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Abstract

Effectiveness of Shock Capturing Methods in the Discontinuous Galerkin/Flux Reconstruction

Scheme for Computational Fluid Dynamics

Xavier Lesperance

The development of various numerical methods capable of accurately simulating fluid flow has evolved greatly over

time. In the past years, discontinuous Galerkin methods have seen great interest for problems such as Large Eddy

Simulations, Aeroacoustics, incompressible and even compressible flows. These methods attractiveness some from their

ability to easily increase the order of accuracy thus yielding more precise solutions. These methods use higher order

polynomials, which can easily be increased or decreased within the element, while allowing for discontinuities between

elements. When shocks and discontinuities are present in a simulation, particular attention must be taken to avoid Gibbs

phenomenon within the elements. This phenomenon occurs when steep gradients in the solution are present causing

the solution to have erratic oscillations typically associated with the higher order terms of the integrating polynomial.

These oscillations in turn lead to non-physical solutions such as negative pressures and therefore need to be controlled.

A variety of methods have been developed to mitigate the oscillatory behavior of discontinuous Galerkin methods when

steep gradients are present, a very promising method is the addition of artificial viscosity in order to diminish the effects

of the non-physical oscillations. Adding a viscous term to the conservation equations being solved can inevitably lead to

inaccurate solutions if it is added in excessive amounts. The balance between damping of the non-physical oscillations

and minimizing the amount of artificial viscosity added can if the location of the shocks in the flow field is known.

This intricate balance is achieved by ensuring that the functions used to find the areas of concern are not overlapping

shock regions with smooth regions and when viscosity is added it is important that it is limited to ensure that it will not

completely dissipate the real solution.
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Chapter 1

Introduction

Numerical algorithms have been used to solve various mathematical and engineering problems for many years [1].

Preliminary methods were developed for solving simple cases such as linear interpolation but over time methods evolved

and more difficult problems started being resolved using new more complex methods. Real world applications of

mathematics quickly started to require much more sophisticated algorithms which caught the attention of astronomers

and applied mathematicians which is why many of these methods bear their names. As computational power evolved so

did the methods used for numerically solving more intricate real world cases. A field in which numerical algorithms

are used heavily is computational fluid dynamics (CFD) which relies on a wide array of numerical techniques to solve

the partial differential equations that govern the movement of fluids. Although the techniques available to numerically

analyze equations with no analytical solution exists they still have certain limitations and different scenarios in fluid

movement can strongly influence a solver’s ability to capture and resolve the flow. The development of algorithms

capable of capturing viscous interactions between fluids and objects, unpredictable chaotic turbulent movement of fluids,

fluids moving faster then the speed of sound or even fluids in which chemical reactions are occurring thus releasing

energy and changing the properties of the fluid are particularly interesting because of the complexity of these phenomena.

By developing numerical solvers capable of capturing such complex physical interactions it allows for more creative and

complex engineering solutions to real world problems to be developed and tested in more cost effective ways. More

specifically, it is possible to test and validate preliminary ideas without having to build physical prototypes. Many

iterations on a design can be tested and perfected at the same time before anything has to be physically built for further

testing and validation.

In the context of fluid dynamics, prior to the 1950s, no numerical approach existed for solving complex interactions

between different types of flow conditions [2]. The primary motivation for developing methods capable of such

interactions was the study of blunt body re-entry vehicles in the context of the space race, which was the source of much

of the innovation at the time. The need to find methods capable of transitioning between the subsonic and supersonic
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portions of the flow around the re-entry vehicle, as noted in [3], drove Moretti and Abbett to develop a finite difference

solution to the problem at hand in [4] which is credited for being the first pragmatic technical solution for such a

problem. Understandably, after such a powerful computational tool was developed many more advanced and capable

techniques started to emerge. Ironically now this revolutionary method of solving something that helped people reach

celestial bodies is a trivial problem which can easily be resolved by students. Currently in industry the most commonly

used techniques for solving complex fluid flows are finite volume (FV) methods, mainly because of the robustness

and accuracy of the schemes [5]. These schemes do have their shortcomings though in order to obtain higher order

accuracy the stencils used increase significantly in complexity and require an increase in spacial discretization, which

becomes much more computationally expensive. The need for more compact higher order schemes capable of the same

robustness becomes evident in light of these shortcomings for the FV method.

One of the family of methods capable of higher order accuracy using a compact stencil is known as the discontinuous

galerkin (DG) methods. This revolutionary approach in CFD contrary to the FV method uses higher order polynomials

within the single cell for higher order which means that schemes doesn’t require the same spacial discretization as

other methods. Similar to finite volume methods the DG method using flux reconstruction (FR) is capable of handling

discontinuities at the boundaries of elements [6] meaning that continuity is not required between elements which gives

this method many other attractive features. This locally conservative method is capable of handling complicated mesh

geometries along with adaptively refined regions with hanging nodes, it is also possible to have polynomials of different

degree in adjacent elements meaning two adaptive strategies are available [7]. DG was first introduced in 1973 by Reed

and Hill but not in the context of CFD instead it was used for modeling neutron transport [8, 9], since then it has gained

a great deal of popularity and has been used to solve a wide range problems relating to gas dynamics, compressible and

incompressible flow along with many other applications relating to fields other than CFD [7]. Like all other methods

in CFD, DG is not flawless. It has shortcomings, because of the higher order polynomial present in each element.

Continuity is enforced within the element, meaning that if a shock is present inside said element, the function used

to describe the conserved variables needs to handle that discontinuity. When sharp jumps are present, a phenomenon

occurs where unnatural oscillations arise that can cause the solution to give nonphysical results. This phenomenon,

known as Gibbs oscillations, needs to be mitigated in order to avoid causing the method to give results that would be

physically impossible. Neglecting this phenomenon causes the solution obtained to be inacurate [10, 11].

DG methods use a continuous high order polynomial within each element in order to achieve higher order accuracy

using a compact stencil [5]. When discontinuities are present within the domain they usually occure inside an element.

This means that the continuous function used to describe the conserved variables, may exhibit undesirable oscillations

which could cause the method to blow up. In order to diminish this negative behaviour, various methods are employed.

Among these methods is the introduction of artificial viscosity in the conservation equation [12, 13, 14]. In the context

of CFD problems in transonic or supersonic flows shocks will cause these undesirable oscillations. If artificial viscosity
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is added uniformly in the domain this will inevitably introduce errors and render the results obtained from simulations

useless. In order to minimize the amount of artificial viscosity added and remove the unwanted oscillations, techniques

which determine where shocks are located in a domain and how much viscosity to add are employed, thus making the

DG method one capable of handling complex interactions between shocks, discontinuities and turbulent regions.

Other effective shock detection and stabilization techniques are used in DG, most notably limiting type methods.

One family of limiters is based on the methods used in second-order finite volume methods. The methods essentially

compares the slope of the solution in the current cell with that in adjacent cells. Although these types of methods are

effective and highly used, they have their shortcomings. They degrade smooth regions of the solution and have difficulty

with unstructured meshes. An alternative approach is to refine the polynomial degree, typically associated with the

higher order polynomial in order to stabilize the solution in the presence of shocks. One of the main limitations of

this method is the computational cost associated with using them. In addition to various methods used to stabilize the

oscillatory behavior associated with discontinuities in the solution various methods are used for detecting such regions in

the flow. Some methods compare the slope and features of the solution with neighboring elements while others rely on

the superconvergence property of the discontinuous Galerkin methods. Additional information on the various methods

used to detect shocks and handle oscillatory behavior around them can be found in [15, 16, 17, 18, 19, 20, 21].

Alternatively a filtering approach can be utilized to remove unwanted behaviors from the solution. Such an approach

attempts to reduce the amount of instability transmitted to the rest of the domain at the edge of discontinuities. This has

a similar effect to the use of limiters and artificial viscosity which are active in regions where discontinuities are present

and decay in smooth parts of the solution. The danger with filtering, similarly to all other methods of shock mitigation, is

that if the filter is too week or too strong the overall solution is negatively affected. Ferrero and Larocca [22] developed

a feedback filtering approach based on [23] which attempts to filter out higher order modal coefficients responsible with

oscillations as well as their time derivatives using feedback filtering procedure explained in [24]. One problem relating

to the filtering method for handling oscillations at points of discontinuity is what type of filter, how often and when the

best time to apply the filter is. One advantage of this method is that it amounts to a matrix-vector multiplication which

requires little computational resources. A wide range of filtering techniques and approaches can be further investigated

in [25, 26, 27, 28].

In this work, the effectiveness of different shock capturing methods at identifying flow discontinuities (notably shock

waves) is investigated. These detection methods are then used to implement artificial viscosity and regularize discon-

tinuous solutions using the High-ORder Unstructured Solver (HORUS) algorithm in the discontinuous galerkin/flux

reconstruction CFD framework. In chapter 2, a description of the DG method along with the temporal scheme used is

reviewed. Chapter 3, the numerical improvements made to HORUS are described and the shock capturing and artificial

viscosity methods investigated are described. In chapter 4, benchmark cases in one and two dimensions are investigate

to determine the solvers capabilities. Chapter 5 evaluates the feasibility of using a polynomial adaptive approach for

3



increasing accuracy. Chapter 6 compares results of a real world laboratory experiment with results obtained using the

numerical solver. Finally, chapter 7 concludes the work and suggest areas which should be further investigated.
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Chapter 2

Theory

In order to obtain higher order accuracy while using a compact stencil, on complex geometries, methods other than the

conventional FV method currently used in industry need to be employed. It is for this reason that the DG method is

adopted using FR allowing for the solver to utilize a compact stencil capable of higher order accuracy while handling

discontinuities between elements with ease. Contrary to FV methods because the DG method uses a high order

polynomial within the element, discontinuities can be difficult to evaluate and cause unwanted oscillations known as

Gibbs phenomenon. In order for the method to be robust and reliable, a mechanism for mitigating these oscillations

is required Artificial viscosity combined with shock detection has been shown to be capable of doing just that in a

consistent manner. The theory behind the DG method and the temporal scheme implemented within the HORUS

framework are describe in this section. The methodology developed and researched for tracking and controlling shocks

do not affect the FR DG scheme, context is required to fully appreciate the effects on the algorithms behavior.

