
Accurate Program Element Tracking in Commit History

Mehran Jodavi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Computer Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

November 2021

© Mehran Jodavi, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mehran Jodavi
Entitled: Accurate Program Element Tracking in Commit History

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Joey Paquet
Chair

External

Dr. Tse-Hsun (Peter) Chen
Examiner

Dr. Joey Paquet
Examiner

Dr. Nikolaos Tsantalis
Thesis Supervisor

Approved by
Dr. Leila Kosseim, Graduate Program Director

November 26, 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Accurate Program Element Tracking in Commit History

Mehran Jodavi

Tracking program elements in the commit history of a project is essential for supporting

various software maintenance, comprehension and evolution tasks. Accuracy is of paramount

importance for the adoption of program element tracking tools by developers and researchers.

To this end, we propose CodeTracker, a refactoring-aware tool that can generate the commit

change history for method and variable declarations with a very high accuracy. More

specifically, CodeTracker has 99.9% precision and recall in method tracking, surpassing the

previous state-of-the-art tool, CodeShovel, with a comparable execution time. CodeTracker

is the first tool of its kind that can track the change history of variables with 96.7% precision

and 95.5% recall. To evaluate its accuracy in variable tracking, we extended the oracle

created by Grund et al. for the evaluation of CodeShovel, with the complete change history

of all 1345 variables and parameters declared in the 200 methods comprising the Grund et

al. oracle. We make our tool and extended oracle publicly available to enable the replication

of our experiments and facilitate future research on program element tracking techniques.

iii

Acknowledgments

I want to express my special appreciation and thanks to my fantastic supervisor Dr. Nikolaos

Tsantalis for taking me on as a master’s student, allowing me to pursue my profession and

dreams, and believing in me. This work could not have been possible without his involve-

ment, support, dedication and enthusiasm. His consistent reminders that only impossible is

impossible have always helped me and have positively changed my attitude toward life.

I would like to acknowledge to my committee members – Dr. Tse-Hsun (Peter) Chen

and Dr. Joey Paquet – thank you for helpful critiques, words of encouragement and your

precious time for reviewing this thesis.

I would also like to thank my wife, Zohreh, for always being by my side and my best

friend and for all the support, compassion, understanding, patience, and love.

Finally, I would like to thank my Mom and Dad for their ongoing support from far and

wide, my sister, Marjan, for being the best sister, my lovely nephew, Nikan, for remembering

me although he was only three years old when he last saw me, and my brother-in-law,

Mohsen, for being there for my family instead of me while I was miles away. I miss them

all a lot and hope we can get together soon after a while.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Motivation and Background 4

2.1 Motivation . 4

2.2 Limitations of Current Tracking Tools . 6

3 Related Work 9

4 Research Approach 13

4.1 Program Element Identifier . 13

4.2 Tracking Process . 16

4.3 Change Graph Evolution Hooks . 27

5 Implementation 30

5.1 Languages and Platforms . 30

5.2 CodeTracker API . 31

5.3 Code Element Types . 33

v

6 Evaluation 35

6.1 Oracle Update and Extension . 35

6.2 Method Tracking Accuracy . 40

6.3 Variable Tracking Accuracy . 42

6.4 Class Tracking Accuracy . 43

6.5 Field Tracking Accuracy . 44

6.6 Execution Time . 45

7 Limitations and Threats to Validity 48

7.1 Language Specificity . 48

7.2 Internal Validity . 48

7.3 External Validity . 49

7.4 Verifiability . 50

8 Conclusions and Future Work 51

Bibliography 53

vi

List of Figures

1 Complex code evolution scenario in project Netflix Zuul. 4

2 Typical container structure in Java programs 14

3 Hierarchy of supported change kinds for methods adopted by CodeShovel [13].

Newly supported change kinds are highlighted in darker background colour

and blue text color. 17

4 Hierarchy of supported change kinds for variables. 19

5 Hierarchy of supported change kinds for fields. 20

6 Hierarchy of supported change kinds for fields. 20

7 Tracking of a program element extracted from the tracked element. 28

8 Tracking of a program element inlined to the tracked element. 28

9 Tracking of a program element from which the tracked element is extracted. 29

10 CodeTracker API . 32

11 History Interface and its dependencies . 34

12 Code element Types . 34

13 Execution time in milliseconds of CodeTracker and CodeShovel on training

and testing sets. 45

vii

List of Tables

1 Updates in the oracle created by Grund et al. [13] 37

2 Number of instances per change kind for variables. 38

3 Number of instances per change kind for classes. 39

4 Number of instances per change kind for fields. 40

5 Method tracking precision/recall at commit level 41

6 Method tracking precision/recall at change level 42

7 Variable tracking precision/recall for CodeTracker 43

8 Class tracking precision/recall for CodeTracker 44

9 Field tracking precision/recall for CodeTracker 44

10 Average percentage of commits processed in each step of the tracking process. 46

viii

Chapter 1

Introduction

Developers routinely track code snippets in the commit history to facilitate various software

engineering tasks. Codoban et al. [7] surveyed 217 developers to find the motivations behind

examining software history. The most common reasons are to a) recover the rationale

behind a snippet of code, b) find the commits that introduced a bug, c) find who are the

knowledgeable peers on certain modules and patterns, d) reverse engineer requirements

from code, e) keep up with how the code state evolves, f) apply changes from other branches

into the main branch. The surveyed developers also expressed some challenges with the

usability of existing tools, such as their inability to detect file moves and renames, and

their configuration (e.g., setting up git bisect to find the commit that introduced a

bug). Grund et al. [13] conducted a survey with 42 professional software developers and

found that they prefer source code history information at the method/function and class level

rather than the file and block level. Moreover, the tools used by the developers to inspect

code history, such as git log and IntelliJ’s history feature, are unable to find the commit

that actually introduced a method and deal with complex structural changes (e.g., method

moves).

Accurate code snippet tracking is also essential in many areas of software engineering

research. Alencar da Costa et al. [10] pointed out that bug-inducing analysis algorithms (e.g.,

1

SZZ [37, 20, 43]) suffer from broken historical links due to file moves and renames. This

further affects the results of defect prediction techniques and empirical studies investigating

the characteristics of bug-introducing changes, which rely on the original SZZ algorithm or

its variants [33]. Shen et al. [34] showed that automatic source code merging tools often fail

to track the changed program elements correctly due to overlapping refactoring operations,

and thus are unable to perform the auto-merging. The automatic migration of client software

to newer library and framework versions, requires to track the updated API program elements

(i.e., methods and fields) from the source to the target version, extract changes in the API

signatures, and adapt accordingly the API references in client’s code [11, 18, 9]. API

program element tracking has been performed both at commit level [6, 5] and release

level [24, 23]. However, fine-grained program element tracking at commit level may be

more accurate than release level, as comparing directly two releases involves significantly

more noise from overlapping changes performed in all commits between the two releases.

The inherent limitations of the line-based text diff and blame tools used in the aforemen-

tioned software engineering tasks, motivated researchers to develop techniques for tracking

more accurately program elements, such as methods/functions and classes, in the commit

history of software projects [13, 14, 15, 39, 12, 38, 16]. These techniques deal with changes

that modify the name/signature or location of a program element and can cause a split

in its history. Hora et al. [16] found that 25% of classes and methods have at least one

untracked change (i.e., move, rename, extract, inline refactoring) in their histories. Despite

the significant accuracy improvements brought by program element tracking tools, they still

have some limitations, which we discuss in the next section.

Our solution offers some significant improvements over the previous state-of-the-art and

novel contributions:

1. We fix all inaccuracies that we found in the oracle provided by Grund et al. [13] including

the evolution history of 200 methods. Moreover, we extend this oracle by adding the

2

evolution history of 1345 variables declared in these methods, 165 classes containing

these methods, and 806 fields declared in the classes containing these methods.

2. We support new kinds of program element changes, such as documentation and annotation

changes, which are not supported by CodeShovel [13] and other tools.

3. We support a more fine-grained change reporting relative to CodeShovel [13] and other

tools.

4. We improve both precision and recall in method evolution tracking over the previous

state-of-the-art, CodeShovel [13].

5. We extend RefactoringMiner [42, 41] with heuristics for performing partial commit

analysis in order to reduce the execution time. We show that the applied heuristics

achieve an execution time comparable to that of CodeShovel [13] without jeopardizing

precision or recall.

6. We are the first to support the evolution tracking of all code elements like variable

declarations with over 97% precision and recall, class declaration with 100% precision

and recall, and field declaration with over 98% precision and recall.

The remainder of this document is structured as follows: Illustration of a complex code

evolution scenario and providing background information about existing tooling and their

limitation are provided in Chapter 2. Chapter 3 is dedicated to Related Works in the context

of tools tried to detect source code history. Chapter 4 presents our approach for modelling

and reconstructing the changes applied on program elements, such as method and variable

declarations, in the commit history of a project. Chapter 5 presents details about the actual

implementation of our approach as a tool. Chapter 6 shows the results of our experimental

evaluation, and information on the oracle construction. Discussion about limitations and

threats to validity follows in Chapter 7 before we conclude in Chapter 8.

3

Chapter 2

Motivation and Background

This chapter motivates the importance of accurate tracking of program elements in the

commit history of software projects. We first illustrate a complex code evolution scenario in

Section 2.1. We then provide background information about existing tooling and discuss

how they are insufficient to track the evolution of code elements in Section 2.2.

2.1 Motivation

897c4a1 a1f468a

Extract Subclass

4e5827e

public class FilterProcessorImpl
 implements FilterProcessor {
 public Observable<ZuulMessage>
 processAsyncFilter(
 ZuulMessage msg, ZuulFilter filter,
 boolean shouldSendErrorResponse) {...}

 public ZuulMessage processSyncFilter(
 ZuulMessage msg, SyncZuulFilter filter,
 boolean shouldSendErrorResponse) {...}
 ...
}

Change
Parameter

Type

9d2554e

public class FilterProcessorImpl implements
 FilterProcessor {
 protected void handleDebug(ZuulFilter filter,
 ZuulMessage msg, FilterExecInfo info) {...}

 protected boolean shouldSkipFilter(
 ZuulFilter filter, ZuulMessage msg) {...}

 protected ZuulMessage handleFilterException(
 ZuulFilter filter, ZuulMessage msg,
 boolean shouldSendErrorResponse,
 FilterExecInfo info, Throwable e) {...}
 ...
}

3x Extract Method

3x Extract Method

public class FilterProcessor {
 public Observable<ZuulMessage>
 processAsyncFilter(
 ZuulMessage msg, ZuulFilter filter,
 boolean shouldSendErrorResponse) {...}
 ...
}

public interface FilterProcessor {...}

public class FilterProcessorImpl
 implements FilterProcessor {
 public Observable<ZuulMessage>
 processAsyncFilter(
 ZuulMessage msg, ZuulFilter filter,
 boolean shouldSendErrorResponse) {...}

 public ZuulMessage processSyncFilter(
 ZuulMessage msg, BaseSyncFilter filter,
 boolean shouldSendErrorResponse) {...}
 ...
}

public class ExperimentalFilterProcessor2
 extends FilterProcessor {
 public ZuulMessage processSyncFilter(
 ZuulMessage msg, BaseSyncFilter filter)
 {...}
 ...
}

public class ExperimentalFilterProcessor2
 extends FilterProcessorImpl { ...}

Change Superclass

Pull Up Method
+

Add Parameter

Push Down Method

Figure 1: Complex code evolution scenario in project Netflix Zuul.

