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Abstract

Cell-Free Massive MIMO: Challenges and Promising Solutions

Salah Elhoushy, Ph.D.

Concordia University, 2022

Along with its primary mission in fulfilling the communication needs of humans as well as

intelligent machines, fifth generation (5G) and beyond networks will be a virtual funda-

mental component for all parts of life, society, and industries. These networks will pave

the way towards realizing the individuals’ technological aspirations including holographic

telepresence, e-Health, pervasive connectivity in smart environments, massive robotics,

three-dimensional unmanned mobility, augmented reality, virtual reality, and internet of

everything. This new era of applications brings unprecedented challenging demands to

wireless network, such as high spectral efficiency, low-latency, high-reliable communica-

tion, and high energy efficiency. One of the major technological breakthroughs that has

recently drawn the attention of researchers from academia and industry to cope with

these unprecedented demands of wireless networks is the cell-free (CF) massive multiple-

input multiple-output (mMIMO) systems. In CF mMIMO, a large number of spatially

distributed access points are connected to a central processing unit (CPU). The CPU

operates all APs as a single mMIMO network with no cell boundaries to serve a smaller

number of users coherently on the same time-frequency resources. The system has shown

substantial gains in improving the network performance from different perspectives, es-

pecially for cell-edge users, compared it other candidate technologies for 5G networks,

i.e., co-located mMIMO and small-cell (SC) systems. Nevertheless, the full picture of a

practical scalable deployment of the system is not clear yet. In this thesis, we provide

more in-depth investigations on the CF mMIMO performance under various practical

system considerations. Also, we provide promising solutions to fully realize the potential

of CF mMIMO in practical scenarios. In this regard, we focus on three vital practical

challenges, namely hardware and channel impairments, malicious attacks, and limited-

capacity fronthaul network.

Regarding the hardware and channel impairments, we analyze the CF mMIMO perfor-

mance under such practical considerations and compare its performance with SC systems.
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In doing so, we consider that both APs and user equipment (UE)s are equipped with

non-ideal hardware components. Also, we consider the Doppler shift effect as a source of

channel impairments in dynamic environments with moving users. Then, we derive novel

closed-form expressions for the downlink (DL) spectral efficiency of both systems under

hardware distortions and Doppler shift effect. We reveal that the effect of non-ideal UEs

is more prominent than the non-ideal APs. Also, while increasing the number of deployed

non-ideal APs can limit the hardware distortion effect in CF mMIMO systems, this leads

to an extra performance loss in SC systems. Besides, we show that the Doppler shift effect

is more harsh in SC systems. In addition, the SC system operation is more suitable for

low-velocity users, however, it is more beneficial to adopt CF mMIMO system for network

operation under high-mobility conditions. Capitalizing on the latter, we propose a hybrid

CF mMIMO/SC system that can significantly outperforms both CF mMIMO and SC

systems by providing different mobility conditions with high data rates simultaneously.

Towards a further improvement in the CF mMIMO performance under high mobility

scenarios, we propose a novel framework to limit the performance degradation due to the

Doppler shift effect. To this end, we derive novel expressions for tight lower bound of the

average DL and uplink (UL) data rates. Capitalizing on the derived analytical results, we

provide an analytical framework that optimizes the frame length to minimize the Doppler

shift effect on DL and UL data rates according to some criterion. Our results reveal that

the optimal frame lengths for maximizing the DL and UL data rates are different and

depend mainly on the users’ velocities. Besides, adapting the frame length according to

the velocity conditions significantly limits the Doppler shift effect, compared to applying

a fixed frame length.

To empower the CF mMIMO systems with secure transmission against malicious at-

tacks, we propose two different approaches that significantly increases the achievable

secrecy rates. In the first approach, we introduce a novel secure DL transmission tech-

nique that efficiently limits the eavesdropper (Eve) capability in decoding the transmitted

signals to legitimate users. Differently, in the second approach, we adopt the distinctive

features of Reconfigurable intelligent surfaces (RIS)s to limit the information leakage to-

wards the Eve.

Regarding the impact of limited capacity of wired-based fronthaul links, we drive

the achievable DL data rates assuming two different CF mMIMO system operations,
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namely, distributed and centralized system operations. APs and CPU are the responsi-

ble entities for carrying out the signal processing functionalities in the distributed and

centralized system operations, respectively. We show that the impact of limited capac-

ity fronthaul links is more prominent on the centralized system operation. In addition,

while the distributed system operation is more preferable under low capacities of fron-

thaul links, the centralized counterpart attains superior performance at high capacities

of fronthaul links. Furthermore, considering the distributed and centralized system op-

erations, and towards a practical and scalable operation of CF mMIMO systems, we

propose a wireless-based fronthaul network for CF mMIMO systems under three different

operations, namely, microwave-based, mmWave-based, and hybrid mmWave/microwave.

Our results show that the integration between the centralized operation and the hybrid-

based fronthaul network provides the highest DL data rates when APs are empowered

with signal decoding capabilities. However, integrating the distributed operation with

the microwave-based fronthaul network achieves ultimate performance when APs are not

supported with decoding capabilities.
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Chapter 1

Introduction

Along with each generation of cellular networks, there is a corresponding development

towards fulfilling the mission of providing excellent communication service to anyone,

anywhere, any anytime. Indeed, the evolution of cellular networks from the first generation

(1G) to the fifth generation (5G) had a profound impact on different aspects of our

life. One can notice that through the tactile impact of smartphones on our daily social

interactions that became virtual than real as well as our cultural beliefs that can be

easily affected by accessing real-time information from all over the world. Indeed, the

needs of mobile users have been continuously changing over the past few decades. At

first, mobile networks were analog and designated to exclusively handle voice traffic.

Differently, the majority of mobile users traffic has recently switched to digital traffic

such as video/audio streaming, web browsing, file sharing, etc. rather than voice traffic.

Furthermore, along with its primary mission in fulfilling the communication needs of

humans, future cellular networks will be a virtual fundamental component for all parts of

life, society, and industries.

5G and beyond networks will pave the way towards realizing the individuals tech-

nological aspirations including holographic telepresence, e-Health, pervasive connectivity

in smart environments, massive robotics, three dimensional massive unmanned mobility,

augmented reality, virtual reality, and internet of everything [1,2]. Towards fulfilling such

emerging applications, 5G and beyond networks are conceived to offer much higher data

rates than its predecessors to cope with the seemingly ever increasing demand of enhanced

mobile broadband (eMBB) along with providing ultra-reliable low-latency communica-

tion (URLLC) and massive machine-type communication (mMTC) [3]. In that, eMBB,

URLLC, and mMTC are considered as the three cornerstones of the magic triangle for 5G

and beyond networks. Particularly, eMBB enables the data hungry applications such as

virtual reality and holographic telepresence [4] while URLLC enables real-time applica-

tions, characterized by time-critical communications, such as autonomous vehicles [5, 6],

1
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e-Health [7], industrial automation control [8, 9]. Besides, mMTC enables connectivity

between a vast number of miscellaneous devices and sensors [10, 11] which is an enabler

for internet of everything applications in which heterogeneous devices can exchange data

without human intervention. By the end of 2025, 2.8 billion mobile subscriptions are

anticipated to be 5G-based, and out of which 88 percent will be targeting eMBB [12].

The eMBB is the use case that networking and telecommunication companies are mainly

focusing at since day one of the 5G development journey [13]. Consequently, investigating

the provided data rates to users in 5G and beyond networks is the leitmotif in this thesis.

Various emerging technologies have been recently proposed to flourish 5G and be-

yond networks with exceptional increase in the data rates, such as millimeter wave

(mmWave) [14,15], ultra-dense network (UDN) [16], and massive multiple-input multiple-

output (mMIMO) [17–19]. mmWave bands, namely the range 30 − 300 GHz where the

wavelength is in the order of the millimeter, are currently considered as a key enabling

technology to meet the high data rate requirements in future wireless networks. This is

thanks to the immense amount of available bandwidth in such frequency bands compared

to the available ones in the microwave band, i.e., sub-6 GHz frequency band. Never-

theless, the large signal attenuation as well as the high sensitivity to blockages in such

high frequencies [15] renders mmWave appealing only for short-range line-of-sight (LoS)

communications. Aside from that, shrinking the cell size through deploying more small

base stations (also known as small-cell (SC)s) is another promising approach to boost the

achievable data rates. Further densification of small base stations brings the serving base

station closer to the user which in turn improves the quality of received signals at the user

side. Also, one can dedicate each small base station to serve only one user which does

not have to share any resource with other users. This is what so called UDN. Despite

the significant data rate improvements of UDN, it entails high deployment and mainte-

nance costs [13]. Note that, the network densification can be performed in a centralized

way rather than the distributed way in UDN. This is known as mMIMO technology in

which in base stations are equipped with a number of antennas much larger than the

number of active users per time-frequency resource through beamforming techniques [19].

The excess number of base station antennas compared to the users leads to the favorable

propagation phenomenon according to which the users’ channels become approximately

mutually orthogonal as the number of antennas grows [20]. This in turn makes the inter-
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user interference vanishes and enables spatial multiplexing of the users. The favorable

propagation also makes linear signal processing schemes, such as conjugate beamforming

(CB) and zero-forcing (ZF), effective and nearly optimal, hence considerably simplifying

the circuitry complexity [18]. In addition, the system can provide extraordinary amounts

of beamforming gain that is linearly increasing with the number of deployed antennas at

the base station. Despite the reported significant gains of mMIMO technology, it suffers

from performance degradation at cell-edge users [13].

A new practical embodiment of mMIMO systems has been recently emerged under the

name of Cell-free (CF) mMIMO [21]. CF mMIMO systems can efficiently combine the

blessings of mmWave, UDN, and mMIMO technology to provide future wirless networks

with unprecedented levels of data rates. In CF mMIMO, many antennas are geograph-

ically distributed within the coverage area rather than co-located in a base station. We

refer to the distributed antennas as access point (AP)s. These APs are connected to a

central processing unit (CPU) which operates all APs as a single mMIMO network with

no cell boundaries to serve all users coherently in the same time-frequency resources [22].

Unlike conventional mMIMO systems, CF mMIMO can provide all users within the cov-

erage area with a uniformly good service [21].

1.1 Motivations

The key objectives of this thesis are to:

1. Analyzing the CF mMIMO system performance under various practical system con-

siderations.

2. Empowering CF mMIMO systems with innovative solutions to realize its full po-

tential in boosting the network performance from different perspectives.

3. Providing a practical and scalable implementation for CF mMIMO systems.

4. Develop analytical and simulation frameworks for the developed techniques.

The proposed work is important in various ways. It certainly addresses a timely topic (CF

mMIMO system), which has recently received considerable attention in both academic

research and industry. Indeed, preliminary studies in the literature have revealed the

significant potential of CF mMIMO systems in providing future wireless communication
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networks with superior performance to that of other candidates for 5G network operations

such as UDN and conventional mMIMO. Nevertheless, the full picture of a practical and

scalable CF mMIMO system is not clear yet. Motivated by this, and since the reported

theoretical results may not hold in practice as a consequence of the negative impacts

of practical limitations on the system performance, we introduce profound insights on

the CF mMIMO performance under various practical system considerations. Besides, we

provide promising solutions to tackle the performance degradation in practical scenarios.

In this regard, we focus on three vital practical system consideration, namely hardware

and channel impairments, malicious attacks, and limited-capacity fronthaul network.

It is noteworthy that a prerequisite to achieve the anticipated gains of mMIMO systems

is the availability of accurate and up-to-date channel-state information (CSI) during data

transmission phases [18, 23]. However, the low quality of hardware components may

affect the accuracy of the estimated channels badly. Besides, in dynamic scenarios, the

relative movement between users and APs as well as the introduced processing delay at

APs lead to temporal variations in the propagation environment. This in turns affects

the channel coefficients to continuously evolve with time and change from one symbol to

another [24]. This renders the estimated channel coefficients out-of-date when applied

for data transmission which in turn leads to an inevitable degradation in the system

performance. Such effect is known as the Doppler shift effect and it is considered as one

of the main channel impairment sources in dynamic environments [24]. Consequently, we

analyze the potential of CF mMIMO in supporting dynamic environments in the presence

of non-ideal hardware components. Also, we provide solutions to alleviate the Doppler

shift effect on the system performance.

Recently, wireless communication networks play a crucial rule in many military and

civilian applications [25]. In particular, it is widely used in the transmission of impor-

tant/private information, such as energy pricing, credit card information, e-health data,

and control messages. As such, security is one of the critical concerns of the future wire-

less networks. In this regard, we rely on physical layer security (PLS) metrics to assess

the secrecy capabilities of CF mMIMO systems. Furthermore, due to the negative impact

of malicious attacks on the secrecy performance of the system, we provide innovative so-

lutions to empower CF mMIMO systems with secure data transmission against malicious

attacks.
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Due to its pivotal role in handling the data exchange between the CPU and APs, the

capacity of fronthaul links significantly affects the performance of CF mMIMO systems.

Consequently, we investigate the impact fronthaul links capacities on the performance

of CF mMIMO systems with emphasis on its impact on the preferred system operation

(where to perform the signal processing functionalities, i.e., APs or CPU). Besides, aiming

at maintaining a practical and feasible implementation of CF mMIMO as the network gets

larger and the number of APs increases, we propose a scalable and practical wireless-based

fronthaul network design that can accommodate for all APs and provide them with reliable

fronthaul links that can efficiently handle the data exchange between APs and CPU.

1.2 Thesis Contributions

Given the preceding motivating points in the last section, the contributions of this thesis

can be summarized as follows.

CF mMIMO and SC Performance Under Hardware and Channel Impair-

ments. In Chapter 3, we analyze the achievable downlink (DL) data rates of CF mMIMO

systems and compare it with the achievable ones of SC systems (i.e., UDN) under non-

ideal hardware distortions and channel impairments, i.e., Doppler shift effect. To this

end, we provide novel closed-form expressions for the achievable DL data rates for both

systems under such practical system considerations. Also, we come up with new findings

regarding the impact of these system practical considerations on both systems operations.

Firstly, we reveal that the effect of non-ideal user equipments (UEs) is more prominent

than the non-ideal APs. Besides, the effect of non-ideal APs distortion is more prominent

in the SC system. Regarding the channel impairments effect, we reveal that the Doppler

shift effect is more prominent in SC systems. In addition, SC systems are preferred to

support network operation under low-mobility conditions. However, it is more beneficial

to adopt CF mMIMO for network operation under high-mobility conditions. Inspired by

these findings, we propose a hybrid CF mMIMO/SC system that supports high-velocity

and low-velocity users with high DL data rates simultaneously. We show that the pro-

posed system outperforms SC and CF mMIMO systems by providing users of different

mobility conditions with superior data rates simultaneously.

Limiting Doppler Shift Effect on CF mMIMO Systems. In Chapter 4, we

propose a novel framework to limit the Doppler shift effect on the achievable DL and
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uplink (UL) data rates of CF mMIMO systems. Particularly, we adapt the length of the

data transmission frame according to the users’ velocities to reduce the impact of outdated

CSI on the transmitted data in later symbols in the data transmission frame. We conduct

this under different transmission protocols where the first transmission protocol considers

performing the channel estimation task before the DL and UL transmission phases, while

the second one considers carrying out the channel estimation task between the UL and

DL transmission phases. In doing so, we derive novel expressions for tight lower bound of

the average DL and UL data rates. Then, capitalizing on the derived analytical results,

we provide an analytical framework to determine the optimal frame length that limits the

Doppler shift effect on DL and UL rates according to some criterion. Our results show

that the optimal frame lengths for maximizing the DL and UL rates are different and

depend mainly on the transmission criterion and the users’ velocities. Also, selecting the

frame length that minimizes a weighted sum of the DL and UL losses can significantly

limit the Doppler shift effect on both DL and UL data rates simultaneously. Finally, we

demonstrate the high potential of adapting the frame length according to the velocity

conditions in limiting the Doppler shift effect, compared to applying a fixed frame length.

Physical Layer Security in CF mMIMO Systems. In Chapter 5, we analyze the

secrecy capacities of CF mMIMO systems in the presence of malicious attacks, i.e., active

eavesdropper (Eve). Also, we propose two promising approaches to improve the secrecy

performance of CF mMIMO systems. The first approach focuses on the case where APs

cannot detect the presence of the active Eve. Also, the Eve strives to estimate its DL

channel coefficients with APs capitalizing on the DL transmission strategy. To improve

the secrecy capacities of the system under this scenario, we propose a novel DL trans-

mission technique to limit the information leakage to the active Eve. The performance of

the proposed DL transmission technique is compared with other DL transmission tech-

niques in the literature. We reveal that the proposed DL technique improves the secrecy

performance of CF mMIMO systems compared to other transmission techniques in the

literature. In the second proposed approach, we focus on the case where the system can

detect the presence of active Eve. In that, we exploit the distinctive features of Recon-

figurable intelligent surfaces (RIS)s to improve the secrecy performance of CF mMIMO

systems. To this end, we propose a novel RIS-assisted CF mMIMO system operation in

which RIS phase shifts and DL power control coefficients are jointly optimized to minimize
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the information leakage to the active Eve while maintaining the legitimate users’ perfor-

mance above certain thresholds. Our results reveal that RISs can significantly enhance

the secrecy capacities of CF mMIMO systems.

Limited-Fronthaul Capacity Effect on CF mMIMO Performance. In Chapter

6, we investigate the DL performance of CF mMIMO systems under limited capacity of

wired-based fronthaul links. In particular, we analyze the achievable DL rates assuming

two different CF mMIMO system operations, namely, distributed and centralized system

operations, assuming limited capacity of fronthaul links. In the distributed system oper-

ation, APs are responsible for performing channel estimation and data precoding tasks

where a simple precoding technique is applied for DL data transmission due to their low

processing capabilities. On the other hand, the CPU carries out both channel estimation

and data precoding tasks where more sophisticated DL precoding technique is applied for

DL data transmission thanks to the high available processing capabilities at the CPU.

Our results reveal that the impact of limited capacity fronthaul links is more prominent

on the centralized system operation. In addition, while the distributed system operation

is more preferable under low capacities of fronthaul links, the centralized counterpart

attains superior performance at high capacities of fronthaul links.

CF mMIMO Performance Under A Wireless-Based Fronthaul Network. In

Chapter 7, we propose a practical and scalable wireless mMIMO-based fronthaul net-

work that can efficiently serve APs with reliable and high-capacity fronthaul links. Par-

ticularly, we consider multiple edge-cloud processor (ECP)s serving APs using one of

three possible fronthaul network operations, namely, microwave, mmWave, and hybrid

microwave/mmWave. Under each fronthaul network operation, we analyze the achievable

DL data rates for two different microwave-based operations of the access link (AP-users),

namely, distributed and centralized operations, while assuming DL with/without decod-

ing capabilities. Our results show that the integration between the centralized access link

operation and the hybrid-based fronthaul network provides the highest DL data rates

when AP are empowered with decoding capabilities. However, integrating the distributed

access link operation with the microwave-based fronthaul network achieves ultimate per-

formance when AP are not supported with decoding capabilities.



8

1.3 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, we provide a comprehensive

introduction to mMIMO systems with emphasis on the CF mMIMO and the practical

challenges that may affect the its performance badly. Considering hardware and channel

impairments, we conduct a comparison between the DL performance of CF mMIMO

systems and SC systems and propose a hybrid CF mMIMO/SC system for high data rates

in dynamic environments in chapter 3. In chapter 4, we propose a framework to limit

the negative impact of channel impairments on the performance of CF mMIMO systems.

Promising solutions to empower CF mMIMO systems with secure data transmission are

introduced in chapter 5. The DL performance of limited-fronthaul CF mMIMO systems is

investigated in chapter 6. In chapter 7, we investigate the DL performance of CF mMIMO

systems under a practical and scalable wireless mMIMO-based fronthaul network. Finally,

the conclusions of this thesis are drawn and the future trends are discussed in Chapter 8.



Chapter 2

Background and Literature Review

2.1 Blessings of Multi-Antenna Systems

Using multiple transmitting/receiving antennas can remarkably boost the quality of the

signal at the receiver, and enhances the robustness and reliability of the link. This is a

consequence of the possibly independent propagation channels through which the signal

is transferred from transmitter to receiver. This in turn reduces the probability that the

signal between the transmitter and receiver experiences poor channel conditions. This is

known as spatial diversity gain [26]. However, a prerequisite to attain such beamforming

gains is to have a sufficient space of half-wavelength between the deployed antennas [27].

Along with that, one can exploit the multiple antennas at the receiver side to send different

signals to the same user by means of space-time coding techniques which is defined as the

spatial multiplexing gain [28]. Spatial diversity and spatial multiplexing gains were the

motive of the initial MIMO system known as point-to-point MIMO [27–30].

Along with the aforementioned benefits of multi-antenna systems, equipping base sta-

tions with multiple antennas can efficiently improve the transmission directivity by ap-

propriately synchronize the signal transmissions from the different antennas to direct the

signal energy towards a specific direction. The main idea is to adjust the transmitted

signal components from each antenna so that they add up constructively at the intended

receiver, thus, the receiver observes a much stronger signal than the transmitted one from

each antenna. Such technique is widely known as beamforming [31]. Also, the improve-

ment of the signal strength at the receiver side is called the beamforming gain which is

equal to the number of the transmitting antennas. Interestingly, along with the remark-

able beamforming gains at the desired receiver side, there will be a destructive interference

in any undesired direction. Thus, receivers in undesired locations will experience slight

interference. Such ability of focusing the signals towards a specific direction leads to an

efficient use of the available resources of wireless networks through enabling them to serve

9
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multiple users on the same time-frequency resources by separating them in the spatial

domain. This is known as spatial division multiple-access (SDMA) [32] which leads to

high multiplexing gains and high data rates accordingly. This is the adopted technique

for mMIMO systems.

2.2 Evolution of mMIMO Systems

2.2.1 Multi-User MIMO

mMIMO systems have been firstly considered in Long Term Evolution (LTE) in a small-

scale under the name of Multi-user MIMO [33–36]. In multi-user MIMO, a base station

with multiple antennas simultaneously serves a multiplicity of single antenna users whose

number is equal to the number of antennas in the base station over the same time-

frequency resources. The system has shown a significant improvement in the achievable

data rates but at the expense of complicated signal processing and the need of substantial

channel estimation resources which constitute the inherent bottleneck of multi-user MIMO

technology.

2.2.2 Co-located mMIMO

An emerging idea from multi-user MIMO towards fulfilling the eMBB requirements of

future wireless networks is mMIMO [19,37–39]. In mMIMO, base station, equipped with

an array of hundreds antenna elements, communicates with tens of single-antenna users

over the same time-frequency resources. Along with the high beamforming gains, the

excess number of base station antennas leads to approximately mutually orthogonal as

the number of antennas grows which is known as the favorable propagation phenomenon

[20]. This in turn nulls the inter-user interference and enables spatial multiplexing of

the users. The favorable propagation also makes linear signal processing schemes, such

as CB and ZF, effective and nearly optimal, hence considerably simplifying the circuitry

complexity [18]. Furthermore, the high number of antennas renders the communication

channels nearly deterministic as the effect of the small-scale fading is averaged out over

the many channel observations according to the law of large numbers. This is known

as the channel hardening property [40, 41]. Such property facilitates the derivation of

closed-form expressions of the achievable spectral efficiency [18, 42, 43]. This enables
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the optimization of spectral and energy efficiencies and simplifies the resource allocation

(i.e., power control) since it needs to be carried out according to the slow-varying large-

scale fading coefficients rather than the fast-varying small-scale fading [18,43–49]. Indeed,

the aforementioned advantages of co-located mMIMO system induced telecommunication

companies to consider it as a key enabler of 5G. Recently, co-located mMIMO base stations

has been deployed all over the world.

2.2.3 Distributed mMIMO

mMIMO can be deployed in a distributed manner as well in a form of a distributed

mMIMO system in which a spatially distributed antenna array in each cell is used to

serve the users within the cell in a cooperative way. This system setup is similar to

Distributed Antenna System (DAS) setup [50] and Coordinated Multi-Point (COMP)

with static disjoint cooperation clusters [51]. The performance of distributed and co-

located mMIMO systems is compared in [52–55]. Results reveal that distributed mMIMO

provides higher data rates than the co-located mMIMO counterpart.

2.2.4 CF mMIMO

Recently, a new practical embodiment of the distributed mMIMO systems has been

emerged under the name of CF mMIMO [21, 56, 57]. Different from distributed mMIMO

systems, in CF mMIMO, all the spatially distributed antennas are connected to a CPU

which operates all antennas as a single mMIMO network with no cell boundaries to serve

all users coherently in the same time-frequency resources [22]. We refer to the spatially

distributed antennas as APs. Also, each AP can be equipped with single or multiple

antennas for the communication with users. The signal co-processing by the distributed

APs yields further benefits to CF mMIMO systems along with the inherited beamforming

and spatial multiplexing gains from its mMIMO nature such as

• Macro-diversity gain: Serving each user by a number of distributed well-separated

APs enriches the provided spatial diversity to users since the probability of different

APs experiences poor channel conditions is low. Along with that, adopting the

network densification approach in CF mMIMO brings APs to the proximity of users

leads to a remarkable reduction in the path-loss and shadowing effects. Such benefits
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improves the reliability of links between users and their serving APs which in turn

leads to higher levels of beamforming gains.

• Inter-cell interference mitigation: Conventionally, UDN networks are operated as a

i.e., SC system in which each AP serves only one user or the the users in its proximity,

and each user is served by one AP. Consequently, the system suffers from high levels

of inter-cell interference. Differently, operating all APs in a cooperative manner in

CF mMIMO erases the cell-boundaries and turn the resulted inter-cell interference

in SC systems into a useful signal. It has been shown in the literature that CF

mMIMO significantly outperforms the SC counterpart for cell-edge users [21].

• Uniform QoS: As illustrated, in CF mMIMO, there are no cell-edge users where all

users are experiencing good channel conditions. This in turn leads to a fairness in

the provided service to all users within the coverage area.

2.3 CF mMIMO Operation

Time-division duplexing (TDD) has been widely adopted by the majority of current works

as the candidate transmission protocol for CF mMIMO systems. On the other hand, the

works in [58–62] adopted the frequency-division duplexing (FDD) mode for the system

operation. For the system operation under TDD mode, the DL and UL data transmission

occur over the same frequency band. Thus, the DL and UL channels are reciprocal

[37, 63, 64]. This in turn enables APs to estimate the DL channel conditions with users

without feedback. As a consequence, the TDD protocol renders CF mMIMO scalable as

the number of APs and antennas at APs increase [65, 66]. Under TDD operation, the

system frame is divided into three phases, namely, UL training, DL transmission, and

UL transmission. During the UL training phase, users send pilot sequences to APs so

that APs can estimate the users’ UL channel conditions. Capitalizing on the channel

reciprocity property, the estimated channels are exploited to determine the vectors used

to perform data precoding and detection in DL and UL transmission phases, respectively.

On the other hand, in FDD systems, the DL and UL data transmissions occur simulta-

neously, but over two different frequency bands. As such, UL and DL channel coefficients

are not reciprocal. This in turn obliges the APs to acquire the DL channel coefficients to

perform the DL precoding process. In particular, APs can acquire the channel coefficients
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through a DL channel estimation phase, followed by a CSI feedback. However, since the

amount of CSI acquisition and feedback scales linearly with the number of APs [61], the

latter approach is not practical for CF mMIMO systems. As such, different CSI acquisi-

tion techniques are proposed to circumvent such issue by exploiting the angle reciprocity

in FDD systems as in [58, 59,61].

We adopt the TDD-based operation for the presented works in this thesis. In what

follows, we briefly discuss the three transmission phases of TDD-based CF mMIMO frame

structure, namely channel estimation, DL transmission, and UL transmission. Note that,

there are two different approaches of CF mMIMO operation to perform the signal pro-

cessing functionalities. The first one is a distributed approach in which the APs perform

the channel estimation as well as the DL precoding and UL detection. Differently, the

second one is a centralized approach in which the CPU is the responsible entity for car-

rying out these tasks. A comparison between the distributed and centralized approaches

are conducted in chapter 6 and 7.

2.3.1 Channel Estimation

Channel estimation process plays a crucial role in mMIMO systems performance in-terms

of spectral and energy efficiencies [67] since it directly affects the calculations of precod-

ing/detection vectors applied for DL/UL data transmission. In the literature, different

techniques are applied to perform the channel estimation process in CF mMIMO systems

where the majority of these techniques are pilot-based. In that, users send pilot sequences

of length to APs for the sake of channel estimation. The assigned pilot sequences to users

can be orthogonal or non-orthogonal depending on the channel coherence time and the

number of users. For instance, under low mobility scenarios with large coherence time

and small number of users, orthogonal pilot sequences with can be assigned to users.

However, in high mobility scenarios with small coherence time, it is preferred to use non-

orthogonal pilot sequences to limit the amount of consumed resources to perform the

channel estimation task.

A common assumption that is made to perform the channel estimation process is the

availability of the large-scale fading (LSF) coefficients of users at the APs/CPU. This is

due to their slow changes relative to the channel coherence time [21]. Thus, the minimum

mean-square error (MMSE)-based channel estimation technique is the commonly adopted
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technique by the majority of works in the literature [68]. Differently, few works analyzed

the performance of CF mMIMO systems using the least-square (LS) estimator in the

absence of LSF coefficients of users at the APs/CPU [69–72]. The authors in [71,72] com-

pared the performance of CF mMIMO systems under LS and MMSE channel estimation

techniques. Results revealed that applying the LS estimator attains lower DL and UL

data rates compared to the MMSE estimator.

2.3.2 DL Transmission

After estimating the users-APs channel conditions, the estimated channel coefficients are

exploited to compute the precoding vector for DL transmission. Different distributed

and centralized DL precoding techniques are applied for DL transmission in CF mMIMO

systems. The most common distributed precoding technique in the literature is the local

CB precoding. This is due to its low complexity and the ability to provide closed-form

expressions for the DL data rates [21]. On the other hand, more sophisticated centralized

techniques such as ZF [73] and MMSE [74] precoding are applied to improve the system

performance in terms of the achievable data rates. Since users do not have instantaneous

information about is channel conditions with APs, they receive the transmitted data

symbols using the channel statistics based on the channel hardening property [75].

2.3.3 UL Transmission

During the UL data transmission phase, all users simultaneously transmit their UL data

symbols to APs over the same time-frequency resources. capitalizing on the users’ esti-

mated channels at APs, users’ data are detected locally at each AP using maximum-ratio-

combining (MRC) [21]. Then, the locally detected signals at APs are forwarded to the

CPU which detects the users’ signals by averaging the locally detected signals. Differently,

the authors in [76, 77] introduced more sophisticated MMSE centralized detection tech-

niques to improve the achievable UL data rates. Also, these works proposed a two-stage

detection approach which applies a local detection at APs using MRC or local MMSE,

followed by a large-scale fading decoding (LSFD) at the CPU.
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2.4 Practical Challenges of CF mMIMO

Despite the significant theoretical gains of CF mMIMO in improving the systems perfor-

mance in-terms of spectral and energy efficiencies, the systems performance is prone to

inevitable performance degradation under various practical system considerations. In the

following, we shed light on various practical challenges that may confront the realization

of the full potential of CF mMIMO in meeting the unprecedented requirements of future

wireless networks.

2.4.1 Hardware Distortions

Densifying wireless networks with single or multi-antenna APs as in CF mMIMO systems

may lead to a significant energy consumption and hardware cost in case of equipping APs

and UEs with ideal hardware components. On the other hand, equipping APs and UEs

with non-ideal hardware components will distort the transmitted and received signal by

introducing a distortion noise at the transmitter and receiver sides. The distortion effect

depends mainly on the efficiency of the utilized hardware components. As a consequence,

deploying non-ideal hardware components will significantly harm the system performance.

The effect of non-ideal hardware distortion caused by i.e., multiplicative phase-drifts,

additive distortion noise, noise amplification, and inter-carrier interference has been ad-

dressed for co-located mMIMO [43, 78–80]. It has been pointed out that the impact of

hardware distortion at the UEs side is more prominent than its effect on the AP side.

Besides, a hardware scaling law is introduced to show that the detrimental impact of

hardware impairments at the APs asymptotically vanishes. Thus, in mMIMO systems,

it is tolerable to have a large number of low-quality APs antennas, but it is preferable to

have high-quality antennas at the UEs side.

2.4.2 Channel Impairments

A prerequisite to reap all the advantages of mMIMO systems in-terms of high spectral and

energy efficiency is to have accurate and up-to-date CSI [18,23]. As such, the presence of

inaccurate channel estimation may deteriorate the systems performance significantly. The

inaccuracy in the channel estimation process is caused by the thermal noise as well as the

usage of non-orthogonal training sequences during the channel estimation phase which
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is known as pilot contamination effect [67]. Besides, in dynamic scenarios, the relative

movement between users and APs as well as the introduced processing delay at APs lead

to temporal variations in the propagation environment. This in turns affects the channel

coefficients to continuously evolve with time and change from one symbol to another. Such

a phenomenon is called channel aging or Doppler shift effect [24,81–83]. This renders the

estimated channel coefficients out-of-date when applied for data reception/transmission.

This in turn leads to a significant degradation in the systems achievable rates.

The Doppler shift effect on the performance of co-located mMIMO systems in-terms

of the achievable DL and UL rates has been studied in the literature assuming system

operation under TDD in [81–84] and FDD in [85]. Results show that such effect dete-

riorates the achievable DL and UL rates of co-located mMIMO systems. In addition,

the achievable rates become negligible under severe channel aging conditions, i.e., high

velocity conditions. Moreover, the UL performance of distributed mMIMO systems under

TDD system operation is analyzed in [86] considering different sources of channel impair-

ments including pilot contamination, phase noise, and Doppler shift effect. It has been

revealed that the Doppler shift effect is more detrimental on the achievable rate.

2.4.3 Malicious Attacks

Along with its primary goal in supporting users with high data rates, CF mMIMO systems

should protect users’ data with high security levels. Indeed, serving each user with a large

number of geographically distributed APs attains high spatial diversity gains and high

data rates accordingly. However, this makes the user’s data symbols more prone to attacks

by eavesdroppers. It is noteworthy that the quality of the users’ estimated channels has a

pivotal role in attaining the anticipated gains of CF mMIMO systems. However, since the

transmission protocol and pilot sequences are standardized and public, a smart Eve can

exploit this feature to deteriorate the quality of estimated channels by actively sending

spoofing pilot sequences to cause a pilot contamination attack. This in turn poses a crucial

threat to the system performance. Such attack is known as the pilot spoofing attack [87].

It has been revealed that the pilot spoofing attacks cause a severe performance degradation

in the performance of co-located mMIMO systems by degrading the achievable rates of

the legitimate users and increasing the information leakage towards the Eve [88].
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2.4.4 Capacity of Fronthaul Links

It is noteworthy that the capacity of the fronthaul network dramatically affects the CF

mMIMO performance. This is due to its vital role in handling the data exchange be-

tween the CPU and APs. More specifically, the higher amount of data to be transferred

in the fronthaul network, the higher capacity requirement for fronthaul links. In fact,

the fronthaul network can be deployed in different manners, namely, wired and wireless.

