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Abstract

Computational Analysis of Eye-Strain for Digital Screens based on
Eye Tracking Studies

Mohsen Parisay, Ph.D.

Concordia University, 2022

Computer vision syndrome (CVS) is composed of multiple eye vision problems due

to the prolonged use of digital displays, including tablets and smartphones. These

problems were shown to affect visual comfort as well as work productivity in both

adults and teenagers. CVS causes eye and vision symptoms such as eye-strain,

eye burn, dry eyes, double vision, and blurred vision. CVS, which causes severe

vision and muscular problems due to repeated eye movements and excessive eye

focus on computer screens, is a cause of work-related stress. In this thesis, we

address this problem and present three general-purpose mathematical compound

models for assessing eye-strain in eye-tracking applications, namely (1) Fixation-

based Eye fatigue Load Index (FELiX), (2) Index of Difficulty for Eye-tracking

Applications (IDEA), and (3) Eye-Strain Probation Model (ESPiM) based on eye-

tracking parameters and subjective ratings to measure, predict, and compare the

amount of fatigue or cognitive workload during target selection tasks for different user

groups or interaction techniques. The ESPiM model is the outcome of both FELiX

and IDEA, which benefit from direct subjective rating and, therefore, can be applied

to assess the ESPiM model’s efficacy. We present experiments and user studies that

show that these models can measure potential eye-strain levels on individuals based

on physical circumstances such as screen resolution and target positions per time.
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Preface

The evolution of work-related cultures has shaped society and the lifestyles of the

working force. The first industrial revolution (1760 to 1840) [123] started a new

culture of regular work in the West. Before the industrial revolution, working hours

and workplaces were mostly based on the seasonal agricultural environments, with the

majority of people working on farmlands or in family-operated businesses[50]. The

industrial revolution caused significant lifestyle changes in the greater part of Europe

[50], leading to an advancement in innovation and technology, which transformed

cities and standards of living.

This transformation not only exploited natural resources and polluted environ-

ments irreversibly [49], but it also caused new challenges for workers, including long

working days (typically 12 hours a day [71]) in closed, unhealthy spaces dealing with

chemicals and extremely loud and dangerous heavy machinery. Furthermore, this was

the beginning of women and children entering the workforce [71]. The notable English

writer Charles Dickens [135] described in detail child labour and cruel treatment of

young workers during this time in his masterpiece Oliver Twist [136].

The second industrial revolution, which started in the 20th century, created

more sophisticated materials and led to the creation of more advanced machinery

and automation [123]. After the rise of electronic circuits and digital computers

around 1960 [134], productivity increased in many areas, and more working skills

and qualifications were needed to accomplish tasks in the workplace. These new

1



advancements led to new challenges at work, and finally, in 1938 in the United States

[122] a work-week structure declaring a 40-hour work-week, five days a week with

eight hours a day was created. The concept of 9-to-5 [124, 85] was the beginning of

the standard eight-hour working culture and is now accepted in many countries as

the norm [184].

Today, most employees work in offices sitting in front of computers in many parts of

the world for eight hours a day. Despite the luxury of modern working environments

compared to factories, today’s typical workplace has some negative aspects. The

routine work atmosphere commonly in closed spaces, i.e. cubicles, dealing with

multiple types of devices (PC, smart-phone, telephone) simultaneously (multitasking),

causes an increased workload. These new working habits have also changed the social

behaviour of workers [48]. Decades ago, work ended at the time the employees left

their offices, but nowadays, due to high connectivity, many employees are expected to

be accessible by their supervisors, colleagues or clients even on weekends and during

vacations [19]. There is an ongoing debate, if the concept of 9-to-5 is still relevant to

current working situations, [184, 20].

These circumstances have increased the stress of employees [125]. Although the

theoretical working day is still eight hours, in practice, this is not the case and

is causing work-related stress. In major cities worldwide, long commutes are also

inevitable for many workers and most often do not count as working time. However,

commuting can also contribute to work stress because this often is wasted time and

reduces the spare time for private affairs. According to the statistics published by the

University of Oxford [150, 149], the working week was reduced to 40 hours in industrial

countries by 1980, but productivity has been increasing rapidly. This inconsistency

in the labour-productivity ratio may indicate more workload and stress due to the

higher complexity of tasks and demanded skills to accomplish routine tasks.

2



Chapter 1

Introduction

Today in many parts of the world, most employees work sitting in front of computers

for eight hours a day. Despite the luxury of modern working environments compared

to factories, today’s typical workplace has some negative aspects. The typical work

atmosphere commonly in enclosed spaces, i.e. cubicles, dealing with multiple devices

(e.g. PC, smartphone, telephone) simultaneously (i.e. multitasking) can lead to an

increased workload. Although the so-called open-plan1 office concept was introduced

to reduce the negative impacts of cubicles, this concept has multiple challenges such

as higher blood pressure due to excessive ambient noise and a higher flow of airborne

germs than closed-space offices [21]. In addition, open workspaces showed lower

productivity, and employee morale [185]. According to a poll in the UK, employees

spend 1700 hours working in front of a computer display yearly, and 37% of employees

believe that these amounts of screen usage cause them headaches[9]. Moreover,

scientists have found a correlation between excessive screen time and dry eyes due to a

reduction in blink rates, for example, in a large study of office workers in Japan [155].

Computer vision syndrome (CVS), also known as digital eye-strain, is an umbrella

term for multiple eye vision problems due to the prolonged use of digital displays,
1A large room with no divisions into smaller areas [45].
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including tablets and smartphones [148]. These problems have been shown to affect

visual comfort as well as work productivity in both adults and teenagers [148]. CVS

causes eye and vision symptoms such as eye-strain, eye burn, dry eyes, double vision,

and blurred vision [117]. Furthermore, CVS is a major cause of work-related stress

due to repeated eye movements, and excessive eye focus on computer screens [119].

Therefore, in this research, we focus on eye-strain as one of the major CVS symptoms

[117] and address this specific component of work-related stress among computer

users.

1.1 Work-related Stress

Work-related stress, i.e., the stress caused by one’s job, is one of the main challenges of

the workforce in the 21st-century [163]. According to the World Health Organization

(WHO), [127], work-related stress occurs when the workload demand is higher than

the knowledge and abilities of workers to handle. Employees may feel overwhelmed

with the amount of work to be accomplished in a limited amount of time and may

feel no support to handle their tasks, and thus they feel stressed. According to

the American Institute of Stress (AIS), 46% of stress relates to workload [125] and

according to Statistics Canada 62% of Canadian workers claimed that work was the

main source of stress in their lives [36]. Although stress is a natural phenomenon in

human physiology that helps one to cope in dangerous situations [187], permanent

stress has several harmful effects such as increasing chance of heart disease [90, 28],

hypertension [166], diabetes [53, 98], Alzheimer’s [108] and various psychological

disorders such as depression [114, 162], anxiety [114, 118], changes in mood [171] and

violence at the workplace [40]. Figure 1 illustrates the relation between stress increase

and physical/mental activities based on the human functional curve proposed by Peter

Nixon in 1979 [137]. The curve shows the struggle towards unhealthy conditions,
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which ends in a breakdown. The fatigue border (illustrated in a vertical red dashed

line) represents the critical state towards distress.

 

Figure 1: Relationship between stress growth and physical/mental activities. The
dashed red line shows the critical boundary between good stress and distress based
on the human functional curve proposed by Peter Nixon [137].

In addition, a poor diet such as that of cholesterol-rich processed food and fast

food meals contributes to the side effects of work-related stress [67, 147]. Smoking or

the consumption of mood and energy-boosting stimulant substances such as alcohol

or caffeinated beverages, which have become part of the working culture in many

countries, and the lack of physical activities due to automation and digitization of

work tasks, are also associated with high work-related stress. However, the extent of

these damages varies between male and female workers and depends on the type of

work [28]. Due to these large and varied impacts that stress can have on a person and

the people around them, stress has been labelled as a silent killer [38]. The severe

health risks caused by work-related stress mentioned earlier might be complicated

and expensive to treat, if not impossible. Human physiology and psychology are very

complex, and the mentioned side effects are only a few examples among unknown

issues that can arise. According to current evidence, permanent work-related stress is

harmful with many complicated symptoms. Thus, it should be detected and handled

in the early phases. Since exposure to work-related stress is inevitable and has become
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part of our daily lives, there need to be mechanisms to reduce its destructive impacts

on our health.

1.2 Eye-strain

According to Vasiljevas et al., fatigue is the increase of tiredness of a subject under

load [178] and can be grouped into physical, e.g. lack of sleep, and mental related

causes such as stress [66]. According to Marcora et al., mental fatigue is the result

of high cognitive activity [109]. Visual fatigue defined as “eyestrain or asthenopia,

which can be caused by both two-dimensional and stereoscopic moving images” [78]

and which can cause motion sickness [94], occurs when focusing on near objects. The

visual function of the eyes may cause visual fatigue, especially in long-time periods.

1.3 Motivation

Given the increased use of digital displays in everyday life, CVS and eye-strain

are becoming more and more common among computer users that spend prolonged

periods working in front of monitors[178]. My research focuses on developing methods

to measure visual fatigue or eye-strain and to provide models that can be used to

evaluate user interfaces based on eye-strain in user studies. Thus in the following

chapters, we: (1) review the aspects of eye-strain and its correlation with work-related

stress, (2) investigate the potentials of eye-tracking as an effective and low-budget eye-

strain analysis device, and (3) propose mathematical models to predict and measure

eye-strain with and without subjective feedback.
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1.4 Objectives and Contributions

The goals of this dissertation are twofold: first, we aim to enable researchers and

designers of user interfaces to assess the amount of eye-strain the visual parameters

of the interface may cause. Second, we aim to develop eye fatigue models that can

be applied to different case scenarios, display types or compare different interaction

techniques in user studies to identify and reduce the side effects of visual interactions

with digital displays. Specifically, through the course of our research, we have

developed three mathematical models, FELiX, IDEA and ESPiM, for predicting and

measuring eye-strain (see Table 1).

Model Objective Approach
FELiX Eye-strain measurement Fixation points
IDEA Task difficulty measurement Fitts’ law properties
ESPiM Eye-strain measurement Based on Shannon code

Table 1: Summary of trilateral models. FELiX and IDEA are more general
measurement models, ESPiM relies solely on objective measures specifically for eye-
strain prediction and measurements.

FELiX and IDEA are compound models comprised of subjective ratings integrated

into objective measures as descriptive and measurement models with multi-purpose

applications. However, the ESPiM model is a stand-alone objective measure

applicable for both prediction and measurement purposes, specifically introduced for

eye-strain on digital displays. Together, all three models provide unique tools to

predict and measure eye-strain using only a simple eye tracker.

The main contributions of this dissertation can be summarized as follows:

1. Design, development and testing of a contact-free interaction technique for gaze-

based interactions (EyeTAP [131]) which addresses the Midas touch problem

[83].
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2. Design and development of a novel compound multi-factor model to measure

eye-strain in user studies based on both subjective and objective measures [129].

3. Design and development of a novel compound multi-factor model to measure

task difficulty of eye tracking applications in user studies based on both

subjective and objective measures [132].

4. Design and development of a novel objective compound model to measure eye-

strain based on spatial and temporal parameters of interaction techniques on

digital displays.

1.5 Terminology

The word target refers to graphical user interface (GUI) elements that are designed

to be selected by clicks or to carry out inputs and outputs that need the user’s

attention. These GUI elements include commonly-known entities such as buttons,

text boxes, or prompt dialogues. In addition, eye-fatigue and eye-strain are referred

to the same concept in this dissertation. The words mental fatigue and mental

stress have semantically different clinical definitions; we refer to them to describe

the negative impacts of arousal effort shown in figure 1 in this thesis. Moreover, the

word cognitive workload refers to the amount of mental effort used to perform a task

by a person. The word model refers to a set of mathematical equations and logical

expressions to describe and measure physical phenomena such as eye-strain based on

case scenarios and test circumstances. In addition, the words display and screen are

used interchangeably and refer to digital devices capable of producing visual images

in pixels shown to users.
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1.6 Organization

The remainder of this thesis is organized as follows: in Chapter 2, we introduce eye-

tracking which contains an in-depth overview of the field of eye-tracking containing

definitions, methods, applications, challenges, benefits, and guidelines. This chapter

can be regarded as a survey for the field of eye-tracking which is necessary for the

rest of this dissertation.

Chapter 3 proposes an alternative interaction technique called EyeTAP [131] for

the most common challenge of eye-tracking known as the ‘Midas touch’ problem

[83] presented in the earlier chapter on eye-tracking. We encourage readers to

read Chapters 2 and 3 together to obtain a better understanding of the proposed

interaction technique EyeTAP [131] if interested.

Having the fundamental concepts of eye-tracking and the issues of computer vision

syndrome (CVS) discussed earlier, we will focus on the trilateral proposed models

FELiX [129], IDEA [132], and ESPiM to mitigate eye-strain in Chapters 4, 5, and

6. Each chapter contains the necessary definitions, methodologies, and conclusions of

each eye-strain model and can be studied independently from each other.

We then summarize and conclude the entire work presented in this dissertation in

Chapter 7 and propose perspectives for future work.
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Chapter 2

Background & Related Work

In the following chapter, we provide background to the physiology and function of

the eye, eye tracking technology and different eye-tracking methods that have been

used in human-computer interaction.

2.1 Physiology of the Human Eye

First, we review the visual system to better understand its functions and how humans

perceive information. The anatomy of the eye can be described as follows [91]:

• Cornea: a transparent layer protecting the iris and pupil.

• Pupil: a controllable opening to adjust incoming light.

• Lens: the structure responsible for focusing received light on the retina.

• Retina: the layer of tissue at the back of the eye that is sensitive to light and

color, constructs the picture of the observed scene.

The act of seeing is regarded as the first step of interacting with objects in the

world [96]. Eye tracking technology tracks the eyes using devices that can observe
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natural eye behaviours such as movements, blink rate, and pupil size to determine

where a user is focused on a visual scene [106]. By studying gaze behaviour it is

possible to begin to understand the intentions or thinking of users [106].

2.2 Eye Movements

The invention of eye trackers led to the study of eye movements. In general, the most

common types of eye movements: fixations, saccades, and smooth pursuit.

2.2.1 Fixations

Fixations are short pauses, in the range of 200 - 600 milliseconds, when the eye is

virtually still, and visual input takes place [106]. Due to the physiology of the eye,

specifically the decrease of visual acuity away from the center of retina1, only a tiny

portion of the visual field is perceived with high accuracy during a fixation [106].

Therefore, to gain a broader perception of the visual world, the eye moves around a

scene changing focus from one point to another. These rapid eye movements between

fixations are termed saccades [106]. Fixation points, fixation duration, and saccades

can be detected based on the locations of eye gaze per time on the screen.

2.2.2 Saccades

According to Jacob et al. [81], saccades take 30 - 120 milliseconds, and once the path

of the eye movement begins, it cannot be altered. A rapid rise of tension causes a

saccade [174]. Saccadic eye movements are due to both voluntary and sensory factors

[56]. According to Zimmermann et al., saccades reveal an accurate representation of

target locations. Furthermore, saccade adaptation (displacement of visual targets)
1The primary instrument of vision that receives the image formed by the lens and converts it

into chemical and nervous signals which reach the brain by way of the optic nerve [46].
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modifies the perception of targets in the brain [192]. In addition, microsaccades (very

short in duration and magnitude) also affect the visual system [60]. Van Beers et

al. investigated the source of variability in saccades [177]. They found that saccades

in horizontal-, or vertical-only directions are less variable than diagonal directions.

Saccadic parameters such as (1) amplitude, (2) duration time, and (3) peak velocity

are all inter-correlated. The source of variability in saccade endpoints is due to the

uncertainty in assessing the correct target location [177]. Furthermore, saccades with

a duration time higher than average reach a peak velocity value smaller than the

average. Figure 2 illustrates eye movement on a screen. Fixations are shown as

circles and saccades as direct lines between the fixations. This figure shows the entire

movement of a user on the screen for a specific task. Eye movement analysis can

thus reveal users’ areas of interest (AOI) based on fixations and the sequence of their

observations on a visual scene.

 

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600 1800

Sc
re

e
n

 H
ei

gh
t 

(p
ix

el
s)

Screen Width (pixels)

Figure 2: Eye movements on a screen with resolution of 1728 × 972 pixels. Circles
represent fixations and lines illustrate the saccades between fixations. Focused areas
of interests (i.e. longer fixations) are depicted as darker spots.
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2.2.3 Smooth pursuit

A smooth pursuit is a form of eye movement that occurs when a moving stimulus

(e.g. an object or animation) is followed with gaze [11] (see figure 3). The response

to a moving visual stimulus initiates pursuit in which the fovea (responsible for

sharp vision [44]) remains focused on the stimulus [99]. However, a moving target

evokes both smooth and saccades. Saccades track the moving target, whereas pursuit

corresponds to a process to initiate voluntary eye movements [10]. These two eye

movements (saccades and smooth pursuit) are distinctive since (1) they are generated

by separate neural systems, (2) have different latencies, and (3) react to different

aspects of stimuli [99]. This is a major characteristic of primates that allows them to

track small moving objects accurately, even across patterned backgrounds [99].

 

Figure 3: Overview of smooth pursuit.

2.3 Eye Tracking

There are different technologies that exist for eye tracking including both head-worn

sensors or remote (desktop) sensors. In general, there are three main techniques for

eye tracking:

1. Videooculography (VOG): tracking using video cameras in visible light. De-

pending on the quality of camera the accuracy may vary in different cases. In

addition, a dedicated system is required to process the recorded data and detect

the gaze point.
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2. Video-based infrared (IR): tracking using pupil-corneal reflection (PCR) de-

tected by an infrared light beam. This small spot reflected on the iris offers a

reference point to track the eye’s gaze point (see figure 4a).

3. Electrooculography (EOG): the eye is an electric field, with a positive pole

(cornea) and a negative pole (retina), which can be detected. Therefore, the

eye movements can be measured using electrodes on the face. Although this

method can work even when blinking, it is invasive and has lower accuracy.

 

(a)
.

 

(b)

Figure 4: (a) Illustration of corneal reflection effect detected by LED light and infrared
camera. The detected corneal reflection spot works as a reference point to track eye
movements. (b) A five-point calibration screen. Each circle illustrates a reference
point on the screen the user will focus on.

2.3.1 Tracking quality

Tracking quality depends on several properties, including the user’s eye (i.e. the

physiology of the eye and whether the user is wearing glasses/contact lenses), the

tracking environment, and the tracking and calibration methods. The tracking

environment refers to the lighting conditions of the environment (natural daylight

vs. artificial lighting). The tracking method is the method by which the eye is

tracked; examples include corneal reflection method vs. videooculography (tracking

eye positions using video cameras in visible light) [31], or electrooculography (tracking

eyes using electrodes worn on the face) [31], in addition, the resolution and focus of
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the tracker’s camera are also important. The VOG method usually has lower quality

(about 4◦) than the IR method with 0.5◦of visual angle. The EOG technique has the

highest accuracy and therefore has medical applications; it is used to study diseases

of the eye [106]. One visual degree corresponds to about 43 pixels on a 1920 × 1080

display with 70 cm distance to the display [167].

2.3.2 Calibration

Calibration is the process of mapping measurement points (reference points) to the

user’s eye positions (orientation) [145]. This procedure is essential for eye-tracking

applications to improve accuracy. Many different methods exist, including five, seven

or nine-point calibrations which record the user’s eye position on some reference points

on the screen. Figure 4b illustrates an overview of a five-point calibration procedure.

2.4 Application Domains

There are several research, industry and personal application areas with high potential

use cases for eye tracking. The main benefits of eye-tracking over other interaction

methods are related to its hands-free characteristics. Below we list some example

domains where eye-tracking has been used or studied.

1. Basic interactions for disabled users: based on some physical disabilities, some

users may not be able to interact with a mouse or keyboard, eye tracking may

be used for interaction.

2. Medical environments: in surgical operation environments with high demand of

sterility and low physical contacts to equipment.

3. Aviation and aerospace: in some environments, both hands may be occupied

with different joysticks and controllers. In addition, high concentration and
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interaction are needed quickly, and users may observe visual commands and

trigger them without touching as they observe the scene.

4. Automotive: two areas in the automotive industry where eye tracking has been

shown to be useful are:

(a) Unobtrusive driver observation: useful for safety reasons by observing the

level of consciousness of a driver in real-time to avoid accidents.

(b) Interaction with car applications: the interface can be shown on the

windshield glass where the commands can be triggered. In this way, the

attention remains on the front screen and does not distract the driver from

the road.

5. Remote collaboration: working on a shared visual object to improve coordina-

tion [35] or cooperation between a local worker and remote collaborator [68].

6. Augmented and virtual reality (AR/VR): optimizing the calibration of AR

glasses and using eye gaze as an additional input modality [146].

7. Gaming: sharing eye gaze and visual attention in collaborative gameplay

between several players [164].

8. Human identification (soft biometric): Cantoni et al. proposed an analysis

technique (GANT) for human identification based on obtained fixation points

during a user study [23]. The way of looking at an image can reveal a person’s

identification by comparing areas of interest (AOIs) to image landmarks. The

comparison is based on created graphs based on fixation density2, duration time

and created graphs based on nodes connections on an image.
2Number of fixation points in a specific area [23].
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2.5 Challenges of Eye Tracking

Eye tracking, like many emerging technologies, has its challenges. Before reviewing

the benefits and the importance of eye-tracking, we first discuss its shortcomings.

1. Low accuracy: the accuracy of an eye-tracking cursor/pointer is typically lower

than a mouse. It is also subjective to users and depends on the hardware and

software of the eye-tracking sensor.

2. Midas touch problem: unintended activation of functions by eye gaze to hit a

target accidentally.

3. Difficulty to control: it is difficult to move a cursor/pointer to a specific location

as users tend to do with a mouse because of the natural micro-movements of

the eye.

4. Device-dependency: the performance of eye-tracking applications is highly

dependent on the quality of tracking sensors.

5. Application-dependency: the interaction with an eye tracker requires a specific

user interface; therefore, it is not applicable for every application.

6. Eye fatigue: interacting with eye tracking applications leads to eye fatigue

since the eye is responsible for observing information and sending commands

simultaneously.

7. Configuration and calibration: an eye-tracking application needs prior setup to

run. In addition, every single user of a system completes a short calibration

process.
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8. Training required: users need to learn how to interact with an eye-tracking

application. These will be dependent on the type of interaction required (dwell-

time or secondary input modality).

Midas Touch

One of the main challenges of gaze-based interactions is distinguishing normal eye

function from a deliberate interaction with the computer system, commonly referred

to as ‘Midas touch’. The Midas touch problem occurs when a user accidentally

activates a computer command when the intention is to look around and perceive

the scene. According to Jacob [79] this problem occurs because eye movements are

natural, i.e. the eyes are used to look around an object and to scan a scene, often

without any intention to activate a command or function. This phenomenon is one of

the significant challenges in eye interactions, and diverse methods have been proposed

to reduce this effect.

2.6 Eye Tracking Methods Addressing Midas

Touch

In the following section, we describe different techniques that have been used to

address the Midas touch problem. These solutions can be categorized into four

groups according to the interaction technique they employ: (a) dwell-time processing,

(b) smooth pursuits, (c) gaze gestures, and (d) multimodal interaction. Below, we

describe each of these solutions and provide example use-cases.

18



2.6.1 Dwell-time processing

Dwell-time is the amount of time that the eye gaze must remain on a specific target in

order to trigger an event. Researchers have tried to detect specific thresholds to handle

the Midas touch problem [142, 179]. For example, Pi et al. proposed a probabilistic

model for text entry using eye gaze [142]. They reduced the Midas touch problem by

assigning each letter a probability value based on the previously chosen letter such

that a letter with lower probability requires a longer activation time to be activated

and vice-versa. Velichkovsky et al. applied focal fixations to resolve the Midas touch

problem by assigning the mean duration time (empirically set to 325 ms) of a visual

search task to trigger a function [179]. Dwell time is even faster than the mouse

in certain tasks, e.g. selecting a letter given an auditory cue [160]. The method

of applying focal fixations may be very subjective since searching time varies across

users when applying the dwell-time technique [12]. Moreover, increasing the threshold

may increase the duration time of the entire interaction. Conversely, reducing the

amount of dwell time may lead to more errors for some users [181]. Pfeuffer et

al. investigated visual attention shifts in 3D environments for menu selection tasks

[141]. They compared three interaction techniques for menu selection: (1) dwell-time

(activation threshold of 1 sec.), (2) gaze button (applying eye gaze to point, selecting

by a button press), and (3) cursor (applying eye gaze to point to a context, precise

movement and selected by a manual controller). They found that the dwell-time

technique was the fastest in terms of performance. In addition, the cursor technique

was found to be the most physically demanding technique. They also found that

dwell-time was considered to be the easiest method according to users. However, the

gaze button and the dwell-time caused the highest eye fatigue.

19



2.6.2 Smooth pursuits

Smooth pursuits are a form of eye movement that occurs when a moving stimulus

(e.g. an object or animation) is followed with gaze [11]. The method is typically

implemented by using a visual point on the interface, then to activate the target,

the user must fixate on one of these points. This technique has been used to

select targets [182], control home appliances [180], activate functions such as mouse

clicks [156] or to use the music player on a smartwatch (Orbits) [52]. Schenk et

al. proposed a framework (GazeEverywhere) that enables users to replace mouse

inputs [156]. This solution includes a computer to process gaze interactions (gaze

PC), a computer to show the results (unmodified PC) connected via a micro-controller

to trigger mouse click events, and a glass pane to project gaze targets a second

screen. Vidal et al. introduced an interaction technique (Pursuits) for large screens

using moving objects to be activated by eye gaze [182]. They used a desktop eye

tracker and a public display to select targets on the screen. Velloso et al. presented

a framework (AmbiGaze) to control ambient devices such as TVs and stereos (each

assigned with an infrared (IR) beacon) with eye gaze using a head-mounted eye tracker

[180]. The system employs a server to process gaze inputs and control the devices.

Esteves et al. presented a framework for a multi-touch Android smartwatch to input

commands using a head-mounted eye tracker [52]. They developed three use-cases: a

music player, a notifications panel with six coloured points on the smartwatch screen

representing six applications (e.g. social media apps), a missed call menu with four

commands, call back, reply text, save the number and clear the notification.

Smooth pursuit gaze-based interaction has several drawbacks. First, it requires a

moving stimulus [80] and, therefore, it requires implementing an additional graphical

user interface (GUI) to handle the events. Second, this kind of point-and-select may

slow down the interaction due to the pursuit time, adding latency to target selection
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completion time. In addition, the presence of moving paths on a limited screen size

may limit users to a restricted set of functions. Third, this type of interface may lead

to visual distraction on the screen and may not be suitable for long working sessions

or users with disabilities. Moving objects require free space on a screen, therefore,

dependent on the screen size. Thus, although smooth pursuits is a promising method

for public and large digital displays, it is not ideal for everyday interaction.

Schenk et al. proposed a novel interaction technique, Smooth Pursuit Oculomotor

Control Kit (SPOCK), to resolve the Midas touch problem [158]. This prototype can

be regarded as an improved update of the antisaccades technique which applies a

similar mechanism to activate a stimulus by focusing on a target for a predefined

amount of time [72]. SPOCK employs smooth pursuit eye movements for button-

based interfaces activated by eye gaze. Two small disc-shaped objects appear at the

center of a target (button), and when a user focuses on the target, the objects slowly

and simultaneously move towards the top and bottom of the target. This mechanism

enables the user to follow one of the discs to select the target if the selection of the

target was intended. If the user does not react to the discs, the cycle is repeated from

the center of the target, as long as the user’s gaze point is on the target (see figure 5).

 

Figure 5: Illustration of the SPOCK interaction technique by smooth pursuits. User
looks at a target (A), two similar discs appear after a predefined time (B), discs start
to move smoothly in opposite directions (C), following each disc by gaze activates the
target after a specific time (D).

Schenk et al. [158] claim that the application of two stimuli (symmetric design),

compared to the antisaccades method, reduces involuntary eye movements. They
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conducted a two-part user study with 18 participants to compare SPOCK with the

dwell-time processing method. The first part of the study contained a 3 × 3 square

of targets to be selected, and the second part was based on a series of multiple-choice

questions. Both interaction techniques were compared based on their performance

on (1) failed attempts and (2) completion time. The SPOCK method showed lower

failures and relatively higher completion time due to a slow selection mechanism.

