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Abstract

Development of Deep Learning Techniques for Image Super Resolution

Alireza Esmaeilzehi, Ph.D.

Concordia University, 2022

The images to be used in many of the real-life applications, such as medical imaging, in-

telligent transportation systems and space explorations, are not of a sufficient quality in

view of the degradation processes associated with the image capturing devices. In recent

years, deep neural networks have emerged as a sophisticated tool for image restoration.

However, many of the existing deep neural networks for image restoration employ a large

number of parameters for providing high performance, thus prohibiting their deployment

in applications with the constraints on memory and power consumption. Hence, the design

of high-performance image restoration convolutional neural networks that employ small

number of parameters is of paramount importance. As the performance of deep networks

is closely related to the richness of features produced by them, the objective of the thesis

is to design deep image restoration neural networks that are capable of producing rich sets

of features by using only a small number of parameters. In this thesis, this objective is

met by using the suitable prior information associated the degradation processes of the im-

age capturing devices. Three specific degradation models, namely, bicubic downsampling,

Gaussian blurring coupled with downsampling and JPEG compression blocking, are con-

sidered in designing a number of deep light-weight image restoration networks.

With regard to the first degradation model, i.e., bicubic downsampling operation, sev-

eral image super resolution networks using the different prior information about this op-

eration are developed. Specifically, four different prior information, namely, multi-scale
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feature generation, guided feature generation, efficient feature fusion and sparsity prior, are

used for developing light-weight image super resolution networks. As to the second degra-

dation model, i.e., Gaussian blurring coupled with downsampling, two deep networks, in

which the blurred version of the high-quality images are used in the context of global

residual learning as the prior information, are proposed. Finally, with respect to the third

degradation model, i.e., JPEG blocking artifacts, two information, namely, robust features

generated by the maxout activation units and the high-frequency components generated

by the fractal neural networks, are used as prior information to propose couple of image

restoration networks.

Extensive experiments are carried out to validate the effectiveness of the various ideas

and schemes developed in this thesis for improving the quality of degraded images.
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Chapter 1

Introduction

1.1 Importance of Image Restoration

Image restoration is an important task in image processing and computer vision and tries

to enhance the quality of images degraded by various processes. This task can be cate-

gorized into many ill-posed problems such as image super resolution, image deblurring,

image denoising, JPEG image deblocking and image demosaicing. Due to the physics of

the image acquisition systems, the image restoration modules must be employed at the ini-

tial stage in almost all situations, where the images should be processed. To delineate more,

the image signal processing of imaging systems results in generating raw images with blur

(due to the point spread function of cameras and/or motion), noise (due to the imaging

sensors) and compression artifacts and a size that could be smaller than that of the origi-

nal continuous-space scenes (due to the sampling process carried out in A/D converters).

Hence, the quality of these raw images must be improved right after they are acquired.

Image restoration has a wide-range of applications from medical imaging systems such

as CT and MR systems to intelligent vehicles and transportation systems. For instance,

it is well-known that due to the limited imaging time and dose considered to construct a

medical image, its quality is not as good as physicians desire to have. As another example,
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in the intelligent vehicles, even though other image acquisition devices, such as LiDAR

(light detection and ranging) and radar sensors, have recently emerged, camera perhaps is

still the most useful imaging modality used by these vehicles. Cameras in Tesla models

have been used in their auto-pilot self-driving systems, since they can provide a 360 degree

view of the surroundings. However, the quality of the images acquired by cameras are not

as satisfactory as the self-driving visual recognition systems require.

From the above paragraphs, it can be concluded that image restoration is a necessary

and crucial task in many technologies that use image signals for their proper functioning.

1.2 Image Degradation Models

1.2.1 Image Blurring and Downsampling

The degradation in image super resolution is a decimation process that includes blurring

and downsampling. If x[m,n] (0 ≤ m ≤ aM and 0 ≤ n ≤ aN ) and y[m,n] (0 ≤ m ≤M

and 0 ≤ n ≤ N ) are the high and low resolution images, respectively, the decimation

process can be modeled as

p[m,n] = x[m,n] ∗ h[m,n]

y[m,n] = p[am, an]

(1.1)

where h[m,n] is the blurring kernel that is assumed to be a bicubic kernel, a is scaling

factor, ∗ represents the convolution operation and p[m,n] is the blurred signal. The bicubic

kernel is a separable two dimensional function that can be formulated as

h(r, s) = h(r)h(s)

h(r) =

 sinc(r)sinc( r
a
) −a < r < +a

0 otherwise

(1.2)
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Figure 1.1: Bicubic kernel for a=4 in relation (1.2).

Figure 1.2: The decimation process in frequency domain. (a) original spectrum. (b)
smoothing (blurring). (c) downsampling (one period).

This kernel is illustrated in Fig. 1.1 for a=4. The Fourier transform of this bicubic kernel

is a rectangular pulse and when this filter is applied to an image, it will simulate blurring.

The frequency domain representation of (7.1) is given by

P (ejϕ, ejψ) = X(ejϕ, ejψ)H(ejϕ, ejψ)

Y (ejϕ, ejψ) =
1

a2

a−1∑
k=0

a−1∑
l=0

P (ej(
ϕ−2kπ
a

), ej(
ψ−2lπ
a

))
(1.3)

where ϕ and ψ are the spatial frequencies. Fig. 1.2 illustrates an example of the decimation

process. Fig. 1.2 (a) shows the frequency spectrum of a two-dimensional signal (image),
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Figure 1.3: The interpolation process in frequency domain. (a) upsampling. (b)
smoothing. (c) residual (one period).

x[m,n]. Fig. 1.2 (b) depicts the frequency response corresponding to the lowpass filtered

image, P (ejϕ, ejψ). It is noted from the spectrum of the blurred image, p[m,n], that some of

the high frequency contents of x[m,n] are lost. Fig. 1.2 (c) shows the spectrum Y (ejϕ, ejψ)

of the downsampled image y[m,n]. We observe from this figure that the dynamic range of

the decimated image has been compressed. Further, due to the periodic extension of the

spectrum, shown in Fig. 1. 2(c) to the high frequency range, the decimated image y[m,n]

would have ringing effects around its edges.

If x̃[m,n] is the interpolated low resolution image, then the relation between it and the

decimated image y[m,n] can be modeled as

q[m,n] =

 y[m
a
, n
a
] m,n = 0,±a,±2a, ...

0 otherwise

x̃[m,n] = q[m,n] ∗ a2h[m,n]

(1.4)
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where q[m,n] is the upsampled image. The relation is given by (7.2) in the frequency

domain can be expressed as

Q(ejϕ, ejψ) = Y (ejaϕ, ejaψ)

X̃(ejϕ, ejψ) = Q(ejϕ, ejψ)a2H(ejϕ, ejψ)

(1.5)

Fig. 1.3 presents results of the interpolation process in the frequency domain of the dec-

imated image corresponding to the one shown in Fig. 1.2 (c). The spectrum of the up-

sampled image is shown in Fig. 1.3 (a). From this figure it is seen that the baseband of

the spectrum of the upscaled image q[m,n] has been compressed. Finally, the lowpass

filter h[m,n] is applied to recover the interpolated version of the decimated signal. Fig 3

(b) shows the spectrum of the interpolated image corresponding to the original image with

spectrum shown in Fig. 1.2 (a). A comparison of Fig. 1.2 (a) and Fig. 1.3 (b) shows that

most of the high frequency components are gone; however, due to the aliasing effect, the

interpolated image x̃[m,n] will still have some blurriness as well as ringing effect. Fig. 3

(c) shows the difference between the spectrum of the original image and that of the final

interpolated image. For the spectrum of the interpolated image to be a replica of the origi-

nal image, the difference must ideally have a zero value at all frequencies. The fact that the

spectrum of Fig. 1.3 (c) has some significant non-zero components implies that the original

and interpolated images do not have a perfect correlation.

1.2.2 JPEG Compression Image Blocking Model

Image compression compacts the useful information in an image. JPEG is one of the clas-

sical schemes for image compression that is commonly employed in real-world problems.

Since JPEG is a block based compression scheme, the restored images using JPEG com-

pressed images suffer from blocking artifacts.

JPEG compression scheme is based on block transformation. First, the image is divided
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into blocks of size 8× 8 and then each block is transformed into the DCT domain as

Xc[k, l] = 4
M−1∑
m=0

N−1∑
n=0

x[m,n] cos(
kπ(2m+ 1)

2M
)

cos(
kπ(2n+ 1)

2N
)

0 ≤ k ≤M − 1, 0 ≤ l ≤ N − 1

(1.6)

where Xc[k, l] is the DCT transform of the block (two-dimensional signal) x[m,n]. Next,

the DCT coefficients of each block are quantized and inputted to an entropy coder such

as Huffman coding. For the reconstruction process, the coded coefficients are fed into

an entropy decoder and then inputted to a dequantizer. Finally the inverse DCT (IDCT)

is applied on the dequantized values and the block is reconstructed. As seen from this

procedure, the blocking effect is unavoidable in JPEG image decompression.

1.3 Importance of Deep Learning-based Image Restora-

tion

Traditionally, the problems of image restoration that are ill-posed and non-convex were

solved by signal processing approaches. There exist many schemes for image restora-

tion that use sparse representation [9], semi-local interpolation [10], fractional transforms

[11] and finite rate of innovations [12]. However, all these hand-crafted image processing

schemes suffer from using approximations such as convexity, that prohibit from having an

optimal solution. In view of the emergence of deep learning and artificial intelligence tech-

niques, an automatic feature extraction tool based on the original and the degraded data

has been created, which directly use data itself as the prior information in order to learn a

non-linear mapping in an end-to-end manner.

A neural network by stacking more layers, each followed by a nonlinear activation
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function, creates a deep network, which increases the learning capability of the network

and consequently improves its performance. In view of this and the availability of ade-

quate computational resources, deep learning techniques have become very attractive in

computer vision and various other fields. Convolutional neural nets, which are very simple

to implement, form a specific category in deep neural networks that have been demon-

strated to provide very promising results. In fact, deep convolutional neural nets try to

extract the most important features to minimize the loss between the estimated signal and

the ground truth, and therefore, provide exceptional performance.

1.4 Brief Literature Review

Most of the deep image restoration techniques use a cascade of convolutional layers and

ReLU (Rectified Linear Unit) activations in conjunction with short and long skip con-

nections in order to form a sophisticated signal processing tool for reconstructing a high

quality image. For example, in the task of image super resolution, the scheme of [28],

referred to as EDSR (Enhanced Deep Super Resolution Network), employs a cascade of

so called basic residual blocks, each consisting of two convolutional layers with a ReLU

activation in-between and a skip connection, in order to map a degraded low-resolution

image to the ground truth image. It should be pointed out that many of these deep learning

based schemes for image restoration employ large numbers of parameters and multiply ac-

cumulate (MACC) operations in order to provide very high quality images [28], [30], [31],

[32]. Considering the limited storage and power consumption of many industrial applica-

tions and technologies, the use of these heavy-weight schemes is impractical. On the other

hand, there exist many deep learning based schemes that employ small numbers of parame-

ters and MACC operations, and hence, they can be deployed to many real-life applications

[14], [16], [68],[4]. For example, the network CARN [14], which uses a cascade of so

called enhanced residual blocks, each employing two group-wise convolutions followed by
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ReLU activations, one point-wise convolution and a skip connection, is such light-weight

network for the task of image super resolution.

1.5 Motivation and Objectives

It is seen from the previous section that the design of light-weight image restoration convo-

lutional neural networks is very crucial in many real-life computer vision applications such

as medical imaging, intelligent transportation systems and space explorations. However,

the performance of such networks is limited in view of the constraint of using small number

of parameters. The quality of the images is very much affected by the various degradation

processes associated with the image capturing devices, such as CCD cameras and sensors.

Since the performance of any convolutional neural network is very much dependent on the

representational capability of features generated by it, the objective of thesis is to develop

different light-weight image restoration networks that are capable of producing rich sets

of feature maps by various kinds of prior information of the degradation operations of the

image capturing devices. In this thesis, we focus on three specific degradation operations,

namely, bicubic downsampling, Gaussian blurring coupled with downsampling and JPEG

compression blocking , and incorporate various kinds of prior information associated with

these three degradation models in the design of the deep light-weight image restoration

networks to produce more representable sets of feature maps. Regarding the first degrada-

tion model, i.e., bicubic donwsampling, various kinds of deep networks are developed each

focusing on a specific prior information, namely, multi-scale feature generation, guided

feature generation and efficient feature fusion. Regarding the second degradation model,

i.e., Gaussian blurring coupled with downsampling, two different networks using the prior

information on this degradation model in the context of global residual learning, are devel-

oped. As for the third degradation model, i.e., JPEG compression blocking, two networks,
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each using a different prior information, are designed.

1.6 Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, we review the image restoration

schemes in the context of super resolution. In Chapters 3, 4, 5 and 6, we develop several

image super resolution networks to enhance the quality of images degraded by the bicubic

downsampling operation of the image capturing devices, using the various prior informa-

tion about this operation. Specifically, in Chapter 3, we develop convolutional networks

that use multi-scale feature generation as the prior information for super resolving the low-

quality images. In Chapter 4, we use the idea of feature generation guided by the informa-

tion drawn by the application of edge operators, spectral transformation and morphological

operators on images, for improving their quality. In Chapter 5, we develop some convo-

lutional neural networks based on the idea of fusion of feature sets produced at different

hierarchical points of the deep network. In Chapter 6, we design an ultralight-weight high-

performance convolutional neural network for the task of image super resolution by using

the bidirectional mapping and sparsity priors. In Chapters 7 and 8, deep image restora-

tion networks are developed based on the Gaussian blurring coupled with downsampling,

and JPEG compression blocking degradation models, respectively. Finally, in Chapter 9,

some concluding remarks are drawn on the work undertaken in this thesis along with some

suggestions for future investigations.
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Chapter 2

Background Materials

In this chapter, we review the state-of-the-art deep learning-based schemes for image restora-

tion.

2.1 Light-weight Super Resolution Networks

The super resolution convolutional neural network, SRCNN, [1] is the first attempt for su-

per resolving low resolution images using a convolutional neural network. SRCNN uses a

three-layer fully convolutional network in order to map a bicubic interpolated version of the

low resolution image to the corresponding ground truth image. Since in this network the

spatial resolution of the low resolution image is increased to that of the ground truth before

feeding it to SRCNN, the nonlinear mapping is carried out in the high resolution space,

thus making the number of operations carried out by the network to be large. In order to

address this problem, the network FSRCNN of [13] is designed to carry out a nonlinear

mapping between the low and high resolution images by first directly applying the low

resolution image to a cascade of small number of convolutional layers and then increasing

the spatial resolution of the resulting maps to that of the ground truth image by employing

a deconvolutional (convolutional transpose) layer. These two networks, however, are not
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sufficiently deep for providing the desired performance.

In [14], the authors have developed a super resolution network CARN by using a small

number of residual blocks that are densely connected. CARN is a deep network that is able

to provide a very good performance using only a small number of parameters. The authors

have succeeded in achieving this by paying special attention to the design of the residual

block of the network. In their residual block, two group convolution operations followed by

a point-wise convolution operation are performed. In the group convolution, the numbers

of parameters and operations are kept low by performing the convolution only on groups

of channels rather than on the entire set of the channels.

The super light-weight super resolution network s-LWSR of [15] uses a cascade of so

called inverse residual blocks in a U-Net architecture. Each inverse residual block con-

sists of two point-wise convolution operations with a depth-wise convolution operation in

between them. The use of the inverse residual block in s-LWSR results in reducing the

number of parameters of the network at the expense of degrading its performance. How-

ever, in order to address this problem, some performance enhancement techniques, such as

removal of nonlinear activations from some of the convolutional layers, have been used in

this network.

Inspired by the lattice structure of filter banks in signal processing, the authors of [16]

have proposed a novel residual block, called the lattice block, for the task of image super

resolution. In the lattice block, two sets of convolutional layers are interconnected in a

lattice structure. Then, the features generated by these two sets of the convolutional layers

are fused in order to form the output of the lattice block. The super resolution network

of LatticeNet [16] employs a cascade of 4 lattice blocks for mapping the input low reso-

lution image to the ground truth image. LatticeNet is the best performing state-of-the-art

light-weight network that presently exists in the literature of single image super resolution.
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2.2 Recursive Super Resolution Networks

In an effort to make the network deep without increasing the number of parameters, recur-

sive neural networks have been developed for the problem of single image super resolution.

The network DRCN [19] employs a single convolutional layer and uses it recursively. The

network DRRN [20] consists of a single residual block involving two convolutional layers

and uses the block recursively. The network MemNet [4] is designed as a cascade of small

number of recursive residual blocks that are densely connected. The network SRFBN [25]

is another example of a deep recursive network. In this network, in each recursion after

the first one, the feature maps of the low resolution image are concatenated with that of the

output of the block by using a feedback connection. All these recursive networks are con-

sidered to be light-weight in view of their employing a small number of parameters and the

depth of the networks is virtually increased through the recursive use of the blocks. How-

ever, this recursive use of the parameter sets results in increasing the number of operations

significantly.

2.3 Gradient-based Super Resolution Networks

There are a couple of deep super resolution convolutional neural networks [17], [18] that

extract the gradients of the feature maps generated by the network and use these gradients

for guiding the process of constructing the super resolved images. The network DEGREE

[17], in addition to employing the usual loss between the ground truth and estimated high

resolution image, also uses the loss between the edges of these two images in order to

train the network. The network SPSR in [18] has an architecture having a structure of

two parallel branches, a super resolution branch and a gradient branch, and produces rich

set of features by generating and fusing the spatial and gradient information about the low

resolution image as well as those of the maps produced at various hierarchical levels. In this
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architecture, the network parameters are optimized in an adversarial training framework.

2.4 Wavelet-based Multi-domain Convolutional Super Res-

olution Networks

There are several studies in many computer vision tasks in which the idea of multi-domain

feature representation using wavelet transform for convolutional neural networks is used.

Among these, the works carried out in [106] and [27] use the idea of combining the wavelet

transform with the convolutional neural networks for the task of single image super resolu-

tion. It has been shown in [106] that by applying the wavelet transform to the low resolution

input and the ground truth images, their manifolds become topologically simpler. Hence,

the use of the wavelet maps of the low resolution and the ground truth images for construct-

ing the training set of a deep super resolution network facilitates its training process. This

network employs a cascade of 5 residual blocks in order to map the wavelet maps of the low

resolution image to those of the ground truth image. In [27], a novel U-Net architecture,

referred to as the multi-level wavelet convolutional network (MWCN), has been proposed

for the task of image super resolution. In this network, pooling and unpooling operations

of the conventional U-Net network are replaced, respectively, by the wavelet pooling and

wavelet unpooling operations. Unlike the conventional pooling and unpooling operations,

the wavelet-based pooling and unpooling operations are inverses of each other, in that the

two operations when applied sequentially restore the original feature maps. Consequently,

the use of such pooling and unpooling operations enables MWCN to provide a high super

resolution performance. However, since the network of MWCN employs convolutional

layers with large number of filters, its complexity in terms of the numbers of parameters

and operations is very large.
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2.5 Deep Heavy-weight Super Resolution Networks

There are a number of networks existing in the literature for single image super resolution

that provide very high performance [28], [30], [32]. The network EDSR [28] is the first

very deep super resolution network that employs a cascade of 32 residual blocks, each con-

sisting of two convolutional layers with a ReLU activation function in between to provide

images of very high quality. The network RCAN [30] is the deepest super resolution net-

work existing in the literature that uses a cascade of 200 residual channel-attention blocks,

each consisting of two convolutional layers and one squeeze-and-excitation unit [33]. Its

performance is superior to that of EDSR [28] with the number of parameters exceeding

15M. The network SAN [31] employs a cascade of residual blocks, each using a second

order channel-attention unit, and provides a performance that is superior to that of RCAN

[30] with a slightly lower number of parameters. In [32], the authors have proposed a deep

heavy-weight convolutional neural network, referred to as DBPN, that uses a cascade of

up-projection and down-projection units based on the idea of back projection introduced in

[34]. In each of these units, the projection error maps are first obtained by applying upsam-

pling and downsampling layers to the feature maps input to the unit, and then these maps

are used to obtain the residual feature maps of the unit. In [35], a deep heavy-weight su-

per resolution network, referred to as DRN, has been proposed that uses an additional loss

function between the degraded version of the estimated high resolution image and the orig-

inal low resolution image for implementing the idea of back projection [34]. This network

uses a cascade of large number of residual channel attention blocks for super resolving the

degraded low resolution images. The quality of the images super resolved by these net-

works is very high in the sense that it is very similar to that of the ground truth images.

However, the complexity of these networks in terms of the numbers of layers, parameters

and arithmetic operations is extremely high and these networks are considered to be very

deep heavy-weight networks. As such, the training of these networks is not easy, and more
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importantly, the applications of such networks are limited.

2.6 Deep Image Upsampling and Deblurring Networks

The network of [36] is a deblurring network that employs a multi-scale convolutional neu-

ral network in order to map a blurred input image to its ground truth image. In this network,

the blurred image is first passed through a downsampling Gaussian pyramid. Next, the in-

put image and each of its downsampled versions are fed individually to a cascade of basic

residual blocks in order to obtain deblurred images in various scales. In this technique, the

reason behind deblurring the images at various scales is to refine the deblurring result at

each scale by using the deblurring result from the previous scale. These successive refine-

ments result in eventually obtaining a good deblurred image at the original scale.

There are only a couple of schemes, in which the tasks of image upsampling and deblur-

ring have been carried out jointly by using neural networks [37], [38]. In [37], a network,

called gated fusion network (GFN), has been proposed for the task of image upsampling

and deblurring by decomposing the feature extraction step into the streams of deblurring

and super resolution. The network training is carried out using two loss functions, each cor-

responding to one of the two tasks. The deblurred and super resolution features obtained

from the two streams are fused using a gated mechanism. The features resulting from the

gate module are then used for obtaining the deblured high resolution image.

The other work for the joint task of image upsampling and deblurring is the one ap-

pearing in [38]. In this scheme, a network referred to as ASDN, has been developed. The

network is designed to carry out the deblurring task on the blurred low resolution image

followed by a the super resolution task on the resulting deblurred image. The network is

trained using a dual supervised learning mechanism exploiting the dependencies between

the low resolution and high resolution images.
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2.7 Conclusion

It is seen from the literature review carried out in this chapter that although deep heavy-

weight image restoration networks are able to provide very high performances, their appli-

cations in many real-life situations are limited. On the other hand, the deep light-weight

image restoration networks could provide acceptable performances by employing small

numbers of parameters and operations. This makes the use of the deep light-weight image

restoration networks attractive in many real-life applications.
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Chapter 3

Deep Image Super Resolution Networks

using Multi-scale Feature Generation

3.1 Introduction

The convolutional neural networks provide a very affective framework for constructing

high resolution images, in view of their capability of extracting features at different lev-

els and scales and providing a nonlinear model for the super resolution problem, which is

inherently a nonlinear mapping problem. Since different parts of a single image appear

in different scales, a deep convolutional network with a superior capability of generating

multi-scale features would be more desirable for the super resolution problem. In this

chapter, we develop several deep image super resolution networks that use the idea of

multi-scale feature generation in order to provide a high performance [89], [93], [95], [97],

[98]. Different multi-scale feature generation tools in deep neural networks, such as in-

verse sub-pixel convolutional layers, granular multi-scale convolutional layers and dilated

convolutional layers, are used for developing various deep multi-scale neural networks for

image super resolution.
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3.2 PHMNet: A Deep Super Resolution Network using

Parallel and Hierarchical Multi-scale Residual Blocks

In this section, a novel light-weight deep image super resolution network [95], which gen-

erates features at various scales, is presented by proposing a residual block that utilizes

two multi-scale feature generation modules, namely, a parallel multi-scale feature fusion

module and a hierarchical feature fusion module.

The overall architecture of the proposed super resolution network is shown in Fig. 3.1.

In the proposed super resolution scheme, the original low resolution image is first passed

though a convolution operation followed by a ReLU activation resulting in the extraction

of low resolution feature maps. This convolution operation uses 64 filters each of size of

3× 3. The low resolution feature maps are fed as the input to a sequence of 11 units of the

proposed residual block in order to generate multi-scale feature maps. The feature maps

resulting from the last residual block is upsampled to the resolution of the ground truth im-

age by a sub-pixel convolution operation [8] before reconstructing a high resolution image

by a last convolution operation. The sub-pixel convolution operation is performed by em-

ploying 64 filters each of size of 3 × 3, whereas, the reconstruction convolution is carried

out by using 3 filters each of support size of 3× 3.

The proposed residual bock, depicted in Fig. 3.2, consists of three modules, a parallel

multi-scale feature fusion module, a hierarchical feature fusion module and a reconstruc-

tion module.

The first module performs two convolution operations in parallel on the feature maps u

input to the block. The first convolution in this module carries out normal 3×3 convolution

operations using 64 filters and results in feature maps a, whereas the second convolution

carries out dilated 3× 3 convolution operations with a dilation rate of 2 using 16 filters and

produces the feature maps b. The dilated convolution increases the receptive field without
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Figure 3.1: Architecture of the proposed super resolution network.

adding to the complexity of the operations, but at the expense of introducing blind spots

within the receptive fields. The feature maps a and b are concatenated channel-wise to

produce the feature maps d. The basic idea in constructing this module is that the feature

maps d produced by it are multi-sale feature maps, in which the disadvantage of creating

the blind spots in b through the dilated convolution is compensated by the concatenation of

b with a, which is free of such blind spots.

The second module performs a cascade of two sets of convolution operations on the

feature maps d. Both these set of convolutions carry out normal 3 × 3 convolution opera-

tions using 64 filters and result in, respectively, feature maps e and f . The feature maps e

and f are concatenated channel-wise to produce the feature maps g. The main function of

the second module of the residual block is to produce a set of features that is a combination

of feature maps extracted at two different hierarchical levels of abstractions.

Finally, in the reconstruction module, the number of channels of the feature tensor g

(this number of channels is 128) is reduced to that of the feature tensor u input to the block

by performing point-wise convolution operations on g using 64 filters. Lastly, the resulting

feature tensor w is added to the feature tensor u in order to construct the residual block’s

output feature maps v.

It is to be noted that the first module produces a set of feature maps that is extracted

explicitly at two different scales. On the other hand, the second module produces a set

19



Figure 3.2: Architecture of the proposed residual block. Di. Conv. and PW Conv.
represent the dilated convolution operation and point-wise convolution operation,
respectively.

of feature maps that is still a combination of features at two different scales, however, ex-

tracted indirectly at two different hierarchical levels of abstraction. In the final analysis,

the proposed residual block can be regarded to produce multi-scale feature maps, where

the feature extraction at different scales are carried out using different strategies.

The proposed super resolution network shown in Fig. 3.1 is referred to as Super Reso-

lution Network with Parallel and Hierarchical Multi-scale residual blocks (PHMNet) [95].

To train the proposed super resolution network, the sub-images of size 48× 48 are ex-

tracted from the 800 training images of the DIV2K dataset [42]. The `1 norm loss between

the ground truth and estimated high resolution images is used to update the weights of the

network. The weights of the network are optimized using the stochastic gradient descent

optimizer, in which the learning rate is initialized by 0.1 and is decreased by a factor of

10 after each 182500 iterations. The weights of the network are initialized by the method

proposed in [7].

The proposed super resolution network is implemented using Keras library [40] and

TensorFlow package [41]. PHMNet is trained using a machine with Intel Core i7 CPU

@4.2 GHz, 16-GB RAM and Nvidia Titan X GPU.
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3.3 MGHCNet: A Deep Multi-scale Granular and Holis-

tic Channel Feature Generation Network for Image

Super Resolution

Generation and use of multi-scale features is a significant attribute of a network in enhanc-

ing its performance for image super resolution. In this respect, Res2Net [43] has made an

important contribution in that it is capable of generating multi-scale features by splitting

the input to a Res2Net block at the granular level, which keeps the network complexity low.

However, in doing so, the scheme of Res2Net deprives itself from the set of features that

could be generated by using directly all the channels of the tensor input to the block.

This section proposes a residual block that aims at overcoming the limitation of Res2Net

in that it is capable of generating a richer set of residual features that includes the types of

features that are directly extracted from all channels of a tensor input to the block simulta-

neously, while retaining the characteristics of the granular level multi-scale features gener-

ation of Res2Net. The proposed residual block consists of the following three modules:

• Multi-scale Granular Channel Feature Generation Module: Following the scheme

of Res2Net, this module generates multi-scale feature maps at the granular level of

channels.

• Uni-scale Holistic Channel Feature Generation Module: This module generates

holistic channel features at a single scale.

• Concatenative Feature Fusion Module: This module fuses the uni and multi-scale

features generated by the first two modules in order to produce the residual features

of the block.

In the proposed Multi-scale Granular and Holistic Channel Feature Generation Network

(MGHCNet), the original low resolution image is passed through a convolution operation
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followed by a ReLU activation in order to yield the feature maps of the low resolution

image. This convolution operation uses 64 filters with spatial support of 3 × 3. The low

resolution feature maps thus obtained go through a cascade of 16 units of the proposed

residual block, whose architecture is described in the following paragraphs, yielding a very

rich set of high frequency feature maps. These feature maps then undergo a sub-pixel con-

volution operation in order to increase their spatial resolution to that of the ground truth

image. This sub-pixel convolution operation uses 64 filters with spatial support of 3 × 3.

The feature maps with the increased spatial resolution are passed through a convolution

operation to construct the residual signal between the ground truth and the bilinear inter-

polated version of the low resolution image. This convolution operation uses 3 filters with

spatial support of 3× 3.

Fig. 3.3 shows the architecture of the proposed residual block for the network presented

in the previous paragraph. This residual block consists of three main modules, namely,

multi-scale granular channel feature generation module, uni-scale holistic channel feature

generation module and feature fusion module. The feature maps y input to the block are

first passed through a convolution operation followed by a ReLU activation yielding the

feature maps u given by

u = ReLU
(
W1(y)

)
(3.1)

where the convolution operation W1 employs 64 filters each with spatial support of 3 ×

3. Then, the feature maps u are simultaneously passed through the multi-scale granular

channel feature generation module and the uni-scale holistic channel feature generation

module. In the multi-scale granular channel feature generation module, the feature maps u

are split along the channel dimension into four subsets of feature maps, u1, u2, u3 and u4,

each having 16 channels. The feature maps u1 are kept unaltered. The feature maps u2 are
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made to undergo a convolution operation to yield the feature maps v1 as

v1 = W2(u2) (3.2)

where the convolution operation W2 uses 16 filters each with kernel size 3× 3. The feature

maps v1 are then concatenated with the feature maps u3 to produce the feature maps a,

which in turn, are passed through a convolution operation in order to obtain the feature

maps v2. These operations can be expressed as

a = Conc(v1,u3)

v2 = W3(a)
(3.3)

where Conc represents the concatenation operation and the convolution operation repre-

sented by W3 uses 16 filters each with spatial support of 3 × 3. Next, the feature maps

v2 are concatenated with the feature maps u4 to produce feature maps b, which undergo a

convolution operation to yield the feature maps v3 as

b = Conc(v2,u4)

v3 = W4(b)
(3.4)

where the convolution operationW4 uses 16 filters each with spatial support of 3×3. Then,

the feature maps u1, v1, v2 and v3 are concatenated to yield the set of feature maps c. The

feature maps c are passed through a point-wise convolution operation followed by a ReLU

activation yielding the output feature maps p of the multi-scale granular channel feature

generation module. These operations can be expressed as

c = Conc(u1, v1, v2, v3)

p = ReLU
(
W5(c)

) (3.5)
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where the point-wise convolution operation W5 uses 64 filters each with spatial support of

1× 1.

In the uni-scale holistic channel feature generation module, all the channels of the fea-

ture maps u are passed through a convolution operation followed by a ReLU activation

yielding the feature maps q as

q = ReLU
(
W6(u)

)
(3.6)

where the convolution operation W6 uses 64 filters each with spatial support of 3× 3.

Note that the granular channel feature subsets of u, namely, u1, u2, u3 and u4, ex-

perience varying amount of hierarchical depth in view of each going through a different

number of convolution operations. Hence, each of the resulting feature maps v1, v2 and v3

has different receptive fields. As a result, the fusion of v1, v2 and v3 through the operations

of concatenation and point-wise convolution produces a rich set of multi-scale granular

feature maps p. On the other hand, in the second module, a single convolution operation

is performed on all the channels u in their entirety. Therefore, the resulting features q are

uni-scale holistic channel feature maps.

In the feature fusion module of the proposed residual block, feature maps p and q are

fused by concatenating them and then performing a point-wise convolution operation on

the concatenated set as
s = Conc(p,q)

r = W7(s)
(3.7)

where the point-wise convolution operation W7 uses 64 filters each with spatial support of

1 × 1. Since the set of feature maps p is a combination of multi-scale granular channel

features and the set of feature maps q is a uni-scale holistic channel features, the feature

maps r generated by (3.7) can be expected to be a very rich residue. Finally the residual

feature maps r are added to the block’s input feature maps y to obtain its output feature
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Figure 3.3: Architecture of the proposed residual block. Conv., PW Conv., s and c
represent, respectively, convolution, point-wise convolution, split and concatenation
operations.

maps as

z = r + y (3.8)

The sub-images of size 48 × 48 are obtained from the 800 training images of the DIV2K

dataset [42] in order to form the training set for the proposed super resolution network. The

`1 norm loss between the ground truth samples and estimated high resolution images is

used to update the weights of the network in the backpropagation. The stochastic gradient

descent method is used for optimizing the weights of the network. The step size of the

stochastic gradient descent is initialized by the value of 0.1 and decreased by a factor of 10

after each 182500 iterations. The mini-batch size is set to 64. The weight decay parameter

of the convolution operations is set to 10−4.
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3.4 SRNMFRB: A Deep Light-weight Super Resolution

Network using Multi-receptive Field Feature Gener-

ation Residual Blocks

In this section, we propose a new low complexity residual block to be used in a super

resolution network [98]. In the proposed residual block, we use the strategy of generat-

ing features in multiple receptive fields. The new residual block comprises three parallel

branches as follows:

• In the first and the second branches, one and two convolution operations are, respec-

tively, used with the filters of the same spatial support, namely, 3 × 3. Thus, the

features in the two branches are produced, respectively, in receptive fields of 3 by 3

and 5 by 5.

• In the third branch, through convolution, space-to-depth (inverse pixel shuffle) and

depth-to-space (pixel shuffle) operations, the features are produced in a receptive

field of 9 by 9.

The features generated in 9 by 9 receptive field through the convolution, space-to-depth

and depth-to-space operations in the third branch are different from those generated in 3 by

3 and 5 by 5 receptive fields in the first and second branches of the residual block, where

these latter type of features are generated only through the convolution operations. Also, an

additional advantage of generating features in the 9 by 9 receptive field by the third branch

is to keep the number of operations of the block low in comparison to that using additional

two convolution operations to acquire features in a 9 by 9 receptive field. By fusing the

features produced by these branches, a rich set of feature maps generated in the different

receptive fields for the task of image super resolution.

Fig. 3.4 shows the overall architecture of the proposed super resolution network. It

26



Figure 3.4: Overall architecture of the super resolution network.

is seen from this figure that the proposed super resolution network consists of three parts,

namely, feature extraction, feature upsampling and reconstruction. In the feature extrac-

tion part, the features of the low resolution image are first extracted using a convolution

operation followed by a ReLU (rectified linear unit) activation. This convolution operation

uses 64 filters each with kernel size of 3 × 3. Next, the low resolution feature maps thus

obtained are fed to a sequence of 4 units of the proposed residual block. Then, the output

feature maps from the last residual block are input to the feature upsampling part of the

network, which consists of a sub-pixel convolution operation [8] with 64 filters each with

kernel size 3 × 3. Finally, the upscaled feature maps thus produced are made to undergo

the reconstruction part, which consists of a convolution operation with 3 filters each of

spatial support of 3 × 3, in order to reconstruct the residual signal between the target high

resolution image and bilinear interpolated version of the low resolution image. Fig. 3.5

shows the architecture of the proposed residual block. First, the feature maps x input to the

block are passed through a convolution operation followed by a ReLU activation in order

to obtain the feature maps u as

u = ReLU(W1(x)) (3.9)

where the convolution operation W1 uses 64 filters with kernel size of 3× 3. It is seen that

the feature maps u are generated in a receptive field of 3 by 3.
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Figure 3.5: Architecture of the proposed residual block. Conv. and PW Conv. denote,
respectively, convolution and point-wise convolution operations. All of the convolution
operations (except the point-wise convolution operation) are followed by a ReLU
activation function.

The feature maps x are also made to undergo a cascade of two convolution operations

each followed by a ReLU activation yielding the feature maps v as

v = ReLU(W3(ReLU(W2(x)))) (3.10)

where each of the convolution operations W2 and W3 uses 64 filters with kernel size of

3× 3. It is seen that the feature maps v are produced in a receptive field of 5 by 5.

The feature maps x are also passed through a convolution operation followed by a ReLU

activation and a space-to-depth operation with a factor of 2 in order to generate feature maps

a as

a = SD(ReLU(W4(x))) (3.11)
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where the convolution operation W4 uses 8 filters with kernel size of 3× 3 and SD repre-

sents the space-to-depth operation. Then the feature maps a are fed into another convolu-

tion operation followed by a ReLU activation in order to yield the feature maps b as

b = ReLU(W5(a)) (3.12)

where the convolution W5 uses 32 filters with kernel size of 3×3. It is seen that the feature

maps b are produced in a receptive field 7 by 7. Also since these feature maps are generated

at a resolution smaller than that of the low resolution image, they are more robust to the

spatial variation than the feature maps u and v.

Fusing feature maps u, v and b, that are obtained in different receptive fields, gener-

ates a rich set of features for image super resolution. In this regard, we first increase the

resolution of b to that of u and v and then increase its number of channels by performing

a depth-to-space operation with a factor of 2 followed by a convolution operation and a

ReLU activation, yielding the feature maps w as

w = ReLU(W6(DS(b))) (3.13)

where the convolution operation W6 uses 32 filters each with kernel size of 3 × 3 and DS

represents the depth-to-space operation. It should be pointed out that the feature maps w

are obtained in a receptive field 9 by 9. Finally, the feature maps u, v and w are fused using

concatenation followed by a point-wise convolution operation given by

c = Concatenate(u, v,w)

r = W7(c)
(3.14)

where the point-wise convolution operation W7 uses 64 filters each with spatial support of

1×1. Finally, the residual feature maps r are added to the feature maps x input to the block
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and the output feature maps y of the residual block are obtained as

y = r + x (3.15)

In view of generating residual feature maps in various receptive fields by the proposed

residual block, we refer it to as multi-receptive field feature generation residual block.

Also, we refer to the super resolution network using the proposed residual block to as

Super Resolution Network using Multi-receptive Field Feature Generation Residual Block

(SRNMFRB) [98].

The 5840000 RGB sub-images of size 48 × 48 are obtained from the 800 training im-

ages of the DIV2K [42] dataset. The weights of the proposed super resolution network are

optimized using the `1 norm loss between the ground truth and estimated high resolution

samples. The stochastic gradient descent optimizer is employed to optimize the loss func-

tion. The learning rate of the gradient descent optimizer is initialized with a value of 0.1

and decreased by a factor of 10 after each 182500 iterations. The mini-batch size is set to

64. The weights of the network are initialized by the method proposed in [7].

3.5 MISNet: Multi-resolution Level Feature Interpolat-

ing Ultralight-weight Residual Image Super Resolu-

tion Network

Many of the super-resolution convolutional neural networks learn the residue between the

ground truth and a version of the degraded image interpolated to the same resolution as

that of the ground truth image. Since this residual signal is sparse, it is more appropriate

to be learned by a convolutional network. In these networks, generally a large number

of convolutional layers are used to provide a good super-resolution performance. Also,
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Figure 3.6: The architecture of the proposed ultralight-weight super-resolution network.
Conv., PW Conv. and DS denote, respectively, convolution, point-wise convolution and
depth-to-space transpose operations.

since the scales of the objects in generic images vary, adding fused interpolated low level

features generated at multiple resolution levels to the residual features could improve the

super-resolution performance. Therefore, in this section, by incorporating the idea of multi-

resolution level interpolation of the low level features into a residual framework, we de-

velop a novel architecture for the task of single image super-resolution [93]. Since in many

computer vision applications, such as robotics, the visual quality of the super resolved im-

ages is very important, the proposed scheme by focusing on the multi-resolution features

is specifically suited for such applications. It is also worth mentioning that since the archi-

tecture of the proposed multi-resolution level based feature interpolation is a light-weight

architecture and used in a non-recursive manner, the resulting network has an ultralight-

weight character.

Fig. 3.6 shows the architecture of the proposed super-resolution network. Let y denote

the degraded low-resolution image that is input to the network. First, the features of the

low-resolution input image y are obtained by performing a convolution operation followed

by a ReLU activation as

u1 = F1(y) (3.16)
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where F1 denotes the convolution operation, which is carried out by employing 32 filters

each with kernel size 3×3. The low level feature tensor u1 is then passed through a cascade

of four convolutional layers to obtain the high level feature tensor u2 as

u2 = F2(u1) (3.17)

where F2 represents the combined cascade convolution operations of the four layers, in

which each layer uses 32 filters each with kernel size 3× 3 followed by a ReLU activation.

