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Abstract 
 

Reducing Context-Dependency in Ecology: Environmental Variation Leads to Predictable 

Patterns of Species Associations Across Local Communities 

Timothy Law 

 
Predicting how communities change in space and time requires an understanding of how 

mechanisms such as environmental filtering and biotic interactions shape distributions and 

abundances. However, ecological communities are often context dependent, so mechanisms 

that are important in certain environments may not be in others. To understand how context 

dependency affects the prediction of community structure, we asked: Can the environment 

predict the outcomes of community assembly? Using fish association networks estimated with 

Markov random fields for over 700 lakes in Ontario, Canada, we tested if species association 

patterns, representing potential community assembly mechanisms, varied as a function of the 

environment. We examined the effect of the environment at two scales: pairwise and community 

level, summarizing potential mechanisms between species and across whole communities. The 

environment was a strong predictor of community level species association patterns but not of 

pairwise patterns, suggesting that the cumulative outcome of mechanisms structuring 

communities can be explained by the environment. We then tested if community level patterns 

were associated with the uniqueness of a lake’s species composition. We found that as species 

association patterns became stronger, they lead to lakes with more common species 

compositions. Taken together, our results show that variation in the outcome of community 

assembly can be explained by the environment using community level patterns, offering a way 

for community ecologists to study context-dependency in community structure across differing 

environmental gradients and species compositions. 
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Introduction 

Unravelling the processes that assemble local ecological communities has long 

remained a central question in community ecology (Diamond 1975, Leibold et al. 2004). Much of 

the focus has centred around whether communities are assembled randomly or non-randomly 

(Connor and Simberloff 1979, Gotelli 2000, Chase and Myers 2011). Many of these studies are 

aimed at identifying the mechanisms underlying specific systems of interest (e.g., groups of 

communities within a landscape), such as competition, predator-prey dynamics and 

environmental selection (Gotelli and McCabe 2002, Sfenthourakis et al. 2006). However, the 

importance of a specific mechanism within the same taxa, landscape, or region varies frequently 

– often described as context-dependency (or contingency) where the effect of a mechanism 

driving species memberships in a community can change as a function of abiotic and biotic 

drivers (Chamberlain et al. 2014, see Leibold et al. 2021 and Catford et al. 2021 for 

discussions). Instead of focusing on identifying general mechanisms that structure specific 

communities, focusing on the categorization of the contexts that mechanisms are contingent on, 

can help us understand the “local” nature of community ecology (Simberloff 2004). As local 

communities are contingent on a combination of interacting factors that lead to a large but finite 

number of states, identifying and understanding different drivers, their interactions and how they 

modulate the strength of different mechanisms should improve our understanding of community 

assembly theory.  

 

A framework that could increase our ability towards generalization is the analysis of 

species co-occurrence patterns, where the quantification of the levels of aggregation, 

segregation, or randomness among species are used extensively to investigate community 

assembly mechanisms (See box 1 for details). There are at least two forms of important 

contingencies in community ecology.  One refers to the outcomes of different mechanisms 

underlying patterns of species associations in which similar species association patterns 

(positive or negative; herein denoted SAPs) can be attributed to environmental selection or 

competition, depending on the environment (Connor and Simberloff 1983, Peres-Neto et al. 

2001, Cadotte and Tucker 2017). Although the challenges of disentangling multiple mechanisms 

is frequently used as a criticism against describing community structure based on patters of co-

occurrence (i.e., inferring mechanisms from patterns; Freilich et al. 2018, Blanchet et al. 2020), 

the ability to determine how multiple factors interact to influence patterns of species 

associations may provide a useful generalization. It allows for these patterns to be contrasted 

within and across landscapes and/or taxa and can assist in uncovering general versus context-



2 
 

dependent predictions and patterns. For example, the emergence of a common set of predictors 

across multiple landscapes or taxa could be useful for generalization. The second form of 

context-dependency across landscapes that we bring to light here is that the strength of species 

associations may vary across environments (i.e., non-stationarity in species associations across 

environmental gradients).  Newer methods like Markov network models with covariates (e.g., 

environmental predictors) allow for modelling context-dependency in species associations as a 

function of environmental variation in space and time (Clark et al. 2018).  

 

Here, we build a quantitative framework to determine whether and how environmental 

variables and landscape properties explain local pairwise SAPs and community-level SAPs. To 

describe community-level SAPs, we propose the use of two statistical moments, mean and 

variance, to aggregate and quantify patterns across all species-pairs associations within single 

local communities.  Mean and variance can be contrasted across communities within the same 

region and across regions offering a way to understand how environmental and landscape 

features influence communities regardless of ecosystem and taxa. The ability to improve on 

generalization also contributes to uncovering the mechanisms underlying community assembly.  

For example; Do extreme environments lead to smaller variation in the strength of species 

associations found within local communities and do average environments lead to weaker 

average species associations but with large variance? That is, are strong positively and 

negatively associated species found within the same local community in average environments? 

As such, strong (negative or positive) and random SAPs can be used to quantitatively assess 

which models based in one landscape with a set of specific species can predict SAPs in other 

landscapes with similar environments but different species compositions (i.e., communities 

sharing no species in common can have similar SAPs). By using SAPs, we can compare 

communities not by their species compositions but by how they are structured. This increases 

our ability to generalize across communities composed of different taxa and across different 

environments.  Here, we modelled how environmental factors could predict (a) SAPs across all 

pairs, and (b) the mean and variance of SAPs across individual communities. Lastly, we 

assessed whether uniqueness (or commonness) in species compositions could predict our 

metrics of community structure (mean and variance) built from SAPs reflecting different 

community assembly mechanisms. This is relevant because it allows us to further determine the 

deterministic nature of species associations. One should expect that lakes composed of weaker 

(more random) SAPs, should result in more random combinations of species and thus be more 

uncommon than lakes composed of stronger species associations. 
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We used a comprehensive dataset of over 700 lakes with taxonomic information of 

entire fish communities, spread out over a large latitudinal gradient in Ontario, Canada. The 

discrete nature of lakes has made them important study systems for macroecologists looking at 

metacommunity patterns, community structure and ecosystem functioning (Magnuson et al. 

1998, Hortal et al. 2014). Well-defined dispersal barriers, discrete boundaries, and knowledge of 

colonization history (see Mandrak and Crossman 1992 and Mandrak 1995), help make it easier 

to define the context upon which community structure may depend (Olden et al. 2001, Peres-

Neto 2004). A variety of factors, both abiotic (e.g., pH, temperature) and biotic (e.g., 

competition, predation) structure fish communities (Jackson et al. 2001, Sharma et al. 2011, 

Giam and Olden 2016), making these communities good study systems for evaluating how 

environmental factors can drive many potential mechanisms. By identifying the environments 

where similar combinations of SAPs can be found, we reframe the environment as a property 

which can be used to predict species associations across communities regardless of 

composition.  

 
 
Methods 

Study system 

 
The fish community dataset comprising of 706 lakes, was obtained through the Ontario 

Broad-Scale Monitoring Program for Inland Lakes (BsM) (Sandstorm et al. 2013) conducted by 

the Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry 

(OMNRF). Lakes spanning a latitudinal and longitudinal gradient from 43.06 ºN – 54.52 ºN and -

95.06 ºE – -74.50 ºE were sampled once during the summer months (June to September) 

between 2008 and 2012, using a stratified-random, spatial sampling design (Lester et al. 2020) 

(Fig 1). Stratification levels were based on geographic area (Fisheries Management Zones), 

lake surface area and the presence of three recreationally important species: walleye (Sander 

vitreus), lake trout (Salvelinus namaycush) and brook trout (Salvelinus fontinalis) (Lester et al. 

2020). Sampling was standardized following Sandstorm et al. (2013). A combination of two 

mesh gill net types was used to sample lakes: a small mesh net, developed in Ontario 

(Sandstorm et al. 2013) and a large mesh net following the standards set by the American 

Fisheries Society for detecting angler harvested fishes (Bonar et al. 2009) (see Sandstrom et al. 

2013 for full mesh, gang, length, and height details). A spatially and depth stratified design was 
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used to place both net types and ensured that effort was evenly allocated across a lake in area 

and depth. Secchi depth, temperature and oxygen profiles of the lakes were also recorded. 

Water for chemical analysis was collected in the spring. Human activity on lakes was estimated 

using aerial counting of the number of boats (recreational vs angling), number of anglers in a 

boat, ice huts, and open ice fisherman. Together with environmental data from Environment 

Canada, a total of 89 environmental variables were recorded to describe the lakes (Table 1).  

 

Prior to use in our proposed analytical framework, environmental data were summarized 

into fewer variables using a probabilistic principal component analysis (PPCA) as implemented 

in the R package pcaMethods (Stacklies et al. 2007). PPCA uses the same concepts as a more 

traditional principal component analysis, but differs in the way it combines an expectation-

maximization (EM) algorithm with a probabilistic model to deal with missing data (Stacklies et al. 

