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ABSTRACT

Arithmetic aspects of GSp2g: p-adic families of Siegel modular forms, eigenvari-
eties and families of Galois representations

Ju-Feng Wu, Ph.D.

Concordia University, 2022

This thesis reports the three articles [Wu21; DRW22; Wu22] written by the author and his
collaborators. These three papers concern various arithmetic aspects of the algebraic group
GSp2g, which are interrelated under the theme of eigenvarieties.

We first present a construction of sheaves of overconvergnet Siegel modular forms by
using the perfectoid method, originally introduced by Chojecki–Hansen–Johansson for auto-
morphic forms on compact Shimura curves over Q. These sheaves are then proven to be
isomorphic to the ones constructed by Andreatta–Iovita–Pilloni. Using perfectoid methods,
we establish an overconvergent Eichler–Shimura morphism for Siegel modular forms, gen-
eralising the result of Andreatta–Iovita–Stevens for elliptic modular forms. More precisely,
we establish a Hecke- and Galois-equivariant morphism from the overconvergent cohomology
groups associated with GSp2g to the space of overconvergent Siegel modular forms.

It was asked by Andreatta–Iovita–Pilloni whether the classical points of the eigenvariety
parametrising the finite-slope cuspidal Siegel eigenforms are étale over the weight space.
Inspired by Kim’s pairing presented in the book of Bellaïche, which allows one to study the
ramification locus of the eigencurve, we generalise Kim’s pairing to study the ramification
locus of the cuspidal eigenvariety for GSp2g, providing some partial answer to the question
asked by Andreatta–Iovita–Pilloni.

Finally, it is expected that such a pairing not only allows one to study the geometry of
the eigenvariety but also carries interesting arithmetic information. Inspired by the book of
Bellaïche–Chenevier, we study families of Galois representations over the cuspidal eigenvari-
ety for GSp2g. Under some reasonable hypotheses as well as some conditions, we deduce the
vanishing of the adjoint Selmer group associated with the Galois representation attached to
a cuspidal eigenclass in the cohomology of the Siegel modular variety.
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Chapter 1

Introduction

1.1 An overview on eigenvarieties
1.1.1. After its initiation in [Ser73; Kat73], the theory of p-adic modular forms has been
explored further by mathematicians and is now playing an important role in modern studies
of algebraic number theory and arithmetic geometry. One of the most inspiring development
in the theory of p-adic modular forms is the notion of p-adic families of modular forms.
In [Hid86], H. Hida established families of ordinary modular forms, which are now known
as Hida families. Later, R. Coleman introduced overconvergent modular forms in [Col95;
Col97]. He and B. Mazur then discovered in [CM98] that overconvergent modular eigenforms
can be parametrised by a rigid analytic curve, now known as the eigencurve.

It is well-known that the geometry of the eigencurve is quite mysterious. For example, it
is still unknown whether the eigencurve admits finite or infinite irreducible components. On
the other hand, the geometry of the eigencurve is known to encode interesting arithmetic
information. For example, the information about the adjoint L-value and the adjoint Bloch–
Kato Slemer groups, which shall be discussed in more details.

It is a natural question to ask whether the notion of p-adic families of modular forms can
be generalised to other automorphic forms. The generalisation of Hida families are given by
Hida himself in [Hid02] for automorphic forms over Shimura varieties of PEL-type. The case
for Siegel modular forms is rewritten in more details in [Pil12].

On the other hand, the work of V. Pilloni ([Pil13]) and the work of F. Andreatta, A. Iovita
and G. Stevens ([AIS10; AIS14]) provided a ‘geometrisation’ of Coleman theory; more pre-
cisely, they constructed sheaves of overconvergent modular forms. Such an idea has then been
established further by Andreatta–Iovita–Pilloni in [AIP15] where they constructed sheaves of
overconvergent Siegel modular forms. Consequently, they produced an eiquidimensional re-
duced eigenvariety EAIP

0 that parametrises overconvergent cuspidal Siegel eigenforms. They
then raised the following question regarding the geometry of the eigenvariety EAIP

0 .

Question 1.1.2 ([AIP15, Open problem 1]). Are the classical points in EAIP
0 unramified over

the weight space?

1.1.3. In another direction, Stevens introduced the notion of overconvergent modular symbols
in [Ste94] as a new tool to study the eigencurve, method of study which was taken over by
other authors (for example, [Par10; Bel12; Bel21]).

1



The idea of overconvergent modular symbols turns out to be a powerful tool for gener-
alisations. A. Ash and Stevens’s study of overconvergent cohomology groups in [AS08] was
then applied to the construction of eigenvarieties for general reductive groups in E. Urban’s
paper [Urb11] and D. Hansen’s article [Han17]. Recently, C. Johansson and J. Newton fur-
ther carried out details of such a formalism in the language of adic spaces in [JN19], which
consequently allows one to read information of the p = 0 loci of the eigenvaireties.

1.1.4. One sees from above that the notion of eigenvarieties can be either constructed from
families of overconvergent automorphic forms or from families of overconvergent cohomology
groups. One would expect the existence of a comparison between these two constructions. In
other words, one would expect a comparison morphism between families of overconvergent
cohomology groups and families of overconvergent automorphic forms, which is Hecke- (and
Galois-) equivariant, i.e., an overconvergent Eichler–Shimura morphism.

Such a comparison for GL2/Q is first discovered by Andreatta–Iovita–Stevens in [AIP15],
where they established a Hecke- and Galois-equivariant morphism from the space of over-
convergent modular symbols to the space of overconvergent modular forms. Their method
are taken to study such a comparison for automorphic forms over other Shimura curves by
D. Barrera and S. Gao in [BG17; BG21].

In the article of P. Chojecki, Hansen and Johansson ([CHJ17]), they re-established such
a comparison for Shimura curves over Q via perfectoid methods. Roughly speaking, the
overconvergent Eichler–Shimura morphism of op. cit. follows from the following steps:

(I) Use the perfectoid Shimura variety introduced by P. Scholze in [Sch15] to construct the
sheaves over overconvergent automorphic forms. These sheaves are then proven to be
isomorphic to the aforementioned ones constructed by Pilloni and Andreatta–Iovita–
Stevens.

(II) Compute the overconvergent cohomology groups via the language of pro-étale sites. In
particular, there exist sheaves on the proétale site of the Shimura curve that compute
the overconvergent cohomology groups.

(III) Establish a Hecke-equivariant morphism from the sheaves that computes the overcon-
vergent cohomology groups to the sheaves of overconvergent automorphic forms on the
proétale site of the Shimura curve. The desired Hecke- and Galois-equivariant over-
convergent Eichler–Shimura morphisms are then given by these morphisms on sheaves
after taking cohomology.

1.2 An overview on Bloch–Kato conjecture and the ad-
joint L-values

1.2.1. Fix a (rational) prime number p and let Sbad be a finite set of (rational) prime numbers
such that p ∈ Sbad. Let GalQ,Sbad

be the Galois group of the maximal extension of Q that
is unramified outside Sbad. Let F be a finite extension of Qp and suppose we are given a
representation

ρ : GalQ,Sbad
→ GLn(F )
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which is de Rham at p. Denote by ad ρ the adjoint representation associated with ρ, i.e.,
the underlying space of ad ρ is the Lie algebra gln(F ) equipped with the adjoint action of
GalQ,Sbad

induced by ρ. Let ad0 ρ be the subrepresentation of trace-zero part in ad ρ. S.
Bloch and K. Kato defined in [BK07] a certain subspace

H1
f (Q, ad0 ρ) ⊂ H1(GalQ,Sbad

, ad0 ρ)

in the continuous Galois cohomology group H1(GalQ,Sbad
, ad ρ), which is now known as the

adjoint Bloch–Kato Selmer group.

Conjecture 1.2.2 (Bloch–Kato). Suppose ρ is absolute irreducible and denote by L(ad0 ρ, s)
the L-function attached to the Galois representation ad0 ρ. Then, we expect the following:

(i) We have ords=1 L(ad0 ρ, s) = dimF H
1
f (Q, ad0 ρ).

(ii) The adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρ) vanishes.

1.2.3. When n = 1, the conjecture is a theorem of C. Soulé [Sou81] and when n = 2, the
conjecture is a consequence of the ‘R = T theorem’ obtained by the Taylor–Wiles patching
method (see, for example, [Hid16]). More precisely, it is shown in loc. cit. that if ρ is the
Galois representation attached to a cuspidal (elliptic) eigenform f , the adjoint L-value of
L(ad0 ρ, s) can be written as a formula related to the Petersson inner product of f with itself
([op.cit., Theorem 5.1 & Theorem 5.2]). However, little do we know about other cases.

The idea of using pairing can be seen in the work of A. Genestier and J. Tilouine ([GT05]).
More precisely, consider the Siegel modular variety X parametrising abelian surfaces, the
author of loc. cit. considered a pairing on the (étale) cohomology group of X and related
the value of this pairing with the length of certain Slemer group as an application of the
‘R = T theorem’ coming from the Taylor–Wiles patching method ([op. cit., §12]). However,
it is unknown whether the value of this pairing can be directly related to the adjoint L-value.

1.2.4. On the other hand, there is a p-adic variant of the philosophy above. In his Ph.D.
thesis ([Kim06]), W. Kim produced a pairing on the overconvergent cuspidal modular sym-
bols and proved that this pairing p-adically interpolates the adjoint L-values. He moreover
used this pairing to study the ramification locus of the cuspidal eigencurve over the weight
space. Such a result consequently suggests that one can read information about the geometry
of the cuspidal eigencurve over the weight space via some information of the Bloch–Kato
Selmer group attached to the adjoint Galois representation of a cuspidal eigenform and vice
versa. We remark that Kim’s pairing and results are rewritten in a more conceptual way by
J. Bellaïche in [Bel21].

Kim’s pairing and the result of Genestier–Tilouine suggest a direction for the generalisa-
tion to higher dimensional cases. More precisely, one would expect the existence of a pairing
on the overconvergent parabolic cohomology groups of GSp2g such that

• its value allows one to detect some geometric information of the cuspidal eigenvariety
over the weight space;

• its value also provides information about the adjoint Selmer group (and so some (con-
jectural) information of the adjoint L-value).
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1.3 Motivations and main results

1.3.1. The present thesis is motivated by the aforementioned problems. That is, on one hand,
we would like to study the comparison between the overconvergent cohomology groups and
the overconvergent automorphic forms; on the other hand, we would like to generalise Kim’s
pairing to GSp2g, providing a way to study the geometry of the cuspidal eigenvarieties as
well as a way to study the arithmetic information of the adjoint Bloch–Kato Selmer groups.
More precisely, we ask the following questions:

Question 1.3.2. (i) Can the perfectoid method used in [CHJ17] be generalised to the
Siegel case? That is, can one use perfectoid method to construct sheaves of overconver-
gent Siegel modular forms and establish overconvergent Eichler–Shimura morphisms in
this situation?

(ii) Can one generalise Kim’s pairing to GSp2g, providing a way to answer Andreatta–
Iovita–Pilloni’s question (Question 1.1.2) as well as showing a relation between the
adjoint Bloch–Kato Selmer groups and the geometry of the eigenvarieties in this case?

1.3.3. The answers to the questions are positive. More precisely, (i) is the result of the joint
work with H. Diao and G. Rosso ([DRW22]) while the pairing we wished to obtain in (ii) is
established in [Wu21] and its relation with the adjoint Bloch–Kato Selmer group is the main
theme of [Wu22].

The rest of this section is devoted to explain in more details about how we attempt to
answer the motivating questions. Our main results are then stated along the explanation.

1.3.4. Let g be a positive integer and p be an odd prime number. The main geometric
objects in our consideration are the adic spaces

X , X Iw+ and X Γ(p∞)

over Spa(Cp,OCp). They are toroidally compactified genus-g Siegel modular varieties of
tame level, of strict Iwahori level at p and of infinite level at p respectively. Remark that

• X Iw+ is a deeper level variety compared with the usual Siegel modular variety of Iwahori
level;

• X Γ(p∞) is moreover a perfectoid space by [PS16].

Moreover, by employing the language of log adic spaces developed in [DLLZ19], the natural
maps

hIw+ : X Γ(p∞) → X Iw+ and h : X Γ(p∞) → X

are pro-Kummer étale of Galois group Iw+
GSp2g

and GSp2g(Zp) respectively. Here, Iw+
GSp2g

is
the strict Iwahori subgroup of GSp2g(Zp) defined in §2.1.

The perfectoid space X Γ(p∞) is equipped with a well-known Hodge–Tate period map

πHT : X Γ(p∞) → F`,

4



where F` is the flag variety parameterises maximal lagrangian subspaces of a fixed symplectic
space of rank 2g. Using πHT, for any w ∈ Q>0, we consider the w-ordinary loci

Xw, X Iw+,w and X Γ(p∞),w

of X , X Iw+ and X Γ(p∞) respectively.
Let (κU , RU) be weight and suppose w > 1 + rU ,1 we construct a sheaf ωκUw over X Iw+,w

by first defining a sheaf on X Γ(p∞),w and descend to X Iw+ by using the Galois group Iw+
GSp2g

.
Roughly speaking, sections of ωκUw consist of functions f on X Γ(p∞),w which

• take value in a certain weight-κU analytic representation Cw−an
κU

(IwGLg ,Cp ⊗̂RU) of the
Iwahori subgroup of GLg(Zp), and

• satisfy the following formula regarding the natural action of the strict Iwahori subgroup
Iw+

GSp2g
of GSp2g(Zp):

γ∗ f = ρκU (γa + zγc)
−1f for any γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g
,

where z stands for the pullback of the coordinate function on the flag variety and
ρκU (γa + zγc) stands for a certain automorphism on Cw−an

κU
(IwGLg ,Cp ⊗̂RU).

The sheaf ωκUw is called the sheaf of w-overconvergent Siegel modular forms of strict Iwahori
level.

1.3.5. On the other hand, let X Iw+ be the locus of X Iw+ away from boundary. By fixing an
isomorphism C ' Cp, and consider the algebraic model XIw+ of X Iw+ , it is well-known that
the C-valued point of XIw+ can be identified with the locally symmetric space

XIw+(C) := GSp2g(Q)\Hg×GSp2g(Af )/Γ
(p) Iw+

GSp2g
,

where

• Hg is the disjoint union of the Siegel upper- and lower-half spaces,

• Af is the ring of finite adèles of Q, and

• Γ(p) is the tame level of X Iw+ .

Let (κU , RU) be a weight and r > 1 + rU , we consider the r-analytic distribution
Dr
κU

(T0, RU) by following the idea of [AS08] (see also [Urb11; Han17; JN19]). This mod-
ule turns out to define a local system on XIw+(C) and hence one can consider the Betti
cohomology groups

H t(XIw+(C), Dr
κU

(T0, RU))

for any t ∈ Z.
The following theorem summarises our attempt to answer Question 1.3.2 (i):

1For the definition of weights and rU , see Definition 3.1.2 and Definition 3.1.10.
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Theorem 1.3.6 (Theorem 3.7.2, Proposition 6.2.8, Theorem 6.3.6, Theorem 6.4.4). Keep
the notation as above. We have the following.

(i) When p > 2g, the sheaf ωκUw is isomorphic to the sheaf of overconvergent Siegel modular
forms constructed in [AIP15].

(ii) If (κU , RU) is a small weight (see Definition 3.1.2) and r ≥ w > 1 + rU , there is a
Hecke- and Galois-equivariant morphism

ESκU : Hn0(XIw+(C), Dr
κU

(T0, RU))→ H0(X Iw+,w, ω
κU+g+1
w )(−n0),

where n0 = dimCp X Iw+. The morphism ESκU is called the overconvergent Eichler–
Shimura morphism of Siegel modular forms of weight κU .

(iii) At a dominant classical weight k = (k1, ..., kg) ∈ Zg
≥0, the image of ESk is contained in

the space of classical Siegel modular forms.

(iv) Finally, the Eichler–Shimura morphism can be promoted to a morphism between coher-
ent sheaves on the equidimensional cuspidal eigenvariety E0, paramterising finite slope
cuspidal Siegel eigenforms.

1.3.7. Now, we turn our attention to Question 1.3.2 (ii). Our first observation is that there
exists a pairing

[ ·, · ]◦κU : Dr
κU

(T0, RU)×Dr
κU

(T0, RU)→ RU

on the r-analytic distribution. Together with the cup product, this pairing then induces a
pairing on the cohomology

H t(XIw+(C), Dr
κU

(T0, RU))×H2n0−t
c (XIw+(C), Dr

κU
(T0, RU))→ RU

for any 0 ≤ t ≤ 2n0, where H t
c(XIw+(C), Dr

κU
(T0, RU)) is the compactly supported cohomo-

logy group. Note that there is a natural morphism

H t
c(XIw+(C), Dr

κU
(T0, RU))→ H t(XIw+(C), Dr

κU
(T0, RU)).

Thus, by writing

H t
par(XIw+(C), Dr

κU
(T0, RU)) := image

(
H t
c(XIw+(C), Dr

κU
(T0, RU))→ H t(XIw+(C), Dr

κU
(T0, RU))

)
,

the pairing above then induces a pairing

[ ·, · ]κ : H t
par(XIw+(C), Dr

κU
(T0, RU))×H2n0−t

par (XIw+(C), Dr
κU

(T0, RU))→ RU (1.1)

for any 0 ≤ t ≤ 2n0. Consequently, inspired by [Bel21, Chapter VIII], we use this pairing to
deduce the following result:

Theorem 1.3.8 (Corollary 7.3.16). Let Eoc
0 be the equidimensional cuspidal eigenvariety

constructed in §5.2 and let Eoc,fl
0 be the flat locus of Eoc

0 with respect to the weight map
wt : Eoc

0 →W.
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(i) Suppose x ∈ Eoc,fl
0 is a good point (see Definition 7.3.2), then there is a function Ladj

on a small neighbourhood of x, which is defined uniquely (up to a unit in the local
eigenalgebra at x) by the pairing (1.1).

(ii) If x is a good point whose weight is a dominant algebraic weight and whose slope is
small enough, then the following hold.

• The function Ladj vanishes at x if and only if the weight map wt is ramified at x.

• If x is further a smooth point, then the order of vanishing of Ladj at x is equal to
the quantity e(x) defined in Theorem 7.3.11.

1.3.9. The function Ladj in the theorem above is called the adjoint p-adic L-function (on
a small enough neighbourhood of x ). This terminology is given by the terminology used
in [Bel21]. However, the author of loc. cit. justified such a terminology by computing
the special value of the adjoint L-function associated with a elliptic newform in [loc. cit.,
§VIII.5.2] while we did not know what is the link between our Ladj with the adjoint L-function
associated with cuspidal Siegel eigenforms.

Inspired by the conjectural link between the pairing considered in [GT05, §12] and the
adjoint L-value of cuspdial Siegel eigenform, we expect a natural relation between Ladj and
the adjoint Bloch–Kato Selmer group associated with the Galois representation attached to
cuspidal Siegel eigenforms. (Hence, the Bloch–Kato conjecture allows us to conjecturally
justify the name of Ladj.) Hence, in Chapter 8, we study the adjoint Bloch–Kato Selmer
groups associated with these Galois representations. However, such Galois representations
are not well-established at the current stage. Therefore, we need the following hypotheses,
which are reasonable (but might be difficult to verify):

• Hypothesis 1: Roughly speaking, this hypothesis states that one can attach a GSpin2g+1-
valued Galois representation ρspin

x of GalQ to any classical point x ∈ Eoc
0 , where GalQ

denotes the absolute Galois group of Q.

• Hypothesis 2: Roughly speaking, this hypothesis ensures that there exists a real finite
extension L of Q and a generic cuspidal automorphic representation GL2g(AL) whose
associated Galois representation coincide with ρspin

x |GalL , where AL is the ring of adèles
of L and GalL is the absolute Galois group of L.

• Hypothesis 3: This a technical hypothesis on the Hecke algebra due to our lack of
knowledge on the Hecke algebra of strict Iwahori level.

• Hypothesis 4: This is a technical hypothesis, which ensures us to obtain a GSpin2g+1-
valued Galois representation with coefficients in the local eigenalgebra of x and that
the chosen tame Γ(p) implies a particular ramification type of this Galois representation
at bad primes.

Theorem 1.3.10 (Corollary 8.5.7). Let x ∈ E0 whose weight is a dominant algebraic weight
and whose slope is small enough. Suppose the following assumptions hold:

(I) Standard assumptions:
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• The point x corresponds to a p-stabilisation of an eigenclass of tame level (see
§8.2 and §8.3 for more discussion).
• Hypothesis 1 holds so that we get a GSpin2g+1-valued Galois representation ρspin

x
attached to x. We write ρx := spin ◦ρspin

x be the associated GL2g-valued Galois
representation.

(II) Technical assumption: Hypothesis 4 hold.

(III) Assumptions used in the strategy of [BC09]:

• The Galois representation ρx admits a refinement Fx
• that satisfies (REG) and

(NCR) (see §8.1 for definitions of Fx
•, (REG) and (NCR)).

• The restriction ρx|GalQp
is not isomorphic to its twist by the p-adic cyclotomic

character.

(IV) Assumptions to apply [NT20]:

• Hypothesis 2 holds.
• The cuspidal automorphic representation πx of GL2g(AL) ensured by Hypothesis
2 is regular algebraic and polarised (see, for example, [BLGGT14, §2.1]).
• The image ρx(GalL(ζp∞ )) is enormous (see [NT20, Definition 2.27]).

Then

(i) The adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) associated with ρspin
x vanishes.

(ii) There is an ‘infinitesimal R = T theorem’ locally at x.

1.3.11. There is another situation that one can also deduce the vanishing of the adjoint
Bloch–Kato Selmer group. It is in this situation we obtain the link between Ladj and the
adjoint Bloch–Kato Selmer group. Consequently, in light of the Bloch–Kato conjecture, such
a link (conjecturally) justifies the name for Ladj.

Theorem 1.3.12 (Corollary 8.5.9). Let x be a good point whose weight is a dominant al-
gebraic weight. Suppose (I), (II), and (III) in Theorem 1.3.10 hold for x. Assume that the
weight map wt is étale at x and the ‘infinitesimal R = T theorem’ holds locally at x. Then,

H1
f (Q, ad0 ρspin

x ) = 0.

In particular, we have
ordx L

adj = dimkx H
1
f (Q, ad0 ρspin

x ).

Remark 1.3.13. Finally, we remark that the results presented in this thesis have their
Hilbert-modular analogues:

(i) In [BHW19], C. Birkbeck, B. Heuer and C. Williams gave a perfectoid construction of
sheaves of overconvergent Hilbert modular forms. They are then using such construc-
tion to establish the overconvergent Eichler–Shimura morphism for Hilbert modular
forms in their forthcoming work.
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(ii) B. Balasubramanyam and M. Longo generalised Kim’s pairing to the Hilbert modular
case in [BL20]. Unlike to the case of GSp2g that we can only establish a conjectural
link between the adjoint p-adic L-function and the adjoint L-function attached to the
associated Galois representation, authors of loc. cit. provided a direct link between
their pairing and the adjoint L-function associated with a Hilbert modular form.

1.4 Miscellaneous: structure of the thesis and conven-
tions

1.4.1. We briefly discuss the organisation of this thesis.
In Chapter 2, we introduce the geometric objects in our interests more carefully. In

particular, we recall the construction of the toroidally compactified Siegel modular variety
at infinite level X Γ(p∞) by following [PS16]. We then study the flag variety F` and introduce
the Hodge–Tate period map πHT in §2.4 and §2.5.

In Chapter 3, we use perfectoid method to construct the sheaf ωκUw . We provide a thorough
local description of this sheaf in §3.2 and justify the name by showing that classical Siegel
modular forms is contained in the global sections of ωκUw in §3.4. We briefly review the
construction of Andreatta–Iovita–Pilloni in §3.5 and devote §3.6 and §3.7 to compare the
two constructions under the condition p > 2g (due to some technicality).

In Chapter 4, we introduce the overconvergent cohomology groups. These cohomology
groups are inspired by [AS08; AIS15; Han17]. We shall also discuss their algebraic counter-
part in §4.4.

Chapter 5 is devoted to construct the eigenvarieties that considered in this thesis. In
fact, we construct two equidimensional eigenvarieties Eoc

0 and E0. The former is the one
constructed by considering overconvergent cohomology groups (§5.2) while the latter is con-
structed with respect to the overconvergent Siegel cuspforms (§5.3). It turns out that if we
base change Eoc

0 to Spa(Cp,OCp), then there is a closed immersion E0 ↪→ Eoc
0 (Proposition

5.3.6).
The overconvergent Eichler–Shimura morphism for Siegel modular forms is the main

result in Chapter 6. Such a morphism is deduced from a morphism between sheaves on
the pro-Kummer étale site X Iw+,w,prokét in §6.2. Thus, as a preparation, we briefly discuss
the pro-Kummer étale cohomology groups in our interests in §6.1. We study the image of
the overconvergent Eichler–Shimura morphism in §6.3 and then promote it to a morphism
between coherent sheaves on E0 in §6.4.

We discuss the generalisation of Kim’s pairing in Chapter 7. More precisely, we first
construct the pairing on the cohomology groups in §7.1. After reviewing some material of
commutative algebra in §7.2 (by following [Bel21, Chapter VIII]), we study the ramification
locus of the eigenvariety Eoc

0 in §7.3.
The relation between the pairing studied in Chapter 7 and the adjoint Bloch–Kato Selmer

group is the main theme of Chapter 8. We shall recall some terminology of families of Galois
representation in §8.1 by following [BC09]. We shall also discuss some hypotheses that we
will assume for Galois representations attached to automorphic representations of GSp2g in
§8.2. We follow the strategy of [BC09] to construct families of Galois representations over
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a sublocus of Eoc
0 in §8.3 and study some Galois deformation problems in §8.4. The main

results of this chapter are then stated and proved in §8.5.
Finally, Appendix A is about log adic spaces. In particular, we briefly review log adic

spaces by following [DLLZ19] in §A.1. We introduce the notion of Banach sheaves and
prove a (generalised projection formula) in §A.2, which is essential to our construction of the
overconvergent Eichler–Shimura morphism.

1.4.2. Through out this thesis, we fix the following notations and conventions:

• g ∈ Z≥1.

• For any prime number `, we fix once and forever an algebraic closure Q` of Q` and
an algebraic isomorphism C` ' C, where C` is the `-adic completion of Q`. We write
GalQ`

for the absolute Galois group Gal(Q`/Q`). We also fix the `-adic absolute value
on C` so that |`| = `−1.

• We fix an algebraic closure Q of Q and embeddings Q` ←↩ Q ↪→ C, which is compatible
with the chosen isomorphisms C` ' C. We analogously write GalQ = Gal(Q/Q) and
identify GalQ`

as a (decomposition) subgroup of GalQ.

• We fix an odd prime number p ∈ Z>0. Due to certain technicality, we will have to
assume p > 2g at some places. Such an assumption shall be clear in the context.

• For any w ∈ Q>0, we denote by ‘pw’ an element in Cp with absolute value p−w. All
constructions in the thesis will not depend on such choices.

• We adopt the language of almost mathematics. In particular, for an OCp-module M ,
we denote by Ma for the associated almost OCp-module.

• For n ∈ Z≥1 and any set R, we denote by Mn(R) the set of n by n matrices with
coefficients in R.

• The transpose of a matrix α is denoted by tα.

• For any n ∈ Z≥1, we denote by 1n the n × n identity matrix and denote by 1̆n the
n× n anti-diagonal matrix whose non-zero entries are 1; i.e.,

1n =

1
. . .

1

 and 1̆n =

 1

. .
.

1


• In principle, symbols in Gothic font (e.g., X,Y,Z) stand for formal schemes; symbols

in calligraphic font (e.g., X ,Y ,Z) stand for adic spaces; and symbols in script font
(e.g., O,F ,E ) stand for sheaves (over various geometric objects).
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Chapter 2

The geometry of Siegel modular varieties

In this chapter, we introduce and study the main geometric objects concerned in this thesis,
i.e., the Siegel modular varieties. In the §2.1, we fix the notations of the algebraic and p-
adic groups that will appear in our studies. The Siegel modular varieties and their toroidal
compactifications are recalled in §2.2. We then follow [PS16, Appendice: Compactifications]
and discuss the perfectoid toroidal compactification of the Siegel modular variety at the
infinite level in §2.3. The perfectoid toroidally compactified Siegel modular variety at the
infinite level is equipped with the so-called ‘Hodge–Tate period map’. Such a map will be
described in details in §2.5 after the study of the flag varieties in §2.4.

2.1 Algebraic and p-adic groups

2.1.1. In this section, we setup the algebraic and p-adic groups that we shall be studying in
this thesis. We start with the definition of the general symplectic group GSp2g.

Let V = VZ := Z2g and we equip it with an alternative pairing

〈 ·, · 〉 : VZ×VZ → Z, (v , v ′) 7→ tv
(

− 1̆g
1̆g

)
v ′, (2.1)

where we view elements in VZ as column vectors. In particular, if e1, ..., e2g is the standard
basis for VZ, then

〈 ei, ej 〉 =


−1 if i < j and j = 2g + 1− i
1 if i > j and j = 2g + 1− i
0 else

.

We then define the algebraic group GSp2g (over Z) to be

GSp2g :=

{
γ ∈ GL2g : tγ

(
− 1̆g

1̆g

)
γ = ς(γ)

(
− 1̆g

1̆g

)
for some ς(γ) ∈ Gm

}
.
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Equivalently, for any γ =

(
γa γb
γc γd

)
∈ GL2g, γ ∈ GSp2g if and only if

tγa 1̆g γc = tγc 1̆g γa,
tγb 1̆g γd = tγd 1̆g γb, and

tγa 1̆g γd− tγc 1̆g γb = ς(γ) 1̆g

for some ς(γ) ∈ Gm. One can easily check that GSp2g is stable under transpose. Thus, the
above conditions are also equivalent to

γa 1̆g
tγb = γb 1̆g

tγa, γc 1̆g
tγd = γd 1̆g

tγc, and γa 1̆g
tγd−γb 1̆g

tγc = ς(γ) 1̆g

for some ς(γ) ∈ Gm.

2.1.2. We consider the upper triangular Borel subgroups

BGLg := the Borel subgroup of upper triangular matrices in GLg

BGSp2g
:= the Borel subgroup of upper triangular matrices in GSp2g.

The reason why we are able to consider the upper triangular Borel subgroup for GSp2g is
because of the choice of the pairing in (2.1).

The corresponding unipotent radicals are

UGLg := the upper triangular g × g matrices whose diagonal entries are all 1

UGSp2g
:= the upper triangular 2g × 2g matrices in GSp2g whose diagonal entries are all 1.

Consequently, the maximal tori for both algebraic groups are the tori of diagonal matrices,
which are denoted by TGLg and TGSp2g

respectively. The Levi decomposition then yields

BGLg = UGLgTGLg and BGSp2g
= UGSp2g

TGSp2g
.

Moreover, we denote by Uopp
GLg

and Uopp
GSp2g

the opposite unipotent radical of UGLg and UGSp2g

respectively.

To simplify the notation, for any s ∈ Z≥0, we write

TGLg ,s :=

{
TGLg(Zp), s = 0
ker(TGLg(Zp)→ TGLg(Z /p

s Z)), s > 0

UGLg ,s :=

{
UGLg(Zp), s = 0
ker(UGLg(Zp)→ UGLg(Z /p

s Z)), s > 0

TGSp2g ,s :=

{
TGSp2g

(Zp), s = 0

ker(TGSp2g
(Zp)→ TGSp2g

(Z /ps Z)), s > 0

UGSp2g ,s :=

{
UGSp2g

(Zp), s = 0

ker(UGSp2g
(Zp)→ UGSp2g

(Z /ps Z)), s > 0

The maps above are all reduction maps.
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2.1.3. The Iwahori subgroups are defined to be

IwGLg := the preimage of BGLg(Fp) under the reduction map GLg(Zp)→ GLg(Fp)

IwGSp2g
:= the preimage of BGSp2g

(Fp) under the reduction map GSp2g(Zp)→ GSp2g(Fp).

The Iwahori decomposition yields that

IwGLg = Uopp
GLg ,1

TGLg ,0UGLg ,0 and IwGSp2g
= Uopp

GSp2g ,1
TGSp2g ,0UGSp2g ,0.

We also introduce the strict Iwahori subgroups

Iw+
GLg

:= the preimage of TGLg(Fp) under the reduction map GLg(Zp)→ GLg(Fp)

Iw+
GSp2g

:=


γ ∈ GSp2g(Zp) : γ ≡



∗ ∗ · · · ∗
. . .

...
...

∗ ∗ · · · ∗
∗

. . .

∗


mod p


The Iwahori decompositions for the Iwahori subgroups then induce the decompositions

Iw+
GLg

= Uopp
GLg ,1

TGLg ,0UGLg ,1 and Iw+
GSp2g

= Uopp
GSp2g ,1

TGSp2g ,0U
+
GSp2g ,0

,

where U+
GSp2g ,0

= Iw+
GSp2g

∩UGSp2g ,0.

2.1.4. We introduce the notion of ‘w-neighbourhood’ of some aforementioned p-adic groups.
For any w ∈ Q>0 and s ∈ Z≥0, define

T
(w)
GLg ,s

:=
{
λ = (λij)i,j ∈ TGLg(OCp) : |λij −λ′ij | ≤ p−w for some λ′ = (λ′ij)i,j ∈ TGLg ,s

}
,

U
(w)
GLg ,s

:=
{
λ = (λij)i,j ∈ UGLg(OCp) : |λij −λ′ij | ≤ p−w for some λ′ = (λ′ij)i,j ∈ UGLg ,s

}
,

B
(w)
GLg ,s

:=
{
λ = (λij)i,j ∈ BGLg(OCp) : |λij −λ′ij | ≤ p−w for some λ′ = (λ′ij)i,j ∈ BGLg ,s

}
.

The groups Uopp,(w)
GLg ,s

and Bopp,(w)
GLg ,s

are defined similarly.

Similarly, define

Iw
(w)
GLg

:=
{
λ = (λij)i,j ∈ GLg(OCp) : |λij −λ′ij | ≤ p−w for some λ′ = (λ′ij)i,j ∈ IwGLg

}
Iw

+,(w)
GLg

:=
{
λ = (λij)i,j ∈ GLg(OCp) : |λij −λ′ij | ≤ p−w for some λ′ = (λ′ij)i,j ∈ Iw+

GLg

}
.

Then, the Iwahori decomposition induces

Iw
(w)
GLg

= U
opp,(w)
GLg ,1

T
(w)
GLg ,0

U
(w)
GLg ,0

and Iw
+,(w)
GLg

= U
opp,(w)
GLg ,1

T
(w)
GLg ,0

U
(w)
GLg ,1

.
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We also write

Tw = ker(TGLg(OCp)→ TGLg(OCp /p
w)),

Uw = ker(UGLg(OCp)→ UGLg(OCp /p
w)),

Bw = ker(BGLg(OCp)→ BGLg(OCp /p
w)).

The groups Uopp
w and Bopp

w are defined similarly. Then we have

T
(w)
GLg ,0

= TGLg ,0Tw, U
(w)
GLg ,0

= UGLg ,0Uw, B
(w)
GLg ,0

= BGLg ,0Bw.

There are similarly identities for Uopp,(w)
GLg ,0

and Bopp,(w)
GLg ,0

.

2.1.5. In this paragraph, we recall the Weyl groups and the root systems for GSp2g and
H := GLg×Gm from [FC90, Chapter VI, §5]. Here, we view H as an algebraic subgroup of
GSp2g via the embedding

H = GLg×Gm ↪→ GSp2g, (γ,υ) 7→
(
γ

υ 1̆g
tγ−1

1̆g

)
.

Consider the character group X = Hom(TGSp2g
,Gm). We have the following isomorphism

Zg+1 ∼−→ X, (k1, ..., kg; k0) 7→

(
diag(τ 1, ..., τ g, τ 0 τ

−1
g , ..., τ 0 τ

−1
1 ) 7→

g∏
i=0

τ kii

)
.

Let x1, ..., xg, x0 be the basis of X that corresponds to the standard basis on Zg+1. Note that
X can also be viewed as the character group of the maximal torus TH = TGLg ×Gm of H via
the isomorphisms TGSp2g

' Gg+1
m ' TGLg ×Gm = TH .

Under the above choices of the maximal tori, we can describe the root systems of GSp2g

and H explicitly

ΦGSp2g
= {±(xi − xj), ±(xi + xj − x0), ±(2xt − x0) : 1 ≤ i < j ≤ g, 1 ≤ t ≤ g}

ΦH = {±(xi − xj), ±xg, ±x0 : 1 ≤ i < j ≤ g}.

Moreover, the choices of the Borel subgroups yields the description of the positive roots

Φ+
GSp2g

= {xi − xj, xi + xj − x0, 2xt − x0 : 1 ≤ i < j ≤ g, 1 ≤ t ≤ g}

Φ+
H = {xi − xj : 1 ≤ i < j ≤ g}(= ΦH ∩ Φ+

GSp2g
).

The Weyl groups of GSp2g and H are defined as

WeylGSp2g
:= NGSp2g

(TGSp2g
)/TGSp2g

and WeylH := NH(TH)/TH ,

where NGSp2g
(TGSp2g

) (resp., NH(TH)) is the group of normalisers of TGSp2g
(resp., TH) in

GSp2g (resp., H). They can also be described explicitly as follows.

• We can identify WeylGSp2g
with Σgn(Z /2 Z)g, where Σg denotes the permutation
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group on g letters. For any τ = diag(τ 1, ..., τ g, τ 0 τ
−1
g , ..., τ 0 τ

−1
1 ) ∈ TGSp2g

, the actions
of Σg and (Z /2 Z)g are given as

(i) Σg permutes τ 1, ..., τ g,

(ii) the element (0, ..., 0︸ ︷︷ ︸
i−1

, 1, 0, ..., 0) ∈ (Z /2 Z)g maps τ to

diag(τ 1, ..., τ i−1, τ 0 τ
−1
i , τ i+1, ..., τ g, τ 0 τ

−1
g , ..., τ 0 τ

−1
i+1, τ i, τ 0 τ

−1
i−1, ..., τ 0 τ

−1
1 ).

• We can identify WeylH with Σg, whose action on TH is defined as the action of Σg on
TGSp2g

.

The actions of the Weyl groups on the maximal tori then induce actions on the root systems
ΦGSp2g

and ΦH . Following [FC90, Chapter VI, §5], let

WeylH := {w ∈WeylGSp2g
: w(Φ+

GSp2g
) ⊃ Φ+

H} ⊂WeylGSp2g
.

It turns out that WeylH is a system of representatives of the quotient WeylH \WeylGSp2g
.

2.2 Siegel modular varieties

2.2.1. The Siegel upper- and lower-half spaces H±g (of genus g) are defined as follows

H+
g :=

{
α ∈Mg(C) :

α is symmetric w.r.t the antidiagonal
=α is positive definite

}
H−g :=

{
α ∈Mg(C) :

α is symmetric w.r.t the antidiagonal
=α is negative definite

}
,

where =α stands for the imaginary part of α. We denote by Hg the disjoint union of H+
g

and H−g . There is a GSp2g(R)-action on Hg given by the formula(
γa γb
γc γd

)
·α = (γaα+γb)(γcα+γd)

−1

for any γ =

(
γa γb
γc γd

)
∈ GSp2g(R) and any α ∈ Hg.

For any congruence subgroup Γ(p) ⊂ GSp2g(Ẑ), i.e., Γ(p) contains

Γ(M) :=
{
γ ∈ GSp2g(Ẑ) : γ ≡ 12g mod M

}
for some M ∈ Z>0. We shall assume

Γ(p) =
∏

`: prime

Γ
(p)
`
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for Γ
(p)
` ⊂ GSp2g(Z`) such that Γ

(p)
` = GSp2g(Z`) for almost all prime number `. We denote

by
Sbad = {` : Γ

(p)
` ( GSp2g(Z`)}

and write
N := max{M ∈ Z≥0 : Γ(M) ⊂ Γ(p)}.

Given a congruence subgroup Γ(p) ⊂ GSp2g(Ẑ), one can consider the locally symmetric
space

X(C) := GSp2g(Q)\Hg×GSp2g(Af )/Γ
(p) GSp2g(Zp),

where

• Af is the ring of finite adèles of Q,

• GSp2g(Q) acts on GSp2g(Af ) via the left multiplication and acts diagonally onHg×GSp2g(Af ).

We assume further that

(i) p - N (so p 6∈ Sbad)

(ii) Γ(p) is chosen so that X(C) is a smooth manifold.

2.2.2. Given Γ(p) as above, we fix a primitive N -th root of unity ζN ∈ Q ⊂ Qp and let
SchZp[ζN ] be the category of locally noetherian schemes over Zp[ζN ]. Then, the functor

SchZp[ζN ] → Sets,

S 7→

(A/S, λ, ψN) :
A is a principally polarised abelian scheme over S
λ is a principal polarisation on A
ψN is a level structure defined by Γ(p)

 / ' .

is represented by a scheme XZp[ζN ]. It is well-known that the C-point of XZp[ζN ] can be
identified with X(C). Here, C is viewed as a Zp[ζN ]-algebra via the chosen isomorphism
Cp ' C. For any Zp[ζN ]-algebra R, we write XR for the base change

XR := XZp[ζN ] ×SpecZp[ζN ] SpecR.

We refer XR as the Siegel modular scheme of tame level Γ(p).

Example 2.2.3. Suppose Γ(p) = Γ(N) := ker(GSp2g(Ẑ) → GSp2g(Z /N Z)) for N large
enough, then Γ(N) defines the level structure asking for symplectic isomorphisms,

ψN : A[N ]
'−→ (Z /N Z)2g,

i.e., isomorphisms that preserve the symplectic pairings on both sides up to units, where we
consider the Weil pairing on the left-hand side and the symplectic pairing induced by (2.1)
on the right-hand side.

2.2.4. We would like to consider Siegel modular varieties with level structures at p. Before
defining these varieties, we fix a compatible system of p-power roots of unities (ζpm)m∈Z>0 in
Q ⊂ Qp.
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• For eachm ∈ Z>0, the Siegel modular variety of principal pm-level over Qp(ζN , ζpm)
is the algebraic variety XΓ(pm),Qp(ζN ,ζpm ) over Qp(ζN , ζpm) that represents the functor

SchQp(ζN ,ζpm ) → Sets,

S 7→

(A, λ, ψN , ψpm) :

(A, λ, ψN) ∈ XZp[ζN ](S)

ψpm : A[pm]
∼−→ (Z /pm Z)2g

is a symplectic isomorphism

 / ' .

Here, SchQp(ζN ,ζpm ) is the category of locally noetherian schemes over Qp(ζN , ζpm) and
the symplectic isomorphism is taken with respect to the Weil pairing on the left-hand
side and the symplectic pairing induced by (2.1) on the right-hand side. Again, for
any Qp(ζN , ζpm)-algebra R, we denote by XΓ(pm),R the base change of XΓ(pm),Qp(ζN ,ζpm )

to R.

• The Siegel modular variety of Iwahori level over Qp(ζN , ζp) is the algebraic vari-
ety XIw,Qp(ζN ,ζp) over Qp(ζN , ζp) that represent the functor that assign each locally
noetherian scheme S over Qp(ζN , ζp) to the set of tuples

(A/S, λ, ψN ,Fil•A[p]),

where

◦ (A/S, λ, ψN) ∈ XZp[ζN ](S)

◦ Fil•A[p] is the full flag of A[p] such that

(Fil•A[p])⊥ ' Fil2g−•A[p]

with respect to the Weil pairing.

Again, for any Qp(ζN , ζp)-algebra R, we denote byXIw,R the base change ofXIw,Qp(ζN ,ζp)

to R.

• The Siegel modular variety of strict Iwahori level over Qp(ζN , ζp) is the algebraic
varietyXIw+,Qp(ζN ,ζp) over Qp(ζN , ζp) that represents the functor that assign each locally
noetherian scheme S over Qp(ζN , ζp) to the set of tuples

(A/S, λ, ψN ,Fil•A[p], {Ci : i = 1, ..., g}),

where

◦ (A/S, λ, ψN ,Fil•A[p]) ∈ XIw,Qp(ζN ,ζp)(S)

◦ {Ci : i = 1, ..., g} is a collection of subgroups Ci ⊂ A[p] of order p such that

FiliA[p] = 〈C1, . . . , Ci〉

for all i = 1, . . . , g. Again, for any Qp(ζN , ζp)-algebra R, we denote by XIw+,R the
base change of XIw+,Qp(ζN ,ζp) to R.
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2.2.5. For any m ∈ Z>0 and any complete field K ⊂ Cp containing Qp(ζN , ζpm), there are
natural forgetful maps

XΓ(pm),K → XΓ(p),K → XIw+,K → XIw,K → XK ,

where

• The first arrow sends (A, λ, ψN , ψpn) to (A, λ, ψN , p
n−1ψpn).

• The second arrow sends (A, λ, ψN , ψp) to (A, λ, ψN ,Filψp• A[p], {〈ψp(ei)〉 : i = 1, ..., g})
where Filψp• A[p] stands for the full flag

0 ⊂ 〈ψp(e1)〉 ⊂ 〈ψp(e1), ψp(e2)〉 ⊂ · · · ⊂ 〈ψp(e1), . . . , ψp(e2g)〉.

• The third arrow sends (A, λ, ψN ,Fil•A[p], {Ci : i = 1, ..., g}) to (A, λ, ψN ,Fil•A[p]).

• The fourth arrow sends (A, λ, ψN ,Fil•A[p]) to (A, λ, ψN).

From the construction, we know that the morphisms

XΓ(pn),K → XK is Galois with Galois group GSp2g(Z /p
n Z);

XΓ(p),K → XIw,K is Galois with Galois group BGSp2g
(Z /pZ);

XΓ(p),K → XIw+,K is Galois with Galois group B+
GSp2g

(Z /pZ).

Here,
B+

GSp2g
(Z /pZ) :=

{
(γa γb

γd) ∈ BGSp2g
(Z /pZ) : γa is diagonal

}
.

Moreover, for Γ ∈ {Γ(pm), Iw+ = Iw+
GSp2g

, Iw = IwGSp2g
}, the C-point of XΓ,K can be

similarly identified with the locally symmetric space

XΓ,K(C) = GSp2g(Q)\Hg×GSp2g(Af )/Γ
(p)Γ.

Since this identification is independent to the choice of K, we will, from now on, use the
symbol XΓ(C) to denote the locally symmetric space.

2.2.6. For any m ∈ Z>0 and any complete field extension K over Qp containing Qp(ζN , ζpm),
our next goal is to construct toroidal compactifications Xtor

Γ,K for eachXΓ,K for Γ ∈ {Γ(pm), Iw+, Iw,∅}
with the following properties

(Tor1) Xtor

Γ,K is finite Kummer étale over Xtor

K ;

(Tor2) There is a cartesian diagram

XΓ,K X
tor

Γ,K

XK X
tor

K

18



and that the log structure on Xtor

Γ,K is the divisorial log structure defined by the divisor
ZΓ,K := X

tor

Γ,K rXΓ,K ;

(Tor3) (i) If Γ = Γ(pn), then
X

tor

Γ,K → X
tor

K

is Galois with Galois group GSp2g(Z /p
n Z).

(ii) If Γ = Iw, then
X

tor

Γ(p),K → X
tor

Iw,K

is Galois with Galois group BGSp2g
(Z /pZ).

(iii) If Γ = Iw+, then
X

tor

Γ(p),K → X
tor

Iw+,K

is Galois with Galois group B+
GSp2g

(Z /pZ).

2.2.7. In order to construct the toroidal compactifications, we set the following notations.

• We denote by C the collection of all totally isotropic direct summands of V.

• For any totally isotropic direct summand V′ ⊂ V, let C(V /V′⊥) denote the cone of
symmetric bilinear forms on (V /V′⊥)⊗ZR which are positive semi-definite and whose
kernel is defined over Q.

• Observe that if V′,V′′ ∈ C such that V′ ⊂ V′′, there is a natural inclusion C(V /V′⊥) ⊂
C(V /V′′⊥). We define

C :=
( ⊔
V′∈C

C(V /V′⊥)
)
/ ∼

where the equivalence relation is given by the aforementioned inclusions.

• Let S be a fixed GSp2g(Z)-admissible smooth rational polyhedral cone decomposition
of C (see [Str10, Definition 3.2.3.1]). This means S consists of a smooth rational
polyhedral cone decomposition of C(V /V′⊥) (in the sense of [FC90, Chapter IV, §2])
for every V′ ∈ C such that

(i) The decomposition of C(V /V′⊥) coincides with the restriction of the decompos-
ition of C(V /V′′⊥) whenever V′ ⊂ V′′, and

(ii) S is GSp2g(Z)-invariant and S /GSp2g(Z) is a finite set.

• We will use the convention that Γ(p0) = GSp2g(Zp) and XGSp2g(Zp),K = XK . Moreover,
for any Γ ∈ {Γ(pm), Iw+, Iw}, we write

Γ̃ := GSp2g(Z) ∩ Γ.

Given such data, we have a toroidal compactification Xtor

Zp[ζN ] for XZp[ζN ] (see [FC90; Pin88;
Lan13]). Consequently, we have a toroidal compactification Xtor

K for XK by base change.
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2.2.8. The construction of the toroidal compactification in the case Γ = Γ(pm) is well-
known. We briefly review the construction of Xtor

Γ(pm) following [PS16]. In order to simplify
the notation, we follow the strategy of loc. cit., assuming Γ(p) = GSp2g(A

p
f ), where Ap

f is
the ring of finite adèles away from p.

Notice that every σ ∈ S necessarily lives in the interior of C(V /V′⊥) for a unique V′ ∈ C
of some rank r ≤ g. We have the following diagram from [PS16, 4.1.A]:

MV′,m MV′,m,σ MV′,m,S

BV′,m

XV′,m

.

We briefly describe the objects in the diagram and refer the readers to [PS16, Appendice A]
for details:

• Let X0,V′ be the moduli scheme parameterising principally polarised abelian schemes
over OK of dimension g − r, where OK is the ring of integers of K. Let XV′ denote
the base change of X0,V′ to K.

• Let XV′,n be the finite étale cover of XV′ parameterising principal pm-level structures.
Over XV′,m, there is a universal abelian variety AV′ .

• Roughly speaking, the algebraic variety BV′,m over XV′,m parameterises semiabelian
varieties with ‘Γ(p)- and pm-level structures’ where the semiabelian variety is an ex-
tension of AV′ by the torus TV′ := V′⊗ZGm. In particular, over BV′,m, there is a
universal semiabelian variety

0→ TV′ → GV′ → AV′ → 0

together with a universal isogeny of semiabelian varieties

TV′ GV′ AV′

TV′ GV′ AV′

id pm

whose kernel induces a natural inclusion AV′ [p
m] ⊂ GV′ [p

m]. This yields a decompos-
ition

GV′ [p
m] ' (V′ /pm V′⊗µpm)⊕ AV′ [p

m].

