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Abstract 

Decomposition Approaches for Building Design Optimization 

Yin Li, Ph.D 

Concordia University, 2021 

Building performance simulation can be integrated with optimization to achieve high-performance 

building design objectives such as low carbon emission and cost-effectiveness by holistically 

considering design variables across different disciplines. However, the complexity of the design 

problem increases greatly with increasing dimensionality. In some cases, solving high-dimension 

problems is not technically feasible nor time-efficient. Decomposition is one way to reduce the 

complexity and dimensionality of optimization problems. However, the decomposed optimization 

might achieve local optimum. Therefore, deploying appropriate decomposition strategies to 

achieve global optimum is paramount. This study investigates the deployment of hierarchical and 

parallel decomposition for building design optimization problems to ensure identification of global 

optimum. The feasibility of combining sensitivity analysis and decomposition is also explored. At 

the end of this study, some recommendations are given to help select an appropriate approach in 

practice.  

First, this thesis proposes a hierarchical decomposition. Hierarchical decomposition divides an 

optimization problem into several interconnected subproblems solved sequentially. The proposed 

approach is applied to the multi-objective optimization problem that minimizes buildings' operating 

costs and carbon emissions. The results show that the hierarchical decomposition approach can 

reduce the number of simulations while achieving global optimums. 



 

Second, this thesis proposes a parallel decomposition. Parallel decomposition divides the original 

problem into several smaller subproblems to be solved separately, and potentially, concurrently. 

The proposed parallel decomposition approach is applied to solve the single-objective optimization 

problems of a benchmark function and a low-rise office building. The results show that the 

proposed approach finds the global optimum and takes less computation time than optimization 

without decomposition.  

Third, this thesis explores the feasibility of combining sensitivity analysis with decomposition for 

dimensionality reduction. The efficiency and accuracy of different methods are compared through 

three case studies.  

The proposed hierarchical and parallel decomposition approaches can be applied individually or 

combined into a hybrid decomposition approach. This thesis concludes with some 

recommendations to help choose a decomposition approach to solve building design optimization 

problems. 
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Chapter 1.  Introduction 

1.1 Building design optimization 

Building design is rapidly transforming into an age of design automation where optimal design 

solutions can be identified from tens of thousands of computer-generated designs. The new 

capability opens up design opportunities for the architects and engineers but, at the same time, 

incurs high computational costs. 

Building performance simulation software are used to simulate and predict future building 

performance during the design phase. Simulation coupled with optimization can help identify 

designs that achieve lowest energy consumption, operating carbon emissions and cost depending 

on the objective function. Some programs have integrated simulation with optimization, such as 

Building Energy Optimization (BEopt), Design Builder, or ESBO. In addition, some other 

simulation programs such as EnergyPlus and TRANSYS can be combined with the optimization 

platform such as GenOpt, Matlab, or ModeFRONTIER to perform the simulation-based 

optimization.  

The design variables of building design optimization problems are mainly discrete, making these 

problems combinatorial optimization problems. An example is shown in Figure 1.1. In this example, 

four design combinations consist of two types of windows and two types of roofs. The two 

optimization objectives are to minimize operating costs and carbon emissions. The optimal 

solutions are highlighted in the figure referred to as Pareto designs, which can not be improved 

without degrading the other designs (Luc, 2008). The outputs can be plotted for decision-making 

when more variables are considered, as shown in Figure 1.2. The Pareto optimal solutions are the 
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red points in this figure. The final decision is usually selected from the Paret front through multi-

attribute decision-making (Li and Lee, 2018). 

 

Genetic Algorithms are one of the most used methods to solve building design optimization 

problems (Nguyen et al., 2014). This type of algorithm uses randomized searching techniques 

derived from the evolutionary law of the biological world (the genetic mechanism of the survival 

of the fittest) (Someya & Yamamura, 2017). Genetic Algorithms do not require the objective 

functions to be derivative and continuous. Furthermore, it has inherent hidden parallelism and the 

Figure 1.2 Illustration of Pareto front in optimization results 

Figure 1.1 An example of building design optimization 
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ability of global optimization, and it uses the probabilistic optimization method, which can 

automatically guide the optimization adaptively adjust the search direction without determining 

rules (Caldas & Norford, 2002). These features match the requirements of building design 

optimization problems. However, the values chosen for the cross rate and mutation rate seriously 

affect the quality of the solution, and most of these values are currently selected by experience. 

Moreover, if the dimension of the optimization problem is high, the genetic algorithm converges 

to the local optimum prematurely.  

With the development of optimization and simulation, different design methodologies have 

emerged to achieve higher performance, such as generative design, multidisciplinary integrated 

design, and robust design based on scenario exploration. Generative design refers to a process that 

utilizes an optimization algorithm with the simulation to automatically generate design results, 

which can help designers automate parts of the design process (Singh and Gu, 2012). The 

generative design encourages the architect and engineer to change from the traditional preliminary 

trial design and further explore the building performance. Another method using optimization and 

simulation is multidisciplinary integrated design (Gerber et al., 2014). Building is a complex 

system involving multiple disciplines to jointly complete the design of a project: architecture, 

structural, electrical, and mechanical engineering. Considering variables from different disciplines 

can explore higher building performance than the separated design process (Li and Lee, 2019). 

There are also studies using optimization and simulation for the robust design considering the 

uncertainty in scenario (Kotireddy et al., 2019) ( Li et al., 2019). This type of uncertainty is referred 

to as deep uncertainty that the experts cannot agree on the probability distribution, or the probability 

distribution is not available (Marchau et al., 2019). Therefore, the optimization needs to be repeated 

for different scenarios to get a robust design (Li et al., 2021). 
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Although these applications of optimization and simulation can help building design achieve high 

performance, they also bring challenges. Since more variables are considered for optimization, the 

complexity of the problem increases, which leads to high-dimensional problems. In some cases, 

solving high-dimensional problems is neither technically feasible nor efficient. Therefore, 

dimensionality reduction strategies are required to greatly ease the optimization difficulty (Feng et 

al., 2019).  

1.2 Problem decomposition 

Decomposition is one way to deal with high-dimensional problems (Meselhi et al., 2022). 

Decomposition has been applied to problems such as structural design optimization, mechanical 

system optimization, and traffic system optimization. For example, Sobieszczanski et al. (1985) 

proposed a structural optimization by multi-level decomposition, separating the structural element 

optimization subproblems from the assembled structural optimization problem. Mínguez and 

Castillo (2009) applied decomposition on four types of reliability-based optimization problems in 

engineering works. Mesbah et al. (2011) proposed a methodology to optimize the mathematical 

model of transit priority using decomposition. In general, decomposition reported in the literature 

can be categorized into three types: product decomposition, process decomposition, and problem 

decomposition (Kusiak and Larson, 1995).   

The product decomposition partitions a product based on physical components (Yoshimura et al., 

2009). Product decomposition allows standardization, interchangeability, or a capture of the 

product structure. Geyer (2009) proposed a decomposition method by the component scheme and 

applied it to optimize a frame-based hall design. The process decomposition applies to problems 

involving the flow of elements or information, such as electrical networks or the design process 

itself (Kusiak and Wang, 1993). 
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The problem decomposition turns the original optimization problem into a vertical, horizontal, or 

hybrid structure depending on the relationship between the subproblems (Haftka and Gürdal, 2012). 

The vertical structure results from the hierarchical decomposition, which divides the problem into 

several levels, and each level has its own objectives and constraints, as shown in Figure 1.3 (A). 

The horizontal structure results from parallel decomposition, which divides the problem into 

several subproblems and optimizes them separately, as shown in Figure 1.3 (B). These two 

approaches can be combined as a hybrid one, as shown in Figure 1.3 (C). 

Though problem decomposition can reduce dimensionality and save computation time of 

optimization problem, the optimization after decomposition might achieve local optimum (Floudas 

and Aggarwal, 1990). For example, the original problem is to minimize the objective function Q(X, 

Y) = X+Y, as shown in Figure 1.4. The hierarchical decomposition divides this problem into two 

levels, and the first-level optimization is to minimize the objective function P (X, Y) =X/Y. The 

optimal solution of the first-level optimization is X=1, Y=2. However, the optimal solution of the 

original problem is X=1, Y=1, which can achieve the global optimum Q = 2. This global optimal 

Figure 1.3 Different types of problem decomposition 
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solution is excluded in the first-level optimization, which leads to the local optimum Q = 3. 

Another example is shown in Figure 1.5 to demonstrate when the parallel decomposition achieves 

the local optimum. When the two variables X and Y are separated for optimization, each variable 

is optimized while the other is set as defaults. It is assumed that the default values of variables X 

and Y are -4 and 2. Therefore, the optimal solutions for the two subproblems are X = -4 and Y = 

2, which leads to a local optimum P = -2. However, when the two variables are combined for 

optimization, the optimization can achieve the global optimum P = - 4 while X = 4 and Y = -1.  

Figure 1.5 Parallel decomposition achieving local optimum 

Figure 1.4 Hierarchical decomposition achieving local optimum 
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1.3 This work 

This research proposes the hierarchical and parallel decomposition approaches for building design 

optimization problems, reducing the computation time while achieving global optimum.  

Chapter 2 proposes the hierarchical decomposition, which divides the single-level optimization 

into multi-level optimization. In order to obtain the global optimum, the first-level optimization is 

required to keep the solutions of the original problem. It is proved in this study that this requirement 

is met if the original problem’s objective functions are the linear sum of the first-level 

optimization’s objective functions. Then, the proposed hierarchical decomposition is applied to the 

optimization problem minimizing the operating costs and carbon emissions. After decomposition, 

the first-level optimization minimizes energy consumption, while the second-level optimization 

minimizes operating costs and carbon emissions. A four-storey residential building is used as a 

case study to demonstrate the proposed approach. 

Chapter 3 proposes the parallel decomposition, which divides the original problem into several 

subproblems and optimizes them separately. The parallel decomposition adopts the “divide-and-

conquer” strategy, which focuses on the interaction between variables. The proposed parallel 

decomposition uses a dual-criteria variable grouping method to ensure the solutions of each 

subproblem are the same as the global optimal solutions. This approach can decompose the 

variables with strong interactions as long as the interactions do not impact the optimal solution of 

one variable. Regression-based sensitivity analysis and interaction plots are used to assess if the 

variables satisfy the criteria. A benchmark and low-rise office building are selected as case studies 

to demonstrate the proposed approach.  

Chapter 4 evaluates the performance of the sensitivity analysis method used in Chapter 3 for both 

variable screening and grouping. The sensitivity analysis quantifies the interaction of variables for 
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variable grouping in parallel decomposition. Another common use of sensitivity analysis for 

dimensionality reduction is to evaluate the main effect of variables and exclude unimportant 

variables. Three case studies are used to evaluate if the proposed sensitivity analysis method is 

capable of variable screening and grouping.  

Chapter 5 summarizes this thesis and also gives some recommendations to help select an 

appropriate decomposition approach in practice.  

The contributions of this thesis include:  

• The relationships among subproblems in building design optimization problems are 

analyzed and classified. The classification supports informed decisions in identifying the 

appropriate hierarchical decomposition approach. 

• A hierarchical decomposition approach is proposed to avoid the local optimal solutions 

while saving the computation time. The feasibility of the proposed approach is 

demonstrated by a building operating cost and carbon emission minimization problem.  

• Introduce the concept of parallel processing in integrated building design. 

• Propose suitable variable grouping criteria for building design optimization problems to 

separate variables with strong interactions. 

• Propose a two-criteria parallel decomposition approach to reduce the computation cost 

while achieving global optimum. 

• Suggest the solving sequence of the subproblems to increase the chance to achieve global 

optimum. 
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• Propose to use the regression-based sensitivity analysis with design resolution V for both 

variable screening and grouping to reduce the dimension of building design optimization 

problems. 
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Chapter 2.  A Hierarchical Decomposition Approach for Building Design 

Optimization 

Hierarchical decomposition transfers single-level optimization into multi-level optimization. This 

chapter reviews different types of hierarchical decomposition approaches based on the relationship 

between the subproblems. A hierarchical decomposition approach is proposed to solve the 

optimization problem minimizing the operating costs and carbon emissions under different 

scenarios. A mid-rise residential building is used as a case study. The results show that the proposed 

approach can achieve the global optimum as the optimization without decomposition while taking 

less computation time. 

 

This chapter is published in Journal of Building Engineering, Volume 44, 103272, Li, Y., Bonyadi, 

N., Papakyriakou, A., & Lee, B. (2021). “A hierarchical decomposition approach for multi-level 

building design optimization.”, © Elsevier Ltd, 2021       

 

Nomenclature                                         

Symbol       Description 

BIM Building Information Modeling 

DE Design Explorer 

𝐸𝑅𝑖 The emission factor of the ith energy source 

𝑓 𝑐𝑜𝑠𝑡(𝑋) The operating cost 

𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑋) The operating carbon emission 
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𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)(𝑋) The energy consumption due to source type i 

F(X) The objective functions of the second-level optimization 

G(X) The objective functions of the second-level optimization 

GA Genetic Algorithm 

Hi(X) The objective functions of the first-level optimization 

HOC Hierarchical Overlapping Coordination  

MOGA Multi-Objective Genetic Algorithm 

MPC Model Predictive Control 

𝑃𝑟𝑖𝑐𝑒𝑖 The unit price of the ith energy resource 

Rn The n-tuples of real numbers 

WWR Window to wall ratio 

X= (x1, x2, … xn) The design variable vector 

xn The nth design variable 

XR The solutions of relaxation of the original problem 

 

2.1 Introduction 

2.1.1 Background 

Building performance simulation and optimization tools enable building designers to search for the 

optimal solutions from an ocean of feasible designs, where the combinations of design variables 

are formed based on the defined set of constraints. However, the scale of the optimization problem 

becomes larger as the number of design variables increases in proportion to the number of possible 

energy-efficient measures implemented in the building design. For example, the search space of 

ten variables with ten levels per variable will compose 1010 = 10,000,000,000 simulations. The 

high-dimensional problem is often challenging to solve due to a large number of calculations. 

Hierarchical decomposition could reduce the scale of the problem by decomposing an optimization 
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problem into two or more subproblems. After decomposition, each subproblem has its own 

objectives and constraints (Frigerio et al., 2018).  Hierarchical decomposition can make use of the 

existing hierarchy of the model and has been applied to reduce the scale of different building design 

problems (Hamdy et al., 2013) (Ascione et al., 2016) (Ganjehlou et al., 2020). Depending on the 

relationships between the subproblems, different integration modes are used to combine partial 

solutions to obtain the final solution of the original problem (Chaieb et al., 2015). 

2.1.2 Previous work 

The basic relationships between two hierarchical subproblems in the building design problem can 

be classified into three types: (1) Sequential, (2) Coupled, and (3) Nested (Anandalingam and 

Friesz, 1992). They are summarized and represented in Figure 2.1. 

 

Figure 2.1 The basic hierarchical relationships between two subproblems 

2.1.2.1 Sequential relationship 

Figure 2.1 (a) shows the sequential relationship between the two subproblems with different 

variables and objectives. In this configuration, the obtained top level optimal designs impact the 

solutions on the lower level, but the lower level does not affect the results on the top level. The 

optimal solutions of the top-level subproblem are passed to the lower-level for the final results.  
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Hamdy et al. (2013) applied three stages of optimization to find the cost-optimal and Nearly Zero-

Energy performance building solutions. The design variables included building envelope and heat-

recovery units for the first stage, optimizing the present worth and space heating energy demand. 

In the second stage, heating and cooling systems were combined with the solutions obtained from 

the first stage, and their viability was assessed based on the primary energy consumption and the 

life cycle cost of the optimal combinations. In the last stage, thermal and photovoltaic solar energy 

systems were added as supplementary systems for heating and electricity production to improve 

financial and environmental viability of building envelope and HVAC system designs. The authors 

have concluded that their methodology has reduced the exploration effort and lead to more 

informative and transparent analysis. He et al. (2015) developed a method for two-level 

optimization of domestic building stock refurbishment. In the first level, the objective functions 

were the cost and energy consumption for an individual building while in the second level, those 

optimal designs were used to obtain the minimum cost and energy consumption for the building 

stock, including 759 houses. It was assumed that those houses were independent (without 

considering a community-shared heating system). Therefore, the results obtained from the second 

stage did not affect the first-level solutions. Ascione et al. (2017) proposed a multi-stage 

optimization framework to identify robust cost-optimal energy retrofit solutions and to assess their 

resilience to global warming. The objective functions were thermal energy demands for space 

heating and cooling in the first stage. The optimization was performed for four global warming 

scenarios, and four Pareto fronts were obtained accordingly. In the second stage, the objective 

functions were the global cost and primary energy consumption. Three macro-economic scenarios 

were considered. Finally, decision-making was performed to find robust retrofit designs 

considering the uncertainties in the environmental and economic scenarios.  
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As can be inferred from the review, sequential decomposition is applied to problems that can be 

solved in multiple stages in which the second stage variables do not impact the results of the first 

stage.  The advantage of the sequential type of decomposition is that it can reduce the scale of the 

original problem into several smaller scale subproblems. Li and Wang (2019) reviewed the existing 

multi-stage design optimization methods optimizing the building envelope and energy system 

sequentially and concluded that these studies might not achieve global optimal solutions due to the 

interactions between the two subproblems. This issue can lead to the local optimal solutions of the 

original problem. Therefore, the sequential decomposition should be applied to studies with one-

direction relationships.  

