
 

 

 

Point Cloud-based Deep Learning and UAV Path Planning 

for Surface Defect Detection of Concrete Bridges 

 

Neshat Bolourian 

 

 

A Thesis 

In the Department  

of 

Building, Civil, and Environmental Engineering 

 

 

Presented in Partial Fulfillment of the Requirements  

For the Degree of  

Doctor of Philosophy (Building, Civil, and Environmental Engineering) at  

Concordia University  

Montreal, Quebec, Canada 

 

June 2022 

 

© Neshat Bolourian, 2022 



 

CONCORDIA UNIVERSITY  

SCHOOL OF GRADUATE STUDIES 

This is to certify that the thesis prepared  

By: Neshat Bolourian  

Entitled:  Point Cloud-based Deep Learning and UAV Path Planning for Surface 

Defect Detection of Concrete Bridges 

and submitted in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY (Building, Civil, and Environmental Engineering)  

complies with the regulations of the University and meets the accepted standards with respect to 

originality and quality.  

Signed by the final examining committee: 

  ______________________________________________ Chair 

 Dr. Sebastien Le Beux 

  ______________________________________________ External Examiner 

 Dr. Yelda Turkan 

  ______________________________________________ External to Program 

 Dr. Gerald J. Gouw 

  ______________________________________________ Examiner 

 Dr. Fuzhan Nasiri 

  ______________________________________________ Examiner 

 Dr. Ashutosh Bagchi 

  ______________________________________________ Thesis Supervisor 

 Dr. Amin Hammad 

Approved by _____________________________________________________________  

 Dr. Mazdak Nik-Bakht, Graduate Program Director 

Month/day/2022 ___________________________________________________________   

 Dr. Mourad Debbabi, Dean, Gina Cody School of Engineering and Computer Science 

  



iii 

 

ABSTRACT 

Point Cloud-based Deep Learning and UAV Path Planning for Surface Defect Detection of 

Concrete Bridges 

Neshat Bolourian, Ph.D. 

Concordia University, 2022 

Over the past decades, several bridges have collapsed, causing many losses due to the lack of 

proper monitoring and inspection. Although several new techniques have been developed to detect 

bridge defects, annual visual inspection remains the main approach. Visual inspection, using naked 

eyes, is time-consuming and subjective because of human errors. Light Detection and Ranging 

(LiDAR) scanning is a new technology to collect 3D point clouds. The main strength of point 

clouds over 2D images is collecting the third dimension of the scanned objects. Deep Learning 

(DL)-based methods have attracted the researchers’ attention for concrete surface defect detection. 

However, no point cloud-based DL method is currently available for semantic segmentation of 

bridge surface defects without converting the raw point cloud dataset into other representations, 

which results in increasing the size of the dataset and leads to some challenges regarding storage 

capacity, cost, and training time. Some promising point cloud-based semantic segmentation 

methods (i.e., PointNet and PointNet++) have been applied in segmenting bridge components (i.e., 

slabs, piers), but not for segmenting surface defects (i.e., cracks, spalls).  Moreover, most of the 

current point cloud-based concrete surface defect detection methods focus on only one type of 

defects. On the other hand, in DL, a dataset plays a key role in terms of variety, diversity, accuracy, 

and size. The lack of publicly available point cloud datasets for bridge surface defects is one of the 

reasons of the lack of studies in the area of point cloud-based methods. 

Furthermore, compared with terrestrial LiDAR scanning, LiDAR-equipped Unmanned Aerial 

Vehicle (UAV) is capable of scanning the inaccessible surfaces of the bridges at a closer distance 

with higher safety. Although the UAV flying path can be controlled using remote controllers, 

automating and optimizing UAV path planning is preferable for being able to trace a collision-free 

path with minimum flight time. To increase the efficiency and accuracy of this approach, it is 

crucial to scan all parts of the bridge with a near perpendicular view. However, in the case of 

obstacle existence (e.g., bridge piers), achieving full coverage with near perpendicular view may 

not be possible. To provide more accurate results, using overlapping views is recommended. 

However, this method could result in increasing the inspection cost and time. Therefore, 

overlapping views should be considered only for surface areas where defects are expected. 

Addressing the above issues, this research aims to: (1) create a publicly available point cloud 

dataset for concrete bridge surface defect semantic segmentation, (2) develop a point cloud-based 

semantic segmentation DL method to detect different types of concrete surface defects, and (3) 

propose a novel near-optimal path planning method for LiDAR-equipped UAV with respect to the 

minimum path length and maximum coverage considering the potential locations of defects. 

On this premise, a point cloud-based DL method for semantic segmentation of concrete bridge 

surface defects (i.e., cracks and spalls), called SNEPointNet++, is developed. To have a network 

with high-performance, SNEPointNet++ focuses on two main characteristics related to surface 

defects (i.e., normal vector and depth) and takes into account the issues related to the point cloud 

dataset (i.e., small size and imbalanced dataset). Sensitivity analysis is applied to capture the best 



iv 

 

combination of hyperparameters and investigate their effects on network performance. The dataset, 

which was collected from four concrete bridges, was annotated, augmented, and classified into 

three classes: cracks, spalls, and no defect. This dataset is made available for other researchers. 

The model was trained and evaluated using 60% and 20% of the dataset, respectively. Testing on 

the remaining part of the dataset resulted in 93% recall (69% IoU) and 92% recall (82.5% IoU) for 

cracks and spalls, respectively. Moreover, the results show that the spalls of the segments deeper 

than 7 cm (severe spalls) can be detected with 99% recall.  

On the other hand, this research proposes a 3D path planning method for using a UAV equipped 

with a LiDAR for bridge inspection to have efficient data collection. The method integrates a 

Genetic Algorithm (GA) and A* algorithm to solve the Traveling Salesman Problem (TSP), 

considering the potential locations of bridge surface defects such as cracks. The objective is to 

minimize the time of flight while achieving maximum visibility. The method provides the potential 

locations of surface defects to efficiently achieve perpendicular and overlapping views for 

sampling the viewpoints. Calculating the visibility with respect to the level of criticality leads to 

giving the priority to covering the areas with higher risk levels. Applying the proposed method on 

a 3-span bridge in Alberta, the results reveal that considering overlapping views based on the level 

of criticality of the zones and perpendicular views for all viewpoints leads to accurate and time-

efficient data collection.   

  



v 

 

ACKNOWLEDGEMENT 

My great appreciation goes to my supervisor, Dr. Amin Hammad, for his patience and support in 

overcoming numerous obstacles I have been facing through my research. His guidance, advice and 

criticism was my most valuable asset during my studies. 

I would like to thank the members of my thesis committee, Dr. Yelda Turkan, Dr. Ashutosh 

Bagchi, Dr. Fuzhan Nasiri, and Dr. Gerald Gouw for spending their valuable time for reading my 

thesis. 