• Roughly speaking, the algebraic variety MV′,m over BV′,m parameterises principally
polarised 1-motives of type [V /V′⊥ → GV′ ] together with a ‘principal pm-level struc-
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ture’. In particular, over MV′,m, there is a universal 1-motive

M̃V′ = [V /V′⊥ → GV′ ]

together with a universal decomposition

M̃V′ [p
m] ' (V′ /pn V′⊗µpm)⊕ AV′ [p

m]⊕ (V /V′⊥⊗Z /pm Z).

It turns out MV′,m is a torus over BV′,m with the torus

Hom

(
1

Npm
Sym2(V /V′⊥),Gm

)
.

• The morphism MV′,m →MV′,m,σ is the affine toroidal embedding attached to the cone
σ ∈ C(V /V′⊥). Let ZV′,m,σ := MV′,m,σrMV′,m denote the closed stratum ofMV′,m,σ.
Since σ uniquely determines V′, we might simply write Zm,σ.

• The morphismMV′,m →MV′,m,S is the toroidal embedding attached to the polyhedral
decomposition S. Let ZV′,m,S := MV′,m,S r MV′,m denote the closed stratum of
MV′,m,S.

Theorem 2.2.9 ([PS16, Théorème 4.1]). We have

(i) The toroidal compactification X
tor

Γ(pm) admits a stratification indexed by the finite set
S /Γ̃(pm). For any σ ∈ S, the corresponding stratum in X

tor

Γ(pm) is isomorphic to
ZV ′,m,σ.

(ii) The boundary Xtor

Γ(pm)rXΓ(pm) is given by a normal crossing divisor. The codimension-
one strata ZV ′,m,σ are in bijection with the irreducible components of the normal cross-
ing divisor. Such V ′ necessarily has rank 1.

(iii) The toroidal compactification is compatible with change of levels. In particular, there
are natural finite morphisms Xtor

Γ(pm) → X
tor

Γ(pn) for m ≥ n.

(iv) There is a natural action of GSp2g(Zp)/Γ(pm) on X
tor

Γ(pm). It permutes the boundary
strata accordingly.

2.2.10. We remark that the case for Γ = Iw is carefully studied in [Str10]. However,
instead of following loc. cit., we propose an alternative way to obtain Xtor

Γ,K with the desired
properties (Tor1), (Tor2) and (Tor3). To this end, we recall a theorem of K. Fujiwara and
K. Kato ([Ill02, Theorem 7.6]):

Theorem 2.2.11 (Fujiwara–Kato). Let Y be a regular scheme, D an effective divisor of Y
with normal crossing and U := Y rD. Equip Y with the divisorial log structure defined by
D. Then, the restriction functor[

finite Kummer étale
cover over Y

]
→
[

finite étale
cover over U

]
, T 7→ T ×Y U
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if fully faithful. The essential image of this functor consisting of those finite étale covers
over U which are tamely ramified along D.

2.2.12. In particular, when Y is further a variety over a field of characteristic 0, every finite
étale cover over U is tamely ramified along D. That is, one obtains an isomorphism between
the finite Kummer étale site Yfkét and the finite étale site Ufét.

Proposition 2.2.13. Let Γ denote either Γ(pm) (for some m > 0), Iw, or Iw+. There exists
a unique fs log scheme Xtor

Γ,K over Xtor

K satisfying (Tor1), (Tor2), and (Tor3).

Proof. Recall that Xtor

K is equipped with the divisorial log structure given by the boundary
divisor ZK = X

tor

K r XK of normal crossing (by [FC90, Chapter IV, Theorem 6.7 (1)]).
Theorem 2.2.11 yields a unique log scheme XΓ,K , which is finite Kummer étale over Xtor

K ,
extending the finite étale morphism XΓ,K → XK . This shows that XΓ,K satisfies (Tor1)
and (Tor2). By Abhyankar’s lemma (see, for example, [SGA1, Proposition 5.2], [Stacks, Tag
0EYG], [Stacks, Tag 0EYH], [DLLZ19, Proposition 4.2.1]), the inverse image ZΓ,K of ZK in
XΓ,K is a divisor with normal crossing. Hence, by applying a scheme-theoretic version of
Lemma A.1.12, we conclude that XΓ,K also satisfies (Tor3).

Remark 2.2.14. When Γ ∈ {Γ(pm), Iw}, one should ask whether our construction of Xtor

Γ,K

coincides with the ones constructed in [PS16] and [Str10]. The answer to this question
is affirmative. Indeed, when Γ = Γ(pm), [FC90, Chapter IV, Theorem 6.7(6)] implies that
X

tor

Γ(pm),K is finite Kummer étale over Xtor

K with Galois group GSp2g(Z /p
n Z). The uniqueness

of Xtor

Γ,K then yields the identification. For Γ = Iw, it follows similarly by applying [Str10,
Théorème 3.2.7.1].

2.2.15. To wrap this section, we pass to the realm of adic spaces. For Γ ∈ {Γ(pm), Iw+, Iw},
let X Γ,K (resp., X Γ,K) denote the adic space over Spa(K,OK) associated with XΓ,K (resp.,
X

tor

Γ,K). In particular, we refer X Γ,K as the toroidal compactification of X Γ,K determined by
the fixed polyheral decomposition S. It satisfies the following analogues of (Tor1), (Tor2),
and (Tor3):

(Tor1’) The log adic space X Γ,K , equipped with the divisorial log structure given by the bound-
ary divisor ZΓ,K = X Γ,K r X Γ,K , is finite Kummer étale over XK ;

(Tor2’) There is a cartesian diagram

X Γ,K X Γ,K

XK XK

(Tor3’) (i) If Γ = Γ(pn), then
X Γ,K → XK

is Galois with Galois group GSp2g(Z /p
n Z).
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(ii) If Γ = Iw, then
X Γ(p),K → X Iw,K

is Galois with Galois group BGSp2g
(Z /pZ).

(iii) If Γ = Iw+, then
X Γ(p),K → X Iw+,K

is Galois with Galois group B+
GSp2g

(Z /pZ).

2.3 The toroidally compactified Siegel modular variety
at infinite level

2.3.1. Let X (resp., X) be the completion of XOCp
(resp., Xtor

OCp
) along its special fibre. For

any m ∈ Z>0, we denote by XΓ(pm) (resp., XΓ(pm)) the normalisation of X (resp., X) inside
X Γ(pm) (resp., X Γ(pm)). In order to work with the toroidal compactification at the infinite
level, the authors of [PS16] consider modified versions Xmod

Γ(pm) of the formal schemes XΓ(pm),
which we briefly recall.

Let m ∈ Z≥0 and let G be the tautological semiabelian scheme over XΓ(pm), i.e., the
pullback of the tautological semiabelian scheme over X. Let

π : G→ XΓ(pm)

be the natural projection and let

ΩΓ(pm) := π∗Ω
1
G /XΓ(pm)

.

Over XΓ(pm), composing the universal trivialisation

ψpm : V⊗Z(Z /pm Z)→ G[pm]

(which becomes isomorphism on the rigid generic fibre), the duality G[pm] ' G[pm]∨, and
the Hodge–Tate map

G[pm]∨ → ΩΓ(pm)/p
mΩΓ(pm)

we obtain
HTΓ(pm) : V⊗Z(Z /pm Z)→ ΩΓ(pm)/p

mΩΓ(pm)

which induces

HTΓ(pm)⊗ id :
(
V⊗Z(Z /pm Z)

)
⊗Z OXΓ(pm)

→ ΩΓ(pm)/p
mΩΓ(pm).

According to [PS16, Proposition 1.2], this map extends to the toroidal compactification:

HTΓ(pm)⊗ id :
(
V⊗Z(Z /pm Z)

)
⊗Z OXΓ(pm)

→ ΩΓ(pm)/p
mΩΓ(pm). (2.2)

More precisely, in terms of the explicit description in 2.2.8, étale locally at the boundary
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stratum, there is a universal semiabelian scheme GV′ with constant toric rank sitting in an
exact sequence

0→ TV′ → GV′ → AV′ → 0

as well as a principally polarised 1-motive M̃V′ = [V′⊥ /V′ → GV′ ]. We consider the
composition

M̃V′ [p
m] ' M̃V′ [p

m]∨ � GV′ [p
m]∨

HTGV′ [p
m]∨

−−−−−−−→ ωGV′
/pm,

where the first isomorphism is given by the principal polarisation on M̃V′ . Composing with
the universal trivialisation of M̃V′ [p

m] and tensoring with the structure sheaf, we arrive at
the desired morphism (2.2).

Consider the image of HTΓ(pm)⊗ id and then consider its preimage inside ΩΓ(pm). This
yields a subsheaf Ωmod

Γ(pm) ⊂ ΩΓ(pm). In fact, Ωmod
Γ(pm) does not depend on m; i.e., if n ≥ m and

XΓ(pn) → XΓ(pm) is the natural projection, then the pullback of Ωmod
Γ(pm) coincides with Ωmod

Γ(pn).
Now, let m be any positive integer greater than g

p−1
. Consider ideals I 1, . . . ,I g ⊂

OXΓ(pm)
generated by the lifts of the determinants of the minors of rank g, . . . , 1 of the map

HTΓ(pm)⊗ id :
(
V ⊗Z (Z /pm Z)

)
⊗Z OXΓ(pm)

→ ΩΓ(pm)/p
mΩΓ(pm).

Notice that these ideals are invertible on the rigid generic fibre. Let X̃Γ(pm) be the formal
scheme obtained by consecutive formal blowups of XΓ(pm) along these ideals. In particular,
Ωmod

Γ(pm) becomes locally free over X̃Γ(pm).

Finally, let Xmod

Γ(pm) be the normalisation of X̃Γ(pm) inside its adic generic fibre. We remark

that the adic generic fibre of Xmod

Γ(pm) coincides with the one of XΓ(pm). For any m ≥ n > g
p−1

,
there is a natural finite morphism

X
mod

Γ(pm) → X
mod

Γ(pn).

2.3.2. As the adic generic fibre of Xmod

Γ(pm) coincides with X Γ(pm),Cp , the locally free sheaf
Ωmod

Γ(pm),Cp gives rise to a locally free O+

XΓ(pm),Cp

-module ωmod,+
Γ(pm) on X Γ(pm),Cp . Inverting p, we

obtain the locally free OXΓ(pm),Cp
-module ωΓ(pm). Notice that ωΓ(pm) is just the usual sheaf

of invariant differentials defined using the universal semiabelian varieties.
Consider the projective limit

X
mod

Γ(p∞) := lim←−X
mod

Γ(pm)

in the category of p-adic formal schemes. Let X Γ(p∞) be its adic generic fibre in the sense
of [SW13]. The following proposition shows that X Γ(p∞) is the desired perfectoid Siegel
modular variety at the infinite level.
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Proposition 2.3.3 ([PS16, Proposition 4.9 & Corollaire 4.14]). We have

(i) The adic generic fibre X Γ(p∞) is a perfectoid space such that

X Γ(p∞) ∼ lim←−
n

X Γ(pn),Cp

in the sense of [SW13, Definition 2.4.1].

(ii) For every n ∈ Z≥0, the natural morphism

X Γ(p∞) → X Γ(pn),Cp

is a pro-Kummer étale Galois cover with Galois group Γ(pn). (Here we have abused
the notation and identify X Γ(p∞) with the object lim←−nX Γ(pn) in the pro-Kummer étale
site.) Simiarly, the natural morphism

X Γ(p∞) → X Iw,Cp (resp., X Γ(p∞) → X Iw+,Cp)

is a pro-Kummer étale Galois cover with Galois group IwGSp2g
(resp., Iw+

GSp2g
).

Remark 2.3.4. Induced from the stratification on the finite levels, the perfectoid Siegel
modular variety X Γ(p∞) admits a stratification by the profinite set

Ŝ := lim←−
n

S /Γ̃(pn).

For each σ̂ = (σn)n≥0 ∈ Ŝ, the σ̂-stratum is canonically isomorphic to

Z∞,σ̂ := lim←−
n

Zn,σn

where Zn,σn is the adic spaces given by the analytification of Zn,σn over Spa(Cp,OCp)
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2.3.5. We summarise the discussion above in the following commutative diagram

X Γ(p∞) X Γ(p∞)

X Γ(pn),Cp X Γ(pn),Cp

X Γ(p),Cp X Γ(p),Cp

X Iw+,Cp X Iw+,Cp

X Iw,Cp X Iw,Cp

XCp XCp

.

where X Γ(p∞) is the part of X Γ(p∞) away from the boundary.
There is a natural GSp2g(Zp)-action on X Γ(p∞) permuting the p-power level structures.

In particular, the chain of natural projections

X Γ(p∞) → X Γ(pn),Cp → X Γ(p),Cp → X Iw+,Cp → X Iw,Cp → XCp

is GSp2g(Zp)-equivariant. We name the natural projections

hΓ(pn) : X Γ(p∞) → X Γ(pn),Cp , hIw+ : X Γ(p∞) → X Iw+,Cp and hIw : X Γ(p∞) → X Iw,Cp

By Proposition 2.3.3, the following lemma is expected.

Lemma 2.3.6. We have the following identities of sheaves

O+

X Iw,Cp
=
(
hIw,∗O

+

XΓ(p∞)

)IwGSp2g
, OX Iw,Cp

=
(
hIw,∗OXΓ(p∞)

)IwGSp2g

O+

X Iw+,Cp

=
(
hIw+,∗O

+

XΓ(p∞)

)Iw+
GSp2g

, OX Iw+,Cp
=
(
hIw,∗OXΓ(p∞)

)Iw+
GSp2g

.

Proof. We give the proof of the first pair of identities. The second pair can be proven by the
same argument.

It suffices to prove the first identity. Let V ⊂ X Iw,Cp be an affinoid open subsapce. For
every n ∈ Z≥1, let Vn be the preimage of V in X Γ(pn),Cp and consider the object Ṽ∞ := lim←−n Vn
in the pro-Kummer étale site X Iw,Cp,prokét. By Lemma A.1.12, each Vn is finite Kummer étale
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over V with Galois group Gn := IwGSp2g
/Γ(pn). Thus,

O+

XΓ(p∞)
(V∞) =

(
lim−→
n

O+

XΓ(pn),Cp

(Vn)

)∧
=
(
O+

X Iw,Cp,prokét
(Ṽ∞)

)∧
,

where ‘∧’ stands for the p-adic completion. By [DLLZ19, Lemma 4.1.7 & Corollary 4.4.13],
we know (

O+

XΓ(pn),Cp

(Vn)/pm
)IwGSp2g

=
(
O+

XΓ(pn),Cp

(Vn)/pm
)Gn

= O+

X Iw,Cp
(V)/pm

for every m ∈ Z≥1. This implies(
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

)IwGSp2g
= O+

X Iw,Cp
(V)/pm.

Note that(
lim←−
m

(
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

))IwGSp2g

= lim←−
m

((
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

)IwGSp2g

)
.

Indeed, the inclusion from the left-hand side to the right-hand side is clear. To show the

other inclusion, take any (xm)m ∈
(

lim←−m
(
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

))IwGSp2g , then for any γ ∈
IwGSp2g

,
(xm)m = γ∗(xm)m = (γ∗ xm)m.

Here, the last equation follows from that each O+

X Iw,Cp,prokét
(Ṽ∞)/pm is equipped with the

discrete topology and IwGSp2g
acts continuously on the projective limit (with respect to

the p-adic topology). Projecting back to each O+

X Iw,Cp,prokét
(Ṽ∞)/pm, we see that xm ∈(

O+

X Iw,Cp,prokét
(Ṽ∞)/pm

)IwGSp2g . Consequently, we have

(
O+

XΓ(p∞)
(V∞)

)IwGSp2g
=

((
O+

X Iw,Cp,prokét
(Ṽ∞)

)∧)IwGSp2g

=

(
lim←−
m

(
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

))IwGSp2g

= lim←−
m

((
O+

X Iw,Cp,prokét
(Ṽ∞)/pm

)IwGSp2g

)
= lim←−

m

O+

X Iw,Cp
(V)/pm

= O+

X Iw,Cp
(V).
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2.4 Flag varieties

2.4.1. One of the important feature of the perfectoid toroidally compactified Siegel modular
variety at infinite level is the so-called Hodge–Tate period map. Before defining this map, we
first describe the target flag variety (and its variants) carefully.

Recall that Vp = V ⊗ZZp is the standard symplectic space of rank 2g over Zp. Let PSiegel

be the (opposite) Siegel parabolic subgroup of GSp2g defined by

PSiegel :=

(
GLg
Mg GLg

)
∩GSp2g .

Let Fl := PSiegel\GSp2g be the flag variety over Zp, parameterising the maximal lagrangians
W ⊂ Vp.1 There is a natural action of GSp2g on Fl by right multiplication. Let F` be
the associated adic space of Fl over Spa(Qp,Zp), equipped with the induced right action of
GSp2g(Qp). Hence, for any p-adically complete sheafy (Qp,Zp)-algebra (R,R+), F`(R,R+)
parameterises maximal lagrangians W ⊂ Vp⊗ZpR.

2.4.2. Consider the open subset F`× ⊂ F` whose (R,R+)-points are

F`×(R,R+) =

{
(W ⊂ Vp⊗ZpR) ∈ F`(R,R+) :

there exists a basis {wi} of W such that
the matrix (〈wi, e2g+1−j 〉)1≤i,j≤g is invertible

}
.

For any xW = (W ⊂ Vp⊗ZpR) ∈ F`×(R,R+), there exists a unique basis {w�i } of W such
that

(〈w�i , e2g+1−j 〉)1≤i,j≤g = 1g .

Therefore, there exist global sections z i,j ∈ OF`×(F`×) such that for any xW ∈ F`×(R,R+),

w�i = ei +

g∑
j=1

z i,j(xW )eg+j.

Since 〈w�i , w�j 〉 = 0, we have

0 = 〈w�i , w�j 〉

= 〈 ei,
g∑

k=1

z j,k(xW )eg+k 〉+ 〈
g∑

k=1

z i,k(xW )eg+k, ej 〉

= z j,g+1−i(xW )− z i,g+1−j(xW ).

1In fact, we should use P opp
Siegel :=

(
GLg Mg

GLg

)
∩GSp2g to define the flag variety. We apologise for using

PSiegel instead of P opp
Siegel due to some computational convenience in the later context. Here, we identify P opp

Siegel

with PSiegel via
P opp

Siegel → PSiegel, γ 7→ tγ−1 .
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That is, the matrix

z :=

z 1,1 · · · z 1,g

...
...

z g,1 · · · z g,g


is symmetric with respect to the anti-diagonal. Moreover, we may use the matrix

(
1g z (xW )

)
(or just the matrix z (xW )) to represent the element xW ∈ F`×(R,R+) because the basis
{w�i } is represented by the matrix1 z 1,1(xW ) · · · z 1,g(xW )

. . .
...

...
1 z g,1(xW ) · · · z g,g(xW )

 =
(
1g z (xW )

)
with respect to the standard basis e1, . . . , e2g of Vp.

2.4.3. In the rest of the thesis, we take base change of the adic spaces F` and F`× to
Spa(Cp,OCp).

For every w ∈ Q>0, consider an open adic subspace F`×w ⊂ F`× defined by

F`×w :=

{
x ∈ F`× : max

i,j
inf
h∈Zp
{| z i,j(x )− h|} ≤ p−w

}
.

For any algebraically closed complete nonarchimedean field C containing Qp, let

GSp2g,w(C) :=

{
γ =

(
γa γb
γc γd

)
∈ GSp2g(C) :

γa ∈ GLg(C), and
maxi,j infh∈Zp{|(γ−1

a γb)ij − h|} ≤ p−w

}
where (γ−1

a γb)ij is the (i, j)-th entry of the matrix γ−1
a γb. Then the (C,OC)-points of F`×w

can be identified with the quotient

F`×w(C,OC) = PSiegel(C)\GSp2g,w(C)

so that the natural inclusion F`×w(C,OC) ⊂ F`(C,OC) is induced by

F`×w(C,OC) = PSiegel(C)\GSp2g,w(C) ↪→ PSiegel(C)\GSp2g(C) = F`(C,OC).

Recall that there is a natural right action of GSp2g(Qp) on F`. The following lemma
shows that F`×w is stable under the action of the subgroup IwGSp2g

⊂ GSp2g(Qp).

Lemma 2.4.4. The adic space F`×w is stable under the right action of IwGSp2g
. Coordinate-

wise, the action is given by

F`×w × IwGSp2g
→ F`×w ,

(
z,
(
γa γb
γc γd

))
7→ (γa + zγc)

−1(γb + zγd).

In particular, F`×w is also stable under the right action of the subgroup Iw+
GSp2g

.

Proof. It follows from the definition that the right action of γ ∈ IwGSp2g
indeed sends
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(
1g z (xW )

)
to

(
1g (γa + z (xW )γc)

−1(γb + z (xW )γd)
)

= (γa + z (xW )γc)
−1
(
1g z (xW )

)(γa γb
γc γd

)
.

It remains to show that, for every xW ∈ F`×w , the matrix (γa + z (xW )γc)
−1(γb + z (xW )γd)

lands in F`×w . But this is straightforward.

2.4.5. For latter usage, we would like to understand certain vector bundle on F` and F`×w .
To this end, let W Fl ⊂ O2g

Fl be the universal maximal lagrangian over Fl. The total space of
W Fl can be naturally identified with

W Fl ' PSiegel\(Ag×GSp2g)

where

• by viewing elements ~v ∈ Ag as column vectors, PSiegel acts on Ag from the left via

γ ∗~v = tγ−1
a ~v, for any γ =

(
γa γb
γc γd

)
∈ PSiegel;

• PSiegel acts on GSp2g via the left multiplication.

Similarly, consider the linear dual W ∨
Fl of W Fl. Then the total space of W ∨

Fl can be
naturally identified with

W ∨
Fl ' PSiegel\(Ag×GSp2g)

where, by viewing elements ~v ∈ Ag as row vectors, PSiegel acts on Ag from the left via

γ ∗~v = ~v tγa, for any γ =

(
γa γb
γc γd

)
∈ PSiegel. Under this identification, global sections of

W ∨
Fl are identified with{
algebraic functions φ : GSp2g → Ag : φ(γ α) = φ(α) · tγa, ∀γ ∈ PSiegel, α ∈ GSp2g

}
.

For every i = 1, . . . , g, we consider a global section s i of W ∨
Fl defined by

s i(α) := the i-th row of tαa

for all α =

(
αa αb

αc αd

)
∈ GSp2g. If we write

s :=

s1

...
sg

 ∈ (W ∨
Fl)

g

then we have s(α) = tαa.
By passing to the adic space F` and restricting to F`×w , the (algebraic) sheaves W Fl

and W ∨
Fl yield (analytic) sheaves W F`×w and W ∨

F`×w
on F`×w . We still use s i’s to denote the

restrictions on F`×w of the corresponding algebraic sections. By definition, the sections s i’s
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are non-vanishing on F`×w and hence s∨i ’s are well-defined sections on W F`×w . We similarly
write

s∨ :=
(
s∨1 · · · s∨g

)
∈ (W F`×w )g.

Moreover, the right action of IwGSp2g
on F`×w induces a right action of IwGSp2g

on W F`×w .

Lemma 2.4.6. For any γ =

(
γa γb
γc γd

)
∈ IwGSp2g

, we have

γ∗(s∨) = s∨ · t(γa + zγc)
−1.

The right-hand side means the right multiplication of matrices, where we view s∨ as a (1×g)-
matrix with entries s∨i .

Proof. To prove the identity, it suffices to check on the level of (C,OC)-points. Using the
identification

F`×w(C,OC) = PSiegel(C)\GSp2g,w(C),

the sections of W F`×w can be identified with{
analytic functions φ : GSp2g,w → Cg : φ(γ α) = tγ−1

a ·φ(α), ∀γ ∈ PSiegel(C), α ∈ GSp2g,w(C)
}
.

Here, elements in Cg are viewed as column vectors. Under this identification, s∨ sends
α ∈ GSp2g,w(C) to tα−1

a . Notice that a section φ : GSp2g,w(C)→ Cg of W F`×w is determined
by its restriction on{(

1g z
1g

)
: tz 1̆g = 1̆g z , max

i,j
inf
h∈Zp
{| z i,j(x )− h|} ≤ p−w

}
.

Let α =

(
1g z

1g

)
. Then s∨(α) = 1g and

(γ∗(s∨))(α) = s∨(αγ) = s∨
((

γa + z γc γb + z γd
γc γd

))
= t(γa + z γc)

−1 = s∨(α)·t(γa + z γc)
−1

as desired.

Corollary 2.4.7. For any γ =

(
γa γb
γc γd

)
∈ IwGSp2g

, we have

γ∗(s) = t(γa + zγc) · s .

Proof. This follows immediately from Lemma 2.4.6.

2.5 The Hodge–Tate period map and w-ordinary loci
2.5.1. The perfectoid toroidally compactified Siegel modular variety X Γ(p∞) is equipped with
the so-called Hodge–Tate period map. Let us briefly discuss its construction.
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By definition of ωmod,+
Γ(pn) (for sufficiently large n), the Hodge–Tate map HTΓ(pn) induces a

map (which we abuse the notation and still denote by HTΓ(pn))

HTΓ(pn) : V⊗Z(Z /pn Z)→ ωmod,+
Γ(pn) /p

nωmod,+
Γ(pn) .

Let ωmod,+
Γ(p∞) and ωΓ(p∞) denote the pullbacks of ωmod,+

Γ(pn) and ωΓ(pn), respectively, to X Γ(p∞).
Pulling back HTΓ(pn) to the infinite level and taking inverse limit, we obtain

HTΓ(p∞) : Vp := V⊗Z Zp → ωmod,+
Γ(p∞)

which induces a surjection

HTΓ(p∞)⊗ id : Vp⊗Zp O+

XΓ(p∞)
→ ωmod,+

Γ(p∞) .

Finally, inverting p, the surjection

HTΓ(p∞)⊗ id : Vp⊗Zp OXΓ(p∞)
→ ωΓ(p∞)

induces the Hodge–Tate period map

πHT : X Γ(p∞) → F`,

where F` is the (adic) flag variety parameterising the maximal lagrangians of Vp. According
to [PS16, §1], we know that πHT is a morphism of adic spaces.

2.5.2. Let us describe the Hodge–Tate period map πHT more explicitly on the level of points.
Suppose C is an algebraically closed and complete extension of Qp and (A, λ) is a principally
polarised abelian variety over C. The Hodge–Tate sequence of A is

0→ LieA→ TpA⊗Zp C → ωA∨ → 0,

where ωA∨ is the dual of the Lie algebra of the dual abelian variety A∨ and the second last
map is induced from the Hodge–Tate map HTA : TpA → ωA∨ . Here, we ignore the Tate
twist by the fixed compatible system of p-power roots of unity (ζpn)n∈Z≥1

in Cp. Notice that
every point x ∈ X Γ(p∞)(C,OC) corresponds to a quadruple (A, λ, ψN , ψ) where (A, λ, ψN) is
a principally polarised abelian variety over C with a Γ(p)-level structure and ψ is a symplectic
isomorphism ψ : Vp ' TpA. Then πHT sends x to the maximal lagrangian

LieA ⊂ TpA⊗Zp C
ψ−1

' Vp ⊗Zp C.

One can extend such an explicit description to the boundary points as well using the
language of 1-motives. The details are left to the interested readers.

Remark 2.5.3. There are right GSp2g(Qp)-actions on both sides of the Hodge–Tate map.
The GSp2g(Qp)-action on F` is given in §2.4. As for the GSp2g(Qp)-action on X Γ(p∞), here
we only describe the action away from the boundary. (A similar description applies to the
boundary points as well, using the language of 1-motives.) Let γ ∈ GSp2g(Qp) and let
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m ∈ Z such that pm γ−1 ∈ M2g(Zp) and pm−1 γ−1 6∈ M2g(Zp). Choose k ∈ Z≥0 sufficiently
large such that the kernel of pm γ−1 : A[pk] → A[pk] stabilises. Let H ⊂ A[pk] denote the
corresponding kernel. Then γ−1 sends (A, λ, ψN , ψ) to (A′ = A/H, λ′, ψ′N , ψ

′) where

• λ′ is the induced polarisation on A′;

• ψ′N is induced from ψN via the isomorphism A[N ] ' A′[N ];

• ψ′ is given by the composition

Vp → Vp ⊗Zp Qp

ψ−→ TpA⊗Zp Qp → TpA
′ ⊗Zp Qp

with the first map Vp → Vp ⊗Zp Qp sending ~v to (pm γ−1)−1~v.

One checks that πHT is equivariant with respect to these GSp2g(Qp)-actions.

Proposition 2.5.4. There is a natural isomorphism

π∗HT W ∨
F` ' ωΓ(p∞).

Proof. Let Auniv
Γ(p∞) be the pullback of the universal abelian variety Auniv

Cp over XCp to X Γ(p∞).
Away from the boundary, we have a universal trivialisation ψuniv : Vp ' TpAuniv

Γ(p∞). Let
ψuniv,∨ : V∨p ' TpAuniv,∨

Γ(p∞) be the dual trivialisation. The Hodge–Tate map on the universal
abelian variety Auniv

Γ(p∞) induces a map

HTΓ(p∞) : V∨p
ψuniv,∨

' TpAuniv,∨
Γ(p∞) → ωΓ(p∞)|XΓ(p∞)

which induces a surjection

HTΓ(p∞)⊗ id : V∨p ⊗Zp OXΓ(p∞)
� ωΓ(p∞)|XΓ(p∞)

.

According to 2.5.1, this surjection extends to a surjection 2

HTΓ(p∞)⊗ id : V∨p ⊗Zp OXΓ(p∞)
� ωΓ(p∞)

on the entire perfectoid Siegel modular variety.
Consequently, the sheaf π∗HT W ∨

F`, being the universal maximal Lagrangian quotient of
V∨p ⊗Zp OXΓ(p∞)

, coincides with ωΓ(p∞).

2.5.5. Recall the sections s i of W ∨
F` defined in 2.4.5. We define sections si ∈ ωΓ(p∞) by

si := π∗HT s i . (2.3)

2The map HTΓ(p∞)⊗ id here coincides with the map HTΓ(p∞)⊗ id : Vp⊗Zp
OXΓ(p∞)

→ ωΓ(p∞) in 2.5.1
via the symplectic isomorphism Vp ' V∨p sending ei to −e∨2g+1−i, for i = 1, . . . , g, and sending ei to e∨2g+1−i,
for i = g + 1, . . . , 2g.
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From the construction, one sees that

si = HTΓ(p∞)(e
∨
i ) (2.4)

for all i = 1, . . . , g. These si’s are examples of fake Hasse invariants studied in [Sch15]. We
also write

s :=

s1

...
sg

 = π∗HT s .

2.5.6. To wrap up the section, we introduce the notion of ‘w-ordinary locus’ of the perfectoid
Siegel modular variety. In particular, it is an open subset of X Γ(p∞) which contains the usual
ordinary locus.

For every w ∈ Q>0, define
X Γ(p∞),w := π−1

HT(F`×w).

We also define

X Γ(pn),Cp,w := hΓ(pn)(X Γ(p∞),w), X Iw+,Cp,w := hIw+(X Γ(p∞),w),

X Iw,Cp,w := hIw(X Γ(p∞),w), XCp,w := h(X Γ(p∞),w),

where hΓ(pn) : X Γ(p∞) → X Γ(pn),Cp , hIw+ : X Γ(p∞) → X Iw+,Cp , hIw : X Γ(p∞) → X Iw,Cp ,
and h : X Γ(p∞) → XCp are the natural projections. The subspaces X Γ(p∞),w, X Γ(pn),Cp,w,
X Iw+,Cp,w, X Iw,Cp,w, and XCp,w are called the w-ordinary loci of X Γ(p∞), X Γ(pn),Cp , X Iw+,Cp ,
X Iw,Cp , and XCp , respectively.

We still denote by
πHT : X Γ(p∞),w → F`×w

the restriction of the Hodge–Tate period map on the w-ordinary locus. It is equivariant
under the right IwGSp2g

-actions on both sides.
Denote by zij := π∗HT z ij and z := (zi,j)1≤i,j≤g = π∗HT z . Let s∨i := π∗HT(s∨i ) and

s∨ :=
(
s∨1 · · · s∨g

)
= π∗HT(s∨).

By Lemma 2.4.6 and Corollary 2.4.7, we have

γ∗(s∨) = s∨ · t(γa + zγc)
−1

and
γ∗ s = t(γa + zγc) · s (2.5)

for all γ =

(
γa γb
γc γd

)
∈ IwGSp2g

. We will need these sections si’s and s∨i ’s in Chapter 3.
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Chapter 3

Overconvergent automorphic sheaves

In this chapter, we use perfectoid method to construct families of sheaves of overconvergent
Siegel modular forms. In particular, we give an answer to the first part of Question 1.3.2
(i). The idea of such sheaves are taken from [CHJ17], where the authors of loc. cit. used
perfectoid methods to construct families of sheaves of overconvergent automorphic forms
over the compact Shimura curve over Q. We remark that the materials presented in this
chapter are entirely taken from [DRW22, §3].

This chapter is organised as follows. The perfectoid construction of the sheaves are given
in §3.1 and the local descriptions of these sheaves are discussed in §3.2. In §3.3, we define the
Hecke operators acting on the space of overconvergent Siegel modular forms. We justify our
sheaves in §3.4; that is, we prove that our space of overconvergent Siegel modular forms does
contain the space of classical (algebraic) Siegel modular forms. The last three sections §3.5,
§3.6 and §3.7 are dedicated to the relation between our construction and the construction in
[AIP15].

Convention. Starting from this chapter, we denote by X Γ (resp., X Γ,w; resp., X Γ) the adic
space X Γ,Cp (resp., X Γ,Cp,w; resp., X Γ,Cp) over Spa(Cp,OCp) for any Γ ∈ {Γ(pm), Iw+, Iw,∅}.
Similarly, we also write Xtor

Γ (resp., XΓ) for the algebraic variety XΓ,Cp (resp., XΓ,Cp) over
Cp.

3.1 The perfectoid construction

3.1.1. Let Alg(Zp,Zp) be the category of complete sheafy (Zp,Zp)-algebras. We consider the
functor

Alg(Zp,Zp) → Sets, (R,R+) 7→ Homcts
Group(TGLg ,0, R

×),

which is represented by the (Zp,Zp)-algebra (Zp[[TGLg ,0]],Zp[[TGLg ,0]]). The weight space is

W := Spa(Zp[[TGLg ,0]],Zp[[TGLg ,0]])rig,

where the superscript ‘rig’ stands for taking the generic fibre. Every continuous group
homomorphism κ : TGLg ,0 → R× can be expressed as κ = (κ1, ..., κg) where each κi : Z×p →
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R× is a continuous group homomorphism. We write κ∨ := (−κg, ...,−κ1) where −κi is the
inverse of κi.

We are interested in some special weights, namely ‘small weights’ and ‘affinoid weights’.
These terminologies are adapted from the ones introduced in [CHJ17].

Definition 3.1.2. (i) A small Zp-algebra is a p-torsion free reduced ring which is also
a finite Zp[[T1, ..., Td]]-algebra for some d ∈ Z≥0. In particular, a small Zp-algebra is
equipped with a canonical adic profinite topology and is complete with respect to the
p-adic topology.

(ii) A small weight is a pair (RU , κU) where RU is a small Zp-algebra and κU : TGLg ,0 →
R×U is a continuous group homomorphism such that κU((1 + p)1g)− 1 is topologically
nilpotent in RU with respect to the p-adic topology. By the universal property of the
weight space, we obtain a natural morphism

Spa(RU , RU)rig →W .

Occasionally, we abuse the terminology and call U := Spa(RU , RU) a small weight. For
later use, we write R+

U := RU in this situation.

(iii) An affinoid weight is a pair (RU , κU) where RU is a reduced Tate algebra topologically
of finite type over Qp and κU : TGLg ,0 → R×U is a continuous group homomorphism. By
the universal property of weight space, we obtain a natural morphism

Spa(RU , R
◦
U)→W .

Ocassionally, we abuse the terminology and call U := Spa(RU , R
◦
U) an affinoid weight.

For later use, we write R+
U = R◦U in this situation.

(iv) By a weight, we shall mean either a small weight or an affinoid weight.

Remark 3.1.3. For any n ∈ Z≥0, we view n as a weight by identifying it with the character

TGLg ,0 → Z×p , diag(τ 1, ..., τ g) 7→
g∏
i=1

τ ni .

Moreover, for any weight κ = (κ1, ..., κg), we write κ + n for the weight (κ1 + n, ..., κg + n)
defined by

diag(τ 1, ..., τ g) 7→
g∏
i=1

κi(τ i) τ
n
i .

3.1.4. Because of the notion of small weights, we have to work with the ‘mixed completed
tensor’ as in [CHJ17]. We recall the definition.

Definition 3.1.5. Let R be a small Zp-algebra.
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(i) For any Zp-module M , we define 1

M⊗̂′R := lim←−
j∈J

(M ⊗Zp R/Ij)

where {Ij : j ∈ J} runs through a cofinal system of neighborhood of 0 consisting of Zp-
submodules of R. If, in addition, M is a Zp-algebra, then M⊗̂

′
R is also a Zp-algebra.

(ii) Let B be a Qp-Banach space and let B0 be an open and bounded Zp-submodule. We
define the mixed completed tensor

B⊗̂R := (B0⊗̂
′
R)[

1

p
].

which is in fact independent of the choice of B0.

3.1.6. Let (RU , κU) be a weight, we will use the following conventions:

(i) For any Zp-module M , the term M⊗̂R+
U will either stand for M⊗̂′RU in the case of

small weights (notice that RU = R+
U in this case), or stand for the p-adically completed

tensor over Zp in the case of affinoid weights.

(ii) For any Qp-Banach space B, the term B⊗̂RU will either stand for the mixed completed
tensor in the case of small weights, or stand for the usual p-adically completed tensor
over Qp in the case of affinoid weights.

Notice that, given a uniform Banach Qp-algebra B and any weight (RU , κU), the tensor
product B⊗̂RU also admits a structure of uniform Qp-Banach algebra. In particular, if B◦
is the unit ball of B (with respect to the unique power-multiplicative Banach algebra norm),
then the unit ball in B⊗̂RU = B⊗̂Qp

R+
U [1/p] is given by B◦⊗̂R+

U . Here, note that R+
U [1/p]

has a structure of a uniform Banach Qp-algebra given by the corresponding spectral norm
(see [CHJ17, pp. 202]).

3.1.7. Next, we introduce the notion of ‘r-analytic functions’ by following [Han17]. Such a
notion is not only important in the perfectoid construction of sheaves of overconvergent Siegel
modular forms, but also plays an essential role when discussing overconvergent cohomology
groups in Chapter 4.

Definition 3.1.8. Let r ∈ Q>0 and n ∈ Z≥1. Let B be a uniform Cp-Banach algebra and
let B◦ be the corresponding unit ball.

(i) A function f : Zn
p → B (resp., a function f : (Z×p )n → B) is called r-analytic if for

every a = (a1, . . . , an) ∈ Zn
p (resp., every a = (a1, . . . , an) ∈ (Z×p )n), there exists a

power series fa ∈ B[[T1, . . . , Tn]] which converges on the n-dimensional closed unit ball
Bn(0, p−r) ⊂ Cn

p of radius p−r such that

f(x1 + a1, . . . , xn + an) = fa(x1, . . . , xn)

1Our notation ⊗̂′ corresponds to the notation ⊗̂ in [CHJ17, Definition 6.3]. We make this change to
distinguish from the one in Definition 3.1.5 (ii).
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for all xi ∈ pdre Zp, i = 1, . . . , n. Here dre stands for the smallest integer that is greater
or equal to r.

(ii) Let Cr−an(Zn
p , B) (resp., Cr−an((Z×p )n, B)) denote the set of r-analytic functions from

Zn
p (resp., (Z×p )n) to B.

(iii) Let Cr−an(Zn
p , B

◦) (resp., Cr−an((Z×p )n, B◦)) denote the subset of Cr−an(Zn
p , B) (resp.,

Cr−an((Z×p )n, B)) consisting of those functions with value in B◦.

3.1.9. Given a uniform Cp-Banach algebra, we claim that Cr−an(Zn
p , B) (resp., Cr−an((Z×p )n, B))

admits a natural structure of uniform Cp-Banach algebra. Indeed, one first expresses Zn
p as

the disjoint union of pndre closed balls of radius pdre, labelled by an index set A of size pndre.
Then, for every f ∈ Cr−an(Zn

p , B), the restriction of f on each closed ball (with label a ∈ A)
is given by a power series

fa ∈ B〈
T1

pr
, . . . ,

Tn
pr
〉

whereB〈T1

pr
, . . . , Tn

pr
〉 stands for the subset ofB[[T1, . . . , Tn]] which converges on the n-dimensional

closed unit ball Bn(0, p−r) ⊂ Cn
p . Let | • |B be the unique power-multipicative norm on B.

We can equip B〈T1

pr
, . . . , Tn

pr
〉 with the following norm: for every f ′ =

∑
ν∈Zn≥0

bνT
ν , we put

|f ′| := sup
ν∈Zn≥0

|bν |B · p−r|ν|.

Finally, if f ∈ Cr−an(Zn
p , B) is represented by {fa}a∈A, we put |f | := supa∈A |fa|. This is

indeed a uniform Banach norm with unit ball Cr−an(Zn
p , B

◦).

Definition 3.1.10. (i) A weight (RU , κU) is called r-analytic if it is r-analytic when
viewed as a function

κU : (Z×p )g → R×U ⊂ Cp ⊗̂RU
via the identification TGLg ,0 ' (Z×p )g.

(ii) For a weight (RU , κU), we write rU for the smallest positive integer r such that the
weight is r-analytic.

Remark 3.1.11. (i) It is well-known that every continuous character Z×p → R×U is r-
analytic for sufficiently large r. Moreover, if such a character is r-analytic, it necessary
extends to a character

Z×p (1 + pr+1OCp)→ (OCp ⊗̂R+
U )× ⊂ Cp ⊗̂RU .

See, for example, [CHJ17, Proposition 2.6].

(ii) If we write κU = (κU ,1 . . . , κU ,g) with components κU ,i : Z×p → R×U , then κU is r-analytic
if and only if all κU ,i’s are r-analytic. In this case, for any w ∈ Q>0 with w > 1 + rU ,
κU extends to a character

κU : T
(w)
GLg ,0

→ (OCp ⊗̂R+
U )× ⊂ Cp ⊗̂RU .
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3.1.12. In the perfectoid construction, we would like to consider ‘r-analytic functions on
IwGLg ’. This notion is made explicitly by the following.

Let B be a uniform Cp-Banach algebra. Note that there is a (topological) identification

Uopp
GLg ,1

=


1
pZp 1
...

. . .

pZp . . . pZp 1

 ' Z
(g−1)g

2
p .

We say a function ψ : Uopp
GLg ,1

→ B is called r-analytic if, under the identification above, the
function

ψ : Z
(g−1)g

2
p → B

is r-analytic. The space of such functions are denoted by Cr−an(Uopp
GLg ,1

, B).
Now, let (RU , κU) be an r-analytic weight. Using the decompositionBGLg ,0 = TGLg ,0UGLg ,0,

we extend κU to a group homomorphism κU : BGLg ,0 → R×U by setting κU |UGLg,0
= 1. We

define

Cr−an
κU

(IwGLg , B) :=

{
f : IwGLg → B :

f(γ β) = κU(β)f(γ), ∀β ∈ BGLg ,0, γ ∈ IwGLg

f |Uopp
GLg,1

is r-analytic

}
.

Finally, we write Cr−an
κU

(IwGLg , B
◦) for the subset of Cr−an

κU
(IwGLg , B) consisting of those

functions with value in B◦.
Consequently, by 3.1.9, Cr−an(Uopp

GLg ,1
, B) admits a structure of uniform Cp-Banach al-

gebra. Notice that an element in Cr−an
κU

(IwGLg , B) is determined by its restriction on Uopp
GLg ,1

.
Thus, Cr−an

κU
(IwGLg , B) admits a structure of uniform Cp-Banach algebra via the identifica-

tion
Cr−an
κU

(IwGLg , B) ' Cr−an(Uopp
GLg ,1

, B).

In particular, Cr−an
κU

(IwGLg , B
◦) is the corresponding unit ball in Cr−an

κU
(IwGLg , B).

Remark 3.1.13. Let κU be a weight and let w ∈ Q>0 with w > rU + 1. Recall that we
have a decomposition B(w)

GLg ,0
= T

(w)
GLg ,0

U
(w)
GLg ,0

. Since w > 1 + rU , κU extends to a character
on T (w)

GLg ,0
, and hence to a character on B(w)

GLg ,0
by setting κU |U(w)

GLg,0
= 0.

We claim that every element f in Cw−an
κU

(IwGLg , B) (resp., Cw−an
κU

(IwGLg , B
◦)) naturally

extends to a function

f : Iw
(w)
GLg
→ B (resp., f : Iw

(w)
GLg
→ B◦)

such that f(γ β) = κU(β)f(γ) for all β ∈ B(w)
GLg ,0

and γ ∈ Iw
(w)
GLg

. Indeed, we have decom-
position

Iw
(w)
GLg

= U
opp,(w)
GLg ,1

T
(w)
GLg ,0

U
(w)
GLg ,0

.

Then for every ν ∈ Uopp,(w)
GLg ,1

, τ ∈ T (w)
GLg ,0

, and ν ′ ∈ U (w)
GLg ,0

, we put

f(ν τ ν ′) = κU(τ )f(ν).
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It is straightforward to check that f is well-defined and satisfies the required condition.

3.1.14. As a consequence of Remark 3.1.13, given w ∈ Q>0 with w > 1 + rU , there is a
natural left action of Iw

+,(w)
GLg

on Cw−an
κU

(IwGLg , B) and Cw−an
κU

(IwGLg , B
◦) (hence also a left

action of Iw+
GLg

) given by
(γ ·f)(γ ′) = f(tγ γ ′)

for all γ ∈ Iw
+,(w)
GLg

, γ ′ ∈ IwGLg , and f ∈ Cw−an
κU

(IwGLg , B) (resp., Cw−an
κU

(IwGLg , B
◦)). This

left action is denoted by ρκU : Iw
+,(w)
GLg

→ Aut(Cw−an
κU

(IwGLg , B)) (resp., ρκU : Iw
+,(w)
GLg

→
Aut(Cw−an

κU
(IwGLg , B

◦))).

3.1.15. Before defining the sheaves of overconvergent Siegel modular forms, we introduce
the following sheaves for any weight (RU , κU) and any w ∈ Q>0 with w > 1 + rU :

(i) Let OXΓ(p∞),w
⊗̂RU be the sheaf on X Γ(p∞),w given by

Y 7→ OXΓ(p∞),w
(Y)⊗̂RU

for every affinoid open subset Y ⊂ X Γ(p∞),w. This is in fact a sheaf of uniform Cp-
Banach algebra; i.e., (OXΓ(p∞),w

⊗̂RU)(Y) is a uniform Cp-Banach algebra for every
affinoid open Y .
Similarly, let O+

XΓ(p∞),w
⊗̂R+

U be the sheaf on X Γ(p∞),w given by

Y 7→ O+

XΓ(p∞),w
(Y)⊗̂R+

U

for every affinoid open subset Y ⊂ X Γ(p∞),w.

(ii) For any r ∈ Q>0 with r > 1 + rU , let C r−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) denote the sheaf

on X Γ(p∞),w given by

Y 7→ Cr−an
κU

(IwGLg ,OXΓ(p∞),w
(Y)⊗̂RU)

for every affinoid open subset Y ⊂ X Γ(p∞),w. This is also a sheaf of uniform Cp-Banach
algebra.

The sheaf C r−an
κU

(IwGLg ,O
+

XΓ(p∞),w
⊗̂R+

U ) is defined in the same way.

Definition 3.1.16. Let (RU , κU) be a weight and let w ∈ Q>0 such that w > 1 + rU .

(i) The sheaf of w-overconvergent Siegel modular forms of strict Iwahori level
and weight κU is a subsheaf ωκUw of hIw+,∗ C

w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) defined as

follows. For every affinoid open subset V ⊂ X Iw+,w with V∞ = h−1
Iw+(V), we put

ωκUw (V) :=

f ∈ Cw−an
κU

(IwGLg ,OXΓ(p∞),w
(V∞)⊗̂RU) :

γ∗ f = ρκU (γa + zγc)
−1f,

∀γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g

 .
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Here, γ∗ f stands for the left action of γ on OXΓ(p∞),w
induced by the natural right

Iw+
GSp2g

-action on X Γ(p∞),w defined in §2.5.

Similarly, the sheaf of integral w-overconvergent Siegel modular forms of
strict Iwahori level and weight κU is a subsheaf ωκU ,+w of hIw+,∗ C

w−an
κU

(IwGLg ,O
+

XΓ(p∞),w
⊗̂R+

U )

defined as follows. For every affinoid open subset V ⊂ X Iw+,w with V∞ = h−1
Iw+(V), we

put

ωκU ,+w (V) :=

f ∈ Cw−an
κU

(IwGLg ,O
+

XΓ(p∞),w
(V∞)⊗̂R+

U ) :
γ∗ f = ρκU (γa + zγc)

−1f,

∀γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g

 .

(ii) The space of w-overconvergent Siegel modular forms of strict Iwahori level
and weight κU is defined to be

Mw
Iw+,κU

:= H0(X Iw+,w, ω
κU
w ).

We similarly define the space of integral w-overconvergent Siegel modular forms
of strict Iwahori level and weight κU to be

Mw,+

Iw+,κU
:= H0(X Iw+,w, ω

κU ,+
w ).

(iii) Taking limit with respect to w, the space of overconvergent Siegel modular forms
of strict Iwahori level and weight κU is

M †
Iw+,κU

:= lim
w→∞

Mw
Iw,κU

.

Similarly, the space of integral overconvergent Siegel modular forms of strict
Iwahori level and weight κU is

M †,+
Iw+,κU

:= lim
w→∞

Mw,+

Iw+,κU
.

(iv) Recall that Z Iw+ = X Iw+rX Iw+ is the boundary divisor. The sheaf of w-overconvergent
Siegel cuspforms of strict Iwahori level and weight κU is defined to be the sub-
sheaf ωκUw,cusp = ωκUw (−Z Iw+) of ωκUw consisting of sections that vanish along Z Iw+.