2.1 Conservation Equations

Consider a fluid which occupies a fixed region in space denoted by Ω, confined by a surface ∂Ω. The conserved variables

u contained within this region of fluid are affected by source terms S (u, t) and the flow of u in and out of the surface ∂Ω,

ie. the flux F. The standard form of the conservation equation can be written in integral form as

∂

∂t

∫

Ω

u(t)dΩ +

∫

∂Ω

F (u) · ds =
∫

Ω

S (u, t)dΩ. (2.1)
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In this form ds represents the outward facing vector of the surface confining the element ∂Ω. Through use of Gauss’

theorem, the equation is written in the more commonly used divergence form as follows

∂u

∂t
+∇ · F = S (u, t). (2.2)

2.2 Governing Equations of Compressible Flow

The conservation equations are a mathematical formulation stating that a measurable property of an isolated system

doesn’t change over time. In laymen terms things are neither created nor destroyed; they move from one place to another

as time passes. This is described using conservation equations for mass, momentum and energy. The conservation of

mass equation describes how mass moves through a relationship between the density of the fluid in an element and its

velocity. In this case, the conserved variable u = ρ and the integral form of the equation takes the following form

d

dt

∫

Ω

ρdΩ +

∫

∂Ω

ρ(v · ds) = 0. (2.3)

Use of the Gauss theorem gives the divergence form

∂ρ

∂t
+∇ · (ρv) = 0 (2.4)

Momentum is the product of the mass and velocity vector, and is subject to Newton’s second law. In this case, the

conserved variable is a vector meaning it has a magnitude as well as a direction. The conserved value is u = ρv. It is

important to also consider internal and external forces acting on the element in any possible direction. The equation in

integral form for the conservation of momentum is

d

dt

∫

Ω

ρvdΩ +

∫

∂Ω

ρv(v · s) =

∫

Ω

ρfedΩ +

∫

∂Ω

σ · ds, (2.5)

where fe is the body force and σ is the stress tensor written as

σ = −pI +

[(

∂v j

∂xi

+
∂vi

∂x j

)

− λ̃(∇ · v)δi j

]

. (2.6)

In the stress tensor δi j is the Kronecker delta and the dilation term being applied to normal stresses is represented by

λ̃(∇ · v), with a typical value of λ̃ = 2/3 used for Newtonian fluids. Through the use of Gauss’ theorem, the divergence
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form of the conservation of momentum is

∂(ρv)

∂t
+∇ ·

(

ρv ⊗ v − pI −
[(

∂v j

∂xi

+
∂vi

∂x j

)

− λ̃(∇ · v)δi j

])

= 0. (2.7)

Lastly, through the application of the first law of thermodynamics on a closed system, the law of conservation of

energy is derived. In this case, the conserved variable is u = ρE, the convective flux is represented by FC = ρvE

and the diffusive flux, written using Fourier’s law of heat conduction, is FD = −k∇T . Here k represents the thermal

conductivity, and T is the temperature. Alternative sources of energy to be considered are work, viscous shear, and

pressure representing internal forces through the stress tensor σ. Additional heat sources are represented by qH . The

energy conservation equation is thus written as

d

dt

∫

Ω

ρEdΩ +

∫

∂Ω

(ρEv − k∇T ) · ds =

∫

Ω

(ρfe · v + qH)bΩ +

∫

∂Ω

σ · vds, (2.8)

where σ is the stress tensor defined using equation 2.6 The divergence form of the above equation is

∂(ρE)

∂t
+∇ ·

(

ρvH − k∇T −
[(

∂v j

∂xi

+
∂vi

∂x j

)

− λ̃(∇ · v)δi j

]

· v
)

= ρfe · v + qH , (2.9)

where W f = ρfe · v represents the work from body forces and H represents the stagnation enthalpy defined as

H = e +
p

ρ
+ ‖v‖2= h + ‖v2‖= E +

p

ρ
. (2.10)

Pressure is represented by variable p and ‖·‖ is the magnitude of a given vector. The ideal gas law, p = ρRT is used,

with R as the specific gas constant and temperature represented by T . The temperature relationship between internal

energy e and enthalpy h is that of a perfect gas

e = cvT , (2.11)

h = cpT . (2.12)

The specific heat coefficient for constants at volume and pressure being cv and cp respectively. The specific heat ratio

γ = cp/cv relates the specific heats. A value of γ = 1.4 is used for air. Pressure, following the ideal gas law can be

expressed as the function of energy

p = (γ − 1)ρ

(

E − 1

2
‖v‖2

)

. (2.13)
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2.3 Euler and Navier-Stokes Equations

The conservation laws above are specialized to the Euler and Navier-Stokes equations. The fluxes used are FC and FD

which represent the transport flux and diffusive flux respectively.

∂u

∂t
+∇ ·

(

F C − F D

)

= S. (2.14)

The divergence form of the given equations can be written in the vector notation which is most commonly used in CFD

solvers as

∂u

∂t
+
∂

∂x
(FC,x − FD,x) +

∂

∂y
(FC,y − FD,y) +

∂

∂z
(FC,z − FD,z) = S, (2.15)

where u is the vector of conserved variables

u =











































































ρ

ρvx

ρvy

ρvz

ρE











































































. (2.16)

The difference between the Euler and Navier-Stokes are observed in the fluxes used in the conservation equations. For

the Euler equations, the effects of viscosity and heat transfer along with the source term are considered to be negligible.

This means that the only flux to be considered is the convective flux

FC,i =











































































ρvi

ρvivx + δix p

ρvivy + δiy p

ρvivz + δiz p

ρviH











































































, (2.17)

where the spatial coordinates are represented by i = [x, y, z], and δi j is the Kronecker delta.

On the other hand in the case of the Navier-Stokes equation the effects of viscosity, heat conduction and source

terms are not ignored. The Navier-Stokes equation gives a more complete and realistic picture of how viscous fluids

behave necessary for simulating turbulent flow. The addition of these new effects gives a diffusive flux and source term
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that are formulated as follows

FD,i =











































































0

τxi

τyi

τzi

τi · v + k∂iT











































































, (2.18)

S =











































































0

ρ fx

ρ fy

ρ fz

ρfe · v + qH











































































, (2.19)

where τ is the shear stress due to viscosity, fi and ∂iT are the body forces and partial derivatives of temperature in the

various coordinates such that i = [x, y, z].

2.4 Discontinuous Galerkin Method

The ability for the DG method to obtain higher order accuracy while maintaining a compact stencil stems from its

utilization of higher order polynomials within each element to describe the conserved variable [7, 29]. Since the

continuity of the polynomial is only enforced within the element jumps between elements are handle using a method

similar to the one used for FV methods to resolve the inconsistencies in the flux at the boundary. The DG method

starts with equation 2.2 in which S (u, t) is considered equal to zero. The domain Ω is split into elements ne ∈ Th an

approximate solution denoted uh in a space of element-wise polynomials

VP
h = {v ∈ L

2(Ω) : v|ne
∈ P p(ne)∀ne ∈ Th}. (2.20)

By integrating over the discretized domain ne in equation 2.2 and multiplying by the test function vh ∈ Vp

h
taken from

the same space the following integral is obtained

∫

ne

[(uh)t + ∇ · Fi(uh)]vhdx = 0. (2.21)

After integrating by parts, the integral becomes

∫

ne

[(uh)t]vhdx −
∫

ne

Fi(uh)∇vhdx +

∫

∂ne

F̂i

(

u+h ,u−h , n̂
)

v+h ds = 0. (2.22)
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After this integration by parts, a flux contribution appears over the boundary of the element, F̂i (uL,uR, n̂), meaning

fluxes are not only the boundary of the domain. The beauty with this contribution is that continuity is not enforced

between elements and there is a class of methods capable of handling these discontinuities. The only continuity in

forced is on the flux between elements. The problem at hand is identical to the one faced when using FV methods, this

means that any method which can be used in a FV solver to solve the Riemman problem could be used in the context of

the DG method. The global problem is to find a test function uh ∈ Vp

h
so that the residual are zero for all vh ∈ Vp

h
.

2.5 Spatial Discretization

In order to obtain higher orders of accuracy for Euler and Navier-Stokes equation the spatial operator for the general

advection-diffusion equations is discretized using a high-order unstructured FR approach which has been implemented

in HORUS. Based on the formulation of FR, the solution for each element is represented using a discrete polynomial of

degree p such that the conserved variable takes the form [6, 30]

u(x, t) ≈ uh(x, t) =

ne
⊕

i=1

uh
i (x, t). (2.23)

The piece-wise continuous approximation for the global solution is represented by uh(x, t) and the continuous represen-

tation for a single element ne in the domain is given by uh
i
(x, t). The standard nodal basis form is used to approximate

the solution in each element as follows

uh
i (x, t) =

ns
∑

j=1

ui, j(t)φs,i, j(x). (2.24)

The solution at one nodal basis point, ns, is given as ui, j(t) for a given element, while φs,i, j(x) represents the corresponding

nodal basis function. This technique enforces continuity within a given element without the need for the solution to

be continuous between elements at the boundary. This results in the presence of discontinuities at boundaries and the

need to resolve said discontinuities using an appropriate method [6]. Through use of the FR method and expanding it to

simplex element types [30, 31] the conservation laws being resolved must be satisfied discretely on each element as

follows

∂uh
i

∂t
+ ∇ · F h

i + δi = 0. (2.25)

The polynomial reconstruction of the flux on an elementwise basis is of the form F h
i
= F h

i
(uh

i
,∇uh

i
) with δi representing

a correction field withing the element that lies in the same polynomial space as the solution. The correction field is

comparable to the divergence of the penalty functions proposed in the original FR scheme for tensor product elements [6].

This method enforces continuity of the flux at the boundary between elements without the need for the adjacent elements

to require continuous solutions at the element boundaries. When the conservation law is applied at each of the points
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that make up the solution in an element it takes the form

duh
i, j

dt
+

(

∇ · F h
i

)

∣

∣

∣

∣

xi, j

+ δi, j = 0. (2.26)

By basing this on the FR formulation the equation becomes

δi, j =
1

|Ωi|
∑

f∈S

∑

l

αi, j, f ,l[F̂ ]i, f ,lS f , (2.27)

where |Ωi| represents the volume of the i-th element, f denotes the number of one of the faces of the element that

make up the elements surface S , the flux points on the surface of the element are represented by l and αi, j, f ,l is a

constant value known as the lifting coefficient. The common Riemann flux at the flux point and the internal flux value

difference is [F̂ ]i, f ,l. In order to obtain a range of energy stable schemes for general element types, the value of the

lifting coefficient can be varied which in turn yields schemes such as the Spectral Difference (SD), Spectral Volume (SV)

and Discontinuous Galerkin (DG) methods. HORUS uses lifting coefficients derived from the nodal basis functions,

recovering the DG method as its operating scheme [6, 30]. Following a previously proposed approach for FR and

DG, the reference elements are mapped with coordinates ξ for both the solution and discrete system of governing

equations [6, 30]. The one-to-one mapping follows x = M(ξ) such that ξ = M−1(x), a nodal polynomial representation

of degree pg of the mapping function M is defined using the mapping points such that

xh
i (ξ, t) =

ng
∑

j

xi, jφg,i, j(ξ). (2.28)

The interpolated actual location, xh
i
(ξ, t), is determined through the number of mapping points, ng, based on the

polynomial degree, with xi, j(t) representing the physical location of the mapping points at an instant in time. For any of

the mapping points, the determinant can be found with

J =

∣

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

∣

. (2.29)

The above change allows for all operations to be performed on the idealized reference element and then converted back

to the physical element using the mapping function. Simply put, this represents the change in volume of the local space

as it is tranformed to the physical space [32].
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2.6 Time Discretization

In order to move equation 2.2 in time after it has been spatially resolved an explicit time stepping method is used. The

majority of the problems solved in the context of this research are transient in nature and have no steady state solution.

In light of the speed at which things are changing within the simulation and in order to minimize computational costs an

explicit solver is used. The time stepping method used is the classical RK4,4 which is extensively used in CFD because

of the 4th order accuracy it offers. Higher order RK methods are also available but they require additional computational

resources. The high order of accuracy and the minimal use of resources required to operate the RK4,4 method, described

as a Butcher tableau in equation 2.30, make the method especially attractive.