2.1.2.2 Coupled relationship 

In this configuration, the two subproblems are coupled, as shown in Figure 2.1 (b). Trcka (2008) 

introduced the strong and loose coupling in building systems and performed different co-simulation 

strategies for performance prediction of innovative integrated HVAC systems in buildings. In this 

approach, different aspects of a building can be coupled externally and solved while exchanging 

data during run-time bi-directionally. For instance, ESP-r and EnergyPlus can be used to solve 

building model(s) while TRNSYS solves the HVAC system model(s). Chen et al. (2020) proposed 

a cooperative distributive model predictive control (MPC) based on hierarchy decomposition. For 

this purpose, it was suggested that sub-systems with strong coupling should be grouped into the 

same sub-systems. In contrast, sub-systems with weak coupling can be separated and solved 

sequentially while considering the interactions. On the other hand, to minimize the communication 

burden between sub-systems, only intra-layer interactions were considered. Killian et al. (2014) 

introduced a hierarchical MPC concept for decoupled building heating control. The first 

subproblem was to optimize the user comfort, and the second subproblem was to minimize the 
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costs of the building. Although this hierarchical MPC only found the local optima, the 

implementation effort was significantly reduced. Rysanek and Choudhary (2012) decoupled the 

whole-building simulation process into three sub-models to find the optimal low-carbon and low-

energy building refurbishment options. The first sub-model only considered the occupant service 

demand including the internal loads technologies. The second building energy model estimated the 

end-use building energy demand. In the last sub-model, the energy supply system model estimated 

the primary energy consumption. In this approach, the results obtained from each model were used 

as inputs for the next sub-model. Tian et al. (2018) proposed a weak decoupling method for 

distributed energy systems optimization problem based on the graph and matrix theory. A 

combined cooling, heating, and power system consisting of a power generation unit, an absorption 

chiller, a storage tank, and a ground source heat pump were selected as a case study.  

It can be inferred from the literature that the decomposition for subproblems with a coupled 

relationship mainly involves the co-simulation of multiple models. This is because the whole 

building design process usually uses separate optimization algorithms and simulation models 

(Rysanek and Choudhary, 2012). Although a global optimum is not guaranteed, decomposing the 

complex coupled sub-systems is very attractive, especially for building control applications and 

operation (Killian et al., 2014) 

2.1.2.3 Nested relationship 

If one subproblem is nested inside another subproblem, the outer level optimization’s objectives 

and constraints depend not only on the external level variables but also on the optimal solutions of 

the inner level optimization, which is impacted by the outer level optimization. This configuration 

is shown in Figure 2.1 (c). Such optimization usually is referred to as bi-level optimization (Sinha 
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et al., 2017). Wen and Hsu (1991), Vicente and Calamai (1994) , and Colson et al. (2008) have 

reviewed the algorithms and applications of bi-level optimization. 

This method has been widely applied to building design problems with different objectives and 

characteristics. For instance, Barg et al. (2015) analyzed and compared the performance of three 

single-level optimization algorithms and one bi-level optimization algorithm considering the 

building envelope variables. The single-level optimization studies included two genetic algorithms 

and the gradient-based design explorer (DE) algorithm. The bi-level optimization used the DE on 

continuous variables such as shading elements and roof insulation. This inner loop was nested 

within the outer level, which evaluated the discrete variables of wall and window types using GA 

(Genetic Algorithm). The solution quality and computational efficiency were considered as 

performance metrics. The results showed that all the methods satisfied the efficiency metrics 

defined in this study. However, the bi-level method used in this study does not outperform the other 

methods due to the slow convergence of the DE and the number of iterations required for the outer 

GA loop.  

Another common application of bi-level optimization is to solve simultaneous design and operation 

problems. For example, Evins (2016) used a single objective optimization of operational control 

nested within a multi-objective energy system optimization to minimize an energy center's capital 

costs and carbon emissions. The energy demands were pre-calculated using simulation. Moreover, 

Evins (2016) extended this bi-level optimization into three-level by replacing the pre-calculated 

energy demand with simulation optimization using EnergyPlus.  

2.1.2.4 Other types of decomposition approaches 

The previous sections summarize the common relationships and approaches to decompose the 

optimization problems. According to Engau (2007), there are other types of approaches that can be 
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applied based on the coordination between the subproblems. In this type of approach, all 

subproblems are solved independently, and the solutions are coordinated in a master problem that 

achieves an overall optimal solution. Analytic target cascading is a multidisciplinary hierarchical 

optimization method that systematically distributes desired top-down performance targets to 

appropriate lower-level performance values (Choudhary et al., 2005). The characteristics of this 

method are: (1) target cascading, the parent system sets the target for the sub-system and passes 

the target to the sub-system; (2) each sub-system has an analysis module to calculate the 

corresponding sub-system; (3) it solves the problem of consistency between sub-systems by 

adjusting the deviation between sub-systems. In the collaborative stage, each sub-system is 

temporarily independently optimized. The optimization objective is to minimize the difference 

between the design optimization result of the sub-system and the target provided by the upper-level 

system optimization. The inconsistency of the optimization results of each sub-system design is 

coordinated by the upper-level system optimization (Kim et al., 2003). Choudhary et al. Choudhary 

et al. (2005) applied the analytic target cascading to perform the multi-level optimization for the 

thermal and HVAC design of a building.  Hierarchical Overlapping Coordination (HOC) is another 

coordination-based hierarchical decomposition approach . This approach simultaneously uses two 

or more problem decomposition strategies, and each of them is associated with different partitions 

of the design variables and constraints. Thus, coordination is achieved by the exchange of 

information between results from different decompositions. However, this method's efficiency is 

very sensitive to the ranges of input variables and decomposition strategy (Park er al., 2001). Li 

and Wang (2019) proposed a coordinated multi-stage optimization to optimize the building 

envelope and energy system separately. The results showed that the coordinated multi-stage 

optimization achieved the global optimum while the uncoordinated one achieved the local optimum. 

However, the computation time of coordinated multi-stage optimization is 3-4 times of the 
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uncoordinated multi-stage optimization. Therefore, there is a need to investigate a decomposition 

which can achieve global optimum efficiently. 

This study focuses on building performance simulation-based optimization. The building energy 

simulation processes' workflow inherits a hierarchical structure from load to economic and 

environmental analyses, as shown in Figure 2.2. This workflow has a sequential structure since 

there is no data feedback between the steps (ASHRAE handbook, 2017). The outputs of each step 

can be selected as the optimization objectives for subproblems. Therefore, this study focuses on 

the sequential relationship decomposition.  

 

Figure 2.2 The hierarchy of building energy simulation program workflow (ASHRAE handbook, 

2017) 

Though hierarchical decomposition can reduce the scale of the optimization problem, this approach 

may result in local optimal solutions to the original optimization problem. This issue has received 

much attention in the studies of multi-level programming using mathematical approaches (Ho and 

Parpas, 2016) (Yue et al., 2019) (Sun et al., 2021). However, these approaches are not suitable for 
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building engineering problems using simulation. Depending on the mathematical model of the 

problem, decomposition approaches often use matrix decomposition or calculus-based methods on 

objective functions and constraints to reduce the dimensionality (Conejo et al., 2006). Moreover, 

the outputs functions of the simulation program are usually implicit and unknown to the user (Shan 

and Wang, 2010). Furthermore, some design variables are discrete (e.g., types of windows), and 

the mathematic schemes are likely numerical rather than analytical (Kheiri, 2018). These features 

of the building design problem make the studies in mathematical optimization decomposition not 

applicable.  

Other than the approaches mentioned above, relaxation-based decomposition methods can avoid 

the local optimal solutions (Noor-E-Alam and Doucette, 2012). In an example, Geoffrion (1971) 

explained the definition of relaxation. A relaxation of the minimization problem 𝑧 =

𝑚𝑖𝑛〈𝑓(𝑥): 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛〉 leads to another minimization problem 𝑧𝑅 = 𝑚𝑖𝑛〈𝑓(𝑥): 𝑥 ∈ 𝑋𝑅 ⊆ 𝑅𝑛〉. 

The relaxation of a problem has an important property: 𝑋 ⊆ 𝑋𝑅 . This property means that the 

original problem's solutions are a subset of the relaxed problem's solutions (Geoffrion, 1971). In 

the relaxation-based decomposition, the first subproblem is suggested to be a relaxation of the 

original problem. This can be done by relaxing the objectives or the constraint of optimization. In 

such a case, the solutions of the first subproblem must include the solutions of the original problem. 

The second subproblem has the same objectives as the original problem, but the search space is 

reduced to the results of the first subproblem (Noor-E-Alam and Doucette, 2012). 

2.1.3 This work 

This research aims to propose a hierarchical decomposition approach that can reduce the 

computation time while avoiding the local optimal solutions of the original building design 

optimization problems. The major contributions of this paper are summarized as follows: 
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i. The relationships among subproblems in building design optimization problems are 

analyzed and classified. The classification supports informed decisions in identifying the 

appropriate decomposition approach. 

ii. A hierarchical decomposition approach based on the problem relaxation for building design 

optimization is proposed. The first subproblem is the relaxation of the original problem, 

which can transfer the original solutions to the second subproblem. This decomposition can 

avoid the local optimal solutions while saving the computation time. The feasibility of the 

proposed approach is demonstrated by a building operating costs and carbon emissions 

minimization problem.  

iii. It is identified in this study that the optimization problem minimizing the energy 

consumption is a relaxation of the optimization problem minimizing the operating costs and 

emissions. 

Section 2.2 introduces the proposed hierarchical decomposition, which addresses the local optimal 

solution issue during the decomposition. Section 2.3outlines the case study and the implementation 

of the proposed decomposition approach. Next, section 2.4 discusses the results of optimizations 

with and without decomposition and the adjustments for the limitations. Finally, section 2.5 

concludes this paper and outlines future work.  

2.2 Methodology 

A general format of the proposed decomposition approach is given in this section. 

The original optimization problem is to minimize the objective functions 𝐹(𝑋) and 𝐺(𝑋)  as shown 

below: 

● Original optimization: Minimize 𝐹(𝑋) and 𝐺(𝑋).  
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Where X is the set of design variables. The optimization problem could be decomposed into two 

subproblems to be solved sequentially as below: 

● First-level optimization: Minimize 𝐻1(𝑋), 𝐻2(𝑋), …, 𝐻𝑛(𝑋). 

● Second-level optimization: Minimize 𝐹(𝑋) , 𝐺(𝑋). 

The functions 𝐻1(𝑋) , 𝐻2(𝑋) , …, 𝐻𝑛(𝑋) are used as the objective functions of the first-level 

optimization. The solution sets from first-level optimization form the search space of second-level 

optimization. The objective functions of the original optimization 𝐹(𝑋) and 𝐺(𝑋) become the 

second-level optimization's objective functions. 

As proved in Appendix 2.B, if 𝐹(𝑋) and 𝐺(𝑋) are the linear sums of  𝐻𝑖(𝑋), such as 𝐹 (𝑋) =

∑ 𝑎𝑖 × 𝐻𝑖(𝑋)𝑛
𝑖=1  and 𝐺 (𝑋) = ∑ 𝑏𝑖 × 𝐻𝑖(𝑋)𝑛

𝑖=1 , where 𝑎𝑖 and 𝑏𝑖 are constant coefficients, the first 

subproblem will be a relaxation of the original problem. Therefore, the results of the decomposed 

problem will be global optimal solutions of the original problem.  

An example shown in Figure 2.3 is given to illustrate the issue of the local optimal solutions during 

decomposition. In an optimization problem with two variables, the original objective is to minimize 

one output Z. This optimization problem is decomposed into two subproblems. The first-level 

optimization has two objective functions, which are F1 and F2. The second-level optimization 

objective function is Z as the original problem. 

If Z is represented as a linear sum of F1 and F2 such as Z1, the solutions of first-level optimization 

will include the global optimal solution, which is Z1=7. On the other hand, if the objective function 

is not the linear sum of F1 and F2, such as Z2, then the first-level optimization results in a local 

optimal solution, which is Z2=0. The global optimal solution Z2= -1.5 is eliminated after the first-

level optimization. 
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Figure 2.3 The illustration of the issue of the local optimal solutions during decomposition 

This study applies the proposed decomposition approach to the optimization problem minimizing 

the building's operating costs and carbon emissions. This optimization problem considers different 

economic and environmental scenarios. In this paper, the energy price is assumed to be fixed-rate 

and applied to the annual energy consumption. The emission is the product of energy consumption 

and emission factors. The greenhouse gas intensity factor is used for electricity, and a conversion 

factor is used for natural gas emissions to convert energy consumption into carbon emission 

equivalent. The greenhouse gas intensity factor is the emission per unit of electricity and depends 

on the grid's energy source composition (Millia and Lewis, 2013). The conversion factor represents 

the amount of carbon equivalent when natural gas is burned (Harris et al., 2011). Equations (2.1) 

and (2.2) determine the operating cost and carbon emission, respectively. 

𝑓 𝑐𝑜𝑠𝑡(𝑋) =  ∑ 𝑃𝑟𝑖𝑐𝑒𝑖𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝑋)

𝑛

𝑖=1

                                              (2.1) 



A Hierarchical Decomposition Approach for Building Design Optimization  

25 

 

𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑋) = ∑ 𝐸𝑅𝑖𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝑋) 

𝑛

𝑖=1

                                           (2.2) 

Where the 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)(𝑋) is the energy consumption due to source type i; X= (x1, x2, … xn) is the 

design variable vector; xn is the nth design variable; 𝑓 𝑐𝑜𝑠𝑡(𝑋) is the operating cost;  𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑋) is 

the operating carbon emission; 𝑃𝑟𝑖𝑐𝑒𝑖  is the unit price of the ith energy resource; 𝐸𝑅𝑖  is the 

emission factor of the i-th energy resource. Therefore, other than a single-level optimization 

minimizing the cost and emission, another optimization minimizing the energy consumption is 

done before the original optimization.  

When different energy price and emission factor scenarios are considered, the original optimization 

needs to be repeated for the different scenarios. However, after decomposition, the first-level 

energy consumption optimization is conducted only once, while the second-level cost and emission 

optimization is repeated. In this case, the second level can be solved easily since no simulation is 

involved. The relationship between the solutions of the two subproblems is illustrated in Figure 

2.4: the solutions of cost and emission optimization under all scenarios are the subsets of solutions 

of energy consumptions optimization.  

 

Figure 2.4 The relationship between the solutions of the first and second subproblems 
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2.3 Case study 

2.3.1 Building model 

A 4-story residential building shown in Figure 2.5 is selected to demonstrate the performance of 

the proposed decomposition strategy. The typical floor plan is shown in Figure 2.6. The total 

building footprint is 14.64 m x 15.84 m. The second to fourth floor consists of four apartment units. 

The two in the front have an area of 53.42 m2, and the two in the back have an area of 48.45 m2. 

The building's ground floor consists of two front units for retail and two back units for storage and 

maintenance applications. 

This baseline building is simulated by EnergyPlus 8.9 using a weather file for Montreal, Canada. 

The envelope values are based on ASHRAE 90.1 (2013). The HVAC system consists of a gas 

boiler with 90% efficiency for heating and an air conditioning system with an Energy Efficiency 

Ratio (EER) of 10.24 for cooling. The thermal gains from lighting are assumed to be 8 W/m2 for 

the apartment units, 7.1 W/m2 for the corridor areas, and 16 W/m2 for the retail areas. Electrical 

equipment is assumed to be 5.38 W/m2. The lighting values come from ASHRAE 90.1 (2013). The 

electrical values are taken from the National Energy Code of Canada for Buildings (2015). Two 

occupants are considered for each unit, and all internal gains (lighting, occupancy, and equipment) 

are put on schedules. There are three schedules considered, which are apartment, corridor, and 

retail. For each of these categories, there is an equipment/lighting schedule and occupancy schedule. 

The design variables of optimization are the RSI values of the walls and the roof, the U-value of 

the windows, the building's orientation, and the Window to Wall Ratio (WWR) on the south wall 

of the building. Table 2.1 displays the variables along with their values used for optimization. For 

this study, three cost and carbon emission scenarios are assumed, as shown in Table 2.2. The 
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operation cost includes the cost of electricity and natural gas in the ¢/kWh unit. The emission factor 

refers to the carbon emission ratios to electricity and natural gas in the kgCO2eq/kWh unit.    