A w-overconvergent Siegel modular form of strict Iwahori level and weight κU is called
cuspidal if it is an element of

SwIw+,κU
:= H0(X Iw+,w, ω

κU
w,cusp).

Moreover, by taking limit with respect to w, the space of overconvergent Siegel
cuspforms of strict Iwahori level and weight κU is defined to be

S†
Iw+,κU

:= lim
w→∞

SwIw+,κU
.
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Remark 3.1.17. Notice that, in Definition 3.1.16 (iii), for every x ∈ X Γ(p∞),w(Cp,OCp)

and any
(
γa γb
γc γd

)
∈ Iw+

GSp2g
, we have γa + z(x )γc ∈ Iw

+,(w)
GLg

. Hence, ρκU (γa + zγc) is

well-defined.

Remark 3.1.18. The definition above yields an analogue to the complex theory, which we
describe in the following.

Suppose k = (k1, . . . , kg) ∈ Zg
≥0 is a dominant weight for GLg and let ρk : GLg(C) →

GL(Vk) be the corresponding irreducible representation of GLg of highest weight k. Recall
the Siegel upper-half space H+

g . Then a classical (complex) Siegel modular form of weight k
and level Γ is a holomorphic function f : H+

g → Vk such that

f(γ · x ) = ρk(γc x +γd)f(x )

for all x ∈ H+
g and γ =

(
γa γb
γc γd

)
∈ Γ ⊂ GSp2g(Z).

In our case, a w-overconvergent Siegel modular form f ∈ MκU
Iw+,w

can be viewed as a
function

f : X Γ(p∞),w → Cw−an
κU

(IwGLg ,Cp ⊗̂RU)

satisfying
f(x ·γ) = ρκU (γa + zγc)

−1f(x )

for all x ∈ X Γ(p∞),w and γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g
⊂ GSp2g(Zp). Notice that Cw−an

κU
(IwGLg ,Cp ⊗̂RU)

is an analytic analogue of the algebraic representation Vk.

Remark 3.1.19. The sheaf ωκUw is functorial in the weight (RU , κU). Given a map of weights
RU → RU ′ and w > max {1 + rU , 1 + rU ′}, we obtain a natural map ωκUw → ω

κU′
w induced

from
Cw−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU)→ Cw−an

κU′
(IwGLg ,OXΓ(p∞),w

⊗̂RU ′).

3.1.20. Finally, to simplify the notation, we introduce a ‘twisted’ left action of Iw+
GSp2g

on
the sheaf C w−an

κU
(IwGLg ,OXΓ(p∞),w

⊗̂RU) by the formula

γ .f := ρκU (γa + zγc)γ
∗ f.

Then, sections of ωκUw are precisely the Iw+
GSp2g

-invariant sections of hIw+,∗ C
w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU)

under this twisted action.

3.2 Local description
3.2.1. Throughout this subsection, let (RU , κU) be a small weight and w > 1 + rU . We fix
an ideal aU ⊂ RU defining the profinite adic topology on RU . In addition, we assume p ∈ aU .

The purpose of this subsection is to give a local description of the overconvergent Siegel
modular sheaf ωκUw . More precisely, we show that ωκUw can be identified with the G-invariants
of an admissible Kummer étale Banach sheaf in the sense of Definition A.2.11, where G is a
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finite group. Such a description allows us to apply Corollary A.2.18 to the sheaf ωκUw , which
is crucial in our construction of the overconvergent Eichler–Shimura morphism.

Definition 3.2.2. Let R be a flat OCp-algebra and suppose M is a free R-module of rank
g. We write Rw := R ⊗OCp

OCp /p
w and Mw := M ⊗R Rw. Let m := (m1, . . . ,mg) be an

Rw-basis for Mw. We denote by Film• the full flag

0 ⊂ 〈m1〉 ⊂ 〈m1,m2〉 ⊂ · · · ⊂ 〈m1, . . . ,mg〉

of the free Rw-module Mw. Namely, Filmi = 〈m1, . . . ,mi〉 for all i = 1, . . . , g.

(i) A full flag Fil• of the free R-module M is called w-compatible with m if

Fili⊗RRw = Filmi

for all i = 1, . . . , g.

(ii) Suppose Fil• is a w-compatible full flag as in (i). Consider a collection {wi : i =
1, . . . , g} where each wi is an R-basis for Fili /Fili−1. Then {wi : i = 1, . . . , g} is called
w-compatible with m if

wi mod (pwM + Fili−1) = mi mod Filmi−1

for all i = 1, . . . , g.

3.2.3. Pick a positive integer n > sup{w, g
p−1
}. Recall from §2.3 the locally free O+

XΓ(pn)
-

module ωmod,+
Γ(pn) over X Γ(pn). Also recall the Hodge–Tate map

HTΓ(pn) : V⊗Z(Z /pn Z)→ ωmod,+
Γ(pn) /p

nωmod,+
Γ(pn)

over X Γ(pn). Restricting to the w-ordinary locus X Γ(pn),w and composing with a natural
projection, we obtain

HTΓ(pn),w : V⊗Z(Z /pn Z)→ ωmod,+
Γ(pn),w/p

nωmod,+
Γ(pn),w � ωmod,+

Γ(pn),w/p
wωmod,+

Γ(pn),w

where ωmod,+
Γ(pn),w is the restriction of ωmod,+

Γ(pn) on X Γ(pn),w.

Lemma 3.2.4. The sheaf ωmod,+
Γ(pn),w/p

wωmod,+
Γ(pn),w is a free O+

XΓ(pn),w
/pw-module of rank g gen-

erated by the basis HTΓ(pn),w(eg+1), ..., HTΓ(pn),w(e2g).

Proof. Notice that ωmod,+
Γ(pn),w/p

wωmod,+
Γ(pn),w is locally free of rank g. It follows from the definition

of w-ordinary locus that HTΓ(pn),w(eg+1), ..., HTΓ(pn),w(e2g) span ωmod,+
Γ(pn),w/p

wωmod,+
Γ(pn),w. Hence

they must form a set of free generators.

3.2.5. We consider an adic space IW+
w over X Γ(pn),w parameterising certain w-compatible

objects. More precisely, for every affinoid open subset Spa(R,R+) ⊂ X Γ(pn),w, the set
IW+

w(R,R+) consists of triples

(σ,Fil•, {wi : i = 1, . . . , g})
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where

(i) σ is a matrix in Iw+
GLg

(Z /pn Z) where Iw+
GLg

(Z /pn Z) is the preimage of TGLg(Z /pZ)

under the surjection GLg(Z /p
n Z)

mod p−−−→ GLg(Z /pZ);

(ii) both Fil• and {wi : i = 1, . . . , g} are w-compatible with
(
HTΓ(pn),w(eg+1), . . . ,HTΓ(pn),w(e2g)

)
·

σ.

We write π : IW+
w → X Γ(pn),w for the natural projection.

3.2.6. In order to further understand IW+
w , we consider the following group objects in adic

spaces:

(i) Define

Bopp
w =


1 + pwB(0, 1)
pwB(0, 1) 1 + pwB(0, 1)

...
...

. . .

pwB(0, 1) pwB(0, 1) · · · 1 + pwB(0, 1)

 ,

where B(0, 1) = Spa(Cp〈X〉,OCp〈X〉) stands for the closed unit ball. In particular,
the underlying adic space is isomorphic to a 1

2
g(g + 1)-dimension ball of radius p−w.

(ii) Define

T (w)
GLg ,0

=


Z×p +pwB(0, 1)

Z×p +pwB(0, 1)
. . .

Z×p +pwB(0, 1)



=
⊔

h1,...,hg∈S


h1 + pwB(0, 1)

h2 + pwB(0, 1)
. . .

hg + pwB(0, 1)


where S ⊂ Z×p is a set of representatives of Z×p /(1+pn Zp). In particular, the underlying
adic space is isomorphic to the disjoint union of (p − 1)gpg(n−1) copies of g-dimension
ball of radius p−w.
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(iii) Define

Uopp,(w)
GLg ,1

=


1

pZp +pwB(0, 1) 1
...

...
. . .

pZp +pwB(0, 1) pZp +pwB(0, 1) · · · 1



=
⊔

hi,j∈S
1≤j<i≤g


1

h2,1 + pwB(0, 1) 1
...

...
. . .

hg,1 + pwB(0, 1) hg,2 + pwB(0, 1) · · · 1


where S ⊂ Z×p is a set of representatives of pZp /p

n Zp. In particular, the underlying
adic space is isomorphic to the disjoint union of p

1
2
g(g−1)(n−1) copies of 1

2
g(g − 1)-

dimension ball of radius p−w.

The adic spaces Bopp
w , T (w)

GLg ,0
and Uopp,(w)

GLg ,1
are equipped with group structures given by the

matrix multiplications. Note that the (Cp,OCp)-points of Bopp
w , T (w)

GLg ,0
, and Uopp,(w)

GLg ,1
coincide

with the groups Bopp
w , T (w)

GLg ,0
, and Uopp,(w)

GLg ,1
, respectively. This justifies the notations.

Lemma 3.2.7. IW+
w is a Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg ,1(Z /pn Z)-torsor over X Γ(pn),w where UGLg ,1(Z /pn Z)

is the kernel of the natural surjection UGLg(Z /p
n Z)

mod p−−−→ UGLg(Z /pZ). Namely, locally on
X Γ(pn),w, we have identification

IW+
w ' X Γ(pn),w ×Spa(Cp,OCp )

(
Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg ,1(Z /pn Z)

)
where Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg ,1(Z /pn Z) acts from the right by matrix multiplication.

Proof. This is clear from the construction.

3.2.8. Using the adic space IW+
w , we construct two auxiliary sheaves ω̃κU ,+n,w and ω̃κUn,w:

(i) The sheaf ω̃κU ,+n,w over X Γ(pn),w is defined to be

ω̃κU ,+n,w :=
(
π∗O

+
IW+

w
⊗̂RU

)
[κ∨U ];

i.e., the subsheaf of π∗O+
IW+

w
⊗̂RU consisting of those sections on which TGLg ,0-acts

through the character κ∨U and UGLg ,1(Z /pn Z) acts trivially.

(ii) The sheaf
ω̃κUn,w :=

(
π∗OIW+

w
⊗̂RU

)
[κ∨U ]

is defined similarly.
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Remark that since κU is w-analytic, the character κ∨U : TGLg ,0 → R×U extends to a character
on T (w)

GLg ,0
; namely, a character

κ∨U : T (w)
GLg ,0

(R,R+)→ (R+⊗̂RU)×

for every affinoid (Cp,OCp)-algebra (R,R+). It turns out, in the definitions of ω̃κU ,+n,w and
ω̃κUn,w, there is no difference between taking κ∨U -eigenspaces with respect to TGLg ,0- or T

(w)
GLg ,0

-
actions.

Lemma 3.2.9. The sheaf ω̃κUn,w is a projective Banach sheaf of OXΓ(pn),w
⊗̂RU -modules in the

sense of Definition A.2.4 (ii). Moreover, ω̃κU ,+n,w is an integral model of ω̃κUn,w in the sense of
Definition A.2.4 (iv).

Proof. Let {Vn,i : i ∈ I} be an affinoid open covering of X Γ(pn),w such that ωmod,+
Γ(pn) |Vn,i is free,

for every i ∈ I. By choosing a basis for ωmod,+
Γ(pn) |Vn,i , we can identify

ω̃κU ,+n,w |Vn,i ' O+
Vn,i〈Tst : 1 ≤ s < t ≤ g〉⊗̂RU

which is the p-adic completion of a free O+
Vn,i ⊗̂RU -module, as desired.

3.2.10. The p-adically completed sheaves on the Kummer étale site associated with ω̃κU ,+n,w

and ω̃κUn,w are

ω̃κU ,+n,w,két := lim←−
m

(
ω̃κU ,+n,w ⊗O+

XΓ(pn),w

O+

XΓ(pn),w,két
/pm

)
and ω̃κUn,w,két := ω̃κU ,+n,w,két[

1

p
]

respectively.
By Lemma 3.2.9 and Corollary A.2.9, ω̃κUn,w,két is a projective Kummer étale Banach sheaf

of OXΓ(pn),w,két ⊗̂RU -modules in the sense of Definition A.2.6 (ii). Moreover, ω̃κU ,+n,w,két is an
integral model of ω̃κUn,w,két in the sense of Definition A.2.6 (iv). In fact, the Kummer étale
Banach sheaf ω̃κUn,w,két is admissible by the following lemma.

Lemma 3.2.11. The sheaf ω̃κUn,w,két is an admissible Kummer étale Banach sheaf of OXΓ(pn),w,két
⊗̂RU -

modules (in the sense of Definition A.2.11) with integral model ω̃κU ,+n,w,két.

Proof. The proof is inspired by the discussion in [AIP15, §8.1]. We provide a sketch of proof.
To simplify the notation, we write F + = ω̃κU ,+n,w,két and F = ω̃κUn,w,két. We also write

F +
m := F + / amU , for every m ∈ Z≥1.
Let U = {Vn,i : i ∈ I} be an open affinoid covering for X Γ(pn),w such that ωmod,+

Γ(pn) |Vn,i
is free, for every i ∈ I. We equip each Vn,i the induced log structure from X Γ(pn),w. By
choosing a basis for ωmod,+

Γ(pn) |Vn,i , we can identify

F + |Vn,i ' O+
Vn,i〈Tst : 1 ≤ s < t ≤ g〉⊗̂RU
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which is the p-adic completion of a free O+
Vn,i ⊗̂RU -module. Modulo amU , we obtain

F +
m |Vn,i '

(
O+
Vn,i ⊗Zp(RU/ a

m
U )
)

[Tst : 1 ≤ s < t ≤ g]

For any d ∈ Z≥0, consider the subsheaf (F +
m |Vn,i)≤d ⊂ F +

m |Vn,i consisting of those polyno-
mials of degree ≤ d, and consider

F +
m,d := ker

(∏
i∈I

(F +
m |Vn,i)≤d →

∏
i,j∈I

F +
m |Vn,i ∩Vn,j

)
.

Then each F +
m,d is a coherent O+

XΓ(pn),w,két
⊗Zp(RU/ a

m
U )-module and we have F +

m = lim−→d
F +

m,d,
as desired.

3.2.12. Next, we are going to relate the overconvergent Siegel modular sheaves ωκU ,+w and
ωκUw with the auxiliary sheaves ω̃κU ,+n,w and ω̃κUn,w. To this end, we need two intermediate sheaves
ωκU ,+n,w and ωκUn,w over X Γ(pn),w defined as follows:

(i) The subsheaf ωκUn,w of hΓ(pn),∗ C
w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) is defined as follows. For

every affinoid open subset V ⊂ X Γ(pn),w with V∞ = h−1
Γ(pn)(V), we put

ωκUn,w(V) :=

f ∈ Cw−an
κU

(IwGLg ,OXΓ(p∞),w
(V∞)⊗̂RU) :

γ∗ f = ρκU (γa + zγc)
−1f,

∀γ =

(
γa γb
γc γd

)
∈ Γ(pn)

 .

(ii) The subsheaf ωκU ,+n,w of hΓ(pn),∗ C
w−an
κU

(IwGLg ,O
+

XΓ(p∞),w
⊗̂RU) is defined as follows. For

every affinoid open subset V ⊂ X Γ(pn),w with V∞ = h−1
Γ(pn)(V), we put

ωκU ,+n,w (V) :=

f ∈ Cw−an
κU

(IwGLg ,O
+

XΓ(p∞),w
(V∞)⊗̂RU) :

γ∗ f = ρκU (γa + zγc)
−1f,

∀γ =

(
γa γb
γc γd

)
∈ Γ(pn)

 .

Here, recall that hΓ(pn) : X Γ(p∞),w → X Γ(pn),w is the natural projection.
One observes immediately that if hn : X Γ(pn),w → X Iw+,w denotes the natural projection,

then the overconvergent Siegel modular sheaf ωκUw can be identified as the Iw+
GSp2g

/Γ(pn)-
invariants of the sheaf hn,∗ωκUn,w with respect to the ‘twisted’ action γ .f := ρκU (γa + zγc)γ

∗ f

for every γ =

(
γa γb
γc γd

)
∈ Γ(pn) and f ∈ ωκUn,w. Similar result holds for the integral sheaf

ωκU ,+w .

Proposition 3.2.13. There is a natural isomorphism of O+

XΓ(pn),w
⊗̂RU -modules Ψ+ : ωκU ,+n,w '

ω̃κU ,+n,w . Inverting p, we obtain a natural isomorphism of OXΓ(pn),w
⊗̂RU -modules Ψ : ωκUn,w '

ω̃κUn,w.
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Proof. As a preparation, consider the pullback

IW+
w,∞ IW+

w

X Γ(p∞),w X Γ(pn),w

π∞ π

hΓ(pn)

in the category of adic spaces. To show the existence of such a pullback, it suffices to
check this locally on X Γ(pn),w. Recall that IW+

w is a Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg ,1(Z /pn Z)-torsor

over X Γ(pn),w, and Uopp,(w)
GLg ,1

×T (w)
GLg ,0

is isomorphic to finitely many copies of B(0, 1)
g(g+1)

2 . It

remains to show that the fibred product X Γ(p∞),w×Spa(Cp,OCp ) B(0, 1)
g(g+1)

2 exists. Indeed, by
[SW20, Proposition 6.3.3 (3)], such a fibred product exists and is a sousperfectoid space. In
addition, we know that the pullback IW+

w,∞ is likewise a Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg ,1(Z /pn Z)-
torsor over X Γ(p∞),w.

For every affinoid open V ⊂ X Γ(pn),w and V∞ := h−1
Γ(pn) V , the desired isomorphism Ψ+

will be established via a sequence of isomorphisms

Ψ+ : ωκU ,+n,w (V)
'−→
Ψ1

ω(1) '−→
Ψ2

ω(2) '−→
Ψ3

ω̃κU ,+n,w (V),

where

ω(1) :=

{
f ∈ Cw−an

κ∨U
(IwGLg ,O

+
V∞(V∞)⊗̂RU) : γ∗ f = ρκ∨U (γ‡a + zγ‡c)f, ∀γ =

(
γa γb
γc γd

)
∈ Γ(pn)

}
and

ω(2) :=

{
f ∈ π∞,∗O+

IW+
w,∞

(V∞)⊗̂RU :
γ∗ f = f, τ ∗ f = κ∨U(τ )f, ν∗ f = f
∀(γ, τ ,ν) ∈ Γ(pn)× TGLg ,0 × UGLg ,1(Z /pn Z)

}
.

Here, for any δ ∈ Mg, we write δ‡ := 1̆g
tδ 1̆g, which can be viewed as the “transpose with

respect to the anti-diagonal”. Notice that z‡ = z.

Construction of Ψ1. Observe that there is an isomorphism

Ψ1 : Cw−an
κU

(IwGLg ,O
+
V∞(V∞)⊗̂RU)→ Cw−an

κ∨U
(IwGLg ,O

+
V∞(V∞)⊗̂RU)

defined by
Ψ1(f)(γ ′) := f(1̆g

tγ ′−1
1̆g)

for all f ∈ Cw−an
κU

(IwGLg ,O
+
V∞(V∞)⊗̂RU) and γ ′ ∈ IwGLg .

We claim that Ψ1 induces an isomorphism ωκU ,+n,w (V) ' ω(1). It suffices to check that if

γ∗ f = ρκU (γa + zγc)
−1f for every γ =

(
γa γb
γc γd

)
∈ Γ(pn), then γ∗(Ψ1(f)) = ρκ∨U (γ‡a + zγ‡c)Ψ1(f).
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Indeed, for any γ ′ ∈ IwGLg , we have

γ∗(Ψ1(f))(γ ′) = ρκU (γa + zγc)
−1f(1̆g

tγ ′−1
1̆g)

= f
(
t(γa + zγc)

−1
1̆g

tγ ′−1
1̆g

)
= f

(
1̆g 1̆g

t(γa + zγc)
−1
1̆g

tγ ′−1
1̆g

)
= f

(
1̆g

t(1̆g γa 1̆g + 1̆g z 1̆g 1̆g γc 1̆g)
−1 tγ ′−1

1̆g

)
= f

(
1̆g

t(t(γ‡a + zγ‡c)γ
′)−1

1̆g

)
= ρκ∨U (γ‡a + zγ‡c)Ψ1(f)(γ ′).

Construction of Ψ2. To construct Ψ2, consider s‡ =
(
sg · · · s1

)
∈ ωΓ(p∞)(V∞)g. Recall

that s =

s1

...
sg

 and thus

s‡ = ts 1̆g .

Moreover, for any γ =

(
γa γb
γc γd

)
∈ Γ(pn), we have γ∗ s = t(γa + zγc) s by (2.5). Hence

γ∗ s‡ = t(γ∗ s) 1̆g = t(t(γa + zγc) s) 1̆g = ts 1̆g 1̆g(γa + zγc) 1̆g = (ts 1̆g)
t(γ‡a + zγ‡c) = s‡ t(γ‡a + zγ‡c).

Let Fil‡• be the full flag of the free O+
V∞(V∞)-module ωΓ(p∞)(V∞) given by

Fil‡• = 0 ⊂ 〈sg〉 ⊂ 〈sg, sg−1〉 ⊂ · · · 〈sg, . . . , s1〉

and let w‡i be the image of sg+1−i in Fil‡i /Fil‡i−1, for all i = 1, . . . , g. Then the triple
(1g,Fil‡•, {w

‡
i}) defines a section of the Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg(Z /p

n Z)-torsor π−1
∞ (V∞) →

V∞. Consequently, one obtains an isomorphism

Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg ,1(Z /pn Z)
∼−→ π−1

∞ (V∞), γ ′ 7→ (1g,Fil‡•, {w
‡
i}) · γ ′

and thus an isomorphism

Φ : π∞,∗O
+
IW+

w,∞
(V∞)⊗̂R+

U
'−→

{
analytic functions

U
opp,(w)
GLg ,1

× T (w)
GLg ,0

× UGLg ,1(Z /pn Z)→ O+
V∞(V∞)⊗̂RU

}
f 7→

(
γ ′ 7→ f((1g,Fil‡•, {w

‡
i}) · γ ′)

)
.

We claim that if γ∗ f = f for any γ =

(
γa γb
γc γd

)
∈ Γ(pn), then γ∗Φ(f) = ρκ∨U (γ‡a + zγ‡c)Φ(f).
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Indeed, for any γ ′ ∈ Uopp,(w)
GLg ,1

× T (w)
GLg ,0

× UGLg ,1(Z /pn Z), we have

(γ∗Φ(f))(γ ′) = (γ∗ f)(γ∗(ψ‡,Fil‡•, {w
‡
i}) · γ ′)

= f
(

(ψ‡,Fil‡•, {w
‡
i}) · t(γ‡a + zγ‡c) · γ ′

)
= ρκ∨U (γ‡a + zγ‡c)Φ(f)(γ ′),

where the second equation follows from the identity γ∗ s‡ = s‡ t(γ‡a + zγ‡c).
On the other hand, we can identify ω(1) with the set of analytic functions

f : U
opp,(w)
GLg ,1

× T (w)
GLg ,0

× UGLg ,1(Z /pn Z)→ O+
V∞(V∞)⊗̂RU

satisfying

• f(υ τ ν) = κ∨U(τ )f(υ) for all (υ, τ ,ν) ∈ Uopp,(w)
GLg ,1

× T (w)
GLg ,0

× UGLg(Z /p
n Z);

• γ∗ f = ρκ∨U (γ‡a + zγ‡c)f for all γ =

(
γa γb
γc γd

)
∈ Γ(pn).

Therefore, putting Ψ2 := Φ−1, one obtains the desired isomorphism

Ψ2 : ω(1) '−→ ω(2).

Construction of Ψ3. By the construction of ωκU ,+n,w and Lemma 2.3.6, one immediately
obtains an identification of ω(2) with ω̃κU ,+n,w (V). We simply take Ψ3 to be this identification.

Putting everything together, the composition Ψ+ = Ψ3 ◦Ψ2 ◦Ψ1 yields an isomorphism

Ψ+ : ωκU ,+n,w (V)
'−→ ω̃κU ,+n,w (V).

It is also straightforward to check that the construction is functorial in V . By gluing, we
arrive at an isomorphism

Ψ+ : ωκU ,+n,w
'−→ ω̃κU ,+n,w .

3.2.14. By the observation in 3.2.12 and Proposition 3.2.13, ωκUw can be identified with the
sheaf of Iw+

GSp2g
/Γ(pn)-invariants of hn,∗ω̃κUn,w. Hence, ωκUw,két can be identified with the sheaf of

Iw+
GSp2g

/Γ(pn)-invariants of hn,∗ω̃κUn,w,két, later of which is an admissible Kummer étale Banach
sheaf of OX Iw+,w,két

⊗̂RU -modules by Lemma 3.2.11 and Lemma A.2.12. Consequently, such
a description allows us to apply Corollary A.2.18 to the sheaf ωκUw,két. This will be used in
the construction of the overconvergent Eichler–Shimura morphism in Chapter 6.

3.3 Hecke operators
3.3.1. In this section, we spell out how the Hecke operators act on the overconvergent Siegel
modular forms. Those Hecke operators at the primes dividing the tame level N are not
considered in this thesis. Through out this section, let (RU , κU) be a weight and w > 1 + rU .
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3.3.2 (Hecke operators outside Np). We define the Hecke operators outside Np using
correspondences. Let ` be a rational prime that does not divide Np. For every γ ∈
GSp2g(Q`) ∩M2g(Z`), consider the moduli space Xγ,Iw+ over XIw+ parameterising isogenies
of type γ. More precisely, Xγ,Iw+ is the moduli space of sextuples

(A, λ, ψN ,Fil•A[p], {Ci : i = 1, . . . , g}, L)

where (A, λ, ψN ,Fil•A[p], {Ci : i = 1, . . . , g}) ∈ XIw+ and L ⊂ A is a subgroup of finite order
such that the isogeny (A, λ) → (A/L, λ′) is of type γ in the sense of [FC90, Chapter VII,
§3], where λ′ stands for the induced principal polarisation. According to loc. cit., for every
isogeny of type γ, its dual isogeny is also of type γ. In particular, the assignment

(A, λ, ψN ,Fil•A[p], {Ci : i = 1, . . . , g}, L) 7→ (A′ = A/L, λ′, ψ′N ,Fil•A
′[p], {C ′i : i = 1, . . . , g}, L′)

defines an isomorphism Φγ : Xγ,Iw+
∼−→ Xγ,Iw+ , where

• λ′ is the induced polarisation on A′;

• ψ′N , Fil•A
′[p], and C ′i’s are induced from ψN , Fil•A[p], and Ci’s, respectively, via the

isomorphisms A[N ] ' A′[N ] and A[p] ' A′[p];

• L′ is defined by the dual isogeny of (A, λ)→ (A′, λ′).

There are two finite étale projections

Xγ,Iw+

XIw+ XIw+

pr1 pr2

where pr1 is the forgetful map and pr2 sends the sextuple (A, λ, ψN ,Fil•A[p], {Ci : i =
1, . . . , g}, L) to the quintuple (A′ = A/L, λ′, ψ′N ,Fil•A

′[p], {C ′i : i = 1, . . . , g}) described as
above. Clearly, we have pr1 = pr2 ◦Φγ .

Let X γ,Iw+ be the adic space associated with Xγ,Iw+ by taking analytification. We obtain
finite étale morphisms pr1, pr2 : X γ,Iw+ ⇒ X Iw+ as well as an isomorphism Φγ : X γ,Iw+ →
X γ,Iw+ . We further pass to the w-ordinary locus. More precisely, let X γ,Iw+,w denote the
preimage of X Iw+,w under the projection pr1. Notice that Φγ preserves X γ,Iw+,w as the
isogeny (A, λ) → (A′, λ′) induces a symplectic isomorphism TpA ' TpA

′. Hence, we obtain
finite étale morphisms

X γ,Iw+,w

X Iw+,w X Iw+,w

pr1 pr2 (3.1)

and an isomorphism Φγ : X γ,Iw+,w
'−→ X γ,Iw+,w. We still have pr1 = pr2 ◦Φγ .
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In order to define the Hecke operator, we shall first construct a natural isomorphism

ϕγ : pr∗2 ω
κU
w

'−→ pr∗1 ω
κU
w .

Here we have abused the notation and still write ωκUw for its restriction to X Iw+,w. Indeed,
pulling back the diagram (3.1) along the projection hIw+ : X Γ(p∞),w → X Iw+,w, we obtain
finite étale morphisms

X γ,Γ(p∞),w

X Γ(p∞),w X Γ(p∞),w

pr1,∞ pr2,∞

between perfectoid spaces and an Iw+
GSp2g

-equivariant isomorphism Φγ,∞ : X γ,Γ(p∞),w
'−→

X γ,Γ(p∞),w. The isomorphism Φγ,∞ induces an isomorphism

Φ∗γ,∞ : pr∗2,∞OXΓ(p∞),w
'−→ pr∗1,∞OXΓ(p∞),w .

It then induces an isomorphism

Φ∗γ,∞ : C w−an
κU

(IwGLg , pr∗2,∞OXΓ(p∞),w ⊗̂RU)
'−→ C w−an

κU
(IwGLg , pr∗1,∞OXΓ(p∞),w ⊗̂RU)

by taking the identity on RU .

Recall that z is the pullback of the coordinate z via the Hodge–Tate period map πHT :
X Γ(p∞),w → F`×w . Let z′ := pr∗1,∞ z and z′′ := pr∗2,∞ z. Since Φγ,∞ induces an isomorph-
ism on the p-adic Tate module, we have z′ = z′′. Consequently, a section f of the sheaf
C w−an
κU

(IwGLg , pr∗2,∞OXΓ(p∞),w ⊗̂RU) satisfies

γ∗ f = ρκU (γa + z′′ γc)
−1f for all γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g
,

if and only if the section Φ∗γ,∞(f) of the sheaf C w−an
κU

(IwGLg , pr∗1,∞OXΓ(p∞),w ⊗̂RU) satisfies

γ∗(Φ∗γ,∞(f)) = ρκU (γa + z′ γc)
−1(Φ∗γ,∞(f)) for all γ ∈ Iw+

GSp2g
.

This yields the desired isomorphism

ϕγ : pr∗2 ω
κU
w

'−→ pr∗1 ω
κU
w .

Given this, we consider the composition

Tγ : H0(X Iw+,w, ω
κU
w ) H0(X γ,Iw+,w, pr∗2 ω

κU
w )

H0(X γ,Iw+,w, pr∗1 ω
κU
w ) H0(X Iw+,w, ω

κU
w ).

pr∗2

ϕγ

Tr pr1
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Finally, we have to extend the construction to the boundary. In fact, we shall prove that
the sections of ωκUw on X Iw+,w are precisely the bounded sections of ωκUw over the open part
X Iw+,w.

Lemma 3.3.3. Every bounded section of ωκUw on X Iw+,w uniquely extends to a section of
X Iw+,w.

Proof. The argument is similar to the proof of [AIP15, Proposition 5.5.2]. Recall that we
can view sections of ωκUw as a sections on IW+

w . By applying [Lüt74, Theorem 1.6] to IW+
w ,

the result follows.

3.3.4. Thanks to Lemma 3.3.3, and observe that

Φ∗γ,∞ : C w−an
κU

(IwGLg , pr∗2,∞OXΓ(p∞),w ⊗̂RU)
∼−→ C w−an

κU
(IwGLg , pr∗1,∞OXΓ(p∞),w ⊗̂RU)

sends bounded sections to bounded sections, we know that Tγ extends to the boundary. We
arrive at the Hecke operator

Tγ : Mw
Iw+,κU

= H0(X Iw+,w, ω
κU
w )→ H0(X Iw+,w, ω

κU
w ) = Mw

Iw+,κU
.

3.3.5 (Hecke operators at p). For 1 ≤ i ≤ g, we consider matrices up,i ∈ GSp2g(Qp)∩M2g(Zp)
defined by

up,i :=


1i

p1g−i
p1g−i

p2
1i


for 1 ≤ i ≤ g − 1, and

up,g :=

(
1g

p1g

)
.

For later use, we write

up,i =

(
u�p,i

u�p,i

)
where u�p,i and u�p,i are the corresponding g × g diagonal matrices.

Notice that the up,i-action on X Γ(p∞) preserves X Γ(p∞),w. This can be checked at the
infinite level via local coordinates; i.e., the action of up,i on z is given by

z .up,i = u�,−1
p,i z u�p,i =





p z 1,1 · · · p z 1,g−i p2 z 1,g+1−i · · · p2 z 1,g

...
...

...
...

p z i,1 · · · p z i,g−i p2 z i,g+1−i · · · p2 z i,g
z i+1,1 · · · z i+1,g−i p z i+1,g+1−i · · · p z i+1,g

...
...

...
...

z g,1 · · · z g,g−i p z g,g+1−i · · · p z g,g


, if i = 1, ..., g − 1

p z , if i = g

.
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In particular, when i = g, the up,g-action actually sends X Γ(p∞),w into X Γ(p∞),w+1.

The operator Up,i is defined in two steps:

(i) For f ∈ C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU), we define up,i .f ∈ C w−an

κU
(IwGLg ,OXΓ(p∞),w

⊗̂RU)

by
up,i .f(γ ′) := u∗p,i f(u�p,i γ

′
0 u�,−1

p,i β′0)

where γ ′ = γ ′0 β
′
0 ∈ IwGLg with γ ′0 ∈ U

opp
GLg ,1

and β′0 ∈ BGLg ,0.

(ii) Suppose f ∈ C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) satisfies

γ∗ f = ρκU (γa + zγc)
−1f

for all γ ∈ Iw+
GSp2g

; i.e., γ .f = f . Pick a decomposition of the double coset

Iw+
GSp2g

up,i Iw
+
GSp2g

=
m⊔
j=1

δij up,i Iw
+
GSp2g

with δi,j ∈ Iw+
GSp2g

. Define

Up,i(f) := pνi
m∑
j=1

δi,j .(up,i .f) ∈ C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU),

where νi = −(g − i)(g + 1) for i = 1, ..., g − 1 and νg = −g(g+1)
2

. Here, we follow the
normalisation as in [AIP15, §6.2].

Of course, we have to verify that Up,i(f) is independent of the choice to the representatives
δij’s. Suppose {δ′i,j}mj=1 is another set of representatives. Up to re-labelling, we may assume
that

δ′ij up,i Iw
+
GSp2g

= δij up,i Iw
+
GSp2g

for every j = 1, . . . ,m. Write δ′ij up,i = δij up,i γj for some γj ∈ Iw+
GSp2g

. We have to check

that δij .(up,i .f) = δij .(up,i .f). Indeed, if we write δij =

(
δija δijb
δijc δijd

)
, δ′ij =

(
δ′ija δ′ijb
δ′ijc δ′ijd

)
,

54



and γj =

(
γja γjb
γjc γjd

)
, then for every γ ′ ∈ IwGLg , we have

δ′ij .(up,i .f)(γ ′) =ρκU (δ′ija + z δ′ijc) δ
∗
ij(u

∗
p,i f)(u�p,i γ

′
0 u�,−1

p,i β′0)

=(δ′ij up,i)
∗f(u�p,i

t(δ′ija + z δ′ijc)γ
′
0 u�,−1

p,i β′0)

=(δ′ij up,i)
∗f(t(γja + zγjc) u�p,i

t(δija + z δijc)γ
′
0 u�,−1

p,i β′0)

=(δ′ij up,i)
∗(ρκU (γja + zγjc)f)(u�p,i

t(δija + z δijc)γ
′
0 u�,−1

p,i β′0)

=(δ′ij up,i)
∗(γ−1,∗

j f)(u�p,i
t(δija + z δijc)γ

′
0 u�,−1

p,i β′0)

=(δij up,i)
∗f(u�p,i

t(δija + z δijc)γ
′
0 u�,−1

p,i β′0)

=ρκU (δija + z δijc)(δij up,i)
∗f(u�p,i γ

′
0 u�,−1

p,i β′0)

= δij .(up,i .f)(γ ′)

as desired. Here, the third equality follows from the identity

u�p,i
t(δ′ija + z δ′ijc) = t(γja + zγjc) u�p,i

t(δija + z δijc).

Lemma 3.3.6. Suppose f ∈ C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) such that γ .f = f for all γ ∈

Iw+
GSp2g

. Then, the section Up,i(f) ∈ C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) satisfies γ .(Up,i(f)) =

Up,i(f) for all γ ∈ Iw+
GSp2g

.

Proof. We have

γ .(Up,i(f)) = pνi
m∑
j=1

γ .(δij .(up,i(f))) = pνi
m∑
j=1

(γ δij).(up,i(f)).

The last term indeed computes Up,i(f) because {γ δij : 1 ≤ j ≤ m} is also a valid set of
representatives.

3.3.7. Consequently, we arrive at the Hecke operator

Up,i : Mw
Iw+,κU

= H0(X Iw+,w, ω
κU
w )→ H0(X Iw+,w, ω

κU
w ) = Mw

Iw+,κU
.

Moreover, for any x ∈WeylGSp2g
, we denote by Ux

p,i the Hecke operator defined by the double
coset

Iw+
GSp2g

(x · up,i) Iw+
GSp2g

,

whose action is defined analogously as above.

Definition 3.3.8. The Hecke algebra outside Np is defined to be

TNp := Zp

[
Tγ ;γ ∈ GSp2g(Q`) ∩M2g(Z`), ` - Np

]
and the total Hecke algebra is defined to be

T := TNp⊗Zp Zp[U
x
p,i : i = 0, 1, ..., g − 1, x ∈WeylGSp2g

].
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Proposition 3.3.9. The operator Up :=
∏g

i=1 Up,i is a compact operator on MκU
Iw+,w

.

Proof. Note that the action of up,g on z is given by p z and that, by definition, the action
of
∏g

i=1 up,i on C w−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) factors through the inclusion

C (w−1)−an
κU

(IwGLg ,OXΓ(p∞),w
⊗̂RU) ↪→ C w−an

κU
(IwGLg ,OXΓ(p∞),w

⊗̂RU).

This means that Up factors as

Up : H0(X Iw+,w, ω
κU
w )→ H0(X Iw+,w+1, ω

κU
w )→H0(X Iw+,w+1, ω

κU
w−1)→H0(X Iw+,w, ω

κU
w ),

where the first arrow is the natural restriction map.
To show the desired result, note that it is known that restrictions of the structure sheaf

of X Iw+,w are compact operators. Moreover, by the discussion in [Han17, §2.2], the injection
of (w−1)-analytic functions into w-analytic functions is compact. The assertion then follows
by combining these two facts.

Remark 3.3.10. Note that the subspace Sw
Iw+,κU

⊂ Mw
Iw+,κU

of w-overconvergent Siegel
cuspforms of weight κU is stable under the action of T. Moreover, as Up is a compact
operator on Mw

Iw+,κU
, it is also a compact operator on Sw

Iw+,κU
.

3.4 Classical Siegel modular forms

3.4.1. The goal of this section is to show that our space of overconvergent Siegel modular
forms does contain the space of classical (algebraic) Siegel modular forms. This justifies the
name

3.4.2. Let k = (k1, ..., kg) ∈ Zg
≥0 be a dominant weight and consider k∨ = (−kg, . . . ,−k1).

LetM := IsomX Iw+
(Og

X Iw+
, ωIw+) be the GLg-torsor over X Iw+ together with the structure

morphism ϑ : M → X Iw+ . Then the sheaf ωk
Iw+ of classical Siegel modular forms of

weight k (of strict Iwahori level) is defined to be

ωkIw+ := ϑ∗OM[k∨];

namely, the subsheaf of ϑ∗OM on which TGLg acts through the character k∨. The space of
classical Siegel modular forms of weight k (of strict Iwahori level) is defined to be

M cl
Iw+,k := H0(X Iw+ , ωkIw+)

equipped with naturally defined Hecke operators.

Remark 3.4.3. One can also define the sheaf of integral classical Siegel modular forms by

ωk,+
Iw+ := ϑ∗O

+
M[k∨].

But we do not need this in this thesis.
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3.4.4. We would like to have a perfectoid description of the sheaf ωk
Iw+ . To this end, we first

introduce the following notations:

(i) Let P (GLg,A1) denote the Qp-vector space of maps GLg → A1 between algebraic
varieties over Qp.

(ii) For every uniform Cp-Banach algebra B, define

P (GLg, B) := P (GLg,A1)⊗̂Qp
B

and let Pk(GLg, B) denote the subspace of P (GLg, B) consisting of those f : GLg → B
such that f(γ β) = k(β)f(γ) for all γ ∈ GLg and β ∈ BGLg .

(iii) There is a natural left action of GLg on Pk(GLg, B) given by

(γ .f)(γ ′) = f(tγ γ ′)

for all γ,γ ′ ∈ GLg and f ∈ Pk(GLg, B). This left action is denoted by

ρk : GLg → Aut(Pk(GLg, B)).

Proposition 3.4.5. For any affinoid open V ⊂ X Iw+,w with preimage V∞ in X Γ(p∞),w, we
have a natural identification

ωkIw+(V) =

{
f ∈ Pk(GLg,OXΓ(p∞),w

(V∞)) : γ∗ f = ρk(γa + zγc)
−1f, ∀γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g

}
.

In particular, there is a natural injection

ωkIw+ |X Iw+,w
↪→ ωkw. (3.2)

Proof. For the first statement, the strategy in the proof of Proposition 3.2.13 applies ver-
batim, except that we consider the torsor M in place of IW+

w . The details are left to the
reader. The inclusion ωk

Iw+|X Iw+,w
↪→ ωkw follows from the natural inclusion from Pk(GLg,OXΓ(p∞),w

(V∞))

into Cw−an
k (IwGLg ,OXΓ(p∞),w

(V∞)).

Lemma 3.4.6. The Hecke-equivariant composition of maps

M cl
Iw+,k = H0(X Iw+ , ωkIw+)

Res−−→ H0(X Iw+,w, ω
k
Iw+) ↪→Mw

Iw+,k

is injective.

Proof. It suffices to show that

Res : H0(X Iw+ , ωkIw+)→ H0(X Iw+,w, ω
k
Iw+)

is injective; namely, given any global section f of ωk
Iw+ that vanishes on X Iw+,w, we have to

show that f = 0 on every irreducible component of X Iw+ .
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For every algebraic variety Y over Cp, we know that Y is irreducible if and only if the
associated adic space Y over Spa(Cp,OCp) is irreducible (see [Con99, Theorem 2.3.1] and
[Hub13, §1.1.11.(c)]). In particular, the irreducible components of X Iw+ coincide with the
irreducible components of Xtor

Iw+ . As Xtor

Iw+ is a compactification of XIw+ , its irreducible
components correspond to the irreducible components of XIw+ . Under the identification

XIw+(C) = GSp2g(Q)\GSp2g(Af )×Hg / Iw+
GSp2g

Γ(N),

[Del71, §2] provides the following description of the irreducible components of X Iw+ :

π0(X Iw+) = Q>0\Gm(Af )/ς
(

Γ(N) Iw+
GSp2g

)
.

where ς is the character of similitude involved in the definition of GSp2g. There is a sim-
ilar description for π0(X ). Note that π0(X Iw+) is the same as π0(X ) because Iw+

GSp2g
and

GSp2g(Zp) have the same image via ς. In particular, since every irreducible component in
π0(X ) contains an ordinary point, every irreducible component of X Iw+ intersects X Iw+,w.

By definition, f can be viewed as a global section of the structure sheaf ofM. Let C be any
irreducible component of X Iw+ , it remains to show that f vanishes onM×X Iw+

C. Indeed,
observe that M×X Iw+

C is irreducible and f vanishes on M×X Iw
(C ∩X Iw+,w). Hence, the

desired vanishing follows from [Ber96, Proposition 0.1.13] which states that a rigid analytic
function vanishing on an open subset of an irreducible rigid analytic variety is identically
zero.

3.5 The construction à la Andreatta–Iovita–Pilloni

3.5.1. We dedicate in this section to briefly recall the construction of sheaves of overconver-
gent Siegel modular forms introduced in [AIP15]. In fact, the readers may find that §3.2 is
highly inspired by [AIP15].

3.5.2. Choose v ∈ Q>0 ∩[0, 1
2
) and let n be a positive integer such that v < 1

2pn−1 . Consider
the open subset

X (v) := {x ∈ X : |H̃a(x )| ≥ p−v} ⊂ X ,

where H̃a is a fixed lift of the Hasse invariant.2 Thanks to [AIP15, Proposition 4.1.3], for
every 1 ≤ m ≤ n, there is a universal canonical subgroup Hm of level m of the tautological
semiabelian variety over X (v). Let ωv denote the restriction of ω on X (v).

3.5.3. Andreatta–Iovita–Pilloni’s construction of the sheaves concerns the following finite
covers of X (v):

• Let
X 1(pn)(v) := IsomX (v)((Z /p

n Z)g,H∨n)

2We point out that, for those x at the boundary, the Hasse invariant of x is defined to be the Hasse
invariant of the abelian part of the semiabelian scheme associated with x .
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be the adic space over X (v) which parameterises trivialisations of H∨n . Notice that
the group GLg(Z /p

n Z) naturally acts on X 1(pn)(v) from the right by permuting the
trivialisations.

• Let
X 1(v) := IsomX (v)((Z /pZ)g,H∨1 )

be the adic space over X (v) which parameterises trivialisations of H∨1 .

• The group GLg(Z /pZ) naturally acts on X 1(v) from the right by permuting the trivi-
alisations. By taking the quotient

X Iw(v) := X 1(v)/BGLg(Z /pZ),

we obtain an adic space X Iw(v) over X (v) which parameterises full flags Fil•H∨1 of H∨1 .

We let ωn,v (resp., ωIw,v) be the pullback of ωv along X 1(pn)(v) → X (v) (resp., X Iw(v) →
X (v)).

3.5.4. We will also need the following integral models of the aforementioned geometric
objects:

• Recall that X is the formal completion of Xtor

0 along the special fibre. Let X̃(v) be
the blowup of X along the ideal (H̃a, pv). Let X(v) be the p-adic completion of the
normalisation of the largest open formal subscheme of X̃(v) where the ideal (H̃a, pv) is
generated by H̃a. Then X(v) is a formal model of X (v).

• Let X1(pn)(v) be the normalisation of X(v) in X 1(pn)(v). The group GLg(Z /p
n Z)

naturally acts on X1(pn)(v).

• Let X1(v) be the normalisation of X(v) in X 1(v). The group GLg(Z /pZ) naturally
acts on X1(v).

• Let XIw(v) be the normalisation of X(v) in X Iw(v). We can identify XIw(v) with the
quotient X1(v)/BGLg(Z /pZ).

Moreover, the integral models of ωn,v and ωIw,v are given as follows. Let Guniv
v be the

tautological semiabelian scheme over X(v) with the structure morphism

π : Guniv
v → X(v).

Define
Ωv := π∗Ω

1
Guniv
v /X(v)

.

Then, let Ωn,v (resp., ΩIw,v) be the pullback of Ωv along X1(pn)(v)→ X(v) (XIw(v)→ X(v)).

3.5.5. Now suppose w ∈ Q>0 lies in the interval
(
n− 1 + v

p−1
, n− vpn

p−1

]
. Let

ψuniv
n : (Z /pn Z)g ' H∨n

59



denote the universal trivialisation of H∨n over X1(pn)(v). Then [AIP15, Proposition 4.3.1]
yields a locally free OX1(pn)(v)-submodule F ⊂ Ωn,v of rank g, equipped with a map

HTn,v,w : (Z /pn Z)g
ψuniv
n' H∨n → F ⊗OX1(pn)(v)

OX1(pn)(v) /p
w

which induces an isomorphism

HTn,v,w⊗ id : (Z /pn Z)g ⊗Z OX1(pn)(v) /p
w ' F ⊗OX1(pn)(v)

OX1(pn)(v) /p
w.

More precisely, locally on X1(pn)(v), consider the family version of the Hodge–Tate map

HTn : (Z /pn Z)g
ψuniv
n' H∨n → ωHn

studied in [AIP15, §4]. Let ε1, . . . , εg be the standard (Z /pn Z)-basis for (Z /pn Z)g and let
H̃Tn(εi) be lifts of HTn(εi) from ωHn to Ωn,v. Then F is generated by H̃Tn(ε1), . . . , H̃Tn(εg).
It turns out this local construction glues to a locally free OX1(pn)(v)-module of rank g.

3.5.6. In [AIP15, §4.5], Andreatta–Iovita–Pilloni constructs a formal scheme IW+
w,v over

X1(pn)(v) which parameterises such w-compatible objects. More precisely, IW+
w,v is the

formal schemes over X1(pn)(v) such that for every affine open subset Spf R ⊂ X1(pn)(v) on
which F is free, IW+

w,v(R) consists of pairs (Fil•, {wi : i = 1, . . . , g}) where both Fil• and
{wi : i = 1, . . . , g} are w-compatible with HTn(ε1), . . . ,HTn(εg) in the sense of Definition
3.2.2.

Let IW+
w,v be the adic space associated with the formal scheme IW+

w,v over Spa(Cp,OCp).
Then we have a chain of morphisms of adic spaces

πAIP : IW+
w,v → X 1(pn)(v)→ X 1(v)→ X Iw(v).

Lemma 3.5.7. Recall the group adic spaces Bopp
w , T (w)

GLg ,0
, and Uopp,(w)

GLg ,1
defined in Definition

3.2.6.

(i) IW+
w,v is a Bopp

w -torsor over X 1(pn)(v). Namely, locally on X 1(pn)(v), we have iden-
tification

IW+
w,v ' X 1(pn)(v)×Spa(Cp,OCp ) Bopp

w

where Bopp
w permutes the points (Fil•, {wi}) from the right.

(ii) Similarly, IW+
w,v is a Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg(Z /p

n Z)-torsor over X Iw(v).

Proof. These are clear from the construction.

Definition 3.5.8. Let (RU , κU) be a w-analytic weight.

(i) Andreatta–Iovita–Pilloni’s sheaf of w-analytic v-overconvergent Siegel modular
forms of weight κU (of Iwahori level) is defined to be

ωκU ,AIP
w,v := πAIP

∗ OIW+
w,v

[κ∨U ],
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where πAIP
∗ OIW+

w,v
[κ∨U ] stands for the subsheaf of πAIP

∗ (OIW+
w,v
⊗̂RU) consisting of sec-

tions on which TGLg ,0 acts via the character κ∨U and UGLg(Z /p
n Z) acts trivially.

(ii) Andreatta–Iovita–Pilloni’s space of w-analytic v-overconvergent Siegel modular
forms of weight κU (of Iwahori level) is

Mw,v,AIP
Iw,κU

:= H0(X Iw(v), ωκU ,AIP
w,v ).