I would like to acknowledge the contributions of Mr. Majid Nasrollahi for implementing adapted 

PointNet++ and point cloud data collection. His enthusiasm in conducting research was a great 

asset in our contribution.  

I gratefully appreciate my friend, Mr. Ali Ghelmani, who helped me through some challenges in 

implementing defect semantic segmentation using his knowledge about programming and 

computer vision. 

I am thankful to Mr. Mohammad Akbarzadeh, Dr. Khaled El-Ammari, and Dr. Fariddodin 

Vahdatikhaki for their valuable comments and sharing their knowledge as much as they could. I 

would, also, like to thank Dr. Ameen Albahri for introducing Unity which was used in path 

planning implementation. 

I would like to thank my husband, Roozbeh Talebi, my parents, Simin Izadian and Akbar 

Bolourian, and my sister, Nafis Bolourian, for their spiritual support and unconditional love in my 

life. I am also grateful to my friend, Dr. Behrang Talebi, for encouraging me to start my Ph.D. 

study and helping me through it. I would like to thank my uncle, Dr. Jalal Izadian, for all his 

positivity and guidance. 

Last but not least, I am thankful to all my colleagues and friends, especially Ms. Leila Rafati, Dr. 

Negar Salimzadeh, and Dr. Shide Salimi, who filled this chapter of my life with a lot of joy and 

incredible memories. 

  



vi 

 

Dedicated to my lovely family and my beloved niece, Delara.  



vii 

 

TABLE OF CONTENTS 
TABLE OF CONTENTS .................................................................................................................vii 

LIST OF FIGURES ........................................................................................................................... ix 

LIST OF TABLES ............................................................................................................................. xi 

LIST OF ABBREVIATIONS .........................................................................................................xii 

LIST OF SYMBOLS .......................................................................................................................xiv 

CHAPTER 1 INTRODUCTION ................................................................................................ 1 

1.1 Background ............................................................................................................................ 1 

1.2 Problem Statement ................................................................................................................ 2 

1.3 Research Objectives .............................................................................................................. 4 

1.4 Overview of the Research Methodology ............................................................................. 4 

1.5 Thesis Organization ............................................................................................................... 6 

CHAPTER 2 LITERATURE REVIEW ................................................................................... 7 

2.1 Introduction ............................................................................................................................ 7 

2.2 Bridge Inspection................................................................................................................... 7 

2.3 Visual Inspection Methods ................................................................................................... 9 

2.3.1 Camera-based Methods ................................................................................................. 9 

2.3.2 LiDAR-based Methods .................................................................................................. 9 

2.3.3 Comparison between Camera- and LiDAR-based Methods ....................................... 9 

2.4 LiDAR Scanning Platforms ................................................................................................ 10 

2.5 Defect Detection Using Point Cloud and ML.................................................................... 11 

2.5.1 Machine Learning and Deep Learning ....................................................................... 12 

2.5.2 Point Cloud Datasets.................................................................................................... 13 

2.5.3 Point Cloud-based Semantic Segmentation Using DL .............................................. 14 

2.5.4 Concrete Surface Defect Detection Using Point Cloud ............................................ 21 

2.5.5 Comparison between Image and Point Cloud-based Defect Semantic Segmentation

 28 

2.6 UAV Path Planning ............................................................................................................. 28 

2.6.1 Obstacle-free Path Planning Algorithms .................................................................... 30 

2.6.2 Coverage Path Planning Algorithms .......................................................................... 34 

2.6.3 Traveling Salesman Problem ...................................................................................... 35 

2.6.4 UAV Path Planning for Inspection ............................................................................. 37 

2.7 Summary .............................................................................................................................. 43 

CHAPTER 3 POINT CLOUD-BASED CONCRETE SURFACE DEFECT SEMANTIC 

SEGMENTATION ........................................................................................................................... 44 



viii 

 

3.1 Introduction .......................................................................................................................... 44 

3.2 Proposed Method ................................................................................................................. 44 

3.2.1 Aspects Considered in the Method ............................................................................. 44 

3.2.2 Performance Metrics .................................................................................................... 51 

3.2.3 Framework of Adjustments Made to PointNet++...................................................... 52 

3.3 Implementation and Case Study ......................................................................................... 52 

3.3.1 Data Collection ............................................................................................................ 54 

3.3.2 Data Preparation........................................................................................................... 56 

3.3.3 Training and Testing .................................................................................................... 60 

3.4 Discussion ............................................................................................................................ 75 

3.4.1 Training, Evaluations, and Testing Results ................................................................ 75 

3.4.2 Testing Results Based on Segment Depth.................................................................. 78 

3.4.3 Comparison with Image-Based Methods ................................................................... 78 

3.4.4 Comparison with Point Cloud-Based Methods.......................................................... 79 

3.5 Summary and Conclusions ................................................................................................. 81 

CHAPTER 4 LIDAR-EQUIPPED UAV PATH PLANNING CONSIDERING 

POTENTIAL LOCATIONS OF DEFECTS FOR BRIDGE INSPECTION.......................... 83 

4.1 Introduction .......................................................................................................................... 83 

4.2 Considerations, Requirements, and Constraints ................................................................ 83 

4.3 Developing Path Planning Considering Potential Locations of Defects.......................... 85 

4.3.1 Assign IVs to Cells ...................................................................................................... 88 

4.3.2 Select Initial VPIs ........................................................................................................ 90 

4.3.3 Calculate the Optimum Path ....................................................................................... 93 

4.4 Implementation and Case Study ......................................................................................... 95 

4.5 Conclusions ........................................................................................................................ 100 

CHAPTER 5 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK ..................... 101 

5.1 Summary of Research ....................................................................................................... 101 

5.2 Research Contributions and Conclusions ........................................................................ 101 

5.3 Limitations and Future Work............................................................................................ 102 

REFERENCES................................................................................................................................ 104 

APPENDIX A. DATA AUGMENTATION ............................................................................. 117 

APPENDIX B. DATA ARRANGEMENT ............................................................................... 121 

APPENDIX C. APPLICATION FOR FLIGHT OPERATION CERTIFICATION ....... 124 

APPENDIX D. LIST OF PUBLICATIONS ............................................................................ 135 

  



ix 

 

LIST OF FIGURES 
Figure 1-1. Using a cherry picker to inspect a bridge (Facelift Ltd., 2017). .................................... 1 
Figure 1-2. Failure of a cherry picker during under-bridge inspection (The Vertikal Press, 2015).

