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ABSTRACT

Optimizing the Workload Scheduling in MEC-Assisted Intelligent

Transportation Systems

Ebrahim Sarkhouh, Ph.D.

Concordia University, 2022

Autonomous driving (AD) is rising as an efficient solution to a wide range of

transportation problems. With all the capabilities utilized (sensors, 5G communi-

cation technologies, computation units), intelligent vehicles can interact with the

surroundings and cooperate in instantaneously maneuvering safely and effectively.

Incorporating a central agent that supports this on-the-road interaction represents a

critical enabling idea that will elevate the Cooperative Autonomous Driving (CAD)

performance. Multi-access Edge Computing (MEC) recently attracted a considerable

focus, specifically in vehicular networks, as it provides a reliable and online response to

service demands arriving from vehicles. In the context of CAD, MEC can reduce the

usage of wireless communications, orchestrate the activities on the road and provide

massive computation capabilities to the vehicles. In this dissertation, we investigate

the potential of MEC in the context of supporting autonomous driving and managing

the radio and computation resources available. We propose adequate solutions for

various problems that MEC should continuously resolve as an essential component of

a complete intelligent transportation system.

First, we examine the capability of MEC by formulating the problem of scheduling

vehicular computational tasks over the resources as an optimization problem and

solve it via integer linear programming (ILP) and Lagrangian relaxation. We prove

the complexity of the problem, and thus we develop a scalable solution that reaches

near-optimal solutions and around 90% speedup compared with branch-and-cut.

Second, to consolidate our work veracity, we tighten the system capacity by lim-

iting the wireless communication resources. Also, we propose a system model that

harvests the computational resources available on the vehicles’ onboard units via a

fog computing scheme and utilizes them along with the infrastructure edge resources.
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The system aims to jointly allocate the radio and computational resources to maxi-

mize the number of admitted tasks. We provide a formal definition of the problem as

multi-stage scheduling and, due to its complexity, propose a Dantzing-Wolfe decom-

position method to solve the problem. We compare the performance of the proposed

method with CPLEX and show that the solution is only 20% far from the optimal

solution while achieving 94% speedup.

After demonstrating the merit of deploying/utilizing edge servers in a vehicular

network, the third contribution particularizes more the system model to an AD envi-

ronment by applying two significant modifications. First, we accurately represent an

AD scenario by modeling the computational load as long-term processes that continu-

ously receive data from multiple sources, process them together, and inform multiple

destinations with decisions supporting cooperative autonomous driving applications.

Such processes work as assistants to on-the-road activities such as changing lanes,

taking turns, or establishing/maintaining platoons. Second, we adopt a sophisti-

cated, more suitable metric that quantifies the freshness of the information received

called Age of Information (AoI). We aim to minimize AoI of the information contin-

uously received in the destinations. The problem turned to be NP-hard. We propose

a novel Benders decomposition technique that divides the problem into several sub-

problems and one integer master problem. We developed a scalable solution for each

of these problems and compared the overall method with the optimal solution. The

method proposed showed high scalability and efficiency in terms of the objective and

computation time.

We conclude with a discussion on the outcomes of this thesis and the directions

we intend to take in our future work.
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Chapter 1

Introduction
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As an essential element of Intelligent Transportation Services (ITS), Autonomous

and teleoperated Vehicles (AV) play a significant role in providing a safe yet effective

service that overcomes a wide range of problems that we all face daily [5]. With

the advanced sensors (e.g., radars, LIDARS, GPS, and motion sensors) [6], commu-

nication technologies (i.e., C-V2X) [7], and computing capabilities deployed on the

On-Board Units (OBUs), AV constitutes an intelligent entity capable of perceiving

various types of detailed information and interacting accordingly with its surround-

ing. The massive leap in Artificial Intelligence (AI) in vehicles allows them to see,

navigate, and maneuver within the typical transportation systems. With the rise of

the Internet of Things (IoT) service ecosystem as an enabling concept to intelligent

cities, AV became part of a socio-technical environment of users and other compe-

tent entities that instantaneously cooperate to accomplish an on-the-road task (e.g.,

changing lanes) or to perform specific analytics on the condition of the transportation

system [8]. Indeed, AVs are increasingly rising as an effective solution to many of our

on-the-road daily problems. It represents a computational asset deployed with various

AI applications. Computational demand can also harvest such an asset via a proper

framework. Yet, establishing a direct connection to a moving vehicle in this dynamic

environment is an intricate task. Although AVs went through a revolutionizing stage,

most current vehicles lack sufficient computational capabilities.

1.1 Motivation

The lack of a central agent capable of interacting with the vehicles and establishing

and managing the required tasks to be accomplished inflicts several issues obstruct-

ing the realization of fully reliable intelligent transportation services. First, while the

computational resources depict the system’s core, wireless communication resources
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are more critical, considering its minimal capacity and the high demand for the re-

quired data transmissions. A central agent will mitigate this criticality by reducing

the number of coinciding data transmissions. Second, as stated before, most of the

vehicles currently do not have adequate computational capabilities. With computa-

tion resources deployed over the infrastructure, these vehicles can benefit from these

resources by offloading their required computational task to these resources. Last,

with distributed data analytics, decisions taken from a vehicle might not suit other

decisions taken by other vehicles or IoT devices. Hence, the employment of what is

called Multi-access Edge Computing (MEC) [9] paradigm is essential to ITS.

MEC in recent years has emerged as a performance/reliability shifting paradigm by

bringing the computation processes from the cloud to the very edge of the network,

thereby providing a unique opportunity for latency-critical services. In vehicular

networks, this edge is the Road Side Unit (RSU) that interconnects with the vehicles

and gives them an internet service and a Vehicle to Vehicle (V2V) connectivity. The

RSU can receive a computational workload from the vehicles, process it at the co-

located edge server, and send it back to the vehicles [10]. This workload can be

requests to instantiate autonomous driving application instances or perform certain

data analytics that requires a comprehensive view of the state of the road. RSUs

with MEC can act as a controller that orchestrates the various activities on the road

by utilizing the IoT devices and the vehicle’s sensors to observe the overall road state

and accordingly provide the required support/assistance to the vehicles. However, the

installation of multiple highly-empowered cloudlets might incur considerable capital

and operational expenditures. These expenses motivate the necessity of an alternative

cost-minimal solution that accounts for both latency requirements and the tasks’

admissibility. This level is where Vehicular Fog Computing (VeFC) [11] and the

concept of the vehicle as a Resource (VaaR) [12] come into play.
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Fog computing is a framework that facilitates the exploitation of computational

resources available on the edge of the network. By utilizing idle computational re-

sources at that level, we can expand fog computing beyond the infrastructure re-

sources (MEC) to exploit any network edge node (i.e., vehicle). VeFC broaches the

concept of VaaR by harvesting the vehicle’s OBUs computational capabilities. Over

a long time, if the vehicles dedicate their OBUs to their own vehicles’ internal pro-

cessing, their capabilities most probably will be underutilized. As these vehicles’

OBUs possess, AI tools [13], other vehicles that lack such resources can improve their

driving automation potentials through wireless computational tasks offloading. As

stated earlier, the central MEC agent can monitor the available resources and control

the utilization of these resources. For example, a vehicle can request from other vehi-

cles, through the MEC agent, to sense their surrounding environments, analyze, and

send back the results to the requester to support the creation of lifelike Augmented

Reality objects that support both short-term and long-term navigation. Besides, IoT

devices and pedestrians may also benefit from the computational capabilities avail-

able on OBUs. For example, IoT devices that require a road network status may

provide vehicles with data or ask vehicles to execute some artificial intelligent tasks

over some data and send results back to them.

1.2 Research Objectives

The main objective of this thesis is to provide solutions to various concerns that

should be tackled to achieve the vision of complete intelligent transportation systems.

Specifically, we suggested system models that assume the availability of computa-

tional resources right on the network’s edge (i.e., RSU). We intend to allocate these

computing units and the available wireless communication channels for the requests

coming from the vehicle and other intelligent entities to accomplish workload over the
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edge or other entities to optimize a particular metric. In addition to the conventional

throughput metric, we propose to optimize what is called Age of Information (AoI)

[14]. Mainly, we will try to answer the following research questions:

1. How can a vehicular network utilize an edge server deployed over

an RSU?

We need to study the feasibility of deploying a massive computational resource

right on the edge of the network. The system model is an RSU (the network

edge) provided with an edge server and receives requests to accomplish compu-

tational tasks. A Vehicle-to-RSU communication takes place over a 5G wireless

communication platform. We assume in this research question that such a com-

munication technology provides sufficient bandwidth, making the scheduling

mainly focused on the computational resources.

2. Is it efficient to jointly schedule the wireless and computational re-

sources in vehicular edge computing?

Scheduling problems reserve a considerable part in the theory of computation.

That’s because they are usually challenging problems to solve (i.e., NP-Hard).

This thesis tries to tackle multi-stage scheduling problems via decomposition

techniques and empirically find the efficiency of deploying such solutions on an

edge server to utilize the available resources.

3. How can an MEC agent orchestrate the utilization of the available

computational resources in a fog-enabled vehicular network?

As with the stationary servers, computational capacity in vehicles is growing

enough to consider it an asset to utilize. In this research question, we try

to leverage these assets by making the edge server (deployed over the RSU)

5



establishes connections with the vehicle to receive computational tasks and send

them to other vehicles to compute.

4. What is the role of information freshness in vehicular networks,

and can it improve the quality of service?

AoI quantifies the information received in the destination by its recency. In

our last contribution, we try to find how we can optimize such a metric and

discusses the metric validity in vehicular networks.

5. How to make edge computing supports cooperative autonomous dri-

ving applications with a maximized information freshness?

This question is the central question that this thesis is trying to answer. Can

MEC support/assist CAD applications by receiving data from multiple vehi-

cles, analyzing it, and providing the vehicle with beneficial information? To

answer it, we should carry along the answers to more than one question asked

earlier and integrate their solutions to come up with this question response.

MEC should apply an efficient scheduler to allocate wireless and computational

resources for processes that continuously receive data from various entities and

support the on-the-road with decisions taken while considering very fresh re-

ceived information.

1.3 Contributions

In this section, we summarize our main contributions presented and discussed in this

thesis:
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1.3.1 Workload Scheduling in Vehicular Networks with Edge

Cloud Capabilities

To support the development of 5G technologies, researchers are actively engaged in

addressing the challenges accompanying the emerging 5G applications. Unquestion-

ably, a rising technology gaining significant research attention is edge computing.

Vehicular Edge Computing (VEC) brings data storage, and computing capabilities

and hosts support applications that comprise emerging vehicular services that de-

mand low-delay processing to the edge closer to the vehicles. This approach reduces

response times and increases reliability, therefore achieving the holistic vision of the

tactile Internet. In this context, this contribution considers a vehicular network with

edge computing capabilities deployed at roadside units. It addresses the problem of

workload offloading and scheduling of computation tasks on the computing resources

available at the edge. The challenges here are the high mobility of the vehicles and

the high sensitivity of the delay the computational tasks exhibit. We formulate a

problem considering the computation resources and the latency requirements of the

workload and prove the scheduling to be NP-Hard. Subsequently, efficient solutions

based on Lagrangian relaxation are derived and presented. We evaluate the proposed

methods numerically and show their closeness to the optimal solutions.

1.3.2 An Infrastructure-Assisted Workload Scheduling for

Computational Resources Exploitation in Fog-Enabled

Vehicular Network

Now that we have established and evaluated a comprehensive VEC system model, we

want to expand the idea of utilizing the available computational resources available

on the infrastructure to harvesting the resources available on the vehicles themselves.
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The vehicle-as-a-resource is an emerging concept that allows the exploitation of the

vehicles’ computational resources to execute tasks offloaded by passengers, vehicles,

or even internet-of-things devices. This contribution revolves around a scenario where

a roadside unit located at the edge of a hierarchical multi-tier edge computing sub-

network resorts to utilize idle vehicles’ computational resources through a fog-enabled

substructure, yielding a cost-effective computational tasks offloading solution. In this

context, scheduling the offload of these tasks to the appropriate vehicles is a chal-

lenging problem that is subject to the interaction of major role-playing parameters.

Among these parameters are the variability of vehicles’ availability and their compu-

tational power, the individual tasks’ weighted priorities and deadlines, the required

computational power, and the required data to upload/download. This work proposes

an infrastructure-assisted task scheduling scheme where the roadside unit receives

computational tasks from different sources and schedule these tasks over computa-

tionally capable vehicles within the roadside unit’s range. The aim is to maximize

the weighted number of admitted tasks while considering the constraints mentioned

above. Our system considers both the latency and throughput of tasks accomplish-

ments by maximizing the weighted number of admitted tasks while at the same time

respecting the tasks accompanied deadlines. Both radio and computational resources

are part of the optimization problem. After proving the NP-hardness of the scheduling

problem, we formulated the problem as a mixed-integer linear program. A Dantzig-

Wolfe decomposition algorithm is proposed, which yields to a master program solvable

by the Barrier algorithm and subproblems solved optimally with a polynomial-time

dynamic programming approach. We conducted a thorough numerical analysis and

simulations to verify and assert our approach’s validity, correctness, and effectiveness

compared to branch-and-bound and greedy algorithms.
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1.3.3 Optimizing Information Freshness for MEC-enabled Co-

operative Autonomous Driving

The previous contributions showed how MEC provides a plethora of computational

services to reduce network latency and maximize the throughput. Here, we want to

be more specific in the form of the workload offloaded to the edge server in an AD

environment and the metric to optimize for this workload. Applications at the edge

that apply analytics on the sensory data are indispensable for self-driving vehicles.

We consider in this contribution a network that interconnects vehicles to an edge

server at a roadside unit. Each vehicle extracts multiple information by sampling

multiple processes and sends them to the corresponding edge application. To make

timely decisions, “fresh” information needs to be offloaded, processed, and delivered

back to vehicles; in this context, we adopt a recently proposed metric called Age of

Information that measures the freshness of information. We seek to jointly schedule

vehicles’ transmission of information and schedule information processing at the edge

to minimize the AoI of all processes. We mathematically formulate the problem and

prove its NP-Hardness. We propose a logic-based Benders decomposition to divide

the problem into a Master and several subproblems to overcome this hardness. Then,

we present an exact polynomial-time solution for the subproblems, a scalable heuristic

for the master, and devise a valid yet efficient Benders cut. We implement the system

simulation on the well-known traffic simulator SUMO and compare the decomposition

with CPLEX branch-and-cut; Although the problem is highly intricate, our method

finds a near-optimal solution (maximum deviation is 7% from optimal solution) with

a speedup that reaches 95%. We study the system performance by varying different

system parameters.
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1.4 Thesis Organization

This thesis structure follows: Chapter 2 is about the related work and a brief pre-

sentation of the background required. Chapter 3 introduces our contribution solving

the scheduling problem of tasks offloaded to the edge server of an RSU. Chapter 4

discusses vehicular fog computing and the concept of vehicle-as-resource with jointly

scheduling the radio and computational resources. We discuss the third contribution

in chapter 5, where we model a system to support cooperative autonomous driving

applications via edge computing. We conclude this thesis in chapter 6 and our future

directions.
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Chapter 2

Background and Related Work
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This chapter briefly summarizes several notions, paradigms and concepts that we

utilize through this thesis. We present the concepts of edge computing, fog computing,

vehicular networks, and autonomous driving. Also, we highlight the recent related

work of these concepts and this thesis contribution.

2.1 Background

2.1.1 Multi-Access Edge Computing

Multi-access edge computing is a paradigm that deploys computation and data

storage on the lowest level of a network hierarchy hence closer to the users’ equipments

[9].

Even though it is a simple concept, MEC benefits are immense. It amplifies the

performance of computational tasks offloading, data caching, and networking in terms

of latency and reliability.

According to [15], and compared to Mobile Cloud Computing (MCC), edge com-

puting has the following advantages:

1. Low latency: in terms of information propagation, the distance between an

edge server and the users is in the scale of meters, while in the case of MCC,

the information should pass the entire core network to reach the cloud servers,

causing a considerable delay.

2. Power efficiency: IoT devices’ primary concern is the short battery life. Provid-

ing such computation resources nearby gives these devices the choice to offload

computational-intensive tasks to these resources reducing the amount of energy

consumed while processing these tasks.

3. Context Awareness: As MEC servers are on closer points to the users, they can
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track real-time information like their location, behaviors, and environment.

4. Privacy/Security Enhancement: As MCC servers have central natures, they are

vulnerable to attack due to their high information concentration. Since MCC

separates management and ownership of user data, this might cause private

data leakage as well. Edge servers overcome these issues by being proximate

and distributed over the network edges.

As mentioned in [16], Nokia and IBM installed the first edge computing servers

in 2013. European Telecommunications Standards Institute (ETSI) established MEC

in 2014 and formed the MEC Industry Specification Group (ISG) that standardizes

the deployment of MEC over Radio Access Networks (RAN). In general, MEC tech-

nologies are now under the deployment stage. Nevertheless, the reports clearly state

that we will soon see edge servers deployed on a large scale.

In vehicular networks, MEC servers are deployed over the RSUs in order to pro-

vide computational capabilities for the vehicles. Such a deployment is what is called

vehicular edge computing paradigm [17].

2.1.1.1 Fog Computing

Fog computing is an expansion to the utilization of the infrastructure’s computa-

tional resources, as in MEC, to monitoring, managing and offloading tasks to idle

resources available on the users’ equipments [11].

The inflation of computational and data transfer demand requires an economical

solution that provides a sufficient constancy in the availability of the resources. As

the MEC servers have a specific capacity, researchers tried to acquire more resources

by deploying edge servers in a hierarchical fashion, allowing the lower-level servers to

offload some of the computation to the higher-level servers, increasing the admission

rate increasing the service speed. With this arrangement, lower-tier cloudlets are

13



allowed to issue task migration requests to upper cloudlet tiers. Analytical studies

were conducted in [18] and [19] demonstrating the superiority of Hierarchical MECs

(H-MECs)’ over typical flat MECs in terms of delay and task admissibility. However,

installation of multiple proprietary cloudlets and their organization in H-MECs incur

considerable capital and operational expenditures (e.g. [20]). These expenditures

motivate the necessity of an alternative cost-minimal solution that accounts for both

latency requirements and the tasks’ admissibility. However, such a solution is not

practical and increases the overall infrastructure establishment cost. Here is where

the paradigm of fog computing takes place to lower this cost by enabling the utilization

of idle resources that belong to the users equipments.

2.1.2 Vehicular Networks

Vehicular network is the communication platform that interconnects the vehicles,

the on-the-road IoT devices and RSUs in order to enhance the vehicles’ sensing ca-

pabilities and intelligence [2]. In this subsection, we will discuss its early history and

its current available technologies.

2.1.2.1 Early History

The following is a summary of the vehicular networks’ early history as mentioned

in [2]. In the 1980s and 1990’s most of the vehicles were already carrying radio-

set as standard. At this time, the purpose of this radio set was to receive some

weather updates or some urgent news. Given its purpose, it was reasonable to have

such simple unidirectional communication technology. In the 1990s, Philips invented

dedicated short-range communications (DSRC) to provide limited telecommunication

and internet services for vehicles. The range was 5 meters, and the bandwidth was

limited. Around the year 2000, the world realized the first actual vehicular ad-hoc
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network (VANET). By increasing the bandwidth assigned to the DSRC protocol suite,

it was possible to increase the range of the communication to 500 meters and increase

the rate up to 26 Mb/s. That allowed researchers to build a system that provides

safety services such as collision avoidance, ramp access control, fog, ice, and obstacle

alerts. Since in each 500 meters road segment, most probably, there is a vehicle, it was

not necessary to make the cars communicate only through the infrastructure; hence

they allowed the vehicle to communicate in an ad-hoc fashion. In parallel to all that,

cellular networks were going through tremendous evolution and passing four different

generations of technologies where the communication bit rate has reached around

100 Mb/s. Nowadays, the 5th Generation (5G) of cellular wireless communication

is taking place. Researchers now are focusing on utilizing these 5G technologies to

improve the vehicular networks, which led to the invention of a new term, Vehicle-

to-Everything (V2X) communication suite.

Figure 2.1: VANET [1]

2.1.2.2 Vehicle-to-Everything Communication (V2X)

After several years of VANET being in operation, it was realized that V2V communi-

cation only was not enough to enable a fast and effective deployment of most of the
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application scenarios proposed for the vehicular networks. Therefore, it was realized

that vehicles should not restrict their communications to be between each other only

and some kind of extension was required. So, to allow the vehicles to communicate

with the core network, with the pedestrians and may be bikers, a new communication

suite was established, the V2X suite.

V2X is a set of technologies that allow a vehicle to communicate with the surround-

ing environment (see Figure 2.2) . There are several kinds of communication that V2X

comprises like vehicle-to-vehicle (V2V), vehicles-to-infrastructure (V2I), vehicles-to-

pedestrian (V2P) and vehicle-to-network (V2N). Use cases for V2X includes, but not

limited to, platooning, collision alerts, road work warning and intersection movement

assist. There are two types of technologies that V2X can rely one. The traditional

WLAN-based (DSRC) and the LTE-based.

Figure 2.2: V2X [2]

To replace DSRC, the third generation partnership project (3GPP) developed the

LTE-based communication technology called cellular vehicles-to-everything (C-V2X).

Some of the benefits of replacing DSRC with C-V2X :
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1. Cost-effectively, it allows the integration of the LTE network with the vehicular

network.

2. It provides more comprehensive global positioning systems (GPS).

3. It improves safety by enabling drivers to have a more comprehending view to

the street

4. It enhances the ability to avoid congestion and traffic jams.

5. It is more reliable in message passing between the vehicles.

2.1.3 Cooperative Autonomous Driving

In order for an AV to accomplish an on-the-road task, it needs to communicate with

several entities including other vehicles, motorcycles, bicycles and even pedestrians.

Also, IoT devices deployed over the street can provide the AV with potentially valu-

able information that assist the AV with it instantaneous maneuvering. Cooperative

Autonomous Driving is the concept of making automated vehicles interact directly

or indirectly with each other and other entities such RSUs and IoT devices in order

to accomplish certain on-the-road activities in a safe and effective way [3]. This inter-

action is supposed to take place over the 5G-V2X networking protocols suite. With

their promised high communication rate, these protocols are the platforms that Coop-

erative Autonomous Driving can be built over as discussed in several recent works [3].

The Society of Automotive Engineers (SAE) has suggested a message set dictionary

for standardizing messages exchanged in communications like as emergency vehicle

alerts, intersection collision warnings, and vehicle status information. Several CAD

projects are in progress like the European Telecommunication Standard Institute

(ETSI) provided the EN 302 637-2 standard which defined Cooperative Awareness

Messages (CAMs). According to [3], the following are typical CAD use cases:
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Figure 2.3: Dynamic traffic flow through swarms [3]

1. Swarm behaviour for dynamic traffic flow: The idea here is to avoid using

physical signals (e.g., lights) in order to minimize the response time and increase

the flexibility of the overall vehicles interaction (see Figure 2.3). A typical urban

road consists of several lanes, half of them are for one direction. It is very

common situation is when one direction on the road is more congested than

the other. CAD mitigates such problem by making the vehicles cooperatively

dedicate more lanes to the congested direction in order to have smooth traffic

flow. Another scenarios where swarm behaviour is very beneficial is when we

have an emergency vehicle requesting a path. CAD can easily establish a clear

path by making the vehicle cooperate in creating such a path rather than the

chaotic situation when each vehicle is making an independent decision.

2. Platooning: A platoon is a structure where several vehicles establishes in order

to have a safer trip and reduce travel time and road usage. The idea is to have

all the vehicles to travel very close to each other and the up front vehicle controls

the direction and the speed. CAD here can be very beneficial to first, establish

the platoon, and second maintain it through the vehicles trip.
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Figure 2.4: Vehicles in platoon form [4].

3. Intersection: Congested intersection is a critical problem that we all face in

daily-basis. A promising solution is to make these intersections operate without

traffic lights. CAD here plays the major role of controlling the flow of the

intersected streets by signaling the vehicle when to stop and when to pass the

intersection.

4. Parking: A vehicle can request information regrading the availability of the

vehicles on a certain location.

5. Routing: Vehicles can cooperate to distribute them selves across several routes

in order to avoid congested street hence minimizing the travel time.
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2.2 Related Work

2.2.1 Vehicular Edge Computing

Previous literature explored several aspects of vehicular edge computing. For general

system architecture and transmission strategies, [21] suggested a scheme to build a

framework for a vehicular edge computing system consisting of multiple RSUs and

several computation resources. This work concluded with an efficient transmission

strategy that reduces the V2V and V2I transmission costs while maintaining a good

transmission speed. The work in [17] proposed a communication protocol for vehicular

multi-access edge computing by integrating licensed Sub-6 GHz band, IEEE 802.11p,

and millimeter waves communications to distribute data in vehicular networks.