The high level feature tensor u2 is then subjected to a depth-to-space transpose operation

DS followed by a convolution operation F3 yielding the upsampled feature tensor u3 given

by

u3 = F3(DS(u2)) (3.18)

where the operation DS employs a scaling factor s equal to that of the super-resolution

scaling factor, and the convolution operation F3 is carried out using 32 filters each with

kernel size 3× 3.

We also obtain features of the low-level feature tensor u1 at multiple resolution levels.

This is accomplished by the second branch of the architecture. Specifically, features are

obtained involving two resolution levels, s and 2s. The feature tensor v1 at the resolution

level s is obtained by passing the low level feature tensor u1 through a bilinear interpolation

operation with the factor s. Specifically, let u[m,n] denote the two-dimensional signal

representing one channel of the feature tensor u1. The two dimensional signal v[m,n]

representing the corresponding channel in the feature tensor v1 is obtained as

v[m,n] = z[m,n] ∗ h[m,n] (3.19)
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where

z[m,n] =

 u[m
s
, n
s
] m,n = 0,±s,±2s, ...

0 otherwise

h[m,n] =

 (1− |m|
s
)(1− |n|

s
) |m| ≤ s, |n| ≤ s

0 otherwise

(3.20)

The feature tensor v1 is then passed through the operations of convolution F4 and rectifica-

tion to produce the interpolated low level feature tensor v2 given by

v2 = F4(v1) (3.21)

where the convolution operation F4 employs 32 filters each with kernel size 3 × 3. Sim-

ilarly, the feature tensor v3 at the resolution level 2s is obtained again by passing the low

level feature tensor u1 through a bilinear interpolation operation with the factor 2s. The

feature tensor v3 thus obtained is made to undergo a strided convolution operation F5 and

rectification to produce another interpolated low level feature tensor v4 given by

v4 = F5(v3) (3.22)

where the convolution operation F5 employs 32 filters each with kernel size 3 × 3 and a

stride of 2. The feature tensors v2 and v4 are concatenated and the resulting feature tensor

v5 is subjected to a point-wise convolution operation F6 yielding the new interpolated low

level feature tensor v6 given by

v6 = F6(v5) (3.23)

where the point-wise convolution F6 uses 32 filters each with size 1×1. Note that the set of

features represented by v6 has a special characteristic in view of the fact that it is produced

by involving features generated at two resolution levels, namely, s and 2s.
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In order to make the parameters of the architecture to be learnable in a residual frame-

work, the low level multi-resolution level feature tensor v6 is added to the high-level fea-

ture tensor u3 to yield the estimated high-quality feature maps denoted by w. Finally, the

estimated high-resolution image x is constructed by subjecting the feature tensor w to a

convolution operation F7 given by image x as

x = F7(w) (3.24)

where the convolution operation F7 uses 3 filters each with kernel size 3 × 3. We refer

to our proposed network as Multi-resolution Level Feature Interpolating Ultralight-weight

Residual Image Super Resolution Network (MISNet) [93].

The sub-images of size 48×48 are extracted from the 800 images of the DIV2K dataset [42]

in order to form samples for the training of the proposed super-resolution network. The `1

norm of the loss between the ground truth samples in a batch and corresponding estimated

high-resolution samples is minimized in order to obtain the optimal values for the network

parameters. The batch size is set as 64. The stochastic gradient descent optimizer with the

initial learning rate of 0.1 is employed for minimizing the `1 norm loss. The weight decay

parameter of the convolutions is set as 10−4.

3.6 MuRNet: A Deep Recursive Network for Super Reso-

lution of Bicubically Interpolated Images

In many real-world applications, such as printing systems and cameras, the low resolution

images are inherently interpolated to the desired resolution level using the bicubic interpo-

lation operation. Although, the bicubic interpolation operation provides acceptable visual

qualities for the smooth regions of an image, it produces artifacts in the high frequency
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regions of the image such as those containing edges. Many deep learning image super

resolution schemes [28], [44], [30], [31], carry out a mapping between the original low

resolution image and ground truth. However, this prevents their applicability to some of

the real-world applications, in which the interpolated version of the low resolution images

cannot be avoided, since such images result from image capturing devices such as printing

machines.

The focus of the existing deep learning schemes for the image super resolution problem

is to provide high performance. However, this is generally achieved at the expense of an

increased number of parameters. One way of controlling the increase in the number of pa-

rameters is the use of a feature generating block in a recursive framework of the network,

in which an adequate number of recursions involving such a block are carried out so that

the network’s representational capability becomes sufficiently high. Fusing different types

of features could produce richer and more representable feature maps that could enhance

the performance of a super resolution network. The main idea of the proposed scheme [89]

is to design a block that could impart to the network a good representational capability

when used in a recursive framework by generating a rich set of features and fusing them.

In the design of the proposed recursive block, the following three strategies are employed

to produce an enriched combination of features.

• Multi-scale Convolution: Features using different spatial ranges are generated by

employing convolutions with kernels of different sizes, that is, the generated features

are characterized by both the short and long range spatial information.

• Sub-pixel Convolution: Convolution operations followed by a depth-to-space trans-

pose operation (also known as pixel shuffle operation) are carried out in order to

generate features with different resolution levels.

• Feature Fusion: The features produced from different spatial ranges and those from

different resolution levels are fused with the features that are used to produce these
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Figure 3.7: Overall architecture of the proposed super resolution scheme.

Figure 3.8: Architecture of the proposed recursive block.

two types of features in order for the recursive block to provide a very rich and

representational set of feature maps.

The overall architecture of the proposed network for image super resolution is shown Fig.

3.7. The bicubic interpolated low resolution image, whose spatial resolution is the same as

that of the ground truth, is fed to the proposed network. The features of the bicubic inter-

polated image are extracted using a convolutional layer, which employs 64 convolutional

filters each of size 7 × 7. These feature maps are then processed by a recursive block to

be developed and explained in the following paragraphs. Use of a recursive network would

increase the nonlinear mapping capability of the image super resolution scheme, and there-

fore, would result in a better estimation of the high resolution image, if a sufficiently large

number of recursions is used, while keeping the number of parameters of the network un-

changed. However, since the effective depth of the network increases as the number of

recursions is increased, the gradient vanishing problem of the network would appear thus

hindering its learning process. To address this problem, a global residual skip connection
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is used in the proposed scheme through which the residue between the ground truth and

bicubic interpolated image is learnt by the deep network. The output feature maps of the

recursive block after completing all the recursions are fed to a convolutional layer, that em-

ploys a single convolutional filter of size 7 × 7, to obtain the residual image. Finally, the

residual image is added to the bicubic interpolated image and the estimated high resolution

image is yielded.

Our objective in this work is to increase the representational capability of the image su-

per resolution network by extracting and fusing a variety of different types of feature maps,

while at the same time keeping the number of parameters and the number of operations as

low as possible. To lower the number of parameters of the network, the nonlinear mapping

for image super resolution is carried out using a recursive block, which uses the same set

of parameters from one recursion to the next. Since the number of operations in recursive

network is directly proportional to the number of recursions carried out using the recursive

block, special effort is made to have the number of operations carried out by the proposed

recursive block in each recursion to a minimum by keeping its number of parameters as low

as possible. To obtain a rich set of features, two different types of feature maps are gener-

ated in the recursive block. Specifically, features with different spatial ranges and features

at different resolution levels are generated and concatenated with the features input to the

recursive block.

Fig. 3.8 shows the architecture of the proposed recursive block, in which s(i − 1) and

s(i) represent the input and output features of the block in the ith recursion. We now ex-

plain how the two types of features are generated using convolution operations and how the

generated feature maps are fused with the feature maps input to the recursive block.

(i) Feature Generation with Different Spatial Ranges: The convolution operation gen-

erates a new feature value by processing a local information. The smaller and larger size

of convolutional kernels can result in capturing short and long-range local information to
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generate new feature values. The feature maps with these characteristics are obtained by

employing a multi-scale convolution layer in the first branch of the proposed recursive

block. The feature maps u(i) are obtained through applying a multi-scale convolution op-

eration on the input feature maps s(i − 1). The multi-scale convolution is carried out by

performing convolution operations with kernels of different sizes and concatenating the re-

sults. While carrying out the multi-scale convolution, the first 32 channels are obtained by

applying 32 kernels each of size 3× 3 and another 32 channels are obtained by applying 32

kernels each of size 5× 5, and the two sets of feature maps thus obtained are concatenated

to obtain the feature maps u(i).

(ii) Feature Generation at Different Resolution Levels: To generate the features ob-

tained at different resolution levels for image super resolution, one can use a feature map

upscaling method. The deconvolution operation (also known as transposed convolution

operation) and the sub-pixel convolution operation are two of the neural network based

methods for upscaling the feature maps. However, since the former uses zero padding

to increase the spatial resolution of a feature map, the resulting feature maps suffer from

check-board artifacts. Therefore, a sub-pixel convolutional layer is adopted in the second

branch of the proposed recursive block to upscale the feature maps. In order to upscale the

input feature maps s(i − 1), they are made to undergo a sub-pixel convolution operation,

which consists of a convolutional layer with 32 kernels each of size 5 × 5, and a depth-

to-space transpose operation with a depth-to-space factor of 2. Therefore, the resulting

feature tensor a(i) has 8 channels. It should be noted that by using this sub-pixel convo-

lutional layer, the spatial resolution of each feature map in a(i) is increased by a factor

of 2. Feature maps a(i) are further convolved with a convolutional layer using 8 kernels

each of size 3× 3 to obtain the feature maps b(i). By using this convolution operation, the

features in the new resolution level are processed. Thus, the resulting feature tensor b(i)

has 8 channels.
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(iii) Feature Fusion: As mentioned earlier, our objective in designing the recursive

block is to generate a rich set of feature maps with good representational capability. To

this end, we concatenate the two generated feature maps, u(i) and b(i), with the feature

maps that are input to the block, s(i− 1). The spatial dimension of feature maps b(i) has a

mismatch with that of the feature maps s(i− 1) and u(i). Therefore, the spatial resolution

of the channels of b(i) is reduced to that of s(i − 1) and u(i) through a strided convolu-

tional layer with 32 kernels each of size 5 × 5 before the concatenation operation. The

resulting feature tensor v(i) has 32 channels. The stride in this convolution must have the

same value as the depth-to-space factor of the sub-pixel convolution. The output v(i) of the

strided convolution operation is now concatenated with the feature maps u(i) and s(i− 1)

to obtain the feature tensor r(i), which has 160 channels. Finally, the number of channels

of the feature tensor r(i) is reduced to that of s(i− 1) by employing a 1× 1 convolutional

layer in order to make its number of channels to be the same as that of the input to the

block.

In view of the feature generating capabilities of the recursive block, as discussed above,

and its use by the proposed scheme, we call our network a Multiple spatial Range and

Resolution level feature generating deep recursive Network (MuRNet) [89].

Since human eyes are more sensitive to the illumination information, the original RGB

image is first transformed into a YCbCr image and then only its Y channel is input to the

network. At the output, the restored Y channel is recombined to the Cb and Cr channels

and the restored YCBCr image is transformed back into an RGB image.

As for DRRN [35] and MemNet [4], images from the dataset BSD200 [23] and those

provided by Yang et al. [6] are also used to train MuRNet. It should be pointed out that

the Woman image is removed from the BSD200 training set, since the same image is also

used for evaluation. All the images are divided into 30363 sub-images each of size 48× 48

to produce the training samples. In order to generate the degraded low resolution images,
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the bicubic downsampling operation is applied to the original high resolution images. Data

augmentation including flipping and rotating by 90, 180 and 270 degrees is employed to in-

crease the number of training samples to 242904. As in [3], MuRNet is multi-scale trained,

and therefore, one set of parameters is adequate for all of the scaling factors. The weights

of all the layers are initialized by the He et al. method [7], which takes into consideration

the activation function as well as the number of filters and kernel sizes.

For updating the weights of the network and optimizing the loss function, the stochas-

tic gradient descent (SGD) method along with the Nestrov acceleration algorithm and the

momentum parameter with a value of 0.9 is employed. Initially a value of 0.1 is used for

the learning rate and then it is decreased by a factor of 10 after each 10 epochs. The weight

decay parameter is set to 10−4.

It has been reported in [28] that using `1 norm representing the loss between the high

resolution estimation and the ground truth leads to an improved performance in compari-

son to that obtained by employing the `2 norm loss function. However, since MemNet and

DRRN, as two important light-weight recursive networks for super resolution, employ `2

loss function between the high resolution estimation and the ground truth, the same loss

function is used for MuRNet.

3.7 Experimental Results

3.7.1 Experimental Results of PHMNet

The proposed residual block of PHMNet consists of two main modules to generate multi-

scale features, one directly producing features at two different scales and the other one

indirectly producing features at two different scales through their generation from two hi-

erarchical levels of abstraction. To investigate the impact of each module individually on

the network performance, we form two variants of the proposed residual block, namely,
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Varaint 1 and Variant 2, containing either only the parallel multi-scale feature fusion mod-

ule or only the hierarchical feature fusion module. The performance results of the super

resolution networks using the proposed residual block and its two variants are given in Ta-

ble 3.1. As seen from this table, removing any of the two multi-scale feature generation

modules from the proposed residual block leads to a performance degradation.

The performance results in terms of PSNR and SSIM metrics of the proposed super

resolution network and the state-of-the-art light-weight super resolution schemes, namely,

super resolution using a convolutional neural network (SRCNN) [1], very deep network for

super resolution (VDSR) [3], deeply recursive convolutional network (DRCN) [19], lapla-

cian super resolution network (LapSRN) [29], deep residual recurrent network (DRRN)

[20], very deep persistent memory network (MemNet) [4], information distillation network

(IDN) [45], cascading residual networks (CARN) [14] and super resolution using a feed-

back network (SRFBN) [25], are given in Table 3.2. It is seen from this table that the

proposed super resolution network provides 18 best values of PSNR and SSIM metrics out

of a total of 24 values. Also, CARN [14] stands out as the second best performance method

with 6 best values of PSNR and SSIM metrics.

The complexity of the various state-of-the-art light-weight super resolution schemes

are given in Table 3.3. It is seen from this table that the proposed super resolution network

PHMNet employs 104K less number of parameters than the second best super resolution

network in terms of performance, namely, CARN does. In this regard, one can conclude

that the proposed network provides the best results, when the performance and the com-

plexity are both taken into consideration.

Table 3.1: Results on the ablation study of the proposed residual block of PHMNet.

Network with Set5 Set14 BSD100
Variant 1 31.88 (0.8906) 28.56 (0.7811) 27.49 (0.7350)
Variant 2 32.04 (0.8934) 28.63 (0.7830) 27.56 (0.7371)
Proposed 32.12 (0.8948) 28.65 (0.7841) 27.58 (0.7386)
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Table 3.2: PSNR (SSIM) values resulting from applying PHMNet and various
state-of-the-art methods to images of four benchmark datasets.

Dataset Scaling Bicubic SRCNN [1] VDSR [3] DRCN [19] LapSRN [29] DRRN [20] MemNet [4] IDN [45] SRFBN [25] CARN [14] PHMNet (Proposed) [95]

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 37.53 (0.9587) 37.63 (0.9588) 37.52 (0.959) 37.74(0.9591) 37.78 (0.9597) 37.83 (0.9600) 37.78 (0.9597) 37.76 (0.9590) 37.84 (0.9607)

×3 30.39 (0.8682) 32.75 (0.9090) 33.66 (0.9213) 33.82 (0.9226) N/A 34.03 (0.9244) 34.09 (0.9248) 34.11 (0.9253) 34.20 (0.9255) 34.29 (0.9255) 34.33 (0.9277)

×4 28.42 (0.8104) 30.48 (0.8628) 31.35 (0.8838) 31.53 (0.8854) 31.54 (0.885) 31.68 (0.8888) 31.74 (0.8893) 31.82 (0.8903) 31.98 (0.8923) 32.13 (0.8937) 32.12 (0.8948)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 33.03 (0.9124) 33.04 (0.9118) 33.08 (0.913) 33.23 (0.9136) 33.28 (0.9142) 33.30 (0.9148) 33.35 (0.9156) 33.52 (0.9166) 33.54 (0.9177)

×3 27.21(0.7385) 29.28 (0.8209) 29.77 (0.8314) 29.76 (0.8311) N/A 29.96 (0.8349) 30.00 (0.8350) 29.99 (0.8354) 30.10 (0.8372) 30.29 (0.8407) 30.48 (0.8455)

×4 26.00 (0.7027) 27.49 (0.7503) 28.01 (0.7674) 28.02 (0.7670) 28.19 (0.772) 28.21 (0.7721) 28.26 (0.7723) 28.25 (0.7730) 28.45 (0.7779) 28.60 (0.7806) 28.65 (0.7841)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 31.90 (0.8960) 31.85 (0.8942) 31.80 (0.895) 32.05 (0.8973) 32.08 (0.8978) 32.08 (0.8985) 32.00 (0.8970) 32.09 (0.8978) 32.16 (0.9001)

×3 27.21 (0.7385) 28.41 (0.7863) 28.82 (0.7976) 28.80 (0.7963) N/A 28.95 (0.8004) 28.96(0.8001) 28.95 (0.8013) 28.96 (0.8010) 29.06 (0.8034) 29.16 (0.8081)

×4 25.96 (0.6675) 26.90 (0.7101) 27.29 (0.7251) 27.23 (0.7233) 27.32 (0.728) 27.38 (0.7284) 27.40 (0.7281) 27.41 (0.7297) 27.44 (0.7313) 27.58 (0.7349) 27.58 (0.7386)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 30.76 (0.9140) 30.75 (0.9133) 30.41 (0.910) 31.23 (0.9188) 31.31 (0.9195) 31.27 (0.9196) 31.41 (0.9207) 31.92 (0.9256) 31.56 (0.9239)

×3 24.46 (0.7349) 26.24 (0.7989) 27.14 (0.8279) 27.15 (0.8276) N/A 27.53 (0.8378) 27.56 (0.8376) 27.42 (0.8359) 27.66 (0.8415) 28.06 (0.8493) 28.02 (0.8515)

×4 23.14 (0.6577) 24.52 (0.7221) 25.18 (0.7524) 25.14 (0.7510) 25.21 (0.756) 25.44 (0.7638) 25.50 (0.7630) 25.41 (0.7632) 25.71 (0.7719) 26.07 (0.7837) 25.91 (0.7826)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 3.3: Complexity of various super resolution schemes.

Method Number of Parameters
SRCNN [1] 57K
VDSR [3] 665K

DRCN [19] 1770K
DRRN [20] 297K
MemNet [4] 677K

IDN [45] 553K
SRFBN-S [25] 483K

CARN [14] 1592K
PHMNet (Proposed) 1488K

Fig. 3.9 shows the img008 super resolved images using the proposed network and

CARN selected from Urban100 dataset. It is seen from this figure that the image super

resolved by CARN contains some textures, which do not exist in the original ground truth

image. On the other hand, the image super resolved by PHMNet contains the textures more

similar to those of the ground truth image.
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Figure 3.9: Visual quality of img008 images super resolved by PHMNet and CARN with
upscaling factor 3. (a) Ground truth image. Images super resolved by (b) CARN and (c)
PHMNet.

Table 3.4: PSNR (SSIM) Results on the Ablation Study of the Proposed Residual Block
of MGHCNet.

Network with Set5 Set14 BSD100
Variant 1 34.25 (0.9268) 30.37 (0.8436) 29.07 (0.8068)
Variant 2 34.25 (0.9269) 30.38 (0.8437) 29.09 (0.8067)
Proposed 34.35 (0.9275) 30.44 (0.8446) 29.16 (0.8075)

3.7.2 Experimental Results of MGHCNet

In this section, first we carry out an ablation study on the proposed residual block to show

the effectiveness of the various ideas used in its design. Then, the performance and com-

plexity of the proposed super resolution network is compared with that of the state-of-

the-art light-weight super resolution networks using four benchmark datasets, [21], [22],

[23],[24].

The two feature generation modules in the proposed residual block of MGHCNet

are multi-scale granular channel feature generation module and uni-scale holistic channel

feature generation module. To investigate the contribution of each module on the network

performance, we form two variants of the proposed residual block by removing only one of
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Table 3.5: PSNR (SSIM) of Super Resolution Network employing Two Residual Blocks
with Scaling Factor 3.

Network with Set5 Set14 BSD100
RCAN Block 34.34 (0.9273) 30.39 (0.8434) 29.11 (0.8069)

Proposed 34.35 (0.9275) 30.44 (0.8446) 29.16 (0.8075)

Table 3.6: PSNR (SSIM) Values Resulting from Applying MGHCNet and Various
State-of-the-art Methods to Images of Four Benchmark Datasets.

Dataset Scaling Bicubic SRCNN [1] VDSR [3] DRCN [19] LapSRN [29] DRRN [20] MemNet [4] IDN [45] SRFBN [25] CARN [14] MGHCNet (Proposed) [97]

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 37.53 (0.9587) 37.63 (0.9588) 37.52 (0.959) 37.74(0.9591) 37.78 (0.9597) 37.83 (0.9600) 37.78 (0.9597) 37.76 (0.9590) 37.95 (0.9609)

×3 30.39 (0.8682) 32.75 (0.9090) 33.66 (0.9213) 33.82 (0.9226) N/A 34.03 (0.9244) 34.09 (0.9248) 34.11 (0.9253) 34.20 (0.9255) 34.29 (0.9255) 34.35 (0.9275)

×4 28.42 (0.8104) 30.48 (0.8628) 31.35 (0.8838) 31.53 (0.8854) 31.54 (0.885) 31.68 (0.8888) 31.74 (0.8893) 31.82 (0.8903) 31.98 (0.8923) 32.13 (0.8937) 32.17 (0.8947)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 33.03 (0.9124) 33.04 (0.9118) 33.08 (0.913) 33.23 (0.9136) 33.28 (0.9142) 33.30 (0.9148) 33.35 (0.9156) 33.52 (0.9166) 33.65 (0.9182)

×3 27.21(0.7385) 29.28 (0.8209) 29.77 (0.8314) 29.76 (0.8311) N/A 29.96 (0.8349) 30.00 (0.8350) 29.99 (0.8354) 30.10 (0.8372) 30.29 (0.8407) 30.44 (0.8456)

×4 26.00 (0.7027) 27.49 (0.7503) 28.01 (0.7674) 28.02 (0.7670) 28.19 (0.772) 28.21 (0.7721) 28.26 (0.7723) 28.25 (0.7730) 28.45 (0.7779) 28.60 (0.7806) 28.69 (0.7839)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 31.90 (0.8960) 31.85 (0.8942) 31.80 (0.895) 32.05 (0.8973) 32.08 (0.8978) 32.08 (0.8985) 32.00 (0.8970) 32.09 (0.8978) 32.22 (0.9008)

×3 27.21 (0.7385) 28.41 (0.7863) 28.82 (0.7976) 28.80 (0.7963) N/A 28.95 (0.8004) 28.96(0.8001) 28.95 (0.8013) 28.96 (0.8010) 29.06 (0.8034) 29.16 (0.8075)

×4 25.96 (0.6675) 26.90 (0.7101) 27.29 (0.7251) 27.23 (0.7233) 27.32 (0.728) 27.38 (0.7284) 27.40 (0.7281) 27.41 (0.7297) 27.44 (0.7313) 27.58 (0.7349) 27.59 (0.7384)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 30.76 (0.9140) 30.75 (0.9133) 30.41 (0.910) 31.23 (0.9188) 31.31 (0.9195) 31.27 (0.9196) 31.41 (0.9207) 31.92 (0.9256) 31.75 (0.9254)

×3 24.46 (0.7349) 26.24 (0.7989) 27.14 (0.8279) 27.15 (0.8276) N/A 27.53 (0.8378) 27.56 (0.8376) 27.42 (0.8359) 27.66 (0.8415) 28.06 (0.8493) 27.99 (0.8503)

×4 23.14 (0.6577) 24.52 (0.7221) 25.18 (0.7524) 25.14 (0.7510) 25.21 (0.756) 25.44 (0.7638) 25.50 (0.7630) 25.41 (0.7632) 25.71 (0.7719) 26.07 (0.7837) 25.88 (0.7813)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 3.7: Complexity of Various Super Resolution Schemes.

Method Number of Parameters
SRCNN [1] 57K
VDSR [3] 665K

DRCN [19] 1770K
DRRN [20] 297K
MemNet [4] 677K

IDN [45] 553K
SRFBN-S [25] 483K

CARN [14] 1592K
MGHCNet (Proposed) 1548K

the modules from the block. In Variant 1, the uni-scale holistic channel feature generation

module is removed from the proposed residual block, whereas in Variant 2, the multi-scale

granular channel feature generation module is removed from the proposed residual block.

Table 3.4 shows the performance of the proposed residual block of MGHCNet and its two

variants on the three benchmark datasets with the scaling factor of 3. It is seen from this
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Figure 3.10: Visual comparison of img099 images super resolved by MGHCNet and the
state-of-the-art methods with upscaling factor 3. (a) Ground truth image. (b) Bicubic. (c)
LapSRN. (d) DRRN. (e) CARN. (f) MGHCNet.

table that removing any of the two feature generation modules from the proposed residual

block results in the performance degradation of the network. It is worth noting that the

Variant 1 and Variant 2 have a comparable performance on three benchmark datasets and

each has a PSNR value, which is about 0.1 dB lower than that provided by the proposed

residual block. This means that each of the two modules has also equal contribution to

improving the network performance.

The proposed residual block of MGHCNet fuses the uni-scale and multi-scale feature
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maps in order to improve the network representability. Recently, in [30], a residual chan-

nel attention network (RCAN) has been proposed by using a residual block consisting of

two convolution layers and a squeeze-and-excitation module. The network of RCAN has

been shown to provide a very good performance using the squeeze-and-excitation module.

We now replace the proposed residual block by the residual block of RCAN in order to

compare the network performance using this and our proposed residual block. We use 20

units of RCAN’s block compared to 16 of ours in order to have a comparable number of

parameters. The performance results are shown in Table 3.5. It is seen from these results

that the proposed residual block results in a performance superior to that provided when

RCAN residual block is used.

The performance of the proposed super resolution network (MGHCNet) and that of the

nine state-of-the-art light-weight schemes are given in Table 3.6 on the four benchmark

datasets. It is seen from this table that the proposed network outperforms the other state-of-

the-art light-weight super resolution networks in 19 out of 24 cases of the PSNR and SSIM

metrics. In the remaining cases of these two metrics, the proposed network is the second

best performing scheme.

Fig. 3.10 shows the visual quality of the super resolved images obtained by applying

the proposed and some of the best performing networks on img 099 from the Urban 100

dataset with the scaling factor 3. It is seen from the zoomed segments of the images in this

figure that the segments of the super resolved image obtained by applying the proposed

network are sharper.

Table 3.7 gives the number of parameters of the state-of-the-art light-weight networks

used in comparison. It is seen from this table that the proposed network employs 44K

less number of parameters than CARN does, which is the second best performing method.

Based on the results given in Tables 3.6 and 3.7, one can conclude that the proposed net-

work provides a high performance by employing a modest number of parameters.
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Table 3.8: Impact of removing a branch on the network performance of SRNMFRB.

Network with Set5 Set14 BSD100 Urban100 Parameters
Variant 1 37.84 33.44 32.10 31.31 395K
Variant 2 37.71 33.42 32.04 31.12 246K
Variant 3 37.81 33.49 32.14 31.43 486K
Proposed 37.88 33.56 32.16 31.50 560K

3.7.3 Experimental Results of SRNMFRB

The proposed residual block of SRNMFRB is composed of three parallel branches. In

order to investigate the contribution of each of the three branches on the network perfor-

mance, we form three variants of the proposed residual block, namely, Variant 1, Variant 2

and Variant 3, by removing, respectively, first, second and third branch from the proposed

block. Table 3.8 gives the performance of the network using the proposed residual block

and its three variants on four benchmark datasets with the scaling factor of 2. It is seen

from this table that removing any of the three branches from the residual block results in

a degraded performance. It is also noted from Table 3.8 that despite the fact that the third

branch, which generates features in a resolution lower than that of the original low res-

olution image, accounts for a very small number of parameters in the proposed network,

its removal from the residual block degrades the network performance considerably. This

shows that the third branch of the proposed residual block enhances the representational

capability of the network significantly by generating features that are obtained in a recep-

tive field higher than that of the first two branches.

The performance of the proposed super resolution network and nine state-of-the-

art light-weight super resolution networks, namely, super resolution using a convolutional

neural network (SRCNN) [1], very deep network for super resolution (VDSR) [3], sparse

coding network (SCN) [2], Laplacian super resolution network (LapSRN) [29], deep re-

cursive residual network (DRRN) [20], very deep persistent memory network (MemNet)

[4], information distillation network (IDN) [45], cascaded residual network [14] and super
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Table 3.9: PSNR (SSIM) values resulting from applying SRNMFRB and various
state-of-the-art methods to images of four benchmark datasets.

Dataset Scaling Bicubic SRCNN [1] VDSR [3] SCN [2] LapSRN [29] DRRN [20] MemNet [4] IDN [45] CARN_M [14] SRFBN [25] SRNMFRB [98]

Set5
×2 33.66 (0.9299) 36.66 (0.9542) 37.53 (0.9587) 36.93 (0.9552) 37.52 (0.959) 37.74(0.9591) 37.78 (0.9597) 37.83 (0.9600) 37.53 (0.9583) 37.78 (0.9597) 37.88 (0.9607)

×4 28.42 (0.8104) 30.48 (0.8628) 31.35 (0.8838) 30.86 (0.8710) 31.54 (0.885) 31.68 (0.8888) 31.74 (0.8893) 31.82 (0.8903) 31.92 (0.8903) 31.98 (0.8923) 31.83 (0.8903)

Set14
×2 30.24 (0.8688) 32.42 (0.9063) 33.03 (0.9124) 32.56 (0.9069) 33.08 (0.913) 33.23 (0.9136) 33.28 (0.9142) 33.30 (0.9148) 33.26 (0.9141) 33.35 (0.9156) 33.56 (0.9175)

×4 26.00 (0.7027) 27.49 (0.7503) 28.01 (0.7674) 27.64 (0.7578) 28.19 (0.772) 28.21 (0.7721) 28.26 (0.7723) 28.25 (0.7730) 28.42 (0.7762) 28.45 (0.7779) 28.49 (0.7803)

BSD100
×2 29.56 (0.8431) 31.36 (0.8879) 31.90 (0.8960) 31.40 (0.8884) 31.80 (0.895) 32.05 (0.8973) 32.08 (0.8978) 32.08 (0.8985) 31.92 (0.8960) 32.00 (0.8970) 32.16 (0.9002)

×4 25.96 (0.6675) 26.90 (0.7101) 27.29 (0.7251) 27.03 (0.7161) 27.32 (0.728) 27.38 (0.7284) 27.40 (0.7281) 27.41 (0.7297) 27.44 (0.7304) 27.44 (0.7313) 27.47 (0.7346)

Urban100
×2 26.88 (0.8403) 29.50 (0.8946) 30.76 (0.9140) 29.52 (0.8970) 30.41 (0.910) 31.23 (0.9188) 31.31 (0.9195) 31.27 (0.9196) 31.23 (0.9193) 31.41 (0.9207) 31.50 (0.9231)

×4 23.14 (0.6577) 24.52 (0.7221) 25.18 (0.7524) 24.52 (0.7260) 25.21 (0.756) 25.44 (0.7638) 25.50 (0.7630) 25.41 (0.7632) 25.62 (0.7694) 25.71 (0.7719) 25.55 (0.7706)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Figure 3.11: Visual comparison of img033 images super resolved by SRNMFRB and the
state-of-the-art methods with upscaling factor 4. (a) Ground truth image. (b) VDSR. (c)
DRRN. (d) IDN. (e) CARN_M. (f) SRNMFRB.
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Figure 3.12: A plot of the PSNR versus number of parameters for different light-weight
deep networks when applied to BSD100 images with a scaling factor of 2 (Proposed refers
to SRNMFRB).

resolution using a feedback network (SRFBN) [25], are given in Table 3.9. It should be

pointed out that all the networks presented in Table 3.9 employ less than one million pa-

rameters. It is seen from this table that SRFBN [25] and the proposed SRNMFRB are the

two best performing networks among all the state-of-the-art light-weight super resolution

networks in terms of PSNR and SSIM metrics with the latter outperforming the former in

12 out of 16 cases of the two metrics.

Fig. 3.11 shows the visual quality of the images obtained by super resolving img033

from the Urban100 dataset using the proposed and some of the state-of-the-art light-weight

super resolution networks with the scaling factor ×4. It is seen from the zoomed parts of

the images that the image that most resembles the ground truth results from the use of the

proposed super resolution network.

Fig. 3.12 depicts a plot of PSNR versus number of parameters of the super resolution

networks used for the comparison. It is seen from this figure that when both the perfor-

mance and complexity of the state-of-the-art light-weight super resolution networks are
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simultaneously taken into consideration, the proposed network provides the best results.

Finally, it should be pointed out that the number of arithmetic operations for the proposed

network is simply proportional to its number of parameters. However, the same is not

true for the second best performing network, namely, SRFBN [25], in view of its being a

recursive feedback network.

3.7.4 Experimental Results of MISNet

In order to show the effectiveness of the multi-resolution level feature interpolation used

by MISNet on the network performance, we form two variants of the proposed network,

namely, Variant 1 and Variant 2. In Variant 1, the low level feature maps are bilinear inter-

polated only at a single resolution, i.e., at the desired level s of the image super-resolution.

In other words, the network does not employ the idea of multi-resolution levels of feature

interpolation.Variant 2 is formed by removing the second branch all together from the ar-

chitecture of Fig. 3.6. Therefore, this variant does not perform feature interpolation even

at a single level and degenerates the network into a residual-free architecture. Table 3.10

gives the performance, in terms of PSNR and SSIM metrics, of the proposed MISNet and

its two variants, when the scaling factor 4 is used. By comparing the corresponding re-

sults of Variant 1 and the proposed network of this table, it is seen that the generation of

the features at multi-resolution level of feature interpolation indeed results in a superior

performance. Also, by comparing the corresponding results of Variant 2 and the proposed

network, it is seen that the performance of Variant 2 is very much inferior to that of the

proposed network, thus, showing that the use of multi-resolution level feature interpolation

in the framework of residual learning is very effective in providing a very good super-

resolution performance.

The performance in terms of PSNR and SSIM of the proposed MISNet and that of the

other state-of-the-art ultralight-weight super-resolution networks in the literature, namely,
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Table 3.10: PSNR (SSIM) Results of the Ablation Study Performed on the Proposed
MISNet.

Network with Set5 Set14 Urban100
Variant 1 30.96 (0.8771) 28.02 (0.7692) 24.79 (0.7408)
Variant 2 30.58 (0.8718) 27.76 (0.7629) 24.54 (0.7298)
Proposed 30.97 (0.8773) 28.04 (0.7692) 24.82 (0.7419)

Table 3.11: PSNR (SSIM) Values Resulting from Applying the Proposed and Various
State-of-the-art Ultralight-weight Super Resolution Networks to Images from Four
Benchmark Datasets.

Dataset Scaling Bicubic SRCNN [1] SCN [2] FSRCNN [13] PISR [46] MISNet(Proposed)

Set5
×2 33.66 (0.9299) 36.66 (0.9542) 36.93 (0.9252) 37.00 (0.9558) 37.33 (0.9576) 37.31 (0.9585)

×4 28.42 (0.8104) 30.48 (0.8628) 30.86 (0.8710) 30.71 (0.8657) 30.95 (0.8759) 30.97 (0.8773)

Set14
×2 30.24 (0.8688) 32.42 (0.9063) 32.56 (0.9069) 32.63 (0.9088) 32.79 (0.9105) 33.03 (0.9130)

×4 26.00 (0.7027) 27.49 (0.7503) 27.64 (0.7578) 27.59 (0.7535) 27.77 (0.7615) 28.04 (0.7692)

BSD100
×2 29.56 (0.8431) 31.36 (0.8879) 31.40 (0.8884) 31.53 (0.8920) 31.65 (0.8926) 31.70 (0.8945)

×4 25.96 (0.6675) 26.90 (0.7101) 27.03 (0.7161) 26.98 (0.7150) 27.08 (0.7188) 27.11 (0.7230)

Urban100
×2 26.88 (0.8403) 29.50 (0.8946) 29.52 (0.8970) 29.88 (0.9020) 30.24 (0.9071) 30.22 (0.9080)

×4 23.14 (0.6577) 24.52 (0.7221) 24.52 (0.7260) 24.62 (0.7280) 24.82 (0.7393) 24.82 (0.7419)

The values in the red font indicate the best performance.

the super-resolution convolutional neural network (SRCNN) [1], fast super-resolution con-

volutional neural network (FSRCNN) [13], sparse coding network (SCN) [2] and privileged

information super-resolution network (PISR) [46], on the four benchmark datasets with the

scaling factors 2 and 4 are given in Table 3.11. It is seen from the results of this table that

the proposed super-resolution network outperforms these other state-of-the-art ultralight-

weight super-resolution schemes on the all the four benchmark datasets. Since the idea

of multi-resolution level feature interpolation, as used in the proposed scheme, is better

suited in reconstructing the objects with different scales in an image, it can be expected

to provide superior visual quality super resolved images. This advantage of the use of the

multi-resolution level feature interpolation in the proposed scheme is indeed seen from the

significantly higher SSIM values in Table 3.11 as provided by our scheme in comparison

to that provided by PISR [46], the best performing ultralight-weight scheme existing in the

literature. In view of the fact that the proposed super-resolution scheme employs only 60K
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Figure 3.13: The visual quality of img049 images super resolved by various schemes with
the scaling factor of 4. (a) Ground truth. (b) Bicubic. (c) SRCNN. (d) SCN. (e) FSRCNN.
(f) MISNet (Proposed).

parameters for super resolving the low-resolution images, indeed can be considered to be

an ultralight-weight network.

Fig. 3.13 shows the Urban100 img049 super resolved images obtained by using the

proposed and other state-of-the-art ultralight-weight networks, when the scaling factor 4 is

used. It is to be noted that we have not been able to include the super resolved image ob-

tained from using the PISR scheme [46] in our comparison of the visual quality of the super

resolved images, since the trained parameters for the scaling 4 has not been made available

by the authors of this scheme. It is seen from the zoomed segments of the super resolved

images obtained from the various schemes that the proposed network is able to recover

edges of this part of the ceiling of the building that is most similar to the corresponding

part of the ground truth image.

3.7.5 Experimental Results of MuRNet

First, the effect of the various kernel sizes for the multi-scale convolution on the perfor-

mance of MuRNet is investigated. For this purpose, three different combinations of the

kernel sizes, namely, 3 × 3 and 7 × 7, 5 × 5 and 7 × 7, and 3 × 3 and 5 × 5 are used for
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Table 3.12: PSNR (SSIM) values of MuRNet with various combinations of kernel sizes
for the multi-scale convolution, when applied to Set14 images.

Upscaling 3× 3 and 5× 5 3× 3 and 7× 7 5× 5 and 7× 7

×2 33.43 (0.9160) 33.35 (0.9154) 33.40 (0.9158)
×3 30.16 (0.8384) 30.13 (0.8376) 30.12 (0.8381)
×4 28.46 (0.7772) 28.41 (0.7759) 28.44 (0.7765)

Table 3.13: PSNR (SSIM) values of MuRNet with various number of recursions, when
applied to Set14 images.

Upscaling 16Recursions 11Recursions 6Recursions

×2 33.43 (0.9160) 33.32 (0.9149) 33.21 (0.9142)
×3 30.16 (0.8384) 30.09 (0.8371) 30.04 (0.8361)
×4 28.46 (0.7772) 28.37 (0.7750) 28.26 (0.7726)

Table 3.14: Impact of using single and multiple local spatial ranges on the performance of
MuRNet when applied to Set14 images.

Upscaling MuRNet Variant (3× 3) Variant (5× 5)
×2 33.43 (0.9160) 33.34 (0.9153) 33.32 (0.9151)
×3 30.16 (0.8384) 30.09 (0.8378) 30.08 (0.8378)
×4 28.46 (0.7772) 28.38 (0.7758) 28.38 (0.7757)

the multi-scale convolutions. The performance of the super resolution network for each of

these three different combinations of the kernel spatial supports is given by Table 3.12. As

seen from this table, the super resolution network using the multi-scale convolution with

the combination of 3× 3 and 5× 5 for spatial supports provides the best performance with

an additional advantage of consuming the least number of parameters. Since the proposed

recursive super resolution network, MuRNet, is sufficiently deep and its overall receptive

field is large enough, the use of the larger kernel sizes for the multi-scale convolution is not

helpful in improving the performance.

We now investigate the effect of the number of recursions using the proposed recursive

block on the performance of the network. Since our objective is to design a super resolution
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Figure 3.14: Training curves of the network with the architectural details of the recursive
blocks specified in Table 3.16, obtained from Set5 images downscaled by a factor of 3.

Figure 3.15: A plot of the performance versus number of parameters for MuRNet and
different light-weight deep networks when applied to Set14 images with a scaling factor of
3.
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Figure 3.16: Visual qualities of the Woman images super resolved with a scaling factor of
4 obtained by applying MuRNet and the state-of-the-art schemes. (a) Ground truth. (b)
Bicubic. (c) A+.(d) SRCNN. (e) DRRN. (f) MuRNet.

55



Table 3.15: Impact of using single and multiple resolution levels on the performance of
MuRNet when applied to Set14 images.