Deploying a wired fronthaul network can provide lossless data transmission. However,

this may lead to a high implementation cost and unscalable system operation. This is a

consequence of the large number of links to be established between APs and the CPU. On

the other hand, deploying a wireless-based fronthaul network seems to be a more feasible

solution for the fronthaul network in-terms of implementation cost and scalable system

operation. Nevertheless, the main concern with the wireless-based deployment of fron-

thaul network is to provide high reliable wireless fronthaul links with high capacity. In

particular, the limited available bandwidth in microwave bands may lead to a correspond-

ing degradation in the system performance. Motivated by the high available bandwidth

at higher frequency bands such as mmWave and free space optics (FSO), these bands may

play an important role in handling the data exchange between the CPU and APs [89].

Nevertheless, one of the main issues of signal transmission over such high bands is the

presence of obstacles between transmitter and receiver. Hence, a prerequisite to apply

such bands for the fronthaul operation is to have reliable LoS between APs and the CPU.

To the best of our knowledge, no works have studied the CF mMIMO performance

under a wireless-based fronthaul network. However, the performance of the wired-based

limited-fronthaul CF mMIMO systems has been extensively analyzed in [90–95] and ref-

erences therein. The works in [90,91] investigated the limited-fronthaul capacity effect on

the DL performance, whereas the authors in [90,92,94,95] analyzed the limited-fronthaul

capacity effect on the UL performance. Results showed that the limited capacity of wired

fronthaul links degrades the achievable UL and DL data rates.

2.5 Summary

In this chapter, we firstly introduced the main benefits of multi-antenna systems which

in turn renders it a promising technology to meet the exceptional requirements of future
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wireless networks. This was followed by a comprehensive discussion about the evolution

of mMIMO systems and how it was developed from the multi-user MIMO regime to CF

mMIMO. Then, we discussed the substantial theoretical gains of CF mMIMO that makes

it a leading candidate for 5G and beyond network operation. Also, we discussed the CF

mMIMO operation by providing a brief discussion about the communication protocol,

channel estimation, DL, and UL data transmissions. Finally, we shed light on various

practical challenges that may confront the realization of the full potential of CF mMIMO

in practical scenarios.



Chapter 3

CF mMIMO and SC Performance Un-

der Hardware and Channel Impair-

ments

3.1 Introduction

Deploying a large number of distributed APs, connected to a CPU via a fronthaul network,

to serve a smaller number of users is one of the promising network architectures for 5G and

beyond networks. Such network architecture can be operated as a CF mMIMO system

or a SC system. Both CF mMIMO and SC systems have shown a great potential to

satisfy the anticipated high rate requirements for future wireless communication systems.

However, an early comparison between both systems reveal that the performance of the

CF mMIMO systems is superior to that of SC systems in-terms of the 95%-likely per-user

throughput. Besides, applying max-min power control in CF mMIMO systems provides

a uniformly good service throughout the area of coverage.

The aforementioned comparison is performed assuming ideal hardware components

and up-to-date channel estimates for both systems operations. In fact, equipping a large

number of APs as well as UEs with perfect hardware components will significantly increase

the cost. On the other hand, equipping both APs and UEs with low-quality hardware

components may affect the performance of both CF mMIMO and SC systems badly.

Besides, under dynamic environments with high-mobility conditions, the Doppler shift

effect may deteriorate the achievable data rates of both systems.

In this chapter, we introduce a comprehensive comparison between CF mMIMO and

SC systems in-terms of the achievable DL rates under different mobility conditions assum-

ing non-ideal hardware components. Then, considering the channel impairments effect in

the presence of users with different mobility conditions in the network, a new system

19
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where f is the carrier frequency in MHz. In addition, ℏap and ℏue denote the APs and

the UEs height in meters, respectively.

3.2.3 Hardware Distortion Model

In practical scenarios, APs and UEs may be equipped with low-quality hardware compo-

nents to limit the implementation cost. This in turn leads to inevitable signal distortion

that may deteriorate the system performance. The combined effect of hardware distor-

tions (i.e., multiplicative phase-drifts, additive distortion noise, noise amplification, and

inter-carrier interference) can be modeled as if the transmitted/received signal is distorted

by an additive Gaussian noise [43]. In that, the distorted signal can be modeled by

xi =
√
ϵix+ νi, (3.5)

where x denotes the input signal to the non-ideal hardware device. Besides, the term

ϵi ∈ [0, 1], i ∈ {ap, ue}, denotes the hardware quality coefficient. The term νi ∼ CN (0, (1−
ϵi)E[|x|2]) represents the distortion noise that is independent of the input signal x. The

quality of the hardware is determined through ϵi ∈ [0, 1], where ϵi = 0 and ϵi = 1

represents useless and perfect hardware components, respectively.

3.2.4 Channel Impairments Model

In dynamic environments, another factor that may deteriorate the system performance

is the Doppler shift effect which results from the relative movement between users and

APs. In the literature, this effect is also known as the channel aging effect [24]. The

corresponding degradation in the system performance arises from the fact that the ac-

quired CSI during the training phase becomes outdated during the data transmission

and reception phases. In this regard, we adopt the widely used auto-regressive model of

first-order [24, 84] to model the Doppler shift effect as follows:

gmk[n] = ρkgmk[n− 1] +
√

1− ρ2kzmk[n], (3.6)

where zmk[n] ∼ CN (0, βmk), represents the innovation component vector at time instant

n. In addition, ρk represents the temporal correlation coefficient of user k, and it can

be calculated using Jakes fading model ρk = J0(2πfD,kTs), where J0(.) is the zeroth-

order Bessel function of the first kind, Ts is the sampling time, and fD,k = (vkfc)/c, is

the corresponding Doppler frequency shift for a user k with velocity vk, where fc and c

represent the carrier frequency and the speed of light, respectively.
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3.3 Channel Estimation Under Hardware and Chan-

nel Impairments

During the channel coherence time, in CF mMIMO systems, UL training sequences are

transmitted by users in the first phase for the sake of channel estimation. On the other

hand, in SC systems, both users and APs need to estimate their effective channel gains

to decode their data symbols, hence, both UL and DL training sequences are required for

the system operation. In this section, we discuss the UL training phase for UL channel

estimation by taking into account the hardware distortions and the Doppler shift effect

as a two sources of hardware and channel impairments, respectively. Note that, the DL

channel estimation process in SC systems follows the same procedure.

During UL training phase, all users send pilot sequences of length τu,p ≪ τc, where τc

denotes the channel coherence time. Let ψk ∈ Cτu,p×1 denotes the UL transmitted training

sequence from user k where ∥ψk∥2 = 1, the received pilot sequence matrix Y p,m[n] ∈
CNap×τu,p , at the mth AP at time instant n will be

Y p,m[n] =
√
ϵap

K∑

k′=1

gmk′ [n]
(√

Ppτu,pϵueψ
T
k′ + νp

ue,k′

)
+ νp

ap +W p,m[n], (3.7)

where Pp is the transmission power of each pilot symbol, and W p,m[n] ∈ CNap×τu,p , is

the additive noise matrix at the mth AP whose elements are i.i.d. CN (0, σ2
w) random

variables. Besides, we consider the pilot sequences, assigned to users are chosen from the

identity matrix Iτu,p . Consequently, the distortion signal associated with the transmitted

pilot symbol at the user side is νp
ue,k ∼

(
0, Ppτu,p(1 − ϵue)

)
. Due to the deployment of

non-ideal antennas at the AP side, the received signal vector at AP m is distorted. The

conditional distribution of the distortion component at the mth AP given the channel

vectors gmk, ∀k, is modeled by

νp
ap(n)|(gmk, ∀k) ∼

(

0, Ppτu,p(1− ϵap)
K∑

k′=1

∣
∣gmk′ [n]

∣
∣
2
ψk′(n)INap

)

, (3.8)

where the channel gain for each user k′ at time instant n is multiplied by the transmit-

ted pilot signal at this time instant to consider its effect only when the pilot symbol is

transmitted. Taking into account the Doppler shift effect on the channel estimation, we

consider performing the channel estimation process at time instant τu,p+1 as the estimated

channels at later instants will be worse. Thus, we are aiming at estimating the channel

coefficients gmk,l[τu,p + 1], ∀m, k, l, where l denotes the index of the antenna element at
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the AP. Using the channel aging model in (3.6), the channel coefficient gmk,l[n] for user

k at time instant n can be expressed in-terms of the corresponding channel condition at

time instant τu,p + 1 as

gmk,l[n] = αk,ngmk,l[τu,p + 1] +
√

1− α2
k,nzmk,l[n], (3.9)

where αk,n = ρ
|τu,p+1−n|
k . Consequently, by substituting (3.9) in (3.7), the received pilot

sequences vector at antenna l at the mth AP will be

yp,m,l[n] =
√
ϵap

K∑

k′=1

αk′,ngmk′,l[τu,p + 1]
(√

Ppτu,pϵueψ
T
k′ + νp

ue,k′

)

+
√
ϵap

K∑

k′=1

√

1− α2
k′,nzmk′,l[n]

(√

Ppτu,pϵueψ
T
k′ + νp

ue,k′

)
+ νp

ap,l +wp,m,l[n].

(3.10)

Then, to estimate the channel coefficient for user k at each antenna element l, the received

signal yp,m,l[n] is firstly projected on ψ∗
k as follows:

ỹp,m,l,k[n] = yp,m,l[n]ψ
∗
k. (3.11)

Then, applying MMSE estimation, the estimated channel coefficient for user k will be

ĝmk,l[τu,p + 1] = Cm,k,lỹp,m,l,k[n], (3.12)

where,

Cm,k,l =
E
{
g∗mk,l[τu,p + 1]ỹp,m,l,k[n]

}

E
{∣
∣ỹp,m,l,k[n]

∣
∣
2} . (3.13)

Theorem 3.1. To find the MMSE channel estimate ĝmk,l[τu,p+1] of the channel between

user k and antenna l at the mth AP under the hardware distortion and the Doppler shift

effects, the term Cm,k,l will be

Cm,k,l =

√
Ppτu,pϵueϵapαk,ikβmk

K∑

k′=1

Ppτu,pβmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+σ2

w

,
(3.14)

where ik represents the symbol index at which user k sends its pilot symbol, where this is

a consequence of choosing the pilot sequences from the identity matrix. As the large-scale

fading coefficients are identical for different antennas at the same AP, the power of the

estimated channel ĝmk,l[τu,p + 1] will be the same for all antennas belonging to the same

AP and can be calculated by

ζmk =
√

Ppτu,pϵueϵapαk,ikβmkCm,k,l. (3.15)
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Proof. Firstly, the numerator in (3.13) can be calculated as follows:

E
{
g∗mk,l[τu,p + 1]ỹp,m,l,k[n]

}
= E

{

g∗mk,l[τu,p + 1]

(
√
ϵap

K∑

k′=1

αk′,ik′
gmk′,l[τu,p + 1]

×
(√

Ppτu,pϵueψ
T
k′ + νp

ue,k′

)
+
√
ϵap

K∑

k′=1

√

1− α2
k′,ik′

zmk′,l[n]
(√

Ppτu,pϵueψ
T
k′

+ νp
ue,k′

)
+ νp

ap,l +wp,m,l[n]

)

ψ∗
k

}

.

(3.16)

The distortion component νp
ap,l of the antenna element l at the AP can be represented by

νp
ap,l =

(

Ppτu,p(1− ϵap)
K∑

k′=1

∣
∣
∣gmk′,l[n]

∣
∣
∣

2

ψk′(n)

)0.5

ν̄p
ap,l, (3.17)

where ν̄p
ap,l ∼ CN (0, 1). The expression in (3.16) can be decomposed to a summation

of different expectations. Since the channels of different users are independent. Besides,

the UEs distortion parameter νue,k′ and the channel innovation component zmk′,l[n] are

independent of the channel gmk,l. The expression in (3.16) can be rewritten as

E
{
g∗mk,l[τu,p + 1]ỹp,m,l,k[n]

}
=
√

Ppτu,pϵapϵueαk,ikE

{∣
∣
∣gmk,l[τu,p + 1]

∣
∣
∣

2}

+ E

{

g∗mk,lν
p
ap,l

}

,

(3.18)

where the second integration in (3.18) can be calculated by

E
{
g∗mk,lν

p
ap,l

}
= E

{

E

{

g∗mk,l

(

Ppτu,p(1− ϵap)
K∑

k′=1

∣
∣
∣gmk′,l[n]

∣
∣
∣

2

ψk′(n)
)0.5

ν̄p
ap,l

∣
∣
∣gmk,l

}}

, (3.19)

which can be shown to be zero. Hence, (3.16) can be calculated by

E
{
g∗mk,l[τu,p + 1]ỹp,m,l,k[n]

}
=
√

Ppτu,pϵueϵapαk,ikβmk. (3.20)

Now, it is required to calculate the term E
{∣
∣ỹp,m,l,k[n]

∣
∣
2}

to find the value of Cm,k,l.

According to the previous discussion, it is noted that all terms in (3.10) are independent.

Thus the denominator of (3.13) will be the sum of variances of its terms, which can be

easily calculated by

E
{∣
∣ỹp,m,l,k[n]

∣
∣
2}

=
K∑

k′=1

Ppτu,pβmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+σ2

w. (3.21)

■

It can be noticed that the channel estimation variance is affected by the quality of the

transceivers, the Doppler shift, and non-orthogonal pilot sequences.

3.4 Performance Analysis

In this section, we investigate the DL performance of CF mMIMO and SC systems in-

terms of the DL achievable rate under the effect of hardware and channel impairments.

CB precoding is adopted for the DL transmission in both systems. Novel expressions to
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calculate the spectral efficiency of both systems are introduced, taking into consideration

the transceiver hardware distortions and the Doppler shift effect. In addition, we apply

two different power control techniques for both systems operation, namely, equal and

max-min power allocation.

3.4.1 CF mMIMO System

We analyze the DL performance for the UC approach of CF mMIMO. Then, expressions

can be readily adapted for the conventional CF mMIMO system operation. After all

APs estimate the corresponding channel coefficients of all users, they treat the estimated

channel coefficients at time instant τu,p + 1 as the true channels to perform beamforming

for downlink transmission. In UC mMIMO, each AP transmits data only to a subset of

users with the best channel conditions [96]. Let us denote K(m) as the set of users served

by the mth AP. Thus, applying CB precoding, the DL precoding vector for user k at the

mth AP will be ĝ∗mk if k ∈ K(m) and 0 otherwise. Consequently, the transmitted signal

from the mth AP at time instant n > τu,p + 1, is given by

xm[n] =
√

Pdϵap
∑

k∈K(m)

√
ηmkg

∗
mk[τu,p + 1]sk[n] + ν

d
ap, (3.22)

where Pd is the DL power limit of antenna element at the AP, sk[n] is the transmitted

symbol to user k which satisfies E{|sk[n]|2} = 1. Applying the hardware distortion model

in (3.5), the conditional distribution of the transmission distortion at the lth antenna

element at AP m, νd
ap,l, will be

νd
ap,l|(gmk, ∀k) ∼

(

0, Pd(1− ϵap)
∑

k′∈K(m)

ηmk′
∣
∣ĝmk′,l[τu,p + 1]

∣
∣
2
)

, (3.23)

where ηmk denotes the power control coefficient for the transmitted data from AP m to

user k, and it is identical for all antenna elements, belonging to the same AP. Besides, the

power control coefficients are determined to satisfy the power constraint at each antenna

element E{|xm,l[n]|2} ≤ Pd. Assuming equal power allocation, the value of ηmk that

satisfies the power constraint will be

ηmk =
1

∑

k′∈K(m)

E{|ĝmk′,l[τu,p + 1]|2} , ∀k. (3.24)

The combined received signal at user k will be

rk[n] =
√
ϵue

M∑

m=1

gTmk[n]xm[n] + νd
ue + wk[n], (3.25)
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where the receiver distortion νd
ue can be modeled by using the hardware distortion model

in (3.5) as

νd
ue|(gmk, ∀k) ∼

(

0, (1− ϵue)
∣
∣
∣

M∑

m=1

gTmk[n]xm[n]
∣
∣
∣

2
)

. (3.26)

As previously mentioned, in CF mMIMO systems, no DL pilots are transmitted. In

addition, the estimated channels are not reported back to the users due to the vast amount

of data to be reported. As such, users detect their own signal using their knowledge about

the statistics of the estimated channel coefficients E
{∣
∣gTmkĝ

∗
mk[τu,p + 1]

∣
∣
}
. Thus, taking

into account the lack of the channel estimation at the user side, and substituting (3.22)

in (3.25), the received DL signal at the kth user can be represented by

rk[n] =
√

Pdϵapϵue

[

αk,n

∑

m∈M(k)

√
ηmkE

{∣
∣
∣g

T
mkĝ

∗
mk[τu,p + 1]

∣
∣
∣

}

sk[n]

︸ ︷︷ ︸

desired signal for user k (Dcf
sk )

+ αk,n

∑

m∈M(k)

√
ηmk

(∣
∣
∣g

T
mkĝ

∗
mk[τu,p + 1]

∣
∣
∣− E

{∣
∣
∣g

T
mkĝ

∗
mk[τu,p + 1]

∣
∣
∣

})

sk[n]

︸ ︷︷ ︸

beamforming uncertainty (BUcf
k

)

+
√

1− α2
k,n

∑

m∈M(k)

√
ηmkz

T
mk[n]ĝ

∗
mk[τu,p + 1]sk[n]

︸ ︷︷ ︸

Doppler shift effect (DScf
k

)

+
∑

k′ ̸=K

∑

m∈M(k′)

√
ηmk′g

T
mk[n]ĝ

∗
mk′ [τu,p + 1]sk′ [n]

︸ ︷︷ ︸

interference from user k’ data (UIcf
kk′

)

]

+
√
ϵue

M∑

m=1

gTmk[n]ν
d
ap

︸ ︷︷ ︸

(HId,cfap )

+ νd
ue
︸︷︷︸

(HId,cfue )

︸ ︷︷ ︸

transceiver hardware distortions

+wk[n]
︸ ︷︷ ︸
noise

,

(3.27)

where M(k) denotes the set of serving APs for user k. We consider the fact that uncorre-

lated Gaussian noise represents the worst-case interference [19,21]. Thus, the interference

will be the summation of power of different interference components. Applying the use-

and-then-forget technique as the channel estimation is not available at the UEs side, the

achievable DL rate at user k in CF mMIMO systems under the UC approach can be

calculated using (3.28).

Rcf
k [n] =

log2

(

1 +
|Dcf

sk
|2

E{|BU cf
k |2}+ E{|DScf

k |2}+ ∑

k′ ̸=k

E{|UIcfkk′ |2}+ E{|HId,cfap |2}+ E{|HId,cfue |2}+ σ2
w

)

,

(3.28)

Theorem 3.2. The achievable DL data rate for user k at time instant n in CF mMIMO
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systems under the effect of transceiver hardware distortions and Doppler shift effect is

given by

Rcf
k [n] = log2

(

1 +
Acf

d,k

Bcf
d,k + Ccf

d,k +Dcf
d,k + Ecf

d,k + σ2
w

)

, (3.29)

where

Acf
d,k =α2

k,nPdϵapϵue

( ∑

m∈M(k)

√
ηmkNapζmk

)2

, Bcf
d,k = Pd

K∑

k′=1

∑

m∈M(k′)

Napηmk′ζmk′βmk,

Ccf
d,k =α2

k,nPd

(1− ϵ2apϵue)

ϵapϵue
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∑

m∈M(k′)
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(
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H

k′ |2,

Dcf
d,k = α2
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ϵue

∑
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( ∑

m∈M(k′)

√
ηmk′Napζmk′

βmk
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H

k′ |2,

Ecf
d,k = α2

k,nPd

(ϵap
ϵue

− ϵapϵue

)( ∑

m∈M(k)

√
ηmkNapζmk

)2

.

Proof. The power of different signal components in (3.27) can be calculated as follows.

Firstly, the desired signal power can be calculated by

|Dcf
sk
|2=α2

k,nPdϵapϵue

( ∑

m∈M(k)

√
ηmkE

{∣
∣
∣g

T
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∗
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∣
∣

})2

,

=α2
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ηmkE

{∣
∣
∣

(
ĝTmk[τu,p + 1] + g̃Tmk[τu,p + 1] + zTmk[n]

)
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∣
∣
∣

})2

,

=α2
k,nPdϵapϵue

(√
ηmkE

{∣
∣
∣ĝ

T
mkĝ

∗
mk[τu,p + 1]

∣
∣
∣

})2

,

=α2
k,nPdϵapϵue

( ∑

m∈M(k)

√
ηmkNapζmk

)2

,

(3.30)
Then, the interference power due to beamforming uncertainly power can be calculated as

follows:
E{|BU cf

k |2} = α2
k,nPdϵapϵue

∑

m∈M(k)

Napηmkζmkβmk + α2
k,nPd(1− ϵap)

×
∑

m∈M(k)

Napηmkζ
2
mk + α2

k,nPdϵap(1− ϵue)
( ∑

m∈M(k)

√
ηmkNapζmk

)2

.
(3.31)

The power of the interference component due to the Doppler shift effect is given by

E{|DScf
k |2} =Pdϵapϵue(1− α2

n)
∑

m∈M(k)

Napηmkζmkβmk, (3.32)

The interference power due to the transmitted signals to other users is given by

E{|UIcfkk′ |2} = Pdϵapϵue
∑

m∈M(k′)

Napηmk′ζmk′βmk + α2
k,nPdϵap

( ∑

m∈M(k′)

√
ηmk′Napζmk′

× βmk

βmk′
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|ΨkΨ
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k′ |2+α2
k,nPd(1− ϵap)
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m∈M(k′)

Napηmk′ζ
2
mk′

(
βmk

βmk′

)2

|ψkψ
H

k′ |2,

(3.33)
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The interference power due to the APs hardware impairments is given by

E{|HId,cfap |2} =E

{∣
∣
∣

M∑

m=1

gTmk[n]ν
d
ap

∣
∣
∣

2}

. (3.34)

hen, using the conditional model of νd
ap on the channel conditions, (3.34) can be rewritten

as

E{|HId,cfap |2} = E

{∣
∣
∣
∣

M∑

m=1

gTmk[n]

(

Pd(1− ϵap)
∑
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∣
∣ĝmk′ [τu,p + 1]

∣
∣
2
)0.5

ν̄d
ap

∣
∣
∣
∣

2}

,

(3.35)

where ν̄d
ap ∼ CN (0, INap

), and this random variable is independent from the channel

conditions and the transmitted signal. Hence, the expectation in (3.35) is given by

E{|HId,cfap |2} = E

{

E

{∣
∣
∣
∣

M∑

m=1

gTmk[n]

(

Pd(1− ϵap)
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∣
∣
2
)0.5

ν̄d
ap

∣
∣
∣
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2
∣
∣
∣
∣
∣
gmk

}}

,

(3.36)
which can be calculated by

E{|HId,cfap |2} = E

{ M∑

m=1

Pd(1− ϵap)
∣
∣gTmk[n]

∣
∣
2
∑

k′∈K(m)

ηmk′
∣
∣ĝmk′ [τu,p + 1]

∣
∣
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}

=
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k′=1

∑

m∈M(k′)
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m∈M(k′)

α2
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ϵap
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|ψkψ
H
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(3.37)

For the power of the receiver distortion at the UEs side, it can be calculated by

E{|HId,cfue |2} = E

{

E

{∣
∣
∣

(

(1− ϵue)
∣
∣
∣
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2
∣
∣
∣
∣
gmk

}}

, (3.38)

where ν̄d
ue ∼ CN (0, 1). Hence, the expectation in (3.38) can be rewritten as

E{|HId,cfue |2} = E

{

(1− ϵue)
∣
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(3.39)

Since the transmitted signal sk[n] and the AP distortion are independent, the power of

the UEs distortion is expressed by

E{|HId,cfue |2} = (1− ϵue)

(

E
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Pdϵap

K∑

k′=1

∣
∣
∣
∣
∣

∑

m∈M(k′)

√
ηmk′g

T
mk[n]ĝ
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,

(3.40)
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which can be calculated as follows:

E{|HIcf,due |2} = Pd(1− ϵue)
K∑

k′=1
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m∈M(k′)

Napηmk′ζmk′βmk

+ α2
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(3.41)

Note that the derived expressions for different interference sources have common terms

which can be combined to simplify the expression for the DL achievable rate. After com-

bining the common terms in (3.31)-(3.33), (3.37), and (3.41) by applying some mathe-

matical manipulations, the proof can be readily completed. ■

After calculating the achievable DL rate at each time symbol n, the average achievable

DL rate over a coherence time interval τc will be

R̄cf
k =

1

τc

τc∑

n=τu,p+1

Rcf
k [n]. (3.42)

Max-Min Power Allocation: To improve the DL performance of CF mMIMO

systems, max-min power allocation is adopted for the system operation. Different from

equal power control, under max-min power allocation, the transmitted power for different

users from each AP are adjusted in a way that attains fairness in the achievable DL

rates of different users. The fairness here denotes preserving the achievable DL rate of

all users above a certain threshold that is required to be maximized. Note that, the total

transmitted power from each AP should be less than or equal to the maximum transmit

power to satisfy the power constraints. We consider that power control coefficients are

the same during the whole coherence block since it depends on the large scale fading

coefficients. Thus, we do not account for the aging effect in determining the power control

coefficients as it changes from one symbol to another and this will significantly increase

the backhaul overhead of the system. As such, the max-min optimization problem for CF

mMIMO systems can be formulated as

max
ηmk

min
k=1, ..., K

Rcf
k

s.t.
∑

k∈K(m)

ηmkζmk ≤ 1, m = 1, . . . , M.

ηmk ≥ 0, m = 1, . . . , M, k ∈ K(m).

(3.43)

By introducing slack variables λm, δkk′ , ϕkk′ , and θk, and define wmk
∆
= η

1

2

mk, the problem
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can be rewritten as

max
{λm,δkk′ ,ϕkk′ ,θk}

min
k=1, ..., K

γcf
k (3.44a)

s.t.
∑

m∈M(k′)

√

Napwmk′ζmk′
βmk

βmk′
≤ δkk′ , ∀k′ ̸= k

∑

k′∈K(m)

w2
mk′ζmk′ ≤ λ2

m, ∀m = 1, . . . , M

∑

m∈M(k′)

w2
mk′ζ

2
mk′

( βmk

βmk′

)2

≤ ϕkk′ , k′ = 1, . . . , K

∑

m∈M(k)

√

Napwmkζmk ≤ θk, θk ≥ 0, k = 1, . . . , K

δkk′ ≥ 0, ∀k′ ̸= k, 0 ≤ λm ≤ 1, ∀m = 1, . . . , M,

ϕkk′ ≥ 0, k, ϕkk′ ≥ 0, k, k′ = 1, . . . , K,

(3.44b)

where γcf
k denotes the corresponding signal-to-interference-plus-noise-ratio (SINR) for user

k. The problem in (3.44) is quasi-concave which can be solved efficiently by a bisection

search, in each step solving a sequence of convex feasibility problems [97] as illustrated

in Algorithm 3.1. It is noteworthy that all the obtained expressions for the UC approach

can be adapted to the conventional CF mMIMO system by setting the number of served

users by each AP to K, i.e., K(m) = 1, · · · , K, ∀m.

3.4.2 SC System

We consider a SC system where each user is served by one AP that serves only one user at

a time. In that, each user k is served by the available AP with the maximum large scale

fading coefficient βmkk, where the AP selection process is carried out in random sequential

order.

mk
∆
= arg max

m∈AvailableAPs
βmk. (3.46)

After the AP selection process is performed, the non-selected APs are turned off to limit

the interference in the network. We refer to the set of active APs selected for serving the

users during the AP selection process by Ȧ. Besides, we consider a short enough time

scale so that handovers between APs do not occur. Furthermore, since APs are equipped

with multiple-antennas. Thus, different from previous works such as [21], CB precoding

is applied for DL data transmission. Then, each user decodes the transmitted DL data

symbols using the knowledge of the instantaneous channel conditions with its serving AP.
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Algorithm 3.1: Bisection Algorithm for solving (3.44)

1. Initialization: choose the initial values of tmin = 0 and

tmax = max(SINR1, · · · , SINRK) define a range of relevant values of the

objective function in (3.44). Choose a small positive-valued tolerance ς.

2. Set t := tmin+tmax

2
, and solve a convex feasibility program including (3.44b) and

(3.45) to find the values of wmk, ∀m = 1, . . . , M, k ∈ K(m).

∥vk∥ ≤ 1√
t

√
ϵapϵue

∑

m∈M(k)

wmkζmk, k = 1, . . . , K, (3.45)

where, v
∆
=

[

vT
k1I−k vT

k2 vT
k3 vk4

σ2
w

pl
d
Nap

]

, vk1
∆
=
√

ϵap
ϵue

×
[
ψkψ

H

1δk1 . . .ψkψ
H

KδkK
]T
,

I
−k is a K × (K − 1) matrix obtained from the K ×K identity matrix with the

kth column removed, vT
k2

∆
=
[√

β1kλ1 . . .
√
βMkλM

]T
,

vT
k3

∆
=
√

1−ϵ2apϵue

ϵapϵue
×
[
ψkψ

H

1ϕk1 . . .ψkψ
H

KϕkK

]T
, and the scalar parameter

vk4
∆
=

∑

m∈M(k)

√
Napwmkζmk.

3. If problem (3.45) is feasible, then set tmin = t, else set tmax = t.

4. Stop if tmax − tmin < ς. Otherwise, go to Step 2,

Note that, the channel conditions at the user side can be identified either by sending

DL training sequences or through feedback of the estimated channel conditions from the

serving APs. Hence, the received DL signal at user k will be

rk[n] =

√

Pdϵapϵue

[

αk,n
√
ηmk

gTmkk
[n]ĝ∗mkk

[τu,p + 1]sk[n]
︸ ︷︷ ︸

desired signal for user k (Dsc
sk

)

+
∑

k′ ̸=K

√
ηmk′

gTmk′k
[n]ĝ∗mk′k

′ [τu,p + 1]sk′ [n]
︸ ︷︷ ︸

interference from user k’ data(UIsc
kk′ )

+
√

ηmk
(1− α2

k,n)z
T
mkk

[n]ĝ∗mkk
[τu,p + 1]sk[n]

︸ ︷︷ ︸

Doppler shift effect(DSsc
k )

]

+
√
ϵue
∑

m∈Ȧ

gTmk[n]ν
d
apsk[n]

︸ ︷︷ ︸

HId,scap

+ νd
ue
︸︷︷︸

HId,scue

︸ ︷︷ ︸

transceiver hardware distortions

+wk[n]
︸ ︷︷ ︸
noise

,

(3.47)
where ηmk

denotes the power control coefficient at the serving AP of user k. This coef-

ficient will be set to satisfy the power constraint at the AP ηmk
ζmkk ≤ 1. Besides, we

assume that each active AP transmits data with its full power where the power control

coefficient for the serving AP of user k is set to ηmk
= 1

ζmkk
. In what follows, we refer to
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this power control technique as equal power control since each AP serves the associated

user with full power.

To find the DL achievable rate for SC systems, we apply the same approach used in [21]

where all sources of interference are assumed to be uncorrelated since this assumption

represents the worst-case interference. As such, the DL achievable rate for user k in SC

systems can be obtained as follows:

Rsc
k [n] = E

{

log2

(

1+
|Dsc

sk
|2

E{|DSsc
k |2}+ ∑

k′ ̸=k

E{|UIsckk′ |2}+ E{|HIsc,dap |2}+ E{|HIsc,due |2}+ σ2
w

)}

,

(3.48)

Then, using Jensen’s inequality, an upper bound of the DL achievable rate can be obtained

by

R̆sc
k [n] = log2

(

1 +
E{|Dsc

sk
|2}

E{|DSsc
k |2}+ ∑

k′ ̸=k

E{|UIsckk′ |2}+ E{|HIsc,dap |2}+ E{|HIsc,due |2}+ σ2
w

)

,

(3.49)

Fig. 3.3 compares the upper bound of the achievable DL rates in (3.49) with the exact one

in (3.48). Two different number of users K = 20, 40 are considered and non-orthogonal

pilot sequences of length τu,p = 10 are adopted for the sake of channel estimation. It is

noted that the proposed bound is a tight bound of the achievable DL rates in SC systems.

As such, in the sequel, we focus on the proposed upper bound and a closed-form expression

to find this upper bound is given in the next theorem.

Figure 3.3: Exact DL rate and upper bound of the achievable DL rate in SC systems (M = 100 and Nap =

4).

Theorem 3.3. A tight upper bound of the achievable DL data rate for user k at time
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instant n in SC systems is expressed by

Rsc
k [n] = log2

(

1 +
Asc

d,k

Bsc
d,k + Csc

d,k +Dsc
d,k + σ2

w

)

, (3.50)

where

Asc
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Proof. The power of different signal components in (3.47) can be calculated as follows.

Firstly, the desired signal power can be calculated by

E{|Dsc
sk
|2} = α2

k,n

(

PdϵapϵueNapηmk
ζmkkβmkk + Pd

(
ϵapN

2
ap +Nap(1− ϵap)

)
ηmk

ζ2mkk

)

,

(3.51)
The power of the interference component due to the Doppler shift effect is given by

E{|DSsc
k |2} =Pdϵapϵue(1− α2

k,n)Napηmk
ζmkkβmkk, (3.52)

The interference power due to the transmitted signals to other users is given by

E{|UIsckk′ |2} = PdϵapϵueNapηmk′
ζmk′k
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+ α2
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)2

|ψkψ
H

k′ |2.
(3.53)

Following the same steps as in CF mMIMO systems, the transceiver hardware impairments

of APs and UEs in SC systems can be obtained as follows:

E{|HIsc,dap |2} =
K∑

k′=1

Pdϵue(1− ϵap)Napηmk′
ζmk′k

′βmk′k

+
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(3.54)

E{|HIsc,due |2} = Pd(1− ϵue)
K∑

k′=1

Napηmk′ζmk′βmk + α2
nPd

1

ϵapϵue

(
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(3.55)

Then, by combining the common terms in (3.52)-(3.55) to simplify the expression of the

achievable DL rate, the proof can be readily completed by some mathematical manipula-

tions. ■

After calculating the achievable DL rate at each time symbol n, the average achievable
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DL rate over a coherence time interval τc will be

R̄sc
k =

1

τc

τc∑

n=τu,p+1

Rsc
k [n]. (3.56)

Max-Min Power Allocation: Aiming at attaining fairness in the achievable DL

rates by maximizing the achievable DL rate of the user in the worst channel conditions,

we consider applying max-min power allocation for the SC system operation where the

problem can be formulated by

max
ηmk

min
k=1, ..., K

Rsc
k

s.t. ηmk
ζmkk ≤ 1, m = 1, . . . , M.