For resources management, the work in [22] proposed a technique that exploits

the fact that multiple vehicles are accessing the same data stored at an RSU or in

the cloud and suggested a scheduling scheme based on that. In [23], authors pro-

posed a system model that consists of a set of RSUs each has its server with a certain

computation capacity. If the computation overhead exceeds the server capacity, it

can offload some tasks to a backup computation server. Each task has its upload

data size, processing time, and deadline. A car can choose between uploading a task

and running it locally based on the price of computing this task on the server. They

assumed the speed of the communication between the servers and the backup server

is infinite. The authors suggested a game theory approach to solve the problem.

Another tasks-scheduling scheme is suggested in [24]. Their method tried to solve

the problem of offloading tasks to multiple RSUs. Each type has a specific resources

requirement. The service provider tries to increase his/her revenue while the vehicles

try to reduce the power consumption and increase their computation speed. Another
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similar work proposed in [25] considered a more general case where tasks with prede-

fined processing time. The work proposed almost the same system model as the in

[24] but without a backup computing server. A framework to exploit the idle time in

the vehicles’ computation resources is suggested in [26]. The work in [27] suggested

resources management and allocation with power consumption reduction. The au-

thors of [28] noted that MEC is a promising approach to allow resource-intensive

services and presented a detailed futuristic vehicular scenario “the Electronic Hori-

zon” and listed the challenges. The authors highlighted that Information-Centric

Networking in combination with MEC could support such a futuristic scenario. In

[29], the authors argued that recent advances in networking, caching, and computing

have significant impacts on the developments of vehicular networks and proposed an

integrated framework that can enable dynamic orchestration of the network resources

based on deep reinforcement learning.

For mobile edge computing in general, several works addressed computational

tasks scheduling. In [30], the authors explored the scenario of multi-cell mobile edge

computing. Very similar work is proposed in [31]. An energy-efficient offloading

scheme was described in [32]. Computation offloading in wireless cellular networks

with MEC capabilities has also been studied in [33], and [34].

The 3rd Generation Partnership Project (3GPP) provided a communication stan-

dard for the vehicle-to-everything networks (V2X). These standards are supposed to

support applications like vehicles platooning, and remote driving [35, 36]. The stan-

dards specified levels of driving automation that vary from ”no automation” (level

0) to ”full automation” (level 5). The channel’s bandwidth can go up to 10 MHz in

both ETSI and IEEE standards; hence the bit rate can reach up to 27 Mb/s and 54

Mb/s. Such bit rate can not support autonomous driving, which demands the latency

to be no more than 100 ms. Hence, several works published recently proposed the
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utilization of mmWave communication technologies for vehicular networks [37–39].

The only obstacle was the high dynamism of these kinds of networks, and the major

contribution of these works was to overcome the high speed of the vehicles. In con-

clusion, [37] suggested that mmWave can support vehicles’ speeds up to 140 km/h,

and the provided bit-rate can reach 6.765 Gb/s. NOMA (Non-orthogonal multiple

access) applicability for V2X was discussed in [40] and network slicing in [41].

2.2.2 Vehicular Fog Computing

Vehicular fog computing is taking considerable attention from academia, leading to

extensive studies addressing major concerns. The work in [42] is a general survey dis-

cussing the motivations, the different architectures and issues of vehicular fog comput-

ing. In [43], they proposed a bidding-price-based mutual trust establishment between

client vehicle and server vehicle and also payoff assignment based on transaction eval-

uation. The proposed method does not require of a trustworthy third-party. The

work in [44] propsed a distributed information exchange scheme with low latency in

vehicular fog computing. They considered the frequent changes in vehicle positions

and used public transportation facilities such as buses and taxis as fog nodes. The fog

nodes are responsible of adjusting the data sampling frequency according to the time-

space correlation of the data to ensure that only nonredundant data are received. The

interruption latency caused by accidents during an exchange is handled by evaluating

and predicting connection states among the vehicles. In [45], authors used machine

learning techniques to choose the best fog server deployed over a base station to be

connected to a vehicle once it leaves a certain server range. The work considers the

load and the location of the vehicles to accomplish an accurate prediction for the

server. In [46], the authors suggested a machine learning algorithm that tries to uti-

lize the mobility of the vehicle to minimize the delay of the tasks computation. The
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work proposed architecture with three offloading modes, namely, vehicle-vehicle of-

floading, vehicle-RSU-vehicle offloading, and pedestrian-RSU-Vehicle offloading. The

work discusses why mobility can be helpful to minimize the download time from a

node to another. They considered two cases where, in the first, they combined an ex-

isting ML algorithm with coded computing to make it adaptable against the changes

in the network topologies and workload. In the second, they investigated the idea of

replicating the tasks to minimize the delay.

The authors in [47] suggested a three layers scheme to support traffic manage-

ment. The three layers are the cloud, the cloudlet, and the fog layer. The fog consists

of parked and moving vehicles having a certain computation capability. With this

architecture, the work proposed an algorithm that balances the load over the layers

resources by distributing messages passed by vehicles over the computation resources

to process them. The work in [48] suggested a design principle for fog-enabled vehic-

ular software-defined networking. The authors evaluated the design with the use case

of a traffic management system for fast traffic rescue using real traffic accident data.

In [49], authors tried to utilize the idle computation resources of the parked electri-

cal vehicles. The problem was formulated as a Markov decision process and solved

through dynamic programming. The work in [50] suggested an offloading scheme of

tasks generated by the users’ equipment to the vehicles based on contract theory and

matching theory. The aim was to minimize the computation delay. A task has its

required number of computational cycles, the upload data size, and the deadline. The

download data size is assumed to be negligible, meaning, the computation’s result can

be downloaded instantaneously. They can be scheduled in a non-preemptive manner

only. A vehicle offers its computational resources it is willing to share and assumed

to have a fixed location. A vehicle can only be assigned one task. The work assumes

a dedicated bandwidth assigned to each user’s equipment. First, they designed a
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contract relating the required performance levels to the payments issued to vehicles

offering this performance. Then a two-sided matching game approach is performed

to assign the tasks to the vehicles. In [51], authors proposed a method to take ad-

vantage of the possibility of dividing the tasks offloaded from vehicles into several

subtasks (there is no constraint on how they can divide these tasks). The work first

studied the status of the channels through the hidden Markov model and proposed

a scheme to leverage the full parallelism of computational tasks. The authors in [11]

provided a mathematical model that studies the vehicular fog computing capabili-

ties quantitatively. The work used realistic data acquired from tens of thousands of

taxis. For data distribution application, [52] suggested a joint optimization of access

mode selection and spectrum allocation while considering the randomness of the ve-

hicular network, the edge cache, and the content download delay. VeFC was applied

for various applications like mobile crowdsensing [53], caching [54], traffic manage-

ment [55]. The authors in [56] suggested an intriguing role of fog computing in the

context of Information-Centric Networking (ICN). The work indicated an integrated

fog-computing and ICN architecture with an on-demand caching function virtualiza-

tion scheme and a communication scheme between the fog nodes and future internet

nodes. They also designed an intelligent control to manage the operations between

these nodes and a cognitive resource allocation.

2.2.3 Age of Information in Vehicular Networks

In [57], the authors studied the radio resource management in a V2V network. The

work considers the Manhattan grid V2V network. They studied a dynamic traffic

model and assumed the channel quality changes based on the geographical location.

They modeled the problem as a single-agent MDP deployed over an RSU to allo-

cate the radio resources, aiming to minimize AoI. In [58], rather than optimizing the
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average AoI, the authors proposed to control the tail AoI distribution in V2V com-

munication networks. In this work, the authors tried to minimize the probability of

AoI going beyond a particular value. The work used the extreme value theorem and

Lyapunov stochastic optimization technique to minimize the objective mentioned.

The authors of [59] developed an approach that is based on Gaussian process regres-

sion to learn V2V system dynamics to estimate the AoI and accordingly allocate the

transmission power while minimizing the tail AoI. In [60], the authors proposed to

analyze and improve the tail of the probabilistic AoI in vehicular networks through

the extreme value theory. They derived a relationship between the probabilistic AoI

and the data queue size in each vehicle then used the result as a constraint in the op-

timization problem. The cars are clustered into groups to reduce interference. Their

problem is formulated as a probabilistic scheduling problem and solved through a pol-

icy to assign each job to a certain virtual machine. The authors in [61] showed that

in vehicular networks, reducing the system age cannot be achieved by maximizing

the throughput in a practical 802.11 system. The work in [62] discussed the beacon

broadcasting scheduling problem to minimize AoI. They solved the problem through

a greedy heuristic. Optimizing the driving route to maintain the confidence of AoI is

discussed in [63].

AoI in communication systems was considered earlier in several works. In [64]

they studied the improvement of AoI while respecting the hard deadline of the data

transmission. Authors of [65] suggested a scheduling policy for data arriving at a

base station to transmit it to different destinations. Each stream has a single-item

queue, and the aim was to minimize AoI. The authors of [66] proposed a similar work

in which they considered an M/M/1 for each stream and proved that a queuing delay

might not lead to an increase in the information age.
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2.2.4 Cooperative Autonomous Driving

Several works in the literature discussed the support of CAD through edge comput-

ing. The work in [67] considers a scenario where several sensors are updating a server

with data and requesting a computation at a specific rate. Both computation time

and data freshness are optimized jointly. They solve the problem through two stages.

The first stage is assigning a job to a virtual machine, which they solved through a

probabilistic scheduling policy. The second is to minimize the completion time and

AoI through the convex optimization technique. In [68], they studied the performance

of inter-vehicle communication. The work explores the performance through a sim-

ulation of the network and convoys of automated vehicles. Authors of [69] utilized

connected vehicles and infrastructure-assisted management to increase safety around

highway work zones. The work used a manual driving simulation to test the pro-

posed solution. The work in [70] offered an alternative to an earlier ETSI standard

perception messaging to improve the vehicle’s perception capabilities. The approach

reduced the number of messages sent hence reducing the resources usage. In [71], they

proposed a transition of control (from the vehicle to the driver) method to increase

safety by informing the car (via the infrastructure) about the place it can safely stop.
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Chapter 3

Workload Scheduling in Vehicular

Networks with Edge Cloud

Capabilities
1

1This chapter has been published in IEEE Transactions on Vehicular Technology [72].
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We consider a vehicular network with edge cloud capabilities; vehicles offload

their workloads to cloudlets co-located with roadside units deployed along the road

and providing computational capabilities for applications running on driving-by cars.

We assume two types of applications, 1) critical and highly time-sensitive (e.g., con-

trol and safety), and 2) delay insensitive with higher bandwidth requirements. We

consider a single RSU and find a solution for scheduling the workloads task process-

ing, taking into account vehicles speeds, residence times within the coverage, and

the delay requirements of the services. We mathematically model this problem to

realize an efficient scheduling policy and provide proof of its NP-hardness. We sub-

sequently propose a polynomial-time and efficient solutions based on the Lagrangian

decomposition method and a greedy scheduling method.

3.1 Motivation

To cope with the explosive computation demands of vehicular nodes, cloud-based

vehicular networking has emerged as a very promising concept to improve the safety,

comfort as well as the experience of passengers. By integrating communication and

computing technologies, cloud-enabled RSUs allow vehicles to offload their tasks that

require high computational capabilities to the remote computation cloud, thus un-

dermining the shortcomings of limited processing power and memory capacities of a

vehicle’s OBU. This scenario is widely known as Mobile Cloud Computing (MCC),

which greatly improves resource utilization and computation performance and pro-

vides several advantages including, but not limited to, 1) extending the mobile’s

battery lifetime by offloading energy consuming computations to the cloud, 2) en-

abling sophisticated memory-exploiting applications to the mobile users, and 3) pro-

viding higher data storage capabilities to the users. However, considering the capacity

limitation and delay fluctuation of the transmission on the backhaul and backbone
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networks, placement of the cloud servers far away from the mobile vehicles may cause

serious degradation of the offloading efficiency. As such, Vehicular Edge Computing

(VEC) is proposed as a promising motion that pushes the cloud services to the edge

of the radio access network, namely the RSU, and provides cloud-based computation

offloading within the RSU’s communication range.

3.2 Contributions

We can summarize the contribution of this work as:

• We formulate task offloading as preemptive scheduling to maximize the weighted

sum of admitted tasks (throughput). We prove the problem is NP-hard through

a reduction from the multiple knapsack problem.

• To meet the latency requirement of vehicular workload, maximize the number

of admitted tasks, and improve the quality of service, we propose two efficient

methods to solve the formulated scheduling problem. The methods are based on

the Lagrangian relaxation technique, which finds near-optimal solutions much

faster than the CPLEX (see Appendix B.2) branch-and-cut method. We also

offer a greedy heuristic to solve the problem.

• We formally prove that both Lagrangian relaxation methods provide a better

upper bound than the standard linear relaxation. We prove also that one of the

methods can reach the optimal solution.

• The suggested methods are evaluated empirically by generating random in-

stances, using traces generated by SUMO (see Appendix B.1), and assessing

the performance in terms of the execution time and rejection rate.
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Figure 3.1: Example of a vehicular network task offloading over a single RSU with k
computation resources.

3.3 System Model

As shown in Figure 3.1, the proposed system model consists of vehicles navigating

along a roadway segment. These vehicles may request the RSU with VEC capabilities

to process their tasks which require high computational power. The RSU is assumed

to possess multiple computation resources with high processing power. We suppose

that each vehicle is equipped with an OBU to communicate with the RSU according

to the Wireless Access for Vehicular Environment (WAVE) protocol suite, particularly

the Dedicated Short Range Communication (DSRC) standard. The WAVE commu-

nication spectrum allows nodes to periodically broadcast beacon messages over the

Control Channel (CCH) announcing their offered services (in case of an RSU) or in-

formation about their speed, location, processing requests, etc. (in case of a vehicle).

In this work, a vehicle selected to upload its request or download the results of its

requested task coordinates with the RSU and switches to a Service Channel (SCH)
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to establish a communication link.

Given that vehicles have limited residence time within the RSU communication

range, it becomes crucial to manage the RSU’s VEC resources efficiently. Therefore,

it respects the deadlines of delay intolerant tasks, and 2) completes the maximum

number of delay-tolerant tasks. It is worthwhile mentioning that one might argue

that it could be more efficient to transfer delay-tolerant tasks to the mobile cloud

rather than the VEC server. However, one must note that these tasks consume a

large bandwidth and experience longer delays. Hence, the vehicular network should

exploit its edge capabilities rather than depending on central cloud servers to process

computational tasks. The VEC should efficiently schedule the processing of these

tasks to respect their delay tolerance (later represented as task deadline) and minimize

the number of rejected tasks.

At the beginning of each scheduling epoch, the RSU with VEC capabilities collects

all information of the set of in-range vehicles and their associated computational tasks

which they wish to offload. Recall that the RSU keeps track of the vehicles’ arrival

times and speeds, and hence, their respective remaining residence times. Now, the

RSU can perform preliminary filtering and directly deny the requests that VEC cannot

process due to two reasons. 1) The task requires more resources than the RSU has,

or 2) the time necessary to compute the task is greater than the remaining residence

time of the requesting vehicle. After completing this pre-processing step, the RSU now

has a fully deterministic representation of the system and can schedule the processing

of computational tasks on its available servers. But, it should consider that VEC

should communicate the result of an admitted task to the requesting vehicle before

that latter leaves the communication range of the RSU. The scheduler also counts the

time required to upload the necessary data for the task computation and download

the result of those computations. This work proposes a scheme composed of four
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Figure 3.2: The system scheme

stages that fully describe the dynamics of the adopted system.

As depicted in Figure 3.2, for each scheduling epoch, all requests pass through

a pre-processing and filtering stage where a subset of requests VEC has naturally

eliminated due to the previously mentioned reasons. Next, the RSU runs a scheduling

algorithm and decides which requests will be processed. Then VEC will advise vehicles

initiating these requests to upload their requests immediately. Then, the requests will

either occupy a computational server or wait in a buffer until it is their time to be

processed2. Once completed, the system will download the result of a requested task

to the initiating vehicle. Now, it is true that in the forthcoming scheduling epoch,

some previously admitted requests are still in the buffer waiting to be processed. To

maintain high system reliability, the RSU has two choices. 1) It locks the resources

until they process previously admitted requests and runs a scheduling algorithm to

schedule the newly arriving requests with the remaining resources. 2) It re-schedules

these previously admitted requests along with the newly arriving requests. Still, this

time, it forces the scheduler to accommodate buffering tasks and deny any reneging

of previously accepted tasks. The following two subsections present in detail the

pre-processing and buffering stages.

2Each server can be assumed to be a virtual machine with fixed processing capacity running on
the edge cloud. A request occupies a VM until it finishes processing without sharing the resources.
The number of VMs is known ahead of time.
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3.3.1 Tasks Preprocessing and Filtering

Pre-processing and filtering of the tasks are the first steps performed at the beginning

of each scheduling epoch. At this stage, the RSU has collected all information required

to decide whether VEC can process the received request given its requirements and

the departure time of the initiating vehicle. Let T totali be the total time required to

upload a task i (including making a request), process it, and then download the result

of the computation to the requesting vehicle. T totali is given by:

T totali = max(T bi + T si , T
u
i ) + T pi + T di (3.1)

Where T bi is the time the request spends in the buffer waiting to be processed, T si is the

time of scheduling the tasks, T ui is the time required to upload the task, T pi is the time

required to process the data and T di is the required download time. We may neglect

the preprocessing time as we can obtain its results after solving simple equations. We

count, therefore, only the maximum of T bi + T si and T ui . That is because the vehicle

will start offloading the required task once its request passes the preprocessing and

filtering stage; hence, these two values overlap, and we should consider only their

maximum. We will discuss the time a request spends in the buffer waiting to enter

the processing stage in the next subsection. The upload and download times depend

on the wireless channel between the vehicle and the roadside unit. Let ri(t) be the

rate achieved by a vehicle i at time t, where ri(t) = Blog2(1 + SNRi(t)). Here, B is

the channel’s bandwidth, and SNRi(t) is the signal to noise ratio at the receiver (e.g.,

RSU) at time t. Given that cars are moving at high speeds, we assume the achieved

rate varies vs. time within the coverage of the RSU. Namely, SNRi(t) = pi×gi(t)
N

,

where gi(t) is the channel gain to the RSU, which depends on the distance between
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vehicle i and the RSU (we assume a path loss channel, and hence gi(t) = (di(t))
−σ, σ

being the path loss exponent), pi is the transmit power of the onboard unit module and

N is the noise term. It is clear that the upload and download times are dependent

on the instantaneous location of the vehicles within the coverage of the RSU; the

closer the vehicle is to the RSU, the higher the rate and the farther it is from the

RSU, the lower is the transmit rate (which affects T totali ). We adopt a widely used

model for describing a task, where a task i has a data size ui (e.g., in bytes) and a

computation requirement Qi (e.g., number of CPU cycles). In addition, each task

specifies a deadline αi for its computation to complete (e.g., self-driving cars require

very tight response time), as well as a priority wi (e.g., to distinguish tasks of different

applications). Therefore, the upload time T ui = ui
ri

where:

ui =

∫ Tu
i +t0

t0

ri(t)dt (3.2)

Here, t0 is the time a vehicle starts offloading the task. ri(t) contains the term

di(t), where di(t) =
[
(ax − t × vi)2 + a2

y

]0.5
. Here, vi is the vehicle’s speed, t is the

time that has elapsed from the start of the upload time, and (ax, ay) are the 2D

coordinates of the base stations, (0,0) being the entry point to the coverage of the

RSU.

Solving the above complex equation can be avoided by dividing the entire RSU

coverage into multiple zones, as illustrated in Figure 3.3; and we assume that the

transmission rate of each zone is constant and calculated using ri(t) where the distance

used is the distance from the RSU to the centre of the zone. Let s ∈ S = {1, 2, . . . ,K}

be the index of a subrange. Each subrange has its own data rate rs, a starting point

fs and an end point es (es − fs is the length of the subrange covered by a rate rs).

Hence, the maximum amount of data that will be uploaded in subrange s, say uis, is

given as uis = (es−fs)∗rs
vi

.
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Figure 3.3: Vehicle 1 uploading starting from subrange 2 to subrange 6

Let li ∈ [−R,R] to be the initial location of vehicle i, then T ui can be calculated

as shown in Procedure 1.

Algorithm 1 Computation of T ui
1: s← si
2: while ui > 0 do
3: uis ← (es−li)∗rs

vi
4: if ui − uis > 0 then
5: T ui ← T ui + es−fs

vi
6: else
7: T ui ← T ui + ui

rs

8: ui ← ui − uis
9: s← s+ 1

10: li ← fs

Now, to evaluate the time required to download the result of processing a requested

task, let di be the data size to be downloaded after processing task i. The maximum

amount of data that the system can download in subrange s is equal to the maximum

amount of data that a vehicle can upload in that same range since the adopted data

rate is the same. As such, We can obtain T di following the same method used to

compute T ui .

The departure time of vehicle i, say βi, can be easily evaluated since its velocity

vi, location li, and the antenna range R are known. But since the generating vehicle
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must receive the outcome of computation before it departs the RSU range, we should

take the task download time into account. To ensure that the RSU transmits the

result of the computed task to the generating vehicle, the latter’s departure time is

modified. It accounts for the download time of the task, assuming that the vehicle

completes its download just before it leaves the RSU communication range. As such,

we can calculate βi as follows:

βi =
R− li
vi
− T̃ di (3.3)

where T̃ di is the (maximum) time required by vehicle i to download the result of

its request as it approaches the end of the RSU communication range. T̃ di can be

calculated similarly to the upload time, but starting from the last subrange and

iterating over the preceding subranges. In other words, T̃ di represents the worst case

where the vehicle gets its computation result towards the end of the coverage range

of the RSU. The deadline of the task, αi, must go through the same calculations to

make it embrace the download time.

Hence, it is now clear how the RSU filters out the requests that VEC cannot

process before the departure of the initiating vehicle. A vehicle whose request passes

the filtering stage for possible processing uploads its relevant data right after the pre-

processing step. During this time, the VEC server is solving the scheduling problem,

and received tasks will wait in a buffer until the scheduling policy is realized. Let γi be

the release time of task i. γi is the time at which the RSU receives task i completely.

If the RSU receives a task during the buffer period of a scheduling epoch, we set its

release time to 0. It means that VEC may schedule this task to start running right

after the buffering period ends. Otherwise, its release time is the remaining time

required for the RSU to receive it completely. Once the RSU has all the required

information to schedule the processing of accepted tasks, it engages in realizing a
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scheduling policy. The following subsection discusses how frequently the scheduling

policy is re-visited and modified.

3.3.2 Tasks Buffering and Scheduling

Clearly, it is impractical to re-visit and modify the scheduling policy whenever the

RSU receives a request. Therefore, the tasks that complete the pre-processing and

filtering step are buffered for some time before the RSU engages in realizing a new

schedule. We referred previously to this time as buffering period. Efficient tasks

scheduling is the ultimate objective of this work. We establish the optimal scheduling

policy by solving an ILP model. However, the latter solution does not scale well.

It may be infeasible, especially in a delay-intolerant environment, since the time re-

quired to solve the model increases tremendously as the number of requests increases.

For this purpose, this work proposes scheduling approaches based on Lagrangian re-

laxation techniques to solve the underlying ILP problem efficiently. Finally, it is

important to mention that each scheduling epoch must account for previously ad-

mitted tasks. In other words, if scheduling epoch st admitted task i, then scheduling

epoch st+1 should be forced not to reject task i. We discuss the scheduling approaches

in detail in the next section.

3.4 VEC Workload Scheduling

Scheduling the offloaded tasks by vehicles is the major problem the VEC system must

tackle. Our system requires scheduling two sets of tasks. Tasks that are already in

the server’s queues (pre-admitted tasks) and the newly arrived ones. In the following

subsections, we provide the problem definition and mathematically model it as an

ILP.
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3.4.1 Problem Definition

Given a set of N tasks I = {1, 2, ...i ..., N} each has a processing time3 pi (sec),

release time γi, deadline αi, departure time βi and a weight wi. In addition, a set

of N ′ pre-admitted tasks I ′ = {1 + N, 2 + N, ...i + N..., N + N ′}. We want to

schedule these two sets of tasks over a single RSU with edge computing capabilities

and havingM computation machines. We want to serve most new tasks and guarantee

the rescheduling of the pre-admitted ones after their release times and before the

minimum of the deadline and departure time. The calculations of {αi}, {βi} and

{γi} were explained in section 3.3. The obligation of rescheduling the pre-admitted

tasks embodies the problem as a special case of a general scheduling problem described

as P |pmtn, ri|
∑
wiUi. In words, it is “scheduling jobs with release time, deadline and

processing time on identical parallel machines to minimize the weighted number of

rejected jobs” [73].

