1

+61i(1 —52,') {log(uy(l — 9(1 —uz,'))) —210g(1 - 9(1 —Mlz)(l uzl))
+ (1= 81;) & {log (u1; (1= 6(1 —u1;))) —2log (1 — O (1 —ur;) (1 —u2:))}
+ (1=61;) (1 — 8) {log(uruz;) —log(1—6(1 —uy;) (1 —u2))}

— Z {81:6:log (1—26 + 6%+ 6(1 —0) (1 + uzi) + 6(0 + 1)ugu)

i=1
— (1461 + ) log (1 —0(1 —uy;) (1 —uz))
+ (1 —6y;) log(uy;) + (1 — 62;) log(uz;)
+(] —61[) 62,10g(1 —6(1 —Lth))+61,(1 —62,)10g(1 —6(1 —l/tzl))}

i {81:62log (1-20+ 6%+ 6(1— 0)(F (Z1;) + Fip(Zai)) + 00 + 1) Fpy (Z1:) Fn(Z2))

— (14 81+ ) log (1 - 0(1 = F,(21,)) (1 = Fs(Zai)))
+ (1= 811)log(F)); (Z1i)) + (1 — 8x) log(F ), (Zai))
+ (1= 81;) Syilog (1 - 6(1—Fpy(Z11))) + &1 (1 - 8x) log (1 - 6(1 - Fpy(Z21))) }

Nelsen (2006)’s 4.2.20 copula

Nelsen (2006)’s copula number 4.2.20 is given by

Co(uy,up) = [log <exp(u1_9) +exp(uy 9) — eﬂ for uj,up €10,1],0 > 0. (D.144)

=

106



D. Maximum Pseudo-Likelihood Estimation
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5 _1
ECG("‘I ) [log (exp ) +exp(uy ) - e)} g
R |
:_é log (exp ) +exp(i; )—e)_ o aiuzlog(exp(ufe)+exp(u§9)—e)
9 -0
g oy 11 o (exp(ir®) +exp(u; %) —e)
=g lle (eXp )+ exp(iny )_8). exp(u; *) +exp(u,?) —e
. b 0" exp(uz?)
g '°8 (eXp exp( ) - e). exp(u; ®) +exp(u, ®) —e
-1 uy 9 Vexp(u;®
[log(exp(u1 )—i—exp(”z ) e)] ’ exp(u§9)+exé(;2—g)—e
Similarly,
5 —1o u; O Vexp(uy9)
-~ Co(u1,2) = [log (exp(u;® %) =e)] 1 1
Em o (u1,u2) = |log exp(u;”) +exp(uy”) —e exp(u;®) +exp(u; ) —e

Its density is

exp( %) +exp(u,

[log (exp(ul9)+exp(u29)—€)}_é_l} exp(uz_ )f::;(ujg) ;
,%,1 pa|

X _e}
é2}+

1

+

{ 1y O Vexp(u;9)
exp(u; ®) +exp(uy )

[log (exp(ufe) +exp(uy?) - e)}

log (exp(ufe) +exp(uy?) - e)}
exp(u; °)
exp(u;®) +exp(u; ) —e

e

—0—1
—0u;

(D.145)

(D.146)

(D.147)

(D.148)

(D.149)

(D.150)

(D.151)

(D.152)

(D.153)

(D.154)

(D.155)

log (exp(u; ) +exp(uy?) — Doy exp(uy ) x 5 -
g( p(u;”) p(uy”) e)} 4 p(”) dur | exp(u;?) +exp(u;?)
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0

uy ®lexp(u;9) _ _ —52
co(ur,up) = {(1 +0) exp(ul_e) +exp(u2_9) - [log (exp(u1 9) +exp(u29) —e)} }+

{log (exp(ufe) +exp(uy?) - e)} o

(D.157)

e exp(us®) x {(—1><—e>u19'exp<u19>}
(

exp(u; ?) +exp(uy ) — e)2

(D.158)
(1+0)up " exp(u®) r oy _ )]0
— log {exp(u;”) +exp(u, ) —e + D.159
exp(uf6>+exp(u£9)—e[ g( pl”) Pl ﬂ ( )
Qu—0-1 -6y, —6-1 -6 —g-1
uj exr;(bh Juy GCXP(”z2 )[log<exp(ufe)+exp(u£9)—eﬂ o (D.160)
(exp(uy ) +exp(u; ) —e)
_ uy ¥ lexp(u;9)

Ou; O Vexp(u;?)
14+06)+ 2 2 log (exp(u;?) +exp(us %) —e
exp(u16)+exp(u29)e{< ) exp(ufe)—l—exp(u;e)—e g( G p(") )

(D.161)
{IOg (exp(”fe) + exp(uge) _ e)} -5-2

(D.162)

Compact log-likelihood (at (uy;,us;) (F,?1 (Z1,~),Fno2 (Z21))):

n
log(L Z { (6+1) log(ul,)—i—ul —log(exp(ul—i@)+exp(u2—19) e)

(D.163)
0uz? expliy?) e
+log (1+9)+exp(u_9)+exp(u_9)—elog(eXp(u” ) +exp(uy;” ) e) (D.164)
li 2
- (é +2) log [log (exp(u]_ie) +exp(uy;”) feﬂ } (D.165)
= % pe{ (0 1)I0g(5 (200) + (22 —tog (exp(5 (22)°*) + exp(F(Z2) ) ~)
B (D.166)
OFp(Zoi) " lexp(Fp(2)~°) o .
e 140 etz ) 2 (0 ) et )~
(D.167)
(G—I—Z)log{log(exp( ' (Z11) ) +exp(FS (Zai)~ )—e)}} (D.168)
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Full log-likelihood (with (u;,uz;) = (F%,(Z1:),F%,(Z2:))):

n

d
log (L* (6 Z {511521 log (cq (17,u2i)) + 01:(1 — 82;) log (aulCe (u1,u2)

i=1

0
+(1—81;)ilog <au2C9(M1,M2)

(“1>”2)(”1is“2i)>
) + (1—=61i) (1 — &) log (CG(Mli»MZi))}
(uy )= (g uz;)

= Y {806 {6+ D)togury) +u? ~og (exp(u?) +exp(u?) ) (D.169)
i=1
0u; 2 exp(u5?)
1 1+6 2 2 1 O+ ) - D.170
+ og{( + )+exp(ufi9)+exp(u2’ie)—e og (exp(u]l ) +exp(uy”) e) ( )

_ ((19 + 2) log [log (exp(ufie) +exp(uy?) —e)} } (D.171)
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