Upscaling MuRNet Variant (Single Resolution)
×2 33.43 (0.9160) 33.32 (0.9150)
×3 30.16 (0.8384) 30.11 (0.8378)
×4 28.46 (0.7772) 28.41 (0.7760)

Table 3.16: Architectural details of the recursive block of MuRNet after removing its
individual branches.

Case Recursive Block
1 With skip connection, multi-scale convolution and sub-pixel convolution
2 With multi-scale convolution and sub-pixel convolution
3 With skip connection and sub-pixel convolution
4 With skip connection and multi-scale convolution

Table 3.17: PSNR (SSIM) values∗ resulting from applying MuRNet and various
light-weight methods to images of three benchmark datasets.

Dataset Scaling Bicubic A+ [47] SRCNN [1] SCN [2] VDSR [3] MSCN [49] DRRN [20] MemNet [4] MuRNet (Proposed) [89]

Set5
×2 33.66 (0.9299) 36.54 (0.9544) 36.66 (0.9542) 36.93 (0.9552) 37.53 (0.9587) 37.16 (0.9565) 37.74 (0.9591) 37.78 (0.9597) 37.67 (0.9598)

×3 30.39 (0.8682) 32.58 (0.9088) 32.75 (0.9090) 33.10 (0.9144) 33.66 (0.9213) 33.33 (0.9155) 34.03 (0.9244) 34.09 (0.9248) 33.99 (0.9236)

×4 28.42 (0.8104) 30.28 (0.8603) 30.48 (0.8628) 30.86 (0.8732) 31.35 (0.8838) 31.08 (0.8740) 31.68 (0.8888) 31.74 (0.8893) 31.67 (0.8871)

Set14
×2 30.24 (0.8688) 32.28 (0.9056) 32.42 (0.9063) 32.56 (0.9074) 33.03 (0.9124) 32.85 (0.9084) 33.23 (0.9136) 33.28 (0.9142) 33.43 (0.9160)

×3 27.21(0.7385) 29.13 (0.8188) 29.28 (0.8209) 29.41 (0.8238) 29.77 (0.8314) 29.65 (0.8272) 29.96 (0.8349) 30.00 (0.8350) 30.16 (0.8384)

×4 26.00 (0.7027) 27.32 (0.7491) 27.49 (0.7503) 27.64 (0.7578) 28.01 (0.7674) 27.87 (0.7624) 28.21 (0.7721) 28.26 (0.7723) 28.46 (0.7772)

BSD100
×2 29.56 (0.8431) 31.21 (0.8863) 31.36 (0.8879) 31.40 (0.8884) 31.90 (0.8960) 31.65 (0.8928) 32.05 (0.8973) 32.08 (0.8978) 31.96 (0.8977)

×3 27.21 (0.7385) 28.29 (0.7835) 28.41 (0.7863) 28.50 (0.7885) 28.82 (0.7976) 28.66 (0.7941) 28.95 (0.8004) 28.96 (0.8001) 28.91 (0.8012)

×4 25.96 (0.6675) 26.82 (0.7087) 26.90 (0.7101) 27.03 (0.7161) 27.29 (0.7251) 27.19 (0.7229) 27.38 (0.7284) 27.40 (0.7281) 27.37 (0.7294)

∗ The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

network, which employs a smaller number of parameters and has the number of multiply-

accumulate operations as low as possible, we implement the proposed scheme with 6, 11

and 16 recursions. The performance of MuRNet with these three numbers of recursions is

listed in Table 3.13. It is seen from these results that MuRNet with 16 recursions outper-

forms the shallower versions of MuRNet in terms of both PSNR and SSIM.

The proposed scheme for the design of the recursive block is based on the strategies

of feature generations using multiple local spatial ranges and different resolution levels.

We now carry out an ablation study on the impact of these two strategies on the network

performance, as well as on the impact of the individual contributions of the three types of
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Table 3.18: Complexity of the various light-weight super resolution schemes.

Method Number of Parameters Number of MACC Operations
SRCNN 57K 52.7G
VDSR 665K 612.6G
DRRN 297K 6796.9G

MemNet 677K 2662.4G
MuRNet (Proposed) 157K 2066.8G

Table 3.19: Performance and complexity of the best performing networks on images from
validation set of DIV2K dataset degraded by realistic image processing artifacts.

Upscaling MemNet DRRN MuRNet
Number of Parameters 677K 297K 157K 309K

Performance 27.62 (0.8120) 27.86 (0.8200) 27.71 (0.8148) 28.32 (0.8244)

Table 3.20: Performance and complexity of MuRNet and recursive networks using the
state-of-the-art feature generating blocks. RN denotes recursive network.

Upscaling RN using DBPN Blocks RN using the block of [48] RN using RDN block MuRNet
Parameters 414K 286K 333K 157K
×2 33.23 (0.9137) 33.40 (0.9154) 33.41 (0.9153) 33.43 (0.9160)
×3 30.04 (0.8357) 30.15 (0.8381) 30.15 (0.8381) 30.16 (0.8384)
×4 28.30 (0.7727) 28.37 (0.7750) 28.46 (0.7768) 28.46 (0.7772)

Table 3.21: Performance of ultralight-weight MuRNet and MuRNet when applied to Set5
images.

Upscaling Ultra-light-weight MuRNet MuRNet
×2 37.38 (0.9583) 37.67 (0.9598)
×3 33.61 (0.9200) 33.99 (0.9236)
×4 31.32 (0.8806) 31.67 (0.8871)

features fused by the recursive block on the overall performance of the network.

To investigate the effect of feature generation using different spatial ranges, as opposed

to that using a single spatial range, through the first branch of the recursive block on the

performance of image super resolution, the multi-scale convolution layer of the recursive

block with 32 filters of spatial support of 3 × 3 and 32 filters of spatial support of 5 × 5 is

replaced by a convolution layer with 64 filters each of spatial support of only 3×3 (Variant

(3× 3)) or 5× 5 (Variant (5× 5)). In other words, the recursive block no longer uses mul-

tiple local spatial ranges. Table 3.14 shows the performance of MuRNet with multi-scale

and uni-scale convolutions on the Set14 [22] images. As seen from this table, MuRNet
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Figure 3.17: Images obtained by applying MuRNet on the Comic image with different
upscaling factors. (a) Ground truth. (b) Upscaling factor 2. (c) Upscaling factor 3. (d)
Upscaling factor 4.

with multi-scale convolutions outperforms MuRNet with uni-scale convolutions in terms

of both the objective and subjective metrics. This shows that using the multi-scale convo-

lution operation to extract features with the use of a combination of local short and long

spatial ranges improves the representational capability of the super resolution network.

To investigate the effect of feature generation at different resolution levels, as opposed

to that using a single resolution level, through the second branch of the recursive block

on the performance of super resolution network, the sub-pixel convolution layer, which

consists of a convolution operation with 32 filters of spatial support of 5 × 5 and a depth-

to-space transpose operation with a scaling factor 2, is replaced by a convolution layer with

32 filters of 5 × 5 spatial support. In other words, the depth-to-space transpose part of the

sub-pixel convolution is removed from the second branch of the recursive block. Also, the

strided convolution layer with 32 filters of spatial support of 5× 5 and stride 2, is replaced
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Figure 3.18: Visual qualities of the 302008 images with a scaling factor of 4 obtained by
applying MuRNet and its ultralight-weight version. (a) Ground truth. (b) Bicubic
Interpolation. (c) MuRNet. (d) ultra-light weight MuRNet with 33K parameters.

by a convolution layer with 32 filters of 5 × 5 spatial support. Thus, with these modifica-

tions, the recursive block generates features only at a single resolution level (Variant (Single

Resolution)). The performance of MuRNet using single and multiple resolution levels are

shown in Table 3.15. It is seen from this table that the super resolution network using mul-

tiple resolution levels outperforms the network using only a single resolution level. This

happens despite the fact that the latter version of the network uses a slightly larger number

of parameters. Thus, we conclude that the feature generation at different resolution levels

improves the representational capability, and hence, the performance of the super resolu-

tion network.

Finally, to study the contribution of each of the individual types of features for fusion

in the recursive block, we obtain the performance of the network by removing one of the

branches at a time. The architectural details of the recursive block for each of these three
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cases are given in Table 3.16 and Fig. 3.14 shows the learning curves corresponding to

each of these three cases on the Set5 [21] images with a scaling factor of 3. It is seen from

this figure that removing any of the branches from the proposed recursive block results in

degrading the image super resolution performance significantly. Since the default number

of recursions in the proposed recursive block is 16, the proposed super resolution network

becomes effectively deep with these many recursions. In this case, the gradient vanishing

problem could degrade the performance of image super resolution, if it is not properly han-

dled. The skip connections as carried out by the third branch of the recursive block handles

this problem very effectively. As seen from the learning curve in Fig. 3.14, removing the

third branch from the recursive block, i.e., case 2, degrades the performance of the network

quite significantly. It is also seen that removing the multi-scale convolution branch from the

proposed recursive block, i.e., case 3, has the largest degrading impact on the performance

of the network.

We now provide the performance of proposed MuRNet using the benchmark datasets,

Set5 [21], Set14 [22] and BSD100 [23]. The performance is compared with that of six

state-of-the-art light-weight schemes for the super resolution of the interpolated images,

namely, super resolution via convolutional neural network (SRCNN) [1], sparse coding

network (SCN) [2], mixture sparse coding network (MSCN) [49], very deep network for

super resolution (VDSR) [3], deep residual recursive network (DRRN) [20] and MemNet

[4].

Table 3.17 gives the performance results in terms of PSNR and SSIM for the various

schemes. It is seen from this table that the best performance is provided by DRRN, Mem-

Net and MuRNet. Out of the 18 performance values (both PSNR and SSIM combined

together), DRRN stands out as the second best in 10 of these values. MemNet has 9 best

and 7 second best values and MuRNet scores 9 best and 1 second best values. Also, in a

number of instances where MuRNet provides the third best result, they are very close to
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the second best ones. Based on these results, the proposed MuRNet can be regarded to

generally outperform DRRN and to be closely comparable to MemNet.

Table 3.18 shows the complexity in terms of numbers of parameters and multiply-

accumulate operations employed by the networks. It is seen that the number of parameters

employed by MuRNet is approximately one-half and one-fifth of that of DRRN and Mem-

Net, respectively. Also, the number of multiply-accumulate operations of MuRNet for an

image of size 1280 × 720 is 30% and 77% of that of DRRN and MemNet, respectively.

Thus, proposed MuRNet has the lowest complexity among light-weight category of the

networks for super resolution of interpolated images.

In order to investigate the effectiveness of the proposed network in super resolving

the images that are degraded by realistic image processing artifacts, we train the proposed

MuRNet, as well as DRRN and MemNet, the two best performing super resolution net-

works in the literature, using 30363 sub-images each of size 48 × 48 that are randomly

selected from images of the Flickr dataset [51] and their corresponding low resolution ver-

sions degraded by realistic image processing artifacts [52]. Table 3.19 gives the number of

parameters used and the performances of these three networks on the benchmark validation

set from the DIV2K dataset. It is to be noted that the images contained in this dataset are

degraded by some unknown but realistic image processing artifacts [52]. It is seen from

this table that MuRNet with the default number of parameters of 157K outperforms Mem-

Net. On the other hand, the performance of MuRNet is inferior to that of DRRN, which

employs 297K parameters. Thus, in order to provide a fair comparison with DRRN, we in-

crease the number of parameters of MuRNet to about the same level as that of DRRN, i.e.,

309K, by increasing the number of filters in each of the layers of MuRNet from 32 to 64.

As seen from Table 3.19, MuRNet with the increased number of parameters significantly

outperforms DRRN as well. It is also interesting to note that in this case, the performance

of MuRNet then becomes very significantly higher than that of MemNet with the number
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of parameters of the former being more than 50% lower than that of the latter.

Fig. 3.15 depicts the plot of the PSNR values versus the number of parameters for the

super resolution networks used for comparison, when they are applied to Set14 images with

the upscaling factor of 3. It is seen from this figure that MuRNet provides the best perfor-

mance with a very small number of parameters among all the super resolution networks

considered.

Fig. 3.16 shows the Woman image super resolved by the various image super resolution

schemes with the upscaling factor of 4. It is seen from the zoomed part of the Woman image

in this figure that all the methods except MuRNet fail to reconstruct the texture of this part

in the woman’s hat. However, the reconstructed texture by MuRNet is very similar to that

of the ground truth.

Fig. 3.17 shows the super resolved Comic images obtained from MuRNet using the up-

scaling factors of 2, 3 and 4. As expected, the reconstructed images using a smaller scaling

factor contains more details and high frequency contents.

We now implement three recursive networks, the first one using the upsampling and

downsampling blocks proposed in DBPN [32], the second one employing the block pro-

posed in [48] and the third one using the residual block proposed in RDN [44], and compare

their performance with that of the proposed MuRNet. Table 3.20 gives the number of pa-

rameters employed by these recursive networks along with their performance on the images

of the Set14 dataset. It is seen from this table that the proposed MuRNet outperforms the

recursive network using the blocks of DBPN [32] by employing much smaller number of

parameters. Also, it is seen from Table 3.20 that the performance of the proposed MuRNet

is marginally superior to those of the networks using the blocks of [48] and [44], while the

numbers of parameters of the two latter networks are significantly larger than that of the

proposed MuRNet.

One of the main objectives of the design of MuRNet has been to design a light-weight
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network with a good performance for the super resolution problem. In order to study the

performance of MuRNet with the number of parameters reduced from that of the default

number, we obtain its performance by reducing number of filters employed by it. For this

purpose, we use 32 filters for each of the convolution operations used for extracting the fea-

tures from the bicubic interpolated image and point-wise convolution used in the recursive

block, 8 filters for each convolution operation performed in the multi-scale convolution, 16

filters for the convolution operation of the sub-pixel convolution and also 16 filters for the

strided convolution, and 4 filters for the second convolution of the second branch of the

recursive block, resulting in only 33K parameters employed by the entire network.

Table 3.21 gives the performance of MuRNet and its ultralight-weight version with re-

duced number of parameters, when these networks are applied to the Set5 images. It is

seen from this table that by reducing the number of parameters of MuRNet by one-fifth,

its performance degrades by about 0.3dB on the images of Set5 dataset. However, even

with this degradation, the performance of the ultralight-weight version of MuRNet is much

superior to that of SRCNN.

In Fig. 3.18, the visual quality of images obtained by applying MuRNet and its ultralight-

weight version are compared. Figs. 3.18 (a) and (b) show, respectively, the original image

302008 from the BSD100 dataset and its degraded version obtained from applying bicu-

bic downsampling, whereas Figs. 3.18 (c) and (d) are the restored super resolved images

obtained from these two networks. It is seen from this figure that even though the ultralight-

weight MuRNet employs very small number of parameters, it is still able to reconstruct the

edges and textures of the original image.
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Table 3.22: PSNR (SSIM) values∗ resulting from applying various light-weight
multi-scale feature generating methods to images of three benchmark datasets.

Dataset Scaling MISNet [93] MuRNet [89] SRNMFRB [98] PHMNet [95] MGHCNet [97]

Set5
×2 37.31 (0.9585) 37.67 (0.9598) 37.88 (0.9607) 37.84 (0.9607) 37.95 (0.9609)

×3 N/A 33.99 (0.9236) N/A 34.33 (0.9277) 34.35 (0.9275)

×4 30.97 (0.8773) 31.67 (0.8871) 31.83 (0.8903) 32.12 (0.8948) 32.17 (0.8947)

Set14
×2 33.03 (0.9130) 33.43 (0.9160) 33.56 (0.9175) 33.54 (0.9177) 33.65 (0.9182)

×3 N/A 30.16 (0.8384) N/A 30.48 (0.8455) 30.44 (0.8456)

×4 28.04 (0.7692) 28.46 (0.7772) 28.49 (0.7803) 28.65 (0.7841) 28.69 (0.7839)

BSD100
×2 31.70 (0.8945) 31.96 (0.8977) 32.16 (0.9002) 32.16 (0.9001) 32.22 (0.9008)

×3 N/A 28.91 (0.8012) N/A 29.16 (0.8081) 29.16 (0.8075)

×4 27.11 (0.7230) 27.37 (0.7294) 27.47 (0.7346) 27.58 (0.7386) 27.59 (0.7384)

Urban100
×2 30.22 (0.9080) N/A 31.50 (0.9231) 31.56 (0.9239) 31.75 (0.9254)

×3 N/A N/A N/A 28.02 (0.8515) 27.99 (0.8503)

×4 24.82 (0.7419) N/A 25.55 (0.7706) 25.91 (0.7826) 25.88 (0.7813)

∗ The values in the red font indicate the best performance.

3.8 Comparison between Various Proposed Deep Image

Super Resolution Networks using Multi-scale Feature

Generation

Performance results of various various deep multi-scale image super resolution networks

proposed in this chapter are given in Table 3.22. From the results of this table, the fol-

lowing conclusions can be drawn. First, it is seen that the super resolution networks of

PHMNet, MGHCNet, SRNMFRB and MISNet are designed to be applied on the original

degraded low resolution image. On the other hand, the purpose of designing MuRNet is

to enhance the quality of the bicubically interpolated versions of the low resolution im-

ages. Hence, the number of arithmetic operations employed by MuRNet is significantly

larger than those employed by PHMNet, MGHCNet, SRNMFRB and MISNet. However,

it has several real-life applications such as printers and scanners. Second, the super reso-

lution network MISNet is the lightest network proposed in this chapter by employing 60K
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parameters. Hence, it is extremely useful in situations that require very high speed su-

per resolution. Third, the super resolution SRNMFRB is the best network that provides

a trade-off between network performance and complexity. This network provides an ac-

ceptable performance by employing less than 1M parameters. Fourth, the super resolution

networks PHMNet and MGHCNet are able to provide high super resolution performance

by employing around 1.5M parameters. Hence, these two networks are examples of deep

light-weigh high-performance convolutional networks for the task of image super resolu-

tion.

3.9 Conclusion

In this chapter, several image super resolution networks based on the idea of multi-scale

feature generation have been proposed. Various multi-scale feature generation techniques,

such as the inverse sub-pixel convolution operations, multi-scale convolutions and dilated

convolutions, have been employed for designing deep multi-scale feature generation net-

works. It can be concluded from the experimental results obtained in this chapter that

the idea of generating features at multiple scales is indeed helpful in improving the super

resolution performance.
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Chapter 4

Deep Image Super Resolution Networks

with Guided Feature Generation

4.1 Introduction

Design of a residual block that provides a rich set of features while requiring only small

numbers of parameters and operations is crucial for the task of single image super resolu-

tion. This is especially important in applications with limited power and storage capacity.

In this chapter, we propose various residual blocks, that use the idea of guided feature

generation, for producing rich sets of information for image super resolution [84], [87],

[92], [96], [103], [105]. Specifically, we use three guided feature generation strategies,

namely, edge extraction, spectral feature generation and morphological feature generation,

for enhancing the performance of the light-weight image super resolution networks.
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4.2 EFFRBNet: A Deep Super Resolution Network using

Edge-assisted Feature Fusion Residual Blocks

Most of the light-weight super resolution schemes utilize the basic residual block of ResNet

or its variants. The convolution operations in the residual block make it to learn the residual

high frequency signal and the skip connection of the residual block facilitates the passage

of the low frequency components of the input image. Using a specific module in the resid-

ual block that facilitates learning the high frequency residual signal, could further improve

the network performance. In this section, a learnable nonlinear edge extraction module is

developed to extract the edges of the input feature maps to the residual block, and therefore,

makes the learning the high frequency components of the ground truth image easier.

In the overall architecture of the proposed super resolution network, first, the original

low resolution image is passed through a convolution operation followed by a ReLU acti-

vation in order to extract the low resolution features. This convolution operation uses 64

filters each of spatial support of 3× 3. Next, the low resolution feature maps thus obtained

are fed to a sequence of 12 units of the proposed residual block, whose architecture is de-

scribed in the following paragraphs. Then, the output of the last residual block is upscaled

using a sub-pixel convolution operation [8] in order to restore its spatial resolution to that of

the ground truth. The upscaled feature maps are passed through a convolution operation to

construct the residual signal between the ground truth and the bilinear interpolated version

of the low resolution image. This convolution operation uses 3 filters of spatial support of

3× 3 each corresponding to one color channel. Finally, the residual signal thus obtained is

added to the bilinear interpolated version of the low resolution image yielding an estimated

high resolution image.

A basic residual block consists of two convolution operations interleaved by a ReLU

activation function, and a skip connection between the input and output feature maps of the
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Figure 4.1: The architecture of the proposed residual block. Conv., H. Sobel and V. Sobel,
respectively, represent the convolution operation, the horizontal Sobel operation and the
vertical Sobel operation. The symbol c represents the concatenation operation, and PW
Conv. denotes the point-wise convolution operation.

block. The residual signal between the input and output feature maps of the residual block

consists mainly of high frequency components. To this high-frequency signal, the feature

maps of the input to the block are added through the skip connection, resulting in the out-

put of the block to have a more enhanced high frequency components. One can propose to

introduce a nonlinear edge extraction in the residual block. The nonlinear edge extraction

would extract the edges of the feature maps input to the block, and therefore, this results in

generating the residual feature maps that have more enhanced high frequency components.

Fig. 4.1 shows the proposed residual block for the image super resolution problem.

As seen from this figure, the proposed residual block consists of three modules, namely,

feature transformation, nonlinear edge extraction and feature fusion modules. The input

feature maps to the residual block first undergo a feature transformation in the first mod-

ule, which consists of two convolution operations and a ReLU activation between them,

yielding the first set of residual feature maps. In this step, the outputs of the two con-

volution operations, u and v, are concatenated to improve the representational capability

of the block. Each of the two convolution operations uses 64 filters with the spatial sup-

port of 3 × 3. To facilitate generating high frequency residual feature maps, in the second
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module of the block, we carry out a nonlinear edge extraction, which is done by a convo-

lution operation, an ELU activation and a pair of Sobel operations. This nonlinear edge

extraction performed in this module, provides horizontal and vertical edge maps wh and

wv having additional high frequency components for constructing the residual signal. The

convolution operation used in this module employs 64 filters each of the spatial support of

3 × 3. Let x[m,n] denote the two-dimensional signal representing a single feature map of

z marked in Fig. 4.1. The horizontal and vertical edges obtained from the application of

the corresponding two Sobel operators to x[m,n], respectively, are given by

y1[m,n] = x[m− 1, n+ 1] + 2x[m− 1, n] + x[m− 1, n− 1]

−x[m+ 1, n+ 1]− 2x[m+ 1, n]− x[m+ 1, n− 1]

y2[m,n] = x[m+ 1, n− 1] + 2x[m,n− 1] + x[m− 1, n− 1]

−x[m+ 1, n+ 1]− 2x[m,n+ 1]− x[m− 1, n+ 1]

(4.1)

The collection of all the y1[m,n] maps, each corresponding to a single feature map of z,

produces the edge maps wh. Similarly, the edge maps wv are produced from the collection

of the y2[m,n] maps. The edge maps wh and wv are concatenated to the feature maps u

and v along the channel dimension, resulting in a very rich set of residual feature maps

r with enhanced high frequency components. Next, the concatenated residual features r

are fused using a point-wise convolution operation yielding the final set of residual feature

maps of the block. The point-wise convolution operation used in the feature fusion module

employs 64 filters each of the spatial support of 1 × 1. Finally, the residual feature maps

thus obtained are added to the feature maps input to the block to construct the output fea-

ture maps. Use of the rich set of residual features resulting from each of residual blocks

in the super resolution network improves its representational capability, and thus, enhances

its performance.
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The proposed residual block shown in Fig. 4.1 that employs the three modules is re-

ferred to as edge-assisted feature fusion residual block (EFFRB) and the proposed super

resolution network using EFFRB as Super Resolution Network with Edge-assisted Feature

Fusion Residual Block (EFFRBNet) [96].

The proposed super resolution network (EFFRBNet) is trained using the 800 training

images of DIV2K dataset [42]. The ground truth samples are constructed by extracting the

sub-images of size 48× 48 from the training images. The `1 norm loss is used between the

ground truth and estimated high resolution images. This loss function is optimized using

the stochastic gradient descent (SGD) optimizer. The learning rate is initialized by a value

of 0.1, which is decreased by a factor of 10 after each 182500 iterations. The parameters of

the network are initialized by the method proposed in [7]. The mini-batch size is set to 64.

4.3 SRNSSI: A Deep Light-Weight Network for Single Im-

age Super Resolution using Spatial and Spectral Infor-

mation

Most of the existing designs of the residual blocks for their use in image super resolution

networks make use of only the spatial information contained in the input to the block. How-

ever, experimental studies in psychophysics have shown that visual information processing

in human and mammalian visual systems is strongly dependent on the spatial frequency

(spectral) content of the visual stimulus (input) to these systems [53]. There are couple

of networks [106],[27] that generate and use spectral features for the task of image super

resolution, but they ignore spatial features. Therefore, the residual blocks that use both

the spatial and spectral contents of the input can be expected to provide a superior perfor-

mance. The proposed residual block is designed to make use of both the spectral and the

spatial information contained in the input to it. The proposed residual block consists of
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three modules. The first two modules produce feature maps, respectively, corresponding

to the spatial and spectral information contents of the signal input to the block. The third

module simply fuses the two types of feature maps produced by the first two modules. The

residual block designed using this philosophy can be expected to provide a very rich set of

features. Since the focus of the design of the residual blocks is on producing an enriched

set of features, the network should be able to use only a small number of blocks, and hence,

a small number of parameters in the network to achieve a desired accuracy.

We now develop a new residual block that produces a very rich set of feature maps

by using both the spatial and spectral information that is present in the input to the block.

Fig. 4.2 (a) shows a high-level architecture of the proposed residual block. It is seen from

this figure that the input feature tensor x is processed simultaneously by two modules each

to be designed to operate in a different domain. The first module is a spatial information

processing module, whereas the second one is a spectral information processing module.

The maps r and s resulting from these two modules are concatenatively fused using an

information fusion module. The block is adapted to operate in a residual mode by using a

skip connection between its input x and the output y.

Fig. 4.2 (b) shows the architecture of the spatial information processing module. In

this module, the input feature tensor x consisting of 64 channels undergoes four group

convolution operations producing, respectively, four feature tensors u1, u2, u3 and u4 as

ui = ReLU
(
Wi(ui−1)

)
i = 1, ..., 4 and u0 = x (4.2)

where each of the group convolution operations Wi uses two groups of filters, each em-

ploying 32 filters of kernel size 3 × 3 × 32. Use of the convolution operations on groups

of channels rather than on the entire set of input channels reduces the numbers of param-

eters and operations in the block considerably. Each of the feature tensors u1, u2, u3 and

u4 is produced at a different hierarchical level of abstraction. Then, these feature tensors

71



(a) (b)

(c)

(d)

Figure 4.2: Architecture of the proposed image super resolution network. (a) Proposed
spatial and spectral information processing residual block. (b) Spatial information
processing module. (c) Spectral information processing module. (d) Network overall
architecture. IPM, Conv., G Conv. and PW Conv., respectively, denote information
processing module, convolution operation, group convolution operation and point-wise
convolution operation.

are concatenatively fused using a point-wise convolution operation in order to generate the
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module’s output feature tensor r as

r = ReLU
(
W5(CONC(u1,u2,u3,u4))

)
(4.3)

where W5 is a point-wise convolution operation using 64 filters each of kernel size 1× 1×

(4× 64).

The strategy used in the design of the second module is to produce feature maps at

different spectral decomposition levels of abstraction. Fig. 4.2 (c) shows the architecture of

the spectral information processing module using two levels of spectral decomposition. In

the first level of spectral decomposition, the feature tensor x input to the module undergoes

an average pooling operation as

v1 = AP (x) (4.4)

where AP denotes the average pooling operation using a kernel size 2 × 2 and a stride of

1. Since the stride of the average pooling operation is unity, the spatial resolution of the

feature tensor v1 is the same as that of the feature tensor x. Let xl[m,n] represent the two-

dimensional signal of the l − th channel of the feature tensor x. By applying the average

pooling operation to the window of xl located at [m,n], a signal kl[m,n] is obtained as

kl[m,n] =
∑

i,j∈N (m,n)
2×2

xl[i, j] (4.5)

where N (m,n)
2×2 represents the set of indices of the pooling window located at (m,n), i.e.,

N (m,n)
2×2 = {(m,n), (m+ 1, n), (m,n+ 1), (m+ 1, n+ 1)}. The spectral component v1 is

further processed through the convolution operation given by

v2 = ReLU
(
W6(v1)

)
(4.6)
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where W6 is a convolution operation using 32 filters each of kernel size 3 × 3 × 64. In

order to produce the second spectral component of the first level of decomposition of the

feature tensor x, the horizontal and vertical gradients of this tensor are obtained using the

horizontal and vertical gradient operators Gh and Gv as

v3 = Gh(x)

v4 = Gv(x)
(4.7)

The horizontal and vertical gradient operators Gh and Gv in (4.7) are applied to the signal

xl[m,n] to produce its two gradient components as

pl[m,n] = xl[m+ 1, n]− xl[m,n]

ql[m,n] = xl[m,n+ 1]− xl[m,n]
(4.8)

A concatenation of the above two gradients is made to undergo a point-wise convolution

operation followed a regular convolution operation producing the second spectral compo-

nent v5 of x as

v5 = ReLU
(
W8(ReLU(W7(CONC(v3, v4))))

)
(4.9)

whereW7 represents a point-wise convolution operation employing 32 filters each of kernel

size 1× 1× 128 and W8 represents a convolution operation using 32 filters each of kernel

size 3× 3× 32. It should be noted that the feature tensors v2 and v5 represent, respectively,

the low and high frequency components of the input feature tensor x after its first level

of spectral decomposition. A second level of spectral decomposition can be carried out

by repeating the process of the first level on the feature tensors v2 and v5 individually.

This process can be further continued to higher levels of decomposition. Fig. 4.2 (c)

depicts the case of having only two levels of spectral decomposition. In this case after

the second level of spectral decomposition, we have the feature tensors v6, v7, v8 and
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v9 representing, respectively, the low-low, low-high, high-low and high-high frequency

components of the feature tensor x. Finally, in the second (spectral) module, these four

components are concatenatively fused to produce the module’s output s as

s = ReLU
(
W9(CONC(v6, v7, v8, v9))

)
(4.10)

where W9 represents a point-wise convolution operation using 64 filters each of kernel size

1× 1× (4× 32).

As seen from Fig. 4.2 (a), the feature tensors r and s obtained from the spatial and

spectral information processing modules are concatenatively fused in the information fu-

sion module using a point-wise convolution operation in order to generate the residual

feature tensor z as

z = W10(CONC(r, s)) (4.11)

where W10 represents a point-wise convolution operation using 64 filters each of kernel

size 1× 1× 128. Finally, the residual feature tensor z is added to the input feature tensor x

to produce the block’s output y as

y = z + x (4.12)

We refer to the proposed residual block of Fig. 4.2 (a) as spatial and spectral information

processing residual block (SSIPRB).

The overall architecture of the super resolution network using the proposed residual

block is shown in Fig. 4.2 (d). It is seen from this figure that this super resolution network

consists of three stages, namely, Feature Extraction, Upscaling and Reconstruction stages.

Let X denote the original low resolution image input to the network. First, the input

image X is passed through the feature extraction stage consisting of a convolutional layer

followed by a cascade of four units of the proposed residual block (SSIPRB), in order to
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produce the output feature tensor U of the feature extraction stage as

U = Res4

(
Res3

(
Res2

(
Res1

(
ReLU(W11(X ))

))))
(4.13)

where W11 is a convolution operation using 64 filters each of kernel size 3×3×3 and Resi

(i = 1, 2, 3, 4) represents the operation of the i− th residual block. The high-level feature

tensor U as produced by the feature extraction stage is made to undergo an upsampling

operation using a sub-pixel convolution [8] in order to generate the feature tensor V with a

spatial resolution equal to that of the ground truth image. The upscaled feature tensor V is

then passed through the reconstruction stage consisting of a convolutional layer in order to

produce the residual signal R as

R = W12(V) (4.14)

where W12 is a convolution operation employing 3 filters, corresponding to the R, G and

B components of the color image, each with spatial support of 3 × 3. Finally, the residual

signal R is added to the bilinear interpolated version B of the low resolution input image

in order to produce the network’s output Y , which is the estimated high resolution image.

The proposed super resolution network shown in Fig. 4.2 (d) is referred to as super

resolution network using spatial and spectral information (SRNSSI) [87].

We now provide an enhanced version of SRNSSI (ESRNSSI). This version uses 6 units

of the proposed residual block instead of 4 units used by the original version. In addi-

tion, the features maps produced by each of the six residual blocks are concatenated and

passed through a point-wise convolution operation
(
employing 64 filters each with kernel

size 1 × 1 × (6 × 64)
)

and ReLU activation before performing feature upscaling. These

modifications are aimed at making the feature extraction stage to provide features that are

deeper and richer than that provided by SRNSSI. Despite the fact that the enhanced net-

work is obtained at the expense of a slightly larger number of parameters, it is still in the
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category of light-weight deep networks.

For the training of the proposed super resolution networks, the DIV2K [42] image

dataset is utilized. Sub-images of size 48 × 48 are extracted from the 800 training images

of the DIV2K dataset to construct the training samples. The weights of the proposed net-

works are updated by optimizing the `1 norm of the loss between the ground truth and

the estimated high resolution images. The process of optimization of the `1 norm loss is

carried out by using the stochastic gradient descent (SGD) optimizer. The initial learning

is carried out using a step size of 0.1. The learning rate is decreased by a factor of 10 after

each 182500 iterations. The weights of all the convolution operations are initialized by the

method of He et al. [7]. The mini-batch size is set to 64 in our experiments.

4.4 MorphoNet: a Deep Image Super Resolution Network

using Hierarchical and Morphological Feature Gener-

ating Residual Blocks

The quality of an image is very much dependent on the texture and image representation

of the image. Hence, the success of an image super resolution process can be judged from

its capability in enhancing the textures and structures in the image super resolved by it.

Morphological operations are the nonlinear mathematical operations that while performing

signal processing aim at the textures and structures of the signal.

In this section, we present, for the first time, a deep image super resolution architecture

in a residual framework by proposing a novel residual block that is capable of producing

features of the image based on its morphology, as well as the conventional convolutional

features [92]. The morphological features are learned by using the erosion and dilation op-

erations and fused with the other hierarchical features to produce very rich set of features.
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Figure 4.3: Architecture of the proposed residual block. Conv. and PW Conv.,
respectively, denote the convolution and point-wise convolution operations.

The proposed network consists of four parts, namely, a feature extraction part that gen-

erates features of the low resolution input image, a nonlinear mapping part that maps the

low level features to hierarchically higher level features through a cascade of the new resid-

ual blocks and upsampling and image reconstruction parts that provide the estimated high

resolution image. In the feature extraction part, the features of the input image are extracted

using a convolution operation employing 64 filters each with kernel size 3× 3 followed by

a ReLU activation operation. The nonlinear mapping part is composed of a cascade of 11

residual blocks. The architecture of the proposed residual block is developed in the next

paragraph The upsampling part uses a depth-to-space transpose operation [8] with a scal-

ing factor equal to that of the super resolution scaling factor. Finally, the high resolution

image is constructed using 3 convolutional filters each with kernel size 3× 3 by the image

reconstruction part. We refer the proposed super resolution network to as MorphoNet [92].

The proposed residual block is shown in Fig. 4.3. This block consists of three modules,

a hierarchical feature generation module, a morphological feature generation module and

a feature fusion module. In the hierarchical feature generation module, the feature tensor

x input to the residual block is made to undergo a cascade of two convolution operations

each followed by a ReLU activation operation yielding, respectively, two feature tensors u1
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and u2 given by

u1 = ReLU(W1(x))

u2 = ReLU(W2(u1))

(4.15)

where each of the convolution operations W1 and W2 employs 64 filters with kernel size

3× 3. The two feature tensors are then concatenatively fused as

u3 = ReLU(W3(CONC(u1,u2))) (4.16)

where W3 represents a point-wise convolution operations using 64 filters. In the hierar-

chical feature generation module, the features are learned solely though the convolution

operation. In contrast, in the morphological feature generation module, features are also

naturally learned but guided by morphological operations. In this module, the input fea-

ture tensor x first undergoes in parallel through the streams of the morphological erosion

and dilation operations and then the resulting tensors v1 and v2 are convolved to produce

morphologically guided features v3 and v4, respectively. Let xk represent the kth channel

of the feature tensor x. Then, the kth channel of the feature tensor v1 resulting from the

erosion operation is given by

vk1[m,n] = (xk 	 b)[m,n] = min
(i,j)∈B

xk[m+ i, n+ j] (4.17)

where b is the structuring element defined over a neighborhood B. Similarly, the kth

channel of the feature tensor v2 resulting from, using the same structuring element b and

defined over the same neighborhood B as for the erosion operation, is given by

vk2[m,n] = (xk ⊕ b)[m,n] = max
(i,j)∈B

xk[m+ i, n+ j] (4.18)
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The feature tenors v3 and v4 are then obtained, respectively, by applying convolution oper-

ations to the feature tensors v1 and v2 as

v3 = ReLU(W4(v1))

v4 = ReLU(W5(v2))

(4.19)

where each of the convolution operations W4 and W5 uses 64 filters with kernel size 3× 3.

The two morphological feature tensors v3 and v4 are concatenatively fused to yield the

feature tensor:

v5 = ReLU(W6(CONC(v3, v4))) (4.20)

where the point-wise convolution operation W6 uses 64 filters. Next, the feature tensors u3

and v5 obtained, respectively, from the hierarchical and morphological feature generation

modules, are fused to obtain the block’s residual feature tensor given by

z = W7(CONC(u3, v5)) (4.21)

where W7 is a point-wise convolution operation using 64 filters. Finally, the feature tenor

x input to the residual block is added to the residual feature tensor z to yield the output

feature tensor y of the residual block.

For training the proposed super resolution network, sub-images of size 48 × 48 are

extracted from the 800 training images of the DIV2K [42] dataset. The parameters of the

proposed network are updated using the `1 norm of the loss between the ground truth

and estimated high resolution training samples. The `1 norm loss is minimized using the

stochastic gradient descent optimizer with the initial learning rate of 0.1. The batch size and

weight decay parameter of the convolution operations are set to 64 and 10−4, respectively.
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4.5 SRNMSM: A Deep Light-weight Image Super Resolu-

tion Network using Multi-scale Spatial and Morpho-

logical Feature Generating Residual Blocks

A deep network with a capability of producing features corresponding to the textures and

structures of a high quality high resolution image could be very beneficial for the task of

image super resolution. As mentioned in the previous section, morphological operations

are nonlinear operations that process signals aiming at their textures and structures. Hence,

incorporating these mathematical operations in the design of a super resolution convolu-

tional neural network could make such a design to provide a high quality super resolved

image. In this section, a novel residual block with a capability of producing features cor-

responding to the textures and structures of high quality images by introducing in it the

morphological operations of erosion, dilation, opening and closing is proposed and used in

a residual convolutional network for the task of image super resolution. It is shown that in

view of the idea of the morphological operations introduced in the design of the residual

block, the super resolution performance of the network is significantly improved.

Fig. 4.4 shows the architecture of the proposed residual block. As seen from this

figure, the proposed block consists of three modules, a multi-scale spatial feature gener-

ation module, a morphological feature generation module, and a feature fusion module.

The input feature tensor x is simultaneously fed to the two feature generation modules. In

the multi-scale spatial feature generation module, the feature tensor x undergoes the opera-

tions of convolution and dilated convolution in parallel producing, respectively, the feature

tensors u1 and u2, as given by

u1 = W1(x)

u2 = W2(x)
(4.22)
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Figure 4.4: Architecture of the proposed residual block. Conv., Di Conv. and PW Conv.,
respectively, denote the convolution, dilated convolution and point-wise convolution
operations.

where both the convolution operationW1 and the dilated convolution operationW2, employ

32 filters each with kernel size 3 × 3 and the dilation rate in W2 is 2. Thus, the feature

tensors u1 and u2 are obtained at two different scales. However, the use of the dilated

convolution operation in the multi-scale spatial feature generation module produces the

gridding artifacts [107]. In order to diminish the effect of these artifacts, the feature tensor

u1, which is free of gridding artifacts, is added to the feature tensor u2 producing the feature

tensor u3. The feature tensors u1 and u3 after passing them through ReLU activations are

concatenatively fused and the resulting feature tensor is made to undergo a cascade of

point-wise convolution operation and a convolution operation, each followed by a ReLU

activation, to yield the feature tensor u4 given by

u4 = W3(CONCAT (ReLU(u1), ReLU(u3))) (4.23)

whereW3 represents a cascade of two convolution operations each using 64 filters of kernel

sizes 1× 1 and 3× 3, respectively.
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In the morphological feature generation module, the feature tensor x undergoes a par-

allel of four morphological operations, namely, erosion, dilation, opening and closing, pro-

ducing, respectively, the feature tensors u5, u6, u7 and u8. The kth channel of the feature

tensor u5 resulting from the erosion operation is given by

uk5[m,n] = (xk 	 b)[m,n] = min
(i,j)∈B

xk[m+ i, n+ j] (4.24)

where xk[m,n] denotes the two-dimensional signal representing the kth channel of the

feature tensor x at the pixel position (m,n) and b is the structuring element defined over

a neighborhood B of size 2 × 2 around (m,n). Similarly, the kth channel of the feature

tensor u6 resulting from the dilation operation, using the same structuring element b and

defined over the same neighborhood B, is given by

uk6[m,n] = (xk ⊕ b)[m,n] = max
(i,j)∈B

xk[m+ i, n+ j] (4.25)

The kth channels of the feature tensors u7 and u8 resulting from the opening and closing

operations using the same structuring element b are, respectively, given by

uk7[m,n] =
(
(xk 	 b)⊕ b

)
[m,n]

uk8[m,n] =
(
(xk ⊕ b)	 b

)
[m,n]

(4.26)

The four morphological feature tensors u5, u6, u7 and u8 are then concatenatively fused

and the resulting feature tensor is made to undergo a cascade of point-wise convolution

operation and a convolution operation, each followed by a ReLU activation, to yield the

feature tensor u9 given by

u9 = W4(CONCAT (u5,u6,u7,u8)) (4.27)
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whereW4 represents a cascade of the two convolution operations carried out using 64 filters

of kernel sizes 1× 1 and 3× 3, respectively.