Proposition 3.1. The problem P |pmtn, ri|
∑
wiUi is a strong NP-Hard problem.

Proof. Consider an instance of the multiple knapsack problem (MKP) where there

are M bins B = {1...b...M} each with its own capacity, say cb, and N articles A =

{1...a...N} each has a gain ga and size sa. The objective of the MKP is to maximize

the profit of packed articles in the bins in such a way the sum of packed articles

sizes in each bin does not exceed the bin capacity. To reduce an MKP instance into

our scheduling problem, we do the following: For each article a, create a task i with

weight equals to ga, processing time equals to sa, deadline equals to max
1≤j≤M

{cj} and

release time equals to 0. For each bin b, create a machine. If the bin does not have

the maximum capacity in the MKP instance, create a task tb with a processing time

equals to max
1≤j≤M

{cj}−cb , its deadline is max
1≤j≤M

{cj}, its release time is cb and its weight

is
∑

a∈A ga + 1.

3pi maybe derived from Qi and the capacity of each VM.
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The purpose of the tasks {tb} is to reduce the timeline of the machines to make

it equal to the corresponding bin size in the MKP instance. By making their weights

larger than the weights of all the other tasks combined, and there is enough time to

schedule each in one machine, the optimum solution must contain all the tasks in

{tb}.

The reduction must address two more concerns. First, in MKP, the articles cannot

be partitioned while the tasks in the scheduling problem can be scheduled in a non-

preemptive way. Second, an article can be packed only in one machine while the task

can be scheduled in multiple machines. To address the first, we make the lifespan

of all the tasks the same (i.e., the deadlines of the tasks are equal and their release

times). By doing so, it will be unnecessary to schedule a task preemptively. Even if

that happens, it will be easy to re-organize the tasks, so they become one piece. We

solved the second concern by solving the first one. If a task is scheduled in more than

one machine, we can re-organize the tasks schedule, so we get each task scheduled in

one machine. This completes the reduction. Because the reduction runs in polynomial

time and MKP is a strong NP-Hard problem, then P |pmtn, ri|
∑
wiUi is also a strong

NP-Hard problem.

The proof does not include any pre-admitted tasks because, in MKP, there is no

requirement to enforce the packing of specific articles. Owing to its complexity, we

next look for low complexity methods for solving the workload scheduling problem.

However, we first start by mathematically modeling the problem as an integer lin-

ear program (ILP), which we will use to derive two efficient methods following the

Lagrangian relaxation framework.
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3.4.2 Mathematical Model

Let xi be a binary variable that decides whether task i is admitted or not. Also, let

yit be a binary variable that decides whether to schedule task i in time slot t or not.

Then the model of the general P |pmtn, ri|
∑
Ui problem is the following:

maximize
∑
i∈I

wixi

s.t.

yit = 0 ∀i, t : t ≥ min(αi, βi)

∨ t ≤ γi

(C1)

∑
t≤T

yit = pixi ∀i ∈ I (C2)

∑
i∈I

yit ≤M ∀t ≤ T (C3)

xi ∈ {0, 1} ∀i ∈ I

yit ∈ {0, 1} ∀i ∈ I ∀t ≤ T

The objective of the model is to maximize a weighted sum of the number of

admitted tasks. Constraint C1 makes sure that no task is scheduled after its deadline

or before its release time. Notice that the deadline of a task is whatever comes

first, the departure time βi or the deadline αi. C2 enforces the scheduler to either

schedule a task and complete it or does not schedule it at all. C3 prevents scheduling

a number of tasks more than the number of computation utilities on one unit of

time. The mathematical model described above does not model the requirement of

re-scheduling pre-admitted tasks. We next propose two approaches. The first is to

add the following constraint:
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∑
t≤T

yit = pi ∀i ∈ I ′ (3.4)

This constraint is very similar to constraint C2. It forces the algorithm to re-

schedule all pre-admitted tasks, but not necessarily on the same time units. In ad-

dition, C3 must now include {yit} of the pre-admitted tasks in its summation. We

call this technique re-scheduling the pre-admitted tasks. The other solution is to fix

the pre-admitted tasks in the same schedule before the arrival of the new task and

schedules the new tasks by avoiding its overlap with the pre-admitted ones. We can

do this by making the number of machines available dependent on the time unit (i.e.,

Mt instead of M). This dependency allows the scheduler to assign machines to the

new tasks while reserving others to the pre-admitted tasks in each time unit.

The next section will describe two approaches to solve the problem efficiently.

Both are based on Lagrangian relaxation. In the subsequent sections, we refer to

constraint C2 as the integrality constraint and C3 as the capacity constraint.

3.5 Lagrangian Relaxations

Lagrangian relaxation is a well-known technique to relax a model into a simpler one

by moving one or multiple constraints to the objective function and multiply each

with its corresponding Lagrangian dual variable (λ). The dual variable essentially

represents a penalty for violating a constraint. The relaxed model usually is easier

to solve (i.e., polynomial-time solvable). So the technique solves the relaxed model

multiple times with different values of λ’s until it reaches a tighter upper bound to the

original problem. Every time the relaxed model is solved, the method must explore

the possibility of constructing a lower bound solution. The technique keeps iterating

until it reaches a specific convergence criterion. In most LR implementations, the
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sub-gradient descent is the method that updates the dual variables.

Looking at our scheduling problem (ILP), although it has three constraints (C1,

C2, and C3), it is a complex problem to solve. This characteristic lets us figure out

which constraint(s) makes the ILP program hard to solve. The Lagrangian relaxation

technique allows us to exploit the characteristic of each constraint and simplify the

problem by relaxing a proper one without going very far from the original problem.

The following two subsections will describe the Lagrangian relaxation of our ILP

problem by relaxing the two constraints C2 and C3, respectively.

3.5.1 The Integrality Constraint Lagrangian Relaxation (ICL)

In this subsection, we start by relaxing constraint C2 (integrality constraint). The

following model represents the Lagrangian relaxation of the integrality constraint

while rescheduling the pre-admitted tasks:

Lc2(λ) =
(
maximize

∑
i∈I

(wi − λipi)xi

+
∑
t≤T

∑
i∈I∪I′

λiyit

−
∑
i∈I′

λipi

s.t.

yit = 0 ∀i, t : t ≥ min(α̂i, βi)

∨ t ≤ γi∑
i∈I∪I′

yit ≤M ∀t ≤ T

xi ∈ {0, 1} ∀i yit ∈ {0, 1} ∀i, t
)
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Algorithm 2 Solution for the relaxed ICL problem

1: procedure ICL-Upper-Bound(λ,w,p,α,β,γ,M)
2: xi ← 0 ∀i ∈ I
3: yit ← 0 ∀i ∈ I ∪ I ′ ∀t ≤ T
4: for i ∈ I do
5: if λipi < wi then
6: xi ← 1

7: Is = sortIndexDesc(λ)
8: for t = 1 to T do
9: Mt = 0

10: for i ∈ Is do
11: if t ≥ γi & t < min(αi, βi) & Mt < M & λi ≥ 0 then
12: yit = 1
13: Mt = Mt + 1

return {x,Y }

We propose algorithm 2 to solve the Lagrangian relaxation of the problem Lc2(λ).

In lines 4-66, we set xi to 1 if it has a positive term (i.e., wi − λipi > 0), so as

to increase the objective function. For the variables set {yit}, we sort all the tasks

(I ∪ I ′) in descending order based on their dual variables {λi} and store them in Is

(line 7). Then, for each time unit t ≤ T (line 8), we check for each task i in Is (line

10) whether it satisfies its deadline (γi), departure time (min(αi, βi)), and whether it

has a positive dual value (i.e., λi ≥ 0), and also whether there is a machine available

for processing (lines 11). If yes, we assign task i to that machine and set yit = 1 (line

12).

Proposition 3.2. Procedure 2 returns the optimal solution of the relaxed model

ICL(λ).

Proof. Relaxing the integrality constraint (C2) allows us to optimize the two sets

of variables, {xi, ∀i ∈ I} and {yit, ∀i ∈ I ∪ I ′&t ≤ T} independently. For any xi,

as it can be seen from the relaxed optimization model Lc2(λ), since this variable is

independent from others (i.e., no constraint is restricting the relationship), it can

be optimized independently as explained above. Regarding {yit}, notice that each
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variable in this set appears only in one constraint of the sets C3. Hence, each group of

{yit} variables that appear together in one constraint can be optimized independently.

In essence, there is a knapsack problem in each time unit where the items are the

tasks, and the capacity is the number of machines available. But since all the items

(tasks) have the same size, algorithm 2 should choose the ones (i.e., set yit = 1) that

maximize the term
∑

i∈I∪I′ λtyit (lines 7-13).

Proposition 3.3. The time complexity of the ICL algorithm is O(TN̂ + N̂ log(N̂)),

where N̂ = N +N ′.

Proof. Initially, it takes O(N) to check N tasks (xi, i = 1, 2, ..., N) whether they have

a positive term (i.e., wi−λipi > 0), and assign a value for each task. Sorting all tasks

in the set I ∪ I ′, based on their dual values, takes O(N̂Log(N̂)). Now, for each time

unit t ≤ T and for each task in the sorted list Is = I ∪ I ′, we need to check whether

to set the value of yit to one or not, which takes O(TN̂). Therefore, in total it takes

O(N + TN̂ + N̂ log(N̂)) to run the algorithm. Note that N ⊂ N̂ . Hence, the time

complexity of the ICL algorithm is O(TN̂ + N̂ log(N̂))

3.5.1.1 Obtaining a feasible solution for the problem

So far, the result obtained from Procedure 2 is an upper bound for the problem. To

get a feasible solution (i.e., a lower bound solution), we have to make sure that all the

pre-admitted tasks have been scheduled. This requirement can not be guaranteed by

algorithm 2. If this condition is not satisfied yet, we give higher initial dual values

to the pre-admitted tasks to let the scheduler schedule them first. Since these pre-

admitted tasks were already scheduled in the previous epoch, it is guaranteed that

they will be scheduled in the current epoch. Another solution is to fix the scheduling

of the pre-admitted tasks from the last epoch, and hence, let the scheduler solves for

the newly arrived tasks on available machines and time units.
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3.5.1.2 Updating dual variables using sub-gradient descent

let vector S =< s1, s2, s3, ..., sN̂ >, where si =
∑

t≤T yit − pixi, and xi = 1(∀i ∈ I ′).

Then the dual variables {λ} are updated using the following equation:

λτ+1 = λτ +
ε ∗ [FS(λτ )− Lc2(λτ )]

‖S‖2
S (3.5)

where, τ denotes the current iteration, FS(λτ ) is the obtained feasible solution, and

ε is a constant in the range of [0, 2]. Notice that the nominator of the second term

is always negative because the feasible solution is the lower bound of the objective

function. The Lagrangian is the relaxed model of the original problem. If a value of

xi is set to 0, then the value of its corresponding variable si will always be greater

than or equal to 0, which will result in reducing the dual value of task i in equation

(3.5). Consequently, in the next iteration, either the value of xi will become 1, or the

number of assigned time units to this task will get smaller.

On the other hand, if the value of xi is set to 1, then based on the number of time

units assigned to the task, si will be positive or negative. If positive, then task i will

get time units more than what it requires, which causes equation (3.5) to reduce the

dual value of the task. And the other way around in case when it is negative.

Notice that the cost-effectiveness ratio of a task is wi

pi
. Based on this ratio, we can

decompose the values that a dual variable can take into three intervals, namely:

1. λi >
wi

pi
: In this interval, xi will always be 0, and at the same time, it is

possible to assign time units to the task since the dual variable is relatively

large. The gradient descent, in this case, will keep reducing the dual variable

until Procedure 2 assigns 1 to xi as λi entered the second interval. Or it assigns

no time units for the task, which means it decided not to schedule this task

unless the dual variables of other tasks decrease sufficiently.
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2. 0 ≤ λi ≤ wi

pi
: xi will always be 1. But, this doesn’t mean gaining the entire

task weight. A portion of the weight is given to {yit}, and to get this portion

back, pi of these variables must be set to 1.

3. λi < 0 : xi will always be 1, but at the same time, none of {yit} will ever be 1.

This will make the gradient descent algorithm keeps increasing the dual variable

until it enters the second interval (i.e., 0 ≤ λi ≤ wi

pi
).

Based on the above discussion, it becomes clear that the typical situation is when

the dual variable lies on the second interval. In this interval, the gradient descent

keeps fluctuating (increasing/decreasing) the dual variable until it finds a proper value

which makes Procedure 2 assigns enough time units to the task (but not overly high).

If increasing the task variable does not change the situation, the dual variable will

enter the first interval in which it might get rejected. Therefore, we decided to let

the initial dual values be wi

2pi
.

3.5.1.3 Attaining the optimal or near optimal solution

Notice here that the method may not attain the optimal (or near-optimal) solution

of the original problem directly by solving the Lagrangian dual problem for most

instances. We mentioned earlier that the standard situation is when the value of the

dual variable is between 0 and the cost-effectiveness ratio of the task (i.e., 0 ≤ λi ≤
wi

pi
). In this interval, Procedure 2 will not stop changing the value of the dual variable

unless its corresponding task is assigned with exactly pi time units. However, since

the lifespan of a task is usually larger than its processing time, then most of the

time, more than pi time units are allocated for task i. Consequently, the sub-gradient

descent keeps changing the dual value of task i without converging. In addition,

the extra time units given to this task will probably block other tasks from being

scheduled. Note that even if we remove the extra time units assigned to a task in the
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feasible solution obtained from the Lagrangian relaxation, it will not help schedule

more tasks. Because, in the feasible solution, we do not schedule tasks; we only remove

the infeasible ones. On the other hand, removing the tasks assigned with time units

more than they needed will empty the scheduler. To overcome this problem, we limit

the number of time units assigned to a task by pi. We refer to this method as the

limited integrality constraint Lagrangian (LICL). Now, we have a better chance to

reach the optimal (or near-optimal) solution.

Proposition 3.4. LICL provides a better bound from the linear programming relax-

ation.

Proof. The integrality constraint (C2) can be represented by these two constraints:

∑
t≤T

yit ≥ pixi ∀i ∈ I (3.6)

∑
t≤T

yit ≤ pixi ∀i ∈ I (3.7)

Now, by relaxing only constraint (3.6), the second constraint (3.7) ensures the

limitation mentioned in this section (i.e., limiting the number of time units assigned

to task i by pi). Hereupon, the matrix entries of the LICI’s constraints are not within

the values of 1, 0, or -1 (due to the existence of pi in constraint (3.7)). Therefore,

the matrix is not totally unimodular. Hence, the feasible region obtained from this

relaxed model is not the convex hull of the relaxed problem. Thus, we conclude that

LICL does not have the integrality property, and so it provides a better upper bound

than the standard linear programming relaxation.

Proposition 3.5. For every instance of the original problem, there is at least one

dual value (λ) that can result in an optimal feasible solution.

Proof. First, we have to prove that for any feasible solution A, there is a dual value(s)
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that can generate a feasible solution B, which is identical or better than A. We prove

this by induction.

For the base case, let us assume, at time unit t = 1, a number of tasks are scheduled

in the feasible solution A. Then, we set their dual variables to the highest possible

value so as to be scheduled by Procedure 2. If there are some vacant machines in

this time unit, algorithm 2 will assign extra tasks to these machines that satisfy all

the constraints. Note that in the feasible solution construction, we will remove any

incomplete tasks. So far, in the base case, solution B is at least as good as A.

For the inductive step, let us assume, at time unit t = k, solution B is at least as

good as solution A. Now, at time unit t = k+ 1, tasks that already allocated enough

time units for their processing time will not be considered for the current time unit

since we limited the time units given to task i by its processing time pi. If any task is

out of its lifespan, it won’t be considered for this time unit as well. If there are tasks

in the previous time units that have not been assigned enough (i.e., the number of

time units assigned to task i is less than pi), either they will be assigned the current

time unit or kept for future time units. This decision will be based on the value

of their dual variable. Moreover, Procedure 2 will fill empty machines (if any) with

tasks that have the highest dual values. Consequently, after constructing a feasible

solution from t units, we end up with a solution (B) which is better, or in the worst

case, similar to A (i.e., the number of scheduled tasks in B is greater than or equal

to A). Up to here, we showed that Objective(B) ≥ Objective(A). Now, assume

that we are given the optimal solution. We will follow the algorithm explained above

to get the dual values and schedule the tasks using algorithm 2. To construct the

feasible solution, We remove tasks that have not been scheduled completely, and since

the solution is optimal, there will be no tasks except the ones shown in the optimal

solution, or otherwise, it will contradict the optimality of the solution.
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3.5.2 The Capacity Constraint Lagrangian Relaxation (CCL)

Here, in this subsection, we relax constraint C3 (capacity constraint). The following

is the Lagrangian relaxation model of the capacity constraint while rescheduling the

pre-admitted tasks:

Lc3(µ) =
(
maximize

∑
i∈I

wixi

+
∑
t≤T

∑
i∈I∪I′

µtyit

−
∑
t≤T

µtM

s.t.

yit = 0 ∀i, t : t ≥ min(α̂i, βi)

∨ t ≤ γi∑
t≤T

yit = pixi ∀i ∈ I

∑
t≤T

yit = pi ∀i ∈ I ′

xi ∈ {0, 1} ∀i yit ∈ {0, 1} ∀i, t
)

We propose algorithm 1 to solve the Lagrangian relaxation of the problem Lc3(µ).

Relaxing the capacity constraint (C3) removes the constraint on the number of ma-

chines; the number of tasks assigned in a single time slot is not restricted to the

number of available machines. Thus, it is possible to schedule any number of tasks

to improve the objective function. Notice that the value of the dual variables in this

relaxation model is negative. If a task is decided to be scheduled, based on constraint
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C2, enough processing time units (i.e., pi time units) related to machines should be

assigned to the task (task i). Therefore, to decide whether to schedule a task or not,

Procedure 1 first sorts in descending order the dual values corresponding to the avail-

able time units of tasks’ life span (line 5). Next, it sums up the first pi dual values

in the sorted list (lines 6-8). Then, the sum is added to the task’s weight. Finally, if

the result is positive, Procedure 1 schedules the task. Otherwise, it rejects the task

(lines 9-12).

Algorithm 3 Solution for the relaxed ICL problem

1: procedure CCL-Upper-Bound(µ,w,p,α,β,γ)
2: xi ← 0 ∀i ∈ I
3: yit ← 0 ∀i ∈ I ∪ I ′ ∀t ≤ T
4: for i ∈ I ∪ I ′ do
5: t = sort(γi,min(βi, αi),µ)
6: sum← 0
7: for u = 1 to pi do
8: sum = sum+ µit(u)

9: if wi + sum > 0 ∨ i ∈ I ′ then
10: xi ← 1
11: for u = 1 to pi do
12: yit(u) = 1

return {x,Y }

It is easy to show that Procedure 3 returns the optimal solution of the relaxed

model CCL(λ); we can prove this similarly to how we proved proposition 3.2.

Further, the time complexity of the CCL algorithm is O(N̂T log(T )); we can show

this in a similar way to that of algorithm 2.

3.5.2.1 Obtaining a feasible solution for the CCL problem

To obtain a feasible solution, after limiting the number of machines, we have to satisfy

two conditions: 1) all the pre-admitted tasks are scheduled, and 2) the number of time

units assigned to each task is not less than its processing time. For the first condition,

it is enough to check, at each time slot, the number of assigned pre-admitted tasks is
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not greater than the number of machines. As for the second condition, first, we sort

all the scheduled tasks in descending order based on their updated weights calculated

in line 10 of Procedure 3. Then, for every element in the sorted list, we check its

assigned time units whether they are all within the number of machines. If yes, the

task is accepted; otherwise, it is rejected.

3.5.2.2 Updating dual variables using sub-gradient descent

Let the vector Z =< z1, z2, ..., zT >, where zt =
∑

i∈I∪I′ yit − M . Then the dual

variables {µ} are updated using the following equation:

µτ+1 = µτ +
ε ∗ [FS(µτ )− Lc3(µτ )]

‖Z‖2
Z (3.8)

The intuition behind this equation is straightforward. When the number of tasks

assigned to machines, in time slot t, is greater than the number of available machines,

then the sign of zt is positive, which causes the dual value of t in the next iteration to

decrease. Alternatively, if the number of tasks is lower than the number of machines,

then the sign of zt is negative, which causes the dual value to increase in the next

iteration. The dual variables in this Lagrangian relaxation method represent the

priority of time units used in scheduling tasks. When a time unit is overwhelmed with

tasks in the current iteration, then, in the next iteration, a lower priority is given to

the task, and vice versa. The sub-gradient descent method will keep iterating until

it converges.

3.5.2.3 Optimality

In ICL, we improve the expected outcome by adding limitations to the algorithm,

solving the dual Lagrangian problem. However, in CCL, no limitation can help in

reaching the optimal solution. The only possible restriction that we can address here
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is to let the number of assigned tasks to each time unit not be greater than the

number of machines. However, this limitation makes the performance of the method

even much worse than before. Because it reduces the number of scheduled tasks in

any infeasible solution, which, in turn, limits our choices for extracting a feasible one.

We can prove that CCL provides a better bound than the linear program relax-

ation the same way we did for ICL, but we omitted the proof for the purpose of

brevity.

We found that proving the optimality of CCL is a challenging task. An example

that shows the difficulty is the following: Consider a scenario where we have ten tasks,

each with a fixed processing time of one (i.e., pi = 1, i = 1, 2, ..., 10), a lifespan of

two, T = 2, and a total of five machines. Now, if we set the dual value of the first

time unit higher than the second time unit, then the method will schedule all the ten

tasks in the first time unit. Similarly, if the second time unit has a higher dual value,

all the ten tasks will be scheduled in the second time unit. If both have the same

dual value, tasks will be assigned to any time units without restriction. Meanwhile,

constructing a feasible solution from the given solutions, half of the tasks will be

removed. However, the optimal solution is when all tasks have been scheduled (five

tasks in each time unit).

3.6 Greedy algorithm

As explained earlier, the problem of scheduling the maximum number of tasks at

a vehicular edge cloud is NP-hard. To overcome the complexity, we have solved

the problem using Lagrangian relaxation. However, the method requires an initial

feasible solution to boost its performance. Hence, in this section, we present a scalable

and efficient algorithmic way, where at each scheduling epoch, the algorithm, after

scheduling and allocating time slots for all previously admitted tasks, greedily assigns
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a maximum number of new arrival tasks on available time slots. The steps of the

greedy algorithm are shown in algorithm 1.

