
Privacy-Preserving Protocols on Blockchain

Hisham Galal

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy (Information and Systems Engineering) at
Concordia University

Montréal, Québec, Canada

February 2022

©Hisham Galal, 2022

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Hisham Shehata Galal Elsayed

Entitled: Privacy-Preserving Protocols on Blockchain

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Bruno Lee

External Examiner
Dr. Abdelhakim Senhaji Hafid

External to Program
Dr. Wahab Hamou-Lhadj

Examiner
Dr. Jeremy Clark

Examiner
Dr. Mohammad Mannan

Supervisor
Dr. Amr M. Youssef

Approved by
Dr. Mohammad Mannan, Graduate Program Director

February 9th, 2022
Date of Defence Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Privacy-Preserving Protocols on Blockchain

Hisham Galal, Ph.D.

Concordia University, 2022

Blockchain is an evolving technology with the potential to reshape various indus-

tries. It is an immutable append-only distributed ledger that maintains the integrity and

availability of its transactions. With blockchain, mutually distrusting parties can finally

make transactions without relying on a trusted third party. Nevertheless, many organi-

zations are reluctant to adopt it due to several issues such as privacy. More precisely, the

inherent transparency of transactions in blockchain comes at the cost of privacy despite

the use of pseudonymous identities. We design cryptographic protocols to improve the

privacy of a set of decentralized applications utilizing blockchain.

The rapidly growing number of digital assets deployed over blockchain requires

a convenient trading mechanism. Sealed-bid auctions are powerful trading tools due to

their privacy advantages compared to their open-cry counterparts. However, the inherent

transparency on the blockchain makes designing a sealed-bid auction a challenging task.

We propose three protocols utilizing zero-knowledge proofs, trusted execution environ-

ments, and smart contracts to publicly verify the correctness of the auction winner while

maintaining users’ privacy.

In the first protocol, the auctioneer utilizes zero-knowledge proof of interval mem-

bership to prove the correctness of the auction winner without revealing the losing bids.

iii

However, this protocol is expensive in verification cost and scales linearly with the number

of users. To reduce the verification cost, we design a second protocol where the auctioneer

utilizes an advanced zero-knowledge proving system with a constant verification complex-

ity. Both protocols offer partial privacy as the auctioneer gets to know the actual values

of bids. The third protocol provides complete privacy by utilizing a trusted execution en-

vironment to determine the auction winner without revealing the losing bids to any party.

Furthermore, since this protocol relies on simple cryptographic primitives, it achieves the

lowest verification cost with a constant complexity regardless of the number of bids.

Extending the work on sealed-bid auctions, we tackle a privacy problem in lit

markets where all the information about bids and offers in the order book is visible to

the public. While transparency helps the price discovery, it hurts financial institutions

that trade large bulk orders. Therefore, we design a privacy-preserving periodic auction

that hides limit-orders during the submission phase while preventing front-running and

ensuring the correctness of market-clearing prices.

Next, we target a privacy problem in inter-bank payment systems. Banks trans-

fer money and securities instantaneously on a gross basis by utilizing Real-Time Gross

Settlement (RTGS) system. Central banks operate RTGS systems and require access to

payment instructions of each local inter-bank. Accordingly, RTGS systems assume un-

conditional trust given to central banks, and they suffer from a single point of failure.

Hence, we propose a decentralized netting protocol that ensures balance correctness while

hiding the transferred amounts and recipients.

Finally, we switch gears to the booming Non-Fungible Tokens (NFTs) technology

and tackle privacy issues with existing systems. NFTs are unique non-interchangeable

digital assets verified and secured by blockchain technology. Current NFT standards lack

privacy guarantees; hence any observer can trivially learn the whole NFT collection of

an arbitrary user. Furthermore, popular marketplaces use public exchanges and auctions

for trades which leak information about the trade parties and the payment amount for

an NFT. We design Aegis as a protocol that adds privacy to NFTs ownership. More

importantly, Aegis allows users to atomically swap NFTs for payment amounts while

hiding the details of the transactions.

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor,

Dr. Amr Youssef. I am always indebted for his continuous support, encouragement,

patience, guidance, and immense knowledge. I have learned a lot from him, and I’m very

proud to have been his student.

I would like to sincerely thank the examining committee: Dr. Jermey Clark, Dr.

Mohammed Mannan, and Dr. Wahab Hamou-Lhadj for their helpful insights, valuable

discussion, and guidance throughout each milestone of the Ph.D. journey.

No words can express my gratitude to my beloved parents and siblings; you have

always been loving, caring, and supporting in my entire life.

Lastly, but not least, there is a special person in my life, my beloved wife, to whom

I owe a lot for her love and encouragement. Thank you for always being there for me

and bringing our beautiful children: Larien and Adam. My dear little family, you mean

everything to me.

Hisham Galal

v

Table of Contents

List of Figures x

List of Tables xii

List of Acronyms xiii

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 1

1.3 Contributions . 2

1.4 Thesis Outline . 3

Chapter 2 Background 4

2.1 Cryptographic Primitives . 4

2.1.1 Notation . 4

2.1.2 Digital Signatures . 4

2.1.3 ElGamal Encryption . 5

2.1.4 Commitment Schemes . 5

2.1.5 Pseudorandom Functions . 6

2.1.6 Cryptographic Accumulator . 6

2.2 Zero-Knowledge Proofs of Knowledge . 7

2.2.1 Zero-Knowledge Proof of Interval Membership 7

2.2.2 Bulletproofs . 7

2.2.3 zkSNARK . 8

vi

2.3 Intel Software Guard Extensions . 9

2.3.1 Sealing . 9

2.3.2 Remote attestation . 10

2.4 Ethereum . 11

Chapter 3 Sealed-bid Auctions 12

3.1 Introduction . 12

3.2 Related Work . 13

3.3 Protocol 1: Using ZKP of Interval Membership 14

3.3.1 Auction Smart Contract . 14

3.4 Protocol 2: Using zkSNARK . 17

3.4.1 Auction Smart Contract . 18

3.5 Protocol 3: Using Intel SGX . 20

3.5.1 System Overview . 20

3.5.2 Trustee Construction . 22

3.6 Evaluation . 26

3.7 Summary . 28

Chapter 4 Periodic Auctions 29

4.1 Introduction . 29

4.2 Related Work . 30

4.3 Preliminaries . 31

4.3.1 Evaluator-Prover Model . 31

4.3.2 Consistent Commitment Encryption (CCE) 32

4.3.3 Proving Correctness of Sort . 33

4.4 Periodic Auction Protocol . 34

4.4.1 System Model . 34

4.4.2 High-Level Flow of the Protocol . 35

4.4.3 Auction Smart Contract . 35

4.4.4 Phase Three: Matching Orders . 38

4.5 Performance Evaluation . 41

vii

4.5.1 Environment . 41

4.5.2 Evaluation . 42

4.6 Summary . 44

Chapter 5 Decentralized Netting Protocol 45

5.1 Introduction . 45

5.2 Related Work . 47

5.3 The Netting Problem . 48

5.3.1 Decentralized Netting Protocol . 49

5.4 Privacy Preserving Netting Protocol Design 51

5.4.1 Overview of the Protocol . 52

5.4.2 Setup . 53

5.4.3 Initializing Ex-ante Balance . 54

5.4.4 Submitting Payment Instructions 54

5.4.5 Updating Settlement Indicators . 56

5.4.6 Updating Ex-Post Balance . 57

5.5 Performance Evaluation . 61

5.5.1 Evaluations . 61

5.5.2 Limitations of Decentralized Netting Protocol 63

5.6 Summary . 64

Chapter 6 Privacy Preserving Market for Non-Fungible Tokens 65

6.1 Introduction . 65

6.2 Aegis Overview . 67

6.2.1 Protocol Participants . 68

6.2.2 Aegis Transactions . 69

6.2.3 Threat Model . 70

6.2.4 System Goals . 71

6.3 Aegis Detailed Construction . 71

6.3.1 Building Blocks . 71

6.3.2 Aegis Setup . 73

viii

6.3.3 Deposit Transactions . 75

6.3.4 Withdrawal Transactions . 78

6.3.5 Atomic Swap . 81

6.4 Security Analysis . 83

6.4.1 Privacy Analysis . 84

6.4.2 Balance Analysis . 85

6.4.3 Analysis of Other Goals . 87

6.5 Evaluation . 88

6.5.1 Cryptographic Primitives . 88

6.5.2 Performance Measurement . 89

6.6 Related Work . 94

6.7 Summary . 95

Chapter 7 Conclusion and Future Work 96

7.1 Summary . 96

7.2 Future Work . 97

Bibliography 99

ix

List of Figures

3.1 Pseudocode of Initialize function . 14

3.2 Pseudocode of Submit function . 15

3.3 Pseudocode of RevealBid function . 15

3.4 Pseudocode of VerifyWinner function . 16

3.5 zkSNARK Auction circuit . 17

3.6 Pseudocode of Initialize function . 18

3.7 Pseudocode of VerifyWinner function . 19

3.8 Interactions between Trustee’s components and bidders 21

3.9 Pseudocode of Initialize function . 23

3.10 Pseudocode of SubmitBid function . 25

3.11 Pseudocode of VerifyWinner function . 26

4.1 Protocol for consistent commitment encryption 33

4.2 Protocol for proving correctness of sort . 34

4.3 Pseudocode of Initialize function . 36

4.4 Pseudocode of SubmitOrder function . 37

4.5 Pseudocode of RevealOrder function . 38

4.6 Performance measurements of the periodic auction protocol 43

5.1 An example for resolving gridlock state in RTGS 46

5.2 Pseudocode for Deposit function . 54

5.3 zkSNARK Submit circuit . 55

5.4 Pseudocode for Submit function . 56

x

5.5 Pseudocode for updating indicators . 58

5.6 zkSNARK UpdateBalance circuit . 59

5.7 Pseudocode for Update function . 60

5.8 Gas cost for Submit and Update transactions 62

6.1 Interactions in Aegis. Users directly send transactions in blue, while relay-

ers send transactions in red. Black arrows are calls between smart contracts. 69

6.2 Illustration of accumulating a new element 6. The shaded circles are Merkle

proof π for the first empty leaf which is depicted in green. 73

6.3 zkSNARK Ownership circuit . 74

6.4 zkSNARK JoinSplit circuit . 76

6.5 Pseudocode for Initialize function . 77

6.6 Pseudocode for DepositNFT function . 77

6.7 Pseudocode for DepsoitFund function . 78

6.8 Pseudocode for WithdrawNFT function . 79

6.9 Pseudocode for WithdrawFund function 80

6.10 Off-chain protocol for swapping an NFT for a payment amount 82

6.11 Pseudocode for Swap function . 83

6.12 Transactions graph with and without Aegis 84

xi

List of Tables

3.1 Comparison between sealed-bid auction protocols 27

3.2 Gas cost evaluation for sealed-bid auction protocols with N bidders 27

4.1 Performance of Sort and CCE protocols. 42

5.1 Size and cost in USD for Submit and Update transactions 63

6.1 Comparing hash functions in terms of constraints number and gas costs . . 89

6.2 Performance measurements for JoinSplit and Ownership circuits 91

6.3 Measurement of gas units and fees of transactions in Aegis 91

6.4 Performance measurement for verification-optimized JoinSplit and Ownership

circuits . 93

6.5 Measurement of optimized gas units and fees of transactions in Aegis . . . 93

xii

List of Acronyms

AES Advanced Encryption Standard

AMM Automated Market Maker

CCE Consistent Commitment Encryption

CRS Common Reference String

DL Discrete Log

DDH Decisional Diffie Hellman

ECDH Elliptic Curve Diffie Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EIP Ethereum Improvement Proposal

EOA Externally Owned Account

EPID Enhanced Privacy ID

FIFO First In First Out

FPSBA First-Price Sealed-bid Auction

LSM Liquidity Saving Mechanism

MCP Market Clearing Price

MCV Market Clearing Volume

MPC Multi-party Computation

NIZK Non-interactive Zero-Knowledge

OPE Order Preserving Encryption

xiii

PPT Probabilistic Polynomial Time

PRF Pseudorandom Function

QE Quote Enclave

RTGS Real Time Gross Settlement

SHA Secure Hash Algorithm

SGX Software Guard eXtensions

TEE Trusted Execution Environment

ZKP Zero-Knowledge Proof

zkSNARK Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

xiv

Chapter 1

Introduction

1.1 Overview

Blockchain is an immutable append-only ledger storing transactions chronologically

in a linked chain of blocks. With blockchain, mutually distrusting users can finally make

transactions without relying on a trusted third party. Blockchain has the potential to

reshape many industries and deploy complex decentralized protocols that were deemed

hard in practice. For instance, there have been plenty of research proposals [20,58,64] to

build cryptocurrency, yet without a notable adoption and success. On the other hand,

using blockchain, Bitcoin [55] became the most popular and successfully deployed cryp-

tocurrency. Additionally, distrusting users can run far more complex transactions beyond

simple payments transfer. For instance, Ethereum is the pioneer blockchain platform that

supports smart contracts with rich and expressive functionalities.

1.2 Motivation

Blockchain mainly relies on transparency as a feature to allow anyone to verify

the integrity of transactions’ records. However, this feature quickly became a tool for

tracking users and compromising their privacy. Even with the use of pseudonyms as

1

users’ identities, there are analysis techniques [8, 23, 48, 51] in practice that are robust

enough to link and identify users’ transactions.

In our research, we study how to enhance users’ privacy on the blockchain. The

easiest solution would be to modify the core design of blockchain technology. However,

such an approach cannot reach a unanimous agreement in a decentralized environment.

Hence, it can lead to hard forks. Furthermore, building a blockchain from scratch with

better privacy may not prompt enough users to adopt it. Therefore, our research is mainly

concerned with utilizing cryptographic protocols to enhance the privacy of decentralized

applications on top of existing public blockchains, mainly on top of Ethereum.

1.3 Contributions

We study the privacy issue that is inherent in blockchain with public ledgers. The

main focus is to design privacy-preserving protocols for decentralized applications running

on Ethereum. Towards this objective, we utilize various cryptographic protocols, espe-

cially zero-knowledge proof systems. The contributions can be summarized as follows:

• We design three protocols [31–33] for publicly-verifiable sealed-bid auctions. The

main focus is to hide the losing bids while publicly verifying the correctness of the

winning bid. The protocols utilize zero-knowledge proof of range, zkSNARK proofs,

and Intel SGX.

• We extend our work of sealed-bid auctions to design a privacy-preserving periodic

auction protocol [35]. The motivation is to allow financial institutions to trade large

orders without resorting to dark pools. The protocol utilizes Bulletproofs and a

consistent commitment encryption scheme to prove the correctness of the market-

clearing price while maintaining privacy.

• We address the privacy problem inherent in RTGS systems that settle inter-bank

payments. We present a decentralized netting protocol [34] to resolve payment

2

instructions on a netting basis while hiding recipients and amounts. The protocol

relies on zkSNARK proofs to ensure correctness in a privacy-preserving manner.

• We tackle the privacy issue inherent in standard NFT specifications. We present,

Aegis a protocol that adds privacy to NFTs while being completely compatible with

existing standards. Aegis allows users to swap NFTs for payments in a complete

privacy-preserving manner.

• We implement open-source prototypes to assess the protocols’ performance and

feasibility.

Other research works conducted during the tenure of this Ph.D. have been published

in [30,72].

1.4 Thesis Outline

• Chapter 2 provides background on cryptographic primitive, blockchain, Ethereum,

and smart contracts.

• Chapter 3 presents three protocols for publicly verifiable and privacy-preserving

sealed-bid auctions.

• Chapter 4 introduces a periodic auction protocol as an alternative to dark pools

favored by financial institutions.

• Chapter 5 provides a decentralized netting protocol for settling inter-bank payments

without relying on central banks.

• Chapter 6 presents Aegis a protocol for adding privacy to NFTs and allowing users

to trade them in a privacy-preserving manner.

• Chapter 7 provides the concluding remarks for the thesis and future work.

3

Chapter 2

Background

We provide an overview of cryptographic primitives, zero-knowledge proofs, Intel

SGX, and Ethereum.

2.1 Cryptographic Primitives

2.1.1 Notation

We denote by 1λ the security parameter in the unary representation. Let p and

q be a large primes where p = 2q + 1, we define an elliptic curve group G of order q

generated by g over a field Fp. We assume the Decisional Diffie Hellman (DDH) problem,

is intractable in G. Let x
$←− Zq denote uniform sampling of an element x from a group Zq.

We assume the adversary A runs in a probabilistic polynomial time (PPT). We use bold

symbols to denote to vectors such as a = (a1, ..., an) where n is the number of element

Let [N] denote to an interval of integers from 1 to N .

2.1.2 Digital Signatures

Definition 2.1 (Digital Signature.) A digital signature scheme consists of a triple of

efficient algorithms (KeyGen, Sign, Verify):

4

• (sk, pk)← KeyGen(1λ) : it is a PPT algorithm that takes a security parameter 1λ as

input; and it returns a signing key sk and a public key pk.

• σ ← Sign(sk,m) : it is a PPT algorithm that takes a signing key sk and a message

m as input; and it returns a signature σ.

• 0/1← Verify(pk,m, σ) : it is a deterministic algorithm that takes a public key pk,

a message m, and a signature σ as input; and it returns 1 if σ is valid.

2.1.3 ElGamal Encryption

Definition 2.2 (ElGamal Encryption.) It consists of a triple of efficient algorithms

(KeyGen, Enc, Dec):

• (x, y) ← KeyGen(G, q, p, g): it is a PPT algorithm that samples a private key x
R←−

Zq, and generates a public key y = gx.

• c← Enc(m, r, y): it is a PPT algorithm that encrypts a messagem ∈ Zq by the public

key y and a randomness r
$←− Zq; and it returns a ciphertext c = (c1, c2) = (gr, gmyr).

• gm ← Dec(c, x): it is a deterministic algorithm that decrypts the ciphertext c by the

private key x, and outputs gm ← c2 · c−x
1 . Recovering m from gm requires discrete

log brute-force which is affordable for small values (e.g., when m is a 32-bit value).

2.1.4 Commitment Schemes

Definition 2.3 (Commitment.) A non-interactive commitment scheme consists of a pair

of PPT algorithms (Setup, Com):

• pp← Setup(1λ): it is a PPT algorithm that generates public parameters pp for the

commitment scheme given the security parameter λ.

5

• cm ← Compp(x, r) : Mpp × Rpp −→ Cpp: it is a PPT algorithm that generates a

commitment cm ∈ Cpp for a message x ∈Mpp and a randomness r
$←− Rpp.

For ease of notation, we write Com instead of Compp.

Definition 2.4 (Homomorphic Commitments.) A homomorphic commitment scheme is

a non-interactive commitment scheme where Mpp, Rpp and Cpp are all abelian groups and

for x1, x2 ∈Mpp, r1, r2 ∈ Rpp, we have

Com(x1, r1) · Com(x2, r2) = Com(x1 + x2, r1 + r2)

Definition 2.5 (Pedersen Commitment.) It is a homomorphic commitment scheme where

Mpp, Rpp = Zq and Cpp = G.

• Setup:g, h
$←− G

• Com(x, r) : gxhr

2.1.5 Pseudorandom Functions

Definition 2.6 (Pseudorandom Function.) It is an efficient and deterministic function

which return a pseudorandom output computationally indistinguishable from a truly ran-

dom output.

• PRF : K × X −→ Y: it takes as input a seed from K, a data input from X , and

generates a random output from Y.

2.1.6 Cryptographic Accumulator

A Merkle tree [52] is a cryptographic accumulator [6] where the tree root is the

accumulator digest. It stores a set of elements in the labels of its leaves. An internal

node’s label is the hash of its children’s labels. In Merkle trees, a user can generate proofs

of membership that are logarithmic in the size of the tree.

6

2.2 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof (ZKP) of knowledge is a protocol in which a prover can

convince a verifier that it knows a witness for an NP statement without revealing any

information about why it holds. A prover can for example convince a verifier that a

confidential transaction is valid without revealing the transferred amount. An argument

is a proof which holds only if the prover is computationally bounded.

2.2.1 Zero-Knowledge Proof of Interval Membership

Using zero-knowledge proof of interval membership [12], a prover can convince a

verifier that a value x with a Pedersen commitment X belongs to the interval [0, B).

Definition 2.7 Zero-knowledge proof of interval membership is a triple of efficient algo-

rithms (Setup, Prove, Verify):

• (pp) ← Setup(1λ): it takes as input a security parameter 1λ; and returns public

parameters pp.

• π ← Prove(pp,X, x, r): it takes as input public parameters pp, a Pedersen commit-

ment X as an NP statement, and the commitment opening (x, r) as a witness. It

returns a proof π that asserts (x) ∈ [0, B).

• 0/1 ← Verify(pp,X, π): it takes as input public parameters pp, a proof π, and an

NP statement X. If π is a valid proof, it returns 1, otherwise 0.

2.2.2 Bulletproofs

Bulletproofs [14] is a short Non-interactive Zero-knowledge (NIZK) proof of range.

It allows a prover to convince a verifier that a value x with a Pedersen commitment X

belongs to the interval [0, 2n − 1].