In the feature fusion module, the feature tensors u4 and u9 obtained from the two feature

generation modules are concatenated and the resulting feature tensor u10 is made to undergo

a point-wise convolution operation producing a rich set of residual feature maps of the

block as given by

r = W5(CONCAT (u4,u9)) (4.28)

where the operationW5 represents a point-wise convolution operation employing 64 filters.

Finally, the block’s residual feature tensor r is added to its input feature tensor x in order to

produce the block’s output y as

y = x + r (4.29)

In the overall architecture of the proposed super resolution network, first the low resolu-

tion input image is converted into its feature maps by a feature extraction module consisting

of a convolutional layer using 64 filters each with kernel size 3× 3 and a ReLU activation.

The resulting feature maps are then passed through a nonlinear mapping module formed by

a cascade of 5 units of the residual blocks in Fig. 4.4 to yield the high level feature maps.

Next, the resolutions of the high level feature maps are restored to that of the ground truth

image by employing an upscaling module that consists of a sub-pixel convolutional layer.

Finally, the feature maps that are output from the upscaling module are passed through

a reconstruction module to obtain the image R, which is the residue between the ground

truth image and the bilinearly interpolated version B of the low resolution image. The re-

construction module consists of a convolutional layer using 3 filters with kernel size 3× 3.

We refer to the proposed image super resolution network as Super Resolution Network

using Multi-scale Spatial and Morphological feature generating residual blocks (SRN-

MSM) [84].
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In order to train our convolutional neural network, we use the images of the DIV2K [42]

dataset. The samples of the training set are formed by extracting sub-images of size 48×48

from the 800 images of this dataset. The mean absolute error (`1 norm loss) is used as the

loss function between the ground truth samples and the estimated high resolution samples,

in order to update the parameters of the network. The optimization process is carried using

the stochastic gradient descent (SGD) technique. The learning process is started with the

step size of 0.1 and decreased by a factor of 10 after each 182, 500 iterations. A value of

10−4 is assigned to the weight decay parameters for carrying out the convolution opera-

tions. The method of [7] is used for initializing the parameters of convolution operations.

A value of 64 is chosen as the batch size.

The proposed SRNMSM is implemented using Keras library [40] and TensorFlow

package [41]. The proposed SRNMSM is trained using a machine with Intel Core i9 CPU

@3.3 GHz, 32-GB RAM and Nvidia GeForce GTX 1080 GPU.

4.6 Experimental Results

4.6.1 Experimental Results of EFFRBNet

We now study the impact of each of the two individual modules of the proposed residual

block, namely, the feature transformation module and the nonlinear edge extraction mod-

ule, on the network performance. Two variants of the proposed residual block, Variant 1

and Variant 2, are formed by using, respectively, the feature transformation module or the

nonlinear edge extraction module.

The network performance results using the proposed residual block and its two variants

are given in Table 4.1. It is seen from this table that the network performance degrades,

when only one of the modules is used. However, the degradation in performance over that

using the proposed module is much severe in the absence of the feature transformation
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Table 4.1: Results on the ablation study of the proposed residual block of EFFRBNet.

Network with Set5 Set14 BSD100
Variant 1 34.19 (0.9260) 30.29 (0.8419) 29.07 (0.8058)
Variant 2 32.41 (0.9001) 29.00 (0.8163) 28.32 (0.7877)
EFFRB 34.31 (0.9270) 30.39 (0.8435) 29.10 (0.8066)

Table 4.2: PSNR (SSIM) values resulting from applying EFFRBNet and various
state-of-the-art schemes to images of four benchmark datasets.

Dataset Scaling Bicubic SRCNN [1] VDSR [3] DRCN [19] LapSRN [29] DRRN [20] MemNet [4] IDN [45] SRFBN [25] CARN [14] EFFRBNet (Proposed) [96]

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 37.53 (0.9587) 37.63 (0.9588) 37.52 (0.959) 37.74(0.9591) 37.78 (0.9597) 37.83 (0.9600) 37.78 (0.9597) 37.76 (0.9590) 38.00 (0.9612)

×3 30.39 (0.8682) 32.75 (0.9090) 33.66 (0.9213) 33.82 (0.9226) N/A 34.03 (0.9244) 34.09 (0.9248) 34.11 (0.9253) 34.20 (0.9255) 34.29 (0.9255) 34.31 (0.9270)

×4 28.42 (0.8104) 30.48 (0.8628) 31.35 (0.8838) 31.53 (0.8854) 31.54 (0.885) 31.68 (0.8888) 31.74 (0.8893) 31.82 (0.8903) 31.98 (0.8923) 32.13 (0.8937) 32.02 (0.8928)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 33.03 (0.9124) 33.04 (0.9118) 33.08 (0.913) 33.23 (0.9136) 33.28 (0.9142) 33.30 (0.9148) 33.35 (0.9156) 33.52 (0.9166) 33.67 (0.9187)

×3 27.21(0.7385) 29.28 (0.8209) 29.77 (0.8314) 29.76 (0.8311) N/A 29.96 (0.8349) 30.00 (0.8350) 29.99 (0.8354) 30.10 (0.8372) 30.29 (0.8407) 30.39 (0.8435)

×4 26.00 (0.7027) 27.49 (0.7503) 28.01 (0.7674) 28.02 (0.7670) 28.19 (0.772) 28.21 (0.7721) 28.26 (0.7723) 28.25 (0.7730) 28.45 (0.7779) 28.60 (0.7806) 28.61 (0.7824)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 31.90 (0.8960) 31.85 (0.8942) 31.80 (0.895) 32.05 (0.8973) 32.08 (0.8978) 32.08 (0.8985) 32.00 (0.8970) 32.09 (0.8978) 32.23 (0.9012)

×3 27.21 (0.7385) 28.41 (0.7863) 28.82 (0.7976) 28.80 (0.7963) N/A 28.95 (0.8004) 28.96(0.8001) 28.95 (0.8013) 28.96 (0.8010) 29.06 (0.8034) 29.10 (0.8066)

×4 25.96 (0.6675) 26.90 (0.7101) 27.29 (0.7251) 27.23 (0.7233) 27.32 (0.728) 27.38 (0.7284) 27.40 (0.7281) 27.41 (0.7297) 27.44 (0.7313) 27.58 (0.7349) 27.54 (0.7364)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 30.76 (0.9140) 30.75 (0.9133) 30.41 (0.910) 31.23 (0.9188) 31.31 (0.9195) 31.27 (0.9196) 31.41 (0.9207) 31.92 (0.9256) 31.79 (0.9261)

×3 24.46 (0.7349) 26.24 (0.7989) 27.14 (0.8279) 27.15 (0.8276) N/A 27.53 (0.8378) 27.56 (0.8376) 27.42 (0.8359) 27.66 (0.8415) 28.06 (0.8493) 27.83 (0.8473)

×4 23.14 (0.6577) 24.52 (0.7221) 25.18 (0.7524) 25.14 (0.7510) 25.21 (0.756) 25.44 (0.7638) 25.50 (0.7630) 25.41 (0.7632) 25.71 (0.7719) 26.07 (0.7837) 25.73 (0.7761)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 4.3: Complexity of EFFRBNet and various super resolution schemes.

Method Number of Parameters
SRCNN [1] 57K
VDSR [3] 665K

DRCN [19] 1770K
DRRN [20] 297K
MemNet [4] 677K

IDN [45] 553K
SRFBN-S [25] 483K

CARN [14] 1592K
EFFRBNet (Proposed) 1499K

module. This is not surprising, since in the absence of the feature transformation module,

the network simply degenerates into an edge extraction network, that is, it is no longer a

super resolution network. The performance of the proposed and nine of the state-

of-the-art light-weight super resolution schemes on four benchmark datasets, namely, Set 5

[21], Set 14 [22], BSD 100 [23] and Urban 100 [24], with various scaling factors is given in

Table 4.2. It is seen that the proposed super resolution scheme and CARN provide the best
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Figure 4.5: Visual quality of img011 images super resolved by EFFRBNet and CARN
with upscaling factor 3. (a) Ground truth image, Images super resolved by (b) Bicubic
Interpolation (c) CARN. (d) EFFRBNet.

values for both the PSNR and SSIM metrics in 16 and 8 cases, respectively. In this respect,

the performance of the proposed super resolution network is superior to that of CARN.

The number of parameters of each of the light-weight super resolution schemes used for

comparison is given in Table 4.3. It is seen from this table that the proposed network em-

ploys around 100K less number of parameters than CARN does, which has the second best

performance. Thus, based on the results shown in Table 4.2 and Table 4.3, the proposed EF-

FRBNet outperforms all the state-of-the-art light-weight super resolution schemes, when

both the performance and complexity of the networks are taken into consideration.

Fig. 4.5 shows the visual quality of the img011 images from the Urban100 dataset su-

per resolved by CARN and the proposed EFFRBNet with the scaling factor of 3. As seen

from this figure, some of the edges resulting from the application of CARN are distorted

and are much different from those of the original image. On the other hand, the edges
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resulting from the application of EFFRBNet have a better similarity to those of the ground

truth.

4.6.2 Experimental Results of SRNSSI

In this section, we first perform a number of experiments on SRNSSI in order to show

the effectiveness of the proposed residual block for the problem of single image super

resolution. In this regard, we carry out experiments related to the design of the spectral

information processing module and usefulness of the various ideas used in the design of

the spatial information processing module. Next, the performance and complexity of the

proposed super resolution networks, SRNSSI and ESRNSSI, are presented and compared

with that of the light-weight state-of-the-art schemes for image super resolution existing in

the literature. Finally, we evaluate the performance of an ultralight-weight version of the

proposed super resolution network by using only one residual block.

As mentioned in Section 4.3, the objective of the spectral information processing mod-

ule of the proposed residual block is to generate spectral features at different levels of de-

composition. We first illustrate the ability of this module in generating the spectral features

corresponding to the approximate and detail subbands of the feature tensor that is input to

the module. Fig. 4.6 shows the spectral features after the first level of decomposition cor-

responding to the approximate and detail subbands in four selected feature maps obtained

when the Baby image from the Set5 dataset [21] is input to the block. The maps shown in

the first row of this figure are the spectral features corresponding to the approximate sub-

bands, whereas those in the second row correspond to the detail subbands. Fig. 4.7 shows

one selected spectral feature map corresponding to each of the low-low, low-high, high-

low and high-high frequency subbands when the Baby image is input to the block after the

feature maps resulting from the first level of decomposition undergo the second level of

decomposition. An examination of the feature maps illustrated in Figs. 4.6 and 4.7 shows
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Figure 4.6: Spectral features corresponding to approximate and detail subbands of the
Baby image obtained from the spectral information processing module using one level of
decomposition.(a) Spectral features corresponding to the approximate subbands. (b)
Spectral features corresponding to detail subbands.

Figure 4.7: Spectral features corresponding to different subbands of the Baby image
obtained from the spectral information processing module using two levels of
decomposition. Spectral feature corresponding to the (a) low-low subband, (b) low-high
subband, (c) high-low subband, (d) high-high subband.

that the spectral information processing module successfully decomposes its input into dif-

ferent subbands of a decomposition level and extracts spectral features and combines them

in order to provide a very rich set of feature maps.

In order to investigate the impact of the spectral information processing module on

the network performance and complexity, we remove this module from the residual blocks

of the SRNSSI network. For this study, images from Set5 [21], Set14 [22], BSD100 [23]

and Urban100 [24] datasets with the scaling factor 4 are input to the resulting network and
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the results in terms of PSNR are given in Table 4.4 and compared with that of the original

SRNSSI network using the residual blocks with only one spectral level of decomposition.

It is seen from this table that without using spectral features, the network performance dete-

riorates. In order to examine whether the performance deterioration of the network results

from the removal of the proposed spectral information processing module or from the re-

duction of the number of parameters resulting from this removal, we increase the number

of convolutional filters in the spatial information processing module from 32 to 40. With

this change in the residual block, the number of parameters in the network remains com-

parable to that of the network using the original residual block. The performance of the

resulting network is given in the second row of Table 4.4. By comparing the results given

in the second and fourth rows of this table, it is quite clear that it is the proposed spectral

information processing module that is responsible for improving the network performance.

We now form another variant of the proposed residual block, in which we maintain the

structure of the residual block but replace each of the average pooling (AP ), horizontal

gradient (Gh) and vertical gradient (Gv) operators by a learnable depth-wise convolutional

layer employing 64 filters with kernel size 3 × 3. We refer to this variant of the residual

block as SSIPRB with Learnable Conv. It should be noted that theAP ,Gh andGv operators

do not employ any trainable parameter, whereas their replacements by depth-wise convo-

lutional layers do. As a result, the number of parameters employed by the network using

the SSIPRB with Learnable Conv is somewhat larger than that using original SSIPRB. The

performance of the proposed SRNSSI and the one using SSIPRB with Learnable Conv on

the four benchmark datasets with scaling factor 4 are given in Table 4.4. It is seen from

the results of this table that the performance of the network using SSIPRB with Learnable

Conv is inferior to that of the proposed SRNSSI, indicating that directional decompositions

have a direct impact in generating a richer set of features.

Next, we perform an experiment to study the impact of the number of decomposi-
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Table 4.4: Impact of the Spectral Information Processing Module on the Network
Performance and Complexity.

Network Set5 Set14 BSD100 Urban100 Params
w/o Module 32.02 28.64 27.56 25.75 373K

w/o Module (More Filters) 32.03 28.66 27.57 25.77 579K
with Module (Learnable Conv.) 32.04 28.66 27.57 25.78 561K

with Module 32.06 28.68 27.58 25.80 553K

Table 4.5: Impact of the Number of Spectral Decomposition Levels on the Network
Performance and Complexity.

Number of Levels Set5 Set14 BSD100 Urban100 Parameters
1 32.06 28.68 27.58 25.80 553K
2 32.09 28.70 27.59 25.85 737K

Table 4.6: Impact of Haar Spectral Information Processing Module on the Network
Performance and Complexity.

Network with Set5 Set14 BSD100 Urban100 Parameters
SSIPRB-Haar (2 level) 32.05 28.67 27.58 25.83 742K

SSIPRB (2 level) 32.09 28.70 27.59 25.85 737K

Table 4.7: Impact of Group Convolutions on the Network Performance and Complexity.

Number of Groups Set5 Set14 BSD100 Urban100 Parameters
8 31.98 28.62 27.54 25.70 332K
4 32.04 28.64 27.56 25.77 406K
2 32.06 28.68 27.58 25.80 553K
1 32.13 28.70 27.60 25.86 848K

Table 4.8: Impact of Fusing Hierarchical Features on the Network Performance and
Complexity.

Network Set5 Set14 BSD100 Urban100 Parameters
W/O Fusing 32.01 28.66 27.57 25.77 486K
With Fusing 32.06 28.68 27.58 25.80 553K

tion levels used in the spectral information processing module of the residual blocks on the

network performance and complexity. Table 4.5 presents the PSNR values and the number

of parameters of the network using one and two levels of spectral decomposition, when the

images from the four benchmark datasets with the scaling factor 4 are input to the network.

It is seen from the results of this table that increasing the levels of spectral decomposition
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from one to two helps in improving the performance of the network. However, this im-

provement results in increasing the number of parameters by 33%. Since our goal is to

have a light-weight high-performance super resolution network, we set the default value of

the number of spectral decomposition levels as 1 in all of our experiments. It is seen from

the table that even when the network blocks use only one level of spectral decomposition,

it still provides a very good performance by employing just 553K parameters.

In the spectral information processing module of the proposed residual block, the high-

frequency components are extracted by employing the horizontal and vertical gradient op-

erators in parallel, followed by concatenation, point-wise convolution and another convo-

lution with kernel size 3× 3. Therefore, the directional high-frequency components of the

input feature tensor are first fused to generate a rich set of high-frequency feature maps and

then processed. One could instead use two-dimensional Haar wavelet filters to generate

the spectral features. In this case, the four 2 × 2 Haar wavelet filters, namely, low-low,

low-high, high-low and high-high Haar filters, each followed by a convolution operation

employing 64 filters with kernel size 3 × 3, can be applied to the input feature tensor.

Then, the resulting four feature maps can be concatenated and passed through a point-wise

convolution operation employing 64 filters to produce the spectral feature maps. The per-

formance and complexity of the proposed SRNSSI that employs SSIPRB with two levels

of spectral decomposition and that of the network employing the SSIPRB with the Haar

spectral information processing module on the images with scaling factor 4 are given in

Table 4.6. It is seen from the results of this table that the new approach of generating the

spectral features using Haar wavelet filters deteriorates the network performance even if

the resulting network uses slightly larger number of parameters. The main difference be-

tween the proposed spectral information processing module and the spectral information

processing module using Haar filters is that in the former the spectral features with high-

frequency components are fused and processed multiple times as compared to only one

92



Table 4.9: Performance (in terms of PSNR and SSIM) and Complexity of the Proposed
SRNSSI and Various State-of-the-art Light-weight Image Super Resolution Networks.

Dataset Scaling SRCNN [1] SCN [2] DRRN [20] DRCN [19] LapSRN [29] CARN-M [14] SRFBN-S [25] s-LWSR_32 [15] LatticeNet [16] SRNSSI ESRNSSI

Set5

×2 36.66 (0.9542) 36.93 (0.9252) 37.74(0.9591) 37.63 (0.9588) 37.52 (0.959) 37.53 (0.9583) 37.78 (0.9597) N/A 38.15 (0.9610) 37.95 (0.9610) 38.17 (0.9618)

×3 32.75 (0.9090) 33.10 (0.9136) 34.03 (0.9244) 33.82 (0.9226) N/A 33.99 (0.9236) 34.20 (0.9255) N/A 34.53 (0.9281) 34.33 (0.9272) 34.56 (0.9290)

×4 30.48 (0.8628) 30.86 (0.8710) 31.68 (0.8888) 31.53 (0.8854) 31.54 (0.885) 31.92 (0.8903) 31.98 (0.8923) 32.04 (0.893) 32.30 (0.8962) 32.06 (0.8938) 32.34 (0.8969)

Set14

×2 32.42 (0.9063) 32.56 (0.9069) 33.23 (0.9136) 33.04 (0.9118) 33,08 (0.913) 33.26 (0.9141) 33.35 (0.9156) N/A 33.78 (0.9193) 33.58 (0.9181) 33.92 (0.9205)

×3 29.28 (0.8209) 29.41 (0.8235) 29.96 (0.8349) 29.76 (0.8311) N/A 30.08 (0.8367) 30.10 (0.8372) N/A 30.39 (0.8424) 30.41 (0.8439) 30.57 (0.8467)

×4 27.49 (0.7503) 27.64 (0.7578) 28.21 (0.7721) 28.02 (0.7670) 28.19 (0.772) 28.42 (0.7762) 28.45 (0.7779) 28.15 (0.776) 28.68 (0.7830) 28.68 (0.7845) 28.83 (0.7883)

BSD100

×2 31.36 (0.8879) 31.40 (0.8884) 32.05 (0.8973) 31.85 (0.8942) 31.80 (0.895) 31.92 (0.8960) 32.00 (0.8970) N/A 32.25 (0.9005) 32.20 (0.9008) 32.38 (0.9028)

×3 28.41 (0.7863) 28.50 (0.7885) 28.95 (0.8004) 28.80 (0.7963) N/A 28.91 (0.8000) 28.96 (0.8010) N/A 29.15 (0.8059) 29.12 (0.8071) 29.23 (0.8097)

×4 26.90 (0.7101) 27.03 (0.7161) 27.38 (0.7284) 27.23 (0.7233) 27.32 (0.728) 27.44 (0.7304) 27.44 (0.7313) 27.52 (0.734) 27.62 (0.7367) 27.58 (0.7382) 27.68 (0.7410)

Urban100

×2 29.50 (0.8946) 29.52 (0.8970) 31.23 (0.9188) 30.75 (0.9133) 30.41 (0.910) 31.23 (0.9193) 31.41 (0.9207) N/A 32.43 (0.9302) 31.67 (0.9244) 32.24 (0.9303)

×3 26.24 (0.7989) 26.21 (0.8010) 27.53 (0.8378) 27.15 (0.8276) N/A 27.55 (0.8385) 27.66 (0.8415) N/A 28.33 (0.8538) 27.85 (0.8467) 28.24 (0.8557)

×4 24.52 (0.7221) 24.52 (0.7260) 25.44 (0.7638) 25.14 (0.7510) 25.21 (0.756) 25.62 (0.7694) 25.71 (0.7719) 25.87 (0.779) 26.25 (0.7873) 25.80 (0.7777) 26.13 (0.7884)

Number of Parameters 57K 33K 297K 1774K 813K 412K 483K 571K 777K 553K 856K

Number of MACC Operations 52.7G 37.8G 6796.9G 17974.3G 149.4G 32.5G 1045.3G 32.9G 43.6G 31.1G 47.9G

The values in the red, blue and cyan fonts, respectively, indicate the best, second best and third best
performance.

Table 4.10: Performance (in terms of PSNR and SSIM) and Complexity of the Proposed
SRNSSI and Wavelet-based Super Resolution Convolutional Neural Networks.

Dataset Scaling MWCN [27] Network of [106] ESRNSSI

Set5
×2 37.91 (0.9600) 38.06 (0.9602) 38.17 (0.9618)
×3 34.17 (0.9271) 34.45 (0.9272) 34.56 (0.9290)
×4 32.12 (0.8941) 32.23 (0.8952) 32.34 (0.8969)

Set14
×2 33.70 (0.9182) 34.04 (0.9205) 33.92 (0.9205)
×3 30.16 (0.8414) 30.56 (0.8450) 30.57 (0.8467)
×4 28.41 (0.7816) 28.80 (0.7856) 28.83 (0.7883)

BSD100
×2 32.23 (0.8999) 32.26 (0.9006) 32.38 (0.9028)
×3 29.12 (0.8060) 29.18 (0.8071) 29.23 (0.8097)
×4 25.96 (0.6675) 27.62 (0.7355) 27.68 (0.7410)

Urban100
×2 32.30 (0.9296) 32.63 (0.9330) 32.24 (0.9303)
×3 28.13 (0.8514) 28.50 (0.8587) 28.24 (0.8557)
×4 26.27 (0.7890) 26.42 (0.7940) 26.13 (0.7884)

Number of Parameters 16.1M 16.6M 0.8M

time in the latter. Hence, the proposed spectral information processing module by utiliz-

ing the directional interdependencies between the high-frequency components of the input

feature tensor is able to generate richer set of spectral features.

The spatial information processing module uses group convolution operations in order

to keep the numbers of parameters and operations of the block low. In order to investigate
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Table 4.11: Performance of the Ultralight-weight SRNSSI.

Network Set5 Set14 BSD100 Urban100 Parameters
SRCNN 30.48 27.49 26.90 24.52 57K

FSRCNN 30.71 27.59 26.98 24.62 13K
Ultralight-weight SRNSSI 31.26 28.21 27.23 25.04 39K

Figure 4.8: Visual quality of the img061 images super resolved by light-weight networks.
(a) Ground truth. (b) SRCNN [1]. (c) SCN [2]. (d) LapSRN [29]. (e) CARN-M [14]. (f)
SRFBN-S [25]. (g) SRNSSI. (h) ESRNSSI.

Figure 4.9: Visual quality of the img083 images super resolved by light-weight networks.
(a) Ground truth. (b) SRCNN [1]. (c) SCN [2]. (d) LapSRN [29]. (e) CARN-M [14]. (f)
SRFBN-S [25]. (g) SRNSSI. (h) ESRNSSI.

the impact of the number of groups of convolutions used in each layer of the module on the

network performance and complexity, we perform experiments by carrying out the opera-

tions of the layer by dividing the input channels into 1, 2, 4 and 8 groups. Table 4.7 gives
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Figure 4.10: Visual quality of the Lena images super resolved by SRNSSI. (a) Ground
truth. (b) Super resolved with scaling factor 2. (c) Super resolved with scaling factor 3. (d)
Super resolved with scaling factor 4.

the PSNR values of the images of the four benchmark datasets super resolved by the net-

work with the scaling factor 4, and the number of parameters required by it for each of the

four cases of the group convolutions. It is seen from this table that the performance of the

network is enhanced with increasing complexity as the number of group of convolutions is

decreased. However, a close examination of the results in this table suggests the choice of

a default value of 2 for the number of group of convolutions in the proposed block. This

default value provides a good balance between the performance and the complexity of the

network using this block.

In order to investigate the impact of fusing features from the different hierarchical levels

in the spatial information processing module on the network performance and complexity,

we remove all the skip connections from the module. Thus, the resulting module simply

consists of the four convolutional layers. Table 4.8 gives the PSNR values and number of

parameters of the network using the resulting module on the images of the four benchmark

datasets with the scaling factor 4. It is seen from the results of this table that by not fus-

ing the spatial features from different hierarchical levels, the performance of the network

deteriorates by as much as 0.05dB while providing savings of only 70K in the number of

network parameters.
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We now evaluate the performance of the proposed network, SRNSSI, and its enhanced

version, ESRNSSI. Both networks use only one level of spectral decomposition in the

spectral information processing module and four layers of group convolutions in the spa-

tial information processing module. The performance of the proposed super resolution

networks is compared with those of nine light-weight state-of-the-art super resolution neu-

ral networks, namely, super resolution convolutional neural network (SRCNN) [1], sparse

coding network (SCN) [2], deep recursive residual network (DRRN) [20], deep recursive

convolutional network (DRCN) [19], Laplacian pyramid super resolution network (Lap-

SRN) [29], cascaded residual network (CARN) [14], super resolution feedback network

(SRFBN) [25], super light-weight super resolution network (s-LWSR) [15] and super reso-

lution network using lattice blocks (LatticeNet) [16], on the images of the four benchmark

datasets with scaling factors 2, 3 and 4. The results in terms of PSNR and SSIM for dif-

ferent scaling factors are given in Table 4.9. It is seen from this table that the proposed

SRNSSI provides 8 second best and 14 third best values of PSNR and SSIM among all the

state-of-the-art light-weight super resolution networks by employing 553K parameters and

31.1G MACC operations. These results of SRNSSI compares with those of LatticeNet that

provides 3 best and 15 second best values of PSNR and SSIM by employing 777K param-

eters and 43.6G MACC operations. On the other hand, the proposed ESRNSSI provides

21 best and 3 second best values of PSNR and SSIM at the expense of consuming 303K

more parameters and 16.8G more MACC operations in comparison to those consumed by

SRNSSI, and 79K more parameters and 4.3G more MACC operations in comparison to

those consumed by LatticeNet. This analysis of the results given in Table 4.9 shows that

LatticeNet, SRNSSI and ESRNSSI networks are clearly the best performing light-weight

networks, if the super resolution performance, the number of parameters and number of

MACC operations are simultaneously taken into consideration.

As the super resolution network of [106] and MWCN of [27] use the idea of spectral
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feature generation for the task of image super resolution, we compare the performance and

complexity of the proposed ESRNSSI network with that of these two networks in Table

4.10. It is seen from the results of this table that the proposed ESRNSSI network outper-

forms the other two wavelet-based super resolution convolutional neural networks in 17

out of 24 values of the PSNR and SSIM metrics on the four benchmark datasets. It should

be pointed out that the number of parameters employed by ESRNSSI is only a very small

fraction (4%) of that employed by the network of [106] or by MWCN [27].

Figs. 4.8 and 4.9 show the visual quality of the images img061 and img083 from the

Urban100 dataset with the scaling factor 4, when super resolved by some of the light-

weight networks. It is seen from these figures that the quality of the image super resolved

by each of the two proposed networks is much superior to those obtained by using the other

networks. It is seen from the zoomed segments of the images in Fig. 4.8 that the shapes of

the rectangular windows are more precisely recovered by using the two proposed networks.

Similarly, it is seen from the zoomed segments of the images in Fig. 4.9 that the arcs in

the hallway ceiling of the building are more accurately preserved in the images super re-

solved by the two proposed networks. Finally, it can be noted from the two figures that, as

expected, the quality of the images super resolved by ESRNSSI is superior to those super

resolved by SRNSSI.

Fig. 4.10 shows the Lena images from the Set14 dataset with the scaling factors 4, 3

or 2 when they are super resolved by the proposed SRNSSI network. It is seen from this

figure that all the images super resolved by the proposed SRNSSI network have good visual

qualities. However, as expected, when the scaling factor is decreased from 4 to 2, the edges

and textures in the reconstructed image become sharper.

We now form an ultralight-weight version of the proposed SRNSSI network and com-

pare its performance with that of SRCNN [1] and its faster version, namely, FSRCNN [13].
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In order to form the ultralight-weight version of the proposed network, we modify the ar-

chitecture of the proposed SRNSSI in a number of ways. First, the number of filters in the

first convolutional layer of the feature extraction stage is reduced to 32 from 64. Each of

the group convolution operations in the spatial information processing module still uses 2

groups of convolutions, but each employs 16 instead of 32 filters with kernel size 3 × 3.

Each of the convolution operations in the spectral information processing module uses 16

instead of 32 filters with kernel size 3× 3. All the point-wise convolution operations in the

residual block are performed using 32 filters. The feature extraction stage uses only one

instead of four units of the residual block. Compared to the 553K parameters employed by

the original SRNSSI, its ultralight-weight version employs only 39K parameters.

The performance and number of parameters of our ultralight-weight network are com-

pared with those of the two other ultralight-weight networks existing in the literature, SR-

CNN [1] and its faster version, FSRCNN [13], that, respectively, employ 57K and 13K

parameters. The average PSNR values on all the images of the four datasets with the scal-

ing factor 4 super resolved by these three ultralight-weight networks are given in Table

4.11. It is seen from this table that the ultralight-weight version of our proposed network

outperforms both SRCNN and FSRCNN.

4.6.3 Experimental Results of MorphoNet

In this section, we first perform an ablation study on the proposed residual block of Mor-

phoNet in order to show the effectiveness of the morphological feature generation module

in the residual block on the network performance. We then present and compare the per-

formance of the proposed network on four benchmark datasets, namely, Set5 [21], Set14

[22], BSD100 [23] and Urban100 [24] and its complexity with that of the state-of-the-art

light-weight image super resolution networks existing in the literature.

In order to investigate the effectiveness of the morphological feature generation
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Table 4.12: Results on the ablation study of the proposed residual block of MorphoNet.

Network with Set5 Set14 BSD100 Urban100
Variant 34.38 (0.9277) 30.44 (0.8446) 29.15 (0.8080) 27.98 (0.8502)

Proposed 34.52 (0.9284) 30.53 (0.8455) 29.20 (0.8085) 28.05 (0.8510)

Table 4.13: PSNR (SSIM) values resulting from applying MorphoNet and various
state-of-the-art methods to images of four benchmark datasets.

Dataset Scaling Bicubic SRCNN [1] VDSR [3] DRCN [19] LapSRN [29] MemNet [4] IDN [45] SRFBN [25] CARN [14] IMDN [54] OISR [55] MorphoNet (Proposed) [92]

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 37.53 (0.9587) 37.63 (0.9588) 37.52 (0.959) 37.78 (0.9597) 37.83 (0.9600) 37.78 (0.9597) 37.76 (0.9590) 38.00 (0.9605) 38.02 (0.9605) 38.04 (0.9614)

×3 30.39 (0.8682) 32.75 (0.9090) 33.66 (0.9213) 33.82 (0.9226) N/A 34.09 (0.9248) 34.11 (0.9253) 34.20 (0.9255) 34.29 (0.9255) 34.36 (0.9270) 34.39 (0.9272) 34.52 (0.9284)

×4 28.42 (0.8104) 30.48 (0.8628) 31.35 (0.8838) 31.53 (0.8854) 31.54 (0.885) 31.74 (0.8893) 31.82 (0.8903) 31.98 (0.8923) 32.13 (0.8937) 32.21 (0.8948) 32.14 (0.8947) 32.23 (0.0.8951)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 33.03 (0.9124) 33.04 (0.9118) 33.08 (0.913) 33.28 (0.9142) 33.30 (0.9148) 33.35 (0.9156) 33.52(0.9166) 33.63 (0.9177) 33.62 (0.9178) 33.77 (0.9196)

×3 27.21(0.7385) 29.28 (0.8209) 29.77 (0.8314) 29.76 (0.8311) N/A 30.00 (0.8350) 29.99 (0.8354) 30.10 (0.8372) 30.29 (0.8407) 30.32 (0.8417) 30.35 (0.8426) 30.53 (0.8455)

×4 26.00 (0.7027) 27.49 (0.7503) 28.01 (0.7674) 28.02 (0.7670) 28.19 (0.772) 28.26 (0.7723) 28.25 (0.7730) 28.45 (0.7779) 28.60 (0.7806) 28.58 (0.7811) 28.63 (0.7819) 28.77 (0.7855)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 31.90 (0.8960) 31.85 (0.8942) 31.80 (0.895) 32.08 (0.8978) 32.08 (0.8985) 32.00 (0.8970) 32.09 (0.8978) 32.19 (0.8996) 32.20 (0.9000) 32.32 (0.9025)

×3 27.21 (0.7385) 28.41 (0.7863) 28.82 (0.7976) 28.80 (0.7963) N/A 28.95 (0.8004) 28.96(0.8001) 28.96 (0.8010) 29.06 (0.8034) 29.09 (0.8046) 29.11 (0.8058) 29.20 (0.8085)

×4 25.96 (0.6675) 26.90 (0.7101) 27.29 (0.7251) 27.23 (0.7233) 27.32 (0.728) 27.40 (0.7281) 27.41 (0.7297) 27.44 (0.7313) 27.58 (0.7349) 27.56 (0.7353) 27.60 (0.7369) 27.65 (0.7391)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 30.76 (0.9140) 30.75 (0.9133) 30.41 (0.910) 31.31 (0.9195) 31.27 (0.9196) 31.41 (0.9207) 31.92 (0.9256) 32.17 (0.9283) 32.21 (0.9290) 32.06 (0.9288)

×3 24.46 (0.7349) 26.24 (0.7989) 27.14 (0.8279) 27.15 (0.8276) N/A 27.56 (0.8376) 27.42 (0.8359) 27.66 (0.8415) 28.06 (0.8493) 28.17 (0.8519) 28.24 (0.8544) 28.05 (0.8510)

×4 23.14 (0.6577) 24.52 (0.7221) 25.18 (0.7524) 25.14 (0.7510) 25.21 (0.756) 25.50 (0.7630) 25.41 (0.7632) 25.71 (0.7719) 26.07 (0.7837) 26.04 (0.7838) 26.17 (0.7888) 26.01 (0.7830)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 4.14: Complexity of MorphoNet and various super resolution schemes.

Method Number of Parameters
SRCNN [1] 57K
VDSR [3] 665K

DRCN [19] 1770K
MemNet [4] 677K

IDN [45] 553K
SRFBN-S [25] 483K

CARN [14] 1592K
IMDN [54] 715K
OISR [55] 1550K

MorphoNet (Proposed) 1414K

module on the network performance, we form a variant of the proposed residual block

by removing this module from the residual block. Table 4.12 gives the performance of

the super resolution network employing the proposed residual block and its variant on the

four benchmark datasets with the scaling factor 3. Our objective in the design of the pro-

posed residual block is to generate morphological features in addition to the conventional

hierarchical features that are generated solely through the convolutional operations in or-

der to provide a very rich set of features. It is seen by comparing the results of this table
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Figure 4.11: Visual quality of images img021 super resolved by various schemes. (a)
Ground truth. (b) Bicubic. (c) SRCNN. (d) VDSR. (e) DRCN. (f) CARN. (g) IMDN. (h)
Morphonet.

corresponding to using the proposed residual block and its variant, that by removing the

morphological feature generation module, the performance of the network gets reduced

significantly.

Table 4.13 gives the performance in terms of the PSNR and SSIM metrics of the

proposed super resolution network and those of ten other super resolution neural net-

works, namely, super resolution convolutional neural networks (SRCNN) [1], very deep

super resolution network (VDSR) [3], deep recursive convolutional network (DRCN) [19],

Laplacian pyramid super resolution network (LapSRN), memory persistent network (Mem-

Net) [4], information distillation network (IDN) [45], super resolution feedback network

(SRFBN) [25], cascaded residual network (CARN) [14], information multi-distillation net-

work (IMDN) [54] and ODE-inspired super resolution network (OISR) [55]. It is seen from

this table that the proposed network generally outperforms all the networks used in our

comparison. Specifically, it is seen that the proposed network outperforms OISR, which is
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the best performing state-of-the-art super resolution network in the light-weight category

employing the number of parameters in the neighborhood of 1.5M parameters or less, in

18 out of 24 cases of the PSNR and SSIM metric values.

Table 4.14 gives the complexity in terms of the number of parameters of the proposed

and state-of-the-art light-weight super resolution networks. It is seen from this table that

the proposed network employs 1.4M parameters, which is lower than the 1.55M param-

eters employed by the OISR network. Thus, considering the complexity and performance

together, the proposed network can be regarded to be the best network among all the light-

weight super resolution networks.

Fig. 4.11 shows the zoomed segments of the image img021 from the BSD100 dataset

super resolved by various light-weight super resolution networks. It is seen from this figure

that the image super resolved by the proposed network has the best visual quality. Specifi-

cally, the ridge textures of the pathway in the wooden bridge are recovered more accurately

by the proposed network in comparison to that recovered by all the other networks. In

particular, the ridge orientation in the recovered images by CARN [14] and IMDN [54] are

completely altered from that of the ground truth image.

4.6.4 Experimental Results of SRNMSM

In this section, we first investigate the impact of each of the two feature generation modules

on the super resolution performance of the proposed network (SRNMSM). We then, carry

out an experiment to investigate the impact of the size of the structuring element used for

the morphological operators on the network performance. Next, we investigate the impact

of the use of de-gridding strategy employed in the multi-scale spatial feature generation

module on the network performance. We also investigate the impact of using different fea-

ture fusion strategies in the proposed residual block on the performance of image super

resolution. Then, we investigate the impact of replacing the morphological operations by
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Table 4.15: Impact of Each Feature Generation Module on the Performance of the
SRNMSM in terms of PSNR (dB).

Network Set5 Set14 BSD100 Urban100
Variant 1 33.94 30.17 28.94 27.45
Variant 2 34.25 30.35 29.07 27.72

Proposed SR Network 34.36 30.44 29.13 27.93

Table 4.16: Impact of Combining the Four Morphological Operations on the Performance
of SRNMSM in terms of PSNR (dB).

Network Set5 Set14 BSD100 Urban100
No Morphological Operator 34.25 30.35 29.07 27.72

with Only Erosion 34.33 30.43 29.12 28.87
with Only Dilation 34.31 30.43 29.12 27.84
with Only Opening 34.34 30.43 29.12 27.82
with Only Closing 34.35 30.41 29.11 27.83

Proposed SR Network 34.36 30.44 29.13 27.93

Table 4.17: Impact of the Size of the Morphological Operators on the Performance of
SRNMS in terms of PSNR (dB).

Morphological Operator Size Set5 Set14 BSD100 Urban100
2× 2 34.36 30.44 29.13 27.93
3× 3 34.29 30.45 29.12 27.86
4× 4 34.30 30.41 29.12 27.86

Table 4.18: Impact of Reducing Gridding Artifacts in the Multi-scale Spatial Feature
Generation Module on the Performance of SRNMSM in terms of PSNR (dB).

Network Set5 Set14 BSD100 Urban100
w/o De-gridding Strategy 34.30 30.44 29.12 27.83

Proposed SR Network 34.36 30.44 29.13 27.93

the gradient operations on the performance of image super resolution. Finally, we compare

the performance, the number of parameters and the number of MACC operations of the

proposed super resolution network with those of the state-of-the-art low-complexity super

resolution convolutional neural networks available in the literature. Our proposed

residual block for the task of image super resolution consists of two feature generation

modules, multi-scale spatial feature generation module and morphological feature genera-

tion module. In order to investigate the impact of each of these two modules on the network
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Table 4.19: Impact of using Different Feature Fusion Strategies on the Performance of
SRNMSM in terms of PSNR (dB).

Network Set5 Set14 BSD100 Urban100
Summation Fusion 34.29 30.42 29.11 27.85

Proposed SR Network 34.36 30.44 29.13 27.93

Table 4.20: Impact of Using the Morphological and Gradient Operations on the
Performance of SRNMSM in terms of PSNR (dB).

Network Set5 Set14 BSD100 Urban100
with Gradient Operations 34.35 30.40 29.12 27.90

Proposed SR Network 34.36 30.44 29.13 27.93

Table 4.21: Comparison between the Performance (in terms of PSNR (dB) and SSIM) of
SRNMSM and the Light-weight Convolutional Neural Networks for Image Super
Resolution.