Algorithm 4 A greedy heuristic to solve the problem

1: procedure GreedyAlgorithm(I ′, I))
2: Phase I: I ′Sort ← sort(I ′, s.t. αi ≥ αi+1) Fm = T ∀m ∈M
3: for i ∈ I ′ do
4: B ← max(Fm∈M)
5: t = min(FB, αi)
6: for j = 1 to pi do
7: SlotBt ← i
8: t = t− 1

9: FB = t

10: Phase II:
11: ISort ← sort(I, s.t. αi ≤ αi+1)
12: m = 1
13: for i ∈ I do FindSlot← True
14: while FindSlot do
15: t = γi
16: if Slotmt == ∅ then
17: t′ = t
18: Empty ← True
19: for j = 2 to pi do
20: t′ = t′ + 1
21: if Slotmt′ ! = ∅ || t′ > αi then
22: Empty ← False

23: if Empty then
24: for j = 1 to pi do
25: Slotmt ← i
26: t = t+ 1

27: FindSlot← False
28: if FindSlot then
29: if t < αi then
30: t = t+ 1
31: else if m < M then
32: m = m+ 1
33: t = γi
34: else
35: FindSlot← False

The algorithm has two phases. In Phase I (Lines 2-10), all the admitted tasks in
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the set I ′ are allocated to time slots. In more details, first, the algorithm sorts the

set I ′ in descending order based on the tasks’ deadline (i.e., each item i in the sorted

list I ′Sort has a time deadline αi greater than or equal to αi+1, Line 2). Next, for

each admitted task i, the algorithm allocates the farthest sequential empty time slots

available for the set of machines that guarantee the deadline αi. To do that, initially,

the algorithm for all machines (i.e., ∀m ∈ M) assigns the farthest empty time slot

(i.e., Fm) to the last available time slot (i.e., Fm = T , Line 3). Next, the algorithm

for each admitted task i in the set I ′, chooses the emptiest machine (i.e., machine

with farthest empty slot, max(Fm∈M), Line 5), and allocates sequential pi time units

for the chosen machine B, ending with min(FB, αi), to guarantee the task’s deadline

(Lines 7-9). In Phase II (Lines 11-37), a maximum number of newly arrived tasks

is greedily chosen and assigned to available time slots. Initially, the set of arrived

tasks I is sorted in ascending order based on tasks’ deadline (Line 12). Next, from

the first machine (i.e., m = 1), for each task i in the sorted set ISort, the algorithm

allocates the earliest empty time slots that meet the release time γi and the deadline

αi. If no such time slots are found in the current machine, the algorithm tries the

next machines until they fit or drop the task. The While loop in Line 16 ensures

that the algorithm will keep searching for suitable time slots for task i while the flag

FindSlot is True. At each iteration, the time t is initially set to the task’s release

time γi (Line 17). If the time slot for machine m and time t is empty (

Line 18), the algorithm checks whether a sequence of pi units is empty (Lines 19-

24). If yes, it allocates those time slots for task i and sets the flag FindSlot to False,

meaning the task has been scheduled (Lines 25-29). Otherwise, when FindSlot is

True (Line 30), if the current time t is less than the task’s deadline, the time t is

incremented (Lines 31-32), else if there are unvisited machines, the next machine is

assigned, and time t is reset to γi (Lines 33-35), else the task is dropped (Lines 36-37).
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3.7 Performance Evaluation

We study here the performance of the proposed methods, including Integer Linear

Programming (ILP) (to get the optimal solution), Integrality Constraint Lagrangian

(ICL), Capacity Constraint Lagrangian (CCL), and greedy algorithm (Greedy). We

consider different performance metrics such as execution time, performance gap, and

weighted rejection rate. We then study the overall weighted rejection rate for the

overall system using the ICL method by varying the capacity (number of computa-

tional VMs) and arrival rate of the tasks. Finally, we analyze the performance of

the system in terms of the rejection rate. Vehicular traffic traces are obtained us-

ing the well-known traffic simulator SUMO. To imitate a realistic scenario, we chose

the vehicle’s emitting probability (per second) as one. The vehicle’s speed follows a

truncated Gaussian distribution with mean equals 50 KM/h and variance equals 40.

For comparison purposes, we use two different strategies: 1) Rescheduling-Pre-

Admitted-Coding (RPA-Coding); that is, rescheduling the pre-admitted tasks along

with the new arrival tasks at each scheduling epoch. 2) Fixing-Pre-Admitted-Coding

(FPA-Coding); that is fixing the time slots which have been allocated for pre-admitted

tasks and scheduling only the newly arrival tasks on available time slots.

We assume an RSU with 2×500m coverage range, equipped with 20 VMs to

process offloaded workloads. The wireless channel bandwidth is assumed to be B =

300MHz and assume SNR values to cover a range of data rates between 1Mbps (the

farthest from the RSU) and 400Mbps (closest to RSU); here SNRs = 2rs/B−1. Other

simulation parameters are shown in Table 5.2. We use CPLEX to solve our optimiza-

tion models and C++ to simulate the operation of our algorithms through a discrete

event-driven simulation. We generate results on CPU with Intel(R) Core(TM) i7-

6700 CPU @ 2.7GHz, 16GB memory ram, and 64-bit mac operating system. The

results are averaged over ten runs.
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Table 3.1: Measurable factors used for the scheduling performance

Factors Distribution Mean Variance

Task Arrival Rate (tasks/second) Exponential 200 -
vehicle’s Velocity (KM/H) Trunc. Gaussian 50 40
Delay intolerant deadline (s) Gaussian 0.1 0.03
Delay tolerant deadline (s) Gaussian 1 0.1
Upload Data Size (KB) Gaussian 500 1
Download Data Size (KB) Gaussian 100 1
Weight given for the task Gaussian 5 3
Delay Intolerant Processing Time (s) Gaussian 0.02 0.01
Delay Tolerant Processing Time (s) Gaussian 0.5 0.1

3.7.1 Scheduling performance

This section evaluates the scheduling performance of the different proposed methods;

the obtained results are depicted in Fig. 3.4, and Table 3.2. Here, we first assume a

fixed number of vehicles within the range of the RSU and vary the number of tasks

(50-200) generated by the vehicles to test the scalability and quality of the workload

scheduling methods. Our comparison metric here is the rejection rate of requests; the

tasks are generated such that the processing time of each can fit within its lifespan.

As shown in 3.4, as the number of tasks increases, the run time of the ILP expo-

nentially increases. When the number of tasks is 50, the ILP takes around 5 seconds,

and the ICL, CCL, and Greedy take 0.35s, 1.344s, and 0.1134s, respectively. However,

for 200 tasks, the ILP takes around 538s, while the ICL, CCL, and Greedy take 3.58s,

12.34s, and 0.558s, respectively. The latter three methods all exhibit polynomial run

time in the size of the problem, whereas the ILP, suffers from the exponential run

time. The Greedy method enjoys the fastest run time indeed, as expected. However,

Greedy yields solutions that are far from optimal, as indicated in Table 3.2.

The table shows rejection rates obtained by the various methods and the gap

of each of the methods from the optimal solution. First, the table shows that

as the number of offloaded tasks increases, the system will start rejecting some of

the tasks before scheduling them on the VEC resources. Indeed, initially, as the
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Figure 3.4: Computational complexity of different methods.

cars offload their tasks, the system schedules them onto the available machines.

Given the fixed resources (e.g., CPU cycles) per machine, the more tasks are of-

floaded, the higher the response times are going to be. Therefore it becomes dif-

ficult to admit them and complete them before their deadlines, and consequently,

the system rejects those tasks that cannot meet their deadlines. Here, the ILP

allocates and optimally schedules the offloaded workload and therefore achieves at

all times the lowest rejection rate. Whereas, for the other methods whose solu-

tions are only suboptimal, they exhibit a drift from the optimal solution, which is

shown as a deviation in Table 3.2. Rejection rate = weighted num. of admitted tasks
total weight

, and

deviation = optimal obj. - weighted num. of admitted tasks
optimal obj.

.

Now, we should note here that both ICL and CCL are iterative methods. As we

increase the number of iterations, one expects to improve the quality of the solution,

which comes at the expense of higher computation times. To validate this, we study

the performance (objective being the weighted sum of admitted tasks) of an instance
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Figure 3.5: The convergence of ICL towards the optimal solution

of ICL (with 200 tasks), as we iterate towards improving the solution (see Figure 3.5.

We show both the (infeasible) upper and (feasible) lower bounds on the same figure;

the upper bound and lower bounds both converge towards a solution, where after

100 iterations (approx. 3.5s), the gap between the two is reduced to 7%. Given the

superior performance of ICL (over CCL and Greedy) and the slow run time of the

ILP, in the rest of our evaluation, we only consider the ICL method.

From the study and analysis conducted in this section, we conclude that the ICL

method is the best choice for task scheduling in terms of both execution time and

minimizing the rejection rate of the tasks. Hence, in the next section, to evaluate the

performance of our system simulation, we use this method for the scheduling stage.

3.7.2 System Simulation

This section implements an event-driven simulation to simulate the behavior of a

vehicular network with the dynamic arrival of cars and the dynamic generation of
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Table 3.2: Scheduling Performance.

ILP ICL CCL Greedy
number
of tasks

Rej.
Rate

Rej.
Rate

Dev.
Rej.
Rate

Dev.
Rej.
Rate

Dev.

50 6% 13% 7% 26% 21% 26% 22%
75 9% 16% 7% 31% 24% 34% 28%
100 13% 19% 7% 31% 21% 37% 28%
125 14% 22% 9% 33% 22% 39% 28%
150 14% 22% 9% 34% 24% 39% 29%
175 14% 22% 9% 34% 23% 40% 30%
200 14% 22% 9% 33% 22% 40% 30%

tasks. The vehicles’ arrival process is simulated through the realistic vehicles traffic

simulator SUMO . We simulate a 1KM bi-directional road segment with three lanes

for each direction. We assume the RSU is in the middle of this road segment and

the perpendicular distance between the road and the RSU is 20Meters. We assumed

the following values for the simulation: buffering time: 0.05Seconds, scheduling time:

0.05Seconds, Sumo vehicle arrival probability per second: 1, and tasks request rate

per second: 20. The rate of requested tasks per vehicle is assumed to follow a Pois-

son process, and the inter-arrival time between two consecutive requests follows an

exponential distribution. As explained earlier, we consider two classes of tasks: the

time-sensitive (60%) and high bandwidth tasks (40%). The ICL method is the one

used for scheduling the workload. We simulate the system for a total of 5 seconds.

Here, at each scheduling epoch (5ms), the system gathers the requests to offload the

tasks and invoke the ICL to schedule the workloads (each time with and without the

ones already waiting in the system, RPA, and FPA, respectively).

We consider two types of events: request arrival and scheduling events. The events

are generated as follows: We first run SUMO and monitor the arrival of vehicles at

every time unit. If a vehicle arrives, we generate the tasks requests for this vehicle up

to the maximum simulation time and save these events to a sorted data structure. If a
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vehicle leaves the road segment, we update its departure time. We go through all the

vehicles and their generated events. If an event occurred between the previous and

current units, we would update the event location with the vehicle’s current location.

After going through the simulation duration, we remove all the events that occurred

after the vehicle departure time and then add scheduling events to the events data

structure. We assume that the maximum legal speed of this road is 80 km/h and that

95% of the vehicles run at speed in the range 80% to 120% of the legal speed limit.

The maximum acceleration is 3.0 km/h2 and maximum deceleration is 6.0 km/h2.

The speeds of the vehicles follow a gaussian distribution with mean equals the road’s

legal maximum speed, and the variance is 0.1.

Fig. 3.6 evaluates the system performance of the ICL method by varying the

number of computational VMs. We fix the request arrival rate to 20 req./s. For

comparison purposes, we use RPA-Coding and FPA-Coding. As shown in the figure,

it is clear that as we increase the number of computational machines, the overall

weighted rejection rate for both coding methods decreases linearly. For instance,

when the number of VMs is 20, the weighted rejection rate of RPA-coding (FPA-

coding) is 17.5% (19.5%), and when the number of VMs is 80, the rejection rate is

6% (10%). This even demonstrates that the gap between the rejection rates of the two

coding methods slightly increases as the number of VMs increases. Recall that the

RPA-coding has more flexibility because it can reschedule the pre-admitted tasks. For

the same reason, as illustrated in the figure, RPA-Coding consistently outperforms

FPA-Coding. Most importantly, from this study, we can analyze the capacity of the

MEC resources to be provisioned for acceptable quality of service.

In Fig. 3.7, we study the system performance in terms of weighted rejection rate

by varying the arrival rate from 10 requests per second to 25. In this study, we fix the

number of computational VMs to 20. The figure shows that the RPA-Coding performs
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Figure 3.6: Rejection rate Vs number of machines.

better than the other coding method with at least 3% lower rejection rate. Notice

that such gain is attributed to the flexibility of rescheduling the pre-admitted tasks.

However, this gain comes at the expense of additional complexity and computational

time. From the figure, we may also observe that the rejection rate of both coding

methods gradually increases with the increase of the requested arrival rate. Indeed,

when the number of arrival tasks in the system increases, the system starts to reject

more tasks depending on processing capability and tasks’ deadline. However, the

figure shows that even at the load of 25 req./s, the rejection rate is still acceptable.

Fig. 3.8 plots the rejection rate of the two ICL coding methods by varying the

percentage of delay-tolerant tasks to delay intolerant. This study will help us deter-

mine the type of tasks in terms of their latency the VEC system should admit in the

pre-processing stage to increase the performance. The computational capacity of the

system is set to 20 VMs, and the task arrival rate is fixed to 20 tasks per second.

The figure shows that when the percentage of tolerant to intolerant tasks is low (for
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Figure 3.7: Rejection rate VS request arrival rate.

instance, 25%), the rejection rate is very low (respectively 5% for RPA-Coding and

8% for FPA-Coding). Also, when the percentage of tolerant to intolerant tasks in-

creases (for example, reaches 75%), the rejection rate increases accordingly (res. the

rejection rate of RPA-Coding and FPA-Coding becomes 21% and 22%). The reason

can be explained as follows: when most of the tasks to be scheduled in the system are

intolerant tasks, due to their small sizes and short processing time requirement, the

scheduler can easily adjust them at available time slots, and thus accepts more tasks.

Whereas, when the number of tolerant tasks to intolerant ones is more significant,

the scheduler faces difficulty fitting them on available time slots. The scheduler will

mostly accept the intolerant tasks and rejects the tolerant ones. Hence, to balance

the two types of delay tasks, the smart RSU is crucial. This study is out of the scope

of this work and is kept for future work.

Figure 3.9 shows the performance of the system simulation for five seconds. The

figure depicts the fluctuation of the rejection rate for the two coding strategies within
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Figure 3.8: Delay-tolerant to delay-intolerant tasks ratio.

these seconds. For the first second, the performance of both RPA-coding and FPA-

coding schemes are almost the same. After that, as the machines of the systems

started to get filled up, FPA-coding finds difficulty to get free time slots for the new

tasks. That is because this coding method does not reschedule the pre-admitted

tasks. On the contrary, the RPA-coding, because of rescheduling the pre-admitted

tasks, makes more room for new arrival tasks.

In addition to the rejection rate, we study the system’s performance in terms of

tasks completion time. Indeed, evaluating the absolute completion time is crucial if

the objective is to reduce the task’s latency. However, since in this work, the ultimate

goal is to increase the weighted number of admitted tasks, where each task has its

completion deadline, hence, studying the earliness of the accepted tasks will give

better insights. The earliness for each task (say task i) is computed as follows:

earliness(i) = wi
αi − φi
αi − ψi

(3.9)
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Figure 3.9: Rejection rate VS simulation time

where φi and ψi are respectively the completion time and the request time of task i.

Fig. 3.10 evaluates the effectiveness of the system as a function of earliness by

varying the number of computational VMs. The request arrival rate is set to 20 req/s,

and the number of machines is varied from 10 to 70. As shown in the figure, regardless

of the number of VMs, it is clear that due to the rescheduling capability, the RPA-

Coding schedules tasks faster than FPA-Coding. We may also infer that the earliness

of both methods increases with the increase of the number of VMs. However, the

RPA-Coding grows more quickly than the other, since the former has more flexibility

to schedule tasks with early deadlines first, without being affected by pre-admitted

tasks. Hence, as can be seen, the gap between the two coding schemes increases with

the number of VMs. For instance, with 70 VMs, the gap is almost twice the gap with

30 VMs.

In Fig. 3.11, we illustrate the effectiveness of the system by varying the requested

arrival rate from 10 to 25 req./s. In this evaluation, two system sizes, i.e., 20 and
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Figure 3.10: Earliness VS no. of machines.

60 VMs, are considered. In fact, with 60 VMs, when the arrival rate is very low

(for example, ten req/s), the system can schedule all the requested tasks without

being filled. As shown in the figure, tasks are being scheduled much earlier than their

deadlines. Hence the earliness is shown to be very high. Clearly, as the arrival rate

increases, the system occupies more tasks, and thus the earliness starts to decrease.

Whereas, in a system with 20 VMs, when the arrival rate is very low, because of the

small number of VMs, all the computational resources will be occupied, and therefore

the earliness is shown to be low. By increasing the arrival rate, the earliness does not

show much difference. That is because all the system’s computational resources are

fully occupied and have no room for new tasks. Hence, along with the arrival of more

tasks, the system starts to drop the overwhelmed tasks, and thus the earliness stays

unchanged.
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Figure 3.11: Earliness VS request arrival rate.

3.8 Conclusion

We considered a vehicular cloud edge system that brings capabilities to deploy data

storage, computing, and communication and a host of support applications for emerg-

ing vehicular services to the network edge, closer to where the users are, thereby

reducing response times and saving core bandwidth. However, a typical challenge

for VEC is related to computation offloading which should consider the high mo-

bility of vehicular networks. In addition, various offloaded tasks may have different

resource requirements (e.g., computation resources for task execution, communica-

tion resources, etc.). We studied the problem of workload offloading and scheduling

at VEC resources deployed alongside a roadside unit and providing vehicular ser-

vices to driving-by cars. We consider pre-processing tasks before admitting them and

then solve a scheduling problem for all admitted tasks to meet their deadlines. We

showed that the scheduling problem is NP-hard and present polynomial-time solutions
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based on Lagrangian relaxations to attain efficient solutions. Our obtained results

are compared with the optimal solutions. Our findings are beneficial for dimensioning

vehicular cloud edge systems in terms of capacity and resources, considering the high

mobility and density of vehicles and the intensity of offloaded tasks per vehicle.
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Chapter 4

An Infrastructure-Assisted

Workload Scheduling for

Computational Resources

Exploitation in Fog-Enabled

Vehicular Network
1

1This chapter has been published in IEEE Internet of Things Journal [74].

68



As we concluded in chapter three, the validity of deploying and utilizing MEC in

a vehicular network is now apparent. This chapter accumulates over the previous one

with two components: First, it considers limited wireless resources available hence

promoting the model feasibility. Second, it utilizes idle resources in the vehicles’

OBUs as an expansion to the infrastructure computational resources. Fog computing

is a framework that facilitates the exploitation of computational resources available

at the very edge of the network (e.g., users’ equipment, vehicles, etc.). By utilizing

idle resources at that level, we can expand our system beyond using the infrastruc-

ture resources to exploiting the computational potential of any network edge node.

Such a framework will reduce the end-to-end communication delay and increase the

service’s reliability while reducing the amount of bandwidth consumed in the back-

haul network. VeFC broaches the concept of VaaR by harvesting the vehicles’ OBU

computational capabilities. In this work, we propose a system deployed on RSUs, to

collect low-latency computational tasks offloading requests from different sources and

efficiently schedule them on available OBUs before exiting the RSUs’ coverage range.

4.1 Motivation

In recent years, the conventional solution of inflating computational processing de-

mands in vehicular networks was to offload the intensive tasks over the distant cloud

servers through the RSU. Such an RSU-to-Cloud communication exhibits consider-

able delays that marginalize the cloud servers’ efficiency for handling delay-sensitive

services, including significant bandwidth consumption when forwarding tasks in pe-

riods of elevated offered loads. Under such circumstances, MEC presents itself as

an alternative setting that yields lower end-to-end delays through the deployment of

computationally-capable servers (a.k.a. cloudlets) at the network’s edge close to the

RSU (e.g. [75]). However, these MEC servers inevitably find themselves unable to
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cope with high offered loads due to the timely unavailability of adequate computa-

tional resources; this being a limitation that obliterates MECs’ short-latency virtue

(e.g. [18]). An early solution suggested in [18, 19, 76] was to organize cloudlets in

a hierarchy of multiple edge-tiers. With this arrangement, lower-tier cloudlets are

allowed to issue task migration requests to upper cloudlet tiers. Analytical studies

were conducted in [18] and [19] demonstrating the superiority of Hierarchical MECs

(H-ECs)’ over typical flat MECs in terms of delay and task admissibility. However,

installation of multiple proprietary cloudlets and their organization in H-MECs in-

cur considerable capital and operational expenditures (e.g. [20]). These challenges

motivate the necessity of an alternative cost-minimal solution that accounts for both

latency requirements and the tasks’ admissibility. This level is where Vehicular Fog

Computing (VeFC) and the concept of VaaR come into play.

Over a long time, if the vehicles dedicate their OBUs only for their internal pro-

cessing, their capabilities will probably be underutilized. As these vehicles’ OBUs

possess AI tools, other vehicles that lack such resources can improve their driving

automation potentials through wireless computational tasks offloading. One of the

typical examples in driving automation is Augmented Reality (AR), where the system

creates 3D objects to support the driver’s safety and avoid traffic jams. A vehicle

can request from other vehicles to sense their surrounding environments, analyze, and

send back the results to the requester to support the creation of accurate AR objects

that support both short-term and long-term navigation. A vehicle that tries to choose

between lanes can request from other vehicles to evaluate their lanes condition based

on received or collected information to support the decision of the requesting vehi-

cle. Besides, IoT) devices and pedestrians may also benefit from the computational

capabilities available on OBUs. For example, IoT devices that require a road net-

work status may provide vehicles with data or ask vehicles to execute some artificial
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Figure 4.1: Hierarchical MEC-based sub-networking scenario.

intelligent tasks over some data and send results back to them. A pedestrian who

tries to apply a heavy task, such as object recognition over a picture, can get help

from nearby vehicles to perform such an energy-intensive and complex task instead

of doing it locally.

4.2 System Model

We consider a network scenario as depicted in Fig. 4.1; an RSU is located in a

dense urban area and provided with wireless communication capabilities allowing it

to communicate with vehicles present in its communication range.

The RSU is assumed to be equipped with edge computing capabilities and renders

services to incoming requests. Requests arrive at the RSU and ask for computational

processing and are assumed to be emanating from either incoming vehicles, requesting

particular computing and processing beyond the resources available on the vehicle,

or pedestrians or IoT devices whose computing capabilities are limited. The RSU

schedules tasks and assigns them resources over the cloudlet co-located with the RSU

or over in-range vehicles (servers) with available resources demanded by the tasks.
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Here, it is assumed that some of the in-range vehicles may have computing capabilities

that we can leverage to offload the tasks awaiting processing. Therefore, our objective

is to schedule the processing of incoming tasks’ requests either at the RSU or at in-

range vehicles and assign them enough computing resources to complete processing

within their deadlines.

4.2.1 Communication Model

The network operates on a radio spectrum allocated for the communication between

the clients and servers; the total spectrum width is assumed to be B, and both uplink

and downlink transmissions are assigned portions of this bandwidth. Transmissions

are assumed to be, for simplicity, orthogonal to avoid interference. The downlink and

the uplink bandwidth portions are α and β respectively (α ≤ B and β ≤ B). In our

model, we decide the portion of bandwidth allocated to each of the links. Let r(t) be

the rate achieved on the link between a server and a client at time t. Then, r(t) is a

function of the radio spectrum allocated to the link and the distance d(t) separating

the client from the server at time t.

r(t) = αt × log2(1 +
P × d(t)−σ

Ir +N0 ∗ αt
) (4.1)

where P is the transmission power, N0 is two times the power spectral density, d(t) is

the distance between the source and destination at time t, σ is the path loss exponent,

and Ir is the interference.

Now suppose the client uploads (download) a task of size u to/from the server, the

time it takes to offload this task is Tu = u
r

where r is the transmission rate achieved

during the offload, which is a function of the instantaneous rate on the link. Hence,

the equation that relates the upload time Tu, the task size u and the rate r(t) is:
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u =

∫ Tu+t0

t0

r(t)dt (4.2)

t0 is the time a client starts offloading the task. r(t) depends on the distance d(t)

between the server and the client, where d(t) =
[
(t × vxc − t × vxs )2 + (t × vyc − t ×

vys )
2
]0.5

. Here, vxc = vccos(θc) (vyc = vcsin(θc)) and vxs = vscos(θs) (vys = vssin(θs))

are the x-component (y-component) of the client and the server velocities, vc and

vs, respectively and θc (θs) is the angle between vc(vs) and the x-axis. t is the time

that has elapsed from the start of the upload time and (0,0) being the entry point

to the coverage of the RSU. The complex integration above is difficult to solve and

particularly for this dynamic environment and online operation. To overcome this

difficulty, we calculate the distance between the clients and the servers in the middle

of each time slot and compute the rate accordingly.

4.2.2 Computation Model

Our system assumes a server is available at the RSU and each vehicle j ∈ J . The

computational capacity of each vehicle is depicted by its CPU frequency fj. For

simplicity, we assume that each vehicle’s OBU server contains only one CPU. Each

task i ∈ I is characterized by five deterministic values: upload and download data

sizes γi and σi respectively with their computation requirement ci, weight ωi which

represents the importance of the task to be scheduled before its deadline, and deadline

δi. The tasks are indivisible; they can not be partitioned and should be computed

by only one server. A server can not start adding a task unless it receives all the

required data and can not send back the calculated result unless it completes the

task computation.
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4.2.3 Problem Definition

The problem input is a set of tasks I = {1, ..., i, ..., ni} required to be offloaded from

several sources to a set of servers J available at the RSU and the vehicles’ OBUs

S = {0, 1, ..., j, ..., nj}. Task i requires a certain application available only on a subset

of these servers, say Ji, and it is characterized by its computational cycles required

ci, its upload data size γi, its download data size σi, its deadline δi and its weight

ωi. The aim is to find the amount of computing resources assigned from server j to

task i ft,ij in each time unit t. Also the radio resource/bandwidth αt,ij (respectively

βt,ij) dedicated for the link used for transmission of task i client and server j. The

objective is to maximize the weighted number of processed offloaded tasks. Note that

the processing of a task can not start until all the required data is uploaded to the

assigned vehicle. Similarly, a task cannot be downloaded until the processing of the

task is finished. We indicate the distance between vehicle j and the source of task i

at time unit t by dtij.

