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ABSTRACT

Arithmetic aspects of GSp,;: p-adic families of Siegel modular forms, eigenvari-
eties and families of Galois representations

Ju-Feng Wu, Ph.D.
Concordia University, 2022

This thesis reports the three articles [Wu21; DRW22; Wu22| written by the author and his
collaborators. These three papers concern various arithmetic aspects of the algebraic group
GSp,,, which are interrelated under the theme of eigenvarieties.

We first present a construction of sheaves of overconvergnet Siegel modular forms by
using the perfectoid method, originally introduced by Chojecki-Hansen—Johansson for auto-
morphic forms on compact Shimura curves over Q. These sheaves are then proven to be
isomorphic to the ones constructed by Andreatta—Iovita—Pilloni. Using perfectoid methods,
we establish an overconvergent Eichler—Shimura morphism for Siegel modular forms, gen-
eralising the result of Andreatta—lovita—Stevens for elliptic modular forms. More precisely,
we establish a Hecke- and Galois-equivariant morphism from the overconvergent cohomology
groups associated with GSp,, to the space of overconvergent Siegel modular forms.

It was asked by Andreatta—lovita—Pilloni whether the classical points of the eigenvariety
parametrising the finite-slope cuspidal Siegel eigenforms are étale over the weight space.
Inspired by Kim’s pairing presented in the book of Bellaiche, which allows one to study the
ramification locus of the eigencurve, we generalise Kim’s pairing to study the ramification
locus of the cuspidal eigenvariety for GSp,,, providing some partial answer to the question
asked by Andreatta—Iovita—Pilloni.

Finally, it is expected that such a pairing not only allows one to study the geometry of
the eigenvariety but also carries interesting arithmetic information. Inspired by the book of
Bellaiche-Chenevier, we study families of Galois representations over the cuspidal eigenvari-
ety for GSp,,. Under some reasonable hypotheses as well as some conditions, we deduce the
vanishing of the adjoint Selmer group associated with the Galois representation attached to
a cuspidal eigenclass in the cohomology of the Siegel modular variety.
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Chapter 1

Introduction

1.1 An overview on eigenvarieties

1.1.1. After its initiation in [Ser73; Kat73|, the theory of p-adic modular forms has been
explored further by mathematicians and is now playing an important role in modern studies
of algebraic number theory and arithmetic geometry. One of the most inspiring development
in the theory of p-adic modular forms is the notion of p-adic families of modular forms.
In [Hid86], H. Hida established families of ordinary modular forms, which are now known
as Hida families. Later, R. Coleman introduced overconvergent modular forms in [Col95;
Col97|. He and B. Mazur then discovered in [CM98] that overconvergent modular eigenforms
can be parametrised by a rigid analytic curve, now known as the eigencurve.

It is well-known that the geometry of the eigencurve is quite mysterious. For example, it
is still unknown whether the eigencurve admits finite or infinite irreducible components. On
the other hand, the geometry of the eigencurve is known to encode interesting arithmetic
information. For example, the information about the adjoint L-value and the adjoint Bloch—
Kato Slemer groups, which shall be discussed in more details.

It is a natural question to ask whether the notion of p-adic families of modular forms can
be generalised to other automorphic forms. The generalisation of Hida families are given by
Hida himself in [Hid02| for automorphic forms over Shimura varieties of PEL-type. The case
for Siegel modular forms is rewritten in more details in [Pil12].

On the other hand, the work of V. Pilloni ([Pil13]) and the work of F. Andreatta, A. Iovita
and G. Stevens ([AIS10; AIS14|) provided a ‘geometrisation’ of Coleman theory; more pre-
cisely, they constructed sheaves of overconvergent modular forms. Such an idea has then been
established further by Andreatta—Iovita—Pilloni in [AIP15] where they constructed sheaves of
overconvergent Siegel modular forms. Consequently, they produced an eiquidimensional re-
duced eigenvariety 50AIP that parametrises overconvergent cuspidal Siegel eigenforms. They
then raised the following question regarding the geometry of the eigenvariety SOAIP.

Question 1.1.2 ([AIP15, Open problem 1|). Are the classical points in 5 unramified over
the weight space?

1.1.3. In another direction, Stevens introduced the notion of overconvergent modular symbols
in [Ste94| as a new tool to study the eigencurve, method of study which was taken over by
other authors (for example, [Parl0; Bell2; Bel21]).
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The idea of overconvergent modular symbols turns out to be a powerful tool for gener-
alisations. A. Ash and Stevens’s study of overconvergent cohomology groups in [ASO8| was
then applied to the construction of eigenvarieties for general reductive groups in E. Urban’s
paper [Urbl1l| and D. Hansen’s article [Han17]. Recently, C. Johansson and J. Newton fur-
ther carried out details of such a formalism in the language of adic spaces in [JN19|, which
consequently allows one to read information of the p = 0 loci of the eigenvaireties.

1.1.4. One sees from above that the notion of eigenvarieties can be either constructed from
families of overconvergent automorphic forms or from families of overconvergent cohomology
groups. One would expect the existence of a comparison between these two constructions. In
other words, one would expect a comparison morphism between families of overconvergent
cohomology groups and families of overconvergent automorphic forms, which is Hecke- (and
Galois-) equivariant, i.e., an overconvergent Fichler—Shimura morphism.

Such a comparison for GLy) q is first discovered by Andreatta-lovita-Stevens in [AIP15],
where they established a Hecke- and Galois-equivariant morphism from the space of over-
convergent modular symbols to the space of overconvergent modular forms. Their method
are taken to study such a comparison for automorphic forms over other Shimura curves by
D. Barrera and S. Gao in [BG17; BG21|.

In the article of P. Chojecki, Hansen and Johansson (J[CHJ17]), they re-established such
a comparison for Shimura curves over Q via perfectoid methods. Roughly speaking, the
overconvergent Eichler-Shimura morphism of op. cit. follows from the following steps:

(I) Use the perfectoid Shimura variety introduced by P. Scholze in [Sch15] to construct the
sheaves over overconvergent automorphic forms. These sheaves are then proven to be
isomorphic to the aforementioned ones constructed by Pilloni and Andreatta—Iovita—
Stevens.

(IT) Compute the overconvergent cohomology groups via the language of pro-étale sites. In
particular, there exist sheaves on the proétale site of the Shimura curve that compute
the overconvergent cohomology groups.

(III) Establish a Hecke-equivariant morphism from the sheaves that computes the overcon-
vergent cohomology groups to the sheaves of overconvergent automorphic forms on the
proétale site of the Shimura curve. The desired Hecke- and Galois-equivariant over-
convergent Eichler—Shimura morphisms are then given by these morphisms on sheaves
after taking cohomology.

1.2 An overview on Bloch—Kato conjecture and the ad-
joint L-values

1.2.1. Fix a (rational) prime number p and let Sy,q be a finite set of (rational) prime numbers
such that p € Spaq. Let Galgg,,, be the Galois group of the maximal extension of Q that
is unramified outside Sp.q. Let F' be a finite extension of Q,, and suppose we are given a

representation
p: Galgs,., = GL,(F)
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which is de Rham at p. Denote by ad p the adjoint representation associated with p, i.e.,
the underlying space of ad p is the Lie algebra gl (F') equipped with the adjoint action of
Galgg,., induced by p. Let ad’p be the subrepresentation of trace-zero part in adp. S.
Bloch and K. Kato defined in [BK07| a certain subspace

Hi(Q,ad’ p) ¢ H'(Galgg,,,.ad’ p)

in the continuous Galois cohomology group H'(Galgs,.,,ad p), which is now known as the
adjoint Bloch—Kato Selmer group.

Conjecture 1.2.2 (Bloch-Kato). Suppose p is absolute irreducible and denote by L(ad” p, s)
the L-function attached to the Galois representation ad” p. Then, we expect the following:

(i) We have ord,—; L(ad’ p, s) = dimp H}(Q,ad" p).
(ii) The adjoint Bloch-Kato Selmer group H}(Q, ad” p) vanishes.

1.2.3. When n = 1, the conjecture is a theorem of C. Soulé [Sou81| and when n = 2, the
conjecture is a consequence of the ‘R = T theorem’ obtained by the Taylor-Wiles patching
method (see, for example, [Hid16]). More precisely, it is shown in loc. cit. that if p is the
Galois representation attached to a cuspidal (elliptic) eigenform f, the adjoint L-value of
L(ad” p, s) can be written as a formula related to the Petersson inner product of f with itself
([op.cit., Theorem 5.1 & Theorem 5.2|). However, little do we know about other cases.

The idea of using pairing can be seen in the work of A. Genestier and J. Tilouine (|GT05]).
More precisely, consider the Siegel modular variety X parametrising abelian surfaces, the
author of loc. cit. considered a pairing on the (étale) cohomology group of X and related
the value of this pairing with the length of certain Slemer group as an application of the
‘R =T theorem’ coming from the Taylor—Wiles patching method ([op. cit., §12|). However,
it is unknown whether the value of this pairing can be directly related to the adjoint L-value.

1.2.4. On the other hand, there is a p-adic variant of the philosophy above. In his Ph.D.
thesis ([Kim06]), W. Kim produced a pairing on the overconvergent cuspidal modular sym-
bols and proved that this pairing p-adically interpolates the adjoint L-values. He moreover
used this pairing to study the ramification locus of the cuspidal eigencurve over the weight
space. Such a result consequently suggests that one can read information about the geometry
of the cuspidal eigencurve over the weight space via some information of the Bloch—Kato
Selmer group attached to the adjoint Galois representation of a cuspidal eigenform and vice
versa. We remark that Kim’s pairing and results are rewritten in a more conceptual way by
J. Bellaiche in [Bel21].

Kim’s pairing and the result of Genestier-Tilouine suggest a direction for the generalisa-
tion to higher dimensional cases. More precisely, one would expect the existence of a pairing
on the overconvergent parabolic cohomology groups of GSp,, such that

e its value allows one to detect some geometric information of the cuspidal eigenvariety
over the weight space;

e its value also provides information about the adjoint Selmer group (and so some (con-
jectural) information of the adjoint L-value).

3



1.3 Motivations and main results

1.3.1. The present thesis is motivated by the aforementioned problems. That is, on one hand,
we would like to study the comparison between the overconvergent cohomology groups and
the overconvergent automorphic forms; on the other hand, we would like to generalise Kim’s
pairing to GSp,,, providing a way to study the geometry of the cuspidal eigenvarieties as
well as a way to study the arithmetic information of the adjoint Bloch-Kato Selmer groups.
More precisely, we ask the following questions:

Question 1.3.2. (i) Can the perfectoid method used in [CHJ17] be generalised to the
Siegel case? That is, can one use perfectoid method to construct sheaves of overconver-
gent Siegel modular forms and establish overconvergent Fichler—Shimura morphisms in
this situation?

(ii) Can one generalise Kim’s pairing to GSpy,, providing a way to answer Andreatta—
Tovita—Pilloni’s question (Question 1.1.2) as well as showing a relation between the
adjoint Bloch—Kato Selmer groups and the geometry of the eigenvarieties in this case?

1.3.3. The answers to the questions are positive. More precisely, (i) is the result of the joint
work with H. Diao and G. Rosso ([DRW22]) while the pairing we wished to obtain in (ii) is
established in [Wu21] and its relation with the adjoint Bloch-Kato Selmer group is the main
theme of [Wu22].

The rest of this section is devoted to explain in more details about how we attempt to
answer the motivating questions. Our main results are then stated along the explanation.

1.3.4. Let g be a positive integer and p be an odd prime number. The main geometric
objects in our consideration are the adic spaces

?, TIW+ and ?F(poo)

over Spa(C,,Oc,). They are toroidally compactified genus-g Siegel modular varieties of
tame level, of strict Iwahori level at p and of infinite level at p respectively. Remark that

e X, + is a deeper level variety compared with the usual Siegel modular variety of Iwahori
level;

o X'p(,~) is moreover a perfectoid space by [PS16].

Moreover, by employing the language of log adic spaces developed in [DLLZ19], the natural
maps - - - o
hIw‘*‘ : Xp(poo) — Xlw*' and h: Xp(poo) — X

are pro-Kummer étale of Galois group Iwgsp% and GSp,,(Z,) respectively. Here, Iwgspgg is
the strict Iwahori subgroup of GSpy,(Z,) defined in §2.1. ‘
The perfectoid space ?p(pw) is equipped with a well-known Hodge-Tate period map

THT - ?F(poo) — ]—"6,

4



where FV is the flag variety parameterises maximal lagrangian subspaces of a fixed symplectic
space of rank 2¢g. Using myr, for any w € Q. , we consider the w-ordinary loci

?wa ?IWJF W and ?F(Pw):w

of X, Xj,+ and yl"(poo) respectively. o
Let (ky, Ry) be weight and suppose w > 1 + 17,,' we construct a sheaf w'“ over X wt w
by first defining a sheaf on ?F(poo);w and descend to X, + by using the Galois group IWESPQQ.

Roughly speaking, sections of w? consist of functions f on ?F(poo)’w which

e take value in a certain weight-x;; analytic representation C:;;an(IWGLg, C, @Ru) of the
Iwahori subgroup of GL,(Z,), and

e satisfy the following formula regarding the natural action of the strict Iwahori subgroup
Iwésng of GSpy,(Z,):

7* f = Pruy (7(1 +3 70)_1f for any 7= (:Y)’a ZZ) © IWésng’

where 3 stands for the pullback of the coordinate function on the flag variety and
Pry (Vo +37.) stands for a certain automorphism on Cp=**(Iwqy,, C, @ Ry).

The sheaf wf¥ is called the sheaf of w-overconvergent Siegel modular forms of strict Iwahori
level.

1.3.5. On the other hand, let X+ be the locus of X7, + away from boundary. By fixing an
isomorphism C ~ C,,, and consider the algebraic model X+ of Xy, +, it is well-known that
the C-valued point of Xj,+ can be identified with the locally symmetric space

X1+ (C) := GSpay(Q)\ Hy x GSpy,(Af) /TP Iwls,, .
where
e H, is the disjoint union of the Siegel upper- and lower-half spaces,
e A is the ring of finite adéles of Q, and
o I'® is the tame level of X} +.

Let (ky, Ry) be a weight and r > 1 4 1, we consider the r-analytic distribution
Dy, (To, Ry) by following the idea of [ASO08] (see also [Urb11; Hanl7; JN19]). This mod-
ule turns out to define a local system on Xi,+(C) and hence one can consider the Betti
cohomology groups

Ht(XIw+(C)7 D:;u (TO’ RU))

for any t € Z.
The following theorem summarises our attempt to answer Question 1.3.2 (i):

'For the definition of weights and 7y, see Definition 3.1.2 and Definition 3.1.10.
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Theorem 1.3.6 (Theorem 3.7.2, Proposition 6.2.8, Theorem 6.3.6, Theorem 6.4.4). Keep
the notation as above. We have the following.

(i) When p > 2g, the sheaf wt¥ is isomorphic to the sheaf of overconvergent Siegel modular
forms constructed in [AIP15].

(i) If (ku, Ry) is a small weight (see Definition 3.1.2) and r > w > 1+ 1y, there is a
Hecke- and Galois-equivariant morphism

ES

Ku

D H™ (XIW+(C)7 D"Zb{ (TO? RU)) - HO(?IW+,w7£ZM+g+1)(_nO)7

where ng = dimg, X1+. The morphism ES,,, is called the overconvergent FEichler—
Shimura morphism of Siegel modular forms of weight k.

(i1) At a dominant classical weight k = (ky, ..., kg) € Z%,, the image of ESy is contained in
the space of classical Siegel modular forms.

(iv) Finally, the Eichler—Shimura morphism can be promoted to a morphism between coher-
ent sheaves on the equidimensional cuspidal eigenvariety €y, paramterising finite slope
cuspidal Siegel eigenforms.

1.3.7. Now, we turn our attention to Question 1.3.2 (ii). Our first observation is that there
exists a pairing

[', . ]:u : D,:u(To, Ru) X DZU(T(), Ru) — Ru
on the r-analytic distribution. Together with the cup product, this pairing then induces a
pairing on the cohomology

H'(X1,+(C), D}, (To, Ry)) x H2""(Xy,+(C), Dy, (To, Ry)) — Ry

for any 0 <t < 2ng, where HY(X;,+(C), Dy, (To, Ry)) is the compactly supported cohomo-
logy group. Note that there is a natural morphism

H(Xp+(C), Dy, (To, Ry)) = H'(Xp+(C), Dy, (To, Ru)).
Thus, by writing

Ht (XIW+(C), DZM (r:[‘o7 Ru)) = image (Hz(XIwJF(C)a D:vu (To, Ru)) — Ht(XIWJr(C), D;u (T(), RM))) 5

par

the pairing above then induces a pairing

[+ 1.t H oo (X104 (C), Dy, (To, Ry)) x HZW ™' (Xy,+ (C), Dy, (To, Ry)) — Ry (1.1)
for any 0 <t < 2ngy. Consequently, inspired by [Bel21, Chapter VIII|, we use this pairing to
deduce the following result:

Theorem 1.3.8 (Corollary 7.3.16). Let ¢ be the equidimensional cuspidal eigenvariety
constructed in §5.2 and let Egc’ﬂ be the flat locus of £ with respect to the weight map
wt : E° — W.



(i) Suppose x € 58C’ﬂ is a good point (see Definition 7.3.2), then there is a function L%
on a small neighbourhood of x, which is defined uniquely (up to a unit in the local
eigenalgebra at ) by the pairing (1.1).

(ii) If x is a good point whose weight is a dominant algebraic weight and whose slope is
small enough, then the following hold.

o The function L*Y vanishes at = if and only if the weight map wt is ramified at .

o If = is further a smooth point, then the order of vanishing of L*Y at x is equal to
the quantity e(x) defined in Theorem 7.3.11.

1.3.9. The function L34 in the theorem above is called the adjoint p-adic L-function (on
a small enough neighbourhood of ). This terminology is given by the terminology used
in |Bel21|. However, the author of loc. cit. justified such a terminology by computing
the special value of the adjoint L-function associated with a elliptic newform in |loc. cit.,
§VIIL.5.2] while we did not know what is the link between our L*¥ with the adjoint L-function
associated with cuspidal Siegel eigenforms.

Inspired by the conjectural link between the pairing considered in [GTO05, §12| and the
adjoint L-value of cuspdial Siegel eigenform, we expect a natural relation between L*¥ and
the adjoint Bloch-Kato Selmer group associated with the Galois representation attached to
cuspidal Siegel eigenforms. (Hence, the Bloch-Kato conjecture allows us to conjecturally
justify the name of L2*¥.) Hence, in Chapter 8, we study the adjoint Bloch-Kato Selmer
groups associated with these Galois representations. However, such Galois representations
are not well-established at the current stage. Therefore, we need the following hypotheses,
which are reasonable (but might be difficult to verify):

e Hypothesis 1: Roughly speaking, this hypothesis states that one can attach a GSpiny, -
valued Galois representation piP™ of Galg to any classical point = € £J°, where Galg
denotes the absolute Galois group of Q.

e Hypothesis 2: Roughly speaking, this hypothesis ensures that there exists a real finite
extension L of Q and a generic cuspidal automorphic representation GLys(A ) whose
associated Galois representation coincide with pfP"|q,;, , where A is the ring of adéles

of L and Galy, is the absolute Galois group of L.

e Hypothesis 3: This a technical hypothesis on the Hecke algebra due to our lack of
knowledge on the Hecke algebra of strict Iwahori level.

e Hypothesis 4: This is a technical hypothesis, which ensures us to obtain a GSpin,,, ;-
valued Galois representation with coefficients in the local eigenalgebra of & and that
the chosen tame I'® implies a particular ramification type of this Galois representation
at bad primes.

Theorem 1.3.10 (Corollary 8.5.7). Let x € £y whose weight is a dominant algebraic weight
and whose slope is small enough. Suppose the following assumptions hold:

(I) Standard assumptions:



e The point x corresponds to a p-stabilisation of an eigenclass of tame level (see
§8.2 and §8.3 for more discussion).
spin

e Hypothesis 1 holds so that we get a GSpiny,,-valued Galois representation pj
attached to x. We write pg := spinopiP™ be the associated GLas-valued Galois
representation.

(II) Technical assumption: Hypothesis 4 hold.
(III) Assumptions used in the strategy of [BC09):
e The Galois representation p, admits a refinement FY that satisfies (REG) and
(NCR) (see §8.1 for definitions of Fy, (REG) and (NCR)).
e The restriction Pa;|Ga1QP 15 not isomorphic to its twist by the p-adic cyclotomic
character.

(IV) Assumptions to apply [NT20):

e Hypothesis 2 holds.

e The cuspidal automorphic representation w5 of GLas(AL) ensured by Hypothesis
2 is reqular algebraic and polarised (see, for example, [BLGGT14, §2.1]).

o The image py(Galy,)) is enormous (see [NT20, Definition 2.27]).
Then
(i) The adjoint Bloch-Kato Selmer group H}(Q,ad’ pP™) associated with piP™ vanishes.

T

(i) There is an ‘infinitesimal R =T theorem’ locally at x.

1.3.11. There is another situation that one can also deduce the vanishing of the adjoint
Bloch-Kato Selmer group. It is in this situation we obtain the link between L*¥ and the
adjoint Bloch—Kato Selmer group. Consequently, in light of the Bloch—Kato conjecture, such
a link (conjecturally) justifies the name for LY.

Theorem 1.3.12 (Corollary 8.5.9). Let x be a good point whose weight is a dominant al-
gebraic weight. Suppose (I), (II), and (I11) in Theorem 1.53.10 hold for x. Assume that the
weight map wt is étale at © and the ‘infinitesimal R =T theorem’ holds locally at x. Then,

HHQ.ad’ ™) = 0.
In particular, we have _ _
ordg L*V = dimy,, H;(Q, ad” pP™).
Remark 1.3.13. Finally, we remark that the results presented in this thesis have their
Hilbert-modular analogues:

(i) In [BHW19], C. Birkbeck, B. Heuer and C. Williams gave a perfectoid construction of
sheaves of overconvergent Hilbert modular forms. They are then using such construc-
tion to establish the overconvergent Eichler-Shimura morphism for Hilbert modular
forms in their forthcoming work.



(ii) B. Balasubramanyam and M. Longo generalised Kim’s pairing to the Hilbert modular
case in [BL20]. Unlike to the case of GSp,, that we can only establish a conjectural
link between the adjoint p-adic L-function and the adjoint L-function attached to the
associated Galois representation, authors of loc. cit. provided a direct link between
their pairing and the adjoint L-function associated with a Hilbert modular form.

1.4 Miscellaneous: structure of the thesis and conven-
tions

1.4.1. We briefly discuss the organisation of this thesis.

In Chapter 2, we introduce the geometric objects in our interests more carefully. In
particular, we recall the construction of the toroidally compactified Siegel modular variety
at infinite level X' (=) by following [PS16]. We then study the flag variety F¢ and introduce
the Hodge-Tate period map 7yt in §2.4 and §2.5.

In Chapter 3, we use perfectoid method to construct the sheaf w?“. We provide a thorough
local description of this sheaf in §3.2 and justify the name by showing that classical Siegel
modular forms is contained in the global sections of wf“ in §3.4. We briefly review the
construction of Andreatta—Iovita—Pilloni in §3.5 and devote §3.6 and §3.7 to compare the
two constructions under the condition p > 2¢g (due to some technicality).

In Chapter 4, we introduce the overconvergent cohomology groups. These cohomology
groups are inspired by [AS08; AIS15; Han17|. We shall also discuss their algebraic counter-
part in §4.4.

Chapter 5 is devoted to construct the eigenvarieties that considered in this thesis. In
fact, we construct two equidimensional eigenvarieties £;° and £j;. The former is the one
constructed by considering overconvergent cohomology groups (§5.2) while the latter is con-
structed with respect to the overconvergent Siegel cuspforms (§5.3). It turns out that if we
base change £3° to Spa(C,, Oc,), then there is a closed immersion £, — £{° (Proposition
5.3.6).

The overconvergent Eichler-Shimura morphism for Siegel modular forms is the main
result in Chapter 6. Such a morphism is deduced from a morphism between sheaves on
the pro-Kummer étale site TIW+,w7pr0két in §6.2. Thus, as a preparation, we briefly discuss
the pro-Kummer étale cohomology groups in our interests in §6.1. We study the image of
the overconvergent Eichler—Shimura morphism in §6.3 and then promote it to a morphism
between coherent sheaves on &j in §6.4.

We discuss the generalisation of Kim’s pairing in Chapter 7. More precisely, we first
construct the pairing on the cohomology groups in §7.1. After reviewing some material of
commutative algebra in §7.2 (by following [Bel21, Chapter VIII|), we study the ramification
locus of the eigenvariety £(° in §7.3.

The relation between the pairing studied in Chapter 7 and the adjoint Bloch—Kato Selmer
group is the main theme of Chapter 8. We shall recall some terminology of families of Galois
representation in §8.1 by following [BC09]. We shall also discuss some hypotheses that we
will assume for Galois representations attached to automorphic representations of GSp,, in
§8.2. We follow the strategy of [BC09| to construct families of Galois representations over
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a sublocus of £7° in §8.3 and study some Galois deformation problems in §8.4. The main
results of this chapter are then stated and proved in §8.5.

Finally, Appendix A is about log adic spaces. In particular, we briefly review log adic
spaces by following [DLLZ19] in §A.1. We introduce the notion of Banach sheaves and
prove a (generalised projection formula) in §A.2, which is essential to our construction of the
overconvergent Eichler-Shimura morphism.

1.4.2. Through out this thesis, we fix the following notations and conventions:

g < ZZl.

For any prime number ¢, we fix once and forever an algebraic closure Q, of Q, and
an algebraic isomorphism C; ~ C, where C; is the f-adic completion of Q,. We write
Galg, for the absolute Galois group Gal(Q,/ Q,). We also fix the f-adic absolute value
on Cy so that |[¢] = ¢~

We fix an algebraic closure Q of Q and embeddings Q, <= Q — C, which is compatible
with the chosen isomorphisms C, ~ C. We analogously write Galg = Gal(Q/ Q) and
identify Galg, as a (decomposition) subgroup of Galg.

We fix an odd prime number p € Z-y. Due to certain technicality, we will have to
assume p > 2¢g at some places. Such an assumption shall be clear in the context.

For any w € Q.,, we denote by ‘p*’ an element in C, with absolute value p~*. All
constructions in the thesis will not depend on such choices.

We adopt the language of almost mathematics. In particular, for an O¢,-module M,
we denote by M* for the associated almost O¢,-module.

For n € Z>; and any set R, we denote by M, (R) the set of n by n matrices with
coefficients in R.

The transpose of a matrix a is denoted by *a.

For any n € Z>;, we denote by 1, the n x n identity matrix and denote by 1, the
n x n anti-diagonal matrix whose non-zero entries are 1; i.e.,

1 1
:ﬂ_n: and in:

In principle, symbols in Gothic font (e.g., X,9),3) stand for formal schemes; symbols
in calligraphic font (e.g., X, ), Z) stand for adic spaces; and symbols in script font
(e.g., O, F,&) stand for sheaves (over various geometric objects).
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Chapter 2

The geometry of Siegel modular varieties

In this chapter, we introduce and study the main geometric objects concerned in this thesis,
i.e., the Siegel modular varieties. In the §2.1, we fix the notations of the algebraic and p-
adic groups that will appear in our studies. The Siegel modular varieties and their toroidal
compactifications are recalled in §2.2. We then follow [PS16, Appendice: Compactifications]
and discuss the perfectoid toroidal compactification of the Siegel modular variety at the
infinite level in §2.3. The perfectoid toroidally compactified Siegel modular variety at the
infinite level is equipped with the so-called ‘Hodge—Tate period map’. Such a map will be
described in details in §2.5 after the study of the flag varieties in §2.4.

2.1 Algebraic and p-adic groups

2.1.1. In this section, we setup the algebraic and p-adic groups that we shall be studying in
this thesis. We start with the definition of the general symplectic group GSp,,.

Let V = Vg := Z% and we equip it with an alternative pairing
/ t - :ﬁ-g /
(,):VzgxVgz—=Z (v,v)—" v v, (2.1)
g

where we view elements in Vz as column vectors. In particular, if ey, ..., e9, is the standard
basis for Vg, then
—1 ifi<jand j=29+1—1
(ei,ejy=¢ 1 ifi>jandj=29+1—17 .

0 else

We then define the algebraic group GSp,, (over Z) to be

i i
GSpy, = {’y € GLy, : "y (ﬂ g) v =<(7) (ﬂ g) for some ¢(v) € Gm} :
g g
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Equivalently, for any v = <Z/“ 3b) € GLgy, v € GSpy, if and only if
c d

oLy ve =Y LgYar o LoV = "YaLgvs, and v, Lyvy — v, Lyv, = s(v) L,

for some ¢(v) € G,,. One can easily check that GSp,, is stable under transpose. Thus, the
above conditions are also equivalent to

v

=

Yo Ly = Ly Yar e L™ va=va Ly ® e and v, Ly vy — v, L v, = s(v) L,

for some () € G,,.

2.1.2. We consider the upper triangular Borel subgroups

Bgqr, := the Borel subgroup of upper triangular matrices in GL,

Beasp,, := the Borel subgroup of upper triangular matrices in GSpy,.
The reason why we are able to consider the upper triangular Borel subgroup for GSp,, is
because of the choice of the pairing in (2.1).

The corresponding unipotent radicals are

UgL, := the upper triangular g x g matrices whose diagonal entries are all 1

Ucsp,, == the upper triangular 2g X 2g matrices in GSp,, whose diagonal entries are all 1.

Consequently, the maximal tori for both algebraic groups are the tori of diagonal matrices,

which are denoted by Tqr, and TGszg respectively. The Levi decomposition then yields
Bar, = Ucr,Tcr, and  Basp,, = Ucsp,, TGsp,,-

Moreover, we denote by Ugp, and Ugg), ~the opposite unipotent radical of Ugr, and Ugsp,,

respectively.

To simplify the notation, for any s € Z~, we write

T _ To, (Zp), s =0
GLos ™ ker(Tar, (Zy) = Tor, (Z /p* Z)), s>0
U _ J Ucw,(Zy), s=0
GLgvs : ker(UGLg(Zp) — UGLQ(Z /ps Z))7 s> O
T | Tosp,,(Zp), s=0
@205 ker(Tasp,, (Zy) = Tasp,, (Z/D°Z)), s >0
U _ { Uasp,, (Zyp), s =0
GSpagss - ker(UGSp2g(Zp) — UGSP2g(Z /ps Z»’ 5 >0

The maps above are all reduction maps.
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2.1.3. The Iwahori subgroups are defined to be

Iwgr, := the preimage of Bar,(F,) under the reduction map GL,(Z,) — GL,(F,)
Iwgsp,, 1= the preimage of Bgsy, (F,) under the reduction map GSpyy(Z;,) — GSp,,(E,).

The Iwahori decomposition yields that

_ opp _ opp
Iwar, = Uar, 1 Tor,0UaL,0 - and - Iwasp, = Ugsy, 1 Tasp,, 0Ucsp,,.0-

We also introduce the strict Iwahori subgroups

IWELQ := the preimage of Ty, (F,) under the reduction map GLy(Z,) — GLy(E,)
* k P * )
+ . . _ k .. *k
IWGSpgg =97 €GSpyy(Zy) : v = mod p
\ * )

The Iwahori decompositions for the Iwahori subgroups then induce the decompositions
¥ +  _ gyopp +
Iwgy, = Uer, 1 Tar,0Ucr,1  and IWeisp,, = Uasp,,11GSps,.0Ucsp,, 0

+ — Tt
where UGSpggO = IWGszg ﬂUGSPwO

2.1.4. We introduce the notion of ‘w-neighbourhood’ of some aforementioned p-adic groups.
For any w € Q. and s € Z>, define

T((}llli)g,s = {)\ = ()‘ij>i,j c TGLQ(OCP> . | )\ij — )\;j | S piw fOl" some )\, = ()‘;j)i,j - TGLg,s} s
U((;uﬁ)ws = {)\ = ()‘ij)i,j € UGLQ(OCP) : |>\13 — )\;] | < p—w for some X = (A;j)id c UGL975},
BY) = {X=(Ai)ij € Bew,(Oc,) : | Ay — Nj; | < p~ for some X' = (Xj;)i; € Bar,.s} -
The groups UGL b ) and ngLp . “) are defined similarly.

Similarly, define
IWSUL)Q = {)\ = (Xij)ij € GLy(Oc,) : | Aij — )\;j | < p~" for some N = (A;j)i,j € IWGLg}
Iwgé;“) = {)\ = (Aij)ij € GLg(Og,) : | Aij — Aj; | < p~* for some X' = (N;); € IWELQ} :
Then, the Iwahori decomposition induces

(w) opp,(w) opp,(
IWGLg _UGL 1 TGLQ UGLg and IWGL UGL 1 TGLg UGLg,
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We also write

T, = ker(Tar,(Oc,) — Taw,(Oc, /P")),
Uy, = ker(UGLg((’)cp) — UGLg(Ocp /p")),
B, = ker(Bgr,(Oc,) = Baw,(Oc, /p*)).

P

The groups U,PP? and B;PP are defined similarly. Then we have
T o = Tor,oTw: Uty = Uct,oUu,  BGi, o = Bo,0Bu-

There are similarly identities for Ug%pg”(ow) and Bgﬂ%" ),

2.1.5. In this paragraph, we recall the Weyl groups and the root systems for GSp,, and
H := GL; x G,, from [FC90, Chapter VI, §5|. Here, we view H as an algebraic subgroup of
GSp,, via the embedding

o Y
H = GLy x G, = GSpy,  (v,v) = < v, byt ﬂg) )

Consider the character group X = Hom(T GSpay» G,n). We have the following isomorphism

g9
297 5 X, (kyy e kg ko) = (diag(ﬁ, T TOT, s T Ty ) HTf) :

=0

Let @1, ..., 24, o be the basis of X that corresponds to the standard basis on 79 Note that
X can also be viewed as the character group of the maximal torus Ty = Ty, X G,, of H via
the isomorphisms Tgsp, = GIM ~Ter, x G = Ty

Under the above choices of the maximal tori, we can describe the root systems of GSps,
and H explicitly

‘I’Gsng ={£(z; —xj), £(x; +2z; —x0), £2xt —20):1<i<j<g,1<t<g}
Sy ={£(z; —z;), £z, £r0:1<i<j<g}

Moreover, the choices of the Borel subgroups yields the description of the positive roots

Py, = {7i— ), @i+ a;— @0, 22— @ 1<i<j<g 1<t <g}
Of ={o;—z;:1<i<j<g}= (I)qu)gsp%)'

The Weyl groups of GSp,, and H are defined as
WeylGSpQg = NGSPQQ (TGSp2g>/TGSp29 and WeylH = NH (TH)/TH,

where Nasp, (Tasp,,) (resp., Nu(Tp)) is the group of normalisers of Tqsp, (resp., Tp) in
GSpy, (resp., H). They can also be described explicitly as follows.

e We can identify WeylGSPQQ with 3, x(Z /2Z)9, where X, denotes the permutation
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group on g letters. For any 7 = diag(7, ..., 7, To T;l, L ToTi) € TGsp,, the actions
of 3, and (Z /2Z)9 are given as

(i) X3, permutes T4, ..., T,

(ii) the element (0,...,0,1,0,...,0) € (Z /2Z)% maps T to
——

i—1
diag( , -1 -1 -1 -1 -1
1g(T1, oy Tic 1, TOT, 5 Titls s Tgs TOT g 5 ooy TOT i1, Tis TOT 15, TO T ).

e We can identify Weyl, with 3, whose action on T is defined as the action of 3, on
TGsp,, -
g

The actions of the Weyl groups on the maximal tori then induce actions on the root systems
Pcsp,, and Py Following [FC90, Chapter VI, §5], let

Weyl? .= {w e Weylagy, w(@ésp%) D P} C Weylgs, -

It turns out that Weyl? is a system of representatives of the quotient Weyl,, \WeylGSp2g.

2.2 Siegel modular varieties
2.2.1. The Siegel upper- and lower-half spaces H;t (of genus g) are defined as follows

H; . {a e M,(C) : « is symmetric w.r.t the antidiagonal }

S« is positive definite

Q

H = {a e M,(C) : a is symmetric w.r.t the antidiagonal } ’

S« is negative definite

where & a stands for the imaginary part of ae. We denote by H, the disjoint union of ]HI:;
and H, . There is a GSp,,(R)-action on Hj given by the formula

Ya v —1
= 'yaa—l—'y ‘yca—i—'y
<,.Yc ’Yd) ( b)( d)

for any v = (?}l/“ zb) € GSp,,(R) and any o € H,,.
d

Cc

For any congruence subgroup I'®) ¢ GSpQQ(Z), i.e., T®) contains
(M) = {’y € GSpQQ(Z) ty =1y mod M}

for some M € Z-o. We shall assume

e — H Fy?)

£: prime
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for ng ) ¢ GSpy,(Z¢) such that ng ) = GSpy,(Z¢) for almost all prime number £. We denote
by
Sbad = {1 : Fép) G GSpyy(Z0)}

and write
N :=max{M € Zso : T(M) c T?W}.

Given a congruence subgroup I'® C GSpQg(Z), one can consider the locally symmetric
space
X(C) := GSpyy(Q)\ Hy x GSpy, (A ) /TP GSpyy(Z,),

where

e Ay is the ring of finite adéles of Q,
e GSpy,(Q) acts on GSpy, (A ) via the left multiplication and acts diagonally on H, x GSp,,(Ay).
We assume further that
(i) pt N (so p & Sbad)
(i) T® is chosen so that X (C) is a smooth manifold.

2.2.2. Given I'®? as above, we fix a primitive N-th root of unity (v € Q C Qp and let
SCHgz, ¢, be the category of locally noetherian schemes over Z,[(x]. Then, the functor

SCHgz,[cy] — SETS,

A is a principally polarised abelian scheme over S
S+ ¢ (A, A\, ¥n) + Ais a principal polarisation on A />~
Yy is a level structure defined by I'®

is represented by a scheme Xz c\1. It is well-known that the C-point of Xz -, can be
identified with X (C). Here, C is viewed as a Z,[(y]-algebra via the chosen isomorphism
C, ~ C. For any Z,[(x]-algebra R, we write Xp for the base change

Xk = Xz,(cn] XSpecz,[cy] SPEC 1.

We refer Xy as the Siegel modular scheme of tame level I'®).
Example 2.2.3. Suppose ') = T'(N) := ker(Gszg(z) — GSpy,(Z /N Z)) for N large
enough, then I'(N) defines the level structure asking for symplectic isomorphisms,

Yy : AIN] = (Z /N Z)%,

i.€., isomorphisms that preserve the symplectic pairings on both sides up to units, where we
consider the Weil pairing on the left-hand side and the symplectic pairing induced by (2.1)
on the right-hand side.

2.2.4. We would like to consider Siegel modular varieties with level structures at p. Before
defining these varieties, we fix a compatible system of p-power roots of unities ((ym )mez., in

QcCcQqQ,
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For each m € Z-, the Siegel modular variety of principal p™-level over Q,((n, (pm)
is the algebraic variety Xpem) q,(cy,¢m) OVer Q,(Cn, (ym) that represents the functor

SCHQP(CMCW) — SETS,

(A7 >\a ¢N) € "\XZP[CN](S)
S = (AJ )‘71/}]\771/}])7”) : ¢pm : A[pm} — (Z /pm Z)2g / =.
is a symplectic isomorphism

Here, SCHq ¢y ,¢,m) 18 the category of locally noetherian schemes over Q,, (¢, (ym) and
the symplectic isomorphism is taken with respect to the Weil pairing on the left-hand
side and the symplectic pairing induced by (2.1) on the right-hand side. Again, for
any Q,(Cw, Gpm)-algebra R, we denote by Xp(,m g the base change of Xrym)q, ¢y .¢m)
to R.

The Siegel modular variety of Iwahori level over Q,(Cx, () is the algebraic vari-
ety Xtw,Q,(¢n.¢,) OVer Q,(Cn,¢p) that represent the functor that assign each locally
noetherian scheme S over Q,(Cx, p) to the set of tuples

(A/S, A, Y, Filg A[p]),
where

o (A/S7 )‘7 dJN) S XZP[CN}(S)
o Fil, A[p| is the full flag of A[p] such that

(Fils A[p])* =~ Fily,_o Alp]
with respect to the Weil pairing.

Again, for any Q,(Cw, ¢p)-algebra R, we denote by X, g the base change of Xiw,Q, (CnG)
to R.

The Siegel modular variety of strict Iwahori level over Q,(Cx, () is the algebraic
variety Xlw+7Qp(CNa<p) over Q,(Cn, (p) that represents the functor that assign each locally

noetherian scheme S over Q,(Cn, (p) to the set of tuples

(A/S,/\7¢N,Fﬂ. A[pL {Cz 1= ]_, ,g}),
where

o (A/Sv /\7 ¢N7 Fll' A[p]) S XIWva(CN;CP) (S>
o {C;:i=1,...,9} is a collection of subgroups C; C A[p] of order p such that

foralli=1,...,9. Again, for any Q,(Cn, (p)-algebra R, we denote by Xy, + p the
base change of Xlw+1Qp(CN7Cp) to R.
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2.2.5. For any m € Z~( and any complete field K C C, containing Q,,(Cy, (), there are
natural forgetful maps

Xr(pm)rK —> XF(p),K _> XIW+,K _> XIW7K —> XK’
where
e The first arrow sends (A, A\, Y, ¥pn) to (A, N, Un, D" Hhpn ).

e The second arrow sends (A, \, ¥x, ¥,) to (A, \, ¥, Fill» Alp], {(¥p(e:)) 15 = 1,...,g})
where Filt» A[p] stands for the full flag

0 C (¥pler)) C(Ppler), plez)) T C{pler), . pleay)).

e The third arrow sends (A, \, ¥y, Fil, A[p],{C; : i =1,...,9}) to (A, X\, ¥y, Fils A[p]).
e The fourth arrow sends (A, A, ¥, Fils Alp]) to (A, A\, ¥n).
From the construction, we know that the morphisms
Xrpny,x — Xk is Galois with Galois group GSpy,(Z /p" Z);
Xr@p),xk — X,k is Galois with Galois group BGSPQQ(Z /pZ);
Xrp),xk = Xiy+ i s Galois with Galois group Bgsp2q(Z /pZ).

Here,
Bgsng(z /pZ) = {(‘Y“ )€ Basp,, (Z /pZ) = v, is diagonal} )

Moreover, for I' € {T'(p™),Iw" = Iwgsp2q,lw = Iwasp,,}, the C-point of Xpx can be
similarly identified with the locally symmetric space

Xr x(C) = GSpy,(Q)\ Hy x GSpy,(Ay)/TT.

Since this identification is independent to the choice of K, we will, from now on, use the
symbol Xr(C) to denote the locally symmetric space.