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

. (2.30)

Between every intermediate time step the spatial discretization routine is executed as part of the temporal scheme

described in equation 2.31

1stS tage −→































u1 = ut

R1 = R(u1)

2ndS tage −→































u2 = ut + ∆t
2
R1

R2 = R(u2)

3rdS tage −→































u3 = ut + ∆t
2
R2

R3 = R(u3)

4thS tage −→































u4 = ut + ∆tR3

R4 = R(u4)

ut+1 = ut + ∆t

(

1

6
R1 +

1

3
R2 +

1

3
R3 +

1

6
R4

)

. (2.31)

Important considerations need to be taken so that the time step ∆t is not so big that it will cause the solution to diverge

and give incorrect values. In order to use the appropriate ∆t value so that the solution remains stabl,e an adaptive time
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stepping routine described in equation 3.4 based on the Courant-Friedrichs-Lewy (CFL) condition is used to find the

required ∆t value for the solution to remain stable.
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Chapter 3

Improvements to HORUS for Shock

Capturing

The complex nature of fluid flow means that a wide range of different phenomena can occur, depending on initial

conditions, geometry and other underlying properties of the problem at hand. In problems involving fluids moving

at high velocities, shocks can arise which present a particular challenge for the numerical solver. The DG method is

capable of handling discontinuities at the boundaries but the polynomial within the element is continuous, meaning

that discontinuities can cause the solution to act in an unexpected manner potentially leading to inaccurate solutions

potentially causing the solver to crash. To circumvent this issue, regions where shocks are present need to be determined

and the unwanted oscillations that ensue in these regions need to be controlled to avoid deteriorating the solution.

Additionally, since the flow is in a state of constant change, the maximum allowable time step which ensures stability

is also changing. In order to determine the maximum allowable time step, the CFL condition is used, allowing for an

explicit adaptive time stepping routine to be utilized.

3.1 Courant-Friedrichs-Lewy Condition

In order to accelerate computation while maintaining stability and accuracy, it is important to find the maximum

allowable time step that can be taken for a given problem. Using the Courant-Friedrichs-Lewy (CFL) condition, it is

possible to find this value with minimal computational requirements. In order to determine its value, a purely advective,

one-dimensional case is considered for a given conserved value and the linear advection equation is recovered

∂u

∂t
= c

∂u

∂x
, (3.1)

14



where c is the velocity at which the conserved value u is moving through space. In order to capture the change of the

considered value as it travels from one element to the next, it is important that the time steps taken are smaller than

the time it takes to travel through a single element. If time steps larger than this value are used, information about

interactions with intermediate elements is lost and the solution becomes unstable. By imposing this condition the

maximum allowable time step used follows

∆t ≤ ∆x

c
. (3.2)

This is true for an idealized, one dimensional problem. In the case of multidimensional problems, the direction of travel,

and distance between mapping points of the elements need to be taken into account. Additionally, since the element

solution is made up of a higher order polynomial with a given set of nodal points, the solution is not constant throughout

the element, adding an additional challenge. In order to solve for the maximum allowable time step for cases with more

than one spatial dimension two approaches are taken. The first follows the following form

∆t = CFL

(

min(‖xi j‖)
max(‖vk‖) +max(Cm)

)

, (3.3)

where Cm represents the speed of sound in a given elements nodal point m, calculated using C =
√

γp/ρ. The vector xi j

represents the distance between different mapping points for the element and vk is the velocity at a given point. In this

case the values obtained for the various parameters don’t need to come from the same nodal point which means that the

direction of the fastest wave and shortest distance may be perpendicular, resulting in a relationship between the two

values which is not one of interest for calculating the maximum allowable time step. If this is the case, the resulting

value of ∆t used can be smaller than required to remain stable. By cycling through all the elements in the computational

domain a global time step can be determined and used for the explicit time stepping technique shown in equation 2.31.

The second approach is formulated to circumvent this issue

∆t = min

















‖xi j‖
vi ·

xi j

‖xi j‖ +Ci

















CFL, (3.4)

where the velocity and sound speed used are only evaluated at point i as the dot product of the velocity and directional

unit vector are tested for other mapping points to find the maximum allowable time step. The value of i , j and i

cycles through all mapping points of the element. This approach allows for potentially longer time steps to be taken,

by calculating the time for a signal (eg a sound wave) to travel across a single cell and its local speed and along a the

direction considered. In the previous method, the maximum velocity vector may not have been oriented in the direction

of the shortest cell dimension. This mismatch between the wave speed and cell dimension orientation could lead to an

underestimation of the maximum allowable time step.

One pitfall of both approaches is that they only hold true for linear advective problems. If non-linear or diffusive
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processes are present, it is possible that the time step calculated does not satisfy the stability criteria for a given scenario.

For this reason the value of the CFL number must be kept low to ensure solution convergence. Additionally, the

introduction of artificial viscosity to dampen the solution in regions where shocks are present adds further complexity

to the problem and canfurther influence the maximum allowable time step. Alternative approaches for calculating the

maximum allowable values of ∆t based on the CFL condition have been proposed in [33, 34].

3.2 Shock Capturing and Artificial Viscosity

The use of higher order methods may have many advantages but it also has some drawbacks. One of these drawbacks is

that when the flow involves steep slopes caused by the presence of shocks or contact discontinuities, the solution can

become unstable. These instabilities are known as Gibbs phenomenon [10, 11] which occur when large oscillations are

present in the higher order function. These oscillations create an unrealistic solution which can give negative pressure or

density potentially cause the solution to blow-up.

The Gibbs phenomenon can be contained so that the solution converges. This can be done in several ways but the

methodology focused on is the addition of artificial viscosity that will dampen the oscillations without skewing the

solution. The strength and location where artificial viscosity is added must be chosen carefully. One approach would be

to add viscosity everywhere in the domain, but this would cause inaccuracies in the solution since the viscosity term is

not present in the original governing equation. To circumvent this issue, a shock capturing sensor is developed which

will allow the artificial viscosity to be added only in regions where there are large jumps in the solution. In addition to

ensuring that the viscosity is only added in the cells that require damping, due to unnatural oscillations, the amount of

damping added needs to be controlled. This is done by selecting a suitable function that will add viscosity according

to the level of oscillations in the solutions. This ensures no excessive amount of viscosity is added in different cells,

subsequently minimizing the effect of the added term on the solution.

3.2.1 Smoothness Shock Capturing

Persson and Peraire [14] developed an approach for the addition of artificial viscosity which is based on the smoothness

of the density. This sensor is designed to determine cells in which the density distribution is increasing or decreasing at

a discontinuous rate which would indicate the presence of a shock. Subsequently, the viscosity function will add large

amounts of viscosity in such areas and quickly reduce the amount of viscosity added in regions considered smooth by

the sensor. In order to do this, a dissipative model term is added to the conservation law presented in equation 2.2 for

which the source term has been set to zero. The modified equation then becomes

∂u

∂t
+∇ · F = ∇ · (ǫ∇u). (3.5)
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The smoothness sensor, designed to determine regions where artificial viscosity is required, does so by writing the

solution for each element in a hierarchic grouping of orthogonal polynomials, the solution of order p in each element is

expressed in an orthogonal basis as follows

u =

N(ps)
∑

i=1

uiψi, (3.6)

where N(ps) is the total number of terms and ψi is the basis function. When the solution is not smooth, the strength of

the discontinuity will determine the rate at which the expansion coefficient will die down. An additional truncated term

with the same solution is also considered but containing only ps − 1 terms

û =

N(ps−1)
∑

i=1

uiψi. (3.7)

Each element Ωe has the smoothness indicator defined as

S e =
(u − û, u − û)e

(u, u)e

, (3.8)

with (., .)e being the standard inner product of L2(Ωe). If a shock is detected using the above indicator, viscosity is added

as a constant in a given element using the smooth function

ǫe =



















































0, se ≤ s0 − κ,

ǫ0

2
(1 + sin(

π(se−s0)

2κ
)), s0 − κ ≤ se ≤ s0 + κ,

ǫ0, se > s0 + κ.

. (3.9)

For the above function, se = log10S e, ǫ0 ∼ h/p and s0 ∼ 1/p4. The value of κ is a user defined value that is selected on

the basis of obtaining sharp shock profiles in solutions free of oscillations.

3.2.2 Dilation Shock Capturing

An alternative approach to shock detection is a method based on the dilation of velocity. The presence of shocks is

strongly correlated with negative dilation making the approach based very promising. Moro et al. [13] used dilation as a

means of detecting shocks and applying artificial viscosity to the governing equation in a similar manner as Persson [14]

by adding an additional artificial viscosity term as follows

∂u

∂t
+ ∇ · F = ∇ · ǫ∇uAV (u). (3.10)
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In this case, uAV (u) = [ρ, ρv, ρH]. This differs from u presented in equation 2.16 on the last term which ensures

conservation of enthalpy across the shock for steady flow and maintaining dissipative properties for transient cases. The

amount of viscosity added, ǫ, is a function of the dilation, state of the fluid and the grid resolution. The method used

by [13] is made non-dimensional by basing their work on an approach developed by Person and Peraire which takes a

characteristic length term of order of h/p with p representing the polynomial degree and h representing the element size.

In addition to the length scale needed, a velocity scale is required for the non-dimensional dilation term. Alternatively to

previous works which use the speed of sound c =
√

γRT which is subject to change from pre and post shock areas the

critical speed of sound c∗ is proposed as an alternative to c.

c∗ =
√

γRT ∗ =

√

γR

(

2

γ + 1

)

T0. (3.11)

By using the above length and velocity scales, the shock sensor s̄∗(u) is defined:

s̄∗(u) = − (khh/ps)∇ · v
c∗

. (3.12)

The artificial viscosity term, ǫ, added to the governing equation is given as

ǫ =

(

kh

h

ps

) √
v · v + c2 f (s̄∗). (3.13)

The function f is defined as

f (x) =
log(1 + exp(α(x − β)))

α
. (3.14)

The α term governs the shape of the function or the ramp up of the viscosity while β determines the kick-in of the

viscosity. Both are user defined terms. Based on experimental results in [13], if is found that α = 104 and β = 0.1 give

good solutions.

3.2.3 Modified Shock Capturing

The proposed approach uses a modified form of the dilation-based shock indicator by Moro et al. [13]. The governing

equation is taken in the similar form stated above

∂u

∂t
+ ∇ · F = ∇ · (ǫ∇u) (3.15)

where ǫ = ǫ(u,∇u) is a Laplacian artificial viscosity. The objective is the same as in the other methods where ǫ is

chosen so that enough artificial viscosity to dampen excesive oscillations in the proximity of shocks is added, while
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keeping smooth flow regions undisturbed. A non-dimensional shock sensor based on the work from Moro et al. [13] is

proposed

s̃∗ = −khh
∇ · v

c∗
, (3.16)

where kh is a non-dimensional user defined tuning parameter, and h is a length scale. Contrary to Moro et al. [13], who

use a piece-wise linear reconstruction using a local length scale based on the smallest altitude in any given element, the

length scale used is

h =
hξJ1/nd

ps + 1
, (3.17)

where hξ is a characteristic length of the element in reference space, and nd is the number of physical dimensions. This

form of the length scale allows h to vary inside the element based on several variables that may differ between elements,

more specifically the polynomial degree and the shape deformation based on the reference element. The same equation

as in [13] is taken for the critical sound speed

c∗ =

√

2γRT0

γ + 1
(3.18)

It is important to note that wherever Equation 3.16 is positive, compression is present and likely presence of a shock.

The artificial viscosity scale has the same form as [13] with the modified length scale h, such that

ǫ = khh
√

v · v + c2 f (s̃∗) , (3.19)

The function f (x) represents the activation function for the amount of artificial viscosity added, depending on the

dilation based shock sensor which is a modification on the work of Persson and Perair [14]. The new activation function

proposed is

f (x) =



















































0, x ≤ β,

cos(π(α(x−β)−1))+1

2
, β < x < 1/α + β,

1, x ≥ 1/α + β.