2.6.3 Gaze gestures

Gaze gestures are sequences of eye movements that follow a predefined pattern in

a specific order [47]. Researchers have proposed techniques that can be applied to

analyze eye movements to detect unique gestures (e.g. [7, 47, 73, 77]). Drewes et al.

assigned up, down, left, right and diagonal directions to different characters on the

keyboard, thereby allowing a user to select a letter by moving the eye gaze in any

direction [47]. In addition, they tried to distinguish between natural and intentional

eye movements by using short fixation times during gesture detection and long fixation

times to reset the gesture recognition. Istance et al. developed two-legged and three-

legged gaze gestures (up, down and diagonal patterns) for command selection to play

World of Warcraft for users with motor impairment disabilities [77]. In a similar work,

Hyrskykari et al. studied both dwell-time and gaze gesture interactions in the context

of video games and found that gaze gestures had better performance for command

activation [73]. Moreover, gaze gestures produced fewer errors than dwell time and

led to fewer visual distractions. Bâce et al. proposed an AR prototype, containing a

head-mounted eye tracker and a smartwatch, to embed virtual messages to real-world

objects to be shared with peer users [7]. The authors integrated eye gaze gestures as a

pattern to encode and decode messages attached to a specific object previously tagged

by another peer user, thus using gaze gestures as an authentication mechanism for
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secure communication. In general, gaze gestures have shown promising performance

to address the Midas touch problem.

As gaze gesture techniques rely only on performing specific eye movements, they

may lead to eye fatigue in a long working session as longer eye inputs are correlated

with eye fatigue [141]. In addition, the detection algorithms may reduce the speed of

interaction, and the limited amount of possible eye gestures may reduce the number

of functions available to users. Further, applying gaze gesture commands requires a

guiding system since users need to map commands with their corresponding gestures

[37]. Learning the correct gestures may also be challenging and requires training for

novice users [37]. Therefore, this kind of interaction solution may not be appropriate

for users who must use a system over a long period or for users with disabilities.

Figure 6 shows an example of a gaze gesture to trigger an action.

Figure 6: Illustration of a gaze gesture to initiate a command.

2.6.4 Multimodal Interaction

Multimodal techniques apply extra inputs from another modality (e.g. touch, audio,

etc.) as the trigger of a function in addition to eye-tracking. They can be divided

into the following sub-categories: mechanical switches, touch interaction, or facial

gestures.
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Applying a specific (mechanical) switch

Researchers have applied specific switches to activate an event or function for specific

domains, such as rehabilitation and user groups (i.e. users with motor impairments or

severe disabilities). For instance, Rajanna et al. [144] proposed a combined framework

for users with disabilities that applies a foot pedal device to click on objects and to

enter text. Meena et al. [112] applied a soft button on a wheelchair to control the

movements of the wheelchair in different directions (horizontal, vertical and diagonal).

Sidorakis et al. [161] applied a switch for a gazed-controlled multimedia framework

on virtual reality head-mounted displays (Occulus Rift) to resolve the Midas touch

problem. Biswas et al. [16] proposed a joystick to control point-and-select tasks for

combat aviation platforms to address the Midas touch problem.

Touch interaction

Some researchers have proposed using touch interaction for a limited number of

functions to increase the accuracy of target selection. Pfeuffer et al. [139] applied

a cursor at the gaze point to be controlled by a finger holding a tablet where a finger

tap on the screen leads to a click on the current location of the pointer (CursorShift

method). In a similar study by Pfeuffer et al. [138], the authors investigated the

integration of finger touch and pen inputs on a tablet for zooming or annotating

tasks on images. Although this technique was not introduced as a solution to the

Midas touch problem, it can increase the accuracy of selection, which reduces the

Midas touch problem. However, this technique is not hands-free, and the application

scenario is limited to tablet devices only.
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Facial gestures recognition

Rozado et al. studied the potential of using live video monitoring to detect facial

gestures to enhance eye tracking interaction [151]. Their work (FaceSwitch) associated

facial gestures (opening mouth, raising eyebrows, smiling and twitching the nose up

and down) with simulating left and right mouse clicks and customized some keyboard

functions such as page down keypress. They found that increasing the number of

gestures leads to lower recognition accuracy when monitored simultaneously.

Facial gesture recognition has several drawbacks. First, real-time video monitoring

to detect the correct face gesture is very challenging beyond controlled lab conditions

to address the real-life scenarios [110]. In addition, any emotional change or unwanted

facial behaviour may lead to false activation of functions since modelling the human

behaviour is challenging [110]. Another drawback is the latency between pointing

using the eye tracker and selecting the facial gesture algorithm; precise timing is

required for smooth interactions. Moreover, modelling of facial expressions requires

a wide range of visual signal processing methods [110].

Eye gaze and head movements Stellmach et al. proposed multimodal techniques

to interact with distant targets in which they studied combinations of gaze and

head movements joint with a smartphone touch modality for precise selection, and

manipulations [170]. Kytö et al. proposed similar techniques for AR headsets. They

investigated head movements and eye gaze movements with a variety of combinations,

including selection on device and hand gesture commands, and found the highest error

rates and lowest completion time for the eye only selection technique [95].

Gaze and speech interaction Besides the above-related works aimed at addressing

the Midas touch problem, multimodal interaction has also considered gaze and

voice commands. Mayer et al. proposed an interaction technique (WorldGaze) to
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track users’ fields of view and gaze point to refine the voice command engines on

smartphones for more precise results [111]. Beelders et al. studied word processing

tasks using voice commands and eye gaze compared with mouse and keyboard

interactions in their work [13]. However, although they showed that speech interaction

is feasible for word applications, the gaze and speech interaction technique could not

reach the effectiveness and performance of keyboard interaction. Acartürk et al.

reviewed the challenges and possibilities of gaze and speech modalities for elderly

users in their work [2]. Esteves et al. conducted comparative studies using head-

mounted displays (HMDs) to investigate the performance of hands-on and hands-free

(including gaze and speech) interaction techniques and found that applying a clicker

and dwell-time were the most favourable interaction techniques [51].

Miniotas et al. proposed a technique for selecting closely spaced targets based on

speech commands [116]. They applied a grid of 5 × 5 squares as a stimulus to test

two interaction techniques: (a) gaze and speech, and (b) gaze only. They suggested

a dwell-time of 1500 ms for targets of the size of 30 × 30 pixels with a distance of

10 pixels for the best performing setup for target selections based on their results.

However, they reported a slow performance in the case of selection speed when the

activation threshold for the dwell-time increased.

Beelders et al. conducted an experiment to study eye gaze, and speech commands

compared to the mouse for target selection tasks [14]. They applied a stimulus as

the shape of a circle with 800 pixels diameter containing 16 squares on its edge to

be selected in all directions. They found that the mouse had a significantly higher

performance in the case of throughput and completion time and stated that using the

dwell-time technique should be more efficient than speech commands. Sengupta et al.

integrated gaze and voice inputs for web browsing tasks such as search, navigation,

and bookmark of pages [159]. They found that the multimodal approach had a higher
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performance than each modality alone.

Zhao et al. proposed a multimodal technique of eye gaze by smooth pursuits

and speech commands and found promising results when compared to mouse clicks

[190]. They found that the selection of a word for confirmation should match the

task for better performance. Further, participants who chose the activation word

scored higher compared to those who used a pre-determined word. Similar to the

EyeTAP method, the authors also suggested applications of other sound inputs such

as pseudowords or exclamation for users with severe disabilities.

Gaze and hand gesture interaction Gaze has also been combined with hand

gesture inputs. For example, Chatterjee et al. proposed an interaction technique that

uses gaze and hand gestures to select targets at the most desired location on the screen

[29]. They found that the combination of gaze and hand gesture outperformed each

interaction modality alone. Pfeuffer et al. proposed a similar approach of applying

eye gaze and a hand pinch to select and manipulate targets in a 3D space for virtual

reality (VR) platforms [140]. Hand-gesture interactions are prone to muscular fatigue

[70] and therefore may challenge users in certain circumstances.

Gaze and button press Hild et al. investigated multimodal gaze-based interactions:

gaze and button press by hand, gaze and button press by foot, and the mouse input

[69]. They found overall faster performance for gaze-based techniques than the mouse

for task completion time. Kumar et al. proposed a technique (EyePoint) comprised

of eye gaze and button press on the keyboard to improve the accuracy of gaze-based

pointing in a Look-Press-Look-Release pattern of commands [93]. The EyePoint

technique was designed in four steps to select a target accurately. The user looks at the

desired target (Look), then presses and holds a hotkey on the keyboard, magnifying

the specific spot on the screen (Press). A second look at the magnified scene is then

done to refine the target’s exact location (Look), then the key is released to select
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that target (Release). Gaze and button techniques have shown promising results in

improving selection accuracy.

Gaze gesture recognition Istance et al. proposed a technique (Snap Clutch) to

resolve the Midas touch problem [76]. They applied a disengagement technique to

turn off gaze selections when not needed by defining four modes provided in the

screen’s up, left, right, and down directions. These modes are activated when looking

at different directions (eye gesture), and visual feedback appears on the screen to

confirm the intention.

2.7 Benefits of Eye Tracking

Although eye-tracking has several limitations, as described above, it offers high

potential in both research fields and commercial applications. Furthermore, remote

interaction offers the great potential of collaboration on shared objects when users are

at a distance. There are several different areas where eye tracking has been applied

for remote interaction. For example, collaborative virtual medical environments have

been used in surgery and medical training[32]. For example, Black et al. studied

the potentials of eye-tracking for a sterile operating room by offering hands-free

interaction using eye-tracking, and audio feedback [17]. Human-robot interaction

has also become a field of interest for enterprises to improve productivity, safety,

and quality; for instance, eye tracking can replace conventional mouse or joysticks to

send commands to a remote device in some dangerous and difficult situations. Yu et

al. [188] studied the potentials of eye tracking in such cases. Interaction with large

displays has also been studied and showed the benefits of eye-tracking. For example, a

research study [88] showed that pedestrians could interact with a large display without

touching any controller. The system was composed of a body tracker (Microsoft

Kinect One), a rail system, a remote eye tracker (installed on the rail system) and a
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large display. The system could be activated when a person is detected, and their eyes

are in the range of the eye tracker. The eye tracker could be moved horizontally as the

user moves across the X axis. This kind of interaction (walk then interact) is useful

in various scenarios, such as interacting with smart displays to obtain information

for tourists and visitors to a public place without physical contact. In addition, eye

tracking can be applied for analytic observations. As mentioned earlier, due to the raw

data from an eye trackers’ software, it is possible to detect users’ areas of interest by

analyzing the fixation points. Further, the saccade path reveals the user behaviour in

terms of observing and perceiving information on a screen (see figure 2). Perhaps the

most interesting aspect in human-computer interaction is the ability to avoid physical

interaction with the computer, i.e. hands-free or touchless interaction. Eye-tracking

can be applied to move a cursor on the screen; therefore, it provides an easy technique

to interact with a computer with or without second modalities for selection or click

actions. Furthermore, the reviewed prototypes for remote interaction [32, 188, 88]

belong to the hands-free group as well.

2.8 Guidelines for Eye Tracking Applications

Feit et al. conducted a comprehensive study to investigate appropriate user interfaces,

in the case of screen regions and target size, based on the accuracy and precision of

eye-tracking sensors [54]. They measured the tracking quality in a user study with

80 participants in two lighting conditions (daylight, artificial light) and used two

different eye trackers. The user study was designed such that a subject had to select

30 targets that were randomly distributed across the screen; the task was to look at

each target for two seconds. The study measured both accuracies, i.e. the estimated

distance to the actual gaze point and precision, and the standard deviation over all

target fixations.

29



In addition, five filters were tested to improve the precision of tracking and to

reduce errors. The filters include stampe filter [168], weighted average (WA) [86],

saccade detection, outlier correction and 1e filter [25]. The results showed that the

weighted average and saccade detection filters could improve tracking quality. Feit et

al. conclude their study by proposing important factors regarding (1) target size and

position on the screen, (2) applying menus, and (3) tracking quality. It is important to

enlarge the size regarding the target size; however, this option is restricted to limited

screen space. In addition, accuracy is worse in the Y axis, and the implication is

that targets should have a larger height than width. Moreover, the precision of each

target is worse at the right bottom border of the screen. Applying hierarchical menus

for interaction may decrease performance and increase interaction time.

It is possible to zoom on targets by activation. However, this technique may

increase visual distraction and use gaze gestures for selection that are hard to learn

and may not be appropriate for all users. Moreover, it requires large saccades and

may lead to eye fatigue. Using smooth pursuit (following moving objects on the screen

by gaze) may lead to eye fatigue or increased visual distraction. No correlation was

found between tracking quality and duration of recording for the same participant.

Furthermore, accuracy and precision may decrease over time because of movement

or eye fatigue. Thus applying filters can improve tracking quality. In general, it

is important to consider (1) targets should have a greater height than width, (2)

applying filters to improve tracking quality, (3) avoid hierarchical menus and (4)

avoid placing targets in the right and bottom regions of the screen.
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Chapter 3

EyeTAP: Introducing a

Multimodal Gaze-based Technique

using Voice Inputs with a

Comparative Analysis of Selection

Techniques

Preface

In the previous chapter, we reviewed a wide range of techniques that can be applied

with good accuracy and are suitable for specific domains with specific peripherals

or extra user interface designs. The need for contact-free gaze-based interactions is

necessary to deal with the emerging requirements regarding hygiene interactions from

a safe distance. Building on the promising results found for multimodal techniques,

and specifically exploring the use of non-speech sounds to allow for a more diverse
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population of users, we developed EyeTAP [131]. EyeTAP can be applied to fill the

gap for both able-bodied and disabled users with or without physical contact (to the

microphone), with no need for specific user interface design or peripherals and using

the simplicity of the Morse code to encode/decode input signals. EyeTAP uses a

multimodal solution that combines eye-gaze with acoustic inputs (audio or speech

detection) can be regarded as an alternative to the reviewed literature on multimodal

interaction methods and has the advantage of not requiring additional hardware (in

comparison to other gaze-based techniques) other than an eye tracker or a specialized

user interface design. The EyeTAP paper was published in the International Journal

of Human-Computer Studies.

32



Abstract

One of the main challenges of gaze-based interactions is the ability to distinguish

normal eye function from a deliberate interaction with the computer system,

commonly referred to as ‘Midas touch’. In this paper we propose EyeTAP (Eye

tracking point-and-select by Targeted Acoustic Pulse) a contact-free multimodal

interaction method for point-and-select tasks. We evaluated the prototype in four user

studies with 33 participants and found that EyeTAP is applicable in the presence of

ambient noise, results in a faster movement time, and faster task completion time, and

has a lower cognitive workload than voice recognition. In addition, although EyeTAP

did not generally outperform the dwell-time method, it did have a lower error rate

than the dwell-time in one of our experiments. Our study shows that EyeTAP would

be useful for users for whom physical movements are restricted or not possible due to

a disability or in scenarios where contact-free interactions are necessary. Furthermore,

EyeTAP has no specific requirements in terms of user interface design and therefore

it can be easily integrated into existing systems.

3.1 Introduction

In gaze-based interaction eye tracking sensors measure a user’s gaze position on a

computer screen and differing methods (e.g. dwell time, multimodal interaction, etc.)

are employed to allow the user to interact with the system. Gaze-based interaction

offers a suitable alternative to conventional input devices (i.e. keyboard and mouse)

in several different scenarios including for users for whom manual interaction might

be difficult or impossible, or in situations where contact-free interaction is required.

However, gaze-based interaction has well-known challenges among which is Midas

touch, where a system cannot distinguish the basic function of the eye (i.e. looking
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and perceiving) from deliberate interaction with the system. In this paper, we

propose EyeTAP (Eye tracking point-and-select by Targeted Acoustic Pulse), a

multimodal gaze-based interaction approach that addresses the Midas touch problem

by integrating the user’s gaze to control the mouse with audio input captured using

a microphone to trigger button-press events for real-time interaction.

Traditionally, pointing and clicking is done with a mouse; a user uses a mouse

to move a cursor to a target (pointing phase), and clicks on the mouse to select or

trigger a function (selection phase). We designed EyeTAP as a multimodal method

point and click interaction method that uses eye gaze for pointing and auditory input

for selection. Specifically, with EyeTAP the mouse pointer position is captured using

an eye tracker and selection is done by generating an acoustic signal (e.g. a tongue

click, microphone tap, verbal command), which in our studies was captured by a

headset microphone. Our solution thus provides a contact-free interaction method

for users (including those with special needs) and addresses the Midas touch problem.

EyeTAP provides contact free interactions in case scenarios where the use of speech

commands are not possible, e.g. due to reasons such as difficulty of word detection by

user’s language, accent, or pronunciations of words; or for users with severe disabilities

not capable of speaking or interacting with keyboard and mouse. Figure 7 illustrates

the overview of EyeTAP.

In comparison to gaze-based multimodal interactions which use gestures, foot

pedals, or buttons, using speech/sound enables contact-free interactions and supports

users to point and select a target based on two separate modalities by simply using

a microphone. This allows for a smooth and simple-to-use interaction technique that

does not require extensive equipment or training. In addition, using sound input does

not require users to shift their gaze focus (e.g. to a button or other hardware device)

to trigger a function.
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EyeTAP’s ability to use different modes of interaction for selection, such as a

mouth click or a microphone tap, overcomes the limitations of natural language

processing methods and is applicable when speech commands are not feasible (e.g.

due to disabilities or due to the surrounding environment). We showed that EyeTAP

can be an alternative to using speech with no need for voice recognition engines

independent from users’ language or accent.

We performed four extensive user studies comparing EyeTAP to dwell-time, eye

tracking with voice recognition, and mouse interaction for point-and-click tasks. The

analysis of the results showed that although EyeTAP had comparable performance

with other gaze-based interaction techniques, it did not outperform the dwell-time

method on most criteria. At the same time, EyeTAP generally performed better than

gaze-based interaction with voice recognition selection and thus might be suitable in

cases where users cannot use voice commands, have restricted physical movement,

or where manual interaction with an input device is not possible, e.g. medical

practitioner having both hands busy or in a situation where physical contact with

equipment should be avoided.

The contributions of this paper are twofold. First, we have designed and

developed a simple-to-use, multimodal gaze-based interaction technique. The

proposed approach allows for a completely hands-free interaction solution between the

user and the computer system using only an eye-tracker and an audio input device.

Second, we present four user studies comparing EyeTAP with two other widely-used

gaze-based interaction techniques and the mouse.

3.2 Related Work

In this section, we provide an extensive literature review of gaze-based interaction

techniques addressing the Midas touch problem. Although, some studies are not

35



directly related to our proposed method, we were inspired by their intuitions and

the approaches provided a broad view of both hands-on and hands-free multimodal

gaze-based interaction techniques.

In eye-based interaction, the Midas touch problem occurs when a user accidentally

activates a computer command using gaze when the intention was simply to look

around and perceive the scene. According to Jacob [83], this problem occurs because

eye movements are natural, i.e. the eyes are used to look around an object or to

scan a scene, often without any intention to activate a command or function. This

phenomenon is one of the major challenges in eye interaction techniques [82, 76],

and diverse methods have been proposed to address the Midas touch problem. The

solutions can be categorized into four groups according to the interaction technique

they employ: (a) dwell-time processing, (b) smooth pursuits, (c) gaze gestures, and

(d) multimodal interaction. Below, we describe each of these solutions and provide

example use-cases, as well as describe their shortcomings or relationship to our work.

3.2.1 Dwell-time processing

Dwell-time is the amount of time that the eye gaze must remain on a specific target in

order to trigger an event. Researchers have tried to detect specific thresholds to handle

the Midas touch problem [142, 179]. For example, Pi et al. proposed a probabilistic

model for text entry using eye gaze [142]. They reduced the Midas touch problem by

assigning each letter a probability value based on the previously chosen letter such

that a letter with lower probability requires a longer activation time to be activated

and vice-versa. Velichkovsky et al. applied focal fixations to resolve the Midas touch

problem by assigning the mean duration time (empirically set to 325 ms) of a visual

search task to trigger a function [179]. Dwell time has been shown to be even faster

than the mouse in certain tasks, e.g. selecting a letter given an auditory cue [160].
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The method of applying focal fixations may be very subjective since searching time

varies across users when applying the dwell-time technique [12]. Moreover, increasing

the threshold may increase the duration time of the entire interaction. Conversely,

reducing the amount of dwell-time may lead to more errors for some users [181].

Pfeuffer et al. investigated visual attention shifts in 3D environments for menu

selection tasks [141]. They compared three interaction techniques for menu selection:

(1) dwell-time (activation threshold of 1 sec.), (2) gaze button (applying eye gaze to

point, selecting by a button press), and (3) cursor (applying eye gaze to point to a

context, precise movement and selecting by a manual controller). They found that the

dwell-time technique was the fastest in case of performance. In addition, the cursor

technique was found to be the most physically demanding technique. They also found

that dwell-time was considered to be the easiest method according to users. However,

the gaze button and the dwell-time caused the highest eye fatigue.

Although dwell-time has been found to be the fastest technique among eye tracking

techniques, some studies [181, 183, 107] show that it is error prone particularly in

situations when a lower dwell-time is used. However, longer dwell times may cause eye

discomfort or fatigue [141]. For this reason, we decided to turn towards multimodal

techniques to address the Midas touch problem.

3.2.2 Smooth pursuits

Smooth pursuits are a form of eye movement that occurs when a moving stimulus

(e.g. an object or animation) is followed with gaze [11]. The method is typically

implemented by using a visual point on the interface, then to activate the target

the user must fixate on one of these points. This technique has been used to select

targets [182], control home appliances [180], to activate functions such as mouse

clicks [156] or to use the music player on a smartwatch (Orbits) [52]. Schenk et
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al. proposed a framework (GazeEverywhere) which enables users to replace mouse

inputs [156]. This solution includes a computer to process gaze interactions (gaze PC),

a computer to show the results (unmodified PC) which are connected via a micro-

controller to trigger mouse click events, and a glass pane to project gaze targets on a

second screen. Vidal et al. introduced an interaction technique (Pursuits) for large

screens using moving objects to be activated by eye gaze [182]. They used a desktop

eye tracker and a public display to select targets on the screen. Velloso et al. presented

a framework (AmbiGaze) to control ambient devices such as TVs and stereos (each

assigned with an infrared (IR) beacon) with eye gaze using a head-mounted eye tracker

[180]. The system employs a server to process gaze inputs and control the devices.

Esteves et al. presented a framework for a multi-touch Android smartwatch to input

commands using a head-mounted eye tracker [52]. They developed three use-cases: a

music player, a notifications panel with six colored points on the smartwatch screen

representing six applications (e.g. social media apps), and a missed call menu with

four commands, call back, reply text, save number and clear the notification.

Smooth pursuit gaze-based interaction has several drawbacks. First, it requires a

moving stimulus [80] and therefore, it requires implementing an additional graphical

user interface (GUI) to handle the events. Second, this kind of point-and-select may

slow down the interaction due to the pursuit time which can add latency to target

selection completion time. In addition, the presence of moving paths on a limited

screen size may limit users to a restricted set of functions. Third, this type of interface

may lead to visual distraction on the screen and may not be suitable for long working

sessions or for users with disabilities; in fact, moving objects require free space on

a screen which is therefore dependent on the screen size. Thus, although smooth

pursuits is a promising method for public and large digital displays, it is not an ideal

method for everyday interaction.
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3.2.3 Gaze gestures

Gaze gestures are sequences of eye movements that follow a predefined pattern in a

specific order [47]. Researchers have proposed techniques which can be applied to

analyze eye movements to detect unique gestures (e.g. [7, 47, 73, 77]). Drewes et

al. assigned up, down, left, right and diagonal directions to different characters on

the keyboard thereby allowing a user to select a letter by moving the eye gaze in any

direction [47]. In addition, they tried to distinguish between natural and intentional

eye movements by using short fixation times during gesture detection and long fixation

times to reset the gesture recognition. Istance et al. developed two-legged and three-

legged gaze gestures (up, down and diagonal patterns) for command selection to play

World of Warcraft for users with motor impairment disabilities [77]. In a similar work,

Hyrskykari et al. studied both dwell-time and gaze gesture interactions in the context

of video games and found that gaze gestures had better performance for command

activation [73]. Moreover, gaze gestures produced fewer errors than the dwell-time

and led to less visual distractions. Bâce et al. proposed an AR prototype, containing a

head-mounted eye tracker and a smartwatch, to embed virtual messages to real-world

objects to be shared with peer users [7]. The authors integrated eye gaze gestures as a

pattern to encode and decode messages attached to a specific object previously tagged

by another peer user, thus using gaze gestures as an authentication mechanism for

secure communication. In general, gaze gestures have shown promising performance

to address the Midas touch problem.

As gaze gesture techniques rely only on performing specific sequences of eye

movements, they may lead to eye fatigue in a long working session as longer eye

inputs are correlated with eye fatigue [141]. In addition, the detection algorithms

may reduce the speed of interaction and the limited amount of possible eye gestures

may reduce the number of functions available to users. Further, applying gaze gesture
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commands requires a guiding system since users need to map commands with their

corresponding gestures [37]. Learning the correct gestures may also be challenging

and requires training for novice users [37]. This kind of interaction solution, therefore,

may not be appropriate for users who must use a system over a long period of time

or for users with disabilities.

3.2.4 Multimodal Interaction

Multimodal techniques apply extra inputs from another modality (e.g. touch, audio,

etc.) as the trigger of a function in addition to eye tracking. They can be divided

into the following sub-categories: using mechanical switches, touch interaction, head

movements, facial gestures, hand gestures, and gaze gestures.

Applying a specific (mechanical) switch

For certain specific domains, such as rehabilitation, and user groups (i.e. users

with motor impairments or severe disabilities), researchers have used mechanical

switches to activate an event or function. For instance, Rajanna et al. proposed

a combined framework for users with disabilities which applies a foot pedal device

to click on objects and to enter text [144]. Meena et al. applied a soft button

on a wheelchair to control the movements of the wheelchair in different directions

(horizontal, vertical and diagonal) [112]. Sidorakis et al. applied a switch for a gazed-

controlled multimedia framework on virtual reality head-mounted displays (Oculus

Rift) to resolve the Midas touch problem [161]. Biswas et al. proposed a joystick

to control point-and-select tasks for combat aviation platforms to address the Midas

touch problem [16].
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Touch interaction

Some researchers have proposed the integration of using touch interaction, for a

limited number of functions, to increase the accuracy of target selection. Pfeuffer

et al. applied a cursor at the gaze point to be controlled by a finger holding a

tablet where a finger tap on the screen leads to a click on the current location of the

pointer (CursorShift method) [139]. In a similar study by Pfeuffer et al., the authors

investigated the integration of finger touch and pen inputs on a tablet for zooming or

annotating tasks on images [138]. Although this technique was not introduced as a

solution to the Midas touch problem, it can increase the accuracy of selection which

leads to reducing Midas touch. Stellmach et al. proposed an interaction technique

to select targets on a remote screen via eye gaze and a handheld touchscreen device

[169].

Eye gaze and head movements

Stellmach et al. proposed multimodal techniques to interact with distant targets in

which they studied combinations of gaze and head movements joint with a smartphone

touch modality for precise selection and manipulations [170]. Kytö et al. proposed

similar techniques for AR headsets. They investigated head movements and eye gaze

movements with a variety of combinations including selection on device and hand

gesture commands and found the highest error rates and lowest completion time for

the eye only selection technique [95].

Facial gestures recognition

Rozado et al. studied the potential of using live video monitoring to detect facial

gestures to enhance eye tracking interaction [151]. In their work (FaceSwitch),

they associated facial gestures (opening mouth, raising eyebrows, smiling and
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twitching the nose up and down) to simulate left and right mouse clicks and

customized some keyboard functions such as page down key press. They found that

increasing the number of gestures leads to lower recognition accuracy when monitored

simultaneously.

Facial gesture recognition has several drawbacks. First, real-time video monitoring

to detect the correct face gesture is very challenging beyond controlled lab conditions

to address the real-life scenarios [110]. In addition, any emotional change or unwanted

facial behavior may lead to false activation of functions, since modeling the human

behavior is challenging [110]. Another drawback is the latency between pointing

using the eye tracker and selecting using the facial gesture algorithm; precise timing

is required for smooth interactions. Moreover, modeling of facial expressions requires

a wide range of visual signal processing [110].

Gaze and speech interaction

Besides the above related works which were aimed at addressing the Midas touch

problem, multimodal interaction have also considered gaze and voice commands.

Mayer et al. proposed an interaction technique (WorldGaze) to track user’s fields

of view and gaze point to refine the voice command engines on smartphones for

more precise results [111]. Beelders et al. studied word processing tasks using voice

commands and eye gaze compared with mouse and keyboard interactions in their work

[13]. However, although they showed the application of speech interaction is feasible

for word applications, the gaze and speech interaction technique could not reach the

effectiveness and performance of keyboard interaction. Acartürk et al. reviewed the

challenges and possibilities of gaze and speech modalities for elderly users in their

work [2]. Esteves et al. conducted comparative studies using head mounted displays

(HMDs) to investigate the performance of hands-on and hands-free (including gaze
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and speech) interaction techniques and found that applying a clicker and dwell-time

were the most favorable interaction techniques [51].

Miniotas et al. proposed a technique for selecting closely spaced targets based on

speech commands [116]. They applied a grid of 5 × 5 squares as stimulus to test

two interaction techniques: (a) gaze and speech, and (b) gaze only. They suggested

a dwell-time of 1500 ms for targets of size of 30 × 30 pixels with distance of 10 pixels

for the best performing setup for target selections based on their results. However,

they reported a slow performance in case of selection speed when activation threshold

for the dwell-time increased.