................................................................................................................................................................ 1 

Figure 1-3. Example of highway bridges (Montreal Turcot Interchange) (FOTOimage Montreal, 

2017). ..................................................................................................................................................... 2 
Figure 1-4. Overview of research methodology. ................................................................................ 5 

Figure 2-1. Level of performance vs. time relationship for various levels of maintenance (Mirza, 

2006). ..................................................................................................................................................... 7 
Figure 2-2. Visual inspection using naked eyes (Ma and Sacks, 2016). ........................................... 9 

Figure 2-3. Terrestrial laser scanning and mobile laser scanning. .................................................. 10 
Figure 2-4. Airborne laser scanning. ................................................................................................. 11 
Figure 2-5. Binary classification using ReLU (Montufer et al., 2014) ........................................... 13 

Figure 2-6. PointNet architecture (Qi et al., 2017a). ........................................................................ 15 
Figure 2-7. PointNet++ architecture for single scale point grouping (Qi et al., 2017b). ............... 16 
Figure 2-8. (a) Multi-scale grouping (MSG); (b) Multiresolution grouping (MRG) (Qi et al., 

2017b) .................................................................................................................................................. 16 
Figure 2-9. Adapted PointNet for defect detection (Nasrollahi et al., 2019) .................................. 17 
Figure 2-10. (a) Overview of scan points, (b) angle deviation, and (c) distance deviation (Kim et 

al., 2015). ............................................................................................................................................. 22 
Figure 2-11. Framework for bridge inspection using TLS (Truong-Hong et al., 2016). ............... 23 
Figure 2-12. Crack detection at an abutment of Lungsdorf Bridge (Truong-Hong et al., 2016). . 23 

Figure 2-13. Sample of crack measurement (Valenca et al., 2017)................................................. 24 
Figure 2-14. General process of UAV model-based path planning method. .................................. 29 
Figure 2-15. Example of Bug 1 algorithm (Lumelsky and Stepanov, 1987). ................................. 30 

Figure 2-16. The schematic diagram of the A* algorithm path search (Fu et al., 2018). .............. 31 
Figure 2-17. Pseudocode of RRT algorithm. .................................................................................... 32 
Figure 2-18. Extended operation (Kuffner and LaValle, 2000). ..................................................... 32 

Figure 2-22. Dual RRT (LaValle and Kuffner Jr, 2001). ................................................................. 32 
Figure 2-20. Near neighbor search and rewiring operations in RRT* (Noreen et al., 2016). ....... 33 
Figure 2-21. Pseudocode of RRT* algorithm (Nasir et al., 2013)................................................... 34 

Figure 2-22. Coverage path planning using wavefront algorithm (Galceran and Carreras, 2013).

.............................................................................................................................................................. 35 
Figure 2-23. Coverage path planning using spanning trees algorithm (Galceran and Carreras, 

2013). ................................................................................................................................................... 35 
Figure 2-24. Framework of a PSO algorithm (Goldbarg et al., 2006). ........................................... 37 
Figure 2-25. Finding boundaries of the sampling space (Bircher et al., 2015)............................... 38 

Figure 2-26. Path planning using LKH and RRT* (Bircher et al., 2015). ...................................... 38 
Figure 2-30. Generating VPIs (Phung et al., 2017a). ....................................................................... 39 
Figure 2-28. Sampling viewpoints (Cao et al., 2020)....................................................................... 39 

Figure 2-29. Path planning of a bridge (Cao et al., 2020). ............................................................... 40 
Figure 3-1. Cross-section of a sample defect with the normal vector and depth of a point........... 45 
Figure 3-2. Sample of blocks of points in a segment. ...................................................................... 46 

Figure 3-3. Defining the values for sensitivity analysis for number of points per block and block 

size. ...................................................................................................................................................... 48 
Figure 3-4. Sample of stride. .............................................................................................................. 48 



x 

 

Figure 3-5. Sensitivity analysis framework. ..................................................................................... 50 
Figure 3-6. Example of TP, TN, FP, and FN for the crack class. .................................................... 51 

Figure 3-7. Overall framework of the proposed defect semantic segmentation ............................. 52 
Figure 3-8. Implementation and case study steps of adapted PointNet++ and SNEPointNet++. . 53 
Figure 3-9. Data collection locations in Montreal. ........................................................................... 55 

Figure 3-10. Samples of scanning positions on the western side of Bridge 1. ............................... 56 
Figure 3-11. Example of segmentation and annotation processes................................................... 57 
Figure 3-12. Sample of the fitted segment. ....................................................................................... 58 

Figure 3-13. Distribution of dataset segments based on density. .................................................... 59 
Figure 3-14. Architecture of adapted PointNet++ of the performance. .......................................... 63 
Figure 3-15. Testing results and training time of cases A1-A9. ...................................................... 65 

Figure 3-16. Effect of stride and number of points on crack semantic segmentation using adapted 

PointNet++. ......................................................................................................................................... 66 
Figure 3-17. Effect of stride and number of points on spall semantic segmentation using adapted 

PointNet++. ......................................................................................................................................... 67 
Figure 3-18. Architecture of SNEPointNet++ with the best performance (Case M4). .................. 70 
Figure 3-19. Effect of stride on crack semantic segmentation using SNEPointNet++. ................. 73 

Figure 3-20. Effect of stride on spall semantic segmentation using SNEPointNet++. .................. 74 
Figure 3-21. Three samples of semantic segmentation. ................................................................... 77 
Figure 3-22. Classifying testing results based on depth of segments. ............................................. 78 

Figure 4-1. Scanner position on top of the UAV in (a) and under (b). ........................................... 83 
Figure 4-2. Six degrees of freedom of a UAV (Getbestcopter, 2016). ........................................... 84 
Figure 4-3. LiDAR specifications...................................................................................................... 85 

Figure 4-4. Proposed framework for path planning. ........................................................................ 87 
Figure 4-5. Calculating minimum cell size. ...................................................................................... 88 
Figure 4-6. The meshed bridge surface. ............................................................................................ 88 

Figure 4-7. Determining the level of criticality of each zone. ......................................................... 89 
Figure 4-8. Assigning IVs to cells. .................................................................................................... 90 
Figure 4-9. Scanning defects.............................................................................................................. 91 

Figure 4-10. Scanning defects in case of an obstacle. ...................................................................... 91 
Figure 4-11. Maximum visible area from VPI located at minimum distance from surface. ......... 92 
Figure 4-12. Selecting VPIs based on criticality levels.................................................................... 93 

Figure 4-13. Path length matrix calculation pseudocode. ................................................................ 94 
Figure 4-14. Inspected bridge in Alberta, Canada. ........................................................................... 95 
Figure 4-15. Relation between flight time and payload for Matrix 100. ........................................ 95 

Figure 4-16. Modeled bridge structure. ............................................................................................. 96 
Figure 4-17. Results of bridge structural analysis. ........................................................................... 96 
Figure 4-18. Risk zones and sampled VPIs (bottom view of bridge). ............................................ 97 