2007). Across the environmental dataset, 6.17% contained missing values, spread over 80 of 

the 89 environmental variables. Cross validation was used to determine the estimation error and 

optimal number of axes for missing value estimation. Estimation error for variables with missing 

values was calculated using the normalized root mean square of prediction (NRMSEP). Briefly, 

NRMSEP is the square difference between real and estimated values for a variable, normalized 

by within variable variance (Stacklies et al. 2007). For variables with a high NRMSEP (> 0.8), 

prediction error is high, so missing values were simply estimated by the variable mean value.  

By using the mean value in these cases, lakes with missing values likely became more similar 

and, as such, less uninformative, making our models less predictable and more conservative in 

their results. The optimal number of axes for missing value estimation was selected by 

minimizing the average NRMSEP across all estimated environmental variables. The final PPCA 

model was fit using 40 axes, with missing values for 5 variables (sulphate percentile, winter 

fishing hut count, winter open ice fishing count, summer shore fishing count and conservation 

land status) estimated using their means. With these parameters, the first 12 axes explaining 

81% of the variation in the environmental dataset were retained. Prior to PPCA, variables were 

visually analyzed for normality. As distributions were found to be non-normal, variables were 

scaled and transformed systematically using the bestNormalize R package (Peterson 2018). 

Briefly, variables are transformed using a suite of included transformations, and the best 

transformation was selected based on the Pearson P statistic for Gaussianity (divided by its 

degrees of freedom). Variables with a value for the P statistic closer to 1 prior to transformation 

were not transformed (Table 1). 
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Estimating local species co-occurrence coefficients with Markov networks 

 
We used Markov (binary) network models with covariates to estimate species co-

occurrence coefficients for our fish communities. Markov models estimate the conditional 

relationships between species pairs (i.e., SAPs) while considering other covariates and 

represent these relationships as graphs. Here, species are represented by nodes and their 

associations are represented by edges. Co-occurrence strength is assigned to each edge to 

describe the strength and type of association (aggregated or segregated) between pairs of 

nodes. The absence of an edge signals an absence of a detected species pair association (i.e., 

species association is random - their association cannot be predicted by environmental features 

or by their co-distribution). We implemented Markov network models with covariates as 

described by Clark et al. (2018 and references within). This framework describes the increase in 

log-odds of observing species j given the presence-absence of species k and covariate x, which 

can be modelled as a logistic function: 

 

 

log [
𝑃(𝑦𝑗 = 1 |𝑦\𝑗 , 𝑥)

1 − 𝑃(𝑦𝑗 = 1 |𝑦\𝑗 , 𝑥)
] = 𝛼𝑗0 + 𝛽𝑗𝑥 + ∑ (𝛼𝑗𝑘 + 𝛽𝑗𝑘𝑥)𝑦𝑘

𝑘:𝑘≠𝑗

 

 

where yj is a vector of binary presence-absences for species j, and y\j the vectors of binary 

presence-absences for all other species. 𝛼𝑗0 is the species-level intercept and 𝛽𝑗𝑥 are the 

coefficients estimating the effects of environmental covariates on the occurrence probability of 

species j (i.e., purely abiotic component). 𝛼𝑗𝑘 represents the regression coefficient of species j 

on the kth species (i.e., the conditional relationship between species j and species k) and 𝛽𝑗𝑘 

coefficients estimate the effects of the (statistical) interaction between each environmental 

predictor and the kth species.  Combined, parameters 𝛼𝑗𝑘 and 𝛽𝑗𝑘𝑥 describe the biotic 

components represented as conditional relationships between species j and the kth species, as 

well as the effects of covariate x (environmental factors) on these relationships. If 𝛼𝑗𝑘 = 0, the 

probability of occurrence of species j and k are conditionally independent after controlling for 

other species and environmental covariates. If 𝛼𝑗𝑘 ≠ 0 but 𝛽𝑗𝑘𝑥 = 0, then the probability of 

occurrence of species j and the kth species are conditionally dependent but the strength of their 

dependence (𝛼𝑗𝑘) does not vary as a function of the environmental covariate 𝑥. Assume there 

are 20 species and 15 environmental predictors (covariates); then, the model for a single 
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species would contain one intercept 𝛼𝑗0, 15 𝛽𝑗 coefficients (one for each environmental 

covariate), 19 𝛼𝑗𝑘coefficients (species j on each kth species) and 19 × 15 𝛽𝑗𝑘𝑥 (statistical 

interactions between each species and each environmental covariate), adding to 320 predictors.    

To generate a more intuitive understanding of this Markov network model in estimating species 

co-occurrence coefficients, we created a few small, simulated examples (see Appendix I).   

 

 Model parameterization was estimated using linear logistic regression. Because the 

number of estimated coefficients grows quickly with the number of species and covariates, 

regularization was used to control for overfitting. Using LASSO regularization (Tibshirani 1996), 

model coefficients were forced to zero depending on the regularization parameter , adding 

sparsity while maintaining similar predictive power across possible combinations of predictors. 

10-fold cross validation was used to identify optimal  values. Note that conditional relationships 

in Markov models are symmetric (undirected); that is the conditional relationship of one species 

on another is the same in both directions. However, given the large number of species and/or 

covariates in our data, a common method for avoiding exponentially growing parameter 

estimation is to estimate parameters from a series of single-species regressions (as above) and 

combining them in a common matrix to approximate the Markov network (graph) (Cheng et al. 

2014). Consequentially, higher order interactions (e.g., three-way interactions such as 

interactions between two or more species, and interactions between two species and 

environmental predictors) are not considered. Additionally, because parameters were estimated 

from separate regressions (i.e., one regression for each species), symmetry in model 

coefficients is not guaranteed between any given two species. Here, conditional relationships 

were made symmetric between any two given species (say j and k) by retaining coefficients with 

the larger absolute value between the separate logistic regressions having species j and k as 

responses, respectively (Meinshausen and Bühlmann 2006). Retaining the larger absolute 

value instead of the smallest makes estimates less conservative (less zero coefficients; Cheng 

et al. 2014).  It is worth mentioning here some of the advantages of a Markov (binary) random 

field approach over the now common joint species distribution model (JSDM). First, it is 

technically more challenging to consider variation that is non-stationarity in space and/or time 

between pairs of species (i.e., 𝛽𝑗𝑘𝑥 coefficients).  Second, because JSDMs use selected axes 

from latent models (e.g., ordination) of residual variation, it is not clear how comparable pairwise 

coefficients of species associations are (Tikhonov et al. 2017). One of the associate challenges 

is estimating the appropriate degrees of freedoms for penalizing parameters to make species 

pairs coefficients comparable among each other. Finally, in a review of different methods to 
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estimate species-pair coefficients by Popovic et al. (2019), Markov (binary) models was found to 

be very robust and overperform JSDMs.  

 

This modelling framework was carried out using the R package MRFCov (Clark et al. 

2018). Prior to model fitting, very common species (>95% prevalence) and rare species (<2.5% 

prevalence) were removed from the data as cross-validation typically results in large errors for 

species with a small and large prevalence. In total, 43 out of 87 observed species were 

considered in the final analyses. PPCA axes (12 in total explaining 81% of the environmental 

variation) calculated from the environmental variables (see above) were used as environmental 

covariates. Environmental covariates were standardized (mean of zero and standard deviation 

of one). To account for model uncertainty in the process of fitting the Markov model (i.e., 

estimation of coefficients and LASSO regularization), we randomly subsampled the data 

(without replacement) with a proportion of 90% and refitted the model as described earlier.  This 

was repeated 1000 times and the final estimated parameters in the model are the mean values 

taken from all the bootstrapped models. If a particular predictor (environmental factor or 

species) was not included in the selection process via LASSO for a particular subsample, then 

the coefficient for that predictor was set to zero for that subsample when averaging over across 

all subsamples. To test the final (averaged over 1000 subsamples) global model performance 

(i.e., all single species models), a 10-fold cross validation, repeated 500 times, of the global 

model with and without environmental covariates was performed. This allowed us to estimate 

model performance and whether environmental covariates improved the fit of the model over 

the distribution of all species used to estimate conditional relationship between species pairs.   