Beelders et al. conducted an experiment to study eye gaze and speech commands

comparing to the mouse for target selection tasks [14]. They applied a stimulus

as shape of a circle with 800 pixels diameter containing 16 squares on its edge to

be selected in all directions. They found that the mouse had a significantly higher

performance in case of throughput and completion time and also stated that using

dwell-time technique should be more efficient than speech commands. Sengupta et al.

integrated gaze and voice inputs for web browsing tasks such as search, navigation,

and bookmark of pages [159]. They found the multimodal approach had a higher

performance than each modality alone.

Zhao et al. proposed a multimodal technique of eye gaze by smooth pursuits,

and speech commands and found promising results when compared to mouse clicks

[190]. They found that the selection of a word for confirmation should match the

task for a better performance. Further, participants who chose the activation word

scored higher compared to those who used a pre-determined word. Similar to the

EyeTAP method, the authors also suggested applications of other sound inputs such

as pseudowords or exclamation for users with severe disabilities.
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Gaze and hand gesture interaction

Gaze has also been combined with hand gesture inputs, for example, Chatterjee et

al. proposed an interaction technique that uses gaze and hand gestures to select

targets at the most desired location on screen [29]. They found that the combination

of gaze and hand gesture outperformed each interaction modality alone. Pfeuffer et

al. proposed a similar approach of applying eye gaze and a hand pinch to select and

manipulate targets in a 3D space for virtual reality (VR) platforms [140]. Hand-

gesture interactions are prone to muscular fatigue [70] and therefore may challenge

users in certain circumstances.

Gaze and button press

Hild et al. investigated multimodal gaze-based interactions: gaze and button press by

hand, gaze and button press by foot, and the mouse input [69]. They found overall

faster performance for gaze-based techniques than the mouse for task completion

time. Kumar et al. proposed a technique (EyePoint) comprised of eye gaze and

button press on keyboard to improve the accuracy of gaze-based pointing in a Look-

Press-Look-Release pattern of commands [93]. The EyePoint technique was designed

in four steps to select a target accurately. The user looks at a desired target (Look),

then presses and holds a hotkey on the keyboard which magnifies the specific spot

on the screen (Press). A second look at the magnified scene is then done to refine

the exact location of target to be selected (Look), then the key is released to select

that target (Release). Gaze and button techniques have shown promising results in

improving the selection accuracy.
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Gaze gesture recognition

Istance et al. proposed a technique (Snap Clutch) to resolve the Midas touch problem

[76]. They applied a disengagement technique to turn off gaze selections when not

needed by defining four modes provided in up, left, right, and down directions on the

screen. These modes are activated when looking at different directions (eye gesture)

and visual feedback appear on the screen to confirm the intention.

3.2.5 Summary

We reviewed a wide range of techniques that can be applied with good accuracy

and are suitable for specific domains with specific peripherals or extra user interface

designs. The need for contact-free gaze-based interactions is necessary to deal with the

emerging requirements regarding hygiene interactions from a safe distance. Building

on the promising results found for multimodal techniques, and specifically exploring

the use of non-speech sounds to allow for a more diverse population of users as

suggested by Zhao et al. [190], we developed EyeTAP. EyeTAP can be applied to fill

the gap for both able-bodied and disabled users with or without physical contact (to

the microphone), with no need for specific user interface design or peripherals and

using the simplicity of the Morse code [121] to encode/decode input signals.

3.3 EyeTAP Prototype

Using a multimodal solution that combines eye-gaze with acoustic inputs (audio or

speech detection) can be regarded as an alternative to the reviewed literature on

multimodal interaction methods and has the advantage of not requiring additional

hardware (in comparison to other gaze-based techniques) other than an eye tracker

or a specialized user interface design. Although there has been some work done on
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audio detection to simulate system events for computer interactions (e.g. [133, 39, 65])

on signal processing for complex interactions. Conversely, in our work we applied

acoustic inputs only as a way of sending commands.

A simple mouse interaction consists of moving the pointer to a target (pointing

phase), and clicking on it to trigger a function (selection phase). In the EyeTAP

prototype the mouse pointer position is captured using an eye-tracker (in our case

the Tobii 4C) and selection is done by generating an acoustic pulse by mouth (e.g.

a mouth click) which is captured by a headset microphone (Logitech H370). The

experiments using the EyeTAP prototype were run on a commodity computer system:

64-bit Windows 10 PC with Intel i7 2.67GHz CPU, 12 GB RAM, 1 TB hard disk and

NVIDIA GeForce GTX 770 graphics card. Thus, EyeTAP is a cost-effective system

that can be applied at almost any work space. Figure 7a gives an overview of the the

EyeTAP system.

3.3.1 Eye Tracking: Pointing Phase

The Tobii SDK (TobiiEyeXSdk−Cpp−1.8.498) supports different events related to

eye tracking activities such as providing the location of the current eye gaze, positions

of both eyes, fixation points and user presence in front of the eye tracker. We employed

the eye gaze library (API) to obtain users’ gaze locations. These locations show the

current gaze position on the screen as pixels. The SDK supports eye movements in

a 3D coordinate system (horizontal, vertical, depth) but we applied a 2D coordinate

system (x, y) such that the mouse cursor was synchronized with the gaze positions

to control the mouse pointer on the screen. Eye tracking for the EyeTAP prototype

was developed in C++ and integrated as a new plug-in into the Tobii SDK.
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3.3.2 Auditory Processing: Selection Phase

To select a target the user makes a sound which is captured by a headset microphone.

The intensity of the noise and distance of the microphone are adjusted by the user

prior to using the system. A detected pulse in the real-time audio signal (amplitudes

larger than a predefined threshold) is regarded as a click. The threshold’s value can

be adjusted based on the environment to reduce background ambient noise. When

a significant increase in the signal (greater than the threshold) is detected a mouse

click event is triggered as shown in Figure 7b. In general, recording is categorized

into two phases: audible and silent periods. Any audible period with an intensity

(amplitude) greater than the predefined threshold triggers an input signal to the

system; on the other hand, values smaller than the threshold value are suppressed.

Thus, any spoken sound e.g. speaking into the microphone or clicking the tongue,

can trigger a click-event. Signal detection is continuous and works in real-time. The

selection time-point is the moment the input pulse goes over the specified threshold

at which point the click-event is triggered. This is purposedly designed to reduce

possible synchronization issues resulting from eye gaze drifting away from the initial

selection point. Thus our method initiates the selection phase as soon as it detects a

trigger signal while the gaze pointer is still on the target.

Specifically, click detection is implemented as follow. First we capture the analog

sound wave stream received from the microphone via the AudioFormat class provided

in the Java Platform Standard Edition. 7 API [126] and digitize it using the sampling

rate of 44100 Hz in a fixed buffer size of 256 bytes at a time. The buffer size is

regarded as a detection window which is a queue for further processing. We set an

empirical amplitude as threshold for pulse detection based on the available noise in

the environment. Any receiving signal with an amplitude higher than the threshold

is regarded as a ‘click candidate’ if it remains above the threshold for a minimum of
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3 consecutive time-steps in which case it is considered a physical click and a mouse

event is triggered. This step is necessary to enable a smooth flow of clicks in the

case of noise or random vocal inputs by users and to reduce the effects of sudden

noise inputs to the auditory detection API to avoid ‘over clicking’ events. The output

of the auditory processing module is a series of 0s and 1s which are coupled with a

mouse interaction event handler to trigger a left click based on 1 values. The entire

workflow of the auditory module operates in real-time.

The intuition behind the auditory processing was inspired from the simplicity of

the Morse code [121], which consists of a series of ON/OFF signals triggered by tone or

light. In this case, information is interpreted using dots and dashes and therefore can

be used to represent transmitted signals through a sequence of True/False variables.

Figure 7b illustrates the step-wise operation of target selection phase by the EyeTAP

technique.

 

(a)
 

(b)

Figure 7: (a) The EyeTAP system: the eye tracker is used to move the pointer from
A to B. The user makes an acoustic pulse and the signal processing module interprets
the signal as an input and triggers a click event to select B. (b) The pipeline of the
audio processing module. Analog audio waves are received from the microphone (C),
and converted to a digital using an analog to digital converter (AD Converter) (D).
The converted signal is stored in a fixed-sized buffer for further processing (E). A
function detects the amplitudes higher than threshold as click candidates from the
buffer (F). More than three click candidates in buffer are recognized as a click signal
to be sent to a mouse event handler (G). Mouse handler triggers a left click (H).
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3.3.3 Hypotheses

We hypothesize that a multimodal gaze-based interaction technique based on sound

inputs can be applied to (a) enable a high accuracy contact-free interaction and

(b) provide an alternative to mitigate the Midas touch problem. Furthermore, we

hypothesize that our proposed technique will be easier to use compared to dwell-

time and gaze with voice recognition and will be faster than the voice recognition

technique.

3.4 Evaluation

To evaluate the effectiveness of the developed EyeTAP method, we ran four user

studies with 33 participants (13 female, from 22 to 35 years old, mean = 26.06).

Prior to running the experiments, subjects were informed about the purpose of the

study, trained on each of the methods to be tested, and participated in a pre-test

questionnaire probing them on their background in the fields of eye tracking, voice

recognition technologies and their preferred kind of interaction in the case of contact-

free alternatives. The Tobii calibration software was used to calibrate the system for

each participant before starting the study. At the end of the user studies subjects

filled out a post-test questionnaire, which consisted of the NASA TLX questionnaire

[59] followed by specific questions about the subjects’ perceptions of the different

interaction methods. The order of interaction method was randomly selected for

each participant.

We played an artificial ambient noise through stereo desktop speakers of 50 dB

to simulate a typical work environment since EyeTAP and voice recognition rely on

audio inputs. Participants were asked to produce a tongue click type sound (‘tick’)

which lasted for 2 seconds on average.
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To determine the effectiveness of the EyeTAP method, we analyzed the results

of our experiments using an analysis of variance (ANOVA) followed by Bonferroni

posthoc tests with the IBM SPSS software, and applied descriptive statistics based

on dispersion with the JASP 0.11.1 software [84].

3.4.1 Interaction Techniques

We applied two eye tracking techniques to be compared with the performance of

EyeTAP and included mouse as the baseline technique for point-and-select tasks. In

other words, for all tests our independent variable is the interaction technique: (a)

the mouse, (b) dwell-time, (c) eye tracking with voice-recognition, and (d) EyeTAP.

Mouse

For the mouse method (our baseline method for comparison), subjects simply used a

mouse to move to targets and select them in numerical order.

Dwell-time

For the dwell-time method an internal timer was used to determine if a target was

selected. Given the range of dwell-time is typically 300-1100 milliseconds for target

selection [165], we defined the target activation threshold to 500 milliseconds, since

this showed the best performance in [103, 165]. In other words, a target was selected

when a subject focused on a target for 0.5 seconds, and if the subject moved their gaze

away from the target prior to 0.5 seconds the target selection process would restart.

Eye Tracking with Voice recognition

For voice recognition, eye tracking was used for pointing and voice for selection. The

method was developed using the built-in Windows 10 speech recognition capabilities
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available in the .NET framework. We implemented a C# application to respond to

the activation keyword ‘select’ to trigger a mouse click. The same microphone was

used as for the EyeTAP test.

3.4.2 User Study 1: Matrix-based Test

In the first user study, the EyeTAP interaction method was compared with: (a) the

mouse, (b) dwell-time, and (c) eye tracking with voice-recognition. In this test, a

matrix of buttons (targets), were randomly distributed across the screen. The task

of the subjects was to point and click on buttons shown on the screen in increasing

numerical order for various levels of difficulty from 1 (easy) to 5 (hard), described in

detail below. The order of interaction methods seen by each subject was randomly

selected for each participant however, the level of difficultly was presented in ascending

order.

We were inspired by Miniotas et al.’s work that applied a stimulus composed of a

grid of 5 × 5 squares [116]. The matrix grid was designed to cover a large area of the

screen and to have equally-sized targets in close adjacent proximity. This enabled the

analysis of errors that are most important for the Midas touch problem. Furthermore,

since different areas of a screen have different accuracy in target selection for eye

tracking applications [54], this test allowed us to study target selection accuracy on

different areas of the screen.

Stimulus

The stimulus consisted of 77 buttons (11 columns × 7 rows) some labeled with

numbers and others not, which covered the entire screen at a resolution of 1920

× 1080 pixels on a Dell P2411Hb monitor. Two marginal columns (far left, far right)

and two rows (top, bottom) were removed from the active selection due to the high
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difficulty to be selected by users during the pilot-test. Buttons that were not labeled

are considered as barriers or distractions. To provide feedback to the subject, labeled

buttons change color after the user has successfully pointed and selected on the correct

button. Wrongly selected barriers (buttons with no label) are highlighted in red. The

level of difficulty of the stimulus was also increased across subject trials. This was

done by increasing the number of targets that had to be selected by the subject.

Five levels of difficulty were used for each interaction method: level 1 (4 targets),

level 2 (6 targets), level 3 (8 targets), level 4 (10 targets) and level 5 (12 targets).

Targets were randomly distributed over the entire screen for each level. Figure 8

shows the matrix-based test during difficulty level 5. The cursor that was used was a

black circle because it was easier for users to keep it on the target’s boundary rather

than a pointer. The rationale of ‘difficulty’ for a higher number of targets lies in the

experience that the selection of more targets caused eye fatigue for some users during

the test, especially for the dwell-time method.

 

Figure 8: The matrix-based test for difficulty level 5. Target buttons are distributed
randomly across the screen. The red buttons illustrate errors. The black circle on
number 12 shows the current eye gaze location. Labels were enlarged for higher
visibility.
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Measures

The following dependent variables were recorded: completion time, path cost of

selecting targets, error locations, and cognitive load (based on the NASA TLX scores).

An internal logging module recorded subjects’ actions, selection times, as well as the

number of correct and wrong selections.

For the path cost measure the shortest path between targets and the produced

path by each interaction method was processed. The intuition behind this measure

was to analyze the trajectory of pointer movements (footprints) of each interaction

technique. In other words, since the pointer was mapped with eye gaze, we could

detect which interaction technique would select targets with less eye movements (see

Figure 9). This measure was specifically designed to test the hypothesis whether

dwell-time requires less eye movements than multimodal techniques due to pointer

drift caused by synchronization between pointing and selection phases. To compare

the shapes of the generated paths, we used the dynamic time warping (DTW)

algorithm [15, 120, 153]. Since DTW works on a time-value domain the paths

produced by the eye tracker were decomposed into their horizontal and vertical values

and compared with their associated shortest path models’ X and Y values. We

applied the built-in DTW function in the Python DTW 1.3.3 module [143] to measure

the deviations of each path from the shortest path model.

 

(a)
 

(b)

Figure 9: The path cost overview of (a) dwell-time, and (b) EyeTAP on the screen.
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Results

A two-way repeated measures ANOVA (methods × difficulty levels) was performed

to examine the effect of interaction type on: (1) completion time and (2) path costs of

target selection for each method and difficulty levels. We also analysed the distribution

of each measure since it indicates the consistency of each interaction technique on most

users.

Completion time: We found a significant effect of interaction method on

completion time (F(12,384)=8.51, p < .001). A posthoc Bonferroni comparison test

showed a significant difference between mouse (M = 1.04 sec, SE = 0.02 sec) and all

other eye tracking methods (see Figure 10a). In addition, EyeTAP (M = 2.57 sec,

SE = 0.12 sec), dwell-time (M = 1.40 sec, SE = 0.06 sec) and voice recognition

(M = 3.20 sec, SE = 0.25 sec) are significantly different (p < .05). Figure 10a

illustrates the overall completion time per method for each target.

We also looked at the distribution of values for completion time, and found a large

range for both EyeTAP (range = 8.69 sec, IQR = 0.90 sec) and voice recognition

(range = 7.71 sec, IQR = 1.39 sec) comparing to the mouse (0.70 sec, IQR =

0.14 sec) and dwell-time (1.80 sec, IQR = 0.84). The interquartile range comparison

was the narrowest for mouse and highest for voice recognition, but there was a similar

variability between EyeTAP and dwell-time.

Path costs of target selections: To examine the paths produced by selecting

targets we compared the original locations of the targets and the shortest path

(ideal path model), as described earlier. For each method, we had a distance
cost

measure to the shortest path. This metric can be regarded as the footprint of

each interaction technique on the display. A two-way repeated measures ANOVA

(methods × difficulty levels) showed that there was a significant effect of interaction

type on path cost (F(12,384)=2.57, p < .05). A Bonferroni posthoc test showed
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that dwell-time (M = 76.73 pixels, SE = 5.09 pixels) produced the shortest

path among all other interaction techniques, even better than the mouse interaction

(M = 109.25 pixels, SE = 3.82 pixels) with p < .05. There were no significant

differences between dwell-time (M = 76.73 pixels, SE = 5.09 pixels), EyeTAP

(M = 84.80 pixels, SE = 3.59 pixels) and voice recognition (M = 82.03 pixels,

SE = 4.41 pixels). Figure 10b, which shows the path costs for all interaction

methods, reveals that eye tracking movements produce significantly lower movements

than mouse on a large screen. We found the highest variability in paths for dwell-time

(range = 126.81 pixels, IQR = 43.13 pixels) and the lowest for mouse (range =

79.21 pixels, IQR = 33.26 pixels). Voice recognition (range = 111.11 pixels, IQR =

29.91 pixels) showed a larger range compared to EyeTAP (range = 88.88 pixels,

IQR = 22.76 pixels). All eye tracking techniques reached a significantly lower median

than the mouse which reflects a shorter path for eye gaze pointing on the screen than

mouse pointing. EyeTAP reached the narrowest interquartile range for gaze path on

screen among all interaction techniques which represents similar performance for most

users comparing to other interaction techniques. The dwell-time method showed the

highest variability and voice recognition reached the second highest variability based

on the interquartile range measure.

Errors in target selections: To measure the effectiveness of each Midas touch

solution we need to consider a penalty for wrongly selected neighboring targets. These

targets are shown in red on the screen (see Figure 8). We projected the locations of

errors per each interaction method, since difficulty level 5 has the highest number of

targets (12 targets) on the screen, we illustrate the locations for this difficulty level in

Figure 11. EyeTAP has the highest number of errors, however the figure reveals the

potential regions of the screen which are more error prone. As shown in the figure,

most errors occurred from the center towards the right side of the screen. In fact, the
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right side of the screen produces more errors than the left side. Moreover, the lower

side produces more errors than the top side. This is similar to Feit et al.’s finding

showing that the bottom and right regions of the screen have lower accuracy [54]. We

confirm their results and also demonstrate that the same regions are also more error

prone.

3.4.3 User Study 2: Dart-based Test

The purpose of this user study was to measure the accuracy of EyeTAP in comparison

to the previously proposed eye-based interaction methods. Specifically, we wanted to

focus on target selection accuracy. The task of the subject was to select, as accurately

as possible, the bull’s-eye of a dart target using each interaction method. In this test,

the eye tracker was used for the pointing phase for each of the interaction methods,

however selection of the target was triggered by different methods, i.e. dwell-time,

voice command or EyeTAP acoustic signal. In order to take into consideration the

fact that eye tracking has different accuracy in different regions of the monitor, we

computed an average value based on five trials for each interaction method where

the stimulus was shown at different areas of the screen near the center of the screen

randomly. Each new randomly chosen trial began two seconds after selection of the

previous target, allowing users time to change their gaze and to focus on the new

target. For the dwell-time method, a countdown (from 5 to 0) representing the time

left in milliseconds until the target selection was displayed and after each selection

visual feedback was given to the user by showing the achieved distance to target.

Stimulus

The stimulus for this test consisted of a dart-like target with three circles, green (0

to 30 pixels radius), blue (30 to 60 pixels radius) and red (60 to 90 pixels radius) as
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shown in Figure 13a. Points within the center area i.e. green have the lowest range of

distances to the bulls-eye; each other co-centric circle has a larger range of distance

values. Any point lying outside the three co-centric circular areas is considered as

having a fixed maximum distance of 90 pixels. For this test, a cross-hair icon was

used.

Measures

The purpose of this test was to measure the selected point’s distance on the dart

target to the center of the core circle (in green), thus the accuracy (i.e. dependent

variable) is measured in pixels. Since the measured trials are chosen randomly, the

average is calculated to compare different methods based on accurate selection.

Results

We performed a one-way repeated measures ANOVA to compare the effect of the

different interaction methods on accuracy. The results of the ANOVA showed all eye

tracking methods have statistical difference (F(3,96)=104.92, p < .001) on selection

accuracy. In fact, the mouse interaction has the lowest distance to target (highest

accuracy) compared to eye tracking techniques. EyeTAP (M = 45.11 pixels, SE =

2.28 pixels) achieved the highest mean pixel accuracy compared to dwell-time (M =

35.30 pixels, SE = 2.11 pixels) and voice recognition (M = 29.27 pixels, SE =

2.07 pixels). Figure 10c depicts the results of the accuracy test.

We found the highest variability for EyeTAP on both measures (range =

59.62 pixels, IQR = 19.42) among eye tracking techniques whereas the voice

recognition technique reached the lowest distribution (range = 41.05 pixels, IQR =

15.87) and lowest distance to the target, and dwell-time (range = 48.96 pixels,
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IQR = 17.91) showed a higher distribution than mouse (range = 17.76 pixels,

IQR = 4.39).

 

(a)
 

(b)
 

(c)

Figure 10: (a) Completion time of point-and-select tasks for each target (p <
.001). (b) Path cost comparison calculated using the dynamic time warping (DTW)
algorithm. All eye tracking techniques have shorter path lengths than mouse
interaction for traversing items on a screen for matrix-based user study (p < .05). (c)
The distance to target in pixels for dart-based test (p < .001).

 

(a) Dwell-Time
 

(b) Voice Recognition
 

(c) EyeTAP

Figure 11: The locations of errors on the screen during the matrix-based user study
(see Figure 8) for difficulty level 5. The right side of the screen as well as bottom side
are more error prone than the left and top sides.

3.4.4 User Study 3: Ribbon-shaped Test

In order to compare our method to other gaze-based techniques, we measured the

performance target selection based on the Fitts’ law [57]. This study is used to analyze

pointing interaction methods in accordance to well-established academic standards.
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As part of this study, we measured three metrics to compare the performance of all

interaction techniques for point-and-select tasks, (1) throughput (how good a selection

technique operates), (2) movement time and (3) error rates for ribbon-shaped targets

(see Figure 13b).

The intuition of this test was to test interaction techniques based on the Fitts’

law with rectangular buttons (‘FittsStudy’ application [186]).

Stimulus

The stimulus for this test consisted of two ribbon-shaped buttons to be selected on

the left and right sides of the screen with random widths and distances as shown in

Figure 13b. The test sessions includes three distances (256, 384, 512) pixels, and two

widths (96, 128) pixels.

Measures

The following dependent variables were recorded: movement time, throughput, and

error rates for this test. We applied the ‘FittsStudy’ application by Wobbrock et al.

[186] for this test.

Results

A one-way repeated measures ANOVA was performed to examine the effect of

interaction type on: (1) movement time, (2) throughput and (3) error rates for

each interaction method. We also analysed the distribution of each measure since

it indicates the consistency of each interaction technique on most users.

Movement time: We found a significant effect of the interaction method on

movement time (F(3,96)=69.42, p < .001). A posthoc Bonferroni comparison test

showed a significant difference between mouse (M = 684.15 ms, SE = 16.80 ms)

59



and all other eye tracking methods (Figure 12a). In addition, among all eye tracking

methods, dwell-time (M = 599.39 ms, SE = 18.76 ms) achieved significantly lower

movement time than EyeTAP (M = 1794.89 ms, SE = 170.90 ms) and voice

recognition (M = 2014.20 ms, SE = 89.28 ms) techniques. However, there is no

statistical significance between EyeTAP and voice recognition. The lower movement

time of dwell-time method compared to mouse interaction is associated with the low

activation time (500 ms).

We found the highest variability for EyeTAP (range = 5.67 sec, IQR = 0.69 sec)

among all interaction techniques, whereas dwell-time (range = 0.42 sec, IQR =

0.09 sec) and voice recognition (range = 2.03 sec, IQR = 0.37 sec) reached lower

distributions among eye tracking techniques. The mouse reached the narrowest range

(range = 0.34 sec) but larger interquartile range (IQR = 0.11 sec) than dwell-time.

We found the dwell-time as the best interaction technique based on the movement

time measure for the ribbon-shaped test as illustrated in Figure 12a.

Throughput: We found a significant effect of the interaction method on throughput

(F (3, 96) = 75.13, p < .001). A posthoc Bonferroni comparison test showed a

significant difference between dwell-time (M = 3.30 bits/sec, SE = 0.36 bits/sec)

and all eye tracking methods (Figure 12b). The mouse (M = 4.81 bits/sec, SE =

0.11 bits/sec) achieved higher throughput than the eye tracking methods. However,

there is no statistical difference between voice recognition (M = 1.15 bits/sec,

SE = 0.09 bits/sec) and EyeTAP (M = 1.34 bits/sec, SE = 0.12 bits/sec).

We found that EyeTAP (range = 2.73 bits/sec, IQR = 0.78 bits/sec) had the

narrowest range of values for throughput, and dwell-time (range = 7.64 bits/sec,

IQR = 2.86 bits/sec) the highest variability based on both measures among all

interaction techniques. The voice recognition (range = 2.043 bits/sec, IQR =
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0.63 bits/sec) reached lower variability than mouse (range = 2.83 bits/sec, IQR =

0.95 bits/sec) on both measures. However, both EyeTAP and voice recognition

reached lower throughput than dwell-time on average, dwell-time reached the highest

variability due to having a sparse distribution compared to the other interaction

techniques.

Error rates: We found a significant effect of interaction method on error rates

(F (3, 96) = 27.15, p < .001). A posthoc Bonferroni comparison test showed a

significant difference between mouse (M = 0.01 errors, SE = 0.005 errors) and all

eye tracking interactions (see Figure 12c). In addition, dwell-time (M = 0.28 errors,

SE = 0.03 errors) reached a higher error rate than EyeTAP (M = 0.18 errors,

SE = 0.02 errors) and voice recognition (M = 0.10 errors, SE = 0.02 errors).

We also analysed the distribution of errors among users and found that EyeTAP

(range = 0.66 errors, IQR = 0.16 errors) had a similar range compared to dwell-

time (range = 0.66 errors, IQR = 0.25 errors) but lower variability based on the

interquartile range measure. The voice recognition technique (range = 0.58 errors,

IQR = 0.16 errors) showed a narrower range than EyeTAP but similar variability

based on the interquartile range measure. The mouse (range = 0.08 errors,

IQR = 0.00 errors) reached the lowest variability based on both measures among

all interaction techniques. The voice recognition technique reached the lowest

distribution of errors among eye tracking techniques based on error rates as illustrated

in Figure 12c.

3.4.5 User Study 4: Circle-shaped Test

This test is similar to the Ribbon-shaped test, however, contains different target

shapes. Figure 13c illustrates the screenshots of this test which contains uni-variate

endpoint deviation (SDx) through X axis and bi-variate endpoint deviation (SDx,y)
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Figure 12: (a) Calculated movement time, (b) throughput, and (c) the error rates
per method for the ribbon-shaped test. For all measures p < .001.

through both X, Y axes for throughput calculations which results in better Fitts’ law

model [186]. The ‘FittsStudy’ application by Wobbrock et al. [186] was used for this

test.

The intuition of this test was to test the interaction techniques based on the Fitts’

law with circular buttons provided by the ‘FittsStudy’ application [186].

Stimulus

The stimulus for this test consisted of three circle-shaped buttons to be selected

located in the middle of the screen with random widths and distances as shown in

Figure 13c. The test sessions includes three distances (256, 384, 512) pixels, and two

widths (96, 128) pixels.

Measures

The following dependent variables were recorded: movement time, throughput (with

two variations), and error rates for this test.
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Figure 13: (a) Shows the Dart-based test stimuli: the accuracy is highest in the green
area. The cross-hair icon indicates the correct eye gaze location, (b) Illustrates the
ribbon-shaped stimuli, and (c) shows the circle-shaped stimuli of the ‘FittsStudy’
application [186]. Targets highlighted in blue represent active targets to be selected.

Results

A one-way repeated measures ANOVA was performed to examine the effect of

interaction type on: (1) movement time, (2) throughput and (3) error rates for each

interaction method. This test is similar to ribbon-shaped test but contains an extra

metric to measure throughput of each method.

Movement time: We found a significant effect of the interaction method on

movement time (F(3,96)=67.48, p < .001). A posthoc Bonferroni comparison test

showed a significant difference between EyeTAP (M = 1578.95 ms, SE = 95.34 ms),

dwell-time (M = 638.80 ms, SE = 24.35 ms), voice recognition (M = 2123.35 ms,

SE = 132.42 ms) and mouse (M = 727.91 ms, SE = 46.12 ms). However, there is

no statistical difference between mouse (M = 727.91 ms, SE = 46.12 ms) and dwell-

time (M = 638.80 ms, SE = 24.35 ms). Figure 14a illustrates the mean movement

time per method for the circle-shaped test.