Figure 4-19. Importing the model into Unity.................................................................................... 97 
Figure 4-20. Meshed surface of the bridge. ...................................................................................... 97 
Figure 4-21. Four optimization results. ............................................................................................. 98 

Figure 4-22. Visual representation for the calculated path. ............................................................. 98 
Figure 4-23. Percentage of cells in each zone at any given incidence angle. ................................. 99 
 

Figure B-1. A segment of a concrete bridge including defects in Cloud Compare. ..................... 121 
Figure B-2. Arrangement of dataset. ............................................................................................... 122 



xi 

 

LIST OF TABLES 
Table 2-1. Defects severity based on depth (d), width (w), and height (h) of the defect (Ontario 

Ministry of Transportation, 2008) ....................................................................................................... 8 

Table 2-2. Examples of 3D datasets for semantic segmentation (Garcia-Garcia et al., 2017). ..... 14 

Table 2-3. Usage of point cloud-based methods in inspection (construction industry). ................ 19 

Table 2-4. Summary of the most related point cloud-based concrete surface defect detection 

studies. ................................................................................................................................................. 26 

Table 2-5. Image-based semantic segmentation of surface defect using DL.................................. 28 
Table 2-6. Summary of the literature review of UAV path planning for inspection...................... 41 
Table 3-1. FARO Focus3D LiDAR specifications (FARO Technologies Inc., 2011). ................. 54 

Table 3-2. Scanning information. ...................................................................................................... 56 
Table 3-3. Statistics of the annotated dataset before augmentation. ............................................... 59 
Table 3-4. List of number of points per block, block sizes, and their densities. ............................ 61 

Table 3-5. Training and evaluation results of adapted PointNet++ for various stride sizes and 

numbers of points per block. .............................................................................................................. 64 
Table 3-6. Testing results of adapted PointNet++ for various stride sizes and numbers of points 

per block. ............................................................................................................................................. 64 
Table 3-7. Hyperparameter values in each round of sensitivity analysis. ....................................... 68 
Table 3-8. Training and evaluation results of the top five combinations of sublayers and sampling 

sizes. .................................................................................................................................................... 69 
Table 3-9. Testing results of the top five combinations of sublayers and sampling sizes. ............ 69 
Table 3-10. Testing results for different block sizes. ....................................................................... 71 

Table 3-11. Testing results for different numbers of points per block. ........................................... 71 
Table 3-12. Testing results for various stride sizes and numbers of points per block. .................. 72 
Table 3-13. Comparison between PointNet++ and adjusted networks (best configurations)........ 76 

Table 3-14. Training and evaluation results...................................................................................... 76 
Table 3-15. Testing results. ................................................................................................................ 76 
Table 3-16. Classifying the testing results based on the segment depth. ........................................ 78 

Table 3-17. Comparison between SNEPointNet++ and image-based DL semantic segmentation 

methods. .............................................................................................................................................. 79 
Table 3-18. Comparison between SNEPointNet++ and similar point cloud-based methods. ....... 81 

Table 4-1. Determine three ranges for shear and bending moment................................................. 89 
Table 4-2. Takeoff weight and flight time for Matrix 100. .............................................................. 95 
Table 4-3. Path planning results for three cases. ............................................................................ 100 

 

  



xii 

 

LIST OF ABBREVIATIONS 
2D 2-Dimensional 

3D 3-Dimensional 

4D 4-Dimensional 

AASHTO American Association of State Highway and Transportation Officials 

ACO Ant Colony Optimization 

ADAM Adaptive Moment Optimization 

AGP Art Gallery Problem 

AI Artificial Intelligence 

ALS Airborne Laser Scanning 

BIM Building Information Model 

BSMP Bridge Safety Management Program 

CAD Computer-Aided Design 

CNN Convolutional Neural Network 

CSA Canadian Standards Association 

DGCNN Dynamic Graph Convolutional Neural Network 

DL Deep Learning  

DNN Deep Neural Network 

DoF Degree of Freedom 

FC Fully Connected 

FBX Film Box 

FHWA Federal Highway Administration 

FN False Negative 

FoV Field of View 

FoVH Horizontal Field of View 

FoVV Vertical Field of View 

FP False Positive 

FPPM Fast Path Planning Method 

GA Genetic Algorithm 

GPS Global Positioning System 

HDF Hierarchical Data Format 

IFC International Foundation Class 

IoU Intersection over Union 

IV Importance Value 

LiDAR Light Detection and Ranging 

LKH Lin-Kernighan Heuristic 

mIoU mean Intersection over Union 

ML Machine Learning 

MLP Multilayer Perceptrons 

MLS Mobile Laser Scanning  



xiii 

 

MVCNN Multi-View Convolutional Neural Network  

NBIS National Bridge Inspection Standards 

NDT Non-Destructive Testing 

NP Nondeterministic Polynomial 

OA Overall Accuracy 

OM Operation and Maintenance 

OSIM Ontario Structure Inspection Manual 

PS Phase-Shift 

PSO Particle Swan Optimization 

RAM Random-Access Memory 

ReLU Rectified Linear Unit 

RGB Red Green Blue 

RMSProp Root Mean Square Propagation 

RRT Rapidly-exploring Random Tree 

RRT* Rapidly-exploring Random Tree Star 

SLAM Simultaneous Localization And Mapping 

SNEPointNet++ Surface Normal Enhanced PointNet++ 

TLS Terrestrial Laser Scanning  

TN True Negative 

ToF Time-of-Flight 

TP True Positive 

TSP Traveling Salesman Problem 

UAV Unmanned Aerial Vehicle 

VPI View Point of Interest 

  



xiv 

 

LIST OF SYMBOLS 

𝑁⃗⃗  Normal vector 

𝑑𝑏 Laser beam diameter 

𝛼1 Incidence angle 

𝛼𝑅 Angular resolution 

dmax Maximum distance 

dmin Minimum distance 

 

 



1 

 

CHAPTER 1   INTRODUCTION 

1.1 Background 

Several bridges have collapsed over the last few decades, causing many fatalities, injuries, and 

damages. For example, There are several bridges such as I-35W Highway Bridge, Minneapolis, 

U.S. (NTSB, 2008), which collapsed in 2007 because of insufficient inspection. Collapses could 

be prevented through efficient management and regular inspection. In Canada, most bridges have 

exceeded more than half of their expected service life, leaving a heavy burden of investment 

towards rehabilitation and maintenance (Gagnon et al., 2008). Despite the development and use of 

several new techniques for detecting bridge defects, visual inspection remains the main approach 

in detecting surface defects, such as cracks, spalling, and corrosion (Laefer et al., 2014). 