 

 An advantage of estimating species associations using Markov models with covariates, 

is that we can use the global model to estimate SAPs for each community (lake) separately. The 

estimated parameters from the global model, describes species co-occurrence coefficients for 

average environmental conditions, and relationships between species co-occurrence 

coefficients and environmental covariates (factors; Fig. 2). For a given pair of species (j and k), 

their association is estimated as the log-odds of observing species j given species k and the 

(statistical) interactions between species k and all environmental covariates and the intercept, 

after controlling for all environmental predictors, all other species not in that pair (i.e., species ≠ 

j and k) and their interactions of these other species with the environmental covariates; and 

vice-versa (i.e., a model of j on k and k on j). By simply entering the observed values of the 

environmental covariates and species in a particular lake, SAPs can be predicted for observed 
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species pairs in that lake. As such, we were able to estimate SAPs for every observed species 

pairs across all lakes. To better understand the way in which species associations were 

estimated, consider three species j, k and i, and environmental covariates 𝑥1 and 𝑥2. To 

estimate the association between j and k, we start by estimating these two logistic regression 

models: 

 

log [
𝑃(𝑦𝑗 = 1 |𝑦\𝑗 , 𝑥)

1 − 𝑃(𝑦𝑗 = 1 |𝑦\𝑗 , 𝑥)
] = 𝛼𝑗0 + 𝛽𝑗 𝑥1 + 𝛽𝑗𝑥2 + 𝛼𝑗𝑘  + 𝛼𝑗𝑖 + 𝛽𝑗𝑘𝑥1𝑦𝑘 + 𝛽𝑗𝑘𝑥2𝑦𝑘 + 𝛽𝑗𝑖𝑥1𝑦𝑖 + 𝛽𝑗𝑖𝑥2𝑦𝑖 

 

log [
𝑃(𝑦𝑘 = 1 |𝑦\𝑘 , 𝑥)

1 − 𝑃(𝑦𝑘 = 1 |𝑦\𝑘 , 𝑥)
] = 𝛼𝑘0 + 𝛽𝑘𝑥1 + 𝛽𝑘𝑥2 + 𝛼𝑘𝑗  + 𝛼𝑘𝑖 + 𝛽𝑘𝑗𝑥1𝑦𝑗 + 𝛽𝑘𝑗𝑥2𝑦𝑗 + 𝛽𝑘𝑖𝑥1𝑦𝑖 + 𝛽𝑘𝑖𝑥2𝑦𝑖 

 

The conditional random fields (CRF) predicted species associations between species j 

and k for a given local community c is then: 

𝐶𝑅𝐹𝑗𝑘 =  max (𝑎𝑏𝑠(𝛼𝑗𝑘 , 𝛼𝑘𝑗)) × 𝑥𝑐1 + max (𝑎𝑏𝑠(𝛽𝑗𝑘𝑥2𝑦𝑘 , 𝛽𝑘𝑗 𝑥2𝑦𝑗)) × 𝑥𝐶2 

where 𝑥𝐶1 and 𝑥𝑐2 are the values for environmental predictors 1 and 2, respectively, at the local 

community c. As already discussed, to assure symmetry, we pick the maximum absolute value 

between coefficients while maintaining its original sign (not shown directly in the equation for the 

sake of brevity).  Note that: a) 𝛼𝑘𝑗  (or 𝛼𝑗𝑘) are not multiplied by local conditions as it contributes 

to the overall expected changes in log of odds of observing species j and k together; b) the 

coefficients used to estimate 𝐶𝑅𝐹𝑗𝑘 are conditional on all other species (except the two species 

of interest), environmental covariates and statistical interactions between all other species 

(except the two species of interest) and environmental covariates.  𝐶𝑅𝐹𝑗𝑘 can be then 

interpreted as an estimate of the (additional) contribution to the expected changes in log of odds 

of observing species j and k together given their overall spatial association across all 

communities (𝛼𝑘𝑗  or 𝛼𝑗𝑘) plus the association given the local environmental conditions.  As such, 

𝐶𝑅𝐹𝑗𝑘 is composed of a global species associations component (i.e., 𝛼 coefficients) and a local 

component (𝛽 coefficients). If the contribution of the local components is high over the global, 

this suggests that the association between the two species in question (j and k) changes as a 

function of the environment. Although we did not explore this venue for the sake of brevity, non-

stationarity in species associations across environmental gradients is a form of context-

dependence. Thus, dividing the local over the global contribution could serve as a potential 
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metric of context-dependency and an indicator of how “generalizable” a model is to other 

systems.   

 

Linking species level (pairwise) patterns of species associations to environmental and historical 
factors 
 

We used gradient boosted regression trees (see Hastie et al. 2009 for an introduction) to 

estimate the relationship between the environment and SAPs across all lakes. Gradient boosted 

regression trees were chosen over more traditional linear models for their relaxation of 

assumptions and other benefits – they can handle different types of predictor variables, require 

no prior data transformation or removal of outliers, and can fit complex non-linear relationships 

and automatically consider complex and multiple interaction effects (Elith et al. 2008). Gradient 

boosted regression tree models improve on the poor predictive performance of individual 

regression trees by fitting multiple regression trees sequentially, minimizing error using a loss 

function (Elith et al. 2008). Here, we used gradient boosted regression trees as implemented in 

the R package GBM (Greenwell et al. 2019) and used the R package caret (Kuhn 2008) to 

optimize regression tree parameters. We varied the number of trees to fit, shrinkage (i.e., 

learning rate), interaction depth and the minimum number of observations in each terminal 

node. Because our goal was to assess whether there was a relationship between environment 

factors and all conditional relationships, we optimized models for the highest model R2 value. All 

environmental variables were used, and missing values were replaced with the mean of the 

respective variable. Unlike our Markov models that used PPCA to represent environmental 

variation and reduce model parameters, with the tree regressions we aimed to more directly 

interpret the environmental predictors and used all the environmental variables instead of PPCA 

axes.   

 

Linking community-level patterns of species associations to environmental and historical factors 

 

To investigate whether and how the measured environmental factors predict community-

level patterns of SAPs, we first calculated the mean and spread (standard deviation SD) of the 

conditional relationships for observed species of each lake estimated using the Markov network 

models (i.e., the mean or SD of estimated SAPs for each lake) (Fig. 2). Communities with 

positive or negative means are comprised, respectively, mostly of species pairs that aggregate 

or segregate in a specific environment. Communities with means close to zero are comprised 
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mostly of either species pairs that have no clear association patterns in a specific environment, 

or by a mixture of positive and negative species pairs. To differentiate communities wherein 

associations are not observed from communities with a mix of positive and negative 

associations, we relied on the SD of association patterns around the mean. A community with a 

mean close to zero and a small SD is comprised of pairs with no association patterns. 

Conversely, a large SD would suggest that a wide range of positive and negative species 

associations exists, and that the community was not comprised mostly of species pairs with no 

association patterns.  

 

Because the mean and standard deviation (SD) can be biased by the number of species 

in a lake (e.g., lakes with large number of species will tend to converge to similar mean values 

and low standard deviations), a null model was used to standardize means and SDs so that 

they could be contrasted across lakes (Ulrich et al. 2017, 2018) (Fig. 2). To generate an 

expected outcome based on species richness, the species matrix was randomized, keeping 

species and lake totals fixed using the curveball algorithm (Strona et al. 2014). Keeping species 

and lake totals fixed during randomization has been demonstrated to have appropriate Type I 

error rates, and is a preferred algorithm for data that are island-like (ex. lakes), where species-

area effects are strong (Gotelli 2000). After each randomization, the global species co-

occurrence model with environmental covariates was re-estimated. We then used the estimated 

parameters from the global model to predict conditional relationships for species pairs per lake, 

allowing us to then calculate an adjusted (by number of species) expected mean and SD of 

conditional relationships for each lake. Repeating this procedure 999 times, we generated a null 

distribution of means and SDs for each lake. As in traditional permutation procedures, the 

observed value was made part of the null distribution to estimate null means and SDs.  For lake 

j, the observed mean and SD was scaled by estimating a standardized effect size using the null 

distribution of the mean and SD generated for lake j: 

 

𝑆𝐸𝑆𝑗.𝑚𝑒𝑎𝑛 =  
𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ 𝑜𝑏𝑠− 𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ 𝑛𝑢𝑙𝑙

𝑆𝐷𝑚𝑒𝑎𝑛.𝑛𝑢𝑙𝑙
  𝑆𝐸𝑆𝑗.𝑆𝐷 =  

𝑆𝐷̅̅ ̅̅ 𝑜𝑏𝑠− 𝑆𝐷̅̅ ̅̅ 𝑛𝑢𝑙𝑙

𝑆𝐷𝑆𝐷.𝑛𝑢𝑙𝑙
 

 

where mean and SD are the metrics of interest, and SDmean.null and SDSD.null are standard 

deviations of each metrics’ null distribution for lake j, respectively. By comparing the distribution 

of observed values against the distribution of expected values under the null model, we 

evaluated whether observed values were similar to those generated by mechanisms structuring 

random communities in respect to the chosen permutation algorithm. With the fixed-fixed 
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algorithm, communities are the result of the random colonization of sites with respect to species. 

Thus, standardized effect sizes that were close to 0 represented observed communities that 

have community structure expected by communities that were randomly colonized by species. 

