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ABSTRACT 

Vibration-based damage detection in laminated composite beams using 

Spectral Finite Element Method and Genetic Algorithm 

Mohammad Delpasand Moghadam 

 

Damage detection requires non-destructive testing of structures. Vibration-based damage detection 

techniques identify damage based on changes in the vibration features such as natural frequencies 

and mode shapes. Detecting damage requires solving an inverse problem using an analysis tool 

that is used as a simulator to produce possible damage cases and an optimization algorithm to find 

the closest model to the observed vibration features. Capturing some damage cases, such as 

delamination, is more difficult than others in the way that delamination is revealed in higher modes 

of vibration. Standard Finite Element Method requires a huge computational effort to obtain 

natural frequencies and mode shapes. Spectral Finite Element method that benefits from 

frequency-dependent shape functions, is adopted in this study as the analysis tool to model the 

dynamic behaviour of laminated composites. A discussion is given on the observations from the 

output of Spectral Finite Element method and a method is suggested to calculate the complete 

response of the structure based on the results of Spectral Finite Element analysis. The Wittrick-

Willams procedure has been implemented to identify the natural frequencies from the frequency- 

dependent dynamic stiffness matrix of the system. The effect of delamination on natural 

frequencies of vibration of delaminated composites are studied. The Genetic Algorithm has been 

used to develop a damage detection tool that searches for the closest model to the observed 

frequencies and mode shapes. 

 

 

 



iv 
 

Acknowledgments 

I would like to express my gratitude to my supervisors, Dr. Emre Erkmen and Dr. Rajamohan 

Ganesan who assisted me patiently and kindly with their knowledge, time, support, and guidance. 

I would like to thank my lovely parents and sister for their endless support during my past 17 years 

of continuous studying. The past two years away from you, reminded me of how much love and 

appreciation I hold in my heart for you. Hopefully we can reunite very soon. 

Last one goes to my friends who inspired, taught and sustained me everyday. Even though we are 

all around the world, you will always have a special place in my heart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Contents            

        List of Figures………………………………………………………………………………vii 

        List of Tables…………………………………………………………………………….....ix  

 1.Introduction ...................................................................................................................................... 1 

1.1. Motivation .................................................................................................................... 1 

1.2. Scope of the thesis ........................................................................................................ 3 

1.3. Objective of the thesis .................................................................................................. 4 

1.4. Layout of the thesis....................................................................................................... 5 

 2.Literature Review ............................................................................................................................ 7 

2.1. Use of Composites ........................................................................................................ 7 

2.2. Damage detection techniques ....................................................................................... 7 

2.3. Spectral Finite Element Method ................................................................................... 8 

2.4. Free vibration analysis .................................................................................................. 9 

2.5. Calculation of the forced vibration response ................................................................ 9 

2.6. Genetic algorithm ......................................................................................................... 9 

 3.Methodology .................................................................................................................................. 11 

3.1. Differential equation of motion of a bar  [Clough and Penzien, 1995] ...................... 11 

3.2. Spectral element formulation [Doyle, 1988] .............................................................. 12 

3.3. Differential equation of motion of an Euler-Bernoulli beam [Clough and Penzien, 

1995]…... ........................................................................................................................... 14 

3.4. Development of the spectral beam element [Black, 2005] ......................................... 18 

3.5. Fourier transform: ....................................................................................................... 20 

3.6. Conventional Euler-Bernoulli beam Finite Element [Reddy, 1989] .......................... 23 

3.7. Conventional bar element [Reddy, 1989] ................................................................... 26 

3.8. Steady-state analysis using spectral element .............................................................. 28 

3.9. A discussion on the output of Spectral Finite Element model ................................... 30 

3.10.The missing part (transient part) ................................................................................ 31 

3.11.Addition  of the transient response ............................................................................ 34 

3.12.Calculation of natural frequencies [Wittrick and Williams, 1970] ............................ 36 

3.13.Calculation of J0 ........................................................................................................ 38 



vi 
 

3.14.Bisection method [Epperson, 2013] ........................................................................... 39 

3.15.Calculation of mode shapes ....................................................................................... 40 

3.16.Damage detection....................................................................................................... 41 

3.17.Effect of damage on natural frequencies ................................................................... 41 

3.18.Damage cost function: ............................................................................................... 44 

3.19.Genetic algorithm....................................................................................................... 47 

3.20.Composite Laminate [Lee, 2009] .............................................................................. 51 

3.21.Modeling delamination using Multiple Point Constraints (MPC) ............................. 61 

3.22.Modeling for contact in the delaminated area ............................................................ 64 

3.23.Computer implementation ......................................................................................... 66 

 4.Case studies ................................................................................................................................... 68 

4.1. Natural frequencies of Euler-Bernoulli beam using Spectral Finite Element and 

Wittrick-Williams method ................................................................................................. 68 

4.2. Vibration mode shapes of Euler-Bernoulli beam using Spectral Finite Element and 

Wittrick-Williams method ................................................................................................. 70 

4.3. Complete response of Euler-Bernoulli beam under dynamic load using SFEM 

[Veletsos and Kumar, 1983] .............................................................................................. 71 

4.4. Natural frequencies of Laminated Composite beam using Spectral Finite Element and 

Wittrick-Williams method ................................................................................................. 72 

4.5. Natural frequencies of delaminated composite beam using Spectral Finite Element 

and Wittrick-Williams method .......................................................................................... 74 

4.6. Effect of mid-plane delamination location on the natural frequencies of laminated 

composite beam ................................................................................................................. 77 

4.7. Effect of friction between the top and bottom layers in the delaminated zone .......... 81 

4.8. Damage detection in damaged isotropic beams using Genetic Algorithm ................. 85 

4.9. Delamination detection in delaminated composite beams using Genetic Algorithm . 86 

 5.Conclusion and future works ....................................................................................................... 89 

References ................................................................................................................................................. 91 

 

 

 

 



vii 
 

List of Figures 

Figure 1.1: Modeling assumption for delaminated composite beam ............................................................ 3 

Figure 3.1 : Differential bar element [Clough and Penzien, 1995] ............................................................. 11 

Figure 3.2: Differential beam element [Clough and Penzien, 1995] .......................................................... 14 

Figure 3.3: Degrees of freedom in the finite beam element ........................................................................ 18 

Figure 3.4: Function in time domain ........................................................................................................... 21 

Figure 3.5: Conventional beam shape functions ......................................................................................... 24 

Figure 3.6: Forces applied on a beam element ............................................................................................ 25 

Figure 3.7: Forces applied on a bar element ............................................................................................... 27 

Figure 3.8: Frequency domain analysis and the inverse [Doyle, 1997] ...................................................... 29 

Figure 3.9: Application of the procedure shown in Figure 3.8 on a beam under a sine load ...................... 29 

Figure 3.10: Simply supported beam under study ...................................................................................... 30 

Figure 3.11: Step and sine load functions ................................................................................................... 30 

Figure 3.12: Steady-state transverse displacement of the middle point of the beam under step and sine 

loads ............................................................................................................................................................ 31 

Figure 3.13: Complete spectral analysis procedure .................................................................................... 34 

Figure 3.14: Effect of releasing a constraint on the determinant of the dynamic stiffness matrix [Wittrick 

and Williams, 1970] .................................................................................................................................... 38 

Figure 3.15: Trial points in Bisection method ............................................................................................ 39 

Figure 3.16: Damage Model ....................................................................................................................... 41 

Figure 3.17: Effect of moving the damaged element along the length of the beam on the first frequency of 

vibration ...................................................................................................................................................... 42 

Figure 3.18: Effect of moving the damaged element along the length of the beam on the second frequency 

of vibration .................................................................................................................................................. 43 

Figure 3.19: Effect of moving the damaged element along the length of the beam on the third frequency 

of vibration .................................................................................................................................................. 43 

Figure 3.20: Calculation of the cost of each trial structure ......................................................................... 45 

Figure 3.21: Cost of each trial as a function of length and location of the damaged element showing the 

optimization space ...................................................................................................................................... 46 

Figure 3.22: A possible solution shown in binary ...................................................................................... 48 

Figure 3.23: First generation of candidate solutions generated randomly within the constraints of the 

problem. ...................................................................................................................................................... 48 

Figure 3.24:  Mutation ................................................................................................................................ 49 

Figure 3.25: Stresses applied on a 3D element ........................................................................................... 51 

file:///C:/Users/m_del/Desktop/Thesis%2019%20Nov/Final%20Submission/Thesis_Mohammad%20Delpasand_40130774.docx%23_Toc92276133


viii 
 

Figure 3.26: Global and local coordinates on a lamina [Lee, 2009] ........................................................... 53 

Figure 3.27: Geometry of laminate (x axis is out of plane) ........................................................................ 56 

Figure 3.28: Internal forces and moments .................................................................................................. 58 

Figure 3.29: Delamination modeling using MPC ....................................................................................... 61 

Figure 3.29: Flowchart of the Spectral Finite Element program written in FORTRAN............................. 66 

Figure 3.29: Flowchart of the damage detection program written in Python ............................................. 67 

Figure 4.1:Effect of mesh refinement on natural frequencies obtained by conventional Finite Element 

Method ........................................................................................................................................................ 69 

Figure 4.2: Spectral Finite Element model of the beam shown in Figure 3.10 ........................................... 70 

Figure 4.3: Complete transverse displacement of the beam under concentrated transverse load applied at 

the middle point. ......................................................................................................................................... 71 

Figure 4.4: Frame element .......................................................................................................................... 72 

Figure 4.5: Modal testing setup from the experimental study in [Okafor et al, 1996] ................................ 73 

Figure 4.6: Spectral Finite Element model of the delaminated composite beam ........................................ 75 

Figure 4.7: Effect of delamination location on the first 8 natural frequencies of the laminated beam ....... 78 

Figure 4.8: Effect of delamination location on the relative difference of the first 8 natural frequencies of 

the composite beam. .................................................................................................................................... 79 

Figure 4.9: Effect of delamination on the natural frequency of the first 8 modes of vibration ................... 80 

Figure 4.10: Extra MPC links to add extra stiffness in the delaminated zone ............................................ 82 

Figure 4.11: Truss elements added to add extra stiffness in the delaminated zone .................................... 82 

Figure 4.12: Performance of the Genetic Algorithm .................................................................................. 85 

Figure 4.13: Model parameters of delaminated beam ................................................................................. 86 

Figure 4.14: Performance of the delamination detection algorithm............................................................ 87 

Figure 4.15: Effect of number of modes used on the performance of the damage detection algorithm ..... 88 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

Table 4.1: Natural frequencies of the simply-supported beam in Figure 3.10 ............................. 68 

Table 4.2: Mode shapes calculated by the Spectral Finite Element model .................................. 70 

Table 4.3: Natural frequencies of the composite beam considered in Example 1 in Hz .............. 73 

Table 4.4: Natural frequencies of the composite beam considered in Example 2 in Hz .............. 74 

Table 4.5: Natural frequencies of the delaminated beam in Hz (delamination size is 5.08 cm) .. 75 

Table 4.6: Natural frequencies of the delaminated beam in Hz (delamination size is 10.16 cm) 75 

Table 4.7: Natural frequencies of the delaminated beam in Hz (delamination size is 15.24 cm) 75 

Table 4.8: Comparison of natural frequencies of models with extra MPC links for the fully-

delaminated and fully-bonded cases. (Hz) .................................................................................... 82 

Table 4.9: Comparison of natural frequencies of models with 1 extra spring element in the 

delaminated area for the fully-delaminated and fully-bonded cases. (Hz) ................................... 83 

Table 4.10: Comparison of natural frequencies of models with 2 extra spring elements in the 

delaminated area for the fully-delaminated and fully-bonded cases. (Hz) ................................... 83 

Table 4.11: Comparison of natural frequencies of models with 3 extra spring elements in the 

delaminated area for the fully-delaminated and fully-bonded cases. (Hz) ................................... 83 

 

 

 

 

 

 



1 
 

Chapter 1 

 

 Introduction 

1.1. Motivation 

Damage detection requires non-destructive testing. Among different damage detection techniques 

those that identify the damage based on changes in the natural frequencies of the system are widely 

adopted. Detection of the damage location and its severity based on the observed frequency 

change, however, is an inverse problem where usually a search algorithm and a model update 

procedure are required to match the output of a damaged model with the observations. Capturing 

small damage requires analysis at higher frequencies. In special cases of damage, like delamination 

in laminated composite beams, high frequency analysis gains more importance. Many 

combinations of location and severity of damage are possible and the one with the closest dynamic 

properties, natural frequencies, and mode shapes, to the observed values in the dynamic test, 

should be chosen. The relationship between the inputs (location and severity of damage) and output 

(difference in dynamic properties) is a complicated function. The genetic algorithm is adopted in 

this study to optimize the process of searching for the closest model to the target data in such a 

complicated space. Wavelengths get shorter at higher frequencies, therefore, the standard finite 

element simulation of wave propagation, requires a high resolution of the discretization. Using 

standard finite element approaches, this may rapidly exceed the available computer resources, 

rendering the numerical simulations unfeasible. Especially since the analysis needs to be repeated 

many times to find the best model that fits the observed vibration features. To avoid limitations of 

FEM in numerical modelling, the spectral element method has been adopted by many researchers 

as a viable option, in which the element shape functions are built based on the frequency content 

considered in the analysis. The natural frequencies show up in the transient response of the 

structure. Solving the system of equations of the spectral analysis in the frequency domain and 

transforming it back to the time domain, does not affect the free vibration features like mode shapes 

and natural frequencies. The effect of damage on free vibration properties of structures, led to more 

in-depth investigation in the literature in obtaining the transient solution based on the steady-state 

solution. Free vibration features should be calculated separately by solving a transcendental 
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eigenvalue problem and then added to the final solution. The advantage of Spectral Finite Element 

method in fast computation of natural frequencies was motivating to build a dynamic analysis tool 

for delaminated composite beams. 
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1.2. Scope of the thesis 

The scope of the analysis is kept to linear and elastic vibration of beams. Two types of spectral 

elements are studied. Spectral bar element that captures the axial deformation and Spectral Euler-

Bernoulli beam element that captures the bending deformation. The mentioned beam and bar 

elements are combined to create a frame element to capture the axial, transverse and rotational 

displacements using one element. The axial behaviour is assumed to be uncoupled from the 

transverse and rotational displacements. To ensure that the uncoupled assumption is true when the 

frame element is used to model laminated composite beams with and without delamination, the 

laminated composite cases are limited to symmetric cases. For delaminated composite beams, only 

delaminated cases with mid-plane delamination are considered under the condition that the layers 

on the top and bottom of the delamination are also symmetric. This assumption is shown in Figure 

1.1. 

 

Figure 1.1: Modeling assumption for delaminated composite beam 
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1.3. Objective of the thesis 

The global objective of this work is to propose a computationally efficient model for dynamic 

analysis of isotropic beams and laminated composite beams and show the application of this model 

in vibration-based damage detection. To achieve this objective, the following steps were taken: 

1) Adopt a spectral finite element model for dynamic analysis of isotropic beams and 

laminated composite beams. 

2) Consider both the transient and the steady-state response obtained by spectral finite 

element method and adopt a method to calculate the transient response based on the steady-

state response. 

3) Extract the free vibration features, natural frequencies and mode shapes, directly from the 

frequency-dependent stiffness matrix. 

4) Propose a spectral finite element model for dynamic analysis of delaminated composite 

beams. 

5) Verify the obtained results by comparing the output of the proposed model with numerical 

and experimental results from previous works. 

6) Develop a vibration-based damage detection program based on the developed dynamic 

analysis model to detect location and severity of damage in damaged isotropic beams and 

to detect delamination location and size in delaminated composite beams using natural 

frequencies and vibration mode shapes. 
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1.4. Layout of the thesis 

This thesis is organized into 5 chapters: 

Chapter 1 covers the motivation, scope and objective of the thesis. 

Chapter 2 gives a brief literature review on the previous works on dynamic analysis of laminated 

composite beams, spectral finite element method, free-vibration analysis using the frequency-

based dynamic stiffness matrix, vibration-based damage detection techniques and application of 

Genetic Algorithm as an optimization tool in damage detection problems.  

Chapter 3 contains the methodology of the thesis and covers a large portion of the thesis. A Spectral 

finite element model for vibration of beam element is introduced. A discussion is given on the 

output response of the spectral finite element model and a method is suggested to add the free 

vibration response. Wittrick-Williams method is combined with bisection method to search for 

natural frequencies of vibration. A vibration-based damage detection method is developed and 

genetic algorithm is used as the optimization tool. The entire process is repeated for laminated 

composite beams. A spectral finite element model is proposed for laminated composite beams and 

laminated composite beams with delamination. Natural frequencies are calculated using Wittrick-

Williams method. A model is introduced to consider the effect of distributed contact between the 

delaminated top and bottom surfaces. The damage detection algorithm is applied to the analysis 

tool to detect location and length of delamination in delaminated composite beams.  

Chapter 4 includes the case studies. Natural frequencies and mode shapes of  isotropic beams are 

calculated using the spectral finite element model and the program results are validated by 

comparing with the analytical results. The results are also obtained by conventional finite element 

models and the effect of mesh refinement on the performance of the conventional finite element 

model is discussed. Total response of a beam under different load functions are built using the 

proposed transient method and the results are compared with the analytical solution. Natural 

frequencies of symmetric laminated composite beams with and without midplane delamination are 

obtained using the spectral finite element model and compared with results from previous works. 

The effect of delamination location on natural frequencies of different modes of vibration is studied 
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and it is shown that delamination effects are more significant on higher modes of vibration. The 

performance of the damage detection algorithm is shown with both damaged isotropic beams and 

delaminated composite beams. 