Conditions highlighted in previous inspections, combined with high traffic volume might demand 

higher inspection frequency (Transports Canada, 2012), leading many researchers to explore new 

method for increasing visual inspection efficiency, safety, and accuracy. The main problem of 

visual inspection is its reliance for the most part on manual data collection using non-equipped 

eyes, which is subjective and time-consuming (Dorafshan and Maguire, 2018). Also, some 

approaches require inspectors to access different bridge components using certain tools (e.g., 

cherry picker (Figure 1-1), ropes), which may affect traffic on the bridge and related project cost. 

According to Michigan Department of Transportation reports, closing off a four-lane highway 

bridge in a metropolitan area for 10 hours costs approximately US$14,600 (Mcful, 2018). 

Moreover, using cherry pickers and ropes could be unsafe for the inspectors. Figure 1-2 shows the 

failure of a cherry picker over the edge of the bridge on I-84 road of West Hartford in 2015, which 

led to the inspector's death (The Vertikal Press, 2015). 

 

Figure 1-1. Using a cherry picker to inspect a bridge (Facelift Ltd., 2017). 

 

Figure 1-2. Failure of a cherry picker during under-bridge inspection (The Vertikal Press, 2015).  



2 

 

For many bridges (e.g., Montreal Turcot bridge (Figure 1-3)), the geometry is problematic, which 

complicates the use of supplementary devices while also raising the risk of falling for inspectors 

trying to access all components (Kim et al., 2015b). Therefore, to ensure safer, more efficient, and 

accurate bridge inspection, an automated data acquisition system should be developed (Liu et al., 

2014). 

 

Figure 1-3. Example of highway bridges (Montreal Turcot Interchange) (FOTOimage Montreal, 2017). 

In the visual inspection of concrete bridges, surface defects (e.g., cracks) can be inspected using 

3D Light Detection and Ranging (LiDAR) scanners as a Non-Destructive Testing (NDT) method. 

However, the commonly used terrestrial LiDAR is limited to stationary data collection, which 

reduces the accessibility to some components of the bridge. An unmanned system that supports 

the inspector’s role provides a safer and more efficient inspection (Dorafshan and Maguire, 2018). 

For instance, an Unmanned Aerial Vehicle (UAV) can fly to all parts of a large structure to collect 

data using a mounted LiDAR or/and camera (Barazzetti and Scaioni, 2009). This technology saves 

time and money. For example, inspecting the second largest bridge in Minnesota with traditional 

methods, using three snooper inspection vehicles, costs approximately US$59,000 in eight days; 

while using a UAV would amount to around US$20,000 in five days (Hampel and Maas, 2009). 

A UAV can scan inaccessible surfaces from closer distance, improving safety, accuracy, and 

efficiency. Both the scanner and the UAV have limitations and specifications which should be 

considered to achieve efficient results. 

1.2 Problem Statement 

The key problems of point cloud-based methods for concrete bridge surface defect detection can 

be attributed to three main issues as follows: 

(1) The first issue is regarding the methods for detecting bridge surface defects using point 

clouds. According to the comparison between point clouds and images, which will be discussed in 

Section 2.3, using point clouds is more beneficial for surface defect detection of bridges. Several 

point-cloud based methods only focus on the point cloud features (x, y, z), while there are also 

some features (i.e., colors and normal vectors), which may be useful for detecting the surface 

defects (Teza et al., 2009; Olsen et al., 2010; Kim et al., 2015b).  

On the other hand, Deep Learning (DL)-based methods have attracted the researchers’ attention 

for concrete surface defect detection (Mohammed Abdelkader et al., 2021; Wang et al., 2022). In 

computer vision, DL-based methods can be used for applications such as classification, semantic 

segmentation, and instance segmentation. In terms of detecting the defects, classification models 



3 

 

are able to identify the existence of a defect in the input, while semantic segmentation refers to 

labeling each point individually (Qi et al., 2017a). Instance segmentation provides an even more 

detailed analysis by distinguishing between different instances with the same label, in addition to 

labeling each point (Jiang et al., 2020). Compared to classification, semantic segmentation, which 

can be the initial step for instance segmentation, is more beneficial for surface defect detection due 

to providing detailed information about each point. 

Despite the tremendous improvements in this area, no DL method is currently available for 

semantic segmentation of bridge surface defects without converting the raw point cloud dataset 

into images or voxels, which results in increasing the size of the dataset and leads to some 

challenges regarding storage capacity, cost, and training time. 

Some point cloud-based semantic segmentation methods such as PointNet (Qi et al., 2017a) and 

PointNet++ (Qi et al., 2017b) are promising. These methods have been applied in segmenting 

bridge components (i.e., slabs, piers), but not for segmenting surface defects (i.e., cracks, spalls).  

Furthermore, in visual inspection, inspectors try to detect different types and sizes of surface 

defects simultaneously. However, most of the current point cloud-based concrete surface defect 

detection methods focus on only one type of defects (Kim et al., 2015b; Turkan et al., 2018).  

(2) The second issue is related to the data collection method. The reliability of DL-based 

methods depends on the size and quality of the dataset. Therefore, data collection process plays an 

important role in bridge inspection. During bridge inspection, depending on the type of visual 

sensor mounted on/under the UAV (e.g., camera, LiDAR), different types of data (e.g., images, 

3D point clouds) can be collected. Although the UAV flying path can be controlled using remote 

controllers (Xu and Turkan, 2019), automating and optimizing UAV path planning is preferable 

for being able to trace a collision-free path with minimum flight time (Bircher et al., 2016a). 

Covering all bridge surfaces by the UAV is of utmost importance. In case of using LiDAR, the 

data accuracy depends on several parameters, such as the incidence angle of the laser beam and 

scanner-structure distance. To increase the efficiency and accuracy of this approach, in addition to 

optimizing the flight path of the UAV considering the path length and full coverage of the 

inspected area, it is crucial to scan all parts of the bridge with a near perpendicular view. However, 

in the case of obstacle existence (e.g., bridge piers), achieving full coverage with near 

perpendicular view may not be possible. To provide more accurate results, using overlapping 

views (i.e., scanning the surface from more than one view) is recommended. However, this method 

could result in increasing the inspection cost and time. Therefore, overlapping views should be 

considered only for surface areas where defects are expected. It should be mentioned that at the 

time of developing this research, the technology for LiDAR-equipped UAV is not readily available 

to be practically applied for bridge inspection due to the lack of an affordable light high-quality 

3D LiDAR capable of being mounted on UAV. 

(3) The third issue is regarding lack of available point cloud dataset for concrete surface defect 

detection. Recently, the use of DL-based methods has been increasing in the construction industry 

(i.e., activity recognition (Torabi et al., 2021), building element classification (Koo et al., 2021)). 