Because the size of species pools can influence the ability to separate the effect of evolutionary 

and historic processes, analysing standardized effects instead of observed ones should 

increase our ability to describe more contemporary (ecological) processes on SAPs among 

species (Carstensen et al. 2013). In our study system, historical processes have shaped the 

distribution of fishes on the landscape, likely influencing the formation of species pools and 

subsequently local communities (Mandrak and Crossman 1992, Mandrak 1995, Henriques-Silva 

et al. 2013). To determine whether these historical factors may have influenced SAPs, we 

repeated the null model analysis framework, constraining the shuffling processes so that row 

and column totals within distinct biogeographic areas remained (again) fixed. In our study, we 

used primary watersheds as biogeographic areas, as they are representative of past dispersal 

and historical processes (Mandrak 1995, Olden et al. 2001).  

 

To estimate the relationship between the community summaries (i.e., standardized 

community means and SDs) and the environment, a linear multiple regression model was used. 

All environmental variables were used, and missing values were replaced with the mean of the 

respective variable. Environmental variables were all scaled (mean of 0 and SD of 1) prior to 

analysis. Because of the large number of variables, LASSO regularization was used and a 5-

fold cross validation, repeated 100 times, was used to identify optimal  values for determining 

the shrinkage penalty.   

 

Using community-level patterns of species associations to predict rare and common species 
compositions 
 

Lastly, we assessed whether uniqueness (or commonness) in species compositions 

could predict mean and variance of species associations. This is relevant because it allows us 

further determining the deterministic nature of species associations. We estimated how unique 

or common the composition of a particular lake found at one lake was compared to all others by 

its Local Contribution to Beta Diversity (LCBD; Legendre and De Cáceres 2013). LCBD can also 

be calculated (interpreted) as the mean distance between a community and all other 

communities. The LCBD for lake l, given all lakes s and species p, can be estimated as:   

𝐿𝐶𝐵𝐷𝑙 =
1

𝑠
 ∑ 𝐷𝑘

𝑠
𝑘=1   𝐷𝑘 =  √∑ (𝑥𝑙𝑗  −  𝑥𝑘𝑗)2𝑝

𝑗=1  
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where Dk is the Euclidean distance between lake l and lake k. LCBD for lake l is then, the mean 

Euclidean distance between itself and all other communities, where communities with identical 

compositions have a distance equal to zero. Because the Euclidean distance is not an 

appropriate dissimilarity metric for comparing differences in species compositions among 

communities (Legendre and Legendre 1998, Legendre and Gallagher 2001), we transformed 

the species matrix using a Hellinger transformation prior to calculating LCBD. Lakes with high 

values of LCBD have more unique combinations of species than lakes with lower values. In the 

unrealistic case where all communities have identical compositions, LCBD would be 0 for all 

communities. Similarly, to the mean and SD of the conditional relationships of each lake, LCBD 

values can covary with species richness (Ulrich et al. 2017, 2018). As such, a null model was 

used to standardize LCBD values. We followed the same procedure as described for 

standardizing the mean and SD of conditional relationships for lakes, except with LCBD as the 

metric of interest. As before, the species matrix was randomized using the curveball algorithm 

(Strona et al. 2014) where after each randomization, LCBD values for each lake were 

estimated. The randomization process was repeated 999 times to generate a null distribution of 

LCBD values for each lake. Again, the observed value was made part of the null distribution to 

estimate the null mean and SD LCBD values.  For lake j, the observed LCBD was scaled by 

calculating the standardized effect size using the null distribution of LCBD value lake j; 

 

𝑆𝐸𝑆𝑗.𝐿𝐶𝐵𝐷 =  
𝐿𝐶𝐵𝐷̅̅ ̅̅ ̅̅ ̅̅

𝑜𝑏𝑠.𝑗 −  𝐿𝐶𝐵𝐷̅̅ ̅̅ ̅̅ ̅̅
𝑛𝑢𝑙𝑙.𝑗

𝑆𝐷𝐿𝐶𝐵𝐷.𝑛𝑢𝑙𝑙.𝑗
 

where LCBD is the metric of interest and SDLCBD is the standard deviation of the null distribution 

for lake j. LCBD values generated with the null model represent communities where lakes are 

randomly colonized by species. If a lake has a standardized effect size of 0, the lake has beta 

diversity patterns similar to a lake that was colonized randomly. Non-zero standardized effect 

sizes represent lakes that have beta diversity patterns that are not produced through random 

colonization, with positive and negative effect sizes representing lakes that are more or less 

unique than expected under our null expectations, respectively. Like for the standardized effect 

size of the community mean and SD, we repeated the null model analysis framework, 

constraining the shuffling processes within primary watersheds to determine the influences of 

historical factors on the distribution of fishes across the landscape. To determine whether our 

metrics of community structure (the standardized community means and SDs) predicts spatial 

patterns of beta diversity, we estimated the relationship between the standardized LCBD, and 
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the standardized community means and SDs with a linear model. All variables were 

standardized prior to analysis. 

 

 
Results 

Global Markov network for predicting species associations 

Model performance of the estimated network model in predicting species associations 

evaluated using cross-validation resulted in a mean total prediction accuracy of 89.5% across all 

species pairs across all lakes. Comparing the mean total prediction accuracy of the models with 

and without environmental covariates, we found little evidence to support differences in 

prediction accuracy between the two models (Appendix II). This indicates that species have 

strong patterns of association; the presence or absence of a species is just as good a predictor 

as environmental features. Note, though, that the model with environmental covariates had 

lower sensitivity (i.e., poorer at predicting presences) but higher specificity (i.e., better at 

predicting absences) than the model without covariates. In other words, the model with 

covariates did not improve total prediction accuracy but was more precise at predicting 

presences. The global Markov network with environmental covariates was then used to estimate 

local species associations (as described in section Linking species level (pairwise) patterns of 

species associations to environmental and historical factors) for each of the 706 lakes. Because 

rare and very common species were removed, nine lakes had no species pairs or just one and 

were removed, resulting in a total of 697 lakes with predicted SAPs.  

 

Predicting variation in species-pairs associations across lakes 

Overall, the boosted gradient regression trees indicated that the environment was a poor 

predictor of variation in species-pairs associations across lakes. Across all combinations of 

parameters, R2 was low (Appendix III). The final selected model had an R2 of 0.0395. Out of the 

89 environmental predictors, 77 had a non-zero influence, with the relative importance of 

environmental predictors quickly decreasing after the first three variables (mean lake depth, 

dissolved organic carbon and maximum lake depth) (Appendix III).  
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Predicting variation in community-level patterns of species associations 

While predicting variation in species-pairs associations across lakes was challenging 

(see above), predicting community summaries based on species associations generated very 

strong predictive models. By showing that lakes with similar environments select for similar 

SAPs within communities, our results support the idea that SAPs are context dependent. There 

was a strong relationship between the environment and SESmean and SESSD (Table 2). The 

strength of the relationship between SESmean and the environment were similar regardless of the 

null model used to estimate SESmean. However, a stronger relationship was detected when 

SESSD values were estimated using the constrained null model (species shuffling within primary 

watersheds) than with the unconstrained null model (species shuffling across all lakes). Thus, 

accounting for historical processes through the null model analyses increased the ability to 

detect relationships between the environment and the variance of SAPs across communities. As 

such, we only report here the results for values estimated using the constrained null model (see 

Appendix IV for results using the unconstrained null model). The strongest predictors of SESmean 

were climate variables (Fig. 3). SESmean increased with the number of ice-free days and 

decreased with maximum surface temperature and the proportion of days that were cold during 

ice free days. Stronger species associations on average were more likely to be found in lakes 

with longer and warmer ice-free periods but with cooler maximum temperatures. Climate 

variables were also strong predictors of SESSD (Fig. 4). SESSD decreased with the date of spring 

and increased with the amount of solar radiation received during cold dates, and the number of 

ice-free days. Lakes with more variation in species associations were more likely to be those 

where spring arrives earlier and the ice-free period is longer, and when more radiation is 

received on cold days.  

 

We found a strong positive linear relationship between the SESSD and SESmean (R2= 

0.443; Fig. 5). Lakes with stronger species associations on average, have more variation in their 

SAPs. The residuals from this model can also be useful for exploring further patterns of context 

dependency. Residuals represent lakes that have more (positive residuals) or less variance 

(negative residuals) in species associations than one would expect given the average strength 

of species associations in a lake. Using a linear model with LASSO, we found a modest 

relationship between the residual variation and the environment (R2= 0.338). Although this could 

have been done in a single model with SESSD as a predictor of SESmean, and vice-versa, we 

decided to do it in this way to improve on the narrative. Given that we have a high number of 

degrees of freedom, not penalizing by SESSD on SESmean (or vice versa) does not affect 
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estimates.  Like with SESmean and SESSD, climate variables were important, with a negative 

relationship between the residuals and maximum monthly radiation and a positive relationship 

with minimum monthly radiation (Fig. 6). However, mean lake depth was also a strong predictor 

and was negatively correlated with the residuals. Taken together, an increase in minimum 

monthly radiation and mean lake depth, but a decrease in maximum monthly radiation results in 

communities with more variation in SAPs than one would expect given the average strength of 

SAPs in a community. 