We found that dwell-time (range = 0.62 sec, IQR = 0.15 sec) has the narrowest,

and voice recognition (range = 4.29 sec,IQR = 0.44 sec) the largest range. EyeTAP

(range = 2.58 sec, IQR = 0.51 sec) showed a narrower range than voice recognition

but larger interquartile range than voice recognition, dwell-time and mouse (range =
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1.53 sec, IQR = 0.12 sec). This analysis shows higher consistency for dwell-time

compare to the other interaction techniques.

Error rates: We found a significant effect of the interaction method on error

rates (F (3, 96) = 18.25, p < .001). A posthoc Bonferroni comparison test showed a

significant difference between mouse (M = 0.02 errors, SE = 0.01 errors), dwell-

time (M = 0.23 errors, SE = 0.03 errors), voice recognition (M = 0.13 errors,

SE = 0.02 errors) and EyeTAP (M = 0.28 errors, SE = 0.02 errors). Voice

recognition (M = 0.13 errors, SE = 0.02 errors) reached the lowest error rate

among eye tracking methods, however, there is no statistical difference between dwell-

time (M = 0.23 errors, SE = 0.03 errors) and EyeTAP (M = 0.28 errors, SE =

0.02 errors). Figure 14b illustrates the calculated error rates for the circle-shaped

test.

We found that mouse (range = 0.58 errors, IQR = 0.0 errors), dwell-time

(range = 0.58 errors, IQR = 0.25 errors), voice recognition (range = 0.58 errors,

IQR = 0.25 errors), and EyeTAP (range = 0.58 errors, IQR = 0.16 errors) showed

the same variability based on range measure, but EyeTAP reached a lower distribution

based on the interquartile range among eye tracking techniques.

Throughput: Since the circle-shaped test contains two variations (uni-variate, bi-

variate) to measure throughput [186], we ran a two-way repeated measures ANOVA

(throughput × variation) and found a significant effect of the interaction method on

throughput (F(3,96)=19.75, p < .001). A posthoc Bonferroni comparison test showed

a significant difference between mouse (M = 4.16 bits/sec, SE = 0.18 bits/sec),

dwell-time (M = 3.20 bits/sec, SE = 0.25 bits/sec), voice-recognition (M =

1.24 bits/sec, SE = 0.07 bits/sec) and EyeTAP (M = 1.04 bits/sec, SE =

0.13 bits/sec). However, there is no statistical difference between voice-recognition

(M = 1.24 bits/sec, SE = 0.07 bits/sec) and EyeTAP (M = 1.04 bits/sec,
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Figure 14: (a) Calculated movement time, and (b) error rates per method for the
circle-shaped test. For all measures (p < .001).

SE = 0.13 bits/sec). Figure 15a shows uni-variations of throughput, and Figure

15b shows the bi-variations of throughput per interaction method.

We found that dwell-time (range = 6.40 bits/sec, IQR = 2.66 bits/sec) showed

the highest variability among all interaction techniques based on both measures,

range and interquartile range for uni-variation throughput measure. Whereas, voice

recognition (range = 2.50 bits/sec, IQR = 0.55 bits/sec) showed the lowest

variability. EyeTAP (range = 3.81 bits/sec, IQR = 1.16 bits/sec) showed lower

variability than mouse (range = 6.32 bits/sec, IQR = 1.51 bits/sec) on both

measures as illustrated in Figure 15a.

We found that dwell-time (range = 4.69 bits/sec, IQR = 2.08 bits/sec)

and mouse (range = 4.91 bits/sec, IQR = 1.11 bits/sec) showed the highest

variability on both range and interquartile range measures. Whereas voice recognition

(range = 1.88 bits/sec, IQR = 0.42 bits/sec) and EyeTAP (range = 2.49 bits/sec,

IQR = 0.79 bits/sec) showed lower variability for the bi-variate throughput measure

as illustrated in Figure 15b.

This analysis confirms that EyeTAP has the lowest throughput based on mean
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value, and voice recognition has the lowest distribution (higher consistency) among

all interaction techniques for throughput measure based on both uni-variation and

bi-variation of the circle-shaped user study (see Figure 15).

 

(a)
 

(b)
 

(c)

Figure 15: (a) Calculated throughput for uni-variate, (b) throughput for bi-variate
per method for the circle-shaped test, and (c) shows the ratings of EyeTAP from 1
(worst) to 5 (best) for 33 participants. For all measures in (a) and (b) (p < .001).

3.5 Results

3.5.1 EyeTAP Rating by Users

We asked participants to evaluate the overall performance of EyeTAP in the post-test

questionnaire on a scale from 1 (worst) to 5 (best). EyeTAP reached the average rate

of 3.64 (SD = 0.99) by 33 users. Figure 15c illustrates the subjective ratings obtained

from the post-test questionnaire.

3.5.2 NASA TLX Scores

Figure 16 shows the NASA TLX scores for all interaction methods obtained during

the user study. The overall workload is the average of scale values since we assume all

66



scales equally important and therefore eliminated the weighting calculation to apply a

simplified version [62] of the basic NASA TLX ratings [59]. According to our findings,

the dwell-time method has the lowest workload among other eye tracking techniques.

However, EyeTAP shows relatively lower workload compared to the voice recognition

technique.

 

Figure 16: The NASA TLX scores for the interaction methods. (Left) Comparison of
each method based on different scales. (Right) The overall mean workload of tested
interaction methods. Error bars represent standard error.

3.5.3 Comparative Scores

We analyzed the results of the eye tracking techniques based on (1) the analysis of

variance (ANOVA), and (2) the descriptive statics based on dispersion of data, as

illustrated earlier in this section. Since we measured the interaction techniques based

on various criteria, we need to obtain a single measure comprised of all reviewed

measures for comparison. Therefore, we applied a simple scoring technique and

assigned an integer value in the set of {1 (worst), 2 (medium), 3 (best)} to eye

tracking techniques based on their performance and calculated the arithmetic average

for each interaction techniques of the entire criteria. Furthermore, we assigned the

value of 2 (medium) to interaction techniques when they showed statistically similar

or very close performance. Table 2 shows the details of this scoring technique for
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the ANOVA-based measures, and Table 3 contains the details of dispersion analysis

scoring. The higher the calculated average score shows the better performance of the

entire measures.

Figure 17a illustrates the results of Table 2 and Figure 17b shows the calculated

average of both measures (range and IQR measures) of Table 3. The dwell-

time reached the highest score (the best performance) based on the average value

of objective measures of our user studies, although the difference between voice

recognition and EyeTAP is not significant. However, EyeTAP and voice recognition

reached relatively higher scores (higher consistency) than the dwell-time method

based on dispersion analysis, however, the differences are not statistically significant.

We showed that dwell-time performs very well for some participants, but shows

sparse distribution on some criteria. Furthermore, EyeTAP may be considered as

an interaction technique that has potential for improvement and can be adapted for

most participants with sufficient training.

 

(a)
 

(b)

Figure 17: (a) Calculated scores from 1 (worst) to 3 (best) on all objective measures
for eye tracking techniques shown in Table 2. The dwell-time method shows the
highest scores based on ANOVA analysis results. (b) The calculated scores of average
of both dispersion analysis results (range and IQR measures) shown in Table 3. Higher
scores are better in both figures.
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Mean Values
Criteria Dwell Voice EyeTAP
Comp. Time 3 1 2

(1.40) (3.20) (2.57)
Path Costs 2 2 2

(76.73) (82.03) (84.80)
Distance 2 3 1

(35.30) (29.27) (45.11)
MTRibbon 3 1 2

(0.59) (2.01) (1.79)
TPRibbon 3 2 2

(3.30) (1.15) (1.15)
ERRibbon 1 3 2

(0.28) (0.10) (0.18)
MTCircle 3 1 2

(0.63) (2.12) (1.57)
TPCircle−uni 3 2 2

(3.90) (1.48) (1.24)
TPCircle−bi 3 2 2

(2.50) (1.00) (0.84)
ERCircle 2 3 2

(0.23) (0.13) (0.28)
Average 2.50 2.00 1.90

Table 2: Summary of scores per interaction techniques based on comparison of their
mean values. Scores are integer values from 1 (worst) to 3 (best). Statistically similar
mean values (p > .05) were assigned the value of 2. Values represented in parenthesis
denote the mean values of each measure. MT, TP, and ER represent movement time,
throughput, and error rates.
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R IQR
Criteria Dwell Voice EyeTAP Dwell Voice EyeTAP
Comp. Time 3 2 1 3 1 2

(1.80) (7.71) (8.69) (0.84) (1.39) (0.90)
Path Costs 1 2 3 1 2 3

(126.81) (111.11) (88.88) (43.13) (29.91) (22.76)
Distance 2 3 1 2 3 1

(48.96) (42.05) (59.62) (17.91) (15.87) (19.42)
MTRibbon 3 2 1 3 2 1

(0.42) (2.03) (5.67) (0.09) (0.37) (0.69)
TPRibbon 1 3 2 1 3 2

(7.64) (2.04) (2.73) (2.86) (0.63) (0.78)
ERRibbon 2 3 2 1 2 2

(0.66) (0.58) (0.66) (0.25) (0.16) (0.16)
MTCircle 3 1 2 3 2 1

(0.62) (4.29) (2.58) (0.15) (0.44) (0.51)
TPCircle−uni 1 3 2 1 3 2

(6.40) (2.50) (3.81) (2.66) (0.55) (1.16)
TPCircle−bi 1 3 2 1 3 2

(4.69) (1.88) (2.49) (2.08) (0.42) (0.79)
ERCircle 2 2 2 2 2 3

(0.58) (0.58) (0.58) (0.25) (0.25) (0.16)
Average 1.90 2.40 1.80 1.80 2.30 1.90

Table 3: Summary of scores per interaction techniques based on comparison of
dispersion on both measures (1) range (R), and (2) interquartile range (IQR) values.
Scores are integer values from 1 (worst) to 3 (best). We assigned value of 2 for
similar mean values. Values represented in parenthesis denote the actual values of
each measure. MT, TP, and ER represent movement time, throughput, and error
rates.
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3.6 Discussion

Regarding the experiments with the reviewed Midas touch solutions, we found several

benefits and disadvantages of each method. We discuss each method individually.

3.6.1 EyeTAP

We found several benefits of using EyeTAP in comparison to the other interaction

techniques. First of all, it has no dependent features, rather it requires only an

acoustic pulse (making a sound) near a microphone to send a signal. In fact, the

output of EyeTAP in a noisy environment can appear deterministic after a number

of repetitions. According to the results of our study, it achieved faster completion

time in the matrix-based test, and faster movement time in the circle-shaped test

than voice recognition. In addition, it showed a similar path cost (pointer footprint

on display) with the other eye tracking techniques. It also achieved lower cognitive

workload in comparison to the voice recognition technique. Furthermore, EyeTAP

was a popular choice of interaction (36.4%) compared to voice recognition (9.1%).

However, EyeTAP showed relatively lower accuracy and higher error rates than voice

recognition, perhaps due to the fact most users had no prior experiences with this

kind of interaction. Suggesting that with more training the performance of EyeTAP

could be improved.

EyeTAP achieved the lowest variability for path cost of pointer movements on

screen for the matrix-based test. In addition, it showed lower variability than dwell-

time and mouse on throughput measures of both ribbon-shaped and circle-shaped

test. The low variability of EyeTAP reflects the predictability of its performance

on subjects, thus this method can be adopted for different users or different case

scenarios. In general, EyeTAP allows for point-and-select interaction because it

separates the actions of pointing and selecting to two different modalities while
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relaxing the requirement for accurate voice recognition. The results of our user study

demonstrate that EyeTAP is a feasible alternative interaction technique. Moreover, it

is a viable and effective solution to the Midas touch problem for eye tracking platforms

and can be regarded as an alternative to voice recognition technique. EyeTAP showed

the similar dispersion on average based on both measures range, and interquartile

range (IQR) with dwell-time as shown in Table 3 and Figure 17b.

However, the range of activation threshold for the dwell-time method is reported

in the range of (300-1100 ms) in the literature [165]. Compared to a 500 ms dwell-

time, EyeTAP showed acceptable results. To our surprise however, EyeTAP did not

generally outperform dwell-time in terms of either time or errors. This may suggest

that a well-tuned dwell-time method even on commercial hardware components does

not suffer greatly from the Midas touch problem.

EyeTAP showed a lower error rate than the dwell-time in the ribbon-shaped test

(see Figure 12c) with relatively large targets. We posit that with larger size targets,

the eyes to move around the target causing the dwell-time method to have more

errors. Conversely, target size should not impact EyeTAP as much, as the selection

is multimodal so as soon as the eye is on target the user can confirm the selection

with a sound. These features caused the reduction of wrong selections by users to

select relatively large targets in a left-right shift of movements applying the EyeTAP

technique. In contrast, selecting smaller-sized targets in different orientations on the

screen (360 degrees) of the circle-shaped test (see Figure 13c) caused a larger number

of errors for EyeTAP compared to dwell-time and voice recognition. These show that

EyeTAP is more suitable to select larger targets with eye movements in opposite

directions (left-right, up-down) based on error rates.

EyeTAP is an effective and robust alternative to previous gaze-based interaction

techniques. It may be more robust than voice-based techniques and cause less
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fatigue than the dwell-time method. Based on our study results, we believe it

would be particularly useful when there is ambient noise, or users feel uncomfortable

speaking out loud, such as the case in a communal workplace.EyeTAP showed a lower

variability than the voice recognition technique, and a comparable variability to the

dwell-time technique based on dispersion analysis (see Figure 17b) when applied on

participants which is beneficial to apply EyeTAP on different users.

Another advantage of EyeTAP relies on its dual-purpose applications for able-

bodied and severely disabled users who may not use a voice recognition engine to

send their commands and has also difficulties using a dwell-time technique for their

basic interaction needs.

Finally, the interesting advantage of EyeTAP lies in its fundamental auditory

technique which is based on the Morse code [121] which enables a series of commands

based on binary input variables. This feature provides an extension of new commands

from simple to complex functionalities which offers a design flexibility for future

applications and case scenarios. Although currently, EyeTAP is designed for

selection tasks only, its functionalities can be extended. EyeTAP can be considered

as a competitive alternative to speech recognition techniques for selection tasks.

Furthermore, when users are uncomfortable using a mouth sound (and having the

physical capacity to do so), they can tap the microphone to initiate the required

acoustic pulse for selection.

3.6.2 Voice Recognition

This interaction method showed relatively acceptable results but suffers from some

limitations. In general, a voice recognition engine depends on the user’s voice,

gender, language, and accent. Additionally, it is not applicable to users with speech

impediments. Another drawback is the need of prior training samples to detect
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words correctly. Furthermore, similar words may lead to false recognition as we

experienced during our user study. The quality of the microphone and its distance to

the user is also another factor to be considered for this kind of interaction. Regarding

the accuracy of recognition, the choice of recognition software plays an important

role. Finally, speaking commands out loud may not be suitable in certain working

environments.

In general, voice recognition presented some challenges for the users in terms of

wrongly recognized words, need for action word repetition, and delay between input

and feedback. The subjects’ rating of this technique was very low (9.1%) in our user

study. Voice recognition showed the highest completion time in the matrix-based test

and highest movement time in the circle-shaped test and reached the highest cognitive

workload among all interaction techniques.

The lowest error rates in both Fitts’ studies reflect that the voice recognition

technique is easier to control than EyeTAP and dwell-time to select targets (see

Figures 12c and 14b). Voice recognition had the highest selection accuracy measured

by the dart-based test. This suggests that it may be a well-suited interaction

technique when on small screens and/or with small-sized targets. In addition, the

voice recognition technique reached the lowest variability based on our dispersion

analysis on distance to target (as shown in Figure 10c and Table 3), and throughput

measures (shown in Figures 12b, 15a, and 15b and Table 3) among all eye tracking

techniques. The voice recognition technique achieved the highest score based on

dispersion analysis as shown in Table 3, and Figure 17b. These show its adaptability

on different users which is a useful feature to apply it on a larger population with a

predictable performance for suitable case scenarios.

Beelders et al. stated that using the dwell-time technique should be more efficient

than speech commands [14]. However, we have shown that speech commands have
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better performance for error rates (see Figures 12c, 14b), selection accuracy (see

Figure 10c), and higher consistency on users based on dispersion analysis (see Figure

17b). Zhao et al. experienced issues with their voice recognition engine such as

speaking words loudly [190], we also had the same difficulties in our experiments.

This is one of the challenges of voice recognition engines.

3.6.3 Dwell-Time

The dwell-time method showed the fastest completion time in the matrix-based test,

and fastest movement time and highest throughput in both Fitts’ experiments due

to the low amount of activation time (500 ms). In addition, it reached the lowest

amount of cognitive workload. However, it showed the highest error rates in the

ribbon-shaped test and with EyeTAP in the circle-shaped test. Moreover, some users

complained about eye fatigue after a while during test sessions. Since the dwell-time

method relies on the activation time, any changes may produce different results.

We believe that the reason for faster completion time for dwell-time relates to

the fact that it has a singular activation function which demands significantly lower

cognitive workload (see Figure 16) to select targets at different locations, whereas

the multimodal technique relies on mental coordination between both modalities to

point and select a target. We posit that the synchronization of these modalities was

a major factor in dwell-time outperforming the EyeTAP technique on most measures.

The dwell-time technique showed the lowest variability on task completion time

and movement time measures among all eye tracking techniques, but the highest

variability on path cost of target selection, throughput of both ribbon-shaped and

circle-shaped tests and the highest variability on error rates of the ribbon-shaped

test. This method reached similar variability as EyeTAP based on both measures

range, and interquartile range (IQR) as shown in Table 3 and Figure 17b. Except
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the high error rates for the dwell-time method, it has been shown to be comparable

with the mouse interaction for target selections in our studies which makes it still a

superb eye tracking interaction technique. However, the EyeTAP technique showed

competitive performance compared to the voice recognition technique with promising

results. Pfeuffer et al. found the dwell-time the fastest technique in their study

[141]. We confirm their findings regarding the completion time in our user studies

for the dwell-time technique. However, they found dwell-time eye tiring and the least

favorable technique by users due to relatively high activation time (1 sec). In contrast,

we found the lowest workload for the dwell-time based on the NASA TLX scores (see

Figure 16) but had similar feedback about eye fatigue. Since we employed half of the

activation threshold used in Pfeuffer et al.’s experiment, dwell-time was found to be

the easiest and fastest technique among eye tracking techniques in our user studies.

In another work for head mounted displays (HMDs), Esteves et al. found a dwell-time

of 400 ms a faster interaction technique than applying a clicker and speech commands

[51]. We confirm their findings based on our user studies’ results. Moreover, they

found the dwell-time and clicker the most popular interaction techniques by users. We

found relatively high error rates for dwell-time in our studies. Esteves et al. showed

that increasing the activation threshold for dwell-time (400 ms to 1 sec) can decrease

error rates to zero. These confirm that the choice of activation threshold is a key

factor in applying the dwell-time method which is a trade-off between performance

and error rates.

Miniotas et al. applied a dwell-time of 1500 ms in their experiments and showed

the lowest error rate for that threshold [116]. However, although increasing the dwell-

time may reduce error rates, it may also cause eye fatigue as we experienced in our

user studies, especially during long-time sessions. The dwell-time method with 500 ms

threshold is regarded as the best performing version of dwell-time [103].
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3.6.4 The Mouse

We applied the mouse interaction as a baseline technique for comparison with the

gaze-based techniques. Overall, we found higher performance for mouse interaction,

however, it showed higher pointer movements on the screen (see Figure 10b) than eye

tracking techniques. Beelders et al. found that mouse interaction has significantly

higher performance than eye tracking techniques in the case of throughput and

completion time. We confirm these findings, however we also found that in the case of

completion time, the dwell-time technique reached similar performance (see Figures

12a, 14a). These show the potentials of a fine-tuned dwell-time technique as an

alternative for the mouse.

3.7 Conclusion and Future Work

In this paper, we proposed EyeTAP (Eye tracking point-and-select by Targeted

Acoustic Pulse), an eye tracking interface that addresses the Midas touch problem

with acoustic input detection capabilities. The performance of the prototype was

measured in four user studies with 33 participants based on eight criteria: (1)

completion time, (2) path cost of target selection, (3) error rate, (4) error locations on

screen, (5) accuracy of target selection, (6) movement time, (7) throughput, and (8)

cognitive workload.

In addition, we performed a statistical analysis based on (1) variance, and (2)

dispersion of data. The results of our user studies showed that the dwell-time method

outperformed other eye tracking techniques, including EyeTAP on most criteria based

on an analysis of variance (ANOVA), but suffers from a high level of distribution

on some criteria. At the same time we found that EyeTAP, in comparison to the

other tested methods provides a faster task completion time, faster movement time
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and lower workload than voice recognition. In addition, EyeTAP showed similar

performance compared to the dwell-time method and a lower error rate in the ribbon-

shaped test.

Moreover, our study showed that eye tracking has a lower footprint (eye gaze

mapped with mouse pointer) on the screen compared to a mouse pointer in time scale.

Additionally, we confirmed that center regions towards the right and bottom side of

the screen are more error prone than the left and top sides. Finally, we developed two

user tests (Matrix-based, and Dart-based tests) that would be effective in studying

different target selection in gaze-based interaction techniques.

Although we only developed the left mouse click event, EyeTAP demonstrates

a completely contact-free alternative to mouse interaction for users with disabilities

and users who need to avoid physical contact with input devices considering their

workplace or situation. Thus, we believe EyeTAP can be regarded as a competitive

technique to both dwell-time, specifically in cases where users may experience

physical disabilities or restrictions, and voice recognition, particularly when dealing in

workplaces, accents or speech disabilities. EyeTAP showed a higher consistency (lower

variability) based on the dispersion analysis, thus it may be more easily accessible to

a larger diverse population (e.g. children, users with disabilities, and elderly users).

The global outbreak of COVID-19 showed the importance of contact-free inter-

actions, specifically in public places and for healthcare personnel. The potential of

EyeTAP can be considered on public devices such as ATM machines and self check-in

platforms at airports. We hope, that EyeTAP inspires researchers into developing

contact-free interaction techniques for emerging case scenarios and equipment. In

future work, we will apply the EyeTAP technique on AR/VR headsets to measure

its usability in different case scenarios for able-bodied and participants with motor

disabilities.
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Chapter 4

FELiX: Fixation-based Eye Fatigue

Load Index A Multi-factor

Measure for Gaze-based

Interactions

Preface

As we spend more time on digital displays on a daily basis, it is very important to

measure the amount of workload or eye-strain on our eyes. Such a measurement

would enable researchers to compare different interaction techniques in user studies.

Previous metrics used to determine for eye-strain [1, 92, 8, 113, 41], are not always

appropriate or effective and some require expensive eye tracking sensors. Thus,

here we propose and evaluate a model (FELiX) comprised of both objective and

subjective criteria to be applied in user studies with two variations performance-

based and accuracy-based for different test conditions. FELiX with its variations
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takes users’ feedback into account which is useful for consumers of digital contents

to select a software product (fully-functioning interaction technique) with the lowest

amount of eye-strain. FELiX can be applied using budget-friendly eye tracking sensors

which is suitable for many use case scenarios in the research community. In addition,

FELiX can be applied as an alternative measurement technique for biological sensors

to measure eye-strain and work-related stress. In testing the developed model, we

compared the dwell-time technique with a voice-recognition technique.

This Chapter is based on a paper was presented at the 2020 13th International

Conference on Human System Interaction (HSI), was a *Best Paper Finalist, and

was published in the proceedings of the conference. The results of this chapter were

the fundamental motivation of our next models regarding eye-strain on digital media

presented in Chapters 5 and 6.

80



Abstract

Eye fatigue is a common challenge in eye tracking applications caused by physical

and/or mental triggers. Its impact should be analyzed in eye tracking applications,

especially for the dwell-time method. As emerging interaction techniques become

more sophisticated, their impacts should be analyzed based on various aspects.

We propose a novel compound measure for gaze-based interaction techniques

that integrates subjective NASA TLX scores with objective measurements of eye

movement fixation points. The measure includes two variations depending on the

importance of (a) performance, and (b) accuracy, for measuring potential eye fatigue

for eye tracking interactions. These variations enable researchers to compare eye

tracking techniques on different criteria. We evaluated our measure in two user studies

with 33 participants and report on the results of comparing dwell-time and gaze-based

selection using voice recognition techniques.

4.1 Introduction

4.1.1 Cognitive Workload

Cognitive workload is defined as the amount of mental effort of a person performing a

task or in the process of problem-solving. It is related to a person’s working memory

which has a limited capacity [30, 173]. It is important to measure the amount of

cognitive workload related to performing a task given a specific interface in order

to compare the usability of different systems. The NASA Task Load Index (TLX)

questionnaire is a well-known multidimensional method used to measure subjects’

perceived workload in user studies [64, 63]. The TLX questionnaire, which has been

shown to be a valid tool to measure workload [152], comprises of six scales: (1) physical

demand, (2) mental demand, (3) temporal demand, (4) effort, (5) performance and
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(6) frustration, each on a 100-point range with 5-point steps [59]. Each scale can be

weighted based on its importance and used to calculate the average value - known

as the overall workload. The overall workload serves as a measure of the efficacy of

the interaction technique and can be used for comparing different methods based

on their workload. However, the results of the NASA TLX are subjective and

suffer from several limitations. One such limitation is that subjects often confound

task performance with the perceived mental effort. Furthermore, as the results are

obtained after a task is completed so as not to interrupt the task, the NASA TLX

is not ideally suited for real-time scenarios [189]. For these reasons, more robust

and accurate methods should be applied for measuring cognitive load, such as the

use of physiological data [6]. Researchers are thus beginning to investigate the use

of physiological signals, for example by measuring brain activity. Techniques for

measuring brain activity include: (1) Electroencephalography (EEG) which detects

brain waves [42], (2) Magnetoencephalography (MEG) that records magnetic fields of

electrical activities in brain [43], and (3) Near-infrared spectroscopy (NIRS) which is

a spectroscopic method that uses wavelengths in the near-infrared range to measure

blood flow changes in the frontal cortex [74]. These methods although accurate in

detecting brain activity require specialized and sometimes cumbersome equipment.

In addition, these techniques are intrusive for users and therefore are restricted to

controlled environments such as laboratories [189].

4.1.2 Eye Fatigue

According to Vasiljevas et al., fatigue is the increase of tiredness of a subject under

load [178] and can be grouped into physical, e.g. lack of sleep, and mental related

causes such as stress [66]. According to Marcora et al., mental fatigue is the result

of high cognitive activity [109]. Visual fatigue defined as “eyestrain or asthenopia,
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which can be caused by both two-dimensional and stereoscopic moving images” [78]

and which can cause motion sickness [94], occurs when focusing on near objects. The

visual function of the eyes may cause visual fatigue, especially in long-time periods.

Other symptoms of visual fatigue include: tiredness, headaches, and irritation of the

eyes [176]. In this paper, we propose an integrated measure to detect task load and

visual fatigue during gaze-based interactions. Our focus is on visual fatigue as it is a

common issue among computer users due to the prolonged periods of time they spend

working in front of a monitor[178]. We believe that a comprehensive measure that

combines the quantitative aspects of eye tracking fixation points with the qualitative

aspects of the NASA TLX scores could provide an effective means to distinguish task

load and fatigue in different gaze-based interactions. The developed measure is an

alternative to using sensory devices in situations where the application of biological

sensors are either not possible, or cumbersome to participants for user studies.

The contribution of this paper is twofold. Firstly, we introduce FELiX: Fixation-

based Eye Fatigue Load Index, an integrated measure of task workload and visual

fatigue. The term eye fatigue load is defined as a combined measure of task workload

and visual fatigue. The FELiX measure combines the accuracy of the objective

eye tracking data (quantitative inputs) with the subjectivity of user’s experience

as calculated by the NASA TLX scores (qualitative inputs) during gaze-based

interactions. Secondly, we investigate the ability of FELiX to measure eye fatigue

load by conducting two user studies comparing two gaze-based interaction techniques:

dwell time and voice recognition. The results of our studies show that FELiX is able

to distinguish between different gaze-based interaction methods.
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4.2 Related Work

Researchers proposed various measures to measure eye fatigue based on either eye

movement analysis or biological sensor inputs. Zheng et al. investigated the

correlation between eye blinks and mental workload among surgeons. They found

that shorter blink duration and frequency indicate an increase of the mental workload

[191]. Additionally, Borghini et al. studied brain activity and heart rate of car drivers

and found the same results regarding the eye blink rates with mental workload [18].