In DL, a dataset plays a key role in terms of variety, diversity, accuracy, and size. In other words, 

a large high-quality dataset leads to better learning and can help to increase the performance and 

generalization of the trained model. Many image-based DL methods have been applied on the 



4 

 

publicly available datasets (i.e., MS-COCO (Lee et al., 2019), SDNET2018 (Maguire et al., 2018)) 

for surface defect detection. However, the lack of publicly available point cloud datasets for bridge 

surface defects is one of the reasons of the lack of studies in the area of point cloud-based methods.  

1.3 Research Objectives 

The long-term goal of this study is to achieve an effective and efficient bridge visual inspection 

using a LiDAR-equipped UAV. Thus, the following objectives are set for this research. 

(1) Creating a publicly available point cloud dataset for concrete bridge surface defect 

semantic segmentation. 

(2) Developing a point cloud-based semantic segmentation DL method to detect different types 

of concrete surface defects. 

(3) Proposing a novel near-optimal path planning method for LiDAR-equipped UAV with 

respect to the minimum path length and maximum coverage considering the potential 

locations of defects. 

1.4 Overview of the Research Methodology 

As shown in the overview of the research methodology in Figure 1-4, this research consists of two 

main modules, which are proposed to meet the main research objectives. Module 1 aims to create 

a publicly available dataset and detect concrete surface defects (i.e., spalls and cracks) using an 

adjusted network based on PointNet++ (Qi et al., 2017b). This network is called Surface Normal 

Enhanced PointNet++ (SNEPointNet++). The following aspects are considered to adjust the 

model: (1) increasing the size of the dataset by augmentation (i.e., flipping), (2) addressing the 

issue of the imbalanced dataset for priority classes, which have smaller parts of the dataset (i.e., 

cracks and spalls) (3) focusing on the most relevant features of defects by considering the color, 

normal vector, and depth as input features, and (4) applying sensitivity analysis to capture the best 

combinations of the hyperparameters for an accurate model. As shown in Figure 1-4, the point 

cloud dataset is collected using LiDARs and then prepared for training in four main steps: (1) 

normal vectors calculation, (2) annotation: annotating and labeling the point clouds into the classes 

(i.e., cracks, spalls, no defects), (3) augmentation: flipping the dataset horizontally and vertically, 

and (4) data preprocessing and adding the normalized depth value. The dataset is publicly available 

at SNEPointNet++ Dataset (Bolourian, 2022). Sensitivity analysis is used to select the values of 

hyperparameters of the network. The output of this module is a trained model, which is validated 

and tested on the unseen damaged concrete surfaces. This model can be used for the automatic 

semantic segmentation of the surface defects (i.e., cracks and spalls). This method is explained in 

detail in Chapter 3. 

Module 2 focus is on path planning of LiDAR-equipped UAV in two main steps: (1) defining 

View Points of Interest (VPIs), and (2) finding the optimal path. 

Since the model-based method is used for the proposed path planning, the 3D bridge models (e.g., 

CAD file, Bridge Information Model (BrIM)) should be provided. Those models can be developed 

based on the available design documents or the 3D scans of the structure. In the first step, 

considering several factors (i.e., Fields of View (FoVs) of the LiDAR, minimum distance between 

the LiDAR and the bridge surface, overlapping views, and the levels of the criticality) in defining 

the VPIs improves the accuracy and efficiency of data collection. During scanning the bridge, the 

laser beams may not detect a defect for different reasons: large incidence angle, non-perpendicular 

view, the existence of obstacles, and relatively large size of beam steps. Scanning the defects from 



5 

 

more than one VPI and providing overlapping views better estimate the defect size. On the other 

hand, the critical sections are located at the areas, which are expected to have a higher potential of 

the existence of defects. The bending moment and shear diagrams can identify the location of these 

critical sections. Then, an Importance Value (IV) is assigned to each section corresponding to its 

level of critically.  

In the second step, a cost matrix is calculated based on the shortest collision-free path length 

between each two VPIs using A*, which is a search-based path planning algorithm. Then, a 

Traveling Salesman Problem (TSP) is defined and solved using a Genetic Algorithm (GA) to find 

a near-optimal flight path with a minimum flight time passing through all VPIs based on the 

calculated cost matrix.  

Finally, the bridge surface coverage is calculated considering the level of criticality. If the coverage 

is not acceptable, new VPIs are added, and the process should be repeated. This module is 

explained in detail in Chapter 4. The UAV flies based on the final path automatically to collect the 

3D point clouds of the bridge surface. 

D
at

a 
Pr

ep
ar

at
io

n

Data Collection

Normal Vector 
Calculation

Annotation

Augmentation

Annotated 
Dataset

Semantic 
SegmentIon of 

Module 1:
Creating Point Cloud Dataset & 

Concrete Surface Defect Semantic Segmentation

Data 
Preprocessing

S
e

n
si

tiv
ity

 A
n

a
ly

si
s

Train ing & 
Evaluation 

Testing

Se
le

ct
 V

PI
s

Analyze the 
structure

Determine 
Criticality Levels

Assign IVs

Add VPIs

Module 2:
LiDAR-equipped UAV Path Planning Considering Potential Locations of Defects  for Bridge Inspection

Select In itial 
VPIs

Fi
nd

 O
pt

im
al

 P
at

h

Calculate Cost 
Matrix

Find the pathConstraints
BrIM

Calculate 
Coverage

Vis ib ility 
Acceptable?

Optimum 
Flight Path

Yes

No

 

Figure 1-4. Overview of research methodology. 



6 

 

1.5 Thesis Organization 

The remaining of this proposal is divided into five chapters, which are structured as follows: 

Chapter 2: Literature Review  

This chapter starts with introducing two popular methods, camera- and LiDAR-based methods, in 

bridge visual inspection and comparing them based on their advantages and shortcomings. 

Afterward, the chapter reviews the existing studies related to defect detection using point cloud 

and ML and UAV path planning. First, the literature review comprises the concepts of DL-based 

semantic segmentation methods, followed by introducing point cloud-based semantic 

segmentation methods and their applications in inspection. Then, the relevant literature on point 

cloud-based bridge surface defect detection methods, including Machine Learning (ML) and non-

ML methods, is reviewed to find the gaps in this area. The remaining part of this chapter is 

allocated to UAV path planning including the review of the most promising obstacle-free path 

planning algorithms, coverage path planning algorithms, and TSP solver methods. Finally, the 

most relevant UAV path planning studies are reviewed.  