2.2.6. For any m € Z( and any complete field extension K over Q, containing Q,((n, Gpm),

our next goal is to construct toroidal compactifications 7;0;( for each Xr  for T' € {T(p™), Iw ™, Iw, @}
with the following properties

(Torl) Ytpo;( is finite Kummer étale over Y;?r;
(Tor2) There is a cartesian diagram

—=tor

Xr g — XF,K

| |

tor
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and that the log structure on 7;0} is the divisorial log structure defined by the divisor
—-tor

ZF,K = XRK ~ XF,K;

(Tor3) (i) IfI' =T(p"), then
~-tor ~-tor

X rK Xy
is Galois with Galois group GSpy,(Z /p" Z).
(ii) If T' = Iw, then
ytro(lga),K - 7;3:[(
is Galois with Galois group Bagsp, (Z /pZ).
(iii) If I' = Iw™", then

—=tor —tor

Xrp)x = Xiwt i
is Galois with Galois group Bérsng(Z /pZ).
2.2.7. In order to construct the toroidal compactifications, we set the following notations.
e We denote by € the collection of all totally isotropic direct summands of V.

e For any totally isotropic direct summand V' € V, let C(V / V") denote the cone of
symmetric bilinear forms on (V / V'*)®z R which are positive semi-definite and whose
kernel is defined over Q.

e Observe that if V', V” € € such that V' € V", there is a natural inclusion C(V / V'*)
C(V / V"), We define
C=(|]cv/vh))/~

Vee
where the equivalence relation is given by the aforementioned inclusions.
e Let & be a fixed GSpy,(Z)-admissible smooth rational polyhedral cone decomposition
of C (see [Strl0, Definition 3.2.3.1]). This means & consists of a smooth rational

polyhedral cone decomposition of C'(V / V') (in the sense of [FC90, Chapter IV, §2])
for every V' € € such that

(i) The decomposition of C'(V / V'*) coincides with the restriction of the decompos-
ition of C(V / V") whenever V' € V”, and

(ii) & is GSpy,(Z)-invariant and & / GSp,,(Z) is a finite set.

e We will use the convention that I'(p°) = GSpy,(Z,) and Xasp,,(2,),x = Xx. Moreover,
for any ' € {T'(p™), Iw™, Iw}, we write

= GSp,,(Z)NT.

Given such data, we have a toroidal compactification Ytzoj[cm for Xz, ¢y (see [FC90; Pin88;

Lan13|). Consequently, we have a toroidal compactification Y;?r for X by base change.
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2.2.8. The construction of the toroidal compactification in the case I' = I'(p™) is well-
known. We briefly review the construction of Y;O(;m) following [PS16]. In order to simplify
the notation, we follow the strategy of loc. cit., assuming I'P) = GSpQQ(A’}), where Afc is
the ring of finite adéles away from p.

Notice that every o € & necessarily lives in the interior of C(V / V') for a unique V' € €
of some rank r < g. We have the following diagram from [PS16, 4.1.A]:

le,m E— le7m70 — MV'J?%G
~ 1
By m
|

XV’,m
We briefly describe the objects in the diagram and refer the readers to [PS16, Appendice A
for details:

e Let X,y be the moduli scheme parameterising principally polarised abelian schemes
over Ok of dimension g — r, where Ok is the ring of integers of K. Let Xy denote
the base change of X,y to K.

e Let Xy, be the finite étale cover of Xy parameterising principal p™-level structures.
Over Xy ,, there is a universal abelian variety Ayy.

e Roughly speaking, the algebraic variety By, over Xy, parameterises semiabelian
varieties with ‘T'®)- and p™-level structures’ where the semiabelian variety is an ex-
tension of Ay by the torus Ty := V' ®zG,,. In particular, over By, there is a
universal semiabelian variety

O—>TV/—>GV/—>AV/—)O

together with a universal isogeny of semiabelian varieties

Ty y Gy > Ay
lid l lpm
Ty > Gy > Ay

whose kernel induces a natural inclusion Ay [p™]| C Gy/[p™]. This yields a decompos-
ition

Gy [p™] =~ (V' /p" V' @ppm) & Ay [p™].

e Roughly speaking, the algebraic variety My, over By, parameterises principally
polarised 1-motives of type [V / V'* — Gv/] together with a ‘principal p™-level struc-
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ture’. In particular, over My ,,, there is a universal 1-motive
My = [V/V" = Gy
together with a universal decomposition
My [p™) = (V' [p" V' @) & Ave[p™] & (V| VR Z " Z).

It turns out My, is a torus over By, with the torus

Hom (Nipm Sym?*(V / V'*), Gm> :

e The morphism My, — My, , is the affine toroidal embedding attached to the cone
o€ C(V/V™h). Let Zyi o = My o~ My, denote the closed stratum of My, .
Since o uniquely determines V', we might simply write Z,, .

e The morphism My ,,, — My, & is the toroidal embedding attached to the polyhedral
decomposition &. Let Zy/,, e = My’ e \ My, denote the closed stratum of
MV',m,G‘

Theorem 2.2.9 ([PS16, Théoreme 4.1]). We have

or

(i) The toroidal compactification 7?(pm) admits a stratification indexed by the finite set

or

6/f(pm). For any o € &, the corresponding stratum in 7;(],7,1) is 1somorphic to
ZV’,m,a-

(i) The boundary Y;O(;m) N Xrmy s given by a normal crossing diwvisor. The codimension-

one strata Zy: o, are in bijection with the irreducible components of the normal cross-
ing divisor. Such V' necessarily has rank 1.

(iii) The toroidal compactification is compatible with change of levels. In particular, there
or —-tor

are natural finite morphisms ytr(pm) — X

pmy Jorm > n.

(iv) There is a natural action of GSpy,(Z,)/T'(p™) on Yt;&m). It permutes the boundary
strata accordingly.

2.2.10. We remark that the case for I' = Iw is carefully studied in [Str10]. However,
instead of following loc. cit., we propose an alternative way to obtain 7;0;{ with the desired

properties (Torl), (Tor2) and (Tor3). To this end, we recall a theorem of K. Fujiwara and
K. Kato ([I1102, Theorem 7.6]):

Theorem 2.2.11 (Fujiwara—Kato). Let Y be a reqular scheme, D an effective divisor of Y
with normal crossing and U :=Y ~ D. Equip Y with the divisorial log structure defined by
D. Then, the restriction functor

finite Kummer étale finite étale
%
cover over'Y cover over U

:|, TI—>T><yU
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of fully faithful. The essential image of this functor consisting of those finite étale covers
over U which are tamely ramified along D.

2.2.12. In particular, when Y is further a variety over a field of characteristic 0, every finite
étale cover over U is tamely ramified along D. That is, one obtains an isomorphism between
the finite Kummer étale site Yy, and the finite étale site Uggg.

Proposition 2.2.13. Let ' denote either T'(p™) (for some m > 0), Iw, or Iw". There exists
a unique fs log scheme Ytro;{ over 7‘? satisfying (Torl), (Tor2), and (Tor3).

Proof. Recall that Y;?r is equipped with the divisorial log structure given by the boundary

—tor

divisor Zx = X, ~ Xk of normal crossing (by [FC90, Chapter IV, Theorem 6.7 (1)]).
Theorem 2.2.11 yields a unique log scheme X g, which is finite Kummer étale over 7?,
extending the finite étale morphism Xr x — Xg. This shows that Xr g satisfies (Torl)
and (Tor2). By Abhyankar’s lemma (see, for example, [SGA1, Proposition 5.2|, [Stacks, Tag
0EYG|, |Stacks, Tag OEYH], [DLLZ19, Proposition 4.2.1|), the inverse image Zr i of Zx in
Xr x is a divisor with normal crossing. Hence, by applying a scheme-theoretic version of
Lemma A.1.12, we conclude that Xt x also satisfies (Tor3). O

Remark 2.2.14. When I'' € {I'(p™), Iw}, one should ask whether our construction of 7;0;(
coincides with the ones constructed in [PS16| and [Str10]. The answer to this question
is affirmative. Indeed, when I" = T'(p™), [FC90, Chapter IV, Theorem 6.7(6)| implies that

—tor

Xp(pm) i is finite Kummer étale over Yt,?r with Galois group GSp,,(Z /p" Z). The uniqueness

of 7;0;( then yields the identification. For I' = Iw, it follows similarly by applying [Str10,
Théoréme 3.2.7.1].

2.2.15. To wrap this section, we pass to the realm of adic spaces. For ' € {T'(p™), Iw™, Iw},
let Xtk (resp., X k) denote the adic space over Spa(K, Q) associated with Xt x (resp.,
YtFO;() In particular, we refer Xt g as the toroidal compactification of X r determined by
the fixed polyheral decomposition &. It satisfies the following analogues of (Torl), (Tor2),

and (Tor3):

(Tor1’) The log adic space ?_p K, equipped with the divisorial log structure given by the bound-
ary divisor Zp g = X g \ X1k, is finite Kummer étale over X g;

(Tor2’) There is a cartesian diagram

(Tor3’) (i) If I' =T'(p"), then o o
XI‘,K — XK

is Galois with Galois group GSpy,(Z /p" Z).
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(ii) If T = Iw, then o o
XF(p),K — Xtw. K

is Galois with Galois group Basp, (Z /pZ).

(iii) If T = Iw™, then - -
XF(p),K — XIW+,K

is Galois with Galois group B(Jgsm (Z /pZ).

2.3 The toroidally compactified Siegel modular variety
at infinite level

2.3.1. Let X (resp., X) be the completion of Xog, (resp., Yg; ) along its special fibre. For
P

any m € Zg, we denote by Xpgm) (resp., %F(pm)) the normalisation of X (resp., X) inside
Xrpmy (resp., Xppmy). In order to work with the toroidal compactification at the infinite

level, the authors of [PS16]| consider modified versions ??{;}n) of the formal schemes Xp(m),
which we briefly recall.

Let m € Zs, and let & be the tautological semiabelian scheme over ?F(pm), i.e., the
pullback of the tautological semiabelian scheme over X. Let

T: 6 — %F(pm)
be the natural projection and let

o 1
rm) = T8y 1 m

Over Xr(,m), composing the universal trivialisation
Ypm 2 V ®@z(Z [p™ Z) — &[p"]

(which becomes isomorphism on the rigid generic fibre), the duality &[p™] ~ &[p™]", and
the Hodge—Tate map
S[p"]" — QF(pm)/meF(pm)

we obtain
HTrmy 1 V@z(Z [p™ Z) — Qppmy /D™ L pm)

which induces
According to [PS16, Proposition 1.2|, this map extends to the toroidal compactification:

HTppm @id : (V@z(Z /p™ Z)) ®z Ox

rgm) Qp(my /D™y - (2.2)

More precisely, in terms of the explicit description in 2.2.8, étale locally at the boundary
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stratum, there is a universal semiabelian scheme Gy with constant toric rank sitting in an
exact sequence
0—>Tyv -Gy = Ay — 0

as well as a principally polarised 1-motive ]T/[/V/ = [V*/V' = Gy/]. We consider the
composition

TGV/ v

My [p™] = My [p™]" = Gy [p™) ——— wq,, /D",
where the first isomorphism is given by the principal polarisation on JT/[/V/. Composing with
the universal trivialisation of My [p™] and tensoring with the structure sheaf, we arrive at
the desired morphism (2.2).
Consider the image of HTr(m) ®@id and then consider its preimage inside Qp(,m). This
yields a subsheaf Q?&% C Qpgmy- In fact, Q‘F&% does not depend on m; i.e., if n > m and

%F(pn) — %[‘(pm) is the natural projection, then the pullback of Q?(‘;(in) coincides with Q?&g).
Now, let m be any positive integer greater than 1%' Consider ideals #4,...,.%, C

ﬁgr(pm generated by the lifts of the determinants of the minors of rank g, ..., 1 of the map

HTrm ®@id : (V @z (Z /p" Z)) @2 O%, ) = Qg /P Lrgm)-
Notice that these ideals are invertible on the rigid generic fibre. Let :’%F(pm) be the formal
scheme obtained by consecutive formal blowups of %F(pm) along these ideals. In particular,
Q?&% becomes locally free over Xpgm).

Finally, let ??(C;jn) be the normalisation of f%]“(pm) inside its adic generic fibre. We remark
that the adic generic fibre of ??&i) coincides with the one of fp(pm). For any m > n > %,
there is a natural finite morphism

—mod —mod

2.3.2. As the adic generic fibre of f?&i) coincides with ?F(pm)ycp, the locally free sheaf

mod : : -+ mod,+ ~ .
Qrm),c, gives rise to a locally free ﬁyr(pm),cp—module Wrpmy o0 Xpem),c,. Inverting p, we

obtain the locally free ﬁyr(pmycp—module Wr(pm)- Notice that wpe,m) is just the usual sheaf
of invariant differentials defined using the universal semiabelian varieties.
Consider the projective limit

—mod —mod

Xp@pee) = Hm Xppm)

in the category of p-adic formal schemes. Let Tp(poo_) be its adic generic fibre in the sense

of [SW13]. The following proposition shows that X is the desired perfectoid Siegel
modular variety at the infinite level.
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Proposition 2.3.3 (|[PS16, Proposition 4.9 & Corollaire 4.14|). We have

(i) The adic generic fibre yl“(poo) 1s a perfectoid space such that
X ~ @?F(p”),cp

in the sense of [SW13, Definition 2.4.1].

(i1) For every n € Zs, the natural morphism
A=) = Xrpn).c,
is a pro-Kummer étale Galois cover with Galois group I'(p"). (Here we have abused
the notation and identify X~y with the object I&nn Xrpny n the pro-Kummer étale
site.) Simiarly, the natural morphism

TF([)oo) - yIW,CP (Tesp'7 Tr(poo) - 7IW‘F,Cp>

is a pro-Kummer étale Galois cover with Galois group Iwasp,, (resp., IWESPQg ).

Remark 2.3.4. Induced from the stratification on the finite levels, the perfectoid Siegel
modular variety X'p,e) admits a stratification by the profinite set

S = m & JT(P).
For each 6 = (0,,)n>0 € S, the G-stratum is canonically isomorphic to
Zoo,é' = l'&nzn,on

where Z,, ;. is the adic spaces given by the analytification of Z, ,, over Spa(C,, Oc,)
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2.3.5. We summarise the discussion above in the following commutative diagram
Xrpe) — Xrpe)

~
~

Xrpm.c, — Xrem.c,

~
~

Xrp).c, — Xrp).c,

~
~

XIW+,Cp XIW+,CP

where X'p(ye) is the part of Tp(poo) away from the boundary.

There is a natural GSpgg(Zp)—action on Tp(poo) permuting the p-power level structures.
In particular, the chain of natural projections

Xrpe) = Xrgm.c, = Xrp.c, = Xt o, = Xwe, = Xe,
is GSpy,(Z,)-equivariant. We name the natural projections
hl“(pn) : ?I‘(poo) — yp(pn)pp, hIw* : ?F(poo) — ?Iwﬂcp and Ay : ?F(poo) — ?IW,CP

By Proposition 2.3.3, the following lemma is expected.

Lemma 2.3.6. We have the following identities of sheaves

ﬁi = (hIw * ﬁ+ )IWGSPQQ )

Xiw,cp Xr(poo)

+ +

o* hoo 0t ) g Bt s € s,
P pr— + P 5 pr— =5 .
XIW"’,Cp Tw o Xr(poo) ’ XIW+‘CP IW’* Xr(poo)

Proof. We give the proof of the first pair of identities. The second pair can be proven by the
same argument.

It suffices to prove the first identity. Let V C ?Iw,cp be an affinoid open subsapce. For
every n € Z>1, let V,, be the preimage of V in Tp(pn)pp and consider the object V, := MH Vi

in the pro-Kummer étale site ?1W70p7prokét. By Lemma A.1.12, each V,, is finite Kummer étale

ﬁ IWGSp2g
YIW*CP B (hIW’* ?F(P"O)>
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over V with Galois group Gy, := Iwgsp, /T'(p"). Thus,

A
~ A
ﬁ}r(l’m) (VOO) - (1% ﬁ%r(f’n),cp (VTL)) <ﬁ;Iw Cp prokét (VOO)> )

where ‘A’ stands for the p-adic completion. By [DLLZ19, Lemma 4.1.7 & Corollary 4.4.13|,
we know

(O, W)™ = (05, ) = 0h, O

Xrpn),cp Xiw,Cp

for every m € Z>,. This implies

(0% ) = 0% W

XIW,Cp,prokét XIW,CP

Note that

s Iwasp,
(L < Xiw,cp, proket( ‘X’)/pm>) L <( Flw,Cp, proket( M)/pm> g) .

Indeed, the inclusion from the left-hand side to the right-hand side is clear. To show the

. . m WGs P2g
other inclusion, take any (z,,)m € (L ( Fic,, pmket( %) /D )) , then for any v €
Iwasp,, ;
(@m)m =Y (@m)m = (V" Tm)m

Here, the last equation follows from that each ﬁ} (]700) /p™ is equipped with the

Iw,Cp,prokét
discrete topology and Iwgsp, acts continuously on the projective limit (with respect to

the p-adic topology). Projecting back to each 0%

<ﬁjﬁw cpproris Y Vo) / pm)
<ﬁ%r(p°°) (VOO)> Iwcsmg - ( }IW ,Cp,prokét (]700)> /\) IWGS%

IWGSpgg
V m)
XIW ,Cp, ploket >/

IWGSPQQ
% ( XIW ,Cp,prokét VOO)/p > )
%
+
X

(v oo)/pm, we see that z,, €

XIW ,Cp,prokét
GSpgg
. Consequently, we have

O, V)P
V).

Iw,Cp
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2.4 Flag varieties

2.4.1. One of the important feature of the perfectoid toroidally compactified Siegel modular
variety at infinite level is the so-called Hodge—Tate period map. Before defining this map, we
first describe the target flag variety (and its variants) carefully.

Recall that V), = V ®z Z,, is the standard symplectic space of rank 2g over Z,,. Let Psicgel
be the (opposite) Siegel parabolic subgroup of GSp,, defined by

GL
PSiegel = <Mgg GLg) N GSPQQ .

Let F1:= Psiegel\ GSpy, be the flag variety over Z,, parameterising the maximal lagrangians
W C V,.!' There is a natural action of GSpy, on F1 by right multiplication. Let F¢ be
the associated adic space of F1 over Spa(Q,,, Z,), equipped with the induced right action of
GSp,,(Q,). Hence, for any p-adically complete sheafy (Q,, Z,)-algebra (R, R*), F/(R, R")
parameterises maximal lagrangians W C V, ®z R.

2.4.2. Consider the open subset F¢* C F¥ whose (R, R")-points are

x o 4+ there exists a basis {w;} of W such that
FC(R, BT = {(W C V,®z,1t) € FUR, R7) : the matrix ((w;, e2g11-; ))1<ij<g is invertible [

For any zyw = (W C V,®z R) € FV*(R, R"), there exists a unique basis {w;'} of W such
that
({wi', eaga1-5 Ni<ijg = Ly -

Therefore, there exist global sections z;; € O gx (FU*) such that for any xy € F*(R, RT),

g
0_
wi = et Y zig(@w)egr.
=1

- 0,0
Since (w;, w;

) =0, we have
0= (wi,wy')

g g
= (e, > zin(@w)egn ) + (D zin(@w)egir, €;)
P P

= Zjgr1-i(Tw) — Zigr1j(Tw).

'Tn fact, we should use PSiegel =

opp . GL‘] M(]
GL,

' . opDp . . . . . opp
Psicgel instead of PSiegel due to some computational convenience in the later context. Here, we identify PSiegel
with Psjegel Via

) N GSp,, to define the flag variety. We apologise for using

opp to,—1
PSiegel — PSiegeh Y=Y .
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That is, the matrix
2171 e Z17g

Zgl "t Zgg

is symmetric with respect to the anti-diagonal. Moreover, we may use the matrix (]lg z (J:W))
(or just the matrix z(xy)) to represent the element xy € FU*(R, RT) because the basis
{wf'} is represented by the matrix

1 zia(zw) - zig(zw)
: ; = (1, z(zw))
1 zgi(zw) - zZgg(zw)
with respect to the standard basis ey, ..., ey, of V.

2.4.3. In the rest of the thesis, we take base change of the adic spaces F¢ and F¢* to
Spa(Cp, Ocp).
For every w € Q.,, consider an open adic subspace F¥,, C F¢* defined by

FU = {a: € F* :max inf {| z;;(z) — h|} < p_’”}.

ij hEZp

For any algebraically closed complete nonarchimedean field C' containing Q,,, let

GSPay o (C) = {7 = (’Ya 7b> € GSpy, (C) :

Ye Vd

v, € GL,(C), and }
max; ; infhezpﬂ(’)’;l Yp)ij — hl} <p7

where (v,!7;)i; is the (i, j)-th entry of the matrix 4, ~,. Then the (C, O¢)-points of F;
can be identified with the quotient

F3,(C,0c) = Psieger(C)\ GSpyy,,,(C)
so that the natural inclusion F, (C, O¢) C F(C, Oc¢) is induced by
.7-"% (C, Oc) = PSiegel(C>\ GSp291w<C) — PSiegel<C)\ GSPQQ(C) = fﬁ(C’, Oc)

Recall that there is a natural right action of GSp,,(Q,) on F. The following lemma
shows that F; is stable under the action of the subgroup Iwasp, C GSpy,(Q,).

Lemma 2.4.4. The adic space F., is stable under the right action of Iwasp,,. Coordinate-
wise, the action is given by

7y Wy, = 75 (2 (20 200 ) o (a2t )
c d

In particular, FU; is also stable under the right action of the subgroup Iwgsp%.

Proof. 1t follows from the definition that the right action of v € Iwgsp, indeed sends
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(1, z(zw)) to

Ly (vatz(@w) ) (v +2(2w) V) = (Yot 2(zw) 7)™ (L 2(zw)) (7; 32)

It remains to show that, for every xy € FU, the matrix (v, + z(zw) v.) " (v, + 2(zw) v,)
lands in F7;;. But this is straightforward. O

2.4.5. For latter usage, we would like to understand certain vector bundle on F¢ and F7,,.
To this end, let #'m C O %‘f be the universal maximal lagrangian over Fl. The total space of
# 1 can be naturally identified with

Wy ~ PSiegel\<Ag X Gszg)
where

e by viewing elements v € AY as column vectors, Psieger acts on A from the left via

~ x0T = 1 ¥, for any v = (:Yya :;Z) € Psiegel;

® [yieger acts on GSpy, via the left multiplication.

Similarly, consider the linear dual % of # . Then the total space of #, can be
naturally identified with
Wy~ Prjegel \ (A7 X Gszg)

where, by viewing elements ¢ € AY as row vectors, Psjegel acts on A? from the left via

Yo Vo

y N ) € Psiegel. Under this identification, global sections of
c d

v *U = Uty,, for any v = <
W ¢ are identified with

{algebraic functions ¢ : GSp,, = AY : ¢(y @) = ¢(x) - *,, V¥ € Pricgel, @ € GSpy, } -
For every i = 1,..., g, we consider a global section s; of #}, defined by

s;(a) := the i-th row of *ay,

for all a = (a“ ab) € GSp,,. If we write
a. Oy
S1
si=| | e
Sg

then we have s(a) = *ay,.
By passing to the adic space F¢ and restricting to FZ.;, the (algebraic) sheaves # g
and #y yield (analytic) sheaves # zx and # g« on Fl,. We still use s;’s to denote the

restrictions on FZ;; of the corresponding algebraic sections. By definition, the sections s;’s
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are non-vanishing on F;, and hence s)’s are well-defined sections on # zx. We similarly
write
Vi (V.. oV g
sV = (sy s7) € (W mx)’.

Moreover, the right action of IWGsng on F7,; induces a right action of IWGSPQg on ¥ -

Lemma 2.4.6. For any v = (7“ 71’) € Iwasp,, , we have
Ye Vd g

Y () = 8" (v, +2v.) "

The right-hand side means the right multiplication of matrices, where we view s¥ as a (1X g)-
matriz with entries s; .

Proof. To prove the identity, it suffices to check on the level of (C,O¢)-points. Using the
identification
]:E:; (C: OC) = PSiegel(O)\ GSPzg,w(O)a

the sections of % zx can be identified with
{analytic functions ¢ : GSp,,,, — C? : (v ) = *v," -¢(a), V7 € Psiega(C), a € GSpy, ,(C)} .

Here, elements in CY are viewed as column vectors. Under this identification, sV sends
a € GSpy, ,(C) to *a; . Notice that a section ¢ : GSpy,,,(C) = C9 of # 5 is determined
by its restriction on

1, =z £ & < . _
: = () — <p .
{ < 19) 21y =1, 2, max inf {| z;;(z) — hl} <p }

Z7‘7

Let o = (]lg ﬂz) Then s¥(a) = 1, and
g

(@) = slam) = s (701770 PN ) oz = s @) 2

as desired. O

Corollary 2.4.7. For any v = (:)):“ :YYb) € Iwgsp,,, we have
c d )

Y (8) = (Vat27.) - 5.

Proof. This follows immediately from Lemma 2.4.6. O]

2.5 The Hodge—Tate period map and w-ordinary loci

2.5.1. The perfectoid toroidally compactified Siegel modular variety ?]_“(poo) is equipped with
the so-called Hodge—Tate period map. Let us briefly discuss its construction.
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mod,+
I'(p™)
map (which we abuse the notation and still denote by HTrgn))

By definition of w (for sufficiently large n), the Hodge-Tate map HTp(» induces a

HTpgn : V @2(Z /p" Z) = wigm) /0" wrom) -

Let g?((;if)r and wr,=) denote the pullbacks of g?(;i’;r and W), respectively, to Xr(pe)-

Pulling back HTp(,») to the infinite level and taking inverse limit, we obtain

HTrge 1 V= V@7 Z), — Wl

which induces a surjection

S 1. mod,+
HTF(poo) X ld . Vp ®Zp ﬁ§1‘(p00) — C_Ur(poo) .

Finally, inverting p, the surjection

HTF(poo) ®id : Vp ®Zp ﬁ}r(pm) — gp(pm)

induces the Hodge—Tate period map
THT : ?F(poo) — ff,

where F is the (adic) flag variety parameterising the maximal lagrangians of V,,. According
to [PS16, §1|, we know that myr is a morphism of adic spaces.

2.5.2. Let us describe the Hodge—Tate period map mgt more explicitly on the level of points.
Suppose C'is an algebraically closed and complete extension of Q,, and (A, A) is a principally
polarised abelian variety over C'. The Hodge-Tate sequence of A is

0—>Li€A—>TpA®ZPC—>wA\/ —>0,

where wyv is the dual of the Lie algebra of the dual abelian variety AV and the second last
map is induced from the HodgeTate map HT4 : T,A — wyv. Here, we ignore the Tate
twist by the fixed compatible system of p-power roots of unity (¢yn)nez., in C,. Notice that
every point £ € Xpge)(C, O¢) corresponds to a quadruple (A, A, ¢y, ) where (A, X\, ¥y) is
a principally polarised abelian variety over C' with a I'®)-level structure and v is a symplectic
isomorphism v : V, >~ T,A. Then 7y sends = to the maximal lagrangian

Lie A C TpA ®Zp C 1/’& V;, ®Zp C.

One can extend such an explicit description to the boundary points as well using the
language of 1-motives. The details are left to the interested readers.

Remark 2.5.3. There are right GSp,,(Q,,)-actions on both sides of the Hodge-Tate map.

The GSp,,(Q,)-action on F7 is given in §2.4. As for the GSp,,(Q,,)-action on ?p(poo), here
we only describe the action away from the boundary. (A similar description applies to the
boundary points as well, using the language of 1-motives.) Let v € GSp,,(Q,) and let
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m € Z such that p" v~ € Myy(Z,) and p™ =1 & My,(Z,). Choose k € Z>q sufficiently
large such that the kernel of p™~~1 : A[p*] — A[p"] stabilises. Let H C A[p"] denote the
corresponding kernel. Then v~! sends (A4, \, ¥y, ) to (A" = A/H, N )y, 1) where

e )\ is the induced polarisation on A’;

e ¢y is induced from ¢y via the isomorphism A[N] ~ A'[N];

e ¢/ is given by the composition

V, =V, 0z, Q, 5 T,A®y Q, = T,A' @7, Q,
with the first map V, = V, ®z, Q, sending ¥ to (p™ v~ ")~'v.
One checks that 7y is equivariant with respect to these GSp,,(Q,,)-actions.
Proposition 2.5.4. There is a natural isomorphism
* S
Tir W 7 ™ Wr(poe)-

Proof. Let uni‘éo) be the pullback of the universal abelian variety Al(‘ii" over X¢, to Xp(pe).

L(p
Away from the boundary, we have a universal trivialisation "™ : V,, ~ T, Allir(l;)v . Let
UiV ~ T, Aumv be the dual trivialisation. The Hodge-Tate map on the universal

abelian varlety Aun;,Vw) 1nduces a map

wunlv \4

HTp ey 1 V) A‘”“VV — Wr(,

|XF(P )
which induces a surjection

HTF( ®1d V ®Zp ﬁXF( o0y —» (A)F |XF(p 00
According to 2.5.1, this surjection extends to a surjection 2

HTF(poo) ®id : V}\; ®zp ﬁ?r(poo) = Wp(pe0)

on the entire perfectoid Siegel modular variety.
Consequently, the sheaf 71 # 5, being the universal maximal Lagrangian quotient of
V, ®z, ﬁ’ymw), coincides with W, O

2.5.5. Recall the sections s; of ”‘//;_-Z defined in 2.4.5. We define sections s; € Wr(peo) by

§; = 7TI>§IT S;. (23)

2The map HTp (o) @id here coincides with the map HTpy~) ®id : V,®z, &
via the symplectic isomorphism V,, ~ V;/ sending e; to —eggﬂﬂ-, fori=1,...,g, and sending e; to eg/gﬂﬂ-,
fori=g+1,...,2g.

T, — W) 0 2.5.1
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From the construction, one sees that

for all i = 1,...,g. These s;’s are examples of fake Hasse invariants studied in [Sch15]. We
also write
51
s=| | =mrs.
Sg

2.5.6. To wrap up the section, we introduce the notion of ‘w-ordinary locus’ of the perfectoid
Siegel modular variety. In particular, it is an open subset of ?F(poo) which contains the usual
ordinary locus.
For every w € Q. define
Xr(pe)w = mr(FL).

We also define

Xrn), G 1= hrm) (Xre)w)s - Xt ey = Pt (Xre),w)
XIW,Cp,w = hIW(XF(pOO),w); XCp,w = h(XF(pOO),w)a

where hippn) @ Xrpe) = Areryc,, et @ Xre=) = Xt o, Miw @ Xrp=) = Ao,
and h : ?p(poo) — Tcp are the natural projections. The subspaces ?p(poo),w, Tp(pn)pp’w,
Xiyt 0y Xtw,Cpaws ad X, are called the w-ordinary loci of Xrpe), Xrpny.c,, Xiwt.c,
le,cp, and ?Cp, respectively.
We still denote by
THT ! ?F(poo)ﬂu — FU

the restriction of the Hodge—Tate period map on the w-ordinary locus. It is equivariant
under the right IWGszg—actions on both sides.
Denote by 3;; := Ty 255 and 3 := (3, )1<ij<g = Thr 2 Let s = miip(s)) and

s/ = (sy -+ 8)) =mhp(sY).
By Lemma 2.4.6 and Corollary 2.4.7, we have

YY) =" (v, +37.) "

and
Y5 =Y. +37.) 5 (2.5)

for all v = (Z/“ ;b> € IWGSpgg- We will need these sections s;’s and s;’s in Chapter 3.
c d
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Chapter 3

Overconvergent automorphic sheaves

In this chapter, we use perfectoid method to construct families of sheaves of overconvergent
Siegel modular forms. In particular, we give an answer to the first part of Question 1.3.2
(). The idea of such sheaves are taken from [CHJ17|, where the authors of loc. cit. used
perfectoid methods to construct families of sheaves of overconvergent automorphic forms
over the compact Shimura curve over Q. We remark that the materials presented in this
chapter are entirely taken from [DRW22, §3|.

This chapter is organised as follows. The perfectoid construction of the sheaves are given
in §3.1 and the local descriptions of these sheaves are discussed in §3.2. In §3.3, we define the
Hecke operators acting on the space of overconvergent Siegel modular forms. We justify our
sheaves in §3.4; that is, we prove that our space of overconvergent Siegel modular forms does
contain the space of classical (algebraic) Siegel modular forms. The last three sections §3.5,
§3.6 and §3.7 are dedicated to the relation between our construction and the construction in
[AIP15].

Convention. Starting from this chapter, we denote by Xr (resp., Xr.; resp., Xt) the adic
space X1, (resp., Xr.c, w; resp., Xr.c,) over Spa(C,, Og, ) for any T' € {T'(p™), Iw ™, Iw, @}
Similarly, we also write Y;Or (resp., Xr) for the algebraic variety 71‘7017 (resp., Xr,c,) over
C,.

3.1 The perfectoid construction

3.1.1. Let ALG(z, z,) be the category of complete sheafy (Z,, Z,)-algebras. We consider the
functor
ALG(vazp) - SETS? <R7 R+) = Homc(t}SROUP(TGLmOJ Rx)a

which is represented by the (Z,,Z,)-algebra (Z,[Tcr, 0], Zyp[Tcr,0]). The weight space is
W = Spa(Z,[Tar, 0], Zp[Tar,0])™,

where the superscript ‘rig’ stands for taking the generic fibre. Every continuous group
homomorphism & : T, o — R* can be expressed as k = (K1, ..., kg) where each k; : Z; —
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R* is a continuous group homomorphism. We write k¥ := (—kg, ..., —k1) where —&; is the
inverse of k;.

We are interested in some special weights, namely ‘small weights’ and ‘affinoid weights’.
These terminologies are adapted from the ones introduced in [CHJ17].

Definition 3.1.2. (i) A small Z,-algebra is a p-torsion free reduced ring which is also
a finite Zy[Th, ..., Ta]-algebra for some d € Zso. In particular, a small Z,-algebra is
equipped with a canonical adic profinite topology and is complete with respect to the
p-adic topology.

(ii) A small weight is a pair (Ry, ky) where Ry is a small Z,-algebra and ry : Tar, 0 —
R}, is a continuous group homomorphism such that ky((1+p)1,) — 1 is topologically
nilpotent in Ry with respect to the p-adic topology. By the universal property of the
weight space, we obtain a natural morphism

Spa(Ru, Ru)rig — W.

Occasionally, we abuse the terminology and call U = Spa(Ry, Ry) a small weight. For
later use, we write R}, := Ry in this situation.

(11i) An affinoid weight is a pair (Ry, ky) where Ry is a reduced Tate algebra topologically
of finite type over Q,, and ky : Tav, 0 — Ry is a continuous group homomorphism. By
the universal property of weight space, we obtain a natural morphism

Spa(Ry, R) = W.

Ocassionally, we abuse the terminology and call U = Spa(Ry, Ry;) an affinoid weight.
For later use, we write R}, = Ry, in this situation.

(iv) By a weight, we shall mean either a small weight or an affinoid weight.

Remark 3.1.3. For any n € Z>(, we view n as a weight by identifying it with the character

g
Tar,0 — Z,, diag(Ty,...,7y) = H‘rf
i=1

Moreover, for any weight k£ = (k1, ..., k,), we write x + n for the weight (k1 +n,...,5, +n)
defined by

g
diag(7q, ..., 7y) — H Ri(Ti) T
i=1

3.1.4. Because of the notion of small weights, we have to work with the ‘mixed completed
tensor’ as in [CHJ17|. We recall the definition.

Definition 3.1.5. Let R be a small Z,-algebra.
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(i) For any Z,-module M, we define !

M&'R :=lim(M @z, R/I;)
N
where {I; : j € J} runs through a cofinal system of neighborhood of 0 consisting of Z,-
submodules of R. If, in addition, M is a Z,-algebra, then M®&'R is also a Z,-algebra.

(ii) Let B be a Q,-Banach space and let By be an open and bounded Z,-submodule. We
define the mixed completed tensor

~ ~ 1
BER = (Bo® B[ ].

which is in fact independent of the choice of By.
3.1.6. Let (Ry, ky) be a weight, we will use the following conventions:

(i) For any Z,-module M, the term M®R;; will either stand for M & Ry in the case of
small weights (notice that By, = R;; in this case), or stand for the p-adically completed
tensor over Z, in the case of affinoid weights.

(ii) For any Q,-Banach space B, the term B® Ry, will either stand for the mixed completed
tensor in the case of small weights, or stand for the usual p-adically completed tensor
over Q,, in the case of affinoid weights.

Notice that, given a uniform Banach Q,-algebra B and any weight (R, ), the tensor
product BRR,,; also admits a structure of uniform Q,-Banach algebra. In particular, if B°
is the unit ball of B (with respect to the unique power-multiplicative Banach algebra norm),
then the unit ball in BRRy = BRq, Rjj[1/p] is given by B°®R;;. Here, note that Rj[1/p]
has a structure of a uniform Banach Q,-algebra given by the corresponding spectral norm
(see [CHJ17, pp. 202]).

3.1.7. Next, we introduce the notion of ‘r-analytic functions’ by following [Han17|. Such a
notion is not only important in the perfectoid construction of sheaves of overconvergent Siegel
modular forms, but also plays an essential role when discussing overconvergent cohomology
groups in Chapter 4.

Definition 3.1.8. Let r € Q. and n € Z>,. Let B be a uniform C,-Banach algebra and
let B° be the corresponding unit ball.

(i) A function f : Zy — B (resp., a function f : (Z;)" — B) is called r-analytic if for
every a = (ai,...,a,) € Zy (resp., every a = (ay,...,a,) € (Z,)"), there exists a
power series f, € B[Ty,...,T,] which converges on the n-dimensional closed unit ball
B"(0,p™") C C; of radius p~" such that

flrr+ar,...,xn+ay) = fo(z1,...,20)

10ur notation ® corresponds to the notation & in [CHJ17, Definition 6.3]. We make this change to
distinguish from the one in Definition 3.1.5 (ii).
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for all z; € p!"! Z, i=1,...,n. Here [r] stands for the smallest integer that is greater
or equal to r.

(i) Let C"—*"(Z,, B) (resp., C""*((Z,))", B)) denote the set of r-analytic functions from
Z, (resp., (Z,)") to B.

(iii) Let CT=*(Z,, B°) (resp., C""*((Z,)", B°)) denote the subset of C"~*"(Z,, B) (resp.,
Cr=((Z,))", B)) consisting of those functions with value in B°.

3.1.9. Given a uniform C,-Banach algebra, we claim that C"=**(Z,, B) (resp., C""*((Z, )", B))
admits a natural structure of uniform C,-Banach algebra. Indeed, one first expresses Z; as
the disjoint union of p™"! closed balls of radius p/"!, labelled by an index set A of size p™!"1.
Then, for every f € C"*(Z;, B), the restriction of f on each closed ball (with label a € A)
is given by a power series

T T,

fo€ B{(—,...,=2)

p p

where B (%, ce :£—¢> stands for the subset of B[T7, ..., T,] which converges on the n-dimensional

closed unit ball B"(0,p™") C C}. Let | e |p be the unique power-multipicative norm on B.
Tn

We can equip B(%, ce pr) with the following norm: for every f' = Zuezgo b,T", we put

|f] = sup [by]5-p~".

veZY,

Finally, if f € C""*(Z,, B) is represented by {fa}sea, we put |f| := sup,c4 |fa]. This is
indeed a uniform Banach norm with unit ball C"*"(Z;, B°).

Definition 3.1.10. (i) A weight (Ry, ky) is called r-analytic if it is r-analytic when
viewed as a function
Ky (2, )" — Ry C C, @Ry

via the identification Tar, 0 =~ (Z,)?.

(i1) For a weight (Ry,ky), we write ry for the smallest positive integer r such that the
weight 1s r-analytic.

Remark 3.1.11. (i) It is well-known that every continuous character Z, — Ry is r-
analytic for sufficiently large r. Moreover, if such a character is r-analytic, it necessary
extends to a character

Z;(1+1* Oc,)  (Oc, BRY)* € C,BRy.
See, for example, [CHJ17, Proposition 2.6].

(ii) If we write sy = (Ku1 - - -, Kug) With components ry; @ Z) — Ry, then ry is r-analytic
if and only if all sy ;’s are r-analytic. In this case, for any w € Q. with w > 1 + 1y,
Ky extends to a character

ks T o — (Oc, ®RY)* € C, @Ry
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3.1.12. In the perfectoid construction, we would like to consider ‘r-analytic functions on
Iwgr,’. This notion is made explicitly by the following.
Let B be a uniform C,-Banach algebra. Note that there is a (topological) identification

1
o pr 1 (g=1g
Uea=1 . . ~7Z,°% .
pl, ... pl, 1

We say a function 1 : GL 1 — Bis called r-analytic if, under the identification above, the
function
(9=1)g
v:4,* — B

is r-analytic. The space of such functions are denoted by C"~ an(Ué‘ip 1. B ).

Now, let (Ry, k) be an r-analytic weight. Using the decomp051t10n Bev, 0 = Tar, 0UcL, 0,
we extend kg to a group homomorphism ry : Bar,o — Ry by setting Hu’UGLg,O =1. We
define

r—an ) ) ) f(7ﬂ) = /{U(/B)f(’)/)’ V/B € BGL97O7 Y€ IWGLQ
Cr (Iwar,, B) := {f Hlwer, = B f’UE’;T;,l is r-analytic '

Finally, we write C}_**(Iwqr,, B°) for the subset of C] *'(Iwgar,, B) consisting of those
functions with value in B°.

Consequently, by 3.1.9, C“_an(Uinp 1, B) admits a structure of uniform C,-Banach al-
gebra. Notice that an element in CF - an(IW(;Lg, B) is determined by its restriction on Ugy. ;.
Thus, C;*"(Iwg,, B) admits a structure of uniform C,-Banach algebra via the identifica-
tion

C;Zz;an(IWGL ,B)~C"" an<UgII)f; 1’B>
In particular, C}**(Iwqr,, B°) is the corresponding unit ball in C}~*"(Iwg,, B).
Remark 3.1.13. Let x; be a weight and let w € Q., with w > 1, + 1. Recall that we

have a decomposition Bgi)mo = Tgﬁ)nggi) o- Since w > 1+ 1y, Ky extends to a character

on Tgf)g@, and hence to a character on BéL o by setting Ku| = 0.

We claim that every element f in Cp*"(Iwgy,, B) (resp C“’M a(Iwgr,, B°)) naturally
extends to a function

f: IWGL — B (resp., f: IWGL) — B°)

such that f(vB) = ky(B8)f(v) for all B € Bgi)g,o and v € Iw(éi)g. Indeed, we have decom-
position

(w) opp,(w)p(w)  rr(w)
IWGLg = UGL 1 GLg UGLg,o-
opp, ( (w) /
Then for every v € UGL 1 ) 1€ TG, 0o and V' € UGLg,o> we put

flwrv) =ry(r)f(v).
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It is straightforward to check that f is well-defined and satisfies the required condition.

3.1.14. As a consequence of Remark 3.1.13, given w € Q. with w > 1 + 1y, there is a
natural left action of IWJCE’L(;”) on O (Iway,, B) and Cp**(Iwqy,, B°) (hence also a left
action of Iwfy ) given by

(N =fCyY)
for all v € Iwgé;“), v € Iwa,, and f € C**(Iway,, B) (resp., Cy~*"(Iwgy,, B°)). This
left action is denoted by p,,, : Iwg’L(;”) — Aut(C¥*(Iwg,, B)) (resp., pu, : IWE’L(ZU) —
Aut(Cy=**(Iwar,, B°))).

3.1.15. Before defining the sheaves of overconvergent Siegel modular forms, we introduce
the following sheaves for any weight (Ry, ky) and any w € Q.o with w > 1+ 1y

(i) Let ﬁyw @Ry be the sheaf on y]_"(poo)yw given by

oo)yw
Y= Oz, (V)BRy

for every affinoid open subset ) C Tl"(poo)’w. This is in fact a sheaf of uniform C,-
Banach algebra; i.e., (O . ®Ry)(Y) is a uniform C,-Banach algebra for every
affinoid open ).