Lanthier et al. studied the correlation between fixations and eye fatigue during visual

search tasks and found that fixation duration increases with fatigue [97]. Abdulin

et al. showed that the distance drift of fixation points in response to a stimuli

can reveal physical eye fatigue [1] and calculated this using the fixation qualitative

score (FQlS) [92]. Vasiljevas et al. examined an analytical model of muscle fatigue

proposed to measure athletes fatigue [22] and adopted it to assess eye fatigue in gaze-

based tasks [178]. In studying the impact of learning on fatigue, they found that the

required break time for gaze-based interactions can be measured. Researchers have

also applied self-evaluation questionnaires to evaluate eye fatigue in user studies for

gaze-based applications [105]. There are saccades-based approaches to measure eye

fatigue [8, 113, 41]. However, according to Abdulin et al., analysis of saccades raw data

requires expensive eye trackers, and these approaches are not applicable on budget-

friendly devices [1]. Building on the previous works, we propose a fixation-based

approach which can be applied on most eye trackers. Although, previous measures

can be used to measure eye fatigue with high probability, they rely solely on eye

movements or sensor inputs. To the best of our knowledge, there are currently no

measures that integrate NASA TLX scores with the measurements of eye movements

using eye tracking to assess eye fatigue. To take advantage of both physiological data

and user perceptions, we integrate eye movements (fixation points) as an objective
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measure, and NASA TLX scores as a subjective measure in FELiX. By combining

workload and eye fatigue in one measure, FELiX is ideally suited to compare different

interaction techniques in gaze-based interaction user studies.

4.3 Eye Fatigue Load Index (FELiX)

We propose two variations of FELiX, both of which integrate the beneficial features

(simplicity and direct ratings by users) of the NASA TLX with gaze fixations to

measure eye fatigue load. Out of the six TLX questionnaire scales, we only employ

scores for the following three scales: physical demand (PD), mental demand (MD),

and performance (P). This choice is based on the fact that the physical and mental

demands best describe the concept of workload to users, whereas performance is best

interpreted by the users as the overall performance of the method. In contrast, the

other three scales (e.g. temporal demand, frustration, effort) focus on usability and

user satisfaction. The first variation of the proposed measure FELiXper incorporates

fixations recorded (x, y, timestamp) during a gaze-based test as well as the error

rates of target selections and can be used in experiments where performance is of

high importance. On the other hand, if accuracy is of higher importance, the second

variation FELiXacc can be used, which incorporates the Euclidean distance to the

target as well as the number of fixations. The proposed measures, performance-based

and accuracy-based, measure the eye fatigue load for any gaze-based interactions

relying on eye movement measurements.

4.3.1 Cognitive and Eye-Tracking Coefficients

FELiX involves two coefficients, namely cognitive and eye-tracking coefficients. The

cognitive coefficient is a qualitative factor which is calculated based on the users’
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rating scores of the NASA TLX questionnaire for the scales PD, MD, P (rated

on a scale of 1-100). The eye tracking coefficient is a quantitative factor which is

calculated from the eye-tracking data recorded during the test session. Since the

recorded values used in calculating the eye-tracking coefficient can vary depending on

the test conditions, we use the logarithmic function to scale down to a lower range

the potentially large index values. Furthermore, to avoid cases where one coefficient

diminishes the effect of the other (e.g. eye-tracking coefficient or cognitive coefficient

is close to zero), we offset the coefficients by 1 and 9 respectively, such that the

lowest value is ≥ 1 as explained below. We applied similar parameters introduced by

previous research based on saccades [8, 113, 41], and fixation analysis such as average

fixation duration time (AFD), and average number of fixations (ANF), as proposed

by Komogortsev et al. [92].

4.3.2 Performance-based FELiX (FELiXper)

Equation 2 shows the formula for the first variation of the measure, FELiXper.

This measure can be used for calculating the eye fatigue load index for interaction

techniques and is dependent on the following parameters:

• average fixation duration time (AFD),

• error rate (ER) which is the total number of error selections divided by the total

number of targets,

• average number of fixations (ANF), and

• NASA TLX questionnaire (3 scores: PD, MD, P)

The conditions and range of each of the parameters are given by,
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1. PD = {a | a ∈ Z ∧ 1 ≤ a ≤ 100},

MD = {b | b ∈ Z ∧ 1 ≤ b ≤ 100},

P = {c | c ∈ Z ∧ 1 ≤ c ≤ 100}

TLX scores are integers in range of 1 to 100.

2. ER ∈ R ∧ 0 ≤ ER ≤ 1

The error rate is a real number from 0 to 1.

3. (ER× P ) ∈ R ∧ 0 ≤ (ER× P ) ≤ 100

The product of error rate and performance score is a real number from 0 to 100.

4. CCper ∈ R ∧ 1 ≤ CCper ≤ 200

The cognitive coefficient CCper (equation 1) is the average of TLX scores (PD,

MD) added to the product of error rate and performance score (P) which results

in a real number from 1 to 200. This coefficient reflects the increase of task

workload by multiplying the error rate factor. In the case of an error-free

condition, the performance factor is removed to lower the cognitive coefficient.

CCper = (PD +MD

2 ) + (ER× P ) (1)

5.
(
ANF
AFD

)
∈ R>0

The eye tracking coefficient is comprised of the average number of fixations

(ANF) divided by average fixation duration time (AFD) which results in a

positive real number greater than 0. This measure reflects the duration of

fixation points on average.

6. FELiXper ∈ R ∧ FELiXper ≥ 1

FELiXper (equation 2) is the product of (a) logarithm of cognitive coefficient

CCper with the fixed constant value 9 in base 10, and (b) the eye tracking
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coefficient ANF
AFD

with the fixed constant value 1 which results in a real number

greater or equal than 1.

FELiXper = log10(9 + CCper︸ ︷︷ ︸
cog. coeff.

)× (1 + ANF

AFD︸ ︷︷ ︸
eye-track. coeff.

) (2)

4.3.3 Accuracy-based FELiX (FELiXacc)

Equation 4 shows the formula for the second variation of the measure, FELiXacc. The

measure can be used to calculate the eye fatigue load index for interaction techniques

where accuracy is of utmost importance i.e. distance to target, such as in target

selection tasks. FELiXacc is dependent on the parameters:

• average number of fixations (ANF),

• average Euclidean distance to the target (ADT), and

• NASA TLX questionnaire (2 scores: PD, MD) as described above.

The distance (ADT) is measured as the difference between the 2D coordinates of

the center of a target and the coordinates of the corresponding fixation point. The

conditions and ranges of each of the parameters are defined as,

1. PD = {a | a ∈ Z ∧ 1 ≤ a ≤ 100},

MD = {b | b ∈ Z ∧ 1 ≤ b ≤ 100}

TLX scores are integers in range of 1 to 100.

2.
(
ANF
ADT

)
∈ R>0

The eye tracking coefficient is comprised of the average number of fixations

(ANF) divided by average Euclidean distance to the target (ADT) which results

in a positive real number greater than 0. This measure reflects the distance of

fixation points to the target on average.
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3. CCacc ∈ R ∧ 1 ≤ CCacc ≤ 100

The cognitive coefficient CCacc (equation 3) is the average of TLX scores PD

and MD which results in a positive real number between 1 and 100.

CCacc = PD +MD

2 (3)

4. FELiXacc ∈ R ∧ FELiXacc ≥ 1

FELiXacc (equation 4) is the product of (a) logarithm of cognitive coefficient

CCacc with the fixed constant value 9 in base 10, and (b) the eye tracking

coefficient ANF
ADT

with the fixed constant value 1 which results in a real number

greater or equal than 1.

FELiXacc = log10(9 + CCacc︸ ︷︷ ︸
cog. coeff.

)× (1 + ANF

ADT︸ ︷︷ ︸
eye-track. coeff.

) (4)

4.3.4 Discussion: Rational of FELiX

We employed quantitative parameters typically recorded in eye tracking applications

in our measure since they reflect technical workflow of an interaction technique. These

technical parameters are bound to test applications and equipment. Additionally, we

applied workload parameters obtained from the NASA TLX scores to include direct

ratings of participants who were involved in the practical aspects of an interaction

technique. The proposed measure should result in a single value based on both

technical and empirical parameters regarding the available measures. The purpose

of multiplication of both coefficients (quantitative and qualitative) is to control the

influence of both coefficients. In fact, the proposed measure should be balanced in the

way that no aspects of an interaction technique (technical or empirical) can undermine

the impact of the other.
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4.4 Methodology

To evaluate the effectiveness of the proposed measures we calculated the FELiX

measure based on two gaze-based interaction studies with 33 participants (13 female,

from 22 to 35 years old, SD = 2.96). All subjects partook in both experiments. The

equipment is illustrated in Figure 18a.

4.4.1 Interaction Methods

Dwell-time

The dwell-time method integrates both pointing and selection phases using the eye

tracker only. The range of dwell-time has been between 300-1100 milliseconds for

target selection in the literature [165]. We defined the target activation threshold

to 500 milliseconds, since it showed the best performance in [103] and participants

prefer dwell-times of around 500 ms[165]. In other words, the target was considered

as selected when a subject focused on it for 0.5 seconds; if the subject moved their

gaze away from the target prior to the 0.5 seconds the selection process would restart.

Eye Tracking with Voice Recognition

For voice recognition, eye tracking was used for pointing and voice for selection. The

selection phase for the voice recognition technique is triggered by a voice command

which in our case was the word ‘select’ that was interpreted as a mouse click. The

voice command is captured by a headset microphone (Logitech H370). An artificial

ambient noise was introduced in the background through stereo desktop speakers at a

volume of 50 dB to simulate a typical work environment. The method was developed

using the built-in Windows 10 speech recognition capabilities available in the .NET
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framework. We implemented a C# application to respond to the activation keyword

‘select’ to trigger a mouse click.

4.4.2 Hypotheses

Based on the previous literature, which has demonstrated dwell-time to be one of the

most effective gaze-based interaction techniques [172], but one which can suffer from

issues related to Midas touch [76], we hypothesized that:

1. The accuracy-based FELiX (FELiXacc) will be lower for dwell-time than voice

recognition because dwell-time should have lower fixation distances to target

(ANF
ADT

), as well as, lower physical demand (PD) and mental demand (MD).

2. The performance-based FELiX (FELiXper) will be higher for dwell-time than

voice recognition because dwell-time tends to result in more errors due to Midas

touch and should have higher duration of fixation points (ANF
AFD

).

3. The analysis of both FELiX variations will allow us to distinguish dwell-time

and a multi-modal interaction technique.

4.4.3 Apparatus

In our user study, the mouse pointer position is captured using the Tobii 4C eye

tracker1. All test applications were developed and the user studies were run on a

commodity computer system: 64-bit Windows 10 PC with Intel i7 2.67GHz CPU, 12

GB RAM, 1 TB hard disk and NVIDIA GeForce GTX 770 graphics card. Figure 18a

shows the required equipment of both interaction techniques.
1https://tobiigaming.com/product/tobii-eye-tracker-4c/
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Eye Tracking: Pointing Phase

The Tobii SDK (TobiiEyeXSdk-Cpp-1.8.498) supports different events related to eye

tracking activities such as the location of the current eye gaze, positions of both eyes,

fixation points, and user presence in front of the eye tracker. We employed the eye

gaze library (API) to obtain users’ gaze locations. These locations show the current

gaze position on the screen in pixel coordinates. The SDK supports eye movements

in a 3D coordinate system (horizontal, vertical, depth). However, we applied a 2D

coordinate system (x,y) combined with a unique timestamp corresponding to the

recorded location such that the mouse cursor was synchronized with the gaze positions

to control the mouse pointer on the screen. Eye-tracking for both user studies was

developed in C++ and integrated as a new plug-in into the Tobii SDK. The samples

were recorded in distance of 60 cm (23.6 in) to the eye tracker with the sampling rate

of 90 Hz.

Voice Processing: Selection Phase

To simulate a click on the item to be selected a headset microphone listens to the user

while suppressing the background ambient sounds/noise in real-time. The Windows

10 Speech Recognition engine (available in the .NET framework) was selected to parse

the received commands and a C# program was developed to trigger a left mouse click.

4.4.4 Experimental Design

Prior to running the studies, subjects were informed about the purpose of the

study, trained on each of the methods to be tested, and participated in a pre-

test questionnaire inquiring on their background in the fields of eye tracking, voice

recognition technologies and their preferred kind of interaction. After the pre-test

questionnaire the Tobii calibration software was used to calibrate the system for each
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participant before starting the study. During the study each user partook in two

experiments with different stimuli: (1) matrix-based and (2) dart-based. Overall, the

studies took 8 minutes on average for each participants, 6 minutes for the matrix-

based, and 2 minutes for the dart-based test.

4.4.5 User Study 1: Matrix-based Test

In the first experiment, a matrix of buttons (targets), were randomly distributed

across the screen. The task of the subjects was to point and click on buttons shown

on the screen in increasing numerical order for various levels of difficulty from 1

(easy) to 5 (hard), described in detail below. The level of difficultly was presented in

ascending order. Further, the transition from lower levels to higher levels was done

automatically, thus the whole test session for each participant was continuous.

Stimulus

The stimulus consisted of 77 buttons (11 columns × 7 rows) in size of 110 × 80

pixels, some labeled with numbers and others not, which covered the entire screen at

a resolution of 1920 × 1080 pixels on a Dell P2411Hb monitor. Two marginal columns

(far left, far right) and two rows (top, bottom) were removed from the active selection

due to the high difficulty to be selected by users during the pilot-test. Buttons that

were not labeled are considered as barriers or distractions. To provide feedback to

the subject, labeled buttons change color after the user has successfully pointed and

selected on the correct button. Wrongly selected barriers (buttons with no label)

are highlighted in red. The level of difficulty of the stimulus was also increased

across subject trials. This was done by increasing the number of targets that had

to be selected by the subject. Five levels of difficulty were used for each interaction

method: level 1 (4 targets), level 2 (6 targets), level 3 (8 targets), level 4 (10 targets)
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and level 5 (12 targets). Targets were randomly distributed over the entire screen for

each level. Figure 18b shows the matrix-based test during difficulty level 5.

Measures

The following variables were recorded: fixation duration time, number of fixations,

error rates, and subjective ratings (based on the NASA TLX scores). An internal

logging module recorded subjects’ actions, fixation duration times, wrongly selected

targets, as well as the number of fixations per each method.

4.4.6 User Study 2: Dart-based Test

In this experiment the subject was to select, as accurately as possible, the bull’s-eye

of a dart target using each interaction method. In order to take into consideration

the fact that eye tracking has different accuracy in different regions of the monitor

[54], we computed an average value based on five trials for each interaction method

where the stimulus was shown at different areas of the screen near the center of the

screen randomly. Each new randomly chosen trial began two seconds after selection

of the previous target, allowing users time to change their gaze and to focus on the

new target. For the dwell-time method, a countdown (5 to 0) representing remaining

100 milliseconds was displayed during the selection phase and users needed to focus

on the dart shape before this time was up.

Stimulus

The stimulus for this experiment consisted of a dart-like target with three circles:

green (0 to 30 pixels radius), blue (30 to 60 pixels radius) and red (60 to 90 pixels

radius) as in Figure 18c. Points within the center area i.e. green have the lowest range

of distances to the bulls-eye; each other co-centric circle has a larger range of distance
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values. Any point lying outside the three co-centric circular areas is considered as

having a fixed maximum distance of 90 pixels. For this experiment, a cross-hair icon

was used.

Measures

The purpose of this test was to measure the selected point’s distance on the dart

target to the center of the core circle (in green), thus the accuracy is measured in

pixels. The distance between the selected location and the center of the stimulus

is calculated based on the Euclidean distance. Since the measured trials are chosen

randomly, the average is calculated to compare the two different methods based on

accurate selection. In addition, the number of fixation points for each method was

recorded.

4.4.7 Test Workflow

The order of interaction methods was randomly selected for each participant. At the

end of the two studies subjects filled out a post-test questionnaire, which among other

questions consisted of the NASA TLX questionnaire [59].

 

(a)
 

(b)
 

(c)
 

(d)

Figure 18: (a) shows test setting and equipment for both user studies. (b) shows
the matrix-based test. The red button represents an error selection. The circle on
number 12 represents the eye pointer. (c) shows the Dart-based test stimuli, and (d)
shows error locations on screen. Orange bars represent total number of errors for
voice recognition, and blue bars for dwell-time method.
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4.5 Results

We analyzed the results of our experiments using an analysis of variance (ANOVA)

followed by Bonferroni posthoc tests with the JASP 0.11.1 software2.

4.5.1 User Study 1: Matrix-based Test

A one-way repeated measure ANOVA was performed to examine the effect of

interaction type on (1) number of fixations, (2) fixation duration time, (3) error rate,

and (4) eye fatigue load index. Since we calculate average values on the entire test

session for each participant, we can ignore the difficulty level factor in the analysis

and take the total number of targets (40) into account.

Number of fixations

We found a significant effect of interaction method on average number of fixations

(F(1,32)=7.79, p < .05). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 262.97 fixations, SE = 34.06 fixations) and

voice recognition (M = 425.84 fixations, SE = 68.75 fixations).

Fixation duration time

We found a significant effect of interaction method on average fixation duration

(F(1,32)=32.93, p < .001). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 16.52 sec, SE = 1.32 sec) and voice recognition

(M = 39.77 sec, SE = 3.97 sec).
2https://jasp-stats.org/
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Error rate

We found a significant effect of interaction method on error rate (F(1,32)=5.26,

p < .05). A posthoc Bonferroni comparison test showed a significant difference

between dwell-time (M = 0.12 errors, SE = 0.03 errors) and voice recognition

(M = 0.05 errors, SE = 0.01 errors). Table 4 summarizes test results of the

Matrix-based test.

Error locations on screen

Previous research has shown that the right side of a monitor has lower precision for

eye tracking applications [54]. We studied the regions of the screen in regard to errors.

We divided the screen size into nine equally-sized squares and counted the number of

errors occurring in each location. In our study, errors are defined as wrongly selected

targets (depicted in red in Figure 18b). Errors on the borders were counted for all

adjacent regions. For instance, errors which occur in two regions are counted as

occurring in both regions. Figure 18d illustrates the total number of errors for all

participants for both interaction techniques.

Eye fatigue load index (performance-based)

We found a significant effect of interaction method on our eye fatigue load index

(F(1,32)=24.09, p < .001). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 17.24, SE = 1.2) and voice recognition

(M = 11.85, SE = 0.94). Figure 20a illustrates the calculated performance-based

eye fatigue load index for the Matrix test. This confirms our second hypothesis that

FELiXper is higher for dwell-time than voice recognition.
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Dwell-Time Voice Recog. Sig.
Mean number of fixations 262.97 425.84 p < .05
Mean fixation duration (sec.) 16.52 39.77 p < .001
Error rate 0.12 0.05 p < .05

Table 4: Test results of the Matrix-based test. Dwell-Time caused significantly more
errors as expected.

4.5.2 User Study 2: Dart-based Test

A one-way repeated measure ANOVA was performed to examine the effect of

interaction type on (1) number of fixations, (2) average distance to target, and (3)

eye fatigue load index.

Number of fixations

We found a significant effect of interaction method on average number of fixations

(F(1,32)=26.38, p < .001). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 455.52 fixations, SE = 1.71 fixations) and

voice recognition (M = 1379.66 fixations, SE = 179.17 fixations).

Average distance to target

We found a significant effect of interaction method on average distance to target

(F(1,32)=8.33, p < .05). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 35.30 pixels, SE = 2.11 pixels) and voice

recognition (M = 29.27 pixels, SE = 2.07 pixels). Since our accuracy-based FELiX

(see equation 4) calculates the average distance to target in its eye tracking coefficient

(ANF
ADT

), it is similar with the FQlS measure [92] in measuring distance to target. In

comparing the two measures, we found that FELiXacc decreases when the distance

to target increases. In other words, higher distance to the target (lower accuracy) is

associated with lower eye fatigue (Figure 19a). On the contrary, FELiXper increases
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with distance to target (Figure 19b). Table 5 summarizes the test results of the

Dart-based test.

Dwell-Time Voice Recog. Sig.
Mean number of fixations 455.52 1379.66 p < .001
Average distance to target 35.30 29.27 p < .05

Table 5: Test results of the Dart-based test. Dwell-Time reached significantly lower
number of fixations as expected.

Eye fatigue load index (accuracy-based)

We found a significant effect of interaction method on eye fatigue load index

(F(1,32)=31.74, p < .001). A posthoc Bonferroni comparison test showed a significant

difference between dwell-time (M = 4.28, SE = 0.26) and voice recognition

(M = 12.96, SE = 1.53). Figure 20b illustrates the calculated accuracy-based eye

fatigue load index for the Dart test. This result confirms our first hypothesis that

dwell-time has a lower FELiXaccc score than voice recognition.

4.5.3 Bi-variate Comparison

We proposed two variations on different criteria (performance and accuracy). Each

interaction technique can be analyzed on both measures. A one-way repeated measure

ANOVA was performed to examine the effect of interaction type on the mean of both

FELiX variations. We found no significant effect of interaction method on bivariate

eye fatigue load index (F(1,32)=3.77, p > .05). A posthoc Bonferroni comparison

test showed no significant difference between dwell-time (M = 10.76, SE = 0.53)

and voice recognition (M = 12.40, SE = 0.86). Figure 20c illustrates the calculated

bivariate (performance-, and accuracy-based) average of eye fatigue load index. Table

6 summarizes calculated FELiX values on both criteria.
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(a)
 

(b)
 

(c)

Figure 19: Correlations of the accuracy-based (a) and performance-based (b) FELiX
with fixation qualitative score (FQlS), for 33 participants. Dashed lines represent
regression through voice recognition and solid lines through dwell-time. (c) shows
eye fatigue load index on both variations. Voice recognition technique shows sparse
values on both variations.

Dwell-Time Voice Recog. Sig.
FELiXper 17.24 11.85 p < .001
FELiXacc 4.28 12.96 p < .001
Bi-variate FELiX 10.76 12.40 p > .05

Table 6: Test results of FELiX calculations. Dwell-Time caused significantly higher
eye fatigue based on performance and lower eye fatigue based on accuracy as expected.
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4.5.4 NASA TLX Scores

Figure 20d shows the required NASA TLX scores by FELiX variations from the

post-test questionnaire.

 

(a)
 

(b)
 

(c)

 

(d)

Figure 20: (a) shows performance-based eye fatigue load index for the Matrix test
(p < .001), and (b) shows accuracy-based eye fatigue load index for the Dart test
(p < .001). (c) shows the calculated mean of both variations (p > .05). The cross
symbols show mean, and the horizontal lines show median points. (d) shows NASA
TLX scores. Error bars represent standard error.

4.6 Discussion

The results indicate that the developed multi-factor simple-to-calculate measure,

which is solely dependent on the recorded data of a user study, can be used to

accurately assess the amount of eye fatigue on participants based on available

measures and NASA TLX scores. Further, we showed how to compare our measures

with the available FQlS measure and illustrated the correlations between them

(Figures 19a, 19b).

Although we only studied voice recognition as a multi-modal gaze-based interac-

tion technique, the dwell-time results confirmed our assumptions that it results in a

lower number of fixations and lower fixation duration time compared to a multi-modal

interaction technique. Although dwell-time showed lower accuracy (higher distance

to the target) than voice recognition (see Table 5), it reached significantly lower eye
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fatigue based on accuracy (see Table 6 and Figure 20b) confirming our first hypothesis

that FELiXacc is lower for dwell-time. This is due to a significantly lower number

of fixations (Table 5) and lower TLX scores (Figure 20d) for dwell-time. The higher

distance to the target for dwell-time is due to the activation threshold which bounds

a user’s decision time into a limited time window to respond to target movements.

The results of the performance-based FELiX depicted in Figure 20a shows higher eye

fatigue for the dwell-time technique. This is due to higher error rate and higher

duration of fixation points (ANF
AFD

) of dwell-time as expected (see table 4). This

confirms our second hypothesis that FELiXper is higher for dwell-time than voice

recognition. Although the bivariate comparison of both FELiX variations (Figure

20c) shows relatively lower eye fatigue for dwell-time, the difference is statistically

not significant (see Table 6).

Additionally, Figure 19c shows distinctive clusters of dwell-time and voice

recognition techniques based on FELiX variations and reflects the potential of FELiX

measure to analyze similar eye tracking techniques based on their eye fatigue values,

and therefore our third hypothesis that dwell-time can be distinguished from a multi-

modal interaction technique based on FELiX variations is confirmed. We believe that

these results would generalize, and that FELiX is an effective means of determining

eye fatigue load and can differentiate different gaze-based interaction methods based

on their tendencies to cause the user more discomfort in terms of visual fatigue and

task load. We also studied the role of target locations on screen and their relation

with error rate and eye fatigue. As illustrated in Figure 18d, the middle row of

the screen, towards the right side, has higher eye fatigue potential according to the

performance-based FELiX as these regions produced higher errors. Since we applied

no biological sensor devices in our user studies, we could not compare the results

to study the correlations between our proposed measure and physiological data. We
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leave this for future work. We did, however, demonstrate that FELiX is an alternative

measure to be used in user studies with no access to electronic sensors.

Although the eye tracking parameters involved in FELiX measure can be

analyzed individually, the emerging interaction devices offer a variety of quantitative

parameters. Therefore, the application of different parameters may be difficult to

compare different techniques. The analysis of our results indicates the potential

of our multi-aspect evaluation measure on two similar interaction techniques. This

experiment provides new insight into the feasibility of multi-factor compound

evaluation measures for gaze-based interactions.

4.7 Conclusion and Future Work

As emerging interaction techniques become more sophisticated and multi-

dimensional, the need for more complex and multi-factor measures is necessary.

Therefore, we propose fixation-based eye fatigue load index (FELiX), a compound

evaluation measure for gaze-based interactions based on the NASA TLX scores and

recorded eye tracking data. Our measure combines the quantitative (technical)

and qualitative (empirical) aspects of interaction techniques in a simple-to-calculate

measure. Since NASA TLX scores are very common in user studies, we can take

benefit of its simplicity to assess cognitive workload of different interaction techniques

on the same tasks.

FELiX includes two variations to measure visual eye fatigue based on (a)

performance, and (b) accuracy. These measures enable researchers to compare

different eye tracking techniques, specially dwell-time and multi-modal techniques,

based on eye fatigue load index on different criteria. The performance-based measure

can be applied when the duration of the entire fixation sequences and the error

rates of target selection are recorded, and the accuracy-based measure is applicable
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for case scenarios where distance to target (selection accuracy) is available in the

analysis process and can be measured in user studies. Both measures take benefit

of three scores from the NASA TLX, (a) physical demand, (b) mental demand, and

(c) performance. The application of the proposed measures can be regarded as a

feasible alternative to biological sensor inputs or to adopt gaze-based applications for

children, users with disabilities or elderly users to assess the amount of eye fatigue in

user studies before final release of eye tracking applications.

In addition, we presented an in-depth analysis of the dwell-time method as the

most common gaze-based interaction technique with different approaches. As well

as developing measures for eye fatigue load, we proposed two test applications to

analyze eye tracking applications. In future work, we plan on applying the proposed

eye fatigue measures on VR headsets with integrated eye trackers to study motion

sickness in VR applications.
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Chapter 5

IDEA: Index of Difficulty for Eye

tracking Applications An Analysis

Model for Target Selection Tasks

Preface

In the following chapter, we propose a new analysis model to measure difficulty of

task selection tasks in eye tracking applications, a next phase of our FELiX model

presented in the previous chapter to measure eye-strain. Both models take users’

feedback into account via the NASA Task Load Index (TLX) which is a valid tool for

user studies. In the FELiX model we focus on eye-strain, here although, the IDEA

model is specifically proposed to measure task difficulty, it can also be applied to

measure eye-strain in user studies. In addition, it takes benefit from the well-known

Fitts’ law [57] for comparison between user interface concepts. Further, IDEA can be

applied to study the Midas touch problem [83] which, as previously described, is a

common issue in eye tracking interaction techniques. Although there are related works
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regarding applications of Fitts’ law [89, 61, 75, 191] or the NASA TLX [89, 61, 75, 191],

there is no suitable model to combine both measures into a single simple-to-calculate

model for eye tracking applications. IDEA is specifically useful to adopt eye tracking

applications on different target groups such as children or the elderly. IDEA can be

regarded as an extension of the Fitts’ law to be applied in emerging case scenarios with

eye tracking selection techniques. Although the IDEA model was developed for eye

tracking interactions, it can also be applied on various selection techniques to measure

difficulty levels based on test conditions (target size and distance) and subjective

ratings. The following Chapter, which describes the IDEA concept, is based on a

paper that was presented at the International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications (VISIGRAPP HUCAPP).

106



Abstract

Fitts’ law is a prediction model to measure the difficulty level of target selection

for pointing devices. However, emerging devices and interaction techniques require

more flexible parameters to adopt the original Fitts’ law to new circumstances and

case scenarios. We propose Index of Difficulty for Eye tracking Applications (IDEA)

which integrates Fitts’ law with users’ feedback from the NASA TLX to measure the

difficulty of target selection. The COVID-19 pandemic has shown the necessity of

contact-free interactions on public and shared devices, thus in this work, we aim

to propose a model for evaluating contact-free interaction techniques, which can

accurately measure the difficulty of eye tracking applications and can be adapted

to children, users with disabilities, and elderly without requiring the acquisition of

physiological sensory data. We tested the IDEA model using data from a three-part

user study with 33 participants that compared two eye tracking selection techniques,

dwell-time, and a multi-modal eye tracking technique using voice commands.