Dataset Scaling SRCNN [1] SCN [2] DRRN [20] DRCN [19] LapSRN [29] CARN-M [14] SRFBN-S [25] RMUN [56] LMAN-S [57] IMDN [54] SRNMSM

Set5

×2 36.66 (0.9542) 36.93 (0.9252) 37.74(0.9591) 37.63 (0.9588) 37.52 (0.959) 37.53 (0.9583) 37.78 (0.9597) 37.77 (0.9600) 37.94 (0.9603) 38.00 (0.9605) 38.04 (0.9614)

×3 32.75 (0.9090) 33.10 (0.9136) 34.03 (0.9244) 33.82 (0.9226) N/A 33.99 (0.9236) 34.20 (0.9255) 34.12 (0.9251) 34.31 (0.9265) 34.36 (0.9270) 34.36 (0.9279)

×4 30.48 (0.8628) 30.86 (0.8710) 31.68 (0.8888) 31.53 (0.8854) 31.54 (0.885) 31.92 (0.8903) 31.98 (0.8923) 31.84 (0.8901) 32.12 (0.8939) 32.21 (0.8948) 32.17 (0.8948)

Set14

×2 32.42 (0.9063) 32.56 (0.9069) 33.23 (0.9136) 33.04 (0.9118) 33.08 (0.913) 33.26 (0.9141) 33.35 (0.9156) 33.21 (0.9143) 33.49 (0.9167) 33.63 (0.9177) 33.75 (0.9191)

×3 29.28 (0.8209) 29.41 (0.8235) 29.96 (0.8349) 29.76 (0.8311) N/A 30.08 (0.8367) 30.10 (0.8372) 33.00 (0.8360) 30.24 (0.8397) 30.32 (0.8417) 30.44 (0.8446)

×4 27.49 (0.7503) 27.64 (0.7578) 28.21 (0.7721) 28.02 (0.7670) 28.19 (0.772) 28.42 (0.7762) 28.45 (0.7779) 28.32 (0.7750) 28.53 (0.7798) 28.58 (0.7811) 28.71 (0.7843)

BSD100

×2 31.36 (0.8879) 31.40 (0.8884) 32.05 (0.8973) 31.85 (0.8942) 31.80 (0.895) 31.92 (0.8960) 32.00 (0.8970) 32.02 (0.8979) 32.08 (0.8984) 32.19 (0.8996) 32.28 (0.9020)

×3 28.41 (0.7863) 28.50 (0.7885) 28.95 (0.8004) 28.80 (0.7963) N/A 28.91 (0.8000) 28.96 (0.8010) 28.94 (0.8016) 29.02 (0.8030) 29.09 (0.8046) 29.13 (0.8076)

×4 26.90 (0.7101) 27.03 (0.7161) 27.38 (0.7284) 27.23 (0.7233) 27.32 (0.728) 27.44 (0.7304) 27.44 (0.7313) 27.44 (0.7314) 27.51 (0.8340) 27.56 (0.7353) 27.59 (0.7382)

Urban100

×2 29.50 (0.8946) 29.52 (0.8970) 31.23 (0.9188) 30.75 (0.9133) 30.41 (0.910) 31.23 (0.9193) 31.41 (0.9207) 31.10 (0.9181) 31.85 (0.9251) 32.17 (0.9283) 31.91 (0.9271)

×3 26.24 (0.7989) 26.21 (0.8010) 27.53 (0.8378) 27.15 (0.8276) N/A 27.55 (0.8385) 27.66 (0.8415) 28.11 (0.8359) 28.02 (0.8487) 28.17 (0.8519) 27.93 (0.8488)

×4 24.52 (0.7221) 24.52 (0.7260) 25.44 (0.7638) 25.14 (0.7510) 25.21 (0.756) 25.62 (0.7694) 25.71 (0.7719) 25.50 (0.7663) 25.96 (0.7813) 26.04 (0.7838) 25.85 (0.7792)

Number of Parameters 57K 33K 297K 1774K 813K 412K 483K 662K 709K 715K 695K

Number of MACC Operations 52.7G 37.8G 6796.9G 17974.3G 149.4G 32.5G 1045.3G 67.7G 22.9G 40.9G 40.3G

Red font indicates the best and blue font indicates the second best performance.

Table 4.22: Comparison between the Performance (PSNR in dB) of the Network using
Residual Block of MoephoNet and the Proposed Network.

Network Set5 Set14 BSD100 Urban100
with Residual Block of [92] 34.32 30.43 29.11 27.85

Proposed Network 34.36 30.44 29.13 27.93

Table 4.23: Comparison between the Performance (PSNR in dB and SSIM) and
Complexity of the Light-weight Version of SeaNet [58] and the Proposed SRNMSM.

Network Set5 Set14 BSD100 Urban100 Params
Light-weight SeaNet [58] 34.24 (0.9264) 30.35 (0.8427) 29.07 (0.8058) 27.77 (0.8449) 1128K

Proposed SR Network 34.36 (0.9279) 30.44 (0.8446) 29.13 (0.8076) 27.93 (0.8488) 695K
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Table 4.24: Comparison between the Performance (PSNR in dB and SSIM) of Some
Traditional Image Super Resolution Schemes and the Proposed SRNMSM.

Method Twelve Testing Images [59]
NARM [61] 24.32 (0.7579)
NCSR [60] 28.77 (0.8808)

REPS-SR [59] 29.08 (0.8739)
Proposed SR Network 31.27 (0.9121)

Table 4.25: CPU Inference Time of IMDN [54] and the Proposed SRNMSM.

Network CPU Inference Time (second)
IMDN [54] 2.4222

Proposed SR Network 2.1633

performance, we form two variants of the proposed residual block of SRNMSM, namely,

Variant 1 and Variant 2. Variants 1 and 2 are obtained by removing, respectively, the multi-

scale spatial feature generation module and the morphological feature generation module

from the proposed residual block. Table 4.15 gives the performance of the proposed su-

per resolution network, when it employs the proposed residual block and its two variants

and the proposed and two resulting networks are applied to the images of four benchmark

datasets, namely, Set5 [21], Set14 [22], BSD100 [23] and Urban100 [24], with the scaling

factor 3. It is seen from the results of this table that removing the morphological feature

generation module from the proposed residual block results in degrading the super resolu-

tion performance significantly. It is also seen from this table that the use of the multi-scale

spatial features is necessary for providing a high super resolution performance. It should be

pointed out that our idea in generating and using morphological features is to supplement

the conventional spatial features with these additional features in order to further enhance

the super resolution performance and compensate any performance degradation resulted

from the use of only small number of residual blocks in a low-complexity super resolution

network.

We now consider the impact of each of the four morphological operators individu-
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ally on the super resolution performance of the network, that is, the features produced by

the multi-scale spatial feature generation module are fused with the features produced by

the morphological feature generation module that uses only one morphological operator

at a time. For this purpose, we form four variants of the morphological feature genera-

tion module, each using only a single morphological operator, and therefore, four different

corresponding networks. Table 4.16 gives the performance of the network using no mor-

phological operators, i.e., the network using only the multi-scale spatial feature generation

module, the four networks each using only one morphological operator, as well as the net-

work using all the four operators (i.e., the proposed network). It is seen from the results of

this table that the use of any one of the morphological operators improves the performance

of the network over that not using any of them. Also, it is seen that combining all the four

morphological operations provides the best performance.

In order to visualize the richness of the feature maps generated by the morphological

feature generation module, we show in Fig. 4.12, four morphological maps obtained by

applying the dilation, erosion, opening and closing morphological operators to a feature

map of the Barbara image. It is seen from this figure that the four morphological feature

maps possess various textures and structures. The fusion of these four morphological maps

results in producing a rich set of features for image super resolution.

Fig. 4.13 shows the visual quality of the image img085 from Urban100 dataset, which

is super resolved by the proposed SRNMSM and its variant that does not employ morpho-

logical feature generation module. A comparison of the zoomed versions of the images

shown in Figs. 4.13 (a), (b), (c) and (d) demonstrates that the idea of using morphological

operators in the proposed super resolution network has a significant impact in the quality

of the super resolved image.

All the four morphological operators employed for generating morphological features

of SRNMSM use the kernel size 2×2. In order to investigate the impact of different kernel
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Figure 4.12: Feature maps generated by the morphological feature generation module,
when the Barbara image is input to the network. (a) Feature map input to the residual
block. (b) Feature map obtained after applying the dilation operation. (c) Feature map
obtained after applying the erosion operation. (d) Feature map obtained after applying
opening operation. (e) Feature map obtained after applying closing operation.

sizes of morphological operators on the network performance, we also use two other kernel

sizes, namely, 3 × 3 and 4 × 4. For this study, the images of the four benchmark datasets

with scaling factor 3 are used. The performance of the network using each of these three

kernel sizes for the morphological operators is given in Table 4.17. It is seen from this table

that the super resolution network using the kernel size 2×2 provides the best performance.

However, by comparing the results of this table with those of Table 4.15, it is seen that the

use of morphological operations regardless the size of its operators improves the network

performance.

It was mentioned that the use of dilated convolution operation produces gridding

artifacts in the feature maps. In order to suppress these artifacts, we added the features gen-

erated by the regular convolution operation to those generated by the dilated convolution

operation. In order to see the impact of adding these two sets of feature maps in reducing

these artifacts, in Table 4.18, we provide the performance results of the network both with

and without the addition of features obtained using regular and dilated convolution opera-

tions, on the images of the four benchmark datasets with the scaling factor 3. It is seen from
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Figure 4.13: Visual quality of the image img085 super resolved by the proposed network
and its Variant 2 that does not employ any morphological operator. (a) Ground truth. (b)
Bicubic. (c) Variant 2. (d) Proposed SRNMSM.

Figure 4.14: Visual quality of the img012 images super resolved by the light-weight
networks. (a) Ground truth. (b) Bicubic. (c) SRCNN [1]. (d) SCN [2]. (e) LapSRN [29].
(f) CARN-M [14]. (g) IMDN [54]. (h) SRNMSM.

Figure 4.15: Visual quality of the img096 images super resolved by the light-weight
networks. (a) Ground truth. (b) Bicubic. (c) SRCNN [1]. (d) SCN [2]. (e) LapSRN [29].
(f) CARN-M [14]. (g) IMDN [54]. (h) SRNMSM.
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Figure 4.16: Visual quality of the Girl image super resolved by the proposed network. (a)
Ground truth. (b) Super resolved with scaling factor 2. (c) Super resolved with scaling
factor 3. (d) Super resolved with scaling factor 4.

the results of this table that the de-gridding strategy used in the multi-scale spatial feature

generation module is indeed effective in reducing the gridding artifacts, and consequently,

enhancing network performance.

In deep convolutional neural networks, there exist two common operations for fusing

features, concatenation and element-wise summation. Feature fusion module of the pro-

posed residual block uses the former operation for fusing multi-scale spatial features with

the morphological features, since it allows a weighted fusion of the features from the cor-

responding pixel positions of the various channels. In order to show the superiority of this

type of fusion over that of using the element-wise summation, we also provide in Table

4.19 the performance results of the network on the images of the four benchmark datasets

with the scaling factor 3 using element-wise summation of the multi-scale spatial and mor-

phological features. It is seen from this table that using the concatenative fusion is a better

way of fusing the two types of features than the element-wise summation is.

The morphological operators are concerned with manipulating the edges and bound-

aries of the maps. There are four basic morphological operators, namely, erosion, dilation,

opening and closing, aiming at extracting the structural and textural information of the

feature maps. Specifically, the dilation and erosion operators affect the feature maps by,
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respectively, thickening and thinning the edges and boundaries, and the opening operator

and closing operator, respectively, removes the small objects and fills up the small holes in

the feature maps. In the proposed morphological feature generation module, the cascade of

the point-wise and regular convolutional operations, instead of being applied directly on the

maps input to the module, are applied on the four variants of the input maps, each obtained

by manipulating the edges and boundaries of the maps through the four morphological op-

erators. On the other hand, the edge or gradient extraction operators by acting directly on

the input maps produce edges and boundaries contained in such maps. Therefore, if the

four morphological operators in our proposed module are replaced by the horizontal and

vertical gradient operators, the cascade of the point-wise and regular convolutional opera-

tions extract the features of the edge maps produced by the gradient operators. Hence, it

can be expected that the features produced by our proposed morphological feature genera-

tion module are richer than those produced by using a module, in which the morphological

operators are replaced by the gradient operators.

Table 4.20 provides the performance of the proposed network that uses the morpholog-

ical operators and that of the network in which the morphological operators are replaced by

the horizontal and vertical gradient operators, on the images of the four benchmark datasets

with the scaling factor 3. It is seen from the results of this table that the network with the

morphological operators outperforms that using the gradient operators.

The performance in terms of PSNR and SSIM and the number of parameters and

MACC operations of the proposed image super resolution network are presented and com-

pared with those of the state-of-the-art low-complexity super resolution networks in Table

4.21. The comparison is made by applying the networks, SRCNN [1], SCN [2], DRRN

[20], DRCN [19], LapSRN [29], CARN-M [14], SRFBN-S [25], RMUN [56], LMAN-S

[57] and IMDN [54], on the images of the four benchmark datasets with the scaling factors

2, 3 and 4. It is seen from this table that SRNMSM’s performance is superior to that of all
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the networks used in our comparison in 17 out of 24 PSNR and SSIM values. This per-

formance of the proposed network compares with that of IMDN [54], which provides the

best performance in 8 cases of the 24 metric values. It is also seen from this table that the

proposed SRNMSM provides the best performance by employing, respectively, 20 K and

0.6 G smaller parameters and operations than the second best performing network IMDN

[54] does.

Both the proposed residual block and the residual block of MorphoNet employ mor-

phological feature guidance strategy for generating rich sets of feature maps. In order to

compare the impact of these two residual blocks on the network performance, we use 4

residual blocks of MorphoNet in the proposed super resolution network and compare its

performance with that of the proposed super resolution network in Table 4.22 on the im-

ages of the four benchmark datasets with the scaling factor 3. It should be pointed out that

these two networks employ comparable number of parameters. It is seen from the results

of Table 4.22 that the proposed super resolution network outperforms the super resolution

network using the residual block of [92].

We now compare the performance of the proposed network with that of SeaNet, which

uses the gradient information for image super resolution. For a fair comparison, we bring

down the number of parameters of SeaNet to the level of SRNMSM. For this purpose, we

implement a light-weight version of SeaNet by using two convolutional layers for rough

image reconstruction module, two multi-scale residual blocks for soft-edge reconstruction

module and two residual blocks for image refinement module. Table 4.23 gives the perfor-

mance and number of parameters of the proposed SRNMSM and those of the light-weight

version of SeaNet on the images of the four benchmark datasets with the scaling factor 3.

It is seen from the results of this table that the proposed SRNMSM outperforms SeaNet in

that the former provides PSNR values that are higher in the range 0.06 dB to 0.16 dB than

those provided by the latter.
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In Table 4.24, we compare the performance of the proposed network with that of

some traditional image super resolution schemes, namely, REPS-SR [59], NCSR [60] and

NARM [61], on the twelve testing images used in [59] with the scaling factor 3. It is seen

from the results of this table that the proposed network significantly outperforms these tra-

ditional schemes in view of its nonlinear end-to-end mapping capability.

In order to evaluate the execution time of the proposed image super resolution network,

we obtain the inference times on a single CPU core clocked at 2.9 GHz, when SRNMSM

and IMDN, the two best performing super resolution networks in Table 4.25, are imple-

mented to super resolve the Butterfly RGB image of size 256× 256 with the scaling factor

3. Table XI gives the CPU inference time (in seconds) for these super resolution networks.

It is seen that the proposed network takes an inference time of 2.1633 s, which is 10%

smaller than that by IMDN.

Figs. 4.14 and 4.15 show the images img012 and img096 from the Urban100 dataset

and their super resolved versions obtained from the proposed and various state-of-the-art

low-complexity super resolution networks with the scaling factor 4. It is seen from the

zoomed segments of the super resolved images that the similarity in the orientations of the

building window frames recovered by using the proposed scheme is more in line to those

of the ground truth images.

Fig. 4.16 shows the super resolved images when the proposed SRNMSM network is

applied to the Girl image of Set5 dataset downsampled with the scaling factors 2, 3 and 4.

A comparison of the zoomed segments shown in Figs. 4.16 (b), (c) and (d) with that of

Fig. 4.16 (a) demonstrates that the hair strand in the super resolved images is very similar

to that in the ground truth image for all the scaling factors.
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Table 4.26: PSNR (SSIM) values∗ resulting from applying various light-weight feature
guiding methods to images of three benchmark datasets.

Dataset Scaling EFFRBNet [96] SRNMSM [84] MorphoNet [92] ESRNSSI [87]

Set5
×2 38.00 (0.9612) 38.04 (0.9614) 38.04 (0.9614) 38.17 (0.9618)

×3 34.31 (0.9270) 34.36 (0.9279) 34.52 (0.9284) 34.56 (0.9290)

×4 32.02 (0.8928) 32.17 (0.8948) 32.23 (0.8951) 32.34 (0.8969)

Set14
×2 33.67 (0.9187) 33.75 (0.9191) 33.77 (0.9196) 33.92 (0.9205)

×3 30.39 (0.8435) 30.44 (0.8446) 30.53 (0.8455) 30.57 (0.8467)

×4 28.61 (0.7824) 28.71 (0.7843) 28.77 (0.7855) 28.83 (0.7883)

BSD100
×2 32.23 (0.9012) 32.28 (0.9020) 32.32 (0.9025) 32.38 (0.9028)

×3 29.10 (0.8066) 29.13 (0.8076) 29.20 (0.8085) 29.23 (0.8097)

×4 27.54 (0.7364) 27.59 (0.7382) 27.65 (0.7391) 27.68 (0.7410)

Urban100
×2 31.79 (0.9261) 31.91 (0.9271) 32.06 (0.9288) 32.24 (0.9303)

×3 27.83 (0.8473) 27.93 (0.8488) 28.05 (0.8510) 28.24 (0.8557)

×4 25.73 (0.7761) 25.85 (0.7792) 26.01 (0.7830) 26.13 (0.7884)

∗ The values in the red font indicate the best performance.

4.7 Comparison between Various Proposed Deep Image

Super Resolution Networks using Guided Feature Gen-

eration

The performance results of the various deep light-weight image super resolution networks

using guided feature generation proposed in this chapter are given in Table 4.26. From the

results of this table, the following points can be highlighted. First, the super resolution

networks SRNSSI and SRNMSM are two high performance networks that employ less

than 1M parameters and still provide very high performance for image super resolution.

The super resolution network EFFRBNet provides a high super resolution performance,

but at the expense of employing more than 1M parameters. Of all the super resolution

networks proposed in this chapter, ESRNSSI is the best one by employing less than 1M

parameters and providing the highest image super resolution performance.
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4.8 Conclusion

In this chapter, we have proposed several deep light-weight image super resolution net-

works by employing the idea of guided feature generation. Specifically, we have used

three guided feature generation processes, namely, edge extraction, spectral feature gener-

ation and morphological feature generation, for improving the representational capability

of a deep super resolution network and enhancing its performance. The results of the ex-

periments carried out in this chapter have shown the effectiveness of the guided feature

generation process for deep image super resolution convolutional networks.
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Chapter 5

Deep Image Super Resolution Networks

using Efficient Feature Fusion

Techniques

5.1 Introduction

Deep image super resolution networks produce feature maps at various hierarchical levels,

and fusing these features can further boost the performance of the networks. By fusing the

features produced by a network, new rich and representable features can be obtained. In this

chapter, we propose different feature fusion strategies for efficiently combining features of

different residual blocks and also features within a residual block [85], [86], [90].
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5.2 CompNet: A New Feature Fusion Technique for Deep

Single Image Super Resolution Convolutional Neural

Networks

Learning the residual signal is the goal of the networks that are based on residual learning.

The residual signal is the difference between the original high resolution image and the

interpolated version of the low resolution image. The proposed deep network, referred to

as CompNet, consists of several convolutional layers each followed by a ReLU activation

function. The architecture of the network [90] is shown in Fig. 5.1. The interpolated low

resolution input signal at node A is fed to the first convolutional layer of this network,

which produces at node B the first set of feature maps of the interpolated low resolution

image. Between the nodes B and C, a total of d1 convolutional layers are placed. This

is followed by placing another d2 convolutional layers between the nodes C and D and a

single convolutional layer between the nodes C and E. The feature maps produced at the

nodes B, E and D are then concatenated through a block represented by Con. Thus, node

F represents a set of concatenated feature maps, which is fed to the last convolutional layer

placed between the nodes F and G. Finally, the interpolated image from node A and the

result from the node G are added to produce the final estimated high resolution image. The

signal at node G, therefore, represents the estimated residual image. All of the layers of the

network produce different feature maps of the interpolated image.

Let u, v and w be the feature vectors at nodes B, C and D, respectively, each produced

by the convolutional layers and activation functions, say, ReLU. As one progresses deeper

into the network, the features produced become more sparse and they are the results of the

network undergoing increasingly more nonlinearity. Thus, in the feature vectors, u are the

least sparse and they have been produced by the network at a node where it has undergone

the least nonlinearity. On the other hand, the converse is true for the feature vectors w.
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Figure 5.1: CompNet architecture. Conv., BN and Act. imply convolutional layer, batch
normalization and activation function (in our work is specified as ReLU), respectively.
Also, d1 and d2 refer to as the number of blocks, each including convolutional layer, batch
normalization and activation function. The block with red color is considered for
dimensionality reduction purpose.

However, depending on the value of d1, the feature vectors represented by v have these

two characteristics in between that of u and w. Thus, a feature vector that is composed

by using these three feature vectors can be expected to be a better representative of the

spectrum of an estimated residual image. In view of this expectation, in this investigation,

the three types of vectors are concatenated as

c =


w

v

u

 (5.1)

Let m1, m′2 and m3 be the numbers of slices to produce the tensors at nodes B, C and D,

respectively, i.e. u ∈ IRm1 , v ∈ IRm′2 and w ∈ IRm3 . Then, c ∈ IRm1+m′2+m3 . Since

the sparsity of v is in between that of u and w, and amount of the nonlinearity used to

produce the feature vectors v is also in between that applied to produce u and w, we pro-

pose a dimensionality reduction of v from m′2 to m2 by placing another convolutional layer

between nodes C and E before carrying out the concatenation operation. The function of
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the last convolutional layer is selection of the features from u, v and w in constructing the

estimated residual image.

The final feature vector, c in CompNet is expected to be less sparse in comparison to

that provided by VDSR [3]. However, the feature vectors c experiences about the same

amount of nonlinearity as that experienced by VDSR.

Each of the layers of the segment of the network shown in blue color between the nodes

B and D uses 64 filters, each of support size 3 × 3. Since the purpose of the layer in the

red segment of the network is dimensionality reduction, this layer employs only 32 filters

each of spatial support size of 1× 1. Also, since our objective is to include in the concate-

nation process the feature vectors whose characteristics of sparsity and nonlinearity are in

between of those at nodes B and D, we chose d1 = d2 = d and we set d = 9, so that the

network is sufficiently deep. The final convolutional layer employs a single filter of size

3× 3× 160, for the reconstruction of the residual image. Each of the convolutional layers

except the last one are followed by a ReLU activation function.

As in other super resolution schemes that are based on deep learning, in our scheme

also sub-images are used for the training of CompNet. Sub-images of size 48 × 48 with

no overlap are used for the training. However, since CompNet is a fully convolutional net-

work, it can be trained and tested on images of any size. In addition, multi-scale training

is utilized for CompNet, and therefore, the training dataset consists of samples upscaled by

various factors. This process not only removes the need of individual networks for each

upscaling factor, but as has been shown in [3], it also improves the robustness of the net-

work leading to a better performance.

The effective receptive field in CompNet, when the number of layers has a default value

of 20 and the filter spatial support of 3×3, is 41, which is a little less than the size of the in-

put sub-image. We have noticed that increasing the depth of CompNet over its default value

of 20 does not improve its performance even though the corresponding effective receptive
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field remains within the size of the sub-images. Therefore, for the proposed CompNet, we

keep the depth at 20 layers. For initializing the weights of our network, the method due

to He et al. [7], which is based on the layer hyper parameters and the use of the ReLU

activation function, is used. In this method, the kernel with a spatial support of s × s is

randomly initialized with a Gaussian distribution having a zero mean and a variance of 2
s2n

,

where n is the layer width.

In our experiments, we use BSD200 [23] and 91 images [6] that have, respectively,

200 and 91 images, as a training dataset. After data augmentation, a total number of

151815 sub-images are generated from this dataset and utilized as the the training sam-

ples. The training dataset is divided into batches each of size 64 (with the exception of

the last batch), Thus each epoch has 2373 iterations (backpropagations). The number of

epochs is set as 80 for the sake of consistency, when comparing the proposed scheme with

other schemes. Also, the weight decay parameter is set as 10−4. Since the main objec-

tive metric for evaluating the single image super resolution is the peak signal-to-noise ratio

(PSNR = 10 log10(
2552

MSE
), where MSE represents the mean squared error), the loss func-

tion used by CompNet is the mean squared error.

All of the deep learning tasks are implemented using Keras [40] that is backended by

TensorFlow package [41]. The training procedure for CompNet is conducted on a machine

with Intel Core i7 CPU @4.2 GHz, 16 GB installed memory and GPU Nvidia Titan X

(Pascal).

It should be pointed out that the feature fusion technique of CompNet is used for devel-

oping other image super resolution networks such as SRSubBandNet [101].
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5.3 FPNet: A Deep Light-weight Interpretable Neural Net-

work using Forward Prediction Filtering for Efficient

Single Image Super Resolution

The use of residual blocks in a deep network facilitates the flow of the information in

the forward and backpropagation. The super resolution schemes of [62], [63] and [64]

are deep networks that focus on the way the feature maps within each residual block and

those resulting from a combination of residual blocks are combined. However, in all these

networks, the feature maps are simply fused through the concatenation and the point-wise

convolution operations. In this section, we propose a deep super resolution network [85] in

which the feature maps of the residual blocks are combined in the same way as it is done

in a forward prediction error (FPE) filtering of adaptive signal processing that allows the

extraction of a weighted combination of the feature maps generated by a set of residual

blocks.

Here, first the FPE filter as used in adaptive signal processing is briefly reviewed and

then employed to develop the proposed super block for its use in a deep super resolution

network. The training details of the proposed network are also described.

Let Xn denote a stationary discrete-time random process. The value of Xn at time l,

i.e., X(l), can be predicted from a linear combination of its values at M previous samples,

i.e., X(l − 1), ..., X(l −M), as

X̂(l|Xl−1) =
M∑
k=1

w∗kX(l − k) (5.2)

whereXl−1 represents set of values of the random processXn at samples l−1, ..., l−M , and

wk denotes the kth weight of the adaptive filter. In the theory of adaptive signal processing,

the weight vector w = [w1, w2, ..., wM ]T is obtained in such a way that the following error
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is minimized

fM(l) = X(l)− X̂(l|Xl−1) (5.3)

By minimizing fM(l), the resulting weight vector w is given by

w = R−1r (5.4)

where R and r, respectively, denote the auto-correlation matrix of the random process Xn

at samples l−1, ..., l−M and the cross-correlation vector between the the value of random

process Xn at sample l and its values at the previous M samples. The error given by (5.3)

is referred to as the forward prediction error (FPE).

Fig. 5.2 shows the proposed architecture of SB. The feature tensor u input to SB is

passed through a cascade of M +1 dense residual blocks. Let Ri (i = 1, ...,M +1) denote

the operation of the ith residual block of SB. The ith residual block by operating on its

input feature tensor vi−1 (v0 = u) produces the output feature tensor vi given by

vi = Ri(vi−1) i = 1, ...,M + 1 (5.5)

The output feature tensor vi produced by the ith residual block in SB correspond to the

value of the {l−M + (i− 1)}th sample of the random process Xn. Next, each of the fea-

ture tensors vi’s (i = 1, ...,M ) is recalibrated using, respectively, the feature recalibration

modules Pi’s (i = 1, ...,M ). For the feature recalibration, we use a squeeze-and-excitation

(SE) unit [33], which consists of a cascade of global average pooling operation and two

point-wise convolutions. The first point-wise convolution operation employs 4 filters fol-

lowed by a ReLU activation, whereas the second one uses 64 filters followed by a sigmoid

activation. The module Pi weights each channel of the feature tensor vi (i = 1, ...,M )
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individually. The recalibrated feature tensor ri is obtained as

ri = Pi(vi) i = 1, ...,M (5.6)

In accordance with (5.2), the recalibrated feature tensors ri’s are added to provide the fea-

ture tensor v̂M+1 as

v̂M+1 =
M∑
i=1

ri (5.7)

The feature tensor v̂M+1 given by the above equation corresponds to X̂(l|Xl−1). Now, FPE

given by (5.3) can be implemented to provide the feature tensor e given by

e = vM+1 − v̂M+1 (5.8)

Note that the feature tensor e is a residual feature tensor in the architecture of SB and

corresponds to the forward prediction error fM(l) given by (5.3). In order to provide an

enhanced learning to SB, the feature tensor e is first further processed through a convolution

operation F to yield feature tensor F (e). Then, F (e) is added to vM+1 to provide the output

feature maps denoted by z of the super block as

z = vM+1 + F (e) (5.9)

where the convolution operation F employs 64 filters, each with kernel size 3× 3.

As seen from Fig. 5.2, the proposed SB uses a cascade of several residual blocks Ri’s.

Each residual block consists of three convolutional layers, each composed of 64 filters with

kernel size 3 × 3, and followed by ReLU activation function. The outputs of the three

convolutional layers are concatenated and the resulting feature tensor undergoes a point-

wise convolution operation using 64 filters in order to form the residual feature maps of the

residual block. Finally, the features that are input to this dense residual block are added to
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Figure 5.2: Architecture of the proposed super block. SE denotes the
squeeze-and-excitation unit.

the residual features to yield the output features of the block.

In the overall architecture of the proposed super resolution network, first the low res-

olution input image is made to undergo a convolution operation using 64 filters each with

kernel size 3×3 and a ReLU activation. The output of this layer is subjected to a cascade of

3 units of SBs and the spatial resolution of the resulting high level feature maps are restored

to that of the ground truth image by passing them through a sub-pixel convolution opera-

tion. Next, these feature maps with increased spatial resolution are fed to a convolutional

layer in order to construct the residual image between the bilinearly interpolated version

the low resolution image and the ground truth image. This convolutional layer employs 3

filters each with kernel size 3× 3.

We refer to the proposed image super resolution network as Forward Prediction Network

for image super resolution (FPNet) [85].

The theory of forward prediction error (FPE) filtering of adaptive signal processing
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allows the estimation of a sample of a random signal from a linear combination of the sam-

ples in a set of its preceding samples. This is in fact possible in view of the assumption that

in practical situations, the current sample is correlated with the samples that immediately

precede it. The values of the adaptive weights in the linear combination are, therefore, de-

termined by minimizing the error between the current sample and the linear combination

of its preceding samples. In the proposed super block for the task of image super resolution

shown in Fig. 5.2, the feature tensors v1, . . . , vM+1 are computed by applying convolution

operations on their preceding feature tensors staring from feature tensor u input to the super

block. Hence, all these feature tensors are correlated. Therefore, the feature tensor vM+1

can be estimated as a linear combination of the feature tensors v1, . . . , vM . As in FPE, we

obtain the adaptive weights determined by the modules Pi’s by minimizing the error tensor

e, which is the difference between the feature tensor vM+1 and the linear combination of

v1, . . . , vM , i.e., v̂M+1. The minimization of the feature tensor e is achieved through the

residual end-to-end mapping of the deep network that is composed of a cascade of the pro-

posed super blocks. Note that the error tensor e, that is the residual tensor between vM+1

and v̂M+1, necessarily has the high frequency information, and therefore, its addition to the

feature tensor vM+1 results in a richer set of features.

Finally, it should be noted that the proposed super block is a non-linear system. Hence,

unlike the FPE filtering, which is a linear predictive filtering scheme, a closed form ex-

pression such as the one given by (5.4) does not exist for the weight modules Pi’s in the

linear combination of feature tensors v1, . . . , vM . The values of these weights, along with

those of all the other parameters, are obtained through a supervised learning of the network

employing the proposed super blocks.

For the training of the proposed network, the dataset DIV2K [42] that consists of 800

training images is considered. The training samples of size 48 × 48 are extracted from

the images of this dataset. The `1 norm of the loss between the ground truth samples and
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the estimated high resolution samples obtained by applying the proposed network to the

degraded low resolution sub-images is used for updating the network parameters. The `1

norm loss is minimized by using the method of stochastic gradient descent. A value of 64

is chosen for the training batch size.

5.4 SRNHARB: A Deep Light-weight Image Super Reso-

lution Network using Hybrid Activation Residual Blocks

The task of image super resolution is essentially a non-linear mapping between the low

resolution input image and the ground truth image. Therefore, the use of ReLU activation

between the two convolution operations in a residual block imparts to the network the

necessary non-linearity. It also disentangles the dense set of information contained in the

feature maps into a sparse robust set of information, and therefore, simplifies the learning

process of the model. However, the feature rectification carried out by ReLU results in

losing information associated with the negative-valued features that might otherwise be

useful for the task of image super resolution. In order to address this problem, one could

employ other non-linear activations that allow the passage of the negative-valued features,

such as parametric ReLU (PReLU) or ELU. Even though the use PReLU or ELU also

brings sparsity, the feature maps produced by these activations are not as sparse as those

produced by the use of ReLU. In this section, we propose a new residual block, in which

both the positive and negative-valued features of the input to the block, each with sufficient

sparsity, are processed separately. Specifically, the input maps to the block are decomposed

into positive-valued features and negative-valued features by using ReLU and inverted and

negated ReLU activations, respectively, and processed separately in two parallel streams by

group convolutions. Thus, in this mechanism of processing the feature maps, the individual

streams are able to preserve the sparsity that is provided by the use of a single activation
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unit, and the use of group convolutions allows to control the increase in the computational

complexity resulting from processing both the positive and negative-valued features rather

than processing only the positive-valued ones.

Here, we first develop the architecture of the proposed residual block [86]. We then

present the overall architecture of the image super resolution network using this residual

block. Finally, we explain the training details of the proposed super resolution network.

Fig. 5.3 shows the architecture of the proposed residual block. As seen from this

figure, the feature tensor x input to the residual block is first made to undergo a convolution

operation W1, which uses 64 filters each with kernel size 3× 3, yielding the feature tensor

u1 as given by

u1 = W1(x) (5.10)

The feature tensor u1 is then simultaneously passed through the ReLU and inverted and

negated ReLU activations yielding, respectively, feature tensors u2 and u3, which are given

by

u2 = ReLU(u1)

u3 = −ReLU(−u1)

(5.11)

It is seen from (5.11) that the feature tensors u2 and u3 contain, respectively, the positive and

negative-valued features of u1. Hence, the information in u1 is completely preserved. The

feature tensors u2 and u3 can be processed individually by a convolutional layer. However,

this increases the complexity of the residual block. Since one of our main objectives in

developing the proposed residual block is to design it in a light-weight manner, we apply

group convolutions W2 and W3, respectively, to the feature tensors u2 and u3, producing

feature tensors u4 and u5 as given by

u4 = W2(u2)

u5 = W3(u3)

(5.12)
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Figure 5.3: Architecture of the proposed residual block. Conv., G Conv., PW Conv. and
IN ReLU, respectively, denote convolution, group convolution, point-wise convolution
and inverted and negated ReLU activation.

where each of the group convolution operations W2 and W3 employs two groups of 32

filters each with kernel size 3× 3. Since in our group convolutions, the convolution opera-

tions are carried out only on one-half of the input channels rather than all the channels, the

complexity of employing the two group convolution operationsW2 andW3 by the proposed

residual block is the same as that of employing a single regular convolution operation using

64 filters. Next, the feature tensors u4 and u5 are concatenated and the resulting feature ten-

sor is made to undergo a point-wise convolution operation W4 yielding the residual feature

tensor:

v = W4

(
CONCAT (u4,u5)

)
(5.13)

where the point-wise convolution operation W4 employs 64 filters. Finally, the residual

feature tensor v is added to the block’s input feature tensor x in order to obtain its output y.

Fig. 5.4 shows the overall architecture of the proposed image super resolution network.

It is seen from this figure that in this network, the low resolution input image X first under-

goes a convolution operation employing 64 filters each with kernel size 3 × 3 yielding the

feature maps U. Next, the feature tensor U is made to undergo the operation of a cascade

of 9 units of proposed residual block. Each residual block generates a set of feature maps
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Figure 5.4: Network overall architecture. SP Conv., PW and H, respectively, denote the
sub-pixel convolution operation, point-wise convolution operation and HARB block.
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Figure 5.5: Plot of different objectives functions representing the loss between the ground
truth and high resolution training samples.

at a distinct hierarchical level of abstraction. Hence, fusing the outputs of various residual

blocks using dense connections results in generating rich sets of features by the residual

blocks. However, the use of dense connections between residual blocks increases the net-

work complexity. In order to generate rich sets of feature maps by using dense connections

and at the same time keep the network complexity low, we place a point-wise convolution

operation using 64 filters before each residual block to keep the number of feature chan-

nels to be processed by the block low. The output feature tensor V obtained from the 9th

residual block is fed to a sub-pixel convolutional layer [8] and the spatial resolution of its
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feature maps is increased to that of the ground truth image. Finally, the upscaled feature

tensor Z obtained at the output of the sub-pixel convolutional layer is made to undergo

a convolution operation using 3 filters each with kernel size 3 × 3 in order to obtain the

residual signal R between the ground truth image and the bilinear interpolated version B of

the low resolution input image.

We refer to the proposed residual block of Fig. 5.3 as hybrid activation residual block

(HARB), in view of its using both the ReLU and inverted and negated ReLU activations,

and to the proposed super resolution network of Fig. 5.4 as the Super Resolution Network

using Hybrid Activation Residual Blocks (SRNHARB) [86].

In order to train our convolutional neural network, we use the images of the DIV2K [42]

dataset. The samples of the training set are formed by extracting sub-images of size 48×48

from the 800 images of this dataset.

For the training of the proposed network, we consider three objective functions, `2

norm, `1 norm and logcosh objective functions. Fig. 5.5 illustrates the plots of the absolute

value, squared value and logcosh value of the error e(p) representing the difference between

the estimated high resolution value and the ground truth value of pixel p. It is clear from

this figure that since the slope of the absolute function is larger than that of either of the

other two functions when the value of e(p) is small, it can be expected that the training of

a network using the `1 norm objective function would be the fastest. However, since the

gradient of the the absolute function is not a continuous function at e(p) = 0, wheres as that

of the other two functions are, it can be expected that a better convergence for an optimal

solution can be achieved by either `2 norm based or logcosh based objective functions. In

view of these characteristics of the three objective functions, we adopt the strategy for train-

ing SRNHARB in two parts. Initially, the weights of SRNHARB are updated for a certain

number of iterations using the `1 norm based objective function, and then, the network is

fine-tuned by using the objective functions which is either `2 norm based or logcosh based.
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The optimization process is carried using stochastic gradient descent (SGD) technique. The

learning process is started with the step size of 0.1 and decreased by a factor of 10 after

each 182, 500 iterations. A value of 10−4 is assigned to the weight decay parameters for

carrying out the convolution operations. The method of [7] is used for initializing the pa-

rameters of convolution operations. A value of 64 is chosen as the batch size. The number

of iterations after which the objective function is switched from the `1 norm based to the `2

norm based or logcosh based is 547, 500, which is a number that is empirically determined.

5.5 Experimental Results

5.5.1 Experimental Results of CompNet

In this section, the results of various experiments that are conducted using CompNet are

presented and analyzed. The results of CompNet and five state-of-the-art schemes namely,

A+ [47], RFL [65], SRCNN, cascaded SCN (CSCN) and VDSR, are given in Table 5.1. It

is seen from the results of this table that in almost all the cases, CompNet outperforms all

of the state-of-the-art schemes. In some cases, improvement in the performance provided

by CompNet is quite significant. For instance, in the case of Set14 test set (upscaled by 3),

CompNet yields a PSNR value that is 0.29 dB higher than that given by VDSR along with

the similarity measure that %0.54 higher.

With the default settings, CompNet is composed of 19 layers each of width 64 followed

by a layer of width one. Now, we consider two separate variations in the default settings of

the hyper parameters of CompNet. In the first one, we reduce the depth of CompNet from

20 to 16. The resulting network is referred to as reduced-depth CompNet (RD CompNet),

whereas, in the second one, the width of CompNet is reduced from 64 to 32 and refer the

resulting network as reduced-width CompNet (RW CompNet). Table 5.2 gives the total

number of parameters for the three settings of CompNet as well as that for SRCNN and
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Table 5.1: PSNR (SSIM) Values Resulting from Applying CompNet and Various
State-of-the-art Methods to Images of Three Datasets.