(iii) The space of locally analytic overconvergent Siegel modular forms of weight
κU (of Iwahori level) is

M †,AIP
Iw,κU

:= lim
v→0
w→∞

Mw,v,AIP
Iw,κU

.

(iv) Recall that Z Iw = X Iw rX Iw is the boundary divisor. Andreatta–Iovita–Pilloni’s sheaf
of w-analytic v-overconvergent Siegel cuspforms of weight κU (of Iwahori
level) is defined to be the subseaf ωκU ,AIP

w,v,cusp = ωκU ,AIP
w,v (−Z Iw) of ωκU ,AIP

w,v consisting of
sections that vanish along Z Iw.

Andreatta–Iovita–Pilloni’s space of w-analytic v-overconvergent Siegel cusp-
forms of weight κU (of Iwahori level) is defined to be

Sw,v,AIP
Iw,κU

:= H0(X Iw(v), ωκU ,AIP
w,v,cusp),

and the space of locally analytic overconvergent Siegel cuspforms of weight
κU (of Iwahori level) is

S†,AIP
Iw,κU

:= lim
v→0
w→∞

S†,AIP
Iw,κU

.

Remark 3.5.9. Similar to 3.2.8, in Definition 3.5.8 (i), there is no difference between taking
κ∨U -eigenspaces with respect to TGLg ,0- or T

(w)
GLg ,0

-actions.

3.6 Pseudocanonical subgroups

3.6.1. In §3.7, we will prove the comparison between our perfectoid construction of the
overconvergent Siegel modular forms and the construction of Andreatta–Iovita–Piloni. Im-
mediate from the definitions, one observes the incompatibility of the underlying adic spaces
used in the two constructions. That is, we employ the w-ordinary locus in the perfectoid
construction while the authors of [AIP15] make use of the ‘v-locus’ X Iw(v). Therefore, as a
preparation for the comparison result, we have to first compare these two different loci. The
main result of this section is Theorem 3.6.4. Due to technical reasons, we assume p > 2g in
this section.

3.6.2. We begin with recalling the homogeneous coordinates
(
1g z

)
on F`× ⊂ F`. We
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define the locus F`×can ⊂ F`, whose homogeneous coordinate is given byz 1,1 · · · z 1,g 1
...

...
. . .

z g,1 · · · z 1,g 1

 ,

i.e., the translate of F`× by the longest Weyl element of the Weyl group of GSp2g. For any
w ∈ Q>0, we then define F`can,w ⊂ F`×can to be

F`can,w :=

{
x ∈ F`×can : max

i,j
inf
t∈pZp

{| z i,j(x )− t| ≤ p−w}
}
.

Similar as before, we define

X Γ(p∞),can,w := π−1
HT(F`can,w),

X Iw+,can,w := hIw+(X Γ(p∞),can,w),

X Iw,can,w := hIw(X Γ(p∞),can,w),

X can,w := h(X Γ(p∞),can,w).

We call them the canonical w-ordinary loci .

3.6.3. We also need the following definition of the v-locus at the strict Iwahori level. Recall
from §3.5 that, for any v ∈ Q>0 ∩[0, 1

2
), X 1(pn)(v) (resp., X 1(v); resp., X Iw(v)) is the adic

space over X (v) which parameterises trivialisations of H∨n (resp., trivialisations of H∨1 ; resp.,
full flags of H∨1 ). In particular, X 1(v) is equipped with a natural right action of GLg(Z /pZ)
permuting the trivialisations. Consider the quotient

X Iw+(v) := X 1(v)/TGLg(Z /pZ)

which is an adic space over X (v) parametersing the ‘strict Iwahori structures’ of H∨1 ; namely,
it parameterises full flags Fil•H∨1 of H∨1 together with a collection of subgroups {Di : i =
1, . . . , g} of H∨1 of order p such that

FiliH∨1 = 〈D1, . . . , Di〉

for all i = 1, . . . , g. There is a chain of natural projections among these v-loci

X 1(pn)(v)→ X 1(v)→ X Iw+(v)→ X Iw(v)→ X (v).

One can identify X Iw(v) as the quotient of X Iw+(v) by the finite group UGLg(Z /pZ).

Theorem 3.6.4. Given Γ ∈ {Iw+, Iw}, the system of canonical w-ordinary loci {X Γ,can,w :
w ∈ Q>0} and the system of v-loci {X Γ(v) : v ∈ Q>0 ∩[0, 1/2)} are mutually cofinal. More
precisely,

(i) For any given v ∈ Q>0 ∩[0, 1/2), there exists sufficiently large w ∈ Q>0 such that
X Γ,can,w ⊂ X Γ(v).
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(ii) For any given w ∈ Q>0, there exists sufficiently small v ∈ Q>0 ∩[0, 1/2) such that
X Γ(v) ⊂ X Γ,can,w.

Remark 3.6.5. To go back to the w-ordinary loci, note that we have the Atkin–Lehner
operator

AL : F`×w → F`can,w,
(
1g z

)
7→
(
1g z

)( 1g

−p1g

)
=
(
−p z 1g

)
,

moving from F`×w to F`can,w. Obviously, we also have AL−1 : F`can,w → F`×w , given by the

matrix
( −1

p
1g

1g

)
. Therefore, as an immediate corollary of Theorem 3.6.4 and the Atkin–

Lehner operator, {X Γ,w : w ∈ Q>0} and {AL−1X Γ(v) : v ∈ Q>0 ∩[0, 1/2)} are mutually
cofinal.

3.6.6. To prove Theorem 3.6.4, we follow the strategy in [CHJ17, §2.3]. However, we have
to generalise their study of pseudocanonical subgroups to the case of semiabelian schemes
with constant toric rank.

Let C be an algebraically closed complete nonarchimedean field containing Qp and let
OC be its ring of integers. Suppose the valuation vp on C is normalised so that vp(p) = 1.
Let G be a semiabelian scheme over OC of dimension g with constant toric rank r ≤ g. That
is, G sits inside an extension

0→ T → G→ A→ 0,

where T is a torus of rank r over OC and A is an abelian scheme of dimension g − r over
OC . (We say that G is principally polarised if A is principally polarised.) One sees that
the p-adic Tate module TpG := lim←−nG[pn](C) is isomorphic to Z2g−r

p .
Recall the Hodge–Tate complex over OC

0→ LieG→ TpG⊗Zp OC → ωG∨ → 0,

where ωG∨ is the dual of the Lie algebra LieG∨ of the dual semiabelian scheme G∨, and
the second last map is induced from the Hodge–Tate map HTG : TpG → ωG∨ . By [FGL08,
Théorème II. 1.1], the cohomology of this complex is killed by p1/(p−1).

3.6.7. We set up the following notation. Recall that Vp = V⊗Z Zp ' Z2g
p is equipped

with the standard basis e1, . . . , e2g together with a symplectic pairing. For every 0 ≤ r ≤ g,
let Vp,r denote the Zp-submodule of Vp spanned by er+1, er+2, . . . , e2g−r, equipped with
the induced symplectic pairing. We also write V′p,r to be Zp-submodule of Vp spanned by
e1, . . . , e2g−r and write Wp,r to be the one spanned by e1, . . . , er. There is an obvious split
exact sequence

0→Wp,r → V′p,r → Vp,r → 0.

Definition 3.6.8. Let G be a principally polarised semiabelian scheme over OC of dimension
g with constant toric rank r ≤ g.

(i) An isomorphism α : V′p,r
∼−→ TpG is called a trivialisation of TpG if it is part of a
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commutative diagram
Vp,r TpA

V′p,r TpG

Wp,r TpT

'

'

'

where

• the vertical arrows on the left are the ones as in Definition 3.6.7;

• the vertical arrows on the right are induced from the exact sequence 0 → T →
G→ A→ 0;

• the top arrow preserves the symplectic pairings.

(ii) A trivialisation α : V′p,r → TpG is w-ordinary if HTG(α(ei)) ∈ pwωG∨ for all i =
1, ..., g.

(iii) We say that G is w-ordinary if it admits a w-ordinary trivialisation.

Remark 3.6.9. From the definition, if G is w-ordinary, it is w′-ordinary for any w′ > w. It
is also clear that G is ordinary if and only if it is w-ordinary for all w ∈ Q>0.

Lemma 3.6.10. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over OC and let n ∈ Z≥1 such that n < w + 1. The Hodge-Tate map HTG

induces a map
G[pn](C)→ (image HTG)/pmin{n,w}(image HTG).

Then the schematic closure of the kernel of this map defines a flat subgroup scheme Hn ⊂
G[pn] whose generic fibre is isomorphic to (Z /pn Z)g. Moreover, if α is a w-ordinary trivi-
alisation of TpG, then Hn(C) is generated by α(e1), ..., α(eg). Here we have abused the
notations and still use α(ei)’s to denote their images in G[pn](C).

Proof. Since the Hodge–Tate complex is exact after inverting p, the image of LieG in TpG⊗Zp

OC is a rank g sub-lattice in the kernel of TpG ⊗Zp OC → ωG∨ . Hence, the kernel of
HTG : TpG→ ωG∨ has rank at most g.

On the other hand, there is a commutative diagram

TpG ωG∨

G[pn](C) ωG[pn]∨

HTG

HTG[pn]

,

where the right vertical arrow is induced from the natural identification ωG[pn]∨ = ωG∨/p
nωG∨ .

Consequently, ker HTG[pn] also has rank at most g.
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Let α be a w-ordinary trivialisation of TpG. Since n < w+1, the kernel of the composition

TpG
HTG−−−→ ωG∨ → ωG∨/p

nωG∨

necessarily contains α(ei), for all i = 1, ..., g. Since α(ei)’s are Zp-linearly independent,
their images in G[pn](C) are (Z /pn Z)-linearly independent and hence generate ker HTG[pn].
Consequently, Hn is precisely the schematic closure in G[pn] of the subgroup of G[pn](C)
generated by {α(ei) : i = 1, ..., g}. Flatness of Hn follows from the flatness of G.

Definition 3.6.11. The subgroup scheme Hn defined in Lemma 3.6.10 is called the pseudoca-
nonical subgroup of level n. When n = 1, we simply call H1 the pseudocanonical
subgroup of G.

Lemma 3.6.12. Let m ≤ n be positive integers and let w ∈ Q>0 such that w > n. Let G
be a semiabelian scheme (of dimension g with constant toric rank r) over OC. Suppose G
is w-ordinary. Then, G/Hm is (w −m)-ordinary, and for any m′ ∈ Z with m < m′ ≤ n,
we have H ′m′−m = Hm′/Hm, where H ′m′−m is the pseudocanonical subgroup of G/Hm of level
m′ −m.

Proof. The proof is the same as in [CHJ17, Lemma 2.11] as long as we use the matrix
diag(pm 1g,1g−r) in place of diag(1, pm). Notice that the “pm” factor appears at the bottom
right corner in loc. cit. because they work with a slightly different action of GL2(Qp).

3.6.13. Before stating the next lemma, let us recall the notion of the degree of a finite flat
group scheme over OC studied in [Far11]. If M is a p-power torsion OC-module of finite
presentation, we can write

M '
l⊕

i=1

OC /aiOC

for some ai ∈ OC , i = 1, . . . , l. Then the degree of M is defined to be degM :=
∑l

i=1 vp(ai).
Now, if H is a finite flat group scheme over OC and let ωH denote the OC-module of invariant
differentials on H, then we define the degree of H to be degH := degωH .

Lemma 3.6.14. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over OC and let α be a w-ordinary trivialisation. Let ωH1 be the dual of LieH1

and let ωH∨1 be the dual of LieH∨1 . For i = 1, ..., g, let H1,i be the schematic closure in H1 of
the subgroup generated by α(ei). Then

(i) Each H1,i is isomorphic to Spec(OC [X]/(Xp− aiX)) for some ai ∈ OC. The dual H∨1,i
is isomorphic to Spec(OC [X]/(Xp − biX)) with aibi = p.

(ii) We have isomorphisms ωH1 '
⊕g

i=1OC /aiOC and ωH∨1 '
⊕g

i=1OC /biOC. In partic-
ular, we have degH1 =

∑g
i=1 vp(ai) and degH∨1 =

∑g
i=1 vp(bi) = g −

∑g
i=1 vp(ai).

(iii) Under the identification ωH∨1 '
⊕g

i=1OC /biOC, the image of the (linearised) Hodge–
Tate map

H1(C)⊗Zp OC → ωH∨1

is equal to
⊕g

i=1 ciOC /biOC for some ci ∈ OC such that vp(ci) = vp(ai)/(p − 1),
i = 1, . . . , g.
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Proof. Since each H1,i is a finite flat group scheme over OC of degree p, the assertion follows
from classical Oort–Tate theory. See, for example, [Far11, §6.5, Lemme 9].

Lemma 3.6.15. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over OC. Suppose (2g−1)p

2g(p−1)
< w ≤ 1. 3 Then H1 coincides with the canonical

subgroup of G. Moreover, the Hodge height4 of G is smaller than 1/2.

Proof. We follow the strategy of the proof of [CHJ17, Lemma 2.14]. Consider the commut-
ative diagram

0 H1(C) G[p](C)

0 ωH∨1 ωG[p]∨

HTH1
HTG[p]

with exact rows. Notice that we have an identification ωG[p]∨ = ωG∨/pωG∨ . Let α be a
w-ordinary trivialisation of TpG. According to Lemma 3.6.10, α(e1), . . . , α(eg) form a basis
for H1(C). Also, by definition, we have HTG[p](α(ei)) ∈ pwωG[p]∨ .

Now, with respect to the generators α(e1) . . . , α(eg) of H1(C), the map ωH∨1 → ωG[p]∨ can
be identified with the inclusion

g⊕
i=1

OC /biOC → (OC /pOC)g, (x1, ..., xg) 7→ (a1x1, ..., agxg).

Therefore, we see that

ai HTH1(α(ei)) = HTG[p](α(ei)) ∈ pwωG[p]∨ .

By Lemma 3.6.14 (iii), we know that HTH1(α(ei)) has valuation vp(ai)/(p− 1). This implies

w ≤ vp(ai) +
vp(ai)

p− 1
=
pvp(ai)

p− 1
.

Consequently, we have

degH1 =

g∑
i=1

vp(ai) ≥
gw(p− 1)

p
>
g(p− 1)

p
· (2g − 1)p

2g(p− 1)
=

2g − 1

2
= g − 1

2
.

It follows from [AIP15, Proposition 3.1.2] that H1 is exactly the canonical subgroup of G
and the Hodge height of G is less than 1

2
.

Remark 3.6.16. The lemma might hold without the assumption p > 2g as long as one can
produce finer estimates on the degree and the Hodge height. However, we do not attempt
to find these better estimates.

3The inequalities are valid because of the assumption p > 2g at the beginning of this section.
4Recall from [AIP15, §3.1] that the Hodge height of G is defined to be the ‘truncated’ p-adic valuation of

the Hasse invariant of G. See loc. cit. for details.
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Proposition 3.6.17. Let G be a w-ordinary semiabelian scheme (of dimension g with con-
stant toric rank r) over OC. Suppose (2g−1)p

2g(p−1)
+ n − 1 < w ≤ n, then Hn coincides with the

canonical subgroup of G of level n. In this case, the Hodge height of G is less than 1
2pn−1 .

Proof. The proof follows from induction. The case for n = 1 is precisely Lemma 3.6.15.
Assume that the statement is affirmative for n− 1. By Lemma 3.6.12, G/H1 is (w − 1)-

ordinary and we have (2g−1)p
2g(p−1)

+n−2 < w−1 ≤ n−1. The induction hypothesis implies that
the pseudocanonical subgroup Hn/H1 of of level n− 1 of G/H1 is the canonical subgroup of
level n− 1 and that the Hodge height of G/H1 is less than 1

2pn−2 .
However, H1 coincides with the canonical subgroup of G by Lemma 3.6.15. Hence, by

[Far11, Théorèm 6 (4)] (see also [AIP15, Theorem 3.1.1 (5)]), we see that the Hodge height
of G is bounded by 1

2pn−1 and that Hn is the canonical subgroup of level n of G.

Corollary 3.6.18. Let n ∈ Z≥1 and suppose w ∈ Q>0 such that (2g−1)p
2g(p−1)

< w ≤ n. Then
there exists v ∈ Q>0 ∩[0, 1

2pn−1 ) and a natural inclusion X can,w ↪→ X (v).

Proof. It suffices to work with (C,OC)-points for algebraically closed complete nonarchimedean
field C containing Qp.5 Let x ∈ X can,w(C,OC). By the properness of X , the point x extends
to an OC-point x̃ of Xtor. One can associate with x̃ a 1-motive M̃x̃ = [Y → G̃x̃ ] where G̃x̃
is a semiabelian scheme (of dimension g with constant toric rank) over OC and Y is a free
Z-module of finite rank (see, for example, [Str10]).

From the definition of the Hodge–Tate period map, we see that G̃x̃ is w-ordinary. By Pro-
position 3.6.17, the Hodge height of G̃x̃ is smaller than 1

2pn−1 . This means x ∈ X (v)(C,OC)

for some v < 1
2pn−1 .

3.6.19. Recall that, for any v ∈ Q>0 ∩[0, 1
2
), H1 is the universal canonical subgroup of the

tautological semiabelian variety over X (v). Let w > (2g−1)p
2g(p−1)

and pick v so that X can,w ↪→ X (v)

as in Corollary 3.6.18. We still write H1 for its pullback to Xw. Therefore, we can consider

X 1,can,w := IsomX can,w
((Z /pZ)g,H∨1 );

namely, the adic space over X can,w which parameterises trivialisations of H∨1 . The group
GLg(Z /pZ) naturally acts on X 1,can,w by permuting the trivialisations.

Lemma 3.6.20. For w > (2g−1)p
2g(p−1)

, there are natural identifications

X 1,can,w/BGLg(Z /pZ) = X Iw,can,w and X 1,can,w/TGLg(Z /pZ) = X Iw+,can,w.

Proof. We only give the proof for the first identity. The second one is similar and left to the
readers.

We first focus on the part away from the boundary. Let X can,w = X can,w ∩ X and let
Auniv
w be the universal abelian variety over X can,w.

5Notice that the classical points determine these adic spaces by [Hub13, (1.1.11)].
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The key observation is that any trivialisation ψ : (Z /pZ)g → H∨1 induces a full flag
Filψ• Auniv

w [p] on Auniv
w [p]. Indeed, let ε1, . . . , εg denote the standard basis for (Z /pZ)g and

let Filψ• H∨1 be the full flag of H∨1 given by

0 ⊂ 〈ψ(ε1)〉 ⊂ 〈ψ(ε1), ψ(ε2)〉 ⊂ · · · ⊂ 〈ψ(ε1), ..., ψ(εg)〉.

Consider the natural projection

pr : Auniv
w [p]

'−→ Auniv
w [p]∨ � H∨1

where the first isomorphism is induced from the principal polarisation. Then the desired full
flag Filψ• Auniv

w [p] is given by

Filψi Auniv
w [p] :=

{
pr−1 Filψi−gH∨1 , i > g

(pr−1 Filψg−iH∨1 )⊥, i ≤ g
.

Moreover, if two such ψ’s induce the same Filψ• H∨1 , then the associated Filψ• Auniv
w [p] coincide.

Hence, the assignment ψ 7→ Filψ• Auniv
w [p] induces a natural inclusion X 1,w /BGLg(Z /pZ) ⊂

X Iw,w away from the boundary.
Conversely, using the w-ordinarity, one sees that the universal full flag Fil•Auniv

w [p] on
X Iw,w induces a full flag Fil•H∨1 of H∨1 given by

FiliH∨1 = pr
(
(Filg−iAuniv

w [p])⊥
)

for i = 1, ..., g. This yields the opposite inclusion away from the boundary.
In order to extend to the boundary, one considers the 1-motives on the boundary strata

and same argument as above applies verbatim. The details are left to the reader.

Proof of Theorem 3.6.4. (i) We may assume v = 1
2pn−1 for some sufficiently large n. In

this case, we can take any (2g−1)p
2g(p−1)

+ n − 1 < w ≤ n. Indeed, by Corollary 3.6.18, we
have a Cartesian diagram

X 1,can,w X 1(v)

X can,w X (v)

where the top arrow is equivariant under the action of GLg(Z /pZ). Taking the quotient
by either BGLg(Z /pZ) or TGLg(Z /pZ), and applying Lemma 3.6.20, we obtain the
desired inclusions.

(ii) We may assume n− 1 < w < n for some sufficiently large n. Pick v ∈ Q>0 ∩[0, 1
2pn−1 )

such that w ∈
(
n− 1 + v

p−1
, n− vpn

p−1

]
. Applying [AIP15, Proposition 3.2.1], on the

level of classical points, we obtain a natural inclusion X (v)(C,OC) ↪→ X can,w(C,OC)
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and hence an inclusion X (v) ↪→ X can,w. There is a Cartesian diagram

X 1(v) X 1,can,w

X (v) X can,w

Once again, applying Lemma 3.6.20 and taking the corresponding quotients yield the
desired inclusions.

3.7 The comparison of constructions

3.7.1. In this section, we still assume p > 2g. The aim of this section is to prove the following
theorem which compares the overconvergent automorphic sheaf ωκUw constructed in §3.1 and
the sheaf ωκU ,AIP

w,v of Andreatta–Iovita–Pilloni.
For any v ∈ Q>0 ∩[0, 1

2
), we identify X Iw+(v) and X Iw(v) with their image under AL−1

in this subsection. Let h� : X Iw+(v)→ X Iw(v) denote the natural projection.

Theorem 3.7.2. Suppose n > g
p−1

and let v ∈ Q>0 ∩[0, 1
2pn−1 ), w ∈ Q>0 ∩(n− 1 + v

p−1
, n−

vpn

p−1
]. (In particular, Theorem 3.6.4 (ii) and Remark 3.6.5, there are natural inclusions

X Iw(v) ↪→ X Iw,w and X Iw+(v) ↪→ X Iw+,w.) Let (RU , κU) be a weight such that w > 1 + rU .
Then, over X Iw+(v), there is a canonical isomorphism of sheaves

Ψ : ωκUw |X Iw+ (v)
'−→ h∗�ω

κU ,AIP
w,v ,

where h� : X Iw+(v)→ X Iw(v) denote the natural projection.

3.7.3. Recall that the space of overconvergent Siegel modular forms of weight κU of strict
Iwahori level (see Definition 3.1.16 (v)) is defined to be

M †
Iw+,κU

= lim−→
w→∞

Mw
Iw+,κU

where
Mw

Iw+,κU
= H0(X Iw+,w, ω

κU
w ).

We can also extend the notion of overconvergent Siegel modular forms of Andreatta–
Iovita–Pilloni to the case of strict Iwahori level.

(i) Let v ∈ Q>0 ∩[0, 1/2) and w ∈ Q>0. Suppose κU is w-analytic. The space of
w-analytic v-overconvergent Siegel modular forms of weight κU (of strict
Iwahori level) of Andreatta–Iovita–Pilloni is defined to be

Mw,v,AIP

Iw+,κU
:= H0(X Iw+(v), h∗�ω

κU ,AIP
w,v ).
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(ii) The space of locally analytic overconvergent Siegel modular forms of weight
κU (of strict Iwahori level) of Andreatta–Iovita–Pilloni is defnied to be

M †,AIP

Iw+,κU
:= lim

v→0
w→∞

Mw,v,AIP

Iw+,κU
.

(iii) Similarly, the space of w-analytic v-overconvergent Siegel cuspforms of weight
κU (of strict Iwahori level) of Andreatta–Iovita–Pilloni is defined to be

Sw,v,AIP

Iw+,κU
:= H0(X Iw+(v), h∗�ω

κU ,AIP
w,v,cusp),

and the space of locally analytic overconvergent Siegel cuspforms of weight
κU (of strict Iwahori level) of Andreatta–Iovita–Pilloni is defined to be

S†,AIP

Iw+,κU
:= lim

v→0
w→∞

Sw,v,AIP

Iw+,κU
.

Then we have the following immediate corollary of Theorem 3.7.2 and Theorem 3.6.4.

Corollary 3.7.4. There are canonical isomorphisms

M †
Iw+,κU

'M †,AIP

Iw+,κU
and S†

Iw+,κU
' S†,AIP

Iw+,κU
.

Remark 3.7.5. In fact, it will follow from the construction of Ψ that the isomorphisms in
Corollary 3.7.4 is also Hecke-equivariant.

3.7.6. The rest of the section is dedicated to the proof of Theorem 3.7.2. Our strategy is
simple. Let n, v, w, and (RU , κU) be as in Theorem 3.7.2. Recall that the OX Iw+ (v)-module
(resp., OX Iw(v)-module) ωIw+,v (resp., ωIw,v) is locally free of rank g. Let V ′ ⊂ X Iw(v) be an
affinoid open subset such that ωIw,v|V ′ is free, and let V ⊂ X Iw+(v) be the preimage of V ′.
To construct Ψ, it suffices to establish a canonical isomorphism

Ψ : ωκUw (V)
∼−→ h∗�ω

κU ,AIP
w,v (V)

for every such V , which is also functorial in V .

3.7.7. As a preparation, consider the pullback

IW+
w,v,∞ IW+

w,v

X Γ(p∞)(v) X Iw(v)

πAIP
∞ πAIP

hIw

where X Γ(p∞)(v) is the preimage of X Iw(v) under the natural morphism hIw : X Γ(p∞),w →
X Iw,w. For later usage, we denote by V∞ (resp., V+

∞) the preimage of V ′ in X Γ(p∞)(v) (resp.,
in IW+

w,v,∞) under the projection hIw (resp., hIw ◦ πAIP
∞ ).
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Since IW+
w,v is a U

opp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg(Z /p
n Z)-torsor over X Iw, we know that IW+

w,v,∞

is likewise a Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg(Z /p
n Z)-torsor over X Γ(p∞)(v). In what follows, we

provide an explicit moduli interpretation of this torsor, in three steps.

Step 1. Observe that the natural projection hIw : X Γ(p∞)(v)→ X Iw(v) factors as

hIw : X Γ(p∞)(v)
h1−→ X 1(pn)(v)→ X Iw(v).

Indeed, away from the boundary, the map h1 can be described as follows. Let X Γ(p∞)(v) be
the part of X Γ(p∞)(v) away from the boundary. For every point (A, λ, ψN , ψp∞) ∈ X Γ(p∞)(v),
consider the dual trivialisation

ψ∨p∞ : V∨p
∼−→ TpA

∨.

Modulo pn, we obtain a symplectic isomorphism

ψ∨pn : V∨p ⊗Zp(Z /p
n Z)

∼−→ A[pn]∨.

Then h1 sends (A, λ, ψN , ψp∞) to (A, λ, ψN , ψ) where ψ is the composition

ψ : (Z /pn Z)g ↪→ V∨p ⊗Zp(Z /p
n Z)

ψ∨pn−−→ A[pn]∨ � H∨n

with the first arrow sending εi to e∨g+1−i⊗ 1, for all i = 1, . . . , g, and the last arrow being the
natural surjection. From the proof of Lemma 3.6.20, we see that ψ is indeed a trivialisation
of H∨n .

Using the language of 1-motives, this description of h1 also extends to the boundary. The
details are left to the readers.

Step 2. Recall that, in 3.5.5, we defined a locally free OX1(pn)(v)-submodule F ⊂ Ωn,v on
X1(pn)(v). Passing to the adic generic fibre, let ω+

n,v denote the sheaf of O+

X 1(pn)(v)
-module

on X 1(pn)(v) associated with Ωn,v. Then F can be identified with a locally free O+

X 1(pn)(v)
-

submodule of ω+
n,v, which is still denoted by F . Moreover, let F∞ be the pullback of F to

X Γ(p∞)(v) along h1.
Recall as well the OXΓ(pn)

-modules Ωmod
Γ(pn) ⊂ ΩΓ(pn) constructed in 2.3.1. Passing to the

adic generic fibre, they induce O+

XΓ(pn)
-modules ωmod,+

Γ(pn) ⊂ ω+
Γ(pn) on X Γ(pn). Let ωmod,+

Γ(p∞) ⊂
ω+

Γ(p∞) be their pullbacks to X Γ(p∞) and let ωmod,+
Γ(p∞),v ⊂ ω+

Γ(p∞),v be their restrictions on
X Γ(p∞)(v).

We claim that there is a natural inclusion

F∞ ⊂ ωmod,+
Γ(p∞),v.

Indeed, recall the map
HTn : (Z /pn Z)g → ωHn
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on X 1(pn)(v) constructed in 3.5.5. Pulling back to X Γ(p∞)(v), we obtain a map

HTn,∞ : (Z /pn Z)g → ωHn,∞

where Hn,∞ is the pullback of Hn along the projection X Γ(p∞)(v)→ X 1(pn)(v). On the other
hand, recall the map HTΓ(p∞) on X Γ(p∞) constructed in 2.5.1. Restricting to X Γ(p∞)(v) and
modulo pn, we obtain a map

HTΓ(p∞),n,v : V⊗Z(Z /pn Z)→ ωmod,+
Γ(p∞),v/p

nωmod,+
Γ(p∞),v.

These maps fit into a commutative diagram

ωmod,+
Γ(p∞),v ω+

Γ(p∞),v

(Z /pn Z)g ωHn,∞

V⊗Z(Z /pn Z) ωmod,+
Γ(p∞),v/p

n ω+
Γ(p∞),v/p

n ωHn,∞/p
n

HTn,∞

HTΓ(p∞),n,v

.

where the left inclusion sends εi to e2g+1−i ⊗ 1, for all i = 1, . . . , g. The equality at the
bottom right corner follows from [AIP15, Proposition 3.2.1]. By definition, F∞ is generated
by the lifts of HTn,∞(εi)’s from ωHn,∞ to ω+

Γ(p∞),v and hence the desired inclusion follows.

Step 3. We are now able to describe the torsor. Recall that there is a universal full
flag Filuniv

• H∨1 of H∨1 on X Iw(v). Pulling back to X Γ(p∞)(v), we obtain universal full flag
Filuniv
• H∨1,∞ of H∨1,∞. There is a natural projection Θ : H∨n,∞ → H∨1,∞. Moreover, the

Hodge–Tate map on H∨n,∞ induces a map

HTH∨n,∞ : H∨n,∞ → F∞⊗O+

XΓ(p∞)(v)

O+

XΓ(p∞)(v)
/pw.

Then, for every affinoid open Y = Spa(R,R+) ⊂ X Γ(p∞)(v), the sections IW+
w,∞(Y) para-

metrise triples (ψ,Fil•, {wi : i = 1, . . . , g}) where

• ψ : (Z /pn Z)g
'−→ H∨n,∞ |Y is a trivialisation such that

ψ〈ε1, . . . , εi〉 = Θ(Filuniv
i H∨1,∞)

for all i = 1, . . . , g.

• Fil• is a full flag of the free R+-module F∞(Y), which is w-compatible with respect
to the basis HTH∨n,∞(ψ(ε1)), ...,HTH∨n,∞(ψ(εg)) in the sense of Definition 3.2.2 (i).

• Each wi is an R+-basis for Fili /Fili−1, which is w-compatible with respect to the basis
HTH∨n,∞(ψ(ε1)), ...,HTH∨n,∞(ψ(εg)) in the sense of Definition 3.2.2 (ii).
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Moreover, Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg(Z /p
n Z) permutes these triples by right multiplication.

Proof of Theorem 3.7.2. The construction of Ψ is similar to the proof of Proposition 3.2.13.
We only give a sketch of the proof. Indeed, the isomorphism Ψ is established via a sequence
of isomorphisms

Ψ : ωκUw (V)
'−→
Ψ1

ω(1) '−→
Ψ2

ω(2) '−→
Ψ3

h∗�ω
κU ,AIP
w,v (V),

where

ω(1) :=

{
f ∈ Cw−an

κ∨U
(IwGLg ,OV∞(V∞)⊗̂RU) : γ∗ f = ρκ∨U (γ‡a + zγ‡c)f, ∀γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g

}
and

ω(2) :=

{
f ∈ πAIP

∞,∗ OIW+
w,∞

(V∞)⊗̂RU :
γ∗ f = f, τ ∗ f = κ∨U(τ )f, ν∗ f = f
∀(γ, τ ,ν) ∈ Iw+

GSp2g
×TGLg ,0 × UGLg(Z /p

n Z)

}
.

The construction of Ψ1 and Ψ3 follows verbatim as in Proposition 3.2.13. To construct
Ψ2, consider s‡ =

(
sg · · · s1

)
∈ F∞(V∞)g. Let Fil‡• be the full flag of the free O+

V∞(V∞)-
module F∞(V∞) given by

Fil‡• = 0 ⊂ 〈sg〉 ⊂ 〈sg, sg−1〉 ⊂ · · · 〈sg, . . . , s1〉

and let w‡i be the image of sg+1−i in Fil‡i /Fil‡i−1, for all i = 1, . . . , g. Moreover, consider the
trivialisation

ψ‡ : (Z /pn Z)g
'−→ H∨n,∞

obtained by pulling back the universal trivialisation ofH∨n on X 1(pn)(v) along h1 : X Γ(p∞)(v)→
X 1(pn)(v). Then the triple (ψ‡,Fil‡•, {w

‡
i}) defines a section of the Uopp,(w)

GLg ,1
×T (w)

GLg ,0
×UGLg(Z /p

n Z)-
torsor πAIP

∞ : V+
∞ → V∞. Consequently, one obtains an isomorphism

Uopp,(w)
GLg ,1

×T (w)
GLg ,0

×UGLg(Z /p
n Z)

'−→ V+
∞, γ ′ 7→ (ψ‡,Fil‡•, {w

‡
i}) · γ ′

and thus an isomorphism

Φ : πAIP
∞,∗ OIW+

w,∞
(V∞)⊗̂RU

∼−→

{
analytic functions

U
opp,(w)
GLg ,1

× T (w)
GLg ,0

× UGLg(Z /p
n Z)→ OV∞(V∞)⊗̂RU

}
f 7→

(
γ ′ 7→ f((ψ‡,Fil‡•, {w

‡
i}) · γ ′)

)
.

By the same calculation as in Proposition 3.2.13, one sees that, if γ∗ f = f for any γ =(
γa γb
γc γd

)
∈ Iw+

GSp2g
, then γ∗Φ(f) = ρκ∨U (γ‡a + zγ‡c)Φ(f). This induces an isomorphsm

Φ : ω(2) '−→ ω(1). Taking Ψ2 = Φ−1 does the job.

Remark 3.7.8. Notice that si’s are, in fact, integral. Hence, by pulling back the formal
scheme IW+

w to the modified integral model, the method above provides a strategy to com-
pare our integral sheaf ωκU ,+w with the integral overconvergent automorphic sheaf constructed
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in [AIP15].
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Chapter 4

Overconvergent cohomology groups

In this chapter, we study the overconvergent cohomology groups. Such a notion was first
introduced in [AS08] and taken to study eigenvarieties for reductive groups in [Urb11; Han17;
JN19]. We shall discuss the construction in §4.1 by following [Han17] closely. In §4.2, we
again follow loc. cit. to define the Hecke operators. We will close this chapter with the
algebraic counterparts of the overconvergent cohomology groups.

4.1 Overconvergent cohomology groups

4.1.1. Consider

T0 :=
{

(γ,υ) ∈ IwGLg ×Mg(pZp) : tγ 1̆g υ = tυ 1̆g γ
}
.

Notice that a pair (γ,υ) ∈ IwGLg ×Mg(pZp) lies in T0 if and only if there exist αb,αd ∈
Mg(Zp) such that (

γ αb

υ αd

)
∈ GSp2g(Qp) ∩M2g(Zp).

In fact, there is a natural embedding

T0 ↪→ IwGSp2g
, (γ,υ) 7→

(
γ

υ 1̆g
tγ−1

1̆g

)
.

Also consider the subset T00 of T0 defined by

T00 :=
{

(γ,υ) ∈ T0 : γ ∈ Uopp
GLg ,1

}
.

We can identify T00 with Uopp
GSp2g ,1

through the bijection

T00 → Uopp
GSp2g ,1

, (γ,υ) 7→
(
γ

υ 1̆g
tγ−1

1̆g

)
.

Observe that T0 admits two natural actions:
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(i) There is a right action of IwGLg given by

T0× IwGLg → T0, ((γ,υ),γ ′) 7→ (γ γ ′,υ γ ′).

To see that this is indeed a right action, we embed IwGLg into IwGSp2g
through γ ′ 7→(

γ ′

1̆g
tγ ′−1

1̆g

)
and verify that

(
γ ∗
υ ∗

)(
γ ′

1̆g
tγ ′−1

1̆g

)
=

(
γ γ ′ ∗
υ γ ′ ∗

)

(ii) There is a left action of Ξ :=

(
IwGLg Mg(Zp)

Mg(pZp) Mg(Zp)

)
∩GSp2g(Qp) given by

Ξ×T0 → T0,

((
αa αb

αc αd

)
, (γ,υ)

)
7→ (αa γ +αb υ,αc γ +αd υ).

To see this is indeed a left action, it suffices to observe that(
αa αb

αc αd

)(
γ ∗
υ ∗

)
=

(
αa γ +αb υ ∗
αc γ +αd υ ∗

)
.

Since Iw+
GSp2g

is a subset of Ξ, we also obtain a natural left action of Iw+
GSp2g

on T0.

4.1.2. Let r ∈ Q>0 and let (RU , κU) be an r-analytic weight. We employ the notion of
r-analytic functions on Uopp

GSp2g ,1
, T00, and T0 as follows.

Fix a (topological) isomorphism

Zg2

p ' Uopp
GSp2g ,1

.

(i) We say that a function f : Uopp
GSp2g ,1

→ R+
U is r-analytic if the composition

Zg2

p ' Uopp
GSp2g ,1

f−→ R+
U ↪→ Cp ⊗̂RU

is r-analytic in the sense of Definition 3.1.8 (i).

(ii) We say that a function f : T00 → R+
U is r-analytic if it is r-analytic viewed as a

function on Uopp
GSp2g ,1

, via the identification T00 ' Uopp
GSp2g ,1

.

Before proceeding, we need the following statement.

Lemma 4.1.3 (Amice). Let r ∈ Q≥0. For any d ∈ Z>0 and for any i = (i1, ..., id) ∈ Zd
≥0,

define the function

e
(r)
i : Zd

p → Zp, (x1, ..., xd) 7→
d∏
t=1

bp−ritc!
(
xt
it

)
.
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Then, {e(r)
i }i provides an othonormal basis for Cr−an(Zd

p,Zp).

Proof. This is the multivariable version of a theorem of Y. Amice, which is presumebaly
well-known. We deduce the statement from [Laz65, Chapter III, 1.3.8], which is based on
the work of Amice [Ami64, §10].

By replacing r with dre, we may assume r ∈ Z. By Mahler expansion, we know a
continuous function f : Zd

p → Zp can be written as

f(x1, ..., xd) =
∑

i=(i1,...,id)∈Zd≥0

ci

d∏
t=1

(
xt
it

)

for some ci ∈ Zp. By [Laz65, Chapter III, 1.3.8], f is r-analytic if and only if

vp(ci)−
d∑
t=1

(
vp(it!)−

it(1− p−r)
p− 1

)
→∞ as

d∑
t=1

it →∞.

On the other hand, for each it, we have

vp(it!)− vp(bp−ritc!) =
∞∑
m=1

bp−mitc −
∞∑
m=1

bp−(m+r)itc

by Legendre’s formula.

Observe that
∞∑
m=1

it
pm
−
∞∑
m=1

⌊
it
pm

⌋
=

Schiff it
p− 1

1

Hence, (
∞∑
m=1

it
pm
−
∞∑
m=1

it
pm+r

)
−

(
∞∑
m=1

⌊
it
pm

⌋
−
∞∑
m=1

⌊
it

pm+r

⌋)
=

1

p− 1
(Schiff it − Schiff bit/prc)

=
1

p− 1

(
r−1∑
j=1

it,j

)

≤ (r − 1)(p− 1)

p− 1
= r − 1.

1Here, the function Schiff is defined as in [Laz65], i.e., for any integer n = nkp
k+nk−1p

k−1 + ...+n1p+n0

for 0 ≤ nj ≤ p − 1, then Schiff n :=
∑
j nj . The name of this function should be understood as ‘la somme

des chiffres du développement de n’ (the sum of the digits of the expansion of n). It should not be confused
with the German word ‘das Schiff’ (the ship).
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Here, in the second equation above, we write it =
∑k

j=1 it,jp
j with 0 ≤ it,j ≤ p− 1. Since

∞∑
m=1

p−mit −
∞∑
m=1

p−(m+r)it =
it(1− p−r)
p− 1

,

we have(
∞∑
m=1

⌊
it
pm

⌋
−
∞∑
m=1

⌊
it

pm+r

⌋)
+ (r − 1) ≥ it(1− p−r)

p− 1
≥

(
∞∑
m=1

⌊
it
pm

⌋
−
∞∑
m=1

⌊
it

pm+r

⌋)

and so
vp(it!)−

it(1− p−r)
p− 1

+ (r − 1) ≥ vp(bp−ritc!) ≥ vp(it!)−
it(1− p−r)
p− 1

.

Therefore, one concludes that f is r-analytic if and only if

vp(ci)−
d∑
t=1

vp(bp−ritc!)→∞ as
d∑
t=1

it →∞.

This then implies the desired result.

4.1.4. Given an r-analytic weight (RU , κU), we define

Ar,◦(T00, RU) := Cr−an(T00,Zp)⊗̂R+
U and Ar(T00, RU) := Ar,◦(T00, RU)[

1

p
].

By identifying T00 with Zg2

p , Lemma 4.1.3 implies that

Ar,◦(T00, RU) ' ⊕̂
i∈Zg

2

≥0

R+
U e

(r)
i

and so we view elements in Ar,◦(T00, RU) as functions from T00 to R+
U . In other words, we

have

Ar,◦(T00, RU) =


∑
i∈Zg

2

≥0

cie
(r)
i : ci ∈ R+

U and ci → 0 aU -adically

,
where aU = pR+

U if (RU , κU) is an affinoid weight and aU is an ideal of definition of the
profinite topology on R+

U if (RU , κU) is a small weight. By definition, these functions are
r-analytic. In fact, if (RU , κU) is an affinoid weight, we have the identification

Ar(T00, RU) = {r-analytic functions f : T00 → RU} .
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On the other hand, define

Ar,◦κU (T0, RU) :=

{
f : T0 → R+

U :
f(γ β,υ β) = κU(β)f(γ,υ) , ∀(γ,υ) ∈ T0, β ∈ BGLg ,0

f |T00 ∈ Ar,◦(T00, RU)

}
and

ArκU (T0, RU) := Ar,◦κU (T0, RU)[
1

p
].

We have an identification

Ar,◦κU (T0, RU)
∼−→ Ar,◦(T00, RU), f 7→ f |T00 .

Taking continuous duals, we obtain the corresponding spaces of r-analytic distributions

Dr,◦
κU

(T0, RU) := Homcts
R+
U

(Ar,◦κU (T0, RU), R+
U ) and Dr

κU
(T0, RU) := Dr,◦

κU
(T0, RU)[

1

p
].

Here, we remark that if (RU , κU) is an affinoid (resp., a small) weight, the continuous dual
is taken with respect to the p-adic (resp., profinite) topology on R+

U .
From the construction, we see that the left action of Ξ on T0 then induce a left action of

Ξ on both Dr,◦
κU

(T0, RU) and Dr
κU

(T0, RU). Furthermore, if r′ ≥ r, there is a natural injection
Ar,◦κU (T0, RU) ↪→ Ar

′,◦
κU

(T0, RU) which induces injections (see [Han17, §2.2])

Dr′,◦
κU

(T0, RU) ↪→ Dr,◦
κU

(T0, RU) and Dr′

κU
(T0, RU) ↪→ Dr

κU
(T0, RU).

We then write

A†κU (T0, RU) := lim−→
r

ArκU (T0, RU) and D†κU (T0, RU) := lim←−
r

Dr
κU

(T0, RU).

Example 4.1.5. An example of elements in ArκU (T0, RU) is the (analytic) highest weight
vector ehst

κU
defined as follows.

Given any X = (Xij)1≤i,j≤g ∈ IwGLg , define

ehst
κU

(X) =
κU ,1(X11)

κU ,2(X11)
× κU ,2(det((Xij)1≤i,j≤2))

κU ,3(det((Xij)1≤i,j≤2))
× · · · × κU ,g(det(X)).

Then, we view ehst
κU

as a function on T0 via

(γ,υ) 7→ ehst
κU

(γ).

By direct computation, one easily checks that

ehst
κU

(γ β,υ β) = ehst
κU

(γ β) = κU(β)ehst
κU

(γ) = κU(β)ehst
κU

(γ,υ).

Moreover, by calculation in the proof of [CHJ17, Proposition 2.6], one concludes that ehst
κU
∈

ArκU (T0, RU).
4.1.6. Suppose now that (RU , κU) is a small weight and take r > 1 + rU (see Definition
3.1.10). Fix an ideal aU of RU defining the profinite topology on RU and such that p ∈ aU .
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Similar to [CHJ17, Proposition 3.1] (see also [Han15, §2.1]), Dr,◦
κU

(T0, RU) admits a decreasing
filtration Fil•Dr,◦

κU
(T0, RU) defined by

Filj Dr,◦
κU

(T0, RU) := ker
(
Dr,◦
κU

(T0, RU)→ Dr−1,◦
κU

(T0, RU)/ ajU D
r−1,◦
κU

(T0, RU)
)
.

Write
Dr,◦
κU ,j

(T0, RU) := Dr,◦
κU

(T0, RU)/Filj Dr,◦
κU

(T0, RU)

for every j ∈ Z≥1.

Lemma 4.1.7. Given a small weight (RU , κU) and r > 1 + rU .

(i) For any j ∈ Z≥0, Filj Dr,◦
κU

is Ξ-stable.

(ii) For any j ∈ Z≥0, Dr,◦
κU ,j

(T0, RU) is a finitely abelian group. Therefore,

Dr,◦
κU

(T0, RU) = lim←−
j

Dr,◦
κU ,j

(T0, RU),

is a profinite flat Zp-module in the sense of [CHJ17, Definition 6.1].

Proof. To show (i), one observes that

ajU D
r−1,◦
κU

(T0, RU) =
{
µ ∈ Dr−1,◦

κU
(T0, RU) : µ(f) ∈ ajU , ∀f ∈ A

r−1,◦
κU

(T0, RU)
}

Since Ar−1,◦
κU

(T0, RU) is stable under the action of Ξ, ajU D
r−1,◦
κU

(T0, RU) is stable under the
action of Ξ. This then implies the desired result.

The proof for (ii) is inspired by the discussion in [Han15, §2.1]. We first fix identifications
T00 ' Uopp

GSp2g ,1
' Zg2

p and simplify the notation by writing d = g2. From the construction

and by Lemma 4.1.3, the collection {e(r)
i }i provides an orthonormal basis for Ar,◦κU (T0, RU),

i.e., we have an isomorphism

Ar,◦κU (T0, RU) ' ⊕̂i∈Zd≥0
RUe

(r)
i .

Consequently, we have an isomorphism

Dr,◦
κU

(T0, RU) '
∏
i∈Zd≥0

RU , µ 7→ (µ(e
(r)
i ))i.

For any i ∈ Zd
≥0, write cr,i :=

∏
t
bp−(r−1)itc!
bp−ritc! . Then, the natural injection Ar−1,◦

κU
(T0, RU) ↪→

Ar,◦κU (T0, RU) is given by

⊕̂iRUe(r)
i → ⊕̂iRUe

(r−1)
i , e

(r)
i 7→ e

(r)
i = cr,ie

(r−1)
i .

Hence, the natural inclusion Dr,◦
κU

(T0, RU) ↪→ Dr−1,◦
κU

(T0, RU) is given by∏
i∈Zd≥0

RU →
∏
i∈Zd≥0

RU , (µ(e
(r)
i ))i 7→ (cr,iµ(e

(r−1)
i )).
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Moreover, by Legendre’s formula, we have vp(cr,i) =
∑d

t=1bp−ritc. Therefore, we see that

Dr,◦
κU ,j

(T0, RU) ' ⊕ i∈Zd≥0

vp(cr,i)<j

RU/(a
j
U , p

j−vp(cr,i)).

Since this is a finite direct sum and each direct summand is a finite abelian group, we
conclude that each Dr,◦

κU ,j
(T0, RU) is a finite abelian group.

Finally, from the construction, we see that the natural map

Dr,◦
κU

(T0, RU)→ lim←−
j

Dr,◦
κU ,j

(T0, RU),

has dense image. Since both sides are compact, this natural map is an isomorphism.

4.1.8. Consider the étale site X Iw+,ét. Recall that, for every n ∈ Z≥1, X Γ(pn) is a finite étale
Galois cover over X Iw+ with Galois group Iw+

GSp2g
/Γ(pn), and hence lim←−nX Γ(pn) is a pro-étale

Galois cover of X Iw+ with Galois group Iw+
GSp2g

. For each j ∈ Z≥1, let Dr,◦
κU ,j

be the locally
constant sheaf on X Iw+,ét associated with Dr,◦

κU ,j
(T0, RU) via

πét1 (X Iw+)→ Iw+
GSp2g

→ Aut
(
Dr,◦
κU ,j

(T0, RU)
)
.

We obtain an inverse system of étale locally constant sheaves (Dr,◦
κU ,j

)j∈Z≥1
on X Iw+,ét. This

allows us to consider the étale cohomology groups

H t
ét(X Iw+ ,Dr,◦

κU
) := lim←−

j

H t
ét(X Iw+ ,Dr,◦

κU ,j
),

H t
ét(X Iw+ ,Dr

κU
) := H t

ét(X Iw+ ,Dr,◦
κU

)[
1

p
]

for every t ∈ Z≥0.

4.1.9. Recall the locally symmetric space

XIw+(C) = GSp2g(Q)\GSp2g(Af )×Hg /Γ
(p) Iw+

GSp2g
.

By taking the trivial GSp2g(Z`)-action on Dr
κU

(T0, RU) for every prime number ` 6= p and
letting Iw+

GSp2g
act on Dr

κU
(T0, RU) via the left action of Ξ, we see that Dr

κU
(T0, RU) defines

a local system on the locally symmetric space XIw+(C). In particular, for every t ∈ Z≥0, we
can consider the Betti cohomology group

H t(XIw+(C), Dr
κU

(T0, RU)).

The following proposition compares these two cohomology groups.