ηmk
≥ 0, k = 1, . . . , K.

(3.57)

It can be noted that the problem is a special case of the CF mMIMO problem where each

user will receive its DL data symbols from only one AP. Besides, the max-min problem

in (3.57) is a quasi-linear problem which can be solved using a bisection algorithm.

3.5 Discussions and Numerical Results

3.5.1 Simulation Setup

We consider a network with M APs and K users where both APs and users are uniformly

distributed in a square area of size 0.5 × 0.5 km2. The carrier frequency fc = 2 GHz.

The pilot transmission power Pp and DL data transmission power Pd are 100, 200 mW,

respectively. The APs and UEs heights are set to ℏap = 15m and ℏue = 1.65m, respectively.

The noise variance is denoted by σ2
w = 290×κ×B×NF where κ is the Boltzman constant,

B = 20 MHz, denoting the system bandwidth, and NF = 9 dB is the noise figure. We

consider a long coherence time interval τc = 1000 samples, corresponding to low-velocity

scenarios, and the effect of the presence of high-velocity users on the system performance

will be revealed.

3.5.2 Ideal Scenario

Fig. 3.4 compares the cumulative distribution function (CDF) of the achievable DL

rates of SC systems and CF mMIMO systems in the absence of hardware and channel

impairments. The comparison is carried out under equal and max-min power allocation

techniques. Moreover, it is assumed that 100 APs are uniformly distributed in the cell,

where each AP is equipped with 4 antennas. Besides, two different users configurations
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(a) Equal power allocation (b) Max-min power allocation

Figure 3.4: CDF comparison between conventional CF mMIMO and SC systems under ideal hardware

components and channel conditions.

are considered with 20 users and 40 users. As noted from the results, both simulations and

analytical results are in excellent agreement at different scenarios. Besides, It is noted that

the achievable DL rates in SC systems are superior for the majority of users under equal

power allocation. In addition, as the number of users decreases, the performance of both

systems improves, and the SC system becomes preferable to a higher portion of users. On

the other hand, when applying max-min power allocation, the CF mMIMO system exploits

the advantage of serving all users by all APs to adjust the power control coefficients to

achieve a uniformly good service for all users over the coverage area. However, when

applying max-min power allocation technique in SC system, the system strives to improve

the achievable rates of users in poor channel conditions at the cost of decreasing the

achievable rates of users in good channel conditions. As a consequence, under max-min

power allocation, the CF mMIMO system becomes the preferred system for the vast

majority of the users.

Fig. 3.5 compares the CDF of the achievable DL rates of conventional CF and UC

mMIMO systems, assuming 100 multiple-antennas APs (Nap = 4), and 20 users are

uniformly distributed through the cell. For the UC mMIMO approach, APs are assumed

to communicate with different numbers of users, namely, T = 2, 4, and 6 users. Notably,

assuming that each AP serves a small number of users i.e., T = 2, under equal power

allocation degrades the UC mMIMO performance. However, increasing the number of

served users by each AP to T = 4, 6, improves the achievable DL rates significantly, and

it becomes identical to the achievable DL rates in CF mMIMO systems. On the other

hand, assuming system operation under max-min power allocation, Fig. 3.5b reveals
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(a) Equal power allocation (b) Max-min power allocation

Figure 3.5: CDF comparison between conventional CF and UC mMIMO in the absence of system im-

pairments.

that limiting the number of served users by each AP to T = 2, 4, harms the system

performance significantly. Besides, the system loses its leverage in achieving uniformly

good data rates for all users. Nevertheless, increasing the number of served users per AP

to T = 6, alleviates such degradation in the system performance, and the performance

UC mMIMO approaches the performance of conventional CF mMIMO in achieving a

uniformly good service for all users.

Fig. 3.6 compares the average per-user DL rate of SC and CF mMIMO systems un-

der equal and max-min power allocation techniques. The average per-user DL rate of

UC mMIMO is calculated at different number of served users per AP (T ). Notably, the

average per-user DL rate in SC systems under equal power allocation outperforms the

performance of CF mMIMO systems even under max-min power allocation. However,

applying max-min power allocation technique worsen the performance of SC systems,

and the average per-user DL achievable rate becomes very low compared to CF mMIMO

systems. Furthermore, as previously mentioned, while UC mMIMO suffers from a low

performance at small values of T , especially under max-min power allocation, its perfor-

mance improves significantly and approaches the CF mMIMO one as T increases.

3.5.3 Hardware Distortion Effect

Fig. 3.7 depicts the effect of transceiver hardware distortion on the DL performance of

SC systems and CF mMIMO systems under equal and max-min power allocation. As

shown in the figure, the analytical curves are consistent with the simulation results under
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Figure 3.6: Average per-user DL rate in CF mMIMO and SC systems systems in the absence of practical

system impairments (M = 100, Nap = 4, and K = 20).

1.3

0.76
0.8

(a) Equal power allocation (b) Max-min power allocation

Figure 3.7: CDF comparison between CF mMIMO and SC systems under transceiver hardware impair-

ments (M = 100, Nap = 4, and K = 20).

different hardware distortion effects. It is clear that the effect of hardware distortion at

the UEs side in both systems is more prominent than the effect of hardware distortion at

the APs side. This result coincides with the hardware scaling law, previously discussed

in the literature. Considering the impact of UEs distortion, it is clear that SC systems

outperform CF mMIMO systems under equal and max-min power allocation techniques,

respectively. On the other hand, under the effect of APs distortion, each system achieves a

slight improvement in the achievable DL rate over the other system for a certain portion

of users when applying equal power allocation. Nevertheless, when applying max-min

power allocation, the CF mMIMO systems performance becomes superior to SC systems

performance.

Considering equal power allocation, Fig. 3.8 studies the average achievable DL rates

of SC and CF mMIMO systems in the presence of APs hardware distortion at different
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Figure 3.8: Average per-user DL rate of SC and CF mMIMO systems in the presence of APs hardware

distortion (Nap = 4 and K = 20).

numbers of APs. It is noted that increasing the number of APs not only improves the

CF mMIMO performance, but also alleviates the effect of hardware distortion at the AP

side. In contrary, while increasing the number of ideal APs significantly improves the

performance of SC system, the average DL rates slightly improve with increasing the

number of non-ideal APs. Thus, the introduced loss in the SC system performance due

to the deployment of non-ideal APs becomes more prominent at higher number of APs.

This is a consequence that in SC systems, each user is served by only one AP, and hence,

increasing the number of APs is not beneficial in alleviating the APs distortion effect.

Finally, it is noted that, both UC and conventional CF mMIMO systems achieve identical

DL rates under the deployment of ideal and non-ideal APs.

3.5.4 Channel Impairments Effect

This section analyses the Doppler shift effect on both SC and CF mMIMO systems. In

doing so, firstly, we neglect all other effects. Thus, the achievable DL rates of CF mMIMO

systems can be rewritten by

Rcf
k [n] = log2

(

1 +
|Dcf

sk
|2

E{|BU cf
k |2}+ E{|DScf

k |2}+ ∑

k′ ̸=k

E{|UIcfkk′ |2}+ σ2
w

)

, (3.58)

and the achievable DL rates of SC systems will be

Rsc
k [n] = log2

(

1 +
E{|Dsc

sk
|2}

E{|DSsc
k |2}+ ∑

k′ ̸=k

E{|UIsckk′ |2}+ σ2
w

)

. (3.59)

Regarding the desired signal power in both systems, taking into account the Doppler

shift effect as the only impairment in the system, the desired signal power of CF mMIMO
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systems in (3.30) will be

P cf
D,k = |Dcf

sk
|2=α2

k,nPd

( ∑

m∈M(k)

√
ηmkNapζmk

)2

, (3.60)

and the desired signal power of CF mMIMO systems in (3.51) will be

P sc
D,k = E{|Dsc

sk
|2} = α2

k,nPdNapηmk
ζmkk

(

βmkk +Napζmkk

)

, (3.61)

where it is noted that the desired power in both systems is affected by the same factor

α2
n under channel aging effect. Focusing on the power of different interference sources. It

can be noticed that the composite interference power due to the beamforming uncertainty

and the Doppler shift effect will be

E{|BU cf
k |2}+ E{|DScf

k |2} =
(
α2
k,nPd + Pd(1− α2

k,n)
) ∑

m∈M(k)

Napηmkζmkβmk,

= Pd

∑

m∈M(k)

Napηmkζmkβmk,
(3.62)

which equals to the beamforming uncertainty power under no Doppler shift effect. The

reason is that the users detect the transmitted symbols by the knowledge of the channel

statistics. Hence, the variations of the small-scale fading coefficients due to the Doppler

shift effect do not have further impact on the interference. Besides the interference due

to other users’ data symbols (3.33) can be rewritten by

E{|UIcfkk′ |2} = Pd

∑

m∈M(k′)

Napηmk′ζmk′βmk. (3.63)

Hence, the total interference in CF mMIMO systems when considering the Doppler shift

effect as the only source of system impairments will be

Icfk,tot = Pd

K∑

k′=1

∑

m∈M(k′)

Napηmk′ζmk′βmk. (3.64)

Note that, the total interference in CF mMIMO systems is independent of the temporal

correlation coefficient. On the other hand, focusing on the interference terms in SC

systems, the total interference can be expressed as follows:

Isck,tot = |DSsc
k |2}+

∑

k′ ̸=k

E{|UIsckk′ |2}

= PdNap

( K∑

k′=1

ηmk′
ζmk′k

′βmk′k
+ (1− α2

k,n)ηmk
ζmkkβmkk

)

,

(3.65)

where it is clear that the total interference is affected by the Doppler shift effect and it

increases as the Doppler shift effect gets more severe. The reason is that the users in SC

systems detect the transmitted symbols by the knowledge of the instantaneous channel,

and hence the Doppler shift effect will increase the introduced interference in the system.

Fig. 3.9 illustrates the Doppler shift effect on the average desired power, interference

powers and SINR values as time progresses assuming 20 users existing in the system with



41

(a) (b)

Figure 3.9: The Doppler shift effect on (a) the average power of different signal components and (b) SINR

of CF mMIMO and SC systems as time progresses.

a velocity 50 km/hr. It is clear that as time progresses, the average desired power in both

systems decreases. In addition, the interference power in CF mMIMO systems is not

affected by the Doppler shift effect as time progresses. However, the interference power

in SC systems increases as time progresses since the Doppler shift effect becomes more

severe. As such, while the average SINR is superior at SC systems under slight Doppler

shift effect in the early time symbols, the performance of CF mMIMO systems becomes

better at later time symbols.

Fig. 3.10 compares the performance of SC and CF mMIMO systems under the Doppler

shift effect. It is assumed that 20 users exist in the system and use non-orthogonal pilot

sequences of length τu,p = 10 for the sake of UL channel estimation. It is clear that

increasing the users’ velocities deteriorates the achievable DL rates of both systems. In

addition, the degradation in the achievable DL rates is more significant in SC systems.

Under equal power allocation, while SC systems performance is superior at low-velocities,

i.e., v = 5 km/hr, for the majority of users, the performance of CF mMIMO outperforms

the SC counterpart for all users under high velocities, i.e., v = 50 km/hr. Notably, in Fig.

3.10b, despite the power control coefficients are not adjusted according to the Doppler shift

effect in max-min power allocation as mentioned in Section 3.4, the CF mMIMO system

can still attain uniform DL rates for all users. In addition, the performance of the system

outperforms the performance of SC systems under high and low-mobility conditions.

Fig. 3.11 compares the average per-user DL rate of SC and CF mMIMO systems

at different users’ velocities under equal power allocation. It is noted that the Doppler

shift effect is identical on both conventional CF and UC mMIMO systems since they
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(a) Equal power allocation (b) Max-min Power allocation

Figure 3.10: CDF comparison between CF mMIMO and SC systems under Doppler shift effect (M =

100, Nap = 4, and K = 20).

Figure 3.11: Average per-user DL rate of SC and CF mMIMO systems under the Doppler shift effect

(M = 100, Nap = 4, and K = 20).

achieve the same average per-user DL rate at different users’ velocities. Besides, while the

average per-user achievable rate is superior in SC systems under low-mobility conditions,

it becomes larger in the CFmMIMO systems under high velocities. Hence, to achieve high

average per-user rate in low-mobility scenarios, it is recommended to operate the network

as a SC system. On the other hand, it is preferred to operate networks with high-velocity

users as CF mMIMO systems.

3.6 Hybrid CF mMIMO/SC System in Dynamic En-

vironments

As noted from the reported results in previous Section, the performance of SC systems

under equal power allocation outperforms that of CF mMIMO systems under equal and
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max-min power allocation techniques when the network serves users with low velocities,

i.e., pedestrians. Nevertheless, as the users’ velocities get higher, SC systems suffer from a

more prominent performance loss compared to CF mMIMO systems. Thus, CF mMIMO

systems provide users with high velocities, i.e., vehicles, with higher rates. In practice, the

network includes users with different velocities whose preferences of network operation

are different. In addition, providing high data rates to users under different mobility

conditions is one of the main challenges in future wireless communication networks [98].

As such, in this section, we propose a hybrid CF mMIMO/SC system to provide different

users in the network with high data rates simultaneously.

3.6.1 Proposed Operation

We consider that the network includes both high-velocity and low-velocity users that are

randomly distributed in the coverage area. Also, we assume that both APs and UEs are

equipped with ideal hardware components (ϵap = ϵue = 1). Motivated by the reported

results in Section 3.5, we divide the network into two tiers where the CPU selects the APs

assigned to each tier. The first-tier consists of APs, operating in a standalone mode to

serve low-velocity users under the SC system operation. On the other hand, the second-

tier accommodates APs, selected to operate in a cooperative manner to serve high-velocity

users as a CF mMIMO system. Furthermore, the available bandwidth is assumed to be

utilized in both tiers with a reuse factor of one. Nevertheless, if the SC system provides

high-velocity users with higher data rates than CF mMIMO, i.e., at low mobility scenarios,

the network will operate as a SC system. Otherwise, the network operation will be as

follows. Firstly, all low-velocity users select their serving APs from the entire available

APs in a random sequential order. In that, for a low-velocity user i ∈ I where I denotes

the set of low-velocity users, the serving AP mi is the available AP with the maximum

large-scale fading coefficient (βmii). After all low-velocity users select their serving APs,

the selected APs are assigned to the SC-tier. Then, based on some criterion, the CPU

determines the set of APs for the CF mMIMO-tier operation. Thus, there will be three

categories of APs as shown in Fig. 3.12, namely SC-APs, CF-APs, and inactive-APs.

Inactive-APs represent the APs that are not selected either for the SC-tier nor the CF

mMIMO-tier. In the sequel, Asc and Acf denote the set of APs serving low-velocity

users and the available APs for CF mMIMO-tier operation, respectively. Also, the set of
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of APs and UEs, the received DL signal at user v can be expressed by
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noise
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(3.67)
where δmc

denotes the CF-AP indicator which is set to 1 if the AP is selected for the

CF-tier operation and 0 otherwise. Note that, UIhy,1v represents the intra-tier interference

resulting from the transmitted data to other high-velocity users. Also, UIhy,2v reflects the

inter-tier interference arising from the SC-tier operation. Consequently, the achievable

DL rate for a high-velocity user v at time instant n is given by

Rhy
v [n] =

log2

(

1 +
|Dhy

sv |2
E{|BUhy

v |2}+ E{|DShy
v |2}+ ∑

v′ ̸=v

E{|UIhy,1vv′ |2}+∑
i∈I

E{|UIhy,2vi |2}+ σ2
w

)

,

(3.68)

where the desired signal power is given by

|Dhy
sv |2= α2

v,nPd

( ∑

mc∈Acf

δmc

√
ηmcvNapζmcv

)2

. (3.69)

Besides, as shown in (3.62), the composite power of beamforming uncertainty and Doppler

shift effect for the high-velocity user v is given by

E{|BUhy
v |2}+ E{|DShy

v |2} = Pd

∑

mc∈Acf

δmc
Napηmcvζmcvβmcv, (3.70)

The intra-tier interference power due to the transmitted data to other high-velocity users

can be calculated as in (3.33) as follows:

E{|UIhy,1vv′ |2} = Pd

∑

mc∈Acf

Napδmc
ηmcv′ζmcv′βmcv

+ Pdα
2
v,n

( ∑
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√
ηmcv′δmc

Napζmcv′
βmcv

βmcv′

)2

|ψvψ
H

v′ |2.
(3.71)
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Also, the inter-tier interference due to the transmitted data from active APs in the small-

cell tier can be determined as in (3.53) as follows:

E{|UIhy,2vi |2} = Pdηmi

(

Napζmiiβmiv + α2
v,nN

2
apζ

2
mii

(
βmiv

βmii

)2

|ψvψ
H

i |2
)

. (3.72)

3.6.2.2 Low-Velocity Users

In the SC-tier, each low-velocity user is served by one AP which serves only one user at a

time. We consider low-velocity users have a temporal correlation coefficient ρi = 1, ∀i ∈ I,
and CB precoding is adopted for the DL data transmission. For user i, served by AP

mi ∈ Asc, the received DL signal will be

ri[n] =
√

Pd
√
ηmi
gTmii

ĝ∗mii
si[n]

︸ ︷︷ ︸
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(3.73)

Then, a tight upper bound for the achievable DL rate of the low-velocity user i at time

instant n is given by

R̆hy
i [n] = log2
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1 +
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)
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where the desired signal power is given by

E{|Dhy
si
|2} = Pdηmi

(
Nap +N2
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)
ζ2mii

. (3.75)

The intra-tier interference power due to the transmitted data to other low-velocity users

can be calculated as in (3.53) as follows:

E{|UIhy,1ii′ |2} = Pd
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(3.76)

Also, the inter-tier interference power due to the transmitted in the CF-mMIMO tier can

be calculated as in (3.33) as follows:

E{|UIhy,2iv |2} = Pd

( ∑

mc∈Acf

Napδmc
ηmcvζmcvβmci +
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.

(3.77)

3.6.3 CF-APs Selection

The performance of the proposed system mainly depends on the selected APs for the

CF-tier operation. Undoubtedly, increasing the number of active CF-APs improves the
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performance of high-velocity users, but degrades the performance of low-velocity users,

and vice versa. Thus, the CF-APs should be selected in a way that improves the achievable

rates of high-velocity users while not harming the achievable rates of low-velocity users.

As such, we assume that the CPU selects the CF-APs according to the following problem:

max
δmc

R̄v,

s.t. δmc
∈ {0, 1}, ∀ mc ∈ Acf ,

R̄i ≥ Ri,th,

(3.78)

where the problem strives to maximize the average DL rates for high-velocity users while

preserving the average DL rate of low-velocity users above a certain threshold Ri,th. Note

that, finding the optimal set of APs for the CF-tier operation is an NP-hard problem.

To solve (3.78), we firstly adopt penalty methods to relax it to unconstrained problem as

follows [99]:

max
δmc

R̄v +Bj̆min(0, R̄i −Ri,th),

s.t. δmc
∈ {0, 1}, ∀ mc ∈ Acf ,

(3.79)

where Bj̆ is a positive penalty parameter at the j̆th iteration. The added penalty in (3.79)

will introduce a large negative value if the constraint does not hold. On the other hand,

it will add 0 if the constraint holds. Then, we propose a low-complexity scheme to solve

(3.79) as shown in Algorithm 3.2.

The proposed Algorithm for CF-APs selection can be summarized as follows. Firstly,

we start with a small penalty that increases with the iteration order. The algorithm stops

if the difference between the performance of two consecutive iterations is less than a certain

tolerance ϵ. In each iteration, we start with a solution that violates the constraint [99].

Also, we initially consider a solution that provides both low-velocity and high-velocity

users with acceptable performance. Then, aiming at maximizing the DL rates for high-

velocity users, the algorithm iteratively activates and deactivates the APs that improves

the performance in a greedy manner. Finally, it stops adding or dropping APs if no

further improvement can be attained.

3.6.4 Numerical Results

We consider a dynamic environment of size 1× 1 km2 that includes V high-velocity users

and I low-velocity users. Besides, the CF-APs are selected to provide low-velocity users
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Algorithm 3.2: CF-APs Selection Algorithm for solving (3.79)

1. Initialization:

i. Initialize Bj̆ with a small positive value.

ii. Activate all APs ∈ Acf except the first and second nearest ones to low-velocity

users.

iii. Check the constraint (R̄i ≥ Ri,th), if it violates, continue. Otherwise, activate more

APs until it violates.

iv. If all APs are activated while the constraint is satisfied, stop the algorithm and

report the solution for the CF-APs selection. Otherwise, go to next step.

v. Evaluate the performance G at current AP selection δmc , where G represents the

value of the objective function in (3.79).

2. Activate APs :

i. Find the set of inactive APs (L).

ii. Activate APs ∈ L separately, then evaluate Gl, ∀l = 1, · · · , L, where L denotes the

total number of APs in L.

iii. Find Gb ≥ Gl, ∀l = 1, · · · , L.

iv. if Gb > G, update the AP selection δmc = δbmc
, G = Gb, and set Add = 1.

Otherwise, set Add = 0.

3. Deactivate APs :

i. Find the set of activated APs (U).

ii. Deactivate APs ∈ U individually, then evaluate Gu, ∀u = 1, · · · , U , where U is the

number of activated APs.

iii. Find Gb ≥ Gu, ∀u = 1, · · · , U .

iv. if Gb > G, update the AP selection δmc = δbmc
, G = Gb, and set Drop = 1.

Otherwise, set Drop = 0.

4. Stop if Add = 0 and Drop = 0. Otherwise, repeat Step 2 and 3.

5. Stop if Gj̆ −Gj̆−1 ≤ ϵ. Otherwise, update Bj̆ = µBj̆−1 with a positive µ,

i.e., µ = 2, and repeat Step 1:5.



49

(a) Different velocities (b) Different number of low-velocity users

Figure 3.13: Average DL rates of low-velocity and high-velocity users.

with their average DL rate in SC systems, i.e., Ri,th = R̄i,sc, where R̄i,sc is the average DL

rate of low-velocity users in SC systems.

Fig. 3.13a depicts the average DL rates of low-velocity and high-velocity users in SC,

CF mMIMO, and the proposed system under different mobility velocities of the high-

velocity users. It is assumed that M = 200 APs, V = 25 users, and I = 5 users.

Intuitively, increasing the velocity of high-velocity users degrades the average DL rates

of high-velocity users as a consequence of the more harsh Doppler shift effect. However,

this does not affect the performance of low-velocity users. Interestingly, the average DL

rate of high-velocity users in the proposed system approaches their achievable rates in CF

mMIMO systems while attaining the maximum rate of low-velocity users as R̄i ≥ R̄i,sc.

In addition, as the velocity of high-velocity users increases, the potential of the proposed

system in providing both low-velocity and high-velocity users with high data rates becomes

more prominent.

Fig. 3.13b depicts the performance of low-velocity and high-velocity users under dif-

ferent number of low-velocity users. We consider M = 200 APs and V = 25 high-velocity

users with with an average velocity 75 km/hr. It is clear that increasing the number of

low-velocity users decreases the average DL rates of low-velocity and high-velocity users.

This is due to the more interference resulting from the increased number of users. Besides,

the proposed system achieves comparable DL rates to those of CF mMIMO. However, the

gap between the performance of the proposed system and CF mMIMO increases with the

number of low-velocity users. This is a consequence of the smaller degree-of-freedom in

the CF-APs selection at higher numbers of low-velocity users.
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(a) Different velocities (b) Different number of APs

Figure 3.14: Total average DL rates.

Fig. 3.14 depicts the average DL rates for all users (low-velocity and high-velocity

users) versus different mobility conditions of high-velocity users (Fig. 3.14a) and different

number of deployed APs (Fig. 3.14b). It is assumed that V = 20 moving users and

I = 10 static users. In addition, Fig. 3.14a considers M = 200 APs while Fig. 3.14b

assumes high-velocity users have an average velocity 75 km/hr. Fig. 3.14a reveals that

the proposed system outperforms SC and CF mMIMO systems in-terms of the average

DL rates of all users under different velocities of high-velocity users. Furthermore, Fig.

3.14b shows that the average DL rates improves with the number of APs. Notably, the

average DL rates of the proposed system are superior to the rates of SC and CF mMIMO

systems under different number of APs.

Fig. 3.15 depicts the complexity of the proposed CF-APs selection algorithm in-terms

of the total number of iterations. Notably, the proposed Algorithm has a low complexity

which is linear in the number of APs. Also, the required number of iterations increases

with the number of high-velocity users (V) since it becomes more challenging to maximize

the average DL rates of a higher number of high-velocity users while preserving the average

rates for low-velocity users at high values.

3.7 Summary

We investigated the achievable DL data rates of CF mMIMO systems and compared it

with the achievable ones of SC systems under different practical system considerations

including non-ideal hardware distortions and channel impairments, i.e., Doppler shift ef-

fect. Firstly, we provided analytical expressions for MMSE estimated channels taking into
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Figure 3.15: Average number of iterations for the proposed CF-APs selection algorithm at different

number of APs.

account the non-ideal hardware distortions and the Doppler shift effect. Then, we have

developed novel closed-form expressions for the DL achievable rates for both systems un-

der such practical system considerations. We revealed that when applying CB precoding

and equal power allocation for both systems operations, SC systems can achieve superior

DL rates to the CF mMIMO. However, the SC system performance significantly degrades

under max-min power allocation. In contrary, the CF mMIMO system attains uniformly

good performance for all users under max-min power allocation. Nevertheless, decreasing

the number of served users per APs in CF mMIMO system by applying the UC mMIMO

approach remarkably degrades the system performance.

Regarding the non-ideal hardware effects, we have shown that the effect of non-ideal

UEs is more prominent than the non-ideal APs. Besides, the effect of non-ideal APs

distortion is more prominent in the SC system. Also, we revealed that the Doppler shift

effect is more prominent in SC systems. In addition, SC systems are preferred to support

network operation under low-mobility conditions. However, it is more beneficial to adopt

CF mMIMO system for network operation under high-mobility conditions.

Based on the aforementioned findings, we proposed a hybrid CF mMIMO/SC system

to provide high-velocity and low-velocity users with high DL rates. The proposed system

considers the network as a two-tier network where users with high-velocity and low-

velocity are associated to the CF mMIMO-tier and the SC-tier, respectively. Results

showed that the proposed system outperforms SC and CF mMIMO systems by providing

users of different mobility conditions with high rates simultaneously.



Chapter 4

Limiting Doppler Shift Effect on CF

mMIMO Systems

4.1 Introduction

As previously illustrated, the Doppler shift effect can significantly degrades the CF mMIMO

system performance, especially under high mobility conditions. This is a consequence of

the relative movement between users and APs leading to temporal variations in the prop-

agation environment that affects the channel coefficients to continuously evolve with time

and change from one symbol to another. Such channel variations renders the estimated

channel coefficients out-of-date when applied for data reception/transmission and results

in a corresponding degradation in the achievable data rates. Despite the harsh effect of

Doppler shift on the system performance, we showed in chapter 3 that the CF mMIMO

is more robust against such effect than SC systems. However, solutions to alleviate the

Doppler shift effect on CF mMIMO are essential to further improve its performance in

dynamic environments.

The traditional way to limit the Doppler shift effect on mMIMO systems is through

applying channel prediction techniques. In particular, causal linear finite impulse re-

sponse Wiener predictors are adopted for channel prediction in co-located mMIMO sys-

tems in [24, 81]. Furthermore, the potential of applying Kalman filter-based estimator

to predict the channel conditions is analyzed in [100]. Results reveal that using channel

predictors can alleviate the Doppler shift effect on the achievable data rates. Also, the

prediction accuracy of the adopted auto-regressive (AR) prediction models improves with

increasing the AR model order [84]. According to the Levinson-Durbin recursion, used

for determining the model parameters, the model order is limited by the data amount of

previous CSI samples. In addition, the computational complexity is proportional to the

square of the model order. Note that, in CF mMIMO systems, the channel estimation

52



53

and channel prediction are preferred to be carried out in the distributed APs to limit the

burden on the fronthaul network. However, since the channel prediction task requires

extremely higher processing capabilities than the channel estimation, it is impractical to

perform such a task in the APs due to their low processing capabilities.

An alternative and simpler way to limit the Doppler shift effect is to adapt the system

frame length according to the mobility conditions [85]. The authors in [85] studied the

Doppler shift effect on the performance of FDD co-located mMIMO systems. In that,

the DL and UL frame lengths are optimized to tackle the DL and UL rate degradation

problem due to the Doppler shift effect. The goal is to adapt the system to severe aging

conditions by reducing the frame length. The optimal frame length for each transmission

link is determined separately using line search, and the results show that adjusting the

frame length of each transmission link according to the aging conditions can limit the

Doppler shift effect in FDD mMIMO systems. However, such approach cannot be applied

to TDD systems. In fact, the authors in [85] exploit the FDD system properties, where

DL and UL data transmission occurs simultaneously over two different frequency bands

to optimize the DL and UL frame lengths separately. Nevertheless, in TDD systems,

DL and UL data transmissions occur over the same bandwidth at different time instants.

In addition, optimizing the frame length to maximize the achievable DL rate may affect

the achievable UL rate badly and vice versa. As a consequence, the TDD frame length

optimization problem for DL and UL rate maximization cannot be studied separately.

In this chapter, we introduce our proposed solution to limit the the Doppler shift effect

on the performance of CF mMIMO systems. Firstly, using tools of stochastic geometry,

we provide novel analytical expressions for tight lower bound of the average DL and UL

rates of CF mMIMO systems. Then, capitalizing on the derived analytical results for the

average DL and UL rates, we provide an analytical framework to determine the optimal

frame length that maximizes the DL and UL rates separately. In that, we consider the

system operation under TDD mode where different transmission protocols are adopted for

the system operation. Next, aiming at limiting the Doppler shift effect on both DL and

UL rates simultaneously, we derive new analytical expressions to minimize the Doppler

shift effect on a total weighted sum of losses in system’s rates under different transmission

protocols.
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4.2.2 Transmission Protocols

We consider two different TDD-based transmission protocols as shown in Fig. 4.2. Fig.

4.2a depicts the most common transmission protocol in literature for TDD-based mMIMO

systems, presented in [39]. This transmission protocol considers the transmission of UL

training sequences in the first phase, followed by DL and UL data transmission in the

second and third phases, respectively. Hence, in dynamic environments with high mobility

conditions, the Doppler shift will be more significant in the UL transmission phase. The

reason is that the estimated channel coefficients in the UL training phase will be more

outdated during the UL data transmission than the DL data transmission. On the other

hand, aiming at alleviating the Doppler shift effect on the UL data transmission phase, the

second transmission protocol in Fig. 4.2b [78] places the UL training sequences between

the UL transmission phase and the DL transmission phase. As such, the received UL data

symbols should be buffered while waiting for the UL training sequences to enable the UL

data detection. Thus, the second transmission protocol reduces the Doppler effect on the

UL phase with no regard to the implementation complexity. It is noteworthy that both

transmission protocols have the same Doppler shift impact on the DL transmission phase.

Besides, despite the first transmission protocol has more impact on the UL transmission

phase, it is better from the implementation complexity perspective since there is no need

to buffer the incoming UL data symbols.

(a) First transmission protocol

(b) Second transmission protocol

Figure 4.2: Different transmission protocols under TDD system operation.

4.3 Channel Estimation

This section discusses the UL training phase for UL channel estimation, taking into ac-

count the Doppler shift effect. In this regard, we consider the same pilot-based channel

estimation approach in Section 3.3 to estimate users’ channels. However, we herein do

not account for the hardware distortion effect by assuming that both APs and users are
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equipped with ideal hardware components. Thus, the MMSE estimated channel coeffi-

cient for user k with the lth antenna element in the mth AP at time instant τu,p + 1 is

given by

ĝmk,l[τu,p + 1] = Cm,k,lỹp,m,l,k[n], (4.2)

where the term ỹp,m,l,k[n] in the absence of hardware impairment effect is given by

ỹp,m,l,k[n] =
√

Ppτu,p

K∑

k′=1

αk′,ngmk′,l[τu,p + 1]ψT
k′ψ

∗
k

+
√

Ppτu,p

K∑

k′=1

√

1− α2
k′,nzmk′,l[n]ψ

T
k′ψ

∗
k +wp,m,l[n]ψ

∗
k.

(4.3)

Also, the term Cm,k,l under the presence of ideal hardware components is given by

Cm,k,l =

√
Ppτu,pαk,ikβmk

K∑

k′=1

Ppτu,pβmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+σ2

w

.
(4.4)

Consequently, the power of the estimated channel ĝmk,l[τu,p + 1] under the Doppler shift

effect can be calculated by

ζmk =
√

Ppτu,pαk,ikCm,k,lβmk. (4.5)

It can be noticed that the channel estimation variance is affected by the Doppler shift

and pilot contamination effects. Moreover, the Doppler shift effect varies from one user to

another depending on the users’ velocities and the assigned pilot sequence to each user.

In that, users with pilot signals, carried on early symbols experience worse Doppler shift

effect than users whose pilot signals are carried on the latter symbols. This is expected as

the channels of users with pilot signals carried on early symbols become more outdated

when performing the channel estimation process.

4.4 Performance Analysis

In this section, using tools of stochastic geometry, we derive a tight lower bound of the

average achievable DL and UL rates for CF mMIMO systems under the Doppler shift

effect. In doing so, local CB precoding and MRC detection are locally applied at APs

for DL transmission and UL detection, respectively. Besides, equal power allocation is

considered for both DL and UL data transmission phases.
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4.4.1 Achievable DL Data Rate

In CF mMIMO, each AP transmits the DL data symbols of different users over the same

time-frequency resources by means of beamforming. Applying CB precoding, and since

all users are served by all APs in CF mMIMO, the transmitted signal from the mth AP

at time instant n > τu,p + 1, will be

xm[n] =
√

Pdηm

K∑

k=1

ĝ∗mk[τu,p + 1]sk[n], (4.6)

where ηm = ηmk, ∀k = 1, · · · , K, denotes the power normalization factor for the transmit-

ted data from AP m, and it is identical for all antenna elements, belonging to the same

AP. Taking into consideration that each AP serves all users in the system, the power

normalization factor at the mth AP is given by

ηm =
1

K∑

k′=1

E{|ĝmk′,l[τu,p + 1]|2}
. (4.7)

Note that, users can be located everywhere within the coverage area. With no loss of

generality, we conduct the analysis for a reference user o, located at a distance χ from the

cell center as shown in Fig. 4.1. The received signal from all APs at the reference user o

will be

rd,o[n] =
M∑

m=1

gTmo[n]xm[n] + wd,o[n]. (4.8)

Consequently, taking into account the lack of channel estimation at the user side, and

substituting (4.6) in (4.8), the received DL signal at user o will be

rd,o[n] =
√

Pd

[

αo,n

M∑

m=1

√
ηmE

{∣
∣
∣g

T
mo[n]ĝ

∗
mo[τu,p + 1]

∣
∣
∣

}

so[n]

︸ ︷︷ ︸

desired signal for user o (Dd
so

)

+ αo,n

M∑

m=1

√
ηm

(∣
∣
∣g

T
mo[n]ĝ

∗
mo[τu,p + 1]

∣
∣
∣− E

{∣
∣
∣g

T
mo[n]ĝ

∗
mo[τu,p + 1]

∣
∣
∣

})

so[n]

︸ ︷︷ ︸

beamforming uncertainty (BUd
o )

+
√

1− α2
o,n

M∑

m=1

√
ηmz

T
mo[n]ĝ

∗
mo[τu,p + 1]so[n]

︸ ︷︷ ︸

Doppler shift effect (DSd
o )

+
∑

k ̸=o

M∑

m=1

√
ηmg

T
mo[n]ĝ

∗
mk[τu,p + 1]sk[n]

︸ ︷︷ ︸

interference from user k data (UIdok)

]

+ wd,o[n]
︸ ︷︷ ︸
noise

.