5.1 Introduction

In this paper we introduce IDEA: Index of Difficulty for Eye tracking Applications,

an integrated prediction model of task workload and performance of target selection

tasks. The IDEA model combines the effective contact-free target selection of eye

tracking with direct feedback of user’s experience obtained from the NASA TLX

scores. The IDEA model calculates a prediction index value based on objective

technical specifications such as the target’s size and distance, and subjective measures

from the NASA TLX questionnaire obtained from user studies. To demonstrate

the efficacy of IDEA, we measured target selection performance with data from

three user studies that compared two eye tracking interaction techniques (dwell-time,
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and selection by voice commands) and showed that our predictions correlate with

throughput and movement time of the Fitts’ prediction model.

5.1.1 Fitts’ Law

Paul Morris Fitts introduced a mathematical prediction model to measure the

difficulty level of target selection in 1954 [57]. This model, which has been extensively

applied in user study interface evaluations [58], correlates the required movement time

(MT) to activate a target with a specific size (W), at a certain distance (D). Fitts’

Law is formulated as: MT = a + b . ID, and ID = log2(2D
W

) where ID denotes

the index of difficulty, and a and b are empirically defined constant values. In the

field of HCI, the Shannon formulation is most commonly used to calculate the index

of difficulty, ID = log2(1 + D
W

) as described in [102]. Fitts’ law has been applied

effectively in numerous user studies to analyse the performance of selecting specific

targets such as buttons (e.g. [34], [87]). One of the earliest applications of Fitts’ law

in HCI was to compare four devices (mouse, joystick, step keys and text keys) for

text selection on a monitor [24]. Researchers have also proposed variations to extend

the original Fitts’ law, for example MacKenzie et al. [104] extended Fitts’ law from

a one-dimension to a 2D model for target acquisition tasks to improve the accuracy

of the index of difficulty measure for interactive computer systems.

5.1.2 Cognitive Workload

Cognitive workload refers to the amount of mental effort used to perform a task by a

person. The NASA Task Load Index (TLX) questionnaire is a well-known method to

measure subjective workload in user studies [64] and has been shown to be an effective

tool to measure cognitive workload [152]. The questionnaire includes: physical

demand, mental demand, temporal demand, effort, performance, and frustration with
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the maximum range of 100 points [59]. Although there is physiological data (e.g.

electroencephalogram or EEG) which can be used to measure subjects’ workload,

these methods although accurate in detecting brain activity require specialized and

sometimes cumbersome equipment. In addition, these techniques are intrusive for

users and therefore are restricted to controlled environments such as laboratories

[189]. Thus in our model, we focus on the NASA TLX.

5.1.3 Midas Touch Problem

Eye tracking, like many emerging technologies, has its challenges. The Midas touch

problem which refers to unintended activation of functions by eye gaze to select a

target is one of the major challenges to be considered when dealing with eye tracking

applications. According to Jacob (1990), this problem occurs since the eyes are used

to look around an object or to scan a scene, often without any intention to activate

a command or function. Thus, numerous research has focused on solving the Midas

touch problem for gaze-based interactions (e.g. [142], [179], [180], and [157]).

5.2 Related Work

Both Fitts’ law and the NASA TLX are popular tools for user studies. Felton et al.

applied these tools to study mental workload during brain-computer interactions [55].

Kim et al. applied Fitts’ law in a driving safety simulation to analyze the usability of

touch-key sizes [89]. Hansen et al. made use of Fitts’ law to analyze the performance

of gaze and head tracking for point and selection tasks when using head-mounted

displays (HMDs) [61]. In addition, Fitts’ law was applied to reduce dwell-time for

gaze-based selection techniques by considering the estimated target acquisition time

and the actual eye movement time [75]. Researchers have investigated the relation
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between eye blinks and mental workload among surgeons [191], finding that shorter

blink duration and frequency indicate an increase of mental workload [191]. Borghini

et al. studied brain activity and heart rate of car drivers and also found shorter blink

rates correlate with mental workload [18]. Lanthier et al. studied the correlation

between fixations and eye fatigue during visual search tasks and found that fixation

duration increases with fatigue [97]. Abdulin et al. showed that the distance drift

of fixation points in response to a stimuli can reveal physical eye fatigue [1] and

calculated this using the fixation qualitative score (FQlS) [92]. Another study looked

at developing a metric based on fixation points and the NASA TLX to determine the

possibility of eye fatigue in gaze-based interactions [130]. There are also approaches

to measure eye fatigue based on saccades, however, analysis of saccades requires

expensive eye trackers, and these approaches are not applicable on budget-friendly

devices [1], such as the one used in our study.

Building on previous work, we propose a non-invasive approach which can be

applied on any remote eye trackers without the need of raw data analysis of the

specific eye tracking sensors. We apply eye tracking for target selection from a

safe distance and assess the difficulty levels including subjects’ ratings independent

from device abilities or tracking techniques. The primary purposes of IDEA are (1)

to compare different eye tracking applications, and (2) to enable adaptation of eye

tracking applications on different user groups such as children, users with disabilities,

and the elderly. Furthermore, IDEA has the potential to be applied for eye fatigue

assessment, and stress level measures based on target selection tasks. To the best of

our knowledge, there are no models that integrate the index of difficulty of the Fitts’

law (ID) and the NASA TLX scores for eye tracking applications without the need

of technical parameters such as blink rates, fixation duration time, average number of

fixations, and saccade duration.
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5.3 Index of Difficulty (IDEA)

Users’ perceived rating is one of the most valuable sources of data in any user study

and the NASA TLX questionnaire is a valid tool for this purpose. On the other hand,

Fitts’ law can reflect the difficulty and performance of target selection tasks based on

test specifications. Therefore, we integrated users’ feedback into the Fitts’ law model

to result in a combined value reflecting both technical and experimental aspects of

target selection tasks for eye tracking applications. In addition, the entire workload of

a task (subjective rating) can be modulated by a selection ratio parameter (selection

distance divided by screen diameter) which is determined based on test conditions,

users’ ability to select targets, and interaction techniques. The purpose of modulating

the technical factor with the experimental factor is to combine the importance of both

into a single index value. In other words, the multiplication combines both, technical

aspects which are bound to case scenarios, with subjective understanding of the actual

functions. This results in a single value for comparison. Thus, the IDEA analysis

model is a novel simple-to-calculate compound model for eye tracking techniques

based on the Fitts’ law [57] and the NASA TLX questionnaire [59] to measure the

difficulty of target selection tasks. IDEA is device-independent and can be applied

on any eye tracker, and depends on the following parameters:

• All scores from the NASA TLX questionnaire: physical demand (PD), mental

demand (MD), temporal demand (TD), effort (E), performance (P), and frustration

(F).

• Diameter of screen (D): represents the longest distance on screen D =
√
x2 + y2

where x and y represent screen width and height.

• Selection ratio (S): represents the difficulty of target selection (distance to target)

in regards to the screen diameter (see Figure 21).
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• DISTANCES: the set of target distances from each other.

• WIDTHS: the set of target sizes (widths).

The conditions and range of each of the parameters are given by:

1. PD = {x1 | x1 ∈ Z ∧ 1 ≤ x1 ≤ 100},

MD = {x2 | x2 ∈ Z ∧ 1 ≤ x2 ≤ 100},

TD = {x3 | x3 ∈ Z ∧ 1 ≤ x3 ≤ 100},

E = {x4 | x4 ∈ Z ∧ 1 ≤ x4 ≤ 100},

P = {x5 | x5 ∈ Z ∧ 1 ≤ x5 ≤ 100},

F = {x6 | x6 ∈ Z ∧ 1 ≤ x6 ≤ 100}

All NASA TLX scores are integers in the range of 1 to 100.

2. D ∈ Z ∧D > 0

Diameter of screen is an integer value greater than 0 in pixels.

3. r ∈ R ∧ 0 ≤ r ≤ D

The distance to target (r) is a real number between 0 and screen diameter in pixels

(see Figure 21a).

4. S = r+1
D
∧ S ∈ R ∧ S > 0

Selection ratio (S) is the ratio of distance to target (r) over diameter of the screen

(D). The constant value of 1 added to the equation to avoid the 0 case for distance

to target (see Figure 21b).

5. DISTANCES = {d | d ∈ R ∧ d > 0}

DISTANCES is the set of real numbers containing distances of targets from each

other greater than 0.
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6. WIDTHS = {w | w ∈ R ∧ w > 0}

WIDTHS is the set of real numbers containing widths (sizes) of targets greater

than 0.

7. m = |WIDTHS| ∧m ≥ 1

m is the count of members in the WIDTHS set greater than or equal to 1.

8. n = |DISTANCES| ∧ n ≥ 1

n is the count of members in the DISTANCES set greater than or equal to 1.

9. Technical Factor ∈ R ∧ Technical Factor > 0

The technical factor (Equation 5) is the sum of all distances (d ∈ DISTANCES)

doubled and divided by the width values (w ∈ WIDTHS) derived from the Fitts’

law [57]. This results in a real number greater than 0 which resembles the index

of difficulty of the Fitts’ law ID = log2
2D
W
. The technical factor represents the

precondition of target properties (distances and widths).

Technical Factor =
n∑
i=1

m∑
j=1

2di
wj

(5)

10. R ∈ R ∧ 1 ≤ R ≤ 100

The subjective rating (R) is the mean of all TLX scores which is a real number

between 1 and 100 shown in Equation 6.

R = PD +MD + TD + E + P + F

6 (6)

11. Experimental Factor ∈ R ∧ Experimental Factor > 1

The experimental factor (Equation 7) is defined as the product of the calculated

selection ratio (S) depicted in Figure 21, and the subjective rating (R) which results

in a real number greater than 1.
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Experimental Factor = S ×R (7)

12. IDEA ∈ R ∧ IDEA > 1

The proposed index of difficulty for eye tracking applications (IDEA) is calculated

by multiplying (a) the technical factor, and (b) the experimental factor offset by a

constant value of 2 which results in a real number greater than 1 (Equation 8). We

offset both technical and experimental factors by the constant value of 2 in case

these factors are close to zero, therefore the calculated IDEA value starts from 1.x.

Figure 22 shows the 3D visualization of IDEA and its factors.

IDEA = log2

(
(
n∑
i=1

m∑
j=1

2di
wj

)
︸ ︷︷ ︸

Tec. Fac.

× S ×R︸ ︷︷ ︸
Exp. Fac.

+2
)

(8)

 

(a)

 

(b)

Figure 21: (a) overview of the dart-test to measure Euclidean distance, and (b) the
concept of selection ratio regarding diameter of screen (D) and the selection distance
(r).

 

Figure 22: 3D illustration of the IDEA model.
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5.4 Methodology

We conducted a three-part repeated measures user study to evaluate the efficacy of our

proposed model with 33 participants (20 male, from 22 to 35 years old,mean = 26.06).

Subjects were asked to navigate and select highlighted targets (see Figure 24) under

two gaze-based interaction techniques: (1) dwell-time with 500 ms threshold, and (2)

eye tracking using voice commands. Prior to running the experiments, participants

were informed about the objectives of the user study, trained on each of the interaction

techniques, and filled out a pre-test questionnaire. Before running the tests, the built-

in eye tracking software was used to calibrate eye positions for each participant. The

order of interaction techniques was randomly selected for each participant. Overall,

the user studies took 8 minutes on average for a participant to finish. At the end of the

two experiments measuring the Fitts’ law parameters (Figure 24) participants were

asked to fill out a post-test questionnaire consisting of the NASA TLX questionnaire.

5.4.1 Interaction Techniques

We applied two eye tracking techniques (single and multi-modal interactions) to

evaluate the efficacy of our proposed model. We ran the mentioned interaction

techniques on an Intel i7 PC with the 64-bit Windows operating system. Figure

23 illustrates the test setting and overview of the interaction techniques.

Dwell-time

The dwell-time method can select a target only by eye gaze fixations after a predefined

threshold is reached. We defined the target selection threshold to 500 milliseconds

which is in the typically accepted range of 300-1100 milliseconds [165], and has been

shown to be the best-suited threshold for the dwell-time method [103], [165]. In other

words, when a subject focuses for 0.5 seconds on a target it gets selected, and any
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gaze movement from the target boundaries prior to that threshold causes the restart

of target selection process.

Eye Tracking with Voice recognition

The voice recognition method operates in two phases, (1) pointing phase using the

eye tracker, and (2) selection phase using voice commands. Figure 23b illustrates the

overview of these phases. The process of voice recognition was developed using the

built-in Windows 10 speech recognition functionalities provided in the Microsoft .NET

framework. We developed a C# application to capture user’s activation command

‘select’ to activate a left mouse click.

 

(a)

 

(b)

Figure 23: (a) test setting and equipment, and (b) system overview and workflow of
both interaction techniques.

5.4.2 Interaction Modules

Eye Tracking: We used the Tobii 4C eye tracker to capture the mouse pointer

position to enable users to interact with the system with their gaze. Moreover, we

employed the Tobii SDK to obtain users’ gaze locations (2D coordinates) on the screen

and synchronize the mouse pointer to these coordinates in pixel. The eye tracking

module for both interaction techniques was developed in C++ and integrated into

the Tobii SDK as a new plug-in. The samples were recorded at a distance of 60 cm

(24 in) from the eye tracker with a sampling rate of 90 Hz on a 24 inch screen with
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the resolution of 1920 × 1080 pixels. The dwell-time technique relies solely on the

eye tracking module.

Voice Processing: We used a headset microphone (Logitech H370) to capture the

user’s voice commands in the presence of an artificial ambient noise around 50 dB

played by stereo speakers (Figure 23a) to simulate a typical working office. The

voice recognition module received the commands in real-time to be activated by the

keyword ‘select’ to trigger a left mouse click.

5.4.3 Hypotheses

Based on the previous literature, which has demonstrated the effectiveness of Fitts’

law [34], [87], [24], and [104] and the NASA TLX questionnaire [64], [63], and

[152], we propose a compound simple-to-calculate mathematical model to measure

the difficulty level of eye tracking applications independent from device type and

technical capabilities during user studies. This model enables analysis of eye tracking

applications based on user groups and their abilities to interact with an eye tracking

device or interaction technique. Specifically, we hypothesize that:

1. When IDEA is higher on average for an interaction technique, the calculated

throughput based on the Fitts’ law will be lower, and vice versa.

2. When IDEA is higher on average for an interaction technique, the calculated

movement time based on the Fitts’ law will be higher as well, and vice versa.

3. When IDEA is higher on average for an interaction technique, the registered error

rates will be higher as well, and vice versa.
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5.4.4 User Study

The user study described above was used to analyze the mentioned eye tracking

interaction techniques to evaluate the proposed IDEA model, according to well-

established academic standards. We measured four parameters in our 3 part study:

(1) distance to target, (2) throughput, (3) movement time, and (4) error rates. We

developed a dart-like application (Figure 21a) to measure distance to target and used

the application developed by Wobbrock et al. [186] called the FittsStudy version

4.2.7 which includes two widths (96, 128), and three distances (256, 384, 512) pixels

to record the rest of the measures.

Dart test

The stimulus consisted of three circles, green from 0 to 30 pixels, blue from 30 to

60 pixels, and red from 60 to 90 pixels in radius as illustrated in Figure 21a. Any

selection outside of the dart colored circles is recorded as the fixed maximum range

of 90 pixels for that selection. The purpose of this experiment was to measure the

Euclidean distance to target to be applied in Equation 7 by calculating the fraction

of distance (r) over diameter of screen (D) as shown earlier (S = r+1
D

). Subjects

were asked to select, as accurately as possible, the center of a dart target using both

interaction methods. Since eye tracking has different accuracy in different regions of

a screen [54], we calculated an average of five trials for each interaction techniques

where the stimulus moved to different areas around the center of screen randomly.

Each random trial started in two second intervals enabling subjects to change their

gaze before recording the distance measures. A countdown timer with intervals of

100 ms was displayed from 5 to 0 to show the remaining time to subjects.
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Ribbon-shaped test

The stimulus contains two vertical bars to be selected (clicked), each at a time

shown in Figure 24a. The variation of distances and widths are chosen randomly

by the FittsStudy [186] application and the order of each interaction method for each

participant were also chosen randomly.

Circle-shaped test

This test is the same as the ribbon-shaped test with circular-shaped targets illustrated

in Figure 24b. This experiment measures two variations for throughput, (1) uni-

variate endpoint deviation (SDx) through one axis, and (2) bi-variate endpoint

deviation (SDx,y) through both axes which results in a better Fitts’ law model [186].

The stimulus contains equally-sized circles with different distances and widths to be

selected (clicked), each at a time shown in Figure 24b. The variation of distances

and widths are chosen randomly by the FittsStudy [186] application and the order of

each interaction method for each participant was also chosen randomly.

 

(a)
 

(b)

Figure 24: The FittsStudy application [186]. (a) Ribbon-shaped, and (b) Circle-
shaped targets.

Workflow and parameters

The user study was conducted on a screen with the resolution of 1920 × 1080 pixels

which results in a diameter (D) of 2203 pixels (rounded up). Distances of 256, 384,

and 512 pixels between targets were used with a target width of 96 and 128 pixels.
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The distance to target (r) for both interaction techniques was measured by the dart

test application (Figure 21) based on the Euclidean distance in pixels. Lastly, the

selection ratio was calculated by measured distance to target over the screen diameter

(S = r+1
D

). The constant value of 1 is added to the measured distance for selecting

the target exactly in the middle which results in a distance to target of 0.

5.5 Results

The results of our experiments were analyzed using paired-sample t-tests with the

JASP1 software. Figure 25b shows the NASA TLX scores and the calculated average

workload based on Equation 6 for both interaction techniques from the post-test

questionnaire.

As per Equation 5, the technical factor, which is 42, was the same for both

interaction techniques as it depends on distances and widths which were constant

in our user study. This is the case in our experiments as both interaction techniques

were evaluated on the same device with the same screen resolution and the same

target distances and widths. However, the technical factor can be different for

varying case scenarios. A paired-sample t-test was applied to check the effectiveness

of the interaction technique on the experimental factor based on Equation 7 with

(t(32)=2.86, p < .05 ). A significant difference was found between dwell-time

(M = 0.48, SE = 0.06) and voice recognition (M = 0.65, SE = 0.06). Specifically,

dwell-time had a lower experimental factor than the voice recognition technique. This

suggests that the multiplication of users’ selection ratio on screen (S) and their rating

scores (R) is significantly lower for the dwell-time method than the voice recognition

technique.
1https://jasp-stats.org/
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A paired-sample t-test was applied to check the effectiveness of interaction

technique on the index of difficulty based on the Equation 8 shown in Figure 25a

and Table 7. A significant difference (t(32)=3.19, p < .05 ) was found between dwell-

time (M = 4.17, SE = 0.15) and voice recognition (M = 4.66, SE = 0.15). This

suggests that the dwell-time method has a significantly lower IDEA value than the

voice recognition technique. Dwell-time can thus be considered an easier eye tracking

technique for our subjects comparing to the voice recognition.

Dwell-Time Voice Recog.
Distance 35.30 29.27
Selection ratio 0.016 0.014
Tech. factor 42 42
Exp. factor 0.48 0.65
IDEA 4.17 4.66

Table 7: Summary of IDEA calculations.

Dart Test: Paired-sample t-tests were performed to study the effect of interaction

type on (1) distance to target, and (2) selection ratio. A significant difference

(t(32)=2.88, p < .05 ) was found between dwell-time (M = 35.30 pixels, SE =

2.11 pixels) and voice recognition (M = 29.27 pixels, SE = 2.07 pixels) on distance

to target (r) depicted in Figure 26a. This shows that the voice recognition technique

has a higher target selection accuracy (lower distance to target) than the dwell-time

method. This is likely the case because this method splits the pointing (eye tracking)

and selecting (voice command) into different modalities.

A paired-sample t-test was also applied to check the effectiveness of interaction

technique on selection ratio (S) depicted in Figure 26b. A significant difference

(t(32)=2.88, p < .05 ) was found between dwell-time (M = 0.016 pixels, SE =

9.620e− 4 pixels) and voice recognition (M = 0.014 pixels, SE = 9.409e− 4 pixels).

This means that users are more accurate to select targets using the voice recognition
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technique than the dwell-time.

Ribbon-shaped Test: Paired-sample t-tests were performed to study the effect of

interaction type on (1) throughput, (2) movement time, and (3) error rate. There

was a significant difference (t(32)=5.96, p < .001 ) of throughput for dwell-time (M =

3.30 bits/sec, SE = 0.36 bits/sec) and voice recognition (M = 1.16 bits/sec, SE =

0.09 bits/sec) as seen in Figure 26c. This confirms our hypothesis that a lower IDEA

value for an interaction technique reflects a higher throughput.

A paired-sample t-test was applied to check the effectiveness of interaction

technique on movement time depicted in Figure 26d. A significant difference

(t(32)=15.13, p < .001 ) was found between dwell-time (M = 0.60 sec, SE = 0.01 sec)

and voice recognition (M = 2.01 sec, SE = 0.08 sec). This confirms our hypothesis

that a lower IDEA value for an interaction technique reflects a lower movement time.

A paired-sample t-test was applied to check the effectiveness of interaction

technique on error rate depicted in Figure 26e. A significant difference (t(32)=4.84,

p < .001 ) was found between dwell-time (M = 0.28 errors, SE = 0.03 errors) and

voice recognition (M = 0.11 errors, SE = 0.02 errors). This rejects our hypothesis

that an interaction technique with a lower IDEA value should cause lower error rate.

The cause of errors in eye tracking applications as explained above are mostly due to

the Midas touch problem [83]. Thus as the dwell-time method relies on eye tracking

solely, and selection is done based on fixation time there were higher error rates in

this method than in the multi-modal voice method where selection is done based on

a voice command.

Circle-shaped Test: Paired-sample t-tests were performed to study the effect of

interaction type on (1) throughput with two variations, (2) movement time, and (3)
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error rate. For univariate throughput (illustrated in Figure 27a) there was a significant

difference (t(32)=7.98, p < .001 ) between dwell-time (M = 3.91 bits/sec, SE =

0.31 bits/sec) and voice recognition (M = 1.48 bits/sec, SE = 0.09 bits/sec). This

confirms our hypothesis that an interaction technique with a lower IDEA value should

reach higher throughput.

A paired-sample t-test was applied to check the effectiveness of interaction

technique on bivariate throughput illustrated in Figure 27b. A significant difference

(t(32)=7.19, p < .001 ) was found between dwell-time (M = 2.51 bits/sec, SE =

0.22 bits/sec) and voice recognition (M = 1.01 bits/sec, SE = 0.06 bits/sec). This

confirms our hypothesis that an interaction technique with a lower IDEA value should

reach higher throughput.

A paired-sample t-test was applied to check the effectiveness of interaction

technique on movement time illustrated in Figure 27c. A significant difference

(t(32)=11.31, p < .001 ) was found between dwell-time (M = 0.64 sec, SE = 0.02 sec)

and voice recognition (M = 2.12 sec, SE = 0.13 sec). This confirms our hypothesis

that an interaction technique with a lower IDEA value should reach a lower movement

time.

A paired-sample t-test was applied to check the effectiveness of interaction

technique on error rate illustrated in Figure 27d. A significant difference (t(32)=2.26,

p < .05 ) was found between dwell-time (M = 0.23 errors, SE = 0.03 errors) and

voice recognition (M = 0.13 errors, SE = 0.02 errors). This rejects our hypothesis

that an interaction technique with a lower IDEA value should have a lower error rate.

As described above, the cause of errors in eye tracking applications are mostly due to

the Midas touch problem and thus the single mode method which requires gaze for

both pointer movement and selection is more error prone.
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Figure 25: (a) shows index of difficulty for eye tracking applications (IDEA) based on
Equation 8 for both interaction techniques (p < .05), and (b) illustrates the results
of the NASA TLX scores. Error bars represent SE.

 

(a)
 

(b)
 

(c)
 

(d)
 

(e)

Figure 26: (a) Euclidean distance to target measure (r). (b) Calculated selection ratio
(S = r+1

D
) for both interaction techniques. (c) Throughput (TP), (d) Movement time

(MT), and (e) Error rates (ER) for both interaction techniques of the ribbon-shaped
test. Error bars represent SE. (p < .05 on (a) and (b) measures, p < .001 on (c), (d),
and (e) measures).
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(d)

Figure 27: Calculated measures of the circle-shaped test. (a) Univariate throughput
(TP) (p < .001), (b) Bivariate TP (p < .001), (c) Movement time (MT) (p < .001),
and (d) Error rates for both interaction techniques (p < .05). Error bars represent
SE.
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5.6 Discussion

The results reflect the efficacy of our two-factor model to measure the performance

of eye tracking applications independently of device type. We showed that our model

can predict the difficulty of eye tracking applications solely based on Fitts’ law and

the NASA TLX scores. Further, we showed our model correlates with the standard

measures (throughput and movement time) described by Fitts’ law.

The global pandemic of COVID-19 showed the importance of computer inter-

actions from a safe distance without physical contact. Eye tracking applications,

specifically the dwell-time method, are suitable candidates to enable safe interactions

on shared and public devices for selection tasks. Therefore, our proposed model can

be applied in pilot studies to measure the usability and performance of selection

techniques to address different user groups such as children, users with disabilities, or

elderly based on the experimental factor which reflects (a) subjective ratings (NASA

TLX scores), and (b) perceived difficulty levels of interaction techniques or user

groups.

Although we only studied voice recognition as a multi-modal interaction technique,

the results of the user studies confirm our first and second hypotheses regarding the

correlation between throughput and movement time calculated by the Fitts’ law and

the predictions by our proposed model. However, eye tracking applications suffer

from the Midas touch problem, and since the dwell-time method relies on eye gaze

only, it reached higher error rates than the multi-modal selection technique using

voice recognition with separate modalities for point and selection.

The analysis of our results emphasizes the potential of our two-factor prediction

model on two similar eye tracking interaction techniques. We hope, this experiment

leads to more innovations of multi-dimensional compound models for gaze-based

interactions.
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5.7 Conclusion and Future Work

In this paper we proposed the Index of Difficulty for Eye tracking Applications

(IDEA) a compound two-factor model to measure the performance and usability

of selection techniques based on calculations of Fitts’ law and the results of a NASA

TLX questionnaire. As emerging interaction techniques are required to cope with

emerging users’ demands, the need for more complex models to compare different

techniques requires more attention. We present our model to asses the efficacy of

eye tracking applications for pilot studies with different user groups such as children,

users with disabilities, or elderly. Our configurable model can be applied for case

scenarios as well as to discriminate specific interaction techniques.

In addition, we presented an in-depth analysis of the dwell-time method based on

the Fitts’ law measures. Although our model was developed to address eye tracking

interactions, it can be applied on any selection technique to measure difficulty levels

based on test specifications (target size and distance) and users’ subjective ratings.

Further, we showed eye tracking techniques can be compared without analysis of

technical raw data such as fixation duration time and blink rates. These enable

researchers to run pilot studies independently from device type.

We predict the transition from conventional interaction techniques, such as

keyboard and mouse, to contact-free techniques from a safe distance caused by

the latest global outbreak of viral infections, especially for equipment in healthcare

sectors, and shared public devices. IDEA enables researchers to run user studies

based on video eye tracking techniques via remote webcams to comply with

restrictions caused by viral diseases which limit the physical presence of participants

in laboratories or attaching sensory equipment to record users’ feedback. We plan on

applying our proposed model on AR and VR headsets with internal eye trackers to

study usability of target selection in our future work.
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Chapter 6

ESPiM: Eye-Strain Probation

Model - An Eye-Tracking Analysis

Measure for Digital Displays

Preface

We propose ESPiM, a mathematical model based on the previously proposed models

FELiX (Chapter 4), and IDEA (Chapter 5) discussed earlier in this dissertation. Since

we have already proposed models with integrated users’ feedback, it is also necessary

to run user studies without the presence of users to compare design concepts. ESPiM

is a computational model based on spatial properties of user interfaces such as size,

distance, area of targets, and area of screen. In addition, another feature of ESPiM

is the integration of time in its equation. The goal of ESPiM is to measure eye-strain

over a specific duration which is suitable to test commercial software applications

before release for comparison and optimization. In contrast to previous models that

address eye-strain (e.g. [1, 92, 8, 113, 41]), ESPiM expands the range of measurement
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techniques in the research community by providing an eye-tracking measure (eye

fixation points) integrated into a compound model which is applicable on most eye-

tracking sensors.