(3.20)

where β is chosen to remove artificial viscosity in smooth regions of the flow, and α determines the rate at which artificial

viscosity is added with a maximum value of khh
√

v · v + c2. Additional information on various other approaches to

adding artificial viscosity within the DG framework can be found in [12].
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Chapter 4

One and Two-Dimensional Benchmark

Cases

All numerical methods must go through a rigorous validation and testing phase in order to determine their effectiveness

at solving a wide range of different types of scenarios. Extensive work has been done on evaluating the best methodology

for verifying and validating CFD codes, but no general consensus emerges [35]. In order to determine the capabilities of

the HORUS solver, preliminary, 1D convergence tests on smooth problems are performed, ensuring that the solver gives

the expected results. Building on this, additional 1D tests with discontinuities are used to determine HORUS’ ability

to handle shocks and their interactions with complex phenomena. The next natural step is to add an additional spatial

dimension and repeat the testing method used for the one dimensional case by comparing to the 1D results obtained.

4.1 Convergence of One-Dimensional Problems with Exact Solutions

In order to determine the effectiveness of the higher order solver, a first set of convergence tests were conducted to

determine the order of convergence for varying polynomial degrees. The convergence tests were also used to identify if

the shock capturing technique being utilized was giving the same order of convergence for smooth problems, where it is

not required. By doing so, it ensures that artificial viscosity is not added in regions where shocks are not present and the

solution does not behave in a discontinuous manner.
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Figure 4.1. Convergence plot of the sine wave density distribution using fixed time stepping and shock capturing turned

off.

4.1.1 Density Wave

To verify that the proposed shock capturing scheme can maintain high-order accuracy in smooth flows, we consider the

advection of a one-dimensional density wave using the Euler equations. The initial condition is specified as

ρ = 1 + 0.1 sin(2πx),

u = 1.0,

p = 1.0,

(4.1)

and a periodic domain of unit length is used with ne = 8, 16, 32, 64, 128, and 256 elements. The classical, explicit,

fourth-order Runge-Kutta scheme described in equation 2.31 is used in time. The conservation equations being solved

are the inviscid Euler equations resulting in the wave traveling through the domain with no change in phase or amplitude.

Table 4.1. Rate of convergence for moving density wave for varying computational routines.

ps Fixed∆t CFL∆t Modi f iedDilation S mootheness

0 0.8833 0.8833 0.8833 0.8833

1 2.6854 2.6855 2.6855 1.5248

2 2.9981 2.9981 2.9981 10.8319

3 4.2113 4.2112 4.2112 15.9525

4 4.9836 4.9828 4.9828 4.9929

5 6.2511 6.2103 6.2103 6.2104

6 6.7010 6.3189 6.3189 6.3146

7 4.3987 4.0089 4.0089 4.0241

8 0.0518 3.2697 3.2697 3.4631

After investigating the error convergence rate for varying polynomial degrees based on grid refinement, an investi-
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Figure 4.2. Convergence plot of the sine wave density distribution using adaptive time stepping and shock capturing

turned off.
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Figure 4.3. Convergence plot of the sine wave density distribution using variable time stepping and dilation based shock

capturing turned on.
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Figure 4.4. Convergence plot of the sine wave density distribution using variable time stepping and smoothness based

shock capturing turned on.
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Figure 4.5. L2 error based on time convergence on fixed mesh of 16 elements and varying polynomial degrees.

gation into the solvers sensitivity to time step refinement was conducted. Figure 4.5 shows the L2 error convergence

for varying time steps. This graph shows that the reduction in error obtained by refining the time step is within the

range of machine precision on coarser meshes such as the ones investigated in figures 4.1, 4.2, 4.3 and 4.4. This

behavior is expected especially for higher order polynomial degrees where the contribution to the error from the spatial

scheme is significantly larger than the temporal scheme. In the case of ps = 7 the dip in ǫ can be explained by the fact

that the spatial scheme error contribution is now so little that the temporal scheme error dominates before the error

contribution from both reduces to the order of machine precision. Further explanation of this phenomenon can be found

in [36, 37] where a more in depth analysis of the temporal convergence of explicit time stepping schemes in the DG/flux

reconstruction framework are investigated.

For each polynomial degree, a different value of ∆t was used and kept constant for each subsequent level of grid

refinement results are shown in figure 4.1. In a similar manner, for cases where adaptive time stepping was used, results

are plotted in figures 4.2, 4.3 and 4.4, a different value of the CFL number was used for each polynomial degree and kept

constant for each level of grid refinement. Contrary to FV methods which typically used CFL values close to 1 as the

polynomial degree is increased the CFL number used decreases and becomes significantly smaller than 1. In the context

of the moving density wave when the adaptive time stepping routine was used the CFL numbers used were 0.8, 0.3,

0.14, 0.09, 0.06, 0.045, 0.03, 0.026 and 0.02 for polynomials ranging from 0 to 8. It can be observed in table 4.1 that the

order of convergence increases as the polynomial degree is increased. This tends to fall appart for ps > 6 most likely

because of the accuracy limitations on the temporal scheme which is 4th order accurate. Additionally, it is observed in

figure 4.4 that when the smoothness shock capturing is turned on the convergence curves don’t follow a linear slope,

as would be expected, when plotted on a log-log scale. This is due to the fact that artificial viscosity is being added

to elements where no shocks are present, greatly skewing the results. In table 4.1, which shows the largest slop for

varying approaches, the jumps in convergence observed in figure 4.4 are presented numerically. For this reason, and
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after comparing convergence of the SOD shock tube it was decided to pursue a dilation based shock capturing approach

in all future tests with no exact solution.

When comparing the results obtained with both the modified dilation based shock capturing and adaptive time

stepping turned on with results obtained with adaptive time stepping turned on but no artificial viscosity no differences

in convergence rate are observed. This gives a strong indication that the method is capable of resolving smooth areas of

the flow without triggering the shock sensor. This is further confirmed in other test cases.

4.1.2 Sod Shock Tube

In order to choose suitable values of α, β, and kh, and demonstrate the utility of polynomial adaptation, we consider

Sod’s shock tube, which is a commonly used test case for validation of numerical methods in supersonic regimes. We

use a domain of length x ∈ [0, 1] split in two parts: one high pressure, high density region to the left, and a low pressure

and density region to the right with ratios of 10:1 and 8:1 respectively as described in 4.2. The left and right conditions

given by
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, (4.2)

where ρL, ρR, pL, pR, uL, and uR are the density, pressure, and velocity on the left and ride hand sides of the shock tube

interface, which is taken to be at the center of the domain. This simple yet interesting test case offers an analytical

solution, which can be found in [38]. This ability to compare the computational results with an exact analytical solution

explains why it is a benchmark in the CFD community. These initial conditions are known to form a shock, contact

discontinuity, and expansion fan as the solution evolves in time. A final time of t = 0.2 was selected for convenience.

The solution to the Euler conservation equation is represented on each element Gauss points and the Rusanov scheme is

used to compute the common Riemann flux between elements.

It can be observed, in figure 4.6, that as the polynomial degree is increased, the gradient at the shock also increases

indicating that the higher order polynomials are capable of producing a sharper change in density, better reflecting

the physical solution. Figures 4.7 and 4.8 show the grid convergence plots for the Sod shock tube test case using the

modified shock capturing approach which relies on dilation for the detection of shocks and the smoothness shock

capturing approach which uses the smoothness equation 3.8 to detect shocks. In both cases, convergence is below

one due to the presence of discontinuities. When polynomial degrees of four and above are used, the convergence is

relatively unchanged due to limitations in accuracy caused by the time discretization method described by equation 2.31.

For both test scenarios, a different CFL number was used depending on the polynomial degree of the solutions. The

CFL number was kept constant for a given polynomial as the mesh was refined. In this case, because shocks are present,
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Figure 4.6. Plots of density, velocity, and pressure for Sod’s shock tube at t = 0.2 using uniform solution polynomials of

degree ps = 2, 4, 6 and 8 on a 40 element mesh.
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Figure 4.7. Convergence plot of Sod’s shock tube using adaptive time stepping with modified dilation shock capturing

turned on.
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Figure 4.8. Convergence plot of Sod’s shock tube using adaptive time stepping with smoothness shock capturing turned

on.

CFL values for higher order polynomials needed to be lower than the ones used for the traveling density wave which

does not contain any shocks.

4.2 One-Dimensional Cases

In addition to one-dimensional convergence tests for test cases with exact analytical solutions, comparison testing on

more complex problems, with no analytical solutions were compared. Both the Shu-Osher and Woodward and Colella

blast polynomial increase were performed on a fixed number of elements as well as grid refinement was performed

on the highest order polynomial tested. For all three test cases the modified shock capturing and artificial viscosity

scheme were utilized. These scenarios were selected because of their prevalence in hypersonic literature, as well as for

the interesting interactions that occur in these test cases [12, 17, 39, 40, 41].
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4.2.1 Shu-Osher

The initial conditions for the Shu-Osher test case are described in equation 4.3, which splits the domain in two parts.

The computational domain is x ∈ [0, 1] with the left hand side covering 0 ≤ x ≤ 1/8, while the right hand side covers

1/8 < x ≤ 1. The final time is t = 0.178. The Shu-Osher test case simulates a normal shock moving through a sinusoidal

perturbed density field. Although such a scenario is not possible in the real world, testing such interactions provides

valuable insight on a solver’s ability to resolve non-linear interactions between shocks and smooth distributions. As the

shock front travels through the sinusoidal density distribution oscillations accumulate behind it, causing a sharp but

smooth oscillatory structure in its wake. Further in the wake of the shock, remnants of the sinusoidal density distribution

are found which have been affected by the traveling shock front.
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, (4.3)

Solving the Euler conservation equations, figure 4.9 shows the results for polynomial degrees varying between 2 and

8, and a mesh composed of 96 elements. It can be seen that as the polynomial increases, the shock is resolved more

sharply. In addition, the oscillations behind the shock are sharper as the value of the polynomial is increased. Visually,

there appears to be little difference between the 6th and 8th order polynomial.

It can be observed in figure 4.9, that as the polynomial degree within the element is increased, the method is capable

of a better representation of the solution. Although the maximum polynomial of ps = 8 appears to give the best shock

resolution as well as the best resolution of the oscillations behind the shock, ps = 6 is a close second. In light of

the increased computational cost and the time stepping accuracy limits, a case could be argued for opting for a lower

polynomial degree while still maintaining a high level of accuracy in the results.

Figure 4.10 compares varying levels of mesh refinement for ps = 8. The maximum number of elements tested was

768 which can be considered to be the exact solution for comparison purposes. It appears that for 96 and 192 elements,

the shock front is resolved with only a few elements and is significantly sharper than the result from the mesh with 48

elements. Similarly to the Sod test case, different CFL numbers were used based on the polynomial degree. Once a CFL

value was selected, the same value was used as the mesh was refined. For higher order polynomials, the CFL values

used were once again smaller than for the Sod test case. This can be explained by the stronger shocks and more complex

interactions between the shocks and the oscillatory density distribution which leads to more artificial viscosity being

added in shock regions, inevitably altering the conservation equations being resolved.

Comparison, in figure 4.10, of the solution for varying levels of mesh refinement indicates, as would be expected, that

as the number of elements is increased, the solution get more accurate. It should be noted that in the region 0.2 ≤ x ≤ 0.5,
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Figure 4.9. Shu-Osher problem with polynomial refinement for a 96 element mesh.
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Figure 4.10. Shu-Osher problem with grid refinement for polynomial 8 with maximum mesh size of 768 elements.
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all levels of mesh refinement have oscillations present in the solution. Additionally, it can be observed, comparing a

mesh with ne = 768 and one with ne = 192, there is very little benefit to quadrupling the number of elements other than

a slightly better resolution of the shock. It is also noteworthy that for ne = 96 there is very little difference with ne = 768

in the oscillatory region behind the shock for 0.6 ≤ x ≤ 0.75.