(4.9)
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Capitalizing on the obtained results in Theorem 3.2, the achievable DL data rate for user

o at time instant n will be

Rd,o[n] = log2

(

1 +
Ad

Bd + Cd + σ2
w

)

, (4.10)

where

Ad = α2
o,nPd

( M∑

m=1

√
ηmNapζmo

)2

, Bd = Pd

K∑

k=1

M∑

m=1

Napηmζmkβmo,

Cd = α2
o,nPd

∑

k ̸=o

( M∑

m=1

√
ηmNapζmk

βmo

βmk

)2

|ψoψ
H

k |2.

Note that, the effect of non-orthogonal pilot sequences depends mainly on the number and

locations of users, assigned the same pilot sequence. Also, the Doppler shift effect on the

channel estimation of a certain user depends on its assigned pilot sequence. Accounting

for these effects renders the analysis more complicated. As such and for ease of analysis

and tractability, we assume that all users have the worst-case Doppler shift effect in the

estimated channel conditions. Also, we do not consider the pilot contamination effect.

However, the effect of the presence of non-orthogonal pilot sequences will be discussed

later in Section 4.6. As such, the achievable DL rate can be rewritten as

Rd,o[n] = log2
(
1 + α2

o,nγd,o
)
, (4.11)

with

γd,o =

Pd

( M∑

m=1

√
ηmNapζmo

)2

PdNap

M∑

m=1

ηmβmo

K∑

k=1

ζmk + σ2
w

. (4.12)

Due to the finite cell size, the point process is not statistically similar at different locations

within the cell [101,102]. For instance, cell-edge users see lower APs densities than users

located close to the cell center. Thus, the system performance depends on the receiver

location. As such, to calculate the average data rates over different locations of users,

one firstly needs to determine the APs density as a function of the user location. In this

regard, we introduce the APs density as a function of the reference user location in the

following Lemma.

Lemma 4.1. Assume a cell A = b(xo,D), where b(xo,D) represents a disk centered at

xo with radius D, and a reference user at a distance χ from the cell center as shown in

Fig. 4.1. The APs density in the region b(o, r) around the reference user o is given by

ΛA(r) =πr2λA 1(0 ≤ r < D − χ) +AλA 1(D − χ ≤ r < D + χ), (4.13)

where

A =D2 cos−1
(d1
D
)

− d1

√

D2 − d21 + r2 cos−1
(d2
r

)

− d2

√

r2 − d22, (4.14)
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with

d1 = χ− d2, d2 =
r2 + χ2 −D2

2χ
. (4.15)

Proof. The APs density in b(o, r) within a finite area cell b(xo,D) can be calculated

according to two different cases as illustrated in [101]

Case 1 : If b(xo,D) ∩ b(o, r) = b(o, r), i.e., 0 ≤ r < D − χ, then

ΛA(r) = λA ×
2π∫

0

r∫

0

y dydθ = πr2λA. (4.16)

Case 2 : If b(xo,D) ∩ b(o, r) ̸= b(o, r), i.e., D − χ ≤ r < D + χ, then

ΛA(r) = λA ×A, (4.17)

where A denotes the intersection area between the two circles b(xo,D) and b(o, r) which

can be calculated using (4.14). ■

Theorem 4.1. A lower bound of the average DL rates for CF mMIMO systems under a

specific mobility condition using CB and equal power control can be approximated by

R̆d,o[n] ≈ log2
(
1 + α2

o,nγ̆
−1

d,o

)
, (4.18)

where γ̆d,o is given by

γ̆d,o =

D∫

0

D+χ∫

0

β(r1) + I4,d

Nap

(
ζ(r1)√

ζ(r1)+I1,d
+

I2,d√
I3,d

)2

∂ΛA(r1)

∂r1
e−ΛA(r1)

2χ

D2
dr1 dχ, (4.19)

where

I1,d =

D∫

r1

ζ(r)
∂Λu(r)

∂r
dr, I2,d =

D+χ∫

r1

ζ(r)
∂ΛA(r)

∂r
dr,

I3,d =

D∫

0

ζ(r)
∂Λu(r)

∂r
dr, I4,d =

D+χ∫

r1

β(r)
∂ΛA(r)

∂r
dr.

Proof. Firstly, the average DL achievable rate is given by

R̄d,o[n] = E

[

log2
(
1 + α2

o,nγd,o
)]

. (4.20)

Then, applying Jensen’s inequality, a lower bound of the average DL achievable rate in

(4.20) can be expressed by

R̆d,o[n] = log2

(

1 + α2
o,nγ̆

−1

d,o

)

, (4.21)

with

γ̆d,o = E
[
1/γd,o

]
= E

[

E
[
(1/γd,o)

∣
∣χ
]]

. (4.22)

Note that the exact analytical evaluation of γ̆d,o is challenging since it requires averaging

over all APs and users locations. However, considering the SINR in (4.12), it can be

noticed that ζmo, βmo, and ζmk decrease with the distance. Also, in such network deploy-

ment, at each user, the contribution of nearby APs is dominated, and the received signals

at APs will be dominated by the signals from nearby users. As such, we apply the mean

plus nearest approximation [91] to simplify the SINR in (4.12).
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Regarding the numerator in (4.12), we assume that applying the power normalization

factor ηm will not affect the relative contributions of different APs to the reference user

o. Thus, the numerator can be approximated by
M∑

m=1

√
ηmζmo =

√
η1ζ(r1) + E

[ M∑

m′=2

√
ηm′ζm′o

∣
∣r1

]

, (4.23)

where m′ denotes the order of the APs with respect to (w.r.t) the reference user o. Note

that, the first term denotes the contribution of the nearest AP to the reference user as

a function of the distance r1 between user o and its nearest AP. In addition, the second

term denotes the average contribution of all other APs from the second nearest AP to

the Mth nearest AP conditioned on the distance with the first nearest AP r1. Different

from the work in [91], we consider that conditioning on the first nearest distance r1, the

distance distribution of all other APs is not identical, however, it depends on the order

of the AP.

Regarding the first term in (4.23), one can simplify the power normalization coefficient

η1 in (4.7) at the first nearest AP by using the mean plus nearest approximation as follows:

η−1

1 ≈ ζ(r1) + E

[ K∑

k′=2

ζ1k′
∣
∣r1

]

,

≈ ζ(r1) +
K∑

k′=2

D∫

r1

ζ(r)fR1k′

(
r
∣
∣r1
)
dr,

(4.24)

where k′ represents the order of users with the first nearest AP to the reference user o.

Capitalizing on the joint distance distribution fRk′ ,R1

(
r, r1

)
between the first nearest and

k′th nearest distances [103], the distance distribution of the k′th nearest distance given the

first nearest distance r1 can be expressed by

fRk′

(
r
∣
∣r1
)
=

∂Λu(r)

∂r

[
Λu(r)− Λu(r1)

]k′−2

(k′ − 2)!
eΛu(r1)−Λu(r), (4.25)

where Λu(r) denotes the density of users at a distance r from the first nearest AP to the

reference user o. In fact, the first nearest AP to user o can be located anywhere around

its location. Despite Λu(r) should account for the AP location w.r.t user o, doing so will

complicate the analysis. Hence, we assume that the density of users is independent of

the AP location and can be calculated by Λu(r) = πλUr
2. Using (4.25), (4.24) can be

calculated as follows:

η−1

1 = ζ(r1) +
K∑

k′=2

D∫

r1

ζ(r)
∂Λu(r)

∂r

[
Λu(r)− Λu(r1)

]k′−2

(k′ − 2)!
eΛu(r1)−Λu(r)dr,

= ζ(r1) +

D∫

r1

ζ(r)
∂Λu(r)

∂r
eΛu(r1)−Λu(r)

K∑

k′=2

[
Λu(r)− Λu(r1)

]k′−2

(k′ − 2)!
dr,

(4.26)
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where
K∑

k′=2

[
Λu(r)− Λu(r1)

]k′−2

(k′ − 2)!
=

K−2∑

k′=0

[
Λu(r)− Λu(r1

]k′

k′!
,

= eΛu(r)−Λu(r1)
Γ(K − 1,Λu(r)− Λu(r1))

Γ(K − 1)
,

(a)≈ eΛu(r)−Λu(r1).

(4.27)

where Γ(·, ·) is the lower incomplete gamma function. Also, we consider an asymptotic

approach assuming K → ∞ to simplify the summation as shown in
(a)≈. Thus, η1 can be

approximated by

η−1

1 ≈ ζ(r1) +

D∫

r1

ζ(r)
∂Λu(r)

∂r
dr. (4.28)

Regarding the second term in (4.23) which includes two random variables, namely,

ηm′ and ζm′o. Also, ηm′ depends on the distribution of users w.r.t the AP m′ which differs

from one AP to another. This in turn renders the calculation of this term intractable. As

such, we approximate this term by

E

[ M∑

m′=2

√
ηm′ζm′o

∣
∣r1

]

≈ √
η̄E

[ M∑

m′=2

ζm′o

∣
∣r1

]

≈ √
η̄

M∑

m′=2

D+χ∫

r1

ζ(r)fRm′o

(
r
∣
∣r1
)
dr,

(4.29)

where we assume that ηm′ ≈ η̄ will be independent of the AP index. In that, η̄ denotes

the inverse of the average summation of channel estimation variances of all users at AP

m′, ∀m′ = 2, · · · ,M , which can be calculated by

η̄ =

( D∫

0

ζ(r)
∂Λu(r)

∂r
dr

)−1

. (4.30)

Then, applying the same procedure as in (4.26) and (4.27), and letting M → ∞, (4.29)

can be asymptotically calculated by

E

[ M∑

m′=2

√
ηm′ζm′o

∣
∣r0

]

=

( D∫

0

ζ(r)
∂Λu(r)

∂r
dr

)− 1

2
M∑

m′=2

D+χ∫

r1

ζ(r)

[
ΛA(r)− ΛA(r1)

]m′−2

(m′ − 2)!

× ∂ΛA(r)

∂r
eΛA(r1)−ΛA(r) dr,

≈
( D∫

0

ζ(r)
∂Λu(r)

∂r
dr

)− 1

2

D+χ∫

r1

ζ(r)
∂ΛA(r)

∂r
dr.

(4.31)
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Accordingly, (4.23) can be approximated by (4.32).
M∑

m=1

√
ηmζmo =

ζ(r1)
√

ζ(r1) +
D∫

r1

ζ(r) ∂Λu(r)
∂r

dr

+

( D∫

0

ζ(r)
∂Λu(r)

∂r
dr

)− 1

2

D+χ∫

r1

ζ(r)
∂ΛA(r)

∂r
dr.

(4.32)

Regarding the denominator in (4.12), neglecting the noise impact, the term
M∑

m=1

ηmβmo

K∑

k=1

ζmk

can be approximated by
M∑

m=1

ηmβmo

K∑

k=1

ζmk
(a)
=

M∑

m=1

βmo,

(b)≈ β(r1) +

D+χ∫

r1

β(r)
∂ΛA(r)

∂r
dr,

(4.33)

where
(a)
= stems from the fact that the power normalization coefficient ηm = 1/

K∑

k=1

ζmk.

Also,
(b)≈ stems from applying the mean plus nearest approximation. Finally, by substitut-

ing (4.32) and (4.33) in (4.12), γ̆d,o can be calculated as shown in (4.19). Then, the proof

is completed by substituting (4.19) in (4.21). ■

Note that R̆d,o[n] represents the lower bound of the average DL rate under a certain

mobility condition. Since we consider the presence of multiple users groups whose mobility

conditions are different, the lower bound of the average composite DL rate is given by

R̆d[n] =
S∑

s=1

log2
(
1 + α2

s,nγ̆
−1

d,o

)
P(o ∈ Gs), (4.34)

where S denotes the total number of groups and α2
s,n reflects the Doppler shift effect at

time instant n on users belonging to group Gs. Let us consider φ
∆
= τd

T−τu,p
as the ratio

of the data symbols, assigned for DL transmission. Also, let ξ
∆
= τu,p

T
represents the pilot

sequence ratio to the whole frame length. For a given frame length T symbols, the average

DL rate in bps/Hz considering the aforementioned transmission protocols will be

R̆d =
ξ

τu,p

τu,p+φ(
τu,p
ξ

−τu,p)
∑

n=τu,p+1

R̆d[n]. (4.35)

4.4.2 Achievable UL Data Rate

During the UL data transmission phase, all users simultaneously transmit their UL data

symbols to APs over the same time-frequency resources. Then, each AP exploits the

estimated channel conditions to detect the UL transmitted symbols. Assuming equal

power allocation, and applying MRC detection, the local detected UL signal of user o at
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the mth AP at time instant n will be

ru,o[n] =
√

Pu

K∑

k=1

ĝHmo[τu,p + 1]gmk[n]sk[n] + ĝ
H
mo[τu,p + 1]wu[n]. (4.36)

Then, the detected signal at each AP will be forwarded to the CPU where the detection

of each user’s data is carried out. Since the estimated channel vectors at each AP are not

available at the CPU, the detected signal of user o at the CPU at time instant n from all

APs can be expressed by

ru,o[n] =
√

Pu

[

αo,n

M∑

m=1

E

{∣
∣
∣ĝ

H
mo[τu,p + 1]gmo[n]

∣
∣
∣

}

so[n]

︸ ︷︷ ︸

desired signal for user o (Du
so

)

+ αo,n

M∑

m=1

(∣
∣
∣ĝ

H
mo[τu,p + 1]gmo[n]

∣
∣
∣− E

{∣
∣
∣ĝ

H
mo[τu,p + 1]gmo[n]

∣
∣
∣

})

so[n]

︸ ︷︷ ︸

beamforming uncertainty (BUu
o )

+
√

1− α2
o,n

M∑

m=1

ĝHmo[τu,p + 1]zmo[n]so[n]

︸ ︷︷ ︸

Doppler shift effect (DSu
o )

+
∑

k ̸=o

M∑

m=1

ĝHmo[τu,p + 1]gmk[n]sk[n]

︸ ︷︷ ︸

interference from other users (UIuok)

]

+ ĝHmo[τu,p + 1]wu,o[n]
︸ ︷︷ ︸

noise

.

(4.37)

The achievable UL data rate for user o at time instant n is given by

Ru,o[n] = log2

(

1 +
Au

Bu + Cu +Du

)

, (4.38)

where

Au = α2
o,npu

( M∑

m=1

Napζmo

)2

, Bu = pu

K∑

k=1

M∑

m=1

Napζmoβmk,

Cu = α2
o,npu

∑

k ̸=o

( M∑

m=1

Napζmo
βmk

βmo

)2

|ψoψ
H

k |2, Du = σ2
w

M∑

m=1

Napζmoβmo.

Similar to DL, we do not count for the effect of non-orthogonal pilot sequences as this

renders the analysis more complicated. Thus, for a typical user o, the achievable UL rate

at a certain network realization can be rewritten as

Ru,o[n] = log2
(
1 + α2

o,nγu,o
)
, (4.39)

where

γu,o =

pu

( M∑

m=1

Napζmo

)2

puNap

M∑

m=1

ζmo

K∑

k=1

βmk + σ2
wNap

M∑

m=1

ζmoβmo

. (4.40)

Theorem 4.2. A lower bound of the average UL rates for CF mMIMO systems under a

specific mobility condition using MRC and equal power control can be approximated by

R̆u,o = log2
(
1 + α2

o,nγ̆
−1

u,o

)
. (4.41)
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where γ̆u,o is given by

γ̆u,o =

D∫

0

D+χ∫

0

ζ(r1)β(r1) + I2,u + I3,u(ζ(r1) + I1,u)

Nap(ζ(r1) + I1,u)2
∂ΛA(r1)

∂r1
e−ΛA(r1)

2χ

D2
dr1 dχ. (4.42)

where

I1,u =

D+χ∫

r1

ζ(r)
∂ΛA(r1)

∂r1
dr, I2,u =

D+χ∫

r1

ζ(r)β(r)
∂ΛA(r1)

∂r1
dr, I3,u =

D∫

0

β(r)
∂ΛU(r1)

∂r1
dr.

Proof. Firstly, the average UL achievable rate is given by

R̄u,o[n] = E

[

log2
(
1 + α2

o,nγu,o
)]

. (4.43)

Then, following the same procedure in DL by applying Jensen’s inequality, a lower bound

of the average UL achievable rate in (4.43) can be expressed by

R̆u,o = log2

(

1 + α2
o,nγ̆

−1

u,o

)

, (4.44)

with

γ̆u,o = E
[
1/γu,o

]
= E

[

E
[
(1/γu,o)

∣
∣χ
]]

. (4.45)

To find R̆u,o, we firstly need to simplify the expression of γu,o in (4.40). Regarding the

numerator, applying the mean plus nearest approximation, the term
M∑

m=1

ζmo can be ap-

proximated by
M∑

m=1

ζmo ≈ ζ(r1) + E

[ M∑

m′=2

ζm′o

∣
∣r1

]

,

≈ ζ(r1) +

D+χ∫

r1

ζ(r)
∂ΛA(r)

∂r
dr.

(4.46)

For the denominator, firstly, we neglect the noise effect. Then, applying some mathe-

matical manipulations, the term
M∑

m=1

ζmo

K∑

k=1

βmk in the denominator can be expressed by

M∑

m=1

ζmo

K∑

k=1

βmk =
M∑

m=1

ζmo

(
βmo +

K∑

k ̸=o

βmk

)
,

=
M∑

m=1

ζmoβmo +
M∑

m=1

ζmo

K∑

k ̸=o

βmk,

≈ ζ(r1)β(r1) + E

[ M∑

m′=2

ζm′oβm′o

∣
∣r1

]

+
M∑

m=1

ζmo

K∑

k ̸=o

βmk.

(4.47)

Following the same procedure as in Theorem 4.1, the second term can be calculated by

E

[ M∑

m′=2

ζm′oβm′o

∣
∣r1

]

=
M∑

m′=2

D+χ∫

r1

ζ(r)β(r)fRom′

(
r
∣
∣r1
)
dr,

=

D+χ∫

r1

ζ(r)β(r)
∂ΛA(r)

∂r
dr.

(4.48)
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In addition, the third term in (4.47) can be approximated by
M∑

m=1

ζmo

K∑

k ̸=o

βmk

(a)≈ E

[ K∑

k ̸=o

βmk

] M∑

m=1

ζmo,

≈
(

D∫

0

β(r)
∂ΛU(r)

∂r
dr
)(

ζ(r1) + E

[ M∑

m′=2

ζm′o

∣
∣r1

])

.

≈
(

D∫

0

β(r)
∂ΛU(r)

∂r
dr
)(

ζ(r1) +

D+χ∫

r1

ζ(r)
∂ΛA(r)

∂r
dr
)

,

(4.49)

where
(a)≈ stems from applying the same approximation as (4.29), but on the large-scale

fading coefficient rather than the channel estimation variances. Thus, the inner summa-

tion will be independent of the AP index and will be equal to its expected value. Then, we

apply the mean plus nearest approximation on the summation over the channel estimation

variances for the reference user. Using (4.46)-(4.49) in (4.40), γ̆u,o can be calculated as

shown in (4.42). Then, the proof can be completed by substituting (4.42) into (4.44). ■

Similar to DL, the lower bound of the average composite UL rate over different groups

of users is given by

R̆u[n] =
S∑

s=1

log2
(
1 + α2

s,nγ̆
−1

u,o

)
P(o ∈ Gs). (4.50)

For a given frame length T symbols, the average UL rate in bps/Hz using the first

transmission protocol will be

R̆u =
ξ

τu,p

τu,p
ξ∑

n=φ(
τu,p
ξ

−τu,p)+τu,p+1

R̆u[n]. (4.51)

On the other hand, considering the second transmission protocol, the average UL rate is

given by

R̆u =
ξ

τu,p

(1−φ)(
τu,p
ξ

−τu,p)+τu,p+1
∑

n=τu,p+1

R̆u[n]. (4.52)

Note that, the difference between the achievable UL rates in (4.51) and (4.52) is the

symbols over which the UL data are transmitted for the first transmission protocol (Fig.

4.2a) and the second transmission protocol (Fig. 4.2b), respectively.

4.5 Frame Length Optimization

Here, we investigate the effect of frame length optimization on the DL and UL data rates of

CF mMIMO systems under TDD system operation. In addition, we derive novel analytical

expressions to determine the appropriate frame length under different environments with
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different users’ velocities. In doing so, we optimize the frame length to limit the Doppler

shift effect on the average achievable DL and UL rates.

We consider the two different transmission protocols for the system operation, dis-

cussed in Section 4.2.2. For the first transmission protocol (Fig. 4.2a), the Doppler shift

effect will be more prominent on the UL system performance since it experiences worse

Doppler shift conditions. Hence, the required frame length for DL and UL rate maxi-

mization will be different. Regarding the second transmission protocol (Fig. 4.2b), since

the buffered UL data symbols will be processed right after the UL training phase, the UL

transmission experiences similar Doppler shift conditions as the DL transmission. How-

ever, in fact, the DL transmission phase lasts for longer duration than the UL as higher

rates are required in DL transmission. As such, the overall Doppler shift effect on the DL

and UL transmission phases will be different. Hence, different frame lengths are required

to maximize the DL and UL achievable rates.

In accordance with the previous discussion, maximizing the DL and UL rates simul-

taneously based on frame length selection is not doable under TDD system operation. In

addition, choosing the frame length to maximize the DL achievable rates will result in

a degradation in the maximum achievable UL rates, and vice versa. Hence, aiming at

achieving near maximum DL and UL rates simultaneously, one can determine the system

frame length by solving the following problem:

min
ξ

εϱ1 + (1− ε)ϱ2

s.t. 0 < ξ < 1,

(4.53)

where

ϱ1 = 1− R̆d(ξ)

R̆d(ξd)
, ϱ2 = 1− R̆u(ξ)

R̆u(ξu)
.

Besides, 0 ≤ ε ≤ 1 denotes a weight factor and we consider it as a system parameter.

Also, ξd and ξu denote the values of the pilot sequence ratio that achieve maximum DL

and UL rates, respectively. The problem in (4.53) strives to minimize a weighted loss of

the achievable DL and UL rates relative to their maximum values. Thus, one firstly needs

to find the values of ξd and ξu to solve the problem in (4.53).

Theorem 4.3. The value of ξ∗ = ξd that maximizes the DL rates in CF mMIMO systems

under the Doppler shift effect can be determined by solving the following
S∑

s=1

(

(ξ∗
−1

+ 1) ln
(
1 + γ̆−1

d,oρ
2φτu,p(ξ∗

−1
−1)

s

)
+ (1− ξ∗

−1

) ln(1 + γ̆−1

d,o)
)

P(o ∈ Gs) = 0,

(4.54)
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where ρs denotes the temporal correlation coefficient of the channels of users in group Gs.

Proof. The required pilot sequence ratio ξd that maximizes the average DL rate can be

found by solving the following problem:

max
ξ

R̆d

s.t. 0 < ξ < 1.
(4.55)

Note that, the average DL rate can be rewritten as

R̆d =
S∑

s=1

R̆d,sP(o ∈ Gs), (4.56)

with

R̆d,s =
ξ

τu,p

φ(
τu,p
ξ

−τu,p)
∑

n=1

log2
(
1 + ρ2ns γ̆−1

d,o

)
, (4.57)

being the lower bound of average DL rates of users in group Gs. One should note that

the objective function in (4.55) is not differentiable w.r.t ξ since ξ is in the upper limit

of the summation in (4.57). Hence, we consider replacing the summation operator by

the integration operator. In fact, since the achievable data rate at each time symbol

n is positive-valued, replacing the summation operator by the integration operator will

introduce an upper bound which can be expressed by

R̆u
d =

S∑

s=1

R̆u
d,sP(o ∈ Gs), (4.58)

with

R̆u
d,s =

ξ

τu,p

φ(
τu,p
ξ

−τu,p)
∫

0

log2
(
1 + ρ2ts γ̆

−1

d,o

)
dt. (4.59)

Since R̆u
d and R̆d have the same behavior as ξ varies, we consider maximizing R̆u

d instead

of R̆d. Note that, the problem now is differentiable w.r.t ξ. Furthermore, the problem

can be shown to be concave in ξ as follows. The first and second derivative of R̆u
d w.r.t ξ

will be
∂R̆u

d

∂ξ
=

S∑

s=1

∂R̆u
d,s

∂ξ
P(o ∈ Gs)

=
S∑

s=1

1

τu,p

(
φ(

τu,p
ξ

−τu,p)
∫

0

log2(1 + γ̆−1

d,oρ
2t
s ) dt− φξ−1 log2

(
1 + γ̆−1

d,oρ
2φ(

τu,p
ξ

−τu,p)
s

))

P(o ∈ Gs),

(4.60)

∂2R̆u
d

∂ξ2
=

S∑

s=1

∂2R̆u
d,s

∂ξ2
P(o ∈ Gs)

=
S∑

s=1

2φ2γ̆−1

d,oρ
2φ(

τu,p
ξ

−τu,p)
s ln (ρs)

ξ3 ln (2)
(
1 + γ̆−1

d,oρ
2φ(

τu,p
ξ

−τu,p)
s

)
P(o ∈ Gs).

(4.61)

Since the the value of the channel correlation coefficient ρs < 1, ∀s = 1, · · · , S, the



68

second derivative in (4.61) will be always negative-valued. Hence, the problem is concave

in ξ and the pilot sequence ratio that maximizes the DL rate ξ∗ can be derived by solving

∂R̆u
d

∂ξ

∣
∣
∣
∣
ξ∗

= 0, (4.62)

which can be expressed by

S∑

s=1

(
φ(

τu,p
ξ

−τu,p)
∫

0

log2(1 + γ̆−1

d,oρ
2t
s ) dt− φξ−1 log2

(
1 + γ̆−1

d,oρ
2φ(

τu,p
ξ

−τu,p)
s

)
)

P(o ∈ Gs) = 0.

(4.63)

As it can be seen, (4.63) involves a complex integral whose closed-form expression is

not readily available. Therefore, aiming at obtaining the optimal solution ξ∗, we simplify

this integral as follows. The term γ̆−1

d,oρ
2t
s in (4.63) is a monotonically decreasing expo-

nential function in t. Thus, we assume that log2(1 + γ̆−1

d,oρ
2t
s ) can be approximated by

a linear decreasing function w.r.t t. Based on this, the first LHS term in (4.63) can be

approximated by
φ(

τu,p
ξ

−τu,p)
∫

0

log2(1 + γ̆−1

d,oρ
2t
s ) dt ≈

φ

2
(
τu,p
ξ

− τu,p) log2(1 + γ̆−1

d,oρ
2φ(

τu,p
ξ

−τu,p)
s )

+
φ

2
(
τu,p
ξ

− τu,p) log2(1 + γ̆−1

d,o),

(4.64)

and this approximation is tight as will be shown in Section 4.6. After some mathematical

manipulations, the proof is completed by substituting (4.64) in (4.63). ■

Regarding the required frame length to maximize the achievable UL data rate, this

mainly depends on the adopted transmission protocol. Therefore, we will derive the values

of ξ = ξu for the two different aforementioned transmission protocols shown in Fig. 4.2.

Theorem 4.4. The value of ξ∗ = ξ1u and ξ∗ = ξ2u that maximizes the UL rates under

the Doppler shift effect considering the first and second transmission protocols can be

determined by solving (4.65) and (4.66), respectively.
S∑

s=1

((
0.5(1− φ)(ξ∗

−1 − 1)− ξ∗
−1
)
ln (1 + γ̆−1

u,oρ
2(τu,pξ∗

−1
−τu,p)

s )+

(
0.5(1− φ)(ξ∗

−1 − 1) + φξ∗
−1
)
ln (1 + γ̆−1

u,oρ
2φ(τu,pξ∗

−1
−τu,p)

s )
)

P(o ∈ Gs) = 0.

(4.65)

S∑

s=1

((
ξ−1 + 1

)
ln (1 + γ̆−1

u,oρ
2(1−φ)(

τu,p
ξ

−τu,p)+2τ
s )

+
((
ξ−1 − 1

)
ln (1 + γ̆−1

u,oρ
2τu,p
s )

)

P(o ∈ Gs) = 0.

(4.66)

Proof. The expressions can be readily obtained following the same steps to find ξd. ■

After calculating ξd and ξu, R̆d(ξd) can be determined using (4.35) while R̆u(ξu) can
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be determined either using (4.51) or (4.52) according to the transmission protocol. Thus,

(4.53) can be solved as shown in the following theorem.

Theorem 4.5. Following the same approach in the proof of Theorem 4.3, the problem in

(4.53) can be shown to be a convex optimization problem where the optimal pilot sequence

ratio ξ∗ that minimizes the total loss in DL and UL rates is given by

ξ∗ = Υ(ξ∗), (4.67)

where Υ(ξ∗) is the solution of (4.68) and (4.69) for the first and second transmission

protocols, respectively.
S∑

s=1

(
εφ

2R̆d(ξd)

(

− (ξ∗
−1

+ 1) ln
(
1 + γ̆−1

d,oρ
2φτu,p(ξ∗

−1
−1)

s

)
+ (1− ξ∗

−1

) ln(1 + γ̆−1

d,o)
)

+
1− ε

R̆u(ξu)

×
((

0.5(1− φ)(ξ∗
−1 − 1)− ξ∗

−1
)
ln (1 + γ̆−1

u,oρ
2(τu,pξ∗

−1
−τu,p)

s ) +
(
0.5(1− φ)(ξ∗

−1 − 1)

+ φξ∗
−1
)
ln (1 + γ̆−1

u,oρ
2φ(τu,pξ∗

−1
−τu,p)

s )
))

P(o ∈ Gs) = 0,

(4.68)
S∑

s=1

(
εφ

R̆d(ξd)

(

− (ξ∗
−1

+ 1) ln
(
1 + γ̆−1

d,oρ
2φτu,p(ξ∗

−1
−1)

s

)
+ (1− ξ∗

−1

) ln(1 + γ̆−1

d,o)
)

+
(1− ε)(1− φ)

R̆u(ξu)

(

−
(
ξ−1 + 1

)
ln (1 + γ̆−1

u,oρ
2(1−φ)(

τu,p
ξ

−τu,p)+2τ
s )

+
((
ξ−1 − 1

)
ln (1 + γ̆−1

u,oρ
2τu,p
s )

))

P(o ∈ Gs) = 0.

(4.69)

Note that, (4.68) and (4.69) can be readily solved using any numerical equation solver

since both equations are function of one variable ξ∗.

Proof. The expressions can obtained by following the same steps to find ξd and ξu. ■

4.6 Numerical Results

We consider APs and users are distributed according to FHPPP in an area with a cell

radius D = 500 m. The pilot transmission power, DL, and UL data transmission power

are Pp = 100 mW, Pd = 200 mW, and Pp = 100 mW, respectively. The carrier frequency

fc = 2 GHz and the sampling time Ts = 66.66 µs. The noise variance σ2
w = 290×κ×B×

NF where κ is the Boltzman constant, B = 10 MHz, denoting the system bandwidth,

and NF = 9 dB is the noise figure. Besides, we consider that we have two groups of

users in the network. The first group G1 includes low-velocity users, i.e., pedestrians,

whose velocity is 5 km/hr. In addition, the second group G2 includes high-velocity users

with velocity v km/hr. In that, we consider different values of v to study the system
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performance under different mobility scenarios. Furthermore, the probability that a user

belongs to G1 is 0.2, unless otherwise specified.

(a) DL (b) UL (Protocol 1) (c) UL (Protocol 2)

Figure 4.3: Average DL and UL rates under the Doppler shift effect.

To assess the accuracy of the derived analytical expressions for the average DL and

UL rates, Fig. 4.3 compares the analytical expressions for the lower bound DL and UL

data rates with the exact and lower bound achievable ones from numerical results. In

that, the average UL rates are calculated for the two transmission protocols in Fig. 4.2.

The performance is compared under different mobility conditions of users belonging to

G2, namely, v = 50, 150 km/hr. Also, we consider different densities of APs while all APs

are equipped with Nap = 4 antennas. Besides, two different user densities are considered

λU = 100, 150 UEs/Km2. The frame length T = 1000 symbols and the portion of the

data symbols assigned for the DL transmission phase is φ = 0.6. As noted from the

results, the proposed lower bound DL and UL rates represent a tight bound of the exact

achievable ones. Also, the derived analytical expressions for the lower bound average

DL and UL rates are in excellent matching with their counterparts using simulations.

Furthermore, it is clear that increasing the velocity of users in G2 leads to a degradation

in the total average DL and UL rates. Also, it is also noted that the Doppler shift effect

is more prominent on the achievable UL rates using the first transmission protocol (Fig.

4.2a). This is due to the constant frame length T = 1000 symbols for both transmission

protocols.

Fig. 4.4 depicts the required pilot sequence ratio that maximizes the average DL and

UL rates considering different transmission protocols. We assume that the percentage

of data symbols, dedicated for DL transmission is φ = 0.75. In addition, we assume

non-orthogonal pilot sequences are assigned to users for the sake of channel estimation

with τu,p = 40. Fig. 4.4a shows the required pilot sequence ratio for λA = 700 APs/km2
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assuming different values of λU while Fig. 4.4b shows the required pilot sequence ratio

for λU = 100 UEs/km2 assuming different values of λA. Also, Fig. 4.4c depicts the

required pilot sequence ratio under different probabilities of a user to be a low-velocity

user, i.e., user belongs to G1, assuming λU = 100 UEs/km2 and λA = 700 APs/km2. The

required pilot sequence ratio to maximize the average DL rates is calculated analytically

using (4.54) while the required one to maximize the average UL rates in the first and sec-

ond transmission protocols is calculated using (4.65) and (4.66), respectively. In addition,

the required pilot sequence ratios for DL and UL maximization are calculated by simu-

lations using exhaustive search. As noted, both simulations and analytical results are in

perfect matching under different system parameters. Interestingly, since the analysis does

not account for the presence of non-orthogonal pilots, this reflects that the optimal frame

length for maximizing DL and UL rates is not affected by the pilot contamination effect.