Chapter 5 concludes the thesis and summarizes its achievements. It also provides suggestions for 

future works that can be done based on this thesis. 
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Chapter 2 

 

 Literature Review 

2.1. Use of Composites 

Composite structures have become the most popular choice in structural engineering during recent 

years. They offer an advantage for structures which require a combination of high strength and 

low weight. In contrast to their in-plane properties, transverse tensile and inter laminar shear 

strength of laminated composite beams are quite low. Consequently, laminated composite beams 

are susceptible to delamination from a wide variety of sources which includes fabrication stresses, 

environmental cycling, handling damage and foreign object impact damage [Pardoen and Tracy, 

1988]. Delamination not only affects the strength and integrity of the structure by contributing to 

its final failure, but also causes a reduction in the stiffness, thus affecting its vibrational and 

stability characteristics [Majmudar and Suryanarayan, 1988]. 

2.2. Damage detection techniques 

Non-destructive testing (NDT) such as thermography and ultrasonic inspection have become 

common in damage detection in composite beams. However, they cannot be used for real time 

damage detection. [Ihesiulor et al, 2013] A recent development in health monitoring of structures 

is vibration-based damage detection. Structural damage usually decreases the structural stiffness 

which produces changes in the vibration characteristics of the structure. The usual vibration-based 

damage identification system includes two main modules:  

1. A simulation module that finds the vibration properties of trial models such as the natural 

frequencies and mode shapes  

2. A search module including an optimization algorithm that tries to find the closest model to 

the target vibration features.  

The implemented algorithm must satisfy the levels of Structural Health Monitoring depending on 

the expected application. These levels are: 

Level 1: Finding out the possibility of damage. Essentially this means that the SHM system should 

be able to confirm if damage is present in the structural system 
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Level 2: Estimation of damage location and size 

Level 3: Estimation the severity of damage [Garg et al, 2004] 

Level 4: Updating the Finite Element model of the structure for further analysis 

Modal testing is one of the techniques for studying the behavior of a structure through a number 

of natural frequencies and mode shapes [Bagchi, 2005]. The use of dynamic testing to detect and 

quantify the effect of internal damage on modal parameters has become a popular research area. 

[Vandiver 1975, 1977] examined the change in the frequencies associated with the 

first two bending modes and first torsional mode of an offshore light station tower to 

identify damage. [Cawley and Adams, 1979] gave a formulation to detect damage in composite 

materials from frequency shifts. [Penny, et al. 1993] presented a method for locating the most 

likely damage case by simulating the frequency shifts that would occur for all damage cases under 

consideration. [Mottershead and Friswell, 1993] gave a survey of model updating methods that 

can be used as damage detection procedures. 

Fatigue cracking and delamination are particularly dangerous and are at the same time the most 

common kind of damage in elements of machines and structures. It is of great importance for their 

safety operation to ensure that the elements of machines and structures are free of any fatigue 

cracks and delamination and in the case of their presence to determine their extent [Ostachowicz, 

2007]. One example is investigating the effect of damage after impulse impact on dynamic 

properties of composite laminates. Comparison of modal parameters before and after impact shows 

that the frequency reduction predominantly appears in higher modes [Pardoen, 1988]. This 

observation shows the importance of an analysis tool that can calculate higher modes of vibration 

in an efficient way. 

2.3. Spectral Finite Element Method 

Structural modeling is usually carried out using the finite element method. However, finite element 

method produces fair estimation of natural frequencies only at the lower part of the frequency 

spectrum. One can expect from a discrete model of order 𝑛 to produce fewer than 
𝑛

3
 eigenvalues 

with reasonable accuracy [Kumar and Yitshak, 2002]. The reason is that the conventional finite 

element treats the distributed load induced by the mass as concentrated load applied at the ends of 

the element. Therefore, many elements must be used if the mass distribution is to be modeled 
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accurately [Doyle, 1990]. [Doyle, 1990] formulated a bar and a beam spectral element which 

treated the distributed mass exactly. Only one spectral beam element needs to be placed between 

any two joints and this decreases the number of degrees of freedom of the system.  

2.4. Free vibration analysis 

Spectral element formulation results in a transcendental eigenvalue problem when it comes to free 

vibration analysis. The dynamic stiffness matrix is no longer a linear function of 𝜔2[Wittrick and 

Williams, 1970]. [Kumar and Yitshak, 2002] used Newton’s eigenvalue iteration method to solve 

the eigenvalue problem. Their proposed method requires deriving the derivative of the dynamic 

stiffness matrix with respect to 𝜔 which could be problematic in cases where complicated and long 

terms appear in the dynamic stiffness matrix. 

A method based on counting the number of natural frequencies exceeded by any arbitrary value 

for 𝜔 is suggested by [Wittrick , 1970]. The Wittrick-Williams method relies on having access to 

the number of frequencies of a clamped-clamped element that are less than a trial value called 𝐽0 

and the dynamic stiffness matrix of the system. 

2.5. Calculation of the forced vibration response 

According to [Doyle, 1997], the forced vibration response should be calculated by transforming 

the force function to frequency domain using Fourier Transform. After calculating the response in 

frequency domain using SFEM, the response should be reconstructed in time domain using Inverse 

Fourier Transform. The response calculated by SFEM is the steady-state part of the response which 

does not contain the free vibration part of the solution. [Cho and Lee, 2007] used a pseudo force 

method to add the transient response due to non-null initial conditions. However, it seems that the 

proposed method is unable to incorporate the transient part when initial conditions are zero. 

[Veletsos and Kumar, 1983] proposes an approach to calculate the transient response using initial 

conditions and the steady-state response of a single degree of freedom system and extends it to 

multi-degree of freedom systems if vibration mode shapes and mass matrix of the system are 

available.  

2.6. Genetic algorithm 

[Moller and Friberg, 1998] introduced an objective function that represents to what extent a 

particular trial structure agrees with experimental results. [Xinjun and Yang, 2018] used two 
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optimization algorithms, the Levenberg_Maquardt and the trust region reflective algorithms, to 

update the FE model of a concrete building frame. The FE model was built in SAP 2000 using 

conventional finite element. They indicated that it is possible that the cost function is non-convex, 

so in general the global optimality of the optimization results cannot be guaranteed. [Hao and 

Yang, 2002] used the genetic algorithm to update the FE model of a cantilever beam. Genetic 

Algorithm searches from a population of points in the region of the whole solution space. They 

also used the conventional finite element as the simulator. [Lee and Shin, 2001] built a spectral 

finite element damage detection procedure and compared the results with the results of a tool that 

used finite element. They showed that due to exactness of shape functions used in spectral finite 

element models, they perform better in locating small damage. [Nag et al, 2002] built a 

delamination detection tool that implements GA to minimize the objective function. One objective 

function was based on displacement and the other was based on power.  
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Chapter 3 

 

 Methodology 

3.1. Differential equation of motion of a bar  [Clough and Penzien, 1995] 

Consider a straight bar for which the axial stiffness is 𝐸𝐴 and mass per unit length is constant and 

equal to 𝑚, and 𝑢(𝑥, 𝑡) is the axial displacement. If it is subjected to an arbitrary external 

distributed axial loading 𝑞(𝑥, 𝑡), an internal time-varying axial-force distribution 𝑁(𝑥, 𝑡) will be 

produced. Forces acting on a differential segment of the bar are shown in Figure 3.1: 

 

Figure 3.1 : Differential bar element [Clough and Penzien, 1995] 

Summing the forces in the x direction gives: 

 
𝑁(𝑥, 𝑡) + 𝑓𝐼(𝑥, 𝑡)𝑑𝑥 − [𝑁(𝑥, 𝑡) +

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥] = 𝑞(𝑥, 𝑡)dx 

(3.1) 

𝑓𝐼(𝑥, 𝑡) is the inertial force which is: 

 
𝑓𝐼(𝑥, 𝑡) = 𝑚

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
 

(3.2) 

 

The axial force-displacement relationship is written as: 

 
𝑁(𝑥, 𝑡) = 𝐸𝐴

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 

(3.3) 

 

Substituting Eq 3.3 in Eq. 3.1, the partial differential equation of motion of an axial bar is 

obtained as: 

 

 
𝑚
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝑞(𝑥, 𝑡) 

(3.4) 
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In the case of free vibration, external forces are assumed to be zero and the partial differential 

equation will be: 

 

 
𝑚
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 

(3.5) 

 

3.2. Spectral element formulation [Doyle, 1988] 

Eq. 3.5 can be rewritten as:  

 
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝑘2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 , 𝑘 = √

𝐸𝐴

𝑚
 

(3.6) 

In which 𝑘 is the wave speed, 𝐸 is the modulus of elasticity, 𝐴 is the area of the cross-section and 

𝑚 is mass per unit length and is assumed to be constant. It is known that the solution of the wave 

equation in Eq 3.6 is in the form given in Eq 3.7: 

 𝑢(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝑖𝜔𝑡 (3.7) 

   

where 𝜔 is the angular frequency and the amplitude 𝜙(𝑥) satisfies the following equation: 

 
−
𝑑2𝜙(𝑥)

𝑑𝑥2
− 𝑎2𝜙(𝑥) = 0 

(3.8) 

where 𝑎2 appears as a separation constant and indeed 𝑎 =
𝜔

𝑘
 is the wave number and its relation to 

frequency is called the spectrum relation. As for the spectral finite element one can solve this wave 

equation analytically. This has the simple solution: 

 𝜙(𝑥) = 𝐴𝑒−𝑖𝑎𝑥 + 𝐵𝑒𝑖𝑎𝑥 (3.9) 

   

In finite element terms this is called the shape function, but obviously in this case it is dependent 

on the frequency 𝜔 and it is different at each frequency. Using subscripts 1 and 2, 𝜙1 = 𝜙(0) and 

𝜙2 = 𝜙(𝐿) for the nodal displacements, the coefficients 𝐴 and 𝐵 can be related to the nodal 

displacements as: 

 
{
𝐴
𝐵
} =

1

(1 − 𝑒−𝑖2𝑎𝐿)
[ 1 −𝑒−𝑖𝑎𝐿

−𝑒−𝑖𝑎𝐿 1
] {
𝜙1
𝜙2
} 

(3.10) 

The forces can be determined by differentiation of the displacement, i.e. 𝑁(𝑥, 𝑡) = 𝐸𝐴
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
 .By 

using that 𝑁(𝑥, 𝑡) = 𝑁(𝑥)𝑒𝑖𝜔𝑡, one obtains: 
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{
𝑁1
𝑁2
} =

𝐸𝐴

𝐿

𝑖𝑎𝑙

(1 − 𝑒−𝑖2𝑎𝐿)
[1 + 𝑒

−𝑖2𝑎𝐿 −2𝑒−𝑖𝑎𝐿

−2𝑒−𝑖𝑎𝐿 1 + 𝑒−𝑖2𝑎𝐿
] {
𝜙1
𝜙2
} 

 

(3.11) 

where 𝑁1 = 𝑁(0) and 𝑁2 = 𝑁(𝐿) was introduced. The above relation can be written alternatively 

as: 

 
{
𝑁1
𝑁2
} =

𝐸𝐴

𝐿

𝑎𝐿

sin (𝑎𝐿)
 [
cos (𝑎𝐿) −1
−1 cos (𝑎𝐿)

] {
𝜙1
𝜙2
} 

(3.12) 

 

The above relation can be written in the familiar form {𝒇} = [𝒌]{𝝓}, where [𝒌] is the frequency 

dependent dynamic element stiffness of the bar. If {𝝓} is solved, 𝜙(𝑥) is obtained in terms of 

nodal values 𝜙1and 𝜙2 as shown in Eq 3.13. 

 
𝜙(𝑥) =

sin(𝑎(𝐿 − 𝑥))

sin(𝑎𝐿)
𝜙1 +

sin(𝑎𝑥)

sin(𝑎𝐿)
𝜙2 

(3.13) 
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3.3. Differential equation of motion of an Euler-Bernoulli beam [Clough and 

Penzien, 1995] 

The equation of motion of an Euler Bernoulli beam element can be derived by considering the 

equilibrium of forces for a differential segment of the beam. 𝑣(𝑥, 𝑡) is the transverse displacement 

of the beam, 𝐸𝐼 is the flexural stiffness and assumed to be constant and 𝑚 is mass per unit length. 

No shear deformation is considered in this formulation. 𝑉(𝑥, 𝑡) is the vertical force acting on the 

cut section. 𝑝(𝑥, 𝑡) is the transverse loading and is assumed to vary with position and time. 

 

Figure 3.2: Differential beam element [Clough and Penzien, 1995] 

Summing all the forces acting vertically leads to: 

 
𝑉(𝑥, 𝑡) + 𝑝(𝑥, 𝑡) 𝑑𝑥 − [ 𝑉(𝑥, 𝑡)  +  

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥 
𝑑𝑥 ] – 𝑓𝐼(𝑥, 𝑡)𝑑𝑥 =  0 

(3.14) 

 

𝑓𝐼(𝑥, 𝑡)dx is the resultant transverse inertial force equal to the mass of the element multiplied by 

its transverse acceleration: 

 
𝑓𝐼(𝑥, 𝑡) = 𝑚 

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2 
 

(3.15) 

 

Eq. 3.14 can be rewritten as: 

 𝜕𝑉(𝑥, 𝑡)

𝜕𝑥 
=  𝑝(𝑥, 𝑡) − 𝑚

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2 
 

(3.16) 

 

The moment equilibrium equation for the differential element is written as: 

 
𝑀(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝑑𝑥 − [𝑀(𝑥, 𝑡) +

𝜕𝑀(𝑥, 𝑡)

𝜕𝑥 
𝑑𝑥] = 0 

(3.17) 

 



15 
 

The above equilibrium relationship is obtained by summing moments about point A on the elastic 

axis after dropping the two second-order moment terms involving the inertia and applied loadings, 

one gets:  

 
𝑉(𝑥, 𝑡) =

𝜕𝑀(𝑥, 𝑡)

𝜕𝑥 
 

(3.18) 

 

Differentiating Eq. 3.18 with respect to x and substituting in Eq. 3.16 gives: 

 𝜕2𝑀(𝑥, 𝑡)

𝜕𝑥2 
+ 𝑚

𝜕2𝑀(𝑥, 𝑡)

𝜕𝑡2 
= 𝑝(𝑥, 𝑡) 

(3.19) 

 

 It is known that the moment can be written as Eq. 3.20: 

 
𝑀 = 𝐸𝐼

𝜕2𝑣

𝜕𝑥2 
 

(3.20) 

 

So, Eq. 3.19 becomes Eq. 3.21: 

 

 
𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4 
+ 𝑚

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2 
= 𝑝(𝑥, 𝑡) 

(3.21) 

 

In the case of free vibration, external forces are assumed to be zero and the partial differential 

equation will be: 

 
𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4 
+ 𝑚

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2 
= 0 

 

(3.22) 

Transverse displacement is a function of x and t and is written as the product of a temporal function 

and a spatial function as:  

 𝑣(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (3.23) 

 

This indicates that the motion is of a specific shape 𝑋(𝑥) and having a time dependent amplitude 

𝑇(𝑡). Substituting Eq 3.23 into 3.24 gives: 

 𝑋(4)(𝑥)𝑇(𝑡) +
𝑚

𝐸𝐼
�̈� (𝑡)𝑋(𝑥) = 0 

(3.24) 
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�̈� (𝑡) is the second derivative of 𝑇(𝑡) with respect to t and 𝑋(4)(𝑥) is the fourth derivative of 𝑋(𝑥) 

with respect to x. Dividing Eq. 3.24 by 𝑋(𝑥)𝑇(𝑡), the above equation is rewritten as: 

 𝑋(4)(𝑥)

𝑋(𝑥)
+
𝑚

𝐸𝐼

�̈�(𝑡)

𝑇(𝑡)
= 0 

(3.25) 

 

Because the first term in this equation is a function of x only and the second term is a function of 

t only, the entire equation can be satisfied for arbitrary values of x and t only if each term is a 

constant: 

 
𝐸𝐼
𝑋(4)(𝑥)

𝑋(𝑥)
= −m

�̈�(𝑡)

𝑇(𝑡)
= 𝑐    

 

(3.26) 

where: 

 
𝐸𝐼
𝑋(4)(𝑥)

𝑋(𝑥)
= 𝑐 

(3.27) 

and: 

 
−𝑚

�̈� (𝑡)

𝑇(𝑡)
= 𝑐 

 

(3.28) 

Both temporal and spatial functions are assumed to have a harmonic shape as in Eq. 3.29 and Eq. 