 

 Given how important climate was for predicting SESSD, SESmean and their mutual 

residuals, we tested if the predictive performance of these models could be equally or better 

achieved by using a simpler predictor. For example, latitude may serve as a proxy of 

environmental variation in a system where latitudinal variation in climate is very strong. We fitted 

the same models again, with the addition of latitude and longitude as predictors and used 

variation partitioning to assess the proportion of variation explained by just geographic location 

and what proportion is shared by geographic location and the environment. Overall, geographic 

location did not improve the model as it explained the same variation that was captured by the 

environmental variables (Appendix V). This suggests that we did not miss any potentially 

relevant environmental predictor that varies across this broad environmental gradient (at least 

latitudinally).   

 

Predicting rare versus common species compositions with community-level patterns of species 
associations 

 

We found a decrease in SESLCBD with increasing SESmean and SESSD, however the 

relationship was stronger with SESmean than with SESSD (Table 3). Communities with more 

varied and stronger SAPs were less likely to be more unique in their combination of species. 

Contrasting the linear models built using values from the unconstrained and constrained null 

models, our results show some evidence of how considering historical effects may influence the 

predictability of beta-diversity patterns. Models performed worse when using SESLCBD, SESmean 

and SESSD values from the constrained null model (Table 3). The difference was the greatest 

when using SESSD values as a predictor, where SESSD values calculated from the constrained 

null model explained little of the variation in beta-diversity. By constraining species-shuffling 

within watersheds, we controlled for the effect of species that were unable to disperse into the 
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watershed. That is, we evaluated the influence of using species pools as shaped by historical 

dispersal patterns on predicting the relationship between community-level SAPs and LCBD.  

 
 
Discussion 

Our main goals were to determine if the environment could predict SAPs over a large 

environmental gradient; and outline a quantitative framework to do so. Our study system 

contains a wide combination of species association patterns and environments and our results 

show that communities in similar environments have similar SAPs. Our results contribute to 

growing evidence that the outcome of different processes (i.e., species interactions, 

environmental selection) is context dependent (Chamberlain et al. 2014, Bar-Massada and 

Belmaker 2017, MacDougall et al. 2018) by demonstrating that the environment can determine 

the expected range of results of community assembly, across a range of species compositions. 

We show that the ability to detect context-dependency is dependent on the scale of observation, 

with a stronger relationship with the environment detected at the community-scale than at the 

pairwise-scale. Climate variables were the strongest predictors, with lakes having colder winters 

exhibiting patterns more similar to those expected if communities were assembled randomly. 

Community-level species patterns can change across environmental gradients because of (1) 

the environment selecting for species pairs with different competitive abilities and/or (2) an 

interaction between the environment and the relative importance or outcome of deterministic 

and stochastic mechanisms (see below).  

 

Environmental conditions can select for species that can colonize a site, altering the 

types of potential interactions (i.e. competition) (Kelt et al. 1995, Belyea and Lancaster 1999). 

While environmental selection is generally considered a deterministic process, random 

community-level SAPs within a given environment can arise if the environment selects for 

species with low competitive ability, increasing the importance of other processes such as 

dispersal (Chase 2007, Lepori and Malmqvist 2009). For example, harsh winter conditions can 

select for communities comprised of species with wider environmental tolerances (Magnuson et 

al. 1998). According to the competition-colonization hypothesis, species that can colonize a 

wider variety of sites are predicted to have less competitive ability (Skellam 1951, Tilman 1994). 

As such, it is possible that in these more extreme lakes, communities are comprised of species 

that are less likely to compete resulting in more random communities, assuming the absence of 

other deterministic mechanisms. This is exemplified with the better performing constrained null 
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model, where species pools are defined for each watershed so that species in southern 

watersheds cannot appear in the north where the environment is generally more extreme. 

 

Alternatively, instead of the environment selecting for species with strong or weak 

competitive abilities, the environment can alter the outcome or importance of mechanisms like 

competition and predation, leading to different patterns in different contexts. Biotic interactions 

can be context-dependent, so that the outcome of them can change depending on the 

environment (Chamberlain et al. 2014). For example, variables like water temperature can alter 

life history traits such as growth and prey capture rate, determining when species may be 

excluded due to predation (Hein et al. 2013). Moreover, other variables like lake size can 

determine the amount of refuge from predation, increasing or decreasing the impact of 

mechanisms like predation on structuring a lake (Post et al. 2000, Jackson et al. 2001, 

MacDougall et al. 2018). Our results are consistent with these trends where smaller lakes are 

more structured in the variation of SAPs than for larger lakes.  

 

 However, it can also be argued that historical dispersal patterns from freshwater refugia 

produce predictable SAPs. Species pools in this area are shaped by environmental tolerances 

and dispersal capacity of species (Mandrak and Crossman 1992, Mandrak 1995). Predictable 

patterns can be driven by interactions between species pools and community assembly history 

(Fukami 2004). Indeed, our models generally performed better when watersheds were 

considered (via null model constrains; see also Peres-Neto et al. 2001), reflecting the influence 

of species pools in generating predictable SAPs. However, SAPs were still predictable even 

when watersheds were not considered. This is likely due to the cumulative effect of both 

historical and contemporary processes on structuring fishes in this region and the random 

stratified design of the dataset. While dispersal post-deglaciation may have also selected for 

species following the competition-colonization hypothesis, human mediated dispersal in our 

study area is strong, introducing novel fish to watersheds and homogenizing species pools 

(Cazelles et al. 2019). Additionally, sampling of lakes in the dataset are stratified using fish 

management zones, lake size and recreationally important fishes (Walleye, Lake Trout and 

Brook Trout) helping to control for effects between watersheds (Lester et al. 2020).  

 

Summarizing community-level SAPs using the mean and standard deviation was not just 

powerful for detecting context dependency but also for understanding the deterministic nature of 

these communities. For more unique communities, SAPs on average were more like those 
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observed in randomly assembled communities. A likely explanation is that stochasticity in 

community assembly can lead to more unique communities. Multiple stable states can arise in 

randomly assembled communities through the priority effect if environments are colonized 

differentially (Belyea and Lancaster 1999, Chase 2003, Fukami 2015). Common communities 

had SAPs on average more different than those observed in randomly assembled communities, 

suggesting that more deterministic processes may be responsible for more common 

communities (see also Arranz et al. 2022). However, these communities also had more variation 

in SAPs. This suggests that these communities are not only driven more deterministic but may 

also have a greater variety of potential processes underlying them. By considering not only just 

the mean of a community which can show the relative importance of stochastic and 

deterministic processes in structuring a community, consideration of the variance can also 

reveal potential variation in processes structuring a community. A step forward would be to 

determine whether the sources of greater variance in SAPs are due to a greater contribution of 

the non-stationarity component in species associations across environmental gradients (i.e., 

species associations that change as a function of the environment; measure by the influence of 

the statistical interaction between species and their environments).  

 

 Our results show that relationships with the environment are also dependent on scale. 

When using just pairwise SAPs, as opposed to community-level SAPs, we were only able to find 

a weak relationship with the environment. The weaker relationship does not necessarily mean 

that pairwise patterns lack context dependency. Instead, the mixing of opposite pairwise 

patterns within the same lake could blur the signal of the environment on SAPs. For systems 

like fish communities where a variety of mechanisms structure communities, it is not uncommon 

to find both aggregated and segregated patterns in the same environment (Giam and Olden 

2016, McGarvey and Veech 2018, Cordero and Jackson 2019). Furthermore, difficulty in finding 

a common relationship between pairwise SAPs and the environment can be further exacerbated 

by the differential sensitivity of different types of biotic interactions and the environment 

(Chamberlain et al. 2014). 

 

Instead of taking a species approach to pairwise patterns, analyzing the pairwise 

association patterns of traits may better reveal context-dependency in association patterns. 

Traits which can be a proxy for different interactions can be used to disentangle opposite 

patterns (Peres-Neto 2004). Alternatively, the SAPs themselves can be used to reveal traits 

about fishes. Grouping pairs that maximize the relationship with the environment can be used to 
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explore groups of species with common and context-dependent relationships with the 

environment (see Borthagaray et al. 2014). While communities may be structured by 

combinations of processes that have outcomes which change predictability with the 

environment, clearly the analysis of context-dependency using pairwise patterns requires more 

consideration, necessitating the consideration of possible mechanisms and interactions. 