Proposition 4.1.10. For every t ∈ Z≥0, there is a natural isomorphism

H t
ét(X Iw+ ,Dr

κU
) ' H t(XIw+(C), Dr

κU
(T0, RU)).
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Proof. For any j ∈ Z>0, we have isomorphisms

H t
ét(X Iw+ ,Dr,◦

κU ,j
) ' H t

ét(XIw+ ,Dr,◦
κU ,j

) ' H t(XIw+(C), Dr,◦
κU ,j

(T0, RU)),

where

• the first isomorphism follows from the comparison isomorphism between the étale co-
homology groups of an algebraic variety and the ones on the corresponding adic spaces
(see [Hub13, Theorem 3.8.1]);2 and

• the second isomorphism follows from the fact that Iw+
GSp2g

acts continuously on the
module Dr,◦

κU ,j
(T0, RU) and the well-known Artin comparison between the étale co-

homology of a complex algebraic variety and the Betti cohomology of the associated
complex manifold.

Note that we have used the algebraic isomorphism Cp ' C fixed at the beginning of the
thesis.

Taking limit and inverting p, we then arrive at the isomorphisms

H t
ét(X Iw+ ,Dr

κU
) ' H t

ét(XIw+ ,Dr
κU

) '

(
lim←−
j

H t(XIw+(C), Dr,◦
κU ,j

(T0, RU))

)
[1/p].

To finish the proof, we claim(
lim←−
j

H t(XIw+(C), Dr,◦
κU ,j

(T0, RU))

)
[1/p] = H t(XIw+(C), Dr

κU
(T0, RU)).

It suffices to show that

lim←−
j

H t(XIw+(C), Dr,◦
κU ,j

(T0, RU)) = H t(XIw+(C), Dr,◦
κU

(T0, RU)),

i.e., the inverse limit commute with cohomology. Note that Betti cohomology can be com-
puted via sheaf cohomology. Hence, by viewing each Dr,◦

κU ,j
(T0, RU) as a locally constant

sheaf on XIw+(C), we need to show

Ri lim←−
j

Dr,◦
κU ,j

(T0, RU) = 0 (4.1)

for all i > 0.
Let {Uλ}λ∈Λ be an open cover for XIw+(C) given by contractible open subsets. Then,

H i(Uλ, D
r,◦
κU ,j

(T0, RU)) = 0

2On the algebraic variety XIw+ = XIw+,Cp
, the locally constant sheaves Dr,◦

κU ,j
and étale cohomology

groups Ht
ét(XIw+ ,Dr,◦

κU
) and Ht

ét(XIw+ ,Dr
κU

) are defined analogously as those on X Iw+ .
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for all i, j > 0 and for all λ ∈ Λ. Moreover, for each λ ∈ Λ, the natural map

Dr,◦
κU ,j

(T0, RU) = H0(Uλ, D
r,◦
κU ,j

(T0, RU))→ H0(Uλ, D
r,◦
κU ,j−1(T0, RU)) = Dr,◦

κU ,j−1(T0, RU)

is surjective. Thus, the inverse system {H0(Uλ, D
r,◦
κU ,j

(T0, RU))}j∈Z>0 satisfies the Mittag–
Leffler condition and so

R1 lim←−
j

H0(Uλ, D
r,◦
κU ,j

(T0, RU)) = 0.

We then can conclude (4.1) by applying [Sch13, Lemma 3.18].

4.2 Hecke operators

4.2.1. Let us discuss the Hecke operators acting on H t
ét(X Iw+ ,Dr

κU
). Similar as before, the

definition of Hecke operators splits into two cases: Hecke operators outside Np and Hecke
operators at p. Our strategy is to describe Hecke operators on the Betti cohomology groups
H t(XIw+(C), Dr

κU
(T0, RU)) and then use Proposition 4.1.10 to make these operators acting

on H t
ét(X Iw+ ,Dr

κU
). Therefore, we begin with a brief recollection of the Hecke operators on

H t(XIw+(C), Dr
κU

(T0, RU)) studied in [Han17]. We refer the readers to loc. cit. for a more
detailed discussion.

4.2.2 (Hecke operators outside pN). Let ` be a prime number not dividing pN . For any
γ ∈ GSp2g(Q`) ∩M2g(Z`), consider a double coset decomposition

GSp2g(Z`)γ GSp2g(Z`) =
⊔
j

δj γ GSp2g(Z`)

for some δj ∈ GSp2g(Z`). If we take the trivial GSp2g(Q`)-action on Dr
κU

(T0, RU), then the
natural left action of GSp2g(Q`) on XIw+(C) induces the Hecke operator

Tγ : H t(XIw+(C), Dr
κU

(T0, RU))→ H t(XIw+(C), Dr
κU

(T0, RU)), [µ] 7→
∑
j

(δj γ).[µ].

(4.2)

4.2.3. We specify out a special element t`,0 = diag(1g, `1g) ∈ GSp2g(Q`) ∩M2g(Z`). For
any x ∈WeylGSp2g

, denote by Tw`,0 the Hecke operator defined by the double coset

GSp2g(Z`)(x · t`,0) GSp2g(Z`).

Following [GT05, §3], we define the Hecke polynomial at ` to be

PHecke,`(Y ) :=
∏

x∈WeylH

(Y − T x`,0) ∈ T`[Y ]. (4.3)

One sees immediately that this is a polynomial of degree 2g.
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4.2.4 (Hecke operators at p). For the Hecke operators at p, recall the matrices

up,i =




1i

p1g−i
p1g−i

p2
1i

 , 1 ≤ i ≤ g − 1

(
1g

p1g

)
, i = g

and we write
up,i =

(
u�p,i

u�p,i

)
.

For every i = 1, . . . , g, consider a up,i-action on T0 defined as follows: for every (γ,υ) ∈
T0, we put

up,i .(γ,υ) = (u�p,i γ0 u�,−1
p,i ,u�p,i υ0 u�,−1

p,i )β

where we write (γ,υ) = (γ0,υ0)β with γ0 ∈ U
opp
GLg ,1

and β ∈ BGLg ,0. This then induces a
up,i-action on Dr

κU
(T0, RU).

Similar to §3.3, for every i = 1, . . . , g, choose a double coset decomposition

Iw+
GSp2g

up,i Iw
+
GSp2g

=
⊔
j

δij up,i Iw
+
GSp2g

.

with δij ∈ Iw+
GSp2g

. The natural left action of GSp2g(Qp) on XIw+(C) together with the
actions of Iw+

GSp2g
and up,i on Dr

κU
(T0, RU) induce the Hecke operator

Up,i : H t(XIw+(C), Dr
κU

(T0, RU)) → H t(XIw+(C), Dr
κU

(T0, RU)),

[µ] 7→ pνi
∑

j δij .(up,i .[µ])
. (4.4)

Here, again, νi = −(g − i)(g + 1) for i = 1, ..., g − 1 and νg = −g(g+1)
2

. Similarly, we have
Hecke operators Ux

p,i for any x ∈WeylGSp2g
.

4.2.5. Finally, as mentioned, the Hecke operators acting on H t
ét(X Iw+ ,Dr

κU
) are defined as

follows:

(i) The Hecke operators Tγ (for γ ∈ GSp2g(Q`) ∩ M2g(Z`) with ` - Np) and Ux
p,i (for

i = 1, ..., g and x ∈ WeylGSp2g
) acting on the overconvergent cohomology groups

H t
ét(X Iw+ ,Dr

κU
) are defined to be the operators Tγ and Ux

p,i acting on the overconver-
gent cohomology group H t(XIw+(C), Dr

κU
(T0, RU)) via the isomorphism in Proposition

4.1.10.

(ii) We define the operator Up as the composition Up =
∏g

i=1 Up,i.
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4.3 Overconvergent parabolic cohomology groups

4.3.1. We spell out the overconvergent parabolic cohomology groups in this section, which
is essential in the construction of the cuspidal eigenvariety. These groups are nothing but
the image of the natural map from the compactly supported cohomology groups into the
cohomology groups. Let us discuss about this in more details.

4.3.2. Consider the Borel–Serre compactification X
BS

Iw+(C) of the locally symmetric space
XIw+(C) (see [BS73]). By choosing a triangulation on XBS

Iw+(C), one can form the so-called
Borel–Serre cochain complex C•(Iw+

GSp2g
, Dr

κU
(T0, RU)) which computes the Betti cohomo-

logy groups H t(XIw+(C), Dr
κU

(T0, RU)) (see [Han17, §2.1]).
The fixed triangulation onXBS

Iw+(C) provides also a triangulation on the boundary ∂XBS

Iw+(C) :=

X
BS

Iw+(C)rXIw+(C) and hence defines a cochain complex C•∂(Iw+
GSp2g

, Dr
κU

(T0, RU)) that com-

putes the cohomology groups at the boundary. The natural closed embedding ∂XBS

Iw+(C) ↪→
X

BS

Iw+(C) then induces a morphism of cochain complexes

π : C•(Iw+
GSp2g

, Dr
κU

(T0, RU))→ C•∂(Iw+
GSp2g

, Dr
κU

(T0, RU)).

Following [Bar18, §3.1.3], we define C•c (Iw+
GSp2g

, Dr
κU

(T0, RU)) := Cone(π) the mapping cone
of π, i.e.,

Cone(π)t = Ct(Iw+
GSp2g

, Dr
κU

(T0, RU))⊕ Ct−1
∂ (Iw+

GSp2g
, Dr

κU
(T0, RU)) with

dtc : Cone(π)t → Cone(π)t+1, (σ, σ∂) 7→ (−dtσ,−πiσ + dt−1
∂ σ∂),

where d and d∂ are differentials on C•(Iw+
GSp2g

, Dr
κU

(T0, RU)) and C•(Iw+
GSp2g

, Dr
κU

(T0, RU))

respectively. The strategy of the proof of [Bar18, Proposition 3.5] applies here and one
sees that C•c (Iw+

GSp2g
, Dr

κU
(T0, RU)) computes the compactly supported cohomology groups

H t
c(XIw+(C), Dr

κU
(T0, RU)). Moreover, the natural morphism

C•c (Iw+
GSp2g

, Dr
κU

(T0, RU))→ C•(Iw+
GSp2g

, Dr
κU

(T0, RU))

induces a morphism on the cohomology groups

H t
c(XIw+(C), Dr

κU
(T0, RU))→ H t(XIw+(C), Dr

κU
(T0, RU)).

For each t, we let

H t
par(XIw+(C), Dr

κU
(T0, RU)) := image

(
H t
c(XIw+(C), Dr

κU
(T0, RU))→ H t(XIw+(C), Dr

κU
(T0, RU))

)
,

and call them the parabolic cohomology groups.

Lemma 4.3.3. The parabolic cohomology groups Hr
par(XIw+(C), Dr

κU
(T0, RU)) are Hecke-

stable.

Proof. Due to the nature of the Borel–Serre compactification, C•∂(IwGSp+
2g
, Dr

κU
(T0, RU)) ad-
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mits Hecke actions as the ones defined above. Hence

π : C•(Iw+
GSp2g

, Dr
κU

(T0, RU))→ C•∂(Iw+
GSp2g

, Dr
κU

(T0, RU))

is a Hecke equivariant morphism of cochain complexes and hence

C•c (IwGSp+
2g
, Dr

κU
(T0, RU))→ C•(IwGSp+

2g
, Dr

κU
(T0, RU))

is also Hecke-equivariant and induces a Hecke-equivariant map on cohomology groups

H t
c(XIw+(C), Dr

κU
(T0, RU))→ H t(XIw+(C), Dr

κU
(T0, RU)).

This then shows the desired result.

4.3.4. Finally, we discuss the relation between H t
c(XIw+(C), Dr

κU
(T0, RU)) with étale co-

homology. Let (RU , κU) be a small weight and let r > 1 + rU . Then, Proposition 4.1.10 and
the Poincaré duality (for both Betti cohomology and étale cohomology) allows us to deduce
an isomorphism

H t
c(XIw+(C), Dr

κU
(T0, RU)) ' H t

ét,c(X Iw+ ,Dr
κU

)

for any t ∈ Z. Again, we define Hecke operators acting on H t
ét,c(X Iw+ ,Dr

κU
) via this iso-

morphism. In particular, we have a commutative diagram

H t(XIw+(C), Dr
κU

(T0, RU)) H t
ét(X Iw+ ,Dr

κU
)

H t
c(XIw+(C), Dr

κU
(T0, RU)) H t

ét,c(X Iw+ ,Dr
κU

)

'

'

,

where the vertical arrows are Hecke-equivariant.

4.4 Algebraic counterparts

4.4.1. The modules ArκU (T0, RU) and Dr
κU

(T0, RU) introduced in 4.1.4 have algebraic coun-
terparts, which we now explain.

Let k = (k1, ..., kg) ∈ Zg
>0 with k1 ≥ · · · ≥ kg. One can view k as a character on TGSp2g

via

k : TGSp2g
→ Gm, diag(τ 1, ..., τ g, τ 0 τ

−1
g , ..., τ 0 τ

−1
1 ) 7→

g∏
i=1

τ kii .

One extends k to BGSp2g
by setting k(UGSp2g

) = {1}. Consider the irreducible representation
for GSp2g

Valg
GSp2g ,k

:=

{
φ : GSp2g → A1 :

φ is a morphism of schemes
φ(γ β) = k(β)φ(γ) for any (γ,β) ∈ GSp2g×BGSp2g

}
.

One can consider the following actions of GSp2g on Valg
GSp2g ,k

:
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(i) The right action given by
(φ · γ)(γ ′) = φ(γ γ ′).

(ii) The left action given by
(γ ·φ)(γ ′) = φ(tγ γ ′).

(iii) The left action given by
(γ ·φ)(γ ′) = φ(γ−1 γ ′).

Notice that the second action is valid since GSp2g is stable under transpose. In fact, one
deduces easily from the definition that

tγ = ς(γ)

(
− 1̆g

1̆g

)
γ−1

(
1̆g

− 1̆g

)
for any γ ∈ GSp2g. Therefore, the second action is nothing but a twisted action of the third
one. In what follows, we equip Valg

GSp2g ,k
with the left GSp2g-action given by (ii).

Denote by Valg,∨
GSp2g ,k

the linear dual of Valg
GSp2g ,k

. We equip with it a left GSp2g-action given
by the right action (i) on Valg

GSp2g ,k
.

4.4.2. From now on, we abuse the notation, writing Valg
GSp2g ,k

and Valg,∨
GSp2g ,k

for their Qp-
realisation. That is,

Valg
GSp2g ,k

=

{
φ : GSp2g(Qp)→ Qp :

φ is a polynomial function
φ(γ β) = k(β)φ(γ) ∀(γ,β) ∈ GSp2g(Qp)×BGSp2g

(Qp)

}
Valg,∨

GSp2g ,k
= HomQp

(Valg
GSp2g ,k

,Qp).

There is an obvious injective morphism

Valg
GSp2g ,k

→ Ark(T0,Qp), φ 7→
(

(γ,υ) 7→ k(β)φ

((
γ0

υ0 1̆g
tγ−1

0 1̆g

)))
for any r, where (γ,υ) = (γ0,υ0)β with γ0 ∈ U

opp
GLg ,1

and β ∈ BGLg ,0. Therefore, there is a
natural surjection Dr

k(T0,Qp)→ Valg,∨
GSp2g ,k

for any r, which is Iw+
GSp2g

-equivariant.

Example 4.4.3. Similarly, the analytic highest weight vector also has an algebraic counter-
part: Given X = (Xij)1≤i,j≤2g ∈ GSp2g, we consider

ehst
k (X) = Xk1−k2

11 × det((Xij)1≤i,j≤2)k2−k3 × · · · × det((Xij)1≤i,j≤g)
kg .

Similar as in Example 4.1.5, one sees that ehst
k ∈ Valg

GSp2g ,k
.

4.4.4. Notice that the left GSp2g-actions on Valg
GSp2g ,k

and Valg,∨
GSp2g ,k

induce étale Qp-local
systems on X Iw+ which we still denote by the same symbols. In particular, we can consider
the cohomology groups H t

ét(X Iw+ ,Valg,∨
GSp2g ,k

) for t ∈ Z≥0.
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On the other hand, we can also consider the Betti cohomology groupsH t(XIw+(C),Valg,∨
GSp2g ,k

).
By the proof of Proposition 4.1.10, we know that there is an isomorphism

H t
ét(X Iw+ ,Valg,∨

GSp2g ,k
) ' H t(XIw+(C),Valg,∨

GSp2g ,k
)

for any t ∈ Z≥0. Therefore, the Iw+
GSp2g

-equivariant morphism Dr
k(T0,Qp) → Valg,∨

GSp2g ,k
then

induces a commutative diagram

H t
ét(X Iw+ ,Dr

κU
) H t(XIw+(C), Dr

κU
(T0, RU))

H t
ét(X Iw+ ,Valg,∨

GSp2g ,k
) H t(XIw+(C),Valg,∨

GSp2g ,k
)

'

'

. (4.5)

4.4.5. We wrap up this section by discussing the Hecke operators acting onH t
ét(X Iw+ ,Valg,∨

GSp2g ,k
).

As before, we only need to define them on the Betti cohomology groupsH t(XIw+(C),Valg,∨
GSp2g ,k

):

• For any Hecke operator Tγ away from Np, its action on H t(XIw+(C),Valg,∨
GSp2g ,k

) is
defined by the same formula as (4.2).

• For the Up,i-action, let up,i act on GSp2g(Qp) via conjugation

up,i .γ = up,i γ u−1
p,i .

Observe that if γ ∈ BGSp2g
(Qp), then up,i .γ ∈ BGSp2g

(Qp) and the diagonal entries
of γ coincide with the diagonal entries of up,i .γ. This action then induces a left up,i-
action on Valg,∨

GSp2g ,k
. The operator Up,i acting on H t(XIw+(C),Valg,∨

GSp2g ,k
) is defined by

the same formula as (4.4).

Using these operators, together with the Iw+
GSp2g

-equivariant surjectionDr
k(T0,Qp)→ Valg,∨

GSp2g ,k
,

one sees that the commutative diagram (4.5) is moreover Hecke-equivariant.

Remark 4.4.6. There are obvious versions of compactly supported cohomology groups and
parabolic cohomology groups with coefficients in Valg,∨

GSp2g ,k
. We shall use similar notations

H t
c(XIw+(C),Valg,∨

GSp2g ,k
) and H t

par(XIw+(C),Valg,∨
GSp2g ,k

) to denote these groups.
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Chapter 5

The cuspidal eigenvarieties

In this chapter, we construct the cuspidal eigenvarieties arising from overconvergent cohomo-
logy groups and from overconvergent Siegel modular forms and then study their interaction
with each other. For this purpose, we will recall some preliminaries about slope decom-
positions from [AS08, §4] in §5.1. The cuspidal eigenvariety associated with overconvergent
cohomology groups are discussed in §5.2 whereas the one associated with overconvergent
Siegel modular forms are elaborated in §5.3.

Convention. We will use the following convention from now on:

(i) Let (RU , κU) be a small weight. We say it is open if the natural map

U rig = Spa(RU , RU)rig →W

is an open immersion.

(ii) Let (RU , κU) be an affinoid weight. We say it is open if the natural map

U rig = U = Spa(RU , R
◦
U)→W

is an open immersion.

(iii) A weight (RU , κU) is called an open weight if it is either an small open weight or an
affinoid open weight.

5.1 Preliminaries on slope decompositions

5.1.1. Let R be a Qp-Banach algebra whose norm is denoted by |·|R. We define the valuation
vR on R by

vR : R→ R∪{∞}, a 7→
{
∞, if a = 0
vR(a) s.t. |a|R = p−vR(a), else

We shall always normalise so that vR(p) = 1.
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Given a power series F =
∑

n≥0 anT
n ∈ R[[T ]], we define the Newton polygon NewtF

of F by

NewtF := the lower convex hull of {(n, vR(an)) ∈ R2 : an 6= 0} in R2.

We call the line segments in the boundary of NewtF the edges of NewtF ; and we call the
slope of any edge of NewtF a slope of NewtF .

Definition 5.1.2. Let F ∈ R[[T ]] and h ∈ R>0. A slope-≤ h factorisation of F is a
factorisation of power series

F = Q · S

such that

• Q ∈ R[T ] with Q∗(0) ∈ A×, where Q∗(T ) = T degQQ(1/T );

• S ∈ R[[T ]] such that S(0) = 1 (i.e., S is a Fredholm series);

• every slope of NewtQ is ≤ h (i.e., Q has slope ≤ h);

• every slope of NewtS is > h (i.e., S has slope > h);

• S(ph) converges.

5.1.3. There is a similar notion related to modules, which we now discuss.
Let R again be a Qp-Banach algebra and M be an R-module, equipped with an endo-

morphism u : M → M . An element x ∈ M is said to have slope ≤ h if there exists a
polynomial Q ∈ R[T ] with Q∗(0) ∈ R× and having slope ≤ h such that Q∗(u)m = 0. We
denote by

M≤h := {x ∈M : x has slope ≤ h},

which turns out to be a R-submodule of M by [AS08, Proposition 4.6.2].

Definition 5.1.4. Assume we are in the situation above. A slope-≤ h decomposition of
M is an isomorphism

M 'M≤h ⊕M>h

for some R-module M>h such that

• M≤h is finitely generated over R and

• for any polynomial Q ∈ R[T ] with Q∗(0) ∈ R× and having slope ≤ h, the map

Q∗(u) : M>h →M>h

is an isomorphism of A-modules.

Theorem 5.1.5 ([Buz07, Theorem 3.3]). Suppose R is a reduced affinoid algebra. Let M be
an R-module having (Pr) (in the sense of [Buz07]) and u be a compact operator acting on
M . Let Fu(T ) be the Fredholm determinant of u acting on M . Then, for any h ∈ R>0, Fu
has a slope-≤ h factorisation if and only if M has a slope-≤ h decomposition.
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Sketch of proof. Suppose M 'M≤h ⊕M>h is a slope-≤ h decomposition. One sees that

Fu(T ) = det(1− uT |M) = det(1− uT |M≤h) det(1− uT |M>h).

One checks that this is a slope-≤ h factorisation of Fu.
On the other hand, if Fu = QS is a slope-≤ h factorisation, then [Buz07, Proposition

3.2] provides a decomposition

M ' kerQ∗(u)⊕ imageQ∗(u).

One checks that this is a slope-≤ h decomposition of M .

5.2 The cuspidal eigenvariety for overconvergent cohomo-
logy

5.2.1. Given an open weight (RU , κU) and an integer r > 1+rU , we have discussed about the
Borel–Serre cochain complex C•(Iw+

GSp2g
, Dr

κU
(T0, RU)) in 4.3.2. One can similarly consider

the Borel–Serre chain complex C•(Iw+
GSp2g

, ArκU (T0, RU)) which computes the Betti homolgy
groups Ht(XIw+(C), ArκU (T0, RU)) (see [Han17]). The Borel–Serre chain complex is a finite
complex as it is constructed by a fixed triangulation on the Borel–Serre compactification of
the locally symmetric space XIw+(C). We write

CκU ,r
tol := ⊕tCt(Iw+

GSp2g
, ArκU (T0, RU))

Ctol
κU ,r

:= ⊕tCt(Iw+
GSp2g

, Dr
κU

(T0, RU)).

Then CκU ,r
tol is an ON-able RU [1/p]-module as ArκU (T0, RU) is ON-able (see [Han17, §2.2,

Remarks]). Moreover, there are naturally defined Hecke operators on CκU ,r
tol and the action

of Up is compact (see [op. cit., §2.2]). We define F oc
κU ,r
∈ RU [1/p][[T ]] to be the Fredholm

determinant of Up acting on CκU ,r
tol . One observes that [Han17, Proposition 3.1.1] goes through

for small weights, showing that F oc
κU ,r

is independent to r. Thus, for any h ∈ Q≥0, the
existence of a slope-≤ h decomposition of CκU ,r

tol is equivalent to the existence of a slope-≤ h
factorisation of F oc

κU
= F oc

κU ,r
1 (see Theorem 5.1.5). We call the pair (U , h) a slope datum if

F oc
κU ,r

admits a slope-≤ h decomposition. Moreover, if U ′ = (RU ′ , κU ′) is another open weight
with U ′ rig ⊂ U rig, the relation ArκU (T0, RU)⊗̂RU ′ [1/p] ∼= ArκU′ (T0, RU ′) implies that F oc

κU
glue

to a function F oc
W over W (see also [Han17, §4.3]).

Observe also that [Han17, Proposition 3.1.2] also goes through for small weights. Hence,
if CκU ,r

tol,≤h is the slope-≤ h submodule of CκU ,r
tol and suppose U ′ = (RU ′ , κU ′) is another open

weight such that U ′ rig ⊂ U rig, there is a canonical isomorphism

CκU ,r
tol,≤h ⊗RU [ 1

p
] RU ′ [

1

p
] ' C

κU′ ,r
tol,≤h.

1We drop the ‘r’ in the notation as the Fredholm determinant is independent to r.
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Proposition 5.2.2. Let (U , h) be a slope datum and let (RU ′ , κU ′) be an affinoid open weight
such that U ′ ⊂ U rig.

(i) There is a canonical isomorphism

Ht(XIw+(C), ArκU (T0, RU))≤h ⊗RU [ 1
p

] RU ′ ' Ht(XIw+(C), ArκU′ (T0, RU ′))≤h

for all t ∈ Z, where the subscript ‘≤ h’ stands for the slope-≤ h submodule.

(ii) The cochain complex Ctol
κU ,r

and the cohomology groups H t(XIw+(C), Dr
κU

(T0, RU)) ad-
mit slope-≤ h decompositions. The corresponding slope-≤ h submodules are denoted by
Ctol,≤h
κU ,r

and H t(XIw+(C), Dr
κU

(T0, RU))≤h, respectively.

(iii) There are canonical isomorphisms

Ctol,≤h
κU ,r

⊗RU [ 1
p

] RU ′ ' Ctol,≤h
κU′ ,r

and

H t(XIw+(C), Dr
κU

(T0, RU))≤h ⊗RU [ 1
p

] RU ′ ' H t(XIw+(C), Dr
κU′

(T0, RU ′))
≤h.

Proof. The proof follows verbatim as in the proofs of [CHJ17, Proposition 3.3 & Proposition
3.4].

5.2.3. Let A1
Qp

be the affine line over (Qp,Zp) and let

A1
W :=W×Spa(Qp,Zp) A1

Qp
.

Then, the spectral variety (or the Fredholm hypersurface) Soc (associated with F oc
W ) is

defined to be
Soc := the zero locus of F oc

W in A1
W .

5.2.4. For any open weight U so that U rig ⊂ W , consider A1
U := U rig×Spa(Qp,Zp) A1

Qp
. In

particular, we have an open embedding

A1
U ↪→ A1

W .

For any h ∈ Q>0, let B(0, ph) ⊂ A1
Qp

be the closed ball of radius ph. We also consider

BU ,h := U rig×Spa(Qp,Zp) B(0, ph) ⊂ A1
U .

Then, we say the pair (U , h) is slope-adapted if the natural map

Soc
U ,h := Soc ∩BU ,h → U rig

is finite flat.
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Consider the collections

Cov(Soc) :=
{
Soc
U ,h : (U , h) is slope-adapted

}
Covaff(Soc) :=

{
Soc
U ,h ∈ Cov(Soc) : U is an affinoid weight

}
.

Therefore, by [Buz07, Theorem 4.6] (see also [Han17, Proposition 4.1.4]), we know that
Covaff(Soc) is an open cover for Soc (hence so is Cov(Soc)).

5.2.5. Recall that D†κU (T0, RU) is defined to be the inverse limit of Dr
κU

(T0, RU) with respect
to r. We define the coherent sheaf H tol

par on Soc by assigning each Soc
U ,h ∈ Cov(Soc) to the

module

Htol,≤h
par,κU

:= ⊕t
(
H t

par(XIw+(C), D†κU (T0, RU)) ∩H t(XIw+(C), D†κU (T0, RU))≤h
)
.

Notice that the intersection H t
par(XIw+(C), D†κU (T0, RU)) ∩H t(XIw+(C), D†κU (T0, RU))≤h is

a direct summand of the parabolic cohomology group H t
par(XIw+(C), D†κU (T0, RU)) and such

a decomposition gives a slope-≤ h decomposition for H t
par(XIw+(C), D†κU (T0, RU)) since it is

Hecke-stable in H t(XIw+(C), D†κU (T0, RU)) by Lemma 4.3.3. Note also that H tol
par is, indeed,

a well-defined coherent sheaf on Soc by the discussion in [Han17, §4.3].
Furthermore, the Hecke algebra T acts on the coherent sheaf H tol

par. Thus, for each
slope-adapted pair (U , h), we can define

Toc
U ,h := the reduced OSoc

U,h
(Soc
U ,h)-algebra generated by the image of T→ End

(
H tol

par(Soc
U ,h)
)

Toc,◦
U ,h := the integral closure of OSoc

U,h
(Soc
U ,h)

◦ inside Toc
U ,h.

Since H tol
par is a coherent sheaf on Soc, these algebras glue to coherent sheaves of algebras

T oc and T ◦
oc on Soc respectively.

Definition 5.2.6. The equidimensional reduced cuspidal eigenvariety for GSp2g is
defined to be

Eoc
0 := the equidimensional locus of SpaSoc(T oc,T

◦
oc),

where SpaSoc is the relative adic spectrum over Soc.

5.2.7. We close our discussion about the cuspidal eigenvariety for GSp2g with the following
control theorem.

Theorem 5.2.8 (Control theorem). For g ∈ Z>0, let k = (k1, ..., kg) ∈ Zg
>0 be a dominant

algebraic weight. Let up =
∏g

i=1 up,i and let

hk := min
α∈Φ+

GSp2g

{−vp(α(up))(1 + 〈k, α∨〉)} ,

where α∨ denotes the coroot corresponds to α. Then, for any Q>0 3 h < hk, we have a
canonical isomorphism

H t
par(XIw+(C), D†k(T0,Qp))

≤h ' H t
par(XIw+(C),Valg,∨

GSp2g ,k
)≤h.
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(see also [AS08, Theorem 6.4.1])

Proof. Let K := ker(D†k(T0,Qp)→ Valg,∨
GSp2g ,k

) and so we have an exact sequence

0→ C•(Iw+
GSp2g

,K)→ C•(Iw+
GSp2g

, D†k(T0,Qp))→ C•(Iw+
GSp2g

,Valg,∨
GSp2g ,k

)→ 0.

Observe that the map

C•(Iw+
GSp2g

, D†k)→ C•(Iw+
GSp2g

,Valg,∨
GSp2g ,k

)

is Hecke equivariant and so C•(Iw+
GSp2g

,K) is Hecke stable. Denote by Ctol
K and Ctol

k,alg the
total cochain complexes of C•(Iw+

GSp2g
,K) and C•(Iw+

GSp2g
,Valg,∨

GSp2g ,k
) respectively. Then, by

[AS08, Theorem 3.11.1], we know that the norm of Up on Ctol
K satisfies

||Up||K ≤ p−hk .

Now, we claim the following: Fix Q>0 3 h < hk, if Q ∈ Qp[X] with Q∗(0) ∈ Q×p and the
slope of Q is ≤ h, then Q∗(Up) acts on Ctol

K invertibly. Write Q = a0 + a1X + · · · + anX
n.

The two conditions on Q means

• an ∈ Q×p

• vp(an)− vp(ai) ≤ (n− i)h for all i = 0, ..., n− 1.

Therefore, we have

|ai/an| < p(n−i)h and
∣∣∣∣∣∣∣∣ aianUn−i

p

∣∣∣∣∣∣∣∣
K

< 1.

Let P (X) = − a0

an
Xn − a1

an
Xn−1 − · · · − an−1

an
X, then 1

an
Q∗(X) = 1 − P (X). We can deduce

that ||P (Up)||K < 1 and so Q∗(Up) acts on Ctol
K invertibly with inverse given explicitly by

Q∗(Up)
−1 =

1

an

∑
j≥0

P (Up)
j.

Now fix h < hk, then by [Han17, Proposition 2.3.3], we know that Ctol
k and Ctol

k,alg have
slope-≤ h decomposition. Hence, if F †k and F alg

k denote the corresponding Fredholm determ-
inant of Up on Ctol

k and Ctol
k,alg respectively, we have the corresponding slope-≤ h factorisation

F †k = Q†hS
†
h and F alg

k = Qalg
h Salg

h and

Ctol,≤h
k � Ctol,≤h

k,alg

with Ctol,≤h
k = kerQ†,∗h (Up|Ctol

k
) and Ctol,≤h

k,alg = kerQalg,∗
h (Up|Ctol

k,alg
). Let Ctol,≤h

K be the kernel of
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the surjection, then, by taking cohomology, we have the corresponding long exact sequence

· · · H t(XIw+(C),K)≤h H t(XIw+(C), D†k(T0,Qp))
≤h

H t(XIw+(C),Valg,∨
GSp2g ,k

)≤h H t+1(XIw+(C),K)≤h · · ·

.

The above claim shows that bothQ†,∗h (Up) andQalg,∗
h (Up) act onH t(XIw+(C),K)≤h invertibly.

Take any σ ∈ H t(XIw+(C),K)≤h, the image of Q†h(Up)σ in H t(XIw+(C), D†k(T0,Qp))
≤h is

zero, thus there exists σ′ ∈ H t−1(XIw+(C),Valg,∨
GSp4,k

)≤h whose image in H t(XIw+(C),K)≤h is
Q†,∗h (Up)σ. Since Qalg,∗

h (Up)σ
′ = 0, thus Qalg,∗

h (Up)Q
†,∗
h (Up)σ = 0. This implies σ = 0 so the

desired isomorphism follows.

Remark 5.2.9. The above control theorem is basically [AS08, Theorem 6.4.1] with only a
slight modification. There is another version of the control theorem by [Urb11, Proposition
4.3.10] (see also [Han17, Theorem 3.2.5]). However, the control theorem in [Urb11] requires
a modification on the Shimura varieties while this is not the case in our version.

5.3 The cuspidal eigenvariety for overconvergent Siegel
modular forms

5.3.1. Throughout this section, we assume p > 2g so that we can apply results in [AIP15]
via the comparison in §3.7. On the other hand, we believe that the results in this section
hold for smaller primes as well. In order to deal with these smaller primes, one would have
to reprove several results in [AIP15] in our context; e.g., the classicality result and the fact
that S†

Iw+,κU
has (Pr). We leave these generalities to the readers in order to keep this thesis

within a reasonable length.

5.3.2. Given an affinoid weight (RU , κU) and w > 1 + rU , by [AIP15, Proposition 8.1.3.1]
and Theorem 3.7.2 (see also [op. cit., Proposition 8.2.3.3]), the space of cuspforms Sw

Iw+,κU
=

H0(X Iw+,w, ω
κU
w,cusp) has property (Pr) in the sense of [Buz07]; namely, it is a direct summand

of a potentially ON-able Cp ⊗̂RU -Banach space. Also recall that Up as compactly on the space
of overconvergent Siegel modular forms. Therefore, we can define the Fredholm determinant
Fmf
κU ,w

of Up acting on Sw
Iw+,κU

. Note that the Fredholm determinant is independent to w.
When we vary the affinoid weights, the Fredholm determinants glue together and so we arrive
at a power series Fmf

W ∈ OW(W){{T}}⊗̂Qp
Cp.

Consider A1
Cp

= A1
Qp
×Spa(Qp,Zp) Spa(Cp,OCp) and let A1

W,Cp := W×Spa(Qp,Zp)A1
Cp

. The
spectral variety SCp (associated with Fmf

W ) is defined to be

SCp := the zero locus of Fmf
W F oc

W in A1
W,Cp .

By construction, we see that there is a closed immersion

Soc
Cp := Soc×Spa(Qp,Zp) Spa(Cp,OCp) ↪→ SCp .
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Consequently, denote by Eoc
0,Cp the base change of E

oc
0 to Spa(Cp,OCp), we can view Eoc

0,Cp as
an adic space over SCp .

5.3.3. One can now run through the strategy in §5.2 again so that we have the following.

• A pair (U , h) with U an open weight and h ∈ Q>0 is slope-adapted if the natural
map

SCp,U ,h := SCp ∩
(
B(0, ph)×Spa(Qp,Zp) Spa(Cp,OCp)

)
→ U rig×Spa(Qp,Zp) Spa(Cp,OCp)

is finite flat.

• The collection Cov(SCp) = {SCp,U ,h : (U , h) is slope-adapted} is again an open cover
for SCp .

• We define the coherent sheaf S †
Iw+ by assigning each SCp,U ,h ∈ Cov(SCp) to the module

S†,≤h
Iw+,κU+g+1

.

• The reduced OSCp,U,h(SCp,U ,h)-algebra Tmf
U ,h generated by the image of T in End(S †

Iw+(SCp,U ,h))
then gives rise to coherent sheaves of algebras T mf and T ◦

mf .

Definition 5.3.4. The equidimensional reduced cuspidal eigenvariety for overconver-
gent Siegel cuspforms is defined to be

Emf
0 := the equidimensional locus of SpaSCp (T mf ,T

◦
mf),

where SpaSCp is the relative adic spectrum over SCp.

Remark 5.3.5. Notice that Emf
0 is (the stricit Iwahori version of) the equidimensional

cuspidal eigenvariety constructed in [AIP15] after base change to Cp.

Proposition 5.3.6. There is a natural closed immersion Emf
0 ↪→ Eoc

0,Cp.

Proof. The strategy is to apply [Han17, Theorem 5.1.2]. To this end, we need to find a very
Zariski-dense subset Scl of SCp such that for every x ∈ Scl with dominate algebraic weight
k = (k1, ..., kg) ∈ Zg

≥0 and any Y ∈ T, we have

det
(

1− TY |S †
Iw+,x

)
| det

(
1− TY |H tol

par,x ⊗̂Qp
Cp

)
.

By Theorem 5.2.8, there exists an hk ∈ R>0 such that for all h ∈ Q∩(0, hk], the canonical
map

Hn0
par(XIw+(C), D†k(T0,Qp))

≤h → Hn0
par(XIw+(C),Valg,∨

GSp2g ,k
)≤h

is an isomorphism. On the other hand, let

ωkIw+,cusp := ωkIw+ ⊗OX
Iw+

OX Iw+
(−Z Iw+)
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be the sheaf of classical cuspidal Siegel modular forms of weight k on X Iw+ . The classicality
theorem [AIP15, Theorem 7.1.1] provides an ak ∈ Q>0 such that for all h ∈ Q∩(0, ak], the
slope-≤ h overconvergent Siegel cuspforms of weight k are classical; namely,

H0(X Iw+,w, ω
k
w,cusp)≤h ⊂ H0(X Iw+ , ωkIw+,cusp).

Now, let `k = min{hk, ak} and take h ≤ `k. Applying the generalised Eichler–Shimura
morphism in [Hid02, Theorem 3.8], we obtain an injection from the space of slope-≤ h
overconvergent Siegel cuspforms of classical weight into the slope-≤ h cohomology group
with coefficient in the algebraic representation. Consequently, the desired very Zariski-dense
subset of S can be taken to be

Scl = ∪SU,h∈Covaff(S){x ∈ SCp,U ,h : x has classical weight k ∈ Zg
≥0 and h ≤ `k}

Finally, [Han17, Theorem 5.1.2] yields the result.

5.3.7. Given Proposition 5.3.6, we may identify Emf
0 with its image in Eoc

0,Cp and denote it
by E0 for simplicity. We have a diagram

E0 SCp W
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Chapter 6

Overconvergent Eichler–Shimura
morphisms

The goal of this chapter is to answer the second part of Question 1.3.2 (i). That is, we
explicitly construct an overocnvergent Eichler–Shimura morphism for overconvergent Siegel
modular forms by using perfectoid methods. Our approach is similar to [CHJ17], but we
have to overcome several technicalities.

We organise this chapter as follows. The purpose of §6.1 is to show that the overcon-
vergent cohomology groups can be computed using the pro-Kummer étale site X Iw+,prokét.
Working with the pro-Kummer étale sites, we construct explicitly the overconvergent Eichler–
Shimura morphism in §6.2. Then, in §6.3, we study the image of the overconvergent Eichler–
Shimura morphism at classical weights. Finally, we show in §6.4 that such morphisms can
be promoted as a morphism between coherent sheaves on the cuspidal eigenvariety E0.

6.1 The (pro-)Kummer étale cohomology groups

6.1.1. Consider the natural morphism of sites

két : X Iw+,ét → X Iw+,két.

Recall that, for every small weight (RU , κU) and any integer r ≥ 1 + rU , there is an in-
verse system of étale locally constant sheaves (Dr,◦

κU ,j
)j∈Z≥1

on X Iw+,ét. Applying [DLLZ19,
Corollary 4.6.7], we obtain an isomorphism

lim←−
j

H t
ét(X Iw+ ,Dr,◦

κU ,j
) ' lim←−

j

H t
két(X Iw+ , két,∗D

r,◦
κU ,j

)

for every t ∈ Z≥0. Write

H t
két(X Iw+ ,Dr

κU
) := lim←−

j

H t
két(X Iw+ , két,∗D

r,◦
κU ,j

)[1/p].
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By Proposition 4.1.10, we arrive at isomorphisms

H t
két(X Iw+ ,Dr

κU
) ' H t

ét(X Iw+ ,Dr
κU

) ' H t(XIw+(C), Dr
κU

(T0, RU)).

To simplify the notation, we introduce the following abbreviations:

OCr,◦
κU

:= lim←−j H
n0
két(X Iw+ , két,∗D

r,◦
κU ,j

)

OCr
κU

:= OCr,◦
κU

[1
p
] = Hn0

két(X Iw+ ,Dr
κU

)

OCr,◦
κU ,OCp

:= lim←−j
(
Hn0

két(X Iw+ , két,∗D
r,◦
κU ,j

)⊗Zp OCp

)
OCr

κU ,Cp
:= OCr,◦

κU ,OCp
[1
p
]

.

where n0 = dimCp X Iw+ .

6.1.2. Let
ν : X Iw+,prokét → X Iw+,két

be the natural projection of sites. Consider the sheaf ODr
κU

on the pro-Kummer étale site
X Iw+,prokét defined by

ODr
κU

:=

(
lim←−
j

(
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

))
[
1

p
].

Proposition 6.1.3. There is a GalQp
-equivariant isomorphism

OCr
κU ,Cp

' Hn0
prokét(X Iw+ ,ODr

κU
).

Proof. By [DLLZ19, Theorem 6.2.1 & Corollary 6.3.4], there is an almost isomorphism(
Hn0

két(X Iw+ , két,∗D
r,◦
κU ,j

)⊗Zp OCp

)a ' Hn0
prokét(X Iw+ , ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét
)a.

It remains to establish an almost isomorphism

lim←−
j

Hn0
prokét

(
X Iw+ , ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)a
' Hn0

prokét

(
X Iw+ , lim←−

j

(
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

))a

.

Indeed, observe that the higher inverse limit Ri lim←−j
(
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)
almost

vanishes for i ≥ 1 by an almost version of [Sch13, Lemma 3.18] and [DLLZ19, Proposition
6.1.11]. This then allows us to commute the inverse limit with taking cohomology, hence the
result.

6.1.4. Thanks to Proposition 6.1.3, Hn0
prokét(X Iw+ ,ODr

κU
) inherits actions of the Hecke oper-

ators Tγ and Up,i fromHn0
ét (X Iw+ ,Dr

κU
). On the other hand, thanks to the OX Iw+,prokét

-module
structure on ODr

κU
, there is an alternative way to define the Hecke operators Tγ ’s using corres-
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pondences. More precisely, for any prime number ` - Np and any γ ∈ GSp2g(Q`)∩M2g(Z`),
consider the correspondence

X γ,Iw+

X Iw+ X Iw+

pr1 pr2 ,

studied in 3.3.2. One then similarly obtains an isomorphism

ϕγ : pr∗2 ODr
κU
|X Iw+

'−→ pr∗1 ODr
κU
|X Iw+ .

Consider the composition

T ′γ : Hn0
proét(X Iw+ ,ODr

κU
|X Iw+ ) Hn0

proét(X γ,Iw+ , pr∗2 ODr
κU
|X Iw+ )

Hn0
proét(X Iw+ , pr∗1 ODr

κU
|X Iw+ ) Hn0

proét(X Iw+ ,ODr
κU
|X Iw+ )

pr∗2

ϕγ

Trpr1

.

However, since Hn0
ét (X Iw+ ,Dr,◦

κU ,j
) ' Hn0

két(X Iw+ , két,∗D
r,◦
κU ,j

) for every j, we have an identific-
ation

Hn0
proét(X Iw+ ,ODr

κU
|X Iw+ ) ' Hn0

prokét(X Iw+ ,ODr
κU

)

and hence an operator T ′γ on Hn0
prokét(X Iw+ ,ODr

κU
). One checks that Tγ coincides with T ′γ .

6.2 Overconvergent Eichler–Shimura morphisms

6.2.1. The strategy of the construction of our overconvergent Eichler–Shimura morphism is
similar to [CHJ17], i.e., we first construct a morphism between sheaves on the pro-Kummer
étale site X Iw+,w,prokét, which then induces the desired map on the spaces.

Let (RU , κU) be a small weight and let w ≥ r ≥ 1 + rU . Recall that we have defined a
sheaf ODr

κU
on the pro-Kummer étale site X Iw+,prokét in the previous section. The following

lemma is an analogue of [CHJ17, Lemma 4.5].

Lemma 6.2.2. Let V = lim←−n Vn → X Iw+ be a pro-Kummer étale presentation of a log
affinoid perfectoid object in X Iw+,prokét. Let V∞ := V ×X Iw+

X Γ(p∞). (Here we have abused
the notation and identify X Γ(p∞) with the object lim←−nX Γ(pn) in X Iw+,prokét.) Then there is a
natural isomorphism

ODr
κU

(V) '
(
Dr,◦
κU

(T0, RU)⊗̂ZpÔX Iw+,prokét
(V∞)

)Iw+
GSp2g

.

Proof. Recall that Dr,◦
κU ,j

is the locally constant sheaf on X Iw+,ét induced by

πét1 (X Iw+)→ Iw+
GSp2g

→ Aut
(
Dr,◦
κU ,j

(T0, RU)
)
.
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Since X Γ(p∞) is a profinite Galois cover of X Iw+ with Galois group Iw+
GSp2g

, one sees that
ν−1két,∗D

r,◦
κU ,j

becomes the constant local system associated with Dr,◦
κU ,j

(T0, RU) after re-
stricting to the localised site X Iw+,prokét/X Γ(p∞).

Applying [DLLZ19, Theorem 5.4.3], we obtain an almost isomorphism(
Dr,◦
κU ,j

(T0, RU)⊗Zp Ô
+

X Iw+,prokét
(V∞)

)a
'
((
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)
(V∞)

)a
.

By taking Iw+
GSp2g

-invariants, we obtain almost isomorphisms((
Dr,◦
κU ,j

(T0, RU)⊗Zp Ô
+

X Iw+,prokét
(V∞)

)Iw+
GSp2g

)a
'
(((

ν−1két,∗D
r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)
(V∞)

)Iw+
GSp2g

)a
=
((
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)
(V)
)a
.

Finally, taking inverse limit over j and inverting p, we conclude that

ODr
κU

(V) =

(
lim−→
j

(
ν−1két,∗D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

)
(V)

)
[
1

p
]

'
(
Dr,◦
κU

(T0, RU)⊗̂ZpÔX Iw+,prokét
(V∞)

)Iw+
GSp2g

.

6.2.3. To deal with the overconvergent automorphic sheaves, we recall the Kummer étale
sheaves ωκU ,+w,két and ωκUw,két associated with ωκU ,+w and ωκUw considered in 3.2.14. Then we
consider the p-adically completed pullback of them to the pro-Kummer étale site; namely,

ω̂κU ,+w := lim←−
m

(
ωκU ,+w,két ⊗O+

X
Iw+,w,két

O+

X Iw+,w,prokét
/pm

)
and

ω̂κUw := ω̂κU ,+w [
1

p
].

Lemma 6.2.4. There is a canonical Hecke- and GalQp
-equivariant morphism

Hn0
prokét(X Iw+,w, ω̂

κU
w )→ H0(X Iw+,w, ω

κU+g+1
w )(−n0).

Proof. By the discussion in 3.2.14, we have seen that ωκUw,két can be identified with the sheaf
of Iw+

GSp2g
/Γ(pn)-invariants of an admissible Kummer étale Banach sheaf of OX Iw+,w,két

⊗̂RU -
modules. Corollary A.2.18 then yields a canonical isomorphism

ωκUw,két ⊗OX
Iw+,w,két

Riν∗ÔX Iw+,w,prokét

∼−→ Riν∗ω̂
κU
w
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for every i ∈ Z≥0. On the other hand, by [DRW22, Proposition A.2.3], we have a canonical
isomorphism

Riν∗ÔX Iw+,w,prokét
' Ωlog,i

X Iw+,w,két
(−i).

Combining the two isomorphisms, we obtain

Riν∗ω̂
κU
w ' ωκUw,két ⊗OX

Iw+,w,két
Ωlog,i

X Iw+,w,két
(−i).

Moreover, there is a Leray spectral sequence

Ej,i
2 = Hj

két(X Iw+,w, R
iν∗ω̂

κU
w )⇒ Hj+i

prokét(X Iw+,w, ω̂
κU
w ).

The edge map yields a Galois-equivariant morphism

Hn0
prokét(X Iw+,w, ω̂

κU
w )→ H0

két(X Iw+,w, R
n0ν∗ω̂

κU
w ) ' H0

két(X Iw+,w, ω
κU
w,két⊗OX

Iw+,w,két
Ωlog,n0

X Iw+,w,két
)(−n0).

Finally, let πIw+ : Guniv
Iw+,w → X Iw+,w denote the universal semiabelian variety over X Iw+,w

and let
ωIw+,w := πIw+,∗Ω

1
Guniv

Iw+,w
/X Iw+,w

.

Note that ωIw+,w agrees with ωk
Iw+|X Iw+,w

studied in §3.4 for k = (1, 0, . . . , 0). The Kodaira–
Spencer isomorphism [Lan12, Theorem 1.41 (4)] yields an isomorphism

Sym2 ωIw+,w ' Ωlog,1

X Iw+,w

.

Hence,
Ωlog,n0

X Iw+,w

' ∧n0
(
Sym2 ωIw+,w

)
= ωg+1

Iw+,w
⊂ ωg+1

w

where the last inclusion follows from Lemma 3.4.6. We obtain an injection

H0
két(X Iw+,w, ω

κU
w,két ⊗OX

Iw+,w,két
Ωlog,n0

X Iw+,w,két
)(−n0) H0

két(X Iw+,w, ω
κU+g+1
w,két )(−n0)

H0(X Iw+,w, ω
κU+g+1
w )(−n0)

.

Note that, due to the normalisation of the Hecke operators, the Kodaira–Spencer isomorph-
ism is Hecke-equivariant (see [FC90, pp. 258]).