3.30: 

 𝑇(𝑡) =  �̅�𝑒𝑖𝜔𝑡  (3.29) 

and  

 𝑋(𝑥) = 𝐶̅𝑒𝑖𝛼𝑥 

 

(3.30) 

Applying Eq 3.29 into Eq 3.28 gives: 

 
−𝑚

�̅� 𝜔2𝑒𝑖𝜔𝑡  

�̅� 𝑒𝑖𝜔𝑡 
= 𝑐 

(3.31) 

 

The constant c is calculated from the above equations as: 

 𝑐 =  −𝑚𝜔2 (3.32) 
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Similarly, if Eq. 3.30 is substituted in Eq. 3.27: 

 
𝐸𝐼
 𝐶̅𝛼4𝑒𝑖𝛼𝑥

𝐶̅𝑒𝑖𝛼𝑥
= 𝑐 

(3.33) 

Simplifying the above equation gives: 

 𝑐 = 𝐸𝐼𝛼4 (3.34) 

 

Setting the right-hand side of Eq 3.34 equal to left-hand side of Eq. 3.33 gives Eq. 3.35: 

 𝐸𝐼𝛼4 +𝑚𝜔2 = 0 (3.35) 

 

Eq. 3.35 is called the characteristic equation. Solutions to this equation are wave numbers. Wave 

numbers determine the deformation of the beam element at any given frequency, 𝜔 which are: 

 

 𝛼1 = √
𝑚𝜔2

𝐸𝐼
  

4

, 𝛼2 =  𝑖√
𝑚𝜔2

𝐸𝐼
  

4

, 𝛼3 = −√
𝑚𝜔2

𝐸𝐼
  

4

, 𝛼4 = −𝑖√
𝑚𝜔2

𝐸𝐼
  

4

 

(3.36) 

 

The spatial part of the solution is written as the linear combination of the spatial waves shown in 

Eq. 3.37: 

 𝑋(𝑥) = 𝐴𝑒𝑖𝛼1𝑥 + 𝐵𝑒𝑖𝛼2𝑥 + 𝐶𝑒𝑖𝛼3𝑥 + 𝐷𝑒𝑖𝛼4𝑥 (3.37) 

 

The entire solution is written in Eq. 3.38 and Eq. 3.39: 

 𝑣(𝑥, 𝑡) = (𝐴𝑒𝑖𝛼1𝑥 + 𝐵𝑒𝑖𝛼2𝑥 + 𝐶𝑒𝑖𝛼3𝑥 + 𝐷𝑒𝑖𝛼4𝑥)𝑒𝑖𝜔𝑡  (3.38) 

and 

 𝜃(𝑥, 𝑡) = (𝐴𝑖𝛼1𝑒
𝑖𝛼1𝑥 + 𝐵𝑖𝛼2𝑒

𝑖𝛼2𝑥 + 𝐶𝑖𝛼3𝑒
𝑖𝛼3𝑥 + 𝐷𝑖𝛼4𝑒

𝑖𝛼4𝑥)𝑒𝑖𝜔𝑡  

 

(3.39) 
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3.4. Development of the spectral beam element [Black, 2005] 

 

 

 
Figure 3.3: Degrees of freedom in the finite beam element 

 

Figure 3.3 shows an Euler-Bernoulli beam element with 2 degrees of freedom on each node, a 

rotational degree of freedom shown with 𝜃 and a transverse degree of freedom shown with 𝑣. L is 

the length of the beam element. The nodal degrees of freedom are assumed to have a harmonic 

shape as shown in Eq. 3.40 below:  

  

{𝒅} = [

𝑣(0, 𝑡)
𝜃(0, 𝑡)
𝑣(𝑙, 𝑡)
𝜃(𝑙, 𝑡)

] = [

𝑣1
𝜃1
𝑣2
𝜃2

] 𝑒𝑖𝜔𝑡 

(3.40) 

One can rewrite the vector [

𝑣1
𝜃1
𝑣2
𝜃2

] in terms of vector [

𝐴
𝐵
𝐶
𝐷

] using Eq. 3.38 and Eq. 3.39:  

 

[

𝑣(0, 𝑡)
𝜃(0, 𝑡)
𝑣(𝑙, 𝑡)
𝜃(𝑙, 𝑡)

] = [

1 1 1 1
𝑖𝛼1 𝑖𝛼2 𝑖𝛼3 𝑖𝛼4
𝑒𝑖𝛼1 𝑒𝑖𝛼2 𝑒𝑖𝛼3 𝑒𝑖4

𝑖𝛼1𝑒
𝑖𝛼1 𝑖𝛼2𝑒

𝑖𝛼2 𝑖𝛼3𝑒
𝑖3 𝑖𝛼4𝑒

𝑖𝛼4

] [

𝐴
𝐵
𝐶
𝐷

] 𝑒𝑖𝜔𝑡 = [𝑫] [

𝐴
𝐵
𝐶
𝐷

] 𝑒𝑖𝜔𝑡 

(3.41) 

 

where [𝑫] is: 

 

[𝑫] = [

1 1 1 1
𝑖𝛼1 𝑖𝛼2 𝑖𝛼3 𝑖𝛼4
𝑒𝑖𝛼1 𝑒𝑖𝛼2 𝑒𝑖𝛼3 𝑒𝑖4

𝑖𝛼1𝑒
𝑖𝛼1 𝑖𝛼2𝑒

𝑖𝛼2 𝑖𝛼3𝑒
𝑖3 𝑖𝛼4𝑒

𝑖𝛼4

] 

(3.42) 

 

Moment and shear force are written at the nodes using Eq. 3.18 and Eq. 3.20: 
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[

𝑉(0, 𝑡)

−𝑀(0, 𝑡)

−𝑉(𝑙, 𝑡)

𝑀(𝑙, 𝑡)

] =  [

𝑉1
𝑀1
𝑉2
𝑀2

] 𝑒𝑖𝜔𝑡

= 𝐸𝐼

[
 
 
 
 
−𝑖𝛼1

3 −𝑖𝛼2
3 −𝑖𝛼3

3 −𝑖𝛼4
3

𝛼1
2 𝛼2

2 𝛼3
2 𝛼4

2

𝑖𝛼1
3𝑒𝑖𝛼1𝐿 𝑖𝛼2

3𝑒𝑖𝛼2𝐿 𝑖𝛼3
3𝑒𝑖𝛼3𝐿 𝑖𝛼4

3𝑒𝑖𝛼4𝐿

−𝛼1
2𝑒𝑖𝛼1𝐿 −𝛼2

2𝑒𝑖𝛼2𝐿 −𝛼3
2𝑒𝑖𝛼3𝐿 −𝛼4

2𝑒𝑖𝛼4𝐿]
 
 
 
 

[

𝐴
𝐵
𝐶
𝐷

] 𝑒𝑖𝜔𝑡

= [𝑹] [

𝐴
𝐵
𝐶
𝐷

] 𝑒𝑖𝜔𝑡 

(3.43) 

   

where [𝑹] is equal to: 

 

[𝑹] = 𝐸𝐼

[
 
 
 
 
−𝑖𝛼1

3 −𝑖𝛼2
3 −𝑖𝛼3

3 −𝑖𝛼4
3

𝛼1
2 𝛼2

2 𝛼3
2 𝛼4

2

𝑖𝛼1
3𝑒𝑖𝛼1𝐿 𝑖𝛼2

3𝑒𝑖𝛼2𝐿 𝑖𝛼3
3𝑒𝑖𝛼3𝐿 𝑖𝛼4

3𝑒𝑖𝛼4𝐿

−𝛼1
2𝑒𝑖𝛼1𝐿 −𝛼2

2𝑒𝑖𝛼2𝐿 −𝛼3
2𝑒𝑖𝛼3𝐿 −𝛼4

2𝑒𝑖𝛼4𝐿]
 
 
 
 

 

 

(3.44) 

The nodal forces are expressed with vector {f} as: 

 

{𝒇} = [

𝑉1
𝑀1
𝑉2
𝑀2

] 𝑒𝑖𝜔𝑡 

(3.45) 

 

Nodal forces can be related to the nodal displacements with [𝑲𝑑𝑦𝑛] as: 

 {𝒇} = [𝑲𝑑𝑦𝑛]{𝒅} (3.46) 

 

where [𝑲𝑑𝑦𝑛]is equal to: 

  [𝑲(𝜔)] = [𝑹][𝑫]−1 (3.47) 
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3.5. Fourier transform: 

It has long been known that an arbitrary signal can be thought of as the superposition of many 

sinusoidal components, that is, it has a distribution or spectrum of components. Working in terms 

of the spectrum is called a spectral analysis. [Doyle, 1997]. A Function in frequency domain is 

shown by a continuous distribution of components which is known as its continuous Fourier 

transform (CFT). The transform and its inverse are shown in Eq. 3.48 and Eq. 3.49. 

 

 
�̂�(𝜔) =  ∫ 𝐹(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 
(3.48) 

 
𝐹(𝑡) =  ∫  �̂�(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 
(3.49) 

 

In the equations above 𝐹(𝑡) could be any function in time domain. It should be noted that 

continuous transforms are feasible only if the function to be transformed is mathematically simple. 

Applications of the frequency-domain analysis procedure therefore is limited to cases for which 

the Fourier integral transforms of the applied loading functions are available, and even in these 

cases the evaluation of the integrals can be a tedious process. To make the procedure practical, it 

is necessary to formulate the procedure by using a numerical analysis approach. 

The function 𝐹(𝑡) for one period is divided into N0 piecewise-constant segments whose heights 

are 𝐹𝑚 and base are 𝑇=
T

N0
 , where T is the period of the function. It is important to select the 

sampling time window such that it exactly matches the period of the signal. We can regard each 

rectangle under the curve in Figure 3.4 as an impulse having the area 𝐹𝑚Δ𝑇. 
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Figure 3.4: Function in time domain 

Function �̂�(𝜔) is evaluated at N0 points and shown with coefficients 𝐶𝑛 which are obtained from: 

 

𝐶𝑛 =
Δ𝑇

𝑇
∑ 𝐹𝑚𝑒

−𝑖 
2𝜋𝑛𝑚
𝑁

𝑁−1

𝑚=0 

 

(3.50) 

 

The coefficients in the matrix form can be written as: 

 

{
  
 

  
 
𝐶0
𝐶1
𝐶2
.
.
.

𝐶𝑁−1}
  
 

  
 

=
1

𝑁

[
 
 
 
 
1 1 1 1 … 1
1 𝑊 𝑊2 𝑊3 … 𝑊𝑁−1

1 𝑊2 𝑊4 𝑊6 … 𝑊2(𝑁−1)

: : : : : :
1 𝑊𝑁−1 𝑊2(𝑁−1) 𝑊3(𝑁−1) … 𝑊(𝑁−1)(𝑁−1)]

 
 
 
 

{
  
 

  
 
𝐹0
𝐹1
𝐹2
.
.
.

𝐹𝑁−1}
  
 

  
 

 

(3.51) 

 

where 𝑊𝑛𝑚 = 𝑒−𝑖
2𝜋𝑛𝑚

𝑁 . The matrix of exponents that contains all the values for  −𝑖
2𝜋𝑛𝑚

𝑁
  when 

𝑛 = 0,1,2, … , N0 − 1 and m = 0,1,2, … , N0 − 1 can be written as : 

 

−𝑖
2𝜋

𝑁

[
 
 
 
 
0 0 0 0 … 0
0 1 2 3 … 𝑁 − 1
0 2 4 6 … 2(𝑁 − 1)
: : : : : :
0 𝑁 − 1 2(𝑁 − 1) 3(𝑁 − 1) … (𝑁 − 1)(𝑁 − 1)]

 
 
 
 

 

 

When the time function is real,  𝐶0 is obtained as real without a complex counterpart and the pairs 

(𝐶𝑁−𝑛, 𝐶𝑛) and (𝐶−𝑛, 𝐶𝑛) are complex conjugates. In structural wave propagation analyses the 

excitation signal is real.  As the consequence of the input signal being real-only, the DFT of the 
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time-signal is also symmetric about the origin as well as Nyquist frequency. The transform beyond 

the Nyquist frequency is the complex conjugate of the transform before this frequency. What this 

means is that N real points of the time-signal are transformed into 𝑁/2 complex points in the 

frequency domain and no information is gained or lost because the complex points contain double 

information compared to real points. Useful frequency range is thus half of the final frequency. 

Knowing the sampling rate 𝑇 , Nyquist frequency is given by: 

 
𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =

1

2Δ𝑇
 

(3.52) 

 

Using the discrete transforms puts an upper limit on the maximum frequency available to 

characterize the signal. Nyquist frequency increases only when T decreases. Thus, for a fixed 

number of points, fine resolution in the time domain (small T ) means course resolution in the 

frequency domain (large Δω). Finer resolution in the frequency domain is achieved only by 

increasing the sample length. For Discrete Fourier Transforms the largest significant frequency in 

the signal should be less than the Nyquist frequency. 

Fast Fourier Transform 

A straightforward evaluation of 𝐶𝑛 would require 𝑁2 complex multiplications. However, it is easy 

to realize that in Discrete Fourier Transform same values of 𝑊𝑁
𝑛𝑚 are used many times. Firstly, 

the product 𝑛𝑚 repeats for different values of n and m. Secondly, 𝑊𝑁
𝑛𝑚  is a periodic function 

with only N distinct values. We see that many of the computations used in forming one of the 

summations is also used in the others. The re-use of the same computations is the reason a great 

reduction of computational effort is afforded by the FFT. The number of computations with and 

without the FFT algorithm are given by 
3

2
𝑁 log2𝑁 and 2𝑁2. [Doyle, 1997] 
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3.6. Conventional Euler-Bernoulli beam Finite Element [Reddy, 1989] 

The governing differential equation that is solved using the conventional finite element method is 

shown below:  

 𝐸𝐼𝑣𝑖𝑣 = 0 (3.53) 

𝑣𝑖𝑣 shows the fourth derivative of 𝑣 with respect to 𝑥. If the interpolation functions can generate 

the homogenous solution of the differential equilibrium equation, then the finite element solution 

using these interpolation functions in the total potential energy expression provides exact nodal 

displacements. For Euler-Bernoulli beam the homogenous solution of 𝐸𝐼𝑣𝑖𝑣 = 0  is obtained as: 

 𝑣 = 𝑑𝑥3 +  𝑐𝑥2 + 𝑏𝑥 + 𝑎 (3.54) 

As Finite Element solution is a special form of the minimum total potential energy solution (Ritz 

solution), a finite element solution can be developed using the trial function in Eq. 3.54 by 

satisfying the interelement continuity of the displacement field. For this purpose, at the element 

ends the displacements are specified to be the nodal displacements, i.e. 

 𝑣(0) = 𝑣1, 𝑣
′(0) = 𝜃1, 𝑣(𝐿) = 𝑣2, 𝑣′(𝐿) = 𝜃2 (3.55) 

 

In the equation above, 𝑣′is the first derivative of 𝑣 with respect to 𝑥. 

What is denoted in Eq 3.55, can be written in the vectorial form as: 

 

[

𝑣1
𝜃1
𝑣2
𝜃2

] = [

0 0 0 1
0 0 1 0
𝐿3 𝐿2 𝐿 1
3𝐿2 2𝐿 1 0

] [

𝑑
𝑐
𝑏
𝑎

] 

(3.56) 

 

The displacement interpolation function for an element can be written as: 

𝑣 = [𝑥3 𝑥2 𝑥 1] [

0 0 0 1
0 0 1 0
𝐿3 𝐿2 𝐿 1
3𝐿2 2𝐿 1 0

]

−1

[

𝑣1
𝜃1
𝑣2
𝜃2

] = [𝐻1 𝐻2 𝐻3 𝐻4] [

𝑣1
𝜃1
𝑣2
𝜃2

]

= [𝑯]{𝒅𝑒} 

(3.57) 

where: 
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𝐻1 = 1 −
3𝑥2

𝐿2
+
2𝑥3

𝐿3
 

(3.58) 

𝐻2 = 𝑥 −
2𝑥2

𝐿
+
𝑥3

𝐿2
 

(3.59) 

𝐻3 =
3𝑥2

𝐿2
−
2𝑥3

𝐿3
 

(3.60) 

 
𝐻4 = −

𝑥2

𝐿
+
𝑥3

𝐿2
 

(3.61) 

 

Figure 3.5: Conventional beam shape functions 

Minimizing the total potential energy is adopted to calculate the stiffness matrix of the beam. The 

minimum of total potential energy principle states that in a conservative system, among all 

kinematically possible configurations of the system the one that satisfies the equilibrium makes 

the total potential energy a minimum. The total potential energy Π is the internal strain energy 

stored during deformation U plus the external potential of the applied load 𝑊𝑒𝑥𝑡 that is shown in 

the equation below: 

 Π =  𝑈 +𝑊𝑒𝑥𝑡 

 

(3.62) 

Total potential energy is a function of the deformed configuration (i.e. displacement function). 

Thus, it is a function of functions which is called a functional. A functional is a scalar quantity 

depending on some function or several functions. The functional can be treated as a function of an 

infinite number of independent variables.  