ESPiM has multi-purpose applications beyond the measurement of eye-strain

on digital displays; it is capable of comparison between various interaction tech-

niques/design concepts, and different display types. Another application of ESPiM

would be to compare video games based on the amount of eye-strain on a specific play

duration. We present two evaluations of ESPiM to show its usability in user studies

with a remote eye-tracking sensor for in-person user studies, and a video-based eye-

tracking technique that was used during an online user study. The following chapter

is based on a paper that will be submitted to the International Journal of Human-

Computer Studies.
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Abstract

Eye-strain is a common issue among computer users due to the prolonged periods

they spend working in front of a monitor, which can lead to vision problems, such

as irritation and tiredness of the eyes, and headaches. Eye-strain is mainly caused

by moving objects on the screen and occurs when focusing on close objects. We

propose the Eye-Strain Probation Model (ESPiM), a computational model, based on

eye-tracking data, that measures eye-strain on digital displays based on the spatial

properties of the user interface and display area for a required period of time. As well

as measuring eye-strain, ESPiM can be applied to compare (a) different user interface

designs, (b) different display devices, and (c) different interaction techniques. Two

user studies were conducted to evaluate the effectiveness of ESPiM. The first was

conducted in form of an in-person study with an infrared eye-tracking sensor with 32

participants. The second was conducted in form of an online study with video-based

eye-tracking technique via webcams on users’ computers with 13 participants. Our

analysis showed significantly different eye-strain patterns based on video gameplay

frequency of participants. Further, we found distinctive patterns among users on a

regular 9-to-5 routine versus those with more flexible work hours in terms of (a) error

rates, and (b) reported eye-strain symptoms.

6.1 Introduction

Today, in many parts of the world, many employees work sitting in front of computers

for eight hours a day. In fact, the typical work atmosphere which includes working in

enclosed spaces, e.g. cubicles or offices, and dealing with multiple devices (e.g. PC,

smartphone, telephone) at the same time (i.e. multitasking) can lead to an increased

workload. Yet, scientists have found a correlation between excessive screen time and
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health risks such as cardiovascular diseases, impaired vision, and bone density [100]

and a correlation between long screen times of elementary school students with dry

eyes (the malfunctioning of tear production in the eyes [175]) and learning abilities

[115]. Other symptoms of CVS include eye-strain, eye burn, double vision, and blurred

vision [117].

These CVS symptoms not only affect visual comfort, but also are a major cause

of work-related stress [119] and productivity in both adults and teenagers [148]. In

this paper we address eye-strain, also known as visual fatigue, as one of the major

CVS symptoms [117]. Eye-strain can be caused by moving images [78] and occurs

when focusing on near objects. It is a common issue among computer users due to

the prolonged periods they spend working in front of a monitor [178]. Eye-strain

can cause motion sickness [94], vision problems such as irritation and tiredness of the

eyes, and headaches [176]. We introduce the Eye-Strain Probation Model (ESPiM), an

integrated measurement model for eye-strain based on target selection tasks relying on

spatial targets’ and screen properties via Fitts’ law and eye-tracking fixation points.

To demonstrate the efficacy of ESPiM, we measured target selection performance

with data from two eye-tracking user studies, one in-person laboratory study and

one online web application study. We considered the distinctive patterns among

participants based on (1) biological sex, and (2) video gameplay frequency and found

that females and participants with lower frequency of gameplay experienced higher

eye-strain base on our model. Moreover, we studied the eye-strain patterns including

eye symptoms among typical 9-to-5 participants and flexible (anytime beyond 9-to-5)

participants and found the flexible groups experienced higher number of eye symptoms

than the 9-to-5 group. Moreover, we recorded significantly higher error rates for the

9-to-5 groups than the flexible group.
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6.2 Related Work

In the following section we describe Fitts’ Law which is related to task difficulty of

target selection tasks and previous work in eye-strain and eye-tracking models.

6.2.1 Fitts’ Law

Originally proposed to measure task difficulty, Fitts’ law predicts the amount of

movement time (MT) to activate a target based on specific size (W), at a certain

distance (D). Fitts’ Law is formulated as: MT = a + b . log2(2D
W

), where a and b

are empirically defined constant values. However, the Shannon formulation is most

commonly used to calculate the index of difficulty in the field of HCI, ID = log2(1+ D
W

)

[102]. Among the earliest applications in HCI, Fitts’ law was used to compare input

devices (mouse, joystick, step keys and text keys) for text selection on a display

[24]. Fitts’ law has also been applied effectively in various studies to analyze the

performance of selecting targets (e.g. [34], [87]). A number of extensions of the

original Fitts’ law have been proposed for different case scenarios. For instance

MacKenzie et al. proposed an extension from a one-dimension to a 2D model for

target acquisition tasks enabling the improvement of index of difficulty for interactive

computer systems with higher accuracy [104].

Fitts’ law is a popular tool for user studies that has been extensively been applied

in evaluations [58]. For example, Kim et al. analyzed the usability of touch-key sizes

in a driving safety simulation [89]. Hansen et al. studied the performance of gaze

and head tracking for point and selection tasks on head-mounted displays (HMDs)

[61]. In addition, researchers applied Fitts’ law to reduce dwell-time for gaze-based

interactions by taking into account the estimated target acquisition time and eye

movement time [75].
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6.2.2 Eye-strain Models

Researchers have proposed various means to measure eye-strain based on eye

movement analysis. Lanthier et al. showed that eye fixations and eye-strain increases

with fatigue [97]. Komogortsev et al. proposed the Fixation Quantitative Score

(FQnS) to consider the amount of fixation points in regards to a stimulus which

may reveal physical eye-strain [92]. Furthermore, Vasiljevas et al. adopted an

analytical model for muscle fatigue to assess eye-strain in gaze-based tasks [178].

Researchers have also applied self-evaluation rating questionnaires to measure eye-

strain for gaze-based applications [105]. Further, saccades-based approaches were

proposed to measure eye-strain [8, 113, 41]. However, analysis of saccades cannot

be applied on budget-friendly devices, and therefore fixation-based approaches have

been preferred [1].

Considering the previous works, we propose a dual-purpose approach which can

be applied in user studies with eye trackers to measure eye-strain based on screen

and target properties for a specific duration. In our previous works, we proposed

one approach to measure eye-strain involving subjective ratings (FELiX) [129], and

introduced an index of difficulty for eye tracking applications (IDEA) [132]. These

approaches were compound models based on subjective and objective measures. The

introduction of ESPiM is based on objective measures only which may improve and

optimize user interface design concepts based on eye-strain criterion. Based on the

results of our previous models, we propose a predictable objective model suitable for

assessments of visual prototypes on digital displays being used for a specific period

of time to reduce costs of productions by comparing design ideas in early steps via

pilot studies.
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6.3 Eye-Strain Probation Model (ESPiM)

The ESPiM model relies on properties (spatiotemporal parameters) that are related

to screen size, target dimensions and distances (spatial) shown in Fig. 28a, task

duration time (temporal), and eye tracking fixations as described below:

1. x: width of the screen in pixels.

x ∈ R ∧ x > 0

2. y: height of the screen in pixels.

y ∈ R ∧ y > 0

3. z: diameter of the screen in pixels.

z =
√
x2 + y2 ∧ z ∈ R ∧ z > 0

4. Area of screen (AoS): arithmetic surface area of the screen in which test

applications are executed on in pixels.

AoS = x× y ∧ AoS ∈ R ∧ AoS > 0

5. Area of target (AoT): arithmetic surface area of the target (user interface

element) in which user tries to focus on in pixels. Typically there are multiple

targets on a user interface, we calculate the area of a single target since users

focus on one target at selection time. In case of targets with various areas, the

average of all targets will be considered.

AoT ∈ R ∧ AoT > 0 ∧ AoT ≤ AoS

6. Distance of target (D): distance of the target centers from each other in pixels

which must be smaller than or equal to screen diameter.

D ∈ R ∧D > 0 ∧D ≤ z
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7. Width of target (W): width of target on the screen in pixels, which must be

smaller than or equal to screen width.

W ∈ R ∧W > 0 ∧W ≤ x

8. Shannon code (log2(1 + D
W

)): index of difficulty for point-and-select tasks [102]

based on the Fitts’ law [57].

log2(1 + D
W

) ∈ R ∧ log2(1 + D
W

) > 0

9. Task duration (TD): time spent on a specific task.

TD ∈ R ∧ TD > 0

10. Average number of fixations (ANF): average number of fixations recorded by an

eye-tracking sensor of an entire task.

ANF ∈ R ∧ ANF > 0

ESPiM: the calculated eye-strain value is based on Equation 9 which is greater than

0 based on the square root function growth: (ESPiM ∈ R ∧ ESPiM > 0).

The ESPiM model is based on pure test conditions such as screen and target

properties regarding the dimensions, and distances to be measured for a desired

duration of time. This model provides an initial assessment to researchers about

task difficulties. The ESPiM model can be used considering any 2D flat display type

such as smartphones, tablets, and laptop/desktop monitors. This enables researchers

to predict the difficulty level of target selection tasks on any device regardless of the

applied interaction techniques.

The ESPiM model given in Equation 9 reflects the level of difficulty given the

size and distances of targets over the screen (log2(1 + D
W

)), to select a portion of the

screen covered by a target (AoS
AoT

) for the specific period of time (TD). The equation

is offset by 1 in case of very small values for the parameters described earlier. The

purpose of this addition is to set the minimum threshold of the square root function
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to start from
√

ε+1
λ+1 , where ε and λ denote very small values. The average number of

fixations (ANF) is one of the most used eye tracking variables which contributes to

the accuracy of the calculations, the higher number of fixations should cause higher

eye fatigue.

These parameters are bound into the square root function to shape a positive

continuous predictable increase or decrease of values which are suitable for machine

learning algorithms. We assign the unit of bits for the ESPiM model. Fig. 28b shows

a 3D visualization of the ESPiM model calculated for sample generated values.

ESPiM =

√√√√√√√√√√√
(

(

spatial︷ ︸︸ ︷
AoS

AoT
)× log2(1 + D

W
) ×

eye−tracking︷ ︸︸ ︷
ANF

)
+ 1

TD︸︷︷︸
temporal

+1 (9)

6.3.1 Applications of ESPiM

Although we have designed the ESPiM model to measure eye-strain on digital displays

primarily, it can be applied to (a) compare user interface designs, (b) compare different

display devices, and (c) compare different interaction techniques based on eye-strain

of users. As the spatial parameters are included in the ESPiM model, it can be used

for estimation of eye-strain before testing in a user study which can be beneficial to

both research communities and industrial producers of digital contents.

In fact, we incorporate spatial parameters of screen and targets including the

application of Fitts’ law and eye-tracking fixation points for a desired period of time

in a single measure. Moreover, considering the fact that eye fixations are typically

bound to a certain range (200-600 ms) [106] and therefore the average number of

fixations for a specific period of time can be estimated. This property makes ESPiM

a suitable choice for testing and evaluating interfaces even when there is no access to

eye-tracking sensors.
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(a)  

(b)

Figure 28: (a) The overview and spatial parameters of ESPiM. The blue-colored
target represents a selected target by eye gaze as provided in ‘FittsStudy’ application
[186] and the area of active target (AoT) measure that a user focused to select.
ESPiM considers targets’ properties in regards to the screen dimensions. (b) A 3D
visualization of the ESPiM model for sample generated values. The spatial parameter
axis represents the product of the relative area ratio of the screen over target, and the
Shannon code as described in Equation 9 with a constant average number of fixations
(ANF).

6.4 User Study 1: Fitts’ Study (in-person)

We conducted two user studies to evaluate the ESPiM model using (1) an infrared

desktop eye tracker and (2) video-based eye-tracking for both an in-person and remote

study. The purpose of the first evaluation was to study the ESPiM model. In this

study, we used the unpublished dataset parts of our previous paper EyeTAP [131] in

which we collected large amount of infrared eye-tracking data.

6.4.1 Methods

During this study, participants were asked to select circular targets using eye gaze,

and specifically the dwell-time method. We used the ‘FittsStudy’ V4.2.7 application

[186] for our user study which enabled us to run experiments based on Fitts’ law. Our

stimuli contains two target widths (96 and 128 pixels) at three distances apart (256,

384 and 512 pixels) to record the required measures. An activation of 500 milliseconds
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for dwell-time was used as this has been shown to be the best-suited threshold in

previous studies [103, 165]. Thus, when a participant focuses for 500 milliseconds on

a target it triggers a click event and the target gets selected, and any gaze movement

from the target borders causes pointer movement and therefore restarts the target

selection process.

The user study took 12 minutes on average for each participant, 10 minutes for

preparation including description of the task, training and eye calibration, and 2

minutes for the actual target selection task in 6 trials (2 widths × 3 distances).

Considering the differences between target selections using conventional input devices

such as keyboard and mouse, and an eye-tracking sensor with a low activation

threshold (500 ms) which challenges the control of pointer on screen, the relative

short duration of target selection was sufficient to record required measures as well

as not to overwhelm participants with heavy tasks.

To capture the eye-tracking data a remote eye-tracking sensor (Tobii 4C) with

a sampling rate of 90 Hz on a monitor with the resolution of 1920 × 1080 pixels

(24′′) with a distance of 60 cm (≈23.5 in) to the eye tracker running on an Intel

i7 Windows 10 PC was used. Specifically, the following data was collected during

the study: (1) movement time based on the Fitts’ law, (2) recorded errors of target

selections, (3) average number of fixations (ANF), and (4) Fixation Qualitative Score

(FQlS) (a measure that can reveal physical eye fatigue based on distance drift of

fixation points) [92]. These measures accompanied by ESPiM calculations based on

Equation 9 were needed for our analysis.

6.4.2 Results and Discussion

We analyzed our raw data based on three categories: (1) model analysis regarding

the effectiveness of ESPiM, (2) gender of participants, and (3) participants’ frequency
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of video game play. Fig. 29 illustrates the calculated ESPiM values and the recorded

measures and Table 8 shows descriptive statics of 32 participants. ESPiM can be

applied to compare results of different groups in user studies. We analyse these basic

results among (1) gender groups, and (2) groups of video gameplay frequency.

 

(a)
 

(b)
 

(c)
 

(d)
 

(e)

Figure 29: Illustration of (a) ESPiM, (b) calculated movement time based on Fitts’
law, (c) recorded errors, (d) eye fixations, and (e) Fixation Qualitative Score (FQlS)
measure for 32 participants observed in our user study.

Table 8: Descriptive statistics of recorded measures for 32 participants.

ESPiM Movement Time Errors Fixations FQlS
Mean 58.2 637.5 0.4 46.8 413.8
Median 57.2 593.6 0.4 45.3 409.3
SD 2.9 125.5 0.3 7.3 46.1
IQR 4.5 154.2 0.5 8.0 51.0
Range 11.0 471.5 1.1 29.1 234.8
Min 54.3 502.8 0.0 38.2 334.3
Max 65.4 974.3 1.1 67.4 569.1

Gender-based Analysis

Although the analysis of results based on gender was not in our hypotheses, we found

distinctive patterns between male and female participants regarding the measures

presented earlier. Since male subjects outnumbered the females, we selected 13 males

from the total 19 participants randomly to analyze the subjects into two balanced

groups. Fig. 30 illustrates the results of the gender-based analysis.
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Eye-strain probation model (ESPiM): We applied a paired-samples t-test to

look at the effect of gender on the calculated ESPiM and found a significant difference

(t(12) = 4.16, p < .001) between male (M = 56.97 bits, SE = 0.70 bits) and female

(M = 60.01 bits, SE = 0.76 bits) groups as illustrated in Fig. 30a. The results show

that females experienced a higher eye-strain level in comparison to males based on

our proposed model.

Movement time: We applied a paired-samples t-test to check the effect of gender

on movement time based on the Fitts’ law and found a significant difference

(t(12) = 2.65, p < .05) between male (M = 594.76 msec, SE = 28.95 msec)

and female (M = 700.62 msec, SE = 39.09 msec) groups as illustrated in Fig. 30b.

In general males achieved quicker test run-times than females.

Error rates: We applied a paired-samples t-test to check the effect of gender

on the recorded errors and found a significant difference (t(12) = 2.93, p < .05)

between male (M = 0.37 errors, SE = 0.09 errors) and female (M = 0.69 errors,

SE = 0.09 errors) groups as illustrated in Fig. 30c. This shows higher error rates

for females than males in the test.

Eye fixations: We applied a paired-samples t-test to check the effect of gender on

eye fixations and found no significant difference (t(12) = 2.15, p > .05) between male

(M = 44.85 fixations, SE = 2.00 fixations) and female (M = 50.03 fixations,

SE = 2.16 fixations) groups as illustrated in Fig. 30d. This shows both groups

experienced a similar amount of eye fixations during the test.

Fixation qualitative score (FQlS): We applied a paired-samples t-test to check
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the effect of gender on the calculated FQlS measure (a measure that can reveal

physical eye fatigue based on distance drift of fixation points) [92] and found no

significant difference (t(12) = 0.36, p > .05) between male (M = 411.05 pixels,

SE = 11.87 pixels) and female (M = 417.83 pixels, SE = 14.84 pixels) groups as

illustrated in Fig. 30e.
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Figure 30: Illustration of gender-based analysis (a) ESPiM (p < .001), (b) movement
time based on Fitts’ law (p < .05), (c) error rates (p < .05), (d) eye fixations, and (e)
Fixation Qualitative Score (FQlS) (p > .05) for 26 participants (13 male, 13 female).

Table 9: Descriptive statistics of 26 participants based on gender (13 male, 13 female).

ESPiM Movement Time Errors Fixations FQlS
M F M F M F M F M F

Mean 56.9 60.0 594.7 700.6 0.3 0.6 44.8 50.0 411.0 417.8
Median 56.4 60.0 551.8 697.5 0.3 0.5 42.1 47.8 403.2 415.3
SD 2.5 2.7 104.4 140.9 0.3 0.3 7.2 7.7 42.8 53.5
IQR 2.1 2.5 118.8 200.8 0.1 0.5 7.2 8.8 43.0 50.5
Range 8.8 9.9 315.0 464.1 1.1 1.1 24.5 27.0 173.2 213.1
Min 54.3 55.4 502.8 510.1 0.0 0.0 38.2 40.4 334.3 356.0
Max 63.1 65.4 817.8 974.3 1.1 1.1 62.8 67.4 507.6 569.1

Studies have shown that there are gender-based differences in eye movements [27,

154]. Our results also suggest these differences from another perspective according to

the proposed ESPiM model. Although there was statistically no significant differences

on average number of fixations (ANF) measure among gender groups, the higher

fixations for female group (IQRfemale > IQRmale, Rangefemale > Rangemale) and

slower eye movements between targets (see Fig. 30b) led to a significantly higher

ESPiM value for females.
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Video-gameplay Analysis

In a pre-test questionnaire, we asked the participants to rate their video gameplay

frequency on an integer scale of 1 (never) to 5 (every day). We found a negative

correlation (Pearson’s r = -0.32, and p > .05) which was not statistically significant,

although it shows a trend for further discussion as shown in Fig. 31a. In order to

further analyse the result, we divided our subjects into two groups based on their

rate regarding the mean (2.5) of the scale. Participants with a rate smaller than

the average value are labeled as low and those with a rate greater or equal than the

average as high groups as illustrated in Fig. 31b. Each group was assigned exactly 16

participants. In general we found significantly higher eye-strain level, movement time,

and error rates for the low group compared to the high group while no significantly

different values for the eye fixations and the FQlS measures were recorded.

 

(a)

 

(b)

Figure 31: (a) Correlation of video game frequency and the calculated ESPiM values
(Pearson’s r = −.32), and (b) histogram of 32 participants based on their video game
frequency on a scale of 1 (never) to 5 (every day) divided into Low and High groups.

Eye-strain probation model (ESPiM): We applied a paired-samples t-test to

check the effect of video gameplay frequency on the calculated ESPiM (t(15) =

2.14, p < .05) and found a significant difference between low (M = 59.52 bits,

SE = 0.81 bits) and high (M = 57.04 bits, SE = 0.48 bits) groups as illustrated in
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Fig. 32a. Thus, those that frequently play video games experienced a significantly

lower amount of eye-strain than the group of lower frequency of playing video games.

Movement time: We applied a paired-samples t-test to check the effect of video

gameplay frequency on movement time based on the Fitts’ law and found a significant

difference (t(15) = 2.36, p < .05) between low (M = 690.37 msec, SE = 34.63 msec)

and high (M = 584.72 msec, SE = 21.53 msec) groups as illustrated in Fig. 32b.

Thus, those with a higher frequency of video gameplay were able to perform the task

in a shorter amount of time than those who play video games less frequently.

Errors: We applied a paired-samples t-test to check the effect of video gameplay

frequency on the recorded errors and found a significant difference (t(15) = 3.62, p <

.05) between low (M = 0.69 errors, SE = 0.09 errors) and high (M = 0.27 errors,

SE = 0.06 errors) groups as illustrated in Fig. 32c. This suggests that those with a

higher frequency of video gameplay made less errors than those who do not play or

play less frequently.

Eye fixations: We applied a paired-samples t-test to check the effect of video

gameplay frequency on eye fixations with (t(15) = 2.12, p > .05) and found no

significant difference between low (M = 49.53 fixations, SE = 1.93 fixations) and

high (M = 44.13 fixations, SE = 1.51 fixations) groups as illustrated in Fig. 32d.

Thus, gameplay frequency did not impact eye fixations during the test.

Fixation qualitative score (FQlS):We applied a paired-samples t-test to check the

effect of video gameplay frequency on the calculated FQlS measure (a measure that

can reveal physical eye fatigue based on distance drift of fixation points) with (t(15) =
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0.28, p > .05) and found no significant difference between low (M = 416.00 pixels,

SE = 13.13 pixels) and high (M = 411.67 pixels, SE = 10.12 pixels) groups as

illustrated in Fig. 32e. In other words, gameplay frequency does not impact fixation

drift distances.

 

(a)
 

(b)
 

(c)
 

(d)
 

(e)

Figure 32: Illustration of (a) ESPiM (p < .05), (b) movement time based on Fitts’
law (p < .05), (c) error rates (p < .05), (d) eye fixations, and (e) Fixation Qualitative
Score (FQlS) (p > .05) based on video gameplay frequency of 32 participants divided
into 2 equal groups (Low, High) with 16 participants in each group.

Table 10: Descriptive statistics based on video gameplay frequency divided into equal
groups (Low, High) with 16 participants.

ESPiM Movement Time Errors Fixations FQlS
Low High Low High Low High Low High Low High

Mean 59.5 57.0 690.3 584.7 0.6 0.2 49.5 44.1 416.0 411.6
Median 59.8 56.7 671.6 554.3 0.5 0.2 47.2 42.3 416.8 400.3
SD 3.2 1.9 138.5 86.1 0.3 0.2 7.7 6.0 52.5 40.4
IQR 5.6 1.6 212.5 94.4 0.5 0.2 9.9 5.8 52.8 46.6
Range 10.4 7.0 463.3 315.0 1.1 1.0 28.1 24.5 234.8 145.8
Min 54.9 54.3 511.0 502.8 0.0 0.0 39.3 38.2 334.3 361.7
Max 65.4 61.3 974.3 817.8 1.1 1.0 67.4 62.8 569.1 507.6

We found a similar pattern on higher ANF (Average Number of Fixations) measure

(IQRlow > IQRhigh, and Rangelow > Rangehigh). However, there was no significant

differences among low and high groups, significantly higher movement times were the

causes of the higher ESPiM values for the low group. This suggests that participants

with higher frequency of gameplay were more experienced in moving their eyes in

shorter time and therefore produced lower fixations and consequently lower eye-strain
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based on our model. This result may be due to the fact that video games can increase

visual abilities. Previous studies have shown the relationship between video gameplay

and eye movements, for instance shorter saccadic reaction time in video game players

[101], the usage of video games to train visual skills [3], and to enhance visual search in

players [26]. These characteristics of frequent game players enable them to experience

lower eye-strain as indicated by our results.

Video-gameplay Among Gender Groups

We also analyzed the calculated ESPiM values among male and female participants

based on their video-gameplay frequencies as shown in Fig. 33 and 34. Despite

unequal number of participants based on their video-gameplay frequencies among

male and female groups, participants with a lower frequency of gameplay (low group)

show sparser distributions than participants with a higher frequency of gameplay

(high group). This suggests that users with a higher frequency of video gameplay

achieved similar results.

 

(a)
 

(b)

Figure 33: Illustration of video-gameplay frequency among gender groups on (a)
ESPiM, and (b) movement time based on Fitts’ law. The male group contains 19
(low=6, high=13), and female 13 (low=10, high=3) participants.

Further, we analyzed the differences among male and female participants based on

their video-gameplay frequency and found participants in both gender groups show

higher variability when their video-gameplay frequency is low as shown in Fig. 33
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(a)
 

(b)

Figure 34: Illustration of video-gameplay frequency among gender groups on (a) eye
fixations, and (b) error rates. The male group contains 19 (low=6, high=13), and
female 13 (low=10, high=3) participants.

Table 11: Descriptive statistics of 19 male participants (low=6, high=13) based on
their video-gameplay frequencies.

ESPiM Movement Time Errors Fixations
Low High Low High Low High Low High

Mean 58.2 56.5 626.4 579.6 0.5 0.2 46.1 43.9
Median 56.8 56.5 598.8 547.5 0.4 0.1 44.3 42.1
SD 3.6 1.6 112.2 87.0 0.4 0.2 6.3 6.4
IQR 5.6 1.5 153.8 73.8 0.4 0.1 8.6 5.8
Range 8.2 6.6 284.5 315.0 1.1 1.0 16.2 24.5
Min 54.9 54.3 511.0 502.8 0.0 0.0 39.3 38.2
Max 63.1 60.9 795.5 817.8 1.1 1.0 55.5 62.8

and 34 with details in Tables 11 and 12. In other words, for subjects that do not

frequently play video games it is more difficult to predict eye-strain based on our

proposed model.

Furthermore, we observed that male participants and participants with high

frequency of video gameplay produced lower errors than their counterparts in target

selections as shown in Fig. 30c, and 32c. The cause of low error rates in participants

with high video game experience is due to their fast eye movements as shown in Fig.

32b. Similarly, fast eye movements in male participants was the cause of lower error

rates shown in Fig. 30b. Thus those who have more “trained” visual search through

video gameplay[3] tend to perform better with eye-tracking based selection.
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Table 12: Descriptive statistics of 13 female participants (low=10, high=3) based on
their video-gameplay frequencies.

ESPiM Movement Time Errors Fixations
Low High Low High Low High Low High

Mean 60.3 59.0 728.7 606.9 0.8 0.3 51.5 44.8
Median 60.1 58.7 697.9 608.5 0.7 0.5 48.8 44.7
SD 2.9 2.2 143.6 96.0 0.3 0.2 8.0 4.5
IQR 2.7 2.2 224.4 96.0 0.6 0.2 12.1 4.5
Range 9.9 4.4 418.3 192.0 0.6 0.5 25.3 9.0
Min 55.4 56.9 556.0 510.1 0.5 0.0 42.1 40.4
Max 65.4 61.3 974.3 702.1 1.1 0.5 67.4 49.4

The mentioned observations based on gender reported in this study should not be

interpreted to discriminate users towards a specific gender group. Additionally, the

higher performance of experienced participant related to video gameplay cannot be

interpreted as a promotion in favour of video games.

6.5 User Study 2: Focus Shift Simulator (online)

The second study, described here, was conducted to include a more in-depth analysis

of eye-strain characteristics using a video-based eye-tracking technique applied via

the WebGazer API [128], a recognized tool for remote eye-tracking user studies.

6.5.1 Methods

We developed a custom web application that runs on the client-side completely and

requires no video footage to be sent to the server. The WebGazer API [128] uses

the user’s webcam to track eye movement and maps features of the eye and positions

on the screen. It begins by obtaining the participant’s consent to use the webcam

followed by a calibration process. During this process, the user has to click on

reference points with the mouse while looking at the cursor.
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The application was developed in Java and the server interaction with the

WebGazer API [128] was implemented in JavaSctipt. The AWS Elastic Beanstalk

[5] provided by Amazon Web Services [4] was used for deploying our web application.

Fig. 35 shows the workflow of the focus shift simulator user study.

 

Figure 35: Overview of the focus shift simulator test application using the WebGazer
API [128]. The user runs the application from a web browser, the client-server
connection is established and the WebGazer API acquires control of the webcam
to track user’s eyes. The results of the entire test session is saved on the file system
(F.S.) on the server.

In terms of the study, participants were asked to launch the developed web

application at 3 moments of time in the day (from 08:00 to 12:00, 12:00 to 18:00

and after 18:00) over a period of 7 days (did not have to be consecutive). Prior to

each trial in the study we asked the user how many hours they have been working

or using a screen. Next, the participant was prompted to click on 30 buttons that

randomly appear on the screen one at a time. Each button has a different position

and size adjusted to the screen dimension as illustrated in Fig. 36a. By clicking on

the last button, the recorded raw data is sent to the server. At the end of the trial we

asked the participant to rate their current eye-strain level on a scale from 1 (none) to

5 (a lot).

The intuition behind the developed focus shift application is based on the multi-

tasking efforts to interact with different interactions, applications, and events while
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working on a digital display. The user needs to move their focal point to react

to situations. For instance, reading emails and constantly receiving messages on a

messenger application and monitoring running applications in background which may

interrupt user’s attention with prompt dialog boxes to confirm/decline certain actions

are typical tasks of an office employee. Fig. 36a illustrates the screenshot of the test

application with the goal of simulating multi-tasking events on a computer and Fig.

36b shows the pattern of eye fixations when shifting to different locations on the

screen to follow stimuli and illustrates the intuition of fixation points integration in

our proposed model (see Equation 9).