Code evolution can be very complex as it may involve refactoring operations changing

the structure of the project, which overlap with changes from other software maintenance

activities, such as feature additions and bug fixes. Negara et al. [31] found that 46% of

refactored program entities are also edited or further refactored in the same commit, a

4

practice commonly referred to as floss refactoring [27]. This makes the accurate tracking of

program elements in the commit history a rather challenging task. To motivate our work, we

present in Figure 1, a complex code evolution scenario detected in project Netflix Zuul by

our tool.

In commit a1f468a a new subclass named FilterProcessorImpl was extracted

from class FilterProcessor, which was then declared as an interface. Method

processAsyncFilterwas among the methods pushed down from FilterProcessor,

while method processSyncFilter was moved from class ExperimentalFilter

Processor2, which eventually extended the newly extracted class FilterProcessor

Impl. The moved method processSyncFilter was also slightly modified by adding a

new boolean parameter shouldSendErrorResponse along with some functionality

related to the newly added parameter. In commit 4e5827e, the type of parameter filter

changed from BaseSyncFilter to SyncZuulFilter in method processSync

Filter. Finally, in commit 9d2554e three duplicated code fragments were extracted

from processSyncFilter and processAsyncFilter in methods handleFilter

Exception, handleDebug, and shouldSkipFilter, respectively.

Our tool can properly track these extracted code fragments back to their origin methods

and classes by creating a branch for each extracted method on the evolution graphs of the

origin methods. However, none of the competitive method tracking tools we experimented

with was able to track these extracted methods. CodeShovel [13] and FinerGit [15] report

handleFilterException, handleDebug, and shouldSkipFilter as newly

added methods and miss their links with the origin methods from which they were extracted.

Assuming there exists a bug in one of the extracted methods, which was introduced prior

to commit 897c4a1, CodeShovel [13] and FinerGit [15] would not be able to find the

commit(s) and author(s) that introduced this bug, and more importantly would not be able to

find that this bug was duplicated in two different origin files and methods.

5

2.2 Limitations of Current Tracking Tools

CodeShovel [13], is the most accurate tool for uncovering Java method histories to-date, as

it produces complete and accurate commit change histories for 90% of methods, including

97% of all method changes. However, our experiments have shown that it fails to track

properly methods from which a significant part of their body has been extracted to new

methods, as it uses a 75% body similarity threshold to match modified methods, and thus

erroneously matches the original method with the extracted one. The same limitation

holds when methods with a relatively large body are inlined to the tracked methods. Our

approach overcomes this limitation by being fully refactoring-aware and detecting method

extractions/inlines from/to the tracked methods.

FinerGit [15] and Historage [14] create a finer-grained Git repository. FinerGit improves

on the limited capability of Historage to track renamed or moved methods. Pre-processing

an entire repository to place each method in its own file, is computationally expensive and

requires additional hard disk space, which can be prohibitive, especially for large repositories

with many files and a long commit history. As a matter of fact, Grund et al. [13] found that

FinerGit ran out of memory or did not finish pre-processing within 15 minutes for the four

largest repositories in their validation data set. Moreover, this pre-processing cost did not

contribute an accuracy improvement, as the recall of FinerGit was 65% compared to 90% of

CodeShovel [13].

Kim et al. [39] proposed an approach to identify function mappings across revisions

even when a function’s name changes. The computation of text diff and the execution of

multiple clone detection tools may have a considerable cost, especially when there are many

combinations of deleted and newly added functions to be compared.

A common limitation of all aforementioned tools is that they are designed to support

only the tracking of methods, and cannot be extended to support the tracking of other

program elements, such as variables and attributes, whose evolution is also interesting for

6

the developers. Several studies have shown that developers frequently refactor variables and

attributes, which makes their tracking in the commit history challenging. Negara et al. [29]

found that RENAME LOCAL VARIABLE and RENAME FIELD are among the most popular

refactorings applied by developers. Negara et al. [30] surveyed 420 developers, who ranked

CHANGE FIELD TYPE as the most relevant and applicable transformation that they perform.

Ketkar et al. [19] found that developers who changed the type of a variable or attribute, they

also renamed it in 55% of the examined instances.

Godfrey and Zou [12] implemented a tool, named Beagle, that can detect structural

changes like rename, move, split, and merge at function, file, and subsystem level. They

rely on origin analysis to decide if a program entity is renamed or moved and a function call

analysis to discover merges and splits of program entities. Although Beagle supports the

tracking of program elements at different levels of granularity (i.e., function, file, subsystem),

it requires as input two complete versions of a software system in order to extract static

relations between program entities (e.g., function calls), and calculate various metrics. This

makes Beagle impractical for program element tracking at commit level.

Steidl et al. [38] proposed an incremental origin analysis that applies some heuristics

to find moved, renamed, split, and merged source code files. In contrast to Beagle, their

approach is commit-based and incrementally reconstructs the history based on clone infor-

mation and file name similarity. However, the proposed origin analysis is limited to files

and thus does not support the tracking of program elements, such as methods, variables and

attributes.

Hora et al. [16] introduced the concept of change graph to model the evolution of

classes, methods, and their related changes in the commit history of a project, and study the

phenomenon of untracked changes. In this graph, each class or method is represented as a

node, while each tracked or untracked change is represented as an edge between two nodes.

However, Hora et al.’s change graph is limited in modelling only the evolution of classes and

7

methods, supports a limited number of refactoring types (5 class-level and 6 method-level

refactorings), and uses RefDiff [36] for the detection of refactoring operations, which has

inferior precision, recall and performance than RefactoringMiner [42, 41]. Finally, the graph

edges model only a small subset of refactoring operations, while other kinds of changes,

such as method body and signature changes are omitted. Thus, Hora et al.’s change graph

cannot be used to find all commits where a program element changed, i.e., the graph can

provide only the commits in which a program element is involved in refactorings.

Summary: None of the currently available tools can track the evolution of fields and

local variables. Moreover, the evolution tracking of methods is limited, as commonly

applied refactoring types, such as EXTRACT METHOD, are not supported by the

currently available tools. According to Negara et al. [29] and Tsantalis et al. [41],

EXTRACT METHOD is the most commonly applied refactoring on methods.

8

Chapter 3

Related Work

In this chapter, we are presenting tools and techniques that tried to retrive and track the

history of code elements.

Historical analysis of software repositories has been considered a critical way to collect

code evolution and program understanding. As a result, in addition to the features for

tracking the histories of lines, line ranges, and files provided by version control systems like

Git, some tools have been built to help practitioners and researchers understand better the

histories and track the evolution of software systems.

Grund et al introduced CodeShovel [13], the most accurate tool for uncovering Java

method histories to-date, as it produces complete and accurate commit change histories for

90% of methods, including 97% of all method changes. CodeShovel is partially refactoring-

aware. It supports tracking methods with changes in their signature (e.g., method rename,

parameter addition/deletion), methods whose parent file has been moved/renamed, and

methods moved to another file. CodeShovel takes a path to a Git repository on the local

file system, the SHA of the commit to start from, a path of the file containing the method,

name and line number of the method for which the history should be produced as input and

produces a JSON file with a list of commits that changed the selected method as output.

Each commit in the output includes a change type and has basic information like the author,

9

commit message, date, and more complex information like the time and number of commits

between the current method changes and the previous one. It also holds type-specific

information for more complex change types (e.g. the old file path and the new file path for

a method move). CodeShovel’s method tracking uses a similarity algorithm for matching

methods across file versions. This method matching procedure computes the similarity of

some metrics (e.g., string similarity of the method body, string similarity of the method

name, string similarity of parameter names)

FinerGit [15] and Historage [14] create a finer-grained Git repository, in which each

Java method exists in its own file, and take advantage of Git mechanisms to track changes

on each individual method’s corresponding file.

Historage keeps a fine-grained history of methods and constructors in Java, even when

they have been renamed. It uses the rename/move detection mechanism of Git that identifies

matches based on the similarities of file contents in case of rename and move. Historage

stores all Java methods individually and control their histories. Since Historage is created

on top of a Git version control system, every Git command can be used. They found that

Historage can identify matches practically when renaming and moving exist by conducting

empirical evaluation with some open source projects.

FinerGit improves on the limited capability of Historage to track renamed or moved

methods, especially for small methods, by formatting each file to include a single token from

the corresponding method in each line. This formatting makes Git’s line-based similarity

computation mechanism more robust in matching small methods, which have been renamed

or moved. FineGit takes a Git repository of a Java project and makes another Git repository.

In the new repository, every file with extension .mjava represents a Java method that gets

extracted from the original files. The git-log command with option –follow for a .mjava

file will return the history of the method that corresponds to that file. In order to measure

the method tracking performance of FinerGit and compare it with Historage, an oracle

10

of 182 methods is manually constructed by the authors. Higo et al. applied FinerGit and

Historage to the manually created oracle and found that FinerGit with scored 84.52% as

maximum F-measure outperforms Historage with a score of 70.23%.They also confirmed

that their technique worked well with methods of any size and showed that preprocessing of

repositories, even for large repositories, took only a short time to construct finer-grained

repositories.

Kim et al. [39] proposed an approach to identify function mappings across revisions

even when a function’s name changes. Their approach computes the similarity between

functions based on the following weighted similarity factors: function name, incoming

and outgoing calls, signature, function body text diff, complexity metrics and the results

of two clone detection tools (CCFinder and MOSS). If the similarity of two functions is

more significant than a predefined threshold, the approach identifies renamed functions. The

authors sample 20% revision history from two open-source C projects and ask ten human

judges to identify renamed entities to evaluate the approach manually. Evaluation result

suggests that the accuracy of the approach in detecting renamings is 91

Godfrey and Zou [12] implemented a tool, named Beagle, that can detect structural

changes like rename, move, split, and merge at function, file, and subsystem level. They rely

on origin analysis that uses syntactic and semantic analyses to decide whether a program

entity is newly introduced, renamed, moved, or a changed version of an original entity. They

also used a function call analysis to discover merges and splits of program entities. They

provide a list of potential origins of a target entity based on different matching techniques

like name matching, declaration matching, metrics matching, and call relation matching.

Hora et al. [16] introduced the concept of change graph to model the evolution of

classes, methods, and their related changes in the commit history of a project, and study the

phenomenon of untracked changes during software development. The authors show that

refactorings disable several tracking strategies to evaluate system evolution. In the change

11

graph that represents traceable changes or changes that split the element’s history, each

class or method is represented as a node, while each tracked change (i.e., code element that

keep its names after a modification) or untracked change (i.e., code element that is renamed

after a refactoring) is represented as edge between two nodes. They showed that 21% of the

changes at the method level and up to 15% at the class level are untraceable.