Proposition 4.1. The scheduling problem defined above is a NP-hard problem.

Proof. Consider the well-known NP-hard scheduling problem P |pmtn|
∑
wiUi [77],

where there are N tasks with deadlines to be scheduled over M parallel identical

machines to maximize the number of admitted tasks. It is easy to show that instances

of this problem can be reduced to our problem. For each task in this problem, we may

create a task for our problem having the same specifications without being implicitly

downloaded or uploaded to a certain vehicle. Then we create M machines similar

to the above known NP-hard problem to process the maximum number of admitted

tasks during the entire timeline. We reduced the scheduling problem P |pmtn|
∑
wiUi

to our problem in polynomial time; hence our problem is an NP-Hard problem.

We, therefore, mathematically formulate the problem as a mixed-integer linear
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program. Then we propose a decomposition scheme based on the Dantzing-Wolfe

decomposition method in Section 6. This method divides the problem into a linear

master problem and multiple pricing sub-problems, which can be solved in polynomial

time through dynamic programming.

4.3 Mathematical Model

In this section, we formulate the problem as an ILP. 2

Table 4.1: Symbols used in formulating the problem

Symbol Explanation
a) Parameters
I Set of offloaded tasks
J Set of servers
Ji Set of servers that have the application of task i
T Maximum time segment
B Total spectrum
ci Required number of clock cycles for task i
δi Deadline of task i
γi Upload data size of task i
σi Download data size of task i
dtij Distance between vehicle j and the RSU
∆ Time unit length
ωi Weight of task i
fj Maximum computation capacity of server j
N0 Power spectral density
α Path loss exponent
b) Variables
fij ∈ R Frequency assigned for task i on server j.
usti ∈ {0, 1} Task i is in upload stage at time t or not.
psti ∈ {0, 1} Task i is in processing stage at time t or not.
dsti ∈ {0, 1} Task i is in download stage at time t or not.
αt,ij ∈ R Bandwidth assigned for i to be uploaded to server j.
βt,ij ∈ R Bandwidth assigned for i to be downloaded from server j.
xij ∈ {0, 1} Indicates whether task i is assigned to server j or not.
rdt,ij ∈ R Download data rate of task i from server j at time t.
rut,ij ∈ R Upload data rate of task i to server j at time t

2The list of symbols is shown in Table 4.1
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The objective of the mathematical model is:

maximize
∑
i∈I

∑
j∈Ji

ωixij (Obj1)

In words, maximize the weighted number of tasks scheduled over the servers,

subject to the following constraints:

1) Sum of computation resources assigned to the offloaded tasks to a server can

not exceed maximum capacity.

∑
i∈I

ft,ij ≤ fj ∀j ∈ J ∀t ≤ T (C1)

2) The computation resources assigned to a task from one server should be suffi-

cient to finish the task.

∑
t≤T

ft,ij ×∆ = xijci ∀i ∈ I ∀j ∈ Ji (C2)

3) A task, if scheduled, is either in upload, compute, or download stage.

usti + psti + dsti =
∑
j∈J

xij ∀i ∈ I ∀t < δi (C3)

4) The first time unit in the lifetime of each task must be in the upload stage

unless it is decided to be rejected.

us1
i =

∑
j∈J

xij ∀i ∈ I (C4)

5) The last time unit before the deadline of a task must be in the download stage
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unless it is decided to be rejected.

dsδii =
∑
j∈J

xij ∀i ∈ I (C5)

6) Throughout the time, a task can not be in an upload stage unless it was in the

upload stage in the previous time unit.

usti ≤ ust−1
i ∀i ∈ I : 2 ≤ t ≤ δi (C6)

7) In any time unit, a task can not be in a download stage unless it will be in the

download stage in the next time unit (unless it is rejected).

dsti ≤ dst+1
i ∀i ∈ I ∀t < δi (C7)

8) After the deadline, no activities should be in progress.

usti + psti + dsti = 0 ∀i ∈ I ∀t ≥ δi (C8)

The bandwidth used for all the transmissions happening in one time unit can not

exceed the total spectrum

∑
i∈I
j∈J

βt,ij +
∑
i∈I
j∈J

αt,ij ≤ B ∀t ≤ T (C9)

9) A task can not be assigned a computation resource from a vehicle unless it is

in the computation stage.

ft,ij ≤ fj × psti ∀i ∈ I, ∀j ∈ Ji, ∀t ≤ T (C10)
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10) In each time unit, a task can not be assigned a bandwidth to download data

unless it is in the download stage.

βt,ij ≤ B × dsti ∀i ∈ I, ∀j ∈ Ji, ∀t ≤ T (C11)

11) In each time unit, a task can not be assigned a bandwidth to upload data

unless it is in the upload stage.

αt,ij ≤ B × usti ∀i ∈ I, ∀j ∈ Ji, ∀t ≤ T (C12)

12) The download transmission rate for task i is :

rdtij = βt,ij × log
[
1 +

pi × (dtij)
−σ

βt,ij ×N0

]
(4.3)

The upload transmission rate rutij can be calculated similarly.

13) For each task, the bandwidth should be assigned for the entire data to be

uploaded or downloaded.

∑
t≤T

rutij ×∆ = γi × xij ∀i ∈ I ∀j ∈ Ji (C13a)

∑
t≤T

rdtij ×∆ = σi × xij ∀i ∈ I ∀j ∈ Ji (C13b)

Note that constraints C13a and C13b are non-linear. To linearize them, we apply

a well-known technique that is based on the calculation of the gradient of the bit rate

function.

Finally, a task should only be assigned to one server.
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∑
j∈J

xij ≤ 1 ∀i ∈ I (C14)

4.4 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition technique utilizes an ILP property that several con-

straints of a problem contain only a subset of the variables (Blocks structure). These

constraints, if separated, define an easy-to-solve subproblem. The approach uses the

presentation theorem of linear programming to encode all the feasible points of the

original problem as an affine combination of the subproblem feasible points.

Now, looking into our problem model, we can infer that only two constraints have

variables of different tasks (C1 and C9). All the other constraints contain variables of

one task. Hence, using Dantzig-Wolfe decomposition, we can decompose the problem

into one master problem and N pricing subproblems.

Let X i be the set of points that satisfies all the constraints of task i except

constraints in the sets C1 and C9. Then any feasible solution for the problem can be

written as affine combinations of the points in xij under the condition that it satisfies

C1 and C9. Let Ki be the set of integer points in the task i feasible space. Let xki

be feasible integer point in task i feasible space. Then the problem can be re-written

as follows:
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maximize
∑
i∈I

∑
j∈Ji

ωi
∑
k∈Ki

λki x
k
ij

s.t.∑
i∈I

∑
k∈Ki

λki f
k
t,ij ≤ fj ∀j ∈ J ∀t ≤ T (C1’)

∑
i∈I
j∈J

∑
k∈Ki

λki
(
βkt,ij + αkt,ij

)
≤ B ∀t ≤ T (C9’)

∑
k∈Ki

λki = 1 ∀i ∈ I (Ca)

λki ∈ {0, 1}

xki ∈ Xi

As there is an exponential number of combinations of points in each Xi, an efficient

way to solve the problem is by relaxing the variables to linear ones and solving the

problem via column generation (CG) [78]. The following subsection will discuss our

CG approach.

4.4.1 The Column Generation Algorithm

As discussed in the previous section, the possible number of columns combinations of

the master problem is exponential. The basic idea of the column generation algorithm

is to avoid including all the possible columns of a problem in the master model

tableau. This avoidance is done by making the optimization of the master program

to calculate the dual variables and feed them to the pricing subproblems. The role of

the subproblems is to generate the columns with the minimum reduced cost using the

given dual values. When the master model converges according to a certain criterion,

the algorithm starts to solve the integer version of the master problem.
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4.4.1.1 Initial solution

We chose to provide an initial solution with a constructive greedy heuristic. The

algorithm pseudocode is shown in Algorithm 5. The algorithm starts by sorting the

tasks according to their processing times in ascending order. Then for each task, it

sorts the vehicles’ OBUs according to their available computation resources. Then

for each server, it tries to assign that task. If it succeeds, it considers the task is

scheduled. Otherwise, it resets the resources as the task was not scheduled. The

input of the greedy algorithm is the set of tasks I, the set of servers J and the

transmission rate between each task-server pair in each time unit R.

Proposition 4.2. The time complexity of the greedy approach in Algorithm 5 is

O(N
(
M log(M) +MT

)
).

Proof. We can sort the tasks with merge sort with complexity O
(
N log(N)

)
. Since

for each task, we are sorting the servers, this will take O(NM log(M)). Checking

for available server whether the task can fit or not will take O(NMT ). So the total

complexity will be O(O
(
N log(N)

)
+N

(
M log(M)+MT

)
) and since the second term

is more complex, we can neglect the first term.

Proposition 4.3. The greedy approach in Algorithm 5 always returns a feasible so-

lution.

Proof. We prove this with loop invariant. The initial step is when the algorithm

tries to schedule the first task. Since the resources are vacant, the algorithm will not

find a problem in detecting the available resources. Hence, all the ”if” conditions on

lines 10, 16, and 23 will be satisfied. If the task requirement is big enough that all

the available resources can not satisfy it, the function DeleteTask will free all the

resources acquired by this task. Otherwise, the task will be admitted. Up to this

point, the solution is feasible. Now, for all the other tasks, the ”if” conditions on line
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10, 16, and 23 will check whether the resources in a certain time unit is available or

not. If available, the new task will be assigned these available resources; otherwise,

it will check other time units. This will avoid assigning two or more tasks the same

resource at the same time. Again, if the task requirement is completely satisfied, the

task is admitted. Otherwise, the function DeleteTask will free all the resources the

current task has acquired. After going through all tasks, the algorithm will terminate

having a certain number of tasks being admitted and another rejected without any

overlap between the assigned resources. Hence the final solution is feasible.

4.4.1.2 Solving the Subproblems

Let ψjt be the dual variable corresponding to a constraint in the set C1, φt be the

dual variable corresponding to constraint in set C9, and ζi be the dual variable of

constraint Ca for task i. Then the column generation pricing subproblem for each

task is modeled as:
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Algorithm 5 Greedy algorithm

1: procedure Greedy(I,J ,R)
2: xij ← 0 ∀i ∈ I
3: f̂j ← T × fj ∀j ∈ J
4: sort(I, ci ≤ ci+1)
5: bandwidthAcquired[1...T ]← false
6: compAcquired[1...|J |][1...T ]← false
7: for i ∈ I do
8: uploaded← 0
9: downloaded← 0

10: computed← 0
11: sort(J, f̂j ≥ f̂j+1)
12: for j ∈ J do
13: for t← 0 : δi do
14: if uploaded < γi then
15: if !bandwidthAcquired[t] then
16: uploaded += R[i][j][t]×∆
17: bandwidthAcquired[t]← true
18: βt,i,j ← B

19: else if computed < ci then
20: if !compAcquired[j][t] then
21: computed += fj ×∆
22: compAcquired[j][t]← true
23: ft,ij ← fj

24: else if downloaded < σi then
25: if !bandwidthAquired[t] then
26: downloaded += R[i][j][t]×∆
27: bandwidthAcquired[t]← true
28: αt,i,j ← B

29: if downloaded >= σi then
30: xij ← 1
31: else
32: DeleteTask(i)

return {x,f ,α,β}

minimize
∑
j∈J
t≤T

ψjtft,ij

+
∑
t≤T

φt
∑
j∈J

(
αt,ij + βt,ij

)
− ωixij

+ ζi

s.t.

xij ∈ Xi

83



By looking into the subproblem objective function and constraints, we can state

the subproblem as follows:

Definition: Given a set of time units, each with its own weights for being used only

to upload, download or compute the task in every server, specify the process (uploading,

downloading, or computing) and the amount of resource used in each time unit in one

server to minimize the total weight.

The solution space of this problem is polynomial in size. Hence, it is possible to

solve the problem using a dynamic programming approach that can efficiently find

the optimum solution without the need for any branch-and-bound-based algorithm.

Function 1 Get feasible solution for one stage

1: function feasible(A,amount,price, il, f l, inc)
2: stage.index← il
3: while stage.amount < A AND
4: stage.index <= fl do
5: stage.addCurrentIndex( price[stage.index]

amount[stage.index]
)

6: inc(stage.index)

7: removeExtraPrice(stage)
8: return stage

Function 2 Remove the extra time units.

1: function updateStage(stage,amount, A)
2: index← stage.index()
3: maxAmount← amount[index]
4: while stage.amount−maxAmount > A do
5: stage.deleteItem(index)
6: index← stage.index()
7: maxAmount← amount[index]

8: removeExtraPrice(stage)
9: return stage

Our solution to the subproblem of a specific server-client pair is shown in algorithm

6. There are three loops in the algorithm (lines 5, 9, and 14). Before the outer loop,

the algorithm calls feasible (shown in Function 1). This function starts from a time
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Algorithm 6 Subproblem Solution

1: procedure SolveSubproblem(i, j,ψ,φ, fj,R)
2:

3: s.up←
4: feasible(γi,R[i][j] ∗∆,φ ∗ S, 0, δi,++)
5: while s.up.index < δi do
6:

7: s.down← feasible(σi,R[i][j] ∗∆,
8: φ ∗ S, δi, s.up.index−−)
9: while s.down.index

10: > s.up.index do
11:

12: s.proc← feasible(ci, fj ∗∆,
13: ψj ∗ fj, s.up.index, s.down.index + +)
14: while s.proc.index < s.down.index do
15:

16: if s.price > bests.price then
17: bests← s
18:

19: maxRatio← s.proc.maxRatio
20: ratio← ψ[s.procIndex]

∆

21: if maxRatio > ratio then
22: s.proc.addCurrentIndex(ratio)
23: updateStage(s.proc, fj, ci)

24: s.proc.index + +

25:

26: maxRatio← s.down.maxRatio()

27: ratio← φ[s.down.index]∗S
rate[i][j][s.down.index]∗∆

28: if maxRatio > ratio then
29: s.down.addCurrentIndex(ratio)
30: updateStage(s.down, rates[i][j], σi)

31: s.down.index−−
32:

33: maxRatio← s.up.maxRatio()

34: ratio← φ[s.up.index]∗S
rate[i][j][s.up.index]∗∆

35: if maxRatio > ratio then
36: s.up.addCurrentIndex(ratio)
37: updateStage(s.up, rates[i][j], γi)

38: s.up.index+ +
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unit given by the parameter il and adds the resources available in this time unit

into a certain stage (the variable stage). While iterating with a certain direction

(the inc operator) of the timeline, the function keeps adding resources to the stage

until it fulfills the task’s stage requirement (the variable A) or it passes the possible

time unit that can be acquired (fl). For each time unit added, it calculates its

price-amount ratio and adds it to a sorted data structure (i.e., a red-black tree) for a

purpose explained later. Once the function is done from adding all the necessary time

units, the function calls another function called removeExtraPrice. This function gets

from the stage the time unit with the highest price-amount ratio and keeps only the

necessary amount of its resource, and removes the rest from the stage. The first loop

in Algorithm 6 iterates starting from the last time unit in the upload stage to the end

of the timeline. For these time units, the algorithm calls the function ( feasible) given

the index of the upload stage as the initial time unit. After finding a feasible solution

for the download stage, the algorithm starts another loop iterating over all the time

units available for downloading. In this loop, the algorithm finds a feasible solution

for the processing stage. The algorithm’s inner loop iterates from the time unit in the

processing stage feasible solution until the index of the download stage. For each time

unit, it calculates its price-amount ratio and checks whether it is smaller than the

maximum price-amount ratio in the processing stage data structure. If it is the case,

it adds the time unit to the data structure and calls updateStage shown in Function 2.

This function removes all the extra time units having the highest price-amount ratio

until it reaches the exact requirement of the stage. Once done from the third loop, the

algorithm updates the same way the download stage and decrements its index. Once

done from all the time units available for the download stage, the algorithm updates

the upload stage by applying the same method applied for the download stage and

the processing stage and then increments its index and repeats the entire process.
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Proposition 4.4. The time complexity of the subproblem algorithms is O(T 4)

Proof. We start the proof by analyzing the third loop (lines 14-32). In the worst-case

scenario, comparing the current solution with the best solution will always lead to

copying the current solution (lines 20-23), leading to the complexity of O(T ). Adding

a new element to the data structure can be implemented with complexity O(T ) (line

29). The function updateStage upper bound is O(T ) as well (line 30). So for one

iteration, the time complexity is O(T ) and since in the worst case of the number of

iterations is T. Then the complexity of the loop is O(T 2). Now, the second loop (lines

9-33) contain the third loop (O(T 2)), calculates the feasible solution of the processing

stage (line 12), which can be done in O(T ) and updates the download stage time

units (lines 26-31) which takes O(T 2) leading to total complexity of O(T 3). With a

similar analysis to the first loop (line 5), we can conclude that the total complexity

is O(T 4).

Proposition 4.5. The subproblem algorithm always return the optimal solution.

Proof. Assume that the length of each stage is given. Then, each stage has a set of

time units that it should choose from to fulfill its requirement while minimizing the

cost given by the dual values. This problem is called the fractional minimum cost

knapsack problem and is solvable in polynomial time. To choose the time units, we

calculate its cost-effectiveness ratio (price-amount), then sort the time units and select

the ones with the smallest ratios. The last time unit chosen should be partitioned and

takes only the required amount of it, so the required resources do not get exceeded

hence increasing the cost.

The algorithm starts by finding the shortest time that can be assigned to the

upload stage to fulfill its requirement (calling the feasible function). After that, it

checks all the possible combinations for the other two stages by going through all the
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time units available for the download stage and accordingly checking all the available

time units for the processing stage. After adding a new time unit for any stage, the

algorithm applies the following recursive equation:

if ( newUnit.price
newUnit.amount

< currentUnit.price
currentUnit.amount

) then

price(t) = price(t− 1)

− price(remove(stage, newUnit.amount))
+ newUnit.price

else

price(t) = price(t− 1)

where the function remove(s, a) takes a stage s and removes the time units with

maximum price with total and amount equals a. To implement that, the algorithm

calculates the cost-effectiveness ratio of the time unit. Suppose one of the time units

currently in the solution has a higher ratio. In that case, it adds the new time unit to

the solution and removes any unnecessary time units (extra) from the solution. By

doing so, the algorithm will always find the set of time units that has the minimum

cost-effectiveness ratio for any length of any stage. Since the algorithm checks all

possible lengths of all the stages, then the algorithm will definitely find the optimum

solution.

4.5 Performance Evaluation

We study here the performance of the proposed methods, including Mix Integer Lin-

ear Programming (MILP) (to get the optimal solution), Dantzig-Wolfe decomposition

method, and greedy algorithm (Greedy). We consider different performance metrics
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Table 4.2: Measurable factors used for the scheduling performance

Factors Distribution Mean Variance

Tasks Arrival
(tasks/s)

Exponential 4 -

Servers Capacity
(GHz)

Gaussian 3 0.2

Vehicle’s Velocity Trunc. Gaussian 25 7

Vehicle’s Arrival
(m/s)

Geometric p = 0.1 -

Deadline (s) Gaussian 0.1 0.03

Upload Data Size
(MB)

Gaussian 1 0.25

Download Data Size
(MB)

Gaussian 0.1 0.1

Tasks Weight Gaussian 5 3

Number of Cycles
(Millions)

Gaussian 20 5

Total Spectrum
(GHz)

- 3 -

such as execution time, performance gap, and weighted rejection rate. We then study

the overall weighted rejection rate for the overall system using the Dantzig-Wolfe

decomposition method by varying tasks arrival rate, the vehicles emitting probabil-

ity, the average upload data size, the average number of computational cycles, and

the average server size. Vehicular traffic traces are obtained using the well-known

traffic simulator SUMO (see Appendix B.1). Table 4.2 shows the parameters used

throughout this section, and the probability of application availability for a certain

task on a particular server is set to 0.75. We assume an RSU with a 500m coverage

range, equipped with one server to process offloaded workloads. We use CPLEX (see

Appendix ??) to solve our optimization models and C++ to simulate the operation

of our algorithms through a discrete event-driven simulation. We generate results

on CPU with Intel(R) Core(TM) i7-6700 CPU @ 2.7GHz, 16GB memory ram, and

64-bit mac operating system. The results are averaged over ten runs.
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Table 4.3: Comparison between the algorithms performance in terms of rejection rate and computation time.

MILP Dantzig-Wolfe GreedyNumber
of Vehicles

Number
of Tasks Rej. Rate Time (s) Rej. Rate Dev. Time (s) Rej. Rate Dev. Time (s)
50 0.44% 8 18.70% 19.93% 2 86.70% 86.65% 0.38
75 2.23% 197 20.35% 18.53% 4 92.31% 92.132% 15
100 4.34% 66435 23.51% 18.73 47 95.23% 95.21% 4
50 0.45% 23.7 19.07% 19.32% 13.25 86.73% 86.66% 1
75 0.48% 156.85 22.89% 23.24% 29.45 91.11% 91.07% 2.615
100 0.50% 1378 20.26% 19.95% 70 93.08% 93.04% 6
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4.5.1 Scheduling Performance

In this subsection, we analyze and evaluate the performance of our proposed Dantzig-

Wolfe decomposition method. First, we study the scheduling performance of our

method versus the optimal solution obtained from the MILP by considering the exe-

cution time and task rejection rate. We limit the number of iterations for the Dantzig-

Wolfe decomposition method to 100 iterations. Table 4.3 shows the execution time of

the three methods by varying the problem size as an input instance. Rejection rate =

weighted num. of admitted tasks
total weight

, and deviation = optimal obj. - weighted num. of admitted tasks
optimal obj.

. The

results are averaged over five samples. From the table, we can observe that, in terms

of execution time, even for a small size, the Dantzig-Wolfe decomposition method

always surpasses the optimal solution obtained by MILP. For instance, the compu-

tational time requires to solve for five vehicles with 100 tasks is over 18 hours which

is not computationally acceptable for a real scenario. In contrast, the Dantzig-Wolfe

method maintains an acceptable computational time. In addition, the Dantzig-Wolfe

method maintains an acceptable deviation from the optimal solution even for large

instances (highest deviation is 23% and lowest is 18.5%). Compared to the greedy

approach, the Dantzig-Wolfe method can improve the greedy initial solution from

55% to a maximum of 71%. For instance, with 15 vehicles, as shown in the table,

the MILP performs relatively much better than the greedy method. This difference

is because as the number of vehicles increases, the number of possible solution com-

binations that will lead to the optimal value increases. The computational time of

the Dantzig-Wolfe method gets slower with 15 vehicles compared to 5 vehicles. This

is expected since the number of pricing sub-problems required to solve the column

generation part of the Dantzig-Wolfe decomposition method is increased. Neverthe-

less, the execution time compared to the MILP is extremely incomparable. Note

that, for all input sizes, the deviation of the Dantzig-Wolfe from the optimal solution
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(MILP) is almost the same. Also, notice that we can improve the performance of the

Dantzig-Wolfe method by increasing the number of iterations if the system can afford

the time given for tasks scheduling.

The study and analysis conducted in this section conclude that the Danzig-Wolfe

method is the more suitable and scalable choice for task scheduling in terms of both

execution time and task rejection rate. Hence, in the next section, to evaluate the

performance of our system through simulation, we use this method for the scheduling

stage. But first, it is interesting to show through an example how the Danzig-Wolfe

method converges to an optimal solution as proceeding with the number of iterations.

Figure 4.2 shows how the feasible solution converges for a 15-task input. The figure

shows the upper-bound (i.e., the unfeasible solutions) and the lower-bound (i.e., the

best obtained feasible solutions for the master problem after certain iterations) by

red thick and black strip lines, respectively. As depicted in the figure, the optimal

solution is obtained after 52 iterations which takes one second. The upper bound is

obtained by subtracting the reduced costs coefficients of the new columns from the

current master objective value. The result is an objective value that can be achieved

only if the master accepts all the newly arrived columns; Which is a scenario that

can occur only in exceptional conditions.

4.5.2 System Evaluation

In this subsection, we study the performance of our system by simulating the traffic

arrival process using the well-known urban traffic simulator SUMO. To get random

traces, SUMO requires to specify what is called the vehicle Emitting Probability (EP)

per second per lane (SUMO is a discrete-time simulator, and this emitting probability

is the geometric distribution parameter for each route). In addition, it assumes that

the vehicles’ speed follows a truncated Gaussian distribution (refer to Table 4.2). The
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Figure 4.2: The convergence of the columns generation algorithm

event-driven simulation starts by running SUMO for 1 minute (this is the simulation

time, not the actual program execution time) to let it reach the steady-state response.