?F(p‘x’),

Similarly, let ﬁ%m . @R;; be the sheaf on Tp(poo)’w given by

),

YV 0L

Xr(poo),w

V)BR

for every affinoid open subset Y C ?I“(poo%w.

(ii) For any r € Q.o with r > 141y, let €, *(IwgL,, O%

X1 (po0),w

®Ry) denote the sheaf
on Tr(poo)7w given by

Y= O " (Iway,, Ox (V)& Ry)

AT(po),w
for every affinoid open subset ) C Tp(poom. This is also a sheaf of uniform C,-Banach
algebra.

The sheaf €, " (Iwar,, O

> ®R})) is defined in the same way.
T'(p>),w

Definition 3.1.16. Let (Ry, ky) be a weight and let w € Q- such that w > 1+ ry.

(i) The sheaf of w-overconvergent Siegel modular forms of strict Iwahori level
and weight ry is a subsheaf WY of hi+ €. " (Iwar,, O% ®Ry) defined as

follows. For every affinoid open subset V C letw with Vo = hl_wl+(V), we put

7* f = pﬂu (70, +370)_1f7

(V) 5= {1 € O I, O VBB o (e W) ¢ ps
Ye Vd 5Pz
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Here, ~* f stands for the left action of v on ﬁ?r(poo)w induced by the natural right

IWEsng‘aCtiOn on xr(poo),w defined in §2.5.

Similarly, the sheaf of integral w-overconvergent Siegel modular forms of

strict Iwahori level and weight 1y is a subsheaf W™ of hy+ € ™" (IwaL,, ﬁ}r(poo) ;

SRY)

defined as follows. For every affinoid open subset V C ?thw with Voo = hl’wﬂ(V), we
put
. N . Y f = P (Ya+37) S
Ku L w—an + .
wy (V) =3 [ € O (e, ﬁ/\’r(pm),w (Vo) Fy) - Vy = (Za zb S IWJGrsz
c d g

(ii) The space of w-overconvergent Siegel modular forms of strict Iwahori level
and weight ry is defined to be
M ¢

WL RU

= H0(71w+,w7 QZJM)
We similarly define the space of integral w-overconvergent Siegel modular forms
of strict Iwahori level and weight ry to be

w,+
M7

Iw = HO(?IW‘*,w? gnu,Jr).

yKu w

(11i) Taking limit with respect to w, the space of overconvergent Siegel modular forms
of strict Iwahori level and weight ry is

MT

— i w
Tty lim Mg . -

w— 00
Similarly, the space of integral overconvergent Siegel modular forms of strict
Twahort level and weight ry is

(iv) Recall that 2+ = X1+ X 1o+ 15 the boundary divisor. The sheaf of w-overconvergent
Siegel cuspforms of strict Twahori level and weight ki is defined to be the sub-

sheaf Wit = wit(— Z1+) of wid consisting of sections that vanish along Zy+.

A w-overconvergent Siegel modular form of strict Twahori level and weight Ky is called
cuspidal if it 1s an element of

Slli;)gﬂ',,{u = HO(TIwJﬂw’ gfuljtcusp)‘
Moreover, by taking limit with respect to w, the space of overconvergent Siegel
cuspforms of strict Iwahori level and weight ki is defined to be

w

T T
SIW+,HU T llm IW+,K/M'

w—r 00
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Remark 3.1.17. Notice that, in Definition 3.1.16 (iii), for every x € yp(poo)ﬂﬂ(Cp,OCp)

FYc 7d
well-defined.

and any (7‘1 7”) € Iwgsp%, we have v, +3(x)~y, € IWJ(E’L(;”). Hence, pr, (v, +37.) is

Remark 3.1.18. The definition above yields an analogue to the complex theory, which we
describe in the following.

Suppose k = (ki,...,k,;) € Z%, is a dominant weight for GL, and let p; : GL,(C) —
GL(V}) be the corresponding irreducible representation of GL, of highest weight k. Recall
the Siegel upper-half space H;. Then a classical (complex) Siegel modular form of weight &
and level I' is a holomorphic function f : H;“ — V such that

f(v-z)=pr(vex +74) f ()

+ _(Ya Vb
for all z € H and v = (70 "/d) € I' € GSp,,(Z).
In our case, a w-overconvergent Siegel modular form f € Mgﬁ , can be viewed as a

function -
f : Xr(poo)’w — C;UM_an(IWGLg, Cp ®Ru)

satisfying
(&) = pey(Va+37.) " f()

forall z € Xy, and v = <7a :YYZ) € Iwasmg C GSpy,(Z,). Notice that 2" (Iwgr,, C, ®Ry)

(&
is an analytic analogue of the algebraic representation V.

Remark 3.1.19. The sheaf wf¥ is functorial in the weight (Ry, xy). Given a map of weights
Ry — Ry and w > max {1 +ry, 1 + 1}, we obtain a natural map w — wy? induced
from

Co ™ (Iwar,, O%

XF(POO)v’w ®Ru> - C/:quan(IWGLg7 ﬁ?p @R{,{/).

(P°),w

3.1.20. Finally, to simplify the notation, we introduce a ‘twisted’ left action of IWESPQQ on
the sheaf ¢ *"(Iway,, O ®Ry) by the formula

?F(p‘x’),w
Y- = Py (YaF357)Y -

. P . + . . . w—an . ~
Then, sections of w"“ are precisely the IWGszg—lnvarlant sections of hyy+ , € " (Iwar,, O Xy ®Ry)

under this twisted action.

3.2 Local description

3.2.1. Throughout this subsection, let (Ry, ry) be a small weight and w > 1 + ry. We fix
an ideal a;; C Ry, defining the profinite adic topology on Ry,. In addition, we assume p € ay,.

The purpose of this subsection is to give a local description of the overconvergent Siegel
modular sheaf wj*. More precisely, we show that w/¥ can be identified with the G-invariants
of an admissible Kummer étale Banach sheaf in the sense of Definition A.2.11, where G is a
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finite group. Such a description allows us to apply Corollary A.2.18 to the sheaf w/“, which
is crucial in our construction of the overconvergent Eichler—Shimura morphism.

Definition 3.2.2. Let R be a flat Oc,-algebra and suppose M is a free R-module of rank
g. We write Ry, := R ®o,, Oc, /p* and M, :== M ®g R,. Let m := (my,..., my) be an
R.,-basis for M,,. We denote by FilJ* the full flag

0C (my) C(my,my) C--- C (my,...,my)

of the free R,-module M,. Namely, Fili* = (my,...,m;) foralli=1,...,g.
(i) A full flag Fily of the free R-module M is called w-compatible with m if

Fil; @z R,, = Fil*
foralli=1,... 9.

(ii) Suppose Fily is a w-compatible full flag as in (i). Consider a collection {w; : i =
1,...,g} where each w; is an R-basis for Fil; /Fil,_y. Then {w; :i=1,...,g} is called
w-compatible with m if

w; mod (p*M +Fil;_1) = m; mod Fili*,

foralli=1,...,g.
3.2.3. Pick a positive integer n > sup{w, I%}. Recall from §2.3 the locally free ﬁ%m -
pn
module g?(;i’;r over ?F(pn). Also recall the Hodge—Tate map

HTrny : V®z(Z /p"Z) — wrrnOd +/p" mOd +

(®")

over yl"(pn). Restricting to the w-ordinary locus yl"(pn)ﬂu and composing with a natural
projection, we obtain

HTrgpnyw : V®z(Z /p"Z) — wrrn(‘;d;r pngfrn(;d;r N wm(od ;w pwg;n(od)—k

4, d =
where w?(o )Jr is the restriction of wmo )Jr on Xp(pn) -

Lemma 3.2.4. The sheaf w wm°d+ /W m0d+ is a free ﬁxr /pw-module of rank g gen-

)w (™
erated by the basis HTppny (egH) HTF(pn),w(eQQ).
Proof. Notice that w?((; C}f /D w?noff is locally free of rank g. It follows from the definition

of w-ordinary locus that HT () w(€gi1), ..., HTppn)w(€2g) span w?&dJr /P w mOd;r Hence
they must form a set of free generators.

3.2.5. We consider an adic space ZW,! over ?F(pn),w parameterising certain w-compatible
objects. More precisely, for every affinoid open subset Spa(R, R") C Xpgnyw, the set
IWE(R, RY) consists of triples

(o,Fily, {w; :i=1,...,9})
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where

(i) o is a matrix in IWELQ(Z /p™ Z) where Ingg(Z /p" Z) is the preimage of Tqr,(Z /pZ)

mod p

under the surjection GL,(Z /p" Z) —— GLy(Z /p Z);

(ii) both Fil, and {w; : i = 1,..., g} are w-compatible with (HTI‘(pn)’w(eg+1), . ,HTF(pn)’w(egg))'
o.

We write 7 : ZW/} — ?F(pn%w for the natural projection.

3.2.6. In order to further understand ZW,, we consider the following group objects in adic
spaces:

(i) Define
1+ p*B(0,1)
o | PBOD . 1HpBOD)

p“B(0,1) pB(0,1) -+ 1+p"B(0,1)

where B(0,1) = Spa(C,(X),O¢,(X)) stands for the closed unit ball. In particular,
the underlying adic space is isomorphic to a % g(g + 1)-dimension ball of radius p~.

(ii) Define

Z, +p"B(0,1)

Z: +p*B(0,1)
w p !
TE}I?Q,O =

Z, +p"B(0,1)

hl +pr<Oa 1)
h2 +pr(07 1)

he + p“B(0, 1)

where S C Z; is a set of representatives of Z; /(14+p™ Z,). In particular, the underlying

n—1)

adic space is isomorphic to the disjoint union of (p — 1)9p9 copies of g-dimension

ball of radius p~".
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(iii) Define

1
UOpp pZp+p"B(0, 1) !
GLg,1 : : :
pZy+p"B(0,1) pZ,+p*B(0,1) --- 1
1
|_| ho1 +p¥B(0,1) 1
h; ;€S h
1<5<i<g \hgy + p“B(0,1) hgo+p*B(0,1) -+ 1

where S C Z is a set of representatives of pZ, /p" Z,. In particular, the underlying
adic space is isomorphic to the disjoint union of pz9@=—D"=1 copies of s9(g — 1)-
dimension ball of radius p=™

The adic spaces ByPP, TGL o and Z/l(épf (1 are equipped with group structures given by the

w

matrix multiplications. Note that the (C,, Og, )-points of BiP, TGL o> and Z/l(épf (1 coincide

with the groups BoPP, TC(;“ELO, and Ugf;”(f" ). respectively. This justifies the notations.

Lemma 3.2.7. IW} is augpg;f;“) X 7’8’8970 xUqr,1(Z [p™ Z)-torsor over Xrn . where Ugr, 1(Z /p" Z)

mod p

is the kernel of the natural surjection Uqr,(Z /p" Z) —— Uqy,(Z /pZ). Namely, locally on
?F(pn%w, we have identification

IW;, = Frmw Xson(Cn0c,) (USET X TE o xUat,1(Z /7" 7))
where U(épﬁq’ﬁ”) X TgUL)g,o xUcr,1(Z /p™ Z) acts from the right by matriz multiplication.
Proof. This is clear from the construction. m
3.2.8. Using the adic space ZW;., we construct two auxiliary sheaves Qfﬂf and Qflf‘w:
(i) The sheaf QZ’JF over ?p(pn),w is defined to be
Dt = <7r* ﬁ;/% @Ru> (ks

1.e., the subsheaf of 7, ﬁ;w$ Ry consisting of those sections on which Ty, o-acts
through the character x;; and Ugr,1(Z /p" Z) acts trivially.

(ii) The sheaf

“n,w

ity = (s Oyt ®Ry) (k]

is defined similarly.
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Remark that since ry is w-analytic, the character ;) : T, 50 = R}, extends to a character

(w) .
on Ty, o> namely, a character

Ry s T o(RRT) = (RY&Ry)”

for every affinoid (C,,Oc,)-algebra (R, R*). It turns out, in the definitions of w““’Jr and

W, w, there is no difference between taking ;j-eigenspaces with respect to T, 0- or ’TGL o
actions.

Lemma 3.2.9. The sheaf o™

sense of Definition A.2.4 (ii). Moreover, Qf:’u’f is an integral model of W
Definition A.2.4 (iv).

is a projective Banach sheaf of ﬁff( @Ru—modules in the

T, W

‘. in the sense of

Proof. Let {V,,; : i € I'} be an affinoid open covering of X, such that wrrnOd ﬂvn , 1s free,
for every i € I. By choosing a basis for gll?(‘; (i;r |V,...» we can identify

Gy, = 0% (Ty:1<s<t<g)®Ry
which is the p-adic completion of a free & {;m ®Ry-module, as desired. O

3.2.10. The p-adically completed sheaves on the Kummer étale site associated with w;% o+

and W', are

1
Hm Fvu, + m ~Ky . kut 12
Wy, W ket : L < ®ﬁ+ ﬁfp(pn%w,két /p > and gn,w,ké‘c T o‘—jn,w,két[ ]

Xl"(p"),w p
respectively.

By Lemma 3.2.9 and Corollary A.2.9, QZf‘wkét is a projective Kummer étale Banach sheaf
of O st ® Ry-modules in the sense of Definition A.2.6 (ii). Moreover, ittt is an
integral model of W | in the sense of Definition A.2.6 (iv). In fact, the Kummer étale
Banach sheaf w %mw,ket is admussible by the following lemma.

Lemma 3.2.11. The sheafw;", . ®Ry-

modules (in the sense of Definition A.2.11) with integral model @

. 15 an admissible Kummer étale Banach sheaf of ﬁxr )

~Ky,+

=n,w,két

Proof. The proof is inspired by the discussion in [ATP15, §8.1]. We provide a sketch of proof.
To simplify the notation, we write F+ = wzl‘u’} o and F = gt . We also write

Fh=F" [ay, for every m € Zs,.

Let & = {V,,; : @ € I} be an open affinoid covering for Tp( nyw such that wp r'pn)

is free, for every i € I. We equip each V,; the induced log structure from X rpn)w- BY
. . mod’Jr . .
choosing a basis for Wy V,..» we can identify

a+
F Ty

~ 0f (Ty:1<s<t<g)@Ry

n,i
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which is the p-adic completion of a free 75, ® Ry-module. Modulo a7, we obtain

T s = (0%, @, (Ruf @) ) [T : 1< 5 <t < g]

For any d € Zx, consider the subsheaf (Z), |v,,)S* C .Z |y, consisting of those polyno-
mials of degree < d, and consider

iel i,5€l

Then each .Z " _is a coherent 0% ®z, (Ru/ a})-module and we have .7/, = lim 7

Xr T'(p"),w,két md’

as desired. O

3.2.12. Next, we are going to relate the overconvergent Siegel modular sheaves wf+ and
wh with the auxiliary sheaves @”“’JF and w;%,. To this end, we need two intermediate sheaves
g”“’* and wpH, over X () deﬁned as follows

(i) The subsheaf wr¥, of hpgm) . € " (Iwar,, O % oo ®Ry) is defined as follows. For

every affinoid open subset V C Xpn), With Ve, = h;(lpn)(V), we put

Y = e (Ya+37)

Ku o w—an _ P~ .
gn,w(V) =49/ € Cnu (IWGL97 ﬁXr(poo)’w (VOO)®RU) T Wy = (’Ya e’ c F<pn)
Ye Ya
(ii) The subsheaf wi* of hrpmy . € " (IwaL,, ﬁj‘: o, ®Ry) is defined as follows. For

every affinoid open subset V C X r(pm),w With Vo hr(l - (V), we put

7* f = pl@u ('7(1 +370)_1f7

Xr(poo)w(voo)@RM) : V’}’ — (7@ ;/Yb) c F(pn)

c d

Wit (V) == < f € Co ™ (Iway, oL

=n,w

Here, recall that hpgny : ?F(pooLw — ?I‘(pn)’w is the natural projection.

One observes immediately that if h,, : Tp(pn)@ — ?IW+71U denotes the natural projection,
then the overconvergent Siegel modular sheaf w"¥ can be identified as the Iwésp /T (p")-
invariants of the sheaf h,, ,wii%, with respect to the ‘twisted’ action . f := pu, (7, +3 ’yc) ¥ f

Yo Vo

o ) € [(p") and f € wy¥, . Similar result holds for the integral sheaf
c d

for every v = (
wl{u,—‘r

—w

Proposition 3.2.13. There is a natural isomorphism of 0% QRy-modules U gfﬁ;}"" ~

X (pn
L)

ng’Ufr. Inverting p, we obtain a natural isomorphism of ﬁxr( -~ ® Ry-modules W Wit =

g

gn,w‘
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Proof. As a preparation, consider the pullback

Wy o — IW]

nwl B lw

?F(p“)ﬂv — XF(p")vw

in the category of adic spaces. To show the ex1stence of such a pullback, it suffices to
check this locally on Xt .,. Recall that ZW, is au‘gpr X Tg’JL) 0 xUar, 1(Z /p" Z)-torsor

over Xp( ), and Z/l(()}pf ;U) X 'TGL o Is isomorphic to finitely many copies of B(0, 1)g<g+1>. It

g(g+1)

remains to show that the fibred product X’ T(p>°),w X Spa(Cy,0c, yB(0,1)7 2 2 exists. Indeed, by
[SW20, Proposition 6.3.3 (3)], such a fibred product exists and 1s a sousperfectoid space. In

addition, we know that the pullback ZW;,  is likewise a Z/l(épf’ L x TgUL)g’O xUqr,1(Z [p" Z)-
torsor over ?F(poo)ﬂu.

For every affinoid open V C ?F(pn)ﬂu and Vo V the desired isomorphism ¥*

will be established via a sequence of isomorphisms

F(p

Ut st () Sy o™ = @ = ot (),
; o, T, Wy

where

o0 = {1 e v, 0 VBR) 7 f = pat s S vy = (T 20) €T )

and

w® = {f € Moo ﬁ;wgm(Voo)@Ru : vi=f T f=myr)f, vif=f ) } .

V(’Y,T, l/) - F(p") X TGLg,O X UGLg,1<Z /p”Z

Here, for any 6 € M,, we write ot = ]l t5 1 ¢» Which can be viewed as the “transpose with
respect to the anti- dlagonal” Notice that 3t =3.

Construction of ¥;. Observe that there is an isomorphism
Uy CY M (Iwar,, 05 (Vo) ®Ry) — G (Iwar, 0% (Voo)®Ry)
defined by
Ui () = f(1, T 1)
for all f € CU ™ (Iwgy,, 0%, (Vo) ®Ry) and 4 € Iwg,,.

We claim that ¥ induces an isomorphism wf; (V) ~ w®. It suffices to check that if

Y = pry(Ya+37.) " f forevery v = (:YY :;Z) e T(p"), then v*(¥1(f)) = pry, (vE + 375 W1 (f).
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Indeed, for any 4’ € Iwqr,, we have

YU ()A) = (Vo + 37 (1, 5y )

/‘\

=/ ((Fat37) " flgtv’ '1,)
=f (vg Iv[g t('Ya +3'7c)71 i[g t'y/il ig)
=f (vg Ly ya Ly + 151, Ty, 1y) 7t oy ]vlg)
= (L, (v +3vD) 7))
= pey (Ve 37D VLN ()
Construction of ¥y. To construct Wy, consider ¥ = (s, -+ $1) € Wy (Voo)?. Recall
51
that s = | : | and thus
Sg

st="s1,.

Yo Vb

o ) e I'(p"), we have v*s = %(v,+37.)s by (2.5). Hence
c d

Moreover, for any v = (

%

vt =y 8) Ly = ((va+370)8) Ly = s Ly Ly(v +37.) Iy = (s Ly) (v +3 %) = s (vl +37D).

Let Fil} be the full flag of the free 05, (Voo )-module Wr(pe) (Vo) given by
Fill =0C (s5,) C (55,501) C -+ (54,...,51)

and let wi be the image of s,4;_; in Flli/FﬂZ 1, for all ©+ = 1,...,9. Then the triple
(1,, Fil {wi}) defines a section of the L{(épf b X TGLmO xUqL, (Z /p" Z)-torsor 3} (Vo) —
V4. Consequently, one obtains an 1somorph1sm

UB x T xUcr, 1 (Z /0" Z) = 70 (Vao), A = (1, Filk {w!}) - '

and thus an isomorphism

n

(I>:7roo*6"+

~ analytic functions
IW* (VOO)®RZ—/’{_ { }

Opeg 0 x T L> 0 %X U, 1(Z /" Z) — 6% _(Voo)®Ry
£ (7 = £ Fil {wl}) - 7))

We claim that if v* f = f for any v = (:Yya :://b) € T(p"), then v* ®(f) = puy (Ve +370)2(f).
c d
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Indeed, for any +' € Ugfﬁi”(f” ) % Tc(;i)g,o x Uqr,1(Z /p" Z), we have

(Y 2())A) = (v H(v (@ Fill, {wi}) - )
= f (@ Fill {wl) -k 457D )
= Py (Ve F37)2(F)(Y),

where the second equation follows from the identity v* st = st %% 4 54%).
On the other hand, we can identify w® with the set of analytic functions

FoUSP < T ) Ucr, 1 (2 /p" Z) = 05, (Vo) @Ry

satisfying
o f(vTv)=ry(r)f(v) for all (v,7,v) € Ugf;’ff”) X Tc(;lﬁ)g,o x UqL,(Z /p" Z);

o Y f = puy (Vi +30)f for all v = (Yy ,ZZ) e L(p").

Therefore, putting ¥, := &~ one obtains the desired isomorphism
Ty w® S w®,
Construction of W3. By the construction of w;i* and Lemma 2.3.6, one immediately
obtains an identification of w® with @74 (V). We simply take W3 to be this identification.
Putting everything together, the composition U+ = W3 0 U, 0 ¥ yields an isomorphism
Ut et (V) S gt (V).

=n,w —n,w

It is also straightforward to check that the construction is functorial in V. By gluing, we
arrive at an isomorphism
Pt vt o Gt

[l
3.2.14. By the observation in 3.2.12 and Proposition 3.2.13, wi can be identified with the
sheaf of Iwgsp% /T (p")-invariants of h,, .w;",. Hence, wi ., can be identified with the sheaf of
IWESPQQ /T (p")-invariants of Ay, &%, 14, later of which is an admissible Kummer étale Banach
sheaf of ﬁflwtw,két

a description allows us to apply Corollary A.2.18 to the sheaf gfvlfkét. This will be used in
the construction of the overconvergent Eichler—-Shimura morphism in Chapter 6.

®Ry-modules by Lemma 3.2.11 and Lemma A.2.12. Consequently, such

3.3 Hecke operators

3.3.1. In this section, we spell out how the Hecke operators act on the overconvergent Siegel
modular forms. Those Hecke operators at the primes dividing the tame level N are not
considered in this thesis. Through out this section, let (Ry, k) be a weight and w > 1+ 1.
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3.3.2 (Hecke operators outside Np). We define the Hecke operators outside Np using
correspondences. Let ¢ be a rational prime that does not divide Np. For every v €
GSp,, (Qp) N May(Zy), consider the moduli space X, 1+ over X+ parameterising isogenies

~,Iw
of type . More precisely, X, 1.+ is the moduli space of sextuples

(A, N\, YN, Fily Alp|,{C; :i=1,...,9}, L)

where (A, A\, ¥n, Fily Alp], {C; :i=1,...,9}) € Xj,+ and L C A is a subgroup of finite order
such that the isogeny (A,\) — (A/L,X) is of type ~ in the sense of [FC90, Chapter VII,
§3|, where X\ stands for the induced principal polarisation. According to loc. cit., for every
isogeny of type 7, its dual isogeny is also of type ~. In particular, the assignment

(A, N\, N, Fily A[p],{C; :i=1,...,9},L) — (A" = A/L N ), Fil, A'[p|, {C} :i=1,...,9}, L)
defines an isomorphism ®, : X_ 1+ = X, 1w+, where
e )\ is the induced polarisation on A’;

e )y, Fil, A'[p], and C!’s are induced from ¢y, Fils A[p], and C;’s, respectively, via the
isomorphisms A[N| ~ A'[N] and A[p| ~ A'[p];

e [/ is defined by the dual isogeny of (A, \) — (A", \).

There are two finite étale projections

Xyt
2N

XIWJr XIW+

where pry is the forgetful map and pr, sends the sextuple (A, \, ¥y, Fils A[p],{C; : i =
1,...,g9}, L) to the quintuple (A" = A/L, N, ¢, Fil, A'[p], {C] : i = 1,...,g}) described as
above. Clearly, we have pr, = pr, o®,.

Let X 1+ be the adic space associated with X 1+ by taking analytification. We obtain
finite étale morphisms pry, pry : X 1+ = X+ as well as an isomorphism @, @ X 1+ —
X 1w+- We further pass to the w-ordinary locus. More precisely, let X 1+, denote the
preimage of Xy,+, under the projection pr;. Notice that ®, preserves X+, as the
isogeny (A, \) — (A’,X') induces a symplectic isomorphism 7),A ~ T, A’. Hence, we obtain
finite étale morphisms

XIW+,1U XIer,w

and an isomorphism @, : X 1+, =X w- We still have pr; = pry o®,.

~Iwt,
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In order to define the Hecke operator, we shall first construct a natural isomorphism
Py T PIo W = priwi.

Here we have abused the notation and still write wi¥ for its restriction to X+ ,,. Indeed,
pulling back the diagram (3.1) along the projection Ap,+ : Xppe)w — X+, We obtain
finite étale morphisms

w?

X%I‘(p""),w
XF(pOO),w XF(pOO),’UJ

~

between perfectoid spaces and an IWgSp2 -equivariant isomorphism @, o @ Xy p@pe)w —
g
X r(p>)w- The isomorphism @, ., induces an isomorphism

* . * =~ *
D oo T PTo 00 Oppooyw > P10 O ooy w -
It then induces an isomorphism
* . w—an * o =~ w—an * N
®77oo . %mu (IWGLg ) pr27oo ﬁXF(pOO),w ®RZ/[) — (gﬁu (IWGLga pr]_7oo ﬁXr(pOO),w ®RZ/[)

by taking the identity on Ry,.

Recall that 3 is the pullback of the coordinate z via the Hodge—Tate period map myr :
Xrpeyw — Fly. Let 3’ = prj 3 and 3" := prj 3. Since @, induces an isomorph-

ism on the p-adic Tate module, we have 3’ = 3”. Consequently, a section f of the sheaf

a - ‘
%ﬂgu n(IWGLg, pr;,oo ﬁxr(poo)ﬂU ® Ry ) satisfies

V= e (Ya+3" 7)) forally = (T ) elw,
Ye Vd 29

c

if and only if the section ®Z (f) of the sheaf € " (IwgL,, PIT oo O X100y ®Ry) satisfies

V(DY 00 (f)) = Prs (Yo 3 7e) (25 (f))  forall y € Iwlg,, .
This yields the desired isomorphism

. * Ky = * Ky
Oy P PTa Wy," — PIy Wy, -

Given this, we consider the composition

. 0 K, pr 0 * K
T’Y : H (XIWJf,wJQwM) > H <X7,1w+,w7 pry Qwu)
P~y R
( Trpry

HO(‘X.%Iw*,w?prT QZ;M> HO(XIer,w?(/_‘)Zu)-
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Finally, we have to extend the construction to the boundary. In fact, we shall prove that
the sections of wi# on X'y+ , are precisely the bounded sections of wi¥ over the open part
XIW+ w*

w

Lemma 3.3.3. Every bounded section of wi¥ on Xyy+,, uniquely extends to a section of
?Ier w*

Proof. The argument is similar to the proof of [AIP15, Proposition 5.5.2|. Recall that we
can view sections of w¥ as a sections on ZW,. By applying [Liit74, Theorem 1.6] to ZW,}
the result follows. O

3.3.4. Thanks to Lemma 3.3.3, and observe that
OF e M (IWGL, s PYh se O Xpyeyw OBu) = € (IWaL, , DI e O xp e, w0 O Rul)

sends bounded sections to bounded sections, we know that 77, extends to the boundary. We
arrive at the Hecke operator
T’Y : Mf€v+7nu = HO(?IWJf,wa('_‘}?uu) — Ho(ylwﬂwvgﬁ;u) - MII;}V*',HL{'
3.3.5 (Hecke operators at p). For 1 <i < g, we consider matrices w,; € GSp,,(Q,)NMay(Z))
defined by
L;
p ﬂgfi
u,,; =

P p ﬂg—i

for1<i:<g—1, and

For later use, we write

u.

u, ., = pst
pyi u
p7z

where u; and u;i are the corresponding g x ¢ diagonal matrices.

p7
Notice that the u,;-action on X~ preserves Xp(,e) . This can be checked at the

infinite level via local coordinates; i.e., the action of u,; on z is given by

r 2 2

Pzi1 - DPZRig—i P 2ig+1-i " P 21y

) L 2 .. ) 2 ..
PZiy o PZig-i P Zigri-i P Zig ifi=1,..,9-1
, =1,..,
.01 . Zi+1,1 "t Ritlg—i PRitlg+1—i 0 PRitlyg
Z-Upi =Wy 22Uy, = . . .
Zg1  tt Zgg—i  PZggti1-i "t DPZgy

\ Dz, ifi=g
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In particular, when i = g, the u, 4-action actually sends ?F(poo)ﬂu into ?]_“(poo)’w_;'_]_.

The operator U,; is defined in two steps:

(1) For f € %gz;an (IWGLg7 ﬁyr
by

o ®Ry), we definew,; .f € €, *"(Iwa,, ﬁymw)yw ®Ry)

Up,i J&) = u;,z' (U-Ei 76 U-E,’iil ,36)

where 7' = ~; B € Iwar, with g € U | and B € Bar, o-

(ii) Suppose f € €, “"(Iway,, O )@Ru) satisfies

Xr(poo),u

7* f = pl‘iu (7(1 +57c)71f

for all v € Iwgspgg; i.e., v.f = f. Pick a decomposition of the double coset
m
IwgSPQQ Up; IWgszg = I—I 6ij Uy IWJéSp2g
j=1
with 6, ; € IWJGFSPQH. Define
m
Upi(f) = 1" 8i (0. f) € €5, (Iwa,,, O%r oy OBU),
j=1

where v; = —(¢g —i)(g+ 1) fori =1,...,9g— 1 and v, = —75’%*1)

normalisation as in [AIP15, §6.2|.

. Here, we follow the

Of course, we have to verify that U, ;(f) is independent of the choice to the representatives

d;;’s. Suppose {5; ;17— is another set of representatives. Up to re-labelling, we may assume
that
/ =+ _ +
6ij Up; IWGSpQQ = 51’]‘ Up; IWGSpQQ

for every j =1,...,m. Write &}, u,; = d;; u,,~y; for some ~; € IWEszg. We have to check

!/ !/
that &;;.(up,.f) = 8ij .(up, . f). Indeed, if we write &;; = (g”“ g”b) 0 = (g’}j“ fjb>,
ije  Oijd ;

ijc ijd
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and v; = (’ch‘ 352), then for every v € Iwgr,, we have
6;3' '(uZLi f) (7,) :pl‘iu((s;]a +3 62]0) 6*(11* i )( p % 70 /80)
up Z) ( o t((s;]a +3 5'ch) 70 ﬁO)
( (’Y]a + 3 ’ch) D, (6”(1 _'_5 6”0) 70 IBO)

u,;)’

upz) (pw(%ﬁmjc)f)( Eﬁ(%aﬂ%c) You, ' BY)
)
)"

=(8;
(07
(0
( 5 Upi *( * )(uEi t(‘sija +3 5mc) 'Yo upz 50)
=(8ij up)" f(u, Py (ija+3 0i5¢) Yo u :30)

=Pryy (0ija +30i5¢) (035 1y ;)" f( u,; '70 i :30)
=05 -(wp . f)(Y)

as desired. Here, the third equality follows from the identity
D t((s;ja +5 6z]c) = (7]0/ +5 7](:) Dy (6ija +5 Jijc)‘

Lemma 3.3.6. Suppose f € €, *"(Iway,, ﬁfww)w ®Ru) such that v .f = [ for all v €

Iwgsng. Then, the section U,;(f) € €, *"(Iwar,, %y ®Ry) satisfies v .(Upi(f)) =
Upi(f) for allv € Iwésmg.

Proof. We have

The last term indeed computes U, ;(f) because {yd;; : 1 < j < m} is also a valid set of
representatives. 0

3.3.7. Consequently, we arrive at the Hecke operator

Up,i : MIIé}er,nu = H0<?IW+,’U} ) - HO(XIW RVR) ) Mw

'fb{

Moreover, for any = € WeylGSp%, we denote by U7, the Hecke operator defined by the double
coset ‘

+ +
IWGszg (z - up,) IWGSp2g7

whose action is defined analogously as above.

Definition 3.3.8. The Hecke algebra outside Np is defined to be
TV := Z, [Ty;y € GSpay(Qy) N Mag(Zy), (1 Np)
and the total Hecke algebra is defined to be

T _TNP(X)ZPZ [U Z_O717‘ ,g—].,ZEEWGYIGSPQQ]-
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Proposition 3.3.9. The operator U, := [[{_, U, is a compact operator on lefvﬂr’w.

Proof. Note that the action of u,, on 2z is given by pz and that, by definition, the action
of [T, up; on €} " (Iwar,, Oz, ®Ry) factors through the inclusion

p™°),w

Cg’g@;—l)—an(IWGLg, ﬁyr( @Ru) — %Z:an(IWGLg, ﬁfr( ®RZ/{)

p>)w p™),w

This means that U, factors as
Up : HO(?IWJH Ku) — H (XIW w+17 Hu)_>H (XIW w+17 >_>H (XIW Hu>’

where the first arrow is the natural restriction map.

To show the desired result, note that it is known that restrictions of the structure sheaf
of ?IW+7w are compact operators. Moreover, by the discussion in [Han17, §2.2|, the injection
of (w—1)-analytic functions into w-analytic functions is compact. The assertion then follows
by combining these two facts. O]

Remark 3.3.10. Note that the subspace SP . + iy C M, * of w-overconvergent Siegel
cuspforms of weight x;; is stable under the actlon of T Moreover, as U, is a compact

operator on M , it is also a compact operator on Sw .
Iw™t N Iw™ Ku

3.4 Classical Siegel modular forms

3.4.1. The goal of this section is to show that our space of overconvergent Siegel modular
forms does contain the space of classical (algebraic) Siegel modular forms. This justifies the
name

3.4.2. Let k = (k1,...,ky) € ZL; be a dominant weight and consider k" = (—kg, ..., —k1).

Let M = IsomyI . (ﬁ’% +,glw+) be the GL,-torsor over Xy,+ together with the structure
w Iw

morphism ¢ : M — Xy,+. Then the sheaf Qﬁﬁ of classical Siegel modular forms of
weight k (of strict Twahori level) is defined to be
QfWJr =1, O p[k"];

namely, the subsheaf of ¥J, &y on which Ty, acts through the character kY. The space of
classical Siegel modular forms of weight k (of strict ITwahori level) is defined to be

MIC\}V+7k = H0<?IW+,gfw+)
equipped with naturally defined Hecke operators.
Remark 3.4.3. One can also define the sheaf of integral classical Siegel modular forms by

k
wpil = 9, OF [kv]

But we do not need this in this thesis.
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3.4.4. We would like to have a perfectoid description of the sheaf c_uwar. To this end, we first
introduce the following notations:

(i) Let P(GLgy, A') denote the Q,-vector space of maps GL, — A' between algebraic
varieties over Q,,.

(ii) For every uniform C,-Banach algebra B, define
P(GLy, B) := P(GLy, A" )®q, B

and let P;(GL,, B) denote the subspace of P(GL,, B) consisting of those f : GL, — B
such that f(vB) = k(8)f(vy) for all v € GL, and 8 € Bgy, .

(iii) There is a natural left action of GL, on P;(GL,, B) given by
(v N =fCvY)
for all v,v" € GL, and f € P,(GLy, B). This left action is denoted by

Pk - GLg — Allt(Pk(GLg, B))

Proposition 3.4.5. For any affinoid open V C ?lw+7
have a natural identification

w With preimage V. in ?F(poo)’w, we

c d

Wi+ (V) = {f € Pi(GLy, O, .. (Vo)) 1Y [ = pr(Yat37:) 7' ], Yy = (3 ’77”> € IW€Sp29}~

In particular, there is a natural injection

Wiy lz,,. = W (3.2)

Proof. For the first statement, the strategy in the proof of Proposition 3.2.13 applies ver-
batim, except that we consider the torsor M in place of ZW,. The details are left to the
reader. The inclusion w? . %, . = wk follows from the natural inclusion from Py (GL,, & Ty

into Cp"*(Iwar,, O% (Veo))- O

Xr(poo),w

(Veo))

)yw

Lemma 3.4.6. The Hecke-equivariant composition of maps

Res 0/ k w
— H (X pyt 0 W) = Mg,

Mis = H (X, wie)
18 1njective.
Proof. Tt suffices to show that
Res : HO(X o+, wf 1) = HY(X s i +)

is injective; namely, given any global section f of ngJr that vanishes on ylwﬁw, we have to
show that f = 0 on every irreducible component of X7, +.
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For every algebraic variety Y over C,, we know that Y is irreducible if and only if the
associated adic space ) over Spa(C,,Oc,) is irreducible (see [Con99, Theorem 2.3.1] and
[Hub13, §1.1.11.(c)]). In particular, the irreducible components of X}, + coincide with the

irreducible components of Xo+. As 7:; is a compactification of X+, its irreducible
components correspond to the irreducible components of X +. Under the identification

X1+ (C) = GSpyy (Q)\ GSpyy (Ay) x H, / Tws,, T(N),

[Del71, §2] provides the following description of the irreducible components of Xy +:

T0(Frt) = Quo\Gm(A)/s (T(N) Ty, ).

where ¢ is the character of similitude involved in the definition of GSp,,. There is a sim-
ilar description for 7mo(X). Note that m(X;,+) is the same as mo(X) because Iwgsmg and
GSpy,(Zp) have the same image via ¢. In particular, since every irreducible component in
7o(X) contains an ordinary point, every irreducible component of X7+ intersects X" Tw w

By definition, f can be viewed as a global section of the structure sheaf of M. Let C be any
irreducible component of X}, +, it remains to show that f vanishes on M X®, . C. Indeed,
observe that M xz _ C is irreducible and f vanishes on M xz (C X+ ) Hence, the
desired vanishing follows from [Ber96, Proposition 0.1.13] which states that a rigid analytic
function vanishing on an open subset of an irreducible rigid analytic variety is identically
Z€ro. [

3.5 The construction a la Andreatta—Iovita—Pilloni

3.5.1. We dedicate in this section to briefly recall the construction of sheaves of overconver-
gent Siegel modular forms introduced in [AIP15]. In fact, the readers may find that §3.2 is
highly inspired by [AIP15].

3.5.2. Choose v € Q. N[0, ) and let n be a positive integer such that v < ;== . Consider
the open subset - L -
Xw):={x e X :|Ha(z)| >p "} C A,

where Ha is a fixed lift of the Hasse invariant.2 Thanks to [AIP15, Proposition 4.1.3|, for
every 1 < m < n, there is a universal canonical subgroup H,, of level m of the tautological
semiabelian variety over X(v). Let w, denote the restriction of w on X'(v).

3.5.3. Andreatta—lovita—Pilloni’s construction of the sheaves concerns the following finite
covers of X (v):

o Let o
X1(p")(v) := Isomz, ((Z /p" Z)°, H,,)

2We point out that, for those # at the boundary, the Hasse invariant of z is defined to be the Hasse
invariant of the abelian part of the semiabelian scheme associated with x.
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be the adic space over X (v) which parameterises trivialisations of H.. Notice that
the group GL,(Z /p" Z) naturally acts on X;(p")(v) from the right by permuting the
trivialisations.

o Let o
T,(v) = Tsomgg, (2 /p 2%, 1Y)

be the adic space over X (v) which parameterises trivialisations of .

e The group GL,(Z /p Z) naturally acts on X (v) from the right by permuting the trivi-
alisations. By taking the quotient

X (v) == X1(v)/Beu, (Z /pZ),
we obtain an adic space X1, (v) over X (v) which parameterises full flags Fil, H} of HY.

We let w,, (resp., wy,,) be the pullback of w, along X1 (p")(v) = X(v) (resp., Xpy(v) —
X(v)).

3.5.4. We will also need the following integral models of the aforementioned geometric
objects:

e Recall that X is the formal completion of 7{;‘“ along the special fibre. Let %( ) be
the blowup of X along the ideal (PTa, p¥). Let X(v) be the p-adic completion of the
normalisation of the largest open formal subscheme of X(v) where the ideal (Ha pY) is
generated by Ha. Then X(v) is a formal model of X' (v).

e Let X;(p")(v) be ‘the normalisation of X(v) in X1(p™)(v). The group GL,(Z /p" Z)
naturally acts on X1(p")(v).

o Let ?1(2) be the normalisation of X(v) in X (v). The group GL,(Z /pZ) naturally
acts on X1 (v).

o Let ?IW("U_) be the normalisation of X(v) in Xy (v). We can identify Xy, (v) with the
quotient X, (v)/Bar,(Z /pZ).

Moreover, the integral models of w,, , and wy , are given as follows. Let B be the

v
tautological semiabelian scheme over X(v) with the structure morphism

7 G X(v).

Define
1
Q - Tr*Q@unlv /x(

Then, let Q,,, (resp., Qy,,) be the pullback of 2, along X;(p")(v) = X(v) (X1(v) = X(v)).

3.5.5. Now suppose w € Q. lies in the interval (n -1+ ﬁ, n— ] Let

I (2 [ 2~ M

n
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denote the universal trivialisation of H over X;(p")(v). Then [AIP15, Proposition 4.3.1]
yields a locally free O, (,n)(,)-submodule Z C Q,, of rank g, equipped with a map

univ

n 2 w
HTy 0w (Z/p"2)° % My — ﬁ®ﬁ¥1(p")(v) O%0m)() /p
which induces an isomorphism
HT, 0 ®id : (Z /p" Z)? ®g ﬁ@@")(v) /P’ = F ®ﬁ§1(p”)<v) ﬁil(p")(v) /p*.

More precisely, locally on X;(p™)(v), consider the family version of the Hodge Tate map

univ

HT, : (Z /p"Z) ™~ HY — wy,

studied in [AIP15, §4|. Let €, ..., ¢, be the standard (Z /p" Z)-basis for (Z /p"Z)? and let
HT,(¢;) be lifts of HT,,(¢;) from wy, to Q,, . Then .7 is generated by HT (1), ..., HT, (¢,).
It turns out this local construction glues to a locally free O, (,n)(, -module of rank g.
3.5.6. In [AIP15, §4.5], Andreatta-Iovita-Pilloni constructs a formal scheme J20; , over
X1(p")(v) which parameterises such w-compatible objects. More precisely, JQITZS,U is the
formal schemes over X;(p")(v) such that for every affine open subset Spf R C X;(p")(v) on
which .Z is free, 320, (R) consists of pairs (Fil,,{w; : i = 1,...,g}) where both Fil, and
{w; :i=1,...,9} are w-compatible with HT,,(€1),...,HT,(¢,;) in the sense of Definition
3.2.2.

Let W, , be the adic space associated with the formal scheme J2;, , over Spa(C,, Oc,).

Then we have a chain of morphisms of adic spaces
AP IW:;,U — X1(p")(v) = X1(v) = X1 (v).

Lemma 3.5.7. Recall the group adic spaces B, 7’8’1)9’0, and U%pf;fql“”) defined in Definition
3.2.6.