The minimum principle states that Π(w,w′, w", … ) ≤  Π(w̅, w̅′, w̅", … ), where 𝑤 is the true 

displacement field and w̅ is any kinematically admissible displacement field. Like the minimum 

of functions, the minimum of potential energy occurs where the derivative (called variation) of the 

potential energy vanishes: 

 𝛿Π = 0 

 

(3.63) 



25 
 

Assuming that the potential energy is a function of displacement 𝑤, its variation can be written 

as: 

 
𝛿Π =

𝜕Π

𝜕𝑤
𝛿𝑤 

(3.64) 

Assuming 𝛿𝑤 ≠ 0, Eq. 3.63 becomes: 

 𝜕Π

𝜕𝑤
= 0 

(3.65) 

 

Figure 3.6: Forces applied on a beam element 

For Euler-Bernoulli beam element with the length of L shown in Figure 3.6 where 𝑀1 and 𝑀2 are 

the nodal moments and 𝑉1 and 𝑉2 are the nodal shear forces and p is the distributed external load, 

the total potential energy can be written as: 

 
Π(v) =

1

2
∫ 𝐸𝐼 (

𝑑2𝑣

𝑑𝑥2
)𝑑𝑥

𝐿

0

+∫ 𝑝𝑣𝑑𝑥
𝐿

0

− 𝑉1𝑣│𝑥=0 + 𝑉2𝑣│𝑥=𝐿 −𝑀1𝑣′│𝑥=0

+𝑀2𝑣′│𝑥=𝐿 

 

(3.66) 

By substituting the interpolation functions (Eq. 3.58-3.61) into the first term on the right-hand-

side of Eq. 3.66 (strain energy term in the total potential energy), the stiffness matrix of the finite 

element can be developed as: 

 
𝑈 =

1

2
∫ 𝐸𝐼 (

𝑑2𝑣

𝑑𝑥2
)𝑑𝑥

𝐿

0

=
1

2
𝐸𝐼{𝒅𝑒}

𝑇∫ [
𝑑2𝑯

𝑑𝑥2
]

𝑇

[
𝑑2𝑯

𝑑𝑥2
] 𝑑𝑥

𝐿

0

{𝒅𝑒}

=
1

2
{𝒅𝑒}

𝑇[𝑲𝒆]{𝒅𝑒} =>  

 

𝛿𝑈 = {𝛿𝒅𝑒}
𝑇[𝑲𝒆]{𝒅𝑒} 

(3.67) 

where: 
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[𝑲𝒆] = 𝐸𝐼 ∫ [

𝑑2𝑯

𝑑𝑥2
]

𝑇

[
𝑑2𝑯

𝑑𝑥2
] 𝑑𝑥

𝐿

0

= 𝐸𝐼 ∫

[
 
 
 
 
 
 
 
 
𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻1
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻2
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻3
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2

𝑑2𝐻4
𝑑𝑥2 ]

 
 
 
 
 
 
 
 

𝑑𝑥
𝐿

0

 

(3.68) 

   

 

 

[𝑲𝒆] =
𝐸𝐼

𝐿3
[

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

] 

(3.69) 

 

3.7. Conventional bar element [Reddy, 1989] 

The governing differential equation that is solved using the conventional finite element method, is 

shown below:  

 
𝐸𝐴

𝑑2𝑢(𝑥)

𝑑𝑥2
= 0 

(3.70) 

From the above differential equation, the solution can be obtained as a linear function: 

 𝑢 = 𝑏𝑥 + 𝑎 (3.71) 
 

To determine a and b uniquely for a bar element, the boundary conditions are introduced. Two 

boundary conditions are needed (displacement related and force related) which can be written as: 

 𝑢(0) = 𝑢1 𝑎𝑛𝑑 𝑢(𝐿) = 𝑢2 

 

(3.72) 

 [
𝑢1
𝑢2
] = [

0 1
𝐿 1

] [
𝑏
𝑎
] (3.73) 

The displacement interpolation function for an element can be written as: 

 
𝑢(𝑥) = [𝑥 1] [

0 1
𝐿 1

]
−1

[
𝑢1
𝑢2
] = [𝑁𝑏𝑎𝑟

1 𝑁𝑏𝑎𝑟
2] [
𝑢1
𝑢2
] = [𝑓]{𝑑𝑒} 

(3.74) 

where [𝑁𝑏𝑎𝑟] is: 
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 [𝑵𝑏𝑎𝑟] = [1 −
𝑥

𝐿

𝑥

𝐿
] 

(3.75) 

 

 

Figure 3.7: Forces applied on a bar element 

For a bar element with the length of L shown in Figure 3.7, where 𝑁1 and 𝑁2 are the nodal axial 

forces and p is the distributed external load, the total potential energy can be written as: 

 
Π(u) =

1

2
∫ 𝐸𝐴 (

𝑑𝑢

𝑑𝑥
)
2

𝑑𝑥
𝐿

0

−∫ 𝑝𝑢𝑑𝑥
𝐿

0

+ 𝑁1𝑢│𝑥=0 − 𝑁2𝑢│𝑥=𝐿 

 

(3.76) 

By substituting the interpolation function shown in Eq. 3.71 into the first term on the right-hand-

side of Eq. 3.76 (strain energy term in the total potential energy), the stiffness matrix of the finite 

element can be developed as: 

 
𝑈 =

1

2
∫ 𝐸𝐴 (

𝑑𝑢

𝑑𝑥
) 𝑑𝑥 =

𝐿

0

1

2
𝐸𝐴{𝒅𝑒}

𝑇∫ [
𝑑𝑵𝑏𝑎𝑟

𝑑𝑥
]

𝑇

[
𝑑𝑵𝑏𝑎𝑟

𝑑𝑥
]𝑑𝑥

𝐿

0

{𝒅𝑒}

=
1

2
{𝑑𝑒}

𝑇[𝐾𝑒]{𝑑𝑒} =>  𝛿𝑈 = {𝛿𝑑𝑒}
𝑇[𝐾𝑒]{𝑑𝑒} 

(3.77) 

 

[𝑲𝑒] = 𝐸𝐴∫ [
𝑑𝑵𝒃𝒂𝒓

𝑑𝑥
]

𝑇

[
𝑑𝑵𝑏𝑎𝑟

𝑑𝑥
]𝑑𝑥

𝐿

0

= 𝐸𝐴∫ [
−
1

𝐿
1

𝐿

] [−
1

𝐿

1

𝐿
] 𝑑𝑥

𝐿

0

 

(3.78) 

 

[𝑲𝑒] = ∫ [

𝐸𝐴

𝐿2
−
𝐸𝐴

𝐿2

−
𝐸𝐴

𝐿2
𝐸𝐴

𝐿2

] 𝑑𝑥
𝐿

0

=
𝐸𝐴

𝐿
 [
1 −1
−1 1

] 

 

 

 

(3.79) 
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3.8. Steady-state analysis using spectral element 

The assemblage procedure of the element stiffness matrices is identical to that of the standard 

displacement-based FEM. As a result of the assemblage the structural dynamic equilibrium can be 

obtained as 

 [𝐊(ω)]�̂� = 𝑓 (3.80) 

  

in which [𝐊(ω)] is the dynamic structural stiffness matrix, �̂� is the nodal displacement vector 

component in the frequency domain and 𝑓 is the Fourier Transform of the excitation. After the 

displacement field is obtained for each frequency content, the time behavior can be re-constructed 

as the synthesis of the frequency dependent solutions, i.e., 𝑑(𝑥, 𝑡) = �̂�(𝑥)𝑒𝑖𝜔𝑡. As a general 

solution would span the whole frequency range, i.e., −∞ < 𝜔 < ∞, the solution in time-domain 

is obtained from the IFT, i.e.: 

 
𝑑(𝑡) = ∑ �̂�𝑛𝑒

𝑖𝑛𝜔𝑡

∞

𝑛=−∞

 
(3.81) 

 

 

The essentials of the spectral element solution scheme are the following steps 

1. Replacing the input by its spectral form obtained from the Fourier Transform to determine 

the frequency content.  

2. Solving the problem in the frequency domain to obtain the output also in the frequency 

domain. 

3. Reconstruct the response in the time domain by application of the inverse Fourier 

Transform.  

This procedure is show in the Figure 3.8. Figure 3.9 shows the application of the mentioned 

procedure on a sinusoidal input. 

Note that because of the discrete nature of the Fourier transform, the result of the inverse FFT is 

only valid up to the Nyquist frequency. As suggested in (Doyle 1997), the inverse transform is 

evaluated only up to the Nyquist, half the sampling frequency, and the remainder is considered as 

the complex conjugate of the initial part. This ensures that the reconstructed history is real in time 

domain.  
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Figure 3.8: Frequency domain analysis and the inverse [Doyle, 1997] 

 

Figure 3.9: Application of the procedure shown in Figure 3.8 on a beam under a sine load 
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3.9. A discussion on the output of Spectral Finite Element model 

To demonstrate the performance of the mentioned method a simple case study is done. A uniform 

simply supported beam shown in Figure 3.10 made of aluminum with elastic modulus of 106 psi 

and a density of 1.0038 × 10−1
lb

𝑖𝑛3
   is considered. The length of the beam is 60 𝑖𝑛. The cross-

section of the beam is a rectangle with the height of 4 in and width of 1 in. 

 

Figure 3.10: Simply supported beam under study 

In the first case, the beam is under a concentrated transverse step load in the middle for 1 second 

with the amplitude of 1000 lbf. In the second test, the beam is under a concentrated sine load with 

the amplitude of 100 lbf and the frequency of the load changes from 1 Hz to 6 Hz. Fig 3.11 shows 

the applied step load and the sine load with the frequency of 1 Hz. 

 

 

Figure 3.11: Step and sine load functions 



31 
 

The beam is modelled using two spectral beam elements and the lateral displacement of the middle 

point of the beam is captured using spectral elements and compared with the results from analytical 

solutions in Figure 3.12.  

 

 

Figure 3.12: Steady-state transverse displacement of the middle point of the beam under step and sine loads 

 

3.10. The missing part (transient part) 

As shows in Figure 3.12, the response gained from Fourier analysis is in the frequency of the 

excitation only, however it is expected to see other terms that are in the frequency of the structure 
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in an undamped vibration response. Consider the equation of motion of an undamped single-

degree-of-freedom system under a harmonic load as: 

 𝑚�̈� + 𝑘𝑥 = 𝑝 𝑠𝑖𝑛𝜔𝑡 (3.82) 

With the initial conditions below: 

 𝑥 = 𝑥(0), �̇� = �̇�(0) (3.83) 

The particular solution to Eq. 3.82 is : 

 
𝑥𝑝(𝑡) =

𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 

(3.84) 

 

The complementary solution is the free vibration response: 

x𝑐(t)  =  A sinω𝑛t +  Bcosω𝑛t (3.85) 

 

The total response will be: 

 
𝑥(𝑡) = A sinω𝑛t +  Bcosω𝑛t +

𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 

(3.86) 

By imposing the initial conditions, the constants A and B are determined, and the equation above 

is rewritten as: 

 

𝑥(𝑡) = 𝑥(0)𝑐𝑜𝑠𝜔𝑛𝑡 + [
�̇�(0)

𝜔𝑛
−
𝑝

𝑘

�̅�
𝜔𝑛

1 − (
�̅�
𝜔𝑛
)
2 ] sin𝜔𝑛𝑡 +

𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 

(3.87) 

 

The response can also be written using Duhamel’s integral as: 

 
𝑥(𝑡) = 𝑥(0)𝑐𝑜𝑠𝜔𝑛𝑡 +

�̇�(0)

𝜔𝑛
sin𝜔𝑛𝑡 + ∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  

𝑡

0

 
(3.88) 

where: 

 
ℎ(𝜏) =

1

𝑚𝜔𝑛
𝑝(𝜏) 

(3.89) 
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Comparing Eq. 3.88 and Eq. 3.87, the equation below is written: 

 

∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
𝑡

0

= 
𝑝

𝑘

�̅�
𝜔

1 − (
�̅�
𝜔𝑛
)
2 sin𝜔𝑛𝑡 +

𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 

(3.90) 

The left-hand side of Eq. 3.90 can be rewritten as: 

 
∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
𝑡

0

= ∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
∞

0

− ∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
∞

𝑡

 
(3.91) 

 

The term  ∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
∞

0
on the right-hand side of Eq. 3.91 can be expressed in the 

frequency domain using Fourier transform. It is the part of the response that is determined in 

spectral analysis and is in the frequency of the excitation. This term is equivalent to the first term 

on the right-hand side of Eq. 3.87, i.e. 
𝑝

𝑘

1

1−(
�̅�

𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡  .Consequently, the term 

−∫ ℎ(𝜏)sin�̅�(t − 𝜏)𝑑𝜏  
∞

𝑡
in Eq. 3.91 is equivalent to 𝑥(0)𝑐𝑜𝑠𝜔𝑛𝑡 + [

�̇�(0)

𝜔𝑛
−
𝑝

𝑘

�̅�

𝜔𝑛

1−(
�̅�

𝜔𝑛
)
2 ] 𝑠𝑖𝑛𝜔𝑛𝑡 in 

Eq. 3.87. While the Fourier Transform brings in the particular solution, the transient response must 

be added to have the complete response. 

A summary of the Spectral Element solution procedure is shown in Figure 3.13. In Spectral 

Element Analysis, it is essential to replace the external excitation by its spectral form using the 

Fourier Transform to determine its frequency content. By doing this the problem can be solved in 

the frequency domain to obtain the output also in the frequency domain. The reconstructions in 

the time domain are then done by application of the inverse Fourier Transform and this completes 

the Steady-State solution.  As it will be discussed in the following sections, the response obtained 

from the Inverse Fourier Transform is incomplete and does not contain the free vibration 

component. To obtain the Transient response, the natural frequencies of the system need to be 

identified. 
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Figure 3.13: Complete spectral analysis procedure 

 

3.11. Addition  of the transient response 

[Veletsos and Kumar, 1983] developed a procedure based on the solution of the dynamic 

differential equation, in which the steady-state solution can be used to identify the additional 

transient contribution for systems that are starting from at rest state. This method can simply be 

extended to multi-degree-of-freedom systems using modal analysis as each mode can be treated to 

constitute a single-degree-of-freedom system. Herein, the method by [Veletsos and Kumar, 1983] 

has been adopted on an ad-hoc basis by using the shape functions obtained from the spectral 

method within the mode shapes.   

In a single-degree-of-freedom system the general solution of the below differential equation 

subject to the given initial conditions 

 𝑚�̈� + 𝑘𝑥 = 𝑝 𝑠𝑖𝑛�̅�𝑡 , 𝑥(0) = 0 ,  �̇�(0) = 0 (3.92) 

 

consists of the particular solution, that is: 

 
 𝑥𝑝(𝑡) =

𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 

(3.93) 

and the complementary solution, which is the free vibration response: 

 x𝑐(t) =  A sinω𝑛t +  B cosω𝑛t (3.94) 

 

where ω𝑛 is the natural frequency of the system. 

Time domain for governing equations

Element with spectral shape function

Fourier Transform of the excitation

Solution for each frequency content of the excitation

Assemblage of dynamic stiffness matrices

Superposition of the displacement for 

steady-state solution in time domain

Inverse Fourier Transform of the displacement

Identification of natural frequencies 

Transient solution 
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By imposing the initial conditions, the constants A and B are determined, and the total solution 

can be obtained as:  

 

𝑥(𝑡) =
𝑝

𝑘

1

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛�̅�𝑡 + 

𝑝

𝑘

�̅�
𝜔

1 − (
�̅�
𝜔𝑛
)
2 𝑠𝑖𝑛 𝜔𝑛𝑡 

(3.95) 

 

If the result from spectral analysis is shown with 𝑦(𝑡) and the total response is shown with 𝑥(𝑡), 

the difference between these two can be written as a corrective function 𝜖(t) as [Veletsos, Kumar, 

1983]: 

 𝜖(𝑡) = 𝑥(𝑡) – 𝑦(𝑡) (3.96) 

 

𝜖(t) represents the effect of unsatisfied initial conditions. Consequently, one can write: 

 
ϵ(t) = ϵ (0)𝑐𝑜𝑠𝜔𝑡 +  

ϵ̇ (0)

𝜔
sin𝜔𝑡 

(3.97) 

 

Using Eq. 3.96, one can write for the system introduced in Eq. 3.92: 

 ϵ(0) = x(0) −  y(0) = 0 , 𝜖̇(0) = ẋ(0) − ẏ(0) =  − 
𝑝�̅�

𝑘

1

1−(
�̅�

𝜔𝑛
)
2 

(3.98) 

 

For multi-degree-of-freedom systems, the steady-state response, i.e. y(t), can be expressed in terms 

of modes of vibration as: 

 
{𝑦(𝑡)} =  ∑{𝝓𝑖} 𝑟𝑖(𝑡)

𝑛

𝑖=1

 
(3.99) 

where {𝝓𝒊} is the vector of ith mode of displacement and 𝑟𝑖(𝑡) is the modal coordinate. 

Also, one can write: 

 
{𝑥(𝑡)} =  ∑{𝝓𝑖} [𝑟𝑖(𝑡)

𝑛

𝑖=1

+ 𝛼𝑖(𝑡)] 
(3.100) 

where 𝛼𝑖(𝑡) is the modal coordinate for the transient part. Considering that structure is initially at 

rest, i.e. 
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{𝜖̇(𝑡)} =  ∑{𝝓𝑖} 

𝑛

𝑖=1

𝛼𝑖̇ (0)

𝜔
sin𝜔𝑡 (𝑡) 

(3.101) 

Hence one can calculate 𝛼𝑖̇ (0) as: 

 
𝛼𝑖̇ (0) =

{𝝓𝑖}
𝑇[𝑀]({�̇�(0)} − {�̇�(0)})

{𝝓𝑖}𝑇[𝑀]{𝝓𝑖}
 

(3.102) 

 

Note that the mode shapes and frequencies are calculated from the dynamic stiffness matrix and 

[𝑴] is the lumped mass matrix, which introduces some spatial discretization error to the transient 

solution.  

3.12. Calculation of natural frequencies [Wittrick and Williams, 1970] 

The problem of determining natural frequencies of vibration of a finite element model is solved 

by determining the eigenvalues of the linear eigenvalue problem shown in Eq. 3.103:  

 ([𝑲] − 𝜔2[𝑴]) {𝑫} = 0 (3.103) 

 

where [K] is the finite element stiffness matrix and [M] is the mass matrix. 

For the spectral element method, since the exact dynamic shape functions are used, the dynamic 

stiffness matrix is a transcendental function of 𝜔. The natural frequencies are determined by 

finding the eigenvalues of the transcendental equation in Eq. 3.104. 

 ([𝑲(𝜔)] ) {𝑫} = 0 (3.104) 

 

The effect of distributed mass is considered in 𝑲(𝜔). 

[Wittrick and Williams,1970] proposed a method to find the eigenvalues of a transcendental 

problem. The method is based on counting the number of eigenvalues exceeded by a certain value, 

𝜔∗. The main idea of the method relies on the following statement:  

“If a structure whose natural frequencies, written in ascending order, 𝜔𝑟 (r=1,2, 3…) has one 

constraint imposed upon it, the natural frequencies of the constrained structure, shown by 𝜔𝑟
′ ,  

satisfy:   𝜔𝑟 ≤ 𝜔𝑟
′ ≤ 𝜔𝑟+1” [Wittrick and Williams, 1970] 
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It can be understood from the statement above that if n constraints are applied to a structure and 

removed one by one, as each constraint is removed the number of natural frequencies exceeded by 

𝜔∗will stay the same or increase by one. So, the number of natural frequencies less than 𝜔∗ can be 

calculated with the given formula in [Wittrick and Williams, 1970]:  

 𝐽(𝜔∗) =  𝐽0(𝜔
∗) + 𝑠[𝑲(𝜔∗)] (3.105) 

 

𝑠[𝑲(𝜔∗)] is the sign count of the 𝑲(𝜔∗) and is equal to the number of negative values on the 

diagonal of the upper triangular matrix  𝑲(𝜔∗). The procedure employs the upper triangular matrix 

𝐊𝚫(𝜔) that is obtained from 𝑲(𝜔) using the usual form of Gauss elimination, in which rows are 

taken as pivotal in order, and appropriate multiples of the pivotal row are added to succeeding 

rows, making all elements below the pivot zero. 