Then, we start collecting the information of the available vehicles in the RSU range

for one minute. The information collected here contains the vehicles’ speed, their

coordinate per unit time (which is chosen as one millisecond), their arrival and de-

parture time to and from the RSU range. In addition, we assign each vehicle a certain

computation capacity following the distribution specified in Table 4.2. Consequently,

we reset the time of the simulator and start generating tasks request events for each

vehicle and device following an exponential distribution for the inter-arrival time (re-

fer to table 4.2), and add the events to a sorted data structure (i.e., red-black tree).

We generate a scheduling event for each certain period, and eventually, we add it to

the data structure. Afterward, the event execution process begins. For each batch of

tasks, we start the scheduler, and once we get the scheduling result, we update the
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status of the resources. All the results shown in this subsection are averaged over 20

samples.

Fig. 4.3 shows the system performance in terms of weighted rejection rate com-

pared to the different tasks arrival rate per vehicle. Three EP values are considered

here (0.1, 0.15 and 0.2). As shown in the figure, from 0.2 to 0.8 task arrival rate,

the curves with higher EP values result in a lower rejected rate. Consider here that

a vehicle in our system represents a load, as well as a computation resource. Now,

when the tasks arrival rate is low, along with the higher arrival vehicles, the overall

system capacity maintains a low rejection rate because any vehicle arrival increases

the overall system capacity. On the other hand, when the tasks arrival rate is more

than one task/s, the system’s behavior changes as the arrived vehicles generates load

high enough to make the system uses its maximum capacity. Hence, in this situa-

tion, the rejection rate increases by increasing the vehicles’ arrival rate even when the

computational capacity of each vehicle is high.

For a point-to-point comparison, from figure 4.3, we can observe that the plot of

Ep=0.2 starts with a lower rejection rate. For instance, with a tasks arrival rate of 0.2

tasks/s, the rejection rates of EP=0.1, EP=0.15, and EP=0.2 are around 8.5%, 9.6%,

and 10%, respectively. But, as we increase the tasks arrival rate, the plot of EP=0.2

inflates faster than the others since, with a higher vehicles arrival, more tasks will

be generated, and hence the system will be overwhelmed faster. The behavior of the

EP=0.15 curve is similar to the EP=0.2 but with a lower steep. From the tasks arrival

rate of 1 task/s onwards, the behavior of the two EPs is inverted, and the differences

in the number of rejection rates increase with the increase of the tasks arrival rate. For

example, at tasks arrival rate 2 tasks/s (or 5 tasks/s), the rejection rate differences

between the EP=0.1 and EP=0.15, and between EP=0.15% and EP=0.2% both are

2% (or 4%). As mentioned earlier, the critical point of the system is when the tasks
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arrival rate is one tasks/s. Clearly, we can push this point to get higher than one

task/s by increasing the system capacity (i.e., increasing the average server size). In

practice, this can only be done by increasing the capacity of the RSU server since the

system operator has no control over the vehicles computational capacity (either to

increase or decrease their capacity).

Figure 4.3: Rejection rate versus tasks arrival rate per vehicle.

Figure 4.4 plots the weighted rejection rate of the system versus the emitting

probability of the vehicles arrival per lane. The figure shows the system performance

for two different tasks arrival rates per vehicles (i.e., 2 tasks/s and 4 tasks/s). While

both rejection rates increase at higher EP, the differences in weighted rejection rate

between the two tasks arrival rates increase as well. For instance, the relative increase

in EP between 0.15 and 0.2 for the tasks arrival rate of 2 tasks/s is 22%, while for

the tasks arrival rate of 4 tasks/s is 25%. Consequently, the weighted rejection rate

at higher vehicles EP increases linearly. For example, at EP=0.25, the weighted
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rejection rate for the tasks arrival rate of 2 tasks/s is 14%, while the tasks arrival rate

of 4 tasks/s is 40%. This is due to the fact that the 4 tasks/s arrival rate is reaching

the system full-potential usage with higher emitting probability.

Figure 4.4: Rejection rate versus vehicles arrival rate.

Note that the arrival load of the system can be increased either by increasing the

arrival rate or by intensifying the tasks requirements. Figure 4.5 demonstrates the

system response in terms of weighted rejection rate as we vary the average upload

data size. For example, when the task data size is 1.5 MB, the weighted rejection rate

of the system is around 24%, whereas, when the data size of the task is 2 MB, the

weighted rejection rate is 26%. This proves that by increasing the data size of arrival

tasks upto the wireless bandwidth capacity, the percentage of the weighted number

of rejected tasks increases in a nonlinear manner. For instance, the relative increase

in weighted rejection rate from 1.5 MB tasks data size to 2 MB is around 6%, while

the increase is 10% from 2 MB to 2.5 MB data size.
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Figure 4.5: Rejection rate versus average upload data size per task.

In Figure 4.6, we calculate the rejection rate for two different average server sizes

(2.5 GHz and 3.0 GHz). As depicted in the figure, for a small average number of

cycles, the system is capable of admitting almost all tasks, hence, the performance of

the two server sizes are almost the same. As the number of cycles per task increases,

the difference between the two server sizes starts to increase. For example, for 20

million cycles, the difference between the two server sizes is around 1% while for 30

cycles, the difference reaches more than 2%.

Finally, We study the system performance by increasing the average OBU’s server

size. Figure 4.7 shows the system performance by increasing the average server size for

two different average number of requires cycles (i.e., 10 million cycles and 30 million

cycles). As it can be seen from the figure, for smaller server sizes, the difference

between the two different number of cycles is relatively large. For example, the

difference between the two is around 24% for 1 GHz average server size. By increasing

the OBU’s server size, the difference between the two different cycles decreases. For
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Figure 4.6: Rejection rate versus average number of cycles per task.

instance, with 2 GHz average server size, the difference between the two proposed

cycles in system rejection rate is 6%, while for 3 GHz average server size, the difference

is 4%. This reduction in the difference of rejection rate between the two different

average cycles is due to the fact that both average load sizes can be handled easily

when the size of the resource is sufficient enough to handle most of the arriving load.

4.6 Conclusion

Fog computing is a promising paradigm that will allow an efficient utilization of

computation resources available and accessible through wireless communication. 5G

technologies with its low latency and high reliability promises can provide a platform

to enable fog computing establishment upon various kinds of resources including

smart vehicles. In this work, we proposed a system that can handle computation

98



Figure 4.7: Rejection rate versus OBU server average size.

requests over vehicular network through an efficient scheduling scheme that considers

the available vehicle OBU computation servers and the limited radio spectrum in

order to efficiently allocate them for the requested computational tasks. The problem

was formulated as an MILP with the objective to maximize the weighted number of

admitted tasks. Although the problem is an NP-hard one, we proposed a scalable

decomposition scheme based on Dantzig-Wolfe scheme, which resulted in polynomial-

time solvable subproblems and a linear master problem. The approach showed an

efficient and scalable performance compared to a greedy heuristic and MILP. Several

parameters were considered in the evaluation demonstrating the robustness of our

approach to solve various kinds of the problem instances.
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Chapter 5

Optimizing Information Freshness

for MEC-enabled Cooperative

Autonomous Driving
1

1This chapter has been submitted to IEEE Transactions on Intelligent Transportation Systems
[79].
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As stated earlier, the very objective of this thesis is to study the ability to sup-

port/assist the AD environment via a central agent deployed on the edge of the

network. The previous two chapters showed that the MEC paradigm does provide

abundant computation resources to the vehicles allowing them to offload low-latency

computational tasks. This chapter aims to meticulously represent an AD computation

workload by portraying the tasks offloaded as relatively long-term processes running

in parallel with on-the-road activities. Examples of activities that these processes are

supposed to assist are:

1. A vehicle is trying to change its lane. The process will collect information from

the vehicle itself and vehicles located on both lanes.

2. Several vehicles are trying to establish a platoon. The process will collect data

from all these vehicles and assist them via directives computed continuously.

3. A vehicle is taking a turn.

To be more precise, we consider a network of vehicles, each generating one or more

streams of packets to send to processes running at the edge of the network. These

processes are assumed to be running applications in the context of a CAD service.

The edge server schedules the streams for uplink transmissions and processes to an-

alyze data received. The objective is to achieve this jointly while maintaining the

data freshness. Upon completing their processing, the data is broadcast back to the

involved vehicles. We formulated the problem mathematically, and it turns out that

such a problem is NP-hard and we subsequently applied a decomposition method and

heuristics to attain solutions.
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5.1 Motivation

Cooperative Autonomous Driving (CAD) has emerged as a platform wherein a vehi-

cle communicates with other vehicles (V2V) or infrastructure (V2I) to cooperatively

perform tasks of interest for the AD application. To enable vehicles to cooperate,

they leverage available communication technologies (e.g., 5G, and beyond 5G) and

communication protocols (WAVE, 5G-V2X, etc.) to perform on-the-road tasks which

require detailed information about the status of the surrounding environment. Typ-

ical CAD communication relies on establishing a communication channel between

vehicles; these vehicles exchange status information (obtained using their sensing ca-

pabilities) to help them improve their decision-making. However, this distributed

information analytic model suffers from vital issues: 1) A vehicle’s OBU might lack

the computation capabilities needed to perform certain computational tasks. 2) Es-

tablishing a wireless link for each communicating pair wastes a considerable amount

of radio resources. 3) An independent decision taken by a vehicle might not suit

decisions taken by other vehicles. Therefore, an agent empowered with computing

capabilities, gathers the required information, and broadcasts the computed results

to all the involved entities, have emerged as an alternative model to tackle these

difficulties.

With an MEC server deployed over the RSU, vehicles can offload their workload,

as well as other information, sensed from their surrounding, to an agent (running

a CAD service) at the edge server. The agent typically runs the service and some

learning algorithms to assist the AD application in making decisions on behalf of

the concerned vehicles. As indicated earlier, the edge provides abundant resources

to cater to services for latency-sensitive ITS applications. While latency has been

the metric of utility for most of these applications, this metric lacks the capability

of assessing the freshness of data, which is of extreme importance to some CAD
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applications.

To characterize the information freshness, a new metric has been proposed re-

cently, the Age of Information (AoI) metric [80]. In real-time systems (a sensor and a

monitor), the AOI measures the time elapsed since the last data packet/measurement

was successfully delivered to the monitor. A further interesting extension to the no-

tion of AoI is to consider its risk level. Recent works proposed to consider a threshold

that a system’s AoI level should not exceed hence trying to minimize the time of the

system being above this threshold [57, 81].

5.2 Contributuins

We summarize the contribution of this work as follows:

• We provide a formal problem definition and prove its NP-hardness. Then, we

formulate it as an integer linear program and propose an efficient logic-based

Benders decomposition scheme with a polynomial-time solvable sub-problems

and an integer master problem.

• We study the method scalability by comparing its performance in terms of

outcome and speed with the branch-and-cut algorithm implemented by CPLEX

(see Appendix B.2).

• Finally, we examine several system characteristics by varying several system

parameters to evaluate the performance of the proposed scheduling method.
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Figure 5.1: A typical scenario of our system model.
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5.3 System Model

We consider a scenario as depicted in Figure 5.1; an RSU is located in a dense urban

area and provided with wireless communication capabilities allowing it to communi-

cate with vehicles present in its communication range. The RSU is assumed to be

equipped with edge computing capabilities (see Figure 5.1). Vehicles are equipped

with sensory devices which sample signals and processes in their environment (e.g.,

speed, direction, surrounding, ...etc.). Each such sensing device generates a stream of

data to be offloaded to one or more edge computing processes running a CAD appli-

cation. The RSU, part of the network, schedules the access of vehicles to the network

as well as allocates spectrum and computing resources for their communication and

computation. The RSU then relays back the processed data to the vehicles residing

in its range. Our objective is to schedule the resources allocation (both radio and

computation) over these processes to minimize the threshold-exceeding AoI and thus

maintain information freshness.

Episode 1.1
Episode 1.2

Episode 1.E1
…

RSU

Edge Server

Process 2

Process N

Process 1
DestinationsSources

.

.

.

..

Episode 1.1
Episode 1.2

Episode 1.E2
…
.

Episode 1.1
Episode 1.2

Episode 1.EN
…
.

…

Figure 5.2: Multi-streams multi-processes system.
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5.3.1 The Communication Model

The network operates on a radio spectrum allocated for the communication between

the vehicles and the RSU; the total spectrum width is assumed to be B, and both

uplink and downlink transmissions are assigned portions of this bandwidth. Trans-

missions are assumed to be, for simplicity, orthogonal to avoid interference, and B is

equally divided into several resource blocks {r ∈R}. The data rate at time t to/from

RSU can be calculated as follows:

rt(s, t) = β ∗ log2(1 +
Po ∗ d(s, t)−`

N0 ∗ β
) , (5.1)

where β is the bandwidth assigned to each resource block, Po is the transmission

power, N0 is the thermal noise, d(s, t) is the distance between source and destination

of stream s at time t, ` is the path loss exponent.

5.3.2 Computation Model

We assume several virtual machines are available at the edge server {m ∈M}. The

computational capacity of each server is depicted by its CPU frequency fm. Several

processes are running on these virtual machines {p ∈ P }. Each of these processes has

several data streams {s ∈ Sp}, each has a packet size us and a source vehicle vs. A

process p generates one output packet and requires cp cycles from a virtual machine.

Each process has a certain AoI threshold τp.

5.3.3 Process-based AoI

The following is the function to calculate the average AoI:

H̄(p) =
1

Tp

∑
t≤Tp

αpt , (5.2)
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αpt is the AoI of process p at time t and Tp is the process duration. The established

process aims to support/assist a cooperative autonomous driving application that

involves more than one vehicle. As mentioned earlier, the process will receive sev-

eral data streams from many vehicles and their sensing devices (e.g., camera) (upload

stage). After that, these streams go through a computation stage to obtain useful

decisions for involved vehicles. A download stage then starts to broadcast the result

to the destination vehicles (see Figure 5.2). The metric of interest for assessing the

utility of the sampled data is its freshness which is quantified using the AoI metric.

The AoI for each stream is determined by the time elapsed since the last successfully

received packet of that stream. Normally, the age evolves linearly until the arrival

of a new sample, then it is reduced by the same amount spent in the delivery of the

packet and starts increasing again. In our CAD application, the calculation of AoI

for such a process should count for all the aforementioned stages. Assuming that

streams are sampled each time unit, the AoI should be calculated with the stream

that started its transmission the earliest.

We define the episode of a process as a time interval that includes one distinct se-

quence of upload, computation, and download stages (see Figure 5.3). A process that

calculates the decision/actions that should be sent continuously to the vehicle should

go through one or more episodes. Let Ep be the set of episodes of a process p, st(e)

is the time unit where episode e starts and fi(e) be the time unit where it finishes.

Then αpt, AoI of process p at time t, can be calculated as follows:

αpt =


αp(t−1) + 1 if ∀e ∈ Ep fi(e) 6= t ,

t− st(e) if fi(e) = t .

(5.3)
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Figure 5.3: The AoI of a process

5.3.4 AoI Risk Level

AD comprises a set of applications and services, each with its own latency and reliabil-

ity requirements. A pedestrian trying to cross a street by informing vehicles through

communication should acquire the highest level of service reliability compared to an

application trying to manage the long-term street traffic performance. Hence, it is

logical to assume that different processes running at the edge would require a differ-

ent level of information freshness. Several works already discussed the importance

of minimizing the probability of a signal AoI to pass, referred to as the risk level

[58, 60, 81]. In this work, we assume that each edge process, say p, requires AoI to be

below a risk level depicted by a threshold, say τp. Thus, we propose to minimize the

risk the AoI above threshold, say α̃pt, which is defined as follows: (see Figure 5.3):
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α̃pt =

 αpt − τp if αpt > τp ,

0 if αpt ≤ τp .
(5.4)

5.4 Problem Definition and Formulation

We define the scheduling problem formally, prove it is an NP-hard, and mathemati-

cally model it as an integer linear program (ILP). This formulation will allow us to

propose a scalable solution through logic-based Benders decomposition.

Problem P Definition: Given a set of processes {p ∈ P } all running during

a time horizon Tp. Each of these processes has several input data streams required

{s ∈ Sp}, each has a packet size us and a source vehicle vs. A process p requires cp

computational cycles from the host virtual machine to generate one outcome. Upon

processing, a process sends the outcome to a set of vehicles Vp. Each process has a

certain threshold of AoI τp and it is assumed to have a set of episodes to be processed

Ep. There are several virtual machines {m ∈M} running on the edge server; each

has a certain speed fm. Also, there are available radio resource blocks {r ∈ R}

for packets transmitted over the wireless network where each resource block has a

bandwidth of size β. Find a schedule for the virtual machines and the resource blocks

over the processes in each time unit t ∈ T in order to minimize the overall AoI above

the threshold of all the processes running.

Proposition 5.1. Problem P is an NP-hard problem.

Proof. Consider the well known NP-hard scheduling problem P |prmtn|
∑
Ti [82, 83].

This problem objective is to minimize the tardiness of a set of jobs {i ∈ I} by

scheduling them over parallel machines {m ∈M} in a preemptive way. Each job has

a processing time ci and deadline di. Any instance of this problem can be reduced

to an instance of problem P as follows: For each each job i, create a process in
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our problem with empty input streams set Sp, dp = 0, cp = ci and τp = di with

one one available episode. Solving this instance to optimality will be equivalent to

minimizing the time that passed the deadline of the original problem instance, which

is the tardiness of the jobs. Since this reduction takes a linear time, then our problem

is NP-hard.

Table 5.1: Symbols used in formulating the problem

Symbol Explanation

a) Parameters

V Set of vehicles
Vp Destination vehicles of process p
P Set of processes
M Set of virtual machines
R Set of resource blocks
Sp Set of data input streams of process p
∓s Set of packets of input stream s
∓ Set of all input streams packets
T Time frame
B Total spectrum
us Size of stream s packets
dp Packet size of of the output of process p
cp Number of cycles required to generate one output packet of process

p
Tp Time horizon for process p
fm Speed of virtual machine m
τp AoI threshold of process p
∆ Time unit length
α̂p Initial AoI of process p
v(s) Source vehicle of stream s.
v(p, t) The furthest vehicle from the RSU in V [p]

b) Variables

αpt ∈ Z+ AoI of process p
α̃pt ∈ Z+ AoI above the threshold of process p
ρmet ∈ {0, 1} 1 if episode e is assigned to machine m at time t and 0 otherwise.
ωrεt ∈ {0, 1} 1 if packet ε is assigned to channel r at time t and 0 otherwise.
ωret ∈ {0, 1} 1 if process p output is assigned to channel r at time t and 0

otherwise.
se[l, t] ∈ {0, 1} 1 if episode e at time t starts stage l where l ∈ {ul, cp, dl} or

finishes at t if l = fi and 0 otherwise.
%εe ∈ {0, 1} 1 if episode e is served with packet ε and 0 otherwise.
am[ε] ∈ {0, 1} The amount of transmitted bits of packet ε.
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Our defined problem is modeled as an ILP and then, owing to its complexity, we

propose a decomposition using Benders method. Table 5.1 lists all the symbols used

in the mathematical formulation. The objective of our problem can be formulated as

follows:

min
∑
p∈P
t≤T

α̃pt . (OBJ)

By words, it is minimizing AoI above the threshold of all the processes throughout

the time horizon.

5.4.1 Requirements Constraints

5.4.1.1 Computation requirement

At each computation stage, the virtual machine assigned for each process p should

complete the required cp cycles (the required number of cycles to generate one packet).

∑
m∈M

t2∑
t=t1

fm ∗ ρmet ∗∆ ≥ cp ∗ (se[cp, t1] ∧ se[dl, t2])

∀p ∈ P ∀e ∈ Ep ∀t1 ≤ t2 < Tp .

(C1)

5.4.1.2 Offloading constraints

A packet can not be served unless the previous packet from the same stream is served

completely.

ωrεt ≤ 1− ωrε′t′

∀p ∈ P ∀s ∈ Sp ∀ε, ε′ ∈ ∓s : ε ≥ ε′ ∀t, t′ : t ≤ t′

∀r ∈R .

(C2)
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An episode should be served with one packet from each stream:

∑
ε∈∓s

%εe = 1

∀p ∈ P ∀e ∈ Ep ∀s ∈ Sp ∀ε ∈ ∓s .

(C3)

A packet should receive enough transmission resources to offload to the edge:

am[ε] =
∑
t<T

rt(s, t) ∗ ωrεt ≥ us

∀p ∈ P ∀s ∈ Sp ∀ε ∈ ∓s .

(C4)

Now, for each upload stage of a certain process, one packet from each stream

among all streams that belong to the process should be transmitted.

∑
r∈R

t2∑
t=t1

rt(s, t) ∗ (ωrεt ∧ %εe) ∗∆ ≥

am[ε] ∗ (se[ul, t1] ∧ se[cp, t2] ∧ %εe)

∀p ∈ P ∀s ∈ Sp ∀ε ∈ ∓s ∀e ∈ Ep ∀t1 ≤ t2 < Tp .

(C5)

5.4.1.3 Download constraint

In each download stage, the process should finish broadcasting the output packet to

all the destinations. ∑
r∈R

t2∑
t=t1

rt(v(p, t), t) ∗ ωret ∗∆ ≥

dp ∗ (se[dl, t1] ∧ se[fi, t2])

∀p ∈ P ∀e ∈ Ep ∀t1 ≤ t2 < Tp .

(C6)
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5.4.1.4 Computation and Streaming orders

An episode can not be processed in a parallel fashion. Meaning, an episode can not

be assigned to two virtual machines at the same time unit.

∑
m∈M

ρmet ≤ 1

∀e ∈ E ∀t ≤ T .

(C7)

A stream should be served in sequence. A stream can not be served with more

than one channel at the same time.

∑
r∈R

ωrxt ≤ 1

∀x ∈ {∓ ∪ E} ∀t ≤ T .

(C8)

5.4.2 Process Structure Constraints

5.4.2.1 Stage order

The stages of episodes should be in order.

se[l2, t2] + se[l1, t1] ≤ 1

∀p ∈ P ∀e ∈ Ep ∀t1 ≤ t2 < Tp

∀l1 < l2 .

(C9)

5.4.2.2 Stage singularity

An episode can have only one upload stage, one computation stage, and one download

stage.
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Tp∑
t1=0

Tp∑
t2=t1+1

se[ul, t] =

Tp∑
t1=0

Tp∑
t2=t1+1

se[cp, t] =

Tp∑
t1=0

Tp∑
t2=t1+1

se[dl, t] =

Tp∑
t1=0

Tp∑
t2=t1+1

se[fi, t] ≤ 1

∀p ∈ P ∀e ∈ Ep l ∈ {ul, cp, dl} .

(C10)

5.4.3 AoI Computation Constraints

5.4.3.1 Computation from episode

If episode e finishes at t, AoI of a process at time t is equal to t minus the start time

of e.

αpt ≥ se[fi, t] ∗
∑
t′<t

se[ul, t
′] ∗ (t− t′)

∀p ∈ P ∀t < Tp .

(C11)

5.4.3.2 Computation from previous value

If no episode finishes at time t, AoI at time t is equal to AoI at time t− 1 plus one.

αpt ≥ δp[t] ∗ (αpt−1 + 1) ,

where:

δp[t] =
∧
e∈Ep

∼ se[fi, t]

∀p ∈ P ∀t ≤ Tp .

(C12)

5.4.3.3 AoI above threshold computation

α̃pt is equal to αpt minus τp at any time. If αpt is less than τp, α̃pt will be zero.
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α̃pt ≥ αpt − τp

∀p ∈ P ∀t ≤ Tp .

(C13)

5.4.4 Capacity Constraints

5.4.4.1 Computation resources

A virtual machine can not serve more than one process at a time.

∑
p∈P

∑
e∈Ep

ρmet ≤ 1

∀m ∈M ∀t ≤ T .

(C14)

5.4.4.2 Radio resources

A radio channel can serve only one transmission at a time.

∑
s∈S

∑
ε∈∓s

ωrεt +
∑
p∈P

∑
e∈Ep

ωret ≤ 1

∀r ∈ R ∀t ≤ T .

(C15)

5.5 Benders Decomposition

Equipped by proposition 5.1 and the vast number of variables in the ILP, our problem

is a very complex problem that requires a scalable technique to attain good solutions.