(i) IW  is a BSPP-torsor over X1(p™)(v). Namely, locally on X1(p™)(v), we have iden-

w,v

tification -
iju_,v = Xl(pn) (U) XSPa(vaocp) BZ}pp

where ByPP permutes the points (File, {w;}) from the right.

(ii) Similarly, W,  is a Z/l(épfg’fiu) X Tg’ng xUqt, (Z /p™ Z)-torsor over Xi,(v).

w,v

Proof. These are clear from the construction. O
Definition 3.5.8. Let (Ry, ky) be a w-analytic weight.

(i) Andreatta—Iovita—Pilloni’s sheaf of w-analytic v-overconvergent Siegel modular
forms of weight ry (of Iwahori level) is defined to be

Ky, AIP . _AIP v
w =T ﬁzwm [K24]

w,v
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where 72" O ryy+ [ky] stands for the subsheaf of w7 (Ot ®Ry) consisting of sec-
tions on which Tqr, 0 acts via the character ry; and Uqr,(Z /p™ Z) acts trivially.

(ii) Andreatta—Iovita—Pilloni’s space of w-analytic v-overconvergent Siegel modular
forms of weight ry (of Iwahori level) is

Mw,v,AIP — HO(TIW(U) w/@u,AIP)'

Iw,ky ) Zw,v

(i1i) The space of locally analytic overconvergent Siegel modular forms of weight
ky (of Iwahori level) is

AIP . AIP
MEAP . — qim peo AP
sk v—0 sFu

w—00

(iv) Recall that Z1,, = X\ X1 is the boundary divisor. Andreatta—Iovita—Pilloni’s sheaf
of w-analytic v-overconvergent Siegel cuspforms of weight ry (of Iwahori
level) is defined to be the subseaf WAL = wWiCAP(— Z1) of witAP consisting of
sections that vanish along Zr,.

Andreatta—Iovita—Pilloni’s space of w-analytic v-overconvergent Siegel cusp-
forms of weight ry; (of Iwahori level) is defined to be
St = HO(Xr(0), w25,
and the space of locally analytic overconvergent Siegel cuspforms of weight
ky (of Iwahori level) is
va’VAiP = lim SPAP
Hu v—0

Iw,ky
wW—00

Remark 3.5.9. Similar to 3.2.8, in Definition 3.5.8 (i), there is no difference between taking

Vi : (w) :
Ky -eigenspaces with respect to 1 GL,,0- OF TGLgvo—actlons.

3.6 Pseudocanonical subgroups

3.6.1. In §3.7, we will prove the comparison between our perfectoid construction of the
overconvergent Siegel modular forms and the construction of Andreatta—Iovita—Piloni. Im-
mediate from the definitions, one observes the incompatibility of the underlying adic spaces
used in the two constructions. That is, we employ the w-ordinary locus in the perfectoid
construction while the authors of [AIP15] make use of the ‘v-locus’ X1, (v). Therefore, as a
preparation for the comparison result, we have to first compare these two different loci. The
main result of this section is Theorem 3.6.4. Due to technical reasons, we assume p > 2¢ in
this section.

3.6.2. We begin with recalling the homogeneous coordinates (]lg z) on F* C F. We
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define the locus F¥*

ean C F¥, whose homogeneous coordinate is given by

Z11 zl,g 1

Zgl "t Rlyg 1

i.e., the translate of 7 by the longest Weyl element of the Weyl group of GSp,,. For any
w € Qg, we then define Fleay  C FU,, to be

can

Fleanw = {a: € A, : max inf {] zij(z) —t| < pw}} _

i,j teEpZ

Similar as before, we define

?F(p‘”),can,w = Wﬁ%‘(‘/—_zcan w)a
XIer,can,w = hlw (XF ),Can,w);
?Iw,can,w = hIW(XF(pOO),can,w>7

Xcan,w = h(yr‘(poo),can,w)-

We call them the canonical w-ordinary locs.

3.6.3. We also need the following definition of the v-locus at the strict Iwahori level. Recall
from §3.5 that, for any v € Q.,N[0,1), X1(p")(v) (resp., X1(v); resp., X1w(v)) is the adic
space over X (v) which parameterises trivialisations of . (resp., trivialisations of H}; resp.,
full flags of HY). In particular, X' (v) is equipped with a natural right action of GL,(Z /p Z)
permuting the trivialisations. Consider the quotient

Xyt (v) = X1(v)/Tew, (Z /0 Z)

which is an adic space over X' (v) parametersing the ‘strict Iwahori structures’ of HY'; namely,
it parameterises full flags Fil, H{ of H; together with a collection of subgroups {D; : i =
1,...,g9} of H{ of order p such that

Fil; 1Y = (Ds,..., D;)

forall i =1,...,g. There is a chain of natural projections among these v-loci

X1(p")(v) = X1 (v) = Xt (V) = X (v) = X (v).
One can identify X1 (v) as the quotient of Xp,+(v) by the finite group Ucr, (Z /p Z).

Theorem 3.6.4. Given I' € {Iw", Iw}, the system of canonical w-ordinary loci {Xr canw
w € Qo and the system of v-loci {Xr(v) : v € QoqN[0,1/2)} are mutually cofinal. More
precisely,

(i) For any given v € Q.(N[0,1/2), there exists sufficiently large w € Q.o such that
XF,Can,w C XF(U)'
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(i) For any given w € Q.,, there exists sufficiently small v € Q.,N[0,1/2) such that
XF(U) C XF,can,w'

Remark 3.6.5. To go back to the w-ordinary loci, note that we have the Atkin—Lehner
operator

AL : = Fleanw, (g 2) = (1, 2) (_pﬂ llg):(_pz L),
g

moving from U to Fleanw. Obviously, we also have AL™! : Floan. — FLJ, given by the
=11
matrix ( 1 p Y ) . Therefore, as an immediate corollary of Theorem 3.6.4 and the Atkin—
g

Lehner operator, {Xt,, : w € Q.o} and {AL™'X1(v) : v € Q.,N[0,1/2)} are mutually
cofinal.

3.6.6. To prove Theorem 3.6.4, we follow the strategy in [CHJ17, §2.3]. However, we have
to generalise their study of pseudocanonical subgroups to the case of semiabelian schemes
with constant toric rank.

Let C be an algebraically closed complete nonarchimedean field containing Q,, and let
Oc¢ be its ring of integers. Suppose the valuation v, on C' is normalised so that v,(p) = 1.
Let G be a semiabelian scheme over O¢ of dimension g with constant toric rank r» < g. That

is, G sits inside an extension
0T —G—A—0,

where T' is a torus of rank r over Oy and A is an abelian scheme of dimension g — r over
Oc¢. (We say that G is principally polarised if A is principally polarised.) One sees that
the p-adic Tate module 7,,G := lim G[p"](C) is isomorphic to Z297".

Recall the Hodge—Tate complex over O¢

0 — LieG — T,G ®z, Oc — wgv — 0,

where wgv is the dual of the Lie algebra Lie GV of the dual semiabelian scheme GV, and
the second last map is induced from the Hodge-Tate map HT¢ : T,G — wev. By [FGLOS,
Théoréme II. 1.1], the cohomology of this complex is killed by p'/®=1,

3.6.7. We set up the following notation. Recall that V, = V®zZ, ~ Z?Dg is equipped
with the standard basis ey, ..., ez, together with a symplectic pairing. For every 0 <r < g,
let V,, denote the Z,-submodule of V, spanned by e,i1,¢€,42,...,€25—r, equipped with
the induced symplectic pairing. We also write V;,r to be Z,-submodule of V, spanned by
e1,..., ez and write W, to be the one spanned by ey, ...,e,. There is an obvious split
exact sequence

0—=W,, =V, =V, =0

Definition 3.6.8. Let G be a principally polarised semiabelian scheme over O¢ of dimension
g with constant toric rank r < g.

!
p,r

(i) An isomorphism o : V! = T,G is called a trivialisation of T,G if it is part of a
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commutative diagram
V,, — T,A

]

VZW-—31+ 1,G
W,, —— T,T

where

e the vertical arrows on the left are the ones as in Definition 3.6.7;

e the vertical arrows on the right are induced from the exvact sequence 0 — T —
G—A—0;

e the top arrow preserves the symplectic pairings.

(1) A trivialisation o : 'V, — T,G is w-ordinary if HTg(a(e;)) € pYwgv for all i =
1,...,9.

(i1i) We say that G is w-ordinary if it admits a w-ordinary trivialisation.

Remark 3.6.9. From the definition, if G is w-ordinary, it is w’-ordinary for any w’ > w. It
is also clear that (G is ordinary if and only if it is w-ordinary for all w € Q..

Lemma 3.6.10. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over O¢ and let n € Zsy such that n < w+ 1. The Hodge-Tate map HTq
mduces a map

G[p"(C) — (image HTg)/p™™™*} (image HT ;).

Then the schematic closure of the kernel of this map defines a flat subgroup scheme H, C
G[p™] whose generic fibre is isomorphic to (Z /p"Z)9. Moreover, if o is a w-ordinary trivi-
alisation of T,G, then H,(C) is generated by a(e1), ..., a(e,). Here we have abused the
notations and still use a(e;)’s to denote their images in G[p"](C).

Proof. Since the Hodge-Tate complex is exact after inverting p, the image of Lie G in T,G®z,
Oc¢ is a rank g sub-lattice in the kernel of T,G ®z, Oc — wgv. Hence, the kernel of
HT¢ : T,G — wev has rank at most g.

On the other hand, there is a commutative diagram

HT
TpG —>G wav

| :
HTgppn l

Gp"(C) —= wapr)v

where the right vertical arrow is induced from the natural identification wqpnv = wav /P wev.
Consequently, ker HT ¢,» also has rank at most g.
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Let o be a w-ordinary trivialisation of T,G. Since n < w+-1, the kernel of the composition

HTg
TpG — WagVv — WV /panv

necessarily contains af(e;), for all ¢ = 1,...,g. Since a(e;)’s are Z,-linearly independent,
their images in G[p"](C') are (Z /p" Z)-linearly independent and hence generate ker HT gpn).
Consequently, H, is precisely the schematic closure in G[p"] of the subgroup of G[p"|(C)
generated by {a(e;) : i =1,...,g}. Flatness of H, follows from the flatness of G. O

Definition 3.6.11. The subgroup scheme H,, defined in Lemma 3.6.10 is called the pseudoca
nonical subgroup of level n. When n = 1, we simply call H, the pseudocanonical
subgroup of G.

Lemma 3.6.12. Let m < n be positive integers and let w € Q- such that w > n. Let G
be a semiabelian scheme (of dimension g with constant toric rank r) over O¢. Suppose G
is w-ordinary. Then, G/H,, is (w — m)-ordinary, and for any m’ € Z with m < m' < n,
we have H), .~ = Hyy/H,,, where H/ , is the pseudocanonical subgroup of G/H,, of level
m' —m.

Proof. The proof is the same as in [CHJ17, Lemma 2.11] as long as we use the matrix
diag(p™ 1,4, 1,-,) in place of diag(1, p™). Notice that the “p™” factor appears at the bottom
right corner in loc. cit. because they work with a slightly different action of GL2(Q,). O

3.6.13. Before stating the next lemma, let us recall the notion of the degree of a finite flat
group scheme over O¢ studied in [Farll|. If M is a p-power torsion Oc-module of finite
presentation, we can write

l
M ~ @Oc/aiOC
i=1

for some a; € Oc, i =1,...,1. Then the degree of M is defined to be deg M := Zizl vp(a;).
Now, if H is a finite flat group scheme over O and let wy denote the Oc-module of invariant
differentials on H, then we define the degree of H to be deg H := degwpy.

Lemma 3.6.14. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over O¢ and let o be a w-ordinary trivialisation. Let wy, be the dual of Lie Hy
and let wyy be the dual of Lie HY. Fori=1,..,g, let Hy; be the schematic closure in Hy of
the subgroup generated by a(e;). Then

(i) Each Hy; is isomorphic to Spec(Oc[X]/(X? —a; X)) for some a; € O¢. The dual HY,
is isomorphic to Spec(O¢[X]/(XP — b; X)) with a;b; = p.

(ii) We have isomorphisms wy, ~ @I_, Oc /a; Oc and Wiy = BI_, Oc /b; Oc. In partic-
ular, we have deg Hy = Y7 , vy(a;) and deg HY =>"9_ v,(b) = g — D_7_, vp(ay).

(iii) Under the identification wyy ~ @7_, Oc¢ [b; O¢, the image of the (linearised) Hodge—
Tate map
H1(0> ®Zp OC — lev

is equal to @7, c; Oc [b; Oc for some ¢; € O¢ such that vy(c;) = vy(a;)/(p — 1),
1=1,...,9.
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Proof. Since each H ; is a finite flat group scheme over O¢ of degree p, the assertion follows
from classical Oort—Tate theory. See, for example, [Farll, §6.5, Lemme 9. O]

Lemma 3.6.15. Let G be a w-ordinary semiabelian scheme (of dimension g with constant
toric rank r) over Oc¢. Suppose ézgg(;_l)ll)’ <w < 1. 3 Then H, coincides with the canonical

subgroup of G. Moreover, the Hodge height* of G is smaller than 1/2.

Proof. We follow the strategy of the proof of [CHJ17, Lemma 2.14]. Consider the commut-
ative diagram
0 —— Hi(C) — Gpl(C)

lHTHl lHTg[p]

0 —— whHY —— Wq[pv

with exact rows. Notice that we have an identification wgp)v = wav /pwev. Let a be a

w-ordinary trivialisation of 7,,G. According to Lemma 3.6.10, a(ey), ..., a(e,) form a basis
for Hy(C). Also, by definition, we have HT g (a(e;)) € pYwep)v-
Now, with respect to the generators a(e;) . .., a(ey) of Hy(C), the map wyy — wgpyv can

be identified with the inclusion

g
@Oc JbiOc = (Oc [pOc)?,  (21,....,14) — (121, ..., agxy).

i=1
Therefore, we see that
a; I‘ITH1 (a(ez)) = HT(;[p](Oé(GZ)) S pwwG[p}v.
By Lemma 3.6.14 (iii), we know that HT g, («(e;)) has valuation v,(a;)/(p —1). This implies

vp(ai) _ pup(a;)

wgvp(a,»)—i-p_l b1
Consequently, we have
g
gwip—1) glp—1) 2g—1)p 291 1
deg H, = vy(a;) > > . = =qg— —.
; o) p P 29(p—1) 2 2

It follows from [AIP15, Proposition 3.1.2| that H; is exactly the canonical subgroup of G
and the Hodge height of G is less than % n

Remark 3.6.16. The lemma might hold without the assumption p > 2¢g as long as one can
produce finer estimates on the degree and the Hodge height. However, we do not attempt
to find these better estimates.

3The inequalities are valid because of the assumption p > 2¢g at the beginning of this section.
1Recall from [AIP15, §3.1] that the Hodge height of G is defined to be the ‘truncated’ p-adic valuation of
the Hasse invariant of G. See loc. cit. for details.
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Proposition 3.6.17. Let G be a w-ordinary semiabelian scheme (of dimension g with con-

stant toric rank r) over O¢. Suppose % +n—1<w < n, then H, coincides with the

canonical subgroup of G of level n. In this case, the Hodge height of G is less than 21)"%'

Proof. The proof follows from induction. The case for n = 1 is precisely Lemma 3.6.15.
Assume that the statement is affirmative for n — 1. By Lemma 3.6.12, G/H; is (w — 1)-
%Z;E)f)) +n—2 < w-—1<n-—1. The induction hypothesis implies that
the pseudocanonical subgroup H,,/H; of of level n — 1 of G/H; is the canonical subgroup of
level n — 1 and that the Hodge height of G/H; is less than W%Q.
However, H; coincides with the canonical subgroup of G by Lemma 3.6.15. Hence, by
[Farll, Théorém 6 (4)] (see also [AIP15, Theorem 3.1.1 (5)]), we see that the Hodge height

of GG is bounded by 211”;—1 and that H, is the canonical subgroup of level n of G. m

ordinary and we have

Corollary 3.6.18. Let n € Z>; and suppose w € Q- such that B9=U2 4y < . Then

2 -1)
there ezists v € Q.o N0, 7o) and a natural inclusion X can . — X (v )

Y 2pn 9pn—1

Proof. 1t suffices to work with (C,_Oc)—points for algebraically closed complete nonarchimedean
field C' containing Qp.5 Let x € Xeanw(C,O¢). By the properness c of X, the point x extends

to an O¢-point T of X', One can associate with @ a I-motive Mz = Y — G z| where Ga
is a semiabelian scheme (of dimension g with constant toric rank) over O¢ and Y is a free
Z-module of finite rank (see, for example, [Str10]).

From the definition of the Hodge-Tate period map, we see that 6’ is w-ordinary. By Pro-
position 3.6.17, the Hodge height of G5 is smaller than 5——. This means = € X()(C,00)

for some v < % O
2p

3.6.19. Recall that, for any v € Q. N[0, %), ‘H, is the universal canonical subgroup of the

tautological semiabelian variety over X' (v). Let w > %‘2;_1)1’)’ and pick v so that X eanw — X (v)
as in Corollary 3.6.18. We still write H; for its pullback to X,,. Therefore, we can consider

yl,can,w = Isomfcan_’w ((Z /p Z)gu 7—[\1/)7

namely, the adic space over fcan,w which parameterises trivialisations of H;. The group
GL4(Z /pZ) naturally acts on X'y can by permuting the trivialisations.

Lemma 3.6.20. For w > ( ( p there are natural identifications

yl,can,w/BGLg (Z /p Z) = TIW,Can,w and chan,w/TGLg (Z /p Z) = ?IWJr,can,w‘

Proof. We only give the proof for the first identity. The second one is similar and left to the
readers.

We first focus on the part away from the boundary. Let X un.w = fcan,w N X and let
A" be the universal abelian variety over X can,w-

®Notice that the classical points determine these adic spaces by [Hub13, (1.1.11)].
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The key observation is that any trivialisation 1 : (Z /pZ)? — H induces a full flag
Fily A™¥[p] on A™[p]. Indeed, let €,...,¢, denote the standard basis for (Z /pZ)? and
let Fil¥ H be the full flag of ) given by

0 C (¢ler)) C (Wler), Plea)) C--- C{W(er), s P(ey))

Consider the natural projection
pr s A p] S A (5] HY

where the first isomorphism is induced from the principal polarisation. Then the desired full
flag Fil¥ A™"[p] is given by

R B Filg’_g i i>g
Moreover, if two such ¢’s induce the same FilY Y, then the associated Fily A [p] coincide.
Hence, the assignment 1 — Fily A" [p] induces a natural inclusion X', /Bar, (Z /pZ) C
X1w.w away from the boundary.
Conversely, using the w-ordinarity, one sees that the universal full flag Fil, A" [p] on
X1y, induces a full flag Fil, H{ of H) given by

Fllz H\l/ = pr ((Fllg—z Az)niv [p])l)

for i =1, ..., g. This yields the opposite inclusion away from the boundary.

In order to extend to the boundary, one considers the 1-motives on the boundary strata
and same argument as above applies verbatim. The details are left to the reader. O

1
2pn—1

this case, we can take any % +n—1 < w < n. Indeed, by Corollary 3.6.18, we
have a Cartesian diagram

Proof of Theorem 3.6.4. (i) We may assume v = for some sufficiently large n. In

ylﬁan,w D— T1 (U)

1

X canw — ?(v)

where the top arrow is equivariant under the action of GLy(Z /p Z). Taking the quotient
by either Bar,(Z /pZ) or Tay,(Z /pZ), and applying Lemma 3.6.20, we obtain the
desired inclusions.

(ii) We may assume n — 1 < w < n for some sufficiently large n. Pick v € Q- N[0, w%l)

such that w € (n -1+ 50— ;’%71 . Applying [AIP15, Proposition 3.2.1], on the

level of classical points, we obtain a natural inclusion X (v)(C, O¢) < X ean.w(C, O¢)
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and hence an inclusion X' (v) < X canw. There is a Cartesian diagram

|

1(U) — yl,can,w

| |

X(v) —— Xeanw

Once again, applying Lemma 3.6.20 and taking the corresponding quotients yield the
desired inclusions.

]

3.7 The comparison of constructions

3.7.1. In this section, we still assume p > 2g. The aim of this section is to prove the following
theorem which compares the overconvergent automorphic sheaf w/ constructed in §3.1 and
the sheaf WA of AndreattaTovita-Pilloni.

For any v € Q.,N[0,1), we identify Xy,+(v) and X (v) with their image under AL~
in this subsection. Let h, : X+ (v) — X1 (v) denote the natural projection.

Theorem 3.7.2. Suppose n > ~43 and let v € Q. NI0, 2pT1_1)7 we Qo oNn—1+ S n =
;:f’nl]. (In particular, Theorem 3.6.4 (ii) and Remark 3.6.5, there are natural inclusions
Xiw(v) = X and Xy (V) = Xpgr ) Let (Ry, ku) be a weight such that w > 1+ ry.

Then, over Xi,+(v), there is a canonical isomorphism of sheaves

K = *, Ky A
Vw M|?IW+ (v) - ho(’—uwl/,{i; IP7
where hy @ X+ (v) = X1y (v) denote the natural projection.

3.7.3. Recall that the space of overconvergent Siegel modular forms of weight x;; of strict
Iwahori level (see Definition 3.1.16 (v)) is defined to be
WAl

Iwt,ky

= lim M.,

w—r 00

where
0
Mffﬁ+’nu = H (XIW+,1U7 ('LJZ)U)'
We can also extend the notion of overconvergent Siegel modular forms of Andreatta—

Tovita—Pilloni to the case of strict Iwahori level.

(i) Let v € Q.,N[0,1/2) and w € Q.. Suppose ky is w-analytic. The space of
w-analytic v-overconvergent Siegel modular forms of weight ry, (of strict
Iwahori level) of Andreatta—Iovita—Pilloni is defined to be

Mt = HO(X e (0), Riwii™").
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(ii) The space of locally analytic overconvergent Siegel modular forms of weight
Ky (of strict Twahori level) of Andreatta—lovita—Pilloni is defnied to be

AIP : AIP
IT’Jr = lim M0
WL Ry v—0 W Ry

w—r00

(iii) Similarly, the space of w-analytic v-overconvergent Siegel cuspforms of weight
Ky (of strict Twahori level) of Andreatta—lovita—Pilloni is defined to be

Sw,v,AIP — HO(?IWJ'_ (U), hzwnu,AIP ),

and the space of locally analytic overconvergent Siegel cuspforms of weight
ky (of strict Twahori level) of Andreatta—lovita—Pilloni is defined to be

ghAIP

T w,v,AIP
Iwh,ky lelir(l) S

Iwt ,ky *
wW—00

Then we have the following immediate corollary of Theorem 3.7.2 and Theorem 3.6.4.

Corollary 3.7.4. There are canonical isomorphisms

T ~ 1shAIP 1  of,AIP
MIer,nu - MIW+,I£Z/( and SIW+,HM - SIer,mu'

Remark 3.7.5. In fact, it will follow from the construction of ¥ that the isomorphisms in
Corollary 3.7.4 is also Hecke-equivariant.

3.7.6. The rest of the section is dedicated to the proof of Theorem 3.7.2. Our strategy is
simple. Let n, v, w, and (Ry, k) be as in Theorem 3.7.2. Recall that the ﬁ’yhﬁ@)-module
(resp., O, (-module) wy+ , (resp., wy, ) is locally free of rank g. Let V' C X1y (v) be an
affinoid open subset such that wy, |y is free, and let V C X1+ (v) be the preimage of V'.
To construct V¥, it suffices to establish a canonical isomorphism

U W (V) 5 hiwruAP ()

= w,v

for every such V, which is also functorial in V.

3.7.7. As a preparation, consider the pullback

IWY oo —— IWS,

7rOAOIPl lﬂ.AIP

_— h w J—
Xp(poo) (’U) % XIW (’U)

where ?p(poo)(v) is the preimage of X', (v) under the natural morphism hyy, : ?F(poo)’w —

Xrw,w- For later usage, we denote by Vo, (resp., VL) the preimage of V' in X (v) (resp.,
in ZW; ) under the projection hy, (resp., hry, o TAIF).

w,V,00
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Since IW,, , is aL[Opp () 5 7'(GL o XUaL,(Z [p" Z)-torsor over X, we know that ZW;

w,v,00
is likewise a Z/{(éplf’ Y x TGLg,o xUqt,(Z /p™ Z)-torsor over Xr(=)(v). In what follows, we
provide an expllclt moduli interpretation of this torsor, in three steps.

Step 1. Observe that the natural projection hyy, : Tp(pm)(v) — X1 (v) factors as

hiw © Xy (V) 5 21 (p") (v) = X (v).

Indeed, away from the boundary, the map h, can be described as follows. Let Xp(ye)(v) be
the part of Xp(~)(v) away from the boundary. For every point (A, A, ¥y, 1) € Xp( ) (v),
consider the dual trivialisation

~

Yoo 1 V) = T,AY.

Modulo p", we obtain a symplectic isomorphism
Upn 1V, ®2,(Z /" Z) = APp"]".

Then hy sends (A, X, ¥n, Yy ) to (A, A, ¥y, 1)) where 9 is the composition

A
v (Z)p"2)) — Vy ®g,(Z[p" L) — Alp"]" — H,

with the first arrow sending ¢; to eg 41— ®1, foralli=1,..., g, and the last arrow being the
natural surjection. From the proof of Lemma 3.6.20, we see that 1 is indeed a trivialisation
of HY.

Using the language of 1-motives, this description of hy also extends to the boundary. The
details are left to the readers.

Step 2. Recall that, in 3.5.5, we defined a locally free 0%, (™) (v) -submodule # C Q, ,
X1 (p")(v). Passing to the adic generic fibre, let W, denote the sheaf of ﬁ+ ™)) module
on X1 (p")(v) associated with ©, . Then .# can be identified with a locally free (Zas

which is still denoted by .%. Moreover, let .% ., be the pullback of

)(v)_
submodule of w;'

Xt (v) along hy.
Recall as well the % . -modules Q?&%) C Qp(,ny constructed in 2.3.1. Passing to the

. . . + mod,+ + ey mod,+
adic generic fibre, they induce @L (pn)—modules Wrpn) C Wiy ON Xrpny. Let Wrpey C
%}r(poo) be their pullbacks to X'r(e) and let W?(O(i:)“v C Wy (), be their restrictions on
Xf(p“‘)(v)‘

We claim that there is a natural inclusion

mod,+
F oo C Wrpee <)

Indeed, recall the map
HT, : (Z /p"Z)! = wy,
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on X1(p")(v) constructed in 3.5.5. Pulling back to X~ (v), we obtain a map
HT, o : (Z [p" Z) = wyy,, .

where H,,  is the pullback of H,, along the projection KXoy (V) = Xy (p")(v). On the other
hand, recall the map HTp(,e) on Xp(y~) constructed in 2.5.1. Restricting to X F(poo)(v) and
modulo p", we obtain a map

HTF(pOO),n,v Y% ®z(z /p” Z) — g;n(‘)dﬁ' pnmed’+

p>®)w/ £ =T (p>),v°

These maps fit into a commutative diagram

mod,+

‘—ur(poo),u ’ C_OF(POO)W
HTp 00 l
(Z /p"Z)* l > Wi o0
Ji n HTr(poo) nv mod, n n l n
V @z(Z [p"Z) ———"5 wioe /P W) o/ P == W, /D
where the left inclusion sends €; to egg1—; ® 1, for all ¢ = 1,...,9. The equality at the

bottom right corner follows from [AIP15, Proposition 3.2.1|. By definition, %, is generated

by the lifts of HT,, o (€;)’s from wy, . to c_ulf(poo) , and hence the desired inclusion follows.

Step 3. We are now able to describe the torsor. Recall that there is a universal full
flag Fil;"V H of H] on Xy (v). Pulling back to Xpge)(v), we obtain universal full flag
Fil;"™ # . of H{ . There is a natural projection © : H, = — Hy .. Moreover, the

Hodge-Tate map on ’Hx’oo induces a map

HTme : 7—[7\1700 — F oo @ gt o~ ) /pv.

Then, for every affinoid open Y = Spa(R, RT) C Xrge)(v), the sections ZW,, (V) para-
metrise triples (¢, Fily, {w; : i =1,...,g}) where

o ¢ (Z/p"Z)? S H) |y is a trivialisation such that
@Z)(El, ce 7€i> = @(Fll;mw H\I/,oo)
foralli=1,...,9.

e Fil, is a full flag of the free R™-module .% ()), which is w-compatible with respect
to the basis HTyy _ (¢(€1)), ... HT3y _(¥(€,)) in the sense of Definition 3.2.2 ().

e Each w; is an R*-basis for Fil; / Fil;_;, which is w-compatible with respect to the basis
HTyy _(¥(e1)), ..., HTyy _(1(ey)) in the sense of Definition 3.2.2 (ii).
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Moreover, Ut f’ ) % T(C?ng xUc,(Z /p" Z) permutes these triples by right multiplication.

Proof of Theorem 3.7.2. The construction of ¥ is similar to the proof of Proposition 3.2.13.
We only give a sketch of the proof. Indeed, the isomorphism W is established via a sequence
of isomorphisms
U wiu(V) wi} wl =5 @ = AP (),
1

w \IIQ \113 UJ ,U

where

Ye d

wih = {f € G (v, Ove Voo )@RY) -7 [ = puy (Vo +37Df, Vv = (% :)Y/b> € Iwlsy,,

and

S € oy vgpms T TE S Inn i

V(v,7,v) , XTar,0 X UcL,(Z /p"Z

The construction of ¥; and W3 follows verbatim as in Proposition 3.2.13. To construct
U,, consider st = (59 51) € F(Voo)?. Let Filt be the full flag of the free ﬁ]ﬁm(Voo)—
module .Z (V) given by

Fill =0 C (s5,) C (55,54-1) C -+ (54,...,51)

and let w! be the image of Sgq1— in Fil! /Fill_,, for all i = 1,...,g. Moreover, consider the
trivialisation

Vi (Z P2 = A
obtained by pulling back the universal trivialisation of 1\ on X' (p™)(v ) along hi @ Xrgee) (V) =
X1 (p™)(v). Then the triple (¢!, Fil}, {w}}) defines a section of the Z/{gpr hx TE;“UL)WO xUcr, (Z /p" Z)-

AIP . V+

torsor 7.} — V. Consequently, one obtains an isomorphism

U X T, 0 xUar, (2 /9" 2) = Vi, A+ (0L Fil {w]}) -/
and thus an isomorphism

~ o analytic functions

U < T % Uar,(Z /p Z) = Oy (Vo) B Ry
f (3 (@ Pl (]} )

By the same calculation as in Proposition 3.2.13, one sees that, if v* f = f for any v =

(1(1 zb) € IWJ(ESp , then v*®(f) = p,.@&(’yi%—j’yi)@(f). This induces an isomorphsm
c d

P :w® =S W, Taking Uy = &' does the job. O

Remark 3.7.8. Notice that s;’s are, in fact, integral. Hence, by pulling back the formal
scheme J2; to the modified integral model, the method above provides a strategy to com-
pare our integral sheaf wf* with the integral overconvergent automorphic sheaf constructed
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in [AIP15].
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Chapter 4

Overconvergent cohomology groups

In this chapter, we study the owverconvergent cohomology groups. Such a notion was first
introduced in [AS08] and taken to study eigenvarieties for reductive groups in [Urb11; Hanl17;
JN19]. We shall discuss the construction in §4.1 by following [Hanl7| closely. In §4.2, we
again follow loc. cit. to define the Hecke operators. We will close this chapter with the
algebraic counterparts of the overconvergent cohomology groups.

4.1 Overconvergent cohomology groups
4.1.1. Consider

Ty = {(7,v) € Iwgr, xMy(pZ,) : "y I,v ="v1,~}.

Notice that a pair (v,v) € Iwar, xMy(pZ,) lies in Ty if and only if there exist o, aq €
M,(Z,) such that

g

<7 O"’) € GSpy, (Q,) N Myy(Z,).

UV O4g

In fact, there is a natural embedding

Y
Ty — IWGSpan (’7, ’U) — ('U ]vlg t,.yfl ]vlg) .
Also consider the subset Ty of Ty defined by
Too := {(%U) €To:ve€ UéII)_z,l} :

We can identify Too with Ugg) ; through the bijection
g7

opp ’7
Too — U(}sng,p ('77“) = (’U ﬂ ta—1 ig) :
Observe that T admits two natural actions:

1)



(i) There is a right action of Iwgr, given by

Ty xIwar, = To, ((v,v),7) = (v, v7).
To see that this is indeed a right action, we embed Iwgr, into Iwgsp,, through vy =

,y/
( o v ) and verify that
1,% 9

v o\ (Y (Yo
v * ]]_gt,ylfl ]]-g ’U’)’/ %

.. . . - . IWGLg Mg(Zp> .
(ii) There is a left action of = := (Mg(p Z,) M,(Z,) N GSp,,(Q,) given by

E'><’:[‘0_>r:[‘0a ((ga ZZ)a(’YaU)) H(aa'y—i_ab/v;ac’y_‘_adv)'

To see this is indeed a left action, it suffices to observe that

o, O YOox\ [T opU
a. ag) \v x)] \a.vy+agv */)°

Since Iw(g, is a subset of =, we also obtain a natural left action of Tw(g, —on Ty.
g 9

4.1.2. Let r € Q. and let (Ry, ky) be an r-analytic weight. We employ the notion of
r-analytic functions on Ug’%ll?)zq:l’ Too, and Ty as follows.

Fix a (topological) isomorphism
9° ~ [JoPP
Zp - UGSp2g71‘

(i) We say that a function f: U | — Ry is r-analytic if the composition
g?

g ~Ug | Ry = C,BR,
is r-analytic in the sense of Definition 3.1.8 (i).

(ii) We say that a function f : Toy — R;; is r-analytic if it is r-analytic viewed as a

) opp . . . ; ~ T7OPP
function on UGSpQQ,l’ via the identification Tqy =~ UGszg,l‘

Before proceeding, we need the following statement.
Lemma 4.1.3 (Amice). Let r € Qs,. For any d € Zso and for any i = (iy,...,14) € Z%O,

define the function

d
r - X
ez( ). 7!~ 7, (1,...,7q) — HLp it |! <2:) .

t=1
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Then, {egr)}i provides an othonormal basis for C’“_an(Zg, Z,).

Proof. This is the multivariable version of a theorem of Y. Amice, which is presumebaly
well-known. We deduce the statement from [Laz65, Chapter III, 1.3.8|, which is based on
the work of Amice [Ami64, §10].

By replacing r with [r], we may assume r € Z. By Mahler expansion, we know a
continuous function f : Zg — Z, can be written as

fan ) = Y cf[<"f;>

i:(il,...,id)ezgo t=1

for some ¢; € Z,. By [Laz65, Chapter III, 1.3.8], f is r-analytic if and only if

NOEY (vp(it!) . M) oo as iit — .

=1 p—1 =1

On the other hand, for each i;, we have

by Legendre’s formula.

Observe that

Hence,

(S 5) (S S s))

m=1 m=1

1
_ (Schiff 4, — Schiff |i;/p"])

==
r—1
1 .
()
p-1 <j=1
< (r — 1)(101— 1) .
p_

'Here, the function Schiff is defined as in [Laz65], i.e., for any integer n = np* +np_1p* "1 +...+n1p+ng
for 0 < n; < p—1, then Schiff n := > _n;. The name of this function should be understood as ‘la somme
des chiffres du développement de n’ (the sum of the digits of the expansion of n). It should not be confused
with the German word ‘das Schiff’ (the ship).
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k
=1

00 ' 0o i i1 —p—"
m=1 m=1 p_l

Here, in the second equation above, we write i; = > i, ;p/ with 0 <4, ; <p — 1. Since

we have
— | it S i i(1—p") & { i J = { i J
— | = +(r—1)> > —| =
(S-S l]) o= (S-Sl
and so a ) a )
. i - r . i - r
(i) = (= 1) 2 () 2 i) - =
Therefore, one concludes that f is r-analytic if and only if
d d
vp(c;) — va([p "ig]!) = 00 as Zzt — 00
t=1 t=1
This then implies the desired result. O

4.1.4. Given an r-analytic weight (Ry, ky), we define
o r—an o~ T r,0 1
AP (Too, R]/{> = C (Too, Zp)®RZ{r and A (Tgo, Ru) = A" (Too, Ru)[]—j]

By identifying Ty with Z]gf, Lemma 4.1.3 implies that

A™°(Too, Ry) ~ & Rz,re@

ieZQ;O ?
and so we view elements in A™°(Tq, Ry) as functions from Tqy to R;. In other words, we
have

A" (Too, Ry) = Z cz-ez(r) :¢; € R and ¢; — 0 ay-adically »,

2
79
zGZZO

where ayy = pR), if (Ry,ky) is an affinoid weight and a is an ideal of definition of the
profinite topology on R, if (Ry, ry) is a small weight. By definition, these functions are
r-analytic. In fact, if (Ry, ky) is an affinoid weight, we have the identification

A"(To, Ry) = {r-analytic functions f : Tog — Ry} .
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On the other hand, define

0 o f(yB,vPB) =kulB)f(v,v), ¥(v,v) € To, B € Bar,,
A (To, Ry) = {f Ty — R : e e (Toob,{Ru) 0 L,.,0 } and

AZM (To, RM) = AZ’: (To, RM)[;]

We have an identification
AL (To, Ry) = A™(Too, Ru),  f = flm-
Taking continuous duals, we obtain the corresponding spaces of r-analytic distributions
1
Dy (To, Ry) := Hom@: (AL7(To, Ru), By)  and Dy (To, Ry) := Dyi(To, Ru)[;]-

Here, we remark that if (Ry, ry) is an affinoid (resp., a small) weight, the continuous dual
is taken with respect to the p-adic (resp., profinite) topology on Rj.

From the construction, we see that the left action of =Z on T then induce a left action of
Z on both D}°(To, Ry) and Dy, (To, Ry). Furthermore, if ' > r, there is a natural injection
Are(To, Ry) < AL°(To, Ry) which induces injections (see [Han17, §2.2])

D.°(To, Ry) = D°(To, Ry) and D, (To, Ry) < D, (To, Ry).
We then write
AL, (To, Ry) := lim A, (To, Ry) and D (To, Ry) := L (To, Ry).
Example 4.1.5. An example of elements in A}, (T, ) is the (analytic) highest weight

vector e' defined as follows.
Given any X = (Xjj)i<ij<g € IWwar,, define

e (X} R (X)) | wua(det((Xhsigee)) fuag(det(X)).

u kua2(X11)  kus(det((Xij)i<ij<2))

hs

Then, we view e as a function on Ty via

hst (

(v,v) = eg (7).

By direct computation, one easily checks that

er (78,0 B) = e (v B) = ru(B)ess (v) = ku(B)ey (v, v).

Moreover, by calculation in the proof of [CHJ17, Proposition 2.6], one concludes that e}t e
Ay (To, Ry)-

4.1.6. Suppose now that (Ry, ky) is a small weight and take r > 1 + ry (see Definition
3.1.10). Fix an ideal a;; of Ry, defining the profinite topology on Ry and such that p € ay.
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Similar to [CHJ17, Proposition 3.1] (see also [Han15, §2.1]), D;:°(Ty, Ry;) admits a decreasing
filtration Fil* D}>°(To, [y) defined by

Fil! D7°(Ty, Ry) = ker (D52 (T, Ry) — D **(To, Ry)/ &)y DL (To, Ry)) -

Write

D (To, Ry) := D:>(To, Ry)/ FiV D;;°(To, Ry)

e (

for every j € Z>;.

Lemma 4.1.7. Given a small weight (Ry, ky) and r > 1+ ry.
(i) For any j € Zso, FiV DL° is E-stable.

(ii) For any j € Z>q, D To, Ry) is a finitely abelian group. Therefore,

I{z,{](

D2 (To, Ry) = L © i(To, Ry),

is a profinite flat Z,-module in the sense of [CHJ17, Definition 6.1].

Proof. To show (i), one observes that
of, DI °(To, Ry) = {p € DL°(To, Ry) : u(f) € oy, Vf € Al-2°(To, Ry}

Since A7 1°(Ty, Ry) is stable under the action of =, al, D;1°(To, Ry) is stable under the
action of Z. This then implies the desired result.

The proof for (ii) is inspired by the discussion in [Han15, §2.1]. We first fix identifications
Too ~ Ué%i%,l ~ ZZQ and simplify the notation by writing d = ¢®. From the construction

and by Lemma 4.1.3, the collection {egr)}i provides an orthonormal basis for A°(Ty, Ry),
1.e., we have an isomorphism

0 ~ D (r)
AZM(TOa Ry) ~ @iEZ‘éORueir .
Consequently, we have an isomorphism

Dy2(To, Ru) =[] Bur = (™))

zeZ‘éO

For any i € Zém write ¢, ; := [, LM AL L;f::ffﬂ. Then, the natural injection A;;LO(TO, Ry) —
A2 (To, Ry) is given by
Bl BB, ) o) = el

Hence, the natural inclusion Dj;°(To, Ry) < Dj, (T, Ry) is given by

IT Bu— T Bur (ule))i = (crap(el™ ).



Moreover, by Legendre’s formula, we have v,(c,;) = Zle |p~"i;]. Therefore, we see that

D/::,j (T07 RL{) ~ P iez‘io Ru/(aé7p7‘—vp(chi))'

vp(cr,i)<j

Since this is a finite direct sum and each direct summand is a finite abelian group, we
conclude that each D,° (T, Ry) is a finite abelian group.
Finally, from the construction, we see that the natural map

D/:i(Tm RL{) — 1&1 D,::,j (To, Ru>,
J

has dense image. Since both sides are compact, this natural map is an isomorphism. O]

4.1.8. Consider the étale site X'+ «. Recall that, for every n € Z>1, X'pn) is a finite étale
Galois cover over X+ with Galois group IWaszg /T'(p™), and hence 1£1n Xp(pny is a pro-étale

Galois cover of X+ with Galois group IWEESp2 . For each j € Z>q, let @2: ; be the locally
g — )
constant sheaf on Xy,+ ¢ associated with D° (T, Ify) via

T Xyt ) — IwgS% — Aut (D} (To, Ry)) -

We obtain an inverse system of étale locally constant sheaves (2" ;)jez., on X+ 4. This
allows us to consider the étale cohomology groups

Kit»J

Hgt(‘)(lw+7 @2’;) = 1.&nI_Iét(‘;t‘IvvJ“v 7 )7
J
T T,0 ]'
Hét(XIw+7 '@nu) = Hét(XIW+7 9/&}4)[2_9]
for every t € Z>y.
4.1.9. Recall the locally symmetric space
X+ (C) = GSpy, (Q)\ GSpy, (Ay) x Hy /TP IWeisp,, -

By taking the trivial GSpy,(Z¢)-action on Dy, (To, Ry) for every prime number ¢ # p and
letting Iwgsp2q act on D}, (To, Ry) via the left action of Z, we see that D}, (Ty, Ry) defines

a local system on the locally symmetric space Xiw+(C). In particular, for every t € Zsq, we
can consider the Betti cohomology group

H'(X1,,+(C), D}, (To, Ry)).
The following proposition compares these two cohomology groups.
Proposition 4.1.10. For every t € Z>y, there is a natural isomorphism
H( Xy, Zv,) ~ H (X1,+(C), Dy, (To, Ry)).
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Proof. For any j € Z~(, we have isomorphisms

Hi (X1, D00 ) ~ H(Xyyr, 200 5) ~ H (X1, (C), D, ((To, Ry)),

Kit»J K, Ku»J

where

e the first isomorphism follows from the comparison isomorphism between the étale co-

homology groups of an algebraic variety and the ones on the corresponding adic spaces
(see [Hub13, Theorem 3.8.1]);* and

e the second isomorphism follows from the fact that IWZESp2 acts continuously on the
g

module D, ;(To, Ry) and the well-known Artin comparison between the étale co-

homology of a complex algebraic variety and the Betti cohomology of the associated
complex manifold.