6.2.5. For any matrix σ ∈ Mg(OCp) and µ ∈ Dr
κU

(T0, RU), we define a function fµ,σ ∈
Cw−an
κU

(IwGLg ,Cp ⊗̂RU) as follows. For any γ ′ ∈ IwGLg , we define

fµ,σ(γ ′) :=

∫
(γ,υ)∈T0

ehst
κU

(tγ ′(γ +σ υ)) dµ,

where ehst
κU

is as defined in Example 4.1.5. The following lemma justifies this definition.
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Lemma 6.2.6. (i) For every σ ∈Mg(OCp) and γ ′ ∈ IwGLg , the assignment

(γ,υ) 7→ ehst
κU

(tγ ′(γ +σ υ))

defines an element in ArκU (T0, RU).

(ii) For every γ ′ ∈ IwGLg and β ∈ BGLg ,0, we have

fµ,σ(γ ′ β) = κU(β)fµ,σ(γ ′).

Proof. This is straightforward.

6.2.7. We are ready to construct the desired morphism ηκU : ODr
κU
→ ω̂κUw between sheaves

on the pro-Kummer étale site X Iw+,w,prokét. Indeed, it suffices to construct a map ODr
κU

(V)→
ω̂κUw (V) for every log affinoid perfectoid object V in X Iw+,prokét. By Lemma 6.2.2, we have

ODr
κU

(V) '
(
Dr,◦
κU

(T0, RU)⊗̂ZpÔX Iw+,prokét
(V∞)

)Iw+
GSp2g

where V∞ := V ×X Iw+
X Γ(p∞).

On the other hand, by definition, ω̂κUw (V) consists of f ∈ Cw−an
κU

(IwGLg , ÔX Iw+,prokét
(V∞)⊗̂RU)

satisfying α∗ f = ρκU (αa + zαc)
−1f , for all α =

(
αa αb

αc αd

)
∈ Iw+

GSp2g
. This is equivalent to

saying that ω̂κUw (V) consists of Iw+
GSp2g

-invariant elements f ∈ Cw−an
κU

(IwGLg , ÔX Iw+,prokét
(V∞)⊗̂RU)

with respect to the twisted Iw+
GSp2g

-action

α .f := ρκU (αa + zαc)(α
∗ f).

Consider the map

Dr,◦
κU

(T0, RU)⊗̂ZpÔX Iw+,prokét
(V∞)→ Cw−an

κU
(IwGLg , ÔX Iw+,prokét

(V∞)⊗̂RU), µ⊗ δ 7→ δfµ,z.

We claim that this map is Iw+
GSp2g

-equivariant, and hence taking the Iw+
GSp2g

-invariants yields

the desired map ODr
κU

(V) → ω̂κUw (V). Indeed, for any α =

(
αa αb

αc αd

)
∈ Iw+

GSp2g
and any
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γ ′ ∈ IwGLg , we have

(α∗ δ)fα ·µ,z(γ
′) = (α∗ δ)

(∫
T0

ehst
κU

(tγ ′(γ + zυ)) dα ·µ
)

= (α∗ δ)

(∫
T0

ehst
κU

(tγ ′ ((αa γ +αb υ) + z(αc γ +αd υ))) dµ

)
= (α∗ δ)

(∫
T0

ehst
κU

(tγ ′((αa + zαc)γ +(αb + zαd)υ)) dµ

)
= (α∗ δ)

(∫
T0

ehst
κU

(
tγ ′(αa + zαc)(γ +(αa + zαc)

−1(αb + zαd)υ)
)

dµ

)
= (α∗ δ)

(∫
T0

ehst
κU

(t(t(αa + zαc)γ
′)(γ +(z ·α)υ)) dµ

)
= (α∗ δ)

(
ρκU (αa + zαc)

∫
T0

ehst
κU

(tγ ′(γ +(z ·α)υ)) dµ

)
= α .(δfµ,z)(γ

′)

as desired.
Putting everything together, the composition

OCr
κU ,Cp

Hn0
prokét(X Iw+ ,ODr

κU
) Hn0

prokét(X Iw+,w,ODr
κU

)

Hn0
prokét(X Iw+,w, ω̂

κU
w )

H0(X Iw+,w, ω
κU+g+1
w )(−n0)

Mw
Iw+,κU+g+1

(−n0)

'

ESκU

Res

ηκU

Lemma 6.2.4

is called the overconvergent Eichler–Shimura morphism (of weight κU).

Proposition 6.2.8. The overconvergent Eichler–Shimura morphism

ESκU : OCr
κU ,Cp

→Mw
Iw+,κU+g+1(−n0)

is Hecke- and GalQp
-equivariant.

Proof. The Galois-equivariance follows immediately from Lemma 6.2.4. For Hecke operators
away from Np, notice that the operators Tγ ’s on both sides are defined in the same way using
correspondences. Hence, it is straightforward to verify the Tγ-equivariances. It remains to
check the Up,i-equivariance for all i = 1, ..., g.

To this end, due to the Iw+
GSp2g

-equivariance of ηκU , we only have to check the up,i-
equivariance. Indeed, for every γ ′ = γ ′0 β

′
0 ∈ IwGLg with γ ′0 ∈ U

opp
GLg ,1

and β′0 ∈ BGLg ,0, we
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have

(u∗p,i δ)fup,i ·µ,z(γ
′) = (u∗p,i δ)

(
κU(β′0)

∫
T0

ehst
κU

(tγ ′0(γ + zυ)) dup,i ·µ
)

= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(tγ ′0(γ0 + zυ0)) dup,i ·µ
)

= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(
tγ ′0(u�p,i γ0 u�,−1

p,i + zu�p,i υ0 u�,−1
p,i )

)
dµ

)
= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(
tγ ′0 u�p,i(γ0 + u�,−1

p,i zu�p,i υ0) u�,−1
p,i

)
dµ

)
= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(
tγ ′0 u�p,i(γ0 +(z ·up,i)υ0) u�,−1

p,i

)
dµ

)
= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(
u�,−1
p,i

tγ ′0 u�p,i(γ0 +(z ·up,i)υ0)
)

dµ

)
= (u∗p,i δ)

(
κU(β′0)

∫
T0

κU(β)ehst
κU

(
t(u�p,i γ

′
0 u�,−1

p,i )(γ0 +(z ·up,i)υ0)
)

dµ

)
= up,i .(δfµ,z),

where we have written (γ,υ) = (γ0,υ0)β for (γ0,υ0) ∈ T00 and β ∈ BGLg ,0. The antepen-
ultimate equation follows from the property of matrix determinants.

6.2.9. There is an analogue for compactly supported cohomology groups and overconvergent
cuspforms. Let r, w, and (RU , κU) be the same as before. On one hand, consider

ODr,cusp
κU

:=

(
lim←−
j

(
ν−1két,! D

r,◦
κU ,j
⊗Zp O+

X Iw+,prokét

))
[
1

p
].

Since
Hn0

két(X Iw+ , két,! D
r,◦
κU ,j

) = Hn0
ét,c(X Iw+ ,Dr,◦

κU ,j
),

an analogue of Proposition 6.1.3 implies that ODr,cusp
κU

computes

OCr,c
κU ,Cp

:=

(
lim←−
j

Hn0
ét,c(X Iw+ ,Dr,◦

κU ,j
)⊗Zp OCp

)
[
1

p
].

On the other hand, recall the sheaf ωκUw,cusp of w-overconvergent Siegel cuspforms of weight
κU and consider the p-adically completed pullback ω̂κUw,cusp to the pro-Kummer étale site.
Repeating the construction above, we obtain a morphism ηcusp

κU
: ODr,cusp

κU
→ ω̂κUw,cusp which

induces a morphism

EScusp
κU

: OCr,c
κU ,Cp

→ H0(X Iw+,w, ω
κU+g+1
w,cusp )(−n0)

105



rendering the following Galois- and Hecke-equivariant diagram commutative:

OCr
κU ,Cp

H0(X Iw+,w, ω
κU+g+1
w )(−n0)

OCr,c
κU ,Cp

H0(X Iw+,w, ω
κU+g+1
w,cusp )(−n0)

ESκU

EScusp
κU

,

where the vertical arrow on the left is the natural map from the compactly supported co-
homology group to the usual cohomology group. Let

OCr,cusp
κU ,Cp

:= image
(
OCr,c

κU ,Cp
→ OCr

κU ,Cp

)
.

We arrive at the overconvergent Eichler–Shimura morphism for overconvergent
Siegel cuspforms (of weight κU)

EScusp
κU

: OCr,cusp
κU ,Cp

→ SwIw+,κU+g+1(−n0),

where
SwIw+,κU+g+1 = H0(X Iw+,w, ω

κU+g+1
w,cusp )

is the space of w-overconvergent Siegel cuspforms of strict Iwahori level and weight κU+g+1.

Remark 6.2.10. We finally remark that, by construction, both EScusp
κU

and ESκU are func-
torial in the small weights (RU , κU).

6.3 The image of overconvergent Eichler–Shimura morph-
isms at classical weights

6.3.1. The aim of this last part of the section is to describe the image of the overconvergent
Eichler–Shimura morphism at classical algebraic weights. Let k = (k1, . . . , kg) ∈ Zg

≥0 be a
dominant weight and recall the representations Valg

GSp2g ,k
and Valg,∨

GSp2g ,k
of GSp2g studied in

§4.4.
Similar to 6.1.2, we introduce the sheaves OV k and OV ∨k on X Iw+,prokét defined by

OV k := ν−1jkét,∗V
alg
GSp2g ,k

⊗Qp
ÔX Iw+,prokét

,

OV ∨k := ν−1jkét,∗V
alg,∨
GSp2g ,k

⊗Qp
ÔX Iw+,prokét

.

By the same argument as in Proposition 6.1.3, we obtain a natural identification

Hn0
ét (X Iw+ ,Valg,∨

GSp2g ,k
)⊗Qp

Cp ' Hn0
prokét(X Iw+ ,OV ∨k ).

Moreover, if V = lim←−n Vn → X Iw+ is a pro-Kummer étale presentation of a log affinoid
perfectoid object in X Iw+,prokét and let V∞ := V ×X Iw+

X Γ(p∞), then, following the same
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argument as in the proof of Lemma 6.2.2, we obtain identifications

OV k(V) =
(
Valg

GSp2g ,k
⊗Qp

ÔX Iw+,prokét
(V∞)

)Iw+
GSp2g

,

OV ∨k (V) =
(
Valg,∨

GSp2g ,k
⊗Qp

ÔX Iw+,prokét
(V∞)

)Iw+
GSp2g

.

6.3.2. We also consider the p-adically completed automorphic sheaf ω̂kIw+ on X Iw+,prokét
defined by

ω̂kIw+ := lim←−
m

(
ωk,+

Iw+ ⊗O+

X
Iw+

O+

X Iw+,prokét
/pm

)
[
1

p
]

where ωk,+
Iw+ is defined in Remark 3.4.3. It follows from Proposition 3.4.5 that

ω̂kIw+(V) =

{
f ∈ Pk(GLg, ÔX Iw+,w,prokét

(V∞)) : γ∗ f = ρk(γa + zγc)
−1f, ∀γ =

(
γa γb
γc γd

)
∈ Iw+

GSp2g

}
.

for any log affinoid perfectoid object V ∈ X Iw+,prokét and V∞ = V ×X Iw+
X Γ(p∞).

6.3.3. Recall the Hodge–Tate morphism

HTΓ(p∞) : Vp → ωΓ(p∞).

It follows from the definition that

ωkIw+ = (Symk1−k2 ωIw+)⊗OX
Iw+

(Symk2−k3 ∧2ωIw+)⊗OX
Iw+
· · · ⊗OX

Iw+
(Symkg detωIw+)

and hence

ωkΓ(p∞) = (Symk1−k2 ωΓ(p∞))⊗OXΓ(p∞)
(Symk2−k3 ∧2ωΓ(p∞))⊗OXΓ(p∞)

· · ·⊗OXΓ(p∞)
(Symkg detωΓ(p∞)).

Let Vstd denote the standard representation of GSp2g over Qp, with standard basis
x1, . . . , x2g. There is an isomorphism of GSp2g(Qp)-representations Vstd ' VQp

:= Vp⊗Zp Qp

sending xi to e2g+1−i, for i = 1, . . . , g, and sending xi to −e2g+1−i, for i = g + 1, . . . , 2g. If
we write

Vk
std := (Symk1−k2 Vstd)⊗Qp

(Symk2−k3(∧2 Vstd))⊗Qp
· · · ⊗Qp

(Symkg(∧g Vstd))

and

Vk
Qp

:= (Symk1−k2 VQp
)⊗Qp

(Symk2−k3(∧2 VQp
))⊗Qp

· · · ⊗Qp
(Symkg(∧g VQp

)),

the Hodge-Tate map induces a map Vk
std ' Vk

Qp
→ ωk

Iw+ . Moreover, it is well-known that
Valg

GSp2g ,k
is an irreducible GSp2g-subrepresentation of Vk

std (see for example [FH91, Lecture
17]). In particular, the highest weight vector ehst

k in Valg
GSp2g ,k

corresponds to the element

xk1−k2
1 ⊗ (x1 ∧ x2)k2−k3 ⊗ · · · ⊗ (x1 ∧ · · · ∧ xg)kg
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in Vk
std.

The composition

Valg,∨
GSp2g ,k

β−→ Valg
GSp2g ,k

↪→ Vk
std ' Vk

Qp
→ ωkIw+

then induces a map
ηalg
k : OV ∨k → ω̂kIw+ .

Eventually, we arrive at the algebraic Eichler-Shimura morphism (of weight k)

Hn0
ét (X Iw+ ,Valg,∨

GSp2g ,k
)⊗Qp

Cp Hn0
prokét(X Iw+ ,OV ∨k ) Hn0

prokét(X Iw+ , ω̂kIw+)

H0(X Iw+ , ωk+g+1

Iw+ )(−n0)

'

ESalg
k

ηalg
k

,

where the last map follows from the same argument as in the proof of Lemma 6.2.4. We
remark that ESalg

k coincides with the one induced from [FC90, Theorem VI. 6.2]. It is Hecke-
and GalQp

-equivariant, and also surjective.

Lemma 6.3.4. Over the w-ordinary locus X Iw+,w, the map ηalg
k has the following explicit

description.

(i) Let V = lim←−n Vn be a pro-Kummer étale presentation of a log affinoid perfectoid object
in X Iw+,w,prokét and let V∞ = V ×X Iw+,w

X Γ(p∞),w. There is a well-defined GSp2g(Qp)-
equivariant map

η̃alg
k : Valg,∨

GSp2g ,k
⊗Qp

ÔX Iw+,w,prokét
(V∞)→ Pk(GLg, ÔX Iw+,w,prokét

(V∞))

defined by µ⊗ δ 7→ δf alg
µ,z where

f alg
µ,z (γ ′) =

∫
α∈GSp2g

ehst
k

((
tγ ′

1̆g γ
′−1

1̆g

)(
1g z

1g

)
α

)
dµ.

Here, the GSp2g(Qp)-action on the right hand side is given by

γ .f := ρk(γa + zγc)(γ
∗ f)

for every γ =

(
γa γb
γc γd

)
∈ GSp2g(Qp) and f ∈ Pk(GLg, ÔX Iw+,w,prokét

(V∞)).

(ii) The map ηalg
k is obtained from η̃alg

k by taking Iw+
GSp2g

-invariants on both sides.

Proof. (i) Notice that η̃alg
k is the composition of β with the map

ξalg
k : Valg

GSp2g ,k
⊗Qp

ÔX Iw+,w,prokét
(V∞)→ Pk(GLg, ÔX Iw+,w,prokét

(V∞))
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defined by φ⊗ δ 7→ δgφ,z where

gφ,z(γ
′) = φ

((
1g
tz 1g

)(
γ ′

1̆g
t(γ ′)−1

1̆g

))
for all γ ′ ∈ GLg(Cp).

Recall that β is GSp2g(Qp)-equivariant. It remains to check that ξalg
k is GSp2g(Qp)-

equivariant, which follows from a straightforward calculation.

(ii) It suffices to check that the Iw+
GSp2g

-invariance of ξalg
k coincides with the map induced

from the composition Valg
GSp2g ,k

↪→ V k
std ' V k

Qp
→ ωk

Iw+ . Notice that Valg
GSp2g ,k

is spanned
by GSp2g-translations of the highest weight vector ehst

k . Therefore, we only need to
check that ξalg

k (ehst
k ⊗ 1) gives the correct element in ω̂kIw+ .

Indeed, since the Hodge–Tate map Vp → ωIw+ sends e2g+1−i to si, for i = 1, . . . , g,
we see that the composition Valg

GSp2g ,k
↪→ V k

std ' V k
Qp
→ ωk

Iw+ sends the highest weight
vector ehst

k to
sk1−k2

1 ⊗(s1 ∧ s2)k2−k3 ⊗ · · · ⊗ (s1 ∧ · · · ∧ sg)
kg .

On the other hand, notice that the element s1 ∧ · · · ∧ st corresponds to the function
X = (Xij)1≤i,j≤g 7→ det((Xij)1≤i,j≤t) in Pk(GLg, ÔX Iw+,w,prokét

(V∞)). Therefore, ehst
k is

sent to the function

X 7→ Xk1−k2
11 × det((Xij)1≤i,j≤2)k2−k3 × · · · × det((Xij)1≤i,j≤g)

kg

in Pk(GLg, ÔX Iw+,w,prokét
(V∞)). This element coincides with ξalg

k (ehst
k ⊗ 1), as desired.

6.3.5. Recall the natural inclusion Mk,cl

Iw+ = H0(X Iw+ , ωk
Iw+) ↪→ H0(X Iw+,w, ω

k
w) = Mk

Iw+,w

from Lemma 3.4.6. The main result of this section is the following.

Theorem 6.3.6. Let k = (k1, ..., kg) ∈ Zg
≥0 be a dominant weight. Then the image of

ESk : OCr
k,Cp −→Mw

Iw+,k+g+1(−n0)

is contained in the space of the classical forms M cl
Iw+,k+g+1

(−n0).

Proof. Recall the map
Dr
k(T0,Qp)→ Valg,∨

GSp2g ,k

from 4.4.2. This map then induces a map of sheaves

ODr
k → OV ∨k

over X Iw+,w,prokét. Hence, the theorem follows once we show that the following diagram
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commutes
Hn0

prokét(X Iw+ ,ODr
k) H0(X Iw+,w, ω

k+g+1
w )(−n0)

Hn0
prokét(X Iw+ ,OV ∨k ) H0(X Iw+ , ωk+g+1

Iw+ )(−n0)

ESk

ESalg
k

.

Over X Iw+,w,prokét, it follows from the construction that we have a commutative diagram

ODr
k ω̂kw

OV ∨k ω̂kIw+

ηk

ηalg
k

,

where the inclusion on the right-hand side is given by the inclusion (3.2). Consequently,
there is a commutative diagram on the cohomology groups

Hn0
prokét(X Iw+ ODr

k) Hn0
prokét(X Iw+ ,OV ∨k )

Hn0
prokét(X Iw+,w,ODr

k) Hn0
prokét(X Iw+,w,OV ∨k )

Hn0
prokét(X Iw+,w, ω̂

k
w) Hn0

prokét(X Iw+,w, ω̂
k
Iw+)

H0(X Iw+,w, ω
k+g+1
w )(−n0) H0(X Iw+,w, ω

k+g+1

Iw+ )(−n0) H0(X Iw+ , ωk
Iw+)(−n0)

Res

ESk

Res

ESalg
k

ηk ηalg
k

Res

.

This finishes the proof.

6.4 Sheaves on the cuspidal eigenvariety

6.4.1. In this section, we glue the overconvergent Eichler–Shimura morphism over the
cuspidal eigenvariety E0. Due to our construction of E0, we shall again assume p > 2g
in this section. We begin with some setup of notations:

Given a weight (RU , κU) and an integer r > 1 + rU , we write

OCr,cusp
κU ,Cp

=

{
OCr,cusp

κU ,Cp
, if U is a small weight

Hn0
par(XIw+(C), Dr

κU
(T0, RU))⊗̂Qp

Cp, if U is an affinoid weight .

We also write
OC†,cusp

κU ,Cp
:= lim←−

r

OCr,cusp
κU ,Cp

.

6.4.2. Suppose that (RU , κU) is an small open weight and recall the overconvergent Eichler–
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Shimura morphism for overconvergent Siegel cuspforms

EScusp
κU

: OCr,cusp
κU ,Cp

→ SwIw+,κU+g+1(−n0).

If (U , h) slope-adapted, then the Hecke-equivariance of EScusp
κU

induces a Cp ⊗̂RU -linear map

EScusp,≤h
κU

: OCr cusp,≤h
κU ,Cp

→ Sw,≤h
Iw+,κU+g+1

(−n0).

of finite projective Cp ⊗̂RU -modules.
Now, if U ′ ⊂ U rig is an affinoid weight, the Cp ⊗̂RU ′-linear map EScusp

κU′
is defined to be

the composition

EScusp,≤h
κU′

: OCr,cusp,≤h
κU′ ,Cp

' OCr,cusp,≤h
κU ,Cp

⊗RU [ 1
p

]RU ′ → Sw,≤h
Iw+,κU+g+1

(−n0)→ Sw,≤h
Iw+,κU′+g+1

(−n0),

(6.1)
where the first isomorphism follows from Proposition 5.2.2.

6.4.3. Recall the natural map E0 → SCp and let EU ,h be the preimage of SCp,U ,h. On the
cuspidal eigenvariety E0, we consider two coherent sheaves OC †cusp and S †

Iw+(−n0) given by

OC †cusp(EU ,h) := OC†,cusp,≤h
κU ,Cp

and
S †

Iw+(−n0)(EU ,h) := S†,≤h
Iw+,κU+g+1

(−n0),

for all SU ,h ∈ Covaff(S).

Theorem 6.4.4. There exists a morphism

ES : OC †cusp → S †
Iw+(−n0)

of coherent sheaves over E0 such that if (U , h) is a slope-adapted pair, then ES(EU ,h) is exactly
the overconvergent Eichler–Shimura morphism for overconvergent Siegel cuspforms

EScusp,≤h
κU

: OC†,cusp,≤h
κU ,Cp

→ S†,≤h
Iw+,κU+g+1

(−n0).

Proof. It follows from (6.1) and the functoriality of EScusp
κU

in small open weights U .

6.4.5. Denote by Im and Ker the image and the kernel of ES, respectively. We obtain a
short exact sequence of sheaves on E0

0→ Ker→ OC †cusp → Im→ 0.

We remind the readers that this short exact sequence is Galois- and Hecke-equivariant. Let
V = Spa(RV , R

+
V ) be an affinoid open subsapce of E0 such that Ker(V), OC †cusp(V), and

Im(V) are free and such that the sequence

0→ Ker(V)→ OC †cusp(V)→ Im(V)→ 0

111



is exact. Consider
H (V) := HomRV (Im(V),Ker(V)).

Recall that we have the Sen operator ϕSen = ϕSen,V associated with H (V), which was
introduced in [Sen88] (see also [Kis03]).

The following result is an analogue to [AIS15, Theorem 6.1(c)].

Theorem 6.4.6. Let V = Spa(RV , R
+
V ) ⊂ E0 be an affinoid open subspace such that Ker(V),

OC †cusp(V), and Im(V) are free and such that the sequence

0→ Ker(V)→ OC †cusp(V)→ Im(V)→ 0

is exact. Suppose ϕSen is non-vanishing. Then the short exact sequence

0→ Ker→ OC †cusp → Im→ 0

splits locally over V.

Proof. We follow the same strategy as in [AIS15, Theorem 6.1(c)]. Observe that we have an
isomorphismH1(GalQp

,H (V)) ' Ext1
RV [GalQp ](Im(V),Ker(V)). Thus, the GalQp

-equivariance
of the short exact sequence defines a class in H1(GalQp

,H (V)). Then by [Kis03, Proposi-
tion 2.3], det(ϕSen) ∈ RV kills the cohomology group H1(GalQp

,H (V)). On the other hand,
det(ϕSen) is non-zero. Therefore, after localising at this element, the short exact sequence
splits as a sequence of semilinear GalQp

-representations. Since the Galois-action commutes
with the Hecke-actions, the splitting can be chosen to be Hecke-equivariant.
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Chapter 7

A pairing on the cuspidal eigenvariety

The aim of this chapter is to construct a pairing on the cuspidal eigenvariety Eoc
0 so that

we provide an answer to the first half of Question 1.3.2 (ii). In particular, after base change to
Cp, this yields a method to study the ramification locus of E0 (overW×Spa(Qp,Zp) Spa(Cp,OCp)).

We shall begin with the construction of a pairing on the overocnvergent cohomology
groups in §7.1. Such a pairing is just defined on the space of distributions, inspired by an
algebraic model on the irreducible representations Valg,∨

GSp2g ,k
. In §7.2, we will recall some

results in commutative algebra by following [Bel21]. The preparation on the commutative
algebras then allows us to study the ramification locus of Eoc

0 in §7.3.

7.1 A pairing on the overconvergent cohomology groups

7.1.1. The pairing we shall construct has an algebraic model, which we now explain.
Given a dominant weight k = (k1, ..., kg) ∈ Zg

≥0, recall Valg
GSp2g ,k

and Valg,∨
GSp2g ,k

with their
left GSp2g-actions from §4.4. Then, we have a morphism

Φalg
k : Valg,∨

GSp2g ,k
→ Valg

GSp2g ,k
, µ 7→

(
γ ′ 7→

∫
γ∈GSp2g

ehst
k (tγ ′ γ) dµ

)
,

where ehst
k ∈ Valg

GSp2g ,k
is defined in Example 4.4.3. One sees that Φalg

k is GSp2g-equivariant
with respect to the left GSp2g-actions on both spaces. Indeed, for any α,γ ′ ∈ GSp2g and
µ ∈ Valg,∨

GSp2g ,k
, we have

Φalg
k (α ·µ)(γ ′) =

∫
γ∈GSp2g

ehst
k (tγ ′αγ) dµ

=

∫
γ∈GSp2g

ehst
k (t(tαγ ′)γ) dµ

=
(
α ·Φalg

k (µ)
)

(γ ′).
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Consequently, Φalg
k defines a pairing on Valg,∨

GSp2g ,k
by

(µ1, µ2) 7→
∫
γ1,γ2∈GSp2g

ehst
k (tγ2 γ1) dµ1(γ1)dµ2(γ2).

Remark 7.1.2. Notice that Valg,∨
GSp2g ,k

is an irreducible representation of GSp2g, thus it admits
a pairing induced by the symplectic pairing 〈 ·, · 〉 on V. This pairing can be viewed by the
following formula

〈 ·, · 〉k : (µ1, µ2) 7→
∫
γ1,γ2∈GSp2g

ehst
k

(
tγ2

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2).

Indeed, for any α ∈ GSp2g, we have

〈α ·µ1, µ2 〉k =

∫
γ1,γ2∈GSp2g

ehst
k

(
tγ2

(
− 1̆g

1̆g

)
αγ1

)
dµ1(γ1)dµ2(γ2)

=

∫
γ1,γ2∈GSp2g

ehst
k

(
tγ2 ς(α) tα−1

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2)

= ς(α)
∑
ki

∫
γ1,γ2

ehst
k

(
t(α−1 γ2)

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2)

= ς(α)
∑
ki 〈µ1,α

−1 ·µ2 〉k,

where the second equality follows from the definition of GSp2g.

7.1.3. Now, for any weight (RU , κU) and any r > 1 + rU , we consider

Φκ : Dr
κU

(T0, RU)→ ArκU (T0, RU),

µ 7→
(

(γ ′,υ′) 7→
∫

(γ,υ)∈T00

ehst
κU

((
tγ ′ tυ′

)(1g
p−1

1g

)(
γ
υ

))
dµ

)
,

where ehst
κU

is the function in ArκU (T0, RU) defined in Example 4.1.5. Consequently, we have
the pairing

[ ·, · ]◦κU : Dr
κU

(T0, RU)×Dr
κU

(T0, RU)→ RU

given by the formula

[µ1, µ2]◦κU =

∫
T2

00

ehst
κU

((
tγ2

tυ2

)(1g
p−1

1g

)(
γ1

υ1

))
dµ1(γ1,υ1)dµ2(γ2,υ2).

Proposition 7.1.4. For any α =

(
αa αb

αc αd

)
∈ Ξ with αa ∈ Iw+

GLg
, write

αし =

(
tαa

tαc /p
p tαb

tαd

)
∈ Ξ.
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Then, for any µ1, µ2 ∈ Dr
κ(T0, R), we have

[α ·µ1, µ2 ]◦κU = [µ1,α
し ·µ2 ]◦κU .

Proof. The assertion follows from the computation

(
tγ2

tυ2

)(1g
p−1

1g

)(
αa αb

αc αd

)(
γ1

υ1

)
=
(
tγ2

tυ2

)( αa pαb

αc /p αd

)(
1g

p−1
1g

)(
γ1

υ1

)
= t

((
tαa

tαc /p
p tαb

tαd

)(
γ2

υ2

))(
1g

p−1
1g

)(
γ1

υ1

)
.

Remark 7.1.5. When comparing with our algebraic model, one notices that the definition
of the pairing [ ·, · ]◦κU involves a ‘normalisation’ by p−1. Such a normalisation is due to our
model for g = 1. More precisely, when g = 1, elements in T0 can be written as (1, pc)a for
some a ∈ Z×p and c ∈ Zp. Then, for any µ1, µ2 ∈ Dr

κ(T0, R), we have

[µ1, µ2 ]◦κU =

∫
T2

00

κ(1 + pc1c2) dµ1(1, c1)dµ2(1, c2),

which then coincides with the interpretation in Hansen’s unpublished notes [Han12]. In
particular, by applying [Bel21, Definition VIII.2.4], we have the formula

[µ1, µ2 ]◦κU =
∞∑
i=0

pi (κUi )µ1(ci1)µ2(ci2),

which is (almost) the same formula given by [op. cit., (VIII.2.4)]. Here, for j = 1, 2, we view
cij as a function on T0 via

cij : T0 3 (a, pc) 7→ κU(a)(c/a)i.

Remark 7.1.6. Following Remark 7.1.2, for any dominant k ∈ Zg
≥0, we may consider the

pairing [ ·, · ]◦k to be the twist of 〈 ·, · 〉k by an Atkin–Lehner operator. More precisely, let

wp :=

(
−p−1

1̆g

1̆g

)
,
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then

[µ1, µ2 ]◦k =

∫
T2

00

ehst
k

((
tγ2

tυ2

)(1g
p−1

1g

)(
γ1

υ1

))
dµ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T2

00

ehst
k

((
tγ2

tυ2

)( 1̆g

−p−1
1̆g

)(
− 1̆g

1̆g

)(
γ1

υ1

))
dµ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T2

00

ehst
k

(
t

(
wp

(
γ2

υ2

))(
− 1̆g

1̆g

)(
γ1

υ1

))
dµ1(γ1,υ1)dµ2(γ2,υ2).

In particular, this viewpoint coincides with the perspectives in [Kim06; Bel21; Han12] when
g = 1.

Proposition 7.1.7. We have a well-defined pairing

[ ·, · ]κ : H t
par(XIw+(C), Dr

κU
(T0, RU))×H2n0−t

par (XIw+(C), Dr
κU

(T0, RU))→ RU

for any 0 ≤ t ≤ 2n0.

Proof. Together with the cup product on cohomology groups, the pairing defined in 7.1.3
induces a pairing [ ·, · ]∗κ defined as the composition

H t
c(XIw+(C), Dr

κU
(T0, RU))×H2n0−t(XIw+(C), Dr

κU
(T0, RU)) H2n0

c (XIw+(C), Dr
κU

(T0, RU)⊗̂RDr
κU

(T0, RU))

H2n0
c (XIw+(C), RU)

RU ,

^

[ ·, · ]∗κ

[ ·, · ]◦κ

'

where ‘^’ denotes the cup product.
The compatibility of cup products (see, for example, [Mun84, Chapter 5, §48, Exercise

2]) yields the commutative diagram

H t
c(XIw+(C), Dr

κU
(T0, RU))×H2n0−t(XIw+(C), Dr

κU
(T0, RU)) H2n0

c (XIw+(C), Dr
κU

(T0, RU)⊗̂RUDκU (T0, RU))

H t
c(XIw+(C), DκU (T0, RU))×H2n0−t

c (XIw+(C), DκU (T0, RU)) H2n0
c (XIw+(C), DκU (T0, RU)⊗̂RUDκU (T0, RU))

H t(XIw+(C), DκU (T0, RU))×H2n0−t
c (XIw+(C), DκU (T0, RU)) H2n0

c (XIw+(C), DκU (T0, RU)⊗̂RUDκU (T0, RU))

^

^

^

.

In particular, if [µ1] ∈ H t
par(XIw+(C), DκU (T0, RU)) and [µ2] ∈ H2n0−t

par (XIw+(C), DκU (T0, RU))
with [µ′1] ∈ H t

c(XIw+(C), DκU ) and [µ′2] ∈ H2n0−t
c (XIw+(C), DκU (T0, RU)) such that [µ′i] 7→

[µi] for i = 1, 2, then
[µ1] ^ [µ′2] = [µ′1] ^ [µ′2] = [µ′1] ^ [µ2].
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Hence we define
[[µ1], [µ2] ]κU = [[µ′1], [µ2] ]∗κU = [[µ1], [µ′2] ]∗κU .

We see that [ ·, · ]κU is well-defined, i.e., independent of the choice of the lifting, due to the
commutativity of the above diagram.

7.1.8. Recall the equidimensional reduced cuspidal eigenvariety Eoc
0 from §5.2. We name the

natural morphisms
Eoc

0 Soc Wπ

wt

.

Then, we have the following corollary.

Corollary 7.1.9. The pairing in Proposition 7.1.7 induce pairings

[ ·, · ] : H tol
par×H tol

par → OSoc and [ ·, · ] : π∗H tol
par×π∗H

tol
par → OEoc

0

of coherent sheaves on Soc and Eoc
0 respectively. Moreover, the first pairing is T-equivariant.

Proof. First of all, we claim that the pairing [ ·, · ]◦κU is up,i-equivariant for any i = 0, 1, ..., g−1

and for any weight (RU , κU). Take any µ1, µ2 ∈ D†κU (T0, RU), we have

[ up,i ·µ1, µ2 ]◦κU

=

∫
T2

00

ehst
κU

((
tγ2

tυ2

)(1g
p−1

1g

)(
γ1

υ1

))
dup,i ·µ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T00

ehst
κU

(tγ2 γ1 + tυ2 υ1 /p) dup,i ·µ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T2

00

ehst
κU

(
tγ2(u�p,i γ1 u�,−1

p,i ) + tυ2(u�p,i υ1 u�,−1
p,i )/p

)
dµ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T2

00

ehst
κU

(
(tγ2 u�p,i γ1 + tυ2 u�p,i υ1 /p) u�,−1

p,i

)
dµ1(γ1,υ2)dµ2(γ2,υ2)

=

∫
T00

ehst
κU

(
u�,−1
p,i

tγ2 u�p,i γ1 + u�,−1
p,i

tυ2 u�p,i υ1 /p
)

dµ1(γ1,υ1)dµ2(γ2,υ2)

=

∫
T00

ehst
κU

(
t(u�p,i γ2 u�,−1

p,i )γ1 + t(u�p,i υ2 u�,−1
p,i )υ1 /p

)
dµ1(γ1,υ1)dµ2(γ2,υ2)

= [µ1,up,i ·µ2 ]◦κU ,

where the antepenultimate equation follows from the nature of determinants (again).
This claim then implies that we have a Up,i-equivariant (and hence Ux

p,i-equivariant for
any x ∈WeylGSp2g

) pairing

[ ·, · ]κU : Htol,≤h
par,κU

×Htol,≤h
par,κU

→ RU .

Thus, by gluing, one obtains the first desired pairing. It is furthermore Tp-equivariant since
the Hecke operators outside p acts on the ananlytic distributions trivially. The second one
follows immediately.
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7.2 Some commutative algebras
7.2.1. Let A be a noetherian domain and B be a finite flat A-algebra. Consider

mult : B ⊗A B → B, b⊗ b′ 7→ bb′

and write mult = ker(mult). Let

(B ⊗A B)[mult] := {x ∈ B ⊗A B : y · x = 0 ∀y ∈ mult},

then the Noether’s different of B over A is defined to be the ideal

d(B/A) := image
(

(B ⊗A B)[mult]
mult−−→ B

)
in B.

Theorem 7.2.2 (Auslander–Buchsbaum). A prime ideal P of B is ramified over A if and
only if d(B/A) ⊂ P. Equivalently, SpecB/ d(B/A) is the ramification locus of SpecB over
SpecA.

Proof. See [AB59, Theorem 2.7].

7.2.3. Suppose M,N are two B-modules which are finite flat over A and assume we are in
the following situation:

• There exists an A-linear pairing

β : M ×N → A

such that β is B-equivariant.

• We have isomorphisms M ' N ' B∨ := HomA(B,A) of B-modules.

Lemma 7.2.4 ([Bel21, Proposition VIII.1.11]). Denote by βB the base change of β to B on
M ⊗A B ×N ⊗A B. Let

(M ⊗A B)[mult] = {x ∈M ⊗A B : y · x = 0 ∀y ∈ mult}
(N ⊗A B)[mult] = {x ∈ N ⊗A B : y · x = 0 ∀y ∈ mult}.

Then the ideal

Lβ := image (βB : (M ⊗A B)[mult]× (N ⊗A B)[mult]→ B)

is a principal ideal in B.

Proof. We claim first that for any B-module M which is finite flat over A, we have an
isomorphism M∨ ⊗A B[mult] ' HomB(M,B), where M∨ = HomA(M,A). Notice that M∨

also admits a B-module structure by bψ : m 7→ ψ(bm) for all b ∈ B, ψ ∈ M∨ and m ∈ M .
We have a natural isomorphism

M∨ ⊗A B = HomA(M,A)⊗A B → HomA(M,B), ψ ⊗ b 7→ (m 7→ ψ(m)b).
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Since mult =
∑

b∈B(b⊗ 1− 1⊗ b)B ⊗A B, thus

ψ ⊗ b ∈M∨ ⊗A B[mult]⇔ (b′ ⊗ 1− 1⊗ b′)ψ ⊗ b = 0 ∀b′ ∈ B
⇔ b′ψ ⊗ b = ψ ⊗ bb′ ∀b′ ∈ B
⇔ ψ(b′m)b = ψ(m)bb′ ∀b′ ∈ B,m ∈M
⇔ (m 7→ ψ(m)b) ∈ HomB(M,B).

Apply the claim in our situation, we have isomorphisms of B-modules

(M ⊗A B)[mult] ' (B∨ ⊗A B)[mult] ' HomB(B,B) ' B

and same for (N ⊗A B)[mult]. Hence, let m̃ and ñ be generators of (M ⊗A B)[mult] and
(N ⊗A B)[mult] respectively as B-modules. Then Lβ = βB(m̃, ñ)B.

Proposition 7.2.5 ([Bel21, Corollary VIII.1.13]). Suppose B is Gorenstein over A, i.e.,
B∨ is flat of constant rank 1 over B, and M,N are B-modules which are finite flat over A
and flat of rank 1 over B. Assume there is an A-linear pairing β : M × N → A which is
B-equivariant. We retain the notation βB and Lβ as in Lemma 7.2.4. Then

(i) Both ideals d(B/A) and Lβ are locally principal. Moreover, there exists b0 ∈ B such
that Lβ = b0 d(B/A).

(ii) We have Lβ = d(B/A) if and only if β is non-degenerate.

Proof. We are in a special case of Lemma 7.2.4 that we can identify (locally) M ' N '
B∨ ' B and hence we know Lβ is principal. Moreover, the identification B ⊗A B[mult] '
HomB(B,B) ' B implies that d(B/A) is also principal.

Observe that we can identify β : M × N → A as a linear morphism B∨ ⊗A B∨ → A.
Hence by duality, we identify β with an element b ∈ B⊗AB. We claim that Lβ = mult(b)B.
As we are working locally, we assume b1, ..., bn is a basis of B over A, then b∨1 , ..., b∨n is a basis
of B∨ over A. Observe that b� :=

∑
i b
∨
i ⊗ bi is a generator of B∨⊗AB[mult] ' HomB(B,B)

as it maps to the identity in HomB(B,B). Hence by definition

Lβ = βB(b�, b�)B =

(∑
i,j

β(b∨i , b
∨
j )bibj

)
B.

On the other hand, by the above construction, we see that b =
∑

i,j β(b∨i , b
∨
j )bi ⊗ bj with

mult(b) =
∑

i,j β(b∨i , b
∨
j )bibj.

Let b̃� =
∑

i bi⊗bi, then it is a generator of B⊗AB[mult] ' B. Thus, there exists b0 ∈ B
such that b0b̃

� = b. We conclude that

Lβ = mult(b)B = mult(b0b̃
�)B = b0 mult(̃b�)B = b0 d(B/A).
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Finally, we have

Lβ = d(B/A)⇔ b0 ∈ B×

⇔ β(b∨i , b
∨
j ) =

{
b0 ∈ B× i = j
0 i 6= j

⇔ β is non-degenerate.

7.3 The ramification locus of the cuspidal eigenvariety
7.3.1. Recall the open cover Cov(Soc) for Soc, consisting of open subsets of the form Soc

U ,h
with (U , h) being slope-adapted. We denote by Eoc

0,U ,h the inverse image of Soc
U ,h in Eoc

0 . We
adapt the definitions of ‘clean neighbourhoods’ and ‘good points’ in [Bel21] in our situation.

Definition 7.3.2. (i) Let x ∈ Eoc
0 and V = Spa(RV , R

+
V ) be an open affinoid neighbour-

hood of x. We say V is a clean neighbourhood of x if it satisfies the following
properties:

• wt(V) = Y = Spa(RY , R
+
Y ) ⊂ W is an open affinoid subset of W and there exists

a slope-adapted pair (U , h) such that V is the connected component of x in Eoc
0,U ,h;

• x is the only point of V sitting above wt(x);
• the map wt : V → Y is flat and is moreover étale except perhaps at x.

In this case, there exists an idempotent η = ηV ∈ Toc
U ,h such that V is defined by the

equation η = 1 and the module ηHtol,≤h
par,κU

is a direct summand of Htol,≤h
par,κU

.

(ii) A point x ∈ E0 is said to be a good point if it admits a sufficiently small clean
neighbourhood V with wt(V) = Y such that the modules ηVHtol,≤h

par,κU
and (ηVH

tol,≤h
par,κU

)∨ are
free of rank one over RV , where the dual is taken to be an RY-dual.

Remark 7.3.3. We remark the following:

• In the GL2 case, the eigencurve is locally finite flat over the weight space ([Bel21,
§VI.1.4]) and so the author of op. cit. can consequently deduce that the collection of
clean neighbourhoods of points on the eigencurve gives a open cover of the eigencurve.
In our case, the Fredholm hypersurface Soc is finite flat over W by [AIP18, Theorem
B.1]. However, we don’t know if Eoc

0 is flat over Soc. Therefore, instead of considering
Eoc

0 , we consider Eoc,fl
0 ⊂ Eoc

0 the flat locus over W , which is open over W , and let
Covcl(Eoc,fl

0 ) be the open cover of clean neighbourhoods.

• In the definition of good points, we see immediately that RV is Gorenstein over RY .

7.3.4. Following [Bel21, §VIII. 4], we study the adjoint L-ideal and define the p-adic adjoint
L-function here. Let x ∈ Eoc,fl

0 and V be a clean neighbourhood of x with weight wt(V) = Y .
There is a natural multiplication map

mult : RV⊗̂RYRV → RV , b⊗ b′ 7→ bb′.
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Let mult := ker mult and define

M⊗̂RYRV [mult] := {m ∈M⊗̂RYRV : mult ·m = 0}

for any Banach RV-module M .

Definition 7.3.5. Keep the notations above. The adjoint L-ideal of V is defined to be

L adj(V) := image
(
[ ·, · ]κU : ηVH

tol,≤h
par,κU

⊗̂RYRV [mult]× ηVHtol,≤h
par,κU

⊗̂RYRV [mult]→ RV
)
.

Remark 7.3.6. Since the clean neighbourhoods cover Eoc,fl
0 , the collection {L adj(V) : V ∈

Covcl(Eoc,fl
0 )} glues to a coherent sheaf L adj on Eoc,fl

0 .

Proposition 7.3.7. Let x ∈ Eoc,fl
0 be a good point. Then there exists a sufficiently small

clean neighbourhood V of x with wt(V) = Y such that L adj(V) is a principal ideal in RV .

Proof. The assertion follows from Lemma 7.2.4.

Definition 7.3.8. Let x ∈ Eoc,fl
0 be a good point and V be a sufficiently small clean neigh-

bourhood such that L adj(V) is principal. We define the adjoint p-adic L-function on V to
be Ladj

V ∈ RV such that Ladj
V generates L adj(V). The value of Ladj

V at x is denoted by Ladj(x)
as it doesn’t depend on the clean neighbourhood.

7.3.9. Let x ∈ Eoc,fl
0 be a good point and let V be a sufficiently small clean neighbourhood of

x such that Ladj
V is defined. Let (U , h) be the slope datum that defines V and let wt(V) = Y .

Corollary 7.1.9 yields an RV-equivariant pairing

[ ·, · ]κU : ηVH
tol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY .

Together with the definition of good points, we are in the situation of Proposition 7.2.5.

Theorem 7.3.10. Let x ∈ Eoc,fl
0 be a good point and let κ = wt(x). Suppose the pairing

[ ·, · ]κU : ηVH
tol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is non-degenerate at wt(x), then

Ladj(x) = 0 if and only if wt is ramified at x .

Proof. Let V be a sufficiently small clean neighbourhood of x which is defined by the slope
datum (U , h) and wt(V) = Y . Since the pairing

[ ·, · ]κU : ηVH
tol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is assumed to be non-degenerate, then by Proposition 7.2.5, L adj(V) = d(RV/RY). Thus,

Ladj(x ) = 0⇔ Ladj ∈ supp x ⇔ d(RV/RY) ⊂ supp x ⇔ wt is ramified at x ,

where the last equivalence is due to Auslander–Buchsbaum’s theorem.
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Theorem 7.3.11. Let x ∈ Efl
0 be a good and smooth point and let κ = wt(x). Assume again

that the pairing
[ ·, · ]κU : ηVH

tol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is non-degenerate at wt(x). Let Rwt(x) and Rx be the local rings at wt(x) and x respectively
and denote by mwt(x), mx their maximal ideals respectively. Define

e(x) := max{e ∈ Z≥0 : d(Rx/Rκ) ⊂ me
x}.

Then, we have
ordx L

adj = e(x).

Proof. Note that
ordx L

adj := max{e ∈ Z≥0 : Ladj(x ) ∈ me
x}.

In our situation, we see that

me(x )
x ⊃ d(Rx/Rκ) = Ladj(x )Rx ⊂ mordx Ladj

x .

As the inclusions on both sides satisfy the same condition, the exponents coincide.

Remark 7.3.12. We remark that the above two theorems have their roots in the GL2 case.
Theorem 7.3.10 is an analogue of [Bel21, Theorem VIII.4.7] while Theorem 7.3.11 is inspired
by [op. cit., Theorem VIII.4.8(i)].

7.3.13. Our next task is to justify that there exists some x ∈ Eoc,fl
0 such that the pairing is

non-degenerate at wt(x ). To this end, recall that we have a Iw+
GSp2g

-equivariant surjection

D†k(T0,Qp)→ Valg,∨
GSp2g ,k

for any dominant weight k = (k1, ..., kg) ∈ Zg
≥0. We can then descend the pairing [ ·, · ]◦k to

Valg,∨
GSp2g ,k

by the same formula

[ ·, · ]◦k : Valg,∨
GSp2g ,k

×Valg,∨
GSp2g ,k

→ Qp,

(µ1, µ2) 7→
∫
γ1,γ2∈U

opp
GSp2g,1

ehst
k

(
tγ2

(
1g

p−1
1g

)
γ1

)
dµ1(γ1)dµ2(γ2).

Proposition 7.3.14. Let k ∈ Zg
>0 be a dominant weight. Then the pairing [ ·, · ]◦k on Valg,∨

GSp2g ,k

is non-degenerate.

Proof. Recall the symplectic pairing 〈 ·, · 〉k on Valg,∨
GSp2g ,k

from Remark 7.1.2

〈µ1, µ2 〉k =

∫
γ1,γ2∈GSp2g(Qp)

ehst
k

(
tγ2

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2).

Since the symplectic pairing 〈 ·, · 〉 on V is non-degenerate, we know that 〈 ·, · 〉k is non-
degenerate.

122



Define

〈 ·, · 〉′k : Valg,∨
GSp2g ,k

×Valg,∨
GSp2g ,k

→ Qp,

(µ1, µ2) 7→
∫
γ1,γ2∈U

opp
GSp2g

(Qp)

ehst
k

(
tγ2

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2).

Then 〈 ·, · 〉′k is a non-degenerate pairing. Indeed, we have

〈µ1, µ2 〉k =

∫
γ1,γ2∈GSp2g(Qp)

ehst
k

(
tγ2

(
− 1̆g

1̆g

)
γ1

)
dµ1(γ1)dµ2(γ2)

=

∫
γ1,γ2∈GSp2g(Qp)

k(β1)k(β2)ehst
k

(
tγ ′2

(
− 1̆g

1̆g

)
γ ′1

)
dµ1(γ1)dµ2(γ2),

where γi = γ ′i β with γ ′i ∈ U
opp
GSp2g

(Qp) and βi ∈ BGSp2g
(Qp) for i = 1, 2. As k is non-zero on

BGSp2g
(Qp), we see that 〈µ1, µ2 〉k = 0 if and only if 〈µ1, µ2 〉′k = 0.

Now, let [ ·, · ]′k be the pairing on Valg,∨
GSp2g ,k

defined by

[µ1, µ2 ]′k := 〈µ1,wp ·µ2 〉′k

=

∫
γ1,γ2∈U

opp
GSp2g

(Qp)

ehst
k

(
tγ2

(
1g

p−1
1g

)
γ1

)
dµ1(γ1)dµ2(γ2).

Then, [ ·, · ]′k is again a non-degenerate pairing since wp ∈ GSp2g(Qp). Recall that U
opp
GSp2g ,1

'
Zd0
p , for some d0 ∈ Z>0, as p-adic manifolds, thus Uopp

GSp2g
(Qp) ' Qd0

p . However, Valg,∨
GSp2g ,k

is defined algebraically and Zd0
p ⊂ Qd0

p is Zariski dense, thus the non-degeneracy of [ ·, · ]′k
implies the non-degeneracy of [ ·, · ]◦k.