7

Definition 2.8 Bulletproofs is a triple of efficient algorithms (Setup, Prove, Verify):

• (pp) ← Setup(1λ): it takes as input a security parameter 1λ; and returns public

parameters pp.

• π ← Prove(pp,X, x, r): it takes as input public parameters pp, a Pedersen commit-

ment X as a statement, and the committed opening (x, r) as a witness. It returns a

proof π that asserts (x) ∈ [0, 2n − 1].

• 0/1 ← Verify(pp,X, π): it takes as input public parameters pp, a proof π, and a

statement X. If π is a valid proof, it returns 1, otherwise 0.

2.2.3 zkSNARK

A zero-knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK)

is essentially a non-interactive zero-knowledge (NIZK) proof system for arithmetic circuit

satisfiability [36]. An arithmetic circuit satisfiability problem of a circuit C : Fn
p×Fh

p −→ Fl
p

is captured by relation RC = {(x,w) ∈ Fn
p × Fh

p : C(x,w) = 0l} where x and w denote to

an NP statement and a witness to the circuit C, respectively. The NP language for the

circuit C is defined as LC = {x ∈ Fn | ∃w ∈ Fh s.t. C(x,w) = 0l}.

Definition 2.9 zkSNARK is a triple of efficient algorithms (Setup, Prove, Verify):

• (pk, vk)← Setup(1λ, C): it takes as input a security parameter 1λ and an arithmetic

circuit C. It outputs a pair of public keys: proving key pk and verification key vk.

• π ← Prove(pk, x, w): it takes as input a proving key pk, a statement x and a witness

w. It outputs a proof π that asserts x ∈ LC.

• 0/1 ← Verify(vk, x, π): it takes as input a verification key vk, a proof π, and a

statement x. It outputs 1 if π is a valid proof for asserting that x ∈ LC

8

In addition to correctness, soundness, and zero-knowledge properties, a zkSNARK has

the following properties [38]:

1. Succinctness : it requires that the proof π has Oλ(1) size and the verifier runs in

time Oλ(x⃗)

2. Simulation extractability : it requires the prover to know a witness w⃗ for a statement

x⃗ in order to generate a valid proof π. In other words, an adversary cannot come

up with a new valid proof without knowing the witness.

2.3 Intel Software Guard Extensions

Intel SGX [2] is a TEE technology released by Intel in 2015. It provides an isolated

secure environment referred to as enclave for code and data protection against violations of

confidentiality and integrity. Note that an attacker can statically disassemble the enclave;

hence, it must not contain any hard-coded secrets. However, once it is loaded and running,

the processor enforces the confidentiality and integrity of the enclave state. Therefore, an

observer will have an opaque view of the enclave’s state.

2.3.1 Sealing

Intel SGX enclave can securely generate cryptographic keys at the run-time. How-

ever, once the enclave terminates execution, it loses its state. Therefore, Intel SGX

provides the ability to cryptographically seal [2] secrets to untrusted storage in a secure

way. It performs the encryption using a private Seal Key that is unique to that particular

platform and enclave.

9

2.3.2 Remote attestation

Intel SGX provides the ability to cryptographically attest that a particular enclave

is running on an authentic Intel SGX platform. The attestation process starts with

an application requesting its enclave to generate a report. The enclave generates the

report and authenticates it by a platform-specific hardware key. The report contains

enclave-specific information, notably, the measurement MRENCLAVE and an auxiliary

data report data field. The main purpose of the report data field is to bind a piece

of data (e.g., a public key of a private key generated exclusively by the enclave) to the

report.

Next, the application transmits the report to an architectural enclave known as

Quote Enclave (QE) running on the same platform. After verifying the authenticity of

the report using the same platform-specific hardware key, QE signs the report by the

attestation key and returns a quote (i.e., a signed report) to the calling application,

which in turn, transmits the report to the remote party. Note that, besides attesting to

authentic Intel SGX platforms, a valid quote also implies the authenticity of report data.

For instance, this allows two enclaves to establish a secure channel after quotes verification

by setting their ephemeral ECDH public keys in report data in their corresponding

quotes.

Currently, Intel SGX supports two models of remote attestations: EPID [42] and

ECDSA [68]. In EPID attestation, the main focus is to preserve the attestor’s privacy by

utilizing an EPID group signature scheme. Hence, an entity with the group’s public key

can verify a quote without learning which group member (i.e., processor) has signed it.

Intel exclusively maintains the group public key in its Attestation Service (IAS). Thereby,

one must consult IAS to verify a quote, which replies with an attestation verification

report that confirms or denies the quote’s authenticity.

Conversely, the ECDSA attestation sacrifices the attestor’s privacy since it attests

to platforms within the same organization. More importantly, it does not require com-

10

munication with IAS. Therefore, ECDSA attestation is more convenient when attestors’

identities are already known or when external communication with IAS is restricted.

2.4 Ethereum

Ethereum blockchain [77] acts as a distributed virtual machine that supports quasi

Turing-complete programs. Developers can deploy smart contracts guaranteed by the

blockchain consensus to run precisely according to their code. There are types of accounts:

externally-owned accounts (EoA) controlled by users’ private keys, and contract accounts

owned by smart contracts . Only EoAs can send transactions that change the blockchain

state. In particular, transactions can transfer Ethers and trigger the execution of smart

contract code. The costs of executing smart contracts code are measured gas units, and

the transaction’s sender pays the gas cost in Ether.

In Ethereum, all transactions consume gas, and their senders must have enough

Ether to pay for the gas cost. Furthermore, Ethereum uses account-model where an EoA

trivially links all transactions performed by its user. One way to break that link is by

having another EOA, not owned by the user, pay the gas cost. In particular, the user

generates a meta-transaction [59] containing some parameters and sends it to a trustless

relayer. Then, the relayer creates a transaction with those parameters and pays the gas

cost. To compensate relayers, they often receive shares from protocols’ fees which should

cover their expenses plus an extra profit.

11

Chapter 3

Sealed-bid Auctions

3.1 Introduction

The unprecedented growing deployment of assets on Ethereum has created a vibrant

market for assets exchange [22] which imposes a high demand for various trading tools

such as verifiable and secure auctions. Auctions are platforms for vendors to advertise

their assets where interested buyers deposit competitive bids based on their monetary

valuation. The auction winner is commonly the highest bidder. Auctions promote many

economic advantages for the efficient trade of goods and services. According to [45], there

exist two types of sealed-bid auctions: (i) First-price sealed-bid auctions (FPSBA) where

the winner pays the highest bid, and (ii) Vickrey auctions, where the winner pays the

second-highest bid instead.

Arguably, the main objective behind concealing the losing bids in sealed-bid auc-

tions is to prevent the use of bidders’ valuations against them in future auctions. There-

fore, bidders are motivated to submit bids without worrying about the misuse of their

valuations. Nonetheless, an auctioneer colluding with malicious bidders can easily break

this advantage. Consequently, the auctioneer has to be trusted to preserve bids’ privacy

and to correctly claim the auction winner. Therefore, various constructions of sealed-bid

12

auctions utilize cryptographic protocols to ensure the proper and secure implementation

without harming the privacy of bids.

We design three protocols for sealed-bid auctions with a progressive improvement

in performance. Bidders submit their bids to a smart contract. Then, the auctioneer

determines the winning bid. Finally, the smart contract acts as a verifier that checks the

validity of a zero-knowledge proof or a digital signature before accepting the winning bid.

3.2 Related Work

Kosba et al. [46] presented Hawk, a framework for creating Ethereum smart con-

tract that does not store financial transactions in the clear on the blockchain. Hawk com-

piler utilizes different cryptographic primitives such as ZKP to generate privacy-preserving

smart contracts. A Hawk program consists of public and private parts. The former con-

tains the logic, while the latter includes the cryptographic primitive responsible for hiding

the data. Up to our knowledge, the Hawk framework has never been released yet.

Blass and Kerschbaum [9] presented Strain, a protocol to implement sealed-bid

auctions on top of blockchains that protects the bid privacy against fully-malicious parties.

Strain is a two-party comparison mechanism executed between any pair of bidders in

parallel. The comparison outcome is broadcast to all bidders. The main weakness of

Strain is leaking the order of bids similar to Order Preserving Encryption (OPE) schemes.

Sánchez [66] proposed Raziel, a system that combines MPC and ZKP to guarantee

smart contracts’ privacy and verifiability. The associated proofs can effectively prove

computation correctness, besides additional properties such as termination, security, pre-

conditions, and post-conditions. However, the Raziel runs as an interactive protocol with

multiple rounds that are not suitable for blockchain.

13

3.3 Protocol 1: Using ZKP of Interval Membership

To prove the correctness of the winning bid vw ∈ Zq, the auctioneer needs to prove

that vw is larger than every vi ∈ Zq where i ̸= w and i ∈ [N] for N bids. In particular,

the auctioneer can utilize ZKP of interval membership to prove vw > vi by proving:

• vw ∈ [0, q
2
].

• vi ∈ [0, q
2
].

• ∆vw,i ∈ [0, q
2
] where ∆vw,i = (vw − vi)mod q.

3.3.1 Auction Smart Contract

There are three sequential phases in sealed-bid auction: submitting sealed bids,

revealing sealed bids to the auctioneer, and finally, verifying the correctness of the win-

ning bid. Initially, the auctioneer deploys the auction smart contract on Ethereum while

depositing a collateral value as shown in Fig. 3.1.

Initialize(pka, tbid, trev, tvrf)

Require (tx.value = collateral)

Store pka, tbid, trev, tvrf

auctioneer ← msg.sender

Figure 3.1: Pseudocode of Initialize function

• pka is the auctioneer’s public key of an asymmetric encryption scheme.

• tbid, trev, and tvrf define the time periods for phases in sealed-bid auctions.

Phase 1: Submitting Sealed Bids. This phase starts immediately after the deployment

of the auction contract. Each bidder submits a bid commitment cm using Pedersen

14

SubmitBid(cm)

Require (now < tbid ∧ tx.value = collateral)

Bidders[msg.sender].Commit ← cm

Figure 3.2: Pseudocode of Submit function

commitment scheme along with the collateral value to the function SubmitBid as shown

in Fig 3.2.

Phase 2: Revealing Sealed Bids. Each bidder sends a ciphertext ct encrypting the

committed bid and randomness (vi, ri) by the auctioneer’s public key pka to the function

RevealBid on the auction contract as shown in Fig. 3.3.

RevealBid(ct)

Require (now < trev)

Bidders[msg.sender].Ciphertext ← ct

Figure 3.3: Pseudocode of RevealBid function

The ciphertext is stored on the auction contract instead of being sent directly to the

auctioneer in order to avoid the following attack scenario. Suppose a malicious auctioneer

pretends that an arbitrary bidder Bob has not revealed the opening values of the associated

commitment. In this case, Bob has no chance of denying this false claim. However, if the

ciphertext is to be stored on the auction contract, then their mere existence successfully

prevents this attack.

We have also taken into our account the possibility of the following attack as well.

Suppose a malicious auctioneer intends to penalize an arbitrary bidder Bob by claiming

that the decryption outcome of Bob’s ciphertext ctb does not successfully open Bob’s

commitment cmb. We prevent this attack by requiring the auctioneer to verify the opening

correctness of the commitments once they are submitted by the bidders. In the case of

unsuccessful opening, the auctioneer declares on the auction contract that the ciphertext

15

associated with the Bob is invalid. Subsequently, Bob can deny this claim by revealing

(vb, rb) to the auction contract. Subsequently, the auction contract encrypts the revealed

values by the public key pka. If the outcome ciphertext is found to be equivalent to the

previously submitted ciphertext ctb, then the auction contract penalizes the auctioneer

and terminates the auction after refunding the bidders. Otherwise, the bidder is penalized

and the associated commitment is removed, such that only the valid commitments exist

on the auction contract.

Phase 3: Verifying the Auction Winner. The auctioneer determines the winning bid

vw and proves that it is the highest bid. The auctioneer sends a VerifyWinner transaction

as shown in Fig 3.4. The transaction parameters include the winner address addr, opening

values of the bid commitment vw, rw, {π1,i}N−1
i=1 and {π2,i}N−1

i=1 proofs for proving vi ∈ [0, q
2
]

and ∆vw,i ∈ [0, q
2
], respectively.

VerifyWinner(addr, vw, rw, {π1,i}N−1
i=1 , {π2,i}N−1

i=1)

Require (trev ≤ now < tvrf ∧ vw < q
2
)

Require (msg.sender = auctioneer)

cmw ← Com(vw, rw)

Require (Bidders[addr].Commit = cmw)

{cmi}Ni=1 ← Bidders.Commits

For i ∈ [N] ∧ i ̸= w

∆cmw,i ← cmwcm
−1
i

Require (1 = Verify(cmi, π1,i))

Require (1 = Verify(∆cmw,i, π2,i))

winner← addr, highestBid← vw

Figure 3.4: Pseudocode of VerifyWinner function

As explained in 3.3, three interval membership proofs are required to prove that

vw > vi. However, since the bid vw of the winner is revealed, the smart contract can check

16

that it is less than the maximum value q
2
. Therefore, the number of proofs is reduced to

2(N −1). In other words, the auctioneer has to prove the interval membership for all bids

vi other than the winning bid and the associated differences ∆vw,i.

3.4 Protocol 2: Using zkSNARK

The second protocol shares a lot of similarities with the first one, except it uses

zkSNARK to prove the correctness of the winning bid. Initially, we design an arithmetic

circuit Auction as shown in Fig. 3.5. The NP statement is of the form “v is the highest

bid with a randomness r and a commitment in the list of commitments {cmi}Ni=1”.

Auction(x,w)

Statement x:

• v the winning bid

• r the randomness for the winning bid commitment

• {cmi}Ni=1 list of N bid commitments

Witness w:

• j the index of the winning bid commitment

• {vi}Ni=1 committed bids

• {ri}Ni=1 randomness for the bid commitments

Assert the following:

cmj = Com(v, r)

For i ∈ [N] ∧ i ̸= j

cmi = Com(vi, ri)

v ≥ vi

Figure 3.5: zkSNARK Auction circuit

The Setup algorithm of zkSNARK requires a trust assumption. However, this is

against the whole premise of the blockchain as a decentralized platform that does not

require a trusted party. Hence, we utilize MPC protocol [11] to generate the Common

17

Reference String (CRS) (i.e., proving and verification keys) such that at least a single

honest participant is required to ensure the zkSNARK proofs security. Moreover, it is

sufficient to generate CRS once as long as the problem statement does not change. In

other words, we can initially generate the CRS for the sealed-bid auction. Then, we can

utilize the resultant CRS in multiple auction instances.

While the auctioneer might be tempted to omit commitments to let a colluding

bidder win the auction, doing so will result in a failed verification by the smart contract.

In other words, the Auction circuit does not check whether the auctioneer supplies all

commitments as part of the public inputs. On the other hand, the verification which is

carried out by the smart contract does supply all commitments. As a consequence, there

will be a difference between the commitments list used by the auctioneer to generate the

proof, and the commitments list used by the smart contract to verify the proof. Therefore,

the verification will fail, and the auctioneer will be penalized if he cannot supply a valid

proof that uses the same commitments list as the smart contract.

3.4.1 Auction Smart Contract

Similar to the first protocol, this protocol consists of the same three sequential

phases. The auctioneer deploys the smart contract and locks a collateral deposit as

shown in Fig. 3.6.

Initialize(pka, tbid, trev, tvrf , vk)

Require (tx.value = collateral)

Store pka, tbid, trev, tvrf , vk

auctioneer ← msg.sender

Figure 3.6: Pseudocode of Initialize function

• pka is the auctioneer’s public key of an asymmetric encryption scheme.

18

• vk is the zkSNARK verification key generated by the MPC-based setup.

• tbid, trev, and tvrf define the time periods for phases in sealed-bid auctions.

Phase 1: Submitting Sealed Bids. Compared to the first protocol, in this phase,

each bidder submits a bid commitment cm using SHA256 hash function, and the collateral

value to the function SubmitBid as shown in Fig 3.2.

Phase 2: Revealing Sealed Bids. Each bidder sends a ciphertext ct encrypting the

committed bid and randomness (vi, ri) by the auctioneer’s public key pka to the function

RevealBid on the auction contract as shown in Fig. 3.3.

Phase 3: Verifying the Auction Winner. After decrypting the ciphertext for bids, the

auctioneer can determine the winning bid, and hence the auctioneer generates a zkSNARK

proof π ← Prove(pk, x, w) where pk is the proving key, x and w are NP statement

and witness satisfying the Auction arithmetic circuit, respectively. The auctioneer calls

the function VerifyWinner by specifying a winner address addr, a tuple (v, r) from a

statement x, and a zkSNARK proof π as shown in Fig. 3.7.

VerifyWinner(addr, v, r, π)

Require (trev ≤ now < tvrf)

Require (msg.sender = auctioneer)

Require (Bidders[addr].Commit = Com(v, r))

{cmi}Ni=1 ← Bidders.Commits

x← (v, r, {cmi}Ni=1)

Require (1 = Verify(vk, x, π))

winner← addr, highestBid← v

Figure 3.7: Pseudocode of VerifyWinner function

19

3.5 Protocol 3: Using Intel SGX

Compared to previous protocols, this protocol, Trustee, does not utilize zero-

knowledge proofs and consists of two phases only: submission of bids and verification

of the auction winner. Trustee relies on Intel SGX to determine the auction winner in a

complete privacy-preserving manner. It depends on basic cryptography primitives such as

digital signatures and Elliptic Curve Integrated Encryption Scheme (ECIES) to encrypt

bids. ECIES enables two parties to communicate authenticated confidential messages. As

its name indicates, ECIES integrates the following functions:

1. (sk, pk) ← KeyGen(1λ): a key generation function that takes a security parameter

1λ, and returns a private key sk and the corresponding public key pk.

2. ss← KA(ski, pkj): a key agreement function to generate a shared secret ss based on

the private key of party i and the public key of party j.

3. (k1, k2) ← KDF(ss): a key derivation function to produce keys k1 and k2 from the

shared secret ss.

4. ct ← Enc(m, k1): a symmetric encryption function to encrypt a message m using

the symmetric key k1.

5. tag ← MAC(ct, k2): a message authentication code function to generate a tag based

on the key k2 and the ciphertext ct.

3.5.1 System Overview

Trustee system consists of three components: a smart contract C which resides

on top of Ethereum, a back-end Intel SGX enclave E and a relay R which both run off-

chain on a server. We refer to the user who deploys C and controls R as the auctioneer.

Furthermore, E is only accessible through R, and R interacts with C on behalf of the

20

ControlsDeploys

2. Call StartAuction(Tadr, Tpk,...)

Bidders

3. Call SubmitBid(Bct, Bpk)

4. Call GetBids()

5. Call RevealWinner(bids)

6. Call SetWinner(Twin)

Auctioneer

1. Call Initialize()

Return Tadr, Tpk

Trustee Enclave
E

Relay
R

Trustee Contract
C

Return bids

Return Twin

Figure 3.8: Interactions between Trustee’s components and bidders

auctioneer and E. The general flow of interactions between Trustee’s components, and

bidders is depicted in Fig. 3.8.

Initially, the auctioneer deploys C on Ethereum and publishes its address so that

interested sellers and buyers can learn about it. To start an auction, the auctioneer sends a

request to R which loads E and calls the function InitializeEnclave. As a response, E

generates an EOA account with the private key Tsk and the associated address Taddr, and

an ECDH key-pair (Tdh, Tpk) where Tdh is the private key and Tpk is the associated public

key. Then, it returns the values of Taddr and Tpk to R. Subsequently, the auctioneer

instructs R to deploy the auction smart contract C and initializes it with parameters

phases periods, in addition to Taddr and Tpk. Next, assume a bidder Bob is interested in

the auction, then he utilizes ECIES protocol with Tpk as the public key of the recipient

(i.e., Trustee’s enclave E) to encrypt his bid. Subsequently, he submits his sealed bid

ct along with his ECDH public key Bpk to C. Once the bidding interval is closed, R

retrieves the sealed bids stored on the C, then it forwards them to E by calling the

21

function RevealWinner. As a result, E opens the sealed bids and determines the winner

Then, it returns a transaction txwin signed by the private key Tsk to R. Finally, R sends

txwin to C which is essentially a call to the smart contract function VerifyWinner that

declares the auction winner and highest price.

3.5.2 Trustee Construction

Initializing the Enclave. The initialization process starts with the auctioneer requesting

R to load E inside Intel SGX enclave and invoke the function InitializeEnclave which

is implemented as shown in Algorithm 1.

Algorithm 1: InitializeEnclave

Input: 1λ: Security parameter
Output:

• sealed: Sealed private keys

• Taddr: EOA address

• Tpk: ECDH public key

1 (Tpk, Tdh)← GenerateECDHKeys(1λ)
2 (Taddr, Tsk)← GenerateAccount(1λ)
3 sealed← Seal(Tsk, Tdh)
4 return sealed, Taddr, Tpk

The InitializeEnclave function generates two key-pairs. More precisely, one

key-pair (Tpk, Tdh) that enables bidders to seal their bids such that only E can open them,

and the second one to authenticate the result (i.e., auction winner and second-highest

price) generated by E. The former is an ECDH key-pair used as part of ECIES protocol

between E and each bidder to securely transmit the sealed bids through C and R. The

latter is an ECDSA key-pair used to sign the result. Verifying the signature on the result

by C is a relatively expensive operation (i.e., roughly 120,000 gas for using ecrecover).