 

Figure 2.5 The front and rear view of the 4-story residential building 

 

Figure 2.6 The typical floor plan of the 4-story residential building 
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Table 2.1 The design variables for optimization 

Variable  Value 

Building Orientation (0° represents North, 45° represents 

Northeast, and 90º represents East) 

RSI Value of Roof [m2K/W] (3, 4, 5) 

RSI Value of Wall [m2K/W] (2.5, 3, 3.5, 4) 

Window to wall ratio (South wall) (10%, 13%, 16%, 19%, 22%) 

U-Value Window [W/m2k] (1, 2, 3, 4) 

 

Table 2.2 Cost and emission factors applied to the three scenarios 

 Cost of 
Electricity  

Cost of Natural 
Gas 

Emission Factor 
of Electricity  

Emission Factor 
of Natural Gas 

Units [$/kWh] [$/kWh] [kgCO2eq/kWh] [kgCO2eq/kWh] 

Scenario 1 (S1) 0.05 0.05 0.60 0.30 

Scenario 2 (S2) 0.07 0.03 0.79 0.18 

Scenario 3 (S3) 0.10 0.01 1.00 0.10 

2.3.2 The hierarchical decomposition for the case study  

The original optimization problem is to minimize the operating cost and carbon emission as shown 

below: 

● Original optimization: Minimize Operating Costs and Carbon Emissions. 

This optimization problem is decomposed into two subproblems solved sequentially as below: 

● First level optimization: Minimize Annual Electricity Consumption and Annual Gas 

Consumption. 

● Second level optimization: Minimize Operating Costs and Carbon Emissions. 

The workflow of the original optimization problem is shown in Figure 2.7(a). After decomposition, 

the workflow is shown in Figure 2.7(b). The Multi-Objective Genetic Algorithm (MOGA) is 

chosen to generate the Pareto front for the original optimization in Figure 2.7(a) and the first-level 
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optimization in Figure 2.7(b). The optimization platform ModeFRONTIER is selected to perform 

the MOGA. In this case, EnergyPlus is run from the command line module of ModeFRONTIER.  

To set up this optimization, first, the range and levels of variables are defined. Next, the weather 

file, the idf file of the building model, and the batch file of Energyplus are imported as supporting 

files. Thirdly, the commands to run Energyplus are input in the Commend Line module of 

ModeFRONTIER. Then the design of experiment and optimization algorithm are set up. Finally, 

the template of the output file is imported, and the outputs to be optimized are defined. 

ModeFRONTIER is chosen because of its complete library of optimization algorithms, powerful 

pre-processing and post-processing functions, and visual programming tools. Furthermore, it 

provides seamless coupling with many third-party engineering programs, which can automate the 

simulation process. 

 

Figure 2.7 The workflow of optimizations (a) without and (b) with decomposition 
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For the second-level optimization, the operating costs and emissions of the solutions from the first-

level optimization are calculated by Equations (2.1) and (2.2), respectively. Next, the optimal 

solutions can be identified by the algorithm developed by Messac et al. (2003). This algorithm 

compares the results of one design with the other, and the governed one is deleted. The pseudo-

code of the algorithm is reprinted in Appendix 2.A for reference. The second-level optimization 

process is done in Excel in this study. 

2.4 Results and discussion 

The discussion of results has been divided into three subsections. First, in section 2.4.1, the 

calculation time of optimization with and without decomposition is discussed. Next, in section 

2.4.2, the quality of optimization results with and without decomposition is presented. Then, in 

section 2.4.3, the results of optimization with decomposition are compared with the results of a 

full-factorial experiment to validate the effectiveness of the proposed method. Finally, in section 

2.4.4, the limitation of the proposed approach is discussed. 

2.4.1 Computation time comparison 

For the optimization without decomposition, an initial search space of 30 configurations is first 

generated using Latin Hypercube Sampling (LHS) for each scenario optimization. As the 

optimization progresses through generations, MOGA will move to the more optimal search space. 

Deviation of the current search space from the previous one depends on the mutation setting, which 

must strike a balance between fast convergence and the consideration of all possibilities. The 

optimization is set to stop after 50 generations for each scenario.  

For the optimization with decomposition, the initial search space of 30 configurations is generated 

with Latin Hypercube Sampling (LHS), and the optimization is set to stop after 50 generations for 
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the first level energy consumption optimization. The optimal energy consumption results are 

processed using Equations (2.1) and (2.2) to get the operating cost and carbon s, respectively. The 

algorithm in Appendix 2.A is applied to the solutions of the first-level optimization to identify the 

Pareto front for the three scenarios.  

The comparison of computation time between optimization with and without decomposition is 

shown in Table 2.3. For the optimization without decomposition, the simulation-based 

optimization is conducted three times for the three scenarios. It takes 123, 126 and 206 simulation 

runs to find optimal solutions for scenarios 1, 2 and 3, respectively. Each simulation takes 61 

seconds. In total, the computation time is 7.84 hours. For the optimization with decomposition, the 

first-level optimization takes 285 simulation runs corresponding to 4.91 hours. For the second-level 

optimization, the optimal solutions are identified immediately for all three scenarios. 

As a summary, it can be observed that the proposed decomposition approach can reduce the amount 

of calculation for optimization of different scenarios: For optimization without decomposition, the 

simulation-based optimization needs to be repeated under different scenarios. For optimization 

with decomposition, only the first-level optimization uses simulation. The second-level 

optimization involves simple data processing to generate the optimal solutions for different 

scenarios without running simulations.   
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Table 2.3 The computation time comparison between optimization with and without 

decomposition 

Optimization 

without 

decomposition 

Simulation 

runs 

Computation 

time 

(Hours) 

Optimization 

with 

decomposition 

Simulation 

runs 

Computation 

time 

(Hours) 

Scenario 1 123 2.12 First level 

 

285 4.91 

Scenario 2 126 2.17 Second level 

(Scenario 1) 

0 0 

Scenario 3 206 3.55 Second level 

(Scenario 2) 

0 0 

Total 455 7.84 Second level 

(Scenario 3) 

0 0 

   Total 285 4.91 

 

2.4.2 Quality of optimization results. 

The objective space for the results of optimization without decomposition is shown in Figure 2.8. 

There are 6, 5, and 9 design solutions on the Pareto front for the three scenarios.  

 

Figure 2.8 The objective space for optimization without decomposition 
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For the optimization results with decomposition, there are 50 optimal solutions on the Pareto front 

for the first-level optimization, as shown in Figure 2.9. The electricity and gas consumptions of 

these 50 solutions are used to calculate the carbon emissions and operating costs by Equation (2.1) 

and (2.2) for the three scenarios. The second-level optimization identifies the optimal solutions for 

each scenario, as shown in Figure 2.10. Same as the optimization results without decomposition, 

there are 6, 5, and 9 design solutions on the Pareto front for the three scenarios. 

 

Figure 2.9 The objective space for the first-level optimization 
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Figure 2.10 The objective space for the second-level optimization 

To better compare the quality of results with and without decomposition, Table 2.4 shows the 

details of optimization results without decomposition. It can be found that the results of 

optimization with and without decomposition are the same. 

Table 2.4 The comparison of the optimal solutions of optimization with and without decomposition 

Optimal solution details for Scenario 1 

Design 

ID 

Orientation 

(º) 

RSI_roof 

(m2·K/W) 

 

RSI_wall 

(m2·K/W) 

Uwin 

(W/m2·K) 

WWR 

(%) 

Same for both 

approaches? 

1 0 5 4 1 10% Yes 

2 90 5 4 1 13% Yes 

3 0 5 4 1 13% Yes 

4 90 5 4 1 16% Yes 

5 90 5 4 1 19% Yes 

6 90 5 4 1 22% Yes 

Optimal solution details for Scenario 2 

Design 

ID 

Orientation 

(º) 

RSI_roof 

(m2·K/W) 

 

RSI_wall 

(m2·K/W) 

Uwin 

(W/m2·K) 

WWR 

(%) 

Same for both 

approaches? 
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1 0 5 4 1 10% Yes 

2 0 5 4 1 13% Yes 

3 90 5 4 1 16% Yes 

4 90 5 4 1 19% Yes 

5 90 5 4 1 22% Yes 

Optimal solution details for Scenario 3 

Design 

ID 

Orientation 

(º) 

RSI_roof 

(m2·K/W) 

 

RSI_wall 

(m2·K/W) 

Uwin 

(W/m2·K) 

WWR 

(%) 

Same for both 

approaches? 

1 0 5 4 1 10% Yes 

2 0 5 4 3 10% Yes 

3 0 5 4 2 10% Yes 

4 0 5 4 2 13% Yes 

5 0 5 4 1 13% Yes 

6 90 5 4 1 13% Yes 

7 90 5 4 1 16% Yes 

8 90 5 4 1 19% Yes 

9 90 5 4 1 22% Yes 

Remarks: Orientation is the building orientation, RSI_roof is the RSI value of the roof, RSI_wall 

is the RSI value of the wall, Uwin is the window's U-Value, WWR is the window to wall ratio in 

the south facade. 

This section demonstrates that the decomposed optimization can generate the same results as 

optimization without decomposition, using less computation.  

2.4.3 The validation of the proposed approach 

This section applies a full-factorial experiment to the three economic and environmental scenarios 

to validate optimization results with and without decomposition. As shown in Figure 2.11, the 

Pareto front results are identical between full-factorial experiment and the optimization results in 

Figures 2.8 and 2.10.  
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Figure 2.11 The full factorial experiments for the three scenarios. 

2.4.4 Approach adjustment for limitations 

The utility rate is assumed as an annual constant in this study. However, it can be flexible based on 

a time of use schedule. For example, the utility rate can be divided into three bands: off-peak, mid-

peak, and on-peak. In such a case, the original operating costs and emissions optimization problem 

can be decomposed as below: 

• First level optimization: Minimize Consumption(off-peak), Consumption(mid-peak), and 

Consumption(on-peak). 

• Second level optimization: Minimize Operating Costs and Carbon Emissions. 

However, when the utility rate structure is complex, the first-level energy consumption 

minimization will have many objectives. When the optimization objectives are more than four, the 
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problem is referred to as a many-objective optimization (Fleming et al., 2005). Li et al. (2018) 

reviewed and compared the state-of-the-art approaches this type of optimization problem. One 

possible approach is to perform a full-factorial design experiment suggested by Lee et al. (2016). 

The authors applied a full-factorial design space exploration on the design of industrial halls 

compared with optimization. The case study demonstrated the benefits of using full-factorial design 

considering three objectives.  

Therefore, other than applying the Genetic Algorithm for the first level optimization, the full-

factorial design can be applied for the first subproblem if the objectives are more than four. As an 

illustration, the full-factorial experiment is applied to the case study model. Figure 2.12 shows the 

results of objective spaces obtained from the full-factorial experiment. The Pareto solutions 

obtained from the full-factorial experiment are the same as those obtained from the first-level 

optimization in Figure 2.9.  

 

Figure 2.12 The objective spaces obtained from the full-factorial experiment for the first 

subproblem 
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2.5 Conclusion 

This research proposes a hierarchical decomposition for building design optimization. The 

proposed decomposition transforms the original problem into several subproblems to be solved 

sequentially. The first subproblem is a relaxation of the original problem to ensure the global 

optimal solutions of the original problem. It is identified in this study that the optimization problem 

minimizing the energy consumption is a relaxation of the optimization problem minimizing the 

operating costs and emissions.  

The building design optimization minimizing the operating costs and carbon emissions is used to 

demonstrate the approach. In the case study, the optimization with decomposition takes 285 

simulations, while optimization without decomposition takes 455 simulation runs. The results are 

identical between these two approaches. When more cost and emission scenarios are considered, 

the proposed approach can avoid repeating simulation-based optimization. 

There are some limitations using the proposed method, which can be investigated more in future 

research. This method is based on a fixed annual price, but it can also be adapted to accommodate 

a flexible price plan; if there are more objectives involved in the first-level optimization, the full-

factorial experiment could be used to replace the optimization algorithm.  

The essence of this proposed hierarchical decomposition is about problem relaxation. As future 

work, the proposed approach can be extended to consider the combination of building envelope 

and HVAC system design.  Moreover, the life cycle cost and total carbon emission of the building, 

including the embodied energy of materials, can be investigated. 
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Appendix 2.A Pseudo-code for Pareto filter algorithm (Messac et al., 2003). 

This algorithm identifies the Pareto solutions. 

Step 1. Initialize 

Initialize the algorithm indices and variables: i=0, j=0, k=1, and m=the number of generated 

solutions; m= f(mk), u
i is generic ith optimal objective. 

Step 2. Set i=1+1; j=0. 

Step 3. Eliminate non-global Pareto points by doing the following: j=j+1 

If i = j go to the beginning of step 3 

Else continue 

If ui ≠ uj and (ui - uj) ≥0, ∀s 

Then uj is not a global Pareto point. 

Go to Step 4 

Else if j = m 

Then ui is a global Pareto point 

pk =ui  

k=k+1 

Go to Step 4 

Else go to the beginning of step 3 

Step 4. If i ≠ j, go to Step 2, else end.    
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Appendix 2.B The proof of relaxation using Proof by Contradiction. 

Proof by Contradiction is used to prove that the optimization problem minimizing the energy 

consumption is a relaxation of the optimization problem minimizing the cost and emission. This 

statement can be described as that: if a design belongs to the Pareto front of cost and emissions 

optimization, it must belong to the Pareto front of the energy consumption optimization for any 

cost and emission scenario. 

Proof by Contradiction is a method of proof that establishes the truth by assuming that the opposite 

proposition is true at first. The opposite proposition is proved false when contradiction is found. 

Therefore, the original proposition is automatically proven true. The process of applying the Proof 

by Contradiction method to prove the statement can be described in the following steps: 

Step 1: The proposition is: If a design belongs to the Pareto front of cost and emissions optimization, 

it must belong to the Pareto front of the energy consumption optimization for any scenario of price 

and emission factor. 

Step 2: Assume the opposite proposition is true: There exists one design (designated as design A) 

that belongs to the Pareto front of the cost and emissions optimization but not the Pareto front of 

the energy consumption optimization. 

Step 3: Based on the assumption in Step 2, since this design A does not belong to the Pareto front 

of the energy consumption optimization, there must be one design (designated as design B) 

dominating design A, which means design B consumes less energy than A for every source.  

Step 4: Step 3 infers that design B will also have less operating cost and emission than design A, 

which conflicts with the assumption that design B belongs to the Pareto front of the cost and 

emissions optimization.  
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Step 5: Since the opposite proposition leads to confliction, the original proposition is true: if one 

design belongs to the Pareto front of the cost and emission optimization, it must also belong to the 

Pareto front of the energy consumption.  

Following the steps shown above, for the second step, it is assumed that one Design A belongs to 

the Pareto front of the cost and emission optimization in Figure 2.13 (b) but not the Pareto front of 

the energy consumption optimization Figure 2.13 (a).  

 

Figure 2.13 The illustration of step 2 and step 3 

For the third step, since design A is not on the Pareto front of energy consumption, one design 

(designated as design B) must dominate A, as shown in Equation (2.3) and Figure 2.13 (a). There 

could be more than two types of energy sources; however, in Figure 2.13, only two energy sources 

are used to demonstrate the idea. 

 𝑓 𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)(𝐵) < 𝑓 𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)(𝐴)  𝑖 = 1,2,3 …                                                    (2.3) 

For the fourth step, since the price and emission ratios are the same for all design alternatives, by 

Equation (2.3), it can be proved that the operating cost and carbon emissions of B dominate A for 

each type of energy source as shown in Equations (2.4) and (2.5). 
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𝑃𝑟𝑖𝑐𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) ∙ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝐵) < 𝑃𝑟𝑖𝑐𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) ∙ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝐴)                         (2.4) 

𝐸𝑅𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) ∙ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝐵) < 𝐸𝑅𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) ∙ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑖) (𝐴)                            (2.5) 

Then by Equations (2.1), (2.4) and (2.5), it can be proved that for the total operational cost and 

carbon emission, design B dominates design A, as shown in Equation (2.6) 

 𝑓 𝑐𝑜𝑠𝑡(𝐵) < 𝑓 𝑐𝑜𝑠𝑡(𝐴) 𝑎𝑛𝑑 𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝐵) < 𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝐴)                             (2.6) 

Since design B dominates A for operational cost and carbon emission, design A can does not belong 

to the Pareto front of cost and emission optimization. This conclusion is conflicting with the 

assumption in Step 2 that design A belongs to the Pareto front of cost and emission. This conflicting 

conclusion is shown in Figure 2.14. Therefore, this opposite proposition in Step 2 is false, which 

means the original proposition is ‘True’. This statement can be extended in a general format as 

shown in methodology. 

 

Figure 2.14 Illustration of confliction between assumption and conclusion 
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Chapter 3.  A Parallel Decomposition Approach for Building Design 

Optimization 

Parallel decomposition divides the original problem into several subproblems. The first step of 

parallel decomposition is variable grouping, which divides variables into several groups for the 

subproblems. In this chapter, the variable grouping criteria are proposed to make sure the solutions 

of each subproblem are also the global solution of the original problem. Sensitivity analysis and 

interaction plots are used to assess if the variables meet the criteria. Two case studies are used to 

demonstrate the proposed approach. The results show that the proposed approach can achieve the 

global optimum as the optimization without decomposition while taking less computation time. 