 

Our study offers a different perspective for addressing context dependency in community 

ecology. Isolating the effects of the environment on specific processes can lead to misleading 

predictions if interacting processes lead to non-linear outcomes, resulting in unexpected 

conclusions (Kolasa et al. 2021). This extrapolation problem results in the frequent use of 

context-dependency as an explanation for differences between study systems (Catford et al. 

2022). By focusing on the observed patterns instead of the mechanisms, we were able to 

describe the variation in the outcomes of community assembly across a large environmental 

gradient. Borrowing from evolutionary ecology, we can describe this as the “reaction norm”, 

where a range of phenotypic changes (or in our case, SAPs) can be observed for a specific 

environmental variable (Sultan and Stearns 2005). This type of thinking within community 

ecology is not new. For example, the environment has been used to categorize lake 

communities into turbid and clear water states, with an expected range of communities for each 

site (Carpenter 2003). Our results suggest the same can be done with community-assembly. 

While our methods were unable to determine the exact importance of each community 

assembly mechanisms for creating each observed pattern, we were still able to describe a 

common relationship with the environment and the resulting SAPs across all communities.  

 
 
Conclusion 

We show that context-dependency can be explained statistically by studying how SAPs 

change across large environmental gradients. By summarizing SAPs at the community level, we 

described a framework where communities – regardless of species compositions – can be 

compared across environments. While our framework does not necessarily provide a 

mechanistic understanding of context-dependency, we showed that our metric can predict 

patterns in diversity across the landscape. We argue that variation in SAPs across 

environments can be better understood by using the reaction norm as a framework for 

reconciling differences in outcomes across study systems. By framing SAPs as a trait, a range 

of expected outcomes can be described for different environments.  
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For study systems such as lake fish communities where the role of top-down and 

bottom-up processes can be dependent on the environment (MacDougall et al. 2018) and are 

facing an increasing number of environmental stressors (Comte et al. 2013, Hansen et al. 2017, 

Cazelles et al. 2019), our approach can be important for studying how communities respond to 

changing conditions. Our consideration of the environment and the relationship with community 

assembly processes offers another perspective on how to reconcile the problem of context-

dependency, using existing tools in community ecology like SAPs.  
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Tables and Figures 

 
Figure 1. Locations of the 706 in-land lakes surveyed by the Ontario Ministry of Natural 

Resources and forestry that consisted of our study system. Surveyed lakes are all located in 

Ontario, Canada. 
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Figure 2. Procedure used to calculate species association networks for each lake and community-level metrics of community 

structure. A matrix (a) containing the presence-absence of species and associated environmental variables for each lake was used to 

calculate a global model of SAPs (b) using Markov networks with covariates, summarizing SAPs between species across all lakes 

and how they change across different environments. Local co-occurrence networks for each lake were then extracted from the global 

model by inputting local species presence-absence and environmental data (c). The process was then repeated with the presence-

absence of species shuffled, resulting in one observed association network and 999 “null” networks for each lake (d1). Observed and 
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null networks were then summarized by calculating the mean and standard deviation of observed SAPs (d2). The difference between 

the observed metric and the null expectation was then calculated using a standardized effect size (d3).
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Figure 3. Estimated strength of environmental predictors of mean lake species association 

patterns (SAPs) in freshwater fishes from 706 freshwater fish communities in Ontario, Canada. 

Mean lake species association patterns were estimated using a standardized effect size by 

comparing mean SAPs in each observed lakes to the respective mean SAPs of each lake 

estimated by shuffling species within primary watersheds. Regression coefficients were then 

estimated using a linear model, with all environmental variables used as a predictor. Because of 

the large number of environmental variables used, LASSO regularization was used to add 

sparsity, forcing some coefficients to zero while maintaining predictive power and reducing 

multicollinearity.  
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Figure 4. Estimated strength of environmental predictors of variance in lake species association 

patterns (SAPs) in freshwater fishes from 706 freshwater fish communities in Ontario, Canada. 

Variance in lake species association patterns was estimated using a standardized effect size by 

comparing the standard deviation (SD) of SAPs in each observed lakes to the respective SD of 

SAPs of each lake estimated by shuffling species within primary watersheds. Regression 

coefficients were then estimated using a linear model, with all environmental variables used as 

a predictor. Because of the large number of environmental variables used, LASSO 

regularization was used to add sparsity, forcing some coefficients to zero while maintaining 

predictive power and reducing multicollinearity. 
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Figure 5. Relationship between the variance in lake species association patterns (SAPs) and 

mean lake species association patterns from 706 freshwater fish communities in Ontario, 

Canada. The variance and mean of lake species association patterns were estimated using a 

standardized effect size by comparing the standard deviation (SD) and mean SAPs in each 

observed lake to the respective mean and SD of SAPs of each lake estimated by shuffling 

species within primary watersheds. 
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Figure 6. Estimated strength of environmental predictors for the residuals of the relationship 

between the variance and mean in lake species association patterns (SAPs) in freshwater 

fishes from 706 freshwater fish communities in Ontario, Canada. The variance and mean of lake 

species association patterns were estimated using a standardized effect size by comparing the 

standard deviation (SD) and mean SAPs in each observed lake to the respective mean and SD 

of SAPs of each lake estimated by shuffling species within primary watersheds. Regression 

coefficients were then estimated using a linear model, with all environmental variables used as 

a predictor. Because of the large number of environmental variables used, LASSO 

regularization was used to add sparsity, forcing some coefficients to zero while maintaining 

predictive power and reducing multicollinearity. 
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Table 1. Environmental variables used to fit models for estimating and predicting species 

association patterns (SAPs) in freshwater fishes from 706 freshwater fish communities in 

Ontario, Canada. Environmental variables (n = 89) were recorded and derived by the Ontario 

Ministry of Natural Resources and Forestry as part of the Broad Scale Management program. 

Variables were transformed before use in PPCA but not for other models.  

 
Variables Descriptor Transformation 
Waterbody_LID Lake identifier NA 
Area_km2 Surface area of the lake (km2) orderNorm 
Lak_age Time since glaciation of lake (Kyr from 

present) 
No transformation 

Depth_Max Maximum lake depth (m) yeojohnson 
Depth_Mn Mean lake depth (m) arcsinh_x 
Amonia.Amonium.mg.L. Ammonia/Ammonium (mg/L) orderNorm 
Amonia.Amonium.mg.L._p
ctl 

Percentile ammonia/ammonium orderNorm 

Volume Lake volume (area*max depth) log_x 
Altitud_m Lake altitude (m.a.s.l.) orderNorm 
Perim_km Lake perimeter, not including islands (km) orderNorm 
TDS Total dissolved solids (mg/L) orderNorm 
DIC..mg.L. Dissolved inorganic carbon (mg/L) boxcox 
PosRad Solar radiation >0C from 1981-2010 orderNorm 
FreezRad Solar radiation <0C from 1981-2010 orderNorm 
Summer.Vessels.Count Mean number of summer fishing vessels orderNorm 
Summer.Shore.Count Mean number of summer shore anglers No transformation 
Winter.huts.Counts Mean number of winter fishing huts sqrt_x 
Winter.Open.Ice.Counts Mean number of winter open-ice angers sqrt_x 
DIC..mg.L._pctl Percentile dissolved inorganic carbon orderNorm 
DOC..mg.L. Dissolved organic carbon (mg/L) sqrt_x 
DOC..mg.L._pctl Percentile dissolved organic carbon orderNorm 
PosDays Average number of days >0C from 1981-

2010 (days) 
orderNorm 

Aut0 Average date of first 0C autumn day from 
1981-2010 (days) 

orderNorm 

No..ice.free.days Estimated number of ice free (days) orderNorm 
MxWatTP Estimated maximum water temperature 

(deg C) 
orderNorm 

FreezDD Cumilative degree days <0C from 1981-
2010 (days) 

orderNorm 

PosPrecip Average rainfall from 1981-2010 orderNorm 
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PodDD Cumilative degree days >0C from 1981-
2010 

orderNorm 

DD5_8110 Growing degree days >5C for 1981-2010 orderNorm 
MxMonTP Maximum monthly air tempature from 1981-

2010 (deg C) 
orderNorm 

MxMonRd Maximum monthly radiation from 1981-2010 orderNorm 
Max.surface.T Estimated maximum surface temperature 