Also, it is clear that the required frame length for DL and UL rate maximization decreases

with the users’ velocity (ξ increases) to limit the Doppler shift effect. Besides, while the

required frame length to maximize the average UL rates is the smallest considering the

first transmission protocol, it is the largest for the second transmission protocol.

(a) Different λU (b) Different λA (c) Different P(o ∈ G1)

Figure 4.4: Required pilot sequence ratio to maximize the average DL and UL rates under different

system setups.

Notably, increasing the number of users in the system leads to a slight increase in the

optimal pilot sequence ratio. Also, this increase becomes more prominent under higher

users’ velocities. The is a consequence that increasing the number of users degrades the

achievable data rates. Thus, the Doppler shift effect will lead to negligible data rates at

smaller frame lengths than the required ones for systems with smaller number of users.

On the other hand, increasing the number of APs improves the achievable data rates, and

hence, increases the required frame lengths to maximize the achievable rates. Further-
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more, the optimal pilot sequence ratio decreases as the probability of having low-velocity

users increases. This is due to the slight Doppler shift effect on low-velocity users. Hence,

increasing the probability of having low-velocity users improves the total average data

rates which in turn increases the required frame lengths to maximize the achievable rates.

Interestingly, the difference in the required pilot sequence for DL and UL rate maximiza-

tion becomes more prominent at higher velocities since the experienced Doppler shift

effects by both transmission phases become more distinct. This also renders the differ-

ence more prominent in the first transmission protocol than in the second transmission

protocol.

Fig. 4.5 depicts the average DL and UL data rates considering fixed and optimized

frame lengths under different users’ velocities. We consider two fixed frame lengths where

the first one consider T = 400 symbols which is widely used in the literature for CF

mMIMO systems, and the second one considers T = 2000 symbols. Regarding the op-

timized frame length, we consider limiting the introduced losses assuming ε = 0.5 in

both transmission protocols. Also, the achievable DL and UL rates are compared with

the maximum DL and UL rates at ε = 1 and ε = 0, respectively. Fig. 4.5a reveals

that adjusting the system frame length according to users’ velocities attains superior data

rates to the achievable ones using fixed frame length under both transmission protocols.

Furthermore, there is a slight improvement that increases with velocity in the optimized

achievable rates under the second transmission protocol to those of the first transmission

protocol. In addition, while the fixed frame length with T = 400 symbols can achieve near

optimal DL rates at moderate velocities, i.e., v = 75, 100 km/hr, it leads to a degrada-

tion in the achievable rates at small and high velocities. Moreover, considering the second

fixed frame length T = 2000 symbols, it is noted that while it can achieve high DL rates,

close to the maximum at low mobility conditions, it results in severe degradation in the

achievable rates as the users’ velocities increase. Note that, Fig. 4.5c shows a similar

behavior of the achievable UL rates in the second transmission protocol to that of DL

rates in Fig. 4.5a since both experience comparable Doppler shift effects.

Regarding the achievable UL rates in the first transmission protocol, depicted in Fig.

4.5b, it is noticed that the second fixed frame length with T = 2000 symbols always

leads to a degradation in the achievable UL rates that becomes severer at higher mobility

scenarios. In addition, the first fixed frame length with T = 400 symbols is suitable
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(a) DL (b) UL (Protocol 1) (c) UL (Protocol 2)

Figure 4.5: Average DL and UL rates under fixed and optimized frame length.

for system operation under users’ velocities v = 50, 75 km/hr. However, as the users’

velocities increase, the system performance degrades significantly. In contrary, adjusting

the frame length according to the users’ velocities can provide near optimal UL rates

at different velocities. As such, by adjusting the frame length according to the mobility

conditions, one can adopt the first transmission protocol to provide reasonable DL and

UL rates with low implementation complexity.

4.7 Summary

We revealed the potential of adapting the system frame length to limit the Doppler shift

effect on the DL and UL rates of CF mMIMO systems. This has been studied under

different transmission protocols where the first transmission protocol considers placing the

UL training before the DL and UL transmission phases, while the second one considers

the transmission of UL training between the UL and DL transmission phases. We derived

novel analytical expressions for tight lower bounds of the average DL and UL data rates.

Then, we exploited the derived analytical results to derive the optimal frame length that

maximizes the DL and UL rates under different transmission protocols. Capitalizing on

our analytical results, we proposed a frame length selection criterion that minimizes the

Doppler shift effect on a total weighted sum of losses in system’s rates. We revealed that

the optimal frame length for the system operation is significantly affected by the users’

velocities. But, it is slightly affected by the APs and UEs densities. Also, selecting the

frame length that minimizes a weighted sum of the DL and UL losses can significantly limit

the Doppler shift effect on both DL and UL rates simultaneously. Besides, considering

equal weights of DL and UL losses, we showed that adapting the frame length according
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to the transmission protocol and users’ velocities has a great potential in achieving high

DL and UL data rates under the Doppler shift effect compared to having a fixed frame

length.



Chapter 5

Physical Layer Security in CF mMIMO

Systems

5.1 Introduction

Recently, wireless communication networks play a crucial rule in many military and civil-

ian applications. In particular, it is widely used in the transmission of important/private

information, such as energy pricing, credit card information, e-health data, and control

messages. As such, security is one of the critical concerns of the future wireless networks.

The conventional way to improve the security is through bit-level cryptographic tech-

niques and associated protocols at various levels of the data processing stack. However,

enhanced ciphering and authentication protocols should be implemented to reinforce the

system security. This in turn introduces strong constraints as well as additional costs

on UEs. In contrary to conventional cryptographic techniques, a low-cost information

theoretic-based security approach that focuses on the secrecy capacity of the propagation

channel is through PLS [25]. In fact, PLS can be integrated with the existing security

schemes as an additional level of protection as a promising security solution for future

wireless communication networks. Interestingly, PLS techniques do not rely on computa-

tional complexity and hence, a secure and reliable communication can be attained even

if the eavesdroppers have high computational resources for hard mathematical problems.

The secrecy capacity of mMIMO systems has been widely studied assuming passive

and active eavesdropper. In that, passive eavesdroppers do not intervene in the communi-

cation, but attempt to decode the information sent to one of the legitimate users. On the

other hand, since the pilot sequences are public and standardized, active eavesdroppers

can actively send spoofing pilot sequence to cause a pilot contamination attack which in

turn poses a crucial threat to the system performance. Such attack is known as the pilot

spoofing attack [87]. The effect of active eavesdroppers has shown to be more harsh than

75
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passive ones since higher information rate can be leaked to the eavesdropper [88].

Recent works investigate the effect of the pilot spoofing attacks on CF mMIMO sys-

tems [104, 105]. The authors in [104] consider the impact of the pilot spoofing attack on

the performance of multi-group multi-casting CF mMIMO. In that, the DL beamforming

training is adopted to improve the secrecy capacity when the Eve perfectly knows the

channel gains. In addition, a simple minimum description length approach is proposed

to detect the pilot spoofing attacks by finding the subspace dimension of the received

signal correlation matrix. The authors in [105] consider the power allocation problem to

maximize the achievable rates of the user under attack considering the case where users

are suspected to be an Eve. Nevertheless, these works consider orthogonal pilot sequences

are assigned to users (Groups) during the UL channel estimation phase. Different from

previous works, we consider non-orthogonal pilot sequences for the UL channel estimation

phase. Also, we propose two different approaches to improve the secrecy performance of

CF mMIMO systems.

For the first proposed approach, we assume that APs cannot detect the attack of an

active Eve. Thus, APs have no statistical or instantaneous information about the Eve. In

addition, the Eve does not perfectly know the channel gains with the APs. However, the

Eve strives to estimate its channel conditions with the APs to overhear the attacked user’s

signal by capitalizing on the applied DL transmission technique. In that, we propose a

novel DL pilots transmission technique that significantly improves the secrecy rate of

CF mMIMO systems. The proposed technique is a distributed technique that aims at

limiting the Eve’s capability in estimating its channel conditions with the deployed APs,

and hence, improving the secrecy capacities of CF mMIMO systems.

In the second approach, we exploit RISs to improve the secrecy capacities of CF

mMIMO systems. RIS has been recently proposed as a promising technology to improve

the performance of wireless communication networks by re-configuring the wireless prop-

agation channels through software-controlled reflections [106]. In particular, RIS is a

planar surface that includes a large number of low-cost passive reflecting elements that

can induce phase change to the incident signals to collaboratively achieve fine-grained

beams. As such, RISs can smartly modify the channel conditions between the transmit-

ter and the receiver to meet the target requirements of wireless networks. The integration

of RIS and CF mMIMO is still in its infancy where only a few works have considered RIS-
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aided CF mMIMO [107, 108] to boost the network DL performance in-terms of spectral

and energy efficiencies. Aside from that, different works have investigated the potential

of RISs in improving the PLS performance of wireless networks as in [109, 110] and ref-

erences therein. However, these investigations are limited to conventional networks in

which legitimate users are communicating with a single base station in the presence of

passive Eve. Furthermore, different impractical assumptions have been considered such as

the perfect knowledge of legitimate users’ channels which does not capture the inevitable

pilot contamination effect that strongly degrades the quality of estimated channels in real

scenarios. Also, some works assumed perfect knowledge of Eve’s channel which represents

a strong assumption that cannot be held in practice.

Based on the above, we propose a centralized RIS-based CF mMIMO operation to

improve the secrecy capacities of CF mMIMO systems under the assumption that the

system can detect the presence of an active Eve while considering imperfect channel state

information of both legitimate users and the active Eve. In that, we jointly optimize the

phase shifts of RIS elements and the transmit power coefficients at APs to minimize the

leakage rate towards the active Eve while maintaining a certain QoS for legitimate users.

5.2 Secure DL Transmission Using Nearest APs-Based

DL Pilots

In this section, we introduce a highly-secure distributed DL transmission approach for

CF mMIMO systems. In particular, a novel DL pilots transmission technique is proposed

to limit the Eve’s capability in estimating its channel conditions with the deployed APs

while improving the achievable rates for legitimate users. Thus, improving the secrecy

capacities of CF mMIMO systems. Also, we compare the performance of the proposed

technique with other conventional DL transmission techniques, namely, no DL pilots and

DL beamforming training.

5.2.1 System Model

We consider that the CF mMIMO system includes a randomly located active Eve that

attempts to overhear the intended signal of the nearest legitimate user as depicted in

Fig. 5.1. Also, we assume that all APs, users, and Eve are equipped with single-antenna
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terminals. The users-APs channels are modeled as Rayleigh fading channels.

Figure 5.1: CF mMIMO system with an active Eve.

5.2.1.1 Channel Model

Since we consider single-antenna APs, the users-APs channels are represented by scalar

variables rather than the vector representation in (3.1). Also, We consider block fading

channels. Consequently, the channel between the mth AP and the kth user is given by

gmk =
√

βmkhmk, (5.1)

where hmk ∼ CN (0, 1) denotes the small-scale fading coefficients. Besides, βmk represents

the large-scale fading coefficient that accounts for path-loss and shadowing effects as

defined in (3.2). Similarly, the channel between the mth AP and the active Eve is modeled

by

gmE =
√

βmEhmE, (5.2)

with hmE ∼ CN (0, 1).

5.2.2 Channel Estimation Under Pilot Attack

During the UL training phase, the Eve exploits the advantage that the pilot sequences

are public and standardized to obtain the pilot sequences. To account for the worst-case

scenario, we assume that the Eve attempts to intercept the data of its nearest legitimate

user. Letting ψE ∈ Cτu,p×1 denotes the spoofing pilot sequence, the received pilot sequence

vector yp,m ∈ C1×τu,p , at the mth AP will be

yp,m =
√

Puτu,p

K∑

k′=1

gmk′ψ
T
k′ +

√

PEτu,pgmEψ
T
E +wp,m, (5.3)

where PE denotes the power of the transmitted pilot symbols from the active Eve, respec-

tively. In addition, wp,m ∈ C1×τu,p , represents the additive noise vector at the mth AP
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whose elements are i.i.d. random variables CN (0, σ2
w). To estimate the channel coefficient

of user k at the mth AP, the received pilot signal yp,m is firstly projected on ψ∗
k as follows:

ỹp,m,k = yp,mψ
∗
k. (5.4)

Different from previous works where the Eve’s channel statistics are assumed to be

available at the AP, we assume that the APs have no information about the channel

statistics of the Eve. As such, instead of applying the MMSE estimation, we apply a

partial-MMSE by exploiting the knowledge of the legitimate users’ channels statistics only.

Therefore, the estimated channel conditions of user k at the mth AP can be determined

by

ĝmk = cmkỹp,m,k, (5.5)

with

cmk =

√
Ppτu,pβmk

K∑

k′=1

Ppτu,pβmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+σ2

w

.
(5.6)

Hence, the power of the estimated channel ĝmk will be

ζmk = ζ ′mk + PEτu,pc
2
mkβmE |ψT

Eψ
∗
k|, (5.7)

where

ζ ′mk = cmk

√

Ppτu,pβmk, (5.8)

where the effect of the Eve attack on the channel estimation variance is present when it

transmits the same pilot sequence of the kth user.

5.2.3 DL Transmission Techniques for CF mMIMO Systems

In CF mMIMO, each AP transmits the DL data symbols of different users over the

same time-frequency resources by means of beamforming. Applying CB precoding, the

transmitted signal from the mth AP can be expressed by

xm =
√

Pd

K∑

k=1

√
ηmkĝ

∗
mksk, (5.9)

where ηmk denotes the power control coefficient. Assuming equal power allocation, the

power control coefficient can be calculated as in (4.7). The received signal from all APs

at the kth user and the Eve will be

rb =
M∑

m=1

gmbxm + wb, (5.10)
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where b ∈ {k,E}. Note that, this notation will be applied across this Chapter to avoid

repetition.

In the literature, different techniques are applied to detect the DL transmitted signals.

For instance, betting on the channel hardening property, users can detect their own data

symbols based on their knowledge of the channel statistics. However, in CF mMIMO

systems, the channel hardening property does not hold, especially at small and moderate

APs densities [75]. Hence, this approach leads to a degradation in the achievable data

rates. On the other hand, the authors in [111] apply the DL beamforming training so

that users can estimate their instantaneous channel gains. Results show that applying

DL beamforming training improves the DL rates significantly.

Recent works consider applying the DL beamforming training to improve the secrecy

rate of CF mMIMO systems under the assumption that the Eve has perfect knowledge of

the channel gains [104]. We differently assume that the Eve does not perfectly know their

channel gains. Nevertheless, they can exploit the DL transmission protocol to estimate

their channel conditions with the APs. In that, we discuss the DL secrecy rate of the

system considering three different DL transmission techniques where the secrecy rate is

given by

Rsec =
[

Rk −RE

]+

, (5.11)

with Rk and RE denote the achievable rate for the legitimate user and the Eve, respec-

tively. Besides, [x]+ = max{0, x}.

5.2.3.1 No DL Pilots

Considering no DL pilot, the legitimate users detect their intended data symbols by the

knowledge of the channel statistics. Note that, in this scenario, it will be harder for the

Eve to estimate its instantaneous channel conditions. Thus, we assume that the Eve

attempts to detect the signal of the user under attack depending on its channel statistics

with the APs which is assumed to be available at the Eve. Hence, assuming that the Eve

attempts to overhear the signal of the kth user, the received DL signal at the kth and the

Eve can be as expressed by

rNP
b =

√

PdE{abk}+
√

Pd

(
abk − E{abk}

)
+
√

Pd

∑

k′ ̸=K

abk′ + wb, (5.12)

where abk′
∆
=

M∑

m=1

√
ηmk′gmbĝ

∗
mk′ , ∀k′ = 1, · · · , K. Considering the fact that uncorrelated

Gaussian noise represents the worst-case interference and applying the use-and-then-forget
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technique, the achievable DL rate of the kth legitimate user and the Eve will be

RNP
b = log2

(

1 +
Pd|E{abk}|2

PdV ar{abk}+ Pd

∑

k′ ̸=k

E{|abk′ |2}+ σ2
w

)

. (5.13)

Considering the performance of the kth legitimate user (b = k), the different terms in

(5.13) can be calculated as follows:

E{akk} =
M∑

m=1

√
ηmkζ

′
mk,

V ar{akk} =
M∑

m=1

ηmk

(
ζ ′mkβmk + PEτu,pc

2
mkβmkβmE|ψT

Eψ
∗
k|2
)
,

E{|akk′ |2} =
M∑

m=1

ηmk′
(
ζ ′mk′βmk + PEτu,pc

2
mk′βmkβmE|ψT

Eψ
∗
k′ |2
)

+
( M∑

m=1

√
ηmk′ζ

′
mk′

βmk

βmk′

)2

|ΨkΨ
H

k′ |2.

(5.14)

In addition, regarding the performance of the Eve (b = E), the different terms in (5.13)

can be determined as follows:

E{aEk} =
M∑

m=1

√

PEτu,pηmkc
2
mkβmE|ψT

Eψ
∗
k|,

V ar{aEk} =
M∑

m=1

ηmk

(
ζ ′mkβmE + PEτu,pc

2
mkβ

2
mE|ψT

Eψ
∗
k|2
)
,

E{|aEk′ |2} =
M∑

m=1

ηmk′
(
ζ ′mk′βmE + 2PEτu,pc

2
mk′β

2
mE|ψT

Eψ
∗
k′ |2
)
.

(5.15)

5.2.3.2 DL Beamforming Training

Aiming at providing the users with their effective channel gains to improve the achievable

DL rates, DL beamforming training is applied. Using DL beamforming training keeps the

system scalable in the number of APs since the DL pilots length is independent of the

number of APs, but depends on the number of users. Let ϕk ∈ C
τDT
d,p ×1 denotes the DL

training sequence, transmitted from user k where ∥ϕk∥2 = 1. We consider orthogonal DL

pilots are allocated to users with τDT
d,p ≥ K. In the DL training beamforming, the pilot

sequences are beamformed to the users by applying CB precoding technique. As such,

the transmitted pilot sequence vector from the mth AP will be

xDT
p,m =

√

Pd,pτDT
d,p

K∑

k′=1

√
ηmk′ ĝ

∗
mk′ϕ

T
k′ , (5.16)
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where Pd,p denotes the transmit power per DL pilot symbol. Then, the received pilot

sequence vectors at the kth legitimate user and the Eve can be expressed by

rDT
p,b =

√

Pd,pτDT
d,p

K∑

k′=1

abk′ϕ
T
k′ +wp,b. (5.17)

Assuming the Eve knows the assigned pilot sequence to the target user k, it exploits this

to estimate the channel gain aEk. Thus, the received DL training signal at user k and the

Eve will be firstly projected on ϕk as follows:

ỹDT
p,b =

√

Pd,pτDT
d,p abk +wp,bϕ

∗
k. (5.18)

Then, the linear MMSE estimation can be applied to estimate the channel gains as follows:

âbk = E{abk}+

√

Pd,pτDT
d,p V ar{abk}

Pd,pτDT
d,p V ar{abk}+ 1

(

ỹDT
p,b −

√

Pd,pτDT
d,p E{abk}

)

. (5.19)

Let ãbk = abk − âbk denotes the estimation error of abk. Hence, the achievable DL rate of

the kth legitimate user and the Eve can be calculated by [111]

RDT
b = E

{

log2

(

1 +
Pd|âbk|2

PdE{|ãbk|2}+ Pd

∑

k′ ̸=k

E{|abk′ |2}+ σ2
w

)}

, (5.20)

with

E{|ãbk|2} =
V ar{abk}

Pd,pτDT
d,p V ar{abk}+ 1

, (5.21)

where the expectation and the variance of different channel gains in (5.20) and (5.21) are

given in (5.14) and (5.15) for the legitimate user and the Eve, respectively.

5.2.3.3 Nearest APs DL Pilots

In fact, the DL training beamforming significantly improves the achievable DL rates in

CF mMIMO systems. However, since the DL pilots are transmitted from all APs, the Eve

can exploit the beamforming training technique to estimate its channel gain with APs.

This in turn increases the information rate, leaked to the Eve. As such, we propose a

new DL pilots transmission technique that can limit the information leakage to the Eve

to attain high secrecy rates in CF mMIMO systems.

In CF mMIMO systems, each user is effectively served by a finite number of APs

since APs are distributed over a large area. An important question is how many APs will

dominate the contribution to the received signal. To address this, let us consider γ̇m as the

channel gain of the mth nearest AP to the composite channel gain from all APs. In other

words, γ̇m represents the contribution of the mth nearest AP to the total received signal.

Fig. 5.2 depicts the CDFs of the contributions of the different orders of APs over different
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network realizations assuming K = 20 and M = 100. Intuitively, the first nearest AP has

the dominant contribution to the total channel gain, however, the contribution decreases

significantly for higher orders of APs. Besides, the distinction between the contributions

of different APs fades out as the APs orders increase.

m
 (%)

Figure 5.2: CDF of the mth nearest AP channel gain to the total channel gain.

To limit the capabilities of the Eve to estimate its DL channels with the APs while

attaining considerable signal strengths at the legitimate users, we consider transmitting

DL pilots from the first two nearest APs for each user. As such, the user can estimate

the channels, carrying the effective contribution of the received signal. Besides, it detects

the received signals from other APs by the knowledge of the channel statistics. Letting

ANA denotes the set of the first two nearest APs for all legitimate users. In addition,

ℸ ∈ C
τNA
d,p ×Ṁ is the DL pilot sequence matrix in the proposed technique, where τNA

d,p

is the length of DL pilot sequences and Ṁ denotes the number of APs in ANA. We

consider non-orthogonal pilot sequences where τNA
d,p < Ṁ . In addition, the pilots are

assigned to the APs in a random manner, but under a condition that the assigned pilot

sequences to the first two nearest APs for each user k are orthogonal. For instance,

ג
T
mk,1

ג
∗
mk,2

= 0, ∀k = 1, · · · , K, where mk,1ג
, mk,2ג

∈ ℸ, are the assigned pilot sequences to

the first and second nearest APs of user k, respectively. Thus, the received pilot sequence

at the kth legitimate user and the Eve will be

rNA
p,b =

√

Pd,pτNA
d,p

Ṁ∑

m′=1

gm′bג
T
m′ +wp,b. (5.22)

After user k receives the DL pilot signal, it performs linear MMSE estimation of the
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nearest APs channel conditions as follows:

ĝNA
mk,jk

= Dmk,jkr
NA
p,k ג

∗
mk,j

, (5.23)

where

Dmk,jk =

√

Pd,pτNA
d,p βmk,jk

N∑

m′=1

Pd,pτNA
d,p βm′k

∣
ג∣

T
m′ג

∗
mk,j

∣
∣
2
+σ2

w

, (5.24)

and j ∈ {1, 2} represents the order of the AP, i.e., first nearest (j = 1) or second nearest

(j = 2). Regarding the Eve performance, we consider two different operations. Firstly,

it follows the same procedure of the legitimate user by estimating its channel conditions

with the first two nearest APs. Secondly, we assume that the Eve may estimate the

corresponding channel conditions of all APs in the set ANA. Therefore, it can detect

the target user’s data arriving from these APs based on instantaneous knowledge of the

channel conditions. The MMSE estimate of the Eve’s channel conditions with AP n ∈
ANA will be

ĝNA
mE = DmE r

NA
p,E ג

∗
m, (5.25)

where DmE can be calculated as Dmk,jk in (5.24). Using the proposed DL pilots technique,

the received DL signal at the kth legitimate user and the Eve will be

rNA
b =

√

Pda
NA
bk +

√

PdE{a′bk}+
√

Pd

(
a′bk − E{a′bk}

)
+
√

Pd

∑

k′ ̸=K

abk′ + wb, (5.26)

where a′bk
∆
= abk−aNA

bk . Besides, for the kth legitimate user, the term aNA
bk can be defined as

aNA
kk

∆
=

2∑

j=1

√
ηmk,jkgmk,jkĝ

∗
mk,jk

. Similarly, considering the Eve, the term aNA
bk can be defined

by aNA
Ek

∆
=

∑

m′∈ANA

√
ηm′kgm′E ĝ

∗
m′k, when the Eve estimates the DL channel conditions with

all APs ∈ ANA. Also, the latter expression can adapt to the case where the Eve estimates

the channel conditions with the two nearest APs. Therefore, the achievable DL rates for

the kth legitimate user and the Eve can be calculated by

RNA
b = E

{

log2

(

1 +
Pd

(
|âNA

bk |2+|E{a′bk}|2
)

PdE{|ãNA
bk |2}+ PdV ar{a′bk}+ Pd

∑

k′ ̸=k

E{|abk′ |2}+ σ2
w

)}

, (5.27)

Note that, for the legitimate user, the term âNA
kk

∆
=

2∑

j=1

√
ηmk,jkĝ

NA
mk,jk

ĝ∗mk,jk
denotes the

desired received signal from the first two nearest APs. In addition, the term ãNA
kk

∆
=

2∑

j=1

√
ηmk,jk(gmk,jk − ĝNA

mk,jk
)ĝ∗mk,jk

represents the effect of the DL channel estimation error.

The terms âNA
Ek and ãNA

Ek can be defined in a similar way for the Eve. Besides, E{|ãNA
kk |2}
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and E{|ãNA
Ek |2} can be calculated by

E{|ãNA
kk |2} =

2∑

j=1

√
ηmk,jkβmk,jk

(
1−

√

Pd,pτNA
d,p Dmk,jk

)
ζmk,jk,

E{|ãNA
Ek |2} =

∑

m′∈ANA

√
ηm′kβm′E

(
1−

√

Pd,pτNA
d,p Dm′E

)
ζm′k.

(5.28)

5.2.4 Numerical Results and Simulations

In this section, we discuss simulation results to give insights on the impact of pilot spoof-

ing attack on the performance of CF mMIMO systems under different DL transmission

strategies. We consider 100 APs and 20 users are uniformly distributed in a square area

of size 1 × 1 km2. The carrier frequency fc = 2 GHz. In addition, the active Eve is

located randomly in the studied area. The UL pilot transmission power of legitimate

users Pp = 0.1 Watt. Besides, the DL data and pilot transmission powers Pd = Pd,p = 0.2

Watt. The noise variance is denoted by σ2
w = 290 × κ × B × NF where κ is the Boltz-

man constant, B = 20 MHz, denoting the system bandwidth, and NF = 9 dB is the

noise figure. Also, we consider a coherence time interval τc = 200 samples. The length

of non-orthogonal pilot sequences in the UL training phase is τu,p = 10. Regarding the

DL training training beamforming, we apply orthogonal pilot sequences during the DL

channel estimation phase τDT
d,p = 20. However, in the proposed technique, we assume

non-orthogonal pilot sequences with τNA
d,p = 10.

Fig. 5.3 depicts the CDF of the achievable DL rates of legitimate users, the leakage DL

rates to Eve, and the secrecy rates in bps/Hz. It is assumed that the transmitting power of

pilot symbols from the Eve is PE = 0.2 Watt. Fig. 5.3a shows the CDF of the achievable

DL rates of legitimate users. Notably, applying the DL beamforming training increases

the achievable rates significantly. In addition, the performance of the proposed technique

approaches that of the DL beamforming training technique. Also, the performance gap

between the proposed technique and the DL beamforming training is small. The reason

behind such gap is that while in the DL beamforming training, each user estimates the

actual channel gain, in the proposed technique, each user estimates the channel with the

first two nearest APs. Hence, the errors in the detection of the signals, arriving form other

APs depending on the channel statistics leads to such gap in the achievable DL rates.

Regarding the leakage DL rates to the Eve depicted in Fig. 5.3b, it is noted that

applying no DL pilots technique significantly limits the information leakage to the Eve.
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On the other hand, applying the DL beamforming training is in the Eve favor, where the

Eve can attain high leakage rates, compared to no DL pilots and the proposed technique.

Interestingly, applying the proposed technique can limit the information leakage to the

Eve, and the information leakage rates are comparable to those, resulting from applying

no DL pilots technique. It is also noted that in the proposed technique, the Eve cannot

benefit from estimating the channel conditions with all the selected APs to send DL pilots.

This is a consequence that the selected APs for DL pilots transmission are chosen to be

in favor of users, and hence, they might not be the best APs from the Eve perspective.

(a) Legitimate users (b) Information leakage (c) Secrecy rates

Figure 5.3: CDF of the DL achievable rates of legitimate users, the information leakage to Eve, and the

secrecy rates.

Fig. 5.3c shows the CDF of the achievable secrecy rates using the studied DL trans-

mission strategies. It is clear that the proposed technique outperforms both no DL pilots

and the DL beamforming training techniques. Besides, the secrecy outage probability

of the DL beamforming training is superior to other techniques. The reason is that the

proposed technique can improve the achievable DL rates of the legitimate user, while

limiting the information leakage to the Eve. On the other hand, the DL training beam-

forming increases the information leakage to the Eve while improving the achievable rates

of legitimate users.

Fig. 5.4 depicts the average secrecy rates of the aforementioned transmission tech-

niques under different Eve’s transmit power of spoofing pilot symbols PE. The transmit

power of pilot symbols from legitimate users is 0.1 Watt. Notably, the proposed technique

is more robust as the Eve increases the transmit power of the spoofing pilot symbols. Be-

sides, the achievable gain over the DL beamforming training gets higher as the pilot

transmit power from Eve increases. This is due to the fact that in the DL beamforming

training, the Eve estimates the composite channel gain from all APs. Thus, as the power
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of the spoofing pilot symbols increases, the estimated channel gain at the Eve improves

accordingly as it receives favorable gains especially from nearby APs. On the other hand,

since the proposed technique allows DL pilot transmission from close APs to legitimate

users, the Eve receives non-preferable signal components from these APs. Thus, it needs

to increase the spoofing pilot power significantly to overhear the confidential information

of the legitimate user.

Figure 5.4: Average secrecy rate of different DL transmission strategies at different spoofing pilot power

values.

5.3 Exploiting RIS for Limiting Information Leakage

to Active Eavesdropper

In this section, we exploit the distinctive features of RISs to propose a novel RIS-based

CF mMIMO operation to boost the secrecy rates of CF mMIMO systems. To this end,

we jointly optimize the phase shifts of RIS elements and the transmit power coefficients at

APs to minimize the leakage rate towards the active Eve while maintaining a certain QoS

for legitimate users. Also, we compare the secrecy performance of the proposed system

with the traditional CF mMIMO without RISs.

5.3.1 RIS-Assisted CF mMIMO System Model

We consider RIS-supported CF mMIMO network with M multiple-antenna APs, k single

antenna users, and T RIS panels. Thanks to the low cost of RISs, we assume that the

number of RIS panels is larger than the number of APs (T > M). Each AP is equipped
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with the mth AP and bth user/Eve, respectively. Also, θtℓ ∈ [0, 2π] is the phase shift of the

ℓth element in the tth RIS. In addition, ğmb is the direct channel vector between the mth

AP and the bth user/Eve whose entries are modeled as Rician fading channel as follows:

ğmb =
√

βmb

(
√

Kmb

Kmb+1

h̄mb +

√
1

Kmb + 1
∆

1

2

mbhmb

)

, (5.31)

where βmb represents the large-scale fading coefficient, Kmb is the Rician K-factor, h̄mb =

[1, e−j2πr̄sin(Θmb), · · · , e−j2πr̄(Nap−1)sin(Θmb)], accounts for the LoS channel components where

Θmb ∼ U[−π, π] represents the signal arrival angle and r̄ = 0.5 is the antenna spacing

divided by the carrier wavelength. The vector of small-scale fading channel components

hmb follows the circularly symmetric Gaussian noise distribution where hmb ∼ CN (0, IN).

In addition, ∆mb represents the channel correlation matrix. Accordingly, one can model

ğmb ∼ CN (¯̆gmb,Rmb), where ¯̆gmb =
√

βmbKmb

Kmb+1
h̄mb and Rmb = βmb

Kmb+1
∆mb is a positive

semi-definite covariance matrix representing the correlation characteristics of the non

line-of-sight (NLoS) component. Also, both gmtℓ and gtℓb are also modeled as Rician

fading channels as ğmb in (5.31).

5.3.2 Channel Estimation of RIS-Assisted CF mMIMO Under

Pilot Attacks

A prerequisite to compute the precoding vectors at the APs as well as the phase shifts of

RIS elements is to perform the channel estimation task. Note that, previous works which

adopted RISs to improve the provided secrecy rates of conventional networks assumed

a perfect knowledge of legitimate user’s channel. Differently, we take into account the

channel estimation errors due to the pilot contamination effect, caused by pilot spoofing

attacks as well as pilot reuse among legitimate users. During the channel estimation phase,

the active Eve exploits the fact that the pilot sequences are public and standardized to

send the same pilot sequence as the target user, aiming at redirecting the DL signal to

itself.

The ON-OFF channel estimation approach in [108] is adopted to account for the

channel estimation errors in both direct and indirect channels. Both LoS and large-scale

fading components of all channels are assumed to be available at the CPU since they

change slowly with respect to the channel coherence time. Accordingly, the MMSE-based
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estimated channels vector of direct channels between user k and the mth AP is given by

ˆ̆gmk = ¯̆gmk +
√

Ppτu,pRmkΦmk

(

Y̆ p,mψ
∗
k

−
√

Ppτu,p

K∑

k′=1

¯̆gmk′ψ
T
k′ψ

∗
k −

√

PEτu,pḡmEψ
T
Eψ

∗
k

)

,
(5.32)

with

Y̆ p,m =
√

Ppτu,p

K∑

k′=1

ğmk′ψ
T
k′ +

√

PEτu,pğmEψ
T
E + W̆ p,m,

Φmk =

( K∑

k′=1

Ppτu,pRmk′ψ
T
k′ψ

∗
k + PEτu,pRmEψ

T
Eψ

∗
k + σ2

wINap

)−1

.

where W̆ p,m ∈ CNap×τu,p , represents the additive noise matrix at the mth AP whose

vectors follow CN (0, σ2
wINap

). Similarly, the channel estimation of indirect channels follows

a similar methodology as the direct counterpart as shown in [108].

5.3.3 Performance of Legitimate Users and Active Eve

This section discusses the DL transmission of RIS-aided CF mMIMO system with em-

phasis on the achievable DL data rates for legitimate users and the information leakage to

the active Eve. We assume that the CPU applies ZF precoding for DL data transmission

to manage the inter-user interference. Accordingly, the precoding vector for transmitted

data towards user k is given by

ϖk =
Ĝ

∗
(

Ĝ
T
Ĝ

∗
)−1

ek
√
∥
∥
∥Ĝ

∗
(

Ĝ
T
Ĝ

∗
)−1

ek

∥
∥
∥

2
. (5.33)

with ek being the kth column in the identity matrix Ik. Also, Ĝ ∈ CMNap×K is a matrix

of the estimated composite channels between users and APs. Accordingly, the received

signal at a generic user/Eve b is given by

rb =
M∑

m=1

K∑

k=1

√

Pdηkg
T
mbϖmksk, (5.34)

where ηk denotes the DL power control coefficient for transmitted data towards user k,

and ϖmk is a vector that includes the precoding coefficients for user k at the mth AP
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antennas. Then, (5.34) can be rewritten as follows:

rb =
M∑

m=1

K∑

k=1

√

Pdηk

(

ğTmb +
T∑

t=1

L̇∑

ℓ=1

gTmtℓb

)

ϖmksk,

=
K∑

k=1

√

Pdηk

M∑

m=1

(

amkb + χ
T
mkbν

)

sk,

=
K∑

k=1

√

Pdηk

(

akb + χ
T
kbν
)

sk,

(5.35)

where

amkb = ğ
T
mbϖmk,

χT
mkb = [χmkb,1, · · · ,χmkb,t, · · · ,χmkb,TA

],

χmkb,t = [gTmt1jϖmk, · · · , gTmtℓbϖmk, · · · , gTmtℓbϖmk],

νT = [ν1, · · · ,νt, · · · ,νTA
],

νt = [ejθt1 , · · · , ejθtℓ , · · · , ejθtL̇ ],

akb =
M∑

m=1

amkb, χkb =
M∑

m=1

χmkb.