Brito et al. [4] introduced a refactoring graph concept to assess refactoring operations

over time. The authors analyzed 20 Java and JavaScript projects, extracted 1,525 refactoring

subgraphs, and evaluated their properties: operations over time, size, commits, age, homo-

geneity, ownership, and patterns. They found out that nearly 30% of refactoring activities

are part of a refactring subgraph over time, the majority of the refactoring subgraphs are

small and mostly created by a single developer.

12

Chapter 4

Research Approach

In this chapter, we present our approach to creating a program element Identifier for code

elements in section 4.1, then we describe our code element tracking process in section 4.2,

and finally, we discuss change graph evolutions hooks in section 4.3.

4.1 Program Element Identifier

Each program element e is uniquely identified in the commit history of a software repository

with the following tuple:

Ie = (Ve, CONe, SIGe) (1)

where Ve is the version of e corresponding to the SHA-1 Git commit ID in which a change

took place on e, CONe is the signature of the container in which e belongs to, and SIGe is

the signature of e.

The typical container structure in Java programs is shown in the example of Figure 2.

The container of a type declaration c is the tuple CONc = (SRCc, PKGc), where SRCc

is the source folder path and PKGc is the package name in which c belong to. It is

very important to include the source folder path in the container tuple, as it is possible to

13

Zull-core/src/main/java
 package com.netflix.zull;
 public class FilterProcessorImpl {
 protected final FilterLoader filterLoader;
 protected ZuulFilter getErrorEndpoint(ZuulMessage msg) {
 SessionContext context = msg.getContext();
 String endpointName = context.getErrorEndpoint();
 ...
 ZuulFilter errorEndpoint = getFilterByNameAndTyper(
 endpointName, FilterType.ENDPOINT);
 if(errorEndpoint == null) {
 String errorStr = "..." + endpointName;
 LOG.error("..." + errorStr, context.getError());
 }
 return errorEndpoint;
 }
 }

Figure 2: Typical container structure in Java programs

have a type declaration with the same name and package in two different source folders.

The container of a field declaration f is the tuple CONf = (CONCf
, SIGCf

), where

Cf is the type declaration in which f belong to, CONCf
and SIGCf

are the container

and signature of Cf , respectively. The container of a method declaration m is the tuple

CONm = (CONCm , SIGCm), where Cm is the type declaration in which m belong to,

CONCm and SIGCm are the container and signature of Cm, respectively. Finally, the

container of a variable/parameter declaration v is the tuple CONv = (CONMv , SIGMv),

where Mv is the method declaration in which v is declared, CONMv and SIGMv are the

container and signature of Mv, respectively.

The signature of a type/enum/annotation declaration c is the tuple

SIGc = (Nc, Kc, Sc, Ic, Tc, Ac, Vc,Mc) (2)

where Nc is the name of c, Kc is the kind of c, which is a categorical variable taking

four possible values, namely class, interface, enum and @interface (for annotation type

declarations), Sc is the super-class type of c, Ic is the list of super-interfaces of c, Tc is

14

the list of type parameters of c in the case that c is a parameterized type, Ac is the list

of annotations of c, Vc is the visibility of c, which is a categorical variable taking four

possible values (public, protected, private, or package-private), and finally Mc is the list of

modifiers of c (final, static, abstract). All elements in the signature of c can change during

its evolution, including its kind Kc, as happened with class FilterProcessor in the

motivating example shown in Figure 1.

The signature of a field declaration f is the tuple

SIGf = (Nf , Tf , Af , Vf ,Mf) (3)

where Nf is the name of f , Tf is the type of f , Af is the list of annotations of f , Vf is the

visibility of f , and finally Mf is the list of modifier of f (final, static, transient, volatile).

The signature of a method declaration m is the tuple

SIGm = (Nm, Rm, Pm, Em, Tm, Am, Vm,Mm, Bm, Dm) (4)

where Nm is the name of m, Rm is the return type of m, Pm is the ordered parameter list

of m, Em is the list of thrown exception types of m, Tm is the list of type parameters of m

in the case that m is a parameterized method, Am is the list of annotations of m, Vm is the

visibility of m, Mm is the list of modifiers of m (final, static, abstract, synchronized), Bm is

the hashed value of m’s body string representation, and finally Dm is the hashed value of

m’s Javadoc and inline comments.

The signature of a variable/parameter declaration v is the tuple

SIGv = (Nv, Tv, Av,Mv, Sv) (5)

where Nv, Tv, Av, Mv, Sv are the name, type, annotation list, modifier (i.e., final) and scope

15

of v, respectively. Sv includes all statements v is visible to, and thus v can be referenced

from. The scope of a variable starts from the first statement following the declaration

of the variable and ends to the last statement within the block in which the variable is

declared. Figure 2 depicts the statements within the scopes of variables endpointName

and errorStr in the respective rectangular boxes. The scope is essential for distinguishing

variables with the same name and type declared in different blocks of a method.

4.2 Tracking Process

Our solution relies on RefactoringMiner [41] to track a program element in the commit

history of a project, and report all changes and refactoring operations performed on it.

Despite the fast execution time of RefactoringMiner (44 ms on median and 253 ms on

average per commit), running it on the entire commit history of the project is computationally

inefficient, as the tracked program element is changing in a relatively small subset of

commits, and furthermore it is not always necessary to analyze all modified files in a commit

to track a single program element, especially in large commits involving thousands of

modified files. Therefore, we developed some heuristics and extended RefactoringMiner to

perform partial analysis whenever possible.

Input: Similarly to CodeShovel, our tool is using as input a Git repository URL, a starting

commit SHA-1 ID (or HEAD by default), the file path containing the program element

of interest, the name of the program element, and the start line number of the program

element’s declaration. Both name and start line are needed to disambiguate the program

element of interest, as it is possible to have multiple program elements with the same name

(i.e., overloaded methods, identically named variables declared in different blocks of the

same method), and it is possible to declare two or more variables/parameters on the same

line.

16

Output: A graph in which the nodes represent program elements with their unique identifiers

(i.e., program elements in different commits), and each edge connecting two nodes includes

the list of changes between the corresponding program elements. The edges are directed

from child commit program elements to the matching parent commit program elements.

In other words, by traversing the output graph, we visit previous versions of a program

element (i.e., backward tracking). We decided to model the output as a graph, because it

is possible to have forks. For example, when multiple methods from different subclasses

are pulled up in a single superclass method, the same program element (i.e., superclass

method) is connected with multiple program elements (i.e., subclass methods). In addition,

we model extracted and inlined methods as branches in the evolution graph of the main

tracked program element, as we will explain in Section 4.3. To facilitate the comparison

with CodeShovel [13], we can transform the graph output to a list of commits in which

the input program element changed along with the corresponding kinds of changes in each

commit.

InFileChange

BodyChange

MethodContainerChange

MethodMove

MethodSignatureChange

NoChange

MethodAccessModifierChange

DocumentationChange

AbstractChange

InlineMethodTo

Extracted

ExtractMethodFrom

ReturnTypeChange

ExceptionChange

CrossFileChange

Introduced MethodChange

MethodModifierChange MethodAnnotationChange

MethodRename

ParameterChange

Figure 3: Hierarchy of supported change kinds for methods adopted by CodeShovel [13].
Newly supported change kinds are highlighted in darker background colour and blue text
color.

We adopted and extended the change hierarchy supported by CodeShovel [13] for

17

method tracking, as shown in Figure 3. The newly supported change kinds are highlighted in

darker background colour and blue text color, and deal with InFileChange, i.e., the extraction

of a new method from the body of the tracked method, and the inline of a method within the

body of the tracked method. InFileChange is essential for supporting the evolution scenario

of our motivating example, shown in Figure 1.

In addition, we support three more kinds of changes, namely AnnotationChange, Access-

ModifierChange, and DocumentationChange. The latter involves changes in the Javadoc or

inline comments within the body of the tracked method. We also separated access modifier

change of code elements from the rest of their modifiers because access modifier plays

essential roles relative to other modifiers. Developers can hide a code element from an API

and broke the API by changing their access modifier or exposing them to be accessible by

the public.

Finally, for some change kinds we have a more fine-grained reporting. For example,

CodeShovel reports any change(s) in the parameter list of a method as a single Parameter-

Change, while we report individually for each parameter the following fine-grained changes,

Add, Remove, Rename, ChangeType, Merge, Split, and Reorder.

Figure 4 shows the change hierarchy supported by our tool for variable tracking. In-

FileChange supports the scenario of a variable declaration being moved to another method

in the same container, as part of a code fragment extracted to a new method or inlined from

a previously existing method, while CrossFileChange supports the scenario of a variable

declaration belonging to a method moved to another container.

Figure 5 shows the change hierarchy supported by our tool for class tracking. Class-

ModifierChange supports addition and removal of modifiers like final, static, abstract.

ClassDeclarationKindChange is a change that can perform on classes to change a concrete

type to an interface or vice versa. This kind of change is common, especially when a

developer wants to extract an interface or remove an existing interface from the codebase

18

VariableSignatureChange

VariableChange

AbstractChange

VariableModifierChange

VariableContainerChange

InlinedFromMethod

ExtractedToMethod

VariableInFileChange

Introduced

VariableAnnotationChange

VariableTypeChange VariableRename

VariableCrossFileChange

NoChange

Figure 4: Hierarchy of supported change kinds for variables.

without forcing changes to other components or users of that class. In such cases, they keep

the type and change the declaration kind of that type. In the case of extraction, they first

extract a subclass from the original class and pull up all fields and methods to the newly

extracted subclass. Then they change the declaration kind of the existing type from concrete

class to interface. To make the change transparent from the users of that class, they declare

the signature of public methods in the interface. In the case of removal, developers do not

actually remove the interface. In fact, they change the declaration kind of the interface to

a concrete class or an abstract class, then pull up the methods and fields of the class that

implemented the interface to this class. In this stage, the subclass and the superclass become

practically the same. So they remove the subclass. Since the users of the interface depend

on the interface, removing the subclass is safe and does not boke the API.

Figure 6 shows the change hierarchy supported by our tool for field tracking. At-

tributeModifierChange supports addition and removal of applicable field’s modifiers like

final, static, transient, volatile. In addition, AttributeAnnotationChange supports addition,

removal, and modification all aspects of annotation declared on fields.

The tracking process consists of the following steps:

19

NoChange

ClassDeclarationKindChange ClassMove

ClassAnnotationChange ClassRename

ClassAccessModifierChange

ClassContainerChange

ClassModifierChange

Introduced

Extracted

AbstractChange

Change

ClassChange

Figure 5: Hierarchy of supported change kinds for fields.