Therefore, in Trustee, we utilize an intrinsic operation that happens on every transaction

in Ethereum (i.e., transaction’s signature verification) to indirectly verify the authenticity

22

of the result for us. Hence, E generates an ECDSA key-pair on curve secp256k1 which

essentially creates an EOA with the private key Tsk and the associated address Taddr.

Then, whenever E determines the auction winner and the highest price, it generates a

transaction txwin signed by Tsk. Later, R relays txwin to the Ethereum network, where

the miners verify its signature. Finally, C checks that that the sender of txwin is the Taddr.

As a result, this approach yields a much cheaper transaction fee compared to the explicit

signature verification by calling ecrecover.

Intel SGX enclaves are designed to be stateless. In other words, once an enclave is

destroyed, its whole state is lost. However, in Trustee, we have to persist the generated

keys as long as the current auction is running. Therefore, we utilize Intel SGX feature

known as Sealing [2] to properly save the generated private keys. Sealing is the process

of encrypting enclave secrets in order to persist them on a permanent storage such as a

disk. This effectively allows us to retrieve the private keys (Tsk, Tdh) even if the enclave

was brought down for any reason. The encryption is performed using a private Seal Key

that is unique to the platform and enclave, and is not accessible by any other entity.

Initializing the Smart Contract. Upon the return from InitializeEnclave, R saves

the values of sealed on a disk besides to having a backup. Furthermore, R deploys a

smart contract C and initializes it with Taddr and Tpk, in addition to parameters tbid

and tvrf which define the time period for bids submission and revealing auction winner.

Furthermore, R locks a collateral deposit that gets slashed if it fails to relay Twin

transactions in time as shown in Fig. 3.9.

Initialize(Taddr, Tpk, tbid, tvrf)

Require (tx.value = collateral)

Store Taddr, Tpk, tbid, tvrf

auctioneer ← msg.sender

Figure 3.9: Pseudocode of Initialize function

23

Phase 1: Submitting Sealed Bids. Once the C has been initialized, an interested

bidder Bob can seal his bid x by running EncryptBids as shown in Algorithm 2. It starts

with retrieving the public key Tpk from C. Then, it generates an ephemeral ECDH key-

pair (Bpk, Bsk) on curve25519 where Bsk is the private key and Bpk is the corresponding

public key. Then, it computes the shared secret ss based on Tpk and Bsk. After that, it

derives two symmetric keys k1 and k2 in order to perform an authenticated encryption on

the bid value v.

Algorithm 2: EncryptBids

Input:

• 1λ: Security parameter

• Tpk: Trustee’s public key

• v: Bid value

Output:

• Bpk: Bidder’s public key

• ct: Encrypted Bid

• tag: Authentication tag

1 (Bpk, Bdh)← GenerateECDHKeys(1λ)
2 ss← KA(Bdh, Tpk)
3 (k1, k2)← KDF(ss)
4 ct← Enc(v, k1)
5 tag ← MAC(ct, k2)
6 return Bpk, ct, tag

Finally, it returns the sealed-bid ct, tag and the public key Bpk. Subsequently, Bob

sends these values along with a collateral deposit to the function SubmitBid on C as

shown in Fig. 3.10.

The function SubmitBid first asserts that the call is invoked before the end of the

bidding interval tbid. After that, it stores the ct and Bpk into the array Bidders.

Phase 2: Determining and Verifying the Auction Winner. Once the bidding in-

terval is over, R retrieves the submitted array of sealed bids and their associate public

24

SubmitBid(ct, tag, Bpk)

Require (now < tbid ∧ tx.value = collateral)

Bidders[msg.sender] ← (ct, tag, Bpk)

Figure 3.10: Pseudocode of SubmitBid function

keys (cti, tagi, Bpk,i)
N
i=1 from C. Then, it passes them along with sealed (previously gen-

erated by the function InitalizeEnclave) to the function RevealWinner on E as shown

in Algorithm 3.

Algorithm 3: RevealWinner

Input:

• sealed: Sealed private keys

• (cti, tagi, Bpk,i)
N
i=1: Encrypted bids and bidder’s public keys

Output: txwin: Signed transaction revealing auction winner and bid
1 max← 0
2 index← 0
3 (Tsk, Tdh, success) = Unseal(sealed)
4 for i ∈ [N] do
5 ss← KA(Tdh, Bpk,i)
6 (k1, k2)← KDF(ss)
7 Assert(tagi = MAC(cti, k2))
8 vi ← Dec(cti, k1)
9 if vi > max then

10 max← vi
11 index← i

12 h← SHA256((cti, tagi, Bpk,i)
N
i=1)

13 txwin ← GenerateTransaction(Tsk, h, index,max)
14 return txwin

Initially, E unseals the private keys from sealed. Then, for every bidder i, it runs

the decryption part of ECIES protocol based on the sealed-bid cti, the public key Bpk,i,

and the private key Tdh to extract the bid value and find the winner. Once all sealed-

bids are decrypted, the winner’s index index and highest bid max are set accordingly

. Subsequently, E binds the auction winner to the inputs it received by computing the

25

SHA256 hash value of the sealed bids list. Finally, E creates a transaction txwin to the

function VerifyWinner on C and signs it with the private key Tsk as shown in Fig. 3.11.

Next, the auctioneer requests R to send the transaction txwin to C. On its call, it asserts

that: (i) txwin’s origin is the address Taddr, the call happens before the end of reveal

phase. Then, it checks if h is equal to the SHA256 hash value of the sealed bids and their

associated public keys submitted by bidders. Accordingly, it decides whether to accept

the submitted values or reject them.

VerifyWinner(h, index,max)

Require (tbid < now < tvrf)

Require (Taddr = msg.sender)

Require (h = SHA256(Bidders))

winner← Bidders[index], highestBid← max

Figure 3.11: Pseudocode of VerifyWinner function

3.6 Evaluation

We have implemented a prototype for each protocol, and we have also made it

open-source and published it on Github repositories1. To determine the performance

measurements, we have created a local Ethereum blockchain using the Geth client version

1.8.10. The genesis file that is responsible for the initialization of the local blockchain

contains the following attribute to support the pre-compiled contracts EIP-196 and EIP-

197: {“byzantiumBlock”: 0}. We created a test case with the number of bidders N =

10. Table 3.1 lists the security properties of the proposed sealed-bid auction protocols.

Furthermore, we compare the proposed sealed-bid auctions and report the performance

measurements in Table 3.2.

1https://github.com/hsg88

26

https://github.com/hsg88

Table 3.1: Comparison between sealed-bid auction protocols

Protocol 1 [32] Protocol 2 [31] Protocol 3 [33]

Front-running resistance Yes Yes Yes
Privacy Partial Partial Full
Security Assumption Discrete log Knowledge of exponent Hardware vendor
Dispute free No No Yes
Fairness Yes Yes Yes

Table 3.2: Gas cost evaluation for sealed-bid auction protocols with N bidders

Protocol 1 [32] Protocol 2 [31] Protocol 3 [33]

Initialize 1346611 3131261 1173779
SubmitBid 130084 115583 123350
RevealBid 53231 44176
VerifyWinner 2002490(N − 1) 3395077 82847

Protocols 1 and 2 rely on zero-knowledge proofs to prove the correctness of the auc-

tion winner without revealing the losing bids to the public. However, the auctioneer needs

to access the committed bids to generate valid zero-knowledge proofs. Hence, these proto-

cols are partially privacy-preserving. In contrast, protocol 3 relies on a trusted execution

environment to find the auction winner in a complete privacy-preserving manner.

Protocol 1 relies on a standard security assumption (i.e., the intractability of dis-

crete log problem). Protocol 2 requires a trusted setup ceremony where at least a single

honest participant is needed to ensure the protocol’s security. Protocol 2 additionally

relies on a non-standard assumption referred to as knowledge of exponent. The security of

protocol 3 assumes that the hardware vendor provides honest attestations besides correct

hardware design and robustness against side-channel attacks.

From the gas cost perspective, the cost for verifying the auction winner in protocol

1 scales linearly with the number of bids, while protocols 2 and 3 incur a fixed cost.

The deployment cost of protocol 2 is high due to the size of the zkSNARK verification

key stored in the smart contract during initialization. A key advantage for protocol 3

compared to others is it consists of two phases to finalize an auction (i.e., bidders interact

27

with the smart contract only when they need to submit bids).

3.7 Summary

We designed three protocols for sealed-bid auctions with progressive improvement

in performance and privacy. An auctioneer deploys a smart contract that acts as a trusted

verifier. Then bidders submit their bids to the smart contract. Finally, the auctioneer

determines the auction winner and convinces the smart contract of its correctness in a

privacy-preserving manner. Furthermore, we implemented open-source prototypes for

these protocols in order to assess their cost and security. In conclusion, protocols utilizing

TEE achieve the highest privacy and lowest cost yet they require strong trust assumption

in the hardware vendor. In contrast, protocols relying on zero-knowledge proofs provide

partial privacy and high verification cost yet they rely on standard security assumptions.

28

Chapter 4

Periodic Auctions

4.1 Introduction

Investors use financial exchanges to trade equities and securities. Generally, an

exchange is a continuous double-sided auction between buyers and sellers [74]. It records

all outstanding limit orders in an order book. A limit order consists of a unit price, a

quantity of an asset, and a direction to indicate whether it is a bid by a buyer or an offer

by a seller. If the order book is transparent and accessible to the public, the exchange is

known as a Lit market. On the contrary, a dark pool favored by financial institutions is

an exchange that hides its order book from traders [74].

To understand the main benefit of dark pools, it is worth considering the problem

institutional investors face in lit markets. Suppose that Bob is an institutional investor

who uses a lit market to buy one million USD worth of an arbitrary asset. The sellers

will notice Bob’s bid. Hence, they anticipate the increased demand and react by moving

their offers to higher prices to gain higher revenue. As a result, Bob will have a hard time

filling his order. Thus, he either accepts the loss in buying the whole volume at higher

prices or divides the quantity into smaller batches and buys at different prices. Although

the latter approach may seem better, it still incurs high fees and commissions paid to the

29

exchange. Therefore, it is convenient for Bob to trade on a dark pool since the market

impact will be minimal.

While dark pools provide a better trading platform for financial institutions, they

have several issues. Most importantly, they hurt price discovery and put traders on other

exchanges at a disadvantage. Furthermore, the lack of transparency could result in poor

execution of trades or abuses such as front-running. Conflicts of interest are also a possibil-

ity since the operator could trade against pool clients. The U.S. Securities and Exchange

Commission has found numerous violations and fined some dark pool operators [69–71].

Accordingly, several recent financial regulations, such as Europe’s MiFID-II [54], call for

limiting trades on dark pools. Interestingly, post enforcing MiFID-II, periodic auctions,

which are considered regulation-compliant alternatives to dark pools, have witnessed a

surge in the size of executed trading volumes.

In periodic auctions, the operator matches orders periodically, rather than contin-

uously. Initially, traders submit orders privately to the operator. The submission phase

ends at a random time. Next, the operator determines the market clearing price (MCP)

and market clearing volume (MCV). Essentially, traders trust the operator to correctly

calculate these values since they do not have access to the order book. To counter-balance

this trust, regulators must audit the operator’s work to reveal malicious behavior. How-

ever, the audit process is prohibitively expensive, and it might also be infrequent. One

way to remove trust requirements and reduce costly audits is to utilize the blockchain

technology.

4.2 Related Work

Thrope and Parkes [74] proposed a protocol for continuous double-sided auctions.

Initially, each trader sends a price, a quantity, and a direction encrypted by the operator’s

public key of a homomorphic encryption scheme to a bulletin board. Then, the operator

30

decrypts the orders and tries to match them. Once a match is found, the operator executes

the matched orders and publishes them in history. The main drawback of this protocol

is its heavy computation burden on the operator since it requires ranking all orders and

generating proofs of correctness after the execution of every matched order.

Jutla [43] presented a secure five-party computation protocol for periodic auctions.

A small number of brokers and a regulatory authority run the protocol. The auction

starts with traders sending limit orders to brokers. Next, brokers run the protocol to find

MCP and settle matched orders. In each round of this protocol, the regulatory authority

must audit extensive computation to ensure the correctness of MCP, which renders the

protocol impractical.

Cartlidge et al. [18] utilized SCALE-MAMBA, a multi-party computation (MPC)

framework, to emulate a trusted third party. The authors designed three constructions to

assess the feasibility of using MPC in stock markets. They argue that it is not practical

yet to run continuous double-sided auctions. On the other hand, the periodic auctions and

volume matching constructions show promising results. Although this protocol provides

strong secrecy, it requires a heavy pre-processing phase in addition to the inherent highly

interactive communications between parties.

4.3 Preliminaries

4.3.1 Evaluator-Prover Model

The evaluator-prover (EP) model [53] provides a practical framework for secrecy

preserving proofs of correctness. Involved parties secretly submit input values (x1, . . . , xn)

to the EP entity. The EP privately computes a function y = f(x1, . . . , xn), outputs the

value y, and generates a proof of the correctness. Parties accept the result on successful

verification of the proof of correctness. The EP model is secrecy preserving if the proof

does not reveal any information about the inputs beyond what is implied by the result.

31

Note that the EP model does not maintain strong secrecy [60], which mandates

that the EP cannot disclose information about the inputs. However, the notion of secrecy

preserving is still useful in the context of periodic auctions. More specifically, at the end

of each round, information about the MCP and MCV are published, which gives more

hints about the inputs. Hence, the main requirement here is to ensure that the operator

cannot exploit this information to its advantage. In particular, the operator must not

have access to the submitted orders until the end of the submission phase.

4.3.2 Consistent Commitment Encryption (CCE)

We design an honest-verifier zero-knowledge Σ protocol for consistent commitment

encryption as shown in Fig. 4.1. It allows a prover P to convince a verifier V that an

ElGamal ciphertext hides the committed value of a Pedersen commitment. To motivate

the need for this protocol, suppose that Alice has sent Bob a commitment X ← gxhr for

a message x. Later, she reveals x to Bob by encrypting it using ElGamal encryption as

(c1, c2)← (gr, gxyr) where y is Bob’s public key y. Alice wants to convince Carol that she

has encrypted x in the ciphertext c using Bob’s public key. More precisely, Alice wants

to prove the following argument:

{(c1, c2, X, y;x, r) : c1 = gr ∧ c2 = gxyr ∧X = gxhr}

We utilize Fiat-Shamir heuristic to convert the protocol into NIZK argument by

using a hash function to get the challenge e ← H(c1, c2, X, y, a1, a2, A). We define the

following two PPT algorithms for this protocol:

1. π ← Prove(c1, c2, X, y, x, r). It generates a proof π to prove that the ciphertext

(c1, c2) is an encryption of the opening value x for the commitment X.

2. {0, 1} ← Verify(c1, c2, X, π). It returns 1 if it has successfully verified the proof π

for a ciphertext (c1, c2) and a commitment X; otherwise, it returns 0.

32

P(c1, c2, X, y;x, r) V(c1, c2, X, y)

x′, r′
$←− Zp

a1 ← gr
′
, a2 ← gx

′
yr

′

A← gx
′
hr

′ a1, a2, A

e
$←− Zp

z1 ← x′ + xe

z2 ← r′ + re z1, z2 Accept if and only if

gz2 = a1c
e
1

gz1yz2 = a2c
e
2

gz1hz2 = AXe

Figure 4.1: Protocol for consistent commitment encryption

4.3.3 Proving Correctness of Sort

We build a protocol to prove that the committed values for a vector of Pedersen

commitments are in descending order without revealing any information beyond that

fact, as shown in Fig. 4.2. More specifically, given a vector of commitments {Xi}mi=1

to a vector of elements xi ∈ [0, 2n − 1], we say the elements are in descending order if

the differences between successive elements are non-negative values. Furthermore, since

Pedersen commitments are additively homomorphic, one can compute the commitment X̂i

to the differences between successive elements xi, xi+1 given their commitments Xi, Xi+1.

Now, we can utilize Bulletproofs to prove that the commitments X̂i is a commitment

to non-negative value (i.e., x̂i ∈ [0, 2n − 1]). Furthermore, Bulletproofs allows efficient

aggregation of separate proof. Note that we can also prove ascending order by simply

reversing the elements in the vectors.

By default, this protocol inherits the completeness and zero-knowledge properties

of Bulletproofs [14]. To ensure the soundness, we have a condition on the value of 2n.

Specifically, as the operation xi − xi+1 is carried out in Zp, the condition 2n < p
2
must

hold to ensure that negative differences do not fall in the range [0, 2n − 1].

33

P(pp, {Xi}mi=1; {xi}mi=1, {ri}mi=1) V(pp, {Xi}mi=1)

{X̂i}m−1
i=1 ← {XiX

−1
i+1}

m−1
i=1

{x̂i}m−1
i=1 ← {xi − x−1

i+1}
m−1
i=1

{r̂i}m−1
i=1 ← {ri − r−1

i+1}
m−1
i=1

π ← Prove(pp, {X̂i}m−1
i=1 , {x̂i}m−1

i=1 , {r̂i}m−1
i=1)

π

{X̂i}m−1
i=1 ← {XiX

−1
i+1}

m−1
i=1

Accept if and only if:

Verify(pp, {X̂i}m−1
i=1 , π) = 1

Figure 4.2: Protocol for proving correctness of sort

It is worth mentioning that the implementation of Fiat-Shamir heuristic can com-

promise the security. More precisely, these protocols are susceptible to replay attacks

by the adversary when they are used with blockchain. For example, the adversary can

replay an arbitrary trader’s proof to the smart contract without knowing any witness, yet

her proof will be successfully accepted. To prevent this attack, we include the address of

the transaction sender as one of the inputs to the hash function that computes the ver-

ifier challenges. Consequently, the adversary’s proof will be rejected because the verifier

challenges computed by the smart contract will be different from those computed for the

replayed proof.

4.4 Periodic Auction Protocol

4.4.1 System Model

In this protocol, there are three entities, namely, traders, an operator, and a smart

contract. The operator and traders interact indirectly through the smart contract using

their accounts on the blockchain.

1. Traders are the buyers and sellers who want to exchange their assets via the auction.

34

2. An operator is the EP entity that privately receives orders and evaluates the MCP

and MCV, and proves their correctness to the smart contract.

3. A smart contract publicly verifies the zero-knowledge proofs submitted by traders

and the operator, as well as serves as a secure bulletin-board.

4.4.2 High-Level Flow of the Protocol

The operator deploys the smart contract and initializes it by a set of public pa-

rameters. Each operation performed by the traders or the operator results in a piece of

data and zero-knowledge proof, which will be submitted to the smart contract. The smart

contract verifies the proof, and upon success, it stores the associated data. A single round

of the periodic auction protocol consists of the following three phases:

1. Traders commit to their orders, and utilize Bulletproofs to generate an aggregate

range proof.

2. Traders encrypt their orders by the operator’s public key, and utilize CCE protocol

to prove the consistency between ciphertext and commitments.

3. The operator does the following:

(a) Access price and quantity values in orders.

(b) Determine the MCP and MCV.

(c) Generate proof of correctness for MCP and MCV.

4.4.3 Auction Smart Contract

The protocol starts by the operator Alice generating the public parameter pp by

running the setup algorithm of Bulletproofs for a security parameter λ, a bit-width n,

and number of commitments m. Then, she generates a key-pair x, y as the secret and

35

public keys for ElGamal encryption scheme, respectively. Additionally, she defines the

time-window of each phase by the vector tbid, trev, tvrf .

pp ← BulletProofs.Setup(1λ, n,m)

x, y ← KeyGen(G, q, p, g)

Next, she deploys the smart contract and initializes it with the parameters (pp, y, t) along

with a collateral deposit. The auctioneer deploys the auction smart contract on Ethereum

while depositing a collateral value as shown in Fig. 4.3.

Initialize(pp, y, tbid, trev, tvrf)

Require (tx.value = collateral)

Store pp, y, tsub, trev, tvrf

operator ← msg.sender

Figure 4.3: Pseudocode of Initialize function

Phase One: Submission of Orders. Traders submit their orders before the block-

height tsub. For example, a trader Bob wants to buy v units of the auctioned asset at a

price u. He creates his order as follows:

{r1, r2}
$←− Z2

p

U ← Com(u, r1)

V ← Com(v, r2)

π ← Bulletproofs.Prove(pp, {U, V }, {u, v}, {r1, r2})

First, he creates Pedersen commitments U and V for the price and quantity, respectively.

Subsequently, the trader generates an aggregate range proof π to assert that the price and

quantity values are within the range, i.e. u, v ∈ [0, 2n − 1]. It is worth mentioning that

in the prototype, this phase uses a different Bulletproof setup where m = 2 since there

36

are two commitments only. Finally, he sends a transaction SubmitOrder that includes

the parameters (dir, U, V, π) where dir indicates whether the order is a bid or an offer as

shown in Fig. 4.4.