4.2.2 Woodward and Colella Blast Wave

The initial conditions for the Woodward and Colella blast wave problem are described using equation 4.4. These

conditions split x ∈ [0, 1] into three pressure zones: two high pressure zones at the edges of the domain and one low

pressure zone at the middle, with a uniform density and zero velocity through the entire domain. The left zone is

delimited by 0 ≤ x ≤ 0.1 and the right zone is delimited by 0.9 ≤ x ≤ 1.0. The remainder represents the center portion.

The final solution time for which density plots are compared is t = 0.038. This problem involves the collision of two

shock waves, providing insight in a solver’s ability to resolve such interactions. This is usually a difficult test case to

resolve because of the multiple interactions with rarefactions and contact discontinuities. At t = 0 the two high pressure

regions at the edges drive shocks towards the center of the domain while strong rarefaction waves are created in the

direction of the walls. As the problem evolves, the shocks move towards the center and rarefaction waves bounce off the

walls and interact in a non-linear manner. A more detailed description of these interactions can be found in [42], along

with results from other numerical solvers in [12, 16, 17, 43].
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, (4.4)

The interactions between shocks, discontinuities and rarefaction waves described through the Euler conservation

equation makes the Woodward and Colella blast wave problem a very interesting benchmark case for testing the validity

of a numerical solver. In figure 4.11, the density distribution for t = 0.038 is shown for ps = 2, 4, 6, 8 with a grid

composed of 80 elements. The results from the simulations show, as was observed in the Sod and Shu-Osher test cases,

that, at the shock, a steeper gradient in the solution is obtained as the polynomial degree is increased. It appears though

that for the shock on the left hand side of figure 4.11, depicted on the bottom left, there is little difference between

ps = 4, ps = 6 and ps = 8. The only significant difference is with ps = 2 for which the solution of the shock front spans

many more elements than the other polynomial degrees. The right moving shock, seen in the bottom right of figure 4.12,

appears to have a more significant correlation between number of elements required to resolve the shock and polynomial

degree. However, for ps = 6 and ps = 8 the steepness of the solution appears to only differ very slightly.

The comparison of various levels of grid refinement for the same polynomial degree, ps = 8, is depicted in figure 4.12.
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Figure 4.11. Woodward and Colella Blast with polynomial refinementfor 80 element mesh.
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Figure 4.12. Woodward and Colellas Blast with grid refinement for polynomial 8 with maximum mesh of 640 elements.
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As expected, the maximum level of refinement, ne = 640 offers the sharpest solution for the shocks moving to the left

and right, which are depicted at the bottom of figure 4.12. A similar scenario as the one seen in figure 4.10 for the

Shu-Osher case is that the difference between the solution for ne = 160 and ne = 640 is very small, which would indicate

that the computational requirements of solving a mesh that is four times more refined outweighs the accuracy gained. In

the same manner as with the one-dimensional test cases, a different CFL number was used for different polynomial

degree. For a given polynomial degree, the same CFL value was used regardless of the number of elements present in

the domain. The shocks in the Woodward and Collela blast are significantly stronger than those of the Sod shock tube or

the Shu-Osher test cases and, for this reason, the use of the positive limiter routine was required. Although it was not

used at every time step, without it turned on, the occasional presence of negative pressures causes the solver to crash.

For the three test cases in which shocks are presents; Sod, Shu-Osher, and Woodward and Colella blast, a similar

trend is observed. As the polynomial degree is increased for a mesh with the same number of elements, shocks are

resolved more steeply and the overall solution is more representative of what is expected analytically or when compared

to other types of numerical solvers. There also appears to be a limit at which additional increase in the polynomial

degree does not yield a significant increase in the level of accuracy, most likely because of the limitations of the temporal

scheme. Additionally, as the grid is refined and the number of elements increases for the same polynomial degree, the

solution becomes more accurate and gradients become steeper. Here, too, a limit at which the computational cost of

further refinement outweighs the accuracy benefits gained.

4.3 Convergence of Two-Dimensional Exact Case

The isentropic vortex is a self sustained vortex which theoretically should run through an inviscid domain with periodic

boundary conditions without dissipation. This idealized scenario means that the solution for a vortex with initial

conditions given by equation 4.5 can be solved analytically at any given time.

ρ =

(

1 − S 2M2(γ − 1)e2 f

8π2

)1/(γ−1)

u =
S (y − yC)e f

2πR

v =
S (x − xC)e f

2πR

p =
ργ

γM2

f =
1 − (x − xc)2 − (y − yc)2

2R2

(4.5)

In the initial conditions functions described in equation 4.5, S determines the strength of the vortex, R determines

the radius of the vortex, M is the Mach number of the vortex which will determine its speed, xc and yc are the x and
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Figure 4.13. Density distribution of the isentropic vortex after one pass through the domain.
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Figure 4.14. Convergence plot of isentropic vortex problem using adaptive time stepping and no shock capturing.

y coordinates for the center of the vortex, and γ is the heat capacity ratio of the fluid, typically γ = 1.4 for air. The

conservation equations being solved in all polynomial cases are the inviscid Euler equations, meaning the vortex should

theoretically run indefinitely.

An additional area to be investigated is that the presence of the shock capturing and artificial viscosity function do

not add unwanted viscosity to the solution, which would break down the fluid structure as the vortex moves through

the domain. In order to determine if this is the case, convergence of the solver is tested and compared for varying

polynomial degrees with the modified shock capturing turned on and off and using adaptive time stepping. For all

polynomial degrees, a different CFL number was used and maintained for a given polynomial as the mesh was refined.

In Figure 4.14 and 4.15 the convergence for ps = 2, 4, 6, 7, 8 is plotted for increasing mesh sizes of 400, 1600,

6400 and 25600 elements. In all cases, the convergence with shock capturing turned on and off is almost identical,

indicating that the shock capturing method does not add unwanted viscosity in regions where shocks are not present. It

is noteworthy to point out that the convergence rate for ps = 8 doesn’t follow the increasing trend in convergence as the

polynomial degree is increased. Figures 4.14 and 4.15 also indicate that for ps = 7 and ps = 8, increasing the number of

elements does not increase accuracy because of unwanted oscillations in the solution polynomial within a given element.
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Figure 4.15. Convergence plot of Isentropic Vortex using adaptive time stepping with dilation shock capturing turned on.

Additionally it appears that accuracy above 4th order is not obtained, likely because of the time stepping scheme which

is 4th order accurate. Table 4.2 gives the convergence order for varying polynomial degrees, comparing the results for

shock capturing on and off.

Table 4.2. Rate of convergence for Isentropic Vortex with Dilation routine On and Off.

ps DilationO f f DilationOn

2 1.8984 1.8913

4 2.4032 2.4032

6 3.7830 3.7830

7 3.9159 3.9159

8 0.9963 0.9963

4.4 Convergence of Complex Two-Dimensional Cases

Similarly to the 1D testing validation, test cases without an exact solution are also explored in two-dimensions in order

to compare results using the dilation based shock capturing technique described in equation 3.16 along with the artificial

viscosity function 3.20, with previously published works. Although the benchmark cases explored do not have exact

solutions, they have been extensively studied by many authors who are in agreement with the expected results that

should be obtained. By testing 2D benchmark cases with no exact solutions, more complex interactions between shocks,

reflections, rarefaction waves and turbulence can be investigated, and results can be compared to further determine the

robustness of the solver and its capabilities.
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Figure 4.17. Naca 0012 airfoil with angle of attach of 1.5 degrees and incoming flow at Mach 0.8. Comparison of

density for polynomial 2 and 6.

Figure 4.18. Naca 0012 airfoil with angle of attach of 1.5 degrees and incoming flow at Mach 0.8. Comparison of

artificial viscosity for polynomial 2 and 6.

above the top, downstream half the airfoil. For ps = 2, the shock is visibly thicker, encompassing more computational

cells. For ps = 6, the shock surface is smoother. The region where the artificial viscosity is added is centered exclusively

around the added shock. A greater amount of viscosity is added for ps = 2. The "raggedness" and increased thickness of

the shock surface is also more evident in figure 4.18. In [40] a similar shrinking of the region where artificial viscosity

is added can be found as the mesh is refined. This would suggest that increasing the polynomial degree could have a

similar effect to refining the mesh.

Figures 4.19 and 4.20 show the results for the Mach 1.5 supersonic flow on the same mesh containing 12152 2nd

order elements for ps = 2 and ps = 6. In both cases there is are clear symmetrical oblique shocks at the nose and tail of

the airfoil. The shock at the tip of the airfoil for ps = 2 seen in on the left of Figure 4.19 have a smeared appearance with

a rippling effect around it similar to what is seen in Figure 4.17. On the right hand side of Figure 4.19 are the results for

the density distribution of ps = 6 for which the shocks at the tip of the airfoil are much clearer with almost no apparent
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Figure 4.19. Naca 0012 airfoil with angle of attach of 0 degrees and incoming flow at Mach 1.5. Comparison of density

for polynomial 2 and 6.

Figure 4.20. Naca 0012 airfoil with angle of attach of 0 degrees and incoming flow at Mach 1.5. Comparison of artificial

viscosity for polynomial 2 and 6.

smearing of the shock.

For the supersonic case, symmetrical oblique shocks are located at the leading and trailing edges of the airfoil.

Similarly to the transonic case, the leading and trailing shocks are smeared and "rippled" when ps = 2 is used. For

ps = 6, the shock surfaces are visibly thinner and smoother. the distributionof artificial viscosity, show in figure 4.20,

shows again the shock detector is adding viscosity solely in the shock regions. In order to determine the effectiveness of

their shock capturing approach, [14] conducted similar numerical simulations on the NACA 0012 airfoil for both the

transonic and supersonic regimes and obtained results similar to the ones presented using a modified shock capturing

approach. In both test cases performed in this work the increase in polynomial degree lead to a better resolution

of the shocks present in the flow. It is also noteworthy that for the solutions using ps = 6, the regions of artificial

viscosity are smaller, which would indicate that the solution of the conservation equations is artificially affected in a

smaller proportion of the overall domain, leading to a more accurate overall solution. Similar to results obtained for the
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(a) ps = 2

(b) ps = 4

(c) ps = 6

(d) ps = 8

Figure 4.22. Density for double Mach reflection with varying polynomial degrees.
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(a) ps = 2 (b) ps = 4

(c) ps = 6 (d) ps = 8

Figure 4.23. Close up of density in the vicinity of the primary slip line and mach stem for the double Mach reflection

problem with varying polynomial degrees.
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(a) ps = 2

(b) ps = 4

(c) ps = 6

(d) ps = 8

Figure 4.24. Artificial viscosity for the double Mach reflection with varying polynomial degrees.
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For all cases, artificial viscosity is added at the incident shock wave, primary Mach stem, primary reflected shock

wave, secondary reflected shock wave and secondary Mach stem. In all four cases, affected cells ahead of the incident

shock wave and primary Mach reflection are present. As the polynomial degree increases, the number of cells affected

decreases. Additionally, as the polynomial degree is increased, the thickness of the region where the majority of the

artificial viscosity is added decreases. The primary area affected by this is the incident shock wave and the primary

Mach stem. The thickness of the primary reflected shock wave and secondary Mach stem are affected, to a lesser extent,

by the increase in polynomial degree as well. In the case of ps = 2, the secondary reflected shock wave covers more

cells, in thickness, than all other polynomials degrees, which appear to affect the same number of cells regardless of

polynomial degree. Interestingly, when comparing the regions where artificial viscosity is added with the results of [46],

it can be observed that the dilation approach does not add viscosity in the re-circulation region, which would be expected

since no shock are present.