As explained in [Wittrick and Williams, 1970], the idea of the method is that since the determinant 

of 𝑲(𝜔∗) is equal to multiplying all the values on the diagonal of the upper triangular 𝐊𝚫(𝜔
∗), 

any negative value on the diagonal represents exceeding a root of |𝑲(𝜔∗)| = 0 for 𝜔 < 𝜔∗.  

Assume a structure with constraints on its all degrees of freedom, if f and f+1 constraints are 

released, the following relationship can be written as Eq. 3.106 and shown in Figure 3.14. 

  |𝑲𝑓+1| = |𝑲𝑓| ∗ 𝑲𝑓+1,𝑓+1
∆  

 

(3.106) 

If 𝐾𝑓+1,𝑓+1
∆  is negative, a change in the sign of |K| is happened. If all the constraints are released,  

𝑠[𝑲(𝜔∗)] shows the number of natural frequencies less than 𝜔∗. 
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Figure 3.14: Effect of releasing a constraint on the determinant of the dynamic stiffness matrix [Wittrick and 

Williams, 1970] 

 

3.13. Calculation of J0 

𝐽0 is the value which J would have had if constraints had been imposed on the structure to nullify 

all the displacements 𝒅, so that 𝒅 = 0. Therefore, when 𝒅 = 0 the structure degenerates into its 

component members in isolation, with their ends clamped, i.e. 𝐽0 = ∑ 𝐽𝑚 in which summation 

extends over all the members and 𝐽𝑚 is the number of natural frequencies lying between zero and 

the trial value of �̄�, for a member with its ends clamped. 

According to [Wittrick and Williams, 1970], natural frequencies of a member with its ends 

clamped will occur when one or more elements on the dynamic stiffness matrix of the system are 

infinite. The following formulas are given in  [Wittrick and Williams, 1970] by setting the terms 

on the dynamic stiffness matrix of a frame element to zero. 

  𝐽𝑚 = 𝐽𝑎 + 𝐽𝑏 

 

(3.107) 

where: 

 
𝐽𝑎 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 <

𝜔𝑙

𝜋
√
𝜇

𝐸𝐴
 

 

(3.108) 

and: 
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𝐽𝑏 = 𝑖 −
1

2
[1 − (−1)𝑖𝑠𝑔(1 − 𝑐𝑜𝑠ℎ𝜆 𝑐𝑜𝑠𝜆)], 𝜆 = √

𝜔2𝜇𝑙4

𝐸𝐼

4

 

(3.109) 

 

where i is the highest integer <
𝜆

𝜋
 and 𝑠𝑔(1 − 𝑐𝑜𝑠ℎ𝜆 𝑐𝑜𝑠𝜆) is +1 or -1 depending upon the sign of 

(1 − 𝑐𝑜𝑠ℎ𝜆 𝑐𝑜𝑠𝜆). 

3.14. Bisection method [Epperson, 2013] 

Bisection method is a simple iterative technique for determining roots of a function. The basis of 

the method can be illustrated for a generic nonlinear function which is plotted in Figure 3.15: 

 

Figure 3.15: Trial points in Bisection method 

We can begin finding the root of the function by picking two values 𝑥1 and 𝑥2 such that 

𝑓(𝑥1)𝑓(𝑥2) < 0. That means when one of the functional values is negative the other is positive 

and for a continuous function the root must lie between 𝑥1 and 𝑥2 . A new approximation to the 

root can be calculated as: 

 
𝑥3 =

𝑥1 + 𝑥2
2

 
(3.110) 

 

As illustrated in the figure above in the case of 𝑓(𝑥1)𝑓(𝑥3) < 0, 𝑥1 and 𝑥2  can be used to compute 

another value. Otherwise, 𝑥2 and 𝑥3  is used. The process is continued until the desired accuracy 

is achieved, i.e. f (x)  0. 

The same idea can be used to look for the 𝑖𝑡ℎ natural frequency. We begin by taking values ω1 

and ω2 such that  𝐽(ω1) < 𝐽(ω2). This means that there must be at least one natural frequency 

between ω1 and ω2. A new approximation of the natural frequency is calculated as: 

 
𝜔3 =

𝜔1 + 𝜔2
2

 
(3.111) 
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if 𝐽(ω1) < 𝐽(ω3), ω1 and ω3 are used to calculate a new value. Otherwise, ω2 and ω3 are used. 

This process is repeated until the difference in 𝜔 for two consecutive trials becomes less than the 

desired precision. After the first natural frequency is found this process is repeated by taking the 

lower bound as the natural frequency found in the previous step and repeating. 

3.15. Calculation of mode shapes 

Substituting each natural frequency into the dynamic stiffness matrix and solving [𝑲(𝜔)]{𝒅} = 0  

for {𝒅}, gives the modes of vibration. The rows or the columns of the 𝐊(𝜔) are linearly dependent. 

So, the eigenvector is determined by assuming an arbitrary value for one of the terms on {d} and 

solving for the rest.  
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3.16. Damage detection  

Spectral Finite Element provides a computationally efficient tool to calculate as many vibration 

modes and frequencies as desired. The efficiency is due to the fact that there is no need for mesh 

refinement to get access to higher modes. Structural damage usually causes stiffness reduction, 

which is reflected as a decrease in natural frequencies and change in vibration mode shapes. 

Furthermore, measuring natural frequencies and mode shapes is easily applicable through sensor 

measurements since they are global characteristics of the structure.  

 

 

Figure 3.16: Damage Model 

 
 

Consider the simply supported beam in Figure 3.16, with a cracked element inside. The properties 

of the cracked element can be addressed using the following parameters: 

L: Location of the damaged element 

𝐿𝑤 : Length of the damaged element 

D: Damage index 

D is the reduction ratio in E due to cracks and has a value between 0 and 1. Elasticity modulus of 

the cracked element is related to the elasticity modulus of the healthy element with Eq. 3.112: 

 𝐸𝐶𝑟𝑎𝑐𝑘𝑒𝑑 = (1 − 𝐷)𝐸 (3.112) 

   

3.17. Effect of damage on natural frequencies 

To illustrate the effect of damage on vibration characteristics of a beam, consider the structure in 

Figure 3.16. The beam is 60 in long and a damaged element with the constant length of 5 in is 

moved across the length of the beam. The damage index varies from 0.1 to 0.9 with a 0.1 step. The 

relative difference due to damage in the first three natural frequencies are shown in Figures 3.17, 

3.18, 3.19.  

 

Lw= Damage Length 

L=Damage Location 
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Figure 3.17: Effect of moving the damaged element along the length of the beam on the first frequency of vibration 
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Figure 3.18: Effect of moving the damaged element along the length of the beam on the second frequency of 

vibration 

 

Figure 3.19: Effect of moving the damaged element along the length of the beam on the third frequency of vibration 
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Figure 3.17 shows the first natural frequency affected by damage the most when it is located in the 

middle. On the contrary, the frequency of the second mode changes the least when damage is in 

the middle. For the first mode, this happens when damage is at the beginning or end. This illustrates 

the importance of considering higher modes since some damage cases might not change the 

frequency of one mode as noticeably as another. 

3.18. Damage cost function: 

Assume that the first n natural frequencies and corresponding mode shapes of a cracked structure 

are measured as (𝜆𝑒𝑥𝑝, 𝜙𝑒𝑥𝑝 ). The purpose of the damage detection tool is to put a damaged 

element inside the healthy structure in a way that the location, the length, and the damage index 

match the real structure. So, a trial damaged model is created, and the first 𝑛 natural frequencies 

and mode shapes are calculated using spectral element analysis (𝜆𝑡𝑟𝑖𝑎𝑙, 𝜙𝑡𝑟𝑖𝑎𝑙  ). 

As suggested in [Dong and Wang, 2019], the cost function in Eq. 3.113, gives a comparison metric 

indicating how close the trial structure is to the real structure. The first term gives the relative 

difference in natural frequencies. The second term takes in two vectors at each step, the 𝑖𝑡ℎ mode 

shape from measurement and the 𝑖𝑡ℎ mode shape from the trial structure. MAC (modal assurance 

criterion) takes on values from zero- representing no consistent correspondence, to one- 

representing a consistent correspondence. If the modal vectors exhibit a consistent linear 

relationship, the modal assurance criterion should approach unity. Note that the MAC value is 

normalized by magnitude of input vectors and is bounded by zero and one [Allemang, 2003]. 

 

 𝐶𝑜𝑠𝑡({𝜆}𝑡𝑟𝑖𝑎𝑙, {Φ}𝑡𝑟𝑖𝑎𝑙, {𝜆}𝑒𝑥𝑝, {Φ}𝑒𝑥𝑝)

=∑(
𝜆𝑖
𝑒𝑥𝑝 − 𝜆𝑖

𝑡𝑟𝑖𝑎𝑙

𝜆𝑖
𝑒𝑥𝑝 . 𝑤𝜆𝑖)

2𝑛

𝑖=1

+

(

 
1 − √𝑀𝐴𝐶𝑖( {𝜙𝑖

𝑒𝑥𝑝}, {𝜙𝑖
𝑡𝑟𝑖𝑎𝑙} )

√𝑀𝐴𝐶𝑖( {𝜙𝑖
𝑒𝑥𝑝
}, {𝜙𝑖

𝑡𝑟𝑖𝑎𝑙} )

. 𝑤𝜙𝑖

)

 

2

 

{𝜆}𝑒𝑥𝑝={ 𝜆1
𝑒𝑥𝑝,  𝜆2

𝑒𝑥𝑝, … , 𝜆𝑛
𝑒𝑥𝑝

 }  , {𝜆}𝑡𝑟𝑖𝑎𝑙= { 𝜆1
𝑡𝑟𝑖𝑎𝑙 ,  𝜆2

𝑡𝑟𝑖𝑎𝑙, … , 𝜆𝑛
𝑡𝑟𝑖𝑎𝑙 }   

 

(3.113) 
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𝑀𝐴𝐶𝑖({𝜙𝑖
𝑒𝑥𝑝}, {𝜙𝑖

𝑡𝑟𝑖𝑎𝑙}) =
({𝜙𝑖

𝑒𝑥𝑝}
𝑇
. {𝜙𝑖

𝑡𝑟𝑖𝑎𝑙})
2

({𝜙𝑖
𝑒𝑥𝑝}

𝑇
. {𝜙𝑖

𝑒𝑥𝑝}) ({𝜙𝑖
𝑡𝑟𝑖𝑎𝑙}

𝑇
. {𝜙𝑖

𝑡𝑟𝑖𝑎𝑙})
 

(3.114) 

 

The weights 𝑤𝜆𝑖 and 𝑤𝜙𝑖 are set to 1 in this study, meaning that all modes have an equal 

contribution to the cost function. This provides the opportunity to investigate the effect of 

considering more number of modes on the performance of the damage detection program as done 

in Chapter 4. 

 

 

 

 

 

The diagram in Figure 3.20 shows how for each set of {𝐿𝑡𝑟𝑖𝑎𝑙 , 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 , 𝐷𝑡𝑟𝑖𝑎𝑙 }, a cost value is found. 

The problem is minimizing the cost function by changing {𝐿𝑡𝑟𝑖𝑎𝑙, 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 , 𝐷𝑡𝑟𝑖𝑎𝑙 } within the given 

constraints given in Eq 3.115: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐶𝑜𝑠𝑡({𝜆}𝑡𝑟𝑖𝑎𝑙 , {Φ}𝑡𝑟𝑖𝑎𝑙)] 

Subject to: 

0 < 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 < 𝐿𝑤

𝑚𝑎𝑥 

0 < 𝐿𝑡𝑟𝑖𝑎𝑙 < 𝐿𝑏𝑒𝑎𝑚 

0 < 𝐷 < 1.0 

(3.115) 

 

To visualize the behavior of the cost function for different trial models, a damaged structure with 

these specifics {𝐿𝑡𝑟𝑖𝑎𝑙 = 50 𝑖𝑛, 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 = 8 𝑖𝑛, 𝐷𝑡𝑟𝑖𝑎𝑙 = 0.3 } is modelled and the cost function is 

calculated for different trial structures compared to the original damaged structure by moving a 

damaged element with a variable length along the length of the beam. Figure 3.21 shows that the 

cost function is a complicated function of the damaged element specifics and a robust optimization 

L=Damage Location, 
Lw=Damage Length,   
D= Damage Index

Spectral Finite 
Element 
Model

Spectral 
Stiffness 
Matrix

Wittrick-
Williams  
Method

Eigenvalues 
and 

Eigenvectors

Measured 
frequencies 
and mode 

shapes

Cost function Cost

Figure 3.20: Calculation of the cost of each trial structure 
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technique independent of the nature of the function should be adopted to minimize the cost to find 

the closest model. 

 

Figure 3.21: Cost of each trial as a function of length and location of the damaged element showing the optimization 

space 
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3.19. Genetic algorithm 

Genetic algorithms are search algorithms based on the mechanics of natural selection and natural 

genetics. They combine survival of the fittest string with a structured yet randomized information 

exchange to form a search algorithm. In every generation a new set of artificial strings is created 

using bits and pieces of the fittest of the old. While randomized, genetic algorithms are no simple 

random walk. They efficiently exploit historical information to speculate on new search points 

with expected improved performance.  

Genetic algorithms have been developed by John Holland, his colleagues and his students at the 

University of Michigan. The goal of their research was, 1) to abstract and explain the adaptive 

processes of natural systems and 2) to design artificial systems that retain the important 

mechanisms of natural systems. 

Calculus-based optimization methods are subdivided into two main classes [Goldberg, 1988]: 

1) Indirect methods seek local extrema by solving the usually nonlinear set of equations 

resulting from setting the gradient of the objective function equal to zero. Given a smooth 

unconstrained function, finding a possible peak starts by restricting search to those points 

with slopes of zero in all directions. 

2) Direct methods seek local optimal by hopping on the function and moving in direction 

related to the local gradient. This is simply the notion of hill climbing: to find the local best 

climb the function in the steepest permissible direction. 

Calculus-based methods show lack of robustness for two reasons. Firstly, both methods are local 

in scope. The optima they seek is the best in the neighborhood of the starting point. Secondly, 

calculus-based methods depend on existence of their derivatives even if we allow a numerical 

approximation of their derivatives, this is a severe shortcoming 

[Hong, Yong 2002] GAs are based on principles of evolutionary theory such as natural selection 

and evolution. Each possible solution is called a chromosome and consists of multiple genomes. 

A possible solution is shown in Figure 3.22.  
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Fitness function indicates how close the candidate solution is to the real solution. The cost function 

in Eq 3.114 is taken as the fitness in this study. Obviously, since we are solving a minimization 

problem, the lower the fitness value, the better solution the corresponding chromosome is. A 

generation includes a set of chromosomes. The population size can differ depending on the 

problem. Reproduction is the process of creating a new generation based on the previous 

generation. Reproduction is done through crossover and mutation. In this study the generation size 

was taken as 8. The first generation is produced randomly within the constraints in Eq 3.115. The 

population is sorted based on the fitness of candidates in it. The two best candidates in the first 

generation are moved directly to the next generation. The rest of the next population is generated 

through pair selection, crossover, and mutation. First generation is generated randomly between 

the constraints of the problem and an example of such generation is shown in Figure 3.23: 

Candidate Number  Damage Location Damage Length Damage Index 

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 

2 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 

3 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 

4 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 

5 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 

6 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 

7 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 

8 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 
 

Figure 3.23: First generation of candidate solutions generated randomly within the constraints of the problem.  

Pair selection: 

In a population of size n like [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] with the corresponding fitness values 

[𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛], the candidate with a lower fitness value, has a better chance of entering the next 

generation. So, the possibility of each chromosome entering the reproduction process is shown as  

[𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛] and calculated as Eq. 3.116: 

 

Damage Location Damage Length Damage Index 

0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 
 

Figure 3.22: A possible solution shown in binary 
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𝑃𝑖 = 1 −

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
𝑖=1

 , 𝑖 = 1,2,3, . . , 𝑛 
(3.116) 

 

Cross-over: 

Assume two chromosomes selected after pair-selection like, 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑚] and 𝑥𝑗 =

[𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3, … , 𝑥𝑗𝑚]. If the elements after the kth element on 𝑥𝑖 are swapped with the ones on 𝑥𝑗, 

the new chromosomes will be, 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑘, 𝑥𝑗(𝑘+1), … , 𝑥𝑗𝑚] and 𝑥𝑗 =

[𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3, … , 𝑥𝑗𝑘 , 𝑥𝑖(𝑘+1), … , 𝑥𝑖𝑚]. In this study multi-point crossover was used. Since each 

chromosome consists of genes representing {𝐿𝑡𝑟𝑖𝑎𝑙 , 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 , 𝐷𝑡𝑟𝑖𝑎𝑙 }, the cross over is done on three 

points, each for one parameter. The value of j,t,u  in the example below are randomly selected.  

 𝑥1 = {𝐿11, 𝐿12, … , 𝐿1𝑚, 𝐿𝑤11, 𝐿𝑤12, … , 𝐿𝑤1𝑝, 𝐷11,𝐷12, … , 𝐷1𝑞} 

 

𝑥2 = {𝐿21, 𝐿22, … , 𝐿2𝑚, 𝐿𝑤11, 𝐿𝑤22, … , 𝐿𝑤2𝑝, 𝐷21,𝐷22, … , 𝐷2𝑞} 

 

𝑥′1 = {𝐿11, 𝐿12, … , 𝐿1𝑗 , 𝐿2(𝑗+1), … , 𝐿2𝑚, 𝐿𝑤11, 𝐿𝑤12 

, … , 𝐿𝑤1𝑡, 𝐿𝑤2(𝑡+1), … , 𝐿𝑤2𝑝, 𝐷11,𝐷12, … , 𝐷1𝑢, 𝐷2(𝑢+1), … , 𝐷2𝑞} 

 

𝑥′2 = {𝐿21, 𝐿22, … , 𝐿2𝑗 , 𝐿1(𝑗+1) , … , 𝐿1𝑚, 𝐿𝑤21, 

𝐿𝑤22… , 𝐿𝑤2𝑡, 𝐿𝑤1(𝑡+1), … , 𝐿𝑤1𝑝, 𝐷21,𝐷22, … , 𝐷2𝑢, 𝐷1(𝑢+1), … , 𝐷1𝑞} 

 

(3.117) 

 

Mutation: 

Sometimes the solution gets trapped around a local minimum instead of the global minimum. 