SubmitOrder(dir, U, V, π)

Require (now < tsub ∧ tx.value = collateral)

Require (1 = Verify(pp, {U, V }, π))

if (dir = BID)

Bids[msg.sender] ← {U, V }

else

Offers[msg.sender] ← {U, V }

Figure 4.4: Pseudocode of SubmitOrder function

Upon receiving the transaction, the smart contract checks whether the current

block-height is less than tbid, and the transaction has the collateral deposit. Then, it

verifies the aggregate range proof π for the commitments U and V . Finally, it stores the

commitments in either the list of Bids or Offers based on the value of dir.

It is worth mentioning that front-running has a little impact in periodic auctions

in contrast to continuous mainly because orders will be settled at a single MCP regardless

of orders sequence. Still, this protocol provides protection against front-running for three

main reasons. First, the commitments U and V are perfectly hiding. Second, the aggregate

range proof π is zero-knowledge, hence, π does not reveal any information about the

witness u and v beyond the fact that they are in range [0, 2n − 1]. Third, there is an idle

period between the first and second phases to consider the possibility of revealing orders

on minor blockchain forks that will be discarded.

Phase Two: Revealing Orders. Traders utilize ElGamal encryption to reveal their

orders to Alice before the block-height t2. Therefore, Bob retrieves Alice’s public key y

37

from the smart contract and encrypts the opening values (u, r1) and (v, r2) as follows:

cu ← Ency(u, r1), πu ← CCE.Prove(cu, U, y, u, r1)

cv ← Ency(v, r2), πv ← CCE.Prove(cv, V, y, v, r2)

Then, he utilizes CCE protocol to generate the proofs πu and πv to prove the consistency

of ciphertext cu and cv for the commitments U and V , respectively. Subsequently, he

sends a transaction RevealOrder which includes the parameters (cu, cv, πu, πv) as shown

in Fig. 4.5.

RevealOrder(cu, cv, πu, πv)

Require (tsub < now < trev)

{U, V } ← GetOrder(msg.sender)

Require (1 = Verify(cu, U, πu) ∧ 1 = Verify(cv, V, πv))

Emit OrderRevealed(msg.sender, cu, cv)

Revealed[msg.sender]← true

Figure 4.5: Pseudocode of RevealOrder function

Initially, the smart contract checks if the transaction is sent within the right time

window between tsub and trev. Then, it searches for the commitments (U, V) corresponding

to transaction msg.sender. Subsequently, it verifies the proofs πu and πv. Alice can

monitor the transactions submitted to the smart contract during this phase to recover the

ciphertext cu and cv. In practice, Alice can efficiently retrieve the ciphertext by listening

to events triggered on the smart contract.

4.4.4 Phase Three: Matching Orders

At the beginning of this phase, Alice instructs the smart contract to find unrevealed

orders, remove them, and penalize their owners. Now, she has access to the price and

38

quantity values of revealed orders. She performs the following tasks to determine the

MCP and MCV before block-height t3:

1. Sort the bids descendingly and the offers ascendingly by price.

2. Compute the cumulative quantity in bids and offers.

3. Finds the MCP that clears the highest cumulative quantity, i.e. MCV.

4. Send the MCP and MCV along with proofs of correctness to the smart contract.

She can generate proof of correctness by creating an order with the MCP and MCV values.

Then, she inserts that order in the sorted lists of bids and offers consisting of prices and

cumulative quantities. Finally, she utilizes protocol 4.3.3 to prove the sort on price and

cumulative quantity commitments. Note that cumulative quantity commitments can be

easily computed since Pedersen commitments are additively homomorphic.

Let B and S denote the lists of bids and offers where the numbers of orders in

each list are M and N , respectively. Each order in B and S is encoded as a tuple

(U, V, Vc, u, r1, v, r2, vc, rc) of price, quantity, and cumulative quantity commitments and

their opening values. Note that, at the beginning, Vc, vc, rc are empty. Alice performs the

first task as follows:
Sort(B, DESCENDING)

Sort(S, ASCENDING)

The Sort function sorts the elements in the input list according to the specified criteria

on the price values. For example, the elements in B and S are relocated such that:

∀i ∈ [1,M − 1], Bi.u > Bi+1.u

∀j ∈ [1, N − 1], Sj.u < Sj+1.u

39

Next, for each order in B and S, she computes the cumulative quantities as:

∀i ∈ [1,M], Bi.(Vc, vc, rc) ← B.(
i∏

k=1

Vk,
i∑

k=1

vk,
i∑

k=1

r2,k)

∀j ∈ [1, N], Sj.(Vc, vc, rc) ← S.(
j∏

k=1

Vk,
j∑

k=1

vk,
j∑

k=1

r2,k)

Subsequently, she finds the intersection range between prices in B and S. Then, for this

range, take the middle point as MCP denoted by p, and the lowest cumulative quantity

as MCV denoted by l. She generates an orderM with commitments to p and l as follows:

P ← Com(p, 0), L← Com(l, 0)

M = (P, 0, L, p, 0, 0, 0, l, 0)

Note that, the blinding values in commitments of M are set to zero as we want the

commitments to be binding only. Moreover, p and l will be posted on the smart contract

eventually, we just need them in commitment form to be utilized in the Sort protocol.

Finally, she insertsM in both B and S while preserving the ordering:

B.Insert(M), S.Insert(M)

Now, Alice utilizes protocol 4.3.3 to prove the correctness of MCP p and MCV l as

follows:

π1 ← Prove(B.(U ,u, r1), DESCEND)

π2 ← Prove(B.(Vc,vc, rc), ASCEND)

π3 ← Prove(S.(U ,u, r1), ASCEND)

π4 ← Prove(S.(Vc,vc, rc), ASCEND)

π = (π1, π2, π3, π4)

In the smart contract, the indices of orders in Bids and Offers depend entirely on their

arrival time. Hence, Alice creates two positioning vectors χ and γ that will be used by the

smart contract as proxies to access Bids and Offers in their sorted order, respectively.

40

Finally, Alice sends a transaction which contains the parameters (p, l,χ,γ,π) to the smart

contract.

The smart contract checks that the transaction is sent by Alice between block-

heights t2 and t3. Then, it checks whether p, l ∈ [0, 2n − 1]. After that, it appends the

orderM in Bids and Offers. Finally, it verifies the proofs π before accepting and storing

p and l.

Upon successful verification, the smart contract refunds the collateral deposits to

Alice and owners of unsettled orders. On the other hand, the smart contract keeps the

collateral deposits of owners of executed orders locked for the settlement of the assets

exchange phase off-chain. Conversely, if the verification was not successful or the Alice

failed to send the proofs π before block-height t3, then the smart contract slashes her

deposit and refunds the traders.

4.5 Performance Evaluation

4.5.1 Environment

We implemented a basic prototype on Ethereum. We used a local Ethereum full

node on a Dell Inspiron 7577 laptop with the 6th generation Intel Core i5 CPU and 16-

GB of RAM. The prototype consists of two key components: a smart contract and a

client interface to create transactions and generate proofs. For compatibility purposes,

we instantiate our protocol using the 128-bits security elliptic curve BN128 since it is the

only supported elliptic curve by Ethereum. Furthermore, we set the bit-width for price

and quantity values to n = 16 bit. The smart contract is written in Solidity, while the

client interface is implemented in JavaScript.

41

Table 4.1: Performance of Sort and CCE protocols.

Performance # Sort protocol CCE Protocol

Proof size
G 2(log2(n) + log2(m)) + 4 3
Zp 5 2

Verifier operations
mul 11 + 2n+m 8
add 7 + 2n+m 5

4.5.2 Evaluation

We report the measurements of the two main building blocks that constitutes the

periodic auction protocol, namely, CCE and Sort protocols n Table 4.1. The proof size is

measured by the number of elements in G and Zp. For the verifier, we report the number

of elliptic curve operations required to verify proofs.

In Ethereum, the point addition and point multiplication operations cost 150 and

6000 gas, respectively. Hence, we can measure the transaction gas cost of verifying the

submitted proofs. In Fig.4.6, we report the performance measurements: proof size, prover

time, and gas cost of proof verification by the smart contract with respect to the total

number of orders for the transactions: SubmitOrder, RevealOrder, and ClearMarket.

Obviously, the transaction SubmitOrder and RevealOrder have constant measurements

as opposed to ClearMarket transaction which scale linearly with the number of orders.

The current block gas limit on Ethereum is roughly 10M gas. Hence, we can

estimate the number of transactions that fit in a single block. More importantly, we can

estimate the theoretical number of SubmitOrder and RevealOrder transactions that the

smart contract can receive during the first and second phases for different phase lengths

as shown in Fig 4.6. The SubmitOrder transaction incurs the cost of verifying Sort

proof where n = 16 and m = 2. Similarly, the RevealOrder transaction incurs the cost of

verifying CCE proof. Accordingly, the transaction cost of SubmitOrder and RevealOrder

are roughly 276150 and 48750 gas, respectively. In practice, the gas costs for transactions

are higher due to data access and control flow operations.

42

10 20 30 40 50 60 70 80 90 100

103

104

105

Orders

B
y
te
s

Proof Size

10 20 30 40 50 60 70 80 90 100

105

106

Orders

G
as

Verification Gas Cost

10 20 30 40 50 60 70 80 90 100
101

102

103

104

105

Orders

m
il
li
se
co
n
d
s

Prover Time

10 20 30 40 50 60 70 80 90 100

103

104

105

Phase Length

#
T
ra
n
sa
ct
io
n
p
er

P
h
a
se

Prover Time

SubmitOrder RevealOrder ClearMarket

Figure 4.6: Performance measurements of the periodic auction protocol

Furthermore, we can estimate the highest number of orders that can be processed

by a single ClearMarket transaction before exceeding the 10M gas block limit. Typically,

the ClearMarket transaction requires verification of two Sort proofs for M bids and two

Sort proofs for N offers. For convenience, assume that we have an equal number of

bids and offers M = N , hence, the ClearMarket transaction incurs the verification cost

of four Sort proofs of M commitments. Accordingly, the ClearMarket transaction can

theoretically process up to ≈ 728 orders before exceeding the block gas limit. Certainly,

in practice, this number is lower due to the gas cost associated with operations other than

proof verification.

43

4.6 Summary

We presented publicly verifiable secrecy preserving periodic auction protocol. The

protocol depends on two zero-knowledge proofs, namely, proof of consistent commitment

encryption and proof of ordering. Furthermore, we implemented a prototype and eval-

uated its performance to assess its feasibility. Based on the result, we believe that the

periodic auction protocol is a feasible and secure alternative to dark pools.

44

Chapter 5

Decentralized Netting Protocol

5.1 Introduction

Traditionally, banks use Real-Time Gross Settlement (RTGS) systems [44] to settle

inter-bank payment instructions. The country’s central bank is the sole operator of its

RTGS system. It enforces each bank to have a local account with liquidity above a certain

limit. To settle a payment instruction, the central bank debits the instruction’s amount

from the sender account while crediting the same amount to the recipient atomically. The

settlement process is instantaneous if the sender has sufficient liquidity. Otherwise, the

payment instruction is pushed to an outgoing queue associated with the sender’s account.

The outgoing queue is a priority queue where higher priority payment instructions are

pushed ahead of lower ones. Moreover, payment instructions having the same priority

level are settled according to a “First In First Out” (FIFO) policy. Once the sender’s

liquidity becomes sufficient, the highest priority pending outgoing payment instructions

are settled automatically.

Gridlock refers to the state when pending payment instructions cannot be settled

on a gross basis due to insufficient liquidity. Therefore, to resolve the gridlock state, RTGS

systems utilize a Liquidity Saving Mechanism (LSM) [57] to settle payment instructions

45

$60M

$70M$80M

Gridlock

B: $20M C: $40M

A: $30M

$60M

$70M$80M

Netting

B: $40M=20M+80M-60M C: $30M=40M+60M-70M

A: $20M=30+70-80

Figure 5.1: An example for resolving gridlock state in RTGS

on a netting basis. To illustrate the gridlock resolution, consider the scenario shown in

Fig. 5.1 where the RTGS system is initially in a gridlock state because none of the banks

has sufficient liquidity to settle its outgoing payment instruction. Although banks can

borrow some funds from the central bank to resolve gridlock, the available credit may

still be insufficient to settle payment instructions. Therefore, banks prefer to utilize LSM

before resorting to credit. Central banks perform LSM since they have a global view of

all pending payment instructions.

With the growing volume of inter-bank payments, contemporary RTGS systems

face many security challenges. Most importantly, central banks have privileges on all

payment instructions, and they require unconditional trust to maintain the ledgers in

RTGS. Moreover, RTGS as centralized systems are vulnerable to the inherent single point

of failure problem. To face these challenges, some RTGS operators are beginning to

embrace the blockchain technology. Project Jasper [19] and Project Ubin [61] are some of

such successful attempts to utilize blockchain. Blockchain alone is not a silver bullet to

solve all of the above problems, however, one can build cryptographic protocols utilizing it

to provide the required functionality in a trustless manner while preserving participants’

privacy (e.g., see [31–33]). More specifically, the migration of traditional RTGS to the

46

blockchain requires an efficient decentralized netting method to resolve gridlock while

delivering better privacy for participants.

5.2 Related Work

Project Jasper [19] and Project Ubin [61] are two successful deployed projects

that investigate the advantages of migrating traditional RTGS to the blockchain. They

managed to resolve the single point of failure issue while achieving an immediate gross

settlement. However, they do not include LSM functionality, which is an important re-

quirement in RTGS systems.

Wang et al. [76] introduced an end-to-end prototype based on Hyperledger Fab-

ric enterprise blockchain platform [3]. The prototype supports gross settlement, gridlock

resolution, and reconciliation for inter-bank payment business. Gridlocks are resolved

through a timestamp-based algorithm, which shares enough information among partici-

pants without the risk of privacy violation. The prototype relies on a central party to

check the correctness of the netting result. Furthermore, while it hides the amounts in

payment instructions, it reveals the net amounts.

Cao et al. [17] proposed a decentralized netting protocol that guarantees netting

correctness. The participants submit their local settlements to a smart contract. The

protocol hides payment amounts using Pedersen commitments and utilizes extensive zero-

knowledge range proofs. Furthermore, to obfuscate the links between senders and recip-

ients, participants can send payment instructions with empty amounts. Obviously, these

empty instructions are also associated with zero-knowledge proofs, which add extra over-

head to the protocol.

47

5.3 The Netting Problem

We follow the notations defined in [17] to illustrate the netting problem. Let N

denote the number of participants and Pi refer to the ith participant. Let Q denote the

list of all outgoing payment queues, which is defined as:

Q = [Q1, . . . ,QN]

Qi = [Qi,1, . . . , Qi,ni
] where ni = |Qi|

Qi,k = (Reci,k, vi,k) where vi,k > 0

Reci,k ∈ {Pj}Nj=1, j ̸=i

A payment instruction Qi,k consists of two fields: a recipient denoted by Reci,k and an

outgoing amount denoted by vi,k. Note that, if there are multiple payment instructions to

the same recipient, then they are aggregated in a single payment instruction Qi,k, where

vi,k is the total amount. Furthermore, for each payment queue Qi, we define a settlement

indicator xi as:

x = [x1, . . . ,xN]

xi = [xi,1, . . . , xi,ni
], where xi,k =

1 if payment Qi,k will be settled

0 otherwise

Given x, we define the following functions for a participant Pi:

Ti(x) =
∑ni

k=1 xi,k

Si(x) =
∑ni

k=1 xi,kvi,k

Ri(x) =
∑N

j=1

∑ni

k=1 xj,kvi,k where Recj,k = Pi

where Ti(x) denotes the number of payment instructions that will be settled, Si(x) denotes

the total outgoing amount, and Ri(x) denotes the total incoming amount. Let Bi and B
′
i

denote the ex-ante and ex-post balances of participant Pi (i.e., balance before and after

48

netting, respectively). The balance relationship is defined as:

B′
i = Bi − Si(x) +Ri(x) (5.1)

The netting problem is to find the solution that satisfies the following constraints:

1. The liquidity constraint which dictates that the ex-post balance of each participant

after netting must be non-negative.

∀ i ∈ [N] B′
i ≥ 0

2. The sequence constraint which requires payment instructions to be settled accord-

ing to their priority order [4].

∀ i ∈ [N], k ∈ [ni − 1] xi,k+1 ≤ xi,k

Let h(xi) denote the index of lowest priority payment instruction in Qi that will be

settled, which is defined as:

h(xi) =

0 if ∀ k ∈ [ni] xi,k = 0

max(k) where xi,k = 1

3. The optimality constraint which ensures settling the highest possible number of

payment instructions by maximizing
∑N

i=1 Ti(x).

5.3.1 Decentralized Netting Protocol

We describe the decentralized netting protocol introduced in [17] to resolve the

gridlock over a variable number of rounds. The protocol assumes transparent communi-

cation between participants. In other words, the protocol does not provide any privacy,

49

and participants have access to all payment instructions Q and settlement indicators x.

The protocol starts with the initial assumption that all payment instructions will

be settled where ∀ i ∈ [N], k ∈ [ni] xi,k = 1. Certainly, this assumption may be invalid,

(i.e., some but not all payment instructions will be actually settled). Accordingly, for each

round t, participants run Algorithm 4 to update their settlement indicators xt. Eventually,

the protocol stops when there are no further updates in the settlement indicators.

Algorithm 4: UpdateIndicator

Input:

• xt−1
i : Settlement indicator queue for round t and participant i

• Q: Payment instructions

Output:

• xt
i: Settlement indicator for next round

• B′
i: Ex-post balance

1 xt
i ← xt−1

i

2 k ← h(xt
i)

3 while k ≥ 0 do
4 B′

i ← Bi − Si(x
t−1) +Ri(x

t−1)
5 if B′

i < 0 then
6 xti,k ← 0

7 k ← k − 1

8 else
9 break

10 return (xt
i, B

′
i)

The main objective of Algorithm 4 is to iteratively unsettle lowest priority payment

instructions until the three constraints are satisfied. It checks for non-negative ex-post

balance, thereby enforcing the liquidity constraint. Furthermore, it enforces the sequence

constraint by iterating over payment instructions from lowest to highest priority. Finally,

it stops when the optimality constraint is satisfied once the highest possible number of

payment instructions that meet the liquidity and sequence constraints.

Eventually, the protocol halts when there is no further change in settlement indi-

50

cators in the final round (i.e., xt = xt−1). The end result is either learning the netting

solution or reaching a deadlock where the settlement indicator of each participant is

xt
i = [0]ni

1 (i.e., no participant can settle any payment instruction on a netting basis). In

the former, participants can update their ex-post balance B′
i of participants. Conversely,

in the latter, participants have to deposit more liquidity to resolve the deadlock and reset

the protocol.

5.4 Privacy Preserving Netting Protocol Design

To protect the privacy of participants, we modify the decentralized netting protocol

to (i) conceal payment amounts and (ii) hide links between senders and recipients. It is

worth mentioning that participants in our context refer to banks not individuals. In par-

ticular, inter-bank payments are aggregated individuals transactions. Hence, our protocol

is designed to preserve the privacy of involved banks in inter-bank payments transactions.

Our approach to fulfilling the first objective is to utilize ElGamal encryption. We did not

use Pedersen commitments as followed in [17], mainly because the sender would have to

open a communication link with the recipient to send the opening values, which can be

leaked and compromise the recipient’s privacy. When a participant sends a payment in-

struction to the smart contract, it sends an encrypted payment amount without including

the recipient’s identity. Subsequently, other participants will individually try to decrypt

it locally using their own private keys. Certainly, only the intended recipient will suc-

cessfully decrypt it. Consequently, no link is publicly established on the smart contract

between senders and recipients, which fulfills our second objective.

Later on, after resolving the gridlock, each participant will send a zero-knowledge

proof to the smart contract to prove the correctness of its ex-post balance based on ex-

ante balance, outgoing amounts, and incoming amounts. However, since we removed

recipients’ identities from payment instructions, the smart contract cannot determine the

51

incoming payment instruction for any participant. Nonetheless, we must ensure that

participants do not use arbitrary ciphertext as their incoming amounts. In other words,

each participant must prove that its incoming payment instructions are part of the list

containing all payment instructions sent to the smart contract. To solve this challenge,

the smart contract utilizes a Merkle tree to accumulate all payment instructions. Given

the public state of the smart contract, participants can clearly see the paths in that

tree. As a result, each participant can prove that it knows the Merkle tree paths for its

incoming payment instructions without revealing them, which in turn effectively enforces

the recipient’s privacy (more detail in Section 5.4.6).

5.4.1 Overview of the Protocol

1. The protocol starts with a Setup phase where an MPC protocol is used to generate

the CRS for the zkSNARK proof system, and a smart contract is deployed on the

blockchain.

2. Participants initialize their encrypted ex-ante balance on the smart contract.

3. Each participant submits its payment instructions to the smart contract and utilize

zkSNARK to prove their correctness.

4. Participants scan the smart contract to learn their incoming amounts based on their

success in decrypting the submitted payment instructions.