This chapter is submitted to the Journal of Building Engineering, Li, Y., Bonyadi, N., Lee, B. “A 

parallel decomposition approach for building design optimization.” (Dec 2021). It is currently 

under review. 

 

Nomenclature 

Symbol Description 

DepthOH Overhang depth on east and west walls 

DOE Design of Experiments 

FANOVA Functional Analysis of Variance 

GA Genetic Algorithm 
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LHS Latin Hypercube Sampling 

RWall RSI value of wall insulation 

RRoof RSI value of roof insulation 

SRC Standard Regression Coefficient 

UEW U value of windows on the east and west walls 

USouth U value of windows on the south wall 

WWREast Window to Wall ratio of the east wall 

WWRSouth Window to Wall ratio of the south wall 

WWRWest Window to Wall ratio of the west wall 

 

3.1 Introduction 

3.1.1 Background 

Traditionally, buildings are designed using a linear design process, where elements are defined and 

developed in a series of isolated processes. As a result, architects, contractors, and engineers deal 

with each building element separately, missing the opportunity to achieve higher performance. On 

the other hand, energy and environmental issues are becoming increasingly prominent, and higher 

requirements are placed on building performance. Therefore, it is recommended to use integrated 

design methods in building design to achieve these goals (Robinson, 2020).  

The integrated design requires the constructive cooperation of an interdisciplinary design team, 

including architects, engineers with different expertise, and other stakeholders from start to finish 

(Keeler and Vaidya, 2016). With the development of various simulation and optimization tools, 

integrated building design becomes technically feasible. However, this approach involves many 

design variables from different disciplines, which increases the dimensionality and complexity of 
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the problem (Hong et al., 2014). Moreover, if the assumptions or constraints change, the 

optimization results will be invalid, and the whole design process must be repeated. When the cost 

of time and resources are too high for the professionals, the stakeholders will lose interest in 

integrated design and higher performance (Leoto and Lizarralde, 2019). 

Problem decomposition that divides the original problem into smaller subproblems is one of the 

solutions to solve the large-scale complex problem (Kang et al., 2012). There are different types of 

problem decomposition. As shown in Figure 3.1 (A), the hierarchical decomposition divides the 

single-level optimization problem into several levels, and each level has its own objectives and 

constraints (Li et al., 2021). The parallel decomposition in Figure 3.1 (B) divides the problem into 

several subproblems and solves them separately (Yang et al., 2019). 

 

Figure 3.1 Two types of problem decomposition 

Li et al. (2021) demonstrated the application and limitation of deploying hierarchical 

decomposition to building design. For problems without a hierarchy structure, parallel 

decomposition opens up opportunities that cannot be achieved with hierarchical decomposition. 

By Conducting the parallel decomposition, the subproblems can be solved on different machines 

separately (Zhang et al., 2019). This feature makes this approach very suitable for the current era 
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of high-performance computers and cloud computing (Guo et al., 2017). Moreover, parallel 

decomposition provides a more efficient way to achieve the effect of integrated building design. 

The subproblems of a building design project can be assigned to small groups of architects, 

engineers, and consultants to be solved separately (Tsigkari et al., 2013). It reduces the 

communication time in integrated building design and increases the design process efficiency.  

The general procedure applying parallel decomposition to a building design optimization problem 

is shown in Figure 3.2. In the first step, the variables are divided into several groups, and in the 

second step, the optimal solutions are found for each group. Each subproblem is independent and 

solved separately (Yang et al., 2016). The optimal solutions of subproblems are combined to obtain 

the final solutions (Boyd et al., 2008). 

The key step of parallel decomposition is the variable grouping (Song et al., 2016). The variables 

can be grouped in different ways, but not all the variable grouping results lead to global optimum, 

which is the optimum of the original problem. Depending on the relationship between the variables, 

the variable grouping method can be based on the correlation or interaction (Hajikolaei et al., 2015). 

In this study, the building design variables considered are independent of each other. Therefore, 

this study focuses on the variable grouping methods based on the interaction between the variables.  
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Figure 3.2. The general procedure of parallel decomposition 

3.1.2 Previous work 

There are two types of methods for variable grouping based on interaction: dynamic and static (Ma 

et al., 2018). The dynamic type of method regards the interaction between variables as a dynamic 

attribute and is executed during the evolution process of the optimization algorithm (Liu et al., 

2020). The entire process remains intact since the variable grouping results change during 

optimization. In this way, the opportunity for parallel processing of integrated building design is 

missed. Therefore, the dynamic method is not considered in this study. The static method is usually 

performed before the optimization. Once the groups are determined, they remain unchanged during 

optimization. Therefore, the static method is investigated for the parallel decomposition in this 

study. 

The existing variable grouping criterion of the static method focuses on whether there is an 

interaction. In general, this criterion is shown in Figure 3.3. First, some experiments are performed 

to evaluate the interaction between every two variables. If there are no interactions for two variables, 

the two variables are separated into different groups for optimization. Otherwise, the two are 
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combined. All variables are divided into several groups after being assessed by this criterion. 

Theoretically, the decomposed optimization will achieve the global optimum of the original 

problem with this criterion. Because if there is no interaction between variables of different groups, 

the optimal solutions of the subproblems are independent of each other. As a result, the solutions 

are the same whether the subproblems are solved separately or combined. 

  

Figure 3.3. The existing criterion of variable grouping  

Different studies have proposed methods to effectively assess variables for this criterion. They are 

applied by quantifying the different interaction indicators through a small number of experiments. 

If the indicator is smaller than a predefined threshold, it is assumed there is no interaction. The 

differential grouping method proposed by Chen et al. (2010) is one of the methods. This method 

performs four experiments for every two variables. The indicator is calculated by the performance 

difference of variables at different levels. Several researchers have studied this method, such as 

Sun et al. (2015), Omidvar et al. (2017) and Cao et al. (2020). There are also static methods that 

use sensitivity analysis to quantify the interaction for variable grouping. Ito and Dhaene (2013) 

proposed the interaction index derived from the Sobol method. This method screens the two-

variables and three-variable interactions to decompose an optimization problem. Ivanov and Kuhnt 

(2014) used the Functional Analysis of Variance (FANOVA) graph to study the interactions of 
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variables and used the information for the parallel decomposition on a sheet metal forming 

optimization problem.  

Some issues exist when applying this existing criterion to building design optimization problems. 

Firstly, this criterion is mainly developed for the separable or partial separable problem (Liu et al., 

2020). In this type of problem, the objective function can be expressed as an additive function, such 

as the function f (x, y) = g(x) + q(y), where x and y are mutually exclusive variable sets (Jia et al., 

2019). However, most building design variables interact, making building design optimization 

problems almost inseparable or can only be divided into a few subproblems. Therefore, this 

criterion is inefficient in reducing the dimensionality of building design optimization problems. 

Secondly, the optimization results are unreliable for building design optimization problems using 

the existing criterion. The methods compare the interaction indicator with a threshold to determine 

if the interaction is small enough to be ignored. The impact of threshold on the optimization results 

is significant(Li et al., 2021). If the threshold is too small, all indicators are larger than the threshold, 

making the problem inseparable. On the other hand, if the threshold is too large, all indicators are 

smaller than the threshold, making all variables separated and leading to local optimum. The exact 

impact of the threshold on the optimization results is highly uncertain and varies from case to case, 

which makes the decomposed optimization results unreliable.  

Thirdly, the sensitivity analysis methods, such as the Sobol method and the FANOVA, are time-

consuming and unnecessary for building design optimization problems. These methods are 

variance-based methods that estimate both high and low-order interactions. Due to the sparsity-of-

effects principle, a physical system is usually dominated by main effects and low-order 

interactions(George et al., 2005). Therefore, the main effect and the two-variable interactions are 

most likely to account for most of the contribution to the response variation. Most studies using 
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sensitivity analysis in building design focus on the main and two-variable interactions such as 

Sanchez et al. (2014), Hsu (2015), Nguyen and Reiter (2015) and Yao et al. (2021). This study 

assumes that only two-variable interactions are considered in the variable grouping of the building 

design optimization problems.  

3.1.3 Proposed work 

Based on the issues mentioned in the previous section, this study proposes a new variable grouping 

criterion for building design optimization problems. Furthermore, this criterion is combined with 

the existing criterion as a dual-criteria variable grouping method for the parallel decomposition 

approach in this study. Two methods are proposed to assess each criterion effectively. 

The proposed criterion is illustrated in Figure 3.4. For two variables, if the optimal solution of one 

variable is not impacted by another variable, they are separated. Otherwise, they are combined for 

optimization. As a result, after the grouping process, the optimal solutions of each group are not 

impacted by each other.  

It can be proved that the proposed criterion will also achieve the global optimum of the original 

problem as the existing criterion. If the optimal solutions of one subproblem are not affected by 

other subproblems, the optimal solutions are the same whether the subproblem is solved 

individually or in combination with other subproblems. The latter ones are the global optimal 

solutions to the original problem. Therefore, the decomposed optimization should achieve the 

global optimum if the proposed criterion is effectively assessed.  
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Figure 3.4. The proposed criterion 

Compared with the existing criterion, the proposed criterion is more relaxed. The proposed 

criterion allows strong interactions between subproblems, as long as the interactions do not affect 

the subproblems' optimal solutions. Since the proposed criterion is qualitative, the threshold does 

not impact the optimization results. The comparison of the two criteria is summarized in Table 3.1. 

The proposed criterion is more adaptive for building design optimization problems than the existing 

criterion. 

Table 3.1 The comparison between the existing criterion and the proposed criterion 

 
The existing criterion The proposed criterion 

Variable grouping criteria No interaction between 

variables. 

The optimal solutions of one 

variable are not impacted by the 

change of other variables. 

Subproblem relationship No interaction between 

subproblems.  

The optimal solutions of each 

subproblem are not impacted by the 

others. 

Sufficient to achieve global 

optimum 

Yes Yes 
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Allow strong interactions 

between subproblems 

No Yes 

Impacted by threshold Yes No 

Methods to assess if the 

variables satisfy the criterion 

Differential grouping, 

Sobol, FANOVA. 

Regression-based SA 

(Proposed in this study) 

Interaction plots (Proposed in this 

study) 

Adaptability to building 

design optimization 

Low High 

 

This research proposes a dual-criteria variable grouping method for parallel decomposition, as 

shown in Figure 3.5. The existing and proposed criteria are used as the first and second criteria, 

respectively. The second criterion assesses the variables that failed the first criterion. The first 

criterion is used to quantify the interactions between the variables. It reduces the number of 

investigations for the separability of variables in the second criterion.  

Regression-based sensitivity analysis and interaction plots are proposed to evaluate whether the 

variables satisfy the first and second criteria, respectively. The proposed parallel decomposition is 

applied to solve the single-objective optimization problems in this study. 
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Figure 3.5. The dual-criteria variable grouping method 

This study proposes the parallel decomposition approach that can reduce the computation cost 

while achieving global optimum. The contributions of this study are summarized as follows: 

• Introduce the concept of parallel processing in integrated building design. 

• Define the decomposition criteria that can achieve global optimum. 

• Propose effective methods and indicators to judge whether the criteria are met. 

• Provides evidence on the performance of this approach.  

The remainder of this paper is organized as follows. Section 3.2 provides the development of the 

proposed parallel decomposition approach. Next, the proposed approach is applied to two case 

studies: a benchmark function and a low-rise office building described in Section 3.3. Next, the 

results of the case studies are summarized in Section 3.4. Then in Section 3.5, the assumptions and 

limitations of the proposed approach are discussed based on the case studies results. Finally, in 

Section 3.6, the conclusion and future work are highlighted. 

3.2 Development of the parallel decomposition approach 

In Section 3.2.1, the regression-based sensitivity analysis is proposed to assess if the variables 

satisfy the first criterion. Then, the interaction plots are proposed to assess if the variables satisfy 
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the second criterion in Section 3.2.2. Finally, in Section 3.2.3, the parallel decomposition approach 

is proposed and implemented to solve the single-objective optimization problem based on Sections 

3.2.1 and 3.2.2.  

3.2.1 The characteristics of the studied building design optimization problems 

This study focuses on the simulation-based optimization problems which integrate optimization 

techniques into building performance simulation. The simulation model is created based on 

fundamental physical principles and engineering practice. Simulation outputs such as energy 

consumption and carbon emissions are often used as optimization objectives. Since these objective 

functions are implicit, evolutionary algorithms such as genetic algorithms are often used for 

simulation-based optimization problems. Though the complexity caused by constraints and bounds 

of the optimization problems is important for decomposition, it is beyond the scope of this study. 

In this study, the objective function has no constraint, and the impact of variable bounds on 

decomposition is not discussed. The objective of the subproblems is the same as the original 

problem.  

3.2.2 The method for the first variable grouping criterion 

In the first criterion, the variable grouping depends on whether there is an interaction between 

variables, as shown in Figure 3.3. This study uses regression-based sensitivity analysis to quantify 

the two-variable interaction. The results are compared with a threshold to determine if the criterion 

is satisfied. 

The regression-based sensitivity analysis uses the regression model in Equation (3.1) to evaluate 

the main and two-variable interactions (Heckert et al., 2002). The independent variable vector X = 

(  x1, x2 … xi )  in this equation represents the design variables, and the dependent variable y(x) 
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represents the optimization objective such as energy consumption. This equation's coefficients bi 

and bij evaluate the main effect and two-variable interactions, respectively. These coefficients can 

use quantitative sensitivity measures, such as the Standard Regression Coefficient (SRC) (Lee, 

2014).  

𝑦(𝑋) = 𝑏0 + ∑ 𝑏𝑖
𝑘
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑏𝑖𝑗

𝑘
𝑖=1,𝑗≠𝑖 𝑥𝑖𝑥𝑗

𝑘
𝑗=1,𝑗≠𝑖 + ⋯ 𝜀                                          (3.1) 

There are different Design of Experiments (DOE) methods for regression-based sensitivity 

analysis. The fractional factorial design is an efficient DOE method, which can control the number 

of experiments to achieve reliable low-order interactions results. The high-order effects are ignored 

by confounding with low-order effects (Heckert et al., 2002). This study uses the fractional factorial 

design as the DOE method for regression-based sensitivity analysis. 

The fractional factorial design uses the concept of design resolution to control the number of 

experiments required to evaluate a certain level of interaction. Design resolutions III, IV, and V 

are commonly used in engineering research. The orders of interaction corresponding to these 

resolutions are listed in Table 3.2 (Heckert et al., 2002). The table shows that it is suitable to use 

resolution level V for this study because all the two-variable interactions are arranged to be 

investigated separately.  

Table 3.2. The design resolution of fractional factorial design (Heckert et al., 2002) 

Resolution level Targeting effects 

III The main effect is not mixed with any other main effects but mixed with 

the two-variable interaction. 

IV Main effects are not mixed with any other main effects or two-variable 

interactions, but some two-variable interactions are mixed with other two-
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variable interactions, and main effects are mixed with three-variable 

interactions. 

V Main effects or two-variable interactions are not mixed with any other main 

effects or two-variable interactions, but two-factor interactions are mixed 

with three-variable interactions, and main effects are mixed with four-

variable interactions. 

 

As a summary, the first criterion is assessed using the regression-based sensitivity analysis method, 

as shown in Figure 3.6. The DOE of sensitivity analysis is the fractional factorial design. Then, SA 

generates the interaction indicators, and the indicators are compared with the threshold.  

 

Figure 3.6. The method for the first variable grouping criterion 

3.2.3 The method for the second variable grouping criterion 

For the second criterion, the results of the fractional factorial design used in the first criterion can 

be used to assess this criterion, thereby avoiding additional experiments. Besides the interaction 

indicators in the previous section, the interaction plots are another analysis output of fractional 
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factorial design. The interaction plots display the means of response for the levels of one variable 

on the horizontal axis and a separate line for each level of another variable. It shows how the 

response change of one variable depends on the value of the other variable (Heckert et al., 2002). 

For example, assuming there are five variables, the fractional factorial design generates 16 

experiments for the five variables, according to the table in Heckert et al. (2002). Assuming one of 

the variables is roof insulation, and the other variable is foundation slab insulation. The response 

is the energy consumption of a building. Only the upper and lower boundaries of each variable are 

considered in the fractional factorial design. The responses of the 16 experiments are plotted to 

investigate the interaction between these two variables, as shown in Figure 3.7. The blue line links 

the mean energy consumption of maximum and minimum foundation slab insulation while roof 

insulation is at the lower bound. Similarly, the green line links the mean value while roof insulation 

is at the upper bound. This figure shows the impact of roof insulation on the performance of 

foundation slab insulation. The 16 experiments can be used to generate the interaction plots for 

each two of the five variables. These plots are used to assess if the second criterion is met. 