The double Mach reflection is a difficult case for the HORUS solver to run. More specifically, without the use of

the positive limiter, cells with negative pressure appear in the domain. Some of these cells are sometimes present in

regions in the domain that are not of interest, but on occasion they also affect the area being studied. In no situation does

the number of cells being affected increase to cover large regions of the flow, and these areas are never the same as the

simulation progresses through time. The positive limiter acts as a safety which stops the pressure from being negative

and therefore allows the simulation to keep running without interruption. In all cases, the use of the positive limiter does

not appear to affect the solution and results obtained are comparable to numerical results presented in [12, 16, 44, 45, 47].

Although an analytical solution was developed in [48] only numerical results are compared. It is also apparent that as

the polynomial degree is increased the thickness of the regions where shocks are present is drastically reduced and

significantly less smearing of the solution is present in the domain. For all two dimensional test cases, a correlation

between polynomial degree and sharpness of the shock is noted and increasing the polynomial degree appears to yield

more accurate solutions in a manner similar to mesh refinement.

4.5 Comparison of Results from HORUS and FV Methods

The results obtained using HORUS were compared with a second order graphic processing unit (GPU) based FV solver.

Since the two solvers are running on different hardware types, it is difficult to do a fair comparison of their run-time.

The double mach reflection run-time for the GPU solver on a mesh with 50 million elements was approximately 4 hours

compared to approximately 36 hours for the DG solver running on 40 CPUs on a mesh of 15063 elements with ps = 8

corresponding to 1220103 DOF. The FV solver is second order accurate in space by using the MUSCL-Hancock scheme.

The Riemann solver utilized is HLLC combined with a Von Leer limiter in order to solve single-step Arrhenius Euler

equations [49]. This comparison between the two methods is used to determine if the results obtained using the HORUS
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(a) ps = 2 (b) ps = 4

(c) ps = 6 (d) ps = 8

Figure 4.25. Close up of artificial viscosity in the vicinity of the primary slip line and mach stem for the double Mach

reflection with varying polynomial degrees.
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Figure 4.26. Convergence plot of the sine wave density distribution comparing the DG method to the FV method. For

varying polynomial degrees on mesh of 8 elements with equivalent DOF using the FV method
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Figure 4.27. Convergence plot of the isentropic vortex comparing the DG method to the FV method. For varying

polynomial degrees on mesh of 400 elements with equivalent DOF using the FV method

solver, with its shock capturing routines, is in agreement with other solvers used within the research group. Comparison

of the Sod shock tube, Shu-Osher problem, Woodward and Colella blast and the double Mach reflection can be found

in figures 4.28, 4.29, 4.30, 4.31 and 4.32 below. For the 1D cases, levels of mesh refinement for the FV method were

selected so that the number of degrees of freedom (DOF) have a corresponding polynomial value using the DG method.

More specifically, for ps = 2 the coarsest mesh for the FV method has the same number of DOF and subsequently for

other values of ps. For example, in figure 4.26, the the coarsest result in blue represents ps = 2 for the DG method on a

1D mesh of 8 elements, yielding 24 DOF. Consequently, the FV mesh consists of 24 elements or 24 DOF. The other DG

points in blue represent ps = 4, ps = 6 and ps = 8 on a mesh of 8 elements.

Figures 4.26 and 4.27 show the L2 error for the density wave described in section 4.1, and for the isentropic vortex

described in section 4.3. In order to show a fair comparison between the two solvers, the DOF for both methods are the

same. In the case of the DG solver, the mesh was fixed and the polynomial degree was varied. On the other hand, for the
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Figure 4.28. Density comparison of the DG method with ps = 2, ps = 4, ps = 6 and ps = 8 on a mesh with ne = 40

(left) against the FV method on meshes with ne = 120, ne = 200, ne = 280 and ne = 360 for the SOD shock tube (right).

FV solver, the mesh was refined in order to match the DOF of the DG method. Figures 4.26 and 4.27 show that as the

number of DOF is increased the DG order of convergence is significantly better for purely smooth problems.

Comparison of the results of the Sod shock tube case for varying polynomial degrees using the DG method on a

mesh with ne = 40 to the FV method with refined meshes is plotted in Figure 4.28. As expected, when the mesh is

refined, the resolution of the shock for the FV method is steeper and the solution resembles more closely the expected

analytical solution for the Sod test case. If the gradient of the slope at the shock for ps = 8 using the DG method is

compared to the results for ne = 360 of the FV method, it looks as if the FV method is steeper. This would suggest

that the shock is better resolved in the FV method. Although this may be the case, the results from the FV method

between the shock and the expansion fan, where the discontinuity is present, vary from the analytical solution. The two

areas of constant density are in fact, lower than expected prior to the discontinuity and higher than expected after the

discontinuity.

Figure 4.29 compares results obtained for the Shu-Osher case using the DG method on a mesh with ne = 96 with
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Figure 4.29. Density plots of the Shu-Osher test case for comparison of the DG method with ps = 2, ps = 4, ps = 6 and

ps = 8 on a mesh with ne = 96 (left) against the FV method on meshes with ne = 288, ne = 480, ne = 672 and ne = 864

(right).
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varying polynomial degrees with the FV method for varying levels of mesh refinement. A much more significant

change in the solution can be noted when comparing the mesh refinement of the FV method. For the coarsest mesh, the

oscillatory region behind the normal sock is almost completely smeared and the oscillations are almost indistinguishable

when using the FV method. There also appears to be a significant difference in the amplitude of the peaks in that region.

Although the shock front, for the highest level of FV grid refinment, has a steeper gradient than the DG method with

ps = 8, comparing with results from [12, 17, 39, 40, 41] suggests the DG method appears to be in better agreement

than the FV method. It is important to note that, contrary to the DG method, the FV method doesn’t have regions with

sporadic oscillations caused by the presence of higher order polynomials within elements.

The comparison of the density distribution for the interaction between two shock waves colliding together in the

Woodward and Colella blast wave problem is presented in Figure 4.30. On the left are results using the DG method, and

on the right, results using the FV solver. The center portion, where the interaction between the waves can be seen, is

poorly resolved by the FV method, especially when compared to other published data in [12, 16, 17, 43]. Similarly to

the other results containing normal shocks, as the grid is refined, the shocks are resolved more accurately and a steeper

gradient can be seen between the pre and post shock regions.

For all one dimensional test cases, the FV method, at its highest level of grid refinement had a steeper resolution of

the shock when comparing to the DG method with ps = 8. On the other hand, for regions of the flow were the shock

interacted in a complex manner, the FV solver did not give results which are comparable to previously published data.

This indicates that the overall accuracy of the DG method, in smooth regions, is better than the FV method even if the

shock front is not as steep.

The double Mach reflection is used as a two dimensional comparison between the DG and FV solvers because the

FV solver is incapable of resolving unstructured grids. The mesh used for the DG simulations is a partially unstructured

mesh, shown in figure 4.21. This corresponds to a total number of DOF of 135567 for ps = 2 and 1220103 for ps = 8.

On the other hand, the mesh used for the FV solver is a fully structured mesh with a rectangular domain containing

200000 elements for the coarse mesh and 50 million elements for the refined mesh. Figures 4.31 and 4.32 show the

comparison for these two meshes with the results from the DG method using ps = 2 and ps = 8. Figure 4.31 (a) is for

ps = 2 which appears to have similar results to Figure 4.31 (c), the coarse mesh of the FV solver. As the polynomial

degree is increased in the DG method, a tendency similar to the one observed for mesh refinement in the FV method can

be seen in the re-circulation area. Vortex like structures start to form along the primary slip line.

Based on the results above, it is apparent that the FV solver is better at handling discontinuities, while on the other

hand the DG solver is significantly better at resolving the smooth areas of the flow. It is also interesting to observe that

increasing the polynomial degree using DG acts the same as refining the mesh for FV. Depending on the type of problem

being solved, DG or FV could be better suited for yielding a more accurate solution. In order to draw any definitive

conclusions, additional testing is required. It is important to note that the FV solver used was designed and tailored
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Figure 4.30. Density plots of the Woodward and Colella blast wave problem for comparison of the DG method with

ps = 2, ps = 4, ps = 6 and ps = 8 on a mesh with ne = 80 against the FV method on mesh with ne = 240, ne = 400,

ne = 560 and ne = 720 (right).
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(a) DG with ps = 2

(b) DG with ps = 8

(c) FV with ne = 20x104

(d) FV with ne = 50x106

Figure 4.31. Density field for the double Mach reflection with varying polynomial degrees comparing the results for

ps = 2 and ps = 8 using the DG method with the results from a coarse mesh and a mesh with 250 times more elements.

50



(a) DG with ps = 2 (b) FV with ne = 20x104

(c) DG with ps = 8 (d) FV with ne = 50x106

Figure 4.32. Close up of density in the vicinity of the primary slip line and Mach stem for the double Mach reflection

comparing the results for ps = 2 and ps = 8 using the DG method with the FV results using a coarse mesh and a mesh

with 250 times more elements.
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mainly for problems with detonations and chemical reactions occurring in the domain.
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Chapter 5

Adaptive Polynomial

Based on the strong correlation between increase in polynomial degree and better resolution of shocks for a mesh

with a fixed number of elements, a polynomial adaptation routine is explored. Results in figures 4.6, 4.9 and 4.11

show three 1D test cases for which shocks are present in the domain: the Sod shock tube, the Shu Osher problem, and

Woodward and Colella blast. In all three cases, as the polynomial degree is increased, the solution resolution around

the shock is significantly better. A sharper jump in the given conserved variable, covering fewer elements, is obtained.

Additionally, it should be noted that the proposed dilation based shock capturing technique, with the artificial viscosity

in equation 3.20 using function parameter values α = 1, β = 0.1 and kh = 1, have proven to be effective at detecting

regions with shocks and mitigating the presence of large oscillations associated with the polynomial constructed to

resolve them. Interestingly, in the case of the Sod shock tube in figure 4.6, and the Woodward and Colella blast wave

in figure 4.11, the oscillations for higher polynomial degrees appear to be smaller than for lower order polynomials.

Visually, it appears that the approach combining the dilation shock sensor with an artificial viscosity function similar to

that proposed by Persson and Peraire provides good shock resolution which improves with increased polynomial degree.