 

(a)  

(b)

Figure 36: (a) Shows the screenshot of the focus shift simulator application for 10
targets. We reduced the number of targets for this screenshot to reduce overlapping
of targets for higher visibility. Targets contain ‘click’ label and appear one by one
randomly across the screen with different sizes. As soon as user clicks on a button,
the application removes the selected button and loads the next one. (b) Illustrates
the recorded fixation points of an entire test session with 30 targets on a laptop
display. The red circles represent center of targets, and the blue circles represent
fixation points. This figure shows the intuition of fixation points to be integrated in
our eye-strain model to be considered for a specific period of time.

This study was specifically designed to be applicable remotely to comply with

physical restrictions caused by the COVID-19 pandemic [33]. Moreover, since the

study collects data from 24 hours a day from users, it could be executed anytime and

anywhere via the URL to the server to provide participants freedom and control over
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their interactions with the system rather to run the tests in a laboratory equipped

with eye-tracking sensors. Therefore the application of video-based eye tracking was

found to be the ideal choice of design.

After analysing the preliminary results we found that some participants failed to

stick to the restricted time slots. This may be due to the fact that our testing sessions

collided with personal tasks and that since the start of the COVID-19 pandemic

[33], many workers began working from home with varying work routines rather

than the traditional 9-to-5 workday. As we originally wanted to study our ESPiM

model for classical 9-to-5 working hours, based on our data we defined two groups of

participants:

• 9-to-5: any time between 09:00 and 17:00 o’clock.

• Flexible: any times not in the 9-to-5 group.

These slots were chosen based on the concept of 9-to-5 working hours and there

is no intersections between the groups (9-to-5 ∩ Flexible = ∅).

We had four hypotheses that we considered in this study:

• H1: Users perceive higher eye-strain level beyond the standard 9-to-5 working

hours: ESPiM(9-to-5) < ESPiM(Flexible).

• H2: The group of 9-to-5 participants may cause more errors than the flexible

group. In simple words, we assume that the flexible group may choose their

preferred hours of work or take more time in between work periods and thus

make less errors.

• H3: The longer users spend on a digital display, the more eye-strain they have.

• H4: The increase of the calculated ESPiM value correlates with the increase of

mouse pointer movements.
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We collected 70 samples from 13 participants (10 Male, 3 Female) with an average

age of 31.33 years (SE = 2.01) to be analysed based on their working times and

ratings. Specifically, we collected (a) screen resolution, (b) test duration, (c) errors,

(d) eye fixations, (e) display hours, (f) perceived eye-strain rating, and (g) eye-strain

symptoms of participants.

6.5.2 Results and Discussion

Since the start of the COVID-19 pandemic [33] many knowledge workers and students

were forced to work from home which typically deviates from the routine of 9-to-5

working hour schedules. This phenomenon motivated us to apply ESPiM to study the

impacts of remote working via measuring eye-strain based on our proposed equation

(see Equation 9). Although the calculated ESPiM values of both groups (9-to-5, and

flexible) showed no significant difference, we observed significant patterns in the (a)

subjective ratings, (b) time spent on a digital display, and (c) recorded error rates

among groups.

To test our first hypothesis, we applied a paired-samples t-test to check the

difference of the calculated ESPiM (t(34)=1.90, p > .05) among both groups and

found no significant difference between 9-to-5 (M = 30.58 bits, SE = 1.22 bits)

and flexible (M = 27.76 bits, SE = 1.34 bits) groups as illustrated in Fig. 37a.

This suggests our first hypothesis (H1) concerning a lower eye-strain level for 9-to-5

participants than the flexible group is rejected.

To test our second hypothesis, we applied a paired-samples t-test to check the

effect of errors on the calculated ESPiM (t(34)=2.47, p < .05) and found a significant

difference between 9-to-5 (M = 0.31 errors, SE = 0.09 errors) and flexible (M =

0.08 errors, SE = 0.04 errors) groups as illustrated in Fig. 38b. As we had predicted

a higher error rates of the 9-to-5 group than the flexible group in our second hypothesis
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(H2) which is thus confirmed by these results. This shows the flexible group, who are

more flexible to work on their digital devices, was able to finish the test with fewer

mistakes.

We applied a paired-samples t-test to check the effect of subjective ratings on the

calculated ESPiM (t(34)=3.58, p < .001) and found a significant difference between

9-to-5 (M = 1.34 points, SE = 0.10 points) and flexible (M = 2.00 points, SE =

0.15 points) groups as illustrated in Fig. 37b. Further, we looked at the effect of

display hours on the calculated ESPiM (t(34)=6.52, p < .001) and found a significant

difference between 9-to-5 (M = 2.41 hours, SE = 0.27 hours) and flexible (M =

5.64 hours, SE = 0.37 hours) groups as illustrated in Fig. 37c. Thus, although

we predicted a higher eye-strain level based on ESPiM values for participants who

spend more time on a digital display in our third hypothesis (H3), and we recorded

significantly higher working hours for the flexible group than the 9-to-5 participants,

the difference of ESPiM values was not statically significant and therefore we reject

our third hypothesis. We posit that the reason for higher working hours but relatively

similar eye-strain level of the flexible group lies in the fact that flexible participants

could work anytime based on their convenience and therefore were benefited from

breaks rather that those bound to a certain time window as the 9-to-5 group.

To test our fourth hypothesis, we studied the correlation of ESPiM and mouse

pointer movements for each group and found positive correlations among those

measures as predicted and therefore confirm the hypothesis (H4) as shown in Fig.

39a, and 39b. This result suggest that tired eyes may lead to an increase of mouse

pointer movements among users for target selection tasks.

We also explored the effect of eye fixations on the calculated ESPiM (t(34)=1.46,

p > .05) and found no significant difference between 9-to-5 (M = 904.28 fixations,

SE = 64.06 fixations) and flexible (M = 791.08 fixations, SE = 76.35 fixations)
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groups as illustrated in Fig. 38a. This shows both groups of users experienced similar

amount of eye fixations during our test.

In addition, we studied the effect of mouse pointer movements (t(34)=1.81, p >

.05) and found no significant difference between 9-to-5 (M = 667.14 movements,

SE = 47.87 movements) and flexible (M = 565.11 movements, SE =

45.04 movements) groups as illustrated in Fig. 38c. However, the pointer movements

correlate with the calculated ESPiM of each group. This shows both groups of users

applied similar amount of mouse pointer movements during our test.

 

(a)
 

(b)
 

(c)

Figure 37: Illustration of (a) ESPiM (p > .05), (b) subjective ratings of perceived
eye-strain level (p < .001), and (c) display hours before test (p < .001) of both testing
groups. More details in Tables 14 and 15.

Furthermore, we recorded participants’ symptoms of eye-strain after each session

as illustrated in Fig. 40. It should be noted that these symptoms are based on

subjective feedback of participants and do not reflect clinical definitions. We found

that the flexible group reported more eye-strain symptoms (29 symptoms) than the

9-to-5 group (15 symptoms). The large gap between groups are related to tired eyes,

dry eyes, and blurred vision which can be explained due to the higher working hours

on a computer display of the flexible group as shown earlier in Fig. 37c. In simple
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(a)
 

(b)
 

(c)

Figure 38: Illustration of (a) recorded eye fixation points (p > .05), (b) error rates
(p < .05), and (c) mouse pointer movements of both testing groups (p > .05). More
details in Tables 14 and 15.

 

(a)
 

(b)

Figure 39: Correlations of ESPiM and mouse pointer movements for (a) the 9-to-5
group (Pearson’s r = .71, p < .001), and (b) the flexible group (Pearson’s r = .83,
p < .001).

words, working in a ‘flexible’ routine seems to lead to higher amount of hours spent

on a display, which in turn leads to more eye-strain symptoms.

Since participants ran the test on their personal computers at home, we recorded

different screen resolutions and analysed the effectiveness of ESPiM on different

screens as illustrated in Fig. 41. We found no significant difference between the 9-to-5

group (M = 32.26 bits,SE = 2.81 bits) and the flexible group (M = 30.83 bits,SE =

3.25 bits) based on screen resolution, although there is a slight decrease of ESPiM for

screen dimension 1280 × 720 pixels for the 9-to-5 group.
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Figure 40: The recorded eye-strain symptoms of participants after running the test.

Additionally, we calculated the difference of ESPiM values for each resolution

point (shown as P1-P7 on Fig. 41) to analyze the increase and decrease of ESPiM

values per resolution increase. In fact, we calculated Pn − Pn−1 (1 ≤ n ∧ P0 = 0) for

each resolution as shown in Table 13. Negative values represent decrease, and positive

values increase of ESPiM per bits. The summation of both groups shows a slightly

higher increase for the flexible group with the value of 32.11 bits compared to that

of the 9-to-5 group with the value of 32.01 bits. However, the difference lies only on

a single resolution (1280 × 720 pixels), this might suggest that users with a flexible

working time may experience higher eye-strain levels as screen dimensions increase

than the group of standard 9-to-5 routine. However, the increase of eye-strain for

both groups decreases for screen dimensions larger than 2048 × 1152 pixels. This

may suggest that the choice of screen size is essential in how users experience eye-

strain for any working time schedules. This result might be of interest for video game

designers in finding suitable screen resolutions for their audience to recommend for

the best game experience with lower eye-strain levels.

This previous analysis is important as ESPiM takes both target’s and screen’s area

in to account to calculate eye-strain value for comparison as shown in Equation 9.

Therefore, ESPiM is applicable on any screen resolution with no further adjustments
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in its equation. This feature enables designers of user interfaces, or producers of digital

displays to compare different screen dimensions based on eye-strain on consumers.

 

Figure 41: The recorded ESPiM values of both groups based on screen resolutions.
The comparison points are shown as P1 to P7 which build comparison sections to
study ESPiM on screen expansion. We analysed the increase and decrease of ESPiM
in each section.

Table 13: ESPiM difference based on screen resolution for both 9-to-5, and flexible
groups. Positive values represent increase and negative values decrease of ESPiM per
bits respectively.

Resolution (Pixels) Measure ESPiM 9-to-5 ESPiM Flex.
1280 × 720 P1 33.38 20.98
1280 × 800 P2 - P1 -11.28 1.10
1368 × 912 P3 - P2 1.11 2.73
1920 × 1080 P4 - P3 11.13 8.58
2048 × 1152 P5 - P4 8.25 9.86
2560 × 1440 P6 - P5 -4.41 -4.03
3440 × 1440 P7 - P6 -6.17 -7.11

Σ 32.01 32.11

We demonstrated the application of ESPiM in a remote user study with a video-

based eye-tracking technique. We have shown the effectiveness of ESPiM for user

studies to analyse eye-strain on digital displays. Although the results of ESPiM

cannot be interpreted as clinical analysis, they can be applied in low-budged user

studies with physical restrictions to participants.
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Table 14: Descriptive statistics of the focus shift simulator study.

ESPiM Fixations Display Hours Errors
9-to-5 Flex. 9-to-5 Flex. 9-to-5 Flex. 9-to-5 Flex.

Mean 30.58 27.76 904.28 791.08 2.41 5.64 0.31 0.08
Median 32.61 22.96 865.00 625.00 2.00 6.00 0.00 0.00
SD 7.24 7.96 378.98 451.72 1.65 2.21 0.53 0.28
IQR 12.35 11.24 437.00 676.00 3.00 3.00 1.00 0.00
Range 23.31 26.32 1264.00 1334.00 5.50 9.00 2.00 1.00
Min 20.38 19.83 322.00 317.00 0.00 1.00 0.00 0.00
Max 43.69 46.16 1586.00 1651.00 5.50 10.00 2.00 1.00

Table 15: Descriptive statistics of mouse pointer movements.

Mouse Pointer Movements Subjective Rating
9-to-5 Flex. 9-to-5 Flex.

Mean 667.14 565.11 1.34 2.00
Median 617.00 454.00 1.00 2.00
SD 283.22 266.50 0.59 0.93
IQR 291.00 295.50 1.00 1.00
Range 1121.00 1021.00 2.00 4.00
Min 322.00 315.00 1.00 1.00
Max 1443.00 1336.00 3.00 5.00

6.6 Conclusion and Future Work

Eye-strain is a common issue among computer users due to prolonged periods spent

working and using digital displays, which leads to vision problems such as irritation

and tiredness of the eyes, and headaches. We proposed the Eye-Strain Probation

Model (ESPiM), an easy-to-apply computational model to measure eye-strain on

digital displays based on the spatial properties of the user interface and display area

for a required period of time, using eye-tracking analysis integrated into a single

measure. We conducted two user studies to evaluate the effectiveness of ESPiM, its

functionalities and potentials and showed how to measure potential eye-strain levels of

a specific user interface suitable for pilot studies to compare various design prototypes

before the application by end users. We evaluated the effectiveness of ESPiM in an in-

person user study with an infrared eye-tracking sensor and found interesting patterns
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among (a) gender, and (b) video gameplay play frequency groups. In addition, we

showed the application of ESPiM in a remote user study that complied with the

COVID-19 safety measures. Since eye fixations can be assessed which is typically

bound to a certain range (200-600 ms), ESPiM can be applied in pilot studies with

no access to eye-tracking devices for analysis estimations. Despite the relatively short

test session for each participant of both user studies, we were able to evaluate our

hypotheses and recognized distinctive patterns among participants. Furthermore,

we showed that ESPiM has strong correlations with error rates of target selections.

The correlation with error rates can be interpreted as an indicator to estimate

and reduce the impacts of the Midas touch problem in gaze-based interactions by

analysing the user interface properties. We also found significantly different eye-

strain patterns based on video gameplay frequency of participants. The results showed

that participants with frequent video gameplay reached significantly lower eye-strain,

and lower error rates compared to their counterparts. This may suggest that users

with higher training of eye focus shifts (e.g. video games) might experience a lower

eye-strain with prolonged use of digital displays for singular (not multi-tasking) or

enjoyable tasks. Furthermore, we found that mouse pointer movements increase as

eye-strain levels increase. This would suggest users tend to move their mouse pointers

more frequently to select targets in case of tired eyes.

Beyond the prediction and measurement of eye-strain, ESPiM can be applied

to compare different gaze-based interaction techniques, and evaluate different user

interface prototypes to reach a comfortable design based on eye-strain.

As more individuals get access to digital content provided on digital displays,

especially children and students of a younger age, the consumption of digital media

becomes more prevalent. Furthermore, since the start of the COVID-19 pandemic,

many schools moved to online teaching which caused new challenges for elementary
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students and their parents. Many in-person events still occur on digital devices now

to comply with the required safety measures. Thus, there is a need for compound

models to cope with the emerging trends in order to measure and compare the impact

of digital displays on our health.

Today, most smart-phones include high quality cameras accessible by younger

generations, thus the application of video-based eye-tracking that we showed in this

paper can be feasible to design and conduct large-scale user studies on smartphones to

reach a larger population of digital media consumers. In future work, we plan to apply

ESPiM on smart-phones to compare educational video games for school students.

Additionally, the continuous and predictable form of ESPiM makes it suitable for

machine learning algorithms which will be explored in the future. Finally, we hope

our proposed model makes a step forward towards the reduction of eye-strain on

digital displays, inspires researchers and user interface designers and leads to more

discussions in research communities.

158



Chapter 7

Conclusion

Computer vision syndrome (CVS) is composed of multiple eye vision problems due

to the prolonged use of digital displays, including tablets and smartphones. These

problems have been shown to affect visual comfort and work productivity in both

adults and teenagers. CVS causes eye and vision symptoms such as eye-strain, eye

burn, dry eyes, double vision, and blurred vision. Furthermore, CVS causes severe

vision and muscular problems and is a cause of work stress due to repeated eye

movements and excessive eye focus on computer screens. Work-related stress is one

of the main challenges of the workforce in the 21st century, and according to the World

Health Organization (WHO), work-related stress occurs when the workload demand

is higher than the knowledge and abilities of workers to handle. Employees may feel

overwhelmed with the amount of work to be accomplished in a limited amount of

time and may feel no support to handle their tasks; thus, they feel stressed.

The severe health risks caused by work-related stress mentioned in this dissertation

might be complicated and expensive to cure. Human physiology and psychology are

very complex, and the mentioned side effects are only a few examples among unknown

issues that can arise. According to the current evidence, permanent work-related

stress is harmful with many complicated symptoms. Thus, it should be detected
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and handled in the early phases. Since exposure to work-related stress is inevitable

and has become part of our daily lives, there need to be mechanisms to reduce its

destructive impacts on our health. In this thesis, we examined eye-strain as one of the

significant CVS symptoms that could be used to address this aspect of work-related

stress among computer users.

Eye-strain, also known as visual fatigue, is growing more common among digital

device users. Symptoms do include not only irritation of the eyes but also tiredness

and headaches. Eye-strain is a common issue among computer users due to the

prolonged periods working in front of a monitor.

As emerging interaction techniques become more sophisticated and multi-

dimensional, the need for more complex and multi-factor measures is necessary. We

have developed multi-purpose mathematical models Fixation-based Eye fatigue Load

Index (FELiX), Index of Difficulty for Eye tracking Applications (IDEA), and Eye-

Strain Probation Model (ESPiM) based on eye-tracking parameters and subjective

ratings to measure, predict, and compare the amount of eye-strain, fatigue or

cognitive workload during target selection tasks for different user groups or interaction

techniques. The ESPiM model is the outcome of both FELiX and IDEA relying on

objective measures solely. These trilateral models enable researchers to predict and

quantify potential eye-strain levels on individuals based on physical circumstances

such as screen resolution and target positions per time and, consequently, could

reduce work-related stress.

7.1 Summary of Findings

The contributions of our proposed models are twofold: firstly, they enable researchers

and designers of user interfaces to assess the amount of eye-strain as a proxy to work

stress based on the visual parameters. Secondly, they can be applied to different case
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scenarios, display types or compare different interaction techniques in user studies to

identify and reduce the side effects of visual interactions on digital displays. Although

there is always a gap between prediction and reality, our trilateral compound

models contribute to assess the challenges of gaze-based software development and

provide new insights into the feasibility of multi-factor prediction measures for gaze-

based interactions. Table 16 summarizes all research questions explored in this thesis

and their conclusions.

Although we have designed the ESPiM model to measure eye-strain on primarily

digital displays, it can be applied to (a) compare user interface designs, (b) compare

different display devices, and (c) compare different interaction techniques based on

eye-strain on users. Since spatial parameters are included in the ESPiM model, it can

be used to estimate eye-strain before testing in a user study, which can benefit both

research communities and the industry of creating digital content. We incorporate

the screen’s and targets’ spatial parameters, including applying Fitts’ law and eye-

tracking fixation points for the desired period in a single measure. Moreover, eye

fixations are typically bound to a specific range (200-600 ms). Therefore, the average

number of fixations for a specific period can be estimated, making ESPiM a suitable

choice for testing and evaluating purposes with no access to eye-tracking sensors.

7.2 Limitations of the Eye-strain Models

However the proposed models can be applied in a variety of user studies, there are

some limitations to be considered. A major issue that applies to all proposed models

is the analysis of long-term aspects of these models on users in further studies. We

review the limitations based on each model.
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7.2.1 FELiX

The major limitation of FELiX is the absence of the entire scores of the NASA TLX.

However, it includes the most important parameters of the subjective rating, the

rating scores of frustration, temporal demand, and effort parameters may reveal some

important aspects of a subjective rating coefficient.

7.2.2 IDEA

However the IDEA model takes the entire NASA TLX scores into account as the

subjective rating criterion, it requires a separate test to measure the selection ratio

parameter S (the ratio of distance to target over the diameter of the screen) which

demands a test application and might be time-consuming for some user studies.

7.2.3 ESPiM

Although the ESPiM model is designed to be as flexible as possible, a precise

measurement of test execution time is required for any user study. Thus an accurate

synchronization between the start and end of a test is needed. Further, it does not take

preparation activity times into account, for instance, spent time on the calibration

process before running a test.

7.3 Future Works

There are a number of avenues for future work as follows. We review these research

and development directions briefly.
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7.3.1 Smartphones, Tablets, and AR/VR Devices

Applying our trilateral models on smartphones/tablets may reduce eye-strain levels

on mobile applications and video games specifically designed for children. The ESPiM

model enables researchers to optimize their user interface designs based on small-size

screens of smartphones and tablets.

Our trilateral proposed models can be applied on head-mounted devices for

AR/VR applications with integrated eye-tracking sensors to study and analyze motion

sickness, which is a common challenge in these devices. All our models were originally

designed for 2D screens. Thus, an exciting research direction is to evaluate and expand

these models to 3D view volumes, typically associated with stereo vision, for example,

using VR headsets.

7.3.2 Driver Awareness Analysis

Our models can also be suitable for analyzing Microsleep, a sudden loss of awareness

or a short sleep in car drivers. Especially for truck drivers, this could reduce traffic

collisions by measuring eye-strain levels for different times and conditions in user

studies. Since our models contain mathematical equations, researchers may apply

machine learning techniques to run or expand these models in real-time use case

scenarios to detect driver’s awareness based on eye-strain.

7.3.3 User Interface and Screen Design

Our models, especially the ESPiM model, are suitable for user interface designers,

producers of display devices, and video game developers to optimize their output in

user studies to reduce eye-strain before the final release of their works. Since ESPiM

integrates both (1) target’s area and (2) screen’s area into account, the calculation of
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eye-strain can be adopted on various screen dimensions as we showed the results of

our online user study.

7.3.4 Alternative Method to Biological Sensors

Measuring biological inputs from users is one of the most effective methods to record

involuntary users’ reactions during user studies. The application of these sensors

is limited to certain domains, may need specific ethical approval and acquisition of

expensive equipment. Moreover, these sensors may be intrusive for test participants,

which may affect the results. Thus, our models can be applied as low-budget and easy-

to-calculate alternatives to biological sensors since they include eye-tracking measures

(e.g. fixations points, fixation duration, etc.), which are involuntary inputs from

participant’s eyes in response to visual stimuli for pilot studies or preliminary testing

phases.

7.3.5 Comparison Measures

Finally, our trilateral models can be applied as simple comparison measures for

any user study to find distinctive patterns based on different criteria (gender, age,

experiences with eye-tracking, etc.) by applying eye-tracking fixation points recorded

through a commodity webcam for preliminary analysis. These comparisons are helpful

to distinguish different criteria, interaction techniques, or conditions for user studies

as we showed some results of our user studies.

7.4 Perspective

In this thesis, we have reviewed eye-strain and work-related stress caused by the

workplace and discussed detection techniques and equipment to measure stress.
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Specifically, we focused on eye-tracking as a feasible and low-budget tool for the

measurement of eye-strain. In the era of smart devices capable of visually representing

data, we believe it is essential to determine stress levels by applying eye-tracking

techniques and analyzing the eye-strain of particular targets and screen dimensions

for a specific period. The results of the proposed work can lead to predict and prevent

work overload and stressful situations by offering estimation reports on the difficulty

of selection tasks for users who spend hours working in front of a computer. This

prevention is not only economical but would help to improve work-life balance. We

hope that our models make a step forward towards the reduction and control of

work-related stress.
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Table 16: Summary of the research questions and findings of this dissertation.

Research Question Finding
Can we propose an alternative method
to dwell-time method, and voice
recognition selection technique for the
Midas touch problem?

Yes. We designed, developed, and
evaluated EyeTAP with a completely
contact-free approach to address the
Midas touch problem with comparable
results.

Can we measure eye-strain based on
the NASA TLX subjective feedback?

Yes. We designed, developed, and
evaluated FELiX, and IDEA which
integrate subjective scores in form
of the NASA TLX scores into their
equations.

Can we expand the Fitts’ law for eye-
tracking applications?

Yes. We designed, developed, and
evaluated IDEA which measures task
difficulty for selection techniques with
inclusion of width and distances of
targets. Additionally, we proposed
ESPiM with the integration of the
Fitts’ law principles.

Can we measure eye-strain by a
standalone model relying solely on
objective measures to be applicable on
any 2D display?

Yes. We designed, developed, and
evaluated ESPiM in two user studies
with a dedicated infrared eye-tracking
sensor and an online study using
video-based eye-tracking technique
via commodity webcams on user’s
computer.

Can we apply eye-tracking as a simple
alternative to biological sensor for user
studies with low budget or no access to
measuring sensors?

Yes. We proposed FELiX, IDEA, and
ESPiM which can be applied in user
studies to record user’s inputs from a
safe distance with no extra peripherals
via a low-budget eye-tracking sensor,
or a webcam.

Can we propose a model to measure
eye-strain applicable on various screen
dimensions?

Yes. We designed, developed, and
evaluated ESPiM which integrates
both targets’ and screen dimensions
into its equation.

Can we expand the original Fitts’ law
to include time?

Yes. We designed, developed, and
evaluated ESPiM which takes benefit
of the Fitts’ law principles for a
specific duration.
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Appendix A

Source Codes

All developed applications for the user studies reviewed in this thesis are available on

GitHub.

1. Circle Button: the source code for the Dart-based test application:

https://github.com/MohPar2020/CircleButton

2. SpeechRecognitionSample: the source code to demonstrate voice recognition

using Windows 10 Speech Recognition engine:

https://github.com/MohPar2020/SpeechRecognitionSample

3. EyeTapStudy: the source code for the Matrix-based test application:

https://github.com/MohPar2020/EyeTapStudy

4. AudioRecording: the source code to demonstrate real-time audio monitoring to

detect noise in the input applied in the EyeTAP prototype:

https://github.com/MohPar2020/AudioRecording

184

https://github.com/MohPar2020/CircleButton
https://github.com/MohPar2020/SpeechRecognitionSample
https://github.com/MohPar2020/EyeTapStudy
https://github.com/MohPar2020/AudioRecording

	List of Figures
	List of Tables
	List of Abbreviations
	Preface
	Introduction
	Work-related Stress
	Eye-strain
	Motivation
	Objectives and Contributions
	Terminology
	Organization

	Background & Related Work
	Physiology of the Human Eye
	Eye Movements
	Fixations
	Saccades
	Smooth pursuit

	Eye Tracking
	Tracking quality
	Calibration

	Application Domains
	Challenges of Eye Tracking
	Eye Tracking Methods Addressing Midas Touch
	Dwell-time processing
	Smooth pursuits
	Gaze gestures
	Multimodal Interaction

	Benefits of Eye Tracking
	Guidelines for Eye Tracking Applications

	EyeTAP: Introducing a Multimodal Gaze-based Technique using Voice Inputs with a Comparative Analysis of Selection Techniques
	Introduction
	Related Work
	Dwell-time processing
	Smooth pursuits
	Gaze gestures
	Multimodal Interaction
	Summary

	EyeTAP Prototype
	Eye Tracking: Pointing Phase
	Auditory Processing: Selection Phase
	Hypotheses

	Evaluation
	Interaction Techniques
	User Study 1: Matrix-based Test
	User Study 2: Dart-based Test
	User Study 3: Ribbon-shaped Test
	User Study 4: Circle-shaped Test

	Results
	EyeTAP Rating by Users
	NASA TLX Scores
	Comparative Scores

	Discussion
	EyeTAP
	Voice Recognition
	Dwell-Time
	The Mouse

	Conclusion and Future Work

	FELiX: Fixation-based Eye Fatigue Load Index A Multi-factor Measure for Gaze-based Interactions
	Introduction
	Cognitive Workload
	Eye Fatigue

	Related Work
	Eye Fatigue Load Index (FELiX)
	Cognitive and Eye-Tracking Coefficients
	Performance-based FELiX (FELiXper)
	Accuracy-based FELiX (FELiXacc)
	Discussion: Rational of FELiX

	Methodology
	Interaction Methods
	Hypotheses
	Apparatus
	Experimental Design
	User Study 1: Matrix-based Test
	User Study 2: Dart-based Test
	Test Workflow

	Results
	User Study 1: Matrix-based Test
	User Study 2: Dart-based Test
	Bi-variate Comparison
	NASA TLX Scores

	Discussion
	Conclusion and Future Work

	IDEA: Index of Difficulty for Eye tracking Applications An Analysis Model for Target Selection Tasks
	Introduction
	Fitts' Law
	Cognitive Workload
	Midas Touch Problem

	Related Work
	Index of Difficulty (IDEA)
	Methodology
	Interaction Techniques
	Interaction Modules
	Hypotheses
	User Study

	Results
	Discussion
	Conclusion and Future Work

	ESPiM: Eye-Strain Probation Model - An Eye-Tracking Analysis Measure for Digital Displays
	Introduction
	Related Work
	Fitts' Law
	Eye-strain Models

	Eye-Strain Probation Model (ESPiM)
	Applications of ESPiM

	User Study 1: Fitts' Study (in-person)
	Methods
	Results and Discussion

	User Study 2: Focus Shift Simulator (online)
	Methods
	Results and Discussion

	Conclusion and Future Work

	Conclusion
	Summary of Findings
	Limitations of the Eye-strain Models
	FELiX
	IDEA
	ESPiM

	Future Works
	Smartphones, Tablets, and AR/VR Devices
	Driver Awareness Analysis
	User Interface and Screen Design
	Alternative Method to Biological Sensors
	Comparison Measures

	Perspective

	Bibliography
	Appendix Source Codes