 

Figure 3.7. The example of the two-variable interaction plot 



A Parallel Decomposition Approach for Building Design Optimization  

64 

 

There are different types of two-variable interactions, as shown in Figure 3.8.  The two dependent 

variables are designated as x and y. The upper and lower bounds of the two variables are designated 

as x2, y2 and x1, y1. If the two lines are parallel, it is assumed there is no interaction between two 

variables, as shown in Figure 3.8 (A). In this case, the two variables are separated for optimization. 

If the two lines are not parallel, the interaction effects can be categorized as synergetic or 

antagonistic (Lim et al., 2020).  

If the interaction is synergetic, the performance of one variable is considered to be enhanced by the 

change of another variable. In such a case, it is assumed that the optimal level of one variable is 

not changed for different levels of another variable. For example, to minimize the response, the 

design with x1 has a smaller response than the design with x2 regardless of the value of y, as shown 

in Figure 3.8 (B). Therefore, x and y can be optimized separately.  

If the interaction is antagonistic, the performance of one variable is considered to be weakened by 

the change of another variable, as shown in Figure 3.8 (C), (D) and (E). If the slope sign does not 

change, as shown in Figure 3.8 (C), it is assumed that the optimal solution of one variable remains 

the same regardless of the change of another variable. In such a case, the two variables are separated 

for optimization. If the slope sign changes, it is assumed that the optimal solution of one variable 

is impacted by the change of another variable, as shown in Figures 3.8 (D) and (E). In such a case, 

the two variables are combined for optimization. 

If the interaction is a mixed effect, the performance of one variable will be weakened and then 

enhanced by the change of another variable, as shown in Figure 3.8 (F). Since the slope sign does 

not change, it is assumed that the optimal solution of one variable remains the same regardless of 

the change of another variable. Therefore, the two variables are separated in such a case.  



A Parallel Decomposition Approach for Building Design Optimization  

65 

 

 

Figure 3.8. The interaction plots for different types of two-variable interactions 

As a summary, the second criterion is assessed using the interaction plots as shown in Figure 3.9. 

If the slopes of the two lines in the interaction plots are the same, the two variables are separated 

for optimization. Otherwise, the two variables are combined. Interaction plots appear in pairs when 

the horizontal axis variable switch to the other. Therefore, the pairs of interaction plots for two 

variables should be examined when determining whether two variables can be separated.  

These interaction plots are generated from the data of the fractional factorial design. The fractional 

factorial design is a fraction of full factorial design. Therefore, the interaction plots reflect the 

prediction other than the true two-variable interaction. However, the three-variable interactions and 

above are negligible due to the sparsity-of-effects principle. Therefore, the interaction plots should 

be sufficient to represent the two-variable interaction and assess if variables satisfy the criterion. 

The effectiveness of this method will be verified in the case study. 
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Figure 3.9. The method for the second variable grouping criterion 

3.2.4 The proposed parallel decomposition approach  

The two methods in Sections 3.2.1 and 3.2.2 are combined as the dual-criteria variable grouping 

method. As shown in Figure 3.10, first, the fractional factorial design is generated, and the 

resolution level is V. Then simulations are performed for the generated experiments, and the results 

are used to obtain the interaction indicators. All the interaction indicators are assessed if they are 

less than the threshold. If so, the two variables are separated. Otherwise, the pair of interaction 

plots are generated for the two variables using the results of fractional factorial design. If the slope 

signs of the two lines in each interaction plot are the same, the two variables are separated for 

optimization. Otherwise, they are combined.  
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Figure 3.10. The dual-criteria variable grouping method 

The dual-criteria variable grouping method is applied for the parallel decomposition of the single-

objective optimization problems.  This approach is divided into three steps, as shown in Figure 

3.11: 

Step 1: Divide the variables into several groups using the dual-criteria variable grouping 

method. 

Step 2: Optimize each subproblem separately while the variables in other subproblems use 

the default values. The objective function of each subproblem is the same as the original 

problem, and the default values are chosen arbitrarily for each variable. 

Step 3: The solutions of all subproblems are combined for the final result.   
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Figure 3.11. The proposed parallel decomposition for single-objective optimization problems 

3.3 Case studies 

Two case studies are used to demonstrate the application and performance of the proposed 

approach. The benchmark function is used as the first case study to validate the approach by 

comparing it with the results in other studies. The second case study presents a low-rise office 

building to demonstrate the details in applying the proposed approach in an integrated building 

design. The two case studies are introduced in Sections 3.3.1 and 3.3.2, respectively. MINITAB 

and ModeFRONTIER are used in this study to facilitate the proposed approach for the case studies. 

MINITAB generates the fractional factorial design, sensitivity analysis and interaction plots. 

ModeFRONTIER automates the function evaluation and simulation process, and it is also used to 

combine optimization with simulation. The building simulation is performed by EnergyPlus 9.0. 

The practical workflow is shown in appendix B for the reader to apply the proposed approach. 
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3.3.1 Benchmark function  

In applied mathematics studies, many test functions are used to evaluate the performance of 

optimization algorithms. The Schwefel function is selected as the first case study to evaluate the 

performance of the proposed approach. The function is defined as in Equation (3.2). 

𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, … 𝑥𝑛) = 418.9829𝑛 − ∑ 𝑥𝑖sin (√|𝑥𝑖|)
𝑛
𝑖=1                             (3.2) 

Where -500 ≤ xi ≤ 500. This function can be defined on n-dimensional space. Figure 3.12 shows 

the function response when there are only two variables. The x-axis is the first variable x1, and the 

y-axis is the second variable x2. The z-axis is the function response f(X). The colour scheme uses 

red for maximum value and blue for the minimum value. As the figure shows, this function contains 

many local optimums, making it hard to find the global optimum. This function is challenging for 

optimization algorithms because the algorithm easily converges to a local optimum. 

In this study, the dimension is set to ten. Therefore, there are 10 variables. The global minimum of 

this function is close to 0 at X*= [420.9687, …, 420.9687] (Ivanov and Kuhnt, 2014). Other studies 

have applied different methods to solve the 10-dimensional Schwefel function minimizing problem: 

Liang et al. (2006) conducted the comprehensive learning particle swarm optimizer; Awad et al. 

(2018) applied an improved differential evolution algorithm using the efficient adapted surrogate 

model. The results of these studies are compared with the results using the proposed approach. The 

Genetic Algorithm is also used in this study as a comparison.  For the optimization using GA, the 

initial search space of 2000 experiments is generated using LHS, and the optimization is set to stop 

when the objective function of the best solution has the same value for two consecutive iterations. 
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Figure 3.12. Local and global optimums in the two-dimensional Schwefel function 

3.3.2 The small office building model 

The second case study is a low-rise office building model developed based on the ASHRAE 

Standard 90.1 prototype building model using EnergyPlus, as shown in Figure 3.13. The model is 

simulated for an entire year using the weather file of Montreal, Canada. The building has four 

perimeter zones and one central core. The heating setpoint is 21 ℃ from 7:00 to 19:00, and the 

setback is 15 ℃ from 19:00 to 7:00. The cooling setpoint is 24 ℃ from 7:00 to 18:00, and the 

setback is 29 ℃ from 18:00 to 7:00. For each zone, the occupancy is assumed to be 16.6 m2/person, 

the lighting load is 6.88 W/m2, and the equipment load is 6.78 W/m2. The building is a lightweight 

wood frame construction with insulated walls, roof, and concrete slab on grade.  
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Figure 3.13. The low-rise office building model. 

The single-objective optimization problem is to find the minimum annual energy consumption of 

the case study building. There are eight design variables, as shown in Table 3.3. This study 

considered both architectural and engineering variables to demonstrate the benefits of parallel 

decomposition for integrated building design. The first four variables are architectural design 

parameters, including the window-to-wall ratios at different facades and the overhang depth.  The 

last four variables are the engineering parameters, including the RSI values of walls and the roof 

and the U-value of windows on different facades. 
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 Table 3.3. The design variables for optimization 

 

 

 

 

 

 

 

 

 

3.4 Results  

3.4.1 Benchmark function 

3.4.1.1 Optimization results 

The parallel decomposition approach divides the benchmark function optimization problem into 

ten subproblems. Each subproblem contains one variable, and the optimal solution for each 

subproblem is the same, which is Xi = 420.9687. Accordingly, the minimum value of f(X) is 1.272 

×10-4. The details of the results for each step are shown in Appendix A.  

3.4.1.2 Comparison of optimal solution and computation time  

The results show that the optimal solution Xi = 420.9687 found by the proposed approach is the 

same as other studies (Ivanov and Kuhnt, 2014). 

To compare the computation time, the optimization convergence curve is plotted and compared 

with results using GA in Figure 3.14. The Y-axis is the best objective function value obtained 

Architectural Variables 

Variable Range Interval Unit Levels Default value 

WWREast 10% - 50% 10%   5 50% 

WWRSouth 10% - 50% 20%   3 50% 

WWRWest 10% - 50% 20%   3 50% 

DepthOH 0.1 - 0.9 0.4 m 3 0.1 

Engineering Variables 

Variable Range Interval Unit Levels Default value 

UEW  1.0 - 3.0 1 W/m2.K 3 3.0 

USouth  1.0 - 3.0 1 W/m2.K 3 3.0 

RWall 3.0 - 7.0 2 m2.K/W 3 3.0 

RRoof 4.6 - 8.6 2 m2.K/W 3 4.6 
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during the optimization process, and the X-axis is the optimization history. The optimization with 

parallel decomposition takes 2411 runs in total. The subproblems are optimized simultaneously, 

and the history is not continuous. However, to compare the convergence efficiency with other 

methods, the convergence curve is shown for subproblems from X1 to X10. GA takes 88911 runs 

to find the optimal solution. The results from other studies are converted in the same scale and 

plotted in Figure 3.14. It can be seen from Figure 3.14 that the proposed approach converges to the 

optimal solution the fastest among the studied methods. 

 

Figure 3.14. The convergence curves of different approaches 

3.4.2 Parallel decomposition for the low-rise office building optimization. 

3.4.2.1 Optimization results 

For step 1, the fractional factorial design is first generated. For eight variables, 64 experiments are 

required considering design resolution V. The sensitivity analysis results are shown in Table 3.4 as 



A Parallel Decomposition Approach for Building Design Optimization  

74 

 

a matrix. The diagonal numbers represent the main effects of each variable, and the other cells 

represent the interactions for every two variables. The threshold value is set to 0.005. The 

interaction cells with a value higher than the threshold are highlighted in Table 3.4. The interaction 

plots are generated for all these highlighted interactions. The sign of slope changes only between 

USouth and WWRSouth, as shown in Figure 3.15. Therefore, these two variables are grouped and 

optimized together. In summary, the eight variables in this case study are divided into seven groups, 

as shown in Figure 3.16.  

Table 3.4. The interaction indicator matrix for annual energy consumption. 

  DepthOH RRoof UEW USouth WWREast WWRSouth WWRWest RWall 

DepthOH 0.0335 0.0018 0.004 0.0015 0.0166 0.0048 0.0189 0.0106 

RRoof 0.0018 0.46 0.0106 0.0111 0.0184 0.0252 0.0156 0.0033 

UEW 0.004 0.0106 0.4356 0.0101 0.1185 0.0224 0.1258 0.005 

USouth 0.0015 0.0111 0.0101 0.2867 0.008 0.1451 0.007 0.007 

WWREast 0.0166 0.0184 0.1185 0.008 0.37 0.0206 0.0148 0.0259 

WWRSouth 0.0048 0.0252 0.0224 0.1451 0.0206 0.0475 0.0171 0.0382 

WWRWest 0.0189 0.0156 0.1258 0.007 0.0148 0.0171 0.4743 0.0244 

RWall 0.0106 0.0033 0.005 0.007 0.0259 0.0382 0.0244 0.2789 

 

 

Figure 3.15. The interaction plot for WWRSouth and USouth 
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Figure 3.16. The results of variable grouping and generated subproblems 

For step 2, all the subproblems are optimized separately. The variables that are not considered in 

one subproblem use the default value. The results are shown in Figure 3.17 (A)-(G). Because there 

is only one variable in most subproblems, all possible solutions are evaluated for each subproblem. 

For subproblem 5, for combinations of 3 levels of USouth and 5 levels of WWRSouth, there are 15 

experiments in total. 

For step 3, the solutions of the subproblems are combined for the final solution. As a result, the 

proposed approach achieves the minimum energy consumption of 323.25 kWh/m2. 
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Figure 3.17. The subproblems optimization for the low-rise office building. 
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3.4.2.2 Comparison of optimal solution and computation time  

To compare the optimal solution, the Genetic Algorithm and full factorial design are applied to 

optimize the building model. The optimal solutions of the proposed method, Genetic Algorithm 

and full factorial design, are shown in Table 3.5. It can be seen from the table that the optimal 

solutions are identical between these approaches.  

Table 3.5. The optimal solutions comparison 

 

 

 

 

 

 

 

 

For the comparison of the computation time, the proposed approach is compared with optimization 

with GA. The initial search space of 50 experiments is generated using LHS. The optimization is 

set to stop when the objective function of the best solution has the same value during two 

consecutive iterations. The algorithm takes 213 runs, as shown in Figure 3.18. 

Variable 
Proposed 
method 

Genetic 
Algorithm 

Full factorial 
design 

Unit 

WWREast 10% 10% 10%  

WWRSouth 30% 30% 30%  

WWRWest 10% 10% 10%  

DepthOH 0.9 0.9 0.9 m 

UEW 1 1 1 W/m2.K 

Usouth 1 1 1 W/m2.K 

RSIWall 7 7 7 m2.K/W 

RSIRoof 8.6 8.6 8.6 m2.K/W 
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Figure 3.18. The optimization results without parallel decomposition 

The comparison of computation cost is shown in Table 3.6. As it shows in the table, the 

optimization with parallel decomposition takes 98 runs, and the optimization without 

decomposition takes 213 runs.  

Table 3.6. The computation cost for optimization with and without decomposition 

Proposed approach  Simulation Runs Comparison approach Simulation Runs 

Step 1. Variable grouping 64 GA 213 

Step 2. Subproblem optimization 33   

Step 3. Combine solutions 1   

Total 98 Total 213 

 

3.5 Discussion 

3.5.1 The effectiveness of the methods to assess the criteria  

Each subproblem is solved while the variables in other subproblems use the default values. As 

shown in Table 3.1, when applying the variable grouping criteria, as an outcome, the optimal 

solutions of each subproblem should stay the same regardless of the value of variables in other 

subproblems. Therefore, the choices of default values should not impact the optimal solutions of 
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each subproblem. However, the sensitivity analysis and interaction plots might not be totally 

effective in achieving this result. The full factorial design is conducted to evaluate if each 

subproblem has the same results while the variables in other subproblems change. 

For example, subproblem 7 in the second case study only has one variable, which is WWRWest. The 

optimal solution for this subproblem is WWRWest = 10%. It is solved while other variables use the 

default values in Table 3.3. The optimal solution is expected to be the same while the variables in 

other subproblems change. Therefore, this subproblem is solved for all possible scenarios of 

variable combinations in other subproblems. There are 3 levels × 3 levels × 3 levels × 3 levels × 3 

levels × 3 levels × 5 levels = 3645 scenarios for subproblem 7 in total. 

The results of subproblem 7 under different scenarios are shown in Figure 3.19. The X-axis is the 

three levels of WWRWest, and Y-axis is the optimization objective, the annual energy consumption. 

Each of the lines represents the results of subproblem 7 under one scenario. The slopes of these 

lines change very little, and the graph appears as strips of different colours. These lines are all 

monotonically increasing, implying that the smallest feasible value of WWRwest is optimal in every 

scenario. In such a case, the optimal level of WWRwest is always 10%, regardless of the level of 

other variables. 
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Figure 3.19. All scenarios of subproblem 7 

The concordance rate is used to describe the effectiveness of the proposed methods. It is obtained 

by dividing the number of scenarios that have the same optimal solution as the global one with the 

number of total scenarios. It is defined as the percentage of a subproblem achieving the global 

optimum out of all scenarios.  

For subproblem 7, the concordance rate is 100%. Table 3.7 shows the concordance rate for each 

subproblem. For subproblems 1, 2, 3, 4, 7, the concordance rate is 100%. That means the optimal 

solutions of these subproblems are not impacted by any other subproblems. The concordance rate 

is high for subproblem 6, which is 92%. For subproblem 5, the concordance rate of WWRSouth and 

USouth of all scenarios are 54% and 100%, respectively. It can be seen that the proposed methods 

with SA and interaction plots are very effective in assessing the criteria. 



A Parallel Decomposition Approach for Building Design Optimization  

81 

 

Table 3.7. Validation of variable grouping results. 