Corollary 7.3.15. Let κ = k ∈ Zg
>0 be a dominant algebraic weight. Then the pairing

[ ·, · ]k : Htol,≤h
par,k ×H

tol,≤h
par,k → Qp

is non-degenerate when h < hk, where hk is as defined in Theorem 5.2.8.

Proof. This is an easy consequence of Proposition 7.3.14 and Theorem 5.2.8.

Corollary 7.3.16. Suppose x ∈ Eoc,fl
0 is a good classical point, i.e., x satisfies the following

conditions

• x is a good point;

• wt(x) = k ∈ Zg
≥0 is a dominant algebraic weight; and

• there is a slope-adapted pair (U , h) such that x ∈ U and h < hk.

Then
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(i) The adjoint p-adic L-function Ladj vanishes at x if and only if the weight map wt :
Eoc

0 →W is ramified at x.

(ii) If x is furthermore a smooth point of Eoc,fl
0 , let e(x) be as defined in Theorem 7.3.11,

then we have ordx L
adj = e(x).

Proof. This is an immediate consequence of Theorem 7.3.10, Theorem 7.3.11 and Corollary
7.3.15.
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Chapter 8

Families of Galois representations and
adjoint Bloch–Kato Selmer groups

The final chapter of this thesis is dedicated to the answer to the second half of Question 1.3.2
(ii). To this end, we will first review the study of families of Galois representations in §8.1
by following [BC09] and discuss the Galois representations for GSp2g in §8.2. Inspired by the
strategy presented in [BC09], we discuss in §8.4 some local and global Galois deformations
that we are interested in. Our main results in the study of the adjoint Bloch–Kato Selmer
groups are presented in §8.5.

8.1 Recapitulations of families of Galois representations

8.1.1. The purpose of this section is to recall several terminologies for studying families of
Galois representations. Most of the materials presenting in this subsection are taken from
[BC09].

8.1.2 (Determinants). We briefly recall the notion of ‘determinants’ from [Che14] and refer
the readers to loc. cit. for more detailed discussions. We remark in the beginning that
the notion of determinants are used to strengthen the notion of pseudocharacters first intro-
duced by R. Taylor in [Tay91] and studied by other mathematicians. We also remark that
determinants are equivalent to pseudocharacters in characteristic 0.

Definition 8.1.3. Let A be a commutative ring and R be an A-algebra (not necessarily
commutative).

(i) For any A-module M , one can view M as a functor from the category of commutative
A-algebras to the category of sets, sending B to M ⊗AB. Let M , N be two A-modules.
Then an A-polynomial law between M and N is a natural transformation

M ⊗A B → N ⊗A B

on the category of commutative A-algebras.
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(ii) Let P : M → N be an A-polynomial law and d ∈ Z>0. We say P is homogeneous of
dimension d if for any commutative A-algebra B, any b ∈ B and any x ∈ M ⊗A B,
we have P (bx) = bdP (x).

(iii) Let P : R → A be an A-polynomial law. We say P is multiplicative if, for any
commutative A-algebra B, P (1) = 1 and P (xy) = P (x)P (y) for any x, y ∈ R⊗A B.

(iv) For d ∈ Z>0, a d-dimensional A-valued determinant on R is a multiplicative
A-polynomial law D : R→ A which is homogeneous of dimension d.

Example 8.1.4. Let G be a group and A be any ring. Let ρ : G→ GLd(A) be a represent-
ation of dimension d. Then

D : A[G]→ A, G 3 σ 7→ det ρ(σ)

is an A-valued determinant of dimension d on A[G]. We also say that D is an A-valued
determinant of dimension d on G.

Theorem 8.1.5 ([Che14, Theorem A & Theorem B]). Let G be a group.

(i) Let k be an algebraically closed field and let D : k[G]→ k be a determinant of dimension
d. Then, there exists a unique (up to isomorphism) semisimple representation ρ : G→
GLd(k) such that for any σ ∈ G, we have

det(1 + Y ρ(σ)) = D(1 + Y σ) ∈ k[Y ].

In particular, det ρ = D.

(ii) Let A be an henselian local ring with algebraically closed residue field k, D : A[G]→ A
be a d-dimensional determinant and let ρ be the semisimple representation attached to
D⊗A k in (i). Suppose ρ is irreducible, then there exists a unique (up to isomorphism)
representation ρ̃ : G→ GLd(A) such that

det(1 + Y ρ̃(σ)) = D(1 + Y σ) ∈ A[Y ]

for any σ ∈ G.

8.1.6 (Refinements of crystalline representations). We recall the notion of ‘refinements’ of
crystalline representations from [BC09, §2.4]. Let L be a finite extension of Qp and let V
be an n-dimensional L-representation of GalQp

. Assume that V is crystalline. Also assume
that the crystalline Frobenius ϕ = ϕcris acting on Dcris(V ) has all eigenvalues living in L×.

Definition 8.1.7 ([BC09, §2.4.1]). A refinement of V is the data of a full ϕ-stable L-
filtration

F• : 0 = F0 ( F1 ( · · · ( Fn−1 ( Fn = Dcris(V ).

8.1.8. Suppose F• is a refinement of V , one sees immediately that it determines two order-
ings:
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(Ref 1) An ordering (ϕ1, ..., ϕn) of the eigenvalues of ϕ by the formula

det(X − ϕ|Fi) =
i∏

j=1

(X − ϕj).

Notice that if the ϕj’s are all distinct, then such an ordering of eigenvalues of ϕ con-
versely determines the refinement.

(Ref 2) An ordering (a1, ..., an) of Hodge–Tate weights of V . More precisely, the jumps of the
Hodge filtration of Dcris(V ) induced on Fi are (a1, ..., ai).

Definition 8.1.9 ([BC09, Definition 2.4.5]). Suppose the Hodge–Tate weights of V are all
distinct a1 < · · · < an. Let F• be a refinement of V and let Fil•Dcris(V ) be the Hodge
filtration of Dcris(V ). We say F• is non-critical if, for all 1 ≤ i ≤ n, we have

Dcris(V ) = Fi⊕Filai+1 Dcris(V ).

8.1.10. Recall the Robba ring

RL :=

{
f(Y ) =

∑
i∈Z

tn(Y − 1)n ∈ L[[Y ]] :
f(X) converges on some annulus of Cp

of the form r(f) ≤ |Y − 1| ≤ 1

}
.

Here the norm | · | is the p-adic norm on Cp with the normalisation |p| = 1/p. Let Γ = Z×p .
The theory of (ϕ,Γ)-modules yields an equivalence of categories between the category finite-
dimensional L-representations of GalQp

and the category of étale (ϕ,Γ)-modules over RL

(see, for example, [BC09, §2.2]). In particular, we have a (ϕ,Γ)-module Drig(V ) over RL

associated with V .

Proposition 8.1.11 ([BC09, Proposition 2.4.1 & Proposition 2.4.7]). Let F• be a refine-
ment of V .

(i) Then F• determines a unique filtration Fil•Drig(V ) of length n, i.e., a triangulation
of Drig(V ). Consequently, F• determines a unique collection of continuous characters
δi : Q×p → L× via the isomorphism

Fili Drig(V )/Fili−1 Drig(V ) ' RL(δi)

given by [BC09, Proposition 2.3.1]. Here, the tuple δ = (δ1, ..., δn) is called the para-
meter of V .

(ii) Moreover, suppose the Hodge–Tate weight of V are all distinct h1 < · · · < hn. Then,
F• is non-critical if and only if the sequence Hodge–Tate weights (a1, ..., an) associated
with F• in (Ref 2) is increasing, i.e., ai = hi for all i = 1, ..., n.

Remark 8.1.12. The theory of (ϕ,Γ)-modules can be worked out for local artinian Qp-
algebras (see, for example, [BC09, §2]). Thus, it makes sense to consider the following
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deformation functor. Let Ar be the category of local artinian Qp-algebras whose residue
field is isomorphic to L. Then, we define the (local) trianguline deformation functor

DV,Fil•Drig(V ) : Ar→ Sets,

A 7→

(VA, ρA,Fil•Drig(VA)) :

VA ' An

ρA : GalQp
→ GL(VA) ' GLn(A)

s.t. ρA ⊗A L ' V
Fil•Drig(VA)⊗RA RL ' Fil•Drig(V )

 / '

We will also denote the above deformation functor by DV,F• as the triangulation Fil•Drig(V )
is uniquely determined by F•. In fact, we will confuse the refinement F• with the triangulation
Fil•Drig(V ) in what follows.

8.1.13 (Families of representations). Here, we collect some terminologies introduced in
[BC09, §5] that will be needed in the later subsections. Note that the terminology of psue-
docharacters is used in op. cit. since the notion of determinants was not yet discovered. In
what follows, we shall adapt everything with the notion of determinants.

Let G be a topological group with a continuous group homomorphism GalQp
→ G,

e.g., G = GalQ with the natural inclusion GalQp
↪→ GalQ. Therefore, any (continuous)

representation ρ of G induces a (continuous) representation of GalQp
, denoted by ρ|GalQp

.
By a family of representations , we mean a datum (E , D), where E is a reduced

separated rigid analytic variety (viewed as an adic space) over Spa(Qp,Zp) and a continuous
determinant D : OE(E)[G] → OE(E). The dimension of this family is understood to be the
dimension of the determinant D, denoted by n. For any x ∈ E , let kx be the residue field of
x , then we have the specialisation

D|x : G
D−→ OE(E)→ kx . (8.1)

Applying Theorem 8.1.5 (i), we see that D|x is nothing but the determinant of a (unique up
to isomorphism) continuous semisimple representation ρx : G→ GLn(kx ).

Definition 8.1.14 ([BC09, Definition 4.2.3]). A refined family of representations of
dimension n is a datum (E , D,Q, {αi : i = 1, ..., n}, {Fi : i = 1, ..., n}), where

(a) (E , D) is a family of representations of dimension n,

(b) Q ⊂ E is a Zariski dense subset,

(c) αi ∈ OE(E) is an analytic function for i = 1, ..., n,

(d) Fi ∈ OE(E) is an analytic function for i = 1, ..., n,

such that

(i) For every x ∈ E, the Hodge–Tate–Sen weights1 for ρx|GalQp
are α1(x), ..., αn(x).

1Here, the Hodge–Tate–Sen weight is defined to be the roots of the Sen polynomial (see, for example,
[Liu15, Definition 2.24]).
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(ii) For each y ∈ Q, the representation ρy|GalQp
is crystalline (so that αi(y)’s are integers)

and α1(y) < · · · < αn(y).

(iii) For each y ∈ Q, the eigenvalues of the crystalline Frobenius ϕ on Dcris(ρy|GalQp
) are

distinct and are (pα1(y)F1(y), ..., pαn(y)Fn(y)).

(iv) For any C ∈ Z>0, define

QC :=

{
y ∈ Q :

αi+1(y)− αi(y) > C(αi(y)− αi−1(y)) for i = 2, ..., n− 1
α2(y)− α1(y) > C

}
.

We request that QC accumulates at any point of Q for any C. In other words, for any
y ∈ Q and any C ∈ Z>0, there is a basis of affinoid neighbourhoods U of x such that
U ∩QC is Zariski dense in U .

(*) For each i = 1, ..., n, there is a continuous character Z×p → OE(E)× whose derivative
at 1 is the map αi and whose evaluation at any point y ∈ Q is the elevation to the
αi(y)-th power.

8.1.15. Let (E , D,Q, {αi : i = 1, ..., n}, {Fi : i = 1, ..., n}) be a refined family of dimension
n. We fix a point y ∈ Q. Then ρy admits a natural refinement Fy

• given by the ordering of
distinct eigenvalues

(pα1(y)F1(y), ..., pαn(y)Fn(y))

of the crystalline Frobenius acting on Dcris(ρy |GalQp
) ([BC09, Definition 4.2.4]). We assume

that ρy is irreducible and it satisfies the following two conditions:

(REG) The refinement Fy
• is regular , i.e., for any i = 1, ..., n, pα1(y)+···+αi(y)F1(y) · · ·Fi(y) is

an eigenvalue of the crystalline Frobenius ϕ acting on Dcris(∧iρy |GalQp
) of multiplicity

one.

(NCR) The refinement Fy
• is non-critical.

Since ρy is assumed to be irreducible, Theorem 8.1.5 (ii) implies that there is a unique
continuous representation

ρE,y : G→ GLn(OE,y)

such that ρE,y ⊗OE,y ky = ρy and so det ρy coincides with the composition G D−→ OE(E) →
OE,y . Following [BC09, §4.4], we define a continuous character δy : Q×p → (O×E,y)n by setting

δy(p) = (F1,y , ..., Fn,y) and δy |Z×p = (α−1
1,y , ..., α

−1
n,y), (8.2)

where Fi,y and αi,y are the images of Fi and αi in OE,y respectively.

Theorem 8.1.16 ([BC09, Theorem 4.4.1]). For any ideal I ( OE,y of cofinite length, ρE,y⊗OX ,y

OE,y / I is a trianguline deformation of (ρy,Fy
•), i.e., it belongs to Dρy|GalQp

,Fy
•(OE,y / I)

(defined in Remark 8.1.12), whose parameter is δy ⊗ OE,y / I.
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8.2 Galois representations for GSp2g

8.2.1. Before discussing about the Galois representations for GSp2g, we shall briefly review
the spin representation by following [FH91, Lecture 20].

Let V ' Z2g+1 be a free Z-module, equipped with a quadratic form Q. The Clifford
algebra Cliff associated to the pair (V,Q) is described by

Cliff = Cliff(V,Q) =
(
⊕n≥0V

⊗n) /〈v ⊗ v −Q(v) · 1 : ∀v ∈ V 〉,

where 1 is the identity of the tensor algebra ⊕n≥0V
⊗n. The Clifford algebra admits a de-

composition
Cliff = Cliff+⊕Cliff−,

where Cliff+ (resp. Cliff−) consists of elements of even (resp. odd) degrees. On Cliff, there
is an anti-involution •∗, determined by the formula

(v1 · v2 · · · vr)∗ = (−1)rvr · vr−1 · · · v1

for any v1, ..., vr ∈ V . Then for any ring R, we define

GSpin2g+1(R) :=
{
v ∈ (Cliff+⊗ZR)× : v ·Rg · v∗ := {v · w · v∗ : w ∈ Rg} = Rg

}
.

Here, the multiplication ‘·’ is the multiplication on the Clifford algebra. We remark that
GSpin2g+1 is the dual group of GSp2g in the sense of Langlands, i.e., the algebraic characters
of the maximal torus of GSp2g define the algebraic cocharcters of the maximal torus of
GSpin2g+1.

Fix a maximal totally isotropic direct summandW of V with respect to Q. In particular,
W is of rank g. Then [FH91, Lemma 20.16] yields an isomorphism

Cliff+ ' EndZ(∧•W ),

where ∧•W = ⊕n≥0 ∧n W is the exterior algebra associated to W . Notice that ∧•W is of
rank 2g over Z and hence, via the isomorphism, we obtain the spin representation

spin : GSpin2g+1 → GL2g .

Lemma 8.2.2. (i) The map spin : GSpin2g+1 → GL2g is a closed immersion.

(ii) If g(g + 1)/2 is even (resp., odd), then there exists a symmetric (resp., symplectic)
bilinear form on the 2g-dimensional spin representation such that the bilinear form is
preserved under GSpin2g+1 up to scalar. In particular, the spin representation factors
as

spin : GSpin2g+1 → GO2g ↪→ GL2g (resp., spin : GSpin2g+1 → GSp2g ↪→ GL2g)

when g(g + 1)/2 is even (resp. odd). Here, GO2g is the algebraic group defined as

GO2g =
{
γ ∈ GL2g : tγ 1̆2g γ = ς(γ) 1̆2g for some ς(γ) ∈ Gm

}
.
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Proof. The first assertion is clear from the construction above while the second assertion is
[KS20, Lemma 0.1].

8.2.3. Given a dominant weight k = (k1, ..., kg) ∈ Zg
≥0, recall the GSp2g-representation

Valg,∨
GSp2g ,k

. Although we considered the induced local system of Valg,∨
GSp2g ,k

on XIw+(C) in previ-
ous chapters, the left GSp2g-action, in fact, induces a local system on X(C), which we still
denote by the same symbol. In particular, we can consider the parabolic cohomology group

Halg,tol
tame,par,k := ⊕2n0

t=0H
t
par(X(C),Valg,∨

GSp2g ,k
).

Note that the double cosets [GSp2g(Zp)(x · up,i) GSp2g(Zp)] acts on Halg,tol
tame,par,k (as defined in

4.4.5) for any x ∈WeylGSp2g
. We denote by

Ttame := Tp⊗Zp Zp

[
[GSp2g(Zp)(x · up,i) GSp2g(Zp)] : i = 0, 1, ..., g − 1, x ∈WeylGSp2g

]
.

In particular, it makes sense to consider the Hecke polynomial PHecke,p(Y ) at p in this case
and is defined as in (4.3).

Hypothesis 1. For any Ttame-eigenclass [µ] ∈ Halg,tol
tame,par,k with eigensystem λ[µ] : Ttame →

Qp, there exists a (continuous) Galois representation

ρ[µ] : GalQ
ρspin

[µ]−−→ GSpin2g+1(Qp)
spin−−→ GL2g(Qp)

such that

(i) The representation ρ[µ] is unramified outside pN and

char. poly(Frob`)(Y ) = λ[µ](PHecke,`(Y )) :=
∏

x∈WeylH

(Y − λ[µ](T
x
`,0))

for any ` - pN , where char. poly(Frob`)(Y ) stands for the characteristic polynomial of
the Frobenius at ` and PHecke,`(Y ) is the Hecke polynomial defined in (4.3). Moreover,
the coefficients of these two polynomials are algebraic integers over Q.

(ii) The representation ρ[µ]|GalQp
is crystalline with Hodge–Tate weights

(a1, ..., a2g) = (0, a′g, · · · , a′1, a′g + a′g−1, ..., a
′
2 + a′1, · · · , a′g + · · ·+ a′1), 2

where a′i = (g + 1 − i) + ki. Let ϕ = ϕcris be the crystalline Frobenius acting on
Dcris(ρ[µ]|GalQp

), we moreover have

char. poly(ϕ)(Y ) = λ[µ](PHecke,p(Y )),

2These numbers are all possibilities of sums of ai’s. The order is chosen so that if k = (k1, ..., kg) =
(kg + g − 1, kg + g − 2, ..., kg), we have a1 < a2 < · · · < a2g .
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where char. poly(ϕ)(X) is the characteristic polynomial of ϕ acting on Dcris(ρ[µ]|GalQp
),

and the coefficients of these two polynomials are algebraic integers over Q. We order
the eigenvalues of ϕ so they satisfy

(ϕ1, ..., ϕ2g) = ϕ1(1, ϕ′2, ..., ϕ
′
g+1, ϕ

′
2ϕ
′
3, ..., ϕ

′
gϕ
′
g+1, ..., ϕ

′
2 · · ·ϕ′g+1).

The order of the later tuple is chosen similarly as the Hodge–Tate weights. In par-
ticular, ϕ2, ..., ϕg+1 are divisible by ϕ1 and the 2g eigenvalues of ϕ depend only on
ϕ1, ..., ϕg+1.

Remark 8.2.4. Recall that Sbad is the finite set of prime numbers which divides N . From
now on, we shall redefine Sbad to be Sbad ∪{p}. Let GalQ,Sbad

be the Galois group of the
maximal extension of Q which is unramified outside Sbad. Therefore, the representation ρ[µ]

in Hypothesis 1 can be regarded as a Galois representation of GalQ,Sbad
.

Remark 8.2.5. Evidently, Hypothesis 1 comes from Global Langlands Correspondence. We
comment briefly to this hypothesis.

(i) When g ≤ 2, Hypothesis 1 (i) is well-known (see, for example, [Wei05]). The work of
A. Kret and S. W. Shin ([KS20]) gave a positive answer to Hypothesis 1 (i) under some
conditions on the automorphic representations for general g. Although their result is
not complete unconditional, it suggests that Hypothesis 1 is reasonable to assume (but
could be difficult to prove in general).

(ii) Hypothesis 1 (ii) is also well-studied when g ≤ 2. In particular, E. Urban proved the
case for g = 2 in [Urb05], result deduced from A. Scholl’s motive for modular forms
([Sch90]). For general g, the property is expected if Hypothesis 2 below holds (see, for
example, [PT15, Theorem 2.1 & Corollary 2.2]).

8.2.6. By Lemma 8.2.2 and under the assumption of Hypothesis 1, we know that given a
Ttame-eigenclass [µ] as above, ρ[µ] factors as

ρ[µ] : GalQ,Sbad

ρspin
[µ]−−→ GSpin2g+1(Qp)

spin−−→ GS(Qp)→ GL2g(Qp),

where
GS =

{
GO2g , if g(g + 1)/2 is even
GSp2g , if g(g + 1)/2 is odd

and the last arrow is nothing but the natural inclusion. Define

gl2g := the Lie algebra of GL2g(Qp),
equipped with the induced adjoint GalQ,Sbad

-action by ρ[µ]

ad ρ[µ] := the Lie algebra of GS(Qp),

equipped with the induced adjoint GalQ,Sbad
-action by spin ◦ρspin

[µ]

ad ρspin
[µ] := the Lie algebra of GSpin2g+1(Qp),

equipped with the induced adjoint GalQ,Sbad
-action by ρspin

[µ] .
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Then, the inclusions
GSpin2g+1(Qp) ↪→ GS(Qp) ↪→ GL2g(Qp)

induces GalQ,Sbad
-equivariant inclusions

ad ρspin
[µ] ↪→ ad ρ[µ] ↪→ gl2g ,

which then further induces inclusions of the Galois cohomology groups

H1(GalQ,Sbad
, ad ρspin

[µ] ) ↪→ H1(GalQ,Sbad
, ad ρ[µ]) ↪→ H1(GalQ,Sbad

, gl2g).

On the other hand, let sl2g be the trace-zero part of gl2g and let

ad0 ρ[µ] := ad ρ[µ] ∩ sl2g and ad0 ρspin
[µ] := ad ρspin

[µ] ∩ sl2g .

Note that the decomposition gl2g = sl2g⊕gl1 is GalQ-equivariant, we thus have a commutative
diagram

H1(GalQ,Sbad
, ad ρspin

[µ] ) H1(GalQ,Sbad
, ad ρ[µ]) H1(GalQ,Sbad

, gl2g)

H1(GalQ,Sbad
, ad0 ρspin

[µ] ) H1(GalQ,Sbad
, ad0 ρ[µ]) H1(GalQ,Sbad

, sl2g)

,

where the arrows are all inclusions.

8.2.7. Under the assumption of Hypothesis 1, one obtains a 2g-dimensional Galois represent-
ation for each eigenclass [µ]. It is then a natural question to ask whether the attached Galois
representation admits an associated cuspidal automorphic representation of GL2g . The an-
swer of this question is expected to be affirmative, which we state as the next hypothesis.

Hypothesis 2 (The potential spin functoriality). Given a Ttame-eigenclass [µ] ∈ Halg,tol
tame,par,k,

there exists a finite real extension L ⊂ Q of Q with ρ[µ]|GalL being irreducible and a generic
cuspidal automorphic representation π[µ] of GL2g(AL), where AL is the ring of adèles of L,
such that

• π[µ] is unramified outside the places above Sbad and

• the Galois representation associated with π[µ] is isomorphic to ρ[µ]|GalL.

Remark 8.2.8. We should remark that Kret and Shin verify the above hypothesis in [KS20,
Theorem C] under some stronger conditions than the ones they verify Hypothesis 1.

8.2.9. On the other hand, we also write

Halg,tol
par,k := ⊕2n0

t=0H
t
par(XIw+(C),Valg,∨

GSp2g ,k
).

The forgetful map XIw+(C)→ X(C) then induces a morphism

Λp : Halg,tol
tame,par,k → Halg,tol

par,k . (8.3)
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Observe that this morphism is Tp-equivariant. Moreover, we have slope decomposition on
the later space with respect to the action of Up since it is a finite dimensional Qp-vector
space. Thus, for each h ∈ Q>0, we write

Halg,tol,≤h
tame,par,k := image

(
Halg,tol

tame,par,k

Λp−→ Halg,tol
par,k � Halg,tol,≤h

par,k

)
,

where Halg,tol,≤h
par,k is the ‘≤ h’ part of Halg,tol

par,k under the action of Up. Thus, for any Ttame-
eigenclass [µ] in Halg,tol

tame,par,k, its image in Halg,tol,≤h
tame,par,k can be decomposed as a sum of T-

eigenclasses. We call any of these factors a p-stabilisation of [µ].
It is a natural question asking how the eigenvalues of a Ttame-eigenclass interact with the

eigenvalues of its p-stabilisations. Due to our lack knowledge on the Hecke algebra of the
strict Iwahori level, we state such a conjectural interaction in the next hypothesis.

Hypothesis 3. (i) Let [µ] be a Ttame-eigenclass with eigensystem λ[µ] in H
alg,tol,≤h
par,k . Then,

there exist 2gg! p-stabilisations [µ](p), indexed by WeylGSp2g
.

(ii) Chose a bijection of sets ι : {1, 2, ..., 2g} ∼−→WeylH so that λ[µ]

(
T
ι(i)
p,0

)
= ϕi, where T

ι(i)
p,0

is the Hecke operator defined by [GSp2g(Zp)(ι(i)·up,0) GSp2g(Zp)] acting on Halg,tol
tame,par,wt(x)

and ϕi is the i-th eigenvalue of the crystalline Frobenius associated with ρ[µ].3 Denote
by λi = λ[µ](T

ι(i)
p,0 ) and let [µ](p) be any of the p-stablisation of [µ] with Hecke eigensys-

tem λ
(p)
[µ] . Then, there exists a constant θ ∈ Q (depending only on g) such that, for

i = 1, ..., g + 1,

λ
(p)
[µ] (U

ι(i)
p,0 ) = pθ · p−(g+1−i)λ1

g∏
j=1

(λj+1/λ1)aν(j) or 1−aν(j) ,

where

• the index of [µ](p) is (ε, ν) ∈WeylGSp2g
= Σgn(Z /2 Z)g and

aν(j) =

{
1, ν(j) = i
0, otherwise ;

• the exponent depends on whether ε(ν(j)) = 0 or 1 ∈ Z /2 Z.

Remark 8.2.10. (i) The above equation in the above hypothesis totally defines the values
λ

(p)
[µ] (U

ι(i)
p,0 ) for g + 1 < i ≤ 2g due to the relations of eigenvalues ϕi of the crystalline

Frobenius in Hypothesis 1 (ii).

(ii) We remark that Hypothesis 3 is inspired by [HJ17, Lemma 17]. However, one is not
allowed to apply loc. cit. directly since the authors of loc. cit. considered the Iwahori
subgroup while we are working with the strict Iwahori subgroup, which is a deeper
level at p. A priori, given a class [µ] in Halg,tol

tame,par,k, it might admit more p-stablisations

3This can be done due to Hypothesis 1 (ii).
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at the strict Iwahori level than at the Iwahori level. The meaning of the hypothesis
above means that these extra p-stablisations shall be killed after taking the finite-slope
part. Such a phenomenon already happens in the classical theory of modular forms.

Assumption 8.2.11. In the rest of this chapter, we assume that Hypothesis 1, Hypothesis
2 and Hypothesis 3 hold.

8.3 Families of Galois representations on the cuspidal ei-
genvariety

8.3.1. The goal of this section is to construct families of Galois representations on a sublocus
of the cuspidal eigenvariety Eoc

0 under the assumption of Hypothesis 1 and Hypothesis 3.

8.3.2. For any dominant algebraic weight k ∈ Zg
>0, recall from Theorem 5.2.8 that there is

hk ∈ R>0 such that for any h ∈ Q>0 with h < hk, we have a canonical isomorphism

Htol,≤h
par,k

∼−→ Halg,tol,≤h
par,k .

We then define the p-stabilised classical locus of Eoc
0 to be the locus Gcl ⊂ E0, containing

those x with the following conditions:

• wt(x ) = k ∈ Zg
>0 is a dominant algebraic weight;

• there exists h < hk such that x corresponds to a p-stabilisation of slope ≤ h of a
Ttame-eigenclass [µ] in Halg,tol

tame,par,k;

• the Galois representation ρspin
[µ] attached to [µ] (by Hypothesis 1) is irreducible.

Consequently, we define

E irr
0 := the Zariski closure of Gcl in Eoc

0 .

Remark 8.3.3. We do not expect every classical point in E0 corresponds to an irreducible
Galois representation due to the endoscopy theory of automorphic forms. As we will be only
interested in classical points that correspond to irreducible Galois representations, we do not
loose information if we only consider E irr

0 .

Proposition 8.3.4. Assume the truthfulness of Hypothesis 1.

(i) For any x ∈ Gcl, there is an associated Galois representation

ρx : GalQ,Sbad

ρspin
x−−→ GSpin2g+1(Qp)

spin−−→ GL2g(Qp)

that satisfies the properties in Hypothesis 1.
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(ii) There is a universal determinant

Detuniv : GalQ,Sbad
→ O+

E irr
0

(E irr
0 )

of dimension 2g such that, for any x ∈ Gcl, the specialisation Detuniv |x (notation as in
(8.1)) coincides with det ρx.

Proof. The first assertion is easy. Let x ∈ Gcl. It corresponds to a p-stabilisation class
[µ](p) ∈ Halg,tol,≤h

tame,par,k. That is, there is a Ttame-eigenclass [µ] ∈ Halg,tol
tame,par,k such that [µ](p) is a

p-stabilisation of [µ]. By Hypothesis 1, the class [µ] is associated with a Galois representation
with desired properties. Then, we define ρspin

x := ρspin
[µ] and ρx := ρ[µ].

For the second assertion, we follow the proof of [Che04, Proposition 7.1.1] (see also
[Che14, Example 2.32]). Consider the morphism

Φ : O+
E irr

0
(E irr

0 )→
∏

x∈Gcl

Cp, f 7→ (f(x ))x∈Gcl .

Equipped
∏

x∈Gcl Cp with the product topology, one sees that Φ is continuous. We claim
that Φ(O+

E irr
0

(E irr
0 )) is homeomorphic to O+

E irr
0

(E irr
0 ) and is closed in

∏
x∈Gcl Cp. Indeed, since

Gcl is Zariski dense in the reduced space Eoc
0 , the map Φ is injective. Apply [JN19, Corollary

5.4.4], we know that O+
E irr

0
(E irr

0 ) is compact and so Φ(O+
E irr

0
(E irr

0 )) is closed in
∏

x∈Gcl Cp.
On the other hand, we have a continuous map

Det : GalQ,Sbad
→

∏
x∈Gcl

Cp, σ 7→ (det ρx (σ))x∈Gcl .

One checks easily that Det is a determinant of dimension 2g, in fact, the determinant of
a representation GalQ → GL2g(

∏
x∈Gcl Cp). Condition (ii) and (iii) in Hypothesis 1 and

image Φ being closed in
∏

x∈Gcl Cp imply that image Det ⊂ image Φ. Hence, we define

Detuniv := Φ−1 ◦Det : GalQ,Sbad
→ O+

E irr
0

(E irr
0 ).

Since Φ is injective and Det is a determinant of dimension 2g, Detuniv is as desired.

Theorem 8.3.5. There exists a subset Gcl
♥ ⊂ Gcl which is Zariski dense in E irr

0 , 2g analytic
functions α1, ..., α2g ∈ OE irr

0
(E irr

0 ) and 2g analytic functions F1, ..., F2g ∈ OE irr
0

(E irr
0 ) such that

(Eoc
0 ,Detuniv,Gcl

♥, {αi : i = 1, ..., 2g}, {Fi : i = 1, ..., 2g})

is a refined family of Galois representations.

Proof. For any p-adic weight κ = (κ1, ..., κg), define an ordering of functions on Z×p via

(α1, ..., α2g) := (0, α′g, ..., α
′
1, α

′
g + α′g−1, ..., α

′
g + α′1, α

′
g−1 + α′g−2, ..., α

′
2 + α′1, ..., α

′
g + · · ·+ α′1),

where α′i = (g + 1 − i) + κi is the character a 7→ κi(a)ag+1−i for every a ∈ Z×p . We can
view αj’s as functions on Eoc

0 by composing with the weight map wt. Obviously from this
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definition, for any x ∈ Gcl, the functions αj’s provides an ordering of the Hodge–Tate weight
of ρx in Hypothesis 1 (ii).

Define

Gcl
♥ :=

{
x ∈ Gcl :

0 = α1(x ) < α2(x ) < · · · < α2g(x )
eigenvalues of the crystalline Frobenius acting on Dcris(ρx |GalQp

) are distinct

}
.

Observe that Gcl
♥ is Zariski dense in E irr

0 since Gcl is Zariski dense in E irr
0 and the first condition

defining Gcl
♥ is an open condition on weights while the second condition is an open condition

on the cuspidal eigenvariety E irr
0 . We claim that Gcl

♥ satisfies condition (iv) in Definition
8.1.14. That is, for any C ∈ Z>0, we have to show that the set

Gcl
♥,C :=

{
x ∈ Gcl

♥ :
αi+1(x )− αi(x ) > C(αi(x )− αi−1(x )) for i = 2, ..., 2g − 1
α2(x )− α1(x ) > C

}
satisfies that, for any basis of affinoid neighbourhoods V of x , V ∩Gcl

♥,C is Zariski dense in
V . However, this follows from that the condition defining Gcl

♥,C is an open condition on the
weights.

Now, for any x ∈ Gcl
♥, the associated representation ρx is crystalline at p. Let ϕ1(x ), ..., ϕ2g(x )

be eigenvalues of the crystalline Frobenius ϕ = ϕcris acting on Dcris(ρx |GalQp
). The order of

the eigenvalues ϕi’s is defined so that it defines a non-critical refinement on ρx . This is
achievable by applying Proposition 8.1.11 (ii). Define

Fi(x ) := ϕi(x )/pαi(x ) ∈ Cp .

We claim that the collection {(Fi(x ))i=1,...,2g}x∈Gcl
♥
glue to 2g analytic functions (F1, ..., F2g)

in OE irr
0

(E irr
0 ). Let λx : Ttame → Qp be the eigensystem corresponds to x . Consider

pϑpκ
′
iFi := image of the operator U ι(i)

p,0 in OE irr
0

(E irr
0 ),

where

(κ′1, ..., κ
′
2g) = (0, κg, ..., κ1, κg + κg−1, ..., κg + κ1, κg−1 + κg−2, ...., κ2 + κ1, ..., κg + · · ·+ κ1)

and (κ1, ..., κg) = wt is the weight map. Then, Hypothesis 1 (ii) and Hypothesis 3 imply the
desired result (see also[BC09, Proposition 7.5.13]).

Remark 8.3.6. Recall that we have ordered the eigenvalues of the crystalline Frobenius ϕ
so that they satisfy

(ϕ1, ..., ϕ2g) = ϕ1(1, ϕ′2, ..., ϕ
′
g+1, ϕ

′
2ϕ
′
3, ..., ϕ

′
gϕ
′
g+1, ..., ϕ

′
2 · · ·ϕ′g+1).

On the other hand, recall that WeylH is a set of representatives of WeylH \WeylGSp2g
, where

WeylH ' Σg. Observe that diag(1g, p1g) is stable under the action of Σg, thus the action
of WeylH on Tp,0 only depends on the action of (Z /2 Z)g. Combining everything together,
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we have the relation

(F1, ..., F2g) = F1(1, F ′2, ..., F
′
g+1, F

′
2F
′
3, ..., F

′
gF
′
g+1, ..., F

′
2 · · ·F ′g+1).

In particular, F2, ..., Fg+1 are divisible by F1.

8.4 Local and global Galois deformations

8.4.1. We keep the notations in the previous subsection. Fix x ∈ Gcl
♥ with wt(x ) = k =

(k1, ..., kg) and we write

ρx : GalQ
ρspin
x−−→ GSpin2g+1(Qp)

spin−−→ GL2g(Qp)

for the Galois representation attached to x , given by Proposition 8.3.4. We fix a large enough
finite field extension kx of Qp such that kx contains the residue field at x and ρspin

x takes
values in GSpin2g+1(kx ). We also assume that kx contains all eigenvalues of the Frobenii.

Let now Ar be the category of local artinian kx -algebras whose residue field is kx . We
denote by Fx

• the refinement of ρx |GalQp
induced by the refined family defined in Theorem

8.3.5. We also denote by δ = (δ1, ..., δ2g) the parameter attached to the triangulation asso-
ciated with Fx

• . Notice that the relation of the eigenvalues of crystalline Frobenius and the
Hodge–Tate weight implies that the parameter δ satisfies

(δ1, ..., δ2g) = δ1(1, δ′2, ..., δ
′
g+1, δ

′
2δ
′
3, ..., δ

′
gδ
′
g+1, ..., δ

′
2 · · · δ′g+1)

for some continuous characters δ′2, ..., δ′g+1 such that δi = δ1δ
′
i for all i = 2, ..., g + 1.

8.4.2 (Local Galois deformations at p). We shall consider two deformation problems at p:

(i) The deformation problem
D spin

x ,Fx
• ,p

: Ar→ Sets,

sending each A ∈ Ar to the isomorphism classes of representations ρspin
A : GalQp

→
GSpin2g+1(A) with a triangulation Fil•Drig(spin ◦ρspin

A ) such that

• ρspin
A ⊗A kx ' ρspin

x |GalQp
;

• (spin ◦ρspin
A ,Fil•Drig(spin ◦ρspin

A )) ∈ Dρx |GalQp
,Fx
• (A) and write δA = (δA,1, ..., δA,2g)

for the associated parameter;

• the parameter δA satisfies

(δA,1, ..., δA,2g)

= δA,1(1, δ′A,2, ..., δ
′
A,g+1, δ

′
A,2δ

′
A,3, ..., δ

′
A,2δ

′
A,g+1, δ

′
A,3δ

′
A,4, ..., δ

′
A,gδ

′
A,g+1, ..., δ

′
A,2 · · · δ′A,g+1)

for some continuous characters δ′A,2, ..., δ′A,g+1;

• det spin ◦ρspin
A = det ρx |GalQp
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(ii) The deformation problem
D spin

x ,f,p : Ar→ Sets,

sending each A ∈ Ar to the isomorphism classes of representations ρspin
A : GalQp

→
GSpin2g+1(A) such that

• ρspin
A ⊗A kx ' ρspin

x |GalQp
;

• the (ϕ,Γ)-module Drig(spin ◦ρspin
A ) is crystalline in the sense of [BC09, Definition

2.2.10] whose eigenvalues (ϕA,1, ..., ϕA,2g) of the crystalline Frobenius satisfy

(ϕA,1, ..., ϕA,2g) = ϕA,1(1, ϕ′A,2, ..., ϕ
′
A,g+1, ϕ

′
A,2ϕ

′
A,3, ..., ϕ

′
A,gϕ

′
A,g+1, ..., ϕ

′
A,2 · · ·ϕ′A,g+1),

order chosen the same as for ϕi’s;
• det spin ◦ρspin

A = det ρx |GalQp

8.4.3. Consider

L′p := ker
(
H1(GalQp

, ad0 ρspin
x )→ H1(GalQp

, ad0 ρspin
x ⊗kx Bcris)

)
,

where Bcris is Fontaine’s ring of crystalline periods. It is well-known that L′p defines the
tangent space of the crystalline deformation problem for ρspin

x with fixed determinant. Con-
sequently, the tangent space D spin

x ,f,p(kx [ε]), where ε is a variable such that ε2 = 0, of D spin
x ,f,p

defines a subspace of L′p. Thus, we define

Lp := D spin
x ,f,p(kx [ε]) ⊂ L′p. (8.4)

8.4.4 (Local Galois deformations at N). For any `|N , we consider the following deformation
problem

D spin
x ,` : Ar→ Sets

sending each A ∈ Ar to the isomorphism classes of representations ρspin
A : GalQ`

→
GSpin2g+1(A) such that

• ρspin
A ⊗A kx ' ρspin

x |GalQ`
;

• ρspin
A |I` ' ρspin

x |I` ⊗kx A

• det spin ◦ρspin
A = det ρx |GalQ`

Then, one sees that the tangent space Dx ,`(kx [ε]) of Dx ,` is a kx -subspace ofH1(GalQ`
, ad0 ρspin

x ).
We consequently define

L` := Dx ,`(kx [ε]) ⊂ H1(GalQ`
, ad0 ρspin

x ). (8.5)

We learnt the following lemma from P. Allen.

Lemma 8.4.5. Under the assumption of Hypothesis 2, we have

L` = H1(GalQ`
, ad0 ρspin

x ).
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Proof. Let

H1
unr(GalQ`

, ad0 ρspin
x ) := ker

(
H1(GalQ`

, ad0 ρspin
x )→ H1(I`, ad0 ρspin

x )
)

By definition, we see that H1
unr(GalQ`

, ad0 ρspin
x ) ⊂ L`. Thus, it is enough to show that

H1
unr(GalQ`

, ad0 ρspin
x ) = H1(GalQ`

, ad0 ρspin
x ).

First of all, observe that

H1
unr(GalQ`

, ad0 ρspin
x ) = H1(GalQ`

/I`, (ad0 ρspin
x )I`)

by definition. Note that GalQ`
/I` ' Ẑ. Hence, one deduces from the discussion in [Ser79,

Chapter XIII, §1] that

dimkx H
1
unr(GalQ`

, ad0 ρspin
x ) = dimkx H

1(GalQ`
/I`, (ad0 ρspin

x )I`)

= dimkx H
0(GalQ`

/I`, (ad0 ρspin
x )I`)

= dimkx H
0(GalQ`

, ad0 ρspin
x ).

By applying the local Euler characteristic, the desired equation will follow once we show

H2(GalQ`
, ad0 ρspin

x ) = 0.

By Tate duality, it is equivalent to show

H0(GalQ`
, ad0 ρspin

x (1)) = 0.

Let L be the real extension of Q as in Hypothesis 2, we claim that for any place v in L
sitting above `, we have

H0(GalLv , ad0 ρspin
x (1)) = 0,

where GalLv = Gal(Q`/Lv) is the absolute Galois group of Lv. However, under the assump-
tion of Hypothesis 2, the desired vanishing follows from [BLGGT14, Lemma 1.3.2] and the
discussion in 8.2.6.

Finally, observe that the restriction map

Res : H0(GalQ`
, ad0 ρspin

x (1))→ H0(GalLv , ad0 ρspin
x (1))

is an injection since kx is of characteristic zero so that

Corres ◦ Res = multiplication by [Lv : Q`]

is an injection. The assertion then follows.

8.4.6 (Global Galois deformations). Consider the following two global deformation functors:

(i) The deformation problem
D spin

x ,Fx
•

: Ar→ Sets,

140



sending each A ∈ Ar to isomorphism classes of representations ρspin
A : GalQ,Sbad

→
GSpin2g+1(A) and triangulation Fil•Drig(spin ◦ρspin

A |GalQp
) such that

• ρspin
A ⊗A kx ' ρspin

x

• det spin ◦ρspin
A = det ρx

• (spin ◦ρspin
A |GalQp

,Fil•Drig(spin ◦ρA|GalQp
)) ∈ D spin

x ,Fx
• ,p

(A)

• ρspin
A |GalQ`

∈ D spin
x ,` (A) for ` ∈ Sbad

(ii) The deformation problem
D spin

x ,f : Ar→ Sets,

sending each A ∈ Ar to isomorphism classes of representations ρspin
A : GalQ,Sbad

→
GSpin2g+1(A) such that

• ρspin
A ⊗kx kx ' ρspin

x

• det spin ◦ρA = det ρx

• ρspin
A |GalQp

∈ D spin
x ,f,p(A)

• ρspin
A |GalQ`

∈ D spin
x ,` (A) for ` ∈ Sbad.

Lemma 8.4.7. Keep the above notations.

(i) The deformation problems D spin
x,Fx
•
and D spin

x,f are pro-representable. Denote by Runiv
x,Fx
•
and

Runiv
x,f the complete noetherian local rings that represent these two deformation functors

respectively.

(ii) Suppose Fx
• is non-critical, then D spin

x,f is a subfunctor of D spin
x,Fx
•
.

Proof. Since ρx is absolutely irreducible, the first assertion follows from standard Galois
deformation theory (see, for example, [KT17, §4] and [HT17, Proposition 3.7 & Proposition
3.8]). The second assertion is an immediate consequence of [BC09, Proposition 2.5.8]. Notice
that our deformation problems are slightly different from the ones considered in op. cit.
and [HT17]. In fact, one sees easily that our deformation problems are subfunctors of the
deformation problems considered therein. Their results implies ours since spin : GSpin2g+1 →
GL2g is a closed immersion, the conditions we required on the relations of the parameters and
the fixed determinant of the deformations are closed conditions and they are stable under
isomorphisms, i.e., they satisfy the definition of deformation problems (see, for example,
[KT17, Definition 4.1]).

8.4.8. The the Bloch–Kato Selmer group associated with ad0 ρspin
x is defined to be

H1
f (Q, ad0 ρspin

x ) := ker

H1(GalQ,Sbad
, ad0 ρspin

x )
Res−−→

∏
`∈Sbad ∪{p}

H1(GalQ`
, ad0 ρspin

x )

L`

 ,

(8.6)
where L` are as defined in (8.4) and (8.5).
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Proposition 8.4.9. The tangent space D spin
x,f (kx[ε]) of D spin

x,f can naturally be identified with
the Bloch–Kato Selmer group H1

f (Q, ad0 ρspin
x ).

Proof. This is follows from standard Galois deformation theory (see, for example, [HT17,
Proposition 3.7]) and the definition of Lp and L` (see (8.4) and (8.5)).

8.5 The adjoint Bloch–Kato Selmer groups
8.5.1. We keep the notations and assumptions in the previous subsection. We further assume
the following

• the refinement Fx
• of ρx satisfies (REG) and (NCR);4

• the representation ρx |GalQp
is not isomorphic to its twist by the p-adic cyclotomic

character.

Lemma 8.5.2. Denote by Tx := ÔEoc
0 ,x. Then, for any ideal of cofinite length I ⊂ Tx there

exists a Galois representation

ρI : GalQ,Sbad
→ GL2g(Tx / I)

such that

(i) ρI ⊗Tx kx ' ρx

(ii) ρI|GalQp
∈ Dρx|GalQp

,Fx
•,p(Tx / I)

Proof. The first assertion is a consequence of Theorem 8.1.5. The second assertion is a
consequence of Theorem 8.1.16.

Hypothesis 4. Consider the Galois representation ρI in Lemma 8.5.2 for any ideal of
cofinite length I ⊂ Tx. We assume

(i) The Galois representation ρI factors as

ρI : GalQ,Sbad

ρspin
I−−→ GSpin2g+1(Tx / I)

spin−−→ GL2g(Tx / I).

(ii) The Galois representation ρspin
I |GalQp

∈ D spin
x,Fx
•,p

(Tx / I).

(iii) The tame level structure Γ(p) implies that the Galois representation ρspin
I satisfies

ρspin
I |GalQ`

∈ D spin
x,` (Tx / I)

for any `|N .

Remark 8.5.3. We remark that the above hypothesis is safe to assume:
4In fact, the condition (NCR) is already satisfied by the definition of Gcl

♥.
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(i) The first two conditions are natural. When g = 1, the conditions are trivial. When
g = 2, GSpin5 is isomorphic to GSp4. In this case, the proof of [GT05, Lemma 4.3.3]
implies the conditions.

(ii) Roughly speaking, the third condition in the hypothesis means that the level structure
on the automorphic side determines the ramification type on the Galois side. This
condition is inspired by the Taylor–Wiles method. When g = 1, the classical example
is the work of R. Taylor and A. Wiles in [TW95]. In loc. cit., they showed that if one
considers the Hecke algebra on the space of weight-2 modular forms of a certain level,
then the Galois representation with coefficients in the local Hecke algebra satisfies
certain Galois deformation problem. For higher-rank groups, one sees, for example,
such a relation in [GT05, §4.3] for GSp4 and [CHT08, §3.4] for GLn over CM fields.

Lemma 8.5.4. Denote by Rwt(x) the complete local ring at wt(x) and so we have a natural
homomorphism Rwt(x) → Qp → kx, where the first map is given by quotienting the maximal
ideal and the second map is the natural inclusion. Then, Runiv

x,Fx
•
admits an action of Rwt(x)

and
Runiv

x,Fx
•
⊗Rwt(x)

kx = Runiv
x,f .

Proof. Let us first explain the action of Rwt(x ) on Runiv
x ,Fx
•
. For any A ∈ Ar, observe that we

have a natural morphism

D spin
x ,Fx
•
(A)→ Homcts(TGLg ,1, A

×), ρspin
A 7→ ((δ′A,g+1)−1|Z×p −g, (δ

′
A,g)

−1|Z×p −(g−1), ..., (δ′A,2)−1|Z×p −1).

Under this map, the image of ρspin
x is exactly k = (k1, ..., kg) by (8.2). Consequently, there is

a natural morphism
Zp[[TGLg ,1]]→ Runiv

x ,Fx
•
,

which factors through Rwt(x ).
Since the refinement Fx

• satisfies (REG), together with the relation of parameters and the
condition of fixed determinant, the desired isomorphism follows from the constant weight
lemma ([BC09, Proposition 2.5.4]), i.e., the crystalline deformations of ρx are of constant
Hodge–Tate weight, of which being the same as ρx .

Lemma 8.5.5. Denote by H1
Fx
•
(Q, ad0 ρspin

x ) the tangent space D spin
x,Fx
•
(kx[ε]) of D spin

x,Fx
•
. We have

an exact sequence

0→ H1
f (Q, ad0 ρspin

x )→ H1
Fx
•
(Q, ad0 ρspin

x )→ kgx.

Proof. Following [BC09, Proposition 7.6.4], we expect an exact sequence

0→ H1
f (Q, ad0 ρspin

x )→ H1
Fx
•
(Q, ad0 ρspin

x )→ k2g

x .

The first map is clear while the second map is defined as follows. For any A ∈ Ar, we have

D spin
x ,Fx
•
(A)→ Homcts(Q

×
p , A

×)2g , ρA 7→ (δA,1, ..., δA,2g).
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Composing with the derivative at 1, we obtain a morphism

D spin
x ,Fx
•
(A)→ A2g .

That is, we obtain
∂ : D spin

x ,Fx
•
→ Ĝ2g

m .

The second map is then defined to be ∂(kx [ε]). Lemma 8.5.4 shows that H1
f (Q, ad0 ρspin

x ) =
ker ∂(kx [ε]).