Note that we have used the algebraic isomorphism C, ~ C fixed at the beginning of the
thesis.

Taking limit and inverting p, we then arrive at the isomorphisms

Hét(XIw+7 ‘@21/1) = Hét(XIw+7 @;M) = (@ Ht(XIw+(C)’ D:zj,j(T()? RI/{))) [1/p}
J

To finish the proof, we claim

<r<gn H! (X4 (C), D5, (To, Rm)) [1/p] = H'(Xyy+ (C), Dl (To, Rur).
J
It suffices to show that

Ku»J

lim H'(Xy,+ (C), D7 5(To, Ry)) = H'(X1,+(C), Dy (To, Ru)),
j

i.e., the inverse limit commute with cohomology. Note that Betti cohomology can be com-

r,0

puted via sheaf cohomology. Hence, by viewing each DHM-(TO, Ry) as a locally constant
sheaf on X,+(C), we need to show

Rilim DI (To, Ru) = 0 (41)
J

for all 7 > 0.
Let {Uj}aea be an open cover for Xi,+(C) given by contractible open subsets. Then,

Hi(U)\,DT’O -(To,Rz,{)) =0

Ku»J

20n the algebraic variety X+ = X1w+,c, the locally constant sheaves 925,;’ and étale cohomology
groups HY (Xpy+, Z7:) and Hi (X1y,+, Z),,,) are defined analogously as those on Xp+.
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for all 4, 5 > 0 and for all A € A. Moreover, for each A € A, the natural map

D° (To, Ry) = H*(Uy, D.°

Ku»J Ku»J

(To, Ry)) — H°(Uy, D;;* To, Ry)) = D;.°

Ky ,j—1

(To, Ru)

Ku,J— 1(

is surjective. Thus, the inverse system {H°(Uy, D) /(To, Ru))}jez., satisfies the Mittag-
Leffler condition and so

KifsJ

R'Nim H°(Uy, Dy; ;(To, Ru)) = 0.

We then can conclude (4.1) by applying [Sch13, Lemma 3.18]. O

4.2 Hecke operators

4.2.1. Let us discuss the Hecke operators acting on H{ (X1,+, Z},,). Similar as before, the
definition of Hecke operators splits into two cases: Hecke operators outside Np and Hecke
operators at p. Our strategy is to describe Hecke operators on the Betti cohomology groups
H'(X1,+(C), Dy, (To, Ry)) and then use Proposition 4.1.10 to make these operators acting
on H(Xpy+, Zy,,). Therefore, we begin with a brief recollection of the Hecke operators on
HY(X1,+(C), Dy, ,(To, Ry)) studied in [Han17]. We refer the readers to loc. cit. for a more
detailed discussion.

4.2.2 (Hecke operators outside pN). Let ¢ be a prime number not dividing pN. For any
v € GSpy, (Q) N Myy(Zy), consider a double coset decomposition

Gsng(zg) B GSng Zf |_| 6] Y GSpQg(Zf)

J

for some 8; € GSpy,(Z¢). If we take the trivial GSp,,(Qy)-action on D}, (To, Ry), then the
natural left action of GSp,,(Q,) on Xj,+(C) induces the Hecke operator

T’Y : Ht(XIw+(C)aD;M(TU7RU)) — Ht(XIw+(C>’D (T0>RU '_> Z 37

(4.2)

4.2.3. We specify out a special element t,o = diag(1,,£1,) € GSp,,(Q,) N May(Z,). For
any x € WeylGSp2g, denote by T7, the Hecke operator defined by the double coset

Gsng(Zg)(ZE . t&o) GSpQQ(Zg).

Following [GTO05, §3], we define the Hecke polynomial at ¢ to be

Puaeaker(Y) = [ (¥ = Tiy) € Tu[Y). (4.3)

zeWeyl?

One sees immediately that this is a polynomial of degree 29.
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4.2.4 (Hecke operators at p). For the Hecke operators at p, recall the matrices
( ]1@

Plg-i 1<i<g-—1
p :H-g—i

and we write

u.
w . = D,
p,i um /e
Dyl

For every i = 1,..., g, consider a u,;-action on Ty defined as follows: for every (vy,v) €
Ty, we put
0 O-1 ..m 0,—1
Uy i (77 U) = (up,i Yo up,’i ) up,i Vo up,i ) ﬂ
where we write (v,v) = (7,,v0) B with v, € Ugy. | and B € Bgr, 0. This then induces a
u,;-action on D} (To, Ry). ‘

Similar to §3.3, for every ¢ = 1,..., g, choose a double coset decomposition

+ + _ v Tt
IWGSp2g Up,i IWGSPQg = |_| 0ijup; IWGSpgg :
J

with §;; € Iwasmg. The natural left action of GSp,,(Q,,) on X+ (C) together with the
actions of Ivvégsp2 and u,; on D} (Ty, ) induce the Hecke operator

Up,i + H'( X1+ (C), Dy, (To, Ru)) — H'(Xyy+(C), Dy, (To, Ru)),
(4.4)
(] = 005wy )

Here, again, v; = —(g —i)(g+ 1) fori =1,...,g — 1 and v, = M. Similarly, we have
Hecke operators U, for any = € WeylGSp2g.

4.2.5. Finally, as mentioned, the Hecke operators acting on H{ (X1,+, 7}, ) are defined as
follows:

(i) The Hecke operators T, (for v € GSpy,(Qg) N Myy(Z¢) with £ + Np) and Uy, (for
1 = 1,...,9 and x € WeylGSpgg) acting on the overconvergent cohomology groups

H{ (Xry+, Zy,,) are defined to be the operators T, and U}, acting on the overconver-
gent cohomology group H'(Xy,+(C), Dy, (To, Ry)) via the isomorphism in Proposition
4.1.10.

(i) We define the operator U, as the composition U, = [[{_, U,;.
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4.3 Overconvergent parabolic cohomology groups

4.3.1. We spell out the overconvergent parabolic cohomology groups in this section, which
is essential in the construction of the cuspidal eigenvariety. These groups are nothing but
the image of the natural map from the compactly supported cohomology groups into the
cohomology groups. Let us discuss about this in more details.

4.3.2. Consider the Borel-Serre compactification Yﬁjﬁu(C) of the locally symmetric space

Xiw+(C) (see [BS73]). By choosing a triangulation on Y?WSJF(C), one can form the so-called
Borel-Serre cochain complex C‘(Iwgsp%, Dy, (To, Ry)) which computes the Betti cohomo-

logy groups H*(X1,+(C), D}, (T, Ry)) (see [Hanl7, §2.1]).
The fixed triangulation on 7?Ws+ (C) provides also a triangulation on the boundary 87?& (C) :=
7?\; (C)\ X[+ (C) and hence defines a cochain complex Cé(lwgsp%, Dy (To, Ry)) that com-

putes the cohomology groups at the boundary. The natural closed embedding 67?5+(C) —
Y?WS+(C) then induces a morphism of cochain complexes

T C'(Iwgsp%, D"T‘”;M (To, Ru)) — Cé(IWéSpgg, D’Zu (To, Rz,{))

Following [Bar18, §3.1.3|, we define C’C'(Iwgsp%, Dy, (To, Ry)) := Cone(r) the mapping cone
of m, i.e.,
Cone(r)" = Ct(lwgsp%, Dy, (To, Ry)) © Cgﬁl(lwéspzq, Dy, (To, Ry)) with

d’. : Cone(m)" — Cone(m)"™,  (0,09) = (—d'o, —7'o + df ‘o),

where d and dy are differentials on C'(IWEESMQ, Dy, (To, Ry)) and C'(Iwasng, Dy, (To, Ry))
respectively. The strategy of the proof of [Barl8, Proposition 3.5| applies here and one
sees that C’C‘(Iwgsp2q, Dy, (To, Ry)) computes the compactly supported cohomology groups

H(X,+(C), Dy, (To, Ry)). Moreover, the natural morphism
Ce(Iwisy, » D, (To, Ru)) = C*(Iwlg,, , Dy, (To, Ruy))
induces a morphism on the cohomology groups
H!(X1,+(C), Dy, (To, Ry)) — H'(X1,+(C), Dy, (To, Ry)).
For each t, we let

H!, (X+(C), Dy, (To, Ry)) := image (Hﬁ(XIW+(C), Dy, (To, Ry)) — H'(X,+(C), Dy, (T, Ru))) ,

par

and call them the parabolic cohomology groups.

Lemma 4.3.3. The parabolic cohomology groups H] .(X1,+(C), D}, (To, Ry)) are Hecke-
stable.

Proof. Due to the nature of the Borel-Serre compactification, C3(Iwgg,« , Dy, (To, Ry/)) ad-
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mits Hecke actions as the ones defined above. Hence
m: C*(Iwgsy, - Dr, (To, Ru)) = C5(Iwdsg,, » Dy, (To, Ru))
is a Hecke equivariant morphism of cochain complexes and hence
CE(IWGSp;gu DZM (To, Ry)) — O.(IWGSp;gu D;u (To, Ru))
is also Hecke-equivariant and induces a Hecke-equivariant map on cohomology groups
H(Xp,+(C), Dy, (To, Ry)) = H'(Xp+(C), Dy, (To, Ru)).
This then shows the desired result. 0

4.3.4. Finally, we discuss the relation between H{(Xy,+(C), D}, (T, Ry)) with étale co-
homology. Let (Ry, k) be a small weight and let » > 1 + ;. Then, Proposition 4.1.10 and
the Poincaré duality (for both Betti cohomology and étale cohomology) allows us to deduce
an isomorphism

He(X1,+(C), Dy, (To, Ru)) ~ Hgy (X1, Z1,)

for any ¢ € Z. Again, we define Hecke operators acting on H{, .(X,+, Z},,) via this iso-

ét,c
morphism. In particular, we have a commutative diagram

Ht(XIW+(C)7 DIZZ/{ (T07 Ru)) — Hét(XIWJr? ‘@2“)

| [

HE(XIW+(C>7 D/:u (T07 RU)) — Hét,c(‘)(lw+7 @7/;”)

where the vertical arrows are Hecke-equivariant.

4.4 Algebraic counterparts

4.4.1. The modules A}, (Ty, Ry) and Dy, (Ty, Ry) introduced in 4.1.4 have algebraic coun-
terparts, which we now explain.

Let k = (ki,....k,) € Z%, with k; > --- > k,. One can view k as a character on Tasp,,
via

g
, : -1 —1 ki
k:Tgsp,, = Gm, diag(Ti,..., Ty, ToT, .., ToT] ) = HTZ- :

i=1

One extends k to Bgsp,, by setting k(Ugsp,,) = {1}. Consider the irreducible representation
for GSp,,

¢ is a morphism of schemes }

alg L . 1,
Vs, = {¢'GSPWA " 6(vB) = k(B)6(v) for any (v, 8) € GSpy, X Basp,,

One can consider the following actions of GSp,, on Vgép%,k:

86



(i) The right action given by
(ii) The left action given by

(iii) The left action given by
(v-0) () = by ).

Notice that the second action is valid since GSp,, is stable under transpose. In fact, one
deduces easily from the definition that

—1 1
ta — . 9\ ~1 . 9
=, ) )

for any v € GSp,,. Therefore, the second action is nothing but a twisted action of the third
one. In what follows, we equip Vél%pmk with the left GSp, -action given by (ii).

Denote by Vég’p\ggk the linear dual of Vggmg,k' We equip with it a left GSp,,-action given

by the right action (i) on Vg%m L
g7

. s alg alg,V .
4.4.2. From now on, we abuse the notation, writing VGsz)gJIC and VGS%JC for their Q,-
realisation. That is,

¢ is a polynomial function

al - . .
VG, 0 = {¢ FOSPay(Q) = Qi B) Z(B)6() Vv, B) € GSpsy(Q,) X Basp, (Q,)

alg,V _ alg
VGSPQg,k: = Home (VGszg,lw Qp)'

There is an obvious injective morphism

Vggpw — A1(To,Q,), ¢+ ((%v) = k(B)¢ <<7° " )))

vo 1,%5" ig

for any r, where (v, v) = (7o, vo) B with v, € Ugy, | and B € Bar, 0. Therefore, there is a

: : r alg,Vv . . + . .
natural surjection Dj (T, Q,) — VGszg,k: for any r, which is IWGSPQQ—equlvamant.

Example 4.4.3. Similarly, the analytic highest weight vector also has an algebraic counter-
part: Given X = (Xj;)1<ij<2g € GSpy,, we consider

et (X) = X717 x det((Xij)i<ica)™ ™ 5 - x det((Xij)1<ijcg) ™
Similar as in Example 4.1.5, one sees that e** € Vggp%,k.

4.4.4. Notice that the left GSp,, -actions on Vg‘ép%k and Vélg’pég’k induce étale Q,-local
systems on X1,+ which we still denote by the same symbols. In particular, we can consider
the cohomology groups Hf (X 1+, Val%’g/z ,) for t € Z>.

9 =
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On the other hand, we can also consider the Betti cohomology groups H*( X ,,+(C), Vgg’pé k)
g?
By the proof of Proposition 4.1.10, we know that there is an isomorphism

Hgt(‘){lw"’?vg%ggk) ~ Ht(XIW""(C)?V%lg’I;/QQ,k)

for any t € Z>,. Therefore, the Iwgsp%—equivariant morphism Dy (To, Q,) — Végg Sk then
induces a commutative diagram

Hét(‘)(lw'*" gzu) —— Ht(XIW+(C>7 D;:z,, (T07 RU))

l l . (4.5)

alg,V ~ alg,V
Hét(XIWJra VGEPQQ,;C) - Ht(X1w+<C)a VG§p2g,k>
4.4.5. We wrap up this section by discussing the Hecke operators acting on Hf, (X1,,+, Vég’p\g k)
o
As before, we only need to define them on the Betti cohomology groups H*(Xj,+(C), V‘ég’é L)
g’

e For any Hecke operator 7., away from Np, its action on Ht(XIW+(C),V2§’pV2q7k) is
defined by the same formula as (4.2). \

e For the U, -action, let w,; act on GSp,,(Q,) via conjugation

_ -1
um Y = uw- Y um .

Observe that if v € BGSPQg(Qp), then u,,.v € BGspgg(Qp) and the diagonal entries
of v coincide with the diagonal entries of u, ;.. This action then induces a left u, ;-

action on V?;l%’pég,k. The operator U,; acting on H'(Xj,+ (C),Vél‘gg;wk) is defined by

the same formula as (4.4).

Using these operators, together with the Iwgspgg—equivariant surjection Dy (To, Q,) — Vélé’p\;g’k,
one sees that the commutative diagram (4.5) is moreover Hecke-equivariant.

Remark 4.4.6. There are obvious versions of compactly supported cohomology groups and

parabolic cohomology groups with coefficients in Vél%i)\;g,k' We shall use similar notations

Hé(XIW+(C),V2§g; ) and H/ (XIW+(C),V%1§’S; ) to denote these groups.

par
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Chapter 5

The cuspidal eigenvarieties

In this chapter, we construct the cuspidal eigenvarieties arising from overconvergent cohomo-
logy groups and from overconvergent Siegel modular forms and then study their interaction
with each other. For this purpose, we will recall some preliminaries about slope decom-
positions from [AS08, §4| in §5.1. The cuspidal eigenvariety associated with overconvergent
cohomology groups are discussed in §5.2 whereas the one associated with overconvergent
Siegel modular forms are elaborated in §5.3.

Convention. We will use the following convention from now on:
(i) Let (Ry, ky) be a small weight. We say it is open if the natural map
U"e = Spa(Ry, Ry)"™ — W
is an open immersion.
(ii) Let (Ry, ky) be an affinoid weight. We say it is open if the natural map
U™ = U = Spa(Ry, Ry) — W
is an open immersion.

(iii) A weight (Ry, ky) is called an open weight if it is either an small open weight or an
affinoid open weight.
5.1 Preliminaries on slope decompositions

5.1.1. Let R be a Q,-Banach algebra whose norm is denoted by |-|r. We define the valuation
vr on R by

00, ifa=0
vp: R — RU{OO}7 a = { UR(CL) s.t. ‘a|R = p_”R(a), else

We shall always normalise so that vg(p) = 1.
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Given a power series F' = Y . a,T" € R[T], we define the Newton polygon Newtp
of F' by -

Newtz := the lower convex hull of {(n,vg(a,)) € R? : a, # 0} in R*.

We call the line segments in the boundary of Newtr the edges of Newtr; and we call the
slope of any edge of Newtr a slope of Newtp.

Definition 5.1.2. Let F' € R[T] and h € R+y. A slope-< h factorisation of F is a
factorisation of power series

F=Q-S
such that
e Q € R[T] with Q*(0) € A*, where Q*(T) = T¥9Q(1/T);

e S € R[T] such that S(0) =1 (i.e., S is a Fredholm series);

o cvery slope of Newtg is < h (i.e., Q has slope < h);
e cvery slope of Newtg is > h (i.e., S has slope > h);
o S(p") converges.

5.1.3. There is a similar notion related to modules, which we now discuss.

Let R again be a Q, -Banach algebra and M be an R-module, equipped with an endo-
morphism u : M — M. An element x € M is said to have slope < h if there exists a
polynomial @ € R[T] with Q*(0) € R* and having slope < h such that Q*(u)m = 0. We
denote by

M=".={x € M : x has slope < h},

which turns out to be a R-submodule of M by [AS08, Proposition 4.6.2].

Definition 5.1.4. Assume we are in the situation above. A slope-< h decomposition of
M is an isomorphism
M~ M=" & M>"

for some R-module M>" such that
o M=h is finitely generated over R and
e for any polynomial Q € R[T] with Q*(0) € R* and having slope < h, the map
Q*(u) : M — M>"
s an isomorphism of A-modules.

Theorem 5.1.5 (|[Buz07, Theorem 3.3]). Suppose R is a reduced affinoid algebra. Let M be
an R-module having (Pr) (in the sense of [Buz07]) and u be a compact operator acting on
M. Let F,(T) be the Fredholm determinant of u acting on M. Then, for any h € R+, F,
has a slope-< h factorisation if and only if M has a slope-< h decomposition.
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Sketch of proof. Suppose M ~ M<h @ M>" is a slope-< h decomposition. One sees that
F,(T) = det(1 — uT|M) = det(1 — uT|M=") det(1 — uT|M>").

One checks that this is a slope-< h factorisation of F,.
On the other hand, if F,, = QS is a slope-< h factorisation, then [Buz07, Proposition
3.2] provides a decomposition

M ~ ker Q*(u) @ image Q" (u).

One checks that this is a slope-< h decomposition of M. n

5.2 The cuspidal eigenvariety for overconvergent cohomo-
logy

5.2.1. Given an open weight ( Ry, k) and an integer r > 141y, we have discussed about the
Borel-Serre cochain complex C’(IWESPQQ, Dy (To, Ry)) in 4.3.2. One can similarly consider

the Borel-Serre chain complex C, (IwgSPQQ, Ay (To, Ry)) which computes the Betti homolgy

groups Hy(Xp,+(C), A7, (To, Ry)) (see [Han17]). The Borel-Serre chain complex is a finite
complex as it is constructed by a fixed triangulation on the Borel-Serre compactification of
the locally symmetric space Xp,+(C). We write

Ciol " = @tot(IWESpQQ; AL, (To, By))
CtOI = @tCt (IWéSp297 szu (To, Ru))

Ky,

Then Cgy”" is an ON-able Ry[1/p]-module as A} (To, ) is ON-able (see [Hanl7, §2.2,

tol
Remarks|). Moreover, there are naturally defined Hecke operators on Cp4"" and the action

of U, is compact (see |op. cit., §2.2]). We define F2° € Ry[1/p|[T] to be the Fredholm

determinant of U, acting on C{¥"". One observes that [ﬁénl?, Proposition 3.1.1] goes through
for small weights, showing that F° . is independent to 7. Thus, for any h € Q, the
existence of a slope-< h decomposition of C{¥"" is equivalent to the existence of a slope-< h
factorisation of Fi2° = F¢ ' (see Theorem 5.1.5). We call the pair (U, h) a slope datum if
F?° . admits a slope-< h decomposition. Moreover, if U’ = (Ryy, k) is another open weight
with U™ C U™, the relation A7, (To, Ry)®Ry[1/p] = Ay (To, Ry) implies that F2¢ glue
to a function F))5 over W (see also [Hanl7, §4.3]).

Observe also that [Han17, Proposition 3.1.2] also goes through for small weights. Hence,
if CigiZ), is the slope-< h submodule of C{3{"" and suppose U’ = (R, k) is another open
weight such that U’"® C U™, there is a canonical isomorphism

Kyf,T 1 Kyt T
C(tobl{,,gh ®Ru[%] RU/[}_?] = Ctoz/l{,gh'

'We drop the ‘r’ in the notation as the Fredholm determinant is independent to 7.
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Proposition 5.2.2. Let (U, h) be a slope datum and let (R, ry) be an affinoid open weight
such that U C U"®.

(i) There is a canonical isomorphism
Hi( X1+ (C), AL, (To, Bus)) < @ gy Boe = Hi( X1+ (C), AL, (To, Rur))<n
for all t € Z, where the subscript ‘< h’ stands for the slope-< h submodule.

(1) The cochain complex CI% . and the cohomology groups H'(Xy,+(C), Dy, (To, Ry)) ad-
mit slope-< h decompositions. The corresponding slope-< h submodules are denoted by
Ciob=h and H'(Xy,+(C), Dy, (To, Ry))=", respectively.

Ry,

(i1i) There are canonical isomorphisms

tol,<h ~
Oﬁuﬂ“ ®Ru[1} RM/ -

p

C«tol,gh

I{L{/,T
and

Ht(XIW+(C)7D/:u(T07 RU))S}L ®Ru[1} RM/ = Ht(XIW+<C)7 Dy,

= Kyt
D u

(To. R )="

Proof. The proof follows verbatim as in the proofs of [CHJ17, Proposition 3.3 & Proposition
3.4]. O

5.2.3. Let A}QP be the affine line over (Q,, Z,) and let

1 1
AW = W XSpa(QZ”Zp) AQp ’

Then, the spectral variety (or the Fredholm hypersurface) S°° (associated with Fy)5) is
defined to be
S° := the zero locus of Fy) in A, .

5.2.4. For any open weight U so that U™ C W, consider A}, := U"® xspa(vazp)A}Qp. In

particular, we have an open embedding
Al — A, .
For any h € Q.,, let B(0,p") C A}QP be the closed ball of radius p”. We also consider
By = U™ Xspa(q,.z,) B(0,p") C A,
Then, we say the pair (U, h) is slope-adapted if the natural map
Siyin =8"NByp — ue
is finite flat.
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Counsider the collections

Cov(8°) := {8y, : (U, h) is slope-adapted }
Cov,g(8°°) := {Szojh € Cov(8*) : U is an affinoid weight} .

Therefore, by [Buz07, Theorem 4.6] (see also [Hanl7, Proposition 4.1.4]), we know that
Covz(S°°) is an open cover for §°° (hence so is Cov(S°°)).

5.2.5. Recall that Df (T, Ry) is defined to be the inverse limit of D7, (T, Ry) with respect
to r. We define the coherent sheaf #'° on S° by assigning each Siin € Cov(8™) to the

par
module

Hwwh = @, (HL (X (C), DLM(TO, Ry)) N H (X1 (C), D,LM(TO, Ry))=").

par,ky par

Notice that the intersection Hf,.(Xp,+(C), Df (To, Ry)) N H (Xpy+(C), Df (To, Ry))=" is

par

a direct summand of the parabolic cohomology group H}, (Xy,+(C), D}, (To, Ry)) and such

a decomposition gives a slope-< h decomposition for H;Zr(XIWJr(C), D} (T, Ry)) since it is
Hecke-stable in H'(Xy,+(C), D}, (To, Ry)) by Lemma 4.3.3. Note also that %”g;lr is, indeed,
a well-defined coherent sheaf on §°° by the discussion in [Hanl7, §4.3].

Furthermore, the Hecke algebra T acts on the coherent sheaf .2

par-  Lhus, for each
slope-adapted pair (U, h), we can define

Tyfy = the reduced Osoe, (Spr),)-algebra generated by the image of T — End (£ tol (Siin)

par
0C,0 , : oc \o : . _: oC
Ty j, = the integral closure of Osee, (Syr;)° inside Tpp),.

Since ff;lr is a coherent sheaf on §°¢, these algebras glue to coherent sheaves of algebras

T oc and 7 .. on §°° respectively.

Definition 5.2.6. The equidimensional reduced cuspidal eigenvariety for GSp,, is
defined to be
EoC = the equidimensional locus of Spagoc(T oc, T oe)s

where Spagec is the relative adic spectrum over S°¢.

5.2.7. We close our discussion about the cuspidal eigenvariety for GSp,, with the following
control theorem.

Theorem 5.2.8 (Control theorem). For g € Z~, let k = (ki,....,k,) € Z2, be a dominant

algebraic weight. Let u, = [[{_, u,,; and let

hi = min - {—vp(a(uy))(1 + (k,a”))},

+
ae@csng

where " denotes the coroot corresponds to o. Then, for any Qo > h < hy, we have a
canonical isomorphism

Ht (XIW"'(C)?DIJL(TOan))Sh:Ht (XIW+(C>7V8CL}1§’13\;Q7I€)S}L‘

par par
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(see also [ASO8, Theorem 6.4.1])

Proof. Let K := ker(D}(T,, Q,) — V?}lgg; ) and so we have an exact sequence
. ° . alg,
0 = C*(Iwgsy,, - K) = C*(Iwdsy, » DH(To,Q,)) = C*(Iwgs,, Vs, 1) = 0.
Observe that the map
. . alg,
C (IW?;sng, DITC) —C (Iwésngavegpvzg,k)

is Hecke equivariant and so C*(Iw¢g,, ,K) is Hecke stable. Denote by Cy' and C}%,, the
g bl

total cochain complexes of C"(Iwgsp%, K) and C"(Iwgsmg, Vg%gwk) respectively. Then, by
|[AS08, Theorem 3.11.1], we know that the norm of U, on C}¢' satisfies

10, ][k < p~".

Now, we claim the following: Fix Q. > h < hy, if @ € Q,[X] with Q*(0) € Q, and the
slope of @ is < h, then Q*(U,) acts on C§ invertibly. Write Q = ag + a1 X + -+ + a, X"
The two conditions on () means

®a,cQ
o vy(ay) —vp(a;) < (n—i)hforalli=0,.,n—1

Therefore, we have

|a;/an| < p™~ 9" and ‘ &UI?_" <1
n K
Let P(X) = —22 X" — &LX" — ... — =L X then iQ*(X) =1— P(X). We can deduce

that ||P(U,)|lx < 1 and so Q*(U,) acts on Ci¢' invertibly with inverse given explicitly by

* — 1 j
Q@ (Up) t= G_ZP(UP)]'
" j=0
Now fix h < hg, then by [Hanl7, Proposition 2.3.3], we know that Cf°! and C,tcf’;lg have
slope-< h decomposition. Hence, if F,I and F' '8 denote the corresponding Fredholm determ-

inant of U, on Cf°' and C’,‘;f’;lg respectively, we have the corresponding slope-< h factorisation

Fl = Q!SI and F/'"s = Q85 and

tol,<h tol,<h
Ck Clmalg

with C°"=" = ker QL’*(UHC,?I) and C,Zoiigh = ker Qilg’*(Up|Clt€oll ). Let Ci"=" be the kernel of
’ ;alg
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the surjection, then, by taking cohomology, we have the corresponding long exact sequence

. Ht(XIW+(C)7K)Sh E— Ht<XIW+(C)7D,Z:(T07Qp))§h

(\)

H' (X1, +(C), Ve, )= ——— H'"" (X4 (C), K) ——— -+

The above claim shows that both QI*(U,) and Q'**(U,,) act on H'(Xy,,+(C), K)<h invertibly.
Take any o € H'(Xp,+(C), K)=", the image of Q! (U,)o in H'(X,+(C), D] +(To,Q,))=" is
zero, thus there exists o/ € H'™ (X ,+(C), V2§$7k)<h whose image in H'(X},+(C), K)=" is
QL*( Up)o. Since Qalg*( U,)o" = 0, thus Qalg*( p)QL’*(Up)J = 0. This implies ¢ = 0 so the

desired isomorphism follows. O

Remark 5.2.9. The above control theorem is basically [AS08, Theorem 6.4.1] with only a
slight modification. There is another version of the control theorem by [Urb11, Proposition
4.3.10] (see also [Han17, Theorem 3.2.5]). However, the control theorem in [Urb11] requires
a modification on the Shimura varieties while this is not the case in our version.

5.3 The cuspidal eigenvariety for overconvergent Siegel
modular forms

5.3.1. Throughout this section, we assume p > 2¢g so that we can apply results in [AIP15]
via the comparison in §3.7. On the other hand, we believe that the results in this section
hold for smaller primes as well. In order to deal with these smaller primes, one would have
to reprove several results in [AIP15] in our context; e.g., the classicality result and the fact
that SITW+’W has (Pr). We leave these generalities to the readers in order to keep this thesis
within a reasonable length.

5.3.2. Given an affinoid weight (Ry, xy) and w > 1+ ry, by |[AIP15, Proposition 8.1.3.1]
and Theorem 3.7.2 (see also [op. cit., Proposition 8.2.3.3]), the space of cuspforms Sjy . =

HO(X 1t has property (Pr) in the sense of [Buz07]|; namely, it is a direct summand
of a potentially ON-able C, ®Ry-Banach space. Also recall that U, as compactly on the space
of overconvergent Siegel modular forms. Therefore, we can define the Fredholm determinant
Fof, of U, acting on S . Note that the Fredholm determinant is independent to w.
When we vary the afﬁnmd Welghts the Fredholm determinants glue together and so we arrive
at a power series Fiif € O)y(W ){{T}}®Qp

Consider Aép = A‘lQp X Spa(Q,.Zp) Spa(C,, O¢,) and let A%/v,cp =W xspa(szp)Ale. The

spectral variety Sc, (associated with Fy}Y) is defined to be

Way cusp)

Sc, = the zero locus of FVH\}fF% in A%/v,cp-
By construction, we see that there is a closed immersion
¢, = 8% Xspa(q,.2z,) SPa(Cy, Oc,) — Sc, -
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Consequently, denote by (¢ the base change of £7° to Spa(C,, O¢, ), we can view &0, as
an adic space over Sc, .

5.3.3. One can now run through the strategy in §5.2 again so that we have the following.

e A pair (U, h) with U an open weight and h € Q. is slope-adapted if the natural
map

Sc,un =S¢, N (B(()’ph) X$pa(Q,.2,) SPa(Cp, Ocp)> — U™ Xspa(q,.2,) SPa(Cp, Oc,)
is finite flat.

e The collection Cov(Sc,) = {Sc,un : (U, h) is slope-adapted} is again an open cover
for Scp.

e We define the coherent sheaf .7 IW+ by assigning each S¢, i, € Cov(Sc,) to the module
T,<h
Iwt,ky+g+1°

e Thereduced Osg ,,,(Sc,u.n)-algebra ']I‘ﬁfh generated by the image of T in End(&”IWJr (Sc,un))
then gives rise to coherent sheaves of algebras 7,y and 7 ;.

Definition 5.3.4. The equidimensional reduced cuspidal eigenvariety for overconver-
gent Siegel cuspforms is defined to be

EX .= the equidimensional locus of Spascp(ﬂmf, o),

where Spag, s the relative adic spectrum over Sc, .
P

Remark 5.3.5. Notice that £ is (the stricit Iwahori version of) the equidimensional
cuspidal eigenvariety constructed in [AIP15] after base change to C,.

Proposition 5.3.6. There is a natural closed immersion EFF — 0.C, -

Proof. The strategy is to apply [Han17, Theorem 5.1.2]. To this end, we need to find a very
Zariski-dense subset S of Sc, such that for every z € S with dominate algebraic weight
k= (k1,....ky) € ZL; and any Y € T, we have

det (1 —TY)| y}w’z) | det (1 —TY| A, B, cp> .
By Theorem 5.2.8, there exists an hy € R such that for all h € QN(0, hy], the canonical

map

Hpy (XIW+(C)7 DIE(T07 Qp))gh — HJY (XIW+ (0)7 Vggi)vzg,k)gh

par par

is an isomorphism. On the other hand, let
k )k _ —
Wit cusp © Wit ®ﬁ?1w+ ﬁXIWJr( ZIW+)
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be the sheaf of classical cuspidal Siegel modular forms of weight k on X}, +. The classicality
theorem [AIP15, Theorem 7.1.1] provides an aj, € Q- such that for all h € QN(0, axl, the
slope-< h overconvergent Siegel cuspforms of weight k are classical; namely,

HO (?Iw+,w wk )Sh C HO (?vaL y glfw+

) Zw,cusp ,CUSP) ’

Now, let ¢, = min{hy,a;} and take h < {;. Applying the generalised Fichler—-Shimura
morphism in [Hid02, Theorem 3.8|, we obtain an injection from the space of slope-< h
overconvergent Siegel cuspforms of classical weight into the slope-< h cohomology group
with coefficient in the algebraic representation. Consequently, the desired very Zariski-dense
subset of S can be taken to be

S = Usy peCovar($)1E € Sc,u,n - @ has classical weight k € Z%O and h < (.}
Finally, [Han17, Theorem 5.1.2] yields the result. O

5.3.7. Given Proposition 5.3.6, we may identify Eg‘f with its image in £fc and denote it
by &g for simplicity. We have a diagram

&g —— Sc, — W
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Chapter 6

Overconvergent Eichler—Shimura
morphisms

The goal of this chapter is to answer the second part of Question 1.3.2 (i). That is, we
explicitly construct an overocnvergent Eichler-Shimura morphism for overconvergent Siegel
modular forms by using perfectoid methods. Our approach is similar to [CHJ17|, but we
have to overcome several technicalities.

We organise this chapter as follows. The purpose of §6.1 is to show that the overcon-
vergent cohomology groups can be computed using the pro-Kummer étale site TIW+,pr0két.
Working with the pro-Kummer étale sites, we construct explicitly the overconvergent Fichler—
Shimura morphism in §6.2. Then, in §6.3, we study the image of the overconvergent Eichler—
Shimura morphism at classical weights. Finally, we show in §6.4 that such morphisms can
be promoted as a morphism between coherent sheaves on the cuspidal eigenvariety &.

6.1 The (pro-)Kummer étale cohomology groups

6.1.1. Consider the natural morphism of sites
e letkév

Recall that, for every small weight (Ry, ky) and any integer r > 1 + ry, there is an in-
verse system of étale locally constant sheaves (@2;]) jezs, On Xpg+ o Applying [DLLZ19,
Corollary 4.6.7], we obtain an isomorphism

lim HY (X, 73 ) = T Hig (X, kens Zi )
j J

for every t € Z>o. Write

Hliét(ylw'ﬂ -@Zu) = @Hﬁét(y1w+7jkét,* 9::,]‘)[1/1’]~
J
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By Proposition 4.1.10, we arrive at isomorphisms
Higo (X1, D1,,) = H( Xy, Z7,) = H' X1+ (C), Dy, (To, Rur)).-

To simplify the notation, we introduce the following abbreviations:

@Z’Zj L ket(XIW""v]ket * '@;Zj j)

@, —@“’[ | = Hig (Xy+, 75,)
@;Zjaocp L ( ketl(XIW+ 5 Jkét,x gﬂu j) ®Zp Oc )
@ZZ/{: = @HM,OCP [p]

where ng = dimg, X'+

6.1.2. Let

v XIW+,prokét — XIW+,két

be the natural projection of sites. Consider the sheaf 67, on the pro-Kummer étale site
?IWJr,prokét defined by

o7, : (L (u Ykt Do s ® ﬁ+lw+,pmkét>> []19].

Proposition 6.1.3. There is a Galqp—equivariant 1somorphism

Q, pmket(‘)c'lw+ ﬁ'@ )

HZ/{»

Proof. By [DLLZ19, Theorem 6.2.1 & Corollary 6.3.4], there is an almost isomorphism

(ng%:(‘)(lw"" y Jkét,* -@T ) ®Zp Ocp) ~ H (Xlw+7 I/iljkét * ‘@:vu J ZP ﬁi )a'

K
U '] proket Twt ,prokét

It remains to establish an almost isomorphism

S a
lim (X e s D7° - Rg OF )
L proket Iw™> Jket Ku»J ®ZP X1w+,prokét

a
~ g | X, lim (v 2, Rz, 0% :
prokét Iw™> L jket * kusg Iw+,prokét

Indeed, observe that the higher inverse limit R’ @j (Vfl Ietx Doy, i Oz, O i ) almost

Iw+ ,prokét

vanishes for ¢ > 1 by an almost version of [Sch13, Lemma 3.18| and [DLLZl9, Proposition
6.1.11]. This then allows us to commute the inverse limit with taking cohomology, hence the
result. 0

6.1.4. Thanks to Proposition 6.1.3, HC .. (X1,+, OF,) inherits actions of the Hecke oper-

prokét

ators T and U, ; from Hg" (X' p,+, .@Qu) On the other hand, thanks to the 0% -module

Iw T ,prokét

structure on 0%, , there is an alternative way to define the Hecke operators T7,’s using corres-
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pondences. More precisely, for any prime number £ { Np and any v € GSp,,(Q,) N May(Zy),
consider the correspondence

v IwT

X
N

XIW+ XIer
studied in 3.3.2. One then similarly obtains an isomorphism

oy P15 O}, | %, — DT} O,

U |‘)C‘Iw+ '

Consider the composition

T—/y : Hgfoét(XIw‘*? ﬁgzu |X1W+) L Hgfoét(X7,1w+7 pr§ ﬁ@% |'X1w+)
Py I

n( Trpry
H™ (XIW+,pr’1‘ ﬁ.@;u |X1w+) E—

proét

ng r

Hproét(XIw+ ’ ﬁ‘@ﬂu |Xlw+ )
However, since Hg(X1,+, 2, ;) ~ Hi& (X 1w+, s 2., ;) for every j, we have an identific-
ation

H (X1, ODr, Nx, ) ~ H® (TIW+,6’QQU)

proét K, prokét

and hence an operator T on H" (Xpy+, 0Z},,). One checks that T coincides with 7 -

6.2 Overconvergent Eichler—-Shimura morphisms

6.2.1. The strategy of the construction of our overconvergent Eichler—Shimura morphism is
similar to [CHJ17], i.e., we first construct a morphism between sheaves on the pro-Kummer
étale site ?lw+7w7prokét, which then induces the desired map on the spaces.

Let (Ry, ky) be a small weight and let w > r > 1 + ry. Recall that we have defined a
sheaf 0%, on the pro-Kummer étale site TIW+7prokét in the previous section. The following

lemma is an analogue of [CHJ17, Lemma 4.5].

Lemma 6.2.2. Let V = lgln V. — X+ be a pro-Kummer étale presentation of a log
affinoid perfectoid object in Xyy+ proper- Let Voo =V X%, . Xrppee). (Here we have abused
the notation and identify X~y with the object lér_nn Xrpny in Xy .) Then there is a
natural tsomorphism

+ prokét

=~ = Iwasm
09;,,V) = (D(To. R)8r, 0, . (V) ™

Proof. Recall that Z,° - is the locally constant sheaf on X'}y + 4 induced by

Ku»J

Iwt ,prokét

™ (Xpy+) = Iwds,, — Aut (D7 (To, Ry)) -
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Since ?p(p -y is a profinite Galois cover of X+ with Galois group IWJ(ESP , one sees that

becomes the constant local system associated with D!’ To,Ru) after re-

~1
Vo Jkét ‘gﬁu J Ky J(

stricting to the localised site X’ Tw prokeét /X T(p>)-
Applying [DLLZ19, Theorem 5.4.3|, we obtain an almost isomorphism

(Di(To R) 92, 0%, V) = (Ve 05,902,605 Y (Vs))

Iwt ,prokét

By taking IWESPQ -invariants, we obtain almost isomorphisms
g
7,0 ~+ IWéSpQQ “
(<DH“ ](T[)’ Ru) ®Zp ﬁ X+, proket (VOO)) )

7,0 IWgSp ¢
= (<(V_1]két’* géu’j 9z, ﬁ%l + k‘t) (Voo)> zg)
- <(lj71]két * @;: J Zp ﬁ%lw“" prokét) <V>> '

Finally, taking inverse limit over j and inverting p, we conclude that

: _ ro 1
ﬁ‘@;u(v) = (hgl (V 1]két,* @K’u,j Xz, ﬁi R ) (V)) [E]
j wT,prokét

o~ Iwg b
~ (D (To, )7, 0 V)"

Iwt ,prokét

[]

6.2.3. To deal with the overconvergent automorphic sheaves, we recall the Kummer étale
sheaves wi* ket and wy'f associated with wi™ and wi considered in 3.2.14. Then we
consider the p-adically completed pullback of them to the pro-Kummer étale site; namely,

Anu, L( wket ®ﬁ+ ﬁ% . ’ /pm)
Iw+,w,két Iw ™ ,w,prokét
and 1
QZ}M R @”Mﬁ‘[ ]
p

Lemma 6.2.4. There is a canonical Hecke- and Galq -equivariant morphism

HTL

prokét

(Xrt o D) = HO (Xt o, 38 (—0).

Proof. By the discussion in 3.2.14, we have seen that gﬁ}fkét can be identified with the sheaf

of Iwésng /T (p™)-invariants of an admissible Kummer étale Banach sheaf of ﬁflwaw,két QRy-

modules. Corollary A.2.18 then yields a canonical isomorphism

~

W XReo— Riy*ﬁy —) RlV*ANu

Iw+,w,két Iw+,w,proket
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for every ¢ € Z>y. On the other hand, by [DRW22, Proposition A.2.3|, we have a canonical
isomorphism

~

R'v, 0% ~ Qlos! (—1).

Iw+,w,prokét Xlw+,w,két

Combining the two isomorphisms, we obtain

log,i .

Ky S5

RvTp ~ with Qo g (—1i).
Flwt w ket Iwt,w,két

Moreover, there is a Leray spectral sequence

Eg? leet(XIW+,w7 Rly*@fuu) H]+Z (XIW+ AKM)'

prokét

The edge map yields a Galois-equivariant morphism

HE (XIW+ ) — ert (XIW+ R™ V*@fuu) = Hl?ét (?IW_F,’LU? QZJZ/fkét(@ﬁ} ng7n0 )(_n()) :

proket Iw+,w,két X1w+,w,két
Finally, let mp,+ : G w = X+ denote the universal semiabelian variety over X Tt w
and let

T(-IWJr Q univ

w .
=T Iwt,w /XIW+1UJ

w w
Note that wy,+,, agrees with w . ]yl . studied in §3.4 for £ = (1,0,...,0). The Kodaira—
Spencer isomorphism |[Lanl12, Theorem 1.41 (4)] yields an isomorphism

2 log,1
Sym gler,w = QXI 4
w ,w

Hence,

log,no .~ Am0 ( 2 ) g+1 g+1
Q?1w+ o= A" (Sym” Wi+ ,,) = Wit C Wiy

where the last inclusion follows from Lemma 3.4.6. We obtain an injection

)(—no) — Hl?ét(yIW+,w7 wﬁu-ﬁ’-g-i-l) (—TL())

=w,két

H° (TIW*’,w? QZM—FQ—FI)(_HO)

0 (v Ky log,no
Hye (X 1ot 0 Worheer @ -

Tw™,w,két X1w+,w,két

Note that, due to the normalisation of the Hecke operators, the Kodaira—Spencer isomorph-
ism is Hecke-equivariant (see [FC90, pp. 258]). O

6.2.5. For any matrix o € My(Oc¢,) and pu € Dy, (T, Ry), we define a function f,, €
Cy(Iwar,, Cp ®Ry) as follows. For any ' € Iwgr,, we define

fraly) = /( RO o)

hs

where €' is as defined in Example 4.1.5. The following lemma justifies this definition.
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Lemma 6.2.6. (i) For every o € My(Oc,) and v € Iwqy,, the assignment
(v, 0) = e, (Y (v + o v))

defines an element in A}, (To, Ry).