Subproblem Variable 
Number of total 

scenarios 
Number of scenarios that have the 

same solution as the global one 
Concordance 

rate 

1 RRoof 3645 3645 100% 

2 UEW 3645 3645 100% 

3 WWREast 3645 3645 100% 

4 WWRWest 3645 3645 100% 

5 
WWRSouth × 

USouth 

WWRSouth 729 729 100% 

USouth 729 391 54% 

6 DepthOH 3645 3341 92% 

7 RWall 3645 3645 100% 

 

3.5.2 The solving sequence of subproblems 

In most cases, the optimal solutions of subproblems are not impacted when the default values of 

variables in other subproblems change, as shown in Table 3.7. However, there is still a chance the 

subproblem will achieve the local optimum other than the global optimum when the default values 

of variables change. This issue can be improved by arranging the order to solve the subproblems. 

It is suggested to optimize the subproblems from the one with the strongest main effect to the 

weakest main effect. As some of the subproblems are resolved, the influence of interaction is 

gradually reduced. Because the main effects usually dominate the response variation, the 

subproblems with strong main effects are less likely to be distracted by interaction.  

For example, Figure 3.20 shows all scenarios for subproblem 5. For three levels of USouth and five 

levels of WWRSouth, there are 15 levels in each scenario, and the full factorial experiments are 

plotted for 3 levels × 3 levels ×3 levels ×3 levels ×3 levels ×3 levels = 729 scenarios. The global 

optimum of subproblem 5 is at level 3. The response changes between levels 3 and 4 are small, and 
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the lines are almost flat. Therefore, for 54% of the scenarios, the optimal level is level 3, and the 

rest is level 4.  
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Figure 3.20. All scenarios of subproblem 5 

The main effects of variables from low to high can be found in Table 3.8, extracted from Table 3.4. 

As this table shows, the variables in subproblems 5 (WWRSouth) and 6 (DepthOH) have the weakest 

main effects. Therefore, the other six subproblems (1, 2, 3, 4, 7) are optimized first, and the results 

are used to solve subproblems 5 and 6. Since the concordance rates of these subproblems are 100%, 

these subproblems are guaranteed to achieve global solutions. As shown in Figure 3.21, when the 

other subproblems are solved, only three scenarios of subproblem 5 are left. In such a case, the 

concordance rates for subproblems 5 and 6 increase to 100% because level 3 is the optimal solution 

in all three scenarios. 

 
Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

USouth(W/m2.K) 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 

WWRSouth 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 
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Table 3.8. The main effect of variables 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Three scenarios of subproblem 5 

Subproblem Variable Main effect 

6 DepthOH 0.0335 

5 WWRSouth 0.0475 

7 RWall 0.2789 

5 USouth 0.2867 

3 WWREast 0.37 

2 UEW 0.4356 

1 RRoof 0.46 

4 WWRWest 0.4743 

 
Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

USouth(W/m2.K) 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 

WWRSouth 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 
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3.5.3 The sparsity-of-effects principle demonstration 

The variable grouping criteria in this study focus on the two-variable interaction assuming the 

sparsity-of-effects principle is valid for building performance simulation. According to this 

principle, the responses are mostly contributed by the main effects and two-variable interactions. 

The high-order interactions, such as three-variable interactions, are negligible. The ANOVA is 

applied to the full factorial experiments results to demonstrate this principle. The contribution of 

main effects, two-variable and three-variable interactions to the variation in the response are 

96.63%, 3.35% and 0.01%, respectively. It shows that the sparsity-of-effects principle is effective 

in this study. 

3.5.4 The impact of threshold 

In the second case study, the threshold is set to 0.005. As shown in Table 3.4, all variables interact, 

and most of the interactions are larger than the threshold. Therefore, the problem will be 

inseparable if the variables are only assessed with the first criterion. With the proposed criterion, 

only two variables are combined.  

If the threshold increases from 0.005 to 0.5, the results with the first criterion changed from Table 

3.4 to Table 3.9. However, with the dual-criteria variable grouping method, the variable grouping 

results are the same for both thresholds. In conclusion, the proposed approach can reduce threshold 

impact on the decomposition results, and the optimization results are reliable. 
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Table 3.9. The interaction matrix with a threshold value of 0.05 

 

3.6 Conclusion 

Considering variables of different disciplines in an integrated building design drastically increases 

the dimensionality and complexity of building design optimization problems. Parallel 

decomposition can solve this problem by dividing the original problem into several smaller 

subproblems to be solved separately. This study proposes a parallel decomposition approach to 

facilitate the parallel processing for integrated building design. There are some advantages and 

limitations of this proposed approach. 

The low-rise office case study shows that the proposed approach reduces more than half of the 

computation time than optimization without decomposition. Furthermore, most of the architectural 

design variables and engineering design variables are separated in this study.  This result shows 

that exchanging information between different disciplines can be minimized when applying the 

proposed method to integrated design. Traditionally, the integrated design considers variables of 

different disciplines simultaneously. The proposed approach makes the integrated design more 

efficient by dividing it into several independent problems.  

  DepthOH RRoof UEW USouth WWREast WWRSouth WWRWest RWall 

DepthOH 0.0335 0.0018 0.004 0.0015 0.0166 0.0048 0.0189 0.0106 

RRoof 0.0018 0.46 0.0106 0.0111 0.0184 0.0252 0.0156 0.0033 

UEW 0.004 0.0106 0.4356 0.0101 0.1185 0.0224 0.1258 0.005 

USouth 0.0015 0.0111 0.0101 0.2867 0.008 0.1451 0.007 0.007 

WWREast 0.0166 0.0184 0.1185 0.008 0.37 0.0206 0.0148 0.0259 

WWRSouth 0.0048 0.0252 0.0224 0.1451 0.0206 0.0475 0.0171 0.0382 

WWRWest 0.0189 0.0156 0.1258 0.007 0.0148 0.0171 0.4743 0.0244 

RWall 0.0106 0.0033 0.005 0.007 0.0259 0.0382 0.0244 0.2789 
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Each subproblem is solved while the variables in other subproblems use the default values. The 

discussion using full factorial design results shows that the choices of default values might impact 

the optimal solutions. This issue means the sensitivity analysis and interaction are not totally 

effective in assessing the criteria. This potential issue can be overcome by first optimizing the 

subproblem with the strongest main effect and using the results for subsequent subproblems with 

decreasingly weaker main effects. 

This study focuses on the two-variable interaction between variables and assumes that the effects 

of higher-order interactions can be ignored according to the sparsity-of-effect principle. The results 

of the full factorial design demonstrate that this assumption is valid in the case studies. However, 

an extensive study of different building types and design variables shall be conducted to investigate 

the applicability of this principle in more complex building designs. In this study, a parallel 

decomposition approach is applied to solve single-objective optimization problems, and it can be 

extended to solve multi-objective building design optimization problems. Moreover, sensitivity 

analysis is used for variable grouping to assess the first criterion in this study. Sensitivity analysis 

can also be used to screen the variables to reduce the dimensionality of optimization problems. The 

two applications can be combined in future works.   

Appendix 3.A Benchmark function optimization using parallel decomposition 

128 experiments are generated for the first step for fractional factorial design level V in MINITAB. 

The sensitivity analysis results are shown in Table 3.10 in a matrix. The main effects of the 

variables are shown in the diagonal cells. The other cells show the interaction between every two 

variables. As the results show, there is no interaction between the variables. Therefore, there is no 

need to check the interaction plots. The optimization problem is decomposed into ten subproblems, 

and each subproblem only has one variable.  



A Parallel Decomposition Approach for Building Design Optimization  

87 

 

The ten subproblems are optimized separately using the Genetic Algorithm for the second step. For 

each subproblem optimization, an initial search space of ten experiments is generated using Latin 

Hypercube Sampling (LHS). Each optimization is set to stop when the objective function of the 

best solution has the same value during two consecutive days iterations. Since the solutions of the 

subproblems are the same, only the results of subproblem 1 are shown in Figure 3.22. It takes 241 

runs for GA to find the global optimal solution for this subproblem. 

Table 3.10. The interaction matrix for the Schwefel function   

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 0.315 0 0 0 0 0 0 0 0 0 

X2 0 0.315 0 0 0 0 0 0 0 0 

X3 0 0 0.315 0 0 0 0 0 0 0 

X4 0 0 0 0.315 0 0 0 0 0 0 

X5 0 0 0 0 0.315 0 0 0 0 0 

X6 0 0 0 0 0 0.315 0 0 0 0 

X7 0 0 0 0 0 0 0.315 0 0 0 

X8 0 0 0 0 0 0 0 0.315 0 0 

X9 0 0 0 0 0 0 0 0 0.315 0 

X10 0 0 0 0 0 0 0 0 0 0.315 

 

 

Figure 3.22. Subproblem 1 for benchmark function 
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Appendix 3.B. The practical workflow applying the proposed approach 

The practical workflow in Figure 3.23 shows the steps for readers to apply the proposed approach. 

For the case study of the low-rise office building presented in this paper, MINITAB is used for 

steps 1.1, 1.3 and 1.5. ModeFRONTIER and EnergyPlus are used for steps 1.2, 2.1 and 3.1. Other 

optimization, simulation, and statistical programs can be used when applying the proposed 

approach. 

 

Figure 3.23. The practical workflow applying the proposed approach 
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Chapter 4.  Sensitivity Analysis for Dimension Reduction of Building Design 

Optimization 

Regression-based sensitivity analysis using the two-level fractional factorial design is used for 

variable grouping in the parallel decomposition in the previous chapter. However, sensitivity 

analysis is more commonly used for variable screening. Both uses of sensitivity analysis can reduce 

the dimensionality of building design optimization problems. This chapter evaluates the 

performance of sensitivity analysis for variable screening and grouping through three case studies. 

The results show that the regression-based sensitivity analysis using the two-level fractional 

factorial design with resolution V is capable of both variable screening and grouping.  

4.1 Introduction 

Sensitivity analysis investigates how a model’s input uncertainty affects output uncertainty. It has 

been applied to building performance simulations for different aims in different life cycle stages. 

Pang et al. (2020) summarized the applications of sensitivity analysis in building performance 

simulation studies and categorized them into five types: identification in design/operation, 

optimization in design/operation, and calibration in operation. This study focuses on the use of 

sensitivity analysis for optimization in design. For this purpose, sensitivity analysis is used for 

dimension reduction of building design optimization problems.  

For dimension reduction, most studies use sensitivity analysis for the variable screening. After 

sensitivity analysis, the variables with small main effects are excluded from optimization (Pang et 

al. 2020). Besides variable screening, sensitivity analysis has also been used for variable grouping 

in the parallel decomposition of optimization problems in the other field. Parallel decomposition 
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reduces the dimension of optimization problems by dividing the original problem into several 

subproblems (Yang et al., 2019). It is required that there is no interaction between the variables of 

different subproblems. Therefore, the subproblems can be optimized separately and achieve global 

optimum, as shown in Figure 4.1.  

 

Figure 4.1 The concept of variable grouping for parallel decomposition 

Sensitivity analysis is used to quantify the interactions of variables for the variable grouping of 

parallel decomposition. The variables with negligible interactions are separated for optimization, 

while those with strong interactions are grouped. Ito and Dhaene (2013) used the second and third-

order interaction indices obtained by the Sobol method to decompose the optimization problem. 

Ivanov and Kuhnt (2014) applied Functional Analysis of Variance (FANOVA) to decompose the 

sheet metal forming optimization problem. However, there is a lack of study investigating this use 

of sensitivity analysis on building design optimization problems. To fully utilize sensitivity 

analysis for the dimension reduction of building design optimization problems, this study aims to 

identify a method capable of variable screening and grouping both. 

For variable screening, sensitivity analysis is required to evaluate the main effects efficiently. For 

variable grouping, the sensitivity analysis is suggested to quantify the interactions to decompose 

building design optimization problems. According to the sparsity-of-effects principle, the high-
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order interactions are negligible because a physical system is usually dominated by main effects 

and low-order interactions such as two-variable interaction (Aiad and Lee, 2016). Therefore, a 

method needs to be identified to efficiently quantify the main effect andand two-variable 

interactions.   

The studies about sensitivity analysis in building design for both main effects and two-variable 

interactions focused on convergence results (Nguyen and Reiter, 2015). However, as an 

optimization preprocessing, sensitivity analysis does not need to achieve ranking convergence and 

only needs to obtain the most important terms the same as the convergence results. For example, 

choosing five out of ten variables for optimization is acceptable as long as the top five variables 

are the same as the convergence results, without requiring each variable to achieve the correct 

ranking. Therefore, there is a need to identify a method to control the number of experiments to 

achieve acceptable results. 

In conclusion, there are two issues to be addressed in this study:  

1. Identify a sensitivity method that can efficiently quantify the main effects and two-variable 

interactions for variable screening and grouping. 

2. Identify a Design of Experiment method for the sensitivity analysis method, which can 

control the number of experiments to achieve acceptable results. 

The remainder of this paper is organized as follows. First, the two issues are addressed in sections 

4.2 and 4.3, respectively. Then this study proposes the method for variable screening and grouping 

and the methodology to evaluate the performance in section 4.4. Next, three case studies are used 

to evaluate the performance of this method in sections 4.5 and 4.6. Finally, section 4.7 summarizes 

this research and proposes future work. 
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4.2 Sensitivity analysis for variable screening and variable grouping 

In order to address the first issue, this section reviews different sensitivity analysis methods and 

discusses their feasibility for variable screening and grouping. The method's feasibility depends on 

the efficiency and amount of information provided by different methods. Since these two criteria 

are usually not met simultaneously, the pros and cons of different methods need to be discussed.  

The process of sensitivity analysis using building performance simulation can be divided into three 

steps: generating designs, running the simulations, and calculating the sensitivity indicators (Tian, 

2013). Depending on the type of indicator, sensitivity analysis can be divided into Morris, 

regression-based, and variance-based methods.  

Morris first proposed the screening method in 1991 (Morris,1991). This method only changes one 

variable in each experiment while other variables remain unchanged. It evaluates the response 

change caused by the small change of the variable to obtain the elementary effect. The expectation 

and standard deviation of elementary effects determine the main effects and total interactions of 

variables. Initially, it could only qualify the total interactions, but some studies extended this 

method to qualify the two-variable interactions (Campolongo and Braddock, 1999). For example, 

Menberg et al. (2016) and Sanchez et al. (2014) applied the extended Morris method to investigate 

the main effects and two-variable interactions on building energy models.  

The regression-based method uses a multivariate linear model to fit the complex building model as 

shown in Equation (4.1) (Suard et al., 2013), where y is the model response, xi is the input variable, 

k is the number of variables, 𝜀 is the error term, and bi is the coefficient of the regression model 

corresponding to xi. These coefficients indicating the variable’s sensitivity can be obtained by 

statistical measures such as Standard Regression Coefficient (SRC) (Lee, 2014).  
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𝑦 = 𝑏0 + ∑ 𝑏𝑖
𝑘
𝑖=1 𝑥𝑖 + 𝜀                                                             (4.1) 

The regression-based method can also quantify the two-variable interactions with the model shown 

in Equation (4.2) (Heckert et al., 2002). 

𝑦 = 𝑏0 + ∑ 𝑏𝑖
𝑘
𝑖=1 𝑥𝑖 + ∑ 𝑏𝑖𝑗

𝑘
𝑖=1,𝑗≠𝑖 𝑥𝑖𝑥𝑗 + ⋯ 𝜀                                             (4.2) 

The variance-based methods include the Sobol method (Sobol, 1993) and the FAST method 

(McRae et al., 1982). The Sobol method is suitable for nonlinear models and can quantify first and 

high-order sensitivity (Saltelli and Annoni, 2010). This method decomposes the total output 

variance into the sum of each variable’s variance and the higher-order interaction terms. Thus, the 

sensitivity of variables is quantified by the contribution of the variance of each term. Compared 

with the Sobol method, the FAST method has a relatively low computation cost but is not suitable 

for discrete variables (Christopher Frey and Patil, 2002).  

From the perspective of efficiency, the computing requirements from low to high are Morris, 

regression-based, and variance-based methods. The Morris method requires r × (k + 1) runs to 

evaluate interactions, where k is the number of input variables, and r is the number of trajectories 

ranging from 5 to 15 (Cropp and Braddock, 2002). The regression-based methods often use the 

Monte Carlo method for the design of experiment. Lomas and Eppel (1992) claimed that 60-80 

experiments are enough for sensitivity analysis of building thermal model using the Monte Carlo 

method. Many studies have adopted this conclusion. However, this conclusion is developed for the 

total sensitivity indicator of all variables, which is the standard deviation of all outputs. It is stated 

in that study that the conclusion is not valid when applied to the individual variable's sensitivity. 

This statement is often overlooked, resulting in the abuse of this conclusion. Variance-based 

methods usually need more experiments than the other two types of methods. For example, the 
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Sobol method needs N × (D+2) for first-order sensitivity (Saltelli, 2002). For the second-order, N 

× (2D+2) is recommended, where D is the number of variables, and N is an order of hundreds or 

thousands (Herman and Usher, 2017). Nguyen and Reiter (2015) compared the Morris, regression-

based, and variance-based methods on three benchmark functions and a building model. In the 

building model case study, the Morris, regression-based and variance-based methods required 70 

runs, 140 to 700 runs and 3584 to 4374 runs to achieve convergent results, respectively.  