In this section, we propose a logic-based Benders decomposition technique to build

a solution evolutionarily. This technique generates a feasible solution in each itera-

tion, a very distinct property among other decomposition techniques. For example,

any column-generation-based decomposition [84] must go through a final iteration in

order to get a feasible integer solution. Without this final step, the decomposition
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method will most probably end up with non-integer solutions. In Benders, the de-

composition guarantees the feasibility at each iteration. Hence, whenever the system

requires a solution during any iteration, it will get an updated one. When a problem

dedicates sets of variables for a specific subproblems only, Benders decomposition

takes advantage of that and splits the problem into a master and subproblem/s. The

master fixes the values of its variables and sends these values to the subproblems.

The subproblems use these values to find their objectives, build a cut (constraint)

and send it back to the master in order to update their variables. The algorithm

iterates until it gets the optimal solution or until a certain criterion is satisfied (e.g.,

number of iterations).

Now, our problem requires the accomplishment of three tasks: 1) Resource alloca-

tion over the processes; 2) Distributing the resources over the episodes; 3) AoI calcu-

lations. All these tasks must respect the limitations of the system resources (e.g., the

number of virtual machines). It is clear from table 5.1 and the ILP that the variables

set ω = {ωrxt : x ∈ S∪P , t ≤ T, r ∈R} and ρ = {ρmet : e ∈ Ep, p ∈ P , t ≤ T,m ∈M}

are responsible of assigning the radio and computational resources to the processes.

Notice here that we changed the index of the variable ωrεt from packet index ε to

the stream index s. This will reduce the number of variables and thus will simplify

the master problem. Before running the subproblem, we can find all the packets

assignments as they are all sent in order. By fixing these variables values (assuming

a solution for the first task), we can split the rest of the problem into several sub-

problems. Each of these subproblems is responsible for one process. It distributes the

assigned resources over the process episodes (task 2) and accordingly calculates the

AoI (task 3). Once each subproblem finds a solution for its process, it generates a

cut informing the master how good it did by the resources it assigned to the process.

With all the cuts accumulated from all the subproblems, the master generates a new
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assignment to the resources. As stated earlier, Benders decomposition is an iterative

method and will continue iterating until the desired termination criterion is met.

Master

Capacity 
Constraints

Process 1
Requirements Constraints

Process Structure Constraints
AoI Computation Constraints

Process 2
Requirements Constraints

Process Structure Constraints
AoI Computation Constraints

Process |P|
Requirements Constraints

Process Structure Constraints
AoI Computation Constraints

Resources

+

Aggregated
 Cut

.

.

.

Cut 1

Cut 2

Cut |P|

Subproblems

Figure 5.4: Benders Decomposition Scheme

Figure 5.4 schematically describes the overall process of our Benders Decomposi-

tion. As the master’s role is to assign the resources to the processes, it must respect

the capacity of these resources. Hence, as shown in the figure, the capacity con-

straints reside in the master program. Whereas requirements constraints, the process

structure constraints, and the AoI calculation constraints belong to the subproblems.

Each subproblem solution must first fit the resources assigned to its process over the

episodes (hence the need to the process structure constraints) while considering the

requirements of the process (the requirements constraints) then calculates AoI (AoI
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calculation constraints).

In the next subsections, we will describe the solution of the subproblems, the cuts

generation, and the master solution.

5.5.1 Subproblem Solution

As stated before, each subproblem’s role is to utilize the resources assigned to the cor-

responding process in order to minimize its AoI. The following is the formal definition

of the process p subproblem.

Problem S Definition : Given a process as described in problem P, the radio and

computational resources assigned to this process depicted by the variables assignments

(k is the iteration index) ω̄k = {ω̄rkxt : x ∈ S ∪ P , t ≤ T, r ∈ R} and ρ̄k = {ρ̄mket :

e ∈ Ep, p ∈ P , t ≤ T,m ∈M}, construct the episodes of each process in away that

minimizes its AoI above its threshold.

Our solution to problem S is shown in Algorithm 7.

For each episode e, several possible periods can fit over. The algorithm depicts

these possible periods by the discrete interval
[
ti ..tf

]
. To come up with the solu-

tion, the algorithm should find a feasible schedule with the minimum AoI. A feasible

schedule is one that makes an episode start after its predecessor and finishes before

its successor. The pseudo-code iterates over the number of episodes of the process

one by one. For each episode, the algorithm checks all the possible periods
[
ti ..tf

]
to find whether there are enough resources to fit the episode. If it fits, the algorithm

finds the best compatible period of the previous episode that leads to the minimum

AoI and stores it. Once it goes through all the episodes, the optimal solution to this

problem is found.

Besides searching for the minimum AoI, the algorithm tracks the episodes gener-

ated in each
[
ti ..tf

]
period (line 17). In addition, for each tuple {e, ti, tf}, it binds it
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Algorithm 7 Solution of the subproblem

1: procedure Subproblem(p, ω̄k, ρ̄k)
2: for e < Ep do
3: for ti ← 0 : Tp do
4: for tf ← ti + 1 : Tp do
5: epi = episodeFits(e, ω̄k, ρ̄k, ti, tf )
6: if epi.isScheduled then
7: AoI[e, ti, tf ]←∞
8: for pti ← 0 : ti do
9: for ptf ← 0 : tf do

10: aoi← calcAoI(
11: AoI[e− 1, pti, ptf ]
12: , ti, tf )
13: if aoi < AoI[e, ti, tf ] then
14: AoI[e, ti, tf ]← aoi
15: min pti[e, ti, tf ]← pti

16: min ptf [e, ti, tf ]← ptf

17: episodes[e, ti, tf ]← epi

18: else
19: AoI[e, ti, tf ]← AoI[e− 1, pti, ptf ]
20: min pti[e, ti, tf ]← ti

21: min ptf [e, ti, tf ]← tf

22: ti, tf ← min index(AoI[Ep − 1])
23: e = Ep − 1
24: do
25: schedule.add(episodes[e, ti, tf ])
26: ti, tf ← min pti[e, ti, tf ],min ptf [e, ti, tf ]
27: e = e− 1
28: while e > 1
29: return {AoI, schedule}
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with a period
[
pti ..ptf

]
of the previous episode e−1 (lines 15-16, 20-21). If the current

episode e can fit into the pair
[
ti ..tf

]
, then it stores the period of the previous episode

e − 1 that gives the minimum AoI (lines 8-17). Else, it assigns
[
pti ..ptf

]
the values

of the current
[
ti ..tf

]
. Finally, the algorithm constructs the solution by backtracking

all the way from the last episode Ep − 1 to the first episode (lines 22-28). It finds the

pair
[
ti ..tf

]
with the minimum AoI for the final episode (line 23). Then, from there,

it uses the pairs stored
[
pti ..ptf

]
for each tuple {e, ti, tf} to find the previous episode

that should be added (see Figure 5.5 for an example).

Episode 1

0 421 3

2
3
4
5

1
!

Episode 2 Episode 3 Episode 4

ti

tf

Episode fits

  Episode Does not fit

Episode found a predecessor

2
3
4
5

1
!
!
0 421 3

Episode 5

2
3
4
5

1
!
!

0 421 3

2
3
4
5

1

!

0 421 3

2
3
4
5

1

!

0 421 3

Episode did not find a predecessor

X

!
X

Figure 5.5: Example of a subproblem solution. The example is a process that lasts
for 6 time units and has 5 episodes.

Proposition 5.2. Algorithm 7 solves optimally problem S with time complexity O(|Ep|T 3
p ).

Proof. We will prove the optimality by induction. When the algorithm starts with

the first episode, for each period
[
ti ..tf

]
, it will find the best solution as it will check

whether the episode will fit in this period starting from time ti and ending exactly at

tf . Hence, AoI will be updated correctly. If the episode doesn’t fit in the period, the

AoI will be set to its maximum value, which means no episodes have been processed.

Now, assume the solution is optimum from the first episode to episode e, and let us
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see if this will be carried to include episode e + 1. For any
[
ti ..tf

]
, the algorithm

does the same thing as for the first episode except the following: if the episode fits in

the period defined by the period, it checks all the solutions of the previous episode to

be compatible with the current period (i.e., all the solutions of the previous episodes

where it starts before the ti and finishes before tf ). Then it chooses the one that will

end up with the minimum AoI. If the episode does not fit, the algorithm will copy

the solution of the previous episode, which is the best feasible solution available for

the current pair. This will lead to having all minimum AoI for all possible solutions

and get the optimum solution for all possible pairs for all the episodes. Hence the

algorithm will end up with the optimal solution. There are |Ep| episodes and there

are Tp∗(Tp−1)

2
possible number of pairs. The validation function takes a linear time

O(Tp). So the complexity is O(|Ep|T 3
p ).

5.5.2 Cut Generation

The cut is a message from a subproblem to the master informing it about the best

AoI reached with the resources assigned. This message can be conducted as follows:

For each process p, for all its episodes Ep, if an episode e is not scheduled, find the

stage that is not being fulfilled and inform the master about it. If the episode is

scheduled, inform the master of the possible modifications to the episode that might

improve the result.

To formally define a cut, we define the nth input stream threshold of the kth

iteration as:

σuksn =

tfuksn∑
t=tiuksn

∑
r∈R

ω̄rkst × rt(s, t)×∆ , (5.5)

where
[
tiuksn ..t

fuk
sn

]
is the nth period of the input stream s. This threshold is the value
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that the total assigned resources to stream s in
[
tiuksn ..t

fuk
sn

]
should be compared with

in the next iteration. Also, we can define the nth computation threshold as:

σcken(x) = max

( tfcken∑
t=ticken

∑
m∈M

fm × ρ̄mket ×∆, x

)
, (5.6)

where
[
ticken ..t

fck
en

]
is the nth computation period of the episode e and x ∈ {0, cp − ε}

and ε is a small value. Similarly, we can define σdken, as the download stream threshold.

Now, we define the nth input stream indicator as:

φuksn = 1

( tfksn∑
t=tiksn

∑
r∈R

ωrst × rt(s, t)×∆ ≤ σuksn

)
. (5.7)

This indicator will return TRUE if the total assigned resources to stream s in[
tiuksn ..t

fuk
sn

]
are the same or less than the amount of resource assigned to s in the

kth iteration (see. equation 5.5). Similarly, we define the computation indicator φcken

and the download stream indicator φdken. Then, we define the following variable as the

process cut indicator :

Φk
p =

∧
s∈Sp

n≤Nuk
s

φuksn
∧
e∈Ep
n≤Nck

e

φcken
∧
e∈Ep
n≤Ndk

e

φdken , (5.8)

where Nuk
s , N ck

e and Ndk
e are the number of periods for the input stream s, the

computation of episode e and download stream of episode e respectively. In other

words, this indicator will return TRUE if, in the given periods, 1) the radio resources

assigned to every input stream of process p are the same or less than the resources

assigned in kth iteration, 2) the computation resources assigned to each episode are

the same or less as kth iteration and 3) the radio resources assigned to download each

episode result are the same or less as the kth iteration . With this indicator, the cut

can be written as follows:
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z ≥
∑
p∈P

ζkp1(Φk
p) , (5.9)

where z is the problem objective and ζkp is the process p outcome at the kth iteration.

The cut states that AoI of process p will be the same or greater than AoI of the kth

iteration if the resources assigned to process p in the given periods are the same or

less than the resources assigned to p at the kth iteration. Next, we will explain how

to find {φuksn}, {φcken} and {φdken}.

5.5.2.1 Input Streams Indicators

Unlike the computation requirements and output requirements, the input require-

ments of the episodes have two distinct properties: 1) An input stream is shared

among the episodes. A packet from one input stream can be used by more than

one episode, while a computation cycle or an output packet can be used by only one

episode. 2) An episode needs only one output stream, needs to be computed once,

while it needs to collect data from more than one input stream. These two properties

entail that we build the input stream indicators independently from the condition of

the episodes (i.e., whether the episode is scheduled or not). For each input stream of

a process, we check where a packet has started and where it has completed the trans-

mission and thus build an indicator around this period (call this a packet indicator).

Then, for each period that does not include any packet transmissions, we construct

what is called an empty indicator. (see Figure 5.6).

5.5.2.2 Unscheduled Episodes Indicators

After generating the input streams indicators, we check each episode and whether it is

scheduled or not. If it is unscheduled, we find the reason for that. The first possible

reason is that a packet from a certain input stream was not delivered. A missing
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⍵s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P2P1

13

Figure 5.6: Example of input streams indicators with one resource block. These
indicators are not all the required indicators.

input stream problem has been handled with the indicators generated in the previous

subsection. Otherwise, we start to check the next stage, the computation stage. Now,

to find whether this stage is satisfied or not, we need to know when the computation

can start. To do so, we have to find all the computation start candidates (CSC)

time units where an episode can start computing after receiving all the required data.

Such a time unit should be after at least one packet transmission from each input

stream. Clearly, the first point is where all the streams have delivered one packet.

After adding this point, for each subsequently delivered packet from any stream, we

add the time unit preceding this packet transmission as a CSC as well. After finding

all the candidates, we should examine whether the computation requirement has been

fulfilled. If fulfilled, we mark the time unit where the computation has finished as

a download start candidate (DSC). If not, we add a computation indicator for the

period starting from this candidate until the end of the process duration σcken(cp − ε).

After that, for each of the time units in the DSC set, we add an indicator starting

124



from this time unit to the end of the process duration φdken(dp − ε) (see Figure 5.7).

P1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17⍵s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17�흆e

CSC1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17⍵e

DSC1

Indicator 1:  

Indicator 2:  

17
∑
t=12

fm *Δ * ρet ≤ cp − ϵ

17
∑
t=14

r a t e (s, t ) *Δ *ωet ≤ dp − ϵ

P2P1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17⍵s’

CSC2

Figure 5.7: Example of unscheduled episode indicators with one resource block and
one virtual machine.

5.5.2.3 Scheduled Episodes Indicators

If the episode is scheduled, we need to inform the master how to improve the solution.

First, we divide the episode timeline (after the upload stage) into 5 periods: the period

between the upload end and computation start (AU), the computation time (C), the

period between computation end and the upload start (AC), the download time (D)

and after the download end (AD). For period AU, we create the indicator φcke1(0). For

period C, we create the indicator φcke2(0). For period AC, we create two indicators:

φcke3(0) and φuke1 (0). For D and AD respectively, φuke2 (0) and φuke3 (0) (See Figure 5.8).
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Proposition 5.3. The cut defined in (5.9) is a valid cut for the Benders decomposi-

tion.

Proof. To prove the cut validity, we have to prove that it does not remove feasible

solutions from the solution space. In other words, process p schedule that satisfies a

process indicator in a kth cut should not have an AoI lower than ζkp . We start with

the input streams indicators. Consider the packets indicators. They state that, if

the resources assigned to the stream in a given period is the same or less than the

currently assigned resources, obviously, the AoI of the process will stay as it is or will

get greater than the current AoI as the number of packets will be reduced and an

episode requirement might be dissatisfied. If the empty indications stay empty, the

packet distribution over the timeline will not change; hence AoI will stay the same.

For any periods used to build indicators, if the resources assigned get higher, the

distribution of the packets will change and a new cut should be generated.

Regarding the unscheduled episodes, we add indicators for each CSC and DSC

points. These indicators state that if the requirement of the episodes (computation

and download) are not satisfied, the episode will not be scheduled. If this is the case

and given that the schedule of other episodes is the same, the AoI of the process

will remain the same. The small number ε is used here to ensure that the amount of

resource assigned by the master resource did not achieve the required amount.

For scheduled episodes, for the computation period and the download period,

we add indicators that state, if the amount of resources assigned to the episode

remains the same, the process AoI will remain the same. And if it gets less, AoI

might get higher. This is true since, with lower resources, the requirement might

not be fulfilled. For the period between the computation and download stage, we

add indicators that state that if the higher resources were assigned for either stage

(computation or download), AoI might change as both stages might change, and
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hence AoI will change. This also applies to the period between the upload period

and the computation period, but we only added an indicator for the computation

stage since the upload stage was handled with the input streams indicators. The only

remaining indicators are two indicators. The indicator of the first time unit of the

packets periods and the last time unit of the download period. These two indicators

guarantee that the episode starts and ends at these specific time units. Otherwise,

AoI might be less with different episode start or end.

5.5.3 Master Problem Solution

The formal definition of the master problem is:

Problem M Definition : given a set of virtual machines m ∈ M and set of

resource blocks r ∈ R, each with its own capacity, and given set of cuts in the form

defined in (5.9), find an assignment for R and M that minimizes the average AoI of

all the processes.

Proposition 5.4. Problem M is NP-Hard.

Proof. Consider the well-known NP-Hard problem M |r, pmtn|
∑
wiUi where the so-

lution should assign jobs j ∈ J to parallel machines q ∈ Q. Each task has a weight

wj, release time rj, deadline dj and processing time hj. The objective is to maximize

the number of admitted tasks. We can reduce this problem to problem M as follows:

For each machine q, create a virtual machine m with the same capacity. Create |J |

number of resource blocks r ∈ R. For each job j, create a process p with one episode

and assign upload and download packets size that would take only a one time unit

in the resource blocks. Assign process p computation cycles equal to the processing

time hj. Let ζp = wj where p is the process corresponding to job j. The cut should

force the computation of p to finish after the release time rj and before the deadline
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Figure 5.8: Example of scheduled episode indicators with one resource block and one
virtual machine.
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dj. This can be done by creating an indicator with ticken = rj and tfcken = dj for the

computation requirement of the process of job j. For each process, there is only one

indicator φcken(pj). By that, a solution will always try to minimize the AoI by fulfilling

processes. The lower the sum of the AoI of processes that were fulfilled, the better

the solution. This will produce a solution for the original problem as each process

corresponds to a job. By that, we reduced an NP-hard problem to M in polynomial

time. Hence, M is NP-hard.

The following is the ILP of the master problem:

min z .

s.t.∑
p∈P

∑
e∈Ep

ρmet ≤ 1 ∀m ∈M ∀t ≤ T . (MC1)

∑
s∈S

ωrst +
∑
p∈P

∑
e∈Ep

ωret ≤ 1 ∀r ∈R ∀t ≤ T . (MC2)

z ≥
∑
p∈P

ζkp1(Φk
p) ∀k ∈ K . (Cuts)

ρmet ∈ {0, 1} ∀e ∈ Ep ∀p ∈ P ∀t ≤ Tp ∀m ∈M .

ωrst ∈ {0, 1} ∀s ∈ Sp ∀p ∈ P ∀t ≤ Tp ∀r ∈R .

Constraints MC1 and MC2 are the capacity constraints of the original ILP of the

problem. Constraints Cuts are the cuts added in each iteration from the subproblems

solutions. As the master problem is NP-hard, we will provide a heuristic method to

solve the problem, which is shown in Algorithm 8.

To explain algorithm 8, we need first to explain the function factork(stream, t).
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Algorithm 8 Master Solution

1: procedure master(VMs,RBs, cuts)
2: for t ≤ T do
3: for p ∈ P do
4: for is ∈ p.inputStreams do
5: value← 0
6: for cut ∈ cuts do
7: value← value+
8: cut.factork(is, t)

9: sortedStructure[t].
10: insert(is, value)

11: for e ∈ Ep do
12: os = p.outputStream(e)
13: value← 0
14: for cut ∈ cuts do
15: value← value+
16: cut.factork(os, t)

17: sortedStructure[t].
18: insert(os, value)

19: fillBlocks(RBs, sortedStructure[t], t)

20: for t ≤ T do
21: for p ∈ P do
22: for e ∈ Ep do
23: value← 0
24: for cut ∈ cuts do
25: value← value+
26: cuts.factork(e, t)

27: sortedStructure[t].insert(e, value)

28: fillMachines(VMs, sortedStructure[t], t)
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This function calculates the importance of assigning a resource block to stream at

time t. Also, factork(episode, t) calculates the importance of assigning a virtual

machine to episode at time t. As the role of the master in Benders decomposition

is to explore new solutions that has not been tested yet (i.e., solutions that do not

satisfy any current cut indicator), the idea of the heuristic is to find assignments that

can violate all or most of the cuts. Now, to violate a process indicator, an assignment

should violate one of the stages indicators. The contribution of such a violation can

be quantified by finding the ratio between the amount of resources taken by such an

assignment to the threshold of the indicator. Consider the following example cut:

z ≥ 10 ∗
[
1(0.1 ∗ ω1

s0 + 0.2 ∗ ω1
s1 ≤ 0.2) ∧

1(0.2 ∗ ρ1
e2 + 0.2 ∗ ρ1

e3 ≤ 0.1) ∧

1(0.4 ∗ ω1
e4 + 0.01 ∗ ω1

e5 ≤ 0.01)
]

+

5 ∗
[
1(0.1 ∗ ω1

s0 + 0.2 ∗ ω1
s1 ≤ 0.2) ∧

1(0.2 ∗ ρ1
(e+1)2 + 0.2 ∗ ρ1

(e+1)3 ≤ 0.1) ∧

1(0.3 ∗ ω1
(e+1)4 + 0.05 ∗ ω1

(e+1)5 ≤ 0)
]

(5.10)

This shows an example cut for two processes, each with one episode and one input

stream. For simplicity, the example assumes there is only one resource block and one

virtual machine. It is obvious here that the contribution of assigning the resource

block to stream s at time slot 1 is equal to the portion that the assignment will take

from the indicator threshold (in this case, the threshold is 0.2). Hence, the gain is

equal to 0.5 (0.1/0.2). In addition, violating this indicator will reduce the lower bound

of the objective by 10. Thus, we propose the equation 5.11 to calculate the factor.

Let 〈s′, t〉 ∈ φuksn if s′ = s and ticken ≤ t ≤ tfcken . Let Iukp be the set of input streams

indicators that are part of the process indicator Φk
p, and σ(φ) be the threshold of

indicator φ. Then, the factor is given by:
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factork(s, t) =
∑
p

ζkp
Tp
gk(s, t) (5.11)

gk(s, t) =
0 if ∀φ ∈ Iukp 〈s, t〉 6∈ φ

min{max
〈s,t〉∈φ

rate(s,t)×∆
σ(φ)

, 1} otherwise

(5.12)

Clearly, an assignment of the resource block to the pair 〈s, t〉 will not violate an

indicator φ unless 〈s, t〉 ∈ φ. That is why in the first case of equation (5.12), we set

the gain to zero. In the second case, the equation assigns the gain of the pair 〈s, t〉

the highest ratio among all the indicators that satisfy φ unless 〈s, t〉 ∈ φ. That’s,

of course, if it is less than 1 (an assignment can not violate an indicator more than

once). We only consider the highest contribution as it is enough to emphasize the

importance of such an assignment.

Since an input stream belongs to only one process, the sum in (5.11) will end up

with only one non-zero term. Notice that we divide the term with the duration of

the process for normalization purposes. Without this normalization, a process with

a longer duration will have an unnecessary advantage.

Similar to factork(s, t) explanation, we can provide an explanation for function

factork(episode, t). We omit that for the sake of brevity.

Now that we have explained the factor term, it is much easier to demonstrate

Algorithm 8. The algorithm in lines (2-18) goes through the input streams and

download streams, for each time unit, and ranks them according to their total cuts

factor (value). The ranking is done by inserting the pair 〈stream, value〉 into a

sorted data structure (i.e., red-black tree). In line 19, the algorithm calls the function

fillRBs which fills the available resource blocks at a certain time unit t with the

streams sorted in the data structure. Similar to the logic of filling the resource

132



blocks, the virtual machines are filled with computation requirements of the episodes

following the same step in lines (20-28).

Proposition 5.5. Algorithm 8 finds a feasible solution for the master problem with

time complexity O(T × |C| × ((|E|+ |S|)) where E =
⋃
p Ep and S =

⋃
p Sp.

Proof. Regarding feasibility, the functions fillRBs and fillV Ms respect the capacity

of the resource blocks and virtual machines respectively. Since for each time unit, a

stream or episode are considered only once, the algorithms respects also the require-

ment that the transmission of streams and the computation of episodes should be ac-

complished sequentially. The complexity of factor calculation is constant O(1). So the

complexity of the for loops in lines 4-10, 11-18 and 22-27 are O(|Sp|× |C|+ log |Sp|),

O(|Ep| × |C|+ log |Ep|) and O(|Ep| × |C|+ log |Sp|) respectively. Filling the resources

takes a linear time so the time complexities of lines 19 and 28 are O(|Ep| + |Sp|)

and O(|Ep|) respectively. So the overall time complexities of the for loops in 1-

19 and 20-28 are O(T × ((|E | + |S |) × |C | + log(|E |) + log(|S |)) + |S | + |E |) and

O(T × (|E |× |C |+ log(|E |)) + |E |) respectively. After neglecting minor terms, we end

up with O(T × |C | × ((|E |+ |S |))

5.6 Performance Evaluation

We evaluate the performance of the proposed methods, including Mixed Integer Lin-

ear Programming (MILP), ILP-Master Benders (IMB) decomposition (the master is

solved via CPLEX branch-and-cut), and our Heuristic-Master Benders (HMB) de-

composition; we consider two performance metrics: execution time and average AoI.