Dataset Scaling Bicubic A+ [47] RFL [65] SRCNN [1] CSCN [2] VDSR [3] DEGREE [17] CompNet [90]

Set5

×2 33.66 (0.9299) 36.54 (0.9544) 36.54( 0.9537) 36.66 (0.9542) 37.00 (0.9557) 37.53 (0.9587) 37.54(0.9584) 37.58 (0.9596)

×3 30.39(0.8682) 32.58(0.9088) 32.43(0.9057) 32.75(0.9090) 33.18 (0.9153) 33.66(0.9213) 33.72 (0.9204) 33.67(0.9219)

×4 28.42(0.8104) 30.28(0.8603) 30.14(0.8548) 30.48(0.8628) 30.94(0.8755) 31.35(0.8838) 31.43 (0.8818) 31.35 (0.8833)

Set14

×2 30.24(0.8688) 32.28(0.9056) 32.26(0.9040) 32.42(0.9063) 32.65 (0.9081) 33.03(0.9124) 33.01 (0.9118) 33.29 (0.9149)

×3 27.21(0.7385) 29.13(0.8188) 29.05(0.8164) 29.28(0.8209) 29.41 (0.8234) 29.77(0.8314) 29.87(0.8317) 30.06 (0.8368)

×4 26.00(0.7027) 27.32(0.7491) 27.24(0.7451) 27.49(0.7503) 27.71 (0.7592) 28.01(0.7674) 28.02 (0.7646) 28.26 (0.7732)

BSD100

×2 29.56(0.8431) 31.21(0.8863) 31.16(0.8840) 31.36(0.8879) 31.46 (0.8891) 31.90(0.8960) 31.76 (0.8939) 31.91 (0.8972)

×3 27.21(0.7385) 28.29(0.7835) 28.22(0.7806) 28.41(0.7863) 28.52 (0.7883) 28.82(0.7976) 28.69 (0.7937) 28.84 (0.7995)

×4 25.96(0.6675) 26.82(0.7087) 26.75(0.7054) 26.90(0.7101) 27.06 (0.7167) 27.29 (0.7251) 27.14 (0.7200) 27.28 (0.7272)

Bold font indicates the best.

Table 5.2: Complexity of CompNet and Various Super Resolution Schemes.

Method Number of Parameters
SRCNN (Reproduced) 57281
VDSR (Reproduced) 665921

ComNet 673605
RD CompNet 524869
RW CompNet 170405

VDSR. It is seen from this table that the number of parameters for SRCNN is the lowest.

However, it is not a deep network. On the other hand, CompNet with the two new settings

has a complexity lower than that of VDSR with RW CompNet having a considerably lower

complexity. Fig. 5.6 gives the PSNR value as a function of the number of epochs. It is

seen from this figure that CompNet provides a performance that is superior to that of RD

CompNet or RW CompNet. However, the performance of the two latter networks are not

substantially different, thus indicating the robustness of CompNet with respect to its width

and depth. It is worth noting that the number of parameters of RW CompNet is substantially

lower than that of CompNet with only a modest decrease in the performance.

We now run another experiment using the proposed network in which the number of

parameters is reduced from 673K to 636K by removing one of the nonlinear mapping layers
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Table 5.3: PSNR (SSIM) results of CompNet with 19 layers and VDSR. The bolded
values are the best in the comparison.

Dataset scaling VDSR CompNet

Set5
×2 37.53 (0.9587) 37.54 (0.9594)
×3 33.66(0.9213) 33.64(0.9215)
×4 31.35(0.8838) 31.29 (0.8829)

Set14
×2 33.03(0.9124) 33.25 (0.9149)
×3 29.77(0.8314) 30.05 (0.8367)
×4 28.01(0.7674) 28.23 (0.7730)

BSD100
×2 31.90(0.8960) 31.90 (0.8971)
×3 28.82(0.7976) 28.83 (0.7994)
×4 27.29 (0.7251) 27.27 (0.7271)

0 10 20 30 40 50 60 70 80

Epochs

27

28

29

30

31

32

33

34

P
S

N
R

 i
n
 d

B

CompNet(Depth=20, width=64)

CompNet(Depth=16, width=64)

CompNet(Depth=20, width=32)

Figure 5.6: CompNet convergence for different settings of hyperparameters on Set 5 with
upscaling factor 3.

131



(i.e., layer 19). We apply the network with reduced number of parameters on the three

benchmark datasets. The results obtained from our network and that obtained by applying

VDSR, which uses 665K parameters, are shown in Table 5.3. It is seen from this table that

the proposed network still yields a performance superior to that given by VDSR. It is clear

from the results of this experiment that the performance gain of the proposed network over

VDSR cannot be simply attributed to the use of a larger number of parameters, but rather

to the use of an appropriate composition of the features in reconstructing the residue.

5.5.2 Experimental Results of FPNet

This section first carries out an ablation study by finding the performance of the super

resolution network that employs the proposed super block. Then, the performance of the

proposed scheme is compared with that of the low-complexity super resolution networks

that are available in the literature on benchmark datasets, Set5 [21], Set14 [22], BSD100

[23] and Urban100 [24]. The complexity of the proposed network is also compared.

In the proposed super resolution network of FPNet, we use a cascade of 3 units of SB,

each of which employs 4 (M = 3) dense residual blocks. The effectiveness of the proposed

super block is demonstrated by forming its three variants, each focusing on a separate idea

used in its design, and using them in the super resolution network. The super block of

Variant 1 consists of only the dense residual blocks without using Pi units, and the net-

work has simply 12 units of the dense residual blocks. Variant 2 is formed by replacing

the dense residual blocks of SBs by simple residual blocks, each consisting of a cascade

of 3 convolutional layers employing 64 filters with kernel size 3× 3. Variant 3 is obtained

by removing the Pi units from Variant 2, i.e., this variant consists of just 12 units of the

simple residual blocks. The PSNR values of the images obtained by the network using

individually the three variants when the network is applied to the images downsampled by

the scaling factor 4 from Set5 and Urban100 datasets are given in Table 5.4. The results
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Figure 5.7: Plot of performance versus number of parameters of the various light-weight
image super resolution networks.

Figure 5.8: Visual quality of images img012 super resolved by various schemes. (a)
Ground truth. (b) SRCNN. (c) VDSR. (d) DRRN. (e) IMDN. (f) FPNet.

of the table show that the proposed scheme outperforms significantly all its three variants.

By comparing the performance of Variant 1 with that of the proposed network, and the

performance Variant 3 with that of Variant 2, it is clear that Pi units, which implement the

idea of forward prediction, are very important in the design of the proposed super block. It

is also to be noted that despite the significance of Pi units in improving the performance of

the proposed network, they do not add much to its complexity. We now compare the per-

formance of our scheme with that of the ten low-complexity schemes. These light-weight
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Table 5.4: Results of Ablation Studies on the Proposed FPNet.

Benchmark Variant 1 Variant 2 Variant 3 Proposed
PSNR on Set5 32.25 32.30 32.27 32.32

PSNR on Urban100 26.04 26.03 25.79 26.09

Table 5.5: PSNR (SSIM) values resulting from applying FPNet and various
state-of-the-art methods to images of four benchmark datasets.

Dataset Scaling Bicubic SRCNN [1] DRRN [20] MemNet [4] SRFBN [25] CARN [14] DeCoNAS [62] GFFRN-L [63] IMDN [54] DeFiAN [66] OISR [55] FPNet (Proposed) [85]

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 37.74(0.9591) 37.78 (0.9597) 37.78 (0.9597) 37.76 (0.9590) 37.96 (0.9594) 37.96 (0.9603) 38.00 (0.9605) 38.03 (0.9605) 37.84 (0.9504) 38.13 (0.9616)

×3 30.39 (0.8682) 32.75 (0.9090) 34.03 (0.9244) 34.09 (0.9248) 34.20 (0.9255) 34.29 (0.9255) N/A 34.27 (0.9263) 34.36 (0.9270) 34.42 (0.9273) 34.39 (0.9272) 34.48 (0.9285)

×4 28.42 (0.8104) 30.48 (0.8628) 31.68 (0.8888) 31.74 (0.8893) 31.98 (0.8923) 32.13 (0.8937) N/A 32.03 (0.8934) 32.21 (0.8948) 32.16 (0.8942) 32.14 (0.8947) 32.32 (0.8962)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 33.23 (0.9136) 33.28 (0.9142) 33.35 (0.9156) 33.52(0.9166) 33.63 (0.9175) 33.51 (0.9169) 33.63 (0.9177) 33.63 (0.9181) 33.62 (0.9178) 33.83 (0.9198)

×3 27.21(0.7385) 29.28 (0.8209) 29.96 (0.8349) 30.00 (0.8350) 30.10 (0.8372) 30.29 (0.8407) N/A 30.29 (0.8409) 30.32 (0.8417) 30.34 (0.8410) 30.35 (0.8426) 30.53 (0.8454)

×4 26.00 (0.7027) 27.49 (0.7503) 28.21 (0.7721) 28.26 (0.7723) 28.45 (0.7779) 28.60 (0.7806) N/A 28.54 (0.7803) 28.58 (0.7811) 28.63 (0.7810) 28.63 (0.7819) 28.78 (0.7856)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 32.05 (0.8973) 32.08 (0.8978) 32.00 (0.8970) 32.09 (0.8978) 32.15 (0.8986) 32.13 (0.8992) 32.19 (0.8996) 32.20 (0.8999) 32.16 (0.8993) 32.29 (0.9018)

×3 27.21 (0.7385) 28.41 (0.7863) 28.95 (0.8004) 28.96(0.8001) 28.96 (0.8010) 29.06 (0.8034) N/A 29.07 (0.8039) 29.09 (0.8046) 29.12 (0.8053) 29.11 (0.8058) 29.20 (0.8086)

×4 25.96 (0.6675) 26.90 (0.7101) 27.38 (0.7284) 27.40 (0.7281) 27.44 (0.7313) 27.58 (0.7349) N/A 27.54 (0.7347) 27.56 (0.7353) 27.58 (0.7363) 27.60 (0.7369) 27.66 (0.7394)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 31.23 (0.9188) 31.31 (0.9195) 31.41 (0.9207) 31.92 (0.9256) 32.03 (0.9265) 31.91 (0.9263) 32.17 (0.9283) 32.20 (0.9286) 32.21 (0.9290) 32.04 (0.9278)

×3 24.46 (0.7349) 26.24 (0.7989) 27.53 (0.8378) 27.56 (0.8376) 27.66 (0.8415) 28.06 (0.8493) N/A 28.03 (0.8493) 28.17 (0.8519) 28.20 (0.8528) 28.24 (0.8544) 28.19 (0.8534)

×4 23.14 (0.6577) 24.52 (0.7221) 25.44 (0.7638) 25.50 (0.7630) 25.71 (0.7719) 26.07 (0.7837) N/A 25.94 (0.7815) 26.04 (0.7838) 26.10 (0.7862) 26.17 (0.7888) 26.09 (0.7850)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 5.6: Performance of the Network with Re-balancing Feature Fusion and the
Proposed FPNet.

Benchmark R-balancing Feature Fusion Proposed
PSNR on Set5 32.28 32.32

PSNR on Urban100 26.05 26.09

Table 5.7: Performance, Number of Parameters and Microprocessor Inference Time of the
Proposed FPNet and its Lighter Version.

Evaluation FPNet-Light Proposed
Number of Params 292K 1615K

PSNR on Set5 31.86 32.32
Microprocessor Inference Time 2.1386 11.3072

Table 5.8: Impact of Weight Quantization on the FPNet Performance.

Network PSNR on Set5 Model Size (MB)
QFPNet 1 32.23 116.17
QFPNet 2 32.17 116.17
QFPNet 3 32.28 116.17
Proposed 32.32 125.61
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networks are SRCNN [1], DRRN [20], MemNet [4], CARN [14], SRFBN [25], DeCoNAS

[63], GFFRN [62] IMDN [54], DeFiAN [66] and OISR [55], each employing less than

2M parameters. Table 5.5 shows the results of comparison in terms of PSNR and SSIM

metrics. These results show that the other super resolution networks are outperformed by

the proposed network in 18 out of a total of 24 cases of the values of the two metrics for

the images of the benchmark datasets used.

In Fig. 5.7, the performance of the proposed network along with those of the other

networks is plotted as a function of the number of parameters employed by the network.

It can be seen from this plot that the performance of the proposed network is higher than

that of the scheme of OISR [55], which by employing the same number of parameters as

by ours stands as the second best.

The feature re-balancing fusion technique [64] is an effective way of fusing features

obtained at various hierarchical levels for the task of image super resolution. In order to

compare the impact of the proposed feature fusion technique that is based on the idea of

FPE and that of the feature re-balancing fusion [64] on the performance of a deep image

super resolution network, we form a deep neural network employing 12 units of the dense

residual block (used in our network) with the feature re-balancing fusion technique using

four convolutional operations with dilation rates 1, 2, 3 and 3, and compared its perfor-

mance with that of the proposed network in Table 5.6. As seen from the results of this

table, the proposed network outperforms the network with the feature re-balancing fusion

technique [64].

We now implement the proposed super resolution network, which has 3 super blocks

each consisting of 4 dense residual blocks, on a Raspberry Pi 4 microprocessor with 4

GB RAM and 32 GB memory, and obtain its average microprocessor inference time for

super resolving the images of Set5 dataset with the scaling factor 4. We also implement

a lighter version of the proposed network, FPNet-Light, having only 1 super block and 2
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dense residual blocks. Note that FPNet-Light employs only 292K parameters compared to

1615K parameters of FPNet. Table 5.7 gives the numbers of parameters, average PSNR

values (in dB) and the microprocessor inference times (in second) of the proposed FPNet

and its lighter version, FPNet-Light. It is seen from this table that the inference time of the

lighter version of FPNet is almost one-fifth of that of the original version with the PSNR

value reduced by about 0.4 dB. However, it should be noted that the PSNR value provided

by this lighter version is higher than those provided by some of the networks used in Table

5.5.

We now analyze the network performance as a function of the model size by performing

an experiment of applying weight pruning, weight quantization and bit-precision optimiza-

tion on different convolutional layers of the proposed network. First of all, we would like

to point out that our network does not converge to an acceptable solution when the weight

quantization and bit-precision optimization are performed on the convolutional layers of

more than one dense residual block, whether the blocks chosen for such an optimization

are from a single or multiple super blocks. Hence, we perform an 8-bit quantization and

bit-precision optimization on the weights of the all convolutional layers of only one dense

residual block, namely, the last dense residual block of only the first, second or the third

super block at a time. The three corresponding networks are referred to as QFPNet 1,

QFPNet 2 and QFPNet 3, respectively. Table 5.8 gives the average PSNR performance

(in dB) and the model size (in million bytes (MB)) of the original and the three quantized

versions of the proposed network, when these versions are applied to the images of Set5

dataset with the scaling factor 4. It is seen from this table that this weight quantization

and bit-precision optimization result in a model size reduction of 7.5% and also that the

performance of the network is least affected when this weight optimization is performed

on the last dense residual block of the last super block.

In Fig. 5.8, the versions of img12 image selected from Urban100 downsampled with
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the scaling factor 4 and super resolved by the different light-weight networks are shown.

The zoomed parts of these super resolved images show that the similarity in the orienta-

tions of the building windows recovered by using the proposed scheme are more in line to

those of the ground truth image.

5.5.3 Experimental Results of SRNHARB

An ablation study is first carried out in this section in order to show the effectiveness of the

proposed residual block for image super resolution. Also, the performance and complex-

ity of the proposed network are compared with those of the light-weight super resolution

networks that exist in the literature when the networks are applied on the four benchmark

datasets [21], [22], [23], [24].

In order to investigate the impact of the hybrid feature rectification mechanism em-

ployed by the proposed hybrid activation residual block on the network performance, we

consider several variants of HARB based on the way the features are rectified. Variant 1 is

obtained by removing the bottom branch of HARB, which processes the negative-valued

features, and replacing the group convolutional layer of the top branch with the regular con-

volutional layer (in order to keep the complexity of Variant 1 to be about the same as that of

HARB). Effectively, this block consists of a cascade of a convolutional layer, a ReLU acti-

vation and another convolutional layer. Both the convolutional layers in this block employ

64 filters each with kernel size 3×3. It should be noted that Variant 1 is essentially the basic

residual block used in EDSR [28]. Variants 2 and 3 have the same architecture as that of

the Variant 1, except that Variant 2 uses a PReLU activation and Variant 3 employs an ELU

activation between the two convolutional layers. Thus, both Variants 2 and 3 process the

negative-valued features as well as positive-valued features. However, the negative-valued

features are modified according to the activation functions PReLU and ELU. Nine units

of HARB and ten units of these three variants are used in the super resolution network in
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Table 5.9: Impact of the Proposed Feature Rectification Mechanism Employed by HARB
on the Network Performance.

Super Resolution Network employing Block Architecture Set5 Set14 BSD100 Urban100 Parameters
Variant 1 Conv+ReLU+Conv 32.30 28.79 27.64 25.99 973K
Variant 2 Conv+PReLU+Conv 32.29 28.77 27.65 26.03 973K
Variant 3 Conv+ELU+Conv 32.25 28.75 27.63 25.95 973K
Variant 4 Conv. + Positive Feature Rectification 32.29 28.78 27.66 26.05 937K

Hybrid Activation Residual Block Conv. + Proposed Feature Rectification 32.35 28.80 27.66 26.09 937K

order to keep the complexity of the resulting networks about the same. Table 5.9 gives the

performance of the proposed super resolution network and those using the three variants,

when they are applied to the images of the four benchmark datasets (Set5 [21], Set14 [22],

BSD100 [23] and Urban100 [24]), with the scaling factor 4. The four networks are trained

using the `1 norm objective function. It is seen from the results of Table 5.9 that the su-

per resolution network using the proposed HARB outperforms the network using either of

these three variants, by employing comparable number of parameters.

Now we form yet another variant of HARB, Variant 4, in which the inverted and negated

ReLU activation is replaced by the ReLU activation. The basic idea behind using this vari-

ant is the same as that of Variant 1, that is, to process only the positive-valued features,

but to keep the basic structure of HARB preserved. The super resolution results of us-

ing this variant in the architecture of the super resolution network are also given in Table

5.9. It is seen that the performance of the network using this variant is also not as good

as that of the network using HARB. It can be concluded that processing both positive and

negative-valued features improves the super resolution performance and that the idea of

hybrid rectification used in HARB is an effective way of achieving this.

We now illustrate in Fig. 5.9, by taking an example of Zebra image from Set14 dataset,

the process of decomposing of the features of this image by HARB block into positive and

negative-valued features, u2 and u3, and then processing them individually to produce the

feature tensors u4 and u5, respectively. Note that in the schemes that use only ReLU, u3

and u5 are not available. Figs. 5.9 (a)-(d) show the spatial contents of the four typical maps
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Figure 5.9: Selected feature maps obtained by the proposed residual block. (a) Feature
map obtained after ReLU activation. (b) Feature map obtained after inverted and negated
ReLU activation. (c) Feature map obtained by the group convolution after ReLU. (d)
Feature map obtained by the group convolution after inverted and negated ReLU. (e)
2DFFT of feature in (a). (f) 2DFFT of feature in (b). (g) 2DFFT of feature in (c). (h)
2DFFT of feature in (d).

each selected from the tensors u2, u3, u4 and u5, respectively. Similarly, Figs. 5.9 (e)-(h),

show the frequency domain contents obtained by applying the two-dimensional fast Fourier

transform (2DFFT) to the spatial domain feature maps of Figs. 5.9 (a)-(d). In view of the

fact that, since u4 and u5 have different spatial and frequency contents, the feature tensor v

obtained by their fusion provides a richer set of features.

The proposed residual block, HARB, uses group convolution operations in order to

keep the complexity of the super resolution network low. The group convolution operation

in each of the two branches of HARB uses two groups of 32 filters with kernel size 3×3. In

order to investigate the impact of using group convolution operations by HARB on the net-

work performance and complexity, we form another variant of the residual block, referred

to as Variant 5, in which the group convolution is replaced by the regular convolution using

32 filters with kernel size 3 × 3. Table 5.10 gives the performance on the four benchmark

datasets with the scaling factor 4 and the number of parameters of the super resolution

139



Table 5.10: Impact of using Group Convolutions in HARB on the Performance and
Complexity of the Network.

Network Set5 Set14 BSD100 Urban100 Parameters
Variant 5 32.33 28.79 27.66 26.07 1018K

HARB 32.35 28.80 27.66 26.09 937K

Table 5.11: Impact of using Dense Connections between HARB Units on the Performance
and Complexity of the Network.

Network Set5 Set14 BSD100 Urban100 Params MACC
No Dense Connection 32.19 28.73 27.62 25.95 921K 47.38G

Proposed Network 32.35 28.80 27.66 26.09 937K 53.04G

Table 5.12: Impact of using Different Training Strategies on the Performance of
SRNHARB.

Network Trained with Set5 Set14 BSD100 Urban100
`2 norm 31.99 28.70 27.59 25.86
logcosh 31.94 28.65 27.54 25.72
`1 norm 32.35 28.80 27.66 26.09

`1 norm followed by `2 norm 32.34 28.86 27.67 26.15
`1 norm followed by logcosh 32.35 28.86 27.68 26.15

network when it uses 9 units of HARB and also when it uses 10 units of Variant 5. The

network in these two cases is trained using the `1 norm objective function. It is seen from

the results of the table that the network employing HARB outperforms that using Variant

5. It is noted that despite the fact that there are inter-channel feature communications in

Variant 5, the network performance using this variant is lower. This is due to the fact that

HARB generates larger number of feature maps than Variant 5 does. This shows that gen-

erating larger number of feature maps is more important for the image super resolution of

our network than the inter-channel feature communication is.

In order to investigate the impact of using dense connections between various units

of HARB on the network performance as well as on the number of MACC operations, we

remove from the proposed network the dense connections. We also add one more unit of

HARB to the resulting network, so that the number of parameters in the networks with

and without dense connections remains comparable. The two networks are trained with

140



Table 5.13: Comparison between the Performance and Complexity of the Light-weight
Convolutional Neural Networks for Image Super Resolution.

Dataset Scaling SRCNN [1] SCN [2] DRRN [20] DRCN [19] LapSRN [29] CARN [14] SRFBN-S [25] PAN [68] IMDN [54] LatticeNet [16] A2F [69] SRNHARB [86]

Set5

×2 36.66 (0.9542) 36.93 (0.9252) 37.74(0.9591) 37.63 (0.9588) 37.52 (0.959) 37.76 (0.9590) 37.78 (0.9597) 38.00 (0.9605) 38.00 (0.9605) 38.15 (0.9610) 38.04 (0.9607) 38.04 (0.9612)

×3 32.75 (0.9090) 33.10 (0.9136) 34.03 (0.9244) 33.82 (0.9226) N/A 34.29 (0.9255) 34.20 (0.9255) 34.40 (0.9271) 34.36 (0.9270) 34.53 (0.9281) 34.50 (0.9278) 34.55 (0.9289)

×4 30.48 (0.8628) 30.86 (0.8710) 31.68 (0.8888) 31.53 (0.8854) 31.54 (0.885) 32.13 (0.8937) 31.98 (0.8923) 32.13 (0.8948) 32.21 (0.8948) 32.30 (0.8962) 32.28 (0.8955) 32.35 (0.8969)

Set14

×2 32.42 (0.9063) 32.56 (0.9069) 33.23 (0.9136) 33.04 (0.9118) 33.08 (0.913) 33.52 (0.9166) 33.35 (0.9156) 33.59 (0.9181) 33.63 (0.9177) 33.78 (0.9193) 33.67 (0.9184) 33.71 (0.9185)

×3 29.28 (0.8209) 29.41 (0.8235) 29.96 (0.8349) 29.76 (0.8311) N/A 30.29 (0.8407) 30.10 (0.8372) 30.36 (0.8423) 30.32 (0.8417) 30.39 (0.8424) 30.39 (0.8427) 30.63 (0.8474)

×4 27.49 (0.7503) 27.64 (0.7578) 28.21 (0.7721) 28.02 (0.7670) 28.19 (0.772) 28.60 (0.7806) 28.45 (0.7779) 28.61 (0.7822) 28.58 (0.7811) 28.68 (0.7830) 28.62 (0.7828) 28.86 (0.7877)

BSD100

×2 31.36 (0.8879) 31.40 (0.8884) 32.05 (0.8973) 31.85 (0.8942) 31.80 (0.895) 32.09 (0.8978) 32.00 (0.8970) 32.18 (0.8997) 32.19 (0.8996) 32.25 (0.9005) 32.18 (0.8996) 32.25 (0.9013)

×3 28.41 (0.7863) 28.50 (0.7885) 28.95 (0.8004) 28.80 (0.7963) N/A 29.06 (0.8034) 28.96 (0.8010) 29.11 (0.8050) 29.09 (0.8046) 29.15 (0.8059) 29.11 (0.8054) 29.22 (0.8090)

×4 26.90 (0.7101) 27.03 (0.7161) 27.38 (0.7284) 27.23 (0.7233) 27.32 (0.728) 27.58 (0.7349) 27.44 (0.7313) 27.59 (0.7363) 27.56 (0.7353) 27.62 (0.7367) 27.58 (0.7364) 27.68 (0.7405)

Urban100

×2 29.50 (0.8946) 29.52 (0.8970) 31.23 (0.9188) 30.75 (0.9133) 30.41 (0.910) 31.92 (0.9256) 31.41 (0.9207) 32.01 (0.9273) 32.17 (0.9283) 32.43 (0.9302) 32.27 (0.9294) 31.84 (0.9254)

×3 26.24 (0.7989) 26.21 (0.8010) 27.53 (0.8378) 27.15 (0.8276) N/A 28.06 (0.8493) 27.66 (0.8415) 28.11 (0.8511) 28.17 (0.8519) 28.33 (0.8538) 28.28 (0.8546) 28.33 (0.8561)

×4 24.52 (0.7221) 24.52 (0.7260) 25.44 (0.7638) 25.14 (0.7510) 25.21 (0.756) 26.07 (0.7837) 25.71 (0.7719) 26.11 (0.7854) 26.04 (0.7838) 26.25 (0.7873) 26.17 (0.7892) 26.15 (0.7888)

Number of Parameters 57K 33K 297K 1774K 813K 1592K 483K 272K 715K 777K 1010K 937K

Number of MACC Operations 52.7G 37.8G 6796.9G 17974.3G 149.4G 90.9G 1045.3G 28.2G 40.9G 43.6G 56.7G 53.04G

Red font indicates the best and blue font indicates the second best performance.

Table 5.14: Average Inference Time and Memory Consumption of the Best Performing
Networks on the Set5 images.

Network Performance (dB) Inference Time (s) Memory (MB)
A2F-M 32.28 2.8119 105.69

LatticeNet 32.30 2.6319 73.71
SRNHARB 32.35 2.6559 124.56

the `1 norm objective function. Table 5.11 gives the performance as well as the complex-

ity in terms of numbers of parameters and MACC operations for the two networks. It is

seen from this table that the use of dense connections between HARB units significantly

enhances the performance of the proposed SRNHARB. This performance improvement is

obtained in view of the fact that the information fusion resulting from dense connections

leads to the extraction of a richer set of hierarchical features. However, as expected, the

performance improvement resulting from the dense connections is achieved at the expense

of a slightly larger number of MACC operations. In order to investigate the impact of

using different objective functions for training the network on its performance, we train the

network using the `1 norm, `2 norm and logcosh based objective functions alone, and also

using `1 norm objective function followed by the `2 norm objective function and `1 norm
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Table 5.15: Performance of SRNHARB and LatticeNet in Restoring Original Images from
the Versions with Realistic Degradation.

Network Performance: PSNR (SSIM)
LatticeNet [16] 27.91 (0.8180)

Proposed SRNHARB 28.58 (0.8321)

objective function followed by the logcosh objective function. Table 5.12 provides the per-

formance results of the network models each obtained by training the network with one of

these five training strategies on images of the datasets Set5, Set14, BSD100 and Urban100,

when the scaling factor 4 is used. The results of this table show that training the network

with either `2 norm based or logcosh objective functions provides a performance that is in-

ferior to that obtained by training the network with the `1 norm based objective function. It

is also seen from the results of this table that fine-tuning the network that is initially trained

with the `1 norm based objective function, by using either the `2 norm objective function

or logcosh objective functions, results in enhancing the network performance significantly

further without increasing number of parameters. However, since fine-tuning the network

with the logcosh objective function results in a performance that is slightly superior to that

with the `2 norm, we train our network with the `1 norm objective function and fine-tune

with the logcosh objective function.

Now, the performance and complexity results of the proposed network on the images

of the four benchmark datasets are presented and compared with those of eleven state-of-

the-art lightweight networks. Eleven networks that are used in this comparison are SRCNN

[1], SCN [2], DRCN [19], DRRN [20], LapSRN [29], CARN [14], SRFBN-S [25], PAN

[68], IMDN [54], LatticeNet [16], and A2F-M [69]. The performance results, number

of parameters and number of MACC operations of the various networks are given in Table

5.13. In this table, the number of MACC operations is given for an image of size 1280×720

and scaling factor of 4. It is seen from this table that among the eleven networks used for

comparison, SRNHARB provides the best PSNR and SSIM values in 17 out of 24 cases
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Figure 5.10: Visual quality of images img021 from BSD100 super resolved by various
schemes with scaling factor 4. (a) Ground truth. (b) Bicubic. (c) SRCNN. (d) DRCN. (e)
CARN. (f) IMDN. (g) A2F-M. (h) SRNHARB.

Figure 5.11: Visual quality of images img061 from Urban100 super resolved by various
schemes with scaling factor 4. (a) Ground truth. (b) Bicubic. (c) SRCNN. (d) DRCN. (e)
CARN. (f) IMDN. (g) A2F-M. (h) SRNHARB.

and it gives the second best performance in 3 of the remaining cases. This performance of

the proposed network compares with those of LatticeNet and A2F-M, which provide the

best and second best values in 8 and 12 cases, and 1 and 6 cases, respectively. Thus, in
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Figure 5.12: Visual quality of images img096 from Urban100 super resolved by various
schemes with scaling factor 4. (a) Ground truth. (b) Bicubic. (c) SRCNN. (d) DRCN. (e)
CARN. (f) IMDN. (g) A2F-M. (h) SRNHARB.

Figure 5.13: Visual quality of Barbara image super resolved by the proposed SRNHARB.
(a) Ground truth. (b) Upscaling factor 2. (c) Upscaling factor 3. (d) Upscaling factor 4.

terms of PSNR and SSIM values, the proposed SRNHARB, LatticeNet and A2F-M net-

works can be considered to be the best, second best and third best networks, respectively.

It is also seen from this table that among these three networks, in terms of the numbers of

parameters and MACC operations, LatticeNet, SRNHARB and A2F-M are, respectively,

the best, second best and third best networks. Therefore, if the PSNR and SSIM values

and the numbers of parameters and MACC operations are considered simultaneously for

evaluating the performance of the networks, then the proposed SRNHARB and LatticeNet
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can be considered to be comparable and the best performing networks, whereas A2F-M

can be considered to be the second best performing network.

Table 5.14 gives the average CPU inference time (in second) and amount of memory

consumption (in million bytes), along with the average PSNR values (in dB), for super

resolving the images of the Set5 dataset with the scaling factor 4 by the three best perform-

ing light-weight networks. It is seen that the proposed SRNHARB has an inference time

that is close to that of LatticeNet, but somewhat smaller than that of A2F-M. However,

SRNHARB provides a PSNR performance that is 0.05 dB and 0.07 dB higher than those

provided by LatticeNet and A2F-M, respectively. Finally, it should be pointed out that the

downside of the proposed network is that it consumes about 18%, 69% more memory than

A2F-M and LatticeNet, respectively, does.

In Fig. 5.10, we show the visual quality of the images obtained by super resolving the

image img021 of the BSD100 dataset, using the best performing light-weight neural net-

works. The zoom segments of the super resolved images show that the networks CARN

[14], IMDN [54] and A2F-M [69] fail to restore the orientations of the ridges on the bridge

correctly. On the other hand, the proposed SRNHARB is able to recover these ridges with

the same orientations as those of the ground truth image.

In Figs. 5.11 and 5.12, we show the visual quality of the images obtained by super

resolving two of the images from the Urban100 dataset, namely, img061 and img096, us-

ing the best performing light-weight super resolution neural networks. The zoom segments

of the super resolved images corresponding to img061 show that only the proposed SRN-

HARB is able to recover the rectangular windows similar in quality to that of the ground

truth image. Similarly, it is seen from the zoom segments of the super resolved images

corresponding to img096 that the proposed SRNHARB results in restoring an image with

the best visual quality.

Fig. 5.13 shows the zoomed segment of a part of the toy on the table in the Barbara
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image that is taken from the super resolved images obtained by the proposed SRNHARB

with the scaling factors 2, 3 and 4, along with the corresponding segment of that of the

ground truth. It is seen from this figure that the proposed SRNHARB is able to recover the

edge on the toy properly in each of the three cases of the scaling factors.

So far in our experiments that we have carried out, we have studied the effectiveness

of the various light-weight super resolution networks when they are applied on the images

that are degraded through the bicubic downsampling operation and shown that when both

the performance and complexity are considered together, the proposed SRNHARB and

LatticeNet are the two best networks. It would be interesting to evaluate the performance

of these two networks when they are applied to the images that are degraded more realisti-

cally. For this purpose, we now use the Flicker dataset [51] for training and the validation

set from the DIV2K dataset [42] for testing of these two networks. The images in these

two datasets are degraded using operations similar to the image signal processing methods

used by low-end devices for the formation of the images [52]. For the training, sub-images

of size 48 × 48 are randomly selected from the Flicker dataset. Table 5.15 gives the per-

formance of SRNHARB and LatticeNet on the images of the validation set of the DIV2K

dataset. It is seen from this table that the proposed network has a significant advantage over

LatticeNet in terms of both PSNR and SSIM metrics.

5.6 Comparison between Different Deep Image Super Res-

olution Networks using Feature Fusion Techniques

The performance results of CompNet, FPNet and SRNHARB are compared in Table 5.16.

From the results of this table, the following points can be made. First, in view of the fact

that CompNet has the simplest network architecture among the three networks, it provides
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Table 5.16: PSNR (SSIM) values∗ resulting from applying various light-weight feature
fusing methods to images of three benchmark datasets.

Dataset Scaling CompNet [90] FPNet [85] SRNHARB [86]

Set5
×2 37.58 (0.9596) 38.13 (0.9616) 38.04 (0.9612)
×3 33.67 (0.9219) 34.48 (0.9285) 34.55 (0.9289)
×4 31.35 (0.8833) 32.32 (0.8962) 32.35 (0.8969)

Set14
×2 33.29 (0.9149) 33.83 (0.9198) 33.71 (0.9185)
×3 30.06 (0.8368) 30.53 (0.8454) 30.63 (0.8474)
×4 28.26 (0.7732) 28.78 (0.7856) 28.86 (0.7877)

BSD100
×2 31.91 (0.8972) 32.29 (0.9018) 32.25 (0.9013)
×3 28.84 (0.7995) 29.20 (0.8086) 29.22 (0.8090)
×4 27.28 (0.7272) 27.66 (0.7394) 27.68 (0.7405)

Urban100
×2 N/A 32.04 (0.9278) 31.84 (0.9254)
×3 N/A 28.19 (0.8534) 28.33 (0.8561)
×4 N/A 26.09 (0.7850) 26.15 (0.7888)

∗ The values in the red font indicate the best performance.

the lowest super resolution performance. However, it employs smaller numbers of parame-

ters and operations than the other two networks proposed in this chapter. Second, both the

super resolution networks of FPNet and SRNHARB are able to provide very high perfor-

mance despite the fact that both are light-weigh networks. This can be mainly attributed to

their efficient design strategy. Third, the numbers of parameters and operations employed

by SRNHARB are slightly lower than those employed by FPNet. Hence, the use of SRN-

HARB is preferred over that of FPNet in the applications that require high speed super

resolution.
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5.7 Conclusion

In this chapter, three deep light super resolution networks that efficiently fuse the features

obtained by various convolutional layers and residual blocks of the network have been pro-

posed. Based on the results obtained in this chapter, one could argue that all the proposed

feature fusion techniques, namely, fusing sparse and representable features, fusing features

based on the idea of FPE of adaptive signal processing, and fusing the positive and negative-

valued features, are indeed helpful in providing high super resolution performance.
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Chapter 6

TPCNN: An Ultralight-weight

Three-Prior Convolutional Neural

Network for Single Image Super

Resolution

6.1 Introduction

The task of image super resolution is crucial in many applications, such as computer vision

and medical imaging. Conventionally the task of image super resolution was carried out

by formulating it as a constrained optimization problem and then solving it using suitable

numerical techniques. However, after the emergence of deep neural networks, the focus of

the researchers in this area has been almost entirely on designing deep convolutional neu-

ral network architectures that indeed have provided remarkable performance for the task of

image super resolution. Even though unified methods of combining the two approaches has
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a greater potential of providing a superior performance for the task of image super resolu-

tion, with the exception of very few works, not much attention has been paid in developing

such a unified method for this task. In this chapter, we propose a three-prior formulation

of the optimization problem for image super resolution and develop an ultralight-weight

convolutional neural network for its solution [102].

6.2 Development of the Proposed TPCNN

In this section, first, two algorithms, namely, the iterative shrinkage and thresholding algo-

rithm (ISTA) [70] and the learned iterative shrinkage and thresholding algorithm (LISTA)

[72] that provide iterative schemes for obtaining a closed form expression for an optimiza-

tion problem with sparsity constraints, are briefly reviewed. These algorithms are con-

cerned with solving an underdetermined system, u = Av, where u ∈ IRM and A ∈ IRM×N

(M < N ) are given and v ∈ IRN is a solution vector of the system. There are infinite

number of solutions to this problem. One can obtain a transform domain sparse solution

for v by formulating the optimization problem given by

v̂ = argmin
v

(‖u− Av‖22 + α‖T (v)‖1) (6.1)

where ‖.‖1 and ‖.‖2 denote the `1 and `2 norms, respectively, α is the regularization pa-

rameter, and T (.) represents a sparse transform operator. In [70], an iterative algorithm

using gradient descent has been proposed, which is given by

s(i) =v(i− 1)− AT
(
Av(i− 1)− u

)
v(i) =T−1

(
Shrα

(
T
(
s(i)
))) (6.2)
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Table 6.1: Description of Symbols used for Developing the Proposed Image Super
Resolution Scheme.

Symbol Description Symbol Description
x Ground Truth High resolution Image f3 Interpolation Function
y Degraded Low resolution Image P Low Resolution Feature Maps
H Blurring Operator Z High Resolution Feature Maps
D Downsampling Operator Q Feature Maps Obtained by Function f1
f1 Super Resolution Function T Degraded Version of the High Resolution Feature Maps Obtained by Function f2
f2 Degradation Function W Interpolated Version of the Low Resolution Feature Maps Obtained by Function f3

where Shr(.) is the shrinkage operator defined as

Shrα(p) =

 sgn(p)(|p| − α) |p| ≥ α

0 |p| < α
(6.3)

with sgn(.) denoting the sign function. It should be pointed out that the shrinkage operator

used in (6.3) could be replaced by other nonlinear or by piece-wise linear operators.

The learned iterative shrinkage and thresholding algorithm (LISTA) of [72] is a scheme

that provides an optimal solution using (6.2) by utilizing a recurrent neural network. In this

algorithm, an end-to-end mapping is performed to obtain optimum values for the parame-

ters used in (6.2), which yields a performance that is superior to that given by ISTA. The

network of LISTA is categorized as a light-weight network in view of its using RNN. One

of the applications of LISTA is the sparse coding network (SCN) [2] used for single image

super resolution.

We now develop a three-prior formulation for the optimization problem to carry out

the task of single image super resolution. Table 6.1 gives the symbols used in developing

the proposed image super resolution scheme along with their corresponding descriptions.

Let y ∈ IRm denote the vector representing the original low resolution image and

x ∈ IRn be the corresponding vector representing the desired high resolution image. We

wish to obtain a mapping function f1 : IRm → IRn, which maps the degraded low res-

olution image y to the high resolution image x such that we are also able to achieve two
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Figure 6.1: A block-level implementation of the proposed iterative shrinkage and
thresholding algorithm.

additional goals by using the functions f2 : IRn → IRm and f3 : IRm → IRn capable of do-

ing the following tasks: the mapping function f2, is required to provide the low resolution

image y, when it is applied to the high resolution image x, whereas the mapping function

f3 is required to provide an interpolated image, whose residue with the desired high reso-

lution image x is sparse. Thus, the overall formulation of the optimization problem can be

expressed as

x̂ = argmin
x

(
1

2
‖x− f1(y)‖22)

subject to

 ‖f2(x)− y‖22 < ε1

‖x− f3(y)‖0 < ε2

(6.4)

where ε1 and ε2 are constants with small values. The optimization problem given by (4) is

NP-hard and can be relaxed by replacing the `0 norm with the `1 norm as

x̂ = argmin
x

(
1

2
‖x− f1(y)‖22)

subject to

 ‖f2(x)− y‖22 < ε1

‖x− f3(y)‖1 < ε3

(6.5)

where ε3 is a constant with a small value. The Lagrange multipliers allow the above opti-

mization problem to be equivalently formulated as an unconstrained optimization problem
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given by

x̂ = argmin
x

(
1

2
‖x− f1(y)‖22 +

1

2
‖f2(x)− y‖22 + γ‖x− f3(y)‖1) (6.6)

where γ is a regularization parameter. Therefore, the optimization problem as formulated

above for the task of image super resolution becomes a three-prior formulation. In the first

prior, the super resolution operation between the low and high resolution images is carried

out by the function f1. The second prior models the process of degrading the high resolution

image x into the low resolution image y using the function f2. Through the third prior, it is

ensured that the interpolation operation carried out by f3 produces an image whose residue

with respect to the desired high resolution image x is highly sparse. Since the function

f2 is supposed to transform the high resolution image x into a low resolution image, we

model this degradation operation by using two matrix operators, H and D. The matrix

operator H when applied to y yields a blurred image, whereas the matrix operator D when

applied to this blurred image yields the degraded low resolution image y. Thus, DH can

be regarded as a degrading operator encompassing both blurring and downsampling, which

when applied to the high resolution x results in a degraded low resolution image y. This

degradation process is in line with the degradation model used in most of the state-of-the-art

super resolution schemes, in which the degradation operation is carried out by the bicubic

downsampling consisting of two parts: blurring with bicubic kernel and downsampling.