(deg C) 
log_x 

Airtemp_8110 Average annual temperature for 1981-2010 
(deg C) 

orderNorm 

MnMonTP Minimum monthly air tempature from 1981-
2010 (deg C) 

orderNorm 

MnMonRd Minimum monthly radiation from 1981-2010 orderNorm 
Thermo.Obs Observed thermocline depth (m) sqrt_x 
Thermo.Pred Predicted thermocline depth (m) arcsinh_x 
pDays.Cold Proportion of days with maximum surface 

temperatures between 8-12 deg C during 
ice free period 

orderNorm 

pDays.Cool Proportion of days with maximum surface 
temperatures between 16-20 deg C during 
ice free period 

orderNorm 

pDays.Warm Proportion of days with maximum surface 
temperatures between 22-26 deg C during 
ice free period 

orderNorm 

Hypo.Space.Area.obs Observed hypolimnetic area (prop) exp_x 
Hypo.Space.Area.pred Predicted hypolimnetic area (prop) orderNorm 
Hypo.Space.Vol.obs Observed hypolimnetic volume (prop) orderNorm 
Hypo.Space.Vol.pred Predicted hypolimnetic volume (prop) orderNorm 
pLittoral Littoral area (prop <4.6m) orderNorm 
TSI...Avg Average trophic state index derived from 

phosphorous and Secchi depth 
sqrt_x 

pH pH log_x 
Conductivity.uS.cm.s. Conductivity (uS/cm/s) orderNorm 
Alkalinity..mg.L.CaCO3. Alkalinity (mg/L CaCO3) arcsinh_x 
Calcium.mg.L. Calcium (mg/L) orderNorm 
Magnesium.mg.L. Magnesium (mg/L) orderNorm 
Sodium.mg.L. Sodium (mg/L) orderNorm 
Potassium.mg.L. Potassium (mg/L) orderNorm 
Chloride.mg.L. Chloride (mg/L) orderNorm 
Sulphate.mg.L. Sulphate (mg/L) orderNorm 
Nitrate.Nitrite.ug.L. Nitrate/Nitrite (ug/L) orderNorm 
Iron Iron No transformation 
Nitrate.Nitrite.ug.L._pctl Percentile nitrate/nitrite orderNorm 
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TKN.ug.L. Total Kjeldahl Nitrogen (ug/L) sqrt_x 
TKN.ug.L._pctl Percentile total Kjeldahl nitrogen orderNorm 
Silicate.mg.L. Silicate (mg/L) boxcox 
Silicate.mg.L._pctl Percentile silicate orderNorm 
Secchi_Sp Spring Secci depth (m) orderNorm 
Secchi_Su Summer Secci depth (m) boxcox 
pH_pctl Percentile pH orderNorm 
Conductivity.uS.cm.s._pctl Percentile conductivity orderNorm 
Alkalinity..mg.L.CaCO3._p
ctl 

Percentile alkalinity orderNorm 

Calcium.mg.L._pctl Percentile calcium orderNorm 
Magnesium.mg.L._pctl Percentile magnesium orderNorm 
Sodium.mg.L._pctl Percentile sodium orderNorm 
Potassium.mg.L._pctl Percentile potassium orderNorm 
Chloride.mg.L._pctl Percentile chloride orderNorm 
Sulphate.mg.L._pctl Percentile sulphate orderNorm 
Iron_pctl Percentile iron orderNorm 
Total.Phosphorus..ug.L. Total phosphorus (ug/L) log_x 
Total.Phosphorus..ug.L._p
ctl 

Percentile total phosphorus orderNorm 

TSI...Phosphorous Trophic state index based on phosphorus No transformation 
TSI...Secchi Trophic state index based on Secci arcsinh_x 
True.Colour..TCU. True colour (TCU) boxcox 
True.Colour..TCU._pctl Percentile true colour orderNorm 
TWS_area Tertiary watershed area (km2) orderNorm 
TWS_age Time since glaciation of the tertiary 

watershed (Kyr from present) 
No transformation 

TWS_eleva Tertiary watershed altitude (m.a.s.l.) orderNorm 
TWS_elevd Difference between maximum and minimum 

tertiary watershed altitude (m.a.s.l.) 
orderNorm 

pArea_LE20 Proportion of lake area <20m in depth orderNorm 
Shoreline_km Total lake shoreline including islands (km) boxcox 
Shoreline_Development_F
actor 

Shoreline development factor 
(Shoreline_km/(2*sqrt(pi *Area_ha/100))) 

boxcox 

Spr0 Average date of first >0C spring day from 
1981-2010 (days) 

orderNorm 

Angling_Pressure Angling pressure orderNorm 
Conservation_Land Conservation status (1 implies a form of 

conservation status) 
No transformation 
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Table 2. Estimated strength of the relationship between the environment and the variance and 

mean of lake species association patterns (SAPs) in freshwater fish communities in Ontario, 

Canada. The variance (SESSD) and mean (SESmean) of lake species association patterns were 

estimated using a standardized effect size by comparing the standard deviation (SD) and mean 

SAPs in each observed lake to the respective mean and SD of SAPs of each lake estimated by 

shuffling species across all lakes (unconstrained) or within primary watersheds (constrained). 

Relationships were estimated using a linear model. 

SESmean 

Model R-squared Adjusted R-squared No. observations 

Unconstrained* 0.576 0.553 697 

Constrained* 0.579 0.551 697 

SESSD 

Model R-squared Adjusted R-squared No. observations 

Unconstrained* 0.381 0.341 697 

Constrained* 0.629 0.591 697 

*, indicates significance at the >99% level 
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Table 3. Estimated strength of the relationship between the uniqueness in species composition 

of a lake and the variance and mean of lake species association patterns (SAPs) in freshwater 

fish communities in Ontario, Canada.  The variance (SESSD) and mean (SESmean) of lake 

species association patterns were estimated using a standardized effect size by comparing the 

standard deviation (SD) and mean SAPs in each observed lake to the respective mean and SD 

of SAPs of each lake estimated by shuffling species across all lakes (unconstrained) or within 

primary watersheds (constrained). The Local Contribution to Beta Diversity of each lake was 

used to estimate the uniqueness (beta) of each lake. Relationships were estimated using a 

linear model. 

SESmean 

 Unconstrained Constrained 

Predictors Est. t p Est. t p 

(Intercept) -0.00 -0.00 1.00 0.00 0.00 1.00 

beta -0.49 -14.95 <0.001 -0.43 -12.44 <0.001 

Observations 697 697 

R2/R2 adjusted 0.243/0.242 0.182/0.181 

SESSD 

 Unconstrained Constrained 

Predictors Est. t p Est. t p 

(Intercept) 0.00 0.00 1.00 0.00 0.00 1.00 

beta -0.42 -12.13 <0.001 -0.30 -8.19 <0.001 

Observations 697 697 

R2/R2 adjusted 0.175/0.174 0.088/0.087 
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Box 1. Co-occurrence analyses in community ecology 

 

  
Co-occurrence analyses aim to detect association patterns between species pairs that are 

either aggregated, segregated, or random. Aggregated species occur together more often 

than expected by chance alone. This pattern suggests assembly mechanisms that lead 

species to share the same communities such as common habitat preferences, parallel 

dispersal patterns and, for some taxa, mutualism and predator-prey tracking (Morales-

Castilla et al. 2015). Segregated species do not occur across the same sites together and 

may be a result of negative assembly mechanisms like competition and predation (when 

preys avoid their predators in space and time), differences in habitat requirements, 

disparate dispersal abilities or patterns, and past biogeographic histories (Diamond 1975, 

Leibold et al. 2010, Morales-Castilla et al. 2015, Lyons et al. 2016). Random or null SAPs 

involve species where there are no distinct patterns and may be a result of equivalency in 

habitat and variation in dispersal abilities with no species interactions. SAPs can also vary 

across the landscape, with species having aggregated patterns in certain environments 

and segregated patterns in others (Bar-Massada and Belmaker 2017, Clark et al. 2018). 

For species like fishes for which several abiotic variables (e.g., pH, water temperature) 

have a direct effect on physiology and growth, abiotic variables can have a direct influence 

on the trophic interactions that can occur and the resulting observed patterns (Mandrak 

1995, Hein et al. 2013, Myers et al. 2017).  
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Appendix I – Simulated Markov networks with covariates 

One aspect of Markov network models with covariates is the ability to control for the effect of 

disparate or similar environmental responses on species co-occurrence patterns. For example, 

species with opposite responses to the same environmental gradient can appear to have a 

negative co-occurrence pattern. To demonstrate in a more intuitive way to the difference 

between a model which includes environmental covariates and one that does not, we simulated 

three scenarios using 1000 communities with three species, along an environmental gradient, 

and compared estimated species co-occurrence coefficients between a model which considered 

environmental covariates and one that did not. With these simulations, we hope to illustrate how 

the incorporation of environmental covariates reduces the strength of conditional relationships 

between species with shared or distinct environmental preferences and show how conditional 

relationships between species can change across environments.  

In scenario one, we simulated the presence-absence of two species (spc1 and spc2) 

with opposite environmental responses, and a third random species (spc3) (Fig. S1). Estimated 

species pair coefficients between spc1 and spc2, were on average closer to zero when the 

environment was included in the model, compared to the model which did not include the 

environment. Without environmental covariates, a negative co-occurrence pattern was detected.  