(ii) For every v € Iwqr, and B € Bqr, 0, we have

fro(Y' B) = ku(B) fro(Y)-

Proof. This is straightforward. ]

6.2.7. We are ready to construct the desired morphism 7,,, : 09, — &, between sheaves
w.proket- Indeed, it _sufﬁces to construct a map 07, (V) —
W H (V) for every log affinoid perfectoid object V in Xy, +

on the pro-Kummer étale site X, +
By Lemma 6.2.2, we have

;prokét*

(V)"

09, (V) = (D (To, Fu)7, 0%

Iwt,prokét

where Voo := V Xz, +?1"(poo).

On the other hand, by definition, &, (V) consists of f € C~*"(Iway,, %} (Voo )®Ry)

Iwt ,prokét

satisfying a* f = p, (g +3 )7 f, for all @ = (aa ab) € IWJGrSpM. This is equivalent to

o, Oy
(Voo )@ Ry)

~

: ~NKku : + : : w—an .
saying that @, (V) consists of IWGSPQQ-lnvarlant elements f € C~*(Iwqy,, O Frort pronet

with respect to the twisted Iw(g, -action
g9

o.f = /),W(Oza—i-j O‘C)(a* f)

Consider the map

DI (To, Ru)®z, 0% (Vao) = C 0 (Iwar,, O (Voo)BRY), p®36 - 6f,,

Iw"",prokét Iw+,prokét

We claim that this map is IWJCESID2 -equivariant, and hence taking the IWJ(ESp2 -invariants yields
g g

O, O

+
€ Iw and an
ac ad GSPQg y

the desired map 0%, (V) — &,/ (V). Indeed, for any o = (
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v' € Iwqr,, we have
(@ ) fams) = (@) [ [ (v +30) da -u)
£ (' (Y + 0ty 0) + 3@y + ) du)

e (507 +Hew +500) o500 v) )

A
A
[ et sadr+an+ san v) du)
.
A

5 (g + 5 00) ¥) (Y + - @) ) du)

Il
Q
*
>,
S~—
N N N N N N

prufentsor) [yt arv)) )
To
= a.(0fu;)(7)
as desired.
Putting everything together, the composition

£Y r Res no
(XIW+’ ﬁ‘@fiu) B Hprokét

(?IWJr ,w? ﬁgzb{ )

lnnu

H (TIW+ W) QZM )

prokét

r >~ )
ku,Cp H prokét

lLemma 6.2.4

HO(?IW+,W7 QZ;UJrngl) (_n0)

w

MIW+7,‘iu+g+1 (_no)

ESey,

is called the overconvergent Eichler—Shimura morphism (of weight ry).

Proposition 6.2.8. The overconvergent Eichler—Shimura morphism
ESw, 1 @, c, = M&+7mu+g+l(—n0)

18 Hecke- and Galqp—equiva'riant.

Proof. The Galois-equivariance follows immediately from Lemma 6.2.4. For Hecke operators
away from Np, notice that the operators T’s on both sides are defined in the same way using
correspondences. Hence, it is straightforward to verify the 7T’,-equivariances. It remains to
check the U, ;-equivariance for all i = 1, ..., g.

To this end, due to the IwgSPQQ—equivariance of 7.,, we only have to check the u,,-

equivariance. Indeed, for every 7' = ~{ 3; € Iwgr, with v; € Ugh, 1 and By € Bar, 0, we
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have

(050 s() = (05,0) (s B0) [ s w) o)
s, (5B [ Bk (o 500)) i)
s, 0) (8 [ a1l (oo - yullon ™) )
s, ) (5B [ Bk (o sulv) i) )
o) (kB [ Bk (Ao 0w v ) )
s, 0) (8 [ @l (w5 Ao+ o)) )
— (u5,0) (%) / ) (S o 43wy wo)) )
To
=y, .(0fus),
where we have written (v,v) = (v, v0) 8 for (7, vo) € Top and B € Bar, 0. The antepen-
ultimate equation follows from the property of matrix determinants. ]

6.2.9. There is an analogue for compactly supported cohomology groups and overconvergent
cuspforms. Let r, w, and (Ry, k) be the same as before. On one hand, consider

7,cus . — r,0 ]_
ﬁg”}l ’ = (lgl (V 1]két7! gﬁu’j ®Zp ﬁ‘;IwJﬁprokét)) [5]
J

Since
Hl?é?t(XIw+7]két,! -@ZZ,J) Hgs C(XIW 9760 )

Kut,J

an analogue of Proposition 6.1.3 implies that 6%,°"" computes

r,c . (e r,0 1
@Ku, <1Ln Hét(,)c(XIW+7 ‘@Fau,j) ®Zp OCp) []_9]
j
On the other hand, recall the sheaf wi¥, . of w- overconvergent Siegel cuspforms of weight

ky and consider the p-adically completed pullback Wy, to the pro-Kummer étale site.
Repeating the construction above, we obtain a morphism 7nS*P : 62" — & . which
induces a morphism

ESG? 1 @, — HO (X wittendy ) (—0)

w,cusp
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rendering the following Galois- and Hecke-equivariant diagram commutative:

BSwy,

Q@ c, — H (Xt o W) (—n0)
r[ EScuSP 0 Hu+g+1
@nu,c — H (XIW ws Yoy cusp )(—no)

where the vertical arrow on the left is the natural map from the compactly supported co-
homology group to the usual cohomology group. Let

Q. ¢ = image (((E’"C c, * @ c ) :

K/L{:

We arrive at the owverconvergent FEichler—Shimura morphism for overconvergent
Siegel cuspforms (of weight ry)

cusp r,cusp w
S @ 1,Cp _>S /@u—o—g—i-l( no),

where
SU}

is the space of w-overconvergent Siegel cuspforms of strict Iwahori level and weight x;+g+1.

nu+g+1
+ ky+g+1 H (XIW+ wr Y ,Cusp )

Remark 6.2.10. We finally remark that, by construction, both ESZ™" and ES,,, are func-
torial in the small weights (Ry, k).

6.3 The image of overconvergent Eichler—Shimura morph-
isms at classical weights

6.3.1. The aim of this last part of the section is to describe the image of the overconvergent
Eichler-Shimura morphism at classical algebraic weights. Let k& = (ki,...,ky) € Z, be a
dominant weight and recall the representations Vgs o and Vélsp & Of GSpy studled in
§4.4.

Similar to 6.1.2, we introduce the sheaves &7 and 0¥ on ?lw+7pr0két defined by

~

1 alg __
Wk‘ =V ]ket,* VGSpgg,k’ ®Qp ﬁxlw"",prokét’

-~

\Y, -1, alg,Vv
=V Jkets Vo, O~ .
k jkEt’* Gsp291k ®Qp X1w+,prokét

By the same argument as in Proposition 6.1.3, we obtain a natural identification

HY (X4 Vglspv ») ®q, Cp = H (X, O7).

prokét

Moreover, if V = @n Vp — X+ is a pro-Kummer étale presentation of a log affinoid
perfectoid object in EIW+7prokét and let Vo =V X%, +?I‘(poo), then, following the same

106



argument as in the proof of Lemma 6.2.2, we obtain identifications

-~

alg Iwasng
(V) = (V1 80,0m,,, . (V=)

(Vo)) "

Iw™,prokét
v alg, O

W’C (V) (VGSp2 K ®Qpﬁ Iw+ ,prokét

6.3.2. We also consider the p-adically completed automorphic sheaf @y, + on Xlt proket

defined by
1

N . W o1

where gfwt is defined in Remark 3.4.3. It follows from Proposition 3.4.5 that

Iw+

Iwt,w,prokét c

S ={fe AL x0T = mlntsm) v = (10 20 e, |

for any log affinoid perfectoid object V € X+ prorer and Voo = V Xx, +§p(poo).
6.3.3. Recall the Hodge-Tate morphism

HTF(poo) : Vp — (L)F(poo).
It follows from the definition that

whor = (Sym™ %2 wy 1) ®ﬁyl . (Sym*2 ™ A% 1) ®ﬁ?1 L@y (Sym"s det wy,, + )

_ Iw

and hence
k1—Fk ko —k: k
Wy = (Sym™ ™ W) O (Sym™ ™ Nrge)) oz, o, (Sym™ detwrge).

Let Vyq denote the standard representation of GSp,, over Q,, with standard basis
T, ..., Ty Thereis an isomorphism of GSp,,(Q,,)-representations Vg =~ Vq, =V, ®z,Q,
sending x; to eggy1-i, for ¢ = 1,..., g, and sending x; to —eggy1—, for i = g+ 1,...,2g. If
we write

Vstd : (Symkl k2 Vstd) ®Q (S}/'l'nk2 ks(/\ Vstd)) Q .. ®Q (Sym (/\g Vstd))
and

V]ép ;= (SymF1 Vq,) ®q, (Sym*> %3 (A2 Vq,)) ®q, +* ®q, (Sym"s (A9 Vaq,));

the Hodge-Tate map induces a map VStcl ~ Vk — gfw+. Moreover, it is well-known that

alg
GSpy,

17]). In particular, the highest weight vector e** in ValSp & corresponds to the element

& 1s an irreducible Gszg—Subrepresentatlon of VE, (see for example [FH91, Lecture

R (o Ag) TR @@ (A Axg)he
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in VStd
The composition

HIwt

alg,Vv alg k
V Sy, b % Vasp,, b Via = Vg, — wr,

then induces a map
alg .

M OV = By
Eventually, we arrive at the algebraic FEichler-Shimura morphism (of weight k)

alg

n ~
(XIW+7 W\k/) — ngoket(‘)(lw‘*'agfw*)

k—) HO(X},+, wf+g+1)( no)

where the last map follows from the same argument as in the proof of Lemma 6.2.4. We
remark that ES2® coincides with the one induced from [FC90, Theorem VI. 6.2]. Tt is Hecke-
and GalQP—equivariant, and also surjective.

H«:th()(XIw'*'vVa(Li%g;g,k) ®Q C —— H}

prokét

Lemma 6.3.4. Over the w-ordinary locus EIWMU, the map nzlg has the following explicit
description.

(i) LetV = L V.. be a pro-Kummer étale presentation of a log affinoid perfectoid object
i Xyt proker ond let Voo =V Xx, . Xrpeyw- There is a well-defined GSp,,(Q,)-
equivariant map ’

~alg . Valg Vv

s GSpay.k ®Qpﬁ (Voo) = Pr(GLy, O%

(Veo))

Iw7L ,w,prokét Iwt ,w,prokét

defined by p ® 0 — 5falg where

ta,/
a s 8l 1, 3
flg / e“(( o _v><g )a) du.
)= aeGSpy, g L,y 1, 1,

Here, the GSp,,(Q,)-action on the right hand side is given by

Y f = o(Va+37) (Y )

(Vao))-

Iwt,w,prokét

for every v = (3‘2 3;2) € GSpy,(Q,) and f € Py(GLy, g’j

Ig

(ii) The map ni"® is obtained from 7i¢ by taking Iwgsp%—z’nvam’ants on both sides.

Proof. (i) Notice that 7¢ is the composition of 8 with the map

alg ValSp & ®ng (VOO> — Pk<GL97 @f (Voo>>

Iw+,w,prokét Iw+,w,prokét
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defined by ¢ ® 0 — dg4; where

wos ) =0 (2 1) (7 i pyon,))

for all v € GLy(C,).

Recall that 3 is GSp,,(Q,)-equivariant. It remains to check that é“zlg is GSp,,(Q,)-
equivariant, which follows from a straightforward calculation.

(ii) It suffices to check that the IWEESp2 -invariance of leg coincides with the map induced
g

fy alg k ~ vk k : alg ;
from the composition VGSpwk — Via = Vg, = wy,,+ Notice that VGSPQW,C is spanned

by GSp,,-translations of the highest weight vector elst. Therefore, we only need to

check that €28 (el** @ 1) gives the correct element in &y, +.

Indeed, since the Hodge-Tate map V,, — wy,+ sends egyq1-; to s, for ¢ = 1,...,g,

we see that the composition Végpzwk — VF ~ VQkp — gfw+ sends the highest weight

vector el to
SR @5 As) 2R @ @ (51 A Asy)e

On the other hand, notice that the element s; A--+ A\ 8 corresponds to the function
X = (Xij)lgi,jgg — det((Xij)lgiJgt) n Pk(GLg, ﬁ* (Voo)) Therefore, BII;St 1S

X1w+,w,prokét
sent to the function

X = X177 x det((Xij)1<ij<2)™ 7 x o x det((Xij)1<ij<g)™

in P, (GLy, 5’; (Vao)). This element coincides with £78(ef* 1), as desired.

]

Iwt ,w,prokét

6.3.5. Recall the natural inclusion Mfwﬂ = HO(Xpy+,wh o) = HO(Xpye b)) = MF
from Lemma 3.4.6. The main result of this section is the following.

Theorem 6.3.6. Let k = (ki, ..., k,) € Z%O be a dominant weight. Then the image of

- O w .
ESy: @ ¢, — Iw+,kz+g+1( no)

. . . . Cl
1s contained in the space of the classical forms M1w+,k+g+1(_”0)'

Proof. Recall the map
r alg,
Dy(T,, Qp) — VGngQg,k

from 4.4.2. This map then induces a map of sheaves
07, — oV}

over Xy, + Hence, the theorem follows once we show that the following diagram

,w,prokét *
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commutes
H (X, OT5) = HO(Rpye w941 (<)

prokét
Hno ? ﬁy/\/ Eszlg H() ? +g+1y/
prokét( Iwts k ) - ( Twts Yo+ ) ( no)

Over TIW+7w7pr0két, it follows from the construction that we have a commutative diagram

o7, L oF

! ]

where the inclusion on the right-hand side is given by the inclusion (3.2). Consequently,
there is a commutative diagram on the cohomology groups

H" (X1t OD}) ———— H™ (X1t, OV))

prokét prokét
Res Res
<+ <+ ESzlg
no Vv r no = \Y g
P _— .
ES Hproket (XIW+,w’ ﬁgk) Hproket <X1w+,w7 Wk )
k
Mk nzlg
no Vv ~k no v ~k
. i .
Hproket (XIW+,w7 gw) Hproket (XIW+,w s Wi+ )
oy k+g+1 ! s O k+g+1 s, oy k
H (XIer,w?Qw g )(—no) H (XIWJr,w’gler )<_n0) Res H (XIwaagIWJr)(_nO)
This finishes the proof. n

6.4 Sheaves on the cuspidal eigenvariety

6.4.1. In this section, we glue the overconvergent Eichler—Shimura morphism over the
cuspidal eigenvariety £,. Due to our construction of &;, we shall again assume p > 2g
in this section. We begin with some setup of notations:

Given a weight (Ry, k) and an integer r > 1 4 1y, we write

r,cusp 025?827 if U is a small Welght
uCr | HE (X4 (C), Dy, (T, Ru))®Qp C,, if U is an affinoid weight

We also write

f{u,cp : I{M,CP

@T,cusp — lim @r,cusp )
o

6.4.2. Suppose that (Ry, Ky) is an small open weight and recall the overconvergent Eichler—
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Shimura morphism for overconvergent Siegel cuspforms

cusp . T,Cusp w _
ES" @W,Cp - SIW+,Ru+g+1( no)-

If (U, h) slope-adapted, then the Hecke-equivariance of ES;™ induces a C, ® Ry-linear map

cusp,<h . @y cusp,<h w,<h B
ESHZ,{ . @Ruch _> SIW+,I{L{+9+1( no)

of finite projective C, ® Ry~-modules.
Now, if U’ C U™ is an affinoid weight, the C, ®R;y-linear map ES."P is defined to be
the composition

cusp,<h . qyrcusp,<h , qyrcusp,<h w,<h _ w,<h _
ES’%{/ ' @Huucp - @Hu,cp ®Ru[%}Ru/ - SIW+,I$M+Q+1( Tl()) - SIW+,HUI+Q+1( nO)’
(6.1)

where the first isomorphism follows from Proposition 5.2.2.

6.4.3. Recall the natural map £, — Sc, and let £, be the preimage of Sc, . On the

cuspidal eigenvariety &(, we consider two coherent sheaves ¢ Zusp and . Lﬁ(—no) given by

MT (gu’h) = @T,cusp,gh

cusp

and
S (—no)(Eup) =S (=n0),

wt,ky+g+1

for all Sy, € Covag(S).
Theorem 6.4.4. There exists a morphism

ES: OF ), — L (—no)

cusp

of coherent sheaves over €y such that if (U, h) is a slope-adapted pair, then ES(Ey 1) is exactly
the overconvergent Eichler—Shimura morphism for overconvergent Siegel cuspforms

usp,<h . t,cusp,<h t,<h
ESLP=" @ = SpS e (FT0).
Proof. Tt follows from (6.1) and the functoriality of ES;™" in small open weights . O

6.4.5. Denote by %m and J#r the image and the kernel of &S, respectively. We obtain a
short exact sequence of sheaves on &,

0— Jer— €T — Im — 0.

cusp

We remind the readers that this short exact sequence is Galois- and Hecke-equivariant. Let
V = Spa(Ry, R);) be an affinoid open subsapce of £, such that J#r(V), WIHSP(V), and
Jm(V) are free and such that the sequence

0 — Jer(V) — 06T (V) = In(V) = 0

cusp
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is exact. Consider

(V) := Homp, (Im(V), Her(V)).

Recall that we have the Sen operator @se, = @seny associated with 2 (V), which was
introduced in [Sen88| (see also [Kis03]).
The following result is an analogue to [AIS15, Theorem 6.1(c)|.

Theorem 6.4.6. Let V = Spa(Ry, Ry,) C &g be an affinoid open subspace such that Jer(V),
06", (V), and Im(V) are free and such that the sequence

cusp

0 — er(V) — 067, (V) = In(V) = 0

cusp

15 exact. Suppose Ysen s non-vanishing. Then the short exact sequence

0— Ser— €T — Im—0

cusp
splits locally over V.

Proof. We follow the same strategy as in [AIS15, Theorem 6.1(c)|. Observe that we have an
isomorphism ' (Galg,, 7 (V)) ~ Extp (Galg, ] (Im(V), Her(V)). Thus, the Galg -equivariance
of the short exact sequence defines a class in H'(Galq,,#(V)). Then by [Kis03, Proposi-
tion 2.3], det(psen) € Ry kills the cohomology group H'(Galg , #(V)). On the other hand,
det(psen) is non-zero. Therefore, after localising at this element, the short exact sequence
splits as a sequence of semilinear Galq -representations. Since the Galois-action commutes
with the Hecke-actions, the splitting can be chosen to be Hecke-equivariant. O
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Chapter 7

A pairing on the cuspidal eigenvariety

The aim of this chapter is to construct a pairing on the cuspidal eigenvariety £;° so that
we provide an answer to the first half of Question 1.3.2 (ii). In particular, after base change to
C,, this yields a method to study the ramification locus of £¢ (over W Xspa(q, z,) Spa(Cyp, Oc,))-

We shall begin with the construction of a pairing on the overocnvergent cohomology
groups in §7.1. Such a pairing is just defined on the space of distributions, inspired by an
algebraic model on the irreducible representations Vél%’l;; p- In §7.2, we will recall some

g’

results in commutative algebra by following [Bel21|. The preparation on the commutative
algebras then allows us to study the ramification locus of £ in §7.3.

7.1 A pairing on the overconvergent cohomology groups
7.1.1. The pairing we shall construct has an algebraic model, which we now explain.

Given a dominant weight k = (ki, ..., ky) € ZZy, recall VG, and V&&) | with their
left GSpy,-actions from §4.4. Then, we have a morphism

al al al
(Pkg VG%[;/ k - VG%ng,k? o= 7/ = / hSt( Y 7) d,U, )
YEGSpy,

where efs' € Vélgm . 1s defined in Example 4.4.3. One sees that CI>2lg is GSp,,-equivariant
g7

with respect to the left GSp,,-actions on both spaces. Indeed, for any a,v" € GSp,, and
e Vgé’pvz 4, we have
g7

() () = / ey an)
:/yeesp e ((Cary)y) dp
= (@-23%(0) ().
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Consequently, (IDZlg defines a pairing on V%l%g;g,k by

(b1, i) = e (Cyov1)  dpn(vy)dpa(,).
71a‘72€GSp2g

Remark 7.1.2. Notice that Vaélg’g; » 1s an irreducible representation of GSp,,, thus it admits
g7

a pairing induced by the symplectic pairing (-,-) on V. This pairing can be viewed by the

following formula

. 1
(o)t (i, p2) = et (% (1“1 g) 71) dpiy (1) dpa(Y2)-
’717’72€GSP29 g

Indeed, for any v € GSp,,, we have

~1
<04 1, 2 >k = / 625t <t72 (]Vl g) a')’l) dpa (1) dpa(7yz)
Y1:72€GSpyy 9

_ hst [ t t -1
-[ (@
Y1, 72€GSpag

A . _ —1
SRl B CCREAY ) B RRTNCAT S
Y172 g
= c(a)=" (a2 )y,

where the second equality follows from the definition of GSp,,.

7.1.3. Now, for any weight (Ry, k) and any r > 1 + ry, we consider

P, : DQL{ (To, Ru) — A:;u (To, Rz,{),

/ 1 Y
o () o (e (Y ) (7)) ).
(v,v)€To0 “ ( ) p 119 v

bst i the function in AL, (To, Ry) defined in Example 4.1.5. Consequently, we have

where €,
the pairing
[.’ .]O : D;M(To, Ru) X D‘:u(To, Rz,{) — Ru

Ku

given by the formula

o S :[I‘
[Mlyﬂ?]nu :/ GEJ <(t’72 tUz) < I p 11 ) (Zi)) dpa (1, v1)dpa (Y, v2).
T2 g

00

o, Oy
O, Oy

al = (ta“ tac/p) €=

t t
Y27 (8 %)

Proposition 7.1.4. For any o = ( ) € = with a, € Twly, , write
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Then, for any py, us € DI(To, R), we have

[ocp, ]2, = [, e pel
U Uu

Proof. The assertion follows from the computation

(v o) (M ) (8 2 ()
= ("7, *vy) (a(:;p pa();b) (lg ! ]lg) (Zi)
(G

Remark 7.1.5. When comparing with our algebraic model, one notices that the definition
of the pairing [-, ]:u involves a ‘normalisation’ by p~!. Such a normalisation is due to our
model for g = 1. More precisely, when g = 1, elements in Ty can be written as (1, pc)a for
some a € Z,; and ¢ € Z,. Then, for any u, ua € Dy (To, R), we have

[NlaﬂZ]Zu_/ k(1 +peica)  dpa(1, er)dpa(1, ca),

00

which then coincides with the interpretation in Hansen’s unpublished notes [Hanl2|.
particular, by applying [Bel21, Definition VIII.2.4], we have the formula

(11, 1215, ZP ) () pa(cy),

which is (almost) the same formula given by |op. cit., (VII.2.4)]. Here, for j = 1,2, we view
¢’ as a function on Ty via

¢ To 3 (a, pc) — ry(a)(c/a)'.

Remark 7.1.6. Following Remark 7.1.2, for any dominant k € ZZ,, we may consider the
pairing [-, -], to be the twist of (-,-), by an Atkin—Lehner operator. More precisely, let

15
w, = (‘ﬂ g) :
g
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then

o S :H-
[Mh/w]k :/2 e}it <(t’72 t’Uz)< I p 1 (Zi)) dpi (1, v1)dpa (Y, v2)
g

TOO

— hst t t j—g _ :ﬁ-g v,

— /I%O €L (( Y2 'UQ) <_p—1 ﬁg ig vy dﬂl(’yl’ ’U1>du2<72’ 'UQ)
— hst [ t Yo — ig Y4

N /Tﬁo o ( (Wp (U2)) <ng ) (v1>) dpn (1, v1)dpa(Y,, v2).

In particular, this viewpoint coincides with the perspectives in [Kim06; Bel21; Han12| when
g=1.
Proposition 7.1.7. We have a well-defined pairing

[ ]+ Hye (X (C), Dy, (To, Ry)) x Hyt ™ (X4 (C), Dy, (To, Ru)) = Ry

for any 0 <t < 2ny.

Proof. Together with the cup product on cohomology groups, the pairing defined in 7.1.3
induces a pairing [-,-]" defined as the composition

s MRy

Hz(XIW'*'(C) Dy, (T07RZ//)) X H2n0_t(XIw+(C)7D2u<T07RU)) ;> HgnO(XIw"'(C)vD;M(TmRM)@RD;u(TOvRM))

where “—’ denotes the cup product.

The compatibility of cup products (see, for example, [Mun84, Chapter 5, §48, Exercise
2]) yields the commutative diagram

H!(X1,+(C), DL, (To, Ry)) x H*™(Xp,+(C), DL, (To, Ry)) — H2™(X1,+(C), DL, (To, Ru)®nr, Dy, (To, Rut))

I Ky

Hi(XIW+(C)7 Dnu (TOv RU)) X ‘T—Icznfht(‘xlw+ (C)7 Dﬁu (T07 RU)) :> ano (XIW+(C)7 DKu (T07 RU)®RMDKM (TOv RU)) ’

| |

H'(X1y+(C), Dy (To, Rur)) x HZ" ™' (X1y+(C), i (To, Rur)) —> H"™(Xyyo+(C), Doy (To, Rut) @y, Dy (To, Rut))

In particular, if [p1] € H, (X1, + (C), Dy, (To, Ry)) and [us] € H220 ™ ( X1+ (C), Dy, (To, Ruy))
with [pj] € H(Xp+(C), Dy,) and [py] € HZ™(Xy+(C), Dy, (To, By)) such that [1] —
[p;] for i = 1,2, then

(] — [us] = 4] — (o] = 4] — [pel-
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Hence we define

(1], 2], = ) (2] Ty, = [l (5] 1,
We see that |-, -]W is well-defined, i.e., independent of the choice of the lifting, due to the
commutativity of the above diagram. O

7.1.8. Recall the equidimensional reduced cuspidal eigenvariety £ from §5.2. We name the
natural morphisms

£0° T 8% W

wt

Then, we have the following corollary.

Corollary 7.1.9. The pairing in Proposition 7.1.7 induce pairings

[ ] jftd %tol N ﬁsoc and [_, ] T jftd *%tol N ﬁgoc

par par par par

OC

of coherent sheaves on S°¢ and respectively. Moreover, the first pairing is T-equivariant.

Proof. First of all, we claim that the pairing |-, - ]:M is uy, ;-equivariant forany 7 = 0,1, ...,g—1
and for any weight (Ry, ky). Take any pq, po € DLH (To, Ry), we have

[Wpi i, o ]:M

5 1
_/I%O eﬁut ((t’)’g tU2)< g p! ]lg) (Zi)) duy; 1 (71, V1) dpta (Yo, Vo)

:/ hst( ,72,71+ Vo Uy /p) du,; «M1(717U1>du2(727v2)
Too

= /2 egi,t <t72(u51‘71 UE,Z ) + 'U2(U-. viu )/p) dpiy (Y1, v1)dpa (Y, V2)
TOO
= /2 Et (( Y2 upz’71+ V2 upzvl /p) 71) dﬂl(717v2)dﬂ2(72av2)
TOO
AR TR TR LRt RO RN CARREANCAR

et (t(uii Yo )y 4 (v w) ) vy /p) dp (1, v1)dpa (2, va)

where the antepenultimate equation follows from the nature of determinants (again).
This claim then implies that we have a U, ;-equivariant (and hence U, ;-equivariant for
any x € WeylGSPQQ) pairing

tol,<h tol,<h
['7']/41/, Hpar/{u Hparnu - RU'

Thus, by gluing, one obtains the first desired pairing. It is furthermore T?-equivariant since
the Hecke operators outside p acts on the ananlytic distributions trivially. The second one
follows immediately. O
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7.2 Some commutative algebras
7.2.1. Let A be a noetherian domain and B be a finite flat A-algebra. Consider
mult : By B — B, bbbt
and write mult = ker(mult). Let
(B®a B)mult] :={x € B B:y-x=0Vy € mult},

then the Noether’s different of B over A is defined to be the ideal

mult

3(B/A) = image ((B ©4 B)[mult] 22 B)

in B.

Theorem 7.2.2 (Auslander—Buchsbaum). A prime ideal B of B is ramified over A if and
only if 9(B/A) C *B. Equivalently, Spec B/0(B/A) is the ramification locus of Spec B over

Spec A.
Proof. See [AB59, Theorem 2.7|.

7.2.3. Suppose M, N are two B-modules which are finite flat over A and assume we are in

the following situation:

e There exists an A-linear pairing
B:MxN—A

such that g is B-equivariant.

e We have isomorphisms M ~ N ~ BY := Homu(B, A) of B-modules.

Lemma 7.2.4 (|Bel21, Proposition VIII.1.11]). Denote by Bp the base change of 5 to B on

M®sBxN®uyB. Let

(M @4 B)mult] ={z € M ®4 B:y-z=0VYy € mult}
(N®aB)mult)] ={r € N®s B:y- -z =0 Vy € mult}.

Then the ideal
25 = image (B : (M @4 B)fmult] x (N @4 B)[mulq] — B)

1s a principal ideal in B.

Proof. We claim first that for any B-module M which is finite flat over A, we have an
isomorphism MY ® 4 Blmult] ~ Homp(M, B), where M"Y = Hom(M, A). Notice that M"Y
also admits a B-module structure by by : m — ¢(bm) for all b € B, p € MY and m € M.

We have a natural isomorphism

MY @4 B=Homuy(M,A) @4 B — Homy(M, B), ¥ &b (m s (m)b).
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Since mult =, (b®1—1®b)B ®4 B, thus

pRbe M’ @ Bmult)l & (@1 -10)y@b=0V € B
SVpb=9y bV € B
S Y(b'm)b = Y(m)bb Vo € B,m € M
< (m — ¥(m)b) € Homp(M, B).

Apply the claim in our situation, we have isomorphisms of B-modules
(M ®4 B)[mult] ~ (BY ®4 B)[mult| ~ Homp(B, B) ~ B

and same for (N ®4 B)[mult]. Hence, let m and n be generators of (M ®,4 B)[mult] and
(N ®4 B)[mult] respectively as B-modules. Then £3 = Bg(m,n)B. O

Proposition 7.2.5 ([Bel21, Corollary VIII.1.13]). Suppose B is Gorenstein over A, i.e.,
BY s flat of constant rank 1 over B, and M, N are B-modules which are finite flat over A
and flat of rank 1 over B. Assume there is an A-linear pairing B : M x N — A which is
B-equivariant. We retain the notation Sp and £g as in Lemma 7.2.4. Then

(i) Both ideals 9(B/A) and £ are locally principal. Moreover, there exists by € B such
that £5 = by d(B/A).

(1) We have £5 = 0(B/A) if and only if B is non-degenerate.

Proof. We are in a special case of Lemma 7.2.4 that we can identify (locally) M ~ N ~
BY ~ B and hence we know £4 is principal. Moreover, the identification B ® 4 B[mult] ~
Homp(B, B) ~ B implies that 9(B/A) is also principal.

Observe that we can identify 5 : M x N — A as a linear morphism BY ®4 BY — A.
Hence by duality, we identify 5 with an element b € B®4 B. We claim that £5 = mult(b)B.
As we are working locally, we assume by, ..., b, is a basis of B over A, then by, ..., b) is a basis
of BY over A. Observe that b~ :=>". b ®; is a generator of BY ® 4 Bmult] ~ Homp(B, B)
as it maps to the identity in Hompg(B, B). Hence by definition

L5 = Bs(0",0°)B (Z@MVM)

On the other hand, by the above construction, we see that b = >, 8(b/,b))b; ® b; with
mult(b) = Z” 5(17;/7 b} )bib;.

Let ° = > bi®0b;, then it is a generator of B® 4 Blmult] ~ B. Thus, there exists by € B
such that byb” = b. We conclude that

£5 = mult(b) B = mult(byb”) B = by mult (b)) B = by 2(B/A).

119



Finally, we have
L5 =0(B/A) < by € B*
bpe B* 1=
Voavy 0 J
< [ is non-degenerate.

7.3 The ramification locus of the cuspidal eigenvariety

7.3.1. Recall the open cover Cov(S§°) for §°, consisting of open subsets of the form S;7,
with (U, h) being slope-adapted. We denote by £3%,,, the inverse image of Sp7), in £5°. We
adapt the definitions of ‘clean neighbourhoods’ and ‘good points’ in [Bel21] in our situation.

Definition 7.3.2. (i) Let x € £;° and V = Spa(Ry, Ry;) be an open affinoid neighbour-

hood of . We say V is a clean neighbourhood of x if it satisfies the following
properties:

o wt(V) =Y = Spa(Ry, R3,) C W is an open affinoid subset of W and there exists
a slope-adapted pair (U, h) such that V is the connected component of  in E¢, 1,

e x is the only point of V sitting above wt(x);

o the map wt : V — Y is flat and is moreover étale except perhaps at .

In this case, there exists an idempotent n = ny € Ty, such that V is defined by the

; _ tol,<h ; tol,<h
equation 1 =1 and the module nH oS is a direct summand of Hypo.

(i) A point x € &y is said to be a good point if it admits a sufficiently small clean
neighbourhood V with wt(V) = Y such that the modules my Hixw" and (ny HYWZh)Y are
free of rank one over Ry, where the dual is taken to be an Ry-dual.

Remark 7.3.3. We remark the following:

e In the GL, case, the eigencurve is locally finite flat over the weight space (|Bel21,
§VI.1.4]) and so the author of op. cit. can consequently deduce that the collection of
clean neighbourhoods of points on the eigencurve gives a open cover of the eigencurve.
In our case, the Fredholm hypersurface §° is finite flat over W by [AIP18, Theorem
B.1]. However, we don’t know if £° is flat over §°°. Therefore, instead of considering
£, we consider £5°"  £9° the flat locus over W, which is open over W, and let
Cova(E9°™) be the open cover of clean neighbourhoods.

e In the definition of good points, we see immediately that Ry is Gorenstein over Ry.

7.3.4. Following [Bel21, §VIII. 4|, we study the adjoint L-ideal and define the p-adic adjoint
L-function here. Let ¢ € Sgc’ﬁ and V be a clean neighbourhood of  with weight wt(V) = ).
There is a natural multiplication map

mult : Ry®p, Ry — Ry, b®@0b — bb.
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Let mult := ker mult and define
M&p, Ry[mult] := {m € M&p, Ry : mult-m = 0}
for any Banach Ry-module M.

Definition 7.3.5. Keep the notations above. The adjoint L-ideal of V is defined to be

Z*U(V) = image ([ -, S HSS R g, Ry[mult] x ny HOS"Qp Rymult] — Ry) .

Remark 7.3.6. Since the clean neighbourhoods cover 58C’ﬂ, the collection { gadj(v) Ve
Covcl(é’gc’ﬂ)} glues to a coherent sheaf ¥ on 58“?

Proposition 7.3.7. Let x € 58C’ﬂ be a good point. Then there exists a sufficiently small
clean neighbourhood V of x with wt(V) = Y such that £*¥(V) is a principal ideal in Ry, .

Proof. The assertion follows from Lemma 7.2.4. m

Definition 7.3.8. Let x € Sgc’ﬂ be a good point and V be a sufficiently small clean neigh-
bourhood such that £*Y(V) is principal. We define the adjoint p-adic L-function on'V to
be L3V € Ry such that L3V generates Z*9(V). The value of LY at @ is denoted by L*Y(x)
as it doesn’t depend on the clean neighbourhood.

7.3.9. Let x € ﬁgc’ﬂ be a good point and let V be a sufficiently small clean neighbourhood of
x such that L3V is defined. Let (U, h) be the slope datum that defines V and let wt(V) = V.
Corollary 7.1.9 yields an Ry-equivariant pairing

. tol,<h tol,<h
['7 ’ ]nu : nVHpar,nu X nVHpar,nu — Ry'

Together with the definition of good points, we are in the situation of Proposition 7.2.5.

Theorem 7.3.10. Let x € Sgc’ﬂ be a good point and let k = wt(x). Suppose the pairing

. 1,<h 1,<h
[+ 1y, s o HSE Xy HYS — Ry
is non-degenerate at wt(x), then
L*i(x) = 0 if and only if wt is ramified at x.

Proof. Let V be a sufficiently small clean neighbourhood of  which is defined by the slope
datum (U, h) and wt(V) = Y. Since the pairing

[ S X L By
is assumed to be non-degenerate, then by Proposition 7.2.5, .Z*%(V) = d(Ry/Ry). Thus,
L*i(z) =0« L™ € suppz < 0(Ry/Ry) C suppx < wt is ramified at z,

where the last equivalence is due to Auslander-Buchsbaum’s theorem. O
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Theorem 7.3.11. Let € EX be a good and smooth point and let k = wt(z). Assume again
that the pairing

. tol,<h tol,<h
['7 ' ]nu : UVHpar,nu X UVHpar,/fu - Ry

is non-degenerate at wt(x). Let Ry and Ry be the local rings at wt(x) and x respectively
and denote by Myy(a), Mg their mazimal ideals respectively. Define

e(z) := max{e € Z>¢ : 0(Ry/R,) C m}.

Then, we have '
ordg L™ = e(z).

Proof. Note that _ _
ord, L*Y := max{e € Zso : L*¥(z) € m&}.

In our situation, we see that

me®) 5 0(R,/R,) = L*N(z)Ry C mda ™

T
As the inclusions on both sides satisfy the same condition, the exponents coincide. O

Remark 7.3.12. We remark that the above two theorems have their roots in the GLy case.
Theorem 7.3.10 is an analogue of [Bel21, Theorem VIII.4.7] while Theorem 7.3.11 is inspired
by |op. cit., Theorem VIII.4.8(i)].

7.3.13. Our next task is to justify that there exists some = € Egc’ﬂ such that the pairing is
non-degenerate at wt(x). To this end, recall that we have a IWJC:SpQ -equivariant surjection
g

lg,Vv
DIL(T07 Qp) - V%ép%,k

for any dominant weight k = (ki,...,k;) € Z%,. We can then descend the pairing [-,-]; to

1
Vé%g; . by the same formula
g’
o . yralgV alg,Vv
[Tk 'VGSpQQ,k X VGszg,k —+Q,,

5 1
(1, pr2) = ellit (t’72 ( 7 1 ) '71) dpa (1) dpa(7z).
g

opp
’717’726Ugsp2971

Proposition 7.3.14. Let k € Z2, be a dominant weight. Then the pairing [ -, -]} on V%lg’pv k
29
15 non-degenerate.

Proof. Recall the symplectic pairing (-,-), on Vélé’p\; , from Remark 7.1.2
g’

. 1
<u1,uz>k=/ o (Q)eﬁt("% (ﬂ g) '71> dpur (Y1) dpa(Y2)-
Y1, 72€GOP24(Q, 9

Since the symplectic pairing (-,-) on V is non-degenerate, we know that (-,-), is non-
degenerate.
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Define
/. xralg,Vv alg,Vv
(M 'VGszg,k X VGSpQQ,k -+ Q,,

. —1
(1, p2) et (t’Yz (1‘1 g> 71) dpi (1) dpa(72)-
Q) g

opp
’71,’72€Uc;sp2g p

Then (-, - ); is a non-degenerate pairing. Indeed, we have

. 1
<u17uz>k=/ ” (Q)eﬁét("% (ﬂ g) '71> dpa (1) dpa(7yz)
Y1:Y2€GSP24(Qp g

k(B1)k(Ba)ep™ (t'vé (ig _ig) 7’1) dpi (v1)dpa(72),

/71 772€GSp2g (Qp)

where v, = v} 3 with v} € Ug‘g;%(Qp) and B; € Basp,,(Q,) for i = 1,2. As k is non-zero on

Basp,, (Q,), we see that (u1, 2 ), = 0 if and only if (i1, po ). = 0.
Now, let [+, -]} be the pairing on V?}%’pvzg’k defined by

[MlaMQ];c = <M1awp "2 >;<:

< 1
:/ 62” t’?’z T Y1 dﬂl(’71)dﬂ2(’72)-
Y172€UE (Q,) p 1

GSpgg P

Then, [-, -]} is again a non-degenerate pairing since w,, € GSp,,(Q,). Recall that Ug%‘;%J ~
Zzo, for some dy € Z-g, as p-adic manifolds, thus U8%22Q(Qp) ~ ng. However, Vég’p\gg’k

is defined algebraically and Z;lo C QZO is Zariski dense, thus the non-degeneracy of [, ];
implies the non-degeneracy of [-,-];. O

Corollary 7.3.15. Let k = k € ZZ, be a dominant algebraic weight. Then the pairing
ol,<h ol,<h
[" ]k : Hlt)ar,k X Hlt)ar,k - Qp
1s non-degenerate when h < hy, where hy is as defined in Theorem 5.2.8.

Proof. This is an easy consequence of Proposition 7.3.14 and Theorem 5.2.8. O

Corollary 7.3.16. Suppose x € 5g°*ﬂ s a good classical point, i.e., x satisfies the following
conditions

e x is a good point;
o wt(x) =k € Z%, is a dominant algebraic weight; and
e there is a slope-adapted pair (U, h) such that x € U and h < hy,.

Then
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(i) The adjoint p-adic L-function L*Y vanishes at x if and only if the weight map wt :
Ey" — W is ramified at x.

(ii) If x is furthermore a smooth point of 5", let e(x) be as defined in Theorem 7.3.11,
then we have ord, L*Y = e(x).

Proof. This is an immediate consequence of Theorem 7.3.10, Theorem 7.3.11 and Corollary
7.3.15. =
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Chapter 8

Families of (Galois representations and
adjoint Bloch—Kato Selmer groups

The final chapter of this thesis is dedicated to the answer to the second half of Question 1.3.2
(ii). To this end, we will first review the study of families of Galois representations in §8.1
by following [BC09] and discuss the Galois representations for GSp,, in §8.2. Inspired by the
strategy presented in [BCO09|, we discuss in §8.4 some local and global Galois deformations
that we are interested in. Our main results in the study of the adjoint Bloch-Kato Selmer
groups are presented in §8.5.

8.1 Recapitulations of families of GGalois representations

8.1.1. The purpose of this section is to recall several terminologies for studying families of
Galois representations. Most of the materials presenting in this subsection are taken from

IBCO9).

8.1.2 (Determinants). We briefly recall the notion of ‘determinants’ from [Chel4| and refer
the readers to loc. cit. for more detailed discussions. We remark in the beginning that
the notion of determinants are used to strengthen the notion of pseudocharacters first intro-
duced by R. Taylor in [Tay91] and studied by other mathematicians. We also remark that
determinants are equivalent to pseudocharacters in characteristic 0.