Chapter 3: Point Cloud-based Concrete Surface Defect Semantic Segmentation  

This chapter covers two objectives of this research: creating a point cloud dataset and concrete 

bridge surface defect semantic segmentation. It starts by explaining the main aspects considered 

in SNEPointNet++ to adjust the original PointNet++ and improve the network performance. This 

is followed by the framework of the two adjusted networks: adapted PointNet++ and 

SNEPointNet++. Adapted PointNet++ is applied to evaluate and ensure the feasibility of using 

PointNet++ for surface defect detection. Later, in SNEPointNet++, normal vectors are used as 

additional input to improve the performance of the network. Then, the publicly available dataset 

is created using the collected point clouds from four bridges in Montreal, which are used later in 

the case study to validate the proposed method and reach the best SNEPointNet++ model for 

semantic segmentation of cracks and spalls. 

Chapter 4: LiDAR-Equipped UAV Path Planning Considering Potential Locations of Defects for 

Bridge Inspection 

This chapter presents the research method for LiDAR-equipped UAV path planning. First, the 

considerations, requirements, and constraints were introduced, followed by explaining the 

developed path planning method considering the potential location of defects. Afterward, the case 

study focused on planning a flying path for a LiDAR-equipped UAV to scan the lower surface of 

a three-span bridge deck. 

Chapter 5: Summary, Contributions, and Future Work 

The work and the conclusions are summarized in this chapter. Moreover, the contributions and the 

limitations of the proposed methods are highlighted. Finally, some suggestions are recommended 

to overcome the limitations and expand this research in the future. 

  



7 

 

CHAPTER 2   LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the literature review in the areas related to the scope of this research, 

including bridge inspection, path planning, point-cloud semantic segmentation, and defect 

detection. The main purpose of this review is to identify the gaps in previous studies and determine 

the most appropriate techniques to overcome those shortcomings. To this end, first, bridge 

inspection and the most common methods of visual bridge inspection are introduced in Sections 

2.2 and 2.3, respectively, followed by the comparison of LiDAR scanning platforms. Section 2.5 

reviews point cloud-based semantic segmentation methods, which are used in inspection as well 

as the point cloud-based ML and non-ML methods, which are used in concrete surface defect 

detection. Finally, Section 2.6 provides extensive reviews of UAV path planning and its 

application in inspection.  

2.2 Bridge Inspection 

Structural inspection is essential to improve the sustainability and safety of infrastructure systems 

(e.g., bridges). Aging and environmental conditions are some of the inevitable causes of bridge 

deterioration (Le et al., 2017). A good maintenance system should be undertaken to keep the 

infrastructures in a fully functioning or operating condition. Figure 2-1 illustrates the quantitative 

relationship between the deterioration of Canada’s infrastructure and the level of maintenance 

(Mirza, 2006). The quality of the infrastructure performance is rated on a scale from 0 to 1, where 

1 is the perfect performance, and four levels of maintenance are considered, 0%, 1%, 1.5%, and 

2%. The maintenance level is corresponding to the percentage of the infrastructure construction 

cost. It can be seen that a higher level of maintenance leads to longer anticipated service life and a 

higher level of performance. To have effective maintenance, efficient inspection is required. 

 

Figure 2-1. Level of performance vs. time relationship for various levels of maintenance (Mirza, 2006). 

Bridge inspection has been developed over many decades. National Bridge Inspection Standards 

(NBIS) were established in 1971 by the Federal Highway Administration (FHWA), including 

regulations, policies, and guidelines to standardize inspection methods and qualifications. 



8 

 

Although there is no national Canadian bridge inspection standard, a part of the Railway 

Transportation Safety Guideline is related to bridge inspection (Government of Canada, 2021).  

Each bridge inspection standard includes a different classification for bridge inspection (Hsien-Ke 

et al., 2017). However, there are five main types, namely:  

• Initial inspection: It is the inspection done after finishing the construction and should be 

repeated after the rehabilitation of the bridge or any other changes related to the bridge.    

• Routine inspection: This intermediate-level inspection is scheduled based on the bridge 

condition. According to the Ontario Structure Inspection Manual (OSIM) (2008), all 

bridges in good condition shall be inspected every two years. However, the inspection 

interval may be decreased, and the bridge may be inspected more frequently after a while 

because of aging or poor condition. Inspecting the bridges regularly helps the inspector to 

track the propagation of defects. 

• Damage inspection: In case of unexpected damages, damage inspection is done to assess 

the necessity of urgent bridge load restriction or bridge closure, as well as an urgent repair 

action 

• In-depth inspection: This inspection is done to inspect the important components or the 

ones susceptible to defects. Moreover, in-depth inspection makes an effort to cover the 

missed or improbably inspected elements over routine inspection.   

• Interim/Special inspection: It can be defined as a specific inspection that should be 

scheduled at the discretion of the inspection responsible authorities. 

According to Transport Canada Guideline, “each Bridge Safety Management Program (BSMP) 

should include a visual inspection for each bridge in service at least once each calendar year with 

not more than 540 days between any successive inspections”. While more frequency may be 

required considering the condition noted on the previous inspection, the type and configuration of 

the bridge, and volume of traffic (Transports Canada, 2012).  

Reinforced concrete structures experience loss of integrity during their service life because of 

corrosion, salt and acid actions, the influence of high temperature, shrinkage, or water (Bien and 

Zwolski, 2007). Concrete deck deterioration can be classified into two categories based on the 

location of the defect: surface or subsurface defects (Ahlborn et al., 2010). Visual inspection is a 

common method to detect surface defects. As shown in Table 2-1, four levels of severity can be 

determined for some defects (e.g., scaling, spalling, delamination) based on their sizes (i.e., depth, 
width, and height of the affected area). 

Table 2-1. Defects severity based on depth (d), width (w), and height (h) of the defect (Ontario Ministry of 

Transportation, 2008) 

Type of 

defects 
Light* Medium* Severe* Very Severe* 

Scaling d < 5 5 ≤    d   < 10 10 ≤    d   < 20 20 ≤ d 

Delamination w, h < 150 150 ≤ w, h < 300 300 ≤ w, h < 600 600 ≤ w, h 

Spalling 
w, h < 150 

d < 25 

150 ≤ w, h < 300 

25 ≤    d   < 50 

300 ≤ w, h < 600 

50 ≤    d   < 100 

600 ≤ w, h 

100 ≤ d 

* All dimensions are in mm 



9 

 

2.3 Visual Inspection Methods 

Visual inspection is a common structural inspection method. Using naked eyes in bridge inspection 

is unsafe, time-consuming, expensive, and subjective because of human errors (Guldur et al., 

2015). As shown in Figure 2-2, the inspectors may use their experience and manual measurements 

during the inspection, which results in different outcomes depending on the level of inspector 

experience (Morgan and Falkner, 2001). Moreover, reaching all parts of the surface takes time and 

puts the inspector at the risk of falling hazards during inspection (Kim et al., 2015a). To this end, 

several technologies (i.e., cameras, LiDARs) have been recently developed to detect surface 

defects automatically and accurately.  