(5.36)

Accordingly, the achievable DL data rate will be

Rb = log2(1 + γb), (5.37)

with γb denoting the achievable SINR which can be calculated for a legitimate user k and

the Eve using (5.38) and (5.39), respectively.

γk =
Pdηk

∣
∣akk + χ

T
kkν
∣
∣
2

Pd

∑

k′ ̸=k

ηk′
∣
∣ak′k + χT

k′kν
∣
∣
2
+ σ2

w

, (5.38)

γE =
Pdηk

∣
∣akE + χT

kEν
∣
∣
2

Pd

∑

k′ ̸=k

ηk′
∣
∣ak′E + χT

k′Eν
∣
∣
2
+ σ2

w

. (5.39)

5.3.4 Secure RIS-Based DL Transmission

In this section, we introduce our proposed scheme to improve the secrecy capabilities of

CF mMIMO systems. Particularly, we jointly optimize the DL power control coefficients

at APs and the phase shifts of activated RIS panels to minimize the information leakage

towards the Eve while maintaining the achievable rates of all legitimate users above certain
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thresholds as follows:

P1 : min
η,ν

γE

s.t. γk ≥ γth,k, ∀k,

0 ≤ ηk ≤ 1, ∀k,
K∑

k=1

ηk ≤ 1,

|νtℓ|= 1, ∀t, ℓ,

(5.40)

where γth,k denotes the required threshold rate for user k. It is noteworthy that by solving

P1, one can maximize the secrecy rates. This is a consequence that P1 provides legitimate

users with their required data rates while minimizing the information leakage to the

Eve which in turn maximizes the rate difference between the legitimate and illegitimate

links. As one can note, P1 cannot be jointly solved in-terms of η and ν. Thus, existing

convex optimization software cannot be applied to solve such problem. To tackle this

issue, we decouple P1 into two sub-problems, namely, phase shift design problem and

power allocation problem. Then, the solution of P1 is obtained by solving these two

sub-problems iteratively.

5.3.4.1 Phase Shift Design

Here, we discuss the phase shift design for a given transmit power allocation which can

be defined as follows:

P2 : min
ν

γE

s.t. γk ≥ γth,k, ∀k,

|νtℓ|= 1, ∀t, ℓ.

(5.41)

By introducing an auxiliary variable 𭟋, the achievable SINR for a generic user/Eve b can

be rewritten as follows:

γb =
Pdηk

(

Tr
(
U kbV

)
+ |akb|2

)

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′bV

)
+ |ak′b|2

)

+ σ2
w

, (5.42)

where

U kb =




χ∗

kbχ
T
kb χT

kba
H
kb

χ∗
kbakb 0



 , V = ν̄ν̄H , ν̄ =




ν

𭟋



 . (5.43)



93

Since P2 is a fractional programming problem, we firstly apply the Dinkelbach’s transform

to reformulate the problem as follows:

P3 : min
ζ̆,ν

Pdηk

(

Tr
(
U kEV

)
+ |akE|2

)

− ζ̆
(

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′EV

)
+ |ak′E|2

)

+ σ2
w

)

,

s.t.
Pdηk

(

Tr
(
U kkV

)
+ |akk|2

)

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′kV

)
+ |ak′k|2

)

+ σ2
w

≥ γth,k, ∀k,

Diag[V ] = 1, rank[V ] = 1,

(5.44)

where the auxiliary variable ζ̆ is iteratively updated until convergence is reached. In that,

the optimal value of ζ̆ at the j̆th iteration is calculated by

ζ̆∗ =
Pdηk

(

Tr
(
U kEV

j̆−1
)
+ |akE|2

)

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′EV

j̆−1
)
+ |ak′E|2

)

+ σ2
w

. (5.45)

To solve P3 over the variable V , we apply semi-definite relaxation by removing the

rank[V ] = 1 constraints to handle the non-convexity of this constraint. Thus, the problem

can be rewritten as

P4 : min
ζ̆,ω,ν

ω

s.t. Pdηk

(

Tr
(
U kEV

)
+ |akE|2

)

− ζ̆
(

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′EV

)
+ |ak′E|2

)

+ σ2
w

)

≤ ω,

Pdηk

(

Tr
(
U kkV

)
+ |akk|2

)

≥ γth,k

(

Pd

∑

k′ ̸=k

ηk′
(

Tr
(
U k′kV

)
+ |ak′k|2

)

+ σ2
w

)

, ∀k,

Diag[V ] = 1.

(5.46)

It is to be noted that P4 is a standard semi-definite programming (SDP) problem that can

be solved via existing convex optimization software. However, since the P4 may not yield

a rank one solution, we apply the Gaussian randomization to obtain a rank one solution

as in [112].
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5.3.4.2 Power Allocation

This section discusses the DL power allocation problem for a given set of phase shift

coefficients where the problem can be formulated as follows:

P5 : min
η

γE

s.t. γk ≥ γth,k, ∀k,

0 ≤ ηk ≤ 1, ∀k,
K∑

k=1

ηk ≤ 1.

(5.47)

To solve P5, we apply the Dinkelbach’s transform to reformulate the problem as follows:

P6 : min
κ,η

Pdηk
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(5.48)

where the auxiliary variable κ is iteratively updated until convergence is reached. The

optimal value of κ at the j̆th iteration is given by

κ∗ =
Pdη

j̆−1
k

(

Tr
(
U kEV

)
+ |akE|2

)

Pd

∑

k′ ̸=k

ηj̆−1
k′

(

Tr
(
U k′EV

)
+ |ak′E|2

)

+ σ2
w

. (5.49)

One can note that the problem P6 is a standard linear programming in η. Thus, it can

be solved via existing convex optimization software. Based on sub-Problems P4 and P6,

an iterative algorithm has been introduced by alternately solving both sub-problems at

each iteration, which is summarized in Algorithm 5.1.

Algorithm 5.1: Algorithm to solve P1

1. At the first iteration n̆ = 1, initialize η(0) = [η
(0)
1 , η

(0)
2 , · · · , η(0)K ].

2. Solve P4 to determine the optimal phase shifts ν(n̆) for a given η(n̆−1).

3. Solve P6 to compute the optimal power allocation η(n̆) for a given ν(n̆).

4. Stop if γn̆
E − γn̆−1

E < ϵ, where ϵ is a certain threshold to preserve convergence.

Otherwise, set n̆ = n̆+ 1 and repeat Steps 2 and 3.
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5.3.5 Simulation Results

We consider RIS-aided CF mMIMO network in which APs, users, and RISs are uniformly

distributed in a square area of size 0.5× 0.5 km2. The carrier frequency fc = 2 GHz. The

UL pilot transmission power of legitimate users and Eve Pp = PE = 0.1 Watt and the DL

data transmission power Pd = 0.2 Watt. The noise variance σ2
w = 290×κ×B×NF where

κ is the Boltzman constant, B = 20 MHz, denoting the system bandwidth, and NF = 9

dB is the noise figure. Unless otherwise specified, we consider that the simulation area

includes M = 30 APs, T = 100 RIS panels, and K = 10 users. Each AP is equipped

with Nap = 10 antennas while each RIS panel contains L̇ = 50 passive elements. The

target user is selected randomly from the existing legitimate users. Then, the active Eve

is located randomly in a circle with radius 10 m around the target user’s location. The

length of non-orthogonal pilot sequences in the UL training phase is τu,p = 5. Besides, we

set the threshold γth,k for each user k to the achievable SINR when no RIS is activated.

In other words, RISs are exploited for security purposes only through preserving the same

performance of legitimate users while minimizing the information leakage to the active

Eve.

Due to the higher number of deployed RISs compared to the number of APs, we

assume that the Eve has LoS channels with activated RISs while it has NLoS channels

with APs. Also, the target legitimate user has LoS channels with activated RISs while

other legitimate users has NLoS channels with both activated RISs and APs. The large-

scale fading coefficient is given by [113]

β =







−30.18− 26 log10(d) + F if LoS

−34.53− 38 log10(d) + F if NLoS,

(5.50)

where d is the distance in meters and F denotes the correlated shadow fading coefficient.

Also, the Rician K-factor is calculated by K = 101.3−0.003d for LoS channels while it is

set to zero for NLoS channels where there is a possibility of having a LoS link within a

distance d = 300m [113].

In what follows, we analyze the average leakage rate, average secrecy rate, and the se-

crecy outage probability as they represent indicative metrics for the secrecy performance

of the proposed system operation. The average leakage rate R̄E and average secrecy rate

R̄sec are the averaging of RE and Rsec over the different generated network realizations,

respectively. Finally, the outage probability Pout = P(Rsec <= Rth
sec) depicts the probabil-
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ity that the achievable secrecy rate is less than a certain non-negative threshold secrecy

rate.

Fig. 5.6a reflects the potential of applying the joint power allocation and phase shift

optimization in limiting the secrecy outage probability compared to the conventional

system operation without RIS. The simulations are obtained under two different number

of RIS panels T = 100 and T = 200. Also, we consider TA = 1 such that only the first

nearest RIS panel to the Eve is activated and optimized to limit the information leakage

to the Eve. As one can note, applying the joint power allocation and phase optimization

significantly limits the secrecy outage probability. In addition, a CF mMIMO network

with more deployed RIS panels (T = 200) provides lower outage probabilities since the

distance between the Eve and the activated RIS panel gets smaller.

(a) Secrecy outage probability (b) Average information leakage under

different order of activated RISs

(c) Average secrecy rate under different

powers of pilot spoofing attacks

Figure 5.6: Secrecy performance of RIS-assisted CF mMIMO systems.

Different from previous results where only the first nearest RIS panel is activated for

the system operation, Fig. 5.6b shows the impact of activating higher orders of nearest RIS

panels on the system performance. Particularly, Fig. 5.6b depicts the average information

leakage to the active Eve for different RIS activation orders (TA) under different RIS

configurations. It is clear that increasing the order of RIS activation order boosts the

system robustness against pilot spoofing attack as this reduces the information leakage

to the active Eve. This is due to the larger number of activated RIS elements that are

exploited to minimize the information leakage to the active Eve. However, there is always

a certain order after which the gain of activating more RIS panels becomes negligible. The

latter result supports our conjuncture that only a small portion of existing RIS panels

suffice to achieve highest secrecy levels. Also, Fig. 5.6b shows that equipping activated

RIS panels with further reflecting elements is more beneficial than bringing the activated

panels closer to the Eve. This is noted from the lower leakage rate, attained by the RIS
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configuration with T = 100 and L̇ = 30 compared to the one with T = 200 and L̇ = 15.

Finally, Fig. 5.6c depicts the robustness of CF mMIMO against power of pilot spoofing

attacks. Notably, increasing the spoofing pilot power degrades the achievable secrecy

rates. This is due to the higher degradation of the channel estimation quality at higher

powers of spoofing pilots. However, the RIS-aided system is more robust against higher

powers of spoofing pilots compared to the conventional counterpart without RISs. Besides,

under the same number of activated RIS elements, deploying larger number of RIS panels

with smaller number of RIS elements (T = 200, L̇ = 25, TA = 2) is more beneficial than

deploying smaller number of RIS panels with large number of RIS elements (T = 100, L̇ =

50, TA = 1).

5.3.6 Summary

We investigated the DL performance of CF mMIMO systems in the presence of pilot

spoofing attacks. Particularly, we proposed two promising approaches to improve the

secrecy performance of CF mMIMO systems. In the first approach, we focused on the case

where APs do not have statistical information about the Eve that strives to estimate its

DL channel coefficients with APs capitalizing on the DL transmission strategy. In that, we

introduced a novel DL pilots transmission approach to improve the legitimate users’ rates

while limiting the information leakage to the active Eve. The performance of the proposed

DL transmission technique is compared with different techniques in the literature, namely

no DL pilots and DL beamforming training. Results revealed that the proposed DL pilots

technique attains superior secrecy rates. Furthermore, the proposed technique is shown to

be more robust to high spoofing pilot powers than the DL beamforming training technique.

In the second approach, we investigated the potential of RIS in improving the secrecy

capacities offered in CF mMIMO in the presence of active Eve. To this end, we proposed

a novel RIS-based system operation in which RIS phase shifts and DL power control coef-

ficients are jointly optimized to minimize the information leakage to the active Eve while

maintaining the legitimate users’ performance above certain thresholds. Results revealed

that RISs have a great potential in improving the secrecy capacities of CF mMIMO sys-

tems and boosting the system robustness against higher powers of spoofing pilot attacks.

Also, we showed that only few RIS panels need to be activated to limit the information

leakage to the active Eve.



Chapter 6

Limited-Fronthaul Capacity Effect on

DL Performance of CF mMIMO

6.1 Introduction

A prerequisite to achieve the the reported performance in previous chapters is to have

ideal fronthaul links between the CPU and APs. This is due to the pivotal role of the fron-

thaul network in handling the data exchange between the CPU and APs. In particular,

the larger amount of data to be transferred through the fronthaul network, the higher re-

quirements of fronthaul capacities. The CF mMIMO performance under limited-fronthaul

capacity has been widely investigated in the literature [90–95, 114–119]. The majority of

these works investigated the limited-fronthaul capacity effect on the UL performance of

the system [90, 92–95, 114–117], whereas the works in [90, 91] studied such effect on the

DL performance.

The UL performance of limited-fronthaul CF mMIMO systems has been investi-

gated in-terms of the spectral efficiency in [92–94, 114–116] and the energy efficiency

in [92,95,117]. The UL transmission schemes in these works can be classified into three dif-

ferent approaches, namely, compress-forward-estimate (CFE), estimate-compress-forward

(ECF), and estimate-detect-compress-forward (EDCF). In CFE, the received data and

pilot signals at APs are compressed and transmitted to the CPU where both channel

estimation and users’ data detection are carried out. In ECF, all APs firstly estimate the

users’ channels, then compress the estimated channels as well as the received data signals

and transmit both to the CPU where the detection process is performed. On the other

hand, in EDCF, both channel estimation and UL data detection are carried out locally at

the APs. The APs, then, compress the local detected signals and send them to the CPU.

The work in [92] investigates the UL data rate maximization problem of limited-

fronthaul CF mMIMO using MRC detection. In doing so, a low-complexity water-filling

98
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approach is proposed to allocate the available fronthaul capacity among users. Then,

a line search technique is applied for capacity allocation between pilot and data trans-

mission. Results revealed that ECF attains superior performance than CFE and EDCF.

Also, applying the water-filling fronthaul capacity allocation significantly enhances the

achievable data rates of EDCF. In addition, for ECF and CFE, it has been shown that

there is an optimal portion of the fronthaul capacity to be assigned for the pilot transmis-

sion to maximize the sum UL data rates. Considering the max-min fairness problem for a

two-stage UL data detection technique, the authors in [94,114] decoupled this non-convex

problem into two sub-problems, namely, receiver filter design and UL power allocation

where the optimal solution is obtained by solving these sub-problems iteratively. Results

revealed that applying the two-stage UL data detection while optimizing the receiver filter

coefficients can significantly improve the achievable UL data rates. It is also pointed out

that there is an optimal number of users to be served by each AP to alleviate the limited-

fronthaul capacity effect. Considering both ECF and EDCF, and aiming at maximizing

the UL sum data rate, a LSF-based deep convolutional neural network is proposed to

establish a mapping between the LSF coefficients and the optimal power control coeffi-

cients [116]. Furthermore, considering the UL operation under ZF detection, the authors

in [93] showed that CFE outperforms ECF in-terms of the achievable UL data rates. The

energy efficiency of limited-fronthaul CF mMIMO is maximized under two-stage UL data

detection in [95,117]. In doing so, the authors adopted the same approach as in [94, 114]

where the problem is decoupled into two sub-problems of receiver coefficient optimization

and UL power allocation. Results revealed that the proposed approach can achieve almost

twice the UL energy efficiency compared to the case of equal power allocation.

Regarding the DL performance, the authors in [91] investigated the limited-fronthaul

effect on a distributed system operation. In that, APs performs the channel estimation

and the DL precoding processes where local CB precoding is applied for DL transmission.

Besides, the authors in [90] discussed the limited-fronthaul effect on both distributed

and centralized system operations. In that, the APs and the CPU are responsible for

performing the channel estimation and precoding processes in the distributed and cen-

tralized operations, respectively. Also, the authors considered normalized CB precoding

for both distributed and centralized system operations assuming single antenna APs. Re-

sults revealed that the centralized operation provides superior performance under limited-
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fronthaul effect.

Different from previous works, we analyze the DL performance of CF mMIMO systems

assuming multiple antenna APs and different precoding techniques for the distributed and

centralized system operations. More specifically, due to the low processing capabilities of

the APs, we apply CB precoding, supported by beamforming training for the distributed

system operation. On the other hand, we exploit the high processing capabilities of the

CPU to apply ZF precoding for the centralized system operation.

6.2 System Model

6.2.1 Channel Model

We consider a CF mMIMO system with M multi-antenna APs and K single-antenna

users. We consider block fading channels. Also, we consider Rayleigh fading channels

where the the channel vector between user k and AP m is modeled by

gmk =
√

βmkhmk, (6.1)

where hmk ∈ CNap×1 represents the small-scale fading coefficients whose entries are i.i.d.

CN (0, 1). Besides, βmk is the large-scale fading coefficient that accounts for path-loss and

shadowing effects as defined in (3.2).

6.2.2 System Operations

We consider two different DL transmission operations, namely, distributed and centralized

operations. Regarding the distributed system operation, the signal processing functional-

ities are carried out in APs and the fronthaul network is exploited to transfer the users’

data between the CPU and APs. On the other hand, in the centralized system operation,

the signal processing functionalities are performed at the CPU. In that, the fronthaul net-

work transfers the received pilot sequences at APs to the CPU to carry out the channel

estimation process and calculate the DL precoding vectors. Then, the fronthaul network

transfers the precoded data symbols from the CPU to APs which convey them to the

users.
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6.2.3 Data Compression

We consider that each AP is connected to a CPU via a limited capacity fronthaul link with

a capacity Cm bps/Hz. Due to the limited capacity fronthaul links, a finite number of bits

are used to transfer the signals between APs and the CPU. Hence, signal compression

is required to transfer signals through the fronthaul network links. This in turn leads

to a compression distortion noise, accompanying the transmitted signals. To model the

distortion noise effect, we adopt the same model in [91, 92] that depends on the rate

distortion theory [120]. In that, to compress a signal X ∼ fX(x) with zero mean and

variance P , subject to a distortion measure d(X, X̂) with E{d(X, X̂)} ≤ Q, the rate

distortion function can be defined by

R(Q) = min
f(x̂|x):E{|X̂−X|2}≤Q

I(X̂;X), (6.2)

where the compressed signal can be defined as X̂ = X + q, with q ∼ CN (0, Q), is

independent of X and denotes the additive distortion noise [91, 92]. The amount of

information to be transmitted in a fronthaul link with capacity Cm can be expressed as a

function of the differential entropy by

Cm = I(X̂;X) = h(X̂)− h(X̂|X) ≤ log2(1 + P/Qm). (6.3)

As such, the quantization noise power Qm will be [92]

Qm =
P

2Cm − 1
. (6.4)

6.3 Performance Analysis

6.3.1 Distributed Operation

Regarding the distributed system operation, we apply local CB precoding at APs due to its

low processing requirements that fit with the low processing capabilities of APs. Besides,

we apply beamforming training due to its high potential in improving the achievable DL

rates [121].

6.3.1.1 Channel Estimation

In the distributed system operation, the channel estimation process is carried out at APs.

Thus, the quality of estimated channels is not affected by the capacity of fronthaul links.

Also, we assume that users are assigned non-orthogonal training sequences during the UL
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channel estimation phase. The received training sequence vector yp,m,l ∈ C1×τu,p , at the

lth antenna element in the mth AP will be

yp,m,l =
√

Ppτu,p

K∑

k′=1

gmk′,lψ
T
k′ +wp,m,l, (6.5)

Then, the MMSE estimated channel for user k with the lth antenna element in the mth

AP under non-orthogonal pilot sequences can be determined by

ĝmk,l = Cm,k,lȳp,m,l,k, (6.6)

with ȳp,m,l,k = yp,m,lψ
∗
k is the projection of the received pilot sequence on ψ∗

k and

Cm,k,l =

√
Ppτu,pβmk

Ppτu,p
K∑

k′=1

βmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+σ2

w

.
(6.7)

Let g̃mk,l = gmk,l − ĝmk,l, be the channel estimation error. The MMSE estimate ĝmk,l and

the estimation error g̃mk,l are independent random variables and distributed as

ĝmk,l ∼ CN (0, ζmk), g̃mk,l ∼ CN (0, βmk − ζmk), (6.8)

where ζmk =
√
Ppτu,pβmkCm,k,l.

6.3.1.2 Downlink Transmission

Similar to Section 5.2.3.2, we apply beamforming training to improve the DL performance

due to the lack of channel hardening in CF mMIMO systems [75]. In this chapter, the

length of DL pilot sequences for DL training is denoted by τd,p. Also, ϕk ∈ C1×τd,p ,

represents the DL training sequence, sent from all APs for the channel gain estimation

of the kth user, where ∥ϕk∥2 = 1. We consider that orthogonal DL pilots are allocated

to users with τd,p ≥ K. As such, the transmitted pilot sequence matrix Xp,m ∈ CNap×τd,p

from the mth AP will be

Xp,m =
√

Pdτd,p

K∑

k′=1

√
ηmk′ ĝ

∗
mk′ϕ

T
k′ , (6.9)

where the power control coefficient are set according to equal power allocation criterion,

discussed in previous chapters. The received pilot sequence vector at user k will be

rp,k =
√

Pdτd,p

K∑

k′=1

akk′ϕ
T
k′ +wp,k, (6.10)

where akk′ =
M∑

m=1

√
ηmk′g

T
mkĝ

∗
mk′ . After user k receives the DL training signals, it estimates

its channel gain akk. In doing so, it firstly projects the received training signal on ϕ∗
k as

ỹp,k =
√

Pdτd,pakk +wp,kϕ
∗
k. (6.11)
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Following the same procedure as in Section 5.2.3.2, the MMSE estimated channel gain

can be expressed by [121]

âkk = E{akk}+
√

Pdτd,pV ar{akk}
Pdτd,pV ar{akk}+ σ2

w

(

ỹp,k −
√

Pdτd,pE{akk}
)

, (6.12)

with

E{âkk} = E{akk},

V ar{âkk} =
Pdτd,p

(
V ar{akk}

)2

Pdτd,pV ar{akk}+ σ2
w

.
(6.13)

Also, the estimation error ãkk = akk − âkk is uncorrelated but not independent of the

channel gain akk with

E{|ãkk|2} =
V ar{akk}

Pd,pτd,pV ar{akk}+ σ2
w

. (6.14)

After the beamforming training phase, the CPU starts the DL transmission phase. In

the distributed system operation, the CPU compresses the users’ data symbols and sends

the compressed symbols to APs. In that, the compressed transmitted signal for user k in

the fronthaul link to the mth AP will be

ŝm,k = sk + qd,m,k, (6.15)

where qd,m,k ∼ CN (0, Qd,m,k), represents the quantization noise resulted from the com-

pression of the kth user data symbol at the CPU. Let Cd,m,k represents the fronthaul

capacity, assigned for the kth user’s data such as

Cd,m,k =
τc − τu,p − τd,p

τc
log2

(

1 +
1

Qd,m,k

)

. (6.16)

Since each user’s data can be compressed and transmitted separately, we consider two

different capacity allocation techniques. The first capacity allocation is equal capacity

allocation as follows:

Cd,m,k =
Cm

K
, ∀k = 1, · · · , K. (6.17)

On the other hand, the second capacity allocation is a simple water-filling capacity allo-

cation scheme in which the allocated capacity for each user is proportional to its channel

gain with the AP as follows:

Cd,m,k =
βmk

K∑

k′=1

βmk′

Cm, ∀k = 1, · · · , K. (6.18)

After APs receive the compressed users’ data symbols, they perform precoding for DL

transmission. In particular, each AP exploits the locally estimated channels of users to

perform local CB precoding. Consequently, the combined received signal at user k will

be

rDis
k =

√

Pd

M∑

m=1

K∑

k′=1

√
ηmk′ ĝ

∗
mk′ ŝk′,mg

T
mkxm + wk, (6.19)
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which can be expressed by

rDis
k =

√

Pdakksk +
√

PdΩk +
√

Pd

∑

k′ ̸=K

akk′sk′ + wk, (6.20)

where the first term represents the desired signal. Also, Ωk =
M∑

m=1

√
ηmkg

T
mkĝ

∗
mkqd,m,k,

reflects the compression distortion noise of the kth user data. In addition, the third and

fourth terms denote the interference from other users’ data and the noise effect. Consid-

ering the fact that uncorrelated Gaussian noise represents the worst-case interference [21],

the achievable DL rate for user k can be calculated using

RDis
k =

τc − τu,p − τd,p
τc

×

E

{

log2

(

1 +
Pd|âkk|2

PdE{|ãkk|2}+ PdE{|Ωk|2}+ Pd

∑

k′ ̸=k

E{|akk′ |2
∣
∣
∣âkk}+ σ2

w

)}

,

(6.21)

However, (6.21) is not a closed-form, thus, we follow the same procedure as [121] to obtain

a closed-from of the achievable DL rate by applying the following approximation

E

{

log2

(

1 +
X1

X2

)
}

≈ log2

(

1 +
E{X1}
E{X2}

)

, (6.22)

where X1 and X2 are both sums of non-negative random variables. Applying (6.22) in

(6.21), a closed-form approximation of the achievable DL is given by (6.23) where different

terms in (6.23) can be calculated as follows.

R̆Dis
k =

τc − τu,p − τd,p
τc

log2

(

1 +
PdE{|âkk|2}

PdE{|ãkk|2}+ PdE{|Ωk|2}+ Pd

∑

k′ ̸=k

E{|akk′ |2}+ σ2
w

)

,

(6.23)

Firstly, the desired power can be calculated by

PdE{|âkk|2} = Pd

(

V ar{âkk}+
(
E{âkk}

)2
)

= Pd

Pdτd,p

( M∑

m=1

ηmkNapβmkζmk

)2

Pdτd,p
M∑

m=1

ηmkNapβmkζmk + σ2
w

+ Pd

( M∑

m=1

√
ηmkNapζmk

)2

.
(6.24)

In addition, the channel gain estimation error will be

PdE{|ãkk|2} = Pd

M∑

m=1

ηmkNapβmkζmk

Pdτd,p
M∑

m=1

ηmkNapβmkζmk + σ2
w

. (6.25)

Also, the quantization noise distortion power is given by

PdE{|Ωk|2} = Pd

M∑

m=1

Qd,k,mηmk

(

Napβmkζmk +N2
apζ

2
mk

)

. (6.26)
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Finally, the interference due to transmitted data to user k′ is given by

PdE{|akk′ |2} = Pd

M∑

m=1

ηmk′Napβmkζmk′ + Pd

( M∑

m=1

√
ηmk′Napζmk′

βmk

βmk′

)2

|ψkψ
H

k′ |2. (6.27)

6.3.2 Centralized Operation

For the centralized system operation, we exploit the high processing capabilities of the

CPU to apply ZF precoding due to its high potential in improving the DL achievable

rates.

6.3.2.1 Channel Estimation

In the centralized system operation, the CPU is the responsible entity to carry out the

channel estimation task. After APs receive the training sequence vectors, transmitted

from users in the channel estimation phase, APs compress the received training sequence

vectors and send it through the fronthaul links to the CPU. In that, we assume that the

received training vector at each antenna element is compressed separately. Therefore, the

compressed vector at the lth antenna element in the mth AP will be

ŷp,m,l = yp,m,l + qp,m,l, (6.28)

where qp,m,l denotes the quantization noise vector whose entries are i.i.d. CN (0, Qp,m,l).

We assume that the training vectors at different antenna elements are assigned equal

capacity and different pilot symbols within the same training vector are assigned equal

capacity. Let us consider Cp,m as the assigned capacity for pilot symbols transmission

from the lth antenna element in the mth AP such as

Cp,m =
Cm

Nap

=
τu,p
τc

log2

(

1 +

Pp

K∑

k′=1

βmk′ + σ2
w

Qp,m,l

)

, (6.29)

where the term Pp

K∑

k′=1

βmk′ +σ2
w represents the composite received power of each training

symbol. Based on this, the received training sequence matrix from the mth AP at the

CPU will be

Ŷ p,m =
√

Ppτu,p

K∑

k′=1

gmk′ψ
T
k′ +Ωp,m +W p,m, (6.30)

where Ωp,m ∈ CNap×τu,p denotes the matrix of pilot compression quantization noise. After

the signals are received at the CPU, the CPU estimates the channel coefficients of all

users. In that, to estimate the kth user channel with the lth antenna element in the mth
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AP, the CPU performs MMSE channel estimation technique as follows

ğm,k,l = C̆m,k,lŷp,m,lψ
∗
k, (6.31)

with

C̆m,k,l =

√
Ppτu,pβmk

Ppτu,p
K∑

k′=1

βmk′
∣
∣ψT

k′ψ
∗
k

∣
∣
2
+Qp,m,l + σ2

w

. (6.32)

According to the MMSE estimation, the estimated channel at the CPU ğm,k,l and the

corresponding channel estimation error g̀m,k,l are independent and distributed as

ğm,k,l ∼ CN (0, ζ̆mk), g̀m,k,l ∼ CN (0, βmk − ζ̆mk), (6.33)

with ζ̆mk =
√
Ppτu,pβmkC̆m,k,l.

6.3.2.2 Downlink Transmission

Capitalizing on the estimated users’ channel conditions and the high processing capabil-

ities at the CPU, the CPU applies centralized ZF precoding for DL data transmission.

The precoding vector, used by the CPU towards the kth user is

ϖ̄k =
Ğ

∗
(

Ğ
T
Ğ

∗
)−1

ek
√
∥
∥
∥Ğ

∗
(

Ğ
T
Ğ

∗
)−1

ek

∥
∥
∥

2
, (6.34)

where Ğ represents the estimated channel matrix at the CPU. Also, ek is the kth column

in the identity matrix Ik. Thus, the precoded data vector at the CPU will be

x =
K∑

k=1

ϖ̄ksk. (6.35)

Due to the limited capacity of fronthaul links, the CPU firstly compresses the precoded

data vector where the compressed data vector to be transmitted to APs will be

x̂ = x+ qd, (6.36)

with qd being the vector of compression noise. Note that, in the centralized system oper-

ation, the CPU sends Nap compressed signals to each AP. In that, we assume that these

signals are allocated equal capacity Cd,m. Let qd,m,l ∼ CN (0, Qd,m,l) be the quantization

noise signal, accompanying the transmitted precoded signal to the lth antenna element in

the mth AP where

Cd,m =
Cm

Nap

=
τc − τu,p

τc
log2

(

1 +
E
{
|xm,l|2

}

Qd,m,l

)

. (6.37)

After APs receive the precoded DL data vector, they operate as relays to convey the

signal to users. Consequently, the received signal at the kth user is given by

rCen
k =

√

Pdg
T
k ϖ̄ksk +

√

Pd

∑

k′ ̸=k

gTk ϖ̄k′sk′ +
√

Pdg
T
k qd + wk, (6.38)
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where the first term includes the desired signal while the second term represents the

interference due to transmitted data to other users. Also, the third and fourth terms

denote the quantization and thermal noise effects, respectively. Note that, we do not

consider DL pilots when applying ZF precoding. This is due to its effect in canceling out

the dependence of the desired received signal on the small-scale fading coefficients. Thus,

the achievable DL rate of user k can be determined by

RCen
k =

(
τc − τu,p

)

τc
×

log2

(

1 +
Pd

∣
∣E
{
gTk ϖ̄k

}∣
∣
2

Pd

K∑

k′=1

E
{∣
∣gTk ϖ̄k′

∣
∣
2}− Pd

∣
∣E
{
gTk ϖ̄k

}∣
∣
2
+ PdE

{∣
∣gTk qd

∣
∣
2}

+ σ2
w

)

,

(6.39)

6.4 Numerical Results and Simulations

We consider that APs and users are uniformly distributed in a square area of size 0.5 ×
0.5 km2. The carrier frequency fc = 2 GHz. The UL pilot transmission power Pp = 0.1

Watt and the DL data and pilot transmission power Pd = 0.2 Watt. The noise variance

σ2
w = 290× κ× B ×NF where κ is the Boltzman constant, B = 20 MHz, denoting the

system bandwidth, and NF = 9 dB is the noise figure. Also, we consider a coherence time

interval τc = 400 samples. The coverage area includes 100 APs where each is equipped

with Nap = 4 antenna elements to serve 40 users. Also, we consider non-orthogonal UL

training with τu,p = 20.

We firstly analyze the impact of limited-fronthaul capacity on the distributed system

operation as depicted in Fig. 6.1. Two different capacity allocation are considered,

namely, equal capacity allocation and water-filling capacity allocation in (6.17) and (6.18),

respectively. We consider ideal fronthaul links with Cm = Inf bps/Hz and limited-

fronthaul capacity links with Cm = 1 and 5 bps/Hz. Notably, limiting the capacity of

fronthaul links significantly degrades the DL achievable rates. Also, applying the water-

filling capacity allocation improves the system performance compared to equal capacity

allocation. As such, in the sequel, we consider the distributed operation performance

under water-filling capacity allocation.

Fig. 6.2 shows the impact of limited-fronthaul links capacity on the performance of the

centralized and distributed system operations. It is clear that the centralized system oper-
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Figure 6.1: CDF of achievable DL rates assuming distributed operation with limited-fronthaul capacity

and different capacity allocation techniques.

ation using ZF precoding significantly outperforms the distributed counterpart using CB

precoding with beamforming training under ideal fronthaul links with Cm = Inf bps/Hz.

However, the impact of limited-fronthaul capacity with Cm = 10 and 5 bps/Hz is more

prominent in the centralized system operation. Consequently, as the fronthaul capac-

ity decreases, the number of users, attains higher DL rates from the distributed system

operation increases.

Figure 6.2: CDF of achievable DL rates under different system operations and different capacities of

fronthaul links.