During mutation one of the genomes is randomly selected and its value is changed from 0 to 1 or 

from 1 to 0. This brings new solutions to evolution that might have better answers than what is 

already in the population. The probability of mutation was taken 0.5 in this study. The mutation 

process is shown in Figure 3.24. 

 

 

Figure 3.24:  Mutation 
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Parameters such as population size and mutation probability are generally chosen based on trial 

and error. During the trial-and-error process, it was observed that a small population size made the 

solutions present in the generation less diverse and that the program could easily get stuck around 

local minimums. The mutation process was also chosen in a way to help having a more diverse set 

of candidates in the generation to avoid local minimums. 
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3.20. Composite Laminate [Lee, 2009] 

It is well recognized that fiber reinforced composite materials have many advantages over isotropic 

materials due to their high strength-to-density ratios. Thus, they have been widely used in many 

industrial applications. Typical examples are composite aircraft wings, helicopter blades, propeller 

blades, turbine blades, axles of vehicles and so on. In general, the laminated composite structures 

are fabricated by bonding two or more laminates together.  

Stress-strain relationships on a 3D element 

 

Figure 3.25: Stresses applied on a 3D element  

For an orthotropic material, it is known that the strain-stress relationships can be written as: 

 

{
 
 

 
 
휀1
휀2
휀3
휀4
휀5
휀6}
 
 

 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆13 𝑆23 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆55 0
0 0 0 0 0 𝑆66]

 
 
 
 
 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

 

(3.118) 

 

where 𝜎𝑖 denotes stress and 휀𝑖 denotes strain in different directions and 𝑆𝑖𝑗 are given as: 

 𝑆11 =
1

𝐸1
, 𝑆22 =

1

𝐸2
,𝑆33 =

1

𝐸3
 

𝑆44 =
1

𝐺23
, 𝑆55 =

1

𝐺31
, 𝑆66 =

1

𝐺12
 

𝑆12 = −
𝜈21
𝐸2
, 𝑆13 = −

𝜈31
𝐸3
, 𝑆23 = −

𝜈32
𝐸3

 

(3.119) 
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𝜎𝑖 and 휀𝑖 are short-form notations for: 

 𝜎1 = 𝜎11, 𝜎2 = 𝜎22, 𝜎3 = 𝜎33, 𝜎4 = 𝜎23, 𝜎5 = 𝜎31, 𝜎6 = 𝜎12 

 

(3.120) 

 휀1 = 휀11, 휀2 = 휀22, 휀3 = 휀33, 휀4 = 2휀23, 휀5 = 2휀31, 휀6 = 2휀12 (3.121) 

 

For an orthotropic lamina, it is assumed that 𝜎3 = 0. Thus, Eq. 3.118 can be rewritten as: 

 휀3 = 𝑆13𝜎1 + 𝑆23𝜎2 (3.122) 

 

{

휀1
휀2
휀6
} = [

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] {

𝜎1
𝜎2
𝜎6
} 

(3.123) 

 
{
휀4
휀5
} = [

𝑆44 0
0 𝑆55

] {
𝜎4
𝜎5
} 

(3.124) 

 

and the stress-strain relationship can be written as: 

 

{

𝜎1
𝜎2
𝜎6
} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

휀1
휀2
휀6
} 

 

(3.125) 

{
𝜎4
𝜎5
} = [

𝑄44 0
0 𝑄55

] {
휀4
휀5
} 

(3.126) 

 

where 𝑄𝑖𝑗 is: 

 
𝑄11 =

𝐸1
1 − 𝜈12𝜈21

 

𝑄22 =
𝐸2

1 − 𝜈12𝜈21
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
 

𝑄44 = 𝐺23, 𝑄55 = 𝐺31, 𝑄66 = 𝐺12 

(3.127) 
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Figure 3.26: Global and local coordinates on a lamina [Lee, 2009] 

Assuming that the local coordinates on a lamina shown by axes (1-2) in Figure 3.26 on the right, 

are obtained by rotating the x-y-z global coordinates on the left around the z axis counterclockwise 

by an angle of 𝜙(𝑘), the coordinate transformation rules are derived as follows: 

 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

cos2 𝜙 sin2 𝜙 −𝑠𝑖𝑛2𝜙

sin2 𝜙 cos2 𝜙 𝑠𝑖𝑛2𝜙

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 cos2 𝜙 − sin2 𝜙 

] {

𝜎1
𝜎2
𝜎6
} 

 

(3.128) 

 
{
𝜎𝑦𝑧
𝜎𝑧𝑥

} = [
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] {
𝜎4
𝜎5
} 

(3.129) 

 

and: 

 

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑥𝑦

} = [

cos2 𝜙 sin2𝜙 −𝑠𝑖𝑛2𝜙

sin2𝜙 cos2 𝜙 𝑠𝑖𝑛2𝜙

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 cos2 𝜙 − sin2𝜙 

] {

휀1
휀2
휀6
} 

 

(3.130) 

 
{
𝛾𝑦𝑧
𝛾𝑧𝑥
} = [

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] {
휀4
휀5
} 

(3.131) 

 

 

By applying the above relations into Eq. 3.125 and Eq. 3.126, the stress-strain relationships with 

respect to the global coordinates are obtained as: 

 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {

휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦

} 

(3.132) 

 
{
𝜎𝑦𝑧
𝜎𝑧𝑥

} = [
�̅�44 �̅�45
�̅�45 �̅�55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
} 

(3.133) 
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where �̅�𝑖𝑗 are calculated as: 

 �̅�11 = 𝑄11 cos
4 𝜙 + 𝑄22 sin

4𝜙 + 2(𝑄12 + 2𝑄66) sin
2𝜙 cos2 𝜙 

�̅�22 = 𝑄11 𝑠𝑖𝑛
4𝜙 + 𝑄22 cos

4 𝜙 + 2(𝑄12 + 2𝑄66) sin
2 𝜙 cos2 𝜙 

�̅�66 = 𝑄66(𝑠𝑖𝑛
4𝜙 + cos4 𝜙) + (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) sin

2𝜙 cos2 𝜙 

�̅�12 = 𝑄12(𝑠𝑖𝑛
4𝜙 + cos4 𝜙) + (𝑄11 + 𝑄22 − 4𝑄66) sin

2𝜙 cos2 𝜙 

�̅�16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑖𝑛𝜙 cos
3 𝜙 + (𝑄12 − 𝑄22 + 2𝑄66) sin

3𝜙 𝑐𝑜𝑠𝜙 

�̅�26 = (𝑄11 − 𝑄12 − 2𝑄66) sin
3𝜙 𝑐𝑜𝑠 𝜙 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠𝑖𝑛𝜙 cos

3 𝜙 

�̅�44 = 𝑄44 cos
2 𝜙 + 𝑄55 sin

2𝜙, �̅�55 = 𝑄55 cos
2 𝜙 + 𝑄44 sin

2𝜙 

�̅�45 = (𝑄55 − 𝑄44)𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 

(3.134) 

 

Assume that 𝑢, 𝑣, 𝑎𝑛𝑑 𝑤 represent the displacements in x-, y- and z-directions, respectively. 𝑢0 

and 𝑤0 are the displacements of a point on the reference plane, located on the midplane of the 

beam with 𝑧 = 0, in the x- and z-directions, and 𝜃𝑦 and 𝜃𝑧 are the negative of the rotations around 

the y- and z-axes, respectively. The displacements are written as: 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡) (3.135) 

 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧𝜃𝑧(𝑥, 𝑦, 𝑡) (3.136) 

 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (3.137) 

𝑢, 𝑣, 𝑎𝑛𝑑 𝑤 

Strains in the x-y-z directions can be written as: 

 
휀𝑥𝑥 =

𝜕𝑢

𝜕𝑥
 

(3.138) 

 
휀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
 

(3.139) 

 
𝛾𝑥𝑦 =

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 

(3.140) 

 
𝛾𝑦𝑧 =

𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
 

(3.141) 

 
𝛾𝑧𝑥 =

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
 

(3.142) 
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Substituting Eq. 3.135 – Eq. 3.137 in Eq. 3.138 – Eq.3.142 gives: 

 
휀𝑥𝑥 =

𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜃𝑦

𝜕𝑥
 

(3.143) 

 
휀𝑦𝑦 = −𝑧

𝜕𝜃𝑧
𝜕𝑦

 
(3.144) 

 
𝛾𝑥𝑦 = 

𝜕𝑢0
𝜕𝑦

− 𝑧 (
𝜕𝜃𝑧
𝜕𝑥

+
𝜕𝜃𝑦

𝜕𝑦
) 

(3.145) 

 
𝛾𝑦𝑧 = 

𝜕𝑤0
𝜕𝑦

− 𝜃𝑧 
(3.146) 

 
𝛾𝑧𝑥 =

𝜕𝑤0
𝜕𝑥

− 𝜃𝑦 
(3.147) 

 

The resulting forces and moments can be calculated by integrating stresses through the laminate 

thickness, where 𝑁𝑥 is the internal axial force per unit width, 𝑉𝑥 is the shear force per unit width, 

𝑀𝑥𝑥 is the bending moment around the x-axis per unit width, 𝑀𝑦𝑦 is the bending moment around 

y axis per unit width and 𝑀𝑥𝑦 is the twisting moment per unit width. b is the width of the laminate, 

h is the thickness of the beam and 𝜅 is the shear correction factor. N is the number of layers and 

𝑧𝑘 is shown in Figure 3.27. 

 

{
𝑁𝑥
𝑉𝑥
} = ∫ {

𝜎𝑥𝑥
𝜅𝜎𝑧𝑥

}

ℎ
2

−
ℎ
2

𝑑𝑧 =∑∫ {
𝜎𝑥𝑥

(𝑘)

𝜅𝜎𝑧𝑥
(𝑘)
}

𝑧𝑘

𝑧𝑘−1

𝑑𝑧

𝑁

𝑘=1

 

(3.148) 

 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}

ℎ
2

−
ℎ
2

𝑧𝑑𝑧 = ∑∫ {

𝜎𝑥𝑥
(𝑘)

𝜎𝑦𝑦
(𝑘)

𝜎𝑥𝑦
(𝑘)

}
𝑧𝑘

𝑧𝑘−1

𝑧𝑑𝑧

𝑁

𝑘=1

 

(3.149) 

 

Using the stress-strain relation of a lamina in Eq. 3.132 and Eq. 3.133, internal forces and moments 

are obtained as: 

 
𝑁𝑥 = 𝐴11

𝜕𝑢0
𝜕𝑥

+ 𝐴11
𝜕𝑢0
𝜕𝑦

+ 𝐵11 (−
𝜕𝜃𝑦

𝜕𝑥
) + 𝐵12 (−

𝜕𝜃𝑧
𝜕𝑦
) − 𝐵16 (

𝜕𝜃𝑧
𝜕𝑥

+
𝜕𝜃𝑦

𝜕𝑦
) 

 

(3.150) 



56 
 

 
𝑉𝑥 = 𝜅𝐴45 (

𝜕𝑤0
𝜕𝑦

− 𝜃𝑧) + 𝜅𝐴55 (
𝜕𝑤0
𝜕𝑥

− 𝜃𝑦) 
(3.151) 

 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = [
𝐵11 𝐵16
𝐵12 𝐵26
𝐵16 𝐵66

]

{
 

 
𝜕𝑢0
𝜕𝑥
𝜕𝑢0
𝜕𝑦 }

 

 
+ [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
  
 

  
 −

𝜕𝜃𝑦

𝜕𝑥

−
𝜕𝜃𝑧
𝜕𝑦

−(
𝜕𝜃𝑧
𝜕𝑥

+
𝜕𝜃𝑦

𝜕𝑦
)
}
  
 

  
 

 

(3.152) 

where: 

 

𝐴𝑖𝑗 =∑�̅�𝑖𝑗
(𝑘)

𝑁

𝑘=1

( 𝑧𝑘 − 𝑧𝑘−1) 
(3.153) 

 

𝐵𝑖𝑗 =
1

2
∑�̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

( 𝑧𝑘
2 − 𝑧𝑘−1

2 ) 
(3.154) 

 

 𝐷𝑖𝑗 =
1

3
∑ �̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

( 𝑧𝑘
3 − 𝑧𝑘−1

3 ) 
(3.155) 

 

 

Figure 3.27: Geometry of laminate (x axis is out of plane) 

For a beam, it is assumed that the transverse displacement is constant along the thickness as shown 

in Eq. 3.156. 

 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) (3.156) 

Axial displacement is only a function of longitudinal direction (x-direction) and y-direction does 

not affect that as shown in Eq. 3.157. 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧𝜃(𝑥, 𝑡) (3.157) 
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No rotation is assumed in the y-direction and the only assumed rotation is around the x-direction 

as shown in Eq. 3.158 and Eq. 3.159. 

𝜃𝑦 = 𝜃 (3.158) 

 

𝜃𝑧 = 0 (3.159) 

 

Substituting Eq. 3.159 in Eq. 3.136 gives: 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 0 (3.160) 

Applying Eq. 3.156-3.160 in the strain relationships gives: 

  휀𝑦𝑦 = 0 (3.161) 

   

 
𝛾𝑥𝑦 = (

𝜕𝜃𝑧
𝜕𝑥

+
𝜕𝜃𝑦

𝜕𝑦
) = 0 

(3.162) 

 

The following changes in notations are defined to make equations more compact: 

 

 

𝜕𝜃𝑦

𝜕𝑥
= 𝜃′ 

(3.163) 

 𝜕𝑢0
𝜕𝑥

= 𝑢0
′  

(3.164) 

 

Substituting the new notations for strains in Eq. 3.150-3.152 gives the equations below for the 

forces and moments: 

 𝑁(𝑥, 𝑡) = 𝑏𝑁𝑥 = 𝑏𝐴11𝑢0
′ − 𝑏𝐵11𝜃′ (3.165) 

 

 𝑉(𝑥, 𝑡) = 𝑏𝑄𝑥 = b𝜅𝐴55(𝑤0
′ − 𝜃) 

 

(3.166) 

 𝑀(𝑥, 𝑡) = 𝑏𝑀𝑥𝑥 = 𝑏𝐷11𝜃′ − 𝑏𝐵11𝑢0
′  (3.167) 

 

𝑏𝐴11 is the axial rigidity, 𝑏𝐵11 is coupled axial-bending rigidity, b𝜅𝐴55 is shear rigidity, and 𝑏𝐷11 

is bending rigidity. 
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The equations of motion and associated boundary conditions for composite beams are derived 

from Hamilton’s principle based on the first-order shear deformation theory. 

 
∫ (
𝑡

0

𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊)𝑑𝑡 = 0 
(3.168) 

 

where 𝛿𝑇 is the variation of the kinetic energy, 𝛿𝑈 is the variation of the potential energy and  𝛿𝑊 

is the variation of the work of the external forces. The sign convention used for the composite 

laminate beam is shown in Figure 3.28. 

  

Figure 3.28: Internal forces and moments  

Potential energy can be written as 

 

 
U =

1

2
∫ {
𝐿

0
𝑁𝑢0

′ +𝑀𝜃′ + V(𝑤0
′ − 𝜃) }𝑑𝑥 =  

1

2
∫ {
𝐿

0
𝑏𝐴11𝑢0

′ 2 − 2b𝐵11𝜃
′𝑢0
′ +

b𝐷11𝜃
′2 + b𝜅𝐴55(𝑤0

′ − 𝜃)2} 𝑑𝑥 

(3.169) 

 

Kinetic energy is written as: 

 

T =
1

2
∫ ∫ {ρb (�̇�2 + �̇�2)}dz

ℎ
2

−
h
2

𝑑𝑥
𝐿

0

=
1

2
∫ [∫ ρb (�̇�0

2)𝑑𝑧

ℎ
2

−
h
2

𝐿

0

+∫ ρb (u̇0
2)𝑑𝑧

ℎ
2

−
h
2

]𝑑𝑥  

(3.170) 

 
𝑇 =

1

2
∫ [ �̇�0

2𝐼0

𝐿

0

+ u̇0
2𝐼0 + θ̇

2𝐼2 − 2θ̇u̇0𝐼1]𝑑𝑥 
(3.171) 

 

𝐼0, 𝐼1, 𝐼2 represent mass per unit length, first-order mass moment of inertia per unit length and 

second-order mass moment of inertia per unit length. 

 

𝐼0 = ∫ ρb𝑑𝑧

ℎ
2

−
h
2

 

(3.172) 
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𝐼1 = ∫ ρbz𝑑𝑧

ℎ
2

−
h
2

 

𝐼2 = ∫ ρbz2𝑑𝑧

ℎ
2

−
h
2

 

 

Variations of U and T are calculated according to Eq 3.173 and Hamilton’s principle introduced 

in Eq. 3.168 is used as shown in Eq. 3.174: 

 
𝛿𝐹(𝑦, 𝑦′, 𝑥) = [

𝜕𝐹

𝜕𝑦
−
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦′
)] 𝛿𝑦 

(3.173) 

 

 ∫ (
𝑡

0
𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊)𝑑𝑡 = 

∫ [∫ { [b𝜅𝐴55
l

0

𝑡

0
(𝑤0

′′ − 𝜃′) − 𝐼0𝑤0̈] 𝛿𝑤0 + [𝑏𝐷11𝜃
′′2 + b𝐴55(𝑤0

′ − 𝜃) − b𝐵11𝑢0
′′ +

𝐼1𝑢0̈ − 𝐼2�̈�]𝛿𝜃 + [𝑏𝐴11𝑢0
′′ − 𝑏𝐵11𝜃

′′ − 𝐼0𝑢0̈ +  𝐼1�̈�]𝛿𝑢0}dx − 𝑁(𝑥, 𝑡)𝛿𝑢0|0
𝐿 −

𝑀(𝑥, 𝑡)𝛿𝜃|0
𝐿 − V(𝑥, 𝑡)𝛿𝑤0|0

𝐿 + 𝑁1𝛿𝑢0(0) + 𝑁2𝛿𝑢0(𝐿) + 𝑀1𝛿𝜃(0) +𝑀2𝛿θ(𝐿) +

𝑉1𝛿𝑤0(0) + 𝑉2𝛿𝑤0(𝐿)]𝑑𝑡 = 0 

(3.174) 

 

The equations of motion are derived from Eq 3.174 as: 

 𝑏𝐴11𝑢0
′′ − 𝑏𝐵11𝜃

′′ − 𝐼0𝑢0̈ +  𝐼1�̈� = 0  (3.175) 

 b𝜅𝐴55(𝑤0
′′ − 𝜃′) − 𝐼0𝑤0̈ = 0  (3.176) 

 𝑏𝐷11𝜃
′′2 + b𝐴55(𝑤0

′ − 𝜃) − b𝐵11𝑢0
′′ + 𝐼1𝑢0̈ − 𝐼2�̈� = 0  (3.177) 

 

For a laminated beam with mid-plane symmetry, 𝐵11 and 𝐼1 are equal to zero. In that case, Eq. 