Definition 8.1.3. Let A be a commutative ring and R be an A-algebra (not necessarily
commutative ).

(i) For any A-module M, one can view M as a functor from the category of commutative
A-algebras to the category of sets, sending B to M ® 4 B. Let M, N be two A-modules.
Then an A-polynomial law between M and N is a natural transformation

M®AB—>N®AB

on the category of commutative A-algebras.
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(ii) Let P: M — N be an A-polynomial law and d € Z~y. We say P is homogeneous of
dimension d if for any commutative A-algebra B, any b € B and any v € M ®4 B,
we have P(bx) = b'P(z).

(i1i) Let P : R — A be an A-polynomial law. We say P is multiplicative if, for any
commutative A-algebra B, P(1) =1 and P(xy) = P(x)P(y) for any x,y € R ®4 B.

(iv) For d € Z~g, a d-dimensional A-valued determinant on R is a multiplicative
A-polynomial law D : R — A which is homogeneous of dimension d.

Example 8.1.4. Let GG be a group and A be any ring. Let p : G — GLg4(A) be a represent-
ation of dimension d. Then

D:AG] - A, G>o0~detp(o)

is an A-valued determinant of dimension d on A[G]|. We also say that D is an A-valued
determinant of dimension d on G.

Theorem 8.1.5 ([Chel4, Theorem A & Theorem B|). Let G be a group.

(i) Let k be an algebraically closed field and let D : k|G| — k be a determinant of dimension
d. Then, there exists a unique (up to isomorphism) semisimple representation p : G —
GLq4(k) such that for any o € G, we have

det(1+Yp(o)) = D(1+Yo) € k[Y].
In particular, det p = D.

(ii) Let A be an henselian local ring with algebraically closed residue field k, D : A|G] — A
be a d-dimensional determinant and let p be the semisimple representation attached to
D®ak in (i). Suppose p is irreducible, then there exists a unique (up to isomorphism)
representation p : G — GLg(A) such that

det(1+Yp(o)) =D(1+Yo) € A[Y]
for any o € G.

8.1.6 (Refinements of crystalline representations). We recall the notion of ‘refinements’ of
crystalline representations from [BC09, §2.4]|. Let L be a finite extension of Q, and let V'
be an n-dimensional L-representation of Galg . Assume that V' is crystalline. Also assume
that the crystalline Frobenius ¢ = s acting on D;s(V') has all eigenvalues living in L*.

Definition 8.1.7 (|[BC09, §2.4.1]). A refinement of V is the data of a full p-stable L-
filtration
F.IOZFogFl g an,1 an:Dcris(v)-

8.1.8. Suppose F, is a refinement of V| one sees immediately that it determines two order-
ings:
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(Ref 1) An ordering (¢, ..., p,) of the eigenvalues of ¢ by the formula

7

det(X — ) = [ (X —y).

J=1

Notice that if the ¢;’s are all distinct, then such an ordering of eigenvalues of ¢ con-
versely determines the refinement.

(Ref 2) An ordering (ay, ..., a,) of Hodge-Tate weights of V. More precisely, the jumps of the
Hodge filtration of Des(V) induced on F; are (aq, ..., a;).

Definition 8.1.9 (|[BCO09, Definition 2.4.5]). Suppose the Hodge—Tate weights of V are all
distinct a; < --- < a,. Let Fo be a refinement of V' and let Fil* D;s(V) be the Hodge
filtration of Deis(V). We say Fo is non-critical if, for all 1 <i < n, we have

Deis(V) = F; @ Fil“ T Dy (V).

8.1.10. Recall the Robba ring

o B o ~ f(X) converges on some annulus of C,
Ri:= {f(Y) n Ezzt”(y " e Llv]: of the form r(f) < |Y — 1| <1 '
Here the norm | - | is the p-adic norm on C, with the normalisation |p| = 1/p. Let I' = Z.
The theory of (p,I')-modules yields an equivalence of categories between the category finite-
dimensional L-representations of Galq, and the category of étale (p,T')-modules over R,

(see, for example, [BC09, §2.2]). In particular, we have a (¢, I')-module D,is(V) over Ry,
associated with V.

Proposition 8.1.11 (|BC09, Proposition 2.4.1 & Proposition 2.4.7]). Let F, be a refine-
ment of V.

(i) Then F, determines a unique filtration Fila Dyis(V) of length n, i.e., a triangulation
of Dyig (V). Consequently, Fo determines a unique collection of continuous characters
d; : Q, — L* via the isomorphism

FllZ Drig(V)/ Fﬂi,1 Drig(v) ~ RL((L)

given by [BCO9, Proposition 2.3.1]. Here, the tuple 6 = (01, ...,0,) is called the para-
meter of V.

(ii) Moreover, suppose the Hodge—Tate weight of V are all distinct hy < --- < h,. Then,
Fo is non-critical if and only if the sequence Hodge—Tate weights (ay, ..., a,) associated

with Fe in (Ref 2) is increasing, i.e., a; = h; for alli=1,...,n.

Remark 8.1.12. The theory of (¢,I')-modules can be worked out for local artinian Q,-
algebras (see, for example, [BC09, §2|). Thus, it makes sense to consider the following
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deformation functor. Let AR be the category of local artinian Q,-algebras whose residue
field is isomorphic to L. Then, we define the (local) trianguline deformation functor

DV FileDyy(v) - AR — SETS,

Vy =~ A"

A GalQp — GL(V,4) =~ GL,(A) [
st. pa®@a L~V -

Fil, Dyig(Va) ®r, R ~ Fily Dyig(V)

A (VA, PA, Fll. Drig(VA)) :

We will also denote the above deformation functor by Zyp, as the triangulation Fily Dy, (V)

is uniquely determined by [F,. In fact, we will confuse the refinement I, with the triangulation
Fily Dyig (V') in what follows.

8.1.13 (Families of representations). Here, we collect some terminologies introduced in
[BC09, §5] that will be needed in the later subsections. Note that the terminology of psue-
docharacters is used in op. cit. since the notion of determinants was not yet discovered. In
what follows, we shall adapt everything with the notion of determinants.

Let G be a topological group with a continuous group homomorphism Galg, — G,
e.g., G = Galg with the natural inclusion Galq, — Galq. Therefore, any (continuous)
representation p of G induces a (continuous) representation of Galg,, denoted by p\GalQp.

By a family of representations, we mean a datum (€, D), where £ is a reduced
separated rigid analytic variety (viewed as an adic space) over Spa(Q,,, Z,) and a continuous
determinant D : O¢(E)[G] — O¢(E). The dimension of this family is understood to be the
dimension of the determinant D, denoted by n. For any x € &£, let k, be the residue field of
x, then we have the specialisation

Dlp: G5 0c(&) > ky. (8.1)

Applying Theorem 8.1.5 (i), we see that D|, is nothing but the determinant of a (unique up

to isomorphism) continuous semisimple representation pg : G — GL, (kz).

Definition 8.1.14 (|[BC09, Definition 4.2.3|). A refined family of representations of
dimension n is a datum (£, D, Q,{c; :i=1,...,n},{F;:i=1,...,n}), where

(a) (€,D) is a family of representations of dimension n,

(b) Q C & is a Zariski dense subset,

(c) a; € Oc(E) is an analytic function fori=1,...,n,

(d) F; € O¢(E) is an analytic function fori=1,...,n,
such that

(i) For every x € £, the Hodge—Tate—Sen weights' for pm\GalQP are a1(x), ..., ap(x).

'Here, the Hodge—Tate—Sen weight is defined to be the roots of the Sen polynomial (see, for example,
[Liul5, Definition 2.24]).
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1) For each y € Q, the representation py|cay 1S crystalline (so that a;(y)’s are integers
Pyl|Galq,
and oy (y) < -+ < an(y).

(i1i) For each y € Q, the eigenvalues of the crystalline Frobenius ¢ on Dcris(py|ga1Qp) are
distinct and are (p** W Fy(y), ..., p* W E,(y)).

(iv) For any C € Zy, define

._ a1 (y) — ai(y) > Clai(y) — ai—1(y) fori=2,..,n—1
% {yEQ' as(y) — ar(y) > C }

We request that Q¢ accumulates at any point of Q for any C'. In other words, for any
y € Q and any C € Z~y, there is a basis of affinoid neighbourhoods U of x such that
UN Q¢ is Zariski dense in U.

(*) For each i = 1,...,n, there is a continuous character Z; — O¢(E)* whose derivative

at 1 is the map «; and whose evaluation at any point y € Q is the elevation to the
a;(y)-th power.

8.1.15. Let (£,D,Q,{ca; : i =1,....n},{F; : i =1,...,n}) be a refined family of dimension
n. We fix a point y € Q. Then p, admits a natural refinement F¥ given by the ordering of
distinct eigenvalues

(P W F(y),....p YV F,(y))

of the crystalline Frobenius acting on Desis(pylcalg,) ([BC09, Definition 4.2.4]). We assume
that p, is irreducible and it satisfies the following two conditions:

(REG) The refinement F? is regular, i.c., for any i = 1,...,n, pt®++W F (y) ... F(y) is
an eigenvalue of the crystalline Frobenius ¢ acting on Dcris(/\ipy|Ga1Qp) of multiplicity
one.

NCR) The refinement FY is non-critical.
( K

Since p, is assumed to be irreducible, Theorem 8.1.5 (ii) implies that there is a unique
continuous representation

PEy - G — GLn(ﬁ&y)

such that pgy ®¢,. , ky = py and so det p, coincides with the composition G TN Oe(E) —
O¢.y. Following [BC09, §4.4], we define a continuous character d, : Q) — (O¢ )" by setting

dy(p) = (F1y, ..., Fry) and 5y|sz = (041_711/, Lat ), (8.2)

7oL,y

where F; , and «; , are the images of F; and «; in O¢ , respectively.

Theorem 8.1.16 (|[BC09, Theorem 4.4.1]). For any ideal I C O, of cofinite length, ps y®o, ,
Ocy/ T is a trianguline deformation of (py,FY), i.e., it belongs to pr|GalQ 7(Ogy/7T)

(defined in Remark 8.1.12), whose parameter is 0, @ Og , | J.
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8.2 Galois representations for GSp,,

8.2.1. Before discussing about the Galois representations for GSp,,, we shall briefly review
the spin representation by following [FH91, Lecture 20].

Let V ~ Z?™ be a free Z-module, equipped with a quadratic form Q. The Clifford
algebra Cliff associated to the pair (V, Q) is described by

Cliff = Cliff(V, Q) = (Bn20V™") /(0@ v —Q(v) - 1: Vv € V),

where 1 is the identity of the tensor algebra @,>0V®". The Clifford algebra admits a de-
composition

Cliff = Cliff* @ Cliff ~,

where Cliff" (resp. Cliff ) consists of elements of even (resp. odd) degrees. On Cliff, there
is an anti-involution e*, determined by the formula

(Ul cUg - UT)* — (—1)7"1)7« CUp_1 U
for any vy, ...,v, € V. Then for any ring R, we define
GSping,;(R) := {v € (Cliff " ®zR)* :v- R -v* :={v-w-v":w e R} = R} .

[39]

Here, the multiplication ‘-’ is the multiplication on the Clifford algebra. We remark that
GSpiny, 4 is the dual group of GSp,, in the sense of Langlands, i.e., the algebraic characters
of the maximal torus of GSp,, define the algebraic cocharcters of the maximal torus of
GSpiny, ;.
Fix a maximal totally isotropic direct summand W of V' with respect to ). In particular,
W is of rank g. Then [FH91, Lemma 20.16] yields an isomorphism
Cliff " ~ Endz(A*W),

where A\*W = @,,>9 A" W is the exterior algebra associated to W. Notice that A*W is of
rank 29 over Z and hence, via the isomorphism, we obtain the spin representation

spin : GSpiny, ; — GLas .
Lemma 8.2.2. (i) The map spin : GSping,,, — GLys is a closed immersion.

(1) If g(g + 1)/2 is even (resp., odd), then there exists a symmetric (resp., symplectic)
bilinear form on the 29-dimensional spin representation such that the bilinear form is
preserved under GSpiny, ; up to scalar. In particular, the spin representation factors
as

spin : GSping,,; — GOg < GLys  (resp., spin : GSping, ; — GSpyy — GLgo)
when g(g+1)/2 is even (resp. odd). Here, GOy is the algebraic group defined as
GOz = {7 € GLys : *v Looy = () 1y for some <(v) € G} .
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Proof. The first assertion is clear from the construction above while the second assertion is
[KS20, Lemma 0.1]. O

8.2.3. Given a dominant weight k = (ki,...,k,) € ZL;, recall the GSp, -representation

g,V
SPQQJC

ous chapters, the left GSpy,-action, in fact, induces a local system on X (C), which we still
denote by the same symbol. In particular, we can consider the parabolic cohomology group

Vzl%g; e Although we considered the induced local system of Vaé on Xp,+(C) in previ-

Halg,tol — @§Z%Ht (X(C), V?;l%’pég,k)-

tame,par,k ° par

Note that the double cosets [GSp,,(Z,) (7 - u,,:) GSpy,(Zy)] acts on Hf;i’i?;ar’k (as defined in
4.4.5) for any z € Weylgs, - We denote by

T := TP ®z, Zy |[GSPoy(Zy) (2 - 0,;) GSpyy(Z,)] i =0,1,...,g — 1,z € Weylasp,,

In particular, it makes sense to consider the Hecke polynomial Peckep(Y) at p in this case
and is defined as in (4.3).

T*™eigenclass [u] € Hflg’ml with eigensystem Ay : Ttame _y

ame,par,k

Hypothesis 1. For any
Qp, there exists a (continuous) Galois representation

spin

) Plu) . = | spin =
Pl GalQ — GSle2g+1(Qp) — GLQQ(Qp)
such that

(i) The representation py, is unramified outside pN and
char. poly (Frobe)(Y) = Ay (Preae (V) == [ (¥ = A\ (T¥0))
zeWeylH

for any € 1 pN, where char. poly(Frob,)(Y) stands for the characteristic polynomial of
the Frobenius at ¢ and Pueaes(Y') is the Hecke polynomial defined in (4.3). Moreover,
the coefficients of these two polynomials are algebraic integers over Q.

(ii) The representation p[u]|Ga1Qp is crystalline with Hodge—Tate weights

_ !/ / / !/ / / / / 2
(a1, ..y a90) = (0,ap, -+ ,ay, ay + ay_q,..,ay +ay, - ay + - +ay),

where a; = (g + 1 —1i) + ki. Let ¢ = @ais be the crystalline Frobenius acting on
Dasis(ppu|calg, ), we moreover have

char. poly(©)(Y) = Ay (Preckep(Y)),

2These numbers are all possibilities of sums of a;’s. The order is chosen so that if k = (kq,....,k,) =
(kg +9—1,kg+9g—2,...,kg), we have a1 < ag < --- < ags.
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where char. poly(y)(X) is the characteristic polynomial of ¢ acting on Dcris(p[“”(;al%),
and the coefficients of these two polynomials are algebraic integers over Q. We order
the eigenvalues of v so they satisfy

(Spla ---79029) = @1(1790/27 '-'790;-1—17(10/290?‘)7 "-790;90;-5-17 ) 90/2 T 90;-1-1)'

The order of the later tuple is chosen similarly as the Hodge—Tate weights. In par-
ticular, 2, ..., pq41 are divisible by @1 and the 29 eigenvalues of ¢ depend only on

B1y --ey 909-0-1'

Remark 8.2.4. Recall that S,,4 is the finite set of prime numbers which divides N. From
now on, we shall redefine Sp.q to be Sp.a U{p}. Let Galgs,,, be the Galois group of the
maximal extension of Q which is unramified outside Sy,,q. Therefore, the representation pj,
in Hypothesis 1 can be regarded as a Galois representation of Galgg,,,-

Remark 8.2.5. Evidently, Hypothesis 1 comes from Global Langlands Correspondence. We
comment briefly to this hypothesis.

(i)

When ¢ < 2, Hypothesis 1 (i) is well-known (see, for example, [Wei05]). The work of
A. Kret and S. W. Shin (|KS20]) gave a positive answer to Hypothesis 1 (i) under some
conditions on the automorphic representations for general g. Although their result is
not complete unconditional, it suggests that Hypothesis 1 is reasonable to assume (but
could be difficult to prove in general).

Hypothesis 1 (ii) is also well-studied when g < 2. In particular, E. Urban proved the
case for ¢ = 2 in [Urb05], result deduced from A. Scholl’s motive for modular forms
([Sch90]). For general g, the property is expected if Hypothesis 2 below holds (see, for
example, [PT15, Theorem 2.1 & Corollary 2.2|).

8.2.6. By Lemma 8.2.2 and under the assumption of Hypothesis 1, we know that given a

Ttame

-eigenclass [u] as above, py, factors as

spin

Plu) . - spin — —
p[ﬂ] : GalQ:Sbad E— GSpang-‘rl(Qp) — GS(Qp) — GLQQ(Qp)?

where

ag GOy, if g(g+1)/2is even
| GSpyy, ifg(g+1)/2is odd

and the last arrow is nothing but the natural inclusion. Define

gly, := the Lie algebra of GL2(Q,),
equipped with the induced adjoint Galgg, ,-action by py,

ad py,) := the Lie algebra of GS(Q,),
equipped with the induced adjoint Galgg,, -action by spino PTE{“

ad pspin := the Lie algebra of GSpin29+1(Qp)v

1]
spin

equipped with the induced adjoint Galgg,, -action by Pl -
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Then, the inclusions - - -
GSpianJrl(Qp) — GS(Qp) — GLQg(Qp)

induces Galq g, ,-equivariant inclusions
ad ppp" < ad py <= gla,
which then further induces inclusions of the Galois cohomology groups

Hl(GalQ,Sbam ad p?f:}in) — H' (GalQSbad? ad p[#]) — H' (Ga1Q7Sbad7 9[2!7)'

On the other hand, let slys be the trace-zero part of gl,, and let
ad’ py = ad p Nsly  and  ad” g™ == ad p2" N sl

Note that the decomposition gly, = slyy@gl; is Galg-equivariant, we thus have a commutative
diagram

Hl(GalQ,Sbaw ad p?ﬁ}in) — H (Galqs,,..- ad p[#]) — H' (Galqsy,q, 8l0)

J J [

I (Ga1Q7Sbad’ ad” p?f:}in) — M (GalQSbad? ad’ p[u]) — H! (GalQSbad ,5l20)

where the arrows are all inclusions.

8.2.7. Under the assumption of Hypothesis 1, one obtains a 29-dimensional Galois represent-
ation for each eigenclass [u]. It is then a natural question to ask whether the attached Galois
representation admits an associated cuspidal automorphic representation of GLgs. The an-
swer of this question is expected to be affirmative, which we state as the next hypothesis.

Ttame

. alg,tol
—ezgenclass [:u] € Htame,pank?

Hypothesis 2 (The potential spin functoriality). Given a

there exists a finite real extension L C Q of Q with Plcal, being irreducible and a generic
cuspidal automorphic representation ) of GLas(Ap), where Ay is the ring of adéles of L,
such that

o 7, is unramified outside the places above Sp.q and

e the Galois representation associated with ) is isomorphic to pyy|cal, -

Remark 8.2.8. We should remark that Kret and Shin verify the above hypothesis in [KS20,
Theorem C| under some stronger conditions than the ones they verify Hypothesis 1.

8.2.9. On the other hand, we also write

i = Y, (X1 (C), VES, ).

par,k par
The forgetful map Xi,+(C) — X(C) then induces a morphism

Ap . Halg,tol i N Halg,tol. (83)

tame,par, par,k
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Observe that this morphism is TP-equivariant. Moreover, we have slope decomposition on
the later space with respect to the action of U, since it is a finite dimensional Q, -vector
space. Thus, for each h € Q-,, we write

alg,tol,<h . alg,tol Ap alg,tol alg,tol,<h
Htame,par,k = 1mage <Htame,par,k‘ Hpar,k - Hpar,k )
Ig.tol, <h - Ig tol :
where H3.2\7=" is the ‘< A’ part of HS )" under the action of U,. Thus, for any T*™-
. . alg,tol . . . alg,tol,<h
eigenclass [u] in Hy» " . its image in Hi»" 2% can be decomposed as a sum of T-

eigenclasses. We call any of these factors a p-stabilisation of [u].

It is a natural question asking how the eigenvalues of a T**™-eigenclass interact with the
eigenvalues of its p-stabilisations. Due to our lack knowledge on the Hecke algebra of the
strict Iwahori level, we state such a conjectural interaction in the next hypothesis.

Hypothesis 3. (i) Let [u] be a T*™-cigenclass with eigensystem A in HAS=". Then,

par,k
there exist 29g! p-stabilisations [u] P, indexed by Weylagy,, -

(ii) Chose a bijection of sets ¢ : {1,2,...,29} = Weyl” so that A\, (T;f?) = ;, where T];(é)
is the Hecke operator defined by [GSpy,(Z,)((i)-wy0) GSpy,(Zy)] acting on Hf;i;:;ar’wt(m)
and @; is the i-th eigenvalue of the crystalline Frobenius associated with py,.> Denote
by Ai = A (T;%)) and let [p)P) be any of the p-stablisation of [u] with Hecke eigensys-
tem )\Efj]). Then, there exists a constant 6 € Q (depending only on g) such that, for
1=1,...,9+1,

g
G R | (VTR
j=1

where

e the index of [u]®) is (e,v) € Weylgsp, =2 X (Z /27Z)9 and

L v(j) =1
A (j) :{ %

0, otherwise

e the exponent depends on whether e(v(j)) =0 or1 € Z /27Z.

Remark 8.2.10. (i) The above equation in the above hypothesis totally defines the values

/\[(fj ]) (U;’(é) ) for g +1 < ¢ < 29 due to the relations of eigenvalues ¢; of the crystalline

Frobenius in Hypothesis 1 (ii).

(ii)) We remark that Hypothesis 3 is inspired by [HJ17, Lemma 17|. However, one is not
allowed to apply loc. cit. directly since the authors of loc. cit. considered the Iwahori
subgroup while we are working with the strict Iwahori subgroup, which is a deeper

level at p. A priori, given a class [u] in H?;rgr;zoll)ar ., 1t might admit more p-stablisations

3This can be done due to Hypothesis 1 (ii).
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at the strict Iwahori level than at the Iwahori level. The meaning of the hypothesis
above means that these extra p-stablisations shall be killed after taking the finite-slope
part. Such a phenomenon already happens in the classical theory of modular forms.

Assumption 8.2.11. In the rest of this chapter, we assume that Hypothesis 1, Hypothesis
2 and Hypothesis 3 hold.

8.3 Families of Galois representations on the cuspidal ei-
genvariety

8.3.1. The goal of this section is to construct families of Galois representations on a sublocus
of the cuspidal eigenvariety £;° under the assumption of Hypothesis 1 and Hypothesis 3.

8.3.2. For any dominant algebraic weight k& € Z?,, recall from Theorem 5.2.8 that there is

hi, € R~ such that for any h € Q. with A < hy, we have a canonical isomorphism

tol,<h ~ alg,tol,<h
Hpar,k — Hpar,k :

We then define the p-stabilised classical locus of £ to be the locus G% C &, containing
those  with the following conditions:

o wt(x) =k € Z%, is a dominant algebraic weight;

e there exists h < hy such that x corresponds to a p-stabilisation of slope < h of a

tame _ - : alg,tol
T*™¢-eigenclass [u] in Hoopar ks

e the Galois representation p?lf]m attached to [u] (by Hypothesis 1) is irreducible.

Consequently, we define
EXT .= the Zariski closure of G in £5¢.

Remark 8.3.3. We do not expect every classical point in £, corresponds to an irreducible
Galois representation due to the endoscopy theory of automorphic forms. As we will be only
interested in classical points that correspond to irreducible Galois representations, we do not
loose information if we only consider £j".

Proposition 8.3.4. Assume the truthfulness of Hypothesis 1.

(i) For any x € G, there is an associated Galois representation

pe - Galgs,., = GSpinQQH(Qp) 2 GLys (Q,)

Sbad

that satisfies the properties in Hypothesis 1.
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(ii) There is a universal determinant
Det"™ : Galgs,., — ﬁggr (&)

of dimension 29 such that, for any x € G, the specialisation Det"™" |« (notation as in
(8.1)) coincides with det py.

Proof. The first assertion is easy. Let x € G?. It corresponds to a p-stabilisation class
[1]® € Hf;rgnteoéi};{ That is, there is a T**™-eigenclass [u] € H?;rgﬂff;l)ar,k such that [u]® is a
p-stabilisation of [u]. By Hypothesis 1, the class [1] is associated with a Galois representation
with desired properties. Then, we define pP'" := p?;’]m and pg 1= pp.-

For the second assertion, we follow the proof of [Che04, Proposition 7.1.1] (see also

[Chel4, Example 2.32]). Consider the morphism

¢: 0565 = [] Co S (f(@))aego-

zcG

Equipped Hmegcl C, with the product topology, one sees that ® is continuous. We claim
that @(ﬁ;gr(é'gr)) is homeomorphic to ﬁ;gr (£4") and is closed in [], ga C,. Indeed, since
G is Zariski dense in the reduced space £¢°, the map @ is injective. Apply [JN19, Corollary
5.4.4|, we know that ﬁ;rgr (Ep") is compact and so @(ﬁ;ﬁon (£")) is closed in [, cga Cp.

On the other hand, we have a continuous map

Det : Galgs,,, — H C,, o= (det pg(0))zege-
zcg!
One checks easily that Det is a determinant of dimension 29, in fact, the determinant of

a representation Galq — GLas(]],cga Cp). Condition (ii) and (iii) in Hypothesis 1 and
image ® being closed in [], g« C, imply that image Det C image ®. Hence, we define

Det™ := &~ o Det : Galgs,,, = Ohn(E0")-
0

Since ® is injective and Det is a determinant of dimension 29, Det™" is as desired. O

irr

Theorem 8.3.5. There exists a subset gg‘ C GY which is Zariski dense in &y’ 29 analytic
functions a, ..., aes € Ogine(Eq") and 29 analytic functions Fi, ..., Fos € Ogine(Eq") such that

(£5¢, Det"™™, GS {ay :i=1,..,29  {F;:i=1,...,29})

is a refined family of Galois representations.

Proof. For any p-adic weight x = (K1, ..., ky), define an ordering of functions on Z; via

e / / / / / / / / / / / /
(Qu1y ooy o) 1= (0, 00, ooy @, 0+ Qg QO+ O, Q0 gy Gy + O e ),

where o = (g + 1 — @) + &, is the character a — r;(a)a?"" " for every a € Z;. We can
view «;’s as functions on £ by composing with the weight map wt. Obviously from this
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definition, for any z € G%, the functions a;’s provides an ordering of the Hodge-Tate weight
of p; in Hypothesis 1 (ii).
Define

o .— {megd: 0=o(z) < ag(x) < -+ < ge(x) }

eigenvalues of the crystalline Frobenius acting on Dcris(pa:|Ga1Qp> are distinct

Observe that G is Zariski dense in EX" since G is Zariski dense in €27 and the first condition
defining G is an open condition on weights while the second condition is an open condition

on the cuspidal eigenvariety £5*. We claim that G$ satisfies condition (iv) in Definition
8.1.14. That is, for any C' € Z-, we have to show that the set

. a . ipr(®) —ai(z) > Clag(x) — ajq(z)) for i = 2,...,29 — 1
g@,C = {w € gqp : O_/;(_m) _ al(m) - C }

satisfies that, for any basis of affinoid neighbourhoods V of =, VN g%yc is Zariski dense in

V. However, this follows from that the condition defining g%ﬁc is an open condition on the
weights.

Now, for any « € Q%, the associated representation p, is crystalline at p. Let ¢1(x), ..., p2s ()
be eigenvalues of the crystalline Frobenius ¢ = . acting on Dcris(pm’GaIQp)~ The order of
the eigenvalues ¢;’s is defined so that it defines a non-critical refinement on p,. This is
achievable by applying Proposition 8.1.11 (ii). Define

Fy(z) := ¢i(z)/p*™ € C,.

We claim that the collection {(E(m))i:17.__729}$6g% glue to 29 analytic functions (F1, ..., Fao)
in O gin (E57). Let Ay : T™™ — Q, be the eigensystem corresponds to . Consider

p’p"i Fy := image of the operator U;’(é) in ﬁgi()rr((ggr),
where
(Klsoes Ba) = (0, Kgy ooy 1y g+ Fgaty ooy g + K1y Kgo1 + Kg2, ooy Ko+ K1y ooy Kg + -+ + K1)
and (K1, ..., Kg) = wt is the weight map. Then, Hypothesis 1 (ii) and Hypothesis 3 imply the

desired result (see also|BC09, Proposition 7.5.13]). O

Remark 8.3.6. Recall that we have ordered the eigenvalues of the crystalline Frobenius ¢
so that they satisfy

(9017 -"79029) = 901(1790/27 '-'790/g+1>30/2()0g7 "-7()0;()0;+17 ) 9012 T ()0;4-1)'

On the other hand, recall that Weyl” is a set of representatives of Weyl,; \ Weylgsy, » where

Weyly, ~ 3,. Observe that diag(1,,p1,) is stable under the action of 3, thus the action
of Weyl” on T}, only depends on the action of (Z /2Z)9. Combining everything together,
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we have the relation
(F1, ..., Fae) = F1(1, Fy, ...,Fg’+1, FQ'Fé, e FQ’F;H, N ;+1)'

In particular, Fs, ..., Fy4; are divisible by Fj.

8.4 Local and global Galois deformations

8.4.1. We keep the notations in the previous subsection. Fix z € GS with wt(z) = k =
(k1, ..., ky) and we write

spin

pz - Galg LN GSpinggH(Qp) 2 GL2s (Q,)

for the Galois representation attached to x, given by Proposition 8.3.4. We fix a large enough
finite field extension k, of Q, such that k, contains the residue field at = and pP™ takes
values in GSpiny,,(k;). We also assume that k, contains all eigenvalues of the Frobenii.

Let now AR be the category of local artinian k. -algebras whose residue field is k,. We
denote by FZ the refinement of pm|Ga1QP induced by the refined family defined in Theorem
8.3.5. We also denote by = (d1, ..., 02¢) the parameter attached to the triangulation asso-
ciated with F7. Notice that the relation of the eigenvalues of crystalline Frobenius and the
Hodge-Tate weight implies that the parameter ¢ satisfies

(81, oy O20) = 61(1, 8, oo 8y, o0y oo 018!y o Bh 8L )

Vgl Vg%t "Pg+1

for some continuous characters dy, ..., d;, ; such that 6; = 6,9; for all i =2,...,g + 1.
8.4.2 (Local Galois deformations at p). We shall consider two deformation problems at p:

(i) The deformation problem .
spin

2=, - AR — SETS,

sending each A € AR to the isomorphism classes of representations pi{’in : Galg, —
GSpiny, ;(A) with a triangulation Fil, D4 (spin op™™) such that

spin ~ i .
L] ,OA ®A km — p;pm|GaIQp7

o (spinop™™ Fil, Dy (spin op¥™)) € 2, pe(A) and write 64 = (64,1, ...,04,29)

‘GaIQ )
P
for the associated parameter;

e the parameter 0, satisfies
(04,15 04,29)
_ ! !/ !/ ! ! !/ ! ! ! !/ ! !
— (SAJ(]., 514,2’ aeey 5A,g+17 51472(514’37 ey 6A,25A,g+17 514,3514,47 aeey 5A,g5A,g+l7 ey 6A,2 ct 5A,g+1>
: / ! .
for some continuous characters 87 o, ..., 0% ;1 1;

spin

e detspinop, = detp, |Ga1Qp
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(ii) The deformation problem .
spin

2 fp AR — SETS,

sending each A € AR to the isomorphism classes of representations pP™ :

GSpiny, ;(A) such that

GalQp —

spin ~ ASPIn .
® Dy ® k:z = Pz P |GalQ )
spin

e the (¢,I')-module D, (spinop’y™) is crystalline in the sense of [BC09, Definition
2.2.10] whose eigenvalues (a1, ..., pa20) of the crystalline Frobenius satisfy

/ / / / / / / /
(Pats - Pa20) = pan(l, a2 PAgH1 PA2PA3 1 PAGPAgrL 1 PA2" " @A,g+1)’
order chosen the same as for ¢;’s;
. spin __
e det spinop}™ = det p, |Ga1Qp

8.4.3. Consider

L= ker< Y(Galg,, ad’ piP™) — H(Galg ,ad’ piP™ @, Bcﬁs)),

where B is Fontaine’s ring of crystalline periods. It is well-known that L;, defines the
tangent space of the crystalline deformation problem for pSP'" with fixed determinant. Con-

sequently, the tangent space _@;pl;lp( <|€]), where ¢ is a variable such that % = 0, of ‘@ip’iﬁp

defines a subspace of L. Thus, we define

— P (kyle]) C L, (8.4)

z,f,p

8.4.4 (Local Galois deformations at N). For any ¢| N, we consider the following deformation

problem
spin

z¢ - AR — SETS

sending each A € AR to the isomorphism classes of representations pP™ : Galg, —
GSpiny, ,(A) such that

spin

o P @akz = PP calg,;

° pj)1n| I, ™ pSp1n|Il ®/€m A
e detspin 0,0i{)m = det py |Ga1Q£

Then, one sees that the tangent space P o(ky[e]) of P4 is a kg-subspace of H!(Galg,,ad” pP™).
We consequently define

LZ = @m,ﬁ(k [ D C H (Gale dO pSpln)‘ (85)

We learnt the following lemma from P. Allen.

Lemma 8.4.5. Under the assumption of Hypothesis 2, we have

L, = H'(Galg,,ad’ p™).
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Proof. Let

GalQe, ad® pspm) = ker( (Gale ad® pspm) Ny (] ad® psp1n>)

unr (

Galg,,ad” pP™) C L,. Thus, it is enough to show that

unr (

Galq,,ad’ pP'") = H'(Galg,,ad” p™).

By definition, we see that H,

unr(

First of all, observe that

Galg,,ad” p'™) = H'(Galq, /1, (ad” p™)")

unr (

by definition. Note that Galg, /1, ~ Z. Hence, one deduces from the discussion in [Ser79,
Chapter XIII, §1] that

Galg,, ad” p™) = dimy, H'(Galq, /I, (ad’ p™)")
= dlIIl]Cm HO(GalQZ /Ig, (ado pspm) )
= dimy, H°(Galg,, ad’ p>™).

dimkw 111’11'(

By applying the local Euler characteristic, the desired equation will follow once we show
H?(Galg,,ad’ p™) = 0.
By Tate duality, it is equivalent to show
H’(Galg,,ad’ p(1)) = 0.

Let L be the real extension of Q as in Hypothesis 2, we claim that for any place v in L
sitting above £, we have
H%(Galy,,ad’ pP™(1)) = 0,

where Gal,, = Gal(Q,/L,) is the absolute Galois group of L,,. However, under the assump-
tion of Hypothesis 2, the desired vanishing follows from [BLGGT14, Lemma 1.3.2| and the
discussion in 8.2.6.

Finally, observe that the restriction map

Res : H(Galg,,ad’ p™(1)) — H°(Galg,,ad’ p™(1))
is an injection since k, is of characteristic zero so that
Corres o Res = multiplication by [L, : Q]
is an injection. The assertion then follows. O]
8.4.6 (Global Galois deformations). Consider the following two global deformation functors:

(i) The deformation problem '
Dpy= - AR — SETS,
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sending each A € AR to isomorphism classes of representations pP™ : Galgsg,., —
GSpinng(A) and triangulation Fil, Dy, (spin op™™ |Ga1Q ) such that

o 1" Bk 2"

e detspinop™ = det p,

e (spin opp |Ga1Q , File D,ig(spin o,oA|Ga1Q ) € Qipi%p( )
o Pj)m|Ga1Q @Spm(A) for f - Sbad
(ii) The deformation problem

spin |
. - AR — SETS,

sending each A € AR to isomorphism classes of representations pP™ : Galgs, ., —
GSpianH(A) such that

o A b
e detspinop, = det p,

o 03" |calq, € Zo1p(A)

spin

® P4 |Ga1QZ € ;Ijlgn(A) for ¢ € Spaq.

Lemma 8.4.7. Keep the above notations.

(i) The deformation problems .@ﬁ% and Smf’}n are pro-representable. Denote by R;@gm and
R“mv the complete noetherian local rings that represent these two deformation functors
respectively.

(i1) Suppose FY is non-critical, then @ipi is a subfunctor of @Spm

Proof. Since p, is absolutely irreducible, the first assertion follows from standard Galois
deformation theory (see, for example, [KT17, §4] and [HT'17, Proposition 3.7 & Proposition
3.8]). The second assertion is an immediate consequence of [BC09, Proposition 2.5.8]. Notice
that our deformation problems are slightly different from the ones considered in op. cit.
and [HT17]. In fact, one sees easily that our deformation problems are subfunctors of the
deformation problems considered therein. Their results implies ours since spin : GSpin,,,; —
GLys is a closed immersion, the conditions we required on the relations of the parameters and
the fixed determinant of the deformations are closed conditions and they are stable under
isomorphisms, i.e., they satisfy the definition of deformation problems (see, for example,
[KT17, Definition 4.1]). O

8.4.8. The the Bloch-Kato Selmer group associated with ad’ p™ is defined to be

es H! Gal , do spin

H}(Q dO pspln) -— ker (GalQ Spads dO pSpln) _R__> H ( a. QZ ad” P, ) 7
LESHad U{p} ¢

(8.6)

where Ly are as defined in (8.4) and (8.5).
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Proposition 8.4.9. The tangent space @i}?}n(kw[s]) of 9?5}“ can naturally be identified with
the Bloch—Kato Selmer group H}(Q, ad’ pspin),

T

Proof. This is follows from standard Galois deformation theory (see, for example, [HT17,
Proposition 3.7|) and the definition of L, and L, (see (8.4) and (8.5)). O

8.5 The adjoint Bloch—Kato Selmer groups

8.5.1. We keep the notations and assumptions in the previous subsection. We further assume
the following

e the refinement F? of p, satisfies (REG) and (NCR);?

e the representation pm|Ga1Qp is not isomorphic to its twist by the p-adic cyclotomic
character.

Lemma 8.5.2. Denote by T, := ﬁgggw. Then, for any ideal of cofinite length 3 C T, there
exists a Galois representation

p3: Galgs,,, — GL2(T5/7J)
such that
(1) p3 @1, ke ~ pa
(1) palcaiq, € Poelcag, Fe(Ta/T)

Proof. The first assertion is a consequence of Theorem 8.1.5. The second assertion is a
consequence of Theorem 8.1.16. O

Hypothesis 4. Consider the Galois representation py in Lemma 8.5.2 for any ideal of
cofinite length 3 C T,. We assume

(i) The Galois representation py factors as

spin

py : Galgs,., —— GSpingy,;(Ts/T) % GlLas (T, /7).

(i) The Galois representation p;pin|Ga1Qp € 9;‘;]}?]3(']1‘95/3).

(iii) The tame level structure T'®) implies that the Galois representation p%pin satisfies
Py " |calg, € Py (Ta/J)
for any ¢|N.

Remark 8.5.3. We remark that the above hypothesis is safe to assume:

4In fact, the condition (NCR) is already satisfied by the definition of g%.
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(i) The first two conditions are natural. When g = 1, the conditions are trivial. When
g = 2, GSpinj, is isomorphic to GSp,. In this case, the proof of [GT05, Lemma 4.3.3]
implies the conditions.

(ii) Roughly speaking, the third condition in the hypothesis means that the level structure
on the automorphic side determines the ramification type on the Galois side. This
condition is inspired by the Taylor-Wiles method. When g = 1, the classical example
is the work of R. Taylor and A. Wiles in [TW95]. In loc. cit., they showed that if one
considers the Hecke algebra on the space of weight-2 modular forms of a certain level,
then the Galois representation with coefficients in the local Hecke algebra satisfies

certain Galois deformation problem. For higher-rank groups, one sees, for example,
such a relation in [GTO05, §4.3| for GSp, and [CHTO08, §3.4| for GL,, over CM fields.

Lemma 8.5.4. Denote by Ryya) the complete local ring at wt(x) and so we have a natural
homomorphism Ry — Q, — ks, where the first map is given by quotienting the mazimal
tdeal and the second map is the natural inclusion. Then, ;‘}ﬁ‘é admits an action of Ryt(z)
and

univ k:v . univ

z,F3 ®th(a:) zf

niv

Proof. Let us first explain the action of Ryy(z) on R‘;’Ff. For any A € AR, observe that we
have a natural morphism

i:I?]IPr‘l‘f (A) - HomCts(TGLg,17 AX); pj)in = ((514,g+1)_1|z; -9, (514,9)_1‘Z;,< _(9_1)7 cey (614,2)_1|Z;,< _1)

Under this map, the image of piP™ is exactly k = (kq, ..., k;) by (8.2). Consequently, there is
a natural morphism
Z,[Tar, 1] — Rye,

which factors through Ry (s).

Since the refinement F7 satisfies (REG), together with the relation of parameters and the
condition of fixed determinant, the desired isomorphism follows from the constant weight
lemma (|[BC09, Proposition 2.5.4]), i.e., the crystalline deformations of p, are of constant
Hodge—Tate weight, of which being the same as p,. O]

Lemma 8.5.5. Denote by Hg.(Q, ad” pP") the tangent space @ipl}%(kw[e]) of @2’];%. We have
an ezact sequence

0 — HHQ,ad’ pP™) — Hia(Q,ad p™™) — k.

T T

Proof. Following [BC09, Proposition 7.6.4|, we expect an exact sequence

0— H}(Q, ad” pSPin) — Héf(Q, ad” pSPin) — k2.

T T

The first map is clear while the second map is defined as follows. For any A € AR, we have
i‘j]iF“f(A) — Home (Q), A)*, pars (61, 0429)-

143



Composing with the derivative at 1, we obtain a morphism
D (A) = A,

That is, we obtain

0: @Sp};z — ng.

The second map is then defined to be d(kz[e]). Lemma 8.5.4 shows that H}(Q, ad” pPin) =
e

Recall that the local condition of Z°P™. o Fe At p requires a relation of the parameters and a
fixed determinant. Thus, the image of 8( [ ]) lies in a subspace of dimension g, depending
only on the continuous characters ¢’y o, ..., 04 ;11 ]

Proposition 8.5.6. Retain the notation in Lemma 8.5.2 and assume Hypothesis 4 holds.

(i) There exists a canonical ring homomorphism Ry — T,
e

(i1) If the adjoint Bloch-Kato Selmer group H}(Q,ado pPn) wanishes, then the canonical

univ. ~_

map in (i) is an isomorphism mee T, (an ‘infinitesimal R =T theorem’).

Proof. By Lemma 8.5.2 and Hypothesis 4, for any ideal J C T, of cofinite length, there is a

canonical ring homomorphism
uan _> ']I‘ /J

This ring homomorphism is surjective due to the fact that the characteristic polynomials
of the Frobenii under p; are given by the Hecke polynomials. Consequently, one obtains a
canonical morphism .
ore — Ty = @ T,/3J
J : cofinite length
with dense image. Since Ru’“V is complete, the canonical morphism Ru““!v — T is surjective.
Finally, if H }(Q, ad’ ?Epm) vanishes, then the exact sequence in Lemma 8.5.5 implies that

dimy,, HFm(Q,adOpSpm) g.