5. Participants begin to resolve the gridlock over a number of variable rounds as follows:

(a) In the first round, they assume all payment instructions will be settled and set

their settlement indicator xt=1
i = [1]ni .

(b) In subsequent round t, each participant Pi locally runs Algorithm 4 to update

its settlement indicator from xt−1
i to xt

i, and send xt
i to the smart contract.

52

(c) If there are no changes (i.e., xt = xt−1), the smart contract builds a Merkle tree

over payment instructions that will be settled; otherwise, participants repeat

the above step again for the new round t← t+ 1.

6. Participants send transactions to the smart contract containing their encrypted ex-

post balance and a zkSNARK proof to prove its correctness.

7. Upon successful verification, the smart contract accepts the ex-post balance.

5.4.2 Setup

To promote a modular design, the protocol utilizes several smart contracts that are

deployed on the blockchain.

1. Registry: it contains ElGamal public encryption keys of all participants.

2. Serials: The sole purpose of this smart contract is to prevent double-spending

of incoming payment instructions by tracking the serial numbers (also known as

nullifiers [67]) of the settled ones (more detail in Section 5.4.6).

3. MerkleTreepk: it accumulates the public keys of all participants.

4. MerkleTrees: it accumulates all payment instructions that will be settled after

gridlock resolution.

5. Verifier: it verifies zkSNARK proofs submitted by participants, and it contains

the verification key vk generated by zkSNARK Setup algorithm.

6. Main: this is the main smart contract which handles the deposit of funds, controls

the transitions between phases and rounds, and utilizes the above smart contracts.

53

5.4.3 Initializing Ex-ante Balance

To join the protocol, a participant Pi deposits its ex-ante balance Bi in Main as

shown in Fig. 5.2. Initially, Registry checks whether the transaction sender is authorized

based on its address and returns its public key on success. If this is the first deposit by

the sender, then the sender’s ex-ante balance is set to the encryption of the msg.value by

the sender’s public key and randomness r = 0. Otherwise, the deposit is to inject more

liquidity into the sender’s balance by utilizing the additively homomorphic property of

ElGamal encryption.

Deposit()

Require(Registry.ContainsAddress(msg.sender))

y ← Registry.GetPublicKey(msg.sender)

v ← msg.value

c← Enc(v, 0, y)

If Balance[msg.sender] is null

Balance[msg.sender]← c

Else

Balance[msg.sender]← Balance[msg.sender]+ c

Figure 5.2: Pseudocode for Deposit function

Generally, a blockchain with a public state such as Ethereum cannot hide the

deposit value of ex-ante balance. However, after resolving gridlock, participants will send

their ex-post balances in encrypted form to Main.

5.4.4 Submitting Payment Instructions

To submit payment instructions while hiding amounts and preserving recipient’s

privacy, a participant Pi sends a transaction to Main containing its outgoing payment

54

Submit(X,W)

Statement X:

• Qi: Encrypted payment instructions from a participant i

• rootpk: Root of MerkleTreepk

Witness W :

• {vi,k}ni
k=1: Payment amounts

• {yi,k}ni
k=1: Recipients public keys

• {πk}ni
k=1: Merkle proofs of membership

Assert the following:

For k ∈ [ni]

vi,k ∈ [0, 2l − 1]

ci,k = Enc(vi,k, yi,k)

1 = Merkle.Verify(yi,k, rootpk, πk)

Figure 5.3: zkSNARK Submit circuit

queue Qi without indicating recipients’ identities (i.e., their public keys).

Qi ← [ci,1, . . . , ci,ni
]

ci,k ← Enc(vi,j, yi,k)

yi,k ∈ [yj]
N
j=1, j ̸=i

A participant Pi utilizes zkSNARK to prove that (i) the amounts encrypted in Qi

fall in range [0, 2l− 1] for a system parameter l, and (ii) the ciphertext is generated using

public keys accumulated in MerkleTreepk with rootpk as its root. Technically speaking,

Pi utilize zkSNARK to generate a proof for the Submit circuit as shown in Fig. 5.3.

The participant Pi sends a transaction Submit to Main containing the statement

X and zkSNARK proof π as shown in Fig. 5.4. Main checks that the sender is one of

the authorized participants. Then, if it successfully verifies the proof πi, it stores Qi in

55

the list Out and initializes the settlement indicator by setting 1 in all indices (see Section

5.3.1) which gives the assumption that all payment amounts will be settled. Otherwise,

it reverts the transaction.

Submit(Qi, πi)

(Qi, rootpk)← Parse(X)

Require(Registry.ContainsAddress(msg.sender))

Require(MerkleTreepk.Roots.Contains(rootpk)

Require(Verifier.Verify(X, π))

Out[msg.sender] ← Qi

ni ← |Qi|

Indicator[msg.sender]← [1]ni

Figure 5.4: Pseudocode for Submit function

Once the transaction is accepted by Main, each participant Pj, where j ̸= i ∧ j ∈

[N] scans payment instructions in Main.Out[Pi.Address] and try to decrypt them locally

using its private key. Accordingly, Pj will learn if it is the intended recipient based on

successful decryption.

5.4.5 Updating Settlement Indicators

In this phase, participants utilize decentralized netting protocol to resolve gridlock

over a variable number of rounds before converging to the netting solution. Main im-

plements the transitions of rounds as shown in Fig. 5.5. An important caveat here is

that smart contracts do not execute code unless they are instructed to do so via transac-

tions. Hence, we require one of the participants P ′ to send transactions to Main to transit

between rounds and states. The gridlock resolution proceeds as follow:

1. Participant P ′ submits a Start transaction to initiate the first round of decentralized

56

netting protocol.

2. Each participant Pi runs Algorithm 4 to update its settlement indicator xi and

submits a Receive transaction within its predefined time-window.

3. Participant P ′ submits a Final transaction to determine the next state of this

phase. More precisely, if there are changes in settlement indicators, then participants

proceed to the next round and repeat Step 2. Otherwise, the protocol has either

reached a deadlock state or it has successfully resolved the gridlock. In the former

case, participants have to inject more liquidity by submitting Deposit transactions,

then reset the current round in Step 2. Conversely, in the latter case, Main initializes

MerkleTrees to accumulate all payment instructions that will be settled according

to the current indicators, and sets the flag Resolved to transit to next phase.

5.4.6 Updating Ex-Post Balance

After resolving the gridlock, each participant Pi utilizes the UpdateBalance zk-

SNARK circuit shown in Fig. 5.6 to generate a proof π about the correctness of its

encrypted ex-post balance B′. Then, Pi submits an Update transaction containing the

parameters π, B′ and sn as shown in Fig. 5.7.

The UpdateBalance circuit asserts the following:

• The participant Pi knows the private key x corresponding to the public key y.

• r contains the incoming payment amounts decrypted from R by its private key x.

• The serial numbers in sn correspond to the hash of incoming payment instructions

with the private encryption key x. Accordingly, valid incoming payment instructions

must have unique serial numbers to prevent double-spending.

• Pi knows valid membership proofs ψ to prove that the payment instructions in R

are accumulated in MerkleTrees.

57

Start ()

Require(start = false)

start ← true

t← 1

updated ← false

Receive(xi)

Require(start = true)

Require(ValidReceiveWindow(Block.Number))

Require(Registry.ContainsAddress(msg.sender))

If Indicator[msg.sender] ̸= xi

Indicator[msg.sender] ← xi

updated ← true

Final()

Require(ValidFinalWindow(Block.Number))

If updated = true

t← t+ 1

updated ← false

Else

If Indicator.AllZeros() = true

DEADLOCK ← true

Else

Outs ← GetSettledOnly(Out,Indicator)

MerkleTrees ← MerkleTree(Outs)

RESOLVED ← true

Figure 5.5: Pseudocode for updating indicators

58

UpdateBalance(X,W)

Statement X:

• roots: Root of MerkleTrees.

• y: Public key of Pi.

• S: List of settled payment instructions according to indicator xi.

• U : Encryption of highest priority unsettled payment instruction.

• B,B′: Encrypted ex-ante and ex-post balances.

• sn: List containing serial numbers of incoming payment instructions.

Witness W :

• x: Private key corresponding to the public key y.

• R, r: List of encrypted and decrypted payments instructions.

• ψ: List of Merkle proofs of membership for R in MerkleTrees.

• s: List of outgoing payment amounts encrypted in S.

• ys: List of public keys for recipients of payment instructions in S.

• yu, u: recipient’s public key and decrypted highest priority unsettled
payment amount.

• b, b′: Ex-ante and ex-post balances encrypted in B

Assert the following:

y = gx

For k ∈ [ni]

rk = Dec(Rk, x)

snk = H(x||Rk)

Merkle.Verify(roots, Rk, ψk) = 1

For sj ∈ s, yj ∈ ys
Sj = Enc(sj, yj)

U = Enc(u, yu) ∧ B = Enc(b, y) ∧ B′ = Enc(b′, y)

b′ = b−
∑
s+

∑
r ≥ 0

b′ − u < 0

Figure 5.6: zkSNARK UpdateBalance circuit

59

• The outgoing payment amounts in s are encrypted to ciphertext in S by the public

keys in ys.

• U,B, and B′ are the ciphertext corresponding to u, b, and B′, respectively.

• The liquidity constraint is satisfied.

• The optimality constrains is satisfied by showing that the highest priority unsettled

payment will result in negative ex-post balance.

Update(π,B′, sn)

Require(Registry.ContainsAddress(msg.sender)

Require(RESOLVED = true)

Require(Unique(sn))

Require(Serials.ContainsAny(sn) = false)

y ← Registry.GetPublicKey(msg.sender)

roots ← MerkleTrees.GetRoot()

B ← GetBalance(msg.sender)

S ← GetSettledPayments(msg.sender)

U ← GetHighestUnsettled(msg.sender)

X ← (B′, B, y, roots,S, U, sn)

Require(Verifier.verify(X, π))

Serials.append(sn)

Balance[msg.sender] ← B′

Figure 5.7: Pseudocode for Update function

60

5.5 Performance Evaluation

We evaluate the protocol’s performance on Ethereum. The results show that the

protocol is feasible and practical to deploy. Recently, Ethereum has gone through mul-

tiple planned hard-forks to upgrade its virtual machine (EVM) with new op-codes and

features that will help Ethereum transit to Proof-of-Stake (PoS). One of these features is

the support for running EC operations inside smart contracts. More specifically, the fork

Byzantium [21] introduced two pre-compiled contracts: EIP-196 to perform point addi-

tion and multiplication operations, and EIP-197 for pairing checks on the curve BN128.

Accordingly, smart contracts can efficiently verify many cryptographic proofs including

zkSNARK [5]. However, the gas cost incurred by EC operations were relatively high which

limited the feasibility of some cryptographic protocols on Ethereum. Therefore, the fork

code-named Istanbul [25] made adjustments to the cost of EC operations. Strictly speak-

ing, the gas cost of point addition, multiplication, and k pairing check got reduced from

500; 40000; 100000 + k × 80000 down to 150; 6000; 45000 + k × 34000, respectively.

5.5.1 Evaluations

We utilize the zkSNARK construction proposed in [38]. The major advantage of

this construction is the small proof size 128-bytes and efficient verifier which requires three

pairing checks. Using the gas adjustments brought by Istanbul fork in Ethereum, pairing

checks cost 45000 gas in addition to 34000 gas for each check. Thus, the verification cost

of zkSNARK proof is 147000 = 45000 + 3 × 34000 gas. Moreover, the verifier performs

EC operations on the public input before verifying the proof. Specifically, for each public

input encoded as Fp element, the verifier invokes two operations: point multiplication and

point addition. Consequently, for a proof π with public input of size m elements in Fp,

the verification gas cost is 6150m + 147000. The encoding of an ElGamal ciphertext, a

public key, and a hash value are four, two, and one Fp elements, respectively.

61

To evaluate our protocol, we estimate the gas cost associated with the elliptic curve

operations performed during zkSNARK proofs verification. Generally, participants send

zkSNARK proofs in Submit and Update transactions. In Fig. 5.8, we report the gas

cost for these transactions with respect the numbers of outgoing and incoming payment

instructions ni and mi, respectively.

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1
·107

ni

G
a
s

Submit

50 100150200250300
100

200
300

0
0.2
0.4
0.6
0.8

1

·107

ni
mi

G
a
s

Update

Figure 5.8: Gas cost for Submit and Update transactions

In the Submit transaction, the public input consists of a list of ni ciphertext for

payment instructions in Qi, and a hash value for the root of MerkleTreepk. Accordingly,

we can estimate the gas cost for proof verification as 6150(4ni+1)+147000 gas. Similarly,

in the Update transaction, the public input consists of seven parameters: three ciphertext

(B′, B, U), a list of ni ciphertext for payment instructions in S, a public key y, a hash

value for the root of MerkleTrees, and a list of mi serial numbers. Consequently, we can

estimate the gas cost as 6150(15 + 4ni +mi) + 147000.

Table 5.1 shows the size and cost in USD for Submit and Update transactions in

the setting where ni = mi = 10. At the time of writing in August 2020, one Ether coin

costs ≈$400 USD, and the average gas price is ≈ 200 Gwei = 200× 10−9 Ether. The gas

cost of a transaction is computed as the incurred gas times gas price in Ether times Ether

price in USD.

Based on the evaluation results, we believe the protocol is practical to deploy

on Ethereum. For example, with the current block gas limit ≈ 10M gas on Ethereum,

62

Table 5.1: Size and cost in USD for Submit and Update transactions

Transaction Size (Bytes) Gas Cost (USD)

Submit 1408 399150 $32
Update 2080 546750 $43.75

we find that the proof verification for Submit and Update transactions cost 3.9% and

5.4% of the block limit when the number of outgoing and incoming payment instructions

ni = mi = 10, respectively. Furthermore, the protocol will perform much better on

permissioned blockchain preferred by banks such as Corda [40] or Hyperledger [3] since

there are neither lengthy block mining time nor block gas limit.

5.5.2 Limitations of Decentralized Netting Protocol

In this section, we discuss some limitations that apply to the decentralized netting

protocol in [17], and naturally extend to our implementation. First, the protocol in [17]

requires all participants to be online at the time of resolving gridlock. However, we argue

that participants do not resolve gridlocks immediately once they occur, rather they keep

aggregating individuals’ transactions during the day. In fact, given the slow settlement

of inter-bank payments in practice which takes roughly couple of days, banks can setup

a specific time at the end of a business day to resolve gridlock. Therefore, we can safely

assume that the online requirement is practically relaxed and does not cause in severe

liveness issues. Furthermore, to improve the speed of gridlock resolution, participants

can run the decentralized netting protocol off-chain to resolve gridlock without being

controlled by the Main smart contract. Then, participants can submit correctness proofs

and utilize Main for settlement only.

63

5.6 Summary

Financial institutions are embracing blockchain technology to address challenges in

traditional RTGS. We designed a privacy-preserving decentralized protocol that resolves

gridlock in RTGS. Furthermore, we enhanced the participants’ privacy by hiding the links

between senders and recipients while providing confidentiality to payment amounts. To

assess the feasibility and performance of our protocol, we estimate the proof verification

gas cost when deployed on Ethereum.

64

Chapter 6

Privacy Preserving Market for

Non-Fungible Tokens

6.1 Introduction

Non-fungible tokens (NFTs) are unique non-interchangeable digital assets verified

and stored using blockchain technology. Quite recently, there has been a surging interest

and adoption of NFTs, with sales exceeding $10 billion in the third quarter of 2021. The

popular and largest NFT marketplace, Opensea1 hit $3.4 billion as a sales volume in

August 2021 [63]. NFTs are tokens that represent ownership of unique digital items such

as art [28], collectibles [24], essays [78], domains [26], and even tickets to access real-world

events [75]. Although anyone can trivially copy digital assets, an NFT can have one

owner only at a time, and the blockchain secures the ownership status. In particular,

the standard NFT smart contract [27] (ERC-721) contains a mapping that associates

each NFT identifier with its corresponding owner’s address. The smart contract code

guarantees that only the owner or approved operators can assign a new owner.

The design of Aegis is primarily motivated by the current limitations of NFT stan-

1https://opensea.io

65

dards and marketplaces design. For instance, ERC-721 specifications [27] require compat-

ible smart contracts to expose the owner’s address given the NFT identifier. Typically,

privacy-advocate users cannot tolerate this limitation as none would like their entire NFT

collections to be accessible to the public. The lack of privacy could also introduce the

owners to life-threatening situations. Suppose Bob has an address x that is the owner

of an NFT ticket for a real-world event. After scanning x using online services such as

Etherscan, it turns out that x is also the owner to some of the most expensive and pre-

mium NFTs in addition to large fungible assets. Effectively, this information could attract

bandits in an attempt to find Bob in the event’s small proximity and find ways to extort

his private key.

NFT smart contracts adhere to the standard specifications outlined by ERC-721 [27].

In particular, an NFT smart contract maintains a mapping from NFT identifiers (IDs) to

their owners’ addresses. This mapping is publicly accessible; hence, an observer can triv-

ially determine the NFTs collection owned by an arbitrary user. Moreover, the observer

can track how the ownership status of an arbitrary NFT changes over time.

To transfer the ownership of an NFT, the owner sends a transferFrom transac-

tion [27] to the NFT smart contract to assign an address as the new owner. Alternatively,

the owner can send approve [27] transaction to set an operator. In practice, the operator

is a smart contract that changes ownership status based on a specific trigger. For example,

users set marketplace smart contracts as operators to their NFTs; thereby, allowing the

marketplace to transfer ownership from a seller (i.e., current owner) to a buyer (i.e., new

owner) once the trade is complete.

Furthermore, the current design of NFTs marketplaces lacks privacy as well. For

instance, the popular NFTs marketplace Opensea allows users to trade NFTs only via

public auctions and swaps. Unfortunately, in public auctions, an observer can trivially

learn the submitted bids even before they get mined by simply inspecting the mempool.

Hence, these auctions are susceptible to front-running which is an illegal act that provides

66

risk-free profits to the front-runners. Moreover, public auctions and swaps reveal sensitive

information about the seller, buyer, NFT, and payment amount.

To tackle those problems, we propose Aegis2, a protocol with the following contri-

butions:

• We design Aegis as a privacy-preserving protocol that allows users to add privacy

to their NFT ownership status.

• Similarly, Aegis allows users to maintain private balances of funds in a non-custodial

manner.

• More importantly, Aegis allows users to atomically swap their NFTs for payment

amounts in a complete privacy-preserving manner without revealing any information

about the involved participants, NFTs, and payment amounts.

• We implemented a basic prototype to assess Aegis’s performance, and we released

its source code on Github3. Furthermore, we improved the zkSNARK verification

gas cost to be constant without impacting the anonymity set (which can grow up

to 2d, in evaluation, we set d = 20, where d is a Merkle tree depth).

6.2 Aegis Overview

Aegis works in UTXO model similar to ZeroCash [67] rather than in the account

model since it allows for an always increasing anonymity set (see Section 6.4). Hence,

transactions in Aegis privately consume old UTXO(s) and generate new ones. Since

Ethereum has a public state, then Aegis smart contract needs to conceal users’ state

in the form of commitments to NFT IDs and funds. However, as the smart contract can-

not access the committed values, it cannot determine if they are updated correctly. To

2Aegis is a shield carried by Zeus and Athena. It is a symbol of protection.
3https://github.com/hsg88/Aegis

67

https://github.com/hsg88/Aegis

solve this dilemma, users submit zkSNARK proofs that assert the correctness of state up-

dates without revealing any further information. Upon successful verification, the smart

contract accepts the updated state. Furthermore, the smart contract utilizes efficient

incremental Merkle trees to accumulate commitments; thereby, reducing the storage re-

quirements and gas cost. Additionally, to prevent double-spending, Aegis leverages the

notion of serial numbers [67] to privately nullify consumed UTXOs.

6.2.1 Protocol Participants

In Aegis, there are four participants: sellers, buyers, trustless relayers, and a smart

contract. Sellers privately own NFTs in Aegis, and they can swap for payment amounts or

withdraw them by transferring the ownership from Aegis. Similarly, buyers have private

funds in Aegis, which they can swap for NFTs or withdraw. Relayers receive meta-

transactions from sellers and buyers and submit transactions to Ethereum while paying

the gas cost. They are incentivized by receiving rewards from Aegis based on their contri-

bution. We assume sellers and buyers are implicitly using relayers. For example, a user

sends a transaction to Aegis implies that the user sends a meta-transaction to a relayer,

and the relayer sends a transaction to Aegis.

Aegis has a Main smart contract in addition to two internal smart contracts:

• Main: it receives transactions from users, and it is the non-custodial owner of all

deposited NFTs and funds.

• Merkle: it is an internal smart contract that implements an efficient incremental

Merkle tree.

• Verifier: it is an internal smart contract that contains verifying keys and functions

for verifying zkSNARK proofs.

68

NFT
Smart

Contract
NFT
Smart

Contract
NFT
Smart

Contract

Buyers

DepositNFT

WithdrawNFT

Sellers

approve

WithdrawFund

transferFrom

Main

Relayers

Merkle
Merkle

Verifier
Verifier

DepositFund

Swap

Figure 6.1: Interactions in Aegis. Users directly send transactions in blue, while relayers
send transactions in red. Black arrows are calls between smart contracts.