3.175 is equivalent to axial vibration of a bar and Eq. 3.176 and Eq. 3.177 are the differential 

equations of motion of the Timoshenko beam element. This means that for the case of a laminated 

beam with mid-plane symmetry, the axial vibration is decoupled from the shear-bending vibration. 

If the shear deformation is assumed to be negligible, then the Euler-Bernoulli beam element 

developed in section 3.4 plus the axial bar element in section 3.2 can be used together to capture 

the vibration of a laminated beam with mid-plane symmetry. The term 𝑏𝐷11 is the bending stiffness 
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and is equivalent to the term 𝐸𝐼 used in the isotropic Euler-Bernoulli beam element. The term 

𝑏𝐴11is the axial stiffness and is equivalent to the term 𝐸𝐴 used in bar element.  
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3.21. Modeling delamination using Multiple Point Constraints (MPC) 

 

The idea used to model delamination in this study is close to what was used in [Pardoen and  Tracy, 

1997]. The sub-laminates above and below the delamination are treated as two beams separated 

from the base-laminate. The effect of micromechanics and surface friction is not considered in this 

modeling and the delamination is assumed to cover the entire width of the composite beam. The 

entire length of the delaminated area is covered by adding three extra beam/spectral elements (the 

sub-laminates) and 6 extra nodes. This simplifying assumption helps with reducing the 

computational effort which is the main concern in inverse problems [Nag et al, 2002].  Each of the 

sub-laminates and base-laminates are considered together as a structural wave guide.  

The location of the nodes of the spectral elements for a delaminated beam is shown in Figure 3.29. 

In the absence of delamination, one spectral element between node 1 and node 4 is enough. 

However, the presence of delamination requires having 3 more elements and 6 more nodes. Six 

more nodes are added to model base-laminates and sub-laminates. The sub-laminate element nodes 

are located at the mid-plane of the sub-laminates. 

 

Figure 3.29: Delamination modeling using MPC 

The kinematic assumption for the interface of base-laminate and sub-laminate is that the cross-

section remains plane and the slope is continuous and constant at the interface. This assumption 

can be written in the following format: 

 

{

𝑢5
𝑣5
𝜃5
} = {

𝑢2 +
ℎ

2
𝜃2

𝑣2
𝜃2

} , {

𝑢7
𝑣7
𝜃7
} = {

𝑢2 −
ℎ

2
𝜃2

𝑣2
𝜃2

} 

 

(3.178) 

and: 
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{

𝑢6
𝑣6
𝜃6
} = {

𝑢3 +
ℎ

2
𝜃3

𝑣3
𝜃3

} , {

𝑢8
𝑣8
𝜃8
} = {

𝑢3 −
ℎ

2
𝜃3

𝑣3
𝜃3

} 

 

(3.179) 

In Eq 3.178 and 3.179, h is the height of the beam. Nodes 2 and 3 are called master nodes and 

nodes 5, 6, 7, and 8 are called slave nodes meaning that their degrees of freedom depend on the 

degrees of freedom of the master nodes. Considering the relationship between the master nodes 

and the slave nodes, assuming that {𝒅} contains the degrees of freedom the structure on the left in 

Figure 3.29 and {𝒅𝑟} contains the degrees of freedom of the structure on the right in Figure 3.29, 

{𝒅} and {𝒅𝑟} are related to each other using Eq. 3.180: 

 [𝑪]𝑇{𝒅} = {𝒅𝑟} (3.180) 
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Table 3.1: Entries of the [C] matrix 

 u1 v1 theta1 u2 v2 theta2 u3 v3 theta3 u4 v4 theta4 

u1 1 0 0 0 0 0 0 0 0 0 0 0 

v1 0 1 0 0 0 0 0 0 0 0 0 0 

theta1 0 0 1 0 0 0 0 0 0 0 0 0 

u2 0 0 0 1 0 0 0 0 0 0 0 0 

v2 0 0 0 0 1 0 0 0 0 0 0 0 

theta2 0 0 0 0 0 1 0 0 0 0 0 0 

u3 0 0 0 0 0 0 1 0 0 0 0 0 

v3 0 0 0 0 0 0 0 1 0 0 0 0 

theta3 0 0 0 0 0 0 0 0 1 0 0 0 

u4 0 0 0 0 0 0 0 0 0 1 0 0 

v4 0 0 0 0 0 0 0 0 0 0 1 0 

theta4 0 0 0 0 0 0 0 0 0 0 0 1 

u5 0 0 0 1 0 

ℎ

2
 0 0 0 0 0 0 

v5 0 0 0 0 1 0 0 0 0 0 0 0 

theta5 0 0 0 0 0 1 0 0 0 0 0 0 

u6 0 0 0 1 0 -
ℎ

2
 0 0 0 0 0 0 

v6 0 0 0 0 1 0 0 0 0 0 0 0 

theta6 0 0 0 0 0 1 0 0 0 0 0 0 

u7 0 0 0 0 0 0 1 0 

ℎ

2
 0 0 0 

v7 0 0 0 0 0 0 0 1 0 0 0 0 

theta7 0 0 0 0 0 0 0 0 1 0 0 0 

u8 0 0 0 0 0 0 1 0 -
ℎ

2
 0 0 0 

v8 0 0 0 0 0 0 0 1 0 0 0 0 

theta8 0 0 0 0 0 0 0 0 1 0 0 0 
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The entries of [𝑪]24×12 are obtained from Table 3.1. Rows of this table correspond to degrees of 

freedom in {𝒅} and the columns correspond to the degrees of freedom in {𝒅𝑟}. Consequently, the 

global dynamic stiffness matrix can be obtained as in Eq. 3.181: 

 [𝑲(𝜔)]𝑀𝑃𝐶 = [𝑪]𝑇[𝑲(𝜔)][𝑪] 

 

(3.181) 

3.22. Modeling for contact in the delaminated area 

 

The effect of distributed contact between the delaminated surfaces was not considered in the 

formulation in section 3.21. The objective of this section is to add the additional effect due to the 

distributed contact at the delaminated zone comprising of contact of chopped fibers and matrix 

[Nag et al, 2003]. 

Conventional spring elements with stiffnesses in both X and Y directions are used to connect the 

top and bottom layers in the delaminated zone. The stiffness matrix of this element is shown in 

Eq.  3.182.  

 

𝐾𝑠𝑝𝑟𝑖𝑛𝑔 =

[
 
 
 
 
 
𝐾𝑥 0 0 −𝐾𝑥 0 0
0 𝐾𝑦 0 0 −𝐾𝑦 0

0 0 0 0 0 0
−𝐾𝑥 0 0 𝐾𝑥 0 0
0 −𝐾𝑦 0 0 𝐾𝑦 0

0 0 0 0 0 0]
 
 
 
 
 

 

 

(3.182) 

𝐾𝑥 and 𝐾𝑦 denote the stiffnesses of the spring element in X and Y directions, respectively. 

Determining the exact stiffness of this matrix is beyond the scope of this thesis. However, the 

spring elements can represent the behavior of chopped fibers between the top and bottom layers 

and their values can be an approximation of the axial stiffness of the fibers. It will be shown that 

by increasing the number of elements in the delaminated area and increasing their stiffness, the 

behavior of the delaminated beams gets closer to the fully bonded model (The result of this case 

study will be discussed in Chapter 4). Thus, this approach can be used to model the behavior 

between the fully delaminated and fully bonded case which will be closer to what happens in a 

real case.  
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Although use of many elements in the delaminated zone to capture the distributed contact 

undermines to some extent the idea of use of spectral elements to avoid mesh refinement, the 

author believes it might be possible to add a spectral truss element to capture the behavior of the 

distributed contact zone with only one spectral element.  
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3.23. Computer implementation 

 

The methodology described in this chapter is implemented as two computer programs connected 

to each other. The Spectral Finite Element analysis program is written in FORTRAN using Intel 

FORTRAN Compiler integrated into Microsoft Visual Studio Compiler. Program reads input data 

such as material properties, boundary conditions and number of elements from input test files and 

stores the output, such as response of a selected degree-of-freedom and natural frequencies and 

mode shapes in separate text files. The flowchart in Figure 3.30 shows the steps taken in this 

program. 

 

Figure 3.30: Flowchart of the Spectral Finite Element program written in FORTRAN 
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The damage detection algorithm is written in Python using the Jupyter Notebook environment. It 

uses the FORTRAN program to calculate natural frequencies and mode shapes of possible damage 

cases. The flow chart in Figure 3.31 shows the steps taken in the damage detection program.  

 

Figure 3.31: Flowchart of the damage detection program written in Python 
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Chapter 4 

 Case studies 

4.1. Natural frequencies of Euler-Bernoulli beams using Spectral Finite Element 

and Wittrick-Williams method 

 

Consider the simply-supported beam shown in Figure 3.10. To calculate the natural frequencies 

and vibration mode shapes, the beam is modelled once with spectral elements and another time 

with conventional finite elements. The Wittrick-Williams method is applied to the spectral element 

model and linear eigenvalue analysis is applied to the finite element model.  

Table 4.1: Natural frequencies of the simply-supported beam in Figure 3.10 

 

The results of the modeling explained above are compared with the analytical results and shown 

in Table 4.1 and Table 4.2. As shown in Table 4.1, by increasing the number of elements in a 

conventional finite element model, results converge to the analytical solution. However, it is 

shown in Figure 4.1 that the convergence rate drops as the mode number increases. On the other 

hand, the spectral finite element model captures the exact frequency of all the first four modes with 

only 2 spectral elements.  

 

Bending 
mode 

Number 

Analytical 
(Hz) 

Finite 
Element                      

[2 Elements] 
(Hz) 

Finite 
Element        

[3 Elements] 
(Hz) 

Finite 
Element        

[4 Elements] 
(Hz) 

Finite 
Element       

[5 Elements] 
(Hz) 

Spectral 
Element               

[2 Elements] 
(Hz) 

 
1 31.24 31.36 31.26 31.24 31.24 31.24  

2 124.95 138.68 126.42 125.44 125.15 124.95  

3 281.13 348.58 312.03 286.27 283.36 281.13  

4 499.79 635.51 580.2 554.72 511.3 499.79  
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Figure 4.1:Effect of mesh refinement on natural frequencies obtained by conventional Finite Element 

Method 
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4.2. Vibration mode shapes of Euler-Bernoulli beams using Spectral Finite Element 

and Wittrick-Williams method 

 

As explained in section 3.11, the method proposed by [Veletsos and Kumar, 1983] was suggested 

to construct the transient response based on the steady-state response. The method requires having 

access to natural frequencies and the corresponding modes of vibration. Using the Wittrick-

Williams method explained in section 3.12, the natural frequencies of the structure up to any 

desired value are obtained. To calculate the corresponding modes of vibration, the free vibration 

equation of motion, [𝐾(𝜔)]{𝑑} = 0, is used.  Two spectral beam elements are used to model the 

beam shown in Figure 3.10. The model used is shown in Figure 4.2.  

 

Figure 4.2: Spectral Finite Element model of the beam shown in Figure 3.10 

 

Table 4.2: Mode shapes calculated by the Spectral Finite Element model 

 

 

 

 

 

 

The first three mode shapes obtained from the spectral element model are compared with the 

analytical solution. A spectral finite element model with 2 elements is used. The results are shown 

in Table 4.2 and it is observed that the mode shapes obtained by the spectral element model are 

very close to the analytical solution at the nodes. 

 Mode 1 Mode 2 Mode 3 

Degree of 
freedom 

Spectral 
Element 

Analytical 
Solution 

Spectral 
Element 

Analytical 
Solution 

Spectral 
Element 

Analytical 
Solution 

𝑣1 0 0 0 0 0 0 

𝜃1 -1 -1 1 1 -1 -1 

𝑣2 -19.10 -19.10 0 0 6.37 6.37 

𝜃2 0 0 -1 -1 0 0 

𝑣3 0 0 0 0 0 0 

𝜃3 1 1 1 1 1 1 



71 
 

4.3. Complete response of Euler-Bernoulli beam under dynamic load using SFEM 

[Veletsos and Kumar, 1983]  

 

According to Eq. 3.102 in section 3.11, the complete response of the structure can be obtained 

using the steady-state response, natural frequencies and mode shapes of vibration. The mass matrix 

in Eq 3.102, is assumed to be a lumped mass matrix with the mass matrix shown in Eq. 4.1: 

 

[𝑴] = 𝜌𝐴𝐿 [

0.5 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0

] 

 

(4.1) 

where 𝜌 is the density of the material, 𝐴 is the cross-section of the beam and 𝐿 is the length of the 

beam element. 

Transverse displacements of the middle point of the beam shown in Figure 3.10 under the force 

functions shown in Figure 3.11 are calculated by using the first mode of vibration in Eq. 3.102 and 

are shown in Figure 4.3: 

 

 

Figure 4.3: Complete transverse displacement of the beam under concentrated transverse load applied at the middle 

point. 
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4.4. Natural frequencies of Laminated Composite beam using Spectral Finite 

Element and Wittrick-Williams method 

 

As discussed in section 3.20, vibration of a laminated composite beam which is symmetric about 

its mid-plane, can be modeled as uncoupled vibrations of a beam element and a bar element. For 

this purpose, the spectral beam and spectral bar elements introduced in chapter 3 are combined to 

create a spectral frame element with axial, transverse and rotational degrees of freedom at each 

node as shown in Figure 4.4. The dynamic stiffness matrix of this element is written as Eq. 4.2. In 

this equation, 𝐾𝑖𝑗
𝑏𝑎𝑟is the 𝑗𝑡ℎ element on the 𝑖𝑡ℎ  row of the stiffness matrix of the spectral bar 

element introduced in Eq. 3.12 and 𝐾𝑖𝑗
𝑏𝑒𝑎𝑚 is the 𝑗𝑡ℎ  element on the 𝑖𝑡ℎ  row of the stiffness matrix 

of the spectral beam element introduced in Eq. 3.47.  

 

[𝑲𝑓𝑟𝑎𝑚𝑒(𝜔)] =

[
 
 
 
 
 
 
𝐾11
𝑏𝑎𝑟 0 0 𝐾12

𝑏𝑎𝑟 0 0

0 𝐾11
𝑏𝑒𝑎𝑚 𝐾12

𝑏𝑒𝑎𝑚 0 𝐾13
𝑏𝑒𝑎𝑚 𝐾14

𝑏𝑒𝑎𝑚

0 𝐾21
𝑏𝑒𝑎𝑚 𝐾22

𝑏𝑒𝑎𝑚 0 𝐾23
𝑏𝑒𝑎𝑚 𝐾24

𝑏𝑒𝑎𝑚

𝐾21
𝑏𝑎𝑟 0 0 𝐾22

𝑏𝑎𝑟 0 0

0 𝐾31
𝑏𝑒𝑎𝑚 𝐾32

𝑏𝑒𝑎𝑚 0 𝐾33
𝑏𝑒𝑎𝑚 𝐾34

𝑏𝑒𝑎𝑚

0 𝐾41
𝑏𝑒𝑎𝑚 𝐾42

𝑏𝑒𝑎𝑚 0 𝐾43
𝑏𝑒𝑎𝑚 𝐾44

𝑏𝑒𝑎𝑚]
 
 
 
 
 
 

 

 

(4.2) 

 

Figure 4.4: Frame element 

Example 1: 

[Okafor et al, 1996] conducted experimental and numerical studies to investigate the effect of 

delamination on modal frequencies of Glass/epoxy composite beams. Modal frequencies were 

obtained using modal testing. Polyvinylidene fluoride film (PVDF) was used to measure dynamic 

strain signal and the beam was excited using an instrumented hammer and a piezoceramic patch. 

Test specimens of laminated beams were obtained from an eight-ply [ 0°/90°/ 90°/0°]𝑠 

glass/epoxy laminate. Material properties of the ply are: 
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𝐸1 = 42.34 𝐺𝑃𝑎, 𝐸2 = 11.72 𝐺𝑃𝑎, 𝐺12 = 1.67 × 1010𝑃𝑎, 𝐺13 = 1.67 × 1010𝑃𝑎, 𝐺23 =

5.47 × 109𝑃𝑎, 𝜈12 = 0.27, 𝜌 = 1901.5
𝑘𝑔

𝑚3 

The composite laminate is 26.67 cm long, 2.54 cm wide and 0.1788 cm thick.  

An instrumented hammer was used to excite the beam and a PVDF sensor was used to measure 

the response. The beam was studied under Clamped-Free boundary conditions. The setup of the 

experimental test in [Okafor et al, 1996] is shown in Figure 4.5. (No delamination is considered in 

this case study. The same beam with delamination will be studied in the next section.) 