Adding covariates also allows for co-occurrence patterns to change across 

environmental gradients. For scenario two, we randomly simulated the presence-absence of two 

species (spc1 and spc3) and had the occurrence of the third species (spc2) dependent on the 

presence-absence of spc1. We varied this dependency along a continuous environmental 

gradient so that in some environments, spc1 and spc2 were positively associated with one 

another, and in other environments they were negatively associated with each other (Fig. S2). In 

the predicted local networks, the network model which includes the environment, the co-

occurrence pattern between spc1 and spc2 switches from positive to negative along the 

gradient (Fig. S3). Contrarily, the model without the environment does not predict any changes 

in the co-occurrence pattern between spc1 and spc2.  

Lastly, for scenario 3, we combined both scenario 1 and scenario 2, so that the 

presence-absence of spc1 was dependent on the env, and the presence-absence of spc2 was 

dependent on spc1 and the dependency changed with the environment (Fig. S4). In the model 

with the environment, associations between spc1 and spc2 were detected, with the pattern 

switching from positive to negative along the gradient (Fig S5). Without including the 

environment, the model did not detect any species association patterns between spc1 and spc2. 



40

a)

b)

Figure S1. Scenario 1: Markov model simulation with covariates. The presence absence (a) 

of 2 species (spc1 and spc2) with opposite environmental responses, and a third random 

species (spc3) were simulated for 1000 sites along an environmental gradient. Predicted 

species association coefficients for species pairs (b) were predicted using a Markov model with 

and without the environmental gradient.
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a)

b)

Figure S2. Scenario 2: Markov model simulation with covariates. Presence-absence (a) of 

spc1 and spc3 were randomly simulated for 1000 sites. Presence-absence of spc2 was 

dependent on spc1 and varied with the environment so that in more negative environments they 

were positively associated but negative in positive environments. Predicted species association 

coefficients for species pairs (b) were predicted using a Markov model with and without the 

environmental gradient.
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Figure S3. Scenario 2: Predicted species co-occurrence networks. Local networks were 

estimated for site 100 and 900, comparing estimated species associations for local sites 

modeled with and without the environment.   
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a)

b)

Figure S4. Scenario 3: Markov model simulation with covariates. Presence-absence (a) of 

spc1 and spc3 were randomly simulated over 1000 sites. Presence-absence of spc2 was 

dependent on spc1 and the environment (more positive in negative environments). The strength 

of the dependency on the environment was also dependent on the environment. Predicted 

species association coefficients for species pairs (b) were predicted using a Markov model with 

and without the environmental gradient.



44 
 

 
Figure S5. Scenario 3: Predicted species co-occurrence networks. Local networks were 

estimated for site 100 and 900, comparing estimated species associations for local sites 

modeled with and without the environment. 
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Appendix II – Cross-validation results of the final global Markov network model used to 
estimate species association patterns 

 
 

Figure S6. Mean total prediction, sensitivity and specificity of the global Markov model 
estimated with environmental covariates (CRF) and without (MRF). Total prediction 

describes the proportion of data correctly predicted. Sensitivity refers to the true positive rate 

and specificity refers to the true negative rate. Performance of the final global Markov network 

model was assessed and compared to a model without environmental covariates using a 10-

fold cross validation, repeated 500 times. For each repetition, we calculated three metrics; total 

prediction (proportion of the data correctly predicted), sensitivity (true positive rate) and 

specificity (true negatives). On average, the two models did not differ greatly in total prediction, 

however, for the model with environmental covariates, sensitivity was lower but with higher 

specificity.  
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Appendix III – Results using boosted regression trees to predict pairwise species 
association patterns 

 

Figure S7. Parametrization of the boosted regression tree predicting pairwise species 
association patterns across all pairs using all environmental variables. The final model 

had an R2 of 0.0395 and was fit using a shrinkage parameter of 0.02, with 60 trees with a 

maximum tree depth of 10, and a minimum of 40 observations per node.  
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Figure S8. Environmental variables ordered by importance by the boosted regression 
tree for predicting pairwise species association patterns across all pairs. Of the 89 

variables, 77 had a non-zero influence on the chosen boosted regression tree.  
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Appendix IV – Results using an unconstrained null model 

Relationships between the environment and SES mean and SD values estimated using the 

unconstrained null model resulted in different environmental variables being selected. Like with 

the constrained null model, climate variables were the strongest predictors of SES mean (Fig. 

S9). SES mean was negatively correlated with maximum surface temperature and proportion of 

days that were cold during ice free days, and positively correlated with the average number of 

degree days above 5°C. While the other two variables were also strong predictors in the 

constrained null model (Fig. 3), degree days above 5°C was a weaker predictor. Results differed 

more with SES SD, where the strongest predictors, degree days above 5°C, predicted 

thermocline depth, and shoreline length (Fig. S10), were not strong predictors in the constrained 

model (Fig. 4). This suggests that the effect of historical processes, as controlled using the 

constrained null model may differ depending on the metric used to asses community level 

species association patterns. SES SD showed the greatest sensitivity, and is exemplified by the 

difference in the strength of the predicted relationship using the constrained (adjusted R2 = 

0.591) and unconstrained model (adjusted R2 = 0.341) versus SES mean which had a 

difference in adjusted R2 values of 0.002. The small differences in SES mean models but large 

differences in SES SD models between the constrained and unconstrained model suggests that 

the ability to predict the average effect of mechanisms on community structure does not depend 

on the species pool, but should be considered if the goal is to predict the variance of the effect. 
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Figure S9. Estimated regression coefficients for SES mean estimated using the 
unconstrained null model and the environment. Coefficients are estimated using a linear 

model, with environmental variables in the model selected using LASSO. 
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Figure S10. Estimated regression coefficients for SES SD estimated using the 
unconstrained null model and the environment. Coefficients are estimated using a linear 

model, with environmental variables in the model selected using LASSO. 
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Appendix V – Predicting variation in community-level patterns of species association by 
geographic location and assessing spatial autocorrelation 

We tested if latitude and longitude could predict variation in community-level patterns of species 

associations. As environmental variables like climate are frequently correlated with latitude, we 

were interested if a simply metric like latitude and longitude could also predict SES mean and 

SD. Using variation partitioning as implemented in the R package vegan (Oksanen et al. 2020), 

we partitioned the proportion of variation explained by the environmental variables selected by 

LASSO and geographic location together and exclusively. Here, we present results using 

community-level patterns calculated using the constrained null model. For SES mean, 17% of 

the variation explained by environmental variables was jointly explained by geographic location 

(Fig. S11). For SES SD, the proportion was higher, with 25% of the variation explained by 

environmental variables jointly explained by geographic location (Fig. S12). Our results show 

that a majority of the variation explained by the environment cannot be explained by just 

geographic location alone. 

 Lastly, to assess if we were missing any environmental variables that may explain 

variation in SES mean and SD, we calculated the spatial autocorrelation of our models. Spatial 

autocorrelation can increase Type 1 errors (e.g. detecting a relationship with the environment 

when there is none)(Diniz-Filho et al. 2003). Spatial autocorrelation in the residuals produced 

from the LASSO models can suggest that additional variables that can capture variation in SES 

mean and SD are missing. We calculated Moran’s I for the residuals from the models for 15 

distance classes as implemented in the R package pgirmess (Giraudoux 2021). Moran’s I is a 

measure of spatial autocorrelation with values between 1 and -1, where a value of -1 represents 

dispersed residuals, 1 represents residuals that are aggregated, and a value of 0 represents 

residuals that are randomly dispersed. For both SES mean and SES SD, Moran’s I was close to 

0 across all distance classes (Fig. S13 and S14). These results show that residuals for both 

models are not spatially autocorrelated, suggesting that we are not missing any environmental 

variables that may explain variation in community-level patterns of species associations. 
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Figure S11. Variation partitioning of SES mean (n = 697) calculated using the constrained 
null model using environmental variables selected using LASSO and the latitude and 
longitude of each lake. The Venn diagram illustrates the proportion of variation that is 

explained by the environment (Env) and coordinates (Coords) respectively, and the proportion 

of variation that is jointly explained. 
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Figure S12. Variation partitioning of SES SD (n = 697) calculated using the constrained 
null model using environmental variables selected using LASSO and the latitude and 
longitude of each lake. The Venn diagram illustrates the proportion of variation that is 

explained by the environment and coordinates respectively, and the proportion of variation that 

is explained jointly. 
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Figure S13. Assessing spatial autocorrelation of residuals from the LASSO model: SES 
mean and the environment. SES mean values were calculated using the constrained null 

model. Correlogram shows the change in Moran’s I across increasing distance classes 

(distance 0 refers to closest neighbours, distance 1 for second-order neighbours, etc.). 
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Figure S14. Assessing spatial autocorrelation of residuals from the LASSO model: SES 
SD and the environment. SES SD values were calculated using the constrained null model. 

Correlogram shows the change in Moran’s I across increasing distance classes (distance 0 

refers to closest neighbours, distance 1 for second-order neighbours, etc.). 
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