AttributeMove

AttributeAccessModifierChangeAttributeCrossFileChange

AttributeContainerChange

AttributeChange

AbstractChange

Change

Introduced NoChange

Extracted

AttributeTypeChange

AttributeModifierChange

AttributeAnnotationChange

AttributeRename

Figure 6: Hierarchy of supported change kinds for fields.

Step #1: Given the input file path in which program element e is located, we first find all

commits in the project’s history in which file path is modified using the command git log

--follow filePath. The --follow option is particularly important, as it continues

listing the history of a file even when it gets renamed or moved. The first step is based on

the assumption that if there are no changes in the file containing e in a given commit, then

we can skip the analysis of this commit as e has no changes too.

Step #2: For each commit r in the subset of commits obtained from Step #1, we create a

partial source code model for r and p (i.e., r’s parent commit) by parsing only the source

file corresponding to the input file path. If r is the starting commit, then we locate program

element e in r’s model using its name and start line, and construct its signature (siger) and

container (coner) as explained in Section 4.1. If r is a subsequent commit, then we have

20

er’s signature and container from the previous iteration of the tracking process (i.e., the

matched program element from the previously processed commit). Then, we attempt to

locate a program element with the same signature and container in p’s model. If a match

is found, then we link the two program elements (er, ep) with their unique identifiers and

report NoChange. Such a match is possible when all containers of the tracked program

element up to the root have identical signatures, but the file has changes in other irrelevant

parts. In such case, there is no need to execute RefactoringMiner. If no match is found, we

relax the comparison of signatures, as explained in the next step.

Step #3: If program element e itself or its container is a method (i.e., e is a variable), then

we omit Bm (i.e., the hashed value of the method’s body string representation) from the

method’s signature tuple, and we attempt to locate a program element with the same relaxed

signature and container in p’s model.

If a match is found and e is a method, we link the two methods (er, ep) with their unique

identifiers and report BodyChange. Such a match is possible when there are changes in the

body of the tracked method, but its signature remains unchanged. However, we still need

to check if the tracked method is involved in an EXTRACT METHOD or INLINE METHOD

refactoring. To avoid an unnecessary execution of RefactoringMiner, we extract all method

calls from er and ep, respectively, and filter the calls that do not have a caller expression or

have this as a caller expression (i.e., the calls to local methods). If there are additional

calls in er’s call list, then we need to check if a local method was extracted from ep. If there

are additional calls in ep’s call list, then we need to check if a local method was inlined to er.

In both cases, we execute RefactoringMiner on the partial source code models for commits

r and p including only Tr (i.e., the type declaration containing er) and Tp (i.e., the type

declaration containing ep). For each EXTRACT METHOD or INLINE METHOD refactoring

returned by RefactoringMiner, we introduce the extracted/inlined program elements as

evolution hooks in the output graph (Section 4.3 includes more details). However, if the two

21

method call lists are identical, then there is no need to execute RefactoringMiner.

If a match is found and e is a variable, we link the two variables (er, ep) with their unique

identifiers and report NoChange. Such a match is possible when er and ep still have the same

name, type, modifier, annotations, and statements in their scopes, despite the changes in the

body of their container method. However, if no matching variable is found, but the container

methods coner and conep are matched, we extract all variables declared within the body of

coner and conep and omit Sv (i.e., the list of statements within the variable’s scope) from all

variable signature tuples. If the two lists of relaxed variable signatures are identical, then

we link er with the corresponding variable ep (i.e., the variable having the same position in

the list of variables declared within conep). Such a match is possible when er and ep still

have the same name, type, modifier, annotations, but there are some syntactic changes in the

statements within the scope of the variables. However, if the two lists of relaxed variable

signatures are not identical, then we execute RefactoringMiner on the partial source code

models for commits r and p including only Tr (i.e., the type declaration containing coner)

and Tp (i.e., the type declaration containing conep). RefactoringMiner will initially match

the container methods coner and conep and perform a thorough analysis after matching the

statements within their bodies, in order to find renamed, inlined, extracted, split, merged,

moved (due to method extraction or inline), added, deleted, and matched variables. We

locate er in the reported refactorings, link er with the corresponding variable ep, and report

all changes found between them.

If by the end of Step #3 no match is found for e, this is an indication that there are major

changes in the signature of e itself or its container. This scenario is addressed in the next

step.

Step #4: Assuming that er is contained within type declaration Tr in commit r, and exists a

type declaration Tp in commit p, where both Tr and Tp have an identical name and container

signature, then we attempt to locate ep within Tp, by executing RefactoringMiner on the

22

partial source code models including only Tr and Tp. RefactoringMiner initially matches

the method pairs with identical signatures (i.e., method name and parameter types), and then

compares all combinations of the remaining unmatched methods from Tr with the remaining

unmatched methods from Tp to find the best matching method pairs with changes in their

signatures [41].

If er is a method, we check if there exists a pair (er, ep) in the best matching method

pairs. If so, we link the two methods (er, ep) with their unique identifiers and report all

changes in their signatures and bodies. In addition, we add any local methods extracted from

ep or inlined to er as evolution hooks in the output graph (Section 4.3), as this information is

provided by RefactoringMiner when comparing two type declarations.

If er is a variable, we check if there exists a pair (coner , conep) including the container

of er in the best matching method pairs. If so, we retrieve all variable-related refactorings

(i.e., rename, inline, extract, split, merge, move, add, delete, and match) extracted by

RefactoringMiner for this pair of methods. We locate er in the reported refactorings, link er

with the corresponding variable ep, and report all changes found between them.

If by the end of Step #4 there is still no match found for program element e, this is an

indication that either e itself or its container has been moved to another file, or the type

declaration Tr containing er has been renamed or moved to another package. This scenario

is addressed in the next and final step.

Step #5: At this stage, we keep the partial source code model including only Tr for commit

r, but add all modified and removed files in commit p to p’s source code model (i.e., we

create the complete source code model for commit p). Then, we execute RefactoringMiner

on these two source code models, and collect all reported refactorings, including RENAME

CLASS, MOVE CLASS and MOVE METHOD. Step #5 is the most time-consuming step in

the tracking process, as we include all modified files in commit p. During our experiments,

we discovered some commits (e.g., in project hadoop [28]) in which the developers moved

23

thousands of source code files from one source folder to another. In this scenario, the

moved files have a change in their file path, but their contents remain identical. To avoid

the unnecessary processing of files and speed-up the tracking process, we exclude from

p’s source code model all files with identical contents, and infer the corresponding MOVE

SOURCE FOLDER refactoring operations simply by analyzing the changes in their file paths.

Finally, we support three scenarios in which additional files need to be included in r’s source

code model to correctly track program element e.

(1) Changes on e can only be inferred from changes in other program elements:

RefactoringMiner infers signature-level refactorings for method pairs not having a body (i.e.,

interface or abstract methods), or method pairs that could not be matched based on statement

mapping information (i.e., methods with large differences in their bodies due to functionality

changes) from the refactorings/changes detected on method pairs having identical signatures

with the unmatched method pairs [41]. The intuition is that a change in the signature of

an abstract or interface method should propagate to all concrete implementations of that

method (i.e., overriding methods). Assuming that er is contained within type declaration

Tr in commit r, we get the extended superclass and implemented interface types of Tr

and check for each one of these types if it corresponds to a modified file in commit r to

ensure the super type is a local type declaration of the analyzed system. If a super type

Sr indeed corresponds to a modified file in commit r, then we use regular expressions

to check if other modified files in commit r extend or implement Sr and add them to r’s

source code model. This approach enables the inference mechanism of RefactoringMiner

with the least possible computation cost. For example, in project OkHttp [44], the method

pair synStream—headers in inner class SpdyConnection.Reader is matched by

additionally including class MockSpdyPeer.InFrame to r’s source code model, as both

classes implement the FrameReader.Handler interface.

(2) e is copied into a new file: In some projects, which are libraries with public APIs,

24

we found that developers tend to copy the methods they want to deprecate into a new

file, and then declare the original methods or their container class as @deprecated.

Assuming that er is copied in type declaration Tr in commit r from type declaration T ′
p

in commit p. Without additionally including the original type declaration containing the

copied method T ′
r to r’s source code model, then er would be detected as moved from

T ′
p to Tr, instead of introduced in Tr as a new method. To address this issue we use a

regular expression to check if other modified files in commit r include a @deprecated an-

notation with a @link to er’s signature (e.g., copy methods copied from IOUtils

to CopyUtils in project commons-io [25]), or a @deprecated annotation with a

reference to Tr name (e.g., deprecated classes IOUtil and EndianUtil referring to

newly added classes IOUtils and EndianUtils, respectively, in project commons-

io [26]) and add them to r’s source code model. Moreover, we check if other modified

files in commit r have the same name as Tr, but different package (e.g., methods copied

from deprecated class org.apache.commons.lang.NumberUtils to new class

org.apache.commons.lang.math.NumberUtils in project commons-lang [8])

and add them to r’s source code model.

(3) e is extracted to a new file: In this scenario, developers move some members of

an existing class into a new class, and instantiate the new class into the origin class in

order to access the moved functionality (i.e., EXTRACT CLASS refactoring), or extend the

origin class in order to inherit the non-moved functionality (i.e., EXTRACT SUBCLASS

refactoring). Assuming that er is moved in type declaration Tr in commit r from type

declaration T ′
p in commit p. Without additionally including the original type declaration

containing the moved method T ′
r to r’s source code model, then T ′

p would be detected

as renamed to Tr (if multiple members from T ′
p have been moved to Tr), instead of Tr

being extracted from T ′
p, and T ′

r being matched with T ′
p. To address this issue we use

a regular expression to check if other modified files in commit r create an instance of

25

Tr (e.g., methods moved to extracted class SourceFileInfoExtractor from class

ProjectResolver in project javaparser [40]), or are extended by Tr (e.g., methods

pushed down to extracted subclass AbstractNestablePropertyAccessor from

origin class AbstractPropertyAccessor in project spring-

framework [32]) and add them to r’s source code model.

Step #5a: Assuming that er is contained within type declaration Tr in commit r, we check

all class-related refactorings (i.e., rename, move class) to find a pair of type declarations (Tr,

Tp) involving Tr. If such a pair is found, we obtain the corresponding class-level diff object

from RefactoringMiner, which includes all pairs of matched methods.

If er is a method, then we check if there exists a pair (er, ep) in the matching method pairs.

If so, we link the two methods (er, ep) with their unique identifiers, and report a FileMove

change (i.e., Tr is renamed/moved to Tp) in addition to any changes in their signatures and

bodies. Moreover, we add any local methods extracted from ep or inlined to er as evolution

hooks in the output graph (Section 4.3), as this information is provided by RefactoringMiner

when comparing two type declarations.

If er is a variable, we check if there exists a pair (coner , conep) including the container

of er in the matching method pairs. If so, we retrieve all variable-related refactorings

(i.e., rename, inline, extract, split, merge, move, add, delete, and match) extracted by

RefactoringMiner for this pair of methods. We locate er in the reported refactorings, link er

with the corresponding variable ep, and report a MovedWithMethod change (i.e., coner has

been relocated to conep) in addition to any changes found between the variables.