The function f3 is essentially an upgrading function, that is, it must restore the degraded

low resolution image to a high resolution image. We realize this operation by applying

the transposition of the degrading matrix operator DH, i.e., HTDT to the low resolution

image y. With the functions f2 and f3 so modeled, we can re-write the formulation of the
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optimization problem given by (6.6) as

x̂ = argmin
x

(
1

2
‖x− f1(y)‖22 +

1

2
‖DHx− y‖22+

γ‖x−HTDTy‖1)
(6.7)

An iterative shrinkage and thresholding algorithm [70] for the solution of the optimization

problem in (6.7) can be devised as given below

x̂(i) =Shrγ
(

x̂(i− 1)−
(
x̂(i− 1)− f1(y)

)
−HTDT

(
DHx̂(i− 1)− y

)
−HTDTy

)
+ HTDTy

(6.8)

where Shrγ(.) is a shrinkage operator. Equation (6.8) can be simplified to give the final

iterative formula for solving our optimization problem, as

x̂(i) =Shrγ
(
f1(y)−HTDTDHx̂(i− 1)

)
+ HTDTy (6.9)

Equation (6.9) is an iterative solution of the optimization problem of (6.7).

We now develop an ultralight-weight network that implements the algorithm given by

(6.9) to provide the super resolved image. We also describe the training details of the

proposed ultralight-weight super resolution network. As seen from (6.9), the iterative al-

gorithm has three main parts. The first part in this algorithm concerns obtaining the high

resolution image f1(y) from the degraded image y. The second part concerns applying

the degrading operation, as carried out by the operator DH, on the super resolved image

x̂(i−1) obtained in the previous iteration and then carrying out the upgrading operation, as

carried out by the operator HTDT , on the resulting image. The third part concerns applying

the upgrading operation, as carried out by the operator HTDT , on the degraded image y.

By considering these three parts of the algorithm and the interaction between them, we can

have its high-level block representation, as shown in Fig. 6.1, where Modules 1, 2, 3, 4
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Figure 6.2: A neural network architecture of the proposed three-prior convolutional neural
network (TPCNN). Sd Conv, Tr Conv and DTS, respectively, denote strided convolution,
transposed convolution and depth-to-space transpose operations.

and 5, correspond, respectively, to the operations f1, DH, HTDT , Shrγ and HTDT in (6.9).

We now develop a low-complexity high-performance convolutional neural network archi-

tecture, shown in Fig. 6.2, for the implementation of this high-level block representation

given in Fig. 6.1. The degraded input image y is first transformed into the feature maps P

using Input Module. Input Module is implemented by employing a convolution operation

using 32 filters each of kernel size 3× 3. Next, we focus on implementing the function f1

of Module 1 by performing on P the following operations in cascade to produce the feature

maps Q: four convolutions, each followed by a ReLU activation, a depth-to-space (DTS)

transpose operation [8], and finally another convolution operation. Each of the five convo-

lutional layers, used for the implementation of this module, employs 32 filters with kernel

size 3× 3. The scaling factor of the depth-to-space transpose operation is equal to the up-

scaling factor used for the super resolution. Next, we consider implementing the Modules

2 and 3. Module 2 performs a degrading operation DH, whereas Module 3 performs an up-

grading operation HTDT . Here, we relax the relationship between the operations DH and

HTDT by treating them independently in order to provide an increased degree of freedom to

the learning process of the network. Modules 2 and 3 are implemented using, respectively,

a strided convolution (St Conv.) and a transposed convolution (Tr Conv.), both employing
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32 filters each of kernel size 3 × 3 and a stride equal to the upscaling factor used for the

super resolution. These Modules operate in cascade on the feature maps R to produce the

maps represented by S. Module 4 by performing a shrinkage operation on the feature maps

U produces the maps denoted by V. This module is implemented using the ReLU function.

In Experimental Results section, we provide an empirical justification of replacing of the

shrinkage operator of (6.3) by ReLU function. Module 5, as Module 3, also performs the

upgrading operation HTDT , but on the feature maps P to produce the feature maps repre-

sented by W. For the implementation of this module, we use the same parameters as used

for the implementation of Module 3. The feature maps Z, produced after a suitable number

of iterations, are made to undergo a convolution operation using Output Module in order

to produce the final high resolution image x. The Output Module is implemented using a

convolutional layer with 3 filters each of kernel size 3× 3.

The network as implemented by the architecture given in Fig. 6.2 is referred to as

Three-Prior Convolutional Neural Network (TPCNN) [102], since it provides an efficient

solution to a three-prior formulated optimization problem for the task of image super reso-

lution.

For the training of the proposed network, the dataset DIV2K [42] that consists of 800

training images is considered. The training samples of size 48× 48 are extracted from the

images of this dataset. The extracted samples are augmented in order to form the complete

training set through their rotations by 90◦, 180◦ and 270◦ and flipping horizontally. The `1

norm of the loss between the ground truth samples and the estimated high resolution sam-

ples obtained by applying the proposed network to the degraded low resolution sub-images

is used for updating the network parameters. The `1 norm loss is minimized by using the

method of stochastic gradient descent. The mini-batch size is set to 64. The Keras library

[40] and TensorFlow package [41] are employed for implementing the proposed ultralight-

weight network. The training of the proposed network is carried out on a machine with
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Intel Core i7 CPU @4.2 GHz, 16-GB RAM and Nvidia Titan X GPU.

6.3 Experimental Results of TPCNN

In this section, we first investigate the impact of the number of recursions carried out by

the architecture of Fig. 6.2 on the super resolution performance. Then, we carry out abla-

tion studies on the proposed super resolution scheme. Next, we investigate the impact of

employing shrinkage operators other than ReLU in Module 4 on the network performance.

Then, the performance and complexity of the proposed network are compared with those

of the state-of-the-art ultralight-weight super resolution networks on the four benchmark

datasets, Set5 [21], Set14 [22], BSD100 [23] and Urban100 [24].

Since the proposed iterative shrinkage and thresholding algorithm given by (6.9) is a re-

cursive algorithm, its neural network implementation shown in Fig. 6.2 has a recursive part.

In order to study the impact of the number of recursions on the performance of the network,

we obtain the average PSNR values of the super resolved images yielded by the network

after 1, 2 and 3 recursions for each of the four evaluation datasets. Table 6.2 gives these

results along with the number of multiply-accumulate (MACC) operations. It is seen from

this table that there is only a marginal improvement in the PSNR values when the number

of recursions is increased from 1 to 2 and almost no improvement when the number of

recursions is further increased to 3. However, there is a significant increase in the network

complexity associated with these increases in the number of recursions. Specifically, the

number of MACC operations increases by one-third and two-thirds when 2 and 3 recur-

sions are, respectively, used over that of using only a single recursion. It should be pointed

out that in [2], a similar marginal performance improvement by increasing the number of

recursions is observed. In view of this analysis of the results in Table 6.2, we employ only

1 recursion in all our experiments. The proposed formulation of the optimization problem

for the task of image super resolution consists of three priors. In order to investigate the
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Table 6.2: Impact of Number of Recursions on the Network Performance and MACC
Operations.

Network with Set5 Set14 BSD100 Urban100 MACC
1 Recursion 31.15 28.12 27.18 24.93 8.74G
2 Recursions 31.15 28.15 27.19 24.95 11.63G
3 Recursions 31.17 28.15 27.19 24.95 14.52G

impact of each of the three priors on the image super resolution performance, we consider

the following three variants of the proposed network.

Variant 1 is the network that results from the solution of the optimization problem

using only the first prior. In this case, the solution is given by

x̂ = f1(y) (6.10)

and the architecture of the variant is as depicted in Fig. 6. 3 (a). It is seen from this figure

that this architecture is simply that of a shallow convolutional neural network. Variant 2 is

the network that results from solving the optimization problem involving first two priors,

that is, in this variant the prior corresponding to the sparsity constraint is removed. In this

case, the solution of the optimization problem is given by

x̂(i) =f1(y)−HTDTDHx̂(i− 1) + HTDTy (6.11)

and network that results from this solution is as shown in Fig. 6.3 (b). Variant 3 of the

network is obtained from solving the optimization problem consisting of the first and third

priors, i.e., the degradation constraint is not included. The solution of this modified opti-

mization problem is given by

x̂ =Shrγ
(
f1(y)−HTDTy

)
+ HTDTy (6.12)
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Figure 6.3: Variants of TPCNN using (a) only the first prior (Variant 1). (b) the first and
second priors (Variant 2), and (c) the first and third priors (Variant 3).

and the network that results from this solution is shown in Fig. 6.3 (c).

Table 6.3 gives the performance results of the proposed super resolution network and

its three variants on the images of the four evaluation benchmark datasets when the scaling

factor 4 is used. It is seen from the results of this table that by removing the second or third

prior individually or both together from the optimization problem, the performances of the

resulting networks significantly degrade. It is also seen from this table that the performance
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Table 6.3: PSNR Values of Images Super Resolved by TPCNN and Its Variants.

Network Set5 Set14 BSD100 Urban100
TPCNN Variant 1 30.75 27.81 26.95 24.52
TPCNN Variant 2 31.04 28.05 27.14 24.90
TPCNN Variant 3 30.95 28.02 27.11 24.85

TPCNN 31.15 28.12 27.18 24.93

Figure 6.4: A Typical Feature Map of (a) Feature Tensor P, (b) Feature Tensor Z, (c)
Feature Tensor Q, (d) Feature Tensor T, (e) Feature Tensor W, and (f) Residue between Z
and W.

of Variant 1 that uses only the first prior can still further be improved by incorporating in it

either of the two other priors.

The function f1 is supposed to perform an operation on the degraded input low resolu-

tion feature maps P to produce the feature maps Q, which are closer to the high resolution

feature maps Z, i.e., they should also necessarily have the fine details of the high resolution

image. The function f2 is supposed to carry out an operation on the high resolution feature

maps Z to generate the feature maps T, which are close to the input low resolution feature

maps P. The function f3 is supposed to perform an operation on the low resolution feature

maps P to generate the feature maps W, so that the residue between Z and W is sparse, i.e.,

the feature maps W should necessarily have the course information of the high resolution

image. Fig. 6.4 depicts a typical feature map for each of the outputs P, Q, T, W and Z. The
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Table 6.4: Impact of using Different Shrinkage Operators on the Network Performance.

Network with Set5 Set14 BSD100 Urban100
Soft Shrinkage Operator 31.06 28.09 27.15 24.90

Hard Shrinkage Operator 31.03 28.05 27.12 24.88
ReLU 31.15 28.12 27.18 24.93

Table 6.5: PSNR (SSIM) Values Resulting from Applying TPCNN and Different
Ultralight-weight State-of-the-art Super Resolution Convolutional Neural Networks to
Images of Four Benchmark Datasets.

Dataset Scaling Bicubic SRCNN [1] SCN [2] FSRCNN [13] PISR [46] DRN UW [35] DBPN UW [32] PAN UW [68] TPCNN (Proposed)

Set5

×2 33.66 (0.9299) 36.66 (0.9542) 36.93 (0.9252) 37.00 (0.9558) 37.33 (0.9576) 37.12 (0.9586) 37.48 (0.9589) 37.43 (0.9591) 37.18 (0.9589)

×3 30.39 (0.8682) 32.75 (0.9090) 33.10 (0.9136) 33.16 (0.9140) 33.31 (0.9179) 33.36 (0.9184) 33.39 (0.9186) 33.32 (0.9194) 33.41 (0.9189)

×4 28.42 (0.8104) 30.48 (0.8628) 30.86 (0.8710) 30.71 (0.8657) 30.95 (0.8759) 31.00 (0.8775) 31.10 (0.8787) 31.05 (0.8786) 31.15 (0.8803)

Set14

×2 30.24 (0.8688) 32.42 (0.9063) 32.56 (0.9069) 32.63 (0.9088) 32.79 (0.9105) 32.84 (0.9132) 33.19 (0.9133) 32.81 (0.9131) 32.98 (0.9135)

×3 27.21(0.7385) 29.28 (0.8209) 29.41 (0.8235) 29.43 (0.8242) 29.57 (0.8276) 29.83 (0.8322) 29.55 (0.8323) 29.84 (0.8342) 29.88 (0.8336)

×4 26.00 (0.7027) 27.49 (0.7503) 27.64 (0.7578) 27.59 (0.7535) 27.77 (0.7615) 28.01 (0.7681) 28.10 (0.7685) 28.07 (0.7695) 28.12 (0.7707)

BSD100

×2 29.56 (0.8431) 31.36 (0.8879) 31.40 (0.8884) 31.53 (0.8920) 31.65 (0.8926) 31.54 (0.8945) 31.81 (0.8947) 31.59 (0.8942) 31.67 (0.8950)

×3 27.21 (0.7385) 28.41 (0.7863) 28.50 (0.7885) 28.53 (0.7910) 28.61 (0.7919) 28.62 (0.7941) 28.47 (0.7955) 28.64 (0.7954) 28.68 (0.7956)

×4 25.96 (0.6675) 26.90 (0.7101) 27.03 (0.7161) 26.98 (0.7150) 27.08 (0.7188) 27.10 (0.7218) 27.15 (0.7227) 27.12 (0.7231) 27.18 (0.7247)

Urban100

×2 26.88 (0.8403) 29.50 (0.8946) 29.52 (0.8970) 29.88 (0.9020) 30.24 (0.9071) 30.22 (0.9096) 30.48 (0.9100) 30.30 (0.9103) 30.30 (0.9094)

×3 24.46 (0.7349) 26.24 (0.7989) 26.21 (0.8010) 26.43 (0.8080) 26.67 (0.8153) 26.72 (0.8176) 26.67 (0.8191) 26.76 (0.8187) 26.78 (0.8194)

×4 23.14 (0.6577) 24.52 (0.7221) 24.52 (0.7260) 24.62 (0.7280) 24.82 (0.7393) 24.88 (0.7435) 24.90 (0.7437) 24.87 (0.7444) 24.93 (0.7459)

Number of Parameters - 57K 33K 13K 13K 70K 58K 70K 52K

Number of MACC Operations - 52.7G 37.8G 4.6G 4.6G 5.83G 9.33G 5.15G 8.7G

The values in the red font show the best performance and those in the blue font indicate the second
best performance.

first row in this figure depicts a typical map of the feature tensor P, and a typical map of

the feature tensor Z. The second row shows a typical map from each of the feature tensors

Q, T and W resulting, respectively, from the operations of the functions f1, f2 and f3, as

well as a typical map of the residue between Z and W. The following observations can be

made from the feature maps presented in this figure. (i) The feature map of Q depicted in

Fig. 6.4 (c) contains fine high resolution information similar to that in the high resolution

feature map of Z shown in Fig. 6.4 (b). This confirms that the function f1 indeed performs

the intended task of mapping a low resolution feature map to the high resolution feature

map. (ii) The feature map T depicted in Fig. 6.4 (d) is obtained by applying the function f2
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to the feature map Z. It is seen from the feature map of T that it is very similar to the feature

map of P (Fig. 6.4 (a)). However, the feature map of T of Fig. 6.4 (d) is somewhat sharper

than the feature map of P of Fig. 6.4 (a), since it is obtained by applying the function f2

on a sharp high resolution feature map of Z. This observation confirms that the function

f2 models the intended operation of degradation. (iii) The feature map of W depicted in

Fig. 6.4 (e) is obtained by applying the function f3 to the feature map of P (Fig. 4 (a)).

Fig. 6.4 (f) shows a residue map obtained by subtracting this feature map of W from the

corresponding feature map of Z. It is seen that this residue map has a dark-tone colormap

indicating that it is dominated by small feature values. This observation indicates that the

function f3 used in the sparsity prior successfully implements its intended task.

The iterative shrinkage and thresholding algorithm given by (6.9) for the solution of op-

timization problem formulated for the proposed super resolution scheme involves a shrink-

age operator. This shrinkage operator is performed by Module 4 in our proposed neural

network implementation shown in Fig. 6.2. We have used the ReLU function to carry

out this operation. We now examine the impact on the network performance by using two

other shrinkage operators, namely, the soft shrinkage operator given by (6.3) and the hard

shrinkage operator defined as

HShrα(p) =

 p |p| ≥ α

0 |p| < α
(6.13)

The performance results using these two shrinkage operators along with that by using ReLU

in the proposed network are given in Table 6.4. It is seen from this table that the network

using ReLU as the shrinkage operator provides the best performance on all benchmark

datasets with scaling factor 4.

We now compare the performance and complexity of the proposed network with those

of the other ultralight-weight super resolution networks, namely, SRCNN [1], FSRCNN
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Figure 6.5: Visual quality of the images super resolved by the various schemes when the
scaling factor 4 is used on the image img049 of the Urban100 dataset. (a) Ground truth.
(b) Bicubic. (c) SRCNN. (d) FSRCNN. (e) SCN. (f) DRN UW. (g) PAN (UW). (h) DBPN
(UW). (i)TPCNN.

Figure 6.6: Visual quality of the images super resolved by the various schemes when the
scaling factor 4 is used on the image img087 of the Urban100 dataset. (a) Ground truth.
(b) Bicubic. (c) SRCNN. (d) FSRCNN. (e) SCN. (f) DRN UW. (g) PAN (UW). (h) DBPN
(UW). (i)TPCNN.

[13], SCN [2], and PISR [46], as well as with those of the ultralight-weight versions of

DRN [35], DBPN [32] and PAN [68], on the images with the three different scaling factors

for their degradation from the four benchmark datasets. For this performance comparison,

we use the ultralight-weight versions of DRN, DBPN and PAN by bringing down their

numbers of parameters to the levels that are comparable to that our proposed TPCNN. An

ultralight-weight version of DRN [35] is obtained by employing three residual channel-

attention blocks, each using convolutional layers with 32 filters of kernel size 3 × 3. We
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obtain an ultralight-weight version of DBPN [32] by using only one up-projection unit and

one down-projection unit, each employing convolutional layers with 32 filters of kernel size

3×3. An ultralight-weight version of PAN [68] is obtained by employing only two residual

blocks, each using convolutional layers with 32 filters. Table 6.5 gives the performance in

terms of PSNR and SSIM, and numbers of parameters and MACC operations of all the

ultralight-weight networks. It is seen from this table that the proposed network provides a

performance superior to that of all the other networks used for the comparison in 16 out of

the 24 cases of the PSNR and SSIM values.

It is to be noted that in [35], the performance of its unsupervised model has been al-

ready compared with that of the network of [67], and the performance of this model of

the former has been shown to be superior to that of the latter. Therefore, we do not di-

rectly compare the performance of our proposed network with that of the network of [67].

Instead, we first obtain an unsupervised model of our proposed TPCNN and that of the

ultralight-weight version of the network of [35] through the unsupervised learning process

of [35] and compare the performance of these two models. For the training of these two

networks, we obtain a set of paired training samples of the original ground truth images

and their corresponding bicubically downsampled degraded versions. We also obtain a

set of unpaired training samples by applying the different image degradation processes to

the ground truth images, including the Gaussian blurring followed by the downsampling.

Table VI gives the performance of these two unsupervised models on the images of the

four benchmark datasets that are degraded by the Gaussian blurring with the kernel of size

7 × 7 and the standard deviation of σ = 1.6 followed by a downsampling operation with

the scaling factor 4. It is seen from the results of this table that the unsupervised model

of the proposed TPCNN provides a performance that is superior to that provided by the

unsupervised model of the ultralight-weight version of the network of [35].

We now compare the visual quality of the images with the scaling factor 4 obtained
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Table 6.6: Performance of TPCNN and DRN on the Task of Unsupervised Image Super
Resolution.

Network Set5 Set14 BSD100 Urban100
Unsupervised DRN 27.96 25.96 25.76 23.52

Unsupervised TPCNN 28.39 26.33 26.01 23.72

by applying the proposed TPCNN and the other ultralight-weight networks on the images

img049 and img087 from the Urban100 dataset. Figs. 6.5 and 6.6 show the visual quali-

ties of the images super resolved by the various networks. It is seen that the images super

resolved by the proposed TPCNN have sharper structural details and that the edges of the

images super resolved by the other networks have some ringing artifacts.

6.4 Conclusion

In this chapter, our objective has been to design an ultralight-weight super resolution

scheme using a shallow convolutional neural network for the task of image super reso-

lution. To achieve this objective, we have first proposed a formulation of the optimization

problem involving three priors for the task of image super resolution. The first prior focuses

on learning a function that transforms a low resolution image to the high resolution one.

The second prior is concerned with learning a degradation model of the high resolution im-

age and the third imposes a sparsity constraint on the residue between the high resolution

image and the interpolated low resolution image. The optimization problem thus formu-

lated has been solved by providing an iterative shrinkage and thresholding algorithm. The

resulting algorithm has been implemented by developing a neural network architecture that

employs small number of parameters and also requires small number of operations. The

proposed scheme for image super resolution has been evaluated by performing extensive

experiments on four benchmark datasets. It has been shown that each of the three priors
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used in our formulation of the optimization problem has a significant impact on the per-

formance of the proposed scheme. The proposed scheme has been compared with other

ultralight-weight super resolution networks and has been shown to outperform them. Fi-

nally, it should be pointed out that the super resolution scheme proposed in this chapter is

an ultralight-weight network that employs the least number of parameters among all the su-

per resolution networks proposed in this thesis. Hence, one could choose to use TPCNN in

numerous applications with very limited numbers of parameters and operations. On other

hand, it is obvious that in view of employing very small number of parameters by TPCNN,

its performance is slightly inferior to that of the other proposed networks.

166



Chapter 7

Deep Joint Image Upsampling and

Deblurring Networks

7.1 Introduction

In most of the deep learning-based image restoration schemes, [1],[4], [3], the ground

truth image is decimated, but not blurred. However, CCD cameras impart blurring to the

captured images, which can be modeled as a convolution operation with a Gaussian point

spread function. This blurring phenomena is not fully represented if the ground truth image

is degraded only through the bicubic decimation operation. In this chapter, new schemes

based on a deep convolutional neural networks for solving the problem of image restoration

through upsampling and deblurring are proposed [88], [99], [104]. The networks consists

of two stages carrying out the tasks of upsampling and deblurring, respectively.
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7.2 UpDCNN: A New Scheme for Image Upsampling and

Deblurring using a Deep Convolutional Neural Net-

work

In this section, the architecture of the first proposed scheme for image upsampling and

deblurring is described [99]. The deep convolutional network representing the proposed

architecture will be referred to as the upsampling-deblurring convolutional neural network

(UpDCNN). To the best of our knowledge, UpDCNN is the first scheme based on deep

convolutional neural networks that takes both the Gaussian blurring and downsampling

operations of image acquisition individually into consideration for restoring the original

image.

The overall neural network architecture of the proposed scheme is shown in Fig. 7.1.

Denoting the ground truth image by x[m,n] (0 ≤ m ≤ aM and 0 ≤ n ≤ aN ) and the

degraded image by z[m,n] (0 ≤ m ≤M and 0 ≤ n ≤ N ), the degradation process process

can be modeled as
p[m,n] = x[m,n] ∗ h[m,n]

z[m,n] = p[am, an]

(7.1)

where h[m,n] (assumed to be a Gaussian kernel with the standard deviation σ) is the im-

pulse response representing the blurring phenomenon of the camera lens, p[m,n] is the

resulting blurred image and a is the scaling factor. In order to restore the ground truth

image x[m,n] from the degraded image z[m,n], the inverse operations, consisting of up-

sampling and deblurring, should be performed in that order on the blurred downsampled

image. Due to the nature of the subsampling operation used in the model given by (7.1),

a lossless reconstruction of the ground truth from its blurred downsampled version is not

achievable. However, one can expect to obtain a good estimate of the ground truth image

from the degraded image z[m,n] using the following approach.
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1. The blurred downsampled image z[m,n] is brought to a higher resolution space via

the bilinear interpolation as

q[m,n] =

 z[m
a
, n
a
] m,n = 0,±a,±2a, ...

0 otherwise

u[m,n] = q[m,n] ∗ f [m,n]

(7.2)

where q[m,n] is the zero-padded upsampled version of z[m,n], u[m,n] is the upsampled

smoothed image and f [m,n] is the smoothing bilinear kernel. Since the subsampling oper-

ation is not invertible, the upsampled image would suffer from the ringing effect especially

around the edges. If one could succeed in removing the ringing effect completely in the

upsampled image, the resulting image would be a blurred version of the ground truth. In

practice, this is not possible. However, we can reduce the ringing effect by solving the

following optimization problem

ĝ = argmin
g

(‖ g(u[m,n])− p[m,n]‖2)

p̂[m,n] = ĝ(u[m,n])

(7.3)

where ‖.‖ denotes the `2 norm and g(.) represents convolution operations through a se-

quence of convolutional layers each followed b a ReLU activation function. Thus, the

output of stage 1 is p̂[m,n], which is the estimation of the blurred version p[m,n] of the

ground truth.

2. The residual signal r[m,n] between the ground truth and the estimation p̂[m,n] of

the blurred image is given by

r[m,n] = x[m,n]− p̂[m,n] (7.4)
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We can express this residual as

r[m,n] ≈ (p̂[m,n] ∗ h+[m,n])− p̂[m,n] (7.5)

where h+[m,n] is the pseudo-inverse of the blurring kernel h[m,n] given by

h[m,n] ∗ h+[m,n] ≈ δ[m,n] (7.6)

δ[m,n] being the two-dimensional Kronecker signal. Use of Wiener deconvolution is one

of the approaches for obtaining the pseudo-inverse of the blurring kernel. According to

this approach, the pseudo-inverse of the blurring kernel h[m,n] in the frequency domain is

obtained as

H+(ejϕ,jψ) =
Hc(ejϕ,jψ)

H(ejϕ,jψ)Hc(ejϕ,jψ) + τ
(7.7)

where c denotes the conjugation operation and 1
τ

is SNR of the blurred image p[m,n].

Equation (7.5) can be re-written as

r[m,n] ≈ (p̂[m,n] ∗ h+[m,n])− (p̂[m,n] ∗ δ[m,n])

≈ p̂[m,n] ∗ (h+[m,n]− δ[m,n])
(7.8)

Using d[m,n] to denote h+[m,n] − δ[m,n], an estimation of the ground truth image can

be obtained in terms of the blurred image as

x[m,n] = r[m,n] + p̂[m,n]

≈ (p̂[m,n] ∗ d[m,n]) + p̂[m,n]

(7.9)

The output feature maps of stage 1, which is the estimated blurred image p̂[m,n] image,

is fed to the stage 2. This input to stage 2 is passed through a sequence of convolutional

layers and the residual signal between the ground truth and blurred image is obtained.
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Figure 7.1: Architecture of UpDCNN. In the figure, Conv. and Bil. Int. refer to
convolutional layer and the bilinear interpolation, respectively.

Stage 1 has four convolutional layers. The first convolutional layer in stage 1 is utilized

for extracting the features of the bilinear interpolated image. The next two convolutional

layers in stage 1 are employed for nonlinear mapping between the interpolated image and

the blurred version of ground truthp[m,n]. These two layers strive to suppress the ringing

effect that is produced by the bilinear interpolation and employ 64 filters with the kernel

size of 3 × 3. The last convolutional layer in stage 1 is used for reconstructing the esti-

mated blurred image and uses 1 filter with the kernel size of 3× 3. The mean squared error

between the blurred version of the ground truth p[m,n] and the estimated blurred image is

considered to the loss function of stage 1 for updating its weights.

Stage 2 consists of 21 convolutional layers with the kernel size 3 × 3. The first convo-

lutional layer in this stage is employed for feature extraction from the blurred image. The

next 19 convolutional layers in stage 2 are dedicated for nonlinear mapping between the

blurred image p̂[m,n] and the residual signal r[m,n] between ground truth and the blurred

image and the widths of each of these layers are set to 64. The last convolutional layer of

stage 2 is devoted to reconstruct the residual image from its features. Each of the convo-

lutional layers in UpDCNN is followed by a batch normalization and a ReLU activation

function with the exception of the two reconstruction layers. The mean squared error be-

tween upsampled deblurred image x̂[m,n] (i.e. the estimate of the ground truth) and the
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ground truth x[m,n] is used for updating its weights. The two stages of UpDCNN are

jointly trained using the two loss functions.

The sub-images of size 48× 48 are extracted from 200 images of BSD200 dataset [23]

and 91 images of the Yang et al. dataset [6] to train the proposed network. Data augmen-

tation involving flipping and rotation is used to increase the number of training samples.

Stochastic gradient descent with the momentum parameter of 0.9 and initial learning rate

of 0.1 is used to update the weights of UpDCNN in each iteration. The learning rate is

decreased by a factor of 10 after every 10 epochs. The total number of 40 epochs is used to

update the weights of UpDCNN. The weigh decay parameter is also set to 10−4.

Keras deep learning library [40] and TensorFlow package [41] are employed for im-

plementing the proposed UpDCNN. The training of UpDCNN is carried out by a machine

with Intel Core i7 CPU @4.2 GHz, 16 GB installed memory and GPU Nvidia Titan X

(Pascal).

7.3 UPDResNN: A Deep Light-Weight Image Upsampling

and Deblurring Residual Neural Network

The desire for achieving high-accuracy performance for computer vision tasks has diverted

the current design trend of the convolutional neural networks towards very deep architec-

tures at the expense of employing large numbers of parameters and operations. However,

this design trend has precluded the deployment of the networks so designed from their

applications to many real-world applications that involve mobile devices and portable cam-

eras with their low-power and light-weight requirements. In this section, for solving the

joint problem of image upsampling and deblurring, we develop a three-stage light-weight

convolutional neural network architecture [88], which tackles this joint problem in an in-

tegrated manner through a residual learning guided by simultaneous minimization of two
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Figure 7.2: The overall architecture of the proposed UpDResNN. Conv. and SP conv.,
respectively, denote convolution and sub-pixel convolution operations.

loss functions, one representing the difference between the upsampled version of the low

quality input image and the blurred version of the ground truth image, and the other one

representing the difference between the upsampled deblurred version of the low quality in-

put image and the ground truth image.

Image formation process in an image acquisition system, which produces a low quality

Figure 7.3: Architecture of the proposed residual block of UPDResNN. PW Conv.
represents the point-wise convolution operation.
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image y, can be modeled by blurring followed by a downsampling operation. In order to

estimate (restore) the ground truth image x from the low quality image y, we propose a

network consisting of three stages as depicted in Fig. 7.2. Stage 1 starting from the low

quality image y generates its feature maps b. The other two stages carry out operations of

upsampling and deblurring that are converse to that of the image formation process. Stage

2 produces an estimate of a blurred version of the ground truth (upsampled version d of

the low quality image) from the feature maps b. Stage 3, again starting from the feature

maps b, produces a residue r between the ground truth image and the upsampled image d.

Finally, in this stage, r and d are combined to produce a high quality estimate of the ground

truth image. We now describe in detail the three stages of proposed network.

Stage 1: Feature Extraction. The low quality image y is transformed to the YCbCr

color space and its luminance content (Y channel) is passed through a convolution opera-

tion, a ReLU activation and an operation carried out by one unit of the proposed residual

block, to be described in the next paragraphs. The output of this stage are the feature maps

b given by

b = Res(ReLU(W1(y))︸ ︷︷ ︸
a

) (7.10)

where W1 denotes a convolution operation using 64 filters with the kernel size of 3× 3 and

Res represents the operation carried out by the proposed residual block. The maps b are

the features of the blurred downsampled low quality image y, that must be upsampled and

deblurred.

Stage 2: Image Upsampling. The downsampling operation, as performed by the CCD

sensors during the image formation process, does not have a corresponding inverse oper-

ation. However, through a suitable upsampling operation one can obtain an image that is

very close to the blurred version of the ground truth. In this regard, in this stage, the feature

maps b of the low quality image are first made to undergo a sub-pixel convolution opera-

tion yielding feature maps c whose spatial resolutions are the same as that of the ground
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truth image. Finally, the feature maps c thus obtained are made to go through a convolution

operation producing the upsampled image d as

d = W2(c) (7.11)

where the convolution operation W2 employs one filter with kernel size of 3 × 3. In order

to force the upsampled version d of the low quality input image to be close to the blurred

version of the ground truth, we minimize the `1 norm loss between these two images.

The upsampled image d produced by this stage is thus a blurred version of the ground

truth image and it has the approximation content of the ground truth, i.e., its low frequency

content. Therefore, it possesses an important information about the ground truth image.

On the other hand, it does not have the edges and details of the ground truth. The design of

Stage 3 is, therefore, aimed at restoring this missing information.

Stage 3: Image Deblurring. The desired missing information as mentioned above can

be regarded as the residue between the ground truth image x and the upsampled image d.

Therefore, for this stage, we develop a sub-network to realize (learn) this residual signal.

In Stage 3, the feature maps b are fed to a cascade of 5 units of the proposed residual block

in order to produce the feature maps e as

e = Res(...Res(b)))))︸ ︷︷ ︸
5 Units of the residual block

(7.12)

The feature maps e are then undergone through a sub-pixel convolution operation yielding

the feature maps f, which have the same spatial resolutions as that of the ground truth

image. Next, the feature maps f are made to undergo a convolution operation in order to

obtain the residual signal r as

r = W3(f) (7.13)
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where the convolution operation W3 uses one filter with kernel size of 3 × 3. Finally, the

residual signal r is added to the upsampled image d and the estimated high quality image z

is obtained as

z = r + d (7.14)

We now aim at designing a residual block to be used by the proposed light-weight upsam-

pling and deblurring network that is characterized by two attributes. First, the proposed

residual block must employ a local skip connection between its input and output in order

to facilitate the flow of information in the backpropagation, and therefore, help in curtail-

ing the gradient vanishing problem. Second, the proposed residual block should generate

features at multiple receptive fields and fuse them in order to improve the representational

capability of the network.

Fig. 7.3 shows the architecture of the proposed residual block. The feature maps u

input to the block are first passed through a convolution operation followed by a ReLU

activation yielding the feature maps u1 as

u1 = ReLU(G1(u)) (7.15)

where the convolution operation G1 employs 64 filters each with kernel size 3 × 3. The

feature maps u at the same time are also made to undergo a cascade of two convolution

operations each followed by a ReLU activation in order to generate the feature maps u2 as

u2 = ReLU(G3(ReLU(G2(u)))) (7.16)

where the convolution operations G2 and G3 use 64 filters each with kernel size 3× 3. The

net effect of carrying out two 3 × 3 convolution operations as performed by G2 and G3

in cascade is to generate a receptive field of size 5 × 5 [39]. This same size of receptive

field could also be achieved by using a single 5 × 5 convolution operation. However, the
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use of a single 5 × 5 convolution operation would result in larger numbers of parameters

and operations than that required by the two 3× 3 convolution operations in cascade. The

feature maps u1 and u2 are generated in 3×3 and 5×5 receptive fields, respectively. There-

fore, a fusion of u1 and u2 using their concatenation followed by a point-wise convolution

would result in producing feature maps with an enhanced representational capability. The

operation of fusing u1 and u2 that yields the feature maps w can be described as

v = Concat([u1,u2])

w = G4(v)
(7.17)

where the point-wise convolution operation G4 uses 64 filters each with kernel size 1 × 1.

Finally, the feature maps w are added to the feature maps u input to the block in order to

obtain the block’s output feature maps s = Res(u) as

s = u + w (7.18)

We refer to the proposed joint image upsampling and deblurring network as deep light-

weight image Upsampling and Deblurring Residual Neural Network (UPDResNN) [88].

The proposed joint image upsampling and deblurring network is trained using the im-

ages from BSD 200 dataset [23] and Yang et al. dataset [6]. These images are then divided

into 111320 sub-images each of size 48×48. Data augmentation, including flipping and ro-

tations by 90, 180 and 270 degrees, is employed to increase the number of training samples

to 445280. For evaluating the proposed network, we use four testing benchmark datasets,

namely, Set 10 [73], Set 5 [21], Set 14 [22] and BSD 100 [23] datasets. It should be men-

tioned that the Woman image is contained in both the BSD 200 training dataset and the Set

5 test set. Also, the Parthenon image is contained in both the BSD 200 training dataset

and the Set 10 test set. Therefore, in order to avoid having overlap between the training
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and testing datasets, we have removed the Woman and Parthenon images from BSD 200

training dataset.

In order to train the proposed joint image upsampling and deblurring network, we em-

ploy two loss functions, one for image upsampling and the other one for image deblurring.

The loss function used for the output of the image upsampling stage, Stage 2, is defined as

L1(Θ1,Θ2) =
1

N

N∑
i=1

‖di(Θ1,Θ2)− h ∗ xi‖1 (7.19)

where Θ1 and Θ2 are the sets of parameters used by Stage 1 and Stage 2, respectively, and,

xi and di are, respectively, the ith samples of the ground truth and upsampled estimation

of the input image, h is a Gaussian blurring kernel used to obtain a blurred version of

the ground truth image and N denotes the batch size used in each iteration for updating

the network weights. The loss function used for the output of the image deblurring stage,

Stage 3, is defined as

L2(Θ1,Θ2,Θ3) =
1

N

N∑
i=1

‖zi(Θ1,Θ2,Θ3)− xi‖1 (7.20)

where Θ3 is the set of parameters used for Stage 3 and zi is the ith sample of the estimated

image.

The loss functions given by (7.19) and (7.20) are minimized using the stochastic gradi-

ent descent optimizer. The initial learning rate is set to 0.1 and then is decreased by a factor

of 10 after each 10 epochs. A total of 40 epochs are used to train the network. The weights

of the network are initialized with the method proposed by He et al. [7]. The weight decay

parameter of the convolution operations is set to 10−4.

Keras deep learning library [40] and TensorFlow package [41] are employed for im-

plementing the proposed image upsampling and deblurring network. The training of the

proposed network is carried out by a machine with Intel Core i7 CPU @4.2 GHz, 16 GB
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installed memory and GPU Nvidia Titan X (Pascal).

7.4 Experimental Results

7.4.1 Experimental Results of UpDCNN

In this section, the performance of UpDCNN is obtained and compared with that of the

state-of-the-art schemes for image upsampling and deblurring. Also, the effect of changing

the hyper-parameters on the performance of UpDCNN is investigated.

For evaluating the performance of UpDCNN, the benchmark of Ten Images [73] is used.

The Gaussian kernels with standard deviations of σ = 1 and σ = 1.6 are utilized for the

purpose of blurring and the bicubic decimation with an scaling factor of 3 is used for sub-

sampling. UpDCNN is compared with the state-of-the-art schemes for image upsampling

and deblurring, including the sparse coding network (SCN) [2], the centralized sparse rep-

resentation for image restoration (CSR) [73] and the image super resolution with non-local

means (NLM) [74].

The comparison between the various schemes, in the case of upscaling factor 3 and

Gaussian blurring kernels σ = 1 and σ = 1.6 on Ten Images dataset [2], is shown in Table

7.1. As seen from this table, UpDCNN outperforms the other schemes in terms of PSNR.

It is worth noting that the difference between the performances of UpDCNN and SCN in

the case of the Gaussian blurring kernel with σ = 1 is 0.49 dB.

To verify the functionality of the two stages of the UpDCNN, their outputs are shown

in Fig. 7.6 (e) and (d), respectively, when the network is fed with the blurred downsampled

Butterfly image. As seen from Fig. 7.6 (e), the image resulting from stage 1 has less ring-

ing artifact with respect to using only bilinear or bicubic interpolated images shown in Fig.

7.6 (c) and (d), respectively. Also, as seen from Fig. 7.6 (f), the final estimated image of

UpDCNN has a very pleasant quality with no ringing or blurring artifacts.
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Table 7.1: The performance of UpDCNN and the state-of-the-arts on the Ten Images that
are blurred with Gaussian kernel and downscaled by factor of 3.

Blurring Kernel CSR NLM SCN UpDCNN
σ = 1 29.32 29.26 29.65 30.14
σ = 1.6 29.63 28.25 29.90 29.97

Table 7.2: The performance of stage 1 of UpDCNN, when the standard deviation of the
Gaussian blurring kernel is σ = 1.

Method of Upsampling
Bilinear
Upsampling

Bicubic
Upsampling

UpDCNN
Upsampling

PSNR 22.33 23.13 24.99

Table 7.3: The performance of UpDCNN, when a shallower network is used for stage 1.

Blurring Kernel UpDCNN (S1 = 2) UpDCNN (S1 = 4)
σ = 1 30.14 30.14
σ = 1.6 29.94 29.97

Table 7.4: The performance of UpDCNN, when a shallower network is used for stage 2.

Blurring Kernel UpDCNN (S2 = 11) UpDCNN (S2 = 21)
σ = 1 29.84 30.14

In order to investigate the functionality of stage 1 of UpDCNN, the PSNRs of the

bilinear and the bicubic interpolated images and the image obtained from stage 1 of Up-

DCNN are given in Table 7.2. As seen from this table, stage 1 of UpDCNN provides a

PSNR, which is significantly higher than those provided by the bilinear and the bicubic

interpolations. It is worth noting that the difference between the performances of stage 1

of UpDCNN and the bilinear interpolation alone is 2.66 dB, which is significant. This sig-

nifies that stage 2 of UpDCNN starts with a better initial point. These results demonstrate

the importance of the stage 1 in image upsampling and deblurring via convolutional neural

networks.