From the perspective of information, the methods from less to more are Morris, regression-based, 

and variance-based methods. Morris method is qualitative, and the results cannot be interpreted 

physically. Therefore, it is mostly applied for qualitative variable screening. Nguyen and Reiter 

(2015) found that since the Morris method is based on random sampling, the small number of 

samplings might result in uneven distribution of variable levels. Therefore, the result of the Morris 

method is less reliable than the other methods. The regression-based and variance-based methods 

are both quantitative. The regression-based methods are very effective when applied to linear or 

monotonic models. Menberg et al. (2016) compared the main effects ranking of the building energy 

model obtained by the regression-based method and Sobol method. The results of the two methods 

are identical. The regression-based methods can provide the main effects and two-variable 

interactions as shown in Equations (4.1) and (4.2). However, the results may be unreliable when 

the sampling range is too narrow (Christopher Frey and Patil, 2002) or when the building model is 

highly nonlinear (Mara and Tarantola, 2008). The variance-based methods can quantify the main 

effects and all high-order interactions. It also performs well on nonlinear and non-monotonic 

models. Unlike the regression-based method, it works well when the sampling range is narrow.  

Some conclusions can be drawn from the review above. First, the Morris method is the most 

efficient, but it cannot quantify the interactions. Therefore, it is only suitable for variable screening, 
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not variable grouping. Secondly, the variance-based methods can provide comprehensive 

information on variables' main effects and interactions, but the computation cost is higher than 

other methods. Therefore, this type of method is not suitable for building design optimization 

problems preprocessing. Third, the regression-based methods are more efficient than the variance-

based method and offer quantitative interaction information that the Morris method cannot offer. 

Though the regression-based method may perform poorly when the model is highly nonlinear, it is 

worth sacrificing accuracy for efficiency if the most important terms are similar to the correct result. 

In conclusion, the regression-based sensitivity analysis method is selected for the first issue.  

4.3 Design of experiment method for sensitivity analysis 

In conclusion of the previous section, this section aims to address the second issue: to find a design 

of experiment method that can control the number of experiments to obtain acceptable results. 

Different DOE methods have been used for regression-based sensitivity analysis. These methods 

can be divided into random sampling and factorial design.  

The random sampling methods are related to aleatory uncertainty, which represents the randomness 

in nature (Tian et al., 2018). A probability distribution is used to describe this type of uncertainty. 

Latin Hypercube sampling is one of the random sampling methods. However, there is a lack of 

studies about the required sample size of Latin Hypercube sampling for the sensitivity analysis 

applied to the building performance simulation. Moreover, this study focuses on the uncertainty in 

the design phase. The uncertainty in the design phase is the epistemic uncertainty due to the lack 

of knowledge (Tian et al., 2018). Lavan (2019) addressed the concern about using probability to 

measure epistemic uncertainty. Therefore, the random sampling does not meet the criteria of this 

study, and the factorial design is considered as the design of experiment method for sensitivity 

analysis. In a factorial design, each variable is set as a factor with several levels, and each design 
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is a combination of all factors at different levels. When the experiments cover all the possible 

combinations of the variable at all levels, it is called full factorial design. However, sensitivity 

analysis using full factorial design as optimization preprocessing is unnecessary since optimization 

is a subset of full factorial design.  

Several special cases of factorial design are widely used to save computation time. Two-level 

factorial design is one of the methods (Heckert et al., 2002). Each variable uses the upper and lower 

boundaries in a two-level factorial design. It is beneficial in the early design phase when there are 

many factors. Since only two levels are considered for each factor, it is often assumed that the 

response is approximately linear over the range of the factor (Hinkelmann, 2012). This assumption 

coincides with the assumption of regression-based sensitivity analysis. However, some variables, 

such as the window-to-wall ratio, are related to energy consumption by a quadratic curve (Lee et 

al., 2016). The main effect and interactions obtained in this case might be less accurate, but it is 

worth sacrificing the accuracy for efficiency.  

The fractional factorial design is another case that performs only a selected subset in a full factorial 

design. According to the Sparsity-of-effects principle, the fractional factorial design reduces the 

number of experiments by confounding high-order effects with low-order effects (Heckert et al., 

2002). Different types of fractional factorial design have been applied for the sensitivity analysis 

of building performance simulation. Rahni et al. (1997) used regression analysis and Plackett and 

Burman designs on dynamic building energy simulation models. The Plackett and Burman design, 

one type of fractional factorial design, requires only k+1 simulation for k factors. However, this 

method can only be used for the main effect of the variable. The Taguchi method is another type 

of fractional factorial design. Yi et al. (2015) applied the Taguchi method with ANOVA to identify 
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the significant building variables. Chlela et al. (2007) applied the Taguchi method with regression 

analysis as the sensitivity analysis for an office building’s energy consumption.  

The two-level fractional factorial design combines the features of fractional factorial design and 

two-level factorial design. Several studies have been applied it to the sensitivity analysis of building 

energy models. For example, Dhariwal and Benerjee (2017) applied this method for ANOVA as a 

sensitivity analysis for the building energy model. Langner et al. (2011) applied this method with 

factorial analysis to identify the critical design variables that affect the energy consumptions of 

commercial high-rise office buildings. de Lemos Martins et al. (2016) applied this method with a 

Simplified Radiosity Algorithm (RSA) as a sensitivity analysis for urban morphology factors 

regarding buildings’ solar energy potential.  

The two-level fractional factorial design is generated from a full factorial design by choosing the 

design resolution, which measures the degree of confounding. The high-order interactions are 

confounded with low-order effects. Design resolutions III to V are the most used resolution levels 

(Heckert et al., 2002). When the resolution is III, all the main effects are randomly confounded 

with all other interactions. When the resolution is IV, the main effects are confounded with three-

variable interactions, and some of the two-variable interactions are confounded with each other. 

Finally, when the resolution is V, the main effects and two-variable interactions are distinguished 

but confounded with higher-order effects. The alias structure describes the details of confounding 

in the fractional factorial design.  

Compared with the other method, the two-level fractional factorial design is very efficient, and it 

can control the number of experiments to achieve the targeting effect levels by choosing the design 

resolution. Furthermore, resolution IV and above is capable of variable screening using the main 

effects, and resolution V and above are capable of variable grouping using the two-variable 
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interactions. Therefore, to meet the requirements of variable screening and grouping, this study 

proposes using the two-level fractional factorial design with resolution V as DOE for regression-

based sensitivity analysis.  

4.4 Methodology 

This study proposes regression-based sensitivity analysis using the two-level fractional factorial 

design for variable screening and grouping. The proposed method is expected to meet these two 

requirements: 

1. Control the number of experiments to achieve the target sensitivity level. 

2. Obtain acceptable results rather than convergent results. 

Three case studies are conducted to compare the proposed method with other SA methods to 

discuss if the two criteria are met. The sensitivity analysis results and the variable screening and 

grouping results are generated for each case study. Mara and Tarantola (2008) conducted a 

regression-based sensitivity analysis to a building energy model and defined parameters with a 

regression coefficient lower than 0.05 as non-significant. This study defines the threshold value for 

variable screening and grouping as 0.05 and performs variable screening and grouping separately, 

as shown in Figure 4.2. For variable screening, if the main effect is less than 0.05, the variable is 

excluded from optimization. Otherwise, the variable is considered for optimization. For variable 

screening, if the interaction indicator is larger than 0.05, the two variables are separated into two 

groups. Otherwise, the variables are combined for optimization. This process is repeated for every 

pair of variables, and two groups are merged if one variable belongs to two groups.  
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Figure 4.2 The criteria for variable screening and grouping 

This method is first applied to a benchmark function from literature. This case study is to validate 

the performance of the proposed method by comparing the results obtained in this study with the 

ones in the literature. Then this method is applied to a low-rise office building with different design 

resolutions for the first requirement. It evaluates if the method can control the number of 

experiments to achieve the targeting levels. Finally, this method is applied to a mid-rise residential 

building for the second requirement. The results are compared with the results of the Sobol method 

to discuss its accuracy. The Sobol method is a variance-based method, which is more accurate than 

the proposed method. This case study evaluates if the proposed method can identify the most 

significant main effects and interactions rather than the exact ranking. The objectives of the three 

case studies are summarized in Table 4.1. 

Table 4.1 The objectives of the three case studies 

 
Comparison group Research object Objective 

Case 1 Fractional factorial design VS 
Latin Hypercube sampling 

Main effects Validation with results in 
another study 

Case 2 Fractional factorial design with 

different resolutions 

Main effects, two-

variable interactions 

Controllable? 

Case 3 Regression-based SA VS 
Variance-based SA 

Main effects, two-
variable interactions 

Accurate enough? 
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The fractional factorial design is generated using MINITAB. Figure 4.3 shows the table used in 

MINITAB defining the number of experiments needed to achieve different levels of design 

resolution. The experiments for the Sobol method are generated using MODEfrontier. The 

integration of EnergyPlus and Modefrontier facilitates the automated function calculation and 

simulation process. The generated designs are imported from MINITAB to MODEfrontier, and the 

output of the function and simulations are exported back from modeFRONTIER to MINITAB for 

sensitivity analysis.  

 

Figure 4.3 Table of resolution levels for fractional factorial design in MINITAB 

4.5 Case studies 

4.5.1 Test function 

A linear test function is selected as the first case study to validate the proposed method with the 

results from Nguyen and Reiter (2015). The equation is shown in equation (4.3), in which xi ∈ U 

(0,1) and ci = (i−11)2 for I = 1, 2, …, n. 
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𝑓(𝑥) = ∑ 𝑐𝑖
𝑛
𝑖=1 (𝑥𝑖 −

1

2
)                                                              (4.3) 

The results from Nguyen and Reiter (2015) used Latin Hypercube sampling for the regression-

based sensitivity analysis. The correct order of variables’ main effects from high to low is x1, x2, 

x3, x4, x5… xn. This function can be defined on n-dimensional space, and in this study, the dimension 

n is defined as six. Since this is an additive function, there is no interaction between the variables. 

Therefore, only the main effect is quantified. The SA with different resolution levels is applied to 

show the impact of different resolution levels on the main effect results. The fractional factorial 

design is conducted for three resolutions: 8 runs for resolution III, 16 and 32 runs for resolution IV, 

and 64 runs for resolution V. 

4.5.2 The small office building  

The second case study selects a small office building model based on the phototype building 

developed by Pacific Northwest National Laboratory (PNNL), as shown in Figure 4.4. This case 

study evaluates if the method can control the number of experiments to achieve the targeting levels. 

The location is assumed at Montreal, Canada. The model is built using EnergyPlus. The 

performance indicator is the annual energy consumption. There are four parameters zoom and one 

core zoom. The idea load air system is assigned to each zoom meeting heating and cooling loads. 

There are ten variables for the sensitivity analysis, as shown in Table 4.2. The regression-based 

sensitivity analysis is performed to assess the main effects and two-variable interactions of 

variables on the annual energy consumption using resolution from level III to V. The two-level full 

factorial design is conducted to validate the results.  

Table 4.2 Design variable for the small office building 

Designation Variable Value 



Sensitivity Analysis for Dimension Reduction of Building Design Optimization  

106 

 

A Orientation (Degree) [0, 10, 20, 30, 40, 50] 

B Window to wall ratio [40%, 43%, 46%, 50%, 53%, 56%, 60%] 

C Roof insulation thermal resistance (m2-K/W) [4, 4.5, 5, 5.5, 6] 

D Floor slab thickness (m) [0.15, 0.17, 0.19, 0.21, 0.23, 0.25] 

E Foundation insulation thermal resistance (m2-K/W) [4, 4.5, 5, 5.5, 6] 

F Wall insulation thermal resistance (m2-K/W) [3, 3.5, 4, 4.5, 5] 

G Heating setpoint (
。

C) [20.5, 20.75, 21, 21.25, 21.5] 

H Cooling setpoint (
。

C) [23.5, 23.75, 24, 24.25, 24.5] 

J Solar heat gain coefficient [0.27, 0.18, 0.13] 

K Roof construction type [Asphalt shingles, Metal roof] 

 

 

Figure 4.4 The small office building model 

The fractional factorial designs for different resolution levels are generated: III (16runs), IV 

(32runs), IV (64 runs), V (128 runs), and two-level full factorial (1024 runs). The alias structures 

for each resolution level except full factorial are shown in Tables 4.3 to 4.6. Due to the limited 

space, interactions higher than two-variable are not shown in these tables. For resolution III (Table 

4.3), all the main effects are confounded with the two-variable interactions. For resolution IV 

(Tables 4.4 and 4.5), the main effects are partially confounded with some two-variable interactions, 

and some two-variable interactions are confounded with each other. These tables indicate that 

resolution levels III and IV are effective for the main effects when the two-variable interactions are 
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negligible. For resolution V, all the main effects are not confounded with the two-variable 

interactions, and all the two-variable interactions are not confounded with other two-variable 

interactions, as shown in Table 4.6. In this case, it can thoroughly quantify all main effects and the 

two-variable interactions. 

Table 4.3 Alias structure for resolution III (16 runs) 

Alias Alias Structure Alias Alias Structure Alias Alias Structure Alias Alias Structure 

1 A + BK + FJ  5 E + CK + DJ  9 J + AF + BG + CH + DE  13 AE + BC + DF + GH  

2 B + AK + GJ  6 F + AJ + GK  10 K + AB + CE + DH + FG  14 AG + BF + CD + EH  

3 C + EK + HJ  7 G + BJ + FK  11 AC + BE + DG + FH  15 AH + BD + CF + EG  

4 D + EJ + HK  8 H + CJ + DK  12 AD + BH + CG + EF    

Table 4.4 Alias structure for resolution IV (32 runs) 

Alias Alias Structure Alias Alias Structure Alias Alias Structure Alias Alias Structure 

1 A  14 AE  27 CE  40 EJ  

2 B  15 AF  28 CF  41 EK  

3 C  16 AG + BH 29 CG  42 FG  

4 D  17 AH + BG  30 CH  43 FH  

5 E 18 AJ  31 CJ + DK 44 FJ  

6 F 19 AK  32 CK + DJ  45 FK  

7 G  20 BC  33 DE  46 GJ  

8 H 21 BD  34 DF  47 GK  

9 J  22 BE  35 DG  48 HJ  

10 K  23 BF  36 DH  49 HK  

11 AB + GH  24 BJ  37 EF   

12 AC  25 BK  38 EG    

13 AD  26 CD + JK  39 EH   

Table 4.5 Alias structure for resolution IV (64 runs) 

Alias  Alias Structure  Alias  Alias Structure Alias  Alias Structure Alias  Alias Structure 

1 A  14 AE  27 CE  40 EJ  

2 B  15 AF  28 CF  41 EK  

3 C  16 AG + BH 29 CG  42 FG  

4 D  17 AH + BG  30 CH  43 FH  

5 E 18 AJ  31 CJ + DK 44 FJ  

6 F 19 AK  32 CK + DJ  45 FK  
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7 G  20 BC  33 DE  46 GJ  

8 H 21 BD  34 DF  47 GK  

9 J  22 BE  35 DG  48 HJ  

10 K  23 BF  36 DH  49 HK  

11 AB + GH  24 BJ  37 EF   

12 AC  25 BK  38 EG    

13 AD  26 CD + JK  39 EH   

Table 4.6 Alias structure for resolution V (128 runs) 

Alias Alias Structure Alias Alias Structure Alias Alias Structure Alias Alias Structure 

1 A 15 AF  29 CE  43 EH 

2 B 16 AG  30 CF  44 EJ  

3 C 17 AH  31 CG  45 EK 

4 D 18 AJ 32 CH  46 FG 

5 E 19 AK  33 CJ  47 FH 

6 F 20 BC 34 CK  48 FJ 

7 G 21 BD  35 DE  49 FK  

8 H 22 BE  36 DF  50 GH  

9 J 23 BF 37 DG 51 GJ 

10 K 24 BG  38 DH 52 GK 

11 AB  25 BH  39 DJ  53 HJ 

12 AC  26 BJ  40 DK 54 HK 

13 AD  27 BK 41 EF 55 JK 

14 AE 28 CD  42 EG   

 

4.5.3 The mid-rise apartment building 

The third case study selects a mid-rise residential building model based on the phototype building 

developed by Pacific Northwest National Laboratory (PNNL), as shown in Figure 4.5. This case 

study evaluates if the proposed method can obtain acceptable results rather than convergent results. 

The location is assumed at Montreal, Canada. It is a four-story apartment building with 31 

apartments plus offices. The performance indicator is the annual energy consumption. There are 

seven design variables shown in Table 4.7. This case study compares the ranking of main effects 

and two-variable interactions obtained by the proposed method with the Sobol method. The Sobol 
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method is a variance-based method that quantifies all high-order interactions. For variable 

screening and grouping, the sensitivity analysis results do not need to converge, but the significant 

terms are expected to be the same as the results of the variance-based method or full factorial. This 

study assesses whether the main effects and interactions, which accounted for 95% of the overall 

variance, were the same between the Sobol method and the proposed method. 