If by the end of Step #5a there is still no match found for program element e, this is an

indication that either e itself or its container has been moved to another file.

Step #5b: Assuming that er is contained within type declaration Tr in commit r, we check

all method-related refactorings involving moves (i.e., move, pull up, push down method)

to find a pair of method declarations (er, ep) if er is a method, or (coner , conep) if er is a

26

variable, involving a move from Tr. If such a pair is found, we proceed in the same way as

described in Step #5a with the only difference being the report of a MethodMove change

instead of a FileMove if er is a method.

If by the end of Step #5b there is still no match found for program element e, we report

that er has been Introduced in commit r. We further examine the refactorings reported

by RefactoringMiner to find if er is introduced by an EXTRACT METHOD refactoring,

and add the method(s) from which er is extracted as evolution hooks in the output graph

(Section 4.3). If a matching program element ep is found throughout Steps #2 to #5, we

use its signature (sigep) and container (conep) to continue tracking program element e in the

remaining commits obtained from Step #1.

4.3 Change Graph Evolution Hooks

It is very likely that a developer would like to inspect the evolution of program elements

which are extracted from or inlined to the main tracked program element. The intuition

behind this feature is that the extracted/inlined program elements were originally part or

became part of the tracked program element at some point in its evolution. To support this

feature our program element tracking process (Section 4.2) introduces the extracted/inlined

program elements as evolution hooks in the change graph of the main tracked program

element. The developer can attach on demand the evolution sub-graph of an extracted/inlined

program element by expanding the corresponding evolution hook.

Figure 7 shows how we model the evolution of an extracted program element on the

change graph of a tracked program element. Assuming an EXTRACT METHOD refactoring

takes place in commit r, then we create a node for the extracted element e′r with a unique

identifier Ie′r including the commit ID of r, since e′r starts existing in commit r, its signature

(sige′r) and container (cone′r) constructed as explained in Section 4.1. When the developer

decides to expand the e′r node, we use Ie′r and start commit r as input for our tracking

27

process, which is executed forwards in this case (i.e., from parent commit to child commit),

and attach the resulting graph on the e′r node, as shown in Figure 7.

start commit

erep
extracted from e

p

commit r

evolu�on hook tracked element evolu�on extracted element evolu�on

er
’

Figure 7: Tracking of a program element extracted from the tracked element.

Figure 8 shows how we model the evolution of an inlined program element on the change

graph of a tracked program element. Assuming an INLINE METHOD refactoring takes place

in commit r, then we create a node for the inlined element e′p with a unique identifier Ie′p

including the commit ID of p (i.e., the parent commit of r), since e′p last exists in commit p,

its signature (sige′p) and container (cone′p) constructed as explained in Section 4.1. When

the developer decides to expand the e′p node, we use Ie′p and start commit p as input for our

tracking process, and attach the resulting graph on the e′p node, as shown in Figure 8.

start commit

erep

inlin
ed to

e r

commit p

evolu�on hook tracked element evolu�on inlined element evolu�on

ep
’

Figure 8: Tracking of a program element inlined to the tracked element.

It is also very likely that a developer would like to inspect the evolution of the method(s)

28

from which the tracked program element is extracted, similar to the evolution scenario shown

in our motivating example (Section 2.1). Figure 9 shows how we model the evolution of a

program element, which is the origin of extraction for a tracked program element. Assuming

an EXTRACT METHOD refactoring takes place in commit r, then we create a node for the

origin element e′p with a unique identifier Ie′p including the commit ID of p (i.e., the parent

commit of r), since er was originally contained in e′p in commit p, its signature (sige′p) and

container (cone′p) constructed as explained in Section 4.1. When the developer decides to

expand the e′p node, we use Ie′p and start commit p as input for our tracking process, and

attach the resulting graph on the e′p node, as shown in Figure 9.

start

er

commit r

evolu�on hook tracked element evolu�on origin element evolu�on

ep
’ er

’

Introduced
ext

ra
cte

d fr
om

e p
’

Figure 9: Tracking of a program element from which the tracked element is extracted.

29

Chapter 5

Implementation

In this chapter, we describe some details about the implementation of CodeTracker. In

Section 5.1, we discuss the languages and platforms that our tool is depending. Then

Section 5.2 demonstrates the CodeTracker API. Finally, Section 5.3 reveals Code Element

Types in more detail.

5.1 Languages and Platforms

CodeTracker is implemented in Java and uses Maven as its build tool. The most important

dependencies of CodeTracker are RefactoringMiner, JGit, and Guava.

To track a program element in the commit history of a software project and report

all changes and refactoring operations performed on it, CodeTracker uses Refactoring-

Miner [41]. RefactoringMiner uses the JGit API to obtain the contents of required files from

the parent and child commits directly from the .git folder of the repository. Then it parses

the files extracted from each revision using the Eclipse JDT Abstract Syntax Tree (AST)

Parser and converts them to a source code model. We reused some part of this functionality

to create a partial source code model by parsing specific Java files and converting them to

our code element types that we describe later in Section 5.3, whenever needed. So our tool

30

indirectly depends on Eclipse JDT Abstract Syntax Tree (AST) Parser.

To model the output as graph-structured data, CodeTracker leverages Guava’s graph

library, which contains three top-level graph interfaces: Graph, ValueGraph, and Network.

Graph is the simplest and most fundamental graph type. It defines the low-level operators

for dealing with node-to-node relationships. ValueGraph has all the node-related methods

that Graph does, but adds a couple of methods that retrieve a value for a specified edge.

Network has all the node-related methods that Graph does, but adds methods that work with

edges and node-to-edge relationships. We opted to use directed ValueGraph because we

need to associate a value to the edges representing the changes between two versions of a

code element.

As we describe in Section 4.2, at some point in our tracking algorithm, we need to find

all commits in the project’s history in which a file path is modified. To do so, we need to use

the command git log --follow filePath. To perform this Git operation, we use

the JGit library. So our tool depends on this library directly.

5.2 CodeTracker API

Since source code history is a crucial contributor to program evolution comprehension for

practitioners and plays an essential role in many areas of software engineering research,

we decided to expose the functionality of CodeTracker as an API. The simplicity of the

API was a major and important goal, so we decided to design a single entry point for

CodeTracker as a core API. The core API of CodeTracker, as shown in figure 10, contains

four different tracker classes for each code element: ClassTracker, MethodTracker,

VariableTracker, and AttributeTracker. All of them are instantiable via their

builder. We use builders to improve the extensibility of the API in the future, so we will not

be forced to preserve the signatures of our API methods to maintain backward compatibility.

The CodeTracker interface can instantiate an appropriate builder for a code element.

31

History<Class>track()

ClassTracker

BuilderattributeTracker()

BuilderclassTracker()

BuildermethodTracker()

BuildervariableTracker()

CodeTracker

History<Variable>track()

VariableTracker

History<Method>track()

MethodTracker

History<Attribute>track()

AttributeTracker

ClassTrackerbuild()

BuilderclassDeclarationLineNumber(int)

BuilderclassName(String)

BuilderfilePath(String)

Builderrepository(Repository)

BuilderstartCommitId(String)

Builder VariableTrackerbuild()

BuilderfilePath(String)

BuildermethodDeclarationLineNumber(int)

BuildermethodName(String)

Builderrepository(Repository)

BuilderstartCommitId(String)

BuildervariableDeclarationLineNumber(int)

BuildervariableName(String)

Builder

MethodTrackerbuild()

BuilderfilePath(String)

BuildermethodDeclarationLineNumber(int)

BuildermethodName(String)

Builderrepository(Repository)

BuilderstartCommitId(String)

Builder

BuilderattributeDeclarationLineNumber(int)

BuilderattributeName(String)

AttributeTrackerbuild()

BuilderfilePath(String)

Builderrepository(Repository)

BuilderstartCommitId(String)

Builder

Figure 10: CodeTracker API

It provides a method that returns a builder for each of the four code elements it supports.

Builders mainly collect the repository information and the inputs described in Section 4.2 to

identify the element of interest. Code Snippet 5.1 shows how MethodTracker API can

be instantiated and used to track the history of a method with name fireErrors declared

in line 384 of a file with name Checker.java, and start commit 119fd4fb.

Listing 5.1: Instantiation of a Method Tracker

GitService gitService = new GitServiceImpl();

try (Repository repository =

gitService.cloneIfNotExists("tmp/checkstyle",

"https://github.com/checkstyle/checkstyle.git")){

MethodTracker methodTracker = CodeTracker.methodTracker()

.repository(repository)

.filePath("src/main/java/com/puppycrawl/tools/checkstyle/Checker.java")

.startCommitId("119fd4fb33bef9f5c66fc950396669af842c21a3")

.methodName("fireErrors")

.methodDeclarationLineNumber(384)

32

.build();

History<Method> methodHistory = methodTracker.track();

}

As shown in code snipped 5.1 and Figure 10, the result of calling of track oper-

ation on tracker classes is a generic version of History interface that is parameter-

ized over code element types. For example, AttributeTracker, ClassTracker,

VariableTracker, and MethodTracker will return History<Attribute>,

History<Class>, History<Variable>, and History<Method> respectively,

after calling track method on their instances. As shown in Figure 11, History interface

provides a history graph in which the nodes represent different version of the element of

interest, and each edge connecting two nodes includes the list of changes between the

corresponding program elements. To avoid propagating the dependency to Guava’s graph

library to the users, we provided our graph API that hides the dependency to the Guava

library.

5.3 Code Element Types

Figure 12 demonstrates the code element types that are a composition of the UML model

instantiated by RefactoringMiner. For each code element, we generate a unique identifier

based on the way we discussed in Section 4.1. All required information for generating the

program element identifier is available in the models that we generate from parsing source

code using RefactoringMiner.

33

booleanadded

StringfilePath

Stringidentifier

StringidentifierIgnoringVersion

Stringname

booleanremoved

Versionversion

CodeElement

Graph<C, Edge>graph

HistoryReporthistoryReport

History<C>

Stringid

longtime

Version

Set<EndpointPair<N>>edges

Set<N>nodeList

Graph<N, E>

Set<Change>changeList

Typetype

Edge

Typetype

Change

Figure 11: History Interface and its dependencies

booleanadded

StringfilePath

Stringidentifier

StringidentifierIgnoringVersion

Stringname

booleanremoved

Versionversion

CodeElement

UMLAttributeumlAttribute

Attribute

UMLOperationumlOperation

Method

UMLClassumlClass

Class
UMLOperationoperation

VariableDeclarationvariableDeclaration

Variable

Figure 12: Code element Types

34

Chapter 6

Evaluation

This chapter provides details about the way we update and extend the oracle we used to

evaluate the performance of our tool in section 6.1, demonstrates method, variable, class, and

field tracking accuracy in section 6.2, section 6.3, section 6.4, and section 6.5, respectively.

Finally, it illustrates the execution time of CodeTracker and CodeShovel in section 6.6.