Since RY% is a local noetherian ring, its Krull dimension is bounded by the dimension of

its tangent space ([Stacks, Section 00KD]), i.e., dim R;“ﬁ < g. Moreover, we also know

from loc. cit. that the equality holds if and only if R‘;?%Yf is regular. However, since £5° is
equidimensional and finite over W, we know that dim T, = dim W = g. Therefore,

g > dim R;nﬁ >dimT, =

and R““’Vw is regular of dimension g. To conclude the proof, suppose a = ker( un‘% — T,) is

NoN-zero and so we can identify T, with Run[‘F‘; / a. Since Run“; is a regular local ring, it is a
domain ([Stacks, Lemma 00NP|). We then obtain a contradlctlon

g = dim Ry}% > dim Ry /a = dim Ty = g.
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Corollary 8.5.7. Suppose Hypothesis 1, Hypothesis 2, and Hypothesis 4 hold. Assume the
following also hold:

e The cuspidal automorphic representation 7z of GLas(AL) associated with pg as in Hy-
pothesis 2 is reqular algebraic and polarised (see, for example, [BLGGT14, §2.1]).

o The image py(Galr(c,)) s enormous (see [NT20, Definition 2.27]).
Then
(i) dimy, H}(Q,ad’ pP™) = 0 and
(i1) R;‘%F“é ~T
Proof. By the discussion in 8.2.6, we have

Hf(Q: do pspm) - H}(Q7ad0 p:c)

However, the latter space vanishes by [NT20, Theorem 5.3 and so we conclude by Proposition
8.5.6. =

8.5.8. We conclude this thesis with another situation that one can also deduce the vanishing
of the adjoint Bloch-Kato Selmer group. In this situation, one obtains a link between L4
and the adjoint Bloch-Kato Selmer group, which then (conjecturally) justifies the name for
Ladj_

Corollary 8.5.9. Suppose Hypothesis 1 and Hypothesis 4 hold. Suppose the weight map s
étale at x and suppose the canonical morphism R;ﬁ;% — T4 2s an 1somorphism. Then,

H{(Q,ad’ pP™) = 0.

In particular, we have
ordg L*Y = dimy,, H f(Q ad” psPin),

Proof. Observe the following sequence of isomorphisms
1 ~ Ol
Q z/R ®Tm k;m — QRuniv /R

~ Q!

wt () t(x) ®Runiv km

un1v
Ruan /th(a: ®Rumv R ®Runlv k

univ .
QRunlv /th(:n ®Rumv R Fw ®th< k:l! ®R;?}v k’w
x~ Q univ k niv k
RS /Ry DRwi(o) o ORye B
~ Ql i univ k .
Ry ke O Ko

Here, the first isomorphism follows from the assumption R;nfgvz, ~ T, and the third and the
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final isomorphism follows from Lemma 8.5.4. Therefore, we have

dimy, H}(Q, ad” pSP") = dimy,, Homy, (Q}%;?}v Jke ORuY kg, kz)

T

= dlmkm Homkw (Qr]lrw /R ®Tm ka,, ka:)

wt(x)

— ;i 1

< lengthy_ qurw /R

wt(z)

However, since the weight map is étale at x, lengthy_ qurm JRunia) = 0. We then conclude the
result. O

Remark 8.5.10. More generally, in light of the Bloch-Kato conjecture (Conjecture 1.2.2),
we expect that, if x is a smooth point,

ordg, L*V = dimy, H }(Q, ad” pipimy,

T

In particular, since H}(Q, ad” pP) is expected to vanish, it seems fair to expect that, if

is a smooth point with small slope and at which L?¥ is defined, the weight map is étale at
. When g = 1, this is [Bell2, Theorem 2.16|.
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Appendix A

Log adic spaces

The notion of ‘log adic spaces’ was employed in the main body of this thesis in order to study
the boundaries of toroidally compactified Siegel modular varieties. For the convenience of
the readers, we briefly recall these notions in this appendix as well as some results that we
used in the main body of this thesis, especially in the construction of the overconvergent
automorphic sheaves and the construction of overconvergent Eichler—Shimura morphisms.
More precisely, we succinctly review log adic spaces and their (pro)-Kummer étale sites in
§A.1. In §A.2, we adopt the notion of Banach sheaves first introduced in [AIP15, §A] and
prove a (generalised) projection formula.

A.1 Review of log adic spaces

In this section, let K be a complete field extension of Q, and let Ox = {z € k : |z < 1}
be its ring of integers.

Definition A.1.1. Let X be a locally noetherian adic space over Spa(K, O).

(i) A pre-log structure on X is a pair (M x, ) where M x is a sheaf of monoids on X4
and o : M x — Ox,, is a morphism of sheaves of (multiplicative) monoids. It is called
a log structure if the induced morphism o~ (O%,) — O%,, is an isomorphism. In
this case, the triple (X, # x,«) is called a log adic space. If the context is clear, we
simply say that X is a log adic space.

(i1) For a pre-log structure (M x,ca) on X, the associated log structure is (%# x,"«)
where Y# x is given by the pushout

Oé_1< ;}pt) —_— %X

L]

X [2)
Xet )%X

and o Y x — Ox,, is the induced morphism.
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(iii) A morphism [ : (Y, #y,ay) — (X, # x,ax) of log adic spaces is a morphism
f Y — X of adic spaces together with a morphism of sheaves of monoids f* :
=Yt x — My such that the diagram

f

[ty SEAEN My

fﬁloéxl l‘)‘Y

f_l ﬁxét B ﬁYét

commutes. Moreover, the log structure associated with the pre-log structure f=* 4 x —
fYO0x, — Oy, is called the pullback log structure, denoted by f* . #x. We say
that f is strict if f* M x — My.

Definition A.1.2. (i) Let (X, # x,«) be a locally noetherian log adic space as above. Let
P be a monoid and let Px denote the associated constant sheaf of monoids on X4. A
chart of X modeled on P is a morphism of sheaves of monoids 0 : Px — M x
such that (6(Px)) C ﬁ}ét and such that the log structure associated with the pre-log
structure ao 0 : Px — O'x,, is isomorphic to M x. We say that the chart is fs if P is
fine and saturated.

(i1) A locally noetherian log adic space is called an fs log adic space if it étale locally
admits charts modeled on fs monoids.

(i) Let f: (Y, My,ay) = (X, M x,ax) be a morphism between locally noetherian log
adic spaces. A chart of f consists of charts Ox : Px — # x and Oy : Qy — My and
a homomorphism u : P — @) such that the diagram

Py ——Qy

o,

Frx Lty

commutes. We say that the chart is fs if both P and @ are fs. When the context is
clear, we simply say that v : P — @) is a chart of f.

Example A.1.3. Below we give two typical examples of locally noetherian fs log adic spaces.

(i) Let n > 0 be an integer. Consider the n-dimensional unit disc
D" := Spa(K(Th,...,T,), O (T, ..., T,)),
equipped with the log structure associated with the pre-log structure induced by
Z%, — K(TIh,...,T,), (ay,...,a,) =TT

Clearly, D" is modeled on the fs chart Z%,.
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(ii) Let X be a smooth rigid analytic variety over K, viewed as an adic space over
Spa(K, Ok) via [Hub13, (1.1.11)]. Let D C X be a normal crossings divisor
in the sense of [DLLZ19, Example 2.3.17|. Namely, ¢ : D < X is a closed immersion
such that, analytic locally, X and D are of the form S x D" and S x {1} ---T,, = 0},
where S is a smooth connected rigid analytic variety and ¢ is the pullback of the natural
inclusion {7} ---T,, = 0} < D". We equip X with the log structure

Mx ={f € Ox,, | f isinvertible on X \ D}

with a : A4 x — O'x,, being the natural inclusion. This is the divisorial log structure
associated with the divisor D. This log structure agrees with the pullback of the log
structure on D" constructed above.

A.1.4. Log adic spaces in the example above are, in fact, log smooth log adic spaces. To
recall the definition of log smoothness, we first set up some notation.

For any monoid P and any commutative ring R, we write R[P)] for the associated monoid
algebra. Now, given a locally noetherian adic space X over Spa(K,Ok) and a finitely
generated monoid P, we let (R(P), R¥(P)) be the completion of (R[P], R*[P]), for any
affinoid open subspace Spa(R, RT) C X. By gluing the morphisms Spa(R(P), RT(P)) —
Spa(R, RT), we obtain a morphism X(P) — X. Moreover, we equip X (P) with the log
structure modeled on the chart P; i.e., the one locally induced by P — R(P).

Definition A.1.5. Let f : Y — X be a morphism between locally noetherian fs log adic
spaces. We say that f is log smooth if étale locally f admits an fs chart u : P — @) such
that

(i) the kernel and the torsion part of the cokernel of usP : P& — Q8P are finite groups of
order invertible in Ox; and

(it) f and u induce a morphism Y — X X xpy X(Q) of log adic spaces whose underlying
morphism of adic spaces is étale.

A locally noetherian fs log adic space X is log smooth if the structure morphism X —
Spa(K, Ok) is log smooth, where Spa(K, Ok) is equipped with the trivial log structure.

A.1.6. The notion of ‘Kummer étaleness’ play an essential role in the main body of the
thesis. Let us now recall its definition.

Definition A.1.7. (i) An injective homomorphism u : P — @Q of fs monoids is called
Kummer if for every a € Q, there exists some integer n > 0 such that na € u(P).

(ii) A morphism (resp., finite morphism) f : Y — X of locally noetherian fs log adic spaces
is called Kummer étale (resp., finite Kummer étale) if étale locally on X and Y,
f admits an fs chart u : P — @Q which is Kummer with |Q8P/usP(P&P)| invertible on
Oy, and such that f and v induce a morphism'Y — X X xpy X(Q) of log adic spaces
whose underlying morphism of adic spaces is étale (resp., finite étale).

(11i) If a Kummer étale (resp., finite Kummer étale) morphism is strict, we say it is strictly
étale (resp., strictly finite étale).
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Remark A.1.8. By [DLLZ19, Lemma 4.1.10], if f : Y — X is a Kummer étale morphism
between locally noetherian fs log adic spaces and if X admits a chart modeled on a sharp
fs monoid P, then, étale locally on X and Y, the morphism f admits a Kummer fs chart
P — @ with @ being sharp.

Definition A.1.9. Let X be a locally noetherian fs log adic space.

(1) The Kummer étale site Xy (resp., finite Kummer étale site Xgp.:) of X is
defined as follows. The underlying cateqory is the full subcategory of the category of
locally noetherian fs log adic spaces consisting of objects that are Kummer étale (resp.,
finite Kummer étale) over X. The coverings are given by the topological coverings.

(ii) The structure sheaf Ox,,, (resp., integral structure sheaf 0%, ) on Xyq is defined
to be the presheaf sending U — Oy (U) (resp., U w OF(U)). We also write M ,,, for
the presheaf sending U — # (U). By [DLLZ19, Theorem 4.3.1, Proposition 4.5.4],

these presheaves are indeed sheaves.

Proposition A.1.10 ([DLLZ19, Proposition 3.1.10]). Let X be an fs log adic space that is
log smooth over Spa(K, Ok). Then, étale locally on X, there exists a toric chart X — E =
Spa(K (P), Ok (P)) for some sharp fs monoid P, i.e., a strictly étale morphism K — E =
Spa(K (P), Ok (P)) that is a composition of rational localisations and finite étale morphisms.

Proposition A.1.11 ([DLLZ19, Corollary 4.4.18]). Let X be a connected locally noetherian
fs log adic space and let & be a log geometric point (see [DLLZ19, Definition 4.4.2]). Then
there is an equivalence of categories

Fx : Xper — (X, €) — FSETS

sending Y +— Ye := Homx(&,Y), where the nf®(X,£) — FSETS denotes the category of
finite sets equipped with a continuous action of the Kummer étale fundamental group
(X, €).

Moreover, for any two log geometric points & and &', the fundamental groups wF (X, &)
and T X, €' are isomorphic. Hence, we may omit ‘€’ from the notation whenever the
context is clear.

Lemma A.1.12. Assume K is of characteristic 0. Let X and Y be locally noetherian fs log
adic spaces whose underlying adic spaces are smooth connected rigid analytic varieties over
K. Suppose the log structures on X and Y are the diwvisorial log structures associated with
the normal crossing divisors D C X and E CY as in Exvample A.1.3 (ii). Let U = X \ D
and V =Y ~ E. Suppose we have a finite Kummer étale surjective morphism f :Y — X
such that f~Y(U) =V and that f|y : V — U is a finite étale Galois cover with Galois group
G. Then f is a finite Kummer étale Galois cover with Galois group G.

Proof. According to Proposition A.1.11, we have equivalences of categories
Fx : Xper — m¢(X) — FSETS

and
Fy : Uy — 7(U) — FSETS.
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We have to show that G is a finite quotient of 7¥*(X) and, under the equivalence Fy, Y
corresponds to the finite set G equipped with the natural 7% (X)-action.

By |[DLLZ19, Proposition 4.2.1] and [Han20, Theorem 1.6], we have an equivalence of
categories between Xy and U, under which Y corresponds to V. It also induces a natural

isomorphism 75 (X)) ~ 7¢(U) making the following diagram commutative.

~

Xiret — Uset,

:J,FX le U

(X)) — FSETS —— 7{*(U) — FSETS

Since V' corresponds to the finite set G under the equivalence Fy;, we are done. n

A.1.13. One sees in the main body of the thesis that not only the notion of Kummer
étaleness plays an important role, but the terminology of ‘pro-Kummer étaleness’ is also an
essential player in the perfectoid method. Let us recall its definition.

Definition A.1.14. Let X be a locally noetherian fs log adic space over Spa(K, Of).

(i) The pro-Kummer étale site X, of X is defined as follows. The underlying
category is the full subcategory of pro-Xpa consisting of cofiltered inverse limit Y =
@, Y with Y; € Xyea such that the transition morphisms Y; — Y are finite Kummer

el i . . . . L,
étale and are surjective for sufficiently large 1. Such an inverse limit if called a pro-
Kummer étale presentation of Y. As for the coverings, we refer the readers to
[DLLZ19, Definition 5.1.1, 5.1.2] for details.

(i) There is a natural projection of sites
v Xprokét — Xkét'

The structure sheaves on X, e are given by

+ 1t N
Xp'rokét = Xket? ﬁXPW’két T

V_l ﬁxk:ét
and the completed structure sheaves are given by
~+ ) " ~ ~+
ﬁXprokét = 1£1 (ﬁXankét /p ) ? ﬁXprok:ét = ﬁXprokét[l/p}.

We also write M x
Ox

ot S v (M 1) together with a natural morphism o : M proker —
prokét*

A.1.15. Similar to the pro-étale topology, the pro-Kummer étale topology admits a con-
venient basis consisting of the log affinoid perfectoid objects.

Definition A.1.16. An object U in X, okt @5 called log affinoid perfectoid if it admits a
pro-Kummer étale presentation U = 1&1%1 U; such that

(i) There is an initial object 0 € I;
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(ii) Each U; = (Spa(R;, R;") is affinoid and admits a chart modeled on a sharp fs monoid P;
such that each transition morphism U; — U; is modeled on a Kummer chart P; — P;;

(i) The affinoid algebra (R, R") := (hﬂid (Ri,Rf))A is a perfectoid affinoid algebra,

where the completion is with respect to the p-adic topology;

(iv) The monoid P := hﬂie] P, is n-divisible, for all n € Z>,. Namely, the n-th multiple
map [n] : P — P is surjective for alln € Zs.

Such a presentation U = lgnie ; U; is called a perfectoid presentation of U.

Proposition A.1.17 (|[DLLZ19, Proposition 5.3.12|). The log affinoid perfectoid objects in
Xproker form a basis of the pro-Kummer étale site.

Proposition A.1.18 ([DLLZ19, Theorem 5.4.3]). Let U € Xporet be a log affinoid perfectoid
object, with the associated perfectoid space U = Spa(R, R™). Then

(i) For each n € Zsi, we have 0%
isomorphic to (ﬁ}pmkét /p")(U).

(U)/p" ~ RT/p", and it is canonically almost

prokét

(ii) For each n € Zsy and i € Zs,, H(U, 0%

L~
sequently, H*(U, ﬁxmkét) is almost equal to zero.

Dokt /p") is almost equal to zero. Con-

-~

(11i) We have 5’; (U) ~ R* and Ox (U) ~ R. Moreover, ﬁ;
isomorphic to the p-adic completion of ﬁ’}mkét(U).

(U) is canonically

prokét prokét prokét

Example A.1.19. We recall the following example from [DLLZ19, §6|. Let P be a sharp fs
monoid. Consider
E := Spa(C,(P), Oc,(P))

equipped with the natural log structure modeled on chart P. (If P = Z%,, then E is just the
n-dimensional unit disc in Example A.1.3 (i).) For each m € Z+,, let %—P denote the sharp
fs monoid containing P such that the inclusion P — %P is isomorphic to the m-th multiple
map [m] : P — P. Define

E, — spa<cp<%P>, OCP<%P))

equipped with the natural log structure modeled on the chart %P . If m|m/, there is a natural
finite Kummer étale morphism E,,, — E,, modeled on the chart %P — %P. According to
[DLLZ19, Proposition 4.1.6], the morphism E,, — E is actually finite Kummer étale Galois
with Galois group

I’/ := Hom ((%P)gp/PgK Poss),

where p denotes the group of all roots of unity in C,. Let Pq_, = hﬂm(%P) It turns
out N -
E:= I&nEm € IEprokét
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is a log affinoid perfectoid object, with associated perfectoid space

~

E = Spa(Cp<PQZO>, OCP<PQ20>)'

A.1.20. Following [DLLZ19, Definition 6.1.2], a pro-Kummer étale cover Y — X is called a
Galois cover with (profinite) Galois group G if there exists a presentation Y = l'mi Y;
such that each Y; — X is a finite Kummer étale cover with Galois group G; and G ~ @Z G;.

For example, E is a Galois cover over E with profinite Galois group
. . 1 N
I=lml, = @Hom((EP)gp/ng, Boo) = Hom(PéI;O/ng, Boo)

(see [DLLZ19, (6.1.4)]).

A.2 Banach sheaves and a (generalised) projection for-
mula

In this section, we introduce the notion of ‘Banach sheaves’ on the Kummer étale topology
of a log adic space, generalising the ones studied in [AIP15, §A] and [BP20, §2]. Then,
for certain admissible Banach sheaves, we prove a projection formula which will be used to
construct the overconvergent Eichler—Shimura morphism in Chapter 6.

A.2.1. Recall that a small Z,-algebra is a p-torsion free reduced ring R which is also a
finite Z,[T7, ..., T4]-algebra for some d € Z>,. It is a profinite flat Z,-module in the sense of
[CHJ17, Definition 6.1|. In particular, there exists a set of elements {e, : 0 € X} in R such
that R ~ [], .5 Z, €, equipped with the product topology. This set of elements {e, : 0 € ¥}
is called a pseudobasis for R. Moreover, R is equipped with an adic profinite topology and
is complete with respect to the p-adic topology.

Throughout this section, we keep the following notations:

e Let R be a fixed small Z,-algebra and let a be a fixed ideal of definition containing p.

e All (log) adic spaces are assumed to be reduced and quasi-separated. In particular, X
either stands for a locally noetherian reduced adic space over (C,,Oc,) or a locally
noetherian reduced fs log adic space over (Cp, Oc,). In the second case, we use X,,
to denote the underlying adic space of X.

e We adopt the notation of ‘mixed completed tensors’ — & R and — @R as in Definition
3.1.5.

Lemma A.2.2. (i) Let X be a locally noetherian adic space over (C,,Oc,). Then the

presheaf 0% SR (resp., Ox @R) sending any quasi-compact open subset U C X to
ﬁ}(U)@),R (resp., Ox(U)RR) is a sheaf. In particular, Ox ®R is a sheaf of Banach
C,-algebras.
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1) Let X be a locally noetherian fs log adic space over (C,,Og,). Then the presheaq,
p P

Ox... &R (resp., Ox,,, ®R) sending any quasi-compact U € Xpg to ﬁ}két(U)@f)/R
(resp., Ox,.(U)®R) is a sheaf. In particular, Ox,., @R is a sheaf of Banach C,-
algebras.

(iii) Let X be a locally noetherian fs log adic space over (C,,Oc,). Then the presheaf

Proof. Choosing a presentation R ~ []

~+ ~ -~ -~ ~+
ﬁxmkét®/R (resp., O'x ®R) sending any qeqs U € Xproret to O

E’Xpmkét(U)@R) is a sheaf. In particular, O

~1/
D& R (resp.,
®R is a sheaf of Banach Cy-algebras.

prokét

prokét

Z,e, and using [CHJ17, Proposition 6.4], the

A

statements reduce to the sheafiness of the corresponding structure presheaves. ]

A.2.3. As already suggested by the title of this section, Banach modules are essential in
this business. For completeness, we recall such a notion and several related terminologies by
following [Buz07].

Let B be a Banach Q,-algebra and let By be an open and bounded Z,-submodule.

(i)

(i)

(i)

A topological B-module M is called a Banach B-module if there exists an open
bounded By-submodule M, which is p-adically complete and separated such that M =

Mo[1/p].

Let J be an index set. Consider the B-module B(.J) consisting of sequences {b; : j € J}
which converge to 0 with respect to the filter in J of the complement of the finite
subsets of J. It turns out B(.J) is a Banach B-module. Indeed, let By(J) be the p-adic
completion of the free By-module P, ; Bo. Then we have B(J) ~ By(J)[1/p].

A topological B-module M is called an orthonormalisable Banach B-module (or,
ON-able Banach B-module for short) if there exists a topological isomorphism
M ~ B(J) for some index set J. A topological B-module M is called a projective
Banach B-module if it is a direct summand (as a topological B-module) inside an
orthonormalisable Banach B-module.

Definition A.2.4. Let X be a locally noetherian adic space over (Cp,, Oc,).

(i) A sheaf of topological € x @R-modules .F is called o Banach sheaf of Ox ®R-

modules if

o for every quasi-compact open subset U C X, F#(U) is a Banach ﬁX(U)®R-
module;

e there exists an affinoid open covering b = {U; : i € I} of X such that for every
v € I and every affinoid open subset V C U;, the continuous restriction map

F(U;) N Ox(V)— Z(V)
induces a topological isomorphism
ﬁ(Ui)@)ﬁX(Ui) Ox(V) = F(V)
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where the completion is with respect to the p-adic topology. Such a covering i is called
an atlas of 7.

(i) A sheaf F as in (i) is called a projective Banach sheaf of 0 x @ R-modules if there
exists an atlas U = {U; : i € T} such that F(U;)’s are projective Banach O x(U;)®R-
modules.

(iii) A morphism between Banach sheaves of O x ® R-modules is a continuous map of sheaves
of topological O x @ R-modules.

(i) Let F be a Banach sheaf of Ox ®R-modules as in (i). An integral model of F is a
subsheaf F* of 0% & R-modules such that

e for every quasi-compact open U C X, F*(U) is open and bounded in F(U);

o 7 =F"1/p);

e there exists an atlas 4 = {U; : i € I} of F such that, for every i € I and every
affinoid open subset V- C Uj;, the canonical map

FHU)E iy Ox(V) = F V)

18 an isomorphism, where the completion is with respect to the p-adic topology.

A.2.5. Analogously, we also have a Kummer étale version of Banach sheaves. Such a notion
is the one in which we are interested.

Definition A.2.6. Let X be a locally noetherian fs log adic space of (C,, Oc,).

(i) A sheaf of topological O, ® R-modules .F is called a Kummer étale Banach sheaf
of Ox,., @ R-modules if

e for every quasi-compact open U € Xpg, F(U) is a Banach Ox, ., (U)®R-module;

e there exists an Kummer étale covering st = {U; : 1 € I} of X by affinoid U;’s
such that for every Kummer étale map V. — U; with affinoid V', the continuous
restriction map

F (V) Q0 x4, (U) Ox0(V) = F(V)

imduces a topological isomorphism

F(U)®0x, W) Oxa(V) = F (V)

7

where the completion is with respect to the p-adic topology. Such a covering 3 is called
a Kummer étale atlas of 7.

(ii) A sheaf as in (i) is called o projective Kummer étale Banach sheaf of Ox,. ®R-
modules if there exists a Kummer étale atlas 4 = {U; : i € I} such that F(U;)’s are
projective Banach O, (U;)@R-modules.

1) A morphism between Kummer étale Banach sheaves o ﬁ){ ] @ﬂ—modules 18 a continu-
két
ous map of topological O'x, ,, ® R-modules.
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() Let F be a Kummer étale Banach sheaf of Ox,,, @ R-modules as in (i). An integral
model of .Z is a subsheaf FT of ﬁ}két & R-modules such that

e for every quasi-compact U € Xy, F(U) is open and bounded in F(U);

o 7 =7 1/pl;

e there exists a Kummer étale atlas s = {U; : i € 1} of F such that, for everyi € I
and every affinoid V € U, e, the canonical map

er(Ui)@ﬁ;ke

5t

Wy O (V) = F (V)
18 an isomorphism, where the completion is with respect to the p-adic topology.

A.2.7. Clearly, an analytic refinement of an atlas (resp., a Kummer étale refinement of a
Kummer étale atlas) is also an atlas (resp., a Kummer étale atlas). Also notice that it is
not true that a Banach sheaf (resp., Kummer étale Banach sheaf) on an affinoid adic space
(resp., affinoid log adic space) is the sheaf associated with its global section. Nonetheless,
we have the following result.

Lemma A.2.8. Let (A, A") be a complete reduced Tate algebra over (C,,Oc,) and let M
be a projective Banach A®R-module.

(i) Let X = Spa(A, At) be the associated adic space. Then the presheaf M& 4 Ox sending
an affinoid open subset Spa(B, BT) C X to M&4B is a sheaf.

(i) Suppose X = Spa(A, AT) is equipped with an fs log structure. Then the presheaf
MR, Ox,,, sending an affinoid open subset Spa(B, BT) € Xy to M®aB is a sheaf.

Proof. Tt immediately reduces to the case where M is an orthonormalisable Banach A® R-
module; i.e., M ~ (A®R)(J) for some index set .J. It then reduces to the case where |.J| = 1.
Then the lemma follows from Lemma A.2.2. ]

Corollary A.2.9. Let X be a locally noetherian fs log adic space over (Cp, Oc,) and let
F be a projective Banach sheaf of Ox,, ®R-modules with atlas 8t = {U; : i € I}. Suppose
Z admits an integral model F*. Consider the p-adically completed sheaf of Ox,,,-modules
F rer associated with F ; namely,

) m ) L
F ret = (@ﬁJr ®ﬁ)+(an ﬁj{két /p ) []_)]
m

Then ZF g is a projective Kummer étale Banach sheaf of Ox,,, ®R-modules with Kummer
étale atlas 34 = {U; : i € 1}, where each U; is equipped with the induced log structure from
X. Moreover, for every affinoid V' € U; ke, we have

ﬁkét(v) = ﬁ(Ui)@)ﬁxan(Uﬂ ﬁXkét(‘/)'
Proof. To prove the Corollary, we need the following lemma.
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Lemma A.2.10. Let X be a locally noetherian fs log adic space over (C,, Oc,) and let
W= {U; : i € I} be a Kummer étale covering of X by affinoid U;’s. Consider the full
subcategory By of Xie consisting of those affinoid V- € Xyg such that the map V. — X
factors through V- — U; — X for some i € I. Then By forms a basis for the site Xyq.

Proof. We have to prove that every U € Xy admits a covering by such V’s and that By is
closed under fibred products. Both statements are clear. O

Let By be the basis of Xy associated with the covering 34 = {U; : ¢ € I} as in the lemma.
It suffices to show that the assignment

V= y(Ui)@ﬁXan(Ui) ﬁxkét(v>7

for every V' € By which factors through V' — U; — X, defines a sheaf on By. (Notice that
this assigment is independent of the choice of i and hence well-defined.) The sheafiness of
this assignment follows from Lemma A.2.8 and the sheafiness of .%. O]

Definition A.2.11. Let X be a locally noetherian fs log adic space over (C,,Og,) and let
F be a projective Kummer étale Banach sheaf of Ox,,, QR-modules. Suppose it admits an
integral model F* and, for every m € Zs,, we write F, = F* [a™. We say that F is
admassible if there exist

o a Kummer étale atlas 4 = {U; : i € I} of X such that each F*(U;) is the p-adic
completion of a free ﬁ}két @lR—module; and

o for every m € Zsy and d € Zsy, a subsheaf F,, , C F, which is a coherent
ﬁ}két ®z,(R/ a™)-module subject to the covering i,

such that we have F* =~ lm Froand F ~ hﬂdy;,d for every m € Z>;.

Such a Kummer étale atlas is called an admissible atlas for 7.

Lemma A.2.12. Let h: Y — X be a finite Kummer étale morphism between locally noeth-
erian fs log adif spaces over (C,, Oc,). Suppose F is an admissible Kummer étale Banach
sheaf of Oy,,, @R-modules. Then h,.# is an admissible Kummer étale Banach sheaf of
Ox,,, @R-modules.

Proof. Suppose 4 = {U; : i € I} is an admissible atlas for .# on Y. By Definition A.1.7
and [DLLZ19, Proposition 4.1.6], the finite Kummer étale morphism A : Y — X is, Kummer
étale locally on X, isomorphic to a direct sum of isomorphisms. Therefore, one can find an
affinoid Kummer étale covering {V; : j € J} of X such that, for every ¢ € [ and j € J,
U; x x Vj is isomorphic to a disjoint union of finite copies of U;’s. Consequently, the Kummer
étale covering U = {U; xx V;:i € I,j € J} is a desired admissible atlas for h, .%. ]

A.2.13. If ¥ is a Kummer étale Banach sheaf of O'x,,, ®R-modules with an integral struc-
ture .Z 1. We write
—~+

. m . ~/ m
F = ILHI <gZ+ ®ﬁ+ ﬁ;r(prokét /p ) = l&l (g;Jr (X)(ﬁ;}két ®/R)(ﬁ}prokét ® R)/p )

Xket
m
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and F = §+[1 /p]. They are sheaves of 5’;pmkét</§§/R—modules and € X, ®R-modules,

respectively. The main result of this section is the following.

rokét

Proposition A.2.14 (Generalised projection formula). Let X be a locally noetherian fs
log adic space which is /l\og smooth over (C,, Oc,) and let . be a projective Kummer étale
Banach sheaf of Ox,, @R-modules. Suppose # is admissible. Then, for every j € Zso,
there is a natural isomorphism of Kummer étale Banach sheaves of Ox;,,, ® R-modules
T Doy, RV, @kaét = Riv 7.

A.2.15. The strategy to prove the proposition is simple. Recall that for any ringed site, the
projection formula holds for coherent sheaves (see, for example, [Stacks, Tag 01E6]). Thus,

the projection formula holds for each .7, ; with respect to the ringed site (Xiet, O, ®z,(R/ a™)).
As Ft ~ im i F ) 4> we would like to argue that the isomorphism still holds after
passing to the limits. This is in general false. However, with the additional local information

in the definition of admissibility, we can deduce the projection formula after passing to the
limits and inverting p.

The following lemmas are needed in the proof Proposition A.2.14.

Lemma A.2.16. Let X be a locally noetherian fs log adic space over (Cy, Oc,). Let H be
an @;pmkét(@R—module and let A, == H | a™ for every m € Zsy. Suppose

o W = l&nm FC; and

, , ~+
o for everym € Zsy, there exists a sequence of finite free O

{Hma:delsy} of H,, such that F,, ~ ligd T d.-

®z, (R/ a™)-submodules

prokét

Then, for every j € Z>o, the natural map

Riv, H# — l'&leV* T

18 an almost isomorphism.

Proof. We have to show the almost vanishing of the higher inverse limit R’ @m I Ap-
plying an almost version of [Sch13, Lemma 3.18|, it suffices to show that, for every log affinoid
perfectoid object U € Xoket, there are almost isomorphisms

R'Nim o, (U)" =0

and '
H (U, ,,)* =0

for every j € Z>(. The first almost vanishing follows from the Mittag-Leffler condition. To
obtain the second almost isomorphism, observe that

HI(U, ) ~ ligHj(U, Hm.d)-
d
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and each H(U, #,,4) is almost zero by [DLLZ19, Theorem 5.4.3|. O

Lemma A.2.17. Let X be a locally noetherian fs log adic space which is log smooth over
(Cp,Oc,). If 9 is an projective Kummer étale Banach sheaf of Ox,,, ®R-modules, then,
for every j € Zsq, the sheaf Riv,4 is also a projective Kummer étale Banach sheaf of
Ox,,, ®R-modules.

Proof. By considering a Kummer étale atlas for ¢ and writing R ~ []
diately reduce to the case where

vesy Lip €5, We imme-

e X is affinoid and admits a toric chart X — E = Spa(C,(P),Oc¢,(F)) for some sharp
fs monoid P;

e R=7,and a= (p);

e ¢ is globally projective; i.e., 4(X) is a projective Banach Ox,,, (X)-module and for
every affinoid U € Xy, we have a natural isomorphism

g(X>®ﬁxkét(X) ﬁXkét(U) ; g(U)

We further reduce to the case where ¢ is globally orthonormalisable; namely, ¥ ~ O, (J)
for some index set .J. Let 4" be the p-adic completion of the free &% -module @, O,
and let &) = 4 /p™ ~ @, 0% . /p". By Lemma A.2.16, we have a natural almost
isomorphism

le/*@Jr = I&H le/*@:;

where f?:; = §2+/pm ~ @, ﬁ}pmkét /™.

We claim that, in this case, the sheaf Ri1,% is isomorphic to (A (Ox,,,)") (J) for some
n € Z>,. For this, we follow the strategy as in the proof of [DRW22, Lemma A.2.1]|.

Consider the collection Bx used in the proof of [DRW22, Lemma A.2.1]. In particular,
for every V € By, the map V' — X admits a Kummer chart P — P’ which is isomorphic
to the m-th multiple map [m] : P — P. Moreover, the injection P — P’ induces an
injection I" — T', where I and I are the profinite Galois groups as in A.1.20. If we fix an
identification I" ~ Z(1)", the injection I'" — I' can be identified with the m-th multiple map
(m] : Z(1)" — Z(1)".

By the calculation in [DRW22, Lemma A.2.1], we obtain an almost injection

(MO, [P"(V))")" = HI(L, 0%, [p" (V)" — H]

prokét

V.ox /pm)"
with cokernel killed by p. Taking direct sum and then inverse limit, we obtain an almost
injection ‘ 4

lim &y (N (0%, /P"(V))")" = Im @ H} g (V. O% /p™)

with cokernel killed by p. Inverting p, we obtain an isomorphism

(N (0% V)Y (J) 2 i @ B, (V. 0% [p™)
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However, note that the sheaf

s e !

Rv9g ~limRv.Y, ||-

)

is just the sheafification of W anm S Jngokét(W, 0% /p™). Consequently, R/ 1,9 coincides
with the sheaf (A/(€%, . )")(J) which is clearly an ON-able Banach sheaf of Ox,, ®R-

modules. O

Proof of Proposition A.2.14. We split the proof into three steps.

and R/v,.Z are projective Kummer

rokét

Step 1. We first verify that both .% Rox,, Riv, 0 X,
¢tale Banach sheaf of 0k, ,, ® R-modules.

Indeed, the statement for 7 ®g, Riv,0 Xpronee 10llows from the locally finite freeness
of Riv,0 Koo (5€€ [DRW22, Lemma A.2.1]) and the statement for R’ v,.Z follows from

Lemma A.2.17. In fact, we can be more precise. Consider an affinoid Kummer étale covering
U =A{U; :i € I} satisfying:

e {l is an admissible atlas of .7

e cach U; admits a toric chart U; — Spa(C,(F;), Oc, (F;)) for some sharp fs monoid.

Then, by the proof of [DRW22, Lemma A.2.1] and Lemma A.2.17, we see that i is a

Kummer étale atlas for both 7 @, R1.0x,, ., and Rv.Z. (In fact, they are both
orthonormalisable on each U;.) For the rest of the proof, we fix such a cover 4.

Step 2. We construct two natural morphisms

+

m

. gt (>t o : o
VT @, gphiv. (Ox,, O R) > InRnF
m
and . .
O:Rv.¥% — @Rﬁ/*ﬁm.
m

where . N N
_ g+ > T
ﬂm — ﬁm ®ﬁj{két ﬁxprokét — y /am .
There is clearly such a map ©. It remains to construct .
For every m € Z>, and d € Z>(, we write

—+ ~+
Fond = T 1@t onjam) (Oxpuee O, (B) ™).

By the usual projection formula for ringed sites (see, for example, [Stacks, Tag 01E6]), we
obtain a canonical morphism

: ~+ m . =+
\Dm,d . g:’;,d ®ﬁ+ ®ZP(R/ﬂm)R]V* (ﬁXprOkét ®ZP (R/ a )) — R]V*‘gm,d‘

Xket
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Taking direct limit with respect to d, followed by taking inverse limit with respect to m, we

obtain a canonical morphism

Xket

\II/ : 1&1 <(g\:’;l ®@7+ ®Z (R/ a"L)RjV* (ﬁ;—(prokét ®ZP (R/ am))) —> @Rjy*gl
On the other hand, we have natural morphisms

&R l&nm (le/* <g;prokét ®z, (R/ am)>)

. ~+ -~
ng—‘r ®ﬁ+ @lRR‘]y* (ﬁXproét®/R) — ﬁ—"— ®ﬁ+

Xket Xkt

Xket

\I/” l

i, (7)€

ké
Composing with ¥, we obtain the desired morphism

Ui T 0, i (O, 8 R) > Im R,

okét
Xyet P

Step 3. For simplicity, we write 4;, ¢, and ¢, for Z |v,, Z 7 |y, and F}, |v,, respect-
ively. Since ¢¥;, is a free & a,két ®(R/ a™)-module, we can express 47, as a filtered direct
limit of finite free submodules ¢, ..
We can repeat the construction in Step 2 to ¥, %;fm, and E?;rma In particular, we
obtain maps
U, G ®,4 @/RRjV* (5’;;

1,prokét
Uj xét P

&R) = lm 0.7,

and

. ~ 4 . . ~ 4
0,: R'vY, — @RJV*%LW
m
where
~ ~+

~4 +
_ @t _ m
Gim=Yim Qg ﬁUi,pmkét =9, /a".

i,két
Moreover, we have a commutative diagram

~1 Yy, .. ; —+ Oy, j —+
®R) — lim R V¥ |, —— RvZ |y,

F

~

@lR) %, Jm le/*f?:m o le/*%:r

o~

o) B (6,
|

4 ~+
@/R)R]l/* (ﬁ

Ui ,prokét

i,prokét

F+ |U1- ®(ﬁ+

Ui, ket

+

i, két

0.} and {7}

i,m,x

The square on the left is commutative because the cofiltered systems {.% :; d
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are cofinal to each other. By Lemma A.2.16, ©; = O|y, is an almost isomorphism. This im-
plies that ©[1/p] is an isomorphism of projective Kummer étale Banach sheaves of O'x,,, ® R-
modules.

We claim that W; also becomes an isomorphism after inverting p. By construction, ¥,
factors as the composition of

~

UG @, & r IV Vs (ﬁUierkét@'R) — ILH (g:m ot @z, (R/am) <R]y*6"Ummkét ®z, (R/a )))

Uj két Ui ket
and a canonical isomorphism W/ given by the composition

~+

l'&n (g:—m ®ﬁa‘,két ®zp (R a™) (Rjy* ﬁU’i,prokét ¥z, (R/ am)>)
. . o
@ (hﬂ g?:m,a ®0’+ ®ZP(R/ am) (le/* ﬁUi,prokét ®Zp (R/ am)))

Ui, ket

e i ~+ m
@lmRJV* (gj:m’a ®ﬁ$i,két ®ZP(R/ am) (ﬁUi,prokét ®ZP <R/ a )))

lim ling .9,

12

o~
sy i J
>y im R,

where the second isomorphism follows from the fact that each ¢ fma is a finite free & (J}Z o @z, (R a™)-
module. ’

It remains to prove that U7 becomes an isomorphism after inverting p. Recall that U;
admits a toric chart U; — Spa(C,(P),Oc,(P)) for some sharp fs monoid P. By choosing

an identification I' := Hom(Pg /P, p,,) ~ Z(1)", [DRW22, Lemma A.2.1] yiclds an

isomorphis Riv, Oy, ~ N (Oy, )"

i,prokét

On one hand, by [DRW22, Proposition A.2.3|, we have

-~

, +
g;r ® g+ @’RRJV* (ﬁU

1,prokét
U; két P

—~ 1 . AN o~
®/R> [;] = gl ®(])U Két @RR] V* (ﬁUi,prokét®R)
=~ gl ®ﬁU7, Két @R ((Rj l/* ﬁUi,prokét)®R>
=9, ®ﬁU¢ Kkét Rjy* %U

i,prokét

~ gz ®5Ui,két /\j (ﬁUi,két>n
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On the other hand, if we write R/ a™ ~ @®,cx, Z /p°, then we have

L~
Rv. 0y

i,prokét

®Zp (R/ am) = 69O'GETYLRJ'V*<ﬁ§i,prokét /p0>
By [DRW22, Lemma A.2.1 (iii)], there is an almost injection
/\j(ﬁgi’két /pg)n ;> Rjy*(ﬁ-iU—i,prokét /pa)

whose cokernel is killed by p. This yields an almost injection given by the composition

gj_ ®ﬁ$i,két ( (ﬁ+z két n) - @m g::m Qg ®z, (R/a™) </\j(ﬁa,kéc ®ZP(R/ am))n>

Ui ket

L gl m ®ﬁ+ ®zp (R/am) (EBUGEm /\J (ﬁ;z két /pa)n>

Ui két

]'.&nm g’j:m ®ﬁ+ ®Zp(R/ am) (@UGEmR V* Ui prOkét /pg>>

Ui ket

~

o~

: + j + m
lglm <(gi,m ®ﬁ$ et ®ZP(R/ am) (Rj]/* ﬁUi,prokét ®Zp (R/ a ))
with cokernel killed by p.

Consequently, both sides of ¥ are isomorphic to ¢; ®¢,, (N (O, ,,)") after inverting
p, and one checks that W/[1/p] is just the identity map on ¢¥;®g,, (N (Ou,,e,)")- This
finishes the proof. ’ O

Corollary A.2.18. Let X be a locally noetherian fs log adic space which is log smooth over
(Cp,Oc¢,). Let F be an admissible projective Kummer étale Banach sheaf of Ox,,, QR-
modules, with the corresponding integral structure F*. Suppose FT is equipped with an
ﬁxk B & R-linear action of a finite group G. This induces an O'x,,, ®R-linear action of G on
F. Then the subsheaf of G-invariants FC also satisfies the generalised projection formula.
More precisely, we have a natural isomorphism

FC ®ﬁxk’tRiV*%X Ry, F€

prokét

Proof. By Proposition A.2.14, we have an isomorphism

F Rox,,, R'v, 0 = Rv,.7

prokét

Taking the G-invariants, we obtain an isomorphism

aG i 5
F ®ﬁxkétR V*ﬁx

prokét

— (RZI/*?) .
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It remains to show <R’V*ﬁ ) ~ Ry, FC. Indeed, consider the following commutative

diagram
ﬁXprokét [G] - MOD L) ﬁxkét [G] - MOD
] |ee
Ox, s — MOD ———— O, —MoD

Notice that the higher right derived functors of both of the vertical arrows vanish as G
is a finite group and the base field is of characteristic zero. Now, applying the standard
Grothendieck spectral sequence argument to both compositions v, o (—)¢ and (—)% o v,, we
obtain the desired commutativity of Ry, and (—)¢. [
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