 

 

 

 

 

Figure 4.5: Modal testing setup from the experimental study in [Okafor et al, 1996] 

 

Table 4.3: Natural frequencies of the composite beam considered in Example 1 in Hz 

Mode 
Number 

Current 
Study  

(Okafor et al, 1996)   
Numerical study 

(Okafor et al, 1996) 
Experimental study 

1 16.16 16.17 15.00 

2 101.30 101.33 97.00 

3 283.63 283.76 273.00 

4 555.81 556.67 535.00 
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The laminated composite beam shown in Figure 4.5 is modelled using 1 spectral finite element 

and its first four natural frequencies are calculated and compared with the numerical and 

experimental results from [Okafor et al, 1996] in Table 4.3. 

Example 2:  

A glass-polyester laminated beam of rectangular cross-section having [45°/45°/ 45°/45°] 

stacking sequence is considered. This problem is also considered in [Jun et al, 2008]. The 

properties of the composite beam are given as follows: 

𝐸1 = 37.41 × 10
9𝑃𝑎,   𝐸2 = 13.67 × 10

9𝑃𝑎, 𝐺12 = 5.478 × 109𝑃𝑎,

𝐺13 = 6.03 × 109𝑃𝑎, 𝐺23 = 6.666 × 109𝑃𝑎, 𝜈12 = 0.3,

𝜌 = 1968.9
𝑘𝑔

𝑚3
, 𝐿 = 0.11179𝑚, 𝑏 = 12.7 × 10−3, ℎ = 3.38 × 10−3𝑚 

Table 4.4: Natural frequencies of the composite beam considered in Example 2 in Hz 

Mode Number Current Study  (Jun et al, 2008)  

1 398.2 397.5 

2 1592.8 1581.6 

3 3583.9 3526.9 

4 6371.3 6193.9 

 

The first four natural frequencies of the beam for simply-supported boundary condition are 

calculated and are compared with the results obtained in [Jun et al, 2008] in Table 4.4. 

4.5. Natural frequencies of delaminated composite beam using Spectral Finite 

Element and Wittrick-Williams method 

 

A delaminated zone is added to the laminated composite beam discussed in section 4.5, example 

1. Three different delaminated cases are considered, and the results are compared with 

experimental and numerical results given in [Okafor et al, 1996]. The delamination is at the mid-

plane of the composite beam. The distance between the center of delamination and the clamped 

end is 11.75 cm. Beam specimens with delamination sizes of 5.08 cm, 10.16 cm, and 15.24 cm are 

considered.  
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A total of 4 spectral elements are used to model the delaminated beam. One starting from the 

clamped end until the start of the delaminated zone containing 8 layers, 2 covering the top and 

bottom of the delaminated zone each with 4 layers and 1 covering the end of the delaminated zone 

until the free end of the beam containing 4 layers. The described mesh is shown in Figure 4.6: 

 

Figure 4.6: Spectral Finite Element model of the delaminated composite beam 

 

Table 4.5: Natural frequencies of the delaminated beam in Hz (delamination size is 5.08 cm) 

 

 

 

 

Table 4.6: Natural frequencies of the delaminated beam in Hz (delamination size is 10.16 cm) 

 

 

 

 

Table 4.7: Natural frequencies of the delaminated beam in Hz (delamination size is 15.24 cm) 

Mode 
Number 

Current 
Study  

(Okafor et al, 1996)   
Numerical study 

(Okafor et al, 1996) 
experimental study 

1 16.11 16.11 16 

2 100.79 100.83 103 

3 269.74 269.00 258 

4 531.01 531.10 523 

Mode 
Number 

Current 
Study  

(Okafor et al, 1996) 
Numerical study 

(Okafor et al, 1996) 
Experimental study 

1 15.72 15.72 16 

2 96.86 96.86 98 

3 224.71 224.93 223 

4 458.82 456.84 441 
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The first four natural frequencies of delaminated beams with 5.08 cm, 10.16 cm and 15.24 cm long 

delaminations are calculated and compared with that of the experimental and numerical studies 

given in  [Okafor et al, 1996]. The results show a close agreement between the frequencies obtained 

in this study and what was obtained in previous studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode Number 
Current 
Study  

(Okafor et al, 1996) 
Numerical study 

(Okafor et al, 1996) 
Experimental study 

1 14.82 14.83 14 

2 87.41 87.43 82 

3 178.70 197.16 183 

4 397.20 397.41 369 
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4.6.  Effect of mid-plane delamination location on the natural frequencies of 

laminated composite beam 

 

Consider the delaminated beam discussed in the previous section. To investigate the effect of 

delamination location on the frequency of each mode, a damage model of the beam as shown in 

Figure 4.6 is built using spectral elements. A delaminated zone with the length of 4 cm is moved 

along the length of the beam from the clamped end until the free end and the first 8 frequencies of 

each model are captured. Figure 4.7 shows how changing the location of the delaminated area 

affects the first 8 modes of vibration.  

The relative difference between the frequency of each mode for each damage case, is calculated 

using Eq. 4.3. This difference shows the percentage of frequency drop in each mode for each 

damage case: 

 
𝑑𝑖𝑓𝑓𝑖 = (1 −

𝑓𝑖
𝑓𝑢𝑙𝑙𝑦−𝑏𝑜𝑛𝑑𝑒𝑑

− 𝑓𝑖
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑓𝑖
𝑓𝑢𝑙𝑙𝑦−𝑏𝑜𝑛𝑑𝑒𝑑

) × 100 

 

(4.3) 

The maximum value of 𝑑𝑖𝑓𝑓𝑖 for all the damage cases, can be interpreted as an indication of how 

much the ith mode is affected by the delamination. Figure 4.8 shows the relative difference in 

frequency due to delamination location for the first 8 modes of vibration. The maximum values of 

the relative difference in frequencies of each mode due to delamination effect are compared with 

each other in Figure 4.9. Figure 4.9 shows that delamination affects higher modes of vibration 

much more than the lower ones.  
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Figure 4.7: Effect of delamination location on the first 8 natural frequencies of the laminated beam 
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Figure 4.8: Effect of delamination location on the relative difference of the first 8 natural frequencies of the 

composite beam.  
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Figure 4.9: Effect of delamination on the natural frequency of the first 8 modes of vibration  
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4.7. Effect of friction between the top and bottom layers in the delaminated zone 

 

As discussed in section 3.22, spring elements with axial stiffness in both X and Y directions are 

used to connect the top and bottom layers in the delaminated zone to bring the spectral finite 

element model closer to the real case. In this section, the beam discussed in section 4.6 is 

considered to be completely delaminated and the top and bottom layers are held together using 

spring elements with the stiffness matrix shown in Eq. 3.182. The number of spring elements in 

the delaminated zone is increased as shown in Figure 4.11 to study the effect of friction between 

the top and bottom layers. 

Top and bottom layers can also be connected to each other using the MPC links. A pair of extra 

nodes are added to the top and bottom layers in the delaminated zone and the constraints in Eq. 

4.4 are applied to their degrees-of-freedom.  

 

{

𝑢𝑏𝑜𝑡𝑡𝑜𝑚
𝑣𝑏𝑜𝑡𝑡𝑜𝑚
𝜃𝑏𝑜𝑡𝑡𝑜𝑚

} = {
𝑢𝑡𝑜𝑝 −

ℎ

2
𝜃𝑡𝑜𝑝

𝑣𝑡𝑜𝑝
𝜃𝑡𝑜𝑝

} 

 

(4.4) 

For example, in the second case shown in Figure 4.10 with 1 pair of extra nodes in the delaminated 

zone, the following constraints are applied: 

 

{

𝑢6
𝑣6
𝜃6
} = {

𝑢5 −
ℎ

2
𝜃5

𝑣5
𝜃5

} 

(4.5) 
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Figure 4.10: Extra MPC links to add extra stiffness in the delaminated zone 

 

Figure 4.11: Truss elements added to add extra stiffness in the delaminated zone 

 

Table 4.8: Comparison of natural frequencies of models with extra MPC links for the fully-delaminated and fully-

bonded cases. (Hz) 

Mode Delaminated 1 MPC Link 2 MPC Links 3 MPC Links Fully-bonded 

1 11.973 14.291 15.479 15.767 16.163 

2 58.368 65.150 79.773 87.222 101.296 

3 64.999 162.172 181.472 212.303 283.632 
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Table 4.9: Comparison of natural frequencies of models with 1 extra spring element in the delaminated area for the 

fully-delaminated and fully-bonded cases. (Hz) 

 

Mode Number 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 in both directions (N/m) Fully-bonded 

0.0 1.0E+03 1.0E+06 1.0E+09 1.0E+12 

1 11.973 11.973 12.190 12.857 12.860 16.163 

2 58.367 65.001 65.821 68.642 68.654 101.296 

3 64.999 115.495 160.892 160.892 160.892 283.632 

 

Table 4.10: Comparison of natural frequencies of models with 2 extra spring elements in the delaminated area for 

the fully-delaminated and fully-bonded cases. (Hz) 

 

Mode Number 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 in both directions (N/m) Fully-bonded 

0.0 1.0E+03 1.0E+06 1.0E+09 1.0E+12 

1 11.973 11.974 12.397 13.294 13.298 16.163 

2 58.367 65.002 66.644 70.778 70.796 101.296 

3 64.999 127.541 171.657 178.092 178.122 283.632 

 

Table 4.11: Comparison of natural frequencies of models with 3 extra spring elements in the delaminated area for 

the fully-delaminated and fully-bonded cases. (Hz) 

 

Mode Number 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 in both directions (N/m) Fully-bonded 

0.0 1.0E+03 1.0E+06 1.0E+09 1.0E+12 

1 11.973 11.974 12.566 13.555 13.559 16.163 

2 58.367 65.003 67.351 72.177 72.199 101.296 

3 64.999 144.446 172.675 180.558 180.597 283.632 

 

 

The first 3 natural frequencies of the cases with addition of 1, 2 and 3 Springs and 1, 2 and 3 MPC 

links are compared for a completely delaminated case and a fully-bonded case. It is shown in Table 

4.8 that by increasing the number of MPC links, the behavior of the completely delaminated beam 

converges toward the fully bonded case.  
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In Tables 4.9, 4.10 and 4.11, the effect of adding spring elements and increasing their stiffness is 

studied. It is observed that by increasing the stiffness of springs and keeping the number of springs 

constant, frequencies get closer to the fully-bonded case and converge on a value between the 

completely delaminated and the fully-bonded case. It is also observed that by increasing the 

number of spring elements, this converged value gets closer to the frequencies of the fully-bonded 

case. 

For both cases with MPC links and spring elements, it is observed that as the mode number is 

increased, frequencies converge to that of the fully-bonded case with a lower rate.  
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4.8. Damage detection in damaged isotropic beams using Genetic Algorithm 

The damage detection algorithm explained in sections 3.16 – 3.19 is used to find damage in 

isotropic beams. Consider a damaged structure as shown in Figure 3.16 with the following 

properties of 𝐿 = 20 𝑖𝑛, 𝐿𝑤 = 5 𝑖𝑛, 𝐷 = 25%. The first three natural frequencies and mode 

shapes are calculated using spectral analysis. The results are taken as {𝜆}𝑒𝑥𝑝, {Φ}𝑒𝑥𝑝 in Eq. 3.114 

as simulation of a vibration test. 

The Genetic Algorithm computes 8 trial solutions for each generation and generates the new 

generation based on the best solutions of the previous generation. The algorithm stops when the 

cost function of the best solution becomes zero or when the number of generations reaches a certain 

limit. The trial solution with the lowest cost in each generation is plotted in Figure 4.12. 

 

Figure 4.12: Performance of the Genetic Algorithm  

 

The exact values for {𝐿𝑡𝑟𝑖𝑎𝑙 , 𝐿𝑤
𝑡𝑟𝑖𝑎𝑙 , 𝐷𝑡𝑟𝑖𝑎𝑙} were predicted in the 356th generation. This means that 

(356*8 =) 2848 possible cases were investigated until the right solution was found. Considering 

the constraints in Eq. 3.115 and with regards that 𝐿𝑤
𝑚𝑎𝑥 was taken as 20 as a simplifying 

assumption, (20*60*100 =) 120000 possible cases of damage exist. This means that the Genetic 

algorithm found the exact location of damage and its severity by considering only 

(
2848

120000
∗ 100) 2.37% of all possible cases. 

 

 



86 
 

4.9. Delamination detection in delaminated composite beams using Genetic 

Algorithm 

 

The algorithm explained in sections 3.16 – 3.19 is extended to work with the delaminated 

composite analysis program. A delamination can be addressed using two parameters, its location 

and its length as shown in Figure 4.13. The damage index from the previous formulation can be 

removed in this part and each damaged model can be referenced using only two parameters: L and 

Lw. 

 

Figure 4.13: Model parameters of delaminated beam 

To study the performance of the delamination detection algorithm, a delamination is introduced at 

100 mm away from the clamped end of the model of the beam shown in Figure 4.6. The 

delamination  length is assumed to be 20 mm. The first 3 modes of the delaminated model are 

calculated. The delamination detection algorithm is used to find the model that matches the 

vibration properties of the said delaminated beam with L=100mm and Lw=20mm. The 

performance of the damage detection program is shown in Figure 4.14. In Figure 4.14 the cost of 

the candidate with the lowest cost in each generation is plotted against the generation number. The 

updated model is found in the 22nd generation.   
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Figure 4.14: Performance of the delamination detection algorithm 

To demonstrate the positive effect of having access to more modes on the performance of the 

damage detection program, a case study is done. Consider the same delaminated composite beam 

in section 4.6. 20 random damaged cases are created, and their first four natural frequencies and 

mode shapes are captured using spectral element model. The damage detection algorithm is used 

for each damage case, but only the vibration features of the first mode is fed to the algorithm and 

the predicted delamination length and location are stored. This process is repeated 3 more times 

and each time, 20 new delaminated cases are created and the first two, first three and first four 

vibration features are fed to the program.  

The location and length of each prediction are compared with the corresponding delaminated case 

and if the predicted damaged model is close enough, the prediction is labeled true, otherwise it is 

labeled false. A prediction was assumed to be true if the difference between the delamination 

locations is less than 2 cm and the difference between the delamination lengths is less than 1 cm. 

The number of true predictions using each number of vibration modes is counted and shown in 

Figure 4.15. 
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Figure 4.15: Effect of number of modes used on the performance of the damage detection algorithm 

 

According to Figure 4.15, feeding more vibration modes to the damage detection algorithm, 

increases the performance of the algorithm.  
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Chapter 5 

 Conclusion and future works 

A transient solution procedure was developed within the context of spectral element method and 

implemented for the analysis of Euler-Bernoulli beams. As Spectral Element procedure is 

originally developed for the steady-state dynamic solution, the developed procedure utilizes the 

steady-state solution to determine the transient solution. The numerical efficiency of the Spectral 

Element Method over the Finite Element Method, in obtaining the free vibration frequencies and 

mode shapes, was illustrated in case studies. The efficiency of  the Spectral Element Method 

becomes more significant in higher frequencies which is especially important as in many cases 

damage effects reveal themselves only at high frequencies. Results of the dynamic analysis were 

employed in a genetic algorithm-based damage detection procedure. The genetic algorithm 

searches for the optimum of a cost function that employs the frequencies and mode shapes of the 

spectral element model to identify the damaged configuration, including damage location and size.  

The developed spectral Euler-Bernoulli beam element was combined with spectral bar element to 

create a frame element with axial, transverse and rotational degrees-of-freedom at each node. The 

frame element was used to model the dynamic behavior of symmetric laminated composite beams. 

Multiple-Points-Constraints method was used to model mid-plane delamination inside the 

laminated composite beams. Case studies were done by comparing the natural frequencies of fully-

bonded and delaminated composite beams obtained by the introduced model with that of the 

previous works in the literature. Effect of delamination location on natural frequencies of 

delaminated composite beams was studied and it was shown that delamination affects higher 

modes of vibration more significantly. Spring elements were used inside the delaminated zone to 

model the effect of extra stiffness due to the friction and cohesion between the top and bottom 

layers. A vibration-based delamination detection algorithm based on Genetic Algorithm was 

developed. The performance of the algorithm in solving inverse problems was tested by creating 

the model of the delaminated beam based on observed frequencies and mode shapes. The effect of 

having access to higher modes of vibration on the performance of the delamination detection 

algorithm was shown. 

The major findings and observations in this study are indicated as below: 
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1) Application of Spectral Finite Element method as a computationally efficient tool for 

dynamic analysis of isotropic beams and laminated composite beams was shown. 

2) A method was adopted from previous works in the literature to calculate the free vibration 

response of structures using steady-state solution, vibration natural frequencies and 

vibration mode shapes. The method was combined with the Wittrick-Williams algorithm 

to calculate the free vibration response.  

3) A vibration-based damage detection algorithm based on the Genetic Algorithm was 

developed. The algorithm minimizes a cost function that was adopted from previous works 

in the literature using the free vibration results obtained using the dynamic stiffness matrix. 

The performance of the algorithm was shown by performing damage detection on damaged 

isotropic beams and delaminated composite beams. 

The author recommends the following research works that can be pursued based on the results 

of this thesis: 

1) Development of a Spectral Finite Element Model for unsymmetric laminated composite 

beams where the axial behavior is not uncoupled from the bending behavior. 

2) Development of new method for calculation of J0 in the Wittrick-Williams method in cases 

that an analytical solution is not available. It is possible to obtain J0 by tracing the signcount 

of the dynamic stiffness matrix of spectral finite element model as the mesh is refined. 

3) Development of a data-driven approach to improve the performance of the damage 

detection algorithm when real data from experimental vibration tests are used. The author 

believes there is a potential to integrate the proposed spectral finite element model-based 

damage detection algorithm with a data-driven approach to come up with a physics-guided 

damage detection algorithm. The physics-guided algorithm can overcome the weak 

performance of model-based techniques when it is subjected to experimental data and the 

problem of data-driven-only methods when the vibration features data set is small.  
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