6.1 Oracle Update and Extension

Grund et al. [13] created an oracle with the change history of 200 methods from 20 popular

open-source project repositories. In particular, they used 100 of these methods (training

set) to optimize the threshold values used in CodeShovel, until they achieved 100% training

accuracy, and the remaining 100 methods (testing set) to validate the accuracy of CodeShovel.

We decided to use both the training and testing sets to evaluate the accuracy of our tool and

compare with that of CodeShovel, since Grund et al. spent 100 hours of manual validations

to construct their oracle, and thus we can consider it as very reliable. However, after

executing our tool we found major differences in the commit history of some methods. After

careful inspection, we found out that 18 methods from the training set and 9 methods from

the testing set were matched with a method extracted from their body at some point in their

35

change history. As a result, after the commit in which the the originally tracked method is

erroneously matched with an extracted one, the oracle includes the change history of the

extracted method, instead of the original method. In all these cases, a significant portion

of the originally tracked method (over 75%, or even the entire method body) is extracted

to a new method. Silva et al. [35] found that developers in many cases extract a large

portion or even the entire body of a method into a new one, either to introduce an alternative

method signature (i.e., different input/output parameter types), or to deprecate a method

that is no longer needed. The original method remains in the code base and delegates to the

extracted one in order to preserve the public API (i.e., backwards compatibility). Despite

the strong similarity of the extracted method with the original method, it is not correct to

match them, as the original method still remains in the code base with an identical signature

(i.e., method name and parameter types) in most cases, and thus should be further tracked.

As we discussed in Section 4.3, we model such cases as branches in the change graph of the

tracked method using evolution hooks, and continue tracking the changes on the original

method. Moreover, we found some cases where the oracle reports a method being moved to

another file (i.e., MethodMove change), while in reality the type declaration that contains

the method has been renamed or moved, and thus a FileMove change is the correct one.

We corrected all discrepancies found in the oracle by removing the false change instances

due to incorrect method matches and adding the new change instances resulting after the

correction of method matches. All removed and new change instances have been manually

validated by inspecting the changes on GitHub. Table 1 provides a detailed overview of the

changes being common with the original oracle (C columns), the changes removed from the

original oracle (R columns), and the new changes added to the original oracle (N columns)

for both training and testing sets.

We further extended this oracle with the change history of the local variables and

parameters declared in these 200 methods. Since their number is large (967 variables in the

36

Table 1: Updates in the oracle created by Grund et al. [13]

Change Kind

Training set | Testing set |

C R N | C R N |

Body Change 2276 234 29 459 68 26
File Move 238 24 27 160 7 27
Parameter Change 220 30 6 68 19 8
Return Type Change 47 10 4 15 2 1
Modifier Change 44 12 2 16 4 1
Exception Change 40 9 0 5 3 2
Rename 14 8 7 16 6 2
Method Move 19 23 3 14 27 3
Introduced 81 18 19 83 17 17
Documentation Change — — 439 — — 96
Annotation Change — — 42 — — 24

Total 2979 368 578 836 153 207

C: common R: removed N: new

training set and 378 variables in the testing set), we decided to follow a semi-automated

approach to construct the oracle, instead of sampling a small number of variables and

manually tracking their changes in the commit history. We leverage information from the

method tracking oracle, as we know for sure that the commits in which a variable changed

is a subset of the commits in which its container method changed. Next, for each variable,

we execute our tool to perform backward tracking on the commits in which the container

method of the variable changed. The output is a subset of these commits along with the

changes found in each commit for the tracked variable. There are two possible termination

conditions:

1. The variable tracking reaches the commit in which the container method was introduced.

This means that the variable exists since the introduction of its container method.

2. The variable is introduced in a commit before reaching the container method introduction

commit. This means that the variable was added as part of new functionality implemented

in the container method, or because some other method was inlined to the container

37

method.

We validate all reported changes by manually inspecting the corresponding commits. If

a reported change is correct, we add it in the oracle. If a reported change is incorrect,

this means that there was a wrong variable match performed by our tool. In that case, we

manually determine the correct match/change for the tracked variable, add it in the oracle,

and continue the tracking process from the parent commit for the correctly matched variable.

This process is repeated until we reach one of the two termination conditions for each

tracked variable. Reaching a termination condition guarantees that we have no missing

variable changes in our oracle. The number of instances per change kind for the variables

are shown in Table 2.

Table 2: Number of instances per change kind for variables.
Change Kind Training set Testing set

Introduced 967 378
Rename 142 27
Annotation Change 13 4
Type Change 259 67
Modifier Change 122 52

Total 1504 531

We continued extending the oracle with the change history of the classes that containing

200 methods of the original oracle. There are 165 classes in total (77 classes in the training

set and 88 classes in the testing set) that we construct the changing oracle for them with a

similar approach that we perform to create the oracle for variables. We reuse information

from the method tracking oracle, as we know that the commit sets in which a class changed

contains the commits in which a container change is performed on a method of that class.

For each sample, we run our tool to find the change history of that class. We automatically

confirmed all the changes we already have in the method’s oracle as container change. In

addition, we automatically confirmed all the introduced changes reported for the initial

38

commit of a repository. We manually validated all other changes reported by our tool and

have not validated automatically in the previous step. The number of instances per change

kind for the classes are shown in Table 3.

Table 3: Number of instances per change kind for classes.
Change Kind Training set Testing set

Introduced 77 88
Rename 25 20
Class Move 97 52
Annotation Change 33 16
Move Source Folder 110 134
Access Modifier Change 12 4
Modifier Change 14 11
Declaration Kind Change 3 3

Total 371 328

Finally, we built an oracle containing the change history of all fields declared in the

classes listed in the class’s oracle. We extracted 806 items from the training oracle. We used

a similar approach to previous steps to create this oracle. We reuse the class and method

oracles information to automatically validate some changes like container change since the

container of methods and fields of a class is similar. Also, we used the introduced commits

of class oracle to automatically confirm the introduced commits of fields that are added with

their class at the same commit. We validate all the other reported changes that could not

confirm automatically by manually inspecting the corresponding commits. If a reported

change is correct, we add it in the oracle. In case of incorrect detection, we put the correct

change in the oracle and rerun the CodeTracker for the class that we believe is a good match

in the history of the element of interest. The number of instances per change kind for the

fields are shown in Table 4.

All change history oracles (method, variable, class, and field) are publicly available

online [17] to enable the replication of our experiments and facilitate future research on

program element tracking techniques.

39

Table 4: Number of instances per change kind for fields.
Change Kind Training set

Container Change 950
Introduced 806
Type Change 165
Rename 144
Modifier Change 79
Field Move 73
Access Modifier Change 71
Annotation Change 9

Total 2297

6.2 Method Tracking Accuracy

We computed the precision and recall of CodeTracker and CodeShovel at two levels of

granularity, namely commit level (i.e., finding the commits in which a method changed),

and change level (i.e., finding the kinds of changes that occurred in the commits in which a

method changed). When there are only changes in inline comments within the body of a

method, CodeShovel reports a BodyChange. To ensure a fair comparison, we considered

such cases as true positives, despite being labelled as DocumentationChange in the updated

oracle. Moreover, for any kind of change in the parameter list of a method, CodeShovel re-

ports a ParameterChange, while CodeTracker reports more fine-grained parameter changes,

such as Add, Remove, Rename, ChangeType, Merge, Split, Reorder, Add/Remove Modifier,

and Add/Remove/Modify Annotation. We also considered the coarse-grained Parameter-

Change reports as true positives.

Based on the results shown in Table 5, our tool, CodeTracker, has a consistent perfor-

mance in both training and testing sets at commit level, with an overall precision of 99.97%

and recall of 99.97%. On the other hand, CodeShovel has a worse precision and recall on

the testing set compared to the training set, as the similarity thresholds used internally by

CodeShovel were optimized on the training set. This is an inherent limitation of approaches

40

relying on code similarity thresholds, as it is very difficult to derive universal threshold

values that can work well for all projects, regardless of their architectural style, application

domain, and development practices [41]. Overall, at commit level, CodeTracker achieves an

increase of +7.5% in precision and +3.76% in recall over CodeShovel.

Table 5: Method tracking precision/recall at commit level
Dataset Tool TP FP FN Precision Recall

Training CodeShovel 2751 219 74 92.63 97.38
CodeTracker 2824 1 1 99.96 99.96

Testing CodeShovel 776 68 65 91.94 92.27
CodeTracker 839 0 0 100 100

Overall CodeShovel 3527 287 139 92.48 96.21
CodeTracker 3663 1 1 99.97 99.97

Based on the results shown in Table 6, our tool, CodeTracker, has a similar performance

at change level as commit level, with an overall precision of 99.87% and recall of 99.91%.

On the other hand, at change level, CodeShovel has a decrease of around 2% in both precision

and recall compared to the commit level results. The FPs and FNs of CodeShovel are mainly

due to mismatching 18 methods from the training set and 9 methods from the testing set

with a method extracted from their body at some point in their change history. As a result,

the majority of the FPs are body and signature changes found in the history of these 27

mismatched extracted methods, while the majority of the FNs are body and signature changes

missed from the remaining history of the 27 original methods, in addition to missed changes

in method annotations and Javadoc, which are not supported by CodeShovel. The 3 FPs for

CodeTracker in the training set are due to a merge method scenario in project javaparser [40],

for which RefactoringMiner reports methods solve(Node) and solveField(Node)

to be moved from ProjectResolver to the same method solve(Node) in class

SourceFileInfoExtractor. Although the reported moves are technically correct,

we considered one of them as the correct one, since our method evolution model supports

41

only one-to-one method mappings, similar to CodeShovel [13]. The remaining FPs and FNs

for CodeTracker are MoveMethod changes misreported as FileMove by RefactoringMiner,

because the child commit model did not include the origin file of the method (i.e., the three

heuristics applied in Step #5 did not match the origin file of the method). Overall, at change

level, CodeTracker achieves an increase of +9.1% in precision and +5.84% in recall over

CodeShovel.

Table 6: Method tracking precision/recall at change level
Dataset Tool TP FP FN Precision Recall

Training CodeShovel 3412 304 145 91.82 95.92
CodeTracker 3556 3 1 99.92 99.97

Testing CodeShovel 915 136 128 87.06 87.73
CodeTracker 1037 3 3 99.71 99.71

Overall CodeShovel 4327 440 273 90.77 94.07
CodeTracker 4593 6 4 99.87 99.91

Finding: CodeTracker exhibits 99.9% precision and recall at both commit and change

levels. Compared to the previous state-of-the-art tool, CodeTracker achieves an increase

of +7.5% in precision and +3.76% in recall at commit level, and an increase of +9.1%

in precision and +5.84% in recall at change level.