6.2.2 Aegis Transactions

Figure 6.1 shows a high-level overview of transactions in Aegis. Users can directly

deposit NFTs and funds to Main. A seller and a buyer communicate off-chain to agree

on the swap detail, such as the NFT ID and payment amount. Then, the buyer can send

Swap transaction to settle the exchange. Furthermore, users can withdraw their assets from

Main to public recipient addresses. More importantly, swap and withdrawal transactions

are sent via relayers so that an observer cannot link them to deposit transactions using

the gas payer’s address.

NFT Transactions.. Aegis does not mint NFTs; therefore, sellers have to transfer

the ownership of their NFTs in a non-custodial manner to Main. Accordingly, sellers

initially send approve transactions [27] to their NFT smart contracts to assign Main’s

address as an operator. Then, sellers can add privacy to their NFTs ownership status by

sending DepositNFT transactions to Main. Finally, Main (i) transfers ownership from the

user’s address to its address, (ii) generates an NFT commitment, (iii) and accumulates

it in the NFTs Merkle tree. Later, a seller can send WithdrawNFT transaction containing

69

a zkSNARK proof of NFT ownership. Upon successful verification, Main transfers the

ownership to the recipient’s address which should be different from the deposit address.

Fund Transactions. Aegis allows buyers to build private funds that they can swap

for NFTs in a privacy-preserving manner. Buyers send DepositFund transactions that

include amounts in Ethers to Main. Then, Main generates a fund commitment for the

deposited amount and accumulates the commitment in the funds Merkle tree. Later, a

buyer can send WithdrawFund transaction containing a zkSNARK proof of funds. Upon

successful verification, Main transfers the requested amount to the recipient’s address.

Swap Transaction. Aegis allows users to trade NFTs without revealing IDs, payment

amounts, and identities. The NFT trade is an atomic swap that either completes success-

fully or reverts without causing any loss. To understand how atomic swap works in Aegis,

consider the following basic protocol that uses digital signatures. Alice wants to transfer

an NFT a to Bob in exchange for a payment amount b. Then, Alice signs Bob’s asset

b, and Bob signs Alice’s asset a. Then, Bob sends both signatures to a smart contract

which acts as a trusted party holding a and b in its escrow. The smart contract settles the

swap only if both signatures are valid for the counter-party’s asset. This simple protocol

correctly performs atomic swap; however, it lacks privacy since assets and owners are

public. Aegis fixes this issue by utilizing zkSNARK proofs as signatures of knowledge [39]

over commitments instead of digital signatures over plaintext values.

6.2.3 Threat Model

We assume the cryptographic primitives are secure. We further assume the adver-

sary A is computationally bounded and cannot tamper with the execution of the Aegis

smart contracts. Additionally, A has the capabilities of a miner (i.e., reorder transactions

within a blockchain block, and inject its transactions before and after certain transactions).

A can always read all transactions issued to Aegis while propagating over the network.

We assume that users can always read from and write to the blockchain state. Moreover,

70

users utilize trustless relayers to submit non-deposit transactions on their behalf.

6.2.4 System Goals

We design Aegis such that it achieves the following goals:

• Privacy: an adversary should not link a deposit transaction to any swap or with-

drawal transaction.

• Balance: an adversary cannot successfully swap or withdraw assets belonging to

honest users.

• Atomic Swap: honest sellers and buyers can successfully swap their assets atomically,

or the swap reverts entirely without causing any loss.

• Availability: users should always be able to submit transactions without any risk of

censorship.

• Compatibility: Aegis should be compatible with existing NFT smart contracts stan-

dard [27] without requiring any changes to the deployed contracts.

6.3 Aegis Detailed Construction

6.3.1 Building Blocks

Hash Functions. Let H2 and H3 be collision-resistant hash functions that map two and

three elements from Fp to an element in Fp, respectively.

H2 : Fp × Fp −→ Fp

H3 : Fp × Fp × Fp −→ Fp

Pseudorandom Functions. To utilize Aegis, a user samples a seed s
$←− Fp and keeps

it private. We construct PRFaddr and PRFsn using H3 to generate spending addresses and

71

serial numbers as follows:
PRFaddr(s, ·) = H3(0, s, ·)

PRFsn(s, ·) = H3(1, s, ·)

Commitment Scheme. We instantiate a commitment scheme Com using H2 to generate

NFTs and funds commitments as follows:

Com : Fp × Fp −→ Fp

Com(v, addr) = H2(v, addr)

where v denotes an NFT ID or a fund amount, and addr is a spending address generated

randomly for each commitment (i.e., commitment randomness).

Merkle Trees. We instantiate Merkle trees as incremental binary trees of depth d using

H2 over the left and right children. More importantly, Merkle smart contract implements

an efficient append-only Merkle tree as shown in Fig. 6.2. In particular, Merkle stores

the last l roots and d elements comprising the Merkle proof for the first empty leaf.

For example, in Fig. 6.2, the Merkle proof for the first empty leaf in the left tree is

π = (5, 00, 13). Using π and the new element 6, Merkle can compute the new root 15 in

the right tree. Finally, Merkle sets π = (0, 11, 13) as the Merkle proof for the next empty

leaf.

It is worth mentioning that using the Merkle proof π stored on Merkle is insuffi-

cient for users to generate Merkle proofs for their commitments. Therefore, Main emits

NewCommitment event for every new commitment. Consequently, by scanning Ethereum

for these events, users can collect every accumulated commitment for building the entire

Merkle tree off-chain. Hence, users can successfully generate proofs of membership for

any commitment.

Coin Structure. We use the term coin [67] to refer to a data object that represents

NFTs and funds in Aegis. The coins for NFTs and funds have the exact structure, yet

their commitments are accumulated in two separate instances of Merkle smart contract.

72

5 0 0 0

11 00

14

1 2 3 4

9 10

13

15

5 6 0 0

11 00

14

1 2 3 4

9 10

13

15

Figure 6.2: Illustration of accumulating a new element 6. The shaded circles are Merkle
proof π for the first empty leaf which is depicted in green.

.

To generate a coin c for a value v, a user with a private seed s samples ρ
$←− Fp. Then, the

user utilizes s and ρ to generate a spending address addr, a serial number sn as follows:

addr ← PRFaddr(s, ρ)

sn← PRFsn(s, ρ)

cm← Com(v, addr)

c← (ρ, v, addr, sn, cm)

The user keeps ρ private which will be used as part of the witness to generate zkSNARK

proofs for spending the coin c. For transactions in Main, the user sends cm for new coins

and sn for spent coins in swap and withdrawal transactions. Additionally, in deposit and

withdrawal transactions, Main must validate the transferred in/out value v; therefore, the

user sends the committed values (v, addr) for new and withdrawn coins, respectively.

6.3.2 Aegis Setup

Aegis protocol relies mainly on zkSNARK proofs that assert the satisfiability of

constraints in circuits. We design Ownership and JoinSplit circuits for checking the

validity of NFTs and funds coins, respectively. More importantly, both circuits include a

message signal for defining an extra parameter to facilitate swaps and withdrawals (e.g.,

the recipient’s Ethereum address and counterparty’s coin commitment). In particular,

this signal allows users to signatures of knowledge [39] on a message m given knowledge

73

of a valid witness.

Ownership. It allows users to prove the correctness of transferring NFT ownership from

an input coin to an output one as shown in Fig. 6.3. It checks (i) knowledge of the

sender’s seed and randomness for the input commitment, (ii) validity of Merkle proof

of membership, (iii) correctness of the serial number, (iv) and correctness of the output

coin’s commitment on the same NFT.

Ownership(x⃗, w⃗)

Statement x⃗:

• root: root of NFTs Merkle tree

• snin: serial number of input coin

• cmout: commitment of output coin

• m: message

Witness w⃗:

• s: sender’s seed

• v: NFT ID

• ρin: randomness of input coin

• πin: proof of membership for commitment of input coin

• addrout: spending address of output coin

Compute and assert:

addrin ← PRFaddr(s, ρin)

cmin ← Com(v, addrin)

Merkle.Verify(cmin, root, πin) = 1

snin = PRFsn(s, ρin)

cmout = Com(v, addrout)

Figure 6.3: zkSNARK Ownership circuit

JoinSplit. It allows users to prove the correctness of joining funds from up to two input

coins and splitting that amount into two output coins (e.g., a recipient coin and a change

coin for the sender) as shown in Fig. 6.4. It checks (i) equality of the input and output

74

balances, (ii) knowledge of the sender’s seed and randomnesses for the input commit-

ments, (iii) correctness of serial numbers, (iv) validity of Merkle proofs of membership,

(v) correctness of the output commitments, (vi) and the output values lie in the range

of [0, vmax] to avoid arithmetic overflow and underflow in Fp. More importantly, it skips

constraints check for a dummy input commitment with a zero value. Therefore, a user

with one input coin can still utilize the circuit by supplying a dummy coin as the second

input. Additionally, a user can join the entire input funds into one output coin by using

a dummy coin for the other output.

Setup and Deployment. For Groth [38] zkSNARK construction, the circuit’s signals

must be fixed before running zkSNARK Setup (i.e., circuits cannot utilize a variable

number of signals).

(pkown, vkown)← zkSNARK.Setup(1λ, Ownership)

(pkjs, vkjs)← zkSNARK.Setup(1λ, JoinSplit)

Both JoinSplit and Ownership circuits verify Merkle proofs of membership which rely

on the Merkle tree depth d. Therefore, d is one of the public parameters that is fixed per

circuit setup. Next, Main smart contract is deployed and initialized with the verifying keys

and Merkle tree depth as shown in Fig. 6.5. In turn, Main initializes Verifier and Merkle

smart contracts for NFTs and funds. Additionally, it maintains two lists for storing and

tracking revealed serial numbers from spent NFT and funds coins. Finally, it initializes

a mapping for translating an NFT globally unique identifier into an NFT smart contract

address and token ID.

6.3.3 Deposit Transactions

To trade on Aegis, a user initially deposit an NFT or funds. These deposits are

non-custodial in the sense that a user can withdraw them at any time. Furthermore, due

to the inherent public state of the blockchain, a deposit transaction reveals the initial

75

JoinSplit(x⃗, w⃗)

Statement x⃗:

• root: root of funds Merkle tree

• {snin
i }: serial numbers of input coins

• {cmout
i }: commitments of output coins

• m: message

Witness w⃗:

• s: sender’s seed

• {ρini }: randomnesses of input coins

• {vini }: values of input coins
• {πin

i }: proofs of membership for commitments of input coins

• {addrouti }: spending addresses of output coins

Compute and assert:∑2
i=1 v

in
i =

∑2
i=1 v

out
i

For i ∈ {1, 2}
cmout

i = Com(vouti , addrouti)

0 ≤ vouti ≤ vmax

If vini ̸= 0

addrini ← PRFaddr(s, ρini)

cmin
i ← Com(vini , addr

in
i)

Merkle.Verify(cmin
i , root, π

in
i) = 1

snin
i = PRFsn(s, ρini)

Figure 6.4: zkSNARK JoinSplit circuit

NFT ownership, funds, and the sender’s identity. However, we argue that these initial

facts can change behind the scenes due to the unlinkability between deposit and other

transactions (see Section 6.4).

Depositing NFTs. To deposit an NFT, a user sends an approve transaction to the NFT

smart contract as shown in Fig. 6.1. Let address denote to the NFT smart contract’s

address on Ethereum, and id denote to NFT token identifier. The user samples ρ and

76

Initialize(λ, vkjs, vkown, d)

fundVerifier← Verifier(vkjs)

nftVerifier← Verifier(vkown)

nftMerkle← Merkle(d)

fundMerkle← Merkle(d)

nftSerials← {}

fundSerials← {}

nftMap← mapping(v −→ (address, id))

Figure 6.5: Pseudocode for Initialize function

generates an NFT coin c = (ρ, v, addr, sn, cm) and sends the spending address addr along

with address and id as parameters to DepositNFT transaction as shown in Fig. 6.6.

DepositNFT(address, id, addr)

erc721← ERC721(address)

Require(tx.sender = erc721.OwnerOf(id))

erc721.transferFrom(tx.sender, Main.address, id)

v ← H2(address, id)

nftMap[v]← (address, id)

cm← Com(v, addr)

nftMerkle.Accumulate(cm)

emit NewCommitment(’NFT’, cm)

Figure 6.6: Pseudocode for DepositNFT function

Main checks whether the transaction sender tx.sender is the owner of the NFT

with an identifier id. Upon success, it transfers the ownership to its address, note that this

call will fail if the user has not approved Main.address previously. Next, it generates a

77

global unique identifier v based on the NFT contract address address and token’s identifier

id, and stores the association between them in the mapping nftMap for easier lookup in

WithdrawTransaction. Subsequently, it generates a commitment cm, and accumulates

it in the NFT Merkle tree. Finally, it emits an event containing cm so that users can

rebuild the Merkle tree off-chain.

Depositing Funds. To deposit funds, a user samples ρ and generates a fund coin c =

(ρ, v, addr, sn, cm). Then, the user sends addr as a parameter to DepositFund transaction

with a value of v as shown in Fig. 6.7. Main generates a commitment to the amount

tx.value. Subsequently, it accumulates cm in the funds Merkle tree, and it emits the

NewCommitment event containing cm.

DepositFund(addr)

v ← tx.value

cm← Com(v, addr)

fundMerkle.Accumulate(cm)

emit NewCommitment(’Fund’, cm)

Figure 6.7: Pseudocode for DepsoitFund function

6.3.4 Withdrawal Transactions

Users can withdraw their NFTs and funds from Main public Ethereum addresses

of recipients given valid zkSNARK proofs to Ownership and JoinSplit statements, re-

spectively. One of the witness parameters in both circuits is proof of membership for the

commitments of input coins. To generate these proofs, users rebuild Merkle trees off-chain

by scanning NewCommitment events from Main. In practice, relayers can maintain synchro-

nized off-chain Merkle trees and expose them as a service to users. Furthermore, users

utilize the message m signal to specify the recipient’s Ethereum address. Additionally,

78

users open one of the output commitments so that Main can determine which NFT and

how much funds to transfer out.

Withdrawing NFTs. To withdraw an NFT, a user generates a zkSNARK proof π

that asserts knowledge of a valid witness w⃗ satisfying Ownership circuit for a statement

x⃗. Then, the user sends π, x⃗, and the opening values v and addrout) of the output

commitment cmout as parameters to WithdrawNFT transaction as shown in Fig. 6.8.

WithdrawNFT(x⃗, π, v, addrout)

Parse x⃗ as (root, snin, cmout,m)

Require(cmout = Com(v, addrout))

Require(nftSerials.Contains(snin) = false)

Require(nftMerkle.ContainsRoot(root))

Require(nftVerifier.Verify(x⃗, π))

nftSerials.Append(snin)

(address, id)← nftMap[v]

erc721← ERC721(address)

recipient← address(m)

erc721.transferFrom(Main.address, recipient, id)

Figure 6.8: Pseudocode for WithdrawNFT function

Initially, Main checks the output commitment is computed based on v and addrout.

Then, it checks that the serial number snin has not been seen before, and root is one

of the recent l roots in the NFT Merkle tree. Subsequently, it verifies the proof π with

respect to the statement x⃗ using nftVerifier. Upon success, it appends snin to the list

of NFT serial numbers. Next, it retrieves the NFT address and identifier corresponding

to the value v using nftMap. Finally, it sets m as the recipient address that receives the

NFT ownership.

Withdrawing Funds. To withdraw fund, a user generates a zkSNARK proof π that as-

79

serts knowledge of a valid witness w⃗ satisfying JoinSplit circuit for a statement x⃗. Then,

the user sends π, x⃗, and the opening values vout1 and addrout1 of the output commitment

cmout
1 as parameters to WithdrawFund transaction as shown in Fig. 6.9.

WithdrawFund(x⃗, π, vout1 , addrout1)

Parse x⃗ as (root, snin
1 , sn

in
2 , cm

out
1 , cmout

2 ,m)

Require(cmout
1 = Com(vout1 , addrout1))

Require(fundSerials.Contains(snin
1 , sn

in
2) = false)

Require(fundMerkle.ContainsRoot(root))

Require(fundVerifier.Verify(x⃗, π))

fundSerials.Append(snin
1 , sn

in
2)

fundMerkle.Accumulate(cmout
2)

emit NewCommitment(’Fund’, cmout
2)

recipient← address(m)

recipient.transfer(vout1)

Figure 6.9: Pseudocode for WithdrawFund function

The logic for WithdrawFund has some similarities to WithdrawNFT. Initially, Main

checks the output commitment cmout
1 is correctly computed based on vout1 and addrout1 .

Then, it checks the serial numbers snin
1 and snin

2 have not been seen before in fundSerials.

Additionally, it asserts that root is one of the recent l roots in the Merkle tree of fund

coins. Subsequently, it verifies the proof π for the statement x⃗ using fundVerifier. Upon

success, it appends the input serial numbers to fundSerials. Next, it accumulates the

unspent output commitment cmout
2 in the funds Merkle tree, and emit the NewCommitment

event. Finally, it sets m as the recipient address that receives an amount v from Main.

80

6.3.5 Atomic Swap

Aegis allows two users to swap an NFT for a payment amount in an atomic trans-

action. The atomic swap relies mainly on designing contingent transfer of coins. Initially,

each user generates a zkSNARK proof for a statement transferring its coin to the counter-

party. More importantly, Main accepts proofs if and only if (i) they are valid, (ii) and the

statement’s message is equal to the output commitment of the counterparty’s statement.

Informally speaking, each statement is interpreted as “I’m transferring my coin to the

counterparty if and only if the counterparty transfers a coin with a certain commitment”.

The atomic swap process consists of an off-chain interaction protocol and an on-chain

settlement by Main.

Off-chain Interaction Protocol. Suppose Alice owns an NFT coin cina with a value vina

and she wants to swap it for a payment amount voutb,1 with Bob who owns fund coins cinb,1

and cinb,2. They run the protocol shown in Fig. 6.10. Initially, Alice generates a spending

address addrouta that Bob uses to generate an output fund coin’s commitment cmout
b,1 with

the value voutb,1 for her. Similarly, Bob generates two spending addresses: addroutb,1 for

receiving an output NFT coin’s commitment cmout
a with the value vina from Alice, and

addroutb,2 for receiving an output fund coin’s commitment cmout
b,2 with the change value voutb,2

from himself.

More importantly, Alice and Bob set their messages ma and mb to the output coin’s

commitment cmout
b,1 and cmout

a expected from the counterparty, respectively. Next, Alice

and Bob query off-chain Merkle trees MerkleNFT and MerkleFund to generate proofs of

membership πin
a and (πin

b,1, π
in
b,2) for their input coins’ commitments cmin

a and (cmin
b,1, cm

in
b,2),

respectively. Afterwards, Alice and Bob generate zkSNARK proofs πa and πb for Ownership

statement x⃗a and JoinSplit statement x⃗b, respectively. Finally, Alice sends x⃗a and πa

to Bob who asserts that messages are valid with respect to the counterparty’s output

commitment.

On-chain Settlement. To settle the atomic swap, Bob sends x⃗a, x⃗b, πa and πb as param-

81

Alice(sa, c
in
a , voutb,1) Bob(sb, c

in
b,1, c

in
b,2, v

in
a , voutb,1)

cina = (ρina , snin
a , cmin

a , vina) cinb,1 = (ρinb,1, sn
in
b,1, cm

in
b,1, v

in
b,1)

cinb,2 = (ρinb,2, sn
in
b,2, cm

in
b,2, v

in
b,2)

ρa
$←− Fp ρb,1

$←− Fp, ρb,2
$←− Fp

addrouta ← PRFaddr(sa, ρa) addroutb,1 ← PRFaddr(sb, ρb,1)

addroutb,2 ← PRFaddr(sb, ρb,2)

voutb,2 ← vinb,1 + vinb,2 − voutb,1

addrouta

addroutb,1

cmout
a ← Com(vina , addroutb,1) cmout

b,1 ← Com(voutb,1 , addr
out
a)

ma ← Com(voutb,1 , addr
out
a) cmout

b,2 ← Com(voutb,2 , addr
out
b,2)

snin
a ← cina .sn mb ← Com(vina , addroutb,1)

roota ← MerkleNFT.root rootb ← MerkleFund.root

πin
a ← MerkleNFT.Prove(cmin

a) πin
b,1 ← MerkleFund.Prove(cmin

b,1)

πin
b,2 ← MerkleFund.Prove(cmin

b,2)

x⃗a ← (roota, sn
in
a , cmout

a ,ma) x⃗b ← (rootb, sn
in
b,1, sn

in
b,2, cm

out
b,1 ,

cmout
b,2 ,mb)

w⃗a ← (sa, c
in
a .ρ, va, π

in
a , addroutb,1) w⃗b ← (sb, ρ

in
b,1, ρ

in
b,2, v

in
b,1, π

in
b,1,

πin
b,2, addr

out
b,1 , addr

out
b,2)

Ψown ← Ownership.Prove Ψjs ← JoinSplit.Prove

πa ← Ψown(pkown, x⃗a, w⃗a) πb ← Ψjs(pkjs, x⃗b, w⃗b)

πa, x⃗a

Assert(x⃗a.ma = x⃗b.cm
out
b,1)

Assert(x⃗b.mb = x⃗a.cm
out
a)

Figure 6.10: Off-chain protocol for swapping an NFT for a payment amount

eters to Swap transaction as shown in Fig. 6.11. Initially, Main checks that the message

of each statement is equal to the output commitment of the other statement, which en-

sures that both parties have a mutual agreement on the swapped coins. Then, for each

statement, Main checks (i) the freshness of serial numbers, the validity of Merkle root,

(iii) and the validity of zkSNARK proof. Upon success, Main settles the atomic swap by

82

(i) storing the serial numbers which nullify the input coins, (ii) and accumulating the new

output commitments in the corresponding Merkle trees; thereby, enforcing the transfer of

coins. Finally, Main emits NewCommitment events for each accumulated commitment.