By comparing the results on a uniform mesh for varying polynomial degrees, a clear advantage can be observed and

even more so around shocks. Based on this observed advantage, additional simulations were conducted to determine if

varying the polynomial degree in the vicinity of a shock could have a similar effect to refining the mesh in order to get a

sharper solution. In order to determine the validity of this approach, the three one-dimensional test cases for which

polynomial refinement and mesh refinement were performed are once again tested for polynomial adaptation on a fixed

grid. The polynomial adaptation approach consists of detecting regions in which the shock is present using the dilation

shock sensor, increasing the polynomial degree for that cell as well as adjacent ones in order to help increase shock

resolution. Computationally, this is significantly less expensive since higher order polynomials are only being used in

regions where the shock is present. Typically, only a small portion of the domain is covered. On the majority of the

domain, where the solution is smooth, a lower order polynomial is used.
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5.1 Sod Shock Tube

The Sod Shock tube test case has two expansion fans, a contact discontinuity and a normal shock which makes it an

ideal case to see if the ps adaptation routine is capable of resolving regions in a similar manner to a routine which would

typically utilize mesh refinement instead. Figure 5.1 shows the results for the simulations using different levels of ps

refinement where artificial viscosity is added. As was the case for the uniform polynomial degree results shown in

figure 4.7, as the adaptive polynomial degree is increased so the resolution of the shock gets greater and the solution

becomes more accurate. It is also important to note that when comparing the results from simulations with uniform

polynomial degree and adaptive polynomials, the shock resolution quality is nearly indiscernible between the two. This

indicates that the adaptive routine is capable of accurately resolving the shock while maintaining fewer average degrees

of freedom when compared to the uniform polynomial routine. Figure 5.1 (e) shows the adaptive routine with ps = 2

and ps = 8 as the adaptive polynomial. It can be seen that the higher order polynomial is present in the vicinity of the

shock and the corners of the expansion fan only. Table 5.1 shows the ratio of the number of degrees of freedom when

compared to the uniform ps = 2 case for ne = 40 80 and 160 elements. Since the shock and corners of the expansion fan

are limited to a small number of elements, the number of cells in which a higher polynomial degree is required is very

low and this is independent of the total number of elements. As the mesh is refined the number of elements requiring

higher order polynomials doesn’t increase proportionally. This means that when using finer meshes the computational

cost of using the adaptive polynomial routine is minimal, it is estimated to increase the total degrees of freedom by

∼ 10%, while giving a much higher shock resolution.

Table 5.1. Ratio of number of degrees of freedom for the adaptive Sod shock tube cases relative to uniform ps = 2.

ps ne = 40 ne = 80 ne = 160

2, 2 1.00 1.00 1.00

2, 4 1.15 1.07 1.04

2, 6 1.33 1.12 1.08

2, 8 1.45 1.15 1.13

5.2 Shu-Osher

The Shu Osher case represents a more complex interaction between a normal shock and a sinusoidal density distribution.

This idealized one-dimensional shock-turbulence interaction is a more difficult problem to resolve which requires a

more robust solver capable of handling these interactions. The adaptive polynomial method is tested on a mesh with

ne = 96 figure 5.2 compares the uniform ps = 2 solution with the adaptive ps = 2, 4, ps = 2, 6 and ps = 2, 8 solution.

In all cases, as the adaptive polynomial degree is increased the shock resolution also increases. In figure 5.2 (e) it can
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Figure 5.1. Plots of density (a, b), velocity (c), and pressure (d) for Sod’s shock tube at t = 0.2 using adapted solution

polynomials of degree ps = 2 to 8. (e) shows the distribution of ps = 2 (blue) and ps = 8 (red) elements for the adaptive

ps = 2, 8 simulation.
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be seen that the adaptation scheme is increasing the polynomial degree at the normal shock traveling to the right of

the domain as well as the weaker shocks being formed traveling to the left of the domain behind the oscillatory region.

This gain in accuracy, while keeping the overall degrees of freedom low, suggests that substantial gains in accuracy are

possible while keeping computational costs low.

5.3 Woodward and Colella Blast

The results of uniform ps = 2 and adaptive ps = 2, 4, ps = 2, 6 and ps = 2, 8 on a mesh with ne = 80 and shown

in figure 5.3. Once again, the increase in polynomial degree gives better shock resolution while only applying the

increase in polynomial degree at the locations where shocks and expansion fans are present. By simply increasing the

polynomial degree in zones where there are shocks, a significant gain in precision in comparison to a uniform ps = 2

can be observed. On the other hand when comparing the different adaptive polynomial degrees, there is only a slight

difference in the steepness of the shock being resolved.

For all three one dimensional adaptation routines there is a clear gain in accuracy as the polynomial is increased

in regions where the dilation based shock detector adds artificial viscosity. Even adaptive routines with the degree

changing from ps = 2 to ps = 4 greatly increases the steepness of the resolved shock. This allows for more accurate

solutions while maintaining the average number of degrees of freedom low. Consequently, the computational cost of

increasing the polynomial degree in regions where shocks are present remains low and overall accuracy of the solution is

increased significantly. A drawback of this method is one that is also present for adaptive mesh refinement, specifically

if a region where no shocks are present is indicated as containing shocks the polynomial degree will increase even if it is

not required. Just as in adaptive mesh refinement, if this is the case the accuracy of the solution in this region is not

diminished. Only additional computational costs ensue.

For all three one-dimensional test cases for which adaptive polynomial routines were used, it can be observed that

adaptive routines have results similar to their uniform polynomial order counterparts. A uniform ps = 8 yields solutions

very similar to an adaptive ps = 2, 8 with a much larger average number of degrees of freedom per element. This

suggests that the adaptive polynomial routine can yield results similar to mesh refinement. It would also be possible to

combine the two adaptive methods to give even better results.

5.4 Double Mach Reflection

The true advantage of the adaptive polynomial comes when the number of elements is significantly increased and

nothing does this like adding an additional spatial dimension. For this reason, the adaptive polynomial routine was tested

on the 2D double Mach reflection to determine its ability to reduce computational costs while adding higher accuracy
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Figure 5.2. Shu Osher problem. Density (a, b, c, d) is shown for different sections of the flow field. The location of the

polynomial refinement is shown in (e) with polynomial adaptation for 96 element mesh.
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Figure 5.3. Woodward and Colella blast problem. Density (a, b, c, d) is shown for different sections of the flow field.

The location of the polynomial refinement is shown in (e) with polynomial adaptation for 80 element mesh.
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Figure 5.4. Density and artificial viscosity for the double Mach reflection with adaptive polynomial degrees.

than the lower polynomial simulations. Figures 5.4 and 5.5 show the density and artificial viscosity results for adaptive

ps = 2 to ps = 7 where shocks are present. Attempts to run different adaptive polynomial schemes were conducted, but

stability issues with different values of the adapted polynomial were encountered.

Figure 5.4 and 5.5 show the results for the ps = 2, ps = 7 adaptive simulation at t = 0.2. When comparing with the

results for ps = 2 in figures 4.22, 4.23, 4.24 and 4.25, it is clear that the adaptive scheme resolves the shocks without

smearing them like the uniform ps = 2 scheme does. The presence of the vortex like structures at the jet are also

distinguishable as in the results for the uniform ps = 8 simulation. The presence of these structures in the adaptive results

for ps = 2 to ps = 7 shows that this adaptive routine could give better results than running a uniform ps = 6 simulation

while maintaining a significantly lower average number of degrees of freedom. The thickness of the regions where

artificial viscosity is added at the incident shock wave, primary Mach stem, primary reflected shock wave secondary

reflected shock wave and secondary Mach stem are also thinner than for the uniform ps = 2 simulations.

In Figure 5.4 regions in blue indicate where the polynomial element is ps = 2 and regions in red indicate ps = 7 at

t = 0.2. The equation 3.16 which is used for detecting the presence of shocks and subsequently adding artificial viscosity

is also used to increase the polynomial degree. It can be seen that behind the triple point, where the incident shock

wave, primary Mach stem and primary reflected shock wave meet, there appears to be ripples traveling outward were

shocks are detected and the polynomial degree is increased. Additionally, trailing behind and parallel to the incident

shock wave is a secondary numerical wave that is detected as a shock and the polynomial degree is also increased in this

region. These regions where shocks are detected but not physically present could be the reason for instabilities in the

other adaptive combinations.

All test cases where the adaptive routine was used gave a more accurate solution than their uniform counterparts
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Figure 5.5. Close up of density and artificial viscosity in the vicinity of the primary slip line and primary mach stem for

the double Mach reflection with adaptive polynomial degrees.

Figure 5.6. Overall view of cells with ps = 2 in blue and ps = 7 in red for adaptive polynomial degrees.
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while maintaining a lower average number of degrees of freedom. This suggests that a more accurate solution can be

obtained by utilizing a low value of ps in smooth regions and increasing ps in regions where shocks are detected.
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Chapter 6

Real World Case

In addition to comparing numerical simulations to problems tested by other authors the ability, for the HORUS solver

to capture real world phenomena numerically was put to the test by comparing it to experimental data acquired in the

lab. The experiment was conducted in the context of another student’s master’s research into the interaction between

shock waves and turbulence. In order to create a scenario where a shock wave would interact with a turbulent region, an

apparatus was designed in which a high pressure jet of air is injected for a fixed amount of time. This injection is at

the middle of the tube where a turbulent region forms and the overall pressure inside the tube increases. At the end

of injection, at one end of the tube, an electric igniter is activated which increases the energy in that small section of

the testing apparatus, in turn creating a shock wave. As the shock wave travels down the tube, it eventually crosses the

viewing section where the jet of air was injected and the turbulent region. In order to visualize the interaction between

the two a Z-type schlieren visualization system was set up to acquire pictures of the density gradient in the viewing area.

Using the schlieren pictures taken during the course of the experiment, it is possible to build a two dimensional

simulation of the experimental set-up and then determine if similar interactions are occurring in the numerical solution.

Without any exact analytical solution to the interaction between turbulence and shocks, the only way to validate the

ability for the solver to capture real world phenomena is to compare its numerical results to experiments such as these.

Although only two dimensional simulations for the tube were conducted, comparison with the images acquired still

offers valuable insight on how HORUS can handle complex two dimensional interactions. In order to get a better grasp

of what is occurring, the full Navier-Stokes equations are used to simulate more accurately the turbulence formed as

fluid is injected into the pipe and subsequently interacts with a moving shock.

The simulation parameters used to compare the numerical results with experimental data were a Reynolds number

of 6000 and 150000, Prantl number of 2.71, a polynomial ps = 3, injection times of ∆t = 50 and ∆t = 100 at a ratio of

injected to ambient fluid pressure of 2:1. In all cases the increase in internal energy at the far right side of the domain

was a 3:1 increase which occurred 0.1∆t after injection was completed. Additionally, after injection, the inlet boundary
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(a) Poiseuille (b) Turbulent (c) Flat

Figure 6.1. Density comparison of Poiseuille, turbulent and flat injection profiles for mesh with ne = 224756 at

Re = 2000.

condition was converted to a wall boundary condition. The mesh was fully structured, consisting of 224756 square

elements in 2D. All simulations were conducted with the positive limiter turned on and dilation based shock capturing

enabled.

6.1 Injection Phase

Prior to comparing with the experimental data, the need to determine the flow conditions at the inlet of the plenum was

required. Three possible inlet conditions where explored. A Poiseuille flow distribution, a turbulent flow distribution

and a flat distribution. It was determined by qualitatively comparing the numerical results that very little difference can

be seen between the Poiseuille and turbulent types of injection however the flat injection profile differs significantly

from the other two. The main difference lies in the shape of the fluid as it initially traveling through the injection tube.

Comparison of all three injection profiles are shown in figure 6.1 for the transition time from when the inlet is opened and

moments before the bulk of the fluid exits the tube. The Poiseuille injection profile was used for all test case scenarios in

order to facilitate calculations. This in turn allows for better control of the average injection velocity,pressure and mass

flow rate.

In addition to determining the required injection profile the consistency of the solution obtained, prior to the shock

being generate, was compared by running preliminary simulations on varying levels of mesh refinement. As the mesh

was refined the solutions density distribution shown in figure 6.2 appears to visually follow a trend towards the densest

mesh. In addition, the largest variation appears to be in the plum of fluid exiting the injection tube. The general structure

and scale of the turbulent area to the left and right of the tube are similar when compare in figure 6.2.