To see the impact of changing the hyperparameters on the performance of UpDCNN,

the number of convolutional layers (S1) in the stage 1 is decreased from 4 to 2. The per-

formances of UpDCNN with the default and new settings are given in Table 7.3. As seen

from this table, even though the deeper network for stage 1 leads to a better performance
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Figure 7.4: The visual demonstration of UpDCNN when is applied on Butterfly image in
the case of upscaling factor 3 and Gaussian blurring kernel with σ = 1.6. (a) Ground
truth. (b) Blurred image. (c) Bilinear upsampling of the blurred downsampled image. (d)
Bicubic upsampling of the blurred downsampled image. (e) The image obtained from
stage 1 of UpDCNN. (e) The image obtained from stage 2 of UpDCNN.

of UpDCNN, performance gain is not significant.

Finally, the performance of UpDCNN in the case of using a shallower network for stage

is given in Table 7.4. The standard deviation of the Gaussian blurring kernel is set to σ = 1

and the number of convolutional layers (S2) in the stage 2 is reduced from 21 to 11. As

seen from this table, when the number of layers is decreased in stage 2, the performance

of the scheme drops considerably. This shows the importance of utilizing a deep model for

stage 2.
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7.5 Experimental Results of UpDResNN

In this section, the results of the experiments carried out on the proposed light-weight im-

age upsampling and deblurring network are presented. First ablation studies on the network

are conducted. Next, in order to evaluate the effectiveness of Stage 1 and Stage 2 in pro-

viding an upsampled version of the low quality image, the quality of the output image d

produced by Stage 2 is compared with those produced by the classical methods of image

upsampling. Finally, the performance and complexity of the proposed network employing

the residual block of Fig. 7.3 are presented.

The purpose of Stage 2, in conjunction with Stage 1 in the proposed network is to learn

the residue between the ground truth and its blurred version d. To investigate the impact of

Stage 2 on the network performance, we form a variant of the proposed network, namely,

Variant 1. The architecture of this variant is shown in Fig. 7.5. It is seen from this figure

that the architecture of Variant 1 is obtained by replacing the operation of Stage 2 of the

proposed network by the bilinear interpolation operation. Therefore, the residual learning

in Variant 1 becomes the conventional global residual learning instead of the global residual

learning performed in the proposed joint image upsampling and deblurring network using

Stage 2. It should be pointed out that since the network of Variant 1 employs 6 residual

blocks, it has the same number of parameters as that of the proposed image upsampling and

deblurring network. Table 7.5 gives the performance of the proposed network and Variant 1

on the Set 10 [73], Set 5 [21], Set 14 [22] and BSD 100 [23] images with the scaling factor 3

and blurring kernel standard deviation σ = 1. It is seen from this table that removing Stage

2 from the proposed network results in degrading the network performance significantly.

The reason for the residual learning performed by the proposed network to be superior to

that of Variant 1 (conventional global residual learning) can be provided as follows.

As seen from Variant 1, in the conventional global residual learning, the residual
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Figure 7.5: Architecture of Variant 1 of the proposed UPDResNN.

Figure 7.6: Architecture of Variant 2 of the proposed UPDResNN.

Table 7.5: Impact of employing Stage 2 on the network performance of UpDResNN in
terms of PSNR in dB, when the scaling factor is 3 and the blur kernel standard deviation is
σ = 1.

Network with Set 10 Set 5 Set 14 BSD100
Variant 1 28.51 31.72 28.78 27.92
Proposed 30.27 33.57 29.95 28.77

signal consists of the difference between the ground truth image and the upsampled inter-

polated version of the low quality degraded input image. Therefore, this residual signal

contains the interpolation artifacts. Since the downsampling part of the image degradation
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Table 7.6: Impact of using sub-pixel convolutions on the network performance of
UpDResNN in terms of PSNR in dB, when the scaling factor is 3 and the blur kernel
standard deviation is σ = 1.

Network with Set 10 Set 5 Set 14 BSD100
Variant 2 30.07 33.32 29.88 28.71
Proposed 30.27 33.57 29.95 28.77

Table 7.7: Impact of using `1 norm loss on the network performance of UpDResNN in
terms of PSNR in dB, when the scaling factor is 3 and the blur kernel standard deviation is
σ = 1.

Network with Set 10 Set 5 Set 14 BSD100
Variant 3 30.05 33.34 29.89 28.72
Proposed 30.27 33.57 29.95 28.77

Table 7.8: Performance in terms of PSNR in dB of the upsampling stage of the proposed
UpDResNN.

Method
Bilinear
Upsampling

Bicubic
Upsampling

Upsampling
Sub-network

Performance 26.02 26.57 28.03

cannot be modeled by the converse operation of image interpolation, in the case of conven-

tional global residual learning, these artifacts cannot be learnt from the ground truth image.

In the proposed network, on the other hand, the upsampling of the low quality degraded in-

put image is carried out through Stage 1 and Stage 2 leading to the high resolution blurred

version of the ground truth image. Therefore, in this case, the residual signal, which is

the difference between the ground truth image and its blurred version, contains the high

frequency components of the ground truth image without any interpolation artifact. Hence,

the downsampling part of the image degradation is better modeled by the converse opera-

tion carried out by the Stage 1 and Stage 2 of the proposed network.

It is to be noted that in the proposed network, the deblurring part of the image restora-

tion is carried out in low resolution and the resolution of the resulting residue is then raised

to that of the ground truth image only at the end of this stage. In order to study the advan-

tage of this approach used by Stage 3, we form a variant of the proposed network, namely,
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Table 7.9: PSNR (SSIM) values resulting from applying UpDResNN and various
state-of-the-art methods to images of four benchmark datasets.

Dataset Scaling Factor and Blur Kernel SD
DB [36]+

SRCNN [1]

DB [36]+

EDSR [28]

(Light-weight)

DB [36]+

MSRN [75]

(Light-weight)

GFN [37]

(Light-weight)

ADSN [38]

(Light-weight)

Proposed

Set10

×3 and σ = 1 29.51 (0.8555) 29.96 (0.8649) 29.92 (0.8644) 30.05 (0.8665) 30.08 (0.8666) 30.27 (0.8689)

×3 and σ = 1.6 29.41 (0.8522) 29.92 (0.8636) 29.97 (0.8631) 30.01 (0.8644) 29.98 (0.8636) 30.19 (0.8672)

×4 and σ = 1 27.44 (0.7910) 27.78 (0.8003) 27.77 (0.8001) 27.76 (0.8002) 27.77 (0.8001) 27.78 (0.8004)

×4 and σ = 1.6 27.33 (0.7909) 27.76 (0.8015) 27.73 (0.8020) 27.72 (0.8026) 27.70 (0.8018) 27.97 (0.8050)

Set5

×3 and σ = 1 32.78 (0.9106) 33.25 (0.9169) 33.21 (0.9168) 33.31 (0.9177) 33.46 (0.9176) 33.57 (0.9188)

×3 and σ = 1.6 32.67 (0.9089) 33.21 (0.9160) 33.32 (0.9160) 33.34 (0.9172) 33.35 (0.9164) 33.57 (0.9186)

×4 and σ = 1 30.53 (0.8688) 30.87 (0.8741) 30.85 (0.8741) 30.82 (0.8740) 30.90 (0.8743) 30.99 (0.8753)

×4 and σ = 1.6 30.37 (0.8682) 30.91 (0.8762) 30.95 (0.8769) 30.83 (0.8765) 30.96 (0.8761) 31.27 (0.8783)

Set14

×3 and σ = 1 29.55 (0.8259) 29.79 (0.8316) 29.75 (0.8312) 29.79 (0.8326) 29.80 (0.8318) 29.95 (0.8338)

×3 and σ = 1.6 29.50 (0.8235) 29.79 (0.8311) 29.85 (0.8307) 29.83 (0.8314) 29.77 (0.8305) 29.91 (0.8329)

×4 and σ = 1 27.77 (0.7600) 27.90 (0.7657) 27.87 (0.7653) 27.84 (0.7650) 27.89 (0.7651) 28.00 (0.7658)

×4 and σ = 1.6 27.68 (0.7606) 28.01 (0.7676) 27.97 (0.7679) 27.91 (0.7680) 27.94 (0.7672) 28.14 (0.7684)

BSD100

×3 and σ = 1 28.48 (0.7893) 28.65 (0.7946) 28.61 (0.7939) 28.65 (0.7955) 28.68 (0.7962) 28.77 (0.7969)

×3 and σ = 1.6 28.46 (0.7866) 28.66 (0.7943) 28.70 (0.7937) 28.70 (0.7945) 28.68 (0.7947) 28.78 (0.7968)

×4 and σ = 1 26.98 (0.7162) 27.10 (0.7210) 27.08 (0.7209) 27.06 (0.7209) 27.08 (0.7210) 27.14 (0.7215)

×4 and σ = 1.6 26.94 (0.7186) 27.15 (0.7241) 27.11 (0.7246) 27.10 (0.7248) 27.12 (0.7242) 27.23 (0.7238)

The values in the red font indicate the best performance and those in the blue font represent the
second best performance.

Table 7.10: Complexity of UpDResNN and various schemes used for comparison.

Method Number of Parameters Number of MACC
DB [36]+SRCNN [1] 446K 56.9G

DB [36]+EDSR [28] (Light-weight) 1168K 55.2G
DB [36]+MSRN [75] (Light-weight) 906K 53.4G

GFN [37] (Light-weight) 1487K 85.0G
ADSN [38] (Light-weight) 942K 42.5G

Proposed 708K 41.1G

Variant 2. The architecture of Variant 2 is shown in Fig. 7.6. It is seen from this figure that

the idea behind Variant 2 is to make all the processing of the network to be done in high

resolution instead of the low resolution as done in the proposed network. In order to realize

this idea, the Variant 2 is formed by removing the sub-pixel convolution operations from
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Figure 7.7: Visual comparison of Powerpoint image from Set 14 dataset upsampled and
deblurred by the proposed network and light-weight versions of the state-of-the-art
schemes with the scaling factor 3 and blurring kernel standard deviation σ = 1.6. (a)
Ground truth. (b) Degraded image. (c) DB [36]+SRCNN [1]. (d) DB [36]+EDSR [28]
(Light-weight). (e) DB [36]+MSRN (Light-weight). (f) GFN (Light-weight). (g) ADSN
(Light-weight). (h) UPDResNN.

Stage 2 and Stage 3 of the proposed network and add a bilinear interpolation operation at

the beginning of the architecture. Table 7.6 gives the performance, in terms of PSNR in dB,

of the proposed network and Variant 2 on the four benchmark datasets. The results of this

table confirm that replacing the sub-pixel convolution by the bilinear interpolation results

in a significant performance degradation.

The proposed image upsampling and deblurring network is trained using the `1 norm

loss function. We now study the impact of replacing the `1 norm loss function by the `2

norm loss function. We call the network using `2 norm loss function as Variant 3. The

architecture of Variant 3 is the same as that of the proposed network, except the former

is trained using the `2 norm loss function, whereas the latter is trained using the `1 norm

loss. Table 7.7 gives the performance, in terms of PSNR in dB, of the proposed network

and Variant 3 on the four benchmark datasets. It is seen from this table that using the `2
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Figure 7.8: Comic images resulting from UPDResNN. (a) Ground truth. (b) Blurred
Image. (c) Blurred and downsampled image. (d) Bilinear Upsampled image. (e)
Upsampled image by the proposed network. (f) Upsampled and deblurred image by the
proposed network. Please zoom in to see the details.

norm loss function for training the proposed network results in degrading its performance

significantly.

Stage 2 of the proposed network produces a high resolution image d corresponding to

the low quality image y. We now compare in Table 7.8, the quality of the image d with

those obtained by upsampling y using bilinear and bicubic interpolations. It is seen from

this table that the of quality (in terms of PSNR in dB) of the image provided by the upsam-

pling stage of the proposed scheme is significantly superior to that obtained by using the

classical image upsampling methods.
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Our main goal in the design of the proposed UpDResNN is to provide a good perfor-

mance for the task of joint image upsampling and deblurring by employing a small number

of parameters. We now form three image upsampling and deblurring networks by cascad-

ing a light-weight version of the deblurring network of [36] with SRCNN [1] and with

light-weight versions of EDSR [28] and MSRN [75]. Additionally, we form the light-

weight versions of the two joint image upsampling and deblurring networks, namely, GFN

[37] and ADSN [38]. The purpose of forming light-weight versions of the networks for the

task of joint image upsampling and deblurring is to make their levels of complexity to be

approximately the same as that of the proposed network in order to make a fair comparison.

In the deblurring network of [36], we employ only one unit of its residual block. The net-

work SRCNN [1] consists of three convolutional layers with spatial sizes of 9×9, 5×5 and

5 × 5, respectively. The light-weight version of EDSR [28] is formed by stacking 3 units

of its residual blocks, each consisting of two convolution operations and a ReLU activation

in-between. It should be noted that the original residual bock of EDSR [28] uses convo-

lutional layers with 256 filters. However, we use residual blocks employing convolutional

layers with 128 filters for this network in order to make it light-weight. The light-weight

version of MSRN [75] is formed by staking 2 units of its residual blocks, each generating

features in multiple scales by employing convolution operations with spatial sizes of 3× 3

and 5× 5. In the light-weight version of GFN [37], we use one unit of its residual block in

the deblurring module as well as one unit in the super resolution module, and a cascade of

3 units in the reconstruction module. In the light-weight version of ADSN [38], we employ

one unit of residual channel-attention block in the deblurring module and a cascade of 4

units of back-projection residual blocks in the super resolution module. All these networks

are trained for the task of image upsampling and deblurring using the same training dataset.

Table 7.9 gives the performance, in terms of PSNR in dB and SSIM, of these light-weight

networks along with that of the proposed one on the four benchmark datasets. It should
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be pointed out that we use a comparable number of parameters for all the networks used

in comparison. It is seen from Table 7.9 that the proposed network outperforms the light-

weight versions of other state-of-the-art networks in the cases of various scaling factors and

different blurring kernel standard deviations.

Fig. 7.7 shows the visual qualities of the images restored by using the six networks on

the Powerpoint image from the Set 14 dataset, which is degraded by the Gaussian blurring

kernel with σ = 1.6 and the scaling factor 3. It is seen from this figure that the proposed

network recovers the textures and details of the image more precisely than the other net-

works do.

Fig. 7.8 shows the ground truth, blurred (σ = 1.6) and the low quality blurred and

downsampled (scaling factor 3) versions of the Comic image from the Set 14 dataset along

with images produced at the output of Stage 2 and Stage 3 of the proposed network. This

figure also shows the bilinear interpolated version of the low quality image. It is seen from

the images of this figure that the upsampled image produced at the output of Stage 2 of the

proposed network is similar to the blurred version of the ground truth and is much superior

to the bilinear interpolated image. It is also seen from this figure that final upsampled and

deblurred image produced at the output of Stage 3 of the proposed network has a good

quality and is very similar to the ground truth image.

Table 7.10 gives the numbers of parameters and MACC operations of the proposed and

other light-weight versions of the state-of-the-art schemes used for comparison. It is seen

from this table that the proposed network outperforms the light-weight versions of EDSR

[28] and MSRN [75], augmented by the deblurring network of [36], as well as the light-

weight versions of GFN [37] and ADSN [38], by employing smaller numbers of parameters

and operations.
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Table 7.11: PSNR (in dB) values resulting from applying the UpDResNN and UPDCNN
on the four benchmark datasets.

Dataset Degradation UPDCNN UpDResNN

Set10
×3 and σ = 1 30.14 30.27
×3 and σ = 1.6 29.97 30.19

Set5
×3 and σ = 1 33.41 33.57
×3 and σ = 1.6 33.14 33.57

Set14
×3 and σ = 1 29.92 29.95
×3 and σ = 1.6 29.78 29.91

BSD100
×3 and σ = 1 28.76 28.77
×3 and σ = 1.6 28.69 28.78

7.5.1 Comparison between the Proposed Deep Joint Image Upsam-

pling and Deblurring Networks

We now compare the performance, in terms of PSNR in dB, of the two deep joint image

upsampling and deblurring networks proposed in this chapter, UpDCNN and UpDResNN.

The comparison results are given in Table 7.11. It is seen from the results of this table that

UpDResNN outperforms UPDCNN considerably. It should be pointed out that the former

network employs 708K parameters compared to 745K parameters employed by the latter.

Therefore, UpDResNN provides its improved performance despite using smaller number

of parameters.

7.6 Conclusion

In this chapter, we have proposed two deep light-weight joint image upsampling and deblur-

ring convolutional neural networks. For developing these two networks, we have proposed

a novel global residual learning approach, in which the blurred version of the ground truth

image is used. The results of the extensive experiments have shown the superiority of the

two proposed networks, UPDCNN and UPDResNN, over those that use other conventional
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global residual learning approaches for the task of joint image upsampling and deblurring.

However, between these two proposed networks, UPDResNN provides a performance su-

perior to that of UPDCNN despite using a smaller number of parameters.
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Chapter 8

Deep JPEG Image Deblocking Networks

8.1 Introduction

Image compression compacts the useful information in an image in order to reduce its size

for various purposes such as transmission and storage. JPEG is one of the classical schemes

for image compression that is commonly employed in real-world situations including image

software and printers. Since JPEG is a block based compression scheme, the restored

images using JPEG compressed images suffer from blocking artifacts.

JPEG compression scheme is based on block transformation. First, the image is divided

into blocks of size 8× 8 and then each block is transformed into the DCT domain as

Xc[k, l] = 4
M−1∑
m=0

N−1∑
n=0

x[m,n] cos(
kπ(2m+ 1)

2M
)

cos(
kπ(2n+ 1)

2N
)

0 ≤ k ≤M − 1, 0 ≤ l ≤ N − 1

(8.1)

where Xc[k, l] is the DCT transform of the block (two-dimensional signal) x[m,n]. Next,

the DCT coefficients of each block are quantized and inputted to an entropy coder such

as Huffman coding. For the reconstruction process, the coded coefficients are fed into an
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entropy decoder and then inputted to a dequantizer. Finally the inverse DCT (IDCT) is

applied on the dequantized values and the block is reconstructed. As seen from this proce-

dure, the blocking effect is unavoidable in JPEG image decompression.

Deep neural networks have proved to provide very promising performance in various

fields of image processing and computer vision. Deep convolutional neural nets have the

capability of nonlinear end-to-end mapping that makes them suitable for image JPEG de-

blocking. Several works based on convolutional neural networks, such as [76], have been

proposed aiming to reduce the artifacts in decompressed images. In this chapter, we de-

velop two deep light-weight convolutional neural networks for the task of JPEG image

deblocking that are able to provide high performances [94], [100].

8.2 Deep JPEG Image Deblocking using Residual Maxout

Units

In this section, the concept of the proposed deep JPEG image deblocking using residual

maxout units (DRMU) is explained [100]. In addition, the training details of the network

along with its default hyper-parameters are described.

Residual blocks could facilitate the learning process of a deep network. The skip con-

nections that are utilized in the residual blocks could facilitate the information flow more

effectively in backpropagation and diminish the gradient vanishing problem. Maxout ac-

tivation function proposed in [77] selects the most useful features for reconstructing the

ground truth. Also, learning various nonlinearities ranging from a simple to a highly com-

plex nonlinearity is possible by using the maxout activation function. By applying the

maxout activation function on the feature vectors of the decompressed image and setting

the objective of the network to obtain the ground truth, the most robust and useful fea-

tures for image deblocking are preserved and the other less informative features discarded.

193



Therefore, the maxout activation function could find the optimal features for the task of

JPEG image deblocking.

In our work, the maxout activation function outputs the maximum value of each of the

m consecutive feature values along the channel dimension (Fig. 8.1). For instance, if the

dimension of the feature vector input to the maxout activation function is 64 and m = 8,

then the output feature vector has the dimension of 8. The 8 features so obtained are the

most robust and relevant features for mapping between the input and output.

In this section, a combination of the residual blocks alleviating the gradient vanishing

problem in a deep network and the maxout activation function used to learn the suitable

and robust features is utilized for JPEG image deblocking.

Our deep JPEG image deblocking network, DRMU, includes three stages as shown in

Fig. 8.2. First, the luminance channel (Y) of a JPEG decompressed image is inputted to the

first stage, which is a convolutional layer used for feature extraction. Next, the resulting

feature vectors of the decompressed image are fed to a sequence of N cascaded RMUs,

which carries out the construction of the features of the residual between the ground truth

and the decompressed image. In our experiments, the default number of RMUs is set to

N = 20. Finally, the output of the sequence of RMUs is fed to the third stage, which is a

convolutional layer used for the construction of an estimate of the ground truth.

We will now discuss the proposed architecture of RMU. The architecture is shown

in Fig. 8.3. If xi ∈ IRn is the input to the first convolution block in the ith residual max-

out unit (RMU), then the convolution operation of this block yields, ui = f(xi) ∈ IRn.

The resulting feature vectors, ui), are fed to the maxout block of RMU, which obtains the

maximum of each of the m consecutive features along the channel dimension, resulting in

new feature vectors, vi ∈ IR
n
m . The feature vectors, vi, are fed to the 1 × 1 convolution

operation, g(.), accompanied by a ReLU activation function to yield the feature vectors,

wi = ReLU(g(zi)) ∈ IRn. These two operations are carried out by the third block in the
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Figure 8.1: Maxout activation function gets the maximum of each of m = 2 consecutive
slices.

Figure 8.2: The architecture of the proposed DRMU. RMU denotes residual maxout unit.

Figure 8.3: Residual maxout unit (RMU). Conv. denotes convolution operation. Note that
the second convolution operation is followed by ReLU.
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RMU shown in Fig. 8.2. Finally, the feature vectors wi obtained from this block are added

to the feature vectors inputted to the ith RMU. The relation between the input and output

of the ith RMU is expressed as

xi+1 = wi + xi (8.2)

The convolutional layer that is used for feature extraction of the decompressed image

and first convolutional layer at each RMU employ 64 filters of size 3 × 3. The maxout

activation functions in the RMUs are applied on each 8 consecutive slices of their input

tensors. Finally, the last convolutional layers in RMUs, that carry out the dimensionality

expansion, utilize 64 filters of size 1× 1.

To train DRMU, first the subimages of size 40 × 40 are extracted from the training

and validation images of BSD300 dataset [23] and are then degraded via JPEG compressor

of MATLAB. Also, flipping and rotation are carried out to augment the training samples.

To update the weights of the network in each iteration, stochastic gradient descent with

the momentum parameter of 0.9 is utilized. The loss function in DRMU is taken as the

mean squared error between ground truth and estimated deblocked images. The network is

trained for the JPEG compression quality factors of 10 and 20 separately.

Every convolution operation is followed by a batch normalization process for normaliz-

ing the distribution of the data. The weights in all layers in our fully convolutional scheme

are randomly initialized using the method of He, et al.[7].
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8.3 Development of New Fractal and Non-fractal Deep Resid-

ual Networks for Deblocking of JPEG Decompressed

Images

Deep learning based JPEG image deblocking schemes can be categorized into recursive and

non-recursive classes of neural networks. The recursive neural networks for JPEG image

deblocking, such as in [82], use a recursive block that employs the same set of parame-

ters in all recursions. Therefore, these networks are ultra light-weight, i.e., they employ

a very small number of parameters. The class of non-recursive neural networks for JPEG

image deblocking [80], [100], [81] employ a cascade of learnable blocks all having the

same architecture, but each having its own set of parameters. Even though the number of

parameters used in a non-recursive neural network is larger than that of a recursive neural

network, the number of operations in the non-recursive neural network is proportional only

to the number of parameters employed by it. In this section, we develop two residual blocks

[94], referred to as simple residual block (SRB) and compound residual block (CRB), to

be used, respectively, in recursive (non-fractal) and non-recursive (fractal) frameworks of

deep convolutional networks for deblocking of JPEG decompressed images. The main idea

in designing SRB is that residual features are generated in two streams. In the first stream,

the residual features are obtained directly from the input feature maps of the block by em-

ploying two convolutional layers, whereas in the second stream, the residual features are

obtained only from the high frequency component of the input feature maps of the block.

On the other hand, the main idea in designing CRB is that an enhanced representational

capability is imparted to the network using this block by replacing each of the two convo-

lutional layers of SRB by itself, thus providing a fractal character to the resulting compound

residual block.

Here, we first develop the architecture of SRB and that of the recursive (non-fractal)
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image deblocking network using this block. This is followed by the development of the

architecture of CRB and that of the non-recursive (fractal) deblocking network employing

this block.

Use of the residual blocks in a deep network facilitates the flow of the information

in backpropagation and helps in addressing the gradient vanishing problem. Basic resid-

ual blocks for image restoration [28] generally consist of two convolutional layers with a

ReLU activation in between. Such a residual block learns the residue between its input

and output feature maps, which consists mainly of high frequency content. Thus, adding a

light-weight module to this residual block that generates features that are generated specif-

ically from the high frequency component of the block’s input and adding these features

to the features directly obtained from the input of the block should further enhance the

representational capability of the block. We now propose a residual block that generates

such a rich set of high frequency residual features. The architecture of the proposed block

is shown in Fig. 8.4 (a). It is seen from this figure that feature maps u input to the block

are first made to undergo two convolution operations each followed by a ReLU activation

in order to yield the feature maps v. Each of the two convolution operations uses 64 filters

with kernel size 3×3. At the same time, in order to obtain the high frequency component of

u, the feature maps u are first passed through an average pooling operation and the resulting

maps a consist of the low frequency component of u. The average pooling operation uses

stride 1 and kernel size 2 × 2. It is to be noted that since the stride of the average pooling

operation is 1, the spatial resolution of the feature maps a is the same as that of the feature

maps u. Next, the feature maps a are subtracted from the feature maps u to obtain the fea-

ture maps b, which now contains the high frequency component of the feature maps u. The

feature maps b are then passed through a point-wise convolution operation followed by a

ReLU activation to yield the high frequency feature maps w. This point-wise convolution

operation uses 64 filters each with kernel size 1 × 1. The high frequency feature maps w
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(a)

(b)

Figure 8.4: Architecture of the proposed recursive network. (a) Architecture of SRB,
where AP and PW Conv. denote, respectively, the average pooling and point-wise
convolution. (b) Overall architecture of the recursive network.

are then concatenated with the feature maps v and the resulting feature maps c undergo a

point-wise convolution operation in order to yield the feature maps r corresponding to the

block’s output residual signal. The point-wise convolution operation uses 64 filters each

with kernel size 1× 1. The residual feature maps r thus obtained are added to the maps u,

the block’s input features, to obtain the output feature maps z for the block.

Now, in order to design an ultra light-weight JPEG image deblocking network, we

employ SRB in a recursive network. The architecture of the recursive JPEG deblocking

199



network is shown in Fig. 8.4 (b). It is seen from this figure that the JPEG decompressed

image x first undergoes a convolution operation in order to obtain its low quality feature

maps d. This convolution operation uses 64 filters each with kernel size 3 × 3. The low

quality feature maps thus obtained are then passed through SRB, which is used recursively

for 25 times, to obtain the feature maps e of the residual signal between the ground truth

and the JPEG decompressed image. The feature maps obtained from the final recursion of

SRB are then passed through a convolution operation to obtain the residue f. This convo-

lution operation uses one filter with kernel size 3× 3. Finally, the residual signal f is added

to the JPEG decompressed input image x to obtain the estimated high quality image y.

In order to design a non-recursive (fractal) high performance light-weight JPEG de-

blocking network, we first convert SRB to CRB by replacing each of the two convolutional

(a)

(b)

Figure 8.5: Architecture of the proposed non-recursive network. (a) Architecture of CRB.
(b) Overall architecture of the non-recursive network.
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layers in SRB by itself. The architecture of the resulting CRB is shown in Fig. 8.5 (a). It

is seen from this figure that CRB fuses the features from different hierarchies and levels

of abstractions and thus imparts an enhanced representational capability to the network us-

ing this block. The architecture of the non-recursive network using this compound residual

block, CRB, is shown in Fig. 8.5 (b). It is seen from this figure that the JPEG decompressed

image x is first passed through a convolution operation that extracts its feature maps g. This

convolution operation employs 64 filters each with kernel size 3×3. The low quality feature

maps thus obtained are then passed through 4 units of CRB, to obtain the feature maps h

of the residue k between the ground truth and the JPEG decompressed image. The feature

maps h resulting from the last CRB are passed through a convolution operation using one

filter with kernel size 3 × 3 yielding the residual signal k. This residual signal is finally

added to the JPEG decompressed input image x to obtain the estimated deblocked image

y. It needs to be pointed out that the use of the compound residual blocks provides the

proposed non-recursive network with three levels of residual connections. The first two

are short and middle range connections as furnished by the fractal structure of CRBs and

the third one establishes a long range skip connection in the network. These three types of

residual connections provide the network with Residual-in-Residual character that facili-

tates it in providing a highly rich set of high frequency features.

The two proposed networks are trained using the the sub-images of size 40 × 40 from

BSD300 dataset [23]. The `1 norm loss between the ground truth and estimated deblocked

samples is optimized using the stochastic gradient descent (SGD) optimizer to update the

weights of the network in each iteration. The learning rate of SGD is initialized by a value

of 0.1 and decreased by a factor of 10 after each 10 epochs. The network is trained for a

total of 40 epochs.
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Table 8.1: PSNR (SSIM) values resulting from applying DRMU and various
state-of-the-art methods to images of two benchmark datasets.

Dataset Quality Factor JPEG SA-DCT [83] ARCNN [76] TNRD [79] DnCNN [80] DRMU (ours) [100]

Classic5
10 27.82 (0.7595) 28.88 (0.8071) 29.03 (0.7929) 29.28 (0.7992) 29.40 (0.8026) 29.43 (0.8041)

20 30.12 (0.8344) 30.92 (0.8663) 31.15 (0.8517) 31.47 (0.8576) 31.63 (0.8610) 31.63 (0.8613)

Live1 [78]
10 27.77 (0.7730) 28.65 (0.8093) 28.96 (0.8076) 29.15 (0.8111) 29.19 (0.8123) 29.31 (0.8178)

20 30.07 (0.8512) 30.81 (0.8781) 31.29 (0.8733) 31.46 (0.8769) 31.59 (0.8802) 31.67 (0.8832)

8.4 Experiments

8.4.1 Experimental Results of DRMU

In this section, experiments are carried out to obtain the objective and subjective results

of DRMU in terms of PSNR and SSIM metrics. The results obtained from the proposed

DRMU are compared with that of the state-of-the-art methods for JPEG image deblocking

via deep neural networks.

The results of the proposed DRMU and those from using SA-DCT [83], ARCNN

[76], TNRD [79] and DnCNN [80] are given in Table 8.1. As seen from this table, DRMU

outperforms all the schemes, both in terms of the objective and subjective metrics. These

results demonstrate the effectiveness of using the maxout activation function for JPEG im-

age deblocking. By employing the maxout activation function, the competition between

the various features is carried out and the most useful features are selected for image de-

blocking. Moreover, the skip connections in the residual blocks allow the DRMU network

to become deeper without suffering from the gradient vanishing effect.

Fig. 8.6 shows the quality of the deblocked images obtained by applying the ARCNN

and the proposed DRMU schemes on the JPEG decompressed image of Barbara with the

quality factor of 10. It is obvious from Fig. 8.6 (c) and (d) that the visual quality of the pro-

posed scheme is superior to that from ARCNN. Also, the blocking artifact is considerably

reduced in Fig. 8.6 (d).
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Table 8.2: The performance of deeper DRMU, when the quality factor is 20.

Dataset 16 Residual Maxout Units 20 Residual Maxout Units
Classic5 31.60 (0.8607) 31.63 (0.8613)

Live1 31.64 (0.8827) 31.67 (0.8832)

Table 8.3: The performance of DRMU with larger receptive field, when the quality factor
is 20.

Dataset RF 3× 3 RF 5× 5

Classic5 31.63 (0.8613) 31.70 (0.8628)
Live1 31.67 (0.8832) 31.73 (0.8844)

Figure 8.6: The visual comparison between the proposed DRMU and ARCNN applied on
JPEG decompressed Barbara image with the quality factor of 10. (a) Ground truth. (b)
JPEG. (c) ARCNN. (d) DRMU.

Fig. 8.7 shows the restored Lenna image using DRMU in the cases of the quality

factors 10 and 20. It is seen from the images obtained by using the proposed scheme that it

is quite effective in removing the blocking artifacts in the case of the JPEG image decom-

pressed by either quality factor.

To study the effect of the network depth for the proposed scheme, the number of resid-

ual maxout units is changed from 20 to 16. The performance results of the network with

these two settings are given in Table 8.2. It is seen from this table that making the network

deeper improves the results further. However, this performance gain achieved by adding

more residual maxout units is only marginal.

Finally, the receptive fields (RF) of all convolutional layers (except the layer that is
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Figure 8.7: The visual demonstration of DRMU when is applied on the Lenna JPEG
decompressed image in the case of various quality factors. (a) Ground truth. (b)
Decompressed using JPEG with quality factor 10. (c) Deblocked using DRMU, when the
JPEG quality factor is 10. (d) Decompressed using JPEG with quality factor 20. (e)
Deblocked using DRMU, when the JPEG quality factor is 20. Please zoom in to see the
details.

employed for dimensionality expansion) are increased to 5×5. The performance of DRMU

with a larger receptive field is given in Table 8.3. As seen from this table, in the proposed

DRMU, the receptive field of 5 × 5 provides a higher performance than that provided by

the receptive field of 3× 3. The larger receptive fields extract more contextual information

from the the decompressed image and lead to an improved performance.

8.4.2 Experimental Results of the Deep Fractal and Non-Fractal De-

blocking Networks

In this section, we first perform ablation studies on SRB and CRB to show their effective-

ness for the task of JPEG image deblocking in the proposed recursive and non-recursive

networks. We then compare the performance and complexity of the two proposed networks

with those of the state-of-the-art deep JPEG deblocking networks.

In order to generate a rich set of high frequency residual features, the residual block

SRB has been used to extract the high frequency components of its input feature maps.

The branch containing the pooling layer and the point-wise convolution layer is the main

idea used in designing SRB. To investigate the effectiveness of SRB on the performance of
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Table 8.4: The performance of the recursive network (RN) and non-recursive network
(NN) using SRB and CRB and their variants.

Dataset RN with SRB Variant RN NN with SRB NN

Classic5 29.21 (0.7993) 29.28 (0.8010) 29.46 (0.8053) 29.56 (0.8088)

Live1 29.20 (0.8149) 29.23 (0.8157) 29.33 (0.8183) 29.42 (0.8208)

Table 8.5: The impact of the number of recursions on the performance of the recursive
network.

Dataset 5 Recursions 15 Recursions 25 Recursions
Classic5 28.89 (0.7880) 29.01 (0.7920) 29.28 (0.8010)

Live1 28.93 (0.8056) 29.04 (0.8091) 29.23 (0.8157)

the recursive network, we remove the branch containing the pooling layer and the point-

wise convolution layer from this block. We refer to this variant of SRB as SRB Variant.

The left side of Table 8.4 gives the performance results of the recursive network employing

SRB and its variant, when the network is applied to the JPEG decompressed images with

the QF value of 10. It is seen from the results of this table that removing the branch contain-

ing the average pooling layer and the point-wise convolution operation from SRB results

in degrading the network performance. In order to investigate the impact of the fractal

character of CRB on the performance of the non-recursive network, we remove this fractal

character from CRBs that converts CRBs into SRBs. The right side of Table 8.4 gives the

performance results of the proposed non-recursive network with CRBs and SRBs. It is

seen from these results that removing the fractal character of CRB results in a significant

performance degradation.

To investigate the impact of the number of recursions on the performance of the recur-

sive deblocking network, we first reduce the number of recursions from 25 to 15 and 5,

and then compare the performance of the recursive network with these three values of the

recursions in Table 8.5. It is seen from this table that as the number of recursions reduces,

the network performance deteriorates.
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Table 8.6: PSNR and SSIM results obtained by using the proposed recursive and
non-recursive networks and the state-of-the-art networks for deblocking of JPEG
decompressed images. The red values are the bests in comparison.

Dataset Quality Factor JPEG ARCNN [76] TNRD [79] DCSC [82] Proposed [94] DnCNN [80] LPIO [81] DRMU [100] Proposed [94]

Classic5
10 27.82 (0.7595) 29.03 (0.7929) 29.28 (0.7992) 29.25 (0.8030) 29.28 (0.8010) 29.40 (0.8030) 29.35 (0.8010) 29.43 (0.8041) 29.56 (0.8088)

20 30.12 (0.8344) 31.15 (0.8517) 31.47 (0.8576) 31.43 (0.8600) 31.41(0.8578) 31.63 (0.8610) 31.58 (0.8560) 31.63 (0.8613) 31.78(0.8642)

Live1 [78]
10 27.77 (0.7730) 28.96 (0.8076) 29.15 (0.8111) 29.17 (0.8150) 29.23 (0.8157) 29.19 (0.8120) 29.17 (0.8110) 29.31 (0.8178) 29.42 (0.8208)

20 30.07 (0.8512) 31.29 (0.8733) 31.46 (0.8769) 31.48 (0.8800) 31.51 (0.8803) 31.59 (0.8800) 31.52 (0.8760) 31.67 (0.8832) 31.80(0.8857)

Number of Parameters - 106K 21K 94K 91K 737K 1394K 761K 728K

Figure 8.8: Visual quality of the Lighthouse images from LIVE 1 dataset deblocked by
applying the proposed recursive and non-recursive networks. (a) Ground truth. (b) JPEG
image with QF 10. (c) Image obtained from the recursive network. (d) Image obtained
from the non-recursive network.

The proposed recursive deblocking network is designed to yield a good performance

with a very small number of parameters. Hence, its performance is compared with the ultra

light-weight state-of-the-art networks, in which the number of parameters employed is less

than 110K. On the other hand, the proposed non-recursive deblocking network is designed

to provide a superior performance with a modest number of parameters. Hence, its perfor-

mance is compered with the state-of-the-art networks with the number of parameters less

than 1.5M. The performance results and the number of parameters of these two types of

206



networks are given, respectively, in the left and right sides of Table 8.6. It is seen from

these results that both of the proposed deblocking networks provide the best performance

results compared to the respective state-of-the-art networks.

Fig. 8.8 shows the visual quality of the deblocked images obtained by applying the pro-

posed recursive and non-recursive networks on the Lighthouse image from LIVE1 dataset,

when QF is 10. It is seen from this figure that both the recursive and non-recursive proposed

networks successfully reduce the JPEG compression artifacts. However, as expected, the

deblocked image obtained from the proposed non-recursive network has more similarity to

the ground truth in comparison to the image deblocked by the proposed recursive network.

8.5 Conclusion

In this chapter, we have developed two deep light-weight convolutional neural networks

for the task of JPEG image deblocking. These two networks use, respectively, maxout

action units and fractal neural networks, in their networks architectures. Based on the

experiments carried out in this chapter, it has been shown that both the ideas of employing

maxout activation units and fractal neural networks are indeed helpful in enhancing the

JPEG image deblocking performance.
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Chapter 9

Conclusion

9.1 Concluding Remarks

In many real-life applications, such as medical imaging, intelligent transportation systems

and classifiers [91], the acquired images lack high quality due to various types of degrada-

tions associated with image capturing devices and require improvement in their quality. In

recent years, the design of deep neural networks has emerged to be a very promising tool

for image restoration. However, the use of deep neural networks using a large number of

parameters to provide the desired accuracy for these applications is not practical in view of

their excessive memory and power consumptions. Hence, the design of image restoration

convolutional neural networks that employ small number of parameters and yet provide

high accuracy is very crucial in many real-life applications especially mobile applications.

As the richness of the feature maps produced by a deep network has a direct impact on

its performance, the objective of the thesis has been to develop different light-weight im-

age restoration networks that are capable of generating rich sets of feature maps by using

various kinds of prior information about the quality of degradation operations associated

with the image capturing devices. In this thesis, three specific degradation models, associ-

ated with bicubic downsampling, Gaussian blurring coupled with downsampling and JPEG
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compression blocking artifacts, have been considered and suitable prior information associ-

ated with these three degradation models have been used for developing deep light-weight

image restoration networks.

In Chapters 3, 4, 5 and 6 of this thesis, we have developed several image super reso-

lution networks to enhance the quality of images degraded by the bicubic downsampling

operation of the image capturing devices, using the various prior information about this op-

eration. Specifically, three different prior information, namely, multi-scale feature genera-

tion, guided feature generation and efficient feature fusion have been used for developing

light-weight image super resolution networks.

In Chapter 7, deep networks for improving the quality of images degraded by the Gaus-

sian blurring followed by downsampling, have been proposed. Specifically, the blurred

version of the high-quality images has been used in a global residual learning as the prior

information.

In Chapter 8, deep networks for suppressing the JPEG blocking artifacts of the decom-

pressed images have been designed. Specifically, two prior information, namely, robust

feature generation and use of the high-frequency components have been used for designing

these deep image restoration networks.

The results of the extensive experiments have shown the effectiveness of all the deep

light-weight image restoration networks proposed in this thesis.

9.2 Suggestions for Future Investigations

In this thesis, different networks have been developed for restoring images degraded by the

processes inherited in the capturing devices. The design of all these networks is based on

the supervised learning strategies. However, the design of deep networks using the super-

vised learning strategies has the drawback of requiring large number of training samples

and the network design cannot handle unknown image degradation processes. In future,
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the design strategies developed in this thesis can be further investigated so that they can be

used in an unsupervised training environment.
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