Swap(x⃗a, x⃗b, πa, πb)

Parse x⃗a as (roota, sn
in
a , cm

out
a ,ma)

Parse x⃗b as (rootb, sn
in
b,1, sn

in
b,2, cm

out
b,1 , cm

out
b,2 ,mb)

Require(ma = cmout
b,1)

Require(mb = cmout
a)

Require(nftSerials.Contains(snin
a)=false)

Require(nftMerkle.ContainsRoot(roota))

Require(nftVerifier.Verify(x⃗a, πa))

Require(fundSerials.Contains(snin
b,1, sn

in
b,2)=false)

Require(fundMerkle.ContainsRoot(rootb))

Require(fundVerifier.Verify(x⃗b, πb))

nftSerials.Append(snin
a)

nftMerkle.Accumulate(cmout
a)

fundSerials.Append(snin
b,1, sn

in
b,2)

fundMerkle.Accumulate(cmout
b,1 , cm

out
b,2)

emit NewCommitment(NFT, cmout
a)

emit NewCommitment(Fund, cmout
b,1 , cm

out
b,2)

Figure 6.11: Pseudocode for Swap function

6.4 Security Analysis

We informally discuss how Aegis achieves the security goals mentioned in Sec-

tion 6.2.4. In particular, an adversary may try to guess the pair-wise link between deposit

83

NFT owner
0x123..

transfer NFT owner
0xabc..

NFT owner
0x123..

transfer NFT owner
Aegis

NFT owner
0x456..

transfer

NFT owner
0xdef..

transfer NFT owner
0x456..transfer

Figure 6.12: Transactions graph with and without Aegis

and withdrawal transactions. Next, we analyze whether an adversary can successfully

swap or withdraw an NFT or fund that belongs to an honest user.

6.4.1 Privacy Analysis

Aegis allows users to deposit NFTs and funds and use them within the protocol

without leaking any information. For example, users do not have to withdraw NFTs

from Aegis since they can prove their ownership and trade them which are the two main

features for NFTs. However, if the user decides to withdraw, then Aegis obfuscates the

transactions links between deposit and withdraw transactions. In particular, an observer

cannot determine whether a certain NFT has changed hands within the system and how

many previous owners for that NFT. More precisely, Aegis acts as a black box that hides

the transactions graph between deposits and withdrawals as shown in Fig. 6.12

The probability of an adversary correctly linking a deposit and withdrawal trans-

actions largely depends on the anonymity set (i.e., number of deposit transactions). It

is worth mentioning that Aegis maintains separate anonymity sets for NFTs and funds.

Let ∗ ∈ {nft, fund}, we define CM∗h and SN∗h to be the set of ∗ accumulated commitments

and the set of revealed serial numbers in Aegis by the block height h, respectively. More

importantly, those sets are the result of transactions made by honest users not colluding

with an adversary. Furthermore, those sets are publicly accessible on Aegis to anyone.

For any block height h, we assume that |CM∗h| − |SN∗h| > 0, which implies that at least one

NFT and one fund coin still have not been withdrawn from Aegis.

84

We define a link property for a commitment cm← Com(·, addr) and a serial number

sn ← PRFsn(s, ρ). We say they are linked cm
link←−− sn if the spending address addr ←

PRFaddr(s, ρ) is computed by the same seed s and randomness ρ. The linking advantage

is the probability that an adversary can output the correct commitment in a deposit

transaction linked to a serial number in a swap or withdrawal transaction.

Definition 6.1 (Linking Advantage) Let tx∗h+1 be a valid withdrawal transaction submit-

ted by an honest user at block height h + 1. Let sn∗
h+1 be the serial number revealed in

tx∗h+1, then the adversarial linking advantage is:

Adv
link,∗
h+1 = Pr[A(tx∗h+1) −→ cm ∈ CM∗h s. t. cm

link←−− sn∗
h+1]

Claim 1 Assuming the underlying cryptographic primitives are secure, the adversarial

linking advantage is (1/|CM∗h|+ negl(λ))

Proof: In Aegis, the origin of a withdrawal transaction at block height h+1 can be any

of the deposit transactions made by honest users up to h blocks ago. In particular, for a

withdrawal transaction at block height h+1 revealing a serial number sn∗
h+1, there exists a

deposit transaction with a commitment cm ∈ CM∗h such that cm
link←−− sn∗

h+1. Therefore, the

probability that the adversary A successfully links a deposit to a withdrawal transaction

is (1/|CM∗h|+ negl(λ)).

6.4.2 Balance Analysis

Similar to ZeroCash [67], Aegis satisfies the balance security property. More pre-

cisely, an adversary cannot successfully issue a valid withdrawal transaction without de-

positing any coins into Aegis. Let BALfundh be the total unspent balance of funds deposited

by honest users at block height h. Similarly, BALnfth denotes the set of NFTs owned by

Main due to non-custodial transfer of ownership by honest users. Formally speaking, let

c∗i denote to each coin generated in Aegis, we define the following functions:

85

Sum(c∗i)←

⋃
{c∗i .v} where ∗ = nft∑
c∗i .v where ∗ = fund

Less(x∗, y∗)←

x∗ ⊂ y∗ where ∗ = nft

x∗ < y∗ where ∗ = fund

BAL∗h ← Sum(c∗i) s.t. c
∗
i .cm ∈ CM∗h ∧ c∗i .sn ̸∈ SN∗h

Definition 6.2 (Balance Advantage) Let CM∗h and SN∗h be public data of coins’ commit-

ments and serial numbers available at block height h. Then, the adversarial balance ad-

vantage to generate a valid withdrawal transaction tx∗h+1 is:

Adv
bal,∗
h+1 = Pr[A(CM∗h, SN∗h) −→ tx∗h+1 s.t. Less(BAL∗h+1, BAL

∗
h)]

Claim 2 Aegis satisfies the balance security. Assuming the adversary A cannot tamper

with the execution of Aegis smart contracts, then the adversarial balance advantage to

successfully withdraw a coin that belongs to an honest user is negl(λ)

Proof: There are three scenarios where the adversary A can successfully withdraw a

coin that belongs to an honest user. Firstly, A controls more than 51% of the blockchain

mining/validation nodes, then A can tamper with the execution of Main to bypass the

zkSNARK verification check. Secondly, A breaks the collision-resistance property of H2

such thatA can generate zkSNARK proof for an existing coin commitment with a different

seed and randomness, and thus a different serial number. Finally, A breaks the soundness

property of zkSNARK construction and generates a bogus proof that is accepted by Main,

thereby withdrawing coins that belong to honest users. In the first scenario, the blockchain

is no longer secure, and the assets hold no actual value on it. In the second and third

86

scenarios, assuming the cryptographic primitives are secure then the probability that A

can break them is negl(λ)

6.4.3 Analysis of Other Goals

Atomic Swap. The security of swap transactions relies on Aegis’s guarantees of securing

the balance property. In other words, the adversary A cannot swap coins that belong to

honest users without breaking the balance property. Furthermore, Main executes swap

transactions atomically such that either the swap completes, or it reverts to a prior state.

More importantly, users follow the off-chain interaction protocol shown in Fig. 6.10 with-

out any trust assumptions. If someone aborts the protocol, the counterparty does not

lose assets. For example, assume Alice executed the protocol with Bob who disappeared

at the end. Then, Alice can run the protocol with Charlie, who completes the protocol

and submits the Swap transaction. If Bob tries to resume the protocol and submit a Swap

transaction, then Main will reject and revert his transaction due to duplicate serial number

in Alice’s statement.

Compatibility. A key design goal of Aegis is to be compatible with existing NFT smart

contracts. The motivation is to develop a practical system without modifying current NFT

smart contracts that might hold millions of dollars in their values. Hence, we develop Aegis

such that it can interact with any NFT smart contract as long as it supports the standard

interface ERC-721 [27]. More precisely, in DepositNFT and WithdrawNFT transactions,

Aegis calls ERC-721 ownerOf and transferFrom functions to manage the ownership in a

non-custodial way.

Availability. Aegis operates entirely as smart contracts running on layer-1. In other

words, it does not rely on layer-2 services, which might censor users’ transactions. There-

fore, Aegis has the availability guarantees of the underlying blockchain. Users can always

read from or write to Aegis smart contracts. Recall that we mentioned non-deposit trans-

actions are sent via trustless relayers. There could be a chance where the entire relayers

87

network is colluding to censor an arbitrary transaction. In this unlikely case, the transac-

tion sender can utilize its wallet to submit the transaction, which links the origin deposit

transaction. We argue that it is acceptable in such circumstances to sacrifice privacy

rather than denying users the ability to withdraw their assets.

Blockchain Client Services. In Ethereum, a popular user wallet MetaMask outsources

all its transactions to centralized services Infura. Those centralized services are aware of

the users’ blockchain address(es), IP address, and the transactions sent to Aegis. There-

fore, they can weaken users’ privacy, as they may link different transactions from the same

wallet and IP address. Consequently, to have better privacy guarantees, a user can oper-

ate a full-node or utilize a network-level anonymity service such as Tor or VPNs before

using MetaMask.

6.5 Evaluation

6.5.1 Cryptographic Primitives

In Aegis, we use Groth [38] zkSNARK protocol due to its high efficiency in terms

of proof size and verification cost compared to other state-of-art zkSNARK protocols

[10, 15, 29, 47]. More specifically, Groth [38] protocol generates the smallest proof (i.e.,

two elements in G1 and one element in G2, where G1 and G2 are asymmetric bilinear

groups). The verifier checks three pairing operations before deciding whether to accept or

reject the proof. More importantly, there is a pre-processing phase for the verifier, where

it performs ECADD and ECMUL for each public input, before verifying the proof.

For cryptographic hash functions, we evaluate MiMC [1] and Poseidon [37] which

are arithmetic circuit friendly hash function. Both hash functions yield much lower number

of constraints when compared to other standard hash functions such as SHA-256 and

Keccak [7]. However, they consume more gas when executed in Ethereum smart contract.

Table 6.1 shows a comparison between Poseidon, MiMC, and SHA-256 hash functions.

88

Table 6.1: Comparing hash functions in terms of constraints number and gas costs

Poseidon MiMC SHA-256

Constraints 240 2640 59793
Gas cost 49858 59840 23179

We opt to choose Poseidon for computing commitments and Merkle proof verification due

to its low number of constraints in the arithmetic circuit while also having lower gas cost

than MiMC.

Cryptographic Libraries. We utilize Circom (v2.0) [41] to compile the arithmetic

circuits JoinSplit and Ownership. For the proof system, we utilize snarkjs (v0.4.10)

library [73] to (i) run an MPC-based setup ceremony for generating the proving and

verifying keys, and (ii) generate the zkSNARK proofs. We leverage the pre-compiled

Ethereum contracts: EIP-196 [62] and EIP-197 [16] to perform point addition and mul-

tiplication, and pairing operations on the elliptic curve bn256 where the size of elements

in Fp and curve points in G1 and G2 are 32, 64, 128 bytes, respectively.

Hardware, Operating System, and Environment. We run our experiments on a

commodity hardware, which run Ubuntu (v21.04) on a laptop equipped with an Intel

i7-10700K CPU with clock frequency up-to 5.1 GHz and 8 cores, and 32GB RAM. Addi-

tionally, we install Rust (v1.57) and Nodejs (v16.3) libraries, which are required to compile

and run Aegis prototype. We develop the smart contracts in Solidty (v0.8.0). We utilize

Hardhat framework to deploy and test the smart contracts in a local in-memory Ethereum

blockchain featuring all improvements added up to the London hard fork and a block gas

limit set to a maximum of 30 million gas.

6.5.2 Performance Measurement

We carry out several experiments to assess the performance and feasibility of Aegis

prototype. More precisely, we measure the performance of JoinSplit and Ownership

circuits in terms of (i) number of circuit constraints, (ii) time to complete the MPC

89

ceremony for generating the CRS (i.e., proving and verifying keys), (iii) time to generate

the proofs. and (iv) the size of generated CRS. Furthermore, we measure the gas cost

for deploying the smart contracts and running Aegis transactions. Finally, we optimize

the circuits to yield the most efficient proof verification cost at the expense of increasing

the prover’s time and computation. The motivation behind this is to minimize on-chain

execution while delegating computation intensive tasks to off-chain.

Merkle Tree Depth. Essentially, for Groth [38] protocol, the circuit’s wires must be

fixed before running zkSNARK Setup to generate the proving and verifying keys (i.e., cir-

cuits cannot utilize a variable number of signals). Both JoinSplit and Ownership circuits

verify Merkle proofs of membership which rely on the Merkle tree depth. Furthermore,

Aegis smart contract utilizes a Merkle tree to accumulate commitments (UTXOs) gener-

ated by deposit, withdraw, and swap transactions. Hence, the Merkle tree depth affects

the maximum number of commitments in Aegis which is computed as 2depth. In other

words, the Merkle tree depth is a critical system parameter which affects the maximum

number of transactions and prover performance. We perform experiments with Merkle

tree depth = 10 and depth = 20. For instance, with a depth = 20 and separate Merkle

trees for NFTs and funds, Aegis can support up to 220 (DepositNFT, WithdrawNFT,

DepositFund) and 219 (WithdrawFund, Swap) transactions. The former transactions ac-

cumulate one commitment each, while the latter transactions accumulate two commit-

ments.

Circuit Measurements. We run an MPC ceremony between three parties to generate

the proving and verifying keys for JoinSplit and Ownership circuits. In Table 6.2, we

report various performance metrics for each circuit. In particular, we report the average

time for a running zkSNARK Setup using MPC ceremony excluding the time of network

transfer and coordination. Additionally, we report the number of circuit constraints, the

size of generated CRS, proof generation time, and the number of Fp elements of the proof

statement and witness.

90

Table 6.2: Performance measurements for JoinSplit and Ownership circuits

Depth = 10 Depth = 20
JoinSplit Ownership JoinSplit Ownership

Constraints 6716 3358 11556 5778
CRS size (bytes) 3719 1860 6556 3279
Proving time (ms) 637 439 1005 653
Statement size 6 4 6 4
Witness size 30 15 50 19

The size of the proving key scales with the witness size (i.e., number of private

inputs) and constraints. While, the verifying key scales with the statement size. Since the

Merkle tree depth does not affect the statement size in JoinSplit and Ownership, then

the verifying key will have the same size in each experiment. In particular, the verifying

keys size are 832 and 576 bytes for JoinSplit and Ownership, respectively.

Smart Contracts Measurement. We deploy the smart contracts with on local in-

memory Ethereum blockchain to measure the gas cost and assess the feasibility of Aegis

transactions. In particular, we perform experiments with Merkle tree depth = 10 and

depth = 20. Currently, the average mining time for Ethereum block on the mainnet

is 12 seconds, and the gas prices are relatively high (e.g., WithdrawFund transaction

costs roughly 1k USD). One way to mitigate these problems in the meantime is to utilize

(zk/optimistic) rollup solutions such as zkSync and Arbitrum. In Table 6.3, we report

the gas cost for every transaction and its USD cost when deployed on Arbitrum where

1gwei = $3.5× 10−6 as of February 9th, 2022.

Table 6.3: Measurement of gas units and fees of transactions in Aegis

Sender Depth = 10 Depth = 20
Gas Fees Gas Fees

Deployment 5347036 $18.71 5867782 $20.53
DepositFund User 462223 $1.62 841899 $2.94
DepositNFT User 693552 $2.42 1244229 $4.35
WithdrawFund Relayer 813994 $2.85 1193669 $4.18
WithdrawNFT Relayer 394739 $1.38 394739 $1.38
Swap Relayer 1141390 $3.99 1521118 $5.32

91

The deployment cost includes deploying Aegis smart contract, Poseidon hash li-

brary, initializing empty Merkle trees, and storing the verifying keys. Hence, the cost

scales with the Merkle tree depth and size of verifying keys. WithdrawFund, WithdrawNFT

and Swap transactions involve verification of zkSNARK proofs (i.e., SoKs). We can es-

timate the minimum gas cost for verifying zkSNARK proof which involves three pairing

checks, and EC addition and EC multiplication for each element in the statement. based

on the statement size. More precisely, according to EIP-1088 [25], we can estimate the

theoretical gas cost as:

cost = 3× EC-Pairing+ h× (EC-Add+ EC-Mul)

cost = 3× 34000 + 45000 + h× (150 + 6000)

where h denotes to the statement size, and the gas cost of EC point addition, multiplica-

tion, and three pairing operations is 150, 6000, and 3× 34000 + 45000, respectively [25].

In JoinSplit, the statement size h = 6, hence the theoretical verification cost is 183900.

Similarly, in Ownership, the number of public inputs h = 4, hence the theoretical verifi-

cation cost is 171600.

Optimization. In order to reduce the gas cost for proof verification, we have to reduce

the statement size h. Therefore, we change the circuits implementation such that the

statement signals become part of the witness. Obviously, this will increase the proving

key size and decrease the verifying key size. More importantly, the hash for those signals

is used as the new statement. Thereby, the gas cost is now constant and minimum since

the new statement has one element (i.e., h = 1). More precisely, the cost is computed as:

cost = 3× 34000 + 45000 + 1× (150 + 6000) = 153150

Furthermore, to save more gas, the hash function that binds the statement signals into the

witness signals must have low gas cost. Hence, we opt to use SHA256 for this part only

92

while still using Poseidon for computing commitments and verifying Merkle proofs. In

other words, the optimized circuits utilizes both hash functions such that it yields smaller

gas cost. Note that while using Poseidon for binding the statement signals will not bloat

the circuit constraints, it will definitely eat the savings in gas cost and thus increase the

verification cost. Therefore, SHA256 sounds a better alternative since it incurs the smallest

gas cost at the expense of significantly increases the number of constraints. Furthermore,

that increase does not scale with the Merkle tree depth, and it is a constant overhead.

Consequently, we reduce the verification cost on Ethereum while slightly increasing the

proving cost off-chain. In Table 6.4, we show the circuit and transactions measurements

for the verification-optimized circuits.

Table 6.4: Performance measurement for verification-optimized JoinSplit and
Ownership circuits

Depth = 10 Depth = 20
JoinSplit Ownership JoinSplit Ownership

Constraints 128189 93991 133029 96411
CRS size (bytes) 81317 61982 92019 63138
Proving time (ms) 4094 3515 5841 3672
Statement size (Fp) 1 1 1 1
Witness size (Fp) 36 19 56 29

Similarly, Table 6.5 lists the reduced gas cost for WithdrawFund, WithdrawNFT

and Swap transactions which involve zkSNARK proof verification.

Table 6.5: Measurement of optimized gas units and fees of transactions in Aegis

Depth = 10 Depth = 20
Gas Fees Gas Fees

WithdrawFund 756501 $2.64 1136215 $3.97
WithdrawNFT 360716 $1.26 360740 $1.26
Swap 1049796 $3.67 1429487 $5.00

93

6.6 Related Work

Up to the best of our knowledge, Aegis is the first academic work which presents

privacy preserving atomic swap for NFTs. Aegis has two key components that provide

privacy for NFTs and balances. Although, there is no academic work tackling NFTs

privacy, there are existing protocols [13,50,65] for adding privacy to users’ balance transfer

transactions.

Zether [13] is a protocol for making private payments in Ethereum. It utilizes

Elgamal encryption to hide users’ balance in addition to Bulletproofs [14] to prove the

correctness of transferred amounts. The key disadvantage of Zether is that it only hides

the transferred amounts leaving the sender and recipient identities public. Furthermore,

a single Zether transaction costs roughly 7.8m gas. In Aegis, the identities of users are

hidden using SoK and relayers. Moreover, the gas cost for transactions in Aegis is very

cheap compared to Zether.

Zeth [65] is a protocol that implements ZeroCash on top of Ethereum. In the Zeth,

the identities of sender and recipients are not fully hidden since an observer can track

identities by checking the gas payer. A simple solution using relayers alone is insufficient

as relayers can hijack users’ withdraw proofs and steal the withdrawn amounts to their

addresses. Furthermore, Zeth utilize a complicated JoinSplit circuit which also involves

verification of ciphertext, in addition to using SHA-256 as a hash function for generating

commitments and building Merkle trees. Aegis solves the relayers trust problem as well

as using Poseidon hash function for computing commitments and verifying Merkle proofs,

while using SHA256 to bind the statement signals in the optimized circuits which adds a

constant overhead that does not scale with Merkle tree depth.