Recall that the local condition of D spin
x ,Fx
•
at p requires a relation of the parameters and a

fixed determinant. Thus, the image of ∂(kx [ε]) lies in a subspace of dimension g, depending
only on the continuous characters δ′A,2, ..., δ′A,g+1.

Proposition 8.5.6. Retain the notation in Lemma 8.5.2 and assume Hypothesis 4 holds.

(i) There exists a canonical ring homomorphism Runiv
x,Fx
•
→ Tx.

(ii) If the adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) vanishes, then the canonical
map in (i) is an isomorphism Runiv

x,Fx
•
' Tx (an ‘infinitesimal R = T theorem’).

Proof. By Lemma 8.5.2 and Hypothesis 4, for any ideal I ⊂ Tx of cofinite length, there is a
canonical ring homomorphism

Runiv
x ,Fx
•
→ Tx / I .

This ring homomorphism is surjective due to the fact that the characteristic polynomials
of the Frobenii under ρI are given by the Hecke polynomials. Consequently, one obtains a
canonical morphism

Runiv
x ,Fx
•
→ Tx = lim←−

I : cofinite length
Tx / I

with dense image. Since Runiv
x ,Fx
•
is complete, the canonical morphism Runiv

x ,Fx
•
→ Tx is surjective.

Finally, if H1
f (Q, ad0 ρspin

x ) vanishes, then the exact sequence in Lemma 8.5.5 implies that

dimkx H
1
Fx
•
(Q, ad0 ρspin

x ) ≤ g.

Since Runiv
x ,Fx
•
is a local noetherian ring, its Krull dimension is bounded by the dimension of

its tangent space ([Stacks, Section 00KD]), i.e., dimRuniv
x ,Fx
•
≤ g. Moreover, we also know

from loc. cit. that the equality holds if and only if Runiv
x ,Fx
•
is regular. However, since Eoc

0 is
equidimensional and finite over W , we know that dimTx = dimW = g. Therefore,

g ≥ dimRuniv
x ,Fx
•
≥ dimTx = g

and Runiv
x ,Fx
•
is regular of dimension g. To conclude the proof, suppose a = ker(Runiv

x ,Fx
•
→ Tx ) is

non-zero and so we can identify Tx with Runiv
x ,Fx
•
/ a. Since Runiv

x ,Fx
•
is a regular local ring, it is a

domain ([Stacks, Lemma 00NP]). We then obtain a contradiction

g = dimRuniv
x ,Fx
•
> dimRuniv

x ,Fx
•
/ a = dimTx = g.
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Corollary 8.5.7. Suppose Hypothesis 1, Hypothesis 2, and Hypothesis 4 hold. Assume the
following also hold:

• The cuspidal automorphic representation πx of GL2g(AL) associated with ρx as in Hy-
pothesis 2 is regular algebraic and polarised (see, for example, [BLGGT14, §2.1]).

• The image ρx(GalL(ζp∞ )) is enormous (see [NT20, Definition 2.27]).

Then

(i) dimkx H
1
f (Q, ad0 ρspin

x ) = 0 and

(ii) Runiv
x,Fx
•
' Tx.

Proof. By the discussion in 8.2.6, we have

H1
f (Q, ad0 ρspin

x ) ⊂ H1
f (Q, ad0 ρx ).

However, the latter space vanishes by [NT20, Theorem 5.3] and so we conclude by Proposition
8.5.6.

8.5.8. We conclude this thesis with another situation that one can also deduce the vanishing
of the adjoint Bloch–Kato Selmer group. In this situation, one obtains a link between Ladj

and the adjoint Bloch–Kato Selmer group, which then (conjecturally) justifies the name for
Ladj.

Corollary 8.5.9. Suppose Hypothesis 1 and Hypothesis 4 hold. Suppose the weight map is
étale at x and suppose the canonical morphism Runiv

x,Fx
•
→ Tx is an isomorphism. Then,

H1
f (Q, ad0 ρspin

x ) = 0.

In particular, we have
ordx L

adj = dimkx H
1
f (Q, ad0 ρspin

x ).

Proof. Observe the following sequence of isomorphisms

Ω1
Tx /Rwt(x)

⊗Tx kx ' Ω1
Runiv

x ,Fx•
/Rwt(x)

⊗Runiv
x ,Fx•

kx

' Ω1
Runiv

x ,Fx•
/Rwt(x)

⊗̂Runiv
x ,Fx•

Runiv
x ,f ⊗Runiv

x ,f
kx

' Ω1
Runiv

x ,Fx•
/Rwt(x)

⊗̂Runiv
x ,Fx•

Runiv
x ,Fx
•
⊗Rwt(x)

kx ⊗Runiv
x ,f

kx

' Ω1
Runiv

x ,Fx•
/Rwt(x)

⊗Rwt(x)
kx ⊗Runiv

x ,f
kx

' Ω1
Runiv

x ,f /kx
⊗Runiv

x ,f
kx .

Here, the first isomorphism follows from the assumption Runiv
x ,Fx
•
' Tx and the third and the
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final isomorphism follows from Lemma 8.5.4. Therefore, we have

dimkx H
1
f (Q, ad0 ρspin

x ) = dimkx Homkx (Ω1
Runiv

x ,f /kx
⊗Runiv

x ,f
kx , kx )

= dimkx Homkx (Ω1
Tx /Rwt(x)

⊗Tx kx , kx )

= dimkx Ω1
Tx /Rwt(x)

⊗Tx kx

≤ lengthTx Ω1
Tx /Rwt(x)

.

However, since the weight map is étale at x , lengthTx Ω1
Tx /Rwt(x)

= 0. We then conclude the
result.

Remark 8.5.10. More generally, in light of the Bloch–Kato conjecture (Conjecture 1.2.2),
we expect that, if x is a smooth point,

ordx L
adj = dimkx H

1
f (Q, ad0 ρspin

x ).

In particular, since H1
f (Q, ad0 ρspin

x ) is expected to vanish, it seems fair to expect that, if x
is a smooth point with small slope and at which Ladj is defined, the weight map is étale at
x . When g = 1, this is [Bel12, Theorem 2.16].
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Appendix A

Log adic spaces

The notion of ‘log adic spaces’ was employed in the main body of this thesis in order to study
the boundaries of toroidally compactified Siegel modular varieties. For the convenience of
the readers, we briefly recall these notions in this appendix as well as some results that we
used in the main body of this thesis, especially in the construction of the overconvergent
automorphic sheaves and the construction of overconvergent Eichler–Shimura morphisms.
More precisely, we succinctly review log adic spaces and their (pro)-Kummer étale sites in
§A.1. In §A.2, we adopt the notion of Banach sheaves first introduced in [AIP15, §A] and
prove a (generalised) projection formula.

A.1 Review of log adic spaces

In this section, let K be a complete field extension of Qp and let OK = {x ∈ k : |x| ≤ 1}
be its ring of integers.

Definition A.1.1. Let X be a locally noetherian adic space over Spa(K,OK).

(i) A pre-log structure on X is a pair (MX , α) where MX is a sheaf of monoids on Xét

and α : MX → OXét is a morphism of sheaves of (multiplicative) monoids. It is called
a log structure if the induced morphism α−1(O×Xét

) → O×Xét
is an isomorphism. In

this case, the triple (X,MX , α) is called a log adic space. If the context is clear, we
simply say that X is a log adic space.

(ii) For a pre-log structure (MX , α) on X, the associated log structure is (aMX ,
aα)

where aMX is given by the pushout

α−1(O×Xét
) MX

O×Xét
aMX

p

and aα : aMX → OXét is the induced morphism.
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(iii) A morphism f : (Y,M Y , αY ) → (X,MX , αX) of log adic spaces is a morphism
f : Y → X of adic spaces together with a morphism of sheaves of monoids f ] :
f−1 MX →M Y such that the diagram

f−1 MX M Y

f−1 OXét OYét

f]

f−1αX αY

commutes. Moreover, the log structure associated with the pre-log structure f−1 MX →
f−1 OXét → OYét is called the pullback log structure, denoted by f ∗MX . We say
that f is strict if f ∗MX

∼−→M Y .

Definition A.1.2. (i) Let (X,MX , α) be a locally noetherian log adic space as above. Let
P be a monoid and let PX denote the associated constant sheaf of monoids on Xét. A
chart of X modeled on P is a morphism of sheaves of monoids θ : PX → MX

such that α(θ(PX)) ⊂ O+
Xét

and such that the log structure associated with the pre-log
structure α ◦ θ : PX → OXét is isomorphic to MX . We say that the chart is fs if P is
fine and saturated.

(ii) A locally noetherian log adic space is called an fs log adic space if it étale locally
admits charts modeled on fs monoids.

(iii) Let f : (Y,M Y , αY ) → (X,MX , αX) be a morphism between locally noetherian log
adic spaces. A chart of f consists of charts θX : PX →MX and θY : QY →M Y and
a homomorphism u : P → Q such that the diagram

PY
u //

θX
��

QY

θY
��

f−1 MX
f]
//M Y

commutes. We say that the chart is fs if both P and Q are fs. When the context is
clear, we simply say that u : P → Q is a chart of f .

Example A.1.3. Below we give two typical examples of locally noetherian fs log adic spaces.

(i) Let n > 0 be an integer. Consider the n-dimensional unit disc

Dn := Spa(K〈T1, . . . , Tn〉,OK〈T1, . . . , Tn〉),

equipped with the log structure associated with the pre-log structure induced by

Zn
≥0 → K〈T1, . . . , Tn〉, (a1, . . . , an) 7→ T a1

1 · · ·T ann .

Clearly, Dn is modeled on the fs chart Zn
≥0.
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(ii) Let X be a smooth rigid analytic variety over K, viewed as an adic space over
Spa(K,OK) via [Hub13, (1.1.11)]. Let D ⊂ X be a normal crossings divisor
in the sense of [DLLZ19, Example 2.3.17]. Namely, ι : D ↪→ X is a closed immersion
such that, analytic locally, X and D are of the form S × Dn and S × {T1 · · ·Tn = 0},
where S is a smooth connected rigid analytic variety and ι is the pullback of the natural
inclusion {T1 · · ·Tn = 0} ↪→ Dn. We equip X with the log structure

MX = {f ∈ OXét | f is invertible on X rD}

with α : MX → OXét being the natural inclusion. This is the divisorial log structure
associated with the divisor D. This log structure agrees with the pullback of the log
structure on Dn constructed above.

A.1.4. Log adic spaces in the example above are, in fact, log smooth log adic spaces. To
recall the definition of log smoothness, we first set up some notation.

For any monoid P and any commutative ring R, we write R[P ] for the associated monoid
algebra. Now, given a locally noetherian adic space X over Spa(K,OK) and a finitely
generated monoid P , we let (R〈P 〉, R+〈P 〉) be the completion of (R[P ], R+[P ]), for any
affinoid open subspace Spa(R,R+) ⊂ X. By gluing the morphisms Spa(R〈P 〉, R+〈P 〉) →
Spa(R,R+), we obtain a morphism X〈P 〉 → X. Moreover, we equip X〈P 〉 with the log
structure modeled on the chart P ; i.e., the one locally induced by P → R〈P 〉.

Definition A.1.5. Let f : Y → X be a morphism between locally noetherian fs log adic
spaces. We say that f is log smooth if étale locally f admits an fs chart u : P → Q such
that

(i) the kernel and the torsion part of the cokernel of ugp : P gp → Qgp are finite groups of
order invertible in OX ; and

(ii) f and u induce a morphism Y → X ×X〈P 〉 X〈Q〉 of log adic spaces whose underlying
morphism of adic spaces is étale.

A locally noetherian fs log adic space X is log smooth if the structure morphism X →
Spa(K,OK) is log smooth, where Spa(K,OK) is equipped with the trivial log structure.

A.1.6. The notion of ‘Kummer étaleness’ play an essential role in the main body of the
thesis. Let us now recall its definition.

Definition A.1.7. (i) An injective homomorphism u : P → Q of fs monoids is called
Kummer if for every a ∈ Q, there exists some integer n > 0 such that na ∈ u(P ).

(ii) A morphism (resp., finite morphism) f : Y → X of locally noetherian fs log adic spaces
is called Kummer étale (resp., finite Kummer étale) if étale locally on X and Y ,
f admits an fs chart u : P → Q which is Kummer with |Qgp/ugp(P gp)| invertible on
OY , and such that f and u induce a morphism Y → X ×X〈P 〉 X〈Q〉 of log adic spaces
whose underlying morphism of adic spaces is étale (resp., finite étale).

(iii) If a Kummer étale (resp., finite Kummer étale) morphism is strict, we say it is strictly
étale (resp., strictly finite étale).
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Remark A.1.8. By [DLLZ19, Lemma 4.1.10], if f : Y → X is a Kummer étale morphism
between locally noetherian fs log adic spaces and if X admits a chart modeled on a sharp
fs monoid P , then, étale locally on X and Y , the morphism f admits a Kummer fs chart
P → Q with Q being sharp.

Definition A.1.9. Let X be a locally noetherian fs log adic space.

(i) The Kummer étale site Xkét (resp., finite Kummer étale site Xfket) of X is
defined as follows. The underlying category is the full subcategory of the category of
locally noetherian fs log adic spaces consisting of objects that are Kummer étale (resp.,
finite Kummer étale) over X. The coverings are given by the topological coverings.

(ii) The structure sheaf OXkét (resp., integral structure sheaf O+
Xkét

) on Xkét is defined
to be the presheaf sending U 7→ OU(U) (resp., U 7→ O+

U(U)). We also write MXkét for
the presheaf sending U 7→ M U(U). By [DLLZ19, Theorem 4.3.1, Proposition 4.3.4],
these presheaves are indeed sheaves.

Proposition A.1.10 ([DLLZ19, Proposition 3.1.10]). Let X be an fs log adic space that is
log smooth over Spa(K,OK). Then, étale locally on X, there exists a toric chart X → E =
Spa(K〈P 〉,OK〈P 〉) for some sharp fs monoid P , i.e., a strictly étale morphism K → E =
Spa(K〈P 〉,OK〈P 〉) that is a composition of rational localisations and finite étale morphisms.

Proposition A.1.11 ([DLLZ19, Corollary 4.4.18]). Let X be a connected locally noetherian
fs log adic space and let ξ be a log geometric point (see [DLLZ19, Definition 4.4.2]). Then
there is an equivalence of categories

FX : Xfkét
'−→ πkét

1 (X, ξ)−FSets

sending Y 7→ Yξ := HomX(ξ, Y ), where the πkét
1 (X, ξ) − FSets denotes the category of

finite sets equipped with a continuous action of the Kummer étale fundamental group
πkét

1 (X, ξ).
Moreover, for any two log geometric points ξ and ξ′, the fundamental groups πkét

1 (X, ξ)
and πkét

1 (X, ξ′) are isomorphic. Hence, we may omit ‘ξ’ from the notation whenever the
context is clear.

Lemma A.1.12. Assume K is of characteristic 0. Let X and Y be locally noetherian fs log
adic spaces whose underlying adic spaces are smooth connected rigid analytic varieties over
K. Suppose the log structures on X and Y are the divisorial log structures associated with
the normal crossing divisors D ⊂ X and E ⊂ Y as in Example A.1.3 (ii). Let U = X rD
and V = Y r E. Suppose we have a finite Kummer étale surjective morphism f : Y → X
such that f−1(U) = V and that f |V : V → U is a finite étale Galois cover with Galois group
G. Then f is a finite Kummer étale Galois cover with Galois group G.

Proof. According to Proposition A.1.11, we have equivalences of categories

FX : Xfkét
'−→ πkét1 (X)−FSets

and
FU : Ufét

'−→ πét1 (U)−FSets .
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We have to show that G is a finite quotient of πkét1 (X) and, under the equivalence FX , Y
corresponds to the finite set G equipped with the natural πkét1 (X)-action.

By [DLLZ19, Proposition 4.2.1] and [Han20, Theorem 1.6], we have an equivalence of
categories between Xfkét and Ufét, under which Y corresponds to V . It also induces a natural
isomorphism πkét1 (X) ' πét1 (U) making the following diagram commutative.

Xfkét
' //

FX'
��

Ufét

FU'
��

πkét1 (X)−FSets ' // πét1 (U)−FSets

Since V corresponds to the finite set G under the equivalence FU , we are done.

A.1.13. One sees in the main body of the thesis that not only the notion of Kummer
étaleness plays an important role, but the terminology of ‘pro-Kummer étaleness’ is also an
essential player in the perfectoid method. Let us recall its definition.

Definition A.1.14. Let X be a locally noetherian fs log adic space over Spa(K,OK).

(i) The pro-Kummer étale site Xprokét of X is defined as follows. The underlying
category is the full subcategory of pro-Xkét consisting of cofiltered inverse limit Y =
lim←−i∈I Yi with Yi ∈ Xkét such that the transition morphisms Yi → Yj are finite Kummer
étale and are surjective for sufficiently large i. Such an inverse limit if called a pro-
Kummer étale presentation of Y . As for the coverings, we refer the readers to
[DLLZ19, Definition 5.1.1, 5.1.2] for details.

(ii) There is a natural projection of sites

ν : Xprokét → Xkét.

The structure sheaves on Xprokét are given by

O+
Xprokét

:= ν−1 O+
Xkét

, OXprokét := ν−1 OXkét

and the completed structure sheaves are given by

Ô
+

Xprokét
:= lim←−

n

(
OXprokét /p

n
)
, ÔXprokét := Ô

+

Xprokét
[1/p].

We also write MXprokét := ν−1(M két) together with a natural morphism α : M prokét →
OXprokét.

A.1.15. Similar to the pro-étale topology, the pro-Kummer étale topology admits a con-
venient basis consisting of the log affinoid perfectoid objects.

Definition A.1.16. An object U in Xprokét is called log affinoid perfectoid if it admits a
pro-Kummer étale presentation U = lim←−i∈I Ui such that

(i) There is an initial object 0 ∈ I;
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(ii) Each Ui = (Spa(Ri, R
+
i ) is affinoid and admits a chart modeled on a sharp fs monoid Pi

such that each transition morphism Uj → Ui is modeled on a Kummer chart Pi → Pj;

(iii) The affinoid algebra (R,R+) :=
(

lim−→i∈I (Ri, R
+
i )
)∧ is a perfectoid affinoid algebra,

where the completion is with respect to the p-adic topology;

(iv) The monoid P := lim−→i∈I Pi is n-divisible, for all n ∈ Z≥1. Namely, the n-th multiple
map [n] : P → P is surjective for all n ∈ Z≥1.

Such a presentation U = lim←−i∈I Ui is called a perfectoid presentation of U .

Proposition A.1.17 ([DLLZ19, Proposition 5.3.12]). The log affinoid perfectoid objects in
Xprokét form a basis of the pro-Kummer étale site.

Proposition A.1.18 ([DLLZ19, Theorem 5.4.3]). Let U ∈ Xprokét be a log affinoid perfectoid
object, with the associated perfectoid space Û = Spa(R,R+). Then

(i) For each n ∈ Z≥1, we have O+
Xprokét

(U)/pn ' R+/pn, and it is canonically almost
isomorphic to (O+

Xprokét
/pn)(U).

(ii) For each n ∈ Z≥1 and i ∈ Z≥1, H i(U,O+
Xprokét

/pn) is almost equal to zero. Con-

sequently, H i(U, Ô
+

Xprokét
) is almost equal to zero.

(iii) We have Ô
+

Xprokét
(U) ' R+ and ÔXprokét(U) ' R. Moreover, Ô

+

Xprokét
(U) is canonically

isomorphic to the p-adic completion of O+
Xprokét

(U).

Example A.1.19. We recall the following example from [DLLZ19, §6]. Let P be a sharp fs
monoid. Consider

E := Spa(Cp〈P 〉,OCp〈P 〉)

equipped with the natural log structure modeled on chart P . (If P = Zn
≥0, then E is just the

n-dimensional unit disc in Example A.1.3 (i).) For each m ∈ Z>0, let 1
m
P denote the sharp

fs monoid containing P such that the inclusion P ↪→ 1
m
P is isomorphic to the m-th multiple

map [m] : P → P . Define

Em := Spa(Cp〈
1

m
P 〉,OCp〈

1

m
P 〉)

equipped with the natural log structure modeled on the chart 1
m
P . Ifm|m′, there is a natural

finite Kummer étale morphism Em′ → Em modeled on the chart 1
m
P ↪→ 1

m′
P . According to

[DLLZ19, Proposition 4.1.6], the morphism Em → E is actually finite Kummer étale Galois
with Galois group

Γ/m := Hom
(
(

1

m
P )gp/P gp,µ∞

)
,

where µ∞ denotes the group of all roots of unity in Cp. Let PQ≥0
:= lim−→m

( 1
m
P ). It turns

out
Ẽ := lim←−

m

Em ∈ Eprokét
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is a log affinoid perfectoid object, with associated perfectoid space

̂̃E = Spa(Cp〈PQ≥0
〉,OCp〈PQ≥0

〉).

A.1.20. Following [DLLZ19, Definition 6.1.2], a pro-Kummer étale cover Y → X is called a
Galois cover with (profinite) Galois group G if there exists a presentation Y = lim←−i Yi
such that each Yi → X is a finite Kummer étale cover with Galois group Gi and G ' lim←−iGi.

For example, Ẽ is a Galois cover over E with profinite Galois group

Γ ∼= lim←−
m

Γ/m = lim←−
m

Hom((
1

m
P )gp/P gp,µ∞) ∼= Hom(P gp

Q≥0
/P gp,µ∞)

(see [DLLZ19, (6.1.4)]).

A.2 Banach sheaves and a (generalised) projection for-
mula

In this section, we introduce the notion of ‘Banach sheaves’ on the Kummer étale topology
of a log adic space, generalising the ones studied in [AIP15, §A] and [BP20, §2]. Then,
for certain admissible Banach sheaves, we prove a projection formula which will be used to
construct the overconvergent Eichler–Shimura morphism in Chapter 6.

A.2.1. Recall that a small Zp-algebra is a p-torsion free reduced ring R which is also a
finite Zp[[T1, ..., Td]]-algebra for some d ∈ Z≥0. It is a profinite flat Zp-module in the sense of
[CHJ17, Definition 6.1]. In particular, there exists a set of elements {eσ : σ ∈ Σ} in R such
that R '

∏
σ∈Σ Zp eσ equipped with the product topology. This set of elements {eσ : σ ∈ Σ}

is called a pseudobasis for R. Moreover, R is equipped with an adic profinite topology and
is complete with respect to the p-adic topology.

Throughout this section, we keep the following notations:

• Let R be a fixed small Zp-algebra and let a be a fixed ideal of definition containing p.

• All (log) adic spaces are assumed to be reduced and quasi-separated. In particular, X
either stands for a locally noetherian reduced adic space over (Cp,OCp) or a locally
noetherian reduced fs log adic space over (Cp,OCp). In the second case, we use Xan

to denote the underlying adic space of X.

• We adopt the notation of ‘mixed completed tensors’ −⊗̂′R and −⊗̂R as in Definition
3.1.5.

Lemma A.2.2. (i) Let X be a locally noetherian adic space over (Cp,OCp). Then the
presheaf O+

X ⊗̂
′
R (resp., OX ⊗̂R) sending any quasi-compact open subset U ⊂ X to

O+
X(U)⊗̂′R (resp., OX(U)⊗̂R) is a sheaf. In particular, OX ⊗̂R is a sheaf of Banach

Cp-algebras.
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(ii) Let X be a locally noetherian fs log adic space over (Cp,OCp). Then the presheaf
O+
Xkét
⊗̂′R (resp., OXkét ⊗̂R) sending any quasi-compact U ∈ Xkét to O+

Xkét
(U)⊗̂′R

(resp., OXkét(U)⊗̂R) is a sheaf. In particular, OXkét ⊗̂R is a sheaf of Banach Cp-
algebras.

(iii) Let X be a locally noetherian fs log adic space over (Cp,OCp). Then the presheaf
Ô

+

Xprokét
⊗̂′R (resp., ÔXprokét⊗̂R) sending any qcqs U ∈ Xprokét to Ô

+

Xprokét
(U)⊗̂′R (resp.,

ÔXprokét(U)⊗̂R) is a sheaf. In particular, ÔXprokét⊗̂R is a sheaf of Banach Cp-algebras.

Proof. Choosing a presentation R '
∏

σ∈Σ Zp eσ and using [CHJ17, Proposition 6.4], the
statements reduce to the sheafiness of the corresponding structure presheaves.

A.2.3. As already suggested by the title of this section, Banach modules are essential in
this business. For completeness, we recall such a notion and several related terminologies by
following [Buz07].

Let B be a Banach Qp-algebra and let B0 be an open and bounded Zp-submodule.

(i) A topological B-module M is called a Banach B-module if there exists an open
bounded B0-submodule M0 which is p-adically complete and separated such that M =
M0[1/p].

(ii) Let J be an index set. Consider the B-module B(J) consisting of sequences {bj : j ∈ J}
which converge to 0 with respect to the filter in J of the complement of the finite
subsets of J . It turns out B(J) is a Banach B-module. Indeed, let B0(J) be the p-adic
completion of the free B0-module

⊕
j∈J B0. Then we have B(J) ' B0(J)[1/p].

(iii) A topological B-module M is called an orthonormalisable Banach B-module (or,
ON-able Banach B-module for short) if there exists a topological isomorphism
M ' B(J) for some index set J . A topological B-module M is called a projective
Banach B-module if it is a direct summand (as a topological B-module) inside an
orthonormalisable Banach B-module.

Definition A.2.4. Let X be a locally noetherian adic space over (Cp,OCp).

(i) A sheaf of topological OX ⊗̂R-modules F is called a Banach sheaf of OX ⊗̂R-
modules if

• for every quasi-compact open subset U ⊂ X, F (U) is a Banach OX(U)⊗̂R-
module;

• there exists an affinoid open covering U = {Ui : i ∈ I} of X such that for every
i ∈ I and every affinoid open subset V ⊂ Ui, the continuous restriction map

F (Ui)⊗OX(Ui) OX(V )→ F (V )

induces a topological isomorphism

F (Ui)⊗̂OX(Ui) OX(V )→ F (V )
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where the completion is with respect to the p-adic topology. Such a covering U is called
an atlas of F .

(ii) A sheaf F as in (i) is called a projective Banach sheaf of OX ⊗̂R-modules if there
exists an atlas U = {Ui : i ∈ I} such that F (Ui)’s are projective Banach OX(Ui)⊗̂R-
modules.

(iii) A morphism between Banach sheaves of OX ⊗̂R-modules is a continuous map of sheaves
of topological OX ⊗̂R-modules.

(iv) Let F be a Banach sheaf of OX ⊗̂R-modules as in (i). An integral model of F is a
subsheaf F + of O+

X ⊗̂
′
R-modules such that

• for every quasi-compact open U ⊂ X, F +(U) is open and bounded in F (U);
• F = F +[1/p];
• there exists an atlas U = {Ui : i ∈ I} of F such that, for every i ∈ I and every
affinoid open subset V ⊂ Ui, the canonical map

F +(Ui)⊗̂O+
X(Ui)

O+
X(V )→ F +(V )

is an isomorphism, where the completion is with respect to the p-adic topology.

A.2.5. Analogously, we also have a Kummer étale version of Banach sheaves. Such a notion
is the one in which we are interested.

Definition A.2.6. Let X be a locally noetherian fs log adic space of (Cp,OCp).

(i) A sheaf of topological OXkét ⊗̂R-modules F is called a Kummer étale Banach sheaf
of OXkét ⊗̂R-modules if

• for every quasi-compact open U ∈ Xkét, F (U) is a Banach OXkét(U)⊗̂R-module;
• there exists an Kummer étale covering U = {Ui : i ∈ I} of X by affinoid Ui’s
such that for every Kummer étale map V → Ui with affinoid V , the continuous
restriction map

F (Ui)⊗OXkét (Ui) OXkét(V )→ F (V )

induces a topological isomorphism

F (Ui)⊗̂OXkét (Ui) OXkét(V )→ F (V )

where the completion is with respect to the p-adic topology. Such a covering U is called
a Kummer étale atlas of F .

(ii) A sheaf as in (i) is called a projective Kummer étale Banach sheaf of OXkét ⊗̂R-
modules if there exists a Kummer étale atlas U = {Ui : i ∈ I} such that F (Ui)’s are
projective Banach OXkét(Ui)⊗̂R-modules.

(iii) A morphism between Kummer étale Banach sheaves of OXkét ⊗̂R-modules is a continu-
ous map of topological OXkét ⊗̂R-modules.
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(iv) Let F be a Kummer étale Banach sheaf of OXkét ⊗̂R-modules as in (i). An integral
model of F is a subsheaf F + of O+

Xkét
⊗̂′R-modules such that

• for every quasi-compact U ∈ Xkét, F +(U) is open and bounded in F (U);

• F = F +[1/p];

• there exists a Kummer étale atlas U = {Ui : i ∈ I} of F such that, for every i ∈ I
and every affinoid V ∈ Ui,két, the canonical map

F +(Ui)⊗̂O+
Xkét

(Ui)
O+
Xkét

(V )→ F +(V )

is an isomorphism, where the completion is with respect to the p-adic topology.

A.2.7. Clearly, an analytic refinement of an atlas (resp., a Kummer étale refinement of a
Kummer étale atlas) is also an atlas (resp., a Kummer étale atlas). Also notice that it is
not true that a Banach sheaf (resp., Kummer étale Banach sheaf) on an affinoid adic space
(resp., affinoid log adic space) is the sheaf associated with its global section. Nonetheless,
we have the following result.

Lemma A.2.8. Let (A,A+) be a complete reduced Tate algebra over (Cp,OCp) and let M
be a projective Banach A⊗̂R-module.

(i) Let X = Spa(A,A+) be the associated adic space. Then the presheaf M⊗̂A OX sending
an affinoid open subset Spa(B,B+) ⊂ X to M⊗̂AB is a sheaf.

(ii) Suppose X = Spa(A,A+) is equipped with an fs log structure. Then the presheaf
M⊗̂A OXkét sending an affinoid open subset Spa(B,B+) ∈ Xkét to M⊗̂AB is a sheaf.

Proof. It immediately reduces to the case where M is an orthonormalisable Banach A⊗̂R-
module; i.e.,M ' (A⊗̂R)(J) for some index set J . It then reduces to the case where |J | = 1.
Then the lemma follows from Lemma A.2.2.

Corollary A.2.9. Let X be a locally noetherian fs log adic space over (Cp,OCp) and let
F be a projective Banach sheaf of OXan ⊗̂R-modules with atlas U = {Ui : i ∈ I}. Suppose
F admits an integral model F +. Consider the p-adically completed sheaf of OXkét-modules
F két associated with F ; namely,

F két :=

(
lim←−
m

F +⊗O+
Xan

O+
Xkét

/pm

)
[
1

p
].

Then F két is a projective Kummer étale Banach sheaf of OXkét ⊗̂R-modules with Kummer
étale atlas U = {Ui : i ∈ I}, where each Ui is equipped with the induced log structure from
X. Moreover, for every affinoid V ∈ Ui,két, we have

F két(V ) ' F (Ui)⊗̂OXan (Ui) OXkét(V ).

Proof. To prove the Corollary, we need the following lemma.

156



Lemma A.2.10. Let X be a locally noetherian fs log adic space over (Cp,OCp) and let
U = {Ui : i ∈ I} be a Kummer étale covering of X by affinoid Ui’s. Consider the full
subcategory BU of Xkét consisting of those affinoid V ∈ Xkét such that the map V → X
factors through V → Ui → X for some i ∈ I. Then BU forms a basis for the site Xkét.

Proof. We have to prove that every U ∈ Xkét admits a covering by such V ’s and that BU is
closed under fibred products. Both statements are clear.

Let BU be the basis of Xkét associated with the covering U = {Ui : i ∈ I} as in the lemma.
It suffices to show that the assignment

V 7→ F (Ui)⊗̂OXan (Ui) OXkét(V ),

for every V ∈ BU which factors through V → Ui → X, defines a sheaf on BU. (Notice that
this assigment is independent of the choice of i and hence well-defined.) The sheafiness of
this assignment follows from Lemma A.2.8 and the sheafiness of F .

Definition A.2.11. Let X be a locally noetherian fs log adic space over (Cp,OCp) and let
F be a projective Kummer étale Banach sheaf of OXkét ⊗̂R-modules. Suppose it admits an
integral model F + and, for every m ∈ Z≥1, we write F +

m := F + / am. We say that F is
admissible if there exist

• a Kummer étale atlas U = {Ui : i ∈ I} of X such that each F +(Ui) is the p-adic
completion of a free O+

Xkét
⊗̂′R-module; and

• for every m ∈ Z≥1 and d ∈ Z≥1, a subsheaf F +
m,d ⊂ F +

m which is a coherent
O+
Xkét
⊗Zp(R/ a

m)-module subject to the covering U,

such that we have F + ' lim←−m F +
m and F +

m ' lim−→d
F +

m,d for every m ∈ Z≥1.
Such a Kummer étale atlas is called an admissible atlas for F .

Lemma A.2.12. Let h : Y → X be a finite Kummer étale morphism between locally noeth-
erian fs log adic spaces over (Cp,OCp). Suppose F is an admissible Kummer étale Banach
sheaf of OYkét ⊗̂R-modules. Then h∗F is an admissible Kummer étale Banach sheaf of
OXkét ⊗̂R-modules.

Proof. Suppose U = {Ui : i ∈ I} is an admissible atlas for F on Y . By Definition A.1.7
and [DLLZ19, Proposition 4.1.6], the finite Kummer étale morphism h : Y → X is, Kummer
étale locally on X, isomorphic to a direct sum of isomorphisms. Therefore, one can find an
affinoid Kummer étale covering {Vj : j ∈ J} of X such that, for every i ∈ I and j ∈ J ,
Ui×X Vj is isomorphic to a disjoint union of finite copies of Ui’s. Consequently, the Kummer
étale covering V = {Ui ×X Vj : i ∈ I, j ∈ J} is a desired admissible atlas for h∗F .

A.2.13. If F is a Kummer étale Banach sheaf of OXkét ⊗̂R-modules with an integral struc-
ture F +. We write

F̂
+

:= lim←−
m

(
F +⊗O+

Xkét
O+
Xprokét

/pm
)
' lim←−

m

(
F +⊗(O+

Xkét
⊗̂′R)(O

+
Xprokét

⊗̂′R)/pm
)
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and F̂ := F̂
+

[1/p]. They are sheaves of Ô
+

Xprokét
⊗̂′R-modules and ÔXprokét⊗̂R-modules,

respectively. The main result of this section is the following.

Proposition A.2.14 (Generalised projection formula). Let X be a locally noetherian fs
log adic space which is log smooth over (Cp,OCp) and let F be a projective Kummer étale
Banach sheaf of OXkét ⊗̂R-modules. Suppose F is admissible. Then, for every j ∈ Z≥0,
there is a natural isomorphism of Kummer étale Banach sheaves of OXkét ⊗̂R-modules

F ⊗OXkét
Rjν∗ÔXprokét

∼−→ Rjν∗F̂ .

A.2.15. The strategy to prove the proposition is simple. Recall that for any ringed site, the
projection formula holds for coherent sheaves (see, for example, [Stacks, Tag 01E6]). Thus,
the projection formula holds for each F +

m,d with respect to the ringed site (Xkét,O
+
Xkét
⊗Zp(R/ a

m)).
As F + ' lim←−m lim−→d

F +
m,d, we would like to argue that the isomorphism still holds after

passing to the limits. This is in general false. However, with the additional local information
in the definition of admissibility, we can deduce the projection formula after passing to the
limits and inverting p.

The following lemmas are needed in the proof Proposition A.2.14.

Lemma A.2.16. Let X be a locally noetherian fs log adic space over (Cp,OCp). Let H be
an Ô

+

Xprokét
⊗̂R-module and let H m := H / am for every m ∈ Z≥1. Suppose

• H = lim←−m H m; and

• for every m ∈ Z≥1, there exists a sequence of finite free Ô
+

Xprokét
⊗Zp (R/ am)-submodules

{H m,d : d ∈ Z≥0} of H m such that H m ' lim−→d
H m,d.

Then, for every j ∈ Z≥0, the natural map

Rjν∗H → lim←−
m

Rjν∗H m

is an almost isomorphism.

Proof. We have to show the almost vanishing of the higher inverse limit Rj lim←−m H m. Ap-
plying an almost version of [Sch13, Lemma 3.18], it suffices to show that, for every log affinoid
perfectoid object U ∈ Xprokét, there are almost isomorphisms

R1 lim←−
m

H m(U)a = 0

and
Hj(U,H m)a = 0

for every j ∈ Z≥0. The first almost vanishing follows from the Mittag-Leffler condition. To
obtain the second almost isomorphism, observe that

Hj(U,H m) ' lim−→
d

Hj(U,H m,d).
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and each Hj(U,H m,d) is almost zero by [DLLZ19, Theorem 5.4.3].

Lemma A.2.17. Let X be a locally noetherian fs log adic space which is log smooth over
(Cp,OCp). If G is an projective Kummer étale Banach sheaf of OXkét ⊗̂R-modules, then,
for every j ∈ Z≥0, the sheaf Rjν∗Ĝ is also a projective Kummer étale Banach sheaf of
OXkét ⊗̂R-modules.

Proof. By considering a Kummer étale atlas for G and writing R '
∏

σ∈Σ Zp eσ, we imme-
diately reduce to the case where

• X is affinoid and admits a toric chart X → E = Spa(Cp〈P 〉,OCp〈P 〉) for some sharp
fs monoid P ;

• R = Zp and a = (p);

• G is globally projective; i.e., G (X) is a projective Banach OXkét(X)-module and for
every affinoid U ∈ Xkét, we have a natural isomorphism

G (X)⊗̂OXkét (X) OXkét(U)
∼−→ G (U).

We further reduce to the case where G is globally orthonormalisable; namely, G ' OXkét(J)
for some index set J . Let G + be the p-adic completion of the free O+

Xkét
-module

⊕
J O+

Xkét

and let G +
m := G + /pm '

⊕
J O+

Xkét
/pm. By Lemma A.2.16, we have a natural almost

isomorphism
Rjν∗Ĝ

+ ∼−→ lim←−
m

Rjν∗Ĝ
+

m

where Ĝ
+

m = Ĝ
+
/pm '

⊕
J O+

Xprokét
/pm.

We claim that, in this case, the sheaf Rjν∗Ĝ is isomorphic to (∧j(OXkét)
n) (J) for some

n ∈ Z≥1. For this, we follow the strategy as in the proof of [DRW22, Lemma A.2.1].
Consider the collection BX used in the proof of [DRW22, Lemma A.2.1]. In particular,

for every V ∈ BX , the map V → X admits a Kummer chart P → P ′ which is isomorphic
to the m-th multiple map [m] : P → P . Moreover, the injection P → P ′ induces an
injection Γ′ → Γ, where Γ and Γ′ are the profinite Galois groups as in A.1.20. If we fix an
identification Γ ' Ẑ(1)n, the injection Γ′ → Γ can be identified with the m-th multiple map
[m] : Ẑ(1)n → Ẑ(1)n.

By the calculation in [DRW22, Lemma A.2.1], we obtain an almost injection(
∧j(O+

Xkét
/pm(V ))n

)a ' Hj(Γ,O+
Xkét

/pm(V ))a ↪→ Hj
prokét(V,O

+
X /p

m)a

with cokernel killed by p. Taking direct sum and then inverse limit, we obtain an almost
injection

lim←−
m

⊕J
(
∧j(O+

Xkét
/pm(V ))n

)a
↪→ lim←−

m

⊕JHj
prokét(V,O

+
X /p

m)

with cokernel killed by p. Inverting p, we obtain an isomorphism(
∧j(O+

Xkét
(V ))n

)
(J) ' lim←−

m

⊕JHj
prokét(V,O

+
X /p

m)
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However, note that the sheaf

Rjν∗Ĝ '

(
lim←−
m

Rjν∗Ĝ
+

m

)
[
1

p
]

is just the sheafification ofW 7→ lim←−m⊕JH
j
prokét(W,O

+
X /p

m). Consequently, Rjν∗Ĝ coincides
with the sheaf

(
∧j(O+

Xkét
)n
)

(J) which is clearly an ON-able Banach sheaf of OXkét ⊗̂R-
modules.

Proof of Proposition A.2.14. We split the proof into three steps.

Step 1. We first verify that both F ⊗OXkét
Rjν∗ÔXprokét and Rjν∗F̂ are projective Kummer

étale Banach sheaf of OXkét ⊗̂R-modules.
Indeed, the statement for F ⊗OXkét

Rjν∗ÔXprokét follows from the locally finite freeness
of Rjν∗ÔXprokét (see [DRW22, Lemma A.2.1]) and the statement for Rjν∗F̂ follows from
Lemma A.2.17. In fact, we can be more precise. Consider an affinoid Kummer étale covering
U = {Ui : i ∈ I} satisfying:

• U is an admissible atlas of F ;

• each Ui admits a toric chart Ui → Spa(Cp〈Pi〉,OCp〈Pi〉) for some sharp fs monoid.

Then, by the proof of [DRW22, Lemma A.2.1] and Lemma A.2.17, we see that U is a
Kummer étale atlas for both F ⊗OXkét

Rjν∗ÔXprokét and Rjν∗F̂ . (In fact, they are both
orthonormalisable on each Ui.) For the rest of the proof, we fix such a cover U.

Step 2. We construct two natural morphisms

Ψ : F +⊗O+
Xkét

⊗̂′RR
jν∗

(
Ô

+

Xprokét
⊗̂′R

)
→ lim←−

m

Rjν∗F̂
+

m

and
Θ : Rjν∗F̂

+
→ lim←−

m

Rjν∗F̂
+

m.

where
F̂

+

m = F +
m⊗O+

Xkét
Ô

+

Xprokét
= F̂

+
/ am .

There is clearly such a map Θ. It remains to construct Ψ.
For every m ∈ Z≥1 and d ∈ Z≥0, we write

F̂
+

m,d := F +
m,d⊗O+

Xkét
⊗Zp (R/ am)

(
Ô

+

Xprokét
⊗Zp (R/ am)

)
.

By the usual projection formula for ringed sites (see, for example, [Stacks, Tag 01E6]), we
obtain a canonical morphism

Ψm,d : F +
m,d⊗O+

Xkét
⊗Zp (R/ am)R

jν∗

(
Ô

+

Xprokét
⊗Zp (R/ am)

)
→ Rjν∗F̂

+

m,d.
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Taking direct limit with respect to d, followed by taking inverse limit with respect to m, we
obtain a canonical morphism

Ψ′ : lim←−
m

(
F +

m⊗O+
Xkét

⊗Zp (R/ am)R
jν∗

(
Ô

+

Xprokét
⊗Zp (R/ am)

))
→ lim←−

m

Rjν∗F̂
+

m.

On the other hand, we have natural morphisms

F +⊗O+
Xkét

⊗̂′RR
jν∗

(
Ô

+

Xproét
⊗̂′R

)
F +⊗O+

Xkét
⊗̂′R lim←−m

(
Rjν∗

(
Ô

+

Xprokét
⊗Zp (R/ am)

))

(lim←−m F +
m)⊗O+

Xkét
⊗̂′R lim←−m

(
Rjν∗

(
Ô

+

Xprokét
⊗Zp (R/ am)

))

lim←−m
(
F +

m⊗O+
Xkét

⊗Zp (R/ am)R
jν∗

(
Ô

+

Xprokét
⊗Zp (R/ am)

))Ψ′′

Composing with Ψ′, we obtain the desired morphism

Ψ : F +⊗O+
Xkét

⊗̂′RR
jν∗

(
Ô

+

Xprokét
⊗̂′R

)
→ lim←−

m

Rjν∗F̂
+

m.

Step 3. For simplicity, we write G i, G +
i , and G +

i,m for F |Ui , F + |Ui , and F +
i,m |Ui , respect-

ively. Since G +
i,m is a free O+

Ui,két
⊗(R/ am)-module, we can express G +

i,m as a filtered direct
limit of finite free submodules G +

i,m,α.
We can repeat the construction in Step 2 to G +

i , G +
i,m, and G +

i,m,α. In particular, we
obtain maps

Ψi : G +
i ⊗O+

Ui,két
⊗̂′RR

jν∗

(
Ô

+

Ui,prokét
⊗̂′R

)
→ lim←−

m

Rjν∗Ĝ
+

i,m

and
Θi : Rjν∗Ĝ

+

i → lim←−
m

Rjν∗Ĝ
+

i,m

where
Ĝ

+

i,m = G +
i,m⊗O+

Ui,két
Ô

+

Ui,prokét
= Ĝ

+

i / a
m .

Moreover, we have a commutative diagram

F + |Ui ⊗(O+
Ui,két

⊗̂′R) R
jν∗

(
Ô

+

Ui,prokét
⊗̂′R

)
lim←−mR

jν∗F̂
+

m|Ui Rjν∗F̂
+
|Ui

G +
i ⊗(O+

Ui,két
⊗̂′R)R

jν∗

(
Ô

+

Ui,prokét
⊗̂′R

)
lim←−mR

jν∗Ĝ
+

i,m Rjν∗Ĝ
+

i

Ψ|Ui

' '

Θ|Ui

'

Ψi Θi

The square on the left is commutative because the cofiltered systems {F +
m,d |Ui} and {G

+
i,m,α}
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are cofinal to each other. By Lemma A.2.16, Θi = Θ|Ui is an almost isomorphism. This im-
plies that Θ[1/p] is an isomorphism of projective Kummer étale Banach sheaves of OXkét ⊗̂R-
modules.

We claim that Ψi also becomes an isomorphism after inverting p. By construction, Ψi

factors as the composition of

Ψ′′i : G +
i ⊗O+

Ui,két
⊗̂′RR

jν∗

(
Ô

+

Ui,prokét
⊗̂′R

)
→ lim←−

m

(
G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
Rjν∗Ô

+

Ui,prokét
⊗Zp (R/ am)

))
and a canonical isomorphism Ψ′i given by the composition

lim←−
m

(
G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
Rjν∗Ô

+

Ui,prokét
⊗Zp (R/ am)

))

lim←−
m

(
lim−→
α

G +
i,m,α⊗O+

Ui,két
⊗Zp (R/ am)

(
Rjν∗Ô

+

Ui,prokét
⊗Zp (R/ am)

))

lim←−
m

lim−→
α

Rjν∗

(
G +
i,m,α⊗O+

Ui,két
⊗Zp (R/ am)

(
Ô

+

Ui,prokét
⊗Zp (R/ am)

))

lim←−
m

lim−→
α

Rjν∗Ĝ
+

i,m,α lim←−mR
jν∗Ĝ

+

i,m

Ψ′i

'

'

where the second isomorphism follows from the fact that each G +
i,m,α is a finite free O+

Ui,két
⊗Zp(R/ a

m)-
module.

It remains to prove that Ψ′′i becomes an isomorphism after inverting p. Recall that Ui
admits a toric chart Ui → Spa(Cp〈P 〉,OCp〈P 〉) for some sharp fs monoid P . By choosing
an identification Γ := Hom(P gp

Q≥0
/P gp,µ∞) ' Ẑ(1)n, [DRW22, Lemma A.2.1] yields an

isomorphis Rjν∗ÔUi,prokét ' ∧j(OUi,két)
n.

On one hand, by [DRW22, Proposition A.2.3], we have

G +
i ⊗O+

Ui,két
⊗̂′RR

jν∗

(
Ô

+

Ui,prokét
⊗̂′R

)
[
1

p
] = G i⊗OUi,két ⊗̂R

Rjν∗

(
ÔUi,prokét⊗̂R

)
' G i⊗OUi,két ⊗̂R

(
(Rjν∗ÔUi,prokét)⊗̂R

)
= G i⊗OUi,két

Rjν∗ÔUi,prokét

' G i⊗OUi,két
∧j (OUi,két)

n
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On the other hand, if we write R/ am ' ⊕σ∈Σm Z /pσ, then we have

Rjν∗Ô
+

Ui,prokét
⊗Zp (R/ am) ' ⊕σ∈ΣmR

jν∗(O
+
Ui,prokét

/pσ).

By [DRW22, Lemma A.2.1 (iii)], there is an almost injection

∧j(O+
Ui,két

/pσ)n ↪→ Rjν∗(O
+
Ui,prokét

/pσ)

whose cokernel is killed by p. This yields an almost injection given by the composition

G +
i ⊗O+

Ui,két

(
∧j(O+

Ui,két
)n
)

lim←−m G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
∧j(O+

Ui,két
⊗Zp(R/ a

m))n
)

lim←−m G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
⊕σ∈Σm ∧j (O+

Ui,két
/pσ)n

)

lim←−m G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
⊕σ∈ΣmR

jν∗(O
+
Ui,prokét

/pσ)
)

lim←−m G +
i,m⊗O+

Ui,két
⊗Zp (R/ am)

(
Rjν∗Ô

+

Ui,prokét
⊗Zp (R/ am)

)'

with cokernel killed by p.
Consequently, both sides of Ψ′′i are isomorphic to G i⊗OUi,két

(
∧j(OUi,két)

n
)
after inverting

p, and one checks that Ψ′′i [1/p] is just the identity map on G i⊗OUi,két

(
∧j(OUi,két)

n
)
. This

finishes the proof.

Corollary A.2.18. Let X be a locally noetherian fs log adic space which is log smooth over
(Cp,OCp). Let F be an admissible projective Kummer étale Banach sheaf of OXkét ⊗̂R-
modules, with the corresponding integral structure F +. Suppose F + is equipped with an
O+
Xkét
⊗̂′R-linear action of a finite group G. This induces an OXkét ⊗̂R-linear action of G on

F . Then the subsheaf of G-invariants FG also satisfies the generalised projection formula.
More precisely, we have a natural isomorphism

FG⊗OXkét
Riν∗ÔXprokét

∼−→ Riν∗F̂
G

Proof. By Proposition A.2.14, we have an isomorphism

F ⊗OXkét
Riν∗ÔXprokét

∼−→ Riν∗F̂ .

Taking the G-invariants, we obtain an isomorphism

FG⊗OXkét
Riν∗ÔXprokét

∼−→
(
Riν∗F̂

)G
.
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It remains to show
(
Riν∗F̂

)G
' Riν∗F̂

G. Indeed, consider the following commutative
diagram

OXprokét [G]−Mod OXkét [G]−Mod

OXprokét −Mod OXkét −Mod

ν∗

(−)G (−)G

ν∗

Notice that the higher right derived functors of both of the vertical arrows vanish as G
is a finite group and the base field is of characteristic zero. Now, applying the standard
Grothendieck spectral sequence argument to both compositions ν∗ ◦ (−)G and (−)G ◦ ν∗, we
obtain the desired commutativity of Riν∗ and (−)G.
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