Fig. 6.3 depicts the effect of increasing the number of antennas per AP (Nap) on the

performance of distributed and centralized system operations. We consider two different

number of antennas per AP with Nap = 4 and 8 antennas and a limited-fronthaul capacity

with Cm = 5 bps/Hz. Also, we consider two different user configurations and pilot

sequence length with K = 40, τu,p = 20 and K = 20, τu,p = 5. It is clear that increasing
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the number of antennas per AP improves the achievable DL rates of distributed system

operation. On the other hand, unexpectedly, increasing Nap from 4 to 8 degrades the

performance of the centralized system operation. This is a consequence that the number

of pilot and precoded data signals to be transmitted between each AP and the CPU is

increasing linearly with the number of antennas per AP which leads to a corresponding

increase in the quantization noise power.

Figure 6.3: CDF of achievable DL rates assuming different number of antennas per APs and limited-

fronthaul capacity link with Cm = 5 bps/Hz.

Fig. 6.4 compares the average DL rate of distributed and centralized system operations

under different capacity of fronthaul links and different number of antennas at APs.

Notably, as the capacity of fronthaul links increases, the average DL rates of both system

operations improve. Regarding the centralized system operation using ZF precoding,

while increasing the number of antennas at APs is not beneficial at small capacities of

fronthaul links, this significantly boosts the system performance at high capacities of

fronthaul links. This is a consequence of the high quantization noise at low capacities

of fronthaul links. It is also noted that increasing the number of antennas at APs is

always beneficial to improve the performance of the distributed system operation with no

regard to the fronthaul capacity. Finally, it is noted that, applying local CB precoding

with bamforming training outperforms the centralized ZF precoding at low capacities

of fronthaul links. However, the centralized ZF precoding is more preferable at high

capacities of fronthaul links.
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Figure 6.4: Average DL rate under different capacities of fronthaul links and different number of antennas

at APs.

6.5 Summary

We studied the DL performance of CF mMIMO systems under limited capacity of wired

fronthaul links. We derived the achievable DL rates assuming two different system opera-

tions assuming Rayleigh fading channels between users and APs. The first operation is a

distributed operation in which APs apply local CB precoding, supported by beamforming

training for DL transmission. On the other hand, the second operation is a centralized

operation in which the CPU estimates users’ channels and applies ZF precoding for DL

transmission. Results showed that the limited-fronthaul capacity effect is more prominent

on the centralized system operation. In addition, while the centralized operation outper-

forms the distributed counterpart under high capacities of fronthaul links, the distributed

operation is more preferable for systems with low capacities of fronthaul links.



Chapter 7

CF mMIMO Performance Under A

Wireless-Based Fronthaul Network

7.1 Introduction

Despite previous works analyzed the impact of limited capacity fronthaul links on the per-

formance of CF mMIMO systems, the reported results therein are limited to CF mMIMO

systems with wired fronthaul links as illustrated in chapter 6. In this regard, they con-

sidered APs connecting to CPU through wired fronthaul links with fixed capacity. In

fact, deploying a wired fronthaul network can provide a lossless transmission over high

capacity of fronthaul links, especially using high speed optical fiber cables. Nevertheless,

this significantly increases the construction cost due to the massive number of links to be

established between APs and CPU. Consequently, a more feasible solution is to support

APs with wireless-based fronthaul links.

Here we thoroughly investigate the DL performance of CF mMIMO under a wireless-

based fronthaul network. To this end, we assume that the network consists of multiple

ECPs that independently carry out the CPU functionalities for their associated APs. The

fronthaul communication between ECPs and their associated APs is a mMIMO-based

communication that can be carried out under one of three possible fronthaul operations,

namely, microwave, mmWave, or hybrid microwave/mmWave. Besides, we consider two

different microwave-based access link operations for the communication between users

and APs, namely distributed and centralized system operations as discussed in chapter 6.

111
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mmWave counterpart. However, only one antenna will be exploited for the fronthaul

communication, i.e., each AP will have either a mmWave or a microwave fronthaul link.

Particularly, if the AP has a LoS link with its serving ECP, the fronthaul communication

will be carried out on the mmWave band. However, the fronthaul communication will be

performed on the microwave band if the fronthaul link is exposed to blockages. This is due

to the harsh effect of blockages on the transmitted signals on the mmWave bands [123].

Note that, for the fronthaul communication, blockages are the only components that may

prevent the presence of LoS links between an AP and its serving ECP. Thus, to decide if

an AP has a LoS link with its serving ECP, we check if the direct link between the AP

and the ECP is exposed to any of the existing blockages or not.

Different from the fronthaul communication, the environment around users is more

dynamic and rich with moving obstacles that may completely block the LoS links between

users and APs. Due to the harsh impact of blockages on the transmitted signals on the

mmWave bands, and aiming at having reliable communication links between users and

APs, the access communication between users and APs is carried out over the microwave

band only. Due to the dynamic nature of the environment around users, we do not follow

the same approach of the fronthaul network to check the presence of LoS links. Instead,

we adopt the proposed 3GPP model in [113] to decide if users have LoS links with APs.

We consider two microwave-based access links operations. The first one is a distributed

operation in which APs apply CB along with DL beamforming training for the DL data

transmission, whereas the second one is a centralized operation in which ECPs apply ZF

precoding to generate the DL precoded symbols to be transmitted from APs to users.

7.3.1 Channel Model

Both access and fronthaul channels are modeled as Rician fading channels. To differentiate

between the access link channels and fronthaul channels, we use the superscripts AL and

FH, respectively. In particular, the access link channel vector gAL
mk ∈ CNap×1 between the

mth AP and the kth user as well as the fronthaul channel vector g
FHȷ
nm ∈ CN ȷ×1 between

the mth AP and the nth ECP in the fronthaul operating band ȷ can be expressed by

gℓ̆uv =

√

β ℓ̆
uv

(
√

Kℓ̆
uv

Kℓ̆
uv + 1

h̄
ℓ̆
uv +

√

1

Kℓ̆
uv + 1

(
∆

ℓ̆
uv

)0.5
hℓ̆
uv

)

. (7.1)
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where uv ∈ {mk, nm} and ℓ̆ ∈ {AL, FHj}. Also, Kℓ̆
uv denotes the Rician K-factor and β ℓ̆

uv

represents the large-scale fading coefficient which accounts for the channel path-loss and

shadowing effects. The term h̄
ℓ̆
uv accounts for the LoS component while hℓ̆

uv is a vector of

small-scale fading coefficients whose entries are independent circularly symmetric complex

Gaussian random variables with zero mean and unit variance CN (0, 1). In addition, ∆ℓ̆
uv

represents the channel correlation matrix. As such, gℓ̆uv ∼ CN (ḡℓ̆uv,R
ℓ̆
uv) with

ḡℓ̆uv =

√

β ℓ̆
uvKℓ̆

uv

Kℓ̆
uv + 1

h̄
ℓ̆
uv, Rℓ̆

uv =
β ℓ̆
uv

Kℓ̆
uv + 1

∆ℓ̆
uv
, (7.2)

whereRℓ̆
uv is a positive semi-definite covariance matrix that reflects the channel correlation

characteristics of the NLoS component. Also, the LoS components h̄
AL
mk and h̄

FHȷ

nm are given

by

h̄
AL
mk = [1, e−j2πχALsin(θAL

mk), · · · , e−j2πχAL(Nap−1)sin(θAL
mk)],

h̄
FHȷ

nm = [1, e−j2πχFHȷsin(θ
FHȷ
nm ), · · · , e−j2πχFHȷ (N ȷ−1)sin(θFH

nm )],
(7.3)

where χℓ̆ represents the antenna spacing divided by the carrier wavelength and θℓ̆uv ∼
U [−π, π] is the signal arrival angle. The channel correlation matrix ∆ℓ̆

uv can be modeled

by

[∆ℓ̆
uv]n1,n2

= (rℓ̆uv)
|n1−n2|

, (7.4)

where 0 < rℓ̆uv ≤ 1 denotes the channel correlation coefficient.

7.4 Distributed System Operation

7.4.1 Fronthaul Communication

In the distributed system operation, both channel estimation and DL precoding are car-

ried out at APs. Therefore, the payload data of different users is the only information

to be sent from ECPs to their associated APs. We consider that the available band-

width for fronthaul communication in both microwave/mmWave bands is divided equally

among the deployed ECPs in the coverage area. Then, the available microwave/mmWave

bandwidth at each ECP is divided equally among its served users. In fact, APs will have

different fronthaul capacities based on their channel conditions with their serving ECPs.

Accordingly, for any user k, each ECP needs to send different compressed versions of the

user’s payload data to its associated APs. This can be considered as a beamforming prob-

lem in which each ECP is required to send different compressed data symbols to different

APs on the same time-frequency resources. We assume that each ECP has perfect CSI
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for its associated APs. This can be justified as both APs and ECPs are deployed at fixed

locations with high-altitude antenna elements. This leads to wireless fronthaul links with

long channel coherence time in which a perfect channel estimation of the deployed APs

can be readily obtained. Moreover, to perfectly mitigate the mutual interference from

the transmitted signals to different APs, we apply ZF precoding for data transmission

between ECP and its associated APs. Note that, ZF precoding can be performed in the

microwave band operation using digital beamforming while it can be carried out in the

mmWave band using hybrid beamforming with the aid of the Block Coordinate Descent

algorithm [118,124].

Let us consider ŝȷm,k as the compressed signal of user k to be transmitted to the mth

AP over the fronthaul band ȷ. Thus, the received signal at the mth AP for user k from

its serving ECP nm is given by

rDis,ȷ
m,k =

√

P ȷ
d

∑

m′∈Mȷ
nm

√

γȷ
m′(g

FHȷ
nmm)

TQ
ȷ
m′ ŝ

ȷ
m′,k + wȷ

m,k, (7.5)

where P ȷ
d,f denotes the DL transmission power of ECP antennas and Mȷ

nm
being the set

of associated APs to the ECP nm. In addition, wȷ
m,k reflects the additive thermal noise at

the mth AP. The precoding vector Qȷ
m′ for the data to be transmitted to AP m′ ∈ Mȷ

nm

on band ȷ is given by

Q
ȷ
m′ =

(
GFHȷ

nm

)∗
((
GFHȷ

nm

)T (
GFHȷ

nm

)∗
)−1

em′ , (7.6)

where GFHȷ

nm
represents the fronthaul channel matrix between the ECP nm and its asso-

ciated APs on band ȷ. Also, em′ denotes the m′th column in the identity matrix IMȷ
nm

where M ȷ
nm

represents the number of associated APs to the ECP nm on band ȷ. The term

γȷ
m′ denotes the power normalization factor for the precoding vector of AP m′ ∈ Mȷ

nm

that can be calculated as follows:

γȷ
m′ =

1

Mnm
E

{[((
GFHȷ

nm

)T (
GFHȷ

nm

)∗
)−1]

(m′,m′)

} . (7.7)

Thus, the received signal at the mth AP can be rewritten as follows:

rDis,ȷ
m,k =

√

P ȷ
dγ

ȷ
mŝ

ȷ
m,k + wȷ

m,k. (7.8)

Let us denote Bȷ
F as the bandwidth of the fronthaul band ȷ and N as the number of

deployed ECPs at a specific realization. Consequently, the fronthaul capacity in bps/Hz

according to which the transmitted signals towards the mth generic AP are compressed is

given by

CDis,ȷ
m =

Bȷ
F

NKnm
BA

log2

(

1 +
P ȷ
dγ

ȷ
m

(σȷ
w)2

)

, (7.9)
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where Knm
denotes the number of served users by APs Mȷ

nm
. Note that CDis,ȷ

m is a

normalized fronthaul capacity that reflects the assigned fronthaul capacity for each 1Hz

in the access communication link since the calculated capacity is divided by the access

link bandwidth BA.

7.4.2 Access Communication

This section discusses the communication phases between users and deployed APs un-

der a TDD-based system operation, namely, the channel estimation phase and DL data

transmission phase. As previously stated, both channel estimation and DL precoding are

performed at the APs for the distributed system operation. Due to the limited processing

capabilities of APs, we adopt CB precoding for DL transmission thanks to its low pro-

cessing requirements. Along with that, we apply beamforming training due to its high

potential in improving the achievable DL data rates as discussed in chapter 6.

7.4.2.1 Channel Estimation

The received training sequence matrix Y p,m ∈ CNap×τu,p at AP m is given by

Y p,m =
√

Ppτu,p

K∑

k′=1

gAL
mk′ψ

T
k′ +W p,m. (7.10)

Since the LoS component ḡAL
mk and RAL

mk are changing slowly with respect to the channel

coherence time, they are assumed to be available at APs. As such, one can apply MMSE-

based channel estimation where the estimated channel vector of user k at the mth AP will

be

ĝAL
mk = ḡ

AL
mk +

√

Ppτu,pR
AL
mkΦ

AL
mk

(

Y p,mψ
∗
k −

√

Ppτu,p

K∑

k′=1

ḡAL
mk′ψ

T
k′ψ

∗
k

)

, (7.11)

with

ΦAL
mk =

( K∑

k′=1

Ppτu,pR
AL
mk′ψ

T
k′ψ

∗
k + σ2INap

)−1

. (7.12)

Let g̃AL
mk = gAL

mk − ĝAL
mk be the channel estimation error vector. The MMSE estimate ĝAL

mk

and the estimation error g̃AL
mk are independent random variables where

ĝAL
mk ∼ CN (ḡAL

mk,Γ
AL
mk), g̃AL

mk ∼ CN (0,RAL
mk − ΓAL

mk), (7.13)

with ΓAL
mk = Ppτu,pR

AL
mkΦ

AL
mkR

AL
mk represents the estimation covariance matrix.
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7.4.2.2 Downlink Transmission

The compressed signal of user k to be transmitted to the mth AP ŝȷm,k is represented by

ŝȷm,k = sk + qȷm,k, (7.14)

where qȷm,k ∼ CN (0, Qȷ
m,k) represents the compression quantization noise with Qȷ

m,k de-

noting the compression quantization power such that:

CDis,ȷ
m =

τc − τu,p − τd,p
τc

log2

(

1 +
1

Qȷ
m,k

)

, (7.15)

with τd,p denotes the length of the DL pilot sequence for the beamforming training oper-

ation as will be discussed later. Thus, the received signal at the mth AP from its serving

ECP given in (7.8) can be rewritten as follows:

rDis,ȷ
m,k =

√

P ȷ
dγ

ȷ
m(sk + qȷm,k) + δwȷ

m,k = E ȷ
m(sk + qȷm,k) + δwȷ

m,k, (7.16)

where P ȷ
d denotes the DL transmit power in the fronthaul network on band ȷ. Also,

δ ∈ {0, 1} reflects two different approaches that APs can follow before carrying out the

precoding process. The first approach with δ = 1 considers precoding the received signal

including the added thermal noise at the AP wȷ
m,k. Differently, the second one with

δ = 0 considers decoding the signal from the added thermal noise before carrying out the

precoding process. Also,

E ȷ
m =

√

P ȷ
dγ

ȷ
m, (7.17)

denotes the fronthaul impact on the directed data towards themth AP. Since the fronthaul

impact parameter towards the mth AP changes slowly over time, it can be available at

the AP. Thus, each AP can cancel the fronthaul effect on the kth user signal sk as follows:

ṙDis,ȷ
m,k = sk + qȷm,k + δ

(
E ȷ
m

)−1

wȷ
m,k. (7.18)

Next, let us define K(m) as the set of served users by the mth AP. Accordingly, the

transmitted CB precoded signal from the mth AP will be

xDis,ȷ
m =

√

Pd

∑

k′∈K(m)

√
ηmk′

(
ĝAL
mk′
)∗
ṙDis,ȷ
m,k′ . (7.19)

Also, we assume equal power allocation for the DL power control coefficients. Then,

let M(k) denotes the set of serving APs for user k. Also, let M and K represent the

total number of APs and users, respectively, at a certain network realization. Thus, the

received signal at user k is given by

rDis
k =

M∑

m=1

(
gAL
mk

)T
xDis,ȷ
m + wk, (7.20)
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which can be rewritten as

rDis
k =

√

Pdakksk +
√

Pd

(
Ωk + Vk

)
+
√

Pd

∑

k′ ̸=K

(
akk′sk′ + Ωk′ + Vk′

)
+ wk, (7.21)

with

akk′ =
∑

m∈M(k′)

√
ηmk′

(
gAL
mk

)T (
ĝAL
mk′

)∗
, Ωk′ =

∑

m∈M(k′)

√
ηmk′

(
gAL
mk

)T (
ĝAL
mk′

)∗
qȷm,k′ ,

Vk′ = δ
∑

m∈M(k′)

√
ηmk′

(
E ȷ
m

)−1(
gAL
mk

)T (
ĝAL
mk′

)∗
wȷ

m,k′ ,

where akk and akk′ denote the desired channel gain for user k and the interference channel

gain due to the transmitted signals of user k′. Also, Ωk′ reflects the compression effect of

user k′ data symbol. In addition, Vk′ represents the effect of the amplified thermal noise

at APs towards the user side.

We consider that beamforming training is applied for DL transmission to enhance the

DL system performance as in chapter 6. In that, orthogonal DL pilots with τd,p ≥ K

are applied for DL channel estimation. Hence, the transmitted pilot sequence matrix

Yp,m ∈ CNap×τd,p from the mth AP is given by

Yp,m =
√

Pdτd,p
∑

k′∈K(m)

√
ηmk′ ĝ

∗
mk′ϕ

T
k′ . (7.22)

Consequently, the received pilot sequence vector at user k will be

yp,k =
√

Pdτd,p
∑

k′∈K(m)

akk′ϕ
T
k′ +wp,k. (7.23)

After user k receives the DL training signals, it estimates its channel gain akk with its

serving APs. In doing so, it firstly projects the received training signal on ϕk as follows:

ỹp,k =
√

Pdτd,pakk +wp,kϕ
∗
k. (7.24)

Applying MMSE, the estimated channel gain can be expressed by

âkk = E{akk}+
√

Pdτd,pV ar{akk}
Pdτd,pV ar{akk}+ σ2

w

(

ỹp,k −
√

Pdτd,pE{akk}
)

. (7.25)

with

E{âkk} = E{akk}, V ar{âkk} =
Pdτd,p

(
V ar{akk}

)2

Pdτd,pV ar{akk}+ σ2
w

, (7.26)

where the statistics of the channel gain akk are given in Lemma 7.1. Let ãkk denotes the

estimation error of the channel gain akk where ãkk = akk − âkk. In that, ãkk has a zero

mean while the error variance is given by

V ar{ãkk} = E{|ãkk|2} =
V ar{akk}

Pd,pτd,pV ar{akk}+ σ2
w

. (7.27)

Lemma 7.1. The expectation and variance of the channel gain akk of the kth user are
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given by

E{akk} =
∑

m∈M(k)

√
ηmk

(
tr(ΓAL

mk) +
∥
∥ḡAL

mk

∥
∥
2)
,

V ar{akk} =
∑

m∈M(k)

ηmk

(

tr(ΓAL
mkR

AL
mk) +

(
ḡAL
mk

)H
RAL

mkḡ
AL
mk +

(
ḡAL
mk

)H
ΓAL

mkḡ
AL
mk

)

.
(7.28)

Proof. E{akk} can be calculated as follows:

E{akk} = E

{ ∑

m∈M(k)

√
ηmk(g̃

AL
mk)

T (ĝAL
mk)

∗
}

=
∑

m∈M(k)

√
ηmkE

{
(ĝAL

mk)
T (ĝAL

mk)
∗ + (g̃AL

mk)
T (ĝAL

mk)
∗
}
.

(7.29)

Based on the MMSE estimation properties,ĝAL
mk and g̃AL

mk are independent. Also, g̃AL
mk has

zero mean, thus, E{akk} can be calculated by

E{akk} =
∑

m∈M(k)

√
ηmkE

{∥
∥ĝAL

mk

∥
∥
2}

=
∑

m∈M(k)

√
ηmk

(
tr(ΓAL

mk) +
∥
∥ḡAL

mk

∥
∥
2)
.

(7.30)

Regarding the variance of the channel gain V ar{akk}, it can be determined as follows:

V ar{akk} = E
{∣
∣akk

∣
∣
2}−

(
E{akk}

)2
, (7.31)

where

E
{∣
∣akk

∣
∣
2}

= E

{∣
∣
∣

∑

m∈M(k)

√
ηmk(g

AL
mk)

T (ĝAL
mk)

∗
∣
∣
∣

2}

,

=
∑

m∈M(k)

ηmkE
{∣
∣(gAL

mk)
T (ĝAL

mk)
∗
∣
∣
2}

︸ ︷︷ ︸

T1

+
∑

m∈M(k)

√
ηmk

∑

t∈M(k)

√
ηtkE

{
(gAL

mk)
T (ĝAL

mk)
∗
}
E
{
(gAL

tk )T (ĝAL
tk )∗

}

︸ ︷︷ ︸

T2

.

(7.32)

The first term in (7.32) can be calculated as

T1 =
∑

m∈M(k)

ηmk

(

E
{∥
∥ĝAL

mk

∥
∥
4}

+ E
{∣
∣(g̃AL

mk)
T (ĝAL

mk)
∗
∣
∣
2}
)

, (7.33)

in which E
{∥
∥ĝAL

mk

∥
∥
4}

can be determined as follows:

E
{∥
∥ĝAL

mk

∥
∥
4}

=
(
tr(ΓAL

mk)
)2

+ tr(ΓAL
mkΓ

AL
mk) +

∥
∥ḡAL

mk

∥
∥
4
+ 2tr(ΓAL

mk)
∥
∥ḡAL

mk

∥
∥
2

+ 2(ḡAL
mk)

HΓAL
mkḡ

AL
mk,

= tr(ΓAL
mkΓ

AL
mk) + 2(ḡAL

mk)
HΓAL

mkḡ
AL
mk +

(
tr(ΓAL

mk) +
∥
∥ḡAL

mk

∥
∥
2)2

,

(7.34)

and E
{∣
∣(g̃AL

mk)
T (ĝAL

mk)
T
∣
∣
2}

can be calculated by

E
{∣
∣(g̃AL

mk)
T (ĝAL

mk)
∗
∣
∣
2}

= tr
(
ΓAL

mk(R
AL
mk − ΓAL

mk)
)
+ (ḡAL

mk)
H(RAL

mk − ΓAL
mk)ḡ

AL
mk. (7.35)

The second term in (7.32) can be represented as

T2 =
∑

m∈M(k)

√
ηmk

∑

t∈M(k)

√
ηtk
(∥
∥ḡAL

mk

∥
∥
2
+ tr(ΓAL

mk)
)(∥
∥ḡAL

tk

∥
∥
2
+ tr(ΓAL

tk )
)
, (7.36)
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From (7.32)-(7.36), one can obtain

E
{∣
∣akk

∣
∣
2}

=
∑

m∈M(k)

ηmk

(

tr(ΓAL
mkR

AL
mk) + (ḡAL

mk)
HΓAL

mkḡ
AL
mk + (ḡAL

mk)
HRAL

mkḡ
AL
mk

+
(
tr(ΓAL

mk) +
∥
∥ḡAL

mk

∥
∥
2)2
)

+
∑

m∈M(k)

√
ηmk

∑

t∈M(k)

√
ηtk

×
(∥
∥ḡAL

mk

∥
∥
2
+ tr(ΓAL

mk)
)(∥
∥ḡAL

tk

∥
∥
2
+ tr(ΓAL

tk )
)
,

=
∑

m∈M(k)

ηmk

(

tr(ΓAL
mkR

AL
mk) + (ḡAL

mk)
HΓAL

mkḡ
AL
mk + (ḡAL

mk)
HRAL

mkḡ
AL
mk

)

+
( ∑

m∈M(k)

√
ηmk

(∥
∥ḡAL

mk

∥
∥
2
+ tr(ΓAL

mk)
)2

.

(7.37)

Finally, substituting (7.30) and (7.37) in (7.31), V ar{akk} can be calculated as

V ar{akk} =
∑

m∈M(k)

ηmk

(

tr(ΓAL
mkR

AL
mk) + (ḡAL

mk)
HRAL

mkḡ
AL
mk + (ḡAL

mk)
HΓAL

mkḡ
AL
mk

)

. (7.38)

■

Applying the same approximation as in (6.22), a closed-form approximation for the

DL achievable data rates is given by

RDis
k =

τc − τu,p
τc

×

log2

(

1 +
PdE{|âkk|2}

Pd

(

E{|ãkk|2}+ E{|Ωk + Vk|2}+
∑

k′ ̸=k

E{|akk′sk′ + Ωk′ + Vk′ |2}
)

+ σ2
w

)

.

(7.39)

Then, by introducing the following variables

Am,k,k′
∆
= ηmk′

(

tr(ΓAL
mk′R

AL
mk) + (ḡAL

mk′)
HRmkḡ

AL
mk′ + (ḡAL

mk)
HΓAL

mk′ ḡ
AL
mk

)

,

Bm,k,k
∆
=

√
ηmk

(∥
∥ḡAL

mk

∥
∥
2
+ tr(ΓAL

mk)
)
, Cm,k,k′

∆
= (ḡAL

mk)
H ḡAL

mk′ ,

Dm,k,k′
∆
= tr(RAL

mkΦ
AL
mkR

AL
mk′),

(7.40)

the different terms in (7.39) can be determined as follows. Firstly, the desired signal power

can be derived as follows:

PdE{|âkk|2} = Pd

((
E{âkk}

)2
+ V ar{âkk}

)
,

= Pd

( ∑

m∈M(k)

Bm,k,k

)2

+ Pd

Pdτd,p

(
∑

m∈M(k)

Am,k,k

)2

Pdτd,p
∑

m∈M(k)

Am,k,k + σ2
w

.

(7.41)

Using (7.27), (7.38), and the definition of Am,k,k in (7.40), the channel estimation error

power can be determined as

PdE{|ãkk|2} = Pd

∑

m∈M(k)

Am,k,k

Pdτd,p
∑

m∈M(k)

Am,k,k + σ2
w

. (7.42)

The composite interference power of the received quantization noise Ωk and the received
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additive thermal noise Vk, defined in (7.21), can be determined as follows:

PdE{|Ωk + Vk|2} = PdE

{∣
∣
∣

∑

m∈M(k)

√
ηmk(g

AL
mk)

T (ĝAL
mk)

∗
(
qȷm,k + δ(E ȷ

m)
−1wȷ

m,k

)
∣
∣
∣

2}

,

(a)
= Pd

∑

m∈M(k)

ηmkE
{∣
∣(gAL

mk)
T (ĝAL

mk)
∗
∣
∣
2}
(

E{|qȷm,k|2}+ δ(E ȷ
m)

−2E{|wȷ
m,k|2}

)

,

=Pd

∑

m∈M(k)

ηmk

(

E
{∥
∥ĝAL

mk

∥
∥
4}

+ E
{∣
∣(g̃AL

mk)
T (ĝAL

mk)
∗
∣
∣
2}
)(

Qȷ
m,k + δ(E ȷ

m)
−2(σȷ

w)
2
)

,

(7.43)

where
(a)
= stems from the independence between the quantization noise qȷm,k and the ther-

mal noise wȷ
m,k as well as their independence of the user k channel vector gAL

mk . Then,

using the expressions in (7.34) and (7.35) for E
{∥
∥ĝAL

mk

∥
∥
4}

and E
{∣
∣(g̃AL

mk)
T (ĝAL

mk)
∗
∣
∣
2}
, we

obtain

PdE{|Ωk + Vk|2} = Pd

∑

m∈M(k)

ηmk

(

tr(ΓAL
mkR

AL
mk) + (ḡAL

mk)
HRAL

mkḡ
AL
mk + (ḡAL

mk)
HΓAL

mkḡ
AL
mk

+
(
tr(ΓAL

mk) +
∥
∥ḡAL

mk

∥
∥
2)2
)(

Qȷ
m,k + δ(E ȷ

m)
−2(σȷ

w)
2
)

,

= Pd

∑

m∈M(k)

(

Am,k,k +B2
m,k,k

)(

Qȷ
m,k + δ(E ȷ

m)
−2(σȷ

w)
2
)

.

(7.44)

Finally, the composite interference power due to user k′ data symbol including the com-

pression quantization noise and the amplified thermal noise is given by

PdE{|akk′sk′ + Ωk′ + Vk′ |2} = PdE
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∣
∣
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∣
∣
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,
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∣
∣

∑

m∈M(k′)

√
ηmk′

(
(g̃AL

mk)
T + (ĝAL
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∣
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T (ĝAL
mk′)

∗(sk′ + qȷm,k′ + δ(E ȷ
m)

−1wȷ
m,k′)

∣
∣
∣

2})

︸ ︷︷ ︸

T4

,

(7.45)

where T3 can be calculated as follows:

T3
(a)
=

∑

m∈M(k′)

ηmk′E
{∣
∣(g̃AL

mk)
T (ĝAL

mk′)
∗
∣
∣
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2
)

,

(7.46)
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with
(a)
= stems from the fact that the k′th user signal sk′ , the quantization noise qȷm,k′ ,

and the thermal noise wȷ
m,k′ are independent and all are independent of users’ estimated

channels as well as the estimation error. Furthermore, T4 can be calculated as follows:

T4 =
∑
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∣
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∣(ĝAL

mk)
T (ĝAL
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where

E
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and
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(7.49)

Then, substituting (7.48) and (7.49) in (7.4.2.2), the composite interference power due to
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user k′ can be calculated by applying (7.46) and (7.4.2.2) in (7.45) as follows:

PdE{|akk′sk′ + Ωk′ + Vk′ |2} =
∑
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(7.50)

7.5 Centralized System Operation

7.5.1 Fronthaul Communication

In the centralized system operation, both estimation of users’ channels and DL precoding

of users’ data symbols are carried out at ECPs. Particularly, APs forward the received

pilot signals from users during the channel estimation phase to their associated ECPs

where the channel estimation process is carried out. Based on the estimated users-APs

channels, each ECP computes the precoding vectors for served users by its associated

APs, precodes the users signals, and sends the precoded signals to its associated APs.

Then, APs act as relays to forward the received precoded signals to users. Accordingly,

the fronthaul communication in the centralized system operation will be a two way com-

munication, namely fronthaul UL transmission (pilot transmission from APs to ECPs)

and fronthaul DL transmission (precoded data transmission from ECPs to APs). Similar

to the distributed system operation, each ECP and its associated APs are assigned equal

microwave/mmWave bandwidth for the fronthaul communication.

Note that, for the fronthaul UL transmission, the dedicated antenna at the AP for the

fronthaul communication needs to transmit different Nap pilot signals (i.e., corresponding

to the deployed Nap antennas for access communication) to its serving ECP. In doing

so, each AP divides the available bandwidth for fronthaul communication equally among

the Nap pilot signals. Also, the corresponding pilot signal for the lth antenna element

in all APs ∈ Mȷ
nm

are transmitted over the same time-frequency resources by means of

the ZF detection technique, applied for fronthaul communication. Let ϑul,ȷ
m′,l denotes the

compressed pilot signal to be transmitted from the lth antenna element in AP m′ ∈ Mȷ
nm
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to its associated ECP. Thus, the composite received pilot signal at the ECP nm can be

expressed as

rCen,ul,ȷ
nm

=
√

P ȷ
u,f

∑

m′∈Mȷ
nm

g
FHȷ

nmm′ϑ
ul,ȷ
m′,l +w

ȷ
nm

. (7.51)

where P ȷ
u,f denotes the UL transmission power of AP antennas in the fronthaul commu-

nication. Then, the ECP applies ZF detection to detect the transmitted signal from the

lth antenna element at AP m ∈ Mȷ
nm

as follows:

z
Cen,ul,ȷ
p,m,l =

√

P ȷ
u,f

∑

m′∈Mȷ
nm

P ȷ
mg

FHȷ

nmm′ϑ
ul,ȷ
m′,l + P ȷ

mw
ȷ
nm

, (7.52)

where P ȷ
m denotes the applied detection vector which can be determined by

P ȷ
m =

[((
GFHȷ

nm

)H
GFHȷ

nm

)−1]

(m,:)

(
GFHȷ

nm

)H
. (7.53)

Thus, the received signal at the ECP can be rewritten as follows:

z
Cen,ul,ȷ
p,m,l =

√

P ȷ
u,fϑ

ul,ȷ
m,l + P ȷ

mw
ȷ
nm

. (7.54)

Accordingly, the UL fronthaul capacity in bps/Hz, according to which the transmitted

signals from the mth generic AP are compressed, is given by

CCen,ul,ȷ
m =

Bȷ
F

NNapBA
log2

(

1 +
P ȷ
u,f γ̇

ȷ
m

(σȷ
w)2

)

, (7.55)

with

γ̇ȷ
m =

1

E

{[((
GFHȷ

nm

)T (
GFHȷ

nm

)∗
)−1]

(m,m)

} . (7.56)

Similar to the fronthaul UL transmission, in the fronthaul DL transmission, each ECP

divides the available bandwidth to Nap different bands. In the lth band, each ECP sends

the intended precoded data signals to the lth antenna elements of its associated APs. let

us consider ϑdl,ȷ
m′,l as the DL precoded signal to be transmitted from the ECP nm for the

lth antenna element in AP m′ ∈ Mȷ
nm

. Applying ZF precoding, the received signal at

AP m ∈ Mȷ
nm

will be

rCen,dl,ȷ
m,l =

√

P ȷ
d

∑

m′∈Mȷ
nm

√

γȷ
m′(g

FHȷ
nmm)

TQ
ȷ
m′ϑ

dl,ȷ
m′,l + wȷ

m,l = E ȷ
mϑ

dl,ȷ
m,l + wȷ

m,l. (7.57)

Therefore, the DL fronthaul capacity in bps/Hz according to which the precoded signals

for the mth generic AP are compressed is given by

CCen,dl,ȷ
m =

Bȷ
F

NNapBA

log2

(

1 +
P ȷ
dγ

ȷ
m

(σȷ
w)2

)

. (7.58)

7.5.2 Access Communication

This section analyzes the channel estimation and DL data transmission phases of the

centralized system operation while taking into account the proposed fronthaul network.
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In that, both channel estimation and DL precoding processes are carried out in the ECPs.

Also, ZF precoding is applied for the access link data transmission.

7.5.2.1 Channel Estimation

Different from the distributed system operation, the channel estimation process is per-

formed at ECPs. As such, after APs receive the transmitted pilot sequences from users

during the channel estimation phase, they send the received pilot vectors to their serving

ECPs. In fact, the received pilot signals at APs consist of fast varying and slow varying

components. The fast varying components represent the received pilot signals over the

NLoS channels. These components vary from one frame to another. On the other hand,

the slow varying components represent the received pilot signals over the LoS channels.