We then evaluate the system’s performance (utilizing HMB) by using computation

load, input stream packet size, number of input streams, and AoI threshold. We trace

the vehicular traffic using the well-known traffic simulator SUMO (see Appendix B.1).
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Table 5.2 shows the parameters used throughout this section unless mentioned oth-

erwise. We assume an RSU with 500m coverage range. We use CPLEX to solve our

optimization models and C++ to simulate the operation of our algorithms. We gen-

erate results on CPU with Intel(R) Core(TM) i7-6700 CPU @ 2.7GHz, 16GB memory

ram, and 64-bit mac operating system. The results are averaged over ten runs.

Table 5.2: Used Parameters

Factors Distribution MeanVariance

Number Of Virtual
Machines

- 4 -

Virtual Machines
Speed (GHz)

Gaussian 2 0.2

Req. Number of Cy-
cles (106)

Gaussian 1 0.1

Vehicle’s Velocity Trunc. Gaussian 25 7

Number Of Re-
source Blocks

- 6 -

Resource Block
Bandwidth (MHz)

- 20 -

Upload Data Size
(MB)

Gaussian 0.1 0.1

Download Data Size
(MB)

Gaussian 0.1 0.1

Input Streams per
Process

- 2 -

Processes Time
Horizon (ms)

- 30 -

5.6.1 Scheduling Performance

5.6.1.1 Methods Comparison

We analyze and evaluate the performance of our proposed HMB decomposition method.

First, we study the scheduling performance of our method versus the optimal solu-

tion obtained from the MILP and IMB decomposition by considering the execution
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time and average AoI. As the number of iterations required to converge to the op-

timal solution is exponential, we limit the number of iterations for IMB and HMB

decomposition methods to 200.

Table 5.3 shows the execution time of the three methods by varying the number of

processes and episodes as input instances of the problem. Each process requires two

input streams (from two different vehicles) for all the instances generated and sends

the result to two different ones. The number of time units required for each stage

is set to be one on average; the reason is to give the ILP and IMB decomposition

a chance to solve the problem in a reasonable amount of time. However, in the

next subsection, we vary this term to evaluate even further the performance of the

proposed algorithm. The time horizon is set to 20 time units. From the table, we

can observe that, in terms of execution time, even for a small size input instance,

the HMB decomposition method surpasses the optimal solution obtained by MILP

and IMB (except for the case where we have one process and one episode). For

instance, the MILP takes more than two hours to solve for 1 process and 3 episodes,

whereas it fails to find a solution after executing for several days for larger instances.

Such computation time is not acceptable for a real scenario. Whereas, HMB method

maintains an acceptable computational time. Compared to IMB, HMB maintains an

acceptable performance in terms of the average AoI. For instance, the highest gap

difference is about 20% for the case where the numbers of processes and episodes are

two each. While in some other cases, the HMB method surpasses the IMB method(for

example, when the numbers of processes and episodes are 3 each, the HMB method

performs 12% better than IMB). In terms of speed, HMB was faster with all the

problem sizes reported. The best case is for the smallest size (92% speedup) and for

the biggest size, the speedup is 88%. As the number of cuts increases in each iteration,

the time of both methods increases as well. However, the runtime of IMB increases
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exponentially since the branch-and-cut method implemented by CPLEX runs with

exponential complexity in terms of the number of constraints.

In general, the master of a Benders-decomposition role is to explore the solution

space to find an assignment of the variables that minimizes (in case of minimization

problem) the objective. But, when the solution space size is large and there are many

variables involved in the cut, the master will find several solutions with the same

master problem minimum objective (probably zero in our problem). Also, an ILP

master solution usually seeks to find all the valid cuts. Whether these cuts will help

to find a good solution quickly or not is not of its concern. This is manifested by the

fact that IMB does not utilize all the available resources (virtual machines or resource

blocks) in its early iterations. Whereas HMB fully utilizes all the available resources

in each iteration. Although this will make its convergence harder, it will indeed help

to find a better solution in fewer iterations. From table 5.3, we already noticed that

interchangeably, IMB and HMB surpass each other in terms of the average AoI.

Table 5.3: Comparison between the performance of algorithms in terms of computa-
tion time (ms) and AAoI.

ILP IMB HMB

|P | |Ep|

T
im

e

A
A
o
I

T
im

e

A
A
o
I

T
im

e

A
A
o
I

1 1 1885 5.9 90455 5.9 4308 6.3

1 2 94708 4.7 142838 4.7 8186 4.9

1 3 1.2E7 4.1 203028 4.1 10739 4.5

1 4 - - 300272 4 21683 4.2

2 2 - - 233733 5.2 23592 6.3

2 3 - - 331203 5.0 36577 4.7

2 4 - - 428685 5.4 46647 4.8

3 3 - - 486120 6.1 59220 5.3

3 4 - - 509299 6.0 60728 6.5
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5.6.1.2 Evaluation of Benders method

Figures 5.9 and 5.10 illustrate the performance of the proposed methods in terms

of the computation time and average AoI, respectively, by varying the number of

iterations required for the Benders decomposition. The numbers of processes and

episodes are set by 4 each, and the time frame is fixed by 30 time units. As shown

in Figure 5.9.b, both methods (IMB and HMB) as expected obtain better results as

the number of iterations increases. However, after 82 iterations, the HMB method

performs better, as explained earlier in this section.
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(5.9.a) The time elapsed vs. the number of
iterations.
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Figure 5.9: IMB VS HMB
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5.6.1.3 AoI above Threshold

We study the performance of the two Benders decomposition methods by varying the

AoI threshold of the processes. Figure 5.9.c reports the average AoI above a certain

threshold. As noticed from Figure 5.9.c, HMB always outperforms IMB with a higher

threshold. The highest percentile difference is when the threshold is 8 (27%), and the

lowest is when the threshold is 4 (16%).

From the analysis conducted, we conclude that the HMB method is the more

suitable choice in terms of both execution time and average AoI. Hence, in the next

section, we rely on the HMB method to evaluate the performance of our system.

5.6.2 Computation Requirement

In this subsection, we study the impact of increasing the number of required compu-

tational server cycles for processes. Figure 5.10.a shows the average AoI trend while

increasing the average number of required cycles. Here, we evaluate the system’s

performance for different numbers of virtual machines (4, 7, and 10), each with 2.0

GHz speed. As expected, the average AoI for all different servers increases as the

number of required cycles to execute processes increases. For example, with a server

with 7 virtual machines, the average AoI increases in average 5% every 1 million cy-

cles and 11% in the case of 10 virtual machines. From the figure, we can also notice

that the system’s performance obviously improves by increasing the number of virtual

machines. For instance, we have an average of 11% improvement when we use 7 VMs

in place of 4 VMs, and 18% improvement when we use 10 VMs in place of 7 VMs.

In addition, the figure also shows that the improvement decreases by increasing the

load. For example, the improvement from 7 VM to 10 VM is 28% with 1 million cy-

cles and 10% only with 5 million cycles. This means that for a large load, increasing

the number of virtual machines will have a minimal impact due to the difficulty of
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utilizing such a capacity for a heavy load.
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Figure 5.10: HMB Performance.

5.6.3 Input Data Size

Figure 5.10.b shows the impact of increasing the input data size on the performance

of the server. It is clear that as the size of offloaded packet increases, the average AoI

increases as well. This is because more time is then required to transmit one packet

for each data stream. For example, when there are 10 resource blocks, the average

AoI increases on average by 6.9% in the case of 6 resource blocks and 4.9% in the case

of 10 resource blocks. The figure also shows that when there are more radio resources
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available to transmit data streams, the better the system performs. On average, with

6 resource blocks, the average AoI increases with 7% every 50 KB increase in the input

data size, and 5% with 10 resource blocks. The system’s performance improvement

from 10 resource blocks to 14 resource blocks is quite small (only 4% in the best case).

That is because 10 resource blocks can handle the transmission of a large input data

size.

Figure 5.10.c shows the impact of increasing the number of input streams per

process. It is quite interesting to see that, for few input streams, the less number of

resource blocks performs almost the same. This is due to the following reason: data

from a single source can only be sent in sequence. Increasing the number of resource

blocks will not make a difference. All trends shown reached some point where the

average AoI started to increase as the resource block has been fully utilized and the

number of episodes scheduled decreased. In average, the increase of the average AoI

is 9.6%, 4.3% and 0% for 6, 10, and 14 resource blocks respectively.

5.7 Conclusion

The employment of edge computing in a vehicular environment has several substantial

benefits, including the support and assistance of cooperative autonomous driving.

Such support provides vehicles with computational capabilities, reduces the number

of consumed radio resources, and synchronizes vehicles’ actions while accomplishing

on-the-road tasks. This work studied the impact of such employment by assuming

that RSUs are deployed with edge servers that support the vehicles by receiving data

streams from them, processing and sending back to each vehicle the required action to

perform the task needed. We mathematically modeled the joint problem of scheduling

transmissions and assigning computing resources to minimize AoI above the threshold

of CAD processes. The scheduling problem was formulated as an ILP and decomposed
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through Benders method. We presented an optimal polynomial-time solution for the

subproblem and a heuristic to solve the master problem. The suggested solution

showed high scalability to solve the problem compared with the off-the-shelf branch-

and-cut algorithm implemented by CPLEX. The problem showed a high intractability

that the state-of-the-art CPLEX branch-and-cut failed to solve. On the other hand,

although we solved the master problem with a heuristic, with the given number

of iterations, the overall performance of the proposed solution surpassed in terms

of efficiency both the branch-and-cut approach and benders with ILP-based master

solution. Further, our solution showed robustness against increasing the resources

required (both radio and computation).
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Chapter 6

Conclusion and Future Research

Directions
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This chapter concludes the presented thesis and highlights future research direc-

tions.

6.1 Conclusion

The realization of fully intelligent transportation systems is imminent. As 5G telecom-

munication technologies, the internet of things, and autonomous driving paradigms

all interact, under the ITS umbrella, they provide smooth road traffic and safer and

faster trips to everyone. As a subtle solution to many reliability and latency issues

of its predecessors, Edge computing plays a significant role in expediting the system

components’ computability and assisting their interactions. This thesis demonstrates

several solutions that should be part of vehicular edge computing to support ITS and

aid autonomous driving efficiently.

We started by studying the impact of edge computing in improving computational

capabilities. We assumed that 5G communication technology was available on both

vehicles and RSU, and the vehicles had sufficient wireless bandwidth to submit time-

intensive tasks to the edge. In such a scenario, it was enough to solve the problem of

allocating the computational tasks offloaded by the vehicle over the edge servers. We

model the problem as an ILP and solve it via Lagrangian relaxation. The outcome

was comparable to the optimal solution in terms of the objective and 95% faster than

branch-and-cut. We expanded the idea of utilizing the edge server to harvest the

computational resources available in the vehicle OBUs. Here, we jointly optimize

the computational and the wireless resources to maximize the number of admitted

tasks requested by the cars, the IoT devices, and the pedestrian to offload over the

vehicles’ OBUs and the edge server. We decomposed the problem via the Dantzing-

Wolfe technique and solved the resulted problems with polynomial-exact solutions.

Compared to CPLEX performance, our solution showed high scalability and reached
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a near-optimal objective. Then we decided to embrace a new metric, AoI, that

characterizes the system performance by the recency of the information shared and

studied the meaning of optimizing such a metric in a vehicular network. We utilize

their new technology, RIS, to improve each source-destination vehicle pair’s wireless

channel condition. Last, we proposed a more specific computational model where

the workload is specified by a process that continuously receives information from

different sources to develop decisions that support on-the-road activities. The goal

was to optimize the AoI of the edge server’s decisions computed and delivered to the

destination vehicles. We developed a solution based on Benders decomposition and,

compared to CPLEX, it showed a high speed in finding efficient solutions.

6.2 Future Research Directions

MEC-assisted CAD is a paradigm that will shift up the performance of AVs on the

street. In this thesis, we proposed schedulers that handle the core problem in such

a paradigm: resource allocation over the offloaded workload. In our future work,

we will try to broach several other critical aspects for any ultra-reliable-low-latency

applications such as CAD. Reliability, fault-tolerance, and adaptability are all con-

cerns that we should provide sophisticated solutions to provide the required quality

of service level (e.g., 99.99% service reliability). To be more particular, our future

targets will be the following:

1. Fault Tolerance of the edge server: as part of the design of any system, fault

tolerance is an important aspect that requires a separate requirement study,

especially in the case of URLLC applications. A failure in data transmission

or computation might lead to fatal consequences. We will study how to avoid

such a failure and, in case it occurs, how to mitigate/prevent the results. To do
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so, we will accomplish the following:

(a) We will design/implement an agent that evaluates the overall environ-

ment’s situation and accordingly configure the system parameters to avoid

such a failure. We can provide that via supervised machine learning ap-

proaches.

(b) We will propose specific protocols for each failure type and environment

condition to allow the vehicles to abort the road action safely in case of

failure. Such protocols require the implementation of statistical models to

represent the system condition to provide a sequence of actions taken by

the vehicles to lower the probability of casualties or injuries.

2. Long-term optimization: Vehicular network is a very dynamic system. Its

environment changes rapidly due to weather conditions, the vehicles’ arrival

flow, the car’s paths, and many other factors. In this work, we will investigate

the possibility of reconfiguring the system to adapt to these changes to optimize

the outcome of the system in a long-term fashion. We can accomplish this

through semi-supervised learning approaches.

3. Data-driven solutions: As an extension to this thesis work, we will study

directly the characteristics of the computational workload a vehicular network

might demand. Such a study will allow us to design an edge computing server

for these specific computational tasks, improving its performance excessively.

4. RIS Assisted CAD: We will investigate the adoption of an intriguing technol-

ogy called reconfigurable intelligent surface (RIS) to optimize AoI in vehicular

networks. RIS is an agile technology that got the researchers’ attention, par-

ticularly in wireless communication. It provides a solution to wireless channel

blockage and signal vanishing. In this research contribution, we will explore the
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possibility of utilizing this technology in vehicular networks. We will provide a

scheduler that allocates radio resources to serve the data stream flow between

vehicles and configure RISs deployed on the sides of the street (see figure 6.1).

Such allocation will tackle two crucial problems that vehicular networks always

confront; 1) the communication blockage and 2) the signal vanishing. Both is-

sues are magnified when we utilize a short-wave spectrum such as mmWave and

Terahertz spectrums. Communications that occur over these spectrums require

a pure line of sight between the source and the destination.

Figure 6.1: The system of model example that adopts RIS technology.
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Appendix A

Optimization Techniques

This chapter briefly explains the optimization techniques we apply to solve various

problems we encounter in this thesis. Notice that the methods described here are

only integer linear programming techniques. We will not discuss methods applicable

for other kinds of problems (e.g., convex problems).

To discuss these techniques, we will refer to the following general integer linear

program:

min
x

c.x

s.t.

Ax ≤ b

Dx ≤ e

x ∈ X

(A.1)

A and D are matrices. x is the variable vector. c, b and e are all constant vectors.
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A.1 Lagrangian Relaxation (LR)

LR is a technique that utilizes the Lagrangian duality theory to simplify the pro-

gram via relaxing some constraints. After careful studies of the problem ILP, we

might realize that removing some constraints will lead to a much easier problem (i.e.,

polynomial-time solvable). However, LR does not entirely ignore the relaxed con-

straints. It penalizes the violation of these constraints through their inclusion in the

program objective function multiplied by what is called a dual variable. An LR for

A.1 can be as follows:

min
x

c.x + λ
(
e−Dx

)
s.t.

Ax ≤ b

x ∈ X

(A.2)

As shown in A.2, to apply an LR for a program, we subtract the left-hand side

of the constraint from its right-hand side. Then we multiply the result with the

corresponding dual variable. Most probably, such a problem is easier to solve than

the original problem. Finding the proper values for the dual variables is the critical

part of any LR approach. The following is called the Lagrangian Dual problem:

max
λ

(
min
x

c.x + λ
(
e−Dx

)
s.t.

Ax ≤ b

x ∈ X
)

(A.3)

For minimization problem, the dual program tries to find a good lower bound. To

do so, it tries to maximize the objective reached by the dual program so it becomes
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closer to the original problem optimum solution. The challenge is that we have an

exponential number of constraints in the dual problem. To tackle this challenge, LR

usually applies the Subgradient Descent Method (SBGD). It is a variation of the

original gradient descent that is applicable with functions that are not continuous.

The following is the equation to update the dual variable in each iteration:

λτ+1 = λτ +
ε ∗ [INFS(λτ )− FS(λτ )]

‖S‖2
S (A.4)

where S is the subtraction of the relaxed constraints’ left-hand side from the right-

hand side. ε is a small number and tau is the iteration counter. FS stands for feasible

solution and INFS stands for infeasible one. The last part of the LR methods is

constructing a feasible solution from the infeasible solution created by solving A.2.

This part is a problem by itself and should be considered while choosing the constraint

to relax. The LR method will produce a better objective if this part is solvable to

optimality in acceptable time.

A.1.1 Integrality property

Let P be the original problem. Let Ṗ be the linear relaxation to the problem. Let

LR(P) be the Lagrangian relaxation to problem P. Then consider this: If LR(P) solu-

tion set is the convex hull of the relaxed problem, then OPT (LR(P )) = OPT (LR(Ṗ )).

And sinceOPT (Ṗ ) = OPT (LR(Ṗ )) (duality theory), then OPT (Ṗ ) = OPT (LR(P )).

It means that the LR you chose for the problem is as bad as the linear relaxation of

the problem. Simply, it means that you relaxed the problem too much. A method

designer should be aware of such property and examine whether the resulted model

is the convex hull of the relaxed problem or not. A model is the convex hull of the

problem if its constraints matrix is unimodular.
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A.2 Dantzing-Wolfe Decomposition (DW)

Consider that A.1 can be written as follows:

min
x

c.x

s.t.

(A.5)

A1x1 +A2x2 ... +AKxK ≤ b
D1x1 ≤ d1

... ≤ .
... ≤ .

DKxK ≤ dK

x1 ∈ Zn1
+ ... ... xK ∈ ZnK

+

This form is called the blocks structure form. If we can separate the model into

several smaller ones, each for one block, we will probably end with sub-problems

that are easier to solve. Here where the DW decomposition plays its role. DW is

a decomposition technique based on the presentation theory of linear programming,

which states the following; Any feasible solution in a problem closed set can be written

as a affine combination of the extreme points of the set. DW takes this rule and

decomposes the problem by rewriting the program in a way that shows any solution as

a bunch of affine combinations of solutions coming from several smaller sub-problems.

The DW model of A.1 is the following:
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min
x

∑
k≤K

∑
j∈Jk

δkj c
k.xkj

s.t.∑
k≤K

∑
j∈Jk

δkjA
kxkj ≤ b

∑
j∈Jk

δk = 1 ∀k ≤ K

δkj ∈ {0, 1} ∀k ≤ K ∀j ∈ Jk

xkj ∈ Xk ∀k ≤ K

(A.6)

The number of extreme points in a typical linear program set is exponential.

Hence the number of variables in A.6 is enormous. To overcome this challenge, the

program model tableau is written in the revised simplex method form; Only the basis

variables (columns) are present in the tableau. The method adds the new variable by

calculating their reduced cost coefficients by utilizing the constraints dual variables.

The dual variable can be determined directly from the basis columns. This is in the

typical revised simplex method scenario where the number of variables is tolerable.

When we need to avoid the direct calculation of every non-basis variables reduced

costs, we can utilize the columns generation method (CG). In CG, we should formulate

another optimization problem where its constraints are the blocks constraints shown

in A.5, and its objective function is the reduced cost formula:

max
xk

RCC(xk) = (ωkAk − ck)xk + γk (A.7)

ωk is the dual variable vector of the contraints in Dk, and γk is the dual variable of the

the second constraint in A.6. In each iteration of the simplex method, CG solves these

subproblems and generates columns to add to the basis, the master tableau. Then,

the master calculates the dual variables (ωk) and sends it again the subproblems. It
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keeps iterating until a certain criterion is met. Then, it applies the final step, which

is turning the master variables back into integers and solving the ILP generated.

A.3 Benders Decomposition (BS)

Compared to the previously discussed techniques, BS is the most advanced and,

most of the time, efficient decomposition technique. That’s because it can generate a

feasible solution in each iteration, unlike DW. At the same time, it can be applied to

any ILP regardless of whether it is easy to construct a feasible solution or not, unlike

LR. The only drawback is the complexity of solving the master problem (an integer

program) and the cut generation.

BS starts by deciding the variables that belong to the master problem and those

that belong to the subproblem/s. The choice should be based on the simplicity of the

generated subproblem and the BS cut. Notice that the subproblem should be solved

to optimality. Otherwise, the cut will remove some feasible solutions from the set.

Once chosen, the designer should provide an efficient and optimum solution to the

subproblems and a valid cut. A cut is a message that the subproblems send to the

master to inform him how good it did in the previous iteration.

Consider the following ILP:

min
x,y

c.x + h.y

s.t.

Ax + Dy ≤ b

x ∈ X

y ∈ Y

(A.8)

y is a variable vector. A BS master problem for such an ILP can be as follows:
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min
x

c.x + h.ȳ

s.t.

Ax + Dȳ ≤ b

x ∈ X

(A.9)

ȳ is a vector variable assignment. When the master problem is solved, it fixes its

variables x to certain values. These values are sent as constants to the subproblems

that should find the best solution to its variables y, while considering these variables

constraints, and generates a cut of the following form:

z ≥ ζk ×
( ∧
o∈O

I(vokx ≤ rk)

)
(A.10)

z is equal to the objective function, k is the iteration, ζk is the objective value reached

in the the kth iteration, vok is a vector of constants, and rk is a constant. The cut states

that if the conditions in the indications functions are all true, then the objective will

be grater than or equal to ζk This cut should be added to the master problem as a

constraint. Then the master should update its variables’ values and send them again

to the subproblems. This procedure will keep repeating until the convergence to the

optimal solution or other conditions (e.g., number of iterations).
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Appendix B

Software Tools

B.1 Simulation of Urban MObility (SUMO)

SUMO [85] is a portable, microscopic simulator for urban traffic designed by the

German Aerospace Center [86]. It has been open-source and available since 2001.

Its purpose is to test traffic strategies, and it is currently used for traffic forecasting,

evaluation of traffic lights, navigation systems research, and many other applications.

SUMO is a time-based simulator. In every time unit, it generates an arrival of a

vehicle to the constructed road network via a geometric probability distribution. This

probability is called the emitting probability. This is the case when we set the arrival

process to random. It is possible to predefine the arrival of the vehicles at specific

times. Before the simulation, the experimenter must construct the road network and

specify various parameters such as the vehicle’s average speed, the cars’ length, and

the arrival rate.

In this thesis, we use SUMO to evaluate our proposed solutions. There are two

modes that we considered in our evaluation:
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1. Offline mode: We generate a particular instance of the problem we are try-

ing to solve. This instance is to evaluate the method only once. We run the

simulator for sufficient time to make the system passes its transient response

time. Once this occurs, we construct an instance of the problem by randomly

selecting the vehicles as part of the problem instance.

2. Online mode: We try to evaluate the overall system performance by accumu-

lating the solution of the scheduling problem over the resources of the systems

(e.g., the computational resource and the wireless channels). We do that by

collecting a longitudinal data stream from sumo that specifies the properties of

the cars (location, speed, etc.) in each time unit. Then, using this data, we

keep constructing instances of the problem we are trying to solve and assign

the load to the available resources. This long-term evaluation allows us to as-

sess the system’s performance by changing various parameters like the resources

capacity and the load arrival.

B.2 IBM ILOG CPLEX Optimization Studio

CPLEX [87] is an optimization software package that solves linear and linear-integer

problems. It is named after the simplex method. The software provides C++, JAVA,

and Python APIs to model the problem and apply off-the-shelf algorithms. For linear

programs, CPLEX can use the simplex method or the Barrier interior-point method.

It can perform several branch-and-bound techniques for integer-linear programs, but

its implemented branch-and-cut method is the most known. It is a product of IBM

[88].

In this thesis, we assess the performance of the proposed algorithm by comparing

the time and objective with the CPLEX outcome. We strive to model each problem
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as ILP and feed it to CPLEX to find the time and the optimal solution objective.

Then we run our solution and compare both methods.
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