6.3 Variable Tracking Accuracy

Table 7 shows the precision and recall of CodeTracker at commit and change level. Refac-

toringMiner detects variable-related refactorings based the AST node replacements found in

the pairs of mapped statements between two code fragments (i.e., the body of a method in

the child and parent commits). As a result, the FPs are due to incorrect statement mappings,

while the FNs are due to its inability to match some statement pairs. For example, in project

junit5 [3], variable method is erroneously reported as Introduced instead of Matched,

because RefactoringMiner is unable to match a Collections.forEach() call with

42

the equivalent enhanced-for statement. Moreover, missed Matched variables lead to

more FNs, as the remaining changes in the history of the variables are also missed. This

is particularly evident in the training set, as the methods it includes have longer change

histories compared to those in the testing set. For all problems we found, we created issues

in RefactoringMiner’s issue tracker. Fixing these issues will further improve the accuracy of

variable tracking.

Table 7: Variable tracking precision/recall for CodeTracker
Dataset Level TP FP FN Precision Recall

Training Commit 1419 25 34 98.27 97.66
Change 1452 40 51 97.32 96.61

Testing Commit 504 3 8 99.41 98.44
Change 519 5 9 99.05 98.30

Overall Commit 1923 28 42 98.56 97.86
Change 1971 45 60 97.77 97.05

Finding: CodeTracker exhibits 98.6% precision and 97.9% recall at commit level, and

97.8% precision and 97.1% recall at change level in tracking the change history of

variable declarations.

6.4 Class Tracking Accuracy

Table 8 shows the precision and recall of ClassTracker at commit and change level. It shows

that CodeTracker can detect all changes related to the classes without any miss. The results

comply with the results for the method tracking in which CodeTracker can correctly report

all container changes.
Finding: CodeTracker shows an outstanding performance in tracking the change history

of class declarations and can detect all class-related changes with 100% precision and

100% recall in both commit and change levels.

43

Table 8: Class tracking precision/recall for CodeTracker
Dataset Level TP FP FN Precision Recall

Training Commit 350 0 0 100 100
Change 371 0 0 100 100

Testing Commit 325 0 0 100 100
Change 328 0 0 100 100

Overall Commit 675 0 0 100 100
Change 699 0 0 100 100

6.5 Field Tracking Accuracy

Table 9 shows the precision and recall of Field Tracking at commit and change level.

RefactoringMiner detects refactorings in two-phase. In the first phase, its algorithm matches

code elements top-down, starting from classes and continuing to methods and fields. Two

code elements match if they have an identical signature. In the second phase, its algorithm

matches the remaining code elements bottom-up, starting from methods/fields and continuing

to classes to find the best match. As a result, the FPs are due to incorrect element matchings

or false introduce change detection in the event of missing a possible match. At the same

time, the FNs are due to RefactoringMiner’s inability to map code elements or not continue

the history due to an incorrectly introduced change finding by RefactoringMiner.

Table 9: Field tracking precision/recall for CodeTracker
Dataset Level TP FP FN Precision Recall

Training Commit 2196 27 31 98.79 98.61
Change 2241 56 56 97.56 97.56

Finding: CodeTracker exhibits 98.79% precision and 98.61% recall at commit level,

and 97.56% precision and 97.56% recall at change level in tracking the change history

of field declarations.

44

6.6 Execution Time

Mean = 5532.00
Median = 3307.0

Max = 73158

Mean = 2990.77
Median = 1998.5

Max = 14380

Mean = 5427.73
Median = 3642.0

Max = 38356

Mean = 3871.05

Median = 1998.0

Max = 31654

Mean = 5479.86
Median = 3354.0

Max = 73158

Mean = 3430.91
Median = 1998.0

Max = 31654

Tracker_train Shovel_train Tracker_test Shovel_test Tracker_all Shovel_all

100

1000

10k

100k

Figure 13: Execution time in milliseconds of CodeTracker and CodeShovel on training and
testing sets.

Figure 13 shows the execution time of CodeTracker and CodeShovel for tracking the en-

tire change history of each method in the training and testing sets, respectively (the y-axis is

in logarithmic scale and the units are in milliseconds). Each tool was executed separately on

the same machine with the following specifications: Intel Core i7-8565U CPU @ 1.80GHz

× 8, 16 GB DDR3 memory, 512 GB SSD, Ubuntu 20.04.2 LTS operating system, and Java

11.0.11 x64 with a maximum of 8GB Java heap memory (i.e., -Xmx8g). All 20 project

repositories from the training and testing sets were locally cloned before running the tools.

For each tool, we recorded the total time taken for tracking a method in its entire commit

change history, including the time taken for parsing the source code files and detecting

the changes on the tracked method in each commit, using the System.nanoTime Java

method. On median, CodeShovel processes the commit change history of a method in 2

seconds, while our tool, CodeTracker, takes 3.35 seconds (1.675 times slower). On average,

CodeShovel processes the commit change history of a method in 3.4 seconds, while Code-

Tracker takes 5.5 seconds (1.62 times slower). However, CodeTracker has a more consistent

performance between the training and testing sets with similar median and average execution

times. This consistent performance can be explained from the observation that CodeTracker

has a slightly higher percentage of commits reaching Step #5 (i.e., the most time consuming

step of the tracking process) in the testing set compared to the training set (6.13% vs. 4.24%

45

as shown in Table 10), but at the same time has a much higher percentage of commits whose

processing completes in Step #1 (i.e., the least time consuming step of the tracking process)

in the testing set compared to the training set (82.33% vs. 67.52% as shown in Table 10). In

other words, the testing set includes more commits in which the tracked method is moved

or its container type declaration is moved/renamed, but at the same time has much more

commits in which the tracked method remains unchanged.

Table 10: Average percentage of commits processed in each step of the tracking process.
Dataset Step #2 Step #3 Step #4 Step #5

Training 62.93% 26.78% 5.04% 5.25%

Testing 70.91% 12.11% 3.84% 13.14%

On the other hand, CodeShovel has a longer average execution time on the testing set

compared to the training set, despite the fact that the testing set has shorter commit change

histories (34.5 and 47.5 commits on median and average, respectively) than the training set

(73 and 86.3 commits on median and average, respectively). More specifically, CodeShovel

has a larger than 10 seconds execution time for 10 methods of the testing set (8 of which are

from project intellij-community), and only one method of the training set. Typically,

the methods with longer execution times have multiple commits in which their container

type declaration is moved/renamed (CodeShovel’s phase 3), or the tracked method is moved

(CodeShovel’s phase 4). Both phases 3 and 4 are the most time consuming for CodeShovel

as it widens its search to consider all other files that were modified in a commit.

To evaluate the speedup achieved through steps 2–5 of our approach, we executed Refac-

toringMiner with its default operation mode (i.e., with two complete source code models

as input, including all modified/added files in commit r and all modified/removed files in

commit p) right after step #1. The median execution time was 8.76 and 12.29 seconds,

while the average execution time was 32.83 and 42.41 seconds on the training and testing

sets, respectively. Therefore, the speedup of our approach is between 2.6–3.4 times on the

46

median execution time, and between 5.9–7.8 times on the average execution time, without

jeopardizing accuracy, as almost the same precision and recall is achieved in both ways

(with the exception of very few false positives/negatives discussed in Section 6.2).

Finding: Despite CodeTracker having a slower execution time than CodeShovel (1.75

times on median and 2 times on average), both tools have execution times within the

same order of magnitude. The median and average execution time of CodeTracker

is under 4 and 7 seconds, respectively, which is acceptable given the considerably

increased precision and recall over CodeShovel, the additional computation of evolution

hooks (Section 4.3), and the parallel tracking of the local variables and parameters

declared in the tracked method (i.e., CodeTracker can perform parallel tracking of a

method and its variable declarations without an additional computational cost). The

achieved execution time can warrant applications in both research (e.g., large-scale MSR

and software evolution studies) and practice (e.g., blame-like tracking of method and

variable change history within the context of maintenance and program comprehension

tasks).

47

Chapter 7

Limitations and Threats to Validity

In this chapter we discuss our limitation in section 7.1, and our threats to validity in

section 7.2 and section 7.3. Finally discuss verifiability of ot work in section 7.4.

7.1 Language Specificity

CodeTracker depends on RefactoringMiner 2.0 [41] for the detection of refactorings and

changes on the tracked program element, which limits its applicability to Java programs.

However, recently there have been efforts to extend RefactoringMiner for supporting other

programming languages, e.g., Python [2, 1] and Kotlin [22, 21]. With respect to CodeTracker,

supporting another language would simply require to adjust the program element signature

definitions and the regular expressions used in Step #5 to the characteristics and structure of

this particular language.

7.2 Internal Validity

The main threat to the internal validity is related to the construction of the oracle used for

evaluating the precision and recall. To mitigate this threat we relied on an existing oracle,

48

which was constructed by Grund et al. [13] after manually validating the change history

for 200 methods (100 hours of validation). We further corrected all discrepancies found in

the oracle caused by 27 methods (18 from the training and 9 from the testing set) being

mismatched with a method extracted from their body, by manually inspecting and validating

all new change instances that resulted after correcting the method matches. Moreover, we

validated and added two new kinds of method changes (i.e., annotation and documentation

changes) that were not previously supported. Based on the updated (and highly reliable)

method history oracle, we constructed the change history of the variables declared in the

body of these 200 methods following a semi-automated approach, as explained in Section 6.1,

and manually inspecting all change instances. Overall, the manual validation effort for

correcting and extending the Grund et al. oracle was approximately two person-months.

7.3 External Validity

Our experiments were conducted on a relatively small dataset including the change history

of 200 methods from 20 different open source projects (i.e., 10 methods from each project),

which might affected the generalizability of our findings. However, we decided to rely on

the same dataset used for the evaluation of CodeShovel [13] to ensure a fair comparison

between the two tools. Moreover, constructing an oracle from scratch with methods from

other projects would involve a lot of manual effort and probably include more errors from

incorrect validations. On the other hand, our extended oracle was essentially validated by

two independent research groups, which makes it more reliable.

Regarding change kinds, we considered all possible changes that can be performed on

method and variable declarations with the exception of changes in the initializer of variables,

as the number of changes for this particular kind was very large, and manually inspecting all

of them was prohibitive.

49

7.4 Verifiability

We make the source code of CodeTracker and our extended oracle publicly available [17] to

enable the replication of our experiments and facilitate future research on program element

tracking techniques.

50

Chapter 8

Conclusions and Future Work

Tracking source code history is an important activity that developers frequently perform to

learn and make choices while reviewing or writing code. Also, it is essential in many areas of

software engineering research. Since code evolution can be very complex as it may involve

refactoring operations changing the project’s structure, line-based history detection tools

often return incomplete results. We developed a history detection tool named CodeTracker,

a refactoring-aware tool that works on code elements levels and tracks the history of all code

element types. Our evaluation shows that CodeTracker offers significant improvements over

the previous state-of-the-art and novel tools.

In summary, the main conclusions and lessons learned are:

1. CodeTracker has high accuracy in tracking methods (99.9% precision/recall), variables

(96.7% precision, 95.5% recall), classes (100% precision/recall), and attributes (98.7%

precision, 98.6% recall).