 

Figure 2-2. Visual inspection using naked eyes (Ma and Sacks, 2016). 

 

2.3.1 Camera-based Methods 

Camera-based methods using images are common and cost-efficient. These methods are used in 

detecting surface defects such as air pockets (Zhu and Brilakis, 2008), potholes (Koch and Brilakis, 

2011), cracks (Hutchinson and Chen, 2006), and determining some characteristics such as the 

length and width of cracks (Barazzetti and Scaioni, 2009; Hampel and Maas, 2009; Adhikari et 

al., 2014). In terms of concrete surface defect detection and assessment, many improvements are 

needed to overcome the questionable noisy data and increase the accuracy, which is related to 

camera pose, camera distance, and environmental conditions (e.g., lighting and shading at different 

locations) (Koch et al., 2015). 

2.3.2 LiDAR-based Methods 

LiDAR-based methods focus on a 3D point cloud dataset containing geometrical information of 

the sparse captured points collected by a LiDAR. The geometrical information (x, y, z) of points is 

calculated based on the measured distances of the scanned objects or surfaces from the scanner 

location (Rashidi et al., 2020). Many researchers have studied how these methods apply to surface 

defect detection (Laefer et al., 2014; Kim et al., 2015b; Guldur and Hajjar, 2016) and mass losses 

(Teza et al., 2009). 

2.3.3 Comparison between Camera- and LiDAR-based Methods 

Both camera- and LiDAR-based methods are much more time-efficient than manual measurements 

(Rashidi et al., 2020). The necessity of providing supplementary information (i.e., camera lens, 

focal length) before analyzing the images and its high sensitivity level to environmental conditions 

(e.g., lighting and shading) are the main shortcomings of camera-based methods (Laefer et al., 

2014). Although LiDAR-based methods can work properly regardless of any information related 



10 

 

to the equipment or target, determining that information may be helpful in improving the 

inspection method. 

Furthermore, most camera-based methods are defined for simple curved or flat concrete surfaces. 

Consequently, they may fail at analyzing more complex structures, geometries, and materials 

(Koch et al., 2015). For instance, Zhang et al. (2014) proposed an image processing method to 

detect the cracks of simple subway tunnels and concluded that although the images were practical 

in their case study, LiDAR scanning is a better technique for inspecting complex structures. 

Having the third dimension is the main advantage of point clouds over images. Although images 

collected by a depth camera can represent the surface depth, several images with different setups 

must be collected to cover the whole part of a structure depth due to its narrow FoV. Moreover, 

the registration process of these images is time-consuming (Maru et al., 2021), which further limits 

their applicability. Another approach to extract the depth of concrete surface defects (i.e., spalling 

distress) is a regression analysis model based on computer vision and situ measurements (Dawood 

et al., 2017). Computer vision using cameras may detect the boundaries of defects more efficiently 

than LiDAR (Demir and Baltsavias, 2012).  

Despite the high initial cost of LiDARs, using them may be more profitable and economical in the 

long term. Some researchers focused on improving the resolution of image-based reconstructed 

models (Khaloo et al., 2018). Khaloo et al. (2018) generated a 3D point cloud bridge model using 

2,000 high-resolution images, which resulted in three times higher local noise and lower precision 

compared to the scanned bridge model using a LiDAR. Moreover, the quality of the image-based 

reconstructed model is lower than the LiDAR-based model due to the complexity of detecting the 

interaction of the background and the inspected bridge, especially in case of low contrast. 

To consider the colors of images as well as the three dimensions of point clouds, several methods 

are developed using a dataset, which includes all these features (Olsen et al., 2010; Guldur and 

Hajjar, 2017).  

2.4 LiDAR Scanning Platforms  

Laser scanning platforms are of three types: Terrestrial Laser Scanning (TLS), Mobile Laser 

Scanning (MLS), and Airborne Laser Scanning (ALS) (Crosby, 2016), as shown in Figures 2-3 

and 2-4. 

  
(a) TLS using tripod  

(FARO Technologies Inc., 2012)   
(b) MLS using car (Habel, 2017) 

Figure 2-3. Terrestrial laser scanning and mobile laser scanning. 



11 

 

 

 

(a) Using airplane (Bennett, 2015)  (b) Using UAV (Synergy Positioning Systems 

Ltd., 2018)  

Figure 2-4. Airborne laser scanning. 

TLS uses tripods but provides limited access to bridge components. TLS typically operates at short 

ranges (few meters to hundreds of meters) and has cm-scale footprints (diameter of laser pulse). 

The spacing between consecutive pulses varies in the order of millimeters to centimeters. The 

instrument is stationary and is generally fixed on a survey tripod about 1.5 m above ground. 

In MLS, a LiDAR is mounted on a moving object (e.g., van) (Lehtomäki et al., 2016). It is used 

mostly in pavement inspection to find cracks or road markings (Guan et al., 2015). The visual 

sensor can be mounted on a flying vehicle (e.g., airplane, helicopter, or UAV) in the ALS method, 

as shown in Figure 2-4. Since UAV can reach parts of large structures that are difficult to access, 

it has been used for monitoring bridges (Lattanzi and Miller, 2015) and power-lines (Kroll et al., 

2009), as well as for the 3D reconstruction of boiler power-plant (Burri et al., 2012) and gas 

pipelines surveillance (Boon and Lovelace, 2014).  

All three types undergo small scanner vibrations that can be caused by the LiDAR instability, the 

moving supporting vehicle (e.g., car or UAV), or the wind effect on the UAV (Reshetyuk, 2006). 

However, ALS is the most vibration-sensitive system (Xu et al., 2015). TLS provides high stability 

for the scanner and less vibration, but it is not time and cost-efficient because of the need to scan 

from multiple points. 

In contrast to TLS, in ALS, the easy access to most parts of the structure helps the UAV to collect 

a denser set of points from a closer distance with a nearly perpendicular view of the damaged 

surfaces. This unmanned method also eliminates safety risks to inspectors (Metni and Hamel, 

2007). Although the UAV flight path can be controlled remotely (Xu and Turkan, 2019), having 

an automated path planner can provide an optimal flight path. 

2.5 Defect Detection Using Point Cloud and ML 

Recently, laser scanning has become one of the main sources of data collection in different phases 

of a project (e.g., construction, operation, and maintenance) including surface defect detection. 

The number of research projects in this field has increased over the last decade (Khallaf and 

Khallaf, 2021). In this section, after a summary of the related ML-based methods, their 

applications in the inspection are reviewed. Then, the recently developed point cloud-based surface 

defect detection methods, including ML and non-ML methods, are presented. 



12 

 

2.5.1 Machine Learning and Deep Learning 

2.5.1.1 Machine Learning 

Artificial Intelligence (AI) is a technology with the ability of human intelligence simulation. In 

other