Möbius [50] is a mixer protocol on top of Ethereum. It utilizes linkable ring sig-

nature and stealth address primitives [56] to hide the address of the true sender and the

recipient. However, in Möbius, the size of the anonymity set is limited to the size of the

ring, and the gas cost of the withdrawing transaction increases linearly with the size of

94

the ring. Thus, in term of privacy, Aegis balance pool offers a bigger anonymity set that

scales exponentially with Merkle tree depth, while incurring a constant verification cost.

AMR [49] is a censorship resilient mixer, which incentives users in a privacy-

preserving manner for participating in the system. The paid-out rewards can take the

form of governance tokens to decentralize the voting on system parameters, similar to

how popular ”Decentralized Finance (Defi) farming” protocols operate. Moreover, by

leveraging existing Defi lending platforms, AMR allows participating clients to earn fi-

nancial interest on their deposited funds. While AMR and Aegis share the objective of

adding privacy to users’ transactions, they have different goals and properties. Further-

more, Aegis provides a complete system for trading NFTs in a privacy preserving manner,

while AMR provides a mixing service which is inherent in Aegis; however, without an

added incentive.

6.7 Summary

We present Aegis as a privacy-preserving protocol for trading NFTs. Aegis ensures

that an observer cannot determine the seller, buyer, NFT, and the payment amount.

Furthermore, the swap is guaranteed to be fair such that either both parties get the

counter-party’s asset or none does. We develop a prototype to evaluate the performance

of Aegis in terms of off-chain and on-chain performance. Based on the results, we believe

that Aegis is practical to deploy and compatible with existing NFT standard interface.

For future work, we will investigate improving Aegis such that it also handles sealed-

bid auction for NFTs in order to prevent front-running while preserving users’ privacy.

Additionally, we will investigate adding support for fractional and composite NFTs.

95

Chapter 7

Conclusion and Future Work

7.1 Summary

In this section, we give a brief summary of the contribution accomplished in this

thesis. We have studied the inherent privacy issue in blockchain with a public ledger.

Particularly, we have focused on the lack of privacy in protocols utilizing Ethereum smarts

contract. To address those problems, we have proposed privacy-preserving protocols using

cryptographic primitives, especially, zero-knowledge proofs. In the following, we report

the conclusion of the thesis.

In Chapter 3, we studied the privacy issue with digital assets trading on Ethereum

using auctions. Open cry auctions on Ethereum are susceptible to front-running and

manipulation by a malicious auctioneer. Hence, we proposed three sealed-bid auction

protocols that are resilient to front-running and are publicly verifiable. The first protocol

was our initial attempt, and it provided partial privacy to bidders since the auctioneer

could access the plaintext bids. Furthermore, the verification cost was high and scaled

linearly with the number of bidders. In the second protocol, we utilized zkSNARK to

significantly reduce the verification cost; however, it had the same weakness of providing

partial privacy. Finally, in the third protocol, we managed to achieve the cheapest veri-

96

fication cost and full privacy by utilizing a trusted execution environment. However, the

protocol requires stronger security assumptions in the hardware vendor.

In Chapter 4, we analyzed the privacy issue with decentralized exchanges, which

posed a major disadvantage for financial institutions. We designed publicly verifiable

secrecy preserving periodic auction protocol. The building blocks for the protocol are

two zero-knowledge proofs, namely, proof of consistent commitment encryption and proof

of ordering. The protocol scales logarithmically with the number of orders and provides

partial privacy.

In Chapter 5, we investigated the privacy issue in inter-bank payments and the

dependency on central banks to settle payments on a gross basis. We designed a privacy-

preserving decentralized protocol that resolves payments gridlock on a net basis. Further-

more, we enhanced participants’ privacy by hiding the links between senders and recipi-

ents while providing confidentiality to payment amounts. The protocol utilizes zkSNARK,

which yields a constant verification cost and proof size. Furthermore, the protocol main-

tains full privacy as each party has access to their private data only.

In Chapter 6, we studied the lack of privacy in the standard specifications of NFTs.

We presented Aegis as a privacy-preserving protocol for trading NFTs. Aegis ensures that

an observer cannot determine the seller, buyer, NFT, and the payment amount. Further-

more, the swap is guaranteed to be fair such that either both parties get the counter-party’s

asset or none does. Aegis utilizes zkSNARK to achieve constant verification cost and proof

size.

7.2 Future Work

In this section, we discuss some topics that could be of interest for future research.

• There is a potential for using secure multi-party computation to build full privacy-

preserving protocols, yet their performance could be much lower than those using

97

zero-knowledge proofs. Furthermore, the number of rounds and interactivity in

MPCs could be a challenging issue. Hence, there are open problems in this direction

for future research.

• For decentralized exchanges, we focused on the order-book type of exchanges which

requires order matching. Fortunately, there is a better design that utilizes Automated

Market Maker (AMM) to swap assets using constant product function. Current

AMM design lacks privacy; therefore, improving its privacy is an interesting research

problem to investigate.

• NFTs are gaining a lot of attention, and definitely, privacy is a crucial feature to

maintain to gain mass adoption. We developed Aegis as a privacy solution for trading

NFTs using atomic swap. Recent constructions such as fractionalized NFTs are far

challenging and need further analysis and research to improve their privacy.

98

Bibliography

[1] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient

encryption and cryptographic hashing with minimal multiplicative complexity. In

Advances in Cryptology – ASIACRYPT 2016, pages 191–219. Springer, 2016.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for CPU

based attestation and sealing. In Proceedings of the 2nd international workshop on

hardware and architectural support for security and privacy, volume 13, page 7. ACM,

2013.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,

B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,

M. Vukolić, S. W. Cocco, and J. Yellick. Hyperledger Fabric: A Distributed Operat-

ing System for Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys

Conference, pages 1–15. ACM, 2018.

[4] M. L. Bech and K. Soramäki. Gridlock resolution in interbank payment systems.

Bank of Finland Research Discussion Paper, 2001.

[5] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero

knowledge for a von Neumann architecture. In USENIX Security Symposium, pages

781–796. USENIX, 2014.

99

[6] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to

digital signatures. In Workshop on the Theory and Application of of Cryptographic

Techniques, pages 274–285. Springer, 1993.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak. In Advances in

Cryptology – EUROCRYPT 2013, pages 313–314. Springer, 2013.

[8] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of clients in

Bitcoin P2P network. In Proceedings of the 2014 SIGSAC Conference on Computer

and Communications Security, pages 15–29. ACM, 2014.

[9] E.-O. Blass and F. Kerschbaum. Strain: A secure auction for blockchains. In ES-

ORICS, volume 11098, pages 87–110. Springer, 2018.

[10] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo infinite: Recursive zk-snarks

from any additive polynomial commitment scheme. IACR Cryptol. ePrint Arch.,

2020:1536, 2020.

[11] S. Bowe, A. Gabizon, and M. D. Green. A multi-party protocol for constructing

the public parameters of the pinocchio zk-SNARK. In International Conference on

Financial Cryptography and Data Security, volume 10958, pages 64–77. Springer,

2018.

[12] E. F. Brickell, D. Chaum, I. B. Damg̊ard, and J. van de Graaf. Gradual and verifiable

release of a secret. In Conference on the Theory and Application of Cryptographic

Techniques, volume 293, pages 156–166. Springer, 1987.

[13] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart

contract world. In Financial Cryptography and Data Security, volume 12059, pages

423–443. Springer, 2020.

100

[14] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:

Short proofs for confidential transactions and more. In 2018 IEEE Symposium on

Security and Privacy, pages 315–334. IEEE, 2018.

[15] B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers. In

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 677–706. Springer, 2020.

[16] V. Buterin and C. Reitwiessner. Precompiled contracts for optimal ate pairing check

on the elliptic curve alt bn128. https://eips.ethereum.org/EIPS/eip-197. Ac-

cessed: 20-12-2021.

[17] S. Cao, Y. Yuan, A. De Caro, K. Nandakumar, K. Elkhiyaoui, and Y. Hu. De-

centralized privacy-preserving netting protocol on blockchain for payment systems.

In International Conference on Financial Cryptography and Data Security. Springer,

2020.

[18] J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui. MPC joins the dark side. In

Proceedings of the 2019 ACM Asia Conference on Computer and Communications

Security, pages 148–159. ACM, 2019.

[19] J. Chapman, R. Garratt, S. Hendry, A. McCormack, and W. McMahon. Project

Jasper: Are distributed wholesale payment systems feasible yet. Financial System,

59, 2017.

[20] D. Chaum. Blind signatures for untraceable payments. In Advances in cryptology,

pages 199–203. Springer, 1983.

[21] C. Chinchilla. Byzantium Hard Fork. https://github.com/ethereum/wiki/wiki/

Byzantium-Hard-Fork-changes. Accessed: 20-12-2021.

101

https://eips.ethereum.org/EIPS/eip-197
https://github.com/ethereum/wiki/wiki/Byzantium-Hard-Fork-changes
https://github.com/ethereum/wiki/wiki/Byzantium-Hard-Fork-changes

[22] Top 100 cryptocurrencies by market capitalization. https://coinmarketcap.com.

Accessed: 20-12-2021.

[23] M. Conti, E. S. Kumar, C. Lal, and S. Ruj. A survey on security and privacy issues

of Bitcoin. IEEE Communications Surveys and Tutorials, 20:3416–3452, 2018.

[24] Decentraland. https://market.decentraland.org. Accessed: 20-12-2021.

[25] Reduce alt bn128 precompile gas costs. https://eips.ethereum.org/EIPS/

eip-1108.

[26] Ethereum Name Service. https://app.ens.domains/. Accessed: 20-12-2021.

[27] W. Entriken, D. Shirley, J. Evans, and N. Sachs. EIP-721: Non-fungible token

standard, 2018. URL https://eips.ethereum.org/EIPS/eip-721.

[28] Foundation. https://foundation.app/artworks. Accessed: 20-12-2021.

[29] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over Lagrange-

bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint

Arch., 2019:953, 2019.

[30] H. S. Galal, M. ElSheikh, and A. M. Youssef. An efficient micropayment channel on

Ethereum. In Data Privacy Management, Cryptocurrencies and Blockchain Technol-

ogy, volume 11737, pages 211–218. Springer, 2019.

[31] H. S. Galal and A. M. Youssef. Succinctly verifiable sealed-bid auction smart contract.

In Data Privacy Management, Cryptocurrencies and Blockchain Technology, volume

11025, pages 3–19. Springer, 2018.

[32] H. S. Galal and A. M. Youssef. Verifiable sealed-bid auction on the Ethereum

blockchain. In Financial Cryptography and Data Security, FC 2018 International

Workshops, volume 10958, pages 265–278. Springer, 2018.

102

https://coinmarketcap.com
https://market.decentraland.org
https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1108
https://app.ens.domains/
https://foundation.app/artworks

[33] H. S. Galal and A. M. Youssef. Trustee: Full privacy preserving vickrey auction on top

of Ethereum. In Financial Cryptography and Data Security, FC 2019 International

Workshops, volume 11599. Springer, 2019.

[34] H. S. Galal and A. M. Youssef. Privacy preserving netting protocol for inter-bank

payments. In Data Privacy Management, Cryptocurrencies and Blockchain Technol-

ogy, pages 319–334. Springer, 2020.

[35] H. S. Galal and A. M. Youssef. Publicly verifiable and secrecy preserving periodic

auctions. In Financial Cryptography and Data Security, FC 2021 International Work-

shops, volume 12676, pages 348–363. Springer, 2021.

[36] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and

succinct NIZKs without PCPs. In Advances in Cryptology – EUROCRYPT, pages

626–645. Springer, 2013.

[37] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:

A new hash function for zero-knowledge proof systems. In 30th USENIX Security

Symposium, pages 519–535. USENIX, 2021.

[38] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in

Cryptology – EUROCRYPT 2016, pages 305–326. Springer, 2016.

[39] J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from

simulation-extractable snarks. In Advances in Cryptology – CRYPTO 2017, pages

581–612. Springer, 2017.

[40] M. Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016.

[41] Iden3. Circom: Circuit compiler. https://github.com/iden3/circom, 2021. Ac-

cessed: 20-12-2021.

103

https://github.com/iden3/circom

[42] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. Intel® software guard

extensions: EPID provisioning and attestation services. White Paper, 1:119, 2016.

[43] C. S. Jutla. Upending stock market structure using secure multi-party computation.

IACR Cryptology ePrint Archive, 2015:550, 2015.

[44] C. M. Kahn and W. Roberds. Real-time gross settlement and the costs of immediacy.

Journal of Monetary Economics, 47(2):299–319, 2001.

[45] S. Klein. Introduction to electronic auctions, volume 7. Taylor & Francis, 1997. 3–6

pp.

[46] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts. In IEEE Symposium

on Security and Privacy, pages 839–858. IEEE, 2016.

[47] A. Kosba, D. Papadopoulos, C. Papamanthou, and D. Song. MIRAGE: Succinct

arguments for randomized algorithms with applications to universal zkSNARKs. In

29th USENIX Security Symposium, pages 2129–2146. USENIX, 2020.

[48] P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in Bitcoin using

P2P network traffic. In Financial Cryptography and Data Security, pages 469–485.

Springer, 2014.

[49] D. V. Le and A. Gervais. Amr: Autonomous coin mixer with privacy preserving

reward distribution. In Proceedings of the 3rd ACM Conference on Advances in

Financial Technologies, pages 142–155. ACM, 2021.

[50] S. Meiklejohn and R. Mercer. Möbius: Trustless tumbling for transaction privacy.

Proceedings on Privacy Enhancing Technologies, pages 105–121, 2018.

[51] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,

and S. Savage. A fistful of bitcoins: Characterizing payments among men with no

104

names. In Proceedings of the 2013 Conference on Internet Measurement Conference,

page 127–140. ACM, 2013.

[52] R. C. Merkle. A digital signature based on a conventional encryption function. In

Conference on the theory and application of cryptographic techniques, pages 369–378.

Springer, 1987.

[53] S. Micali and M. O. Rabin. Cryptography miracles, secure auctions, matching prob-

lem verification. Communications of the ACM, 57:85–93, 2014.

[54] Markets in Financial Instruments Directive II . https://www.esma.europa.eu/

policy-rules/mifid-ii-and-mifir, 2018. Accessed: 20-12-2021.

[55] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[56] S. Noether. Ring signature confidential transactions for monero. IACR Cryptol.

ePrint Arch., 2015:1098, 2015.

[57] B. Norman. Liquidity saving in real-time gross settlement systems. Journal of Pay-

ments Strategy & Systems, 4:261–276, 2010.

[58] D. Omahony, M. Peirce, and H. Tewari. Electronic payment systems. Artech House

Norwood, 1997.

[59] OpenZeppelin. Sending gasless transactions. https://docs.openzeppelin.com/

learn/sending-gasless-transactions. Accessed: 20-12-2021.

[60] D. C. Parkes, C. Thorpe, and W. Li. Achieving trust without disclosure: Dark pools

and a role for secrecy-preserving verification. In Proceedings of the Third Conference

on Auctions, Market Mechanisms and Their Applications. ACM, 2015.

[61] Project Ubin: central bank digital money using distributed ledger technology. https:

//www.mas.gov.sg/schemes-and-initiatives/Project-Ubin. Accessed: 20-12-

2021.

105

https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://docs.openzeppelin.com/learn/sending-gasless-transactions
https://docs.openzeppelin.com/learn/sending-gasless-transactions
https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin
https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin

[62] C. Reitwiessner. Precompiled contracts for addition and scalar multiplication on the

elliptic curve alt bn128. https://eips.ethereum.org/EIPS/eip-196. Accessed:

20-12-2021.

[63] Reuters. NFT sales surge to $10.7 billion in q3. https://money.usnews.com/

investing/news/articles/2021-10-04/nft-sales-surge-to-107-billion,

2021. Accessed: 20-12-2021.

[64] R. L. Rivest and A. Shamir. PayWord and MicroMint: two simple micropayment

schemes. In International workshop on security protocols, pages 69–87. Springer,

1996.

[65] A. Rondelet and M. Zajac. Zeth: On integrating zerocash on Ethereum. arXiv

preprint arXiv:1904.00905, 2019.

[66] D. C. Sánchez. Raziel: Private and verifiable smart contracts on blockchains. arXiv

preprint arXiv:1807.09484, 2018.

[67] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.

Zerocash: Decentralized anonymous payments from Bitcoin. In IEEE Symposium on

Security and Privacy, pages 459–474. IEEE, 2014.

[68] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Supporting third party attes-

tation for intel® SGX with intel® data center attestation primitives. Intel White

paper, 2018.

[69] SEC charges Citigroup for dark pool misrepresentations. https://www.sec.gov/

news/press-release/2018-193, 2018. Accessed: 20-12-2021.

[70] SEC charges ITG with misleading dark pool subscribers. https://www.sec.gov/

news/press-release/2018-256, 2018. Accessed: 20-12-2021.

106

https://eips.ethereum.org/EIPS/eip-196
https://money.usnews.com/investing/news/articles/2021-10-04/nft-sales-surge-to-107-billion
https://money.usnews.com/investing/news/articles/2021-10-04/nft-sales-surge-to-107-billion
https://www.sec.gov/news/press-release/2018-193
https://www.sec.gov/news/press-release/2018-193
https://www.sec.gov/news/press-release/2018-256
https://www.sec.gov/news/press-release/2018-256

[71] Barclays, credit suisse charged with dark pool violations. https://www.sec.gov/

news/pressrelease/2016-16.html, 2016. Accessed: 20-12-2021.

[72] M. Seifelnasr, H. S. Galal, and A. M. Youssef. Scalable open-vote network on

Ethereum. In Financial Cryptography and Data Security, FC 2020 International

Workshops, volume 12063, pages 436–450. Springer, 2020.

[73] SnarkJS: JavaScript implementation of zkSNARKs. https://github.com/iden3/

snarkjs. Accessed: 20-12-2021.

[74] C. Thorpe and D. C. Parkes. Cryptographic securities exchanges. In Financial

Cryptography and Data Security, pages 163–178. Springer, 2007.

[75] Yellowheart. https://yh.io. Accessed: 20-12-2021.

[76] X. Wang, X. Xu, L. Feagan, S. Huang, L. Jiao, and W. Zhao. Inter-bank payment sys-

tem on enterprise blockchain platform. In 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), pages 614–621. IEEE, 2018.

[77] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper, 151, 2014.

[78] Zora. https://zora.co/collections/zora/145. Accessed: 20-12-2021.

107

https://www.sec.gov/news/pressrelease/2016-16.html
https://www.sec.gov/news/pressrelease/2016-16.html
https://github.com/iden3/snarkjs
https://github.com/iden3/snarkjs
https://yh.io
https://zora.co/collections/zora/145

	List of Figures
	List of Tables
	List of Acronyms
	Chapter Introduction
	Overview
	Motivation
	Contributions
	Thesis Outline

	Chapter Background
	Cryptographic Primitives
	Notation
	Digital Signatures
	ElGamal Encryption
	Commitment Schemes
	Pseudorandom Functions
	Cryptographic Accumulator

	Zero-Knowledge Proofs of Knowledge
	Zero-Knowledge Proof of Interval Membership
	Bulletproofs
	zkSNARK

	Intel Software Guard Extensions
	Sealing
	Remote attestation

	Ethereum

	Chapter Sealed-bid Auctions
	Introduction
	Related Work
	Protocol 1: Using ZKP of Interval Membership
	Auction Smart Contract

	Protocol 2: Using zkSNARK
	Auction Smart Contract

	Protocol 3: Using Intel SGX
	System Overview
	Trustee Construction

	Evaluation
	Summary

	Chapter Periodic Auctions
	Introduction
	Related Work
	Preliminaries
	Evaluator-Prover Model
	Consistent Commitment Encryption (CCE)
	Proving Correctness of Sort

	Periodic Auction Protocol
	System Model
	High-Level Flow of the Protocol
	Auction Smart Contract
	Phase Three: Matching Orders

	Performance Evaluation
	Environment
	Evaluation

	Summary

	Chapter Decentralized Netting Protocol
	Introduction
	Related Work
	The Netting Problem
	Decentralized Netting Protocol

	Privacy Preserving Netting Protocol Design
	Overview of the Protocol
	Setup
	Initializing Ex-ante Balance
	Submitting Payment Instructions
	Updating Settlement Indicators
	Updating Ex-Post Balance

	Performance Evaluation
	Evaluations
	Limitations of Decentralized Netting Protocol

	Summary

	Chapter Privacy Preserving Market for Non-Fungible Tokens
	Introduction
	Aegis Overview
	Protocol Participants
	Aegis Transactions
	Threat Model
	System Goals

	Aegis Detailed Construction
	Building Blocks
	Aegis Setup
	Deposit Transactions
	Withdrawal Transactions
	Atomic Swap

	Security Analysis
	Privacy Analysis
	Balance Analysis
	Analysis of Other Goals

	Evaluation
	Cryptographic Primitives
	Performance Measurement

	Related Work
	Summary

	Chapter Conclusion and Future Work
	Summary
	Future Work

	Bibliography