2. The proposed heuristics for setting up RefactoringMiner to perform partial commit anal-

ysis, resulted in an execution time comparable to that of CodeShovel (i.e., CodeTracker

is slower by 1.75 times on median and 2 times on average).

3. The speedup over the default operation mode of RefactoringMiner is 2.6–3.3 times on the

51

median, and between 5–6 times on the average execution time. Despite this considerable

speedup, almost the same precision and recall is achieved in both ways with the exception

of very few false positives/negatives.

The main goal of this study was to build an accurate tracking tool working on the code

element level. CodeTracker gets the start element and tries to find its history individually.

But some changes result from a significant difference in a higher level, like changing the

architecture of a software project or removing a technical depth. So the next step of this

study could be studying the history of all elements or a group of related code elements to

find higher-level changes. One of the contributions of this work was improving the existing

oracle of change history of some methods from 20 open-source projects and creating a new

oracle for other code elements like class, attribute, and variable. So the next step for this

part is refining and extending this oracle using different tools or techniques. We published

our tool as an API to be accessible for researchers and practitioners for different uses but

creating a user interface that shows the history of code elements could be more helpful and

another future work. Finally, creating such a tool for other languages by extending our work

is another step for this study.

52

Bibliography

[1] H. Atwi, B. Lin, N. Tsantalis, Y. Kashiwa, Y. Kamei, N. Ubayashi, G. Bavota, and
M. Lanza. Pyref, 2021. https://github.com/PyRef/PyRef.

[2] H. Atwi, B. Lin, N. Tsantalis, Y. Kashiwa, Y. Kamei, N. Ubayashi, G. Bavota, and
M. Lanza. Pyref: Refactoring detection in python projects. In Proceedings of the 21st
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2021, 2021.

[3] S. Brannen. Junit5, 2021. https://github.com/junit-team/junit5.

[4] A. Brito, A. Hora, and M. T. Valente. Characterizing refactoring graphs in java and
javascript projects. Empirical Software Engineering, 26(6):1–43, 2021.

[5] A. Brito, L. Xavier, A. Hora, and M. T. Valente. Apidiff: Detecting api breaking
changes. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 507–511, Los Alamitos, CA, USA, mar 2018.
IEEE Computer Society.

[6] A. Brito, L. Xavier, A. Hora, and M. T. Valente. Why and how java developers break
apis. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 255–265, Los Alamitos, CA, USA, mar 2018. IEEE
Computer Society.

[7] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. Software history under the lens:
A study on why and how developers examine it. In Proceedings of the 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), ICSME
’15, page 1–10, USA, 2015. IEEE Computer Society.

[8] S. Colebourne. Apache commons-lang, 2021. https://github.com/apache/
commons-lang/commit/2d06a7ce8.

[9] B. E. Cossette and R. J. Walker. Seeking the ground truth: A retroactive study on the
evolution and migration of software libraries. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE ’12,
New York, NY, USA, 2012. Association for Computing Machinery.

53

https://github.com/PyRef/PyRef
https://github.com/junit-team/junit5
https://github.com/apache/commons-lang/commit/2d06a7ce8
https://github.com/apache/commons-lang/commit/2d06a7ce8

[10] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. Hassan.
A framework for evaluating the results of the SZZ approach for identifying bug-
introducing changes. IEEE Transactions on Software Engineering, 43(7):641–657,
July 2017.

[11] D. Dig and R. Johnson. How do apis evolve? a story of refactoring. J. Softw. Maint.
Evol., 18(2):83–107, Mar. 2006.

[12] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of
source code entities. IEEE Trans. Softw. Eng., 31(2):166–181, Feb. 2005.

[13] F. Grund, S. A. Chowdhury, N. Bradley, B. Hall, and R. Holmes. CodeShovel:
Constructing method-level source code histories. In Proceedings of the International
Conference on Software Engineering, ICSE 2021, 2021.

[14] H. Hata, O. Mizuno, and T. Kikuno. Historage: Fine-grained version control system
for java. In Proceedings of the 12th International Workshop on Principles of Software
Evolution and the 7th Annual ERCIM Workshop on Software Evolution, IWPSE-EVOL
’11, page 96–100, New York, NY, USA, 2011. Association for Computing Machinery.

[15] Y. Higo, S. Hayashi, and S. Kusumoto. On tracking java methods with git mechanisms.
Journal of Systems and Software, 165:110571, 2020.

[16] A. Hora, D. Silva, M. T. Valente, and R. Robbes. Assessing the threat of untracked
changes in software evolution. In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, page 1102–1113, New York, NY, USA, 2018.
Association for Computing Machinery.

[17] M. Jodavi. Codetracker source code and oracle, 2021. https://github.com/
jodavimehran/code-tracker.

[18] P. Kapur, B. Cossette, and R. J. Walker. Refactoring references for library migration. In
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, page 726–738, New York, NY,
USA, 2010. Association for Computing Machinery.

[19] A. Ketkar, N. Tsantalis, and D. Dig. Understanding type changes in java. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page
629–641, New York, NY, USA, 2020. Association for Computing Machinery.

[20] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Automatic identification of
bug-introducing changes. In 21st IEEE/ACM International Conference on Automated
Software Engineering, pages 81–90, Washington, DC, USA, 2006. IEEE Computer
Society.

[21] Z. Kurbatova. Kotlinrminer, 2021. https://github.com/JetBrains-
Research/kotlinRMiner.

54

https://github.com/jodavimehran/code-tracker
https://github.com/jodavimehran/code-tracker
https://github.com/JetBrains-Research/kotlinRMiner
https://github.com/JetBrains-Research/kotlinRMiner

[22] Z. Kurbatova, V. Kovalenko, I. Savu, B. Brockbernd, D. Andreescu, M. Anton,
R. Venediktov, E. Tikhomirova, and T. Bryksin. Refactorinsight: Enhancing ide
representation of changes in git with refactorings information. In Proceedings of the
36th IEEE/ACM International Conference on Automated Software Engineering, ASE
2021, 2021.

[23] M. Mahmoudi and S. Nadi. The android update problem: An empirical study. In 15th
International Conference on Mining Software Repositories, MSR ’18, pages 220–230,
New York, NY, USA, 2018. ACM.

[24] T. McDonnell, B. Ray, and M. Kim. An empirical study of API stability and adoption
in the android ecosystem. In IEEE International Conference on Software Maintenance,
ICSM ’13, pages 70–79, Washington, DC, USA, 2013. IEEE Computer Society.

[25] J. Märki. Apache commons-io, 2021. https://github.com/apache/
commons-io/commit/6a1bb4d53.

[26] J. Märki. Apache commons-io, 2021. https://github.com/apache/
commons-io/commit/7748ed364.

[27] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it.
IEEE Transactions on Software Engineering, 38(1):5–18, Jan 2012.

[28] A. C. Murthy, C. Douglas, D. Das, G. Roelofs, J. Naisbitt, J. Wills, J. Eagles, K. Ra-
machandran, L. Lu, M. Konar, R. Evans, S. Agarwal, S. Seth, T. Graves, and V. K. Vav-
ilapalli. Hadoop, 2021. https://github.com/apache/hadoop/commit/
dbecbe5df.

[29] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig. A comparative study of
manual and automated refactorings. In Proceedings of the 27th European Conference
on Object-Oriented Programming, ECOOP’13, page 552–576, Berlin, Heidelberg,
2013. Springer-Verlag.

[30] S. Negara, M. Codoban, D. Dig, and R. E. Johnson. Mining fine-grained code
changes to detect unknown change patterns. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 803–813, New York, NY, USA,
2014. Association for Computing Machinery.

[31] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is it dangerous to use
version control histories to study source code evolution? In 26th European Conference
on Object-Oriented Programming, ECOOP’12, pages 79–103, Berlin, Heidelberg,
2012. Springer-Verlag.

[32] S. Nicoll. Spring framework, 2021. https://github.com/spring-
projects/spring-framework/commit/2dc674f35.

55

https://github.com/apache/commons-io/commit/6a1bb4d53
https://github.com/apache/commons-io/commit/6a1bb4d53
https://github.com/apache/commons-io/commit/7748ed364
https://github.com/apache/commons-io/commit/7748ed364
https://github.com/apache/hadoop/commit/dbecbe5df
https://github.com/apache/hadoop/commit/dbecbe5df
https://github.com/spring-projects/spring-framework/commit/2dc674f35
https://github.com/spring-projects/spring-framework/commit/2dc674f35

[33] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto.
Evaluating szz implementations through a developer-informed oracle. In Proceedings
of the International Conference on Software Engineering, ICSE 2021, 2021.

[34] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang. IntelliMerge:
A refactoring-aware software merging technique. Proc. ACM Program. Lang.,
3(OOPSLA):170:1–170:28, Oct. 2019.

[35] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of github
contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, page 858–870, New York, NY,
USA, 2016. Association for Computing Machinery.

[36] D. Silva and M. T. Valente. RefDiff: Detecting refactorings in version histories. In 14th
International Conference on Mining Software Repositories, MSR ’17, pages 269–279,
Piscataway, NJ, USA, 2017. IEEE Press.

[37] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
International Workshop on Mining Software Repositories, pages 1–5, New York, NY,
USA, 2005. ACM.

[38] D. Steidl, B. Hummel, and E. Juergens. Incremental origin analysis of source code
files. In Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, page 42–51, New York, NY, USA, 2014. Association for Computing
Machinery.

[39] Sunghun Kim, Kai Pan, and E. J. Whitehead. When functions change their names:
automatic detection of origin relationships. In 12th Working Conference on Reverse
Engineering (WCRE’05), pages 143–152, 2005.

[40] F. Tomassetti. Javaparser, 2021. https://github.com/javaparser/
javaparser/commit/37f93be64.

[41] N. Tsantalis, A. Ketkar, and D. Dig. Refactoringminer 2.0. IEEE Transactions on
Software Engineering, 2020.

[42] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig. Accurate
and efficient refactoring detection in commit history. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, pages 483–494, New
York, NY, USA, 2018. ACM.

[43] C. Williams and J. Spacco. SZZ revisited: Verifying when changes induce fixes. In
Workshop on Defects in Large Software Systems, pages 32–36, New York, NY, USA,
2008. ACM.

[44] J. Wilson. Okhttp, 2021. https://github.com/square/okhttp/commit/
a91124b6d.

56

https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/square/okhttp/commit/a91124b6d
https://github.com/square/okhttp/commit/a91124b6d

	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Motivation
	Limitations of Current Tracking Tools

	Related Work
	Research Approach
	Program Element Identifier
	Tracking Process
	Change Graph Evolution Hooks

	Implementation
	Languages and Platforms
	CodeTracker API
	Code Element Types

	Evaluation
	Oracle Update and Extension
	Method Tracking Accuracy
	Variable Tracking Accuracy
	Class Tracking Accuracy
	Field Tracking Accuracy
	Execution Time

	Limitations and Threats to Validity
	Language Specificity
	Internal Validity
	External Validity
	Verifiability

	Conclusions and Future Work
	Bibliography