After determining the injection profile and the mesh to be used for the simulation, varying injection times were

tested to determine the amount and scale of the turbulence being created in the viewing section. Although the tests

run in the lab do have varying injection times it was impossible to determine what the turbulence looked like in the
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(a) ne = 13842

(b) ne = 55688

(c) ne = 127055

(d) ne = 224756

Figure 6.2. Density comparison of the solution for injection time of t = 50 with Poisseuille injection profile for mesh

with ne = 13842, ne = 55688, ne = 127055 and ne = 224756 at Re = 2000. Used to determine if different levels of mesh

refinement would yield similar results prior to turning off the injection inlet condition.
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(a) Re = 6000 & t = 50

(b) Re = 6000 & t = 100

(c) Re = 150000 & t = 50

(d) Re = 150000 & t = 100

Figure 6.3. Density comparison of the solution after continuous injection for t = 50 and t = 100 with Poisseuille

injection profile for meshes with ne = 224756 at Re = 6000 and Re = 150000.

tube before, during and after the shock was created by the spark plug. For this reason determining what kind of effect

injection would have on the turbulence within the tube was investigated and comparison of two injection times can

be seen in figure 6.3 for Re = 6000 and Re = 150000. The increase in injection time appears to increase the overall

pressure in the tube, as is expected, when looking at the results from the experimental data. It also appears that the

turbulent area around the injection site spreads further down the tube as injection time is increased. While the overall

turbulence scales appears to remain unaffected by the increase in injection time. The greatest effects on the turbulent

structure comes from the change in Reynolds number, at Reynolds number over 2000 according to [50] turbulence is

present. Based on the equation 6.1 for ρ j, U j and D being the jet inlet density, velocity and diameter respectively.

Re =
ρ jU jD

µ
> 2000 (6.1)
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6.2 Shock Phase

Without any analytical or previous numerical results to base the simulations on conclusions about the exactitude of the

results obtained were only speculative in nature and qualitative comparison between various simulations were conducted.

In the numerical simulations, after a high pressure fluid was injected for a set period of time the source was cut off and

the boundary condition at the inlet was changed to a wall. A pre-determined period of time was set before a shock was

generated to the far right of the domain. To generate this shock the specific internal energy of a small portion of the

domain was tripled which generated the desired shock. Initial investigation was conducted on ensuring that the mesh

used was capable of capturing the fluid interaction between the shock and the turbulent region without causing the solver

to crash or give unrealistic results. Mesh refinement comparison for the shock traveling through the domain can be seen

in figure 6.4 and 6.5.

Comparison of the shock as it travels through the domain for varying levels of mesh refinement in figures 6.4 and 6.5

indicate that the general shape the shock front as it travels through the domain converges towards a general solution.

Varying the level of grid refinement was observed, in figure 6.2, to change the exact turbulent structure, in turn this will

also affect the way the shock from behaves. None the less, the general behavior of the shock, as it travels through the

domain, appears to be consistent for varying levels of grid refinement. This indicates that although no exact conclusion

can be drawn a general idea of how the shock interacts with the turbulent structure can be determined if the most refined

mesh is used for further simulations.

Results in figures 6.6 and 6.7 show the shock front before and after the injection tube for Re = 6000 and Re = 150000

on a mesh with ne = 224756 for comparison with experimental results obtained. The results from the numerical

simulation clearly indicated, as would be expected, that as the shock moves through the domain it is being weakened

likely because of the friction on the walls and some energy dissipation caused by the vortices. The structure of the

shock front warps as it travels through the turbulent areas in the direction of rotation of the vortex it interacts with. This

explains why the simulations with the highest Reynolds number result in a shock front that is more distorted than the

lower Reynolds number simulation. The numerical results also indicated that as the shock travels through the domain

small turbulent structures start to form at the wall in the wake of the shock, for the higher Reynolds number simulation

the turbulence at the wall start earlier in the domain.

Based on the above comparison the average results from the interaction between the shock and the turbulent areas

follow a similar trend. Although no definitive conclusions can be drawn from these simulations it appears that qualitative

observations can be made. By comparing results between grid refinement and changes in Reynolds numbers that as the

shock passes over turbulent area the front is deformed based on the direction and scale of the vortex structure. It can

also be observed that the strength of the shock diminishes as it travels through the domain which is likely caused by

friction with the walls and interactions with the turbulence.
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(a) ne = 13842 (b) ne = 55688

(c) ne = 127055 (d) ne = 224756

Figure 6.4. Density comparison of the shock front before it reaches the injection tube at the middle of the domain for

meshes with ne = 13842, ne = 55688, ne = 127055 and ne = 224756 at Re = 2000.
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(a) ne = 13842 (b) ne = 55688

(c) ne = 127055 (d) ne = 224756

Figure 6.5. Density comparison of the shock front traveling through the domain after it has passed over the injection

tube at the middle of the domain for meshes with ne = 13842, ne = 55688, ne = 127055 and ne = 224756 at Re = 2000.
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(a) Re = 6000 (b) Re = 150000

Figure 6.6. Density comparison of the shock front before it reaches the injection tube at the middle of the domain for

Re = 6000 and Re = 150000 and ne = 224756.

(a) Re = 6000 (b) Re = 150000

Figure 6.7. Density comparison of the shock front traveling through the domain after it has passed over the injection

tube at the middle of the domain for Re = 6000 and Re = 150000 and ne = 224756.
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6.3 Experimental and Numerical Comparison

In order to further determine the effectiveness of HORUS, comparison of the numerical results obtained using a mesh

with ne = 224756 with the experimental results obtain in the context of [51] was conducted. Experimental results

into the investigation of the interaction between shock waves and turbulence were determined using a Z-type schlieren

visualization system which allows to capture images of the density distribution within the test tube while the shock is

traveling through it. Based on the dimensions and operating conditions of the set up an approximate Reynolds number of

= 1500000 and Prantl number of 2.47 was found and used for the numerical simulations. During the physical experiment

various pressure ratios where tested for the initial pressure and injection pressure with a fixed final pressure within the

tube. In the case of the numerical experiment the pressure ratio between the tube initial pressure and inlet pressure were

fixed at 1:2 and the injection time was varied between ∆t = 50 and ∆t = 100 with a shock being generated by tripling

the specific internal energy of the right most area of the tube after injection was completed. Since it was experimentally

impossible to quantify turbulence prior to or after the shock had passed through the tube and only 11 frames are obtained

per run only qualitative comparison of the results are investigated.

The images of the density distribution initial tube pressure of 100kPa and an injection pressure of 200kPa are in

figure 6.8. When these results are compared with results obtained using HORUS for a Reynolds number of 150000 and

injection times of ∆t = 50 and Deltat = 100 in figures 6.9 and 6.11 it is apparent that in both cases deformation of the

leading shock is present. In the case of the numerical simulations the deformation of the shock is much greater than that

of the experimental results but the trend observed of the shock being significantly more deformed in the case where the

injection time is longer is present in both the experimental and numerical data.

Instead if the experimental results are visually compared to simulations, with Reynolds of 6000 in figures 6.10

and 6.12, the overall shape of the distortion is in better agreement. In this case since the turbulent structures present

inside the tube are larger in scale and less frequent it appears that the shock is less distorted by these structures.

Although no definitive conclusion can be drawn between the experimental results and the simulations it is evident

that some similarities are present. The most notable ones are the distortion of the shock as it travels through the turbulent

domain and the weakening of the shock which could be associated with longer injection times. If images of the turbulent

structures prior to the shock being generated were available it could be possible to determine if the scale and structure of

vorticies present agreed with results from simulations.
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(a) Injection Time ti = 0.49s (b) Injection Time ti = 2.53s

Figure 6.8. Schlieren images of showing the density distribution of experimental results for inlet pressure to initial

pressure ratio of 2:1 and injection times of ti = 0.49s and ti = 2.53s.
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Figure 6.9. Density distribution of the shock traveling through the domain after ∆t = 50 for injection time at a Reynolds

number of 150000.
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Figure 6.10. Density distribution of the shock traveling through the domain after ∆t = 50 for injection time at a Reynolds

number of 6000.
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Figure 6.11. Density distribution of the shock traveling through the domain after ∆t = 100 for injection time at a

Reynolds number of 150000.
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Figure 6.12. Density distribution of the shock traveling through the domain after ∆t = 100 for injection time at a

Reynolds number of 6000.
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Chapter 7

Conclusion and Future Works

This work investigated the use of DG methods in the context of compressible flow with shocks present. In order to

determine the suitability of the DG method in solving problems with discontinuities, various methods were investigated

and validated. Since the DG method utilizes a higher order polynomial within the element to obtain higher order

accuracy while maintaining a compact stencil, discontinuities within an element need to be handled with care. In the

context of this work, the approach used to mitigate the unwanted effects from discontinuities was the addition of an

artificial viscosity term to the conservation equation. Additional care needs to be taken to ensure that the term is only

added in regions where shocks are present. This is accomplished by using a shock detection mechanism based on the

dilation of the velocity.

Preliminary tests were conducted to ensure that the viscosity was not affecting flows that did not contain shocks,

unnecessarily damping the solution. After determining that this was indeed the case, investigation into the method’s

ability to handle simple, one dimensional problems was investigated for varying polynomial degrees. More complex,

one dimensional problems involving turbulent like structures, interactions between shocks and rarefaction waves as well

as other shocks were also investigated to ensure the solver’s robustness and accuracy.

Subsequently, a second spatial dimension was added to determine if significantly more complex flows could be

simulated successfully. Although the solver was capable of solving the two dimensional problems and recreated results

similar to those obtained by other authors the use of the positive limiter was required for flows involving strong shocks.

The simulations performed showed great promise in recreating results obtained on significantly finer meshes using

different methods and managed to do so using unstructured meshes, a limitation of several other methods.

It was also found that instead of using mesh refinement techniques, typical of FV methods, an alternative approach

could be used to obtain higher accuracy while minimizing computational cost. A polynomial adaptive routine was

investigated which consisted of increasing the polynomial degree when shocks are present in order to better resolve

the sharp changes in the solution. This method showed a lot of promise in one dimensional cases and gave solutions
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similar to uniform ps = 8 using a ps = 2, 8 adaptive routine. This allowed highly accurate results while maintaining

the average number of degrees of freedom per element to a low value, significantly reducing computational resources

required. Preliminary results for two dimensional cases were promising, but further investigation is required to ensure

the robustness of the routine in two dimensions.

After determining the ability of HORUS to resolve benchmark test cases where shocks are present, it was determined

that the solver’s ability to resolve real world scenarios would be investigated. This was done by comparing laboratory

results obtained by sending a shock wave over a turbulent region to numerical results recreating similar conditions. The

experimental and numerical results did not give exactly the same density distributions but similarities in the overall

structure of the shock wave as it interacted with the turbulent flow field were observed. It was also observed that the

shock strength as it traveled through the turbulent area, was consistent when comparing numerical and experimental

data.

Building on the findings in this work, further investigation into the adaptive polynomial routine for two dimensional

test cases should be considered. The possibility of combining a routine using polynomial and mesh refinement should

also be considered to increase the stability of this routine. The solver’s ability to handle strong shocks without the need

for the positive limiter is also an avenue worth investigating. Finally, a more thorough comparison of the numerical

results with the experimental data should be conducted. A more in depth comparison would include the ability to better

re-create the final pressure ratios post injection and possibly use different equipment to determine the real turbulence

levels within the test tube before the shock is generated.
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