Hence, these components can be considered constant over multiple channel frames, hence,

assumed available at ECPs. Consequently, APs need only to compress only the fast vary-

ing components and send them to their associated ECPs. The fast varying components

of the received pilot signal at the lth antenna element of the mth AP are given by

ÿp,m,l = yp,m,l −
√

Ppτu,p

K∑

k′=1

ḡAL
mk′ψ

T
k′ , (7.59)

where yp,m,l being the lth row of the matrix Y p,m, defined in (7.10) and can be expressed

by

yp,m,l =
√

Ppτu,p

K∑

k′=1

gAL
mk′,lψ

T
k′ +wp,m,l, (7.60)

where wp,m,l denoting the lth row of the matrixW p,m. The fast varying component of the

pilot signal is then compressed and sent to the serving ECP where the compressed signal

is given by

ˆ̈y
ȷ

p,m,l = ÿp,m,l + q
ȷ
p,m,l, (7.61)

with qȷp,m,l denotes the quantization noise vector. The entries of qȷp,m,l are i.i.d. CN (0, Qȷ
p,m)

with Qȷ
p,m being the compression quantization noise power such that:

CCen,ul,ȷ
m =

τu,p
τc

log2

(

1 +

Pp

K∑

k′=1

[
RAL

mk′

]

l,l
+ σ2

w

Qȷ
p,m

)

, (7.62)

where Pp

K∑

k′=1

[
RAL

mk′

]

l,l
+σ2

w represents the power of each transmitted pilot symbol from the

lth antenna element at themth AP to its serving ECP. After compressing the received pilot

signals, APs forward these signals through the fronthaul network to their associated ECPs.

Note that, the detected UL pilot signals for the lth antenna element in AP m ∈ Mȷ
nm

at
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ECP nm can be expressed using (7.54) through replacing ϑul,ȷ
m,l by

ˆ̈y
ȷ

p,m,l. Consequently,

the received signal at the ECP is given by

z
Cen,ul,ȷ
p,m,l =

√

Pu,f
ˆ̈y
ȷ

p,m,l + P ȷ
m,lw

ȷ
nm

=
√

Pu,f

(√

Ppτu,p

K∑

k′=1

gAL
mk′,lψ

T
k′ + q

ȷ
p,m,l +wp,m,l

)

+ P ȷ
m,lw

ȷ
nm

.
(7.63)

Since the user’s channels at different antenna elements in the same AP are correlated, we

jointly estimate these channels at the ECP. To this end, we firstly constitute a matrix of

all received pilot sequences as follows:

ZCen,ul,ȷ
p,m =

√

Pu,f

(√

Ppτu,p

K∑

k′=1

gAL
mk′ψ

T
k′ +Q

ȷ
p,m +W p,m

)

+ P ȷ
mW

ȷ
nm

, (7.64)

where Qȷ
p,m ∈ CNap×τu,p denotes the matrix of quantization noise due to the pilot symbols

compression. Also, P ȷ
m ∈ CNap×N ȷ

is a matrix of detection vectors which includes in

its lth row the vector P ȷ
m,l. Also, W ȷ

nm
denotes the noise matrix at the ECP side. As

previously mentioned, slow varying LoS components as well as the channel covariance

matrices of all users are assumed to be available at APs and ECPs. As such, after

each ECP receives the compressed pilot signals from its associated APs, it estimates the

small-scale fading channel coefficients using MMSE channel estimation technique. The

estimated fast varying channel vector for the kth user with the mth AP is given by

˘̈g
AL

mk =
√

Pu,fPpτu,pR
AL
mkΦ̆

AL

mkZ
ul,ȷ
p,m,lψ

∗
k, (7.65)

with

Φ̆
AL

mk =

( K∑

k′=1

Pu,fPpτu,pR
AL
mk′ψ

T
k′ψ

∗
k +

(
Pu,f (Q

ȷ
p,m + σ2

w) + (γȷ
m)

−1(σȷ
w)

2
)
INap

)−1

. (7.66)

Thus, the composite estimated channel vector for user k with AP m ∈ Mȷ
nm

is given by

ğAL
mk = ḡ

AL
mk + ˘̈g

AL

mk. (7.67)

Let ǵAL
mk = g

AL
mk − ğAL

mk, be the channel estimation error. The MMSE estimate ğAL
mk and the

estimation error ǵAL
mk are independent random variables that can be modeled as follows:

ğAL
mk ∼ CN (ḡAL

mk, Γ̆
AL

mk), ǵAL
mk ∼ CN (0,RAL

mk − Γ̆
AL

mk), (7.68)

and Γ̆
AL

mk = Pu,fPpτu,pR
AL
mkΦ̆

AL

mkR
AL
mk is the estimation covariance matrix.

7.5.2.2 Downlink Transmission

For the DL data transmission, we consider that each ECP independently determines the

precoded data symbols for the served users by its associated APs. A prerequisite for any

ECP n to determine the precoding vector for user k is to know the set of served users by

its associated APs
(
K̇(n)

)
as well as the set of APs belonging to this ECP and serving
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user k
(
Ṁn(k)

)
. Let GAL

k,n represents the channel matrix between the set of APs ∈ Ṁn(k)

and the set of users ∈ K̇(n). Each ECP applies ZF precoding to generate the precoded

symbols for the served users by its associated APs. The ZF precoding vector for user

k ∈ K̇(n) at the set of APs ∈ Ṁn(k) is given by

ϖk,n =
(
Ĝ

AL

k,n

)∗
((

Ĝ
AL

k,n

)T (
Ĝ

AL

k,n

)∗
)−1

ek, (7.69)

where Ĝ
AL

k,n represents the estimated channel matrix of GAL
k,n. Also, ek is the kth column

in the identity matrix IKn
. It is important to note that the corresponding entries of the

precoding vectors for user k at APs ∈ Mn and ̸∈ Ṁn(k) are set to zero. Thus, the

precoded data vector will be

xn =
√
ςn
∑

k∈K̇(n)

ϖk,nsk, (7.70)

where ςn denotes the power normalization factor at the nth ECP that can be calculated

by

ςn =
1

E

{

tr
(((

Ĝ
AL

k,n

)T (
Ĝ

AL

k,n

)∗
)−1)} . (7.71)

After obtaining the precoded data vector, each ECP compresses the precoded data as

x̂ȷ
n = xn + q

ȷ
n, where q

ȷ
n denotes the vector of compression quantization noise at the nth

ECP. In that, the precoded data symbol xn,m,l for the l
th antenna element in AP m ∈ Mn

will be accompanied with a compression quantization noise qȷn,m,l ∼ CN (0, Qȷ
n,m,l) with

Qȷ
n,m,l being the compression quantization noise that can be determined according to

CCen,dl,ȷ
n,m =

τc − τu,p
τc

log2

(

1 +
E
{
|xn,m,l|2

}

Qȷ
n,m,l

)

. (7.72)

Each ECP then sends the compressed signals to its associated APs which relay these

signals to users. Similar to the distributed system operation, we consider two approaches

for relaying the signal to users. The first one with δ = 1 corresponds to the case of

amplifying the received signal including the noise and sending it to users, whereas in

the second approach with δ = 0, APs decode the received signal before conveying the

signals to users. In the centralized operation, the first and second approaches reflect

the amplify-and-forward (AF) and decode-and-forward (DF) transmissions in relaying

systems, respectively. The received precoded signal vector at the mth generic AP from its

serving ECP nm can be expressed by

rCen,dl,ȷ
m = E ȷ

m

(
xnm,m + qȷnm,m

)
+ δwȷ

m, (7.73)

where xnm,m and qȷnm,m represent the elements of the mth AP in xnm,m and qȷnm,m, re-

spectively. Then, similar to the distributed system operation, the AP m cancels out the
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fronthaul effect on the received precoded data signal as follows:

ṙCen,dl,ȷ
m = xnm,m + qȷnm,m + δ

(
E ȷ
m

)−1

wȷ
m. (7.74)

Consequently, the received signal at the kth user is given by
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(7.75)

Let us define

ϖ̌k′,nm,m
∆
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m. (7.76)

Also,
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(7.77)

Note that, if m ̸∈ M(k′), ϖ̌k′,nm,m = 0Nap,1. Thus, (7.75) can be rewritten as follows:

rk =
√

Pdǧ
T
k ϖ̌ksk +

√

Pd

∑

k′ ̸=k

ǧTk ϖ̌k′sk′ +
√

Pdǧ
T
k q̌

ȷ +
√

Pdδǧ
T
k w̌

ȷ + wk, (7.78)

where the first term includes the desired signal while the second term represents the

interference signals due to transmitted data to other users. The third term denotes

the quantization noise effect. Also, the fourth term represents the impact of amplified

thermal noise at APs while the fifth term reflects the thermal noise effect at the user side.

Consequently, the achievable DL data rate of user k can be determined by

RCen
k =

τc − τu,p
τc

×

log2

(
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∣ǧTk w̌

ȷ
∣
∣
2}
)

+ σ2
w

)

.

(7.79)
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7.6 Simulation Results

7.6.1 Simulation Setup

We consider a CF mMIMO system that includes uniformly distributed multi-antenna

APs, users, and ECPs in a square area of size 0.5 × 0.5 km2 with densities of λA, λU ,

and λC , respectively. The heights of deployed antennas at APs, UEs, and ECPs are

hap = 12.5, hue = 1.5, and hecp = 25 m, respectively. We consider fronthaul blockages that

are uniformly distributed within the coverage area with density λB. The length and width

parameters of blockages have a uniform distribution with [10, 20] and [5, 15], respectively.

The APs, users, ECPs, and blockage densities are set to λa = 200/km2, λu = 40/km2,

λc = 8/km2, and λB = 50/km2, respectively. Also, each AP is equipped with Nap = 10

antenna elements and each user is served by its five nearest APs. The aforementioned

simulation parameters hold for all reported results, unless otherwise specified.

- Access Link (AP-User): We consider the communication between users and APs

is carried out on the microwave band over a carrier frequency fc,a = 1.9 GHz. The UL

pilot transmission power Pp = 0.1 Watt while the DL data and pilot transmission power

Pd = 0.2 Watt. The thermal noise variance at the user side σ2
w = 290×κ×BA×NF where

κ is the Boltzman constant, access link bandwidth BA = 20 MHz, and NF = 9 dB is

the noise figure. We consider a coherence time interval of τc = 200 samples. Besides, non-

orthogonal pilot sequences are assigned to users for the sake of channel estimation with

τu,p = 5 symbols. The possibility of having a LoS access link is defined as follows [113]:

P(LoS) =







1− dAL
mk

300
if 0 < dAL

mk < 300

0 if dAL
mk ≥ 300,

(7.80)

where dAL
mk denotes the distance between AP m and user k in meters. The Rician K-factor

is calculated by [113]

KAL
mk =







101.3−0.003dAL
mk if LoS

0 if NLoS,

(7.81)

Also, the large-scale fading coefficient between the mth AP and the kth user is given

by [113]

βAL
mk =







−30.18− 26 log10(d
AL
mk) + FAL

mk if LoS

−34.53− 38 log10(d
AL
mk) + FAL

mk if NLoS,

(7.82)

where FAL
mk =

√
ϵam +

√
1− ϵbk, with ϵ = 0.5 represents the correlated shadow fading
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coefficient with am ∼ N (0, σsh) and bk ∼ N (0, σsh). The shadowing standard deviation

is set to σsh = 4 dB and 8 dB in case of LoS and NLoS, respectively.

- Microwave-Based Fronthaul Communication: For the microwave fronthaul

communication, the fronthaul links are carried over a center frequency fµ
c,f = 6.5 GHz

with a bandwidth Bµ
f = 200 MHz. This band has been proposed in [125] for the back-

haul/fronthaul communication due to the high available bandwidth that can handle the

immense amount of data transfer in the fronthaul network. Also, operating the mi-

crowave fronthaul links on such band avoids the interference between these links and

access links since they operate in different microwave bands. Also, each ECP is equipped

with Mµ = 50 antennas. The DL and UL transmission powers for the fronthaul commu-

nication are set to P µ
d,f = 0.2 Watt and Pu,f = 0.2 Watt. The large-scale fading coefficient

between the nth ECP and the mth AP over the adopted microwave fronthaul band is given

by [126]

βFHµ
nm =







−32.4− 20 log10(f
µ
c,f (GHz))− 20 log10(d

FH
nm ) + ξµnm if LoS

−32.4− 20 log10(f
µ
c,f (GHz))− 30 log10(d

FH
nm ) + ξµnm if NLoS,

(7.83)

with ξµnm ∼ N (0, σµ
sh) denoting the shadowing coefficient where the shadowing standard

deviation is set to σµ
sh = 4 dB and 7.8 dB in case of LoS and NLoS, respectively.

- MmWave-Based Fronthaul Communication: The mmWave band with a center

frequency fmm
c,f = 28 GHz is adopted for the fronthaul communication. This is thanks to

the low rain attenuation, atmospheric absorption, and path loss in this band compared

to other mmWave bands as well as the immense amount of available bandwidth. The

mmWave bandwidth is considered as a multiple of the microwave counterpart as Bmm
f =

αfBµ
f . Also, the number of deployed mmWave antennas at the ECPs for the fronthaul

communication is considered as multiple of the microwave counterpart as Nmm = ρfN µ.

For a fair comparison between the microwave and mmWave fronthaul operations, the DL

transmit power in the mmWave-based operation is set to Pmm
d,f = ρ−1

f P µ
d,f . The values of αf

and ρf are set to 5 and 10, respectively, unless otherwise specified. The large-scale fading

coefficient between the nth ECP and the mth AP over the adopted mmWave fronthaul

band is given by [123]

βFHmm
nm =







−61.4− 20 log10(d
FH
nm ) + ξmm

nm if LoS

−72− 29.2 log10(d
FH
nm ) + ξmm

nm if NLoS,

(7.84)

with ξmm
nm ∼ N (0, σmm

sh ) denoting the shadowing coefficient where the shadowing standard
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deviation is set to σmm
sh = 5.8 dB and 8.7 dB in case of LoS and NLoS, respectively.

- Hybrid-Based Fronthaul Communication: For the hybrid-based fronthaul op-

eration, since each ECP is equipped with microwave and mmWave antennas, the DL

transmission powers of microwave and mmWave antennas at the nth ECP are set to

P µ
d,f,hy = Mµ

n

Mµ
n+Mmm

n
P µ
d,f and Pmm

d,f,hy = Mmm
n

Mµ
n+Mmm

n
Pmm
d,f , respectively, to keep the total power

budget at ECPs constant under the different applied wireless fronthaul operations.

7.6.2 Performance of Fronthaul Network

This section discusses the provided DL fronthaul capacities by the aforementioned wireless-

based fronthaul operations, namely, microwave, mmWave, and hybrid microwave/mmWave

fronthaul operations under different fronthaul network configurations. In this section, we

focus on the DL fronthaul capacities since we noted that their impact is more prominent

than the UL fronthaul capacities on the achievable users’ rates. Also, one can note from

(7.55) and (7.58) that the UL fronthaul capacity will follow a similar behavior to that

of the DL fronthaul capacity under different network configurations. More specifically,

we discuss the impacts of blockage densities, ECP configurations, and APs configurations

on the provided fronthaul capacities to deployed APs. In this regard, according to (7.9)

and (7.58), one can note that under different density of blockages λB, density of ECPs

λC , and number of antennas at ECPs N j, the achievable DL fronthaul capacities of the

centralized system operation follows the same behavior as the distributed counterpart.

Consequently, for the impact of blockages and ECP configurations, we only consider the

achievable fronthaul capacities under the distributed system operation. On the other

hand, the achievable fronthaul capacities under the distributed and centralized system

operations are affected differently by the APs density λA and the number of deployed

antennas per AP Nap. Thus, we investigate the impact of different APs configurations on

the achievable fronthaul capacities for both system operations.

- Blockage Effect: Fig. 7.2 depicts the CDF of the achievable DL fronthaul capac-

ities for the distributed system operation under different density of blockages. One can

note that the mmWave-based fronthaul operation significantly outperforms the microwave

counterpart for the vast majority of the deployed APs. However, the microwave-based

fronthaul operation provides higher capacities than the mmWave counterpart for APs with

poor channel conditions, i.e., APs with low fronthaul capacities. Besides, as the blockage
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density increases, the achievable fronthaul capacities decrease, and the microwave-based

operation becomes more preferable than the mmWave one for a larger portion of APs.

This is a consequence of the more harsh impact of blockages on mmWave channels. Aside

from that, the hybrid microwave/mmWave fronthaul operation outperforms both the mi-

crowave and mmWave counterparts by providing APs with different channel conditions

with higher fronthaul capacities.

Figure 7.2: CDF of the achievable DL fronthaul

capacities under different blockage density

Figure 7.3: CDF of the achievable DL fronthaul

capacities under different ECPs configurations

- Different ECPs Configurations: Fig. 7.3 depicts the CDF of the achievable DL

fronthaul capacities for the distributed system operation under different ECP configura-

tions. Particularly, we show the impact of increasing the density of deployed ECPs or

the number of deployed antennas per ECP on the achievable DL fronthaul capacity. Let

us consider the performance of the ECP configuration with λC = 8/km2, Mµ = 50 as a

reference for the other considered ECP configurations. Firstly, one can note that increas-

ing the number of deployed antennas per ECP (λC = 8/km2, Mµ = 75) significantly

improves the achievable fronthaul capacities thanks to the higher beamforming gain ac-

companying such increase in number of antennas. On the other hand, despite increasing

the density of ECPs (λC = 12/km2, Mµ = 50) is advantageous for some APs, it may

affect the achievable fronthaul capacity of other APs badly. This can be interpreted as

follows. On one hand, increasing the density of deployed ECPs improves the provided

beamforming gain to APs due to the reduced number of connected APs to each ECP and

the reduced path-loss of APs with their serving ECPs. On the other hand, increasing the

density of deployed ECPs reduces the assigned fronthaul bandwidth to each ECP and its

associated APs accordingly. Thus, increasing the ECPs density degrades the delivered

fronthaul capacities to APs under favorable channel conditions, i.e., APs with high fron-
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thaul capacities, since improving the beamforming gain for such APs cannot compensate

for the bandwidth reduction at higher density of ECPs. In contrary, increasing the ECPs

density enhances the provided fronthaul capacities to APs under poor channel conditions

since improving the beamforming gain to such APs overcomes the capacity loss due to

bandwidth reduction. The latter discussion also illustrates the cross-over between the

achievable capacities for the two considered configurations with λC = 12/km2, Mµ = 50

and λC = 8/km2, Mµ = 75.

- Different APs Configurations: Fig. 7.4a and 7.4b depict the CDF of the achiev-

able DL fronthaul capacities under different APs configurations for distributed and cen-

tralized system operations, respectively. In that, the average number of deployed antennas

in all configurations is equal. According to the achievable DL fronthaul capacities under

the distributed system operation in (7.9), the achievable DL fronthaul capacity is not

affected by the number of antennas per APs (Nap). Nevertheless, it is affected by the

density of APs (λA). The reason is that increasing λA increases the number of associated

APs to each ECP which in turn reduces the provided beamforming gains in the fronthaul

network. Consequently, increasing λA degrades the achievable DL fronthaul capacities.

In contrary to the distributed operation, the achievable DL fronthaul capacities under the

centralized counterpart decrease with increasing Nap as illustrated in (7.58). However,

decreasing λA improves the provided beamforming gains to deployed APs. Accordingly,

for the centralized system operation, deploying a small number of APs with large number

of antennas (λA = 100/km2, Nap = 20) provides higher fronthaul capacities to APs under

poor channel conditions. On the other hand, deploying a large number of APs with small

number of antennas (λA = 400/km2, Nap = 5) provides higher fronthaul capacities to

APs under favorable channel conditions.

7.6.3 End-User DL Data Rates

Fig. 7.5 depicts the achievable users’ DL data rates of the two considered approaches of

APs operation (δ = 0 and δ = 1 which mimicking APs with and without decoding capa-

bilities, respectively) for the distributed and centralized system operations under different

density of blockages. It is clear that empowering APs with decoding capabilities (δ = 0)

remarkably improves the achievable users’ data rates under all considered fronthaul net-

work operations. Let us consider firstly the system performance under δ = 0 for both



134

(a) Distributed Operation (b) Centralized Operation

Figure 7.4: CDF of the achievable DL fronthaul capacities under different APs configurations.

distributed and centralized system operations. In such case, the main controlling factor

of both system performances will be the compression quantization noise accompanying

the data transmission over the limited-capacity wireless fronthaul links. For low block-

age scenarios with λB = 25/km2, operating the fronthaul network on the mmWave band

provides higher DL data rates to a larger portion of users than operating the fronthaul

network on the microwave counterpart as shown in Fig. 7.5a and 7.5c. On the other hand,

as depicted in Fig. 7.2, at high blockage density with λB = 150/km2, the mmWave band

provides higher fronthaul capacities for ∼ 55% of the deployed APs than the microwave

counterpart. Nevertheless, operating the fronthaul network on the mmWave band signifi-

cantly worsen the achievable DL data rates. This reflects that the APs with low fronthaul

capacities have the dominant effect on the achievable DL data rates. Interestingly, the

hybrid-based fronthaul operation leads to higher DL data rates under low and high density

of blockages.

(a) Distributed Operation
(

λB = 25/km2
)

(b) Distributed Operation
(

λB = 150/km2
)

(c) Centralized Operation
(

λB = 25/km2
)

(d) Centralized Operation
(

λB = 150/km2
)

Figure 7.5: CDF of the achievable DL rates for distributed and centralized operations under different

blockage densities and fronthaul operations.

Let us focus now on the second approach of APs operation with δ = 1. Different from
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the first approach with δ = 0, one can note that the microwave-based fronthaul operation

provides superior DL data rates to the other fronthaul operations. This is a consequence

of the smaller path-loss of the microwave bands that leads to higher values of the fronthaul

channel gain E ȷ
m defined in (7.17) such that Eµ

m > Emm
m . This in turn reduces the power of

the term representing the amplified thermal noise effect and improves the achievable DL

data rates. The performance of the hybrid-based fronthaul operation approaches that of

the microwave counterpart at high density of blockages (λB = 150/km2). This is due to

the higher percentage of APs that will have NLoS links with their serving ECPs under

λB = 150/km2, and thus, will be served by microwave fronthaul links. An interesting

remark on the system performance under the second APs operation approach with δ = 1

is that the channel gains of the fronthaul links have higher impact on the achievable DL

data rates than the available bandwidth for the fronthaul communication.

Fig. 7.6 depicts the average DL data rates of the centralized and distributed system

operations under different values of fronthaul bandwidth ratio αf , i.e., bandwidth of

the mmWave fronthaul band. Similar to the reported findings in Fig. 7.5, Fig. 7.6

reveals that the hybrid-based and microwave-based fronthaul operations attains higher

average DL rates for the first approach (δ = 0) and second approach (δ = 1) of APs

operation, respectively. In addition, increasing the bandwidth of the mmWave fronthaul

band remarkably improves the performance of both hybrid-based and mmWave-based

fronthaul operations when δ = 0. This is due to the improved fronthaul capacities which

in turn reduces the compression quantization noise power. However, such increase in the

mmWave fronthaul bandwidth is not beneficial for the hybrid-based and mmWave-based

fronthaul operations when δ = 1. This is a consequence of the dominated impact of the

fronthaul channel gains over the fronthaul bandwidth under such mode of APs operation.

Fig. 7.7 compares the average achievable DL data rates of the centralized and dis-

tributed system operations at different densities of blockages under the two considered

approaches for APs operation (δ = 0 and δ = 1). As one can note, increasing the blockage

density remarkably degrades the average achievable DL data rates under both approaches

of APs operation. Besides, as depicted in Fig. 7.7a, the centralized system operation

provides higher average DL data rates than the distributed counterpart when δ = 0,

thanks to the higher capabilities of ZF in mitigating the inter-user interference. On the

other hand, the amplified thermal noise impact is more prominent on the centralized sys-
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(a) Distributed Operation (b) Centralized Operation

Figure 7.6: Average achievable DL data rates under different fronthaul bandwidth ratios.

tem operation which in turn renders the distributed system performance superior to the

centralized counterpart when δ = 1. This is due to the generated thermal noise at APs

being directly amplified and transmitted to users in the centralized operation. However,

in the distributed counterpart, the generated thermal noise vectors at a certain AP are

firstly multiplied by the precoding vectors for users before being amplified which in turn

decreases the power of such amplified noise terms.

(a) δ = 0 (b) δ = 1

Figure 7.7: Average achievable DL data rates under different blockage densities.

7.6.4 Comparison Between Different Deployment Approaches

This section analyzes the access link performance under different network deployment ap-

proaches for APs and ECPs. This has been conducted while considering APs with/without

decoding capabilities. In this regard, we consider the hybrid-based and microwave-based

fronthaul operations for the first approach (δ = 0) and the second approach (δ = 1) of

APs operation since they offer maximum performance for both approaches, respectively.
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- Different ECPs Configurations: Fig. 7.8 investigates the preferred ECPs de-

ployment criterion for the distributed and centralized system operations under both APs

operation with δ = 0 and δ = 1. More specifically, the reported results reveal whether is

more advantageous, deploying more microwave/mmWave antennas per ECP or deploying

more ECPs within the coverage area. For fair comparison, we consider two different con-

figurations that have the same average number of microwave/mmWave antennas for the

fronthaul communication. As one can note, the obtained results show a similar behavior

to the one reported in Fig. 7.7 where the centralized and distributed operations attain

higher data rates under δ = 0 and δ = 1, respectively. Besides, deploying more ECPs with

small number of antennas (λC = 12/km2, Mµ = 50) is more beneficial than increasing

the number of deployed antennas per ECP (λC = 8/km2, Mµ = 75) under δ = 0 and

δ = 1. This is due to the provided improvement by λC = 12/km2, Mµ = 50 to the

fronthaul capacity of APs with low-fronthaul capacities as depicted in Fig. 7.3 which in

turn leads to higher DL data rates. Also, deploying more ECPs improves the channel

gains of fronthaul links, and hence, increases the value of E j
m which in turn decreases the

power of the term representing the amplified thermal noise effect and introduces further

improvement to the achievable DL data rates under δ = 1.

(a) δ = 0

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(b) δ = 1

Figure 7.8: CDF of the achievable DL data rates under different ECPs configurations.

- Different APs Configurations: Fig. 7.9 depicts the preferred APs deployment

criterion for the distributed and centralized system operations under both APs operations

with δ = 0 and δ = 1. As noted, deploying small number of APs with large number of

antennas (λA = 100/km2, Nap = 20) attains higher DL data rates than other deployment

criteria for both distributed and centralized system operations and under both approaches

of APs operation. The better performance under δ = 0 is due to the higher achievable
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fronthaul capacities, provided by such APs configuration for all APs in the distributed

system operation and for APs with low fronthaul capacities in the centralized system

operations as shown in Fig. 7.4. In addition, decreasing the number of deployed APs

increases the provided fronthaul beamforming gains to deployed APs as a consequence of

reducing the number of associated APs to each ECP. This in turn increases the fronthaul

channel gain E j
m, and hence boosts the achievable DL data rates under δ = 1.

(a) δ = 0 (b) δ = 1

Figure 7.9: CDF of the achievable DL data rates under different APs configurations.

7.7 Summary

We thoroughly investigated the DL performance of CF mMIMO under a wireless mMIMO-

based fronthaul network operation. Particularly, we consider multiple ECPs to which

APs are associated in a distance-based criterion. In addition, three different wireless

operations are considered for the fronthaul communication between APs and their serv-

ing ECPs, namely, microwave, mmWave, and hybrid microwave/mmWave. Besides, two

different access link operations are considered for the communication between users and

APs, namely, distributed and centralized system operations. The achievable DL data rates

for both system operations are analyzed under the proposed wireless fronthaul network

assuming correlated Rician fading channels and considering APs with/without decoding

capabilities. Results revealed that the channel gains of the fronthaul links have higher

impact on the achievable DL data rates than the available bandwidth for the fronthaul

communication. Consequently, suppressing the fronthaul channel gains effect through

empowering APs with decoding capabilities results in a significant improvement in the

achievable DL data rates. Besides, we revealed that the hybrid-based fronthaul operation
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is the best candidate for the fronthaul communication if APs are supported with decoding

capabilities. However, the microwave fronthaul operation provides ultimate performance

to systems include APs without decoding capabilities. Furthermore, the centralized op-

eration outperforms the distributed counterpart when APs have decoding capabilities

whereas the distributed one provides better performance when APs are not provided with

decoding capabilities.



Chapter 8

Conclusions and Future Works

8.1 Conclusions

CF mMIMO is a promising system that can efficiently meet the unprecedented require-

ments of 5G and beyond networks. Despite the significant theoretical gains of CF mMIMO

systems, the system performance may be prone to severe degradation due to several prac-

tical limitations. In this thesis, we have managed to analyze the CF mMIMO performance

under various practical system considerations. Also, we have developed promising solu-

tions to circumvent the negative impact of such practical system considerations on its

performance. Particularly, we have addressed the following critical questions to facilitate

the realization of a scalable and practical CF mMIMO system:

1. Is it possible to equip APs and UEs with non-ideal hardware components without

affecting the system performance badly?

2. Does the system have the ability to provide high-mobility scenarios with a compa-

rable performance to the low-mobility counterparts?

3. Is the system able to provide a secure data transmission to served users?

4. How to operate the system under limited-capacity of fronthaul links?

5. Can we operate the system in a scalable manner?

We have successfully answered these questions and come up with profound insights to

bring out the full potential of CF mMIMO in practice. We briefly summarize these

insights in the following.

1. We revealed that CF mMIMO outperforms other candidates (i.e., SC systems) that

share the same architecture under non-ideal hardware components of APs. Also, we

can mitigate the inevitable impact of non-ideal hardware components by increasing

140
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the number of deployed APs or the number of antennas per APs. Differently, the

system cannot tolerate the negative impact of non-ideal UEs. Thus, it is preferred

to equip UEs with ideal hardware components.

2. We showed that CF mMIMO is more robust than SC systems under high-mobility

scenarios. Besides, we proposed a hybrid CF mMIMO/SC system with low-complexity

distributed operation under to support different mobility conditions with high data

rates simultaneously. Furthermore, we proposed a novel framework to limit the

performance loss of CF mMIMO under high-mobility scenarios.

3. We proposed two different promising approaches to boost the provided security levels

of CF mMIMO systems. In the first approach, we developed a simple distributed DL

transmission techniques that limits the Eve’s capability in decoding the transmitted

signals to legitimate users. Differently, the second approach is a centralized one that

exploits the distinctive features of RISs to limit the performance leakage to the Eve.

Both approaches showed substantial gains in the provided secrecy capacities of the

system.

4. We analyzed the negative impact of limited capacity of wired-based fronthaul links

on the DL performance of CF mMIMO. Besides, we revealed that it is preferred to

operate the system in a distributed manner under low-capacity of fronthaul links.

Differently, the centralized system operation is the preferred system operation under

high-capacity fronthaul links.

5. We proposed a wireless-based fronthaul network that enables operating CF mMIMO

in a scalable manner. In this regard, we revealed that APs should be provided with

signal decoding capabilities to take advantage of the proposed wireless-based fron-

thaul operation. Furthermore, we have proposed a hybrid mmWave/microwave

fronthaul operation that can significantly boost the achievable DL rates of the sys-

tem compared to operating the fronthaul on the mmWave band or the microwave

band.
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8.2 Future Works

In what follows, we propose further research directions that empowers CF mMIMO system

with substantial gains to support the diverse applications of 5G and beyond networks.

Particularly, we firstly propose two more directions to attain further improvements in the

achievable data rates, namely mmWave-Based Access Communication and Rate-Splitting

Multiple Access (RSMA). Then, we propose vital directions that enables CF mMIMO to

embrace internet of things (IoT)-based applications.

mmWave-Based Access Communication: The possible marriage mmWave and

CF mMIMO should be thoroughly investigated for further improvements in the provided

data rates. In fact, operating the communication links between APs and users in mmWave

bands is still a premature subject that needs further investigations. For instance, wide-

band channel estimation techniques are required to enable the data transmissions over

the large amount of available bandwidth in mmWave bands. Moreover, as one of the

main impediments of wireless communications in high frequency bands is the lack of

LoS communication links, the ability of the CF mmWave massive mMIMO systems in

supporting realistic scenarios with moving objects where the probability of having LoS

links decreases should be thoroughly investigated. In this regard, relays/RISs may play

an important role to create LoS paths between APs and users.

Rate Splitting Multiple-Access: Compared to orthogonal multiple-access (OMA),

non-orthogonal multiple-access (NOMA), and SDMA, a more general, robust, and power-

ful DL transmission framework for multiple-antenna systems is the RSMA which embraces

both NOMA and SDMA [127,128]. In particular, RSMA relies on the rate splitting strat-

egy at the transmitter and successive interference cancellation (SIC) at the receiver to

flexibly manage the interference by allowing the interference to be partially decoded and

partially treated as noise. In doing so, the message intended for one user is split into a pri-

vate part and a common part that is drawn from a public codebook. The private messages

for different users are transmitted by means of ZF precoding using a fraction of the total

power while the common message is superimposed on top of the ZF-precoded private mes-

sages using the residual power. At the receiver side, the common message is decoded by

treating all the private messages as noise. After removing the decoded common message

from the received signal by SIC, each user decodes their own private messages. Several



143

works in the literature have adopted the RSMA transmission for co-located mMIMO sys-

tems to tackle the detrimental effects of the multiuser interference. Results revealed that

high potential of RSMA in achieving superior performance than other conventional trans-

mission techniques, especially at high signal-to-noise ratio regime [129]. Nevertheless, no

previous works have considered RSMA for DL transmission in the context of CF mMIMO

systems which in turn makes it an interesting direction for future works.

Supporting Massive Machine-Type Communication: One of the open issues

that still needs to be tackled is the presence of mMTC, i.e., IoT devices. Indeed, IoT

has recently become the key enabler for a wide range of emerging applications including

e-health and autonomous vehicles, to name a few [12]. The potential of CF mMIMO in

supporting massive IoT devices is still in its early stages where few studies only have ana-

lyzed the IoT-based CF mMIMO system performance ( [130–132] and references therein).

However, various impractical assumptions are considered in these studies. Particularly,

previous works considered small numbers of IoT devices which does not reflect the reality

of future networks where massive number of devices will exist. This in turn lessens the

potential of the proposed solutions in these works.

Co-existence of Human and Machine-Type Communications: In accordance

with the presence of massive IoT devices in 5G and beyond networks, one of the crucial

problems that needs further attention is the coexistence of MTC along with the conven-

tional human-type communication (HTC) [2]. However, previous works have not analyzed

the potential of CF mMIMO in supporting both communication types with their diverse

QoS requirements simultaneously. As such, we plan to provide a novel framework that

boosts the CF mMIMO capabilities in meeting the distinct needs of MTC and HTC simul-

taneously. More specifically, a framework that enables CF mMIMO systems to provide

HTC users with high data rates while supporting massive IoT devices with low-latency

reliable communication links. In this regard, we believe that power-domain NOMA will

play an important role to support both types of communications simultaneously. This

is thanks to the efficient use of resources by NOMA which in turn gives it the poten-

tial to support a larger number of communication links with good QoS compared to the

conventional orthogonal multiple access techniques.
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