 

Figure 4.5 The mid-rise apartment building for case study 

Table 4.7 The design variables of the mid-rise apartment for sensitivity analysis 

Variable Value 

Floor slab thickness (m) 0.1, 0.125, 0.15, 0.175, 0.2 

Foundation slab thickness (m) 0.1, 0.125, 0.15, 0.175, 0.2 

Orientation (Degree)              0, 22.5, 45, 57.5, 67.5, 90 

Roof Insulation thickness (m) 0.2, 0.225, 0.25, 0.275, 0.3 

Solar heat gain coefficient             0.3, 0.345, 0.39, 0.435, 0.48 

Wall Insulation thickness (m) 0.2, 0.225, 0.25, 0.275, 0.3 

WWR (Window height) (m) 0.5, 0.625, 0.75, 0.875, 1 
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4.6 Results and discussion 

4.6.1 Test function  

The correct order of variables’ sensitivity from high to low is x1, x2, x3, x4, x5, x6 (Nguyen and Reiter, 

2015). The results are shown in Figure 4.6. It can be observed that the results are stable from 

resolution III (8 runs) to resolution V (64 runs). In the study of Nguyen and Reiter (2015), the Latin 

hypercube achieved stable results after 140 runs. Since this case study is not a building model, the 

variable screening and grouping criteria in Figure 4.2 do not apply to this case study. Therefore, 

only the sensitivity analysis results are discussed. 

The sensitivity analysis results are the same between the proposed method in Figure 4.6 and the 

ones in Figure 4.7 from Nguyen and Reiter (2015). This case study validates the effectiveness of 

the proposed method. Furthermore, the results show that the fractional factorial design is more 

efficient than LHC in estimating the main effects, and the resolution level above III is sufficient to 

estimate the main effect if the interactions do not exist.  

The results show that the fractional factorial design is more efficient than the Latin Hypercube for 

the main effects of variables. Latin Hypercube uses large numbers of experiments to reflect the 

characters of uncertainty. When the number of samples is too small, the results of LHC are difficult 

to converge. For fractional factorial design, when the response of variable is linear or monotonic, 

the variable boundaries relate to the response boundary, making the results converge with fewer 

experiments. 
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Figure 4.6 Results of test function sensitivity for different resolution levels. 

 

Figure 4.7 Results of test function sensitivity in Nguyen and Reiter (2015) 

4.6.2 The small office building  

4.6.2.1 Main effects 

The fractional factorial designs for different resolution levels are generated: III (16runs), IV 

(32runs), IV (64 runs), V (128 runs), and two-level full factorial (1024 runs). Figure 4.8 shows the 

main effect results with different resolution levels, and Table 4.8 shows the difference of results 

compared with the full factorial design results in percentage.  
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It can be seen from Figure 4.8 that the value of the main effect converges at level IV, but the ranking 

does not change from level III to full factorial design. It can be seen from Table 4.8 that there is a 

certain difference between the main effect value of level III and full factorial, such as roof type. 

The main effect of roof construction type (K) in resolution III is 64.72% more than the full factorial 

design. This difference is because the main effect of roof type is very little but confounded with 

many other interaction terms for level III. Even so, it does not affect the overall ranking of the main 

effect of all variables. From this case, it can be concluded that fractional factorial design with 

resolution level III is adequate for the main effect, and it can be used for the variable screening for 

building design optimization. 

 

Figure 4.8 The main effect for sensitivity analysis with different resolutions 

Table 4.8 Main effects of different resolutions compared with full factorial design 

Factors Resolution III Resolution IV Resolution IV Resolution V 
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(16 runs) (32 runs) (64 runs) (128 runs) 

A 1.52% 1.66% 1.02% 0.35% 

B 0.26% 1.48% 0.73% 0.34% 

C 0.03% 1.48% 0.67% 0.42% 

D 11.08% 12.45% 1.04% 0.08% 

E 10.01% 0.05% 1.59% 0.86% 

F 4.31% 1.67% 0.70% 0.19% 

G 7.90% 1.50% 0.75% 0.37% 

H 2.59% 1.85% 0.79% 0.36% 

J 7.85% 1.62% 0.59% 0.39% 

K 64.72% 6.66% 2.72% 0.92% 

 

4.6.2.2 Two-variable interactions 

There are 45 two-variable interactions in total. Table 4.9 shows the two-variable interactions from 

resolution level III to two-level full factorial design. It is shown in the table that the two-variable 

interaction results of resolution III are very different from the other results. The results except level 

III are shown in Figure 4.9. The results converge to the results of two-level full factorial design as 

the resolutions increase, and the results of resolution V are almost the same as the two-level full 

factorial design. Spearman’s Rank Correlation Coefficient (SRCC) is calculated for vectors of each 

resolution and full factorial to evaluate how similar the results of each resolution and full factorial 

design are. The SRCC from resolution III to V are 0.679, 0.824, 0.897, and 0.986.  

It can be concluded from the results that the resolution level III is not capable of evaluating the 

two-variable interactions; resolution level IV can evaluate the two-variable interaction at the 

expense of some accuracy; the results of two-variable of resolution level V is almost the same as 

the results of full factorial design. Above all, this case study validates that the design resolution of 

fractional factorial design can control the number of experiments to achieve the claimed resolutions. 

Moreover, resolution V is recommended to be used for the estimation of two-variable interactions 

for the variable grouping.  



Sensitivity Analysis for Dimension Reduction of Building Design Optimization  

114 

 

Table 4.9 Two-variable interaction sensitivity for different resolutions 

Interactions Resolution III 

(16 runs) 

Resolution IV 

(32 runs) 

Resolution IV 

(64 runs) 

Resolution V 

(128 runs) 

Full factorial 

(1024 runs) 

AB 0.029 0.009 0.011 0.011 0.011 

AC 0.002 0.003 0.002 0.002 0.002 

AF 0.526 0.002 0.001 0.000 0.000 

AJ 0.011 0.036 0.037 0.037 0.037 

AK 0.022 0.008 0.002 0.000 0.000 

CB 0.021 0.006 0.007 0.007 0.006 

CF 0.152 0.001 0.003 0.000 0.000 

CJ 0.012 0.013 0.013 0.013 0.013 

CK 0.665 0.001 0.002 0.001 0.001 

DA 0.665 0.013 0.001 0.001 0.001 

DB 0.126 0.016 0.003 0.001 0.001 

DC 0.022 0.036 0.001 0.001 0.000 

DF 0.218 0.001 0.019 0.000 0.000 

DG 0.011 0.002 0.025 0.001 0.001 

DJ 0.150 0.003 0.003 0.004 0.003 

DK 0.002 0.002 0.005 0.000 0.000 

EA 0.012 0.001 0.002 0.002 0.002 

EB 0.152 0.004 0.004 0.004 0.004 

EC 0.011 0.002 0.002 0.001 0.002 

ED 0.011 0.006 0.001 0.003 0.002 

EF 0.021 0.003 0.001 0.001 0.001 

EH 0.022 0.007 0.005 0.005 0.005 

EJ 0.002 0.001 0.002 0.001 0.001 

EK 0.150 0.009 0.017 0.000 0.000 

FB 0.011 0.024 0.025 0.026 0.026 

GA 0.150 0.001 0.000 0.000 0.000 

GB 0.218 0.018 0.019 0.018 0.018 

GC 0.011 0.008 0.008 0.009 0.008 

GF 0.126 0.009 0.003 0.004 0.004 

GJ 0.665 0.002 0.003 0.003 0.003 

GK 0.012 0.003 0.002 0.002 0.001 

HA 0.011 0.006 0.000 0.000 0.000 

HB 0.062 0.003 0.007 0.007 0.007 

HC 0.150 0.009 0.002 0.002 0.002 

HD 0.012 0.046 0.001 0.001 0.000 

HE 0.665 0.024 0.001 0.001 0.001 

HF 0.321 0.004 0.001 0.000 0.000 

HG 0.002 0.005 0.005 0.005 0.005 

HJ 0.022 0.016 0.017 0.017 0.017 

HK 0.011 0.018 0.002 0.000 0.000 

JB 0.526 0.046 0.046 0.046 0.046 

JF 0.029 0.006 0.008 0.007 0.007 

KB 0.321 0.005 0.000 0.000 0.000 

KF 0.062 0.007 0.001 0.000 0.000 

KJ 0.011 0.002 0.001 0.000 0.000 
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Figure 4.9 The two-variable interactions for different resolutions 

4.6.2.3 Variable screening and grouping results 

The variable screening and grouping criteria in Figure 4.2 are applied to the results of main effects 

and two-variable interactions in the previous sections. For variable screening, the results are the 

same for all resolutions: the floor slab thickness (K) and roof construction type (D) are excluded 

from optimization. For variable screening, 19 two-variable interactions in level III are larger than 

the threshold, making the optimization problem inseparable. The results of level IV to full factorial 
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design are all less than the threshold, and the original optimization problem is divided into ten 

subproblems. 

4.6.3 The mid-rise apartment building  

The design resolution of fractional factorial design used in this case study is V. The regression-

based method takes 64 runs for the seven variables, while the Sobol method takes 900 runs. The 

results of the main effect and two-variable interaction are compared. Since the sensitivity indicators 

used by these two methods are not the same, it is not possible to directly compare the value of 

indicators. Therefore, the rankings of the two variables are compared. 

4.6.3.1 Main effects 

The rankings of the main effect for the two methods are compared in Table 4.10. It can be seen 

from the results that the rankings using the regression-based method are the same as the results 

using the Sobol method.  

Table 4.10 The rankings of the main effects for the regression-based method and the Sobol method 

Variable Ranking 

Regression Sobol 

WWR 1 1 

SHGC 2 2 

Wall insulation 3 3 

Roof insulation 4 4 

Orientation 5 5 

Floor slab thickness 6 6 

Foundation slab thickness 7 7 
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4.6.3.2 Two-variable interactions 

The rankings of the two-variable interaction for the two methods are shown in Figure 4.10. As the 

table shows, the regression-based method results differ from the Sobol method results for the two-

variable interactions. Based on Sobol method analysis results, Table 4.11 lists the effects 

contributing 95% of the total variation, including the main effects and two-variable interactions. It 

can be observed from the table that 11 effects contribute to the 95% variation for the Sobol method. 

The top 11 ranked effects of the regression method are the same as the ones of the Sobol method 

with slightly different rankings. The results show that the regression-based method does not 

achieve the same ranking results as the Sobol method, but the four important interactions are the 

same between the two methods. Therefore, it is appropriate to use regression-based sensitivity 

analysis for variable grouping.  

 

Figure 4.10 The rankings of interaction between the proposed method and the Sobol method 

Table 4.11 The ranking comparison within 95% of the cumulative contribution rate 
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Factors 
Sobol 

ranking 

Regression 

ranking 

WWR 1 1 

SHGC 2 2 

Wall insulation 3 3 

Roof insulation 4 4 

Orientation 5 5 

Floor slab thickness 6 9 

SHGC × WWR 7 6 

Orientation × SHGC 8 7 

Orientation × WWR 9 8 

Wall insulation × WWR 10 11 

Foundation slab thickness 11 10 

 

4.6.3.3 Variable screening and grouping results 

The variable screening and grouping criteria in Figure 4.2 are applied to the results of main effects 

and two-variable interactions. For variable screening, the floor slab thickness and foundation slab 

thickness are excluded from the optimization for the regression-based method. Since the Sobol 

method uses different indicators, the threshold in the criteria does not apply to the results of the 

Sobol method. However, if selecting six out of seven variables is required, the variable screening 

results will be the same for the two methods.  

For variable grouping, only the interaction of window to wall ratio and solar heat gain coefficient 

obtained by regression-based method is larger than the threshold. Therefore, the optimization 

problem with seven variables is divided into six subproblems, as shown in Figure 4.11. The 

subproblems have only one variable except for the subproblem optimizing the window to wall ratio 

and solar heat gain coefficient. For the Sobol method, the variable grouping results will be the same 
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as the results of the regression-based method if it is asked to group the variables with the strongest 

interactions. 

 

Figure 4.11 Results of variable grouping  

4.7 Conclusion 

This research investigates the feasibility of sensitivity analysis for variable screening and grouping. 

The variable screening uses the main effects, and the variable grouping uses the two-variable 

interactions. For these purposes, the sensitivity analysis method is required to achieve acceptable 

results with a controllable number of experiments. This study proposes to apply the regression-

based sensitivity analysis using the two-level fractional factorial design. Three case studies are 

used to discuss the performance of this method using the results of sensitivity analysis and variable 

screening and grouping. The results of the second case study show that if only variable screening 

is performed, resolution IV is recommended, and if both variable screening and grouping are 

performed, resolution V is recommended. The results of the third case study show that the proposed 

method can achieve the same variable screening and grouping results as the results using the Sobol 

method. However, this method might perform poorly if the variables have significant nonlinear 

performance. In such a case, the mixed-level factorial design can be used. The variables with 

nonlinear performance can be assigned with three levels, and the monotonic variables are assigned 

with two levels. Moreover, the results of variable screening and grouping are discussed separately. 

A dimension reduction methodology for building design optimization problems using variable 
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screening and grouping simultaneously could be developed. These studies could be done in the 

future. 
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Chapter 5.  Conclusions  

This study proposes two decomposition approaches for building design optimization problems to 

save computation time while achieving the original problem's global optimum. In addition, the 

feasibility of combining variable screening and parallel decomposition for dimensionality 

reduction is discussed. 

The hierarchical decomposition divides the optimization problems into multiple levels. In order to 

achieve the global optimum, first-level optimization is required to keep the solutions to the original 

problem. This study proves that if the objective functions of the first-level optimization are the 

linear sum of the objective functions of the original problem, the first-level optimization will retain 

the solutions of the original problem. The proposed approach is applied to solve the optimization 

problem minimizing the operating costs and carbon emissions under different energy price and 

emissions scenarios. After decomposition, the first-level optimization minimizes the energy 

consumption while the second-level optimization minimizes the operating costs and carbon 

emissions under different energy price and emission scenarios. The case study results show that 

the proposed approaches reduce the computation time and achieve the global optimum of the 

original problem. The energy prices are assumed as annually constant in this study. However, the 

energy prices could be flexible other than annually constant. This study provides adjustments 

according to the change of this assumption.  

The parallel decomposition applies the “divide-and-conquer" strategy, dividing the original 

problem into several subproblems. In order to achieve global optimum, a dual-criteria variable 

grouping method is developed. The criteria require one variable to be separated from the other 



Conclusions 

125 

 

variables for optimization if its optimal solution stays the same regardless of the value of the other 

variables. The criteria are assessed using sensitivity analysis and interaction plots. After 

decomposition, each subproblem is solved while the variables in other subproblems are set as 

default values. The case study shows that the sensitivity analysis and interaction plots are not totally 

effective in assessing the criteria. Therefore, the subproblem might miss the global optimal solution 

when the default value of the variables in other subproblems change. The performance of the 

proposed method can be improved by first optimizing the subproblem with the strongest main 

effect and using the results for subsequent subproblems with decreasingly weaker main effects. 

Two case studies are applied to demonstrate the proposed approaches, and the results show that the 

proposed approaches reduce the computation time and achieve the global optimum of the original 

problem. 

The regression-based sensitivity analysis using the fractional factorial design quantifies the 

interaction for the variable grouping in Chapter 3. This study discussed the potential to use this 

method for variable screening and grouping. The performance of this method on sensitivity analysis, 

variable screening and grouping is investigated through case studies. It is found that this method 

can achieve acceptable results with a controllable number of experiments. Therefore, the parallel 

decomposition developed in Chapter 3 can be combined with the variable screening to further 

reduce the dimensions of building design optimization problems.  

The two decomposition approaches proposed in this study can be used individually or combined 

as a hybrid decomposition. An example of hybrid decomposition is shown in Figure 5.1. In this 

example, the original problem is to minimize the building's operating costs and carbon emissions. 

After hierarchical decomposition, it is divided into two levels. The first-level optimization 

minimizes energy consumption, and the second-level optimization minimizes operating costs and 
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carbon emissions. The parallel decomposition decomposes the first-level optimization into several 

subproblems. In the future, a case study can be done to demonstrate the benefits of using the hybrid 

decomposition approach.  

 

Figure 5.1 Hybrid decomposition combining the hierarchical and parallel decomposition 

The following recommendations are provided to help users to select a decomposition approach. 

There are three scenarios as shown in Figure 5.2: 

Option 1: When one problem has a hierarchy structure, and the objectives of this problem are the 

linear sum of another problem’s objective functions, it is recommended to apply the hierarchical 

decomposition. 

Option 2: When the computation cost is still high after the hierarchical decomposition, applying 

the parallel decomposition to the first-level optimization as a hybrid decomposition is 

recommended.  

Option 3: It is recommended to only apply parallel decomposition when the hierarchical 

decomposition conditions in option 1 are not met. 
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Figure 5.2 Recommendations for selecting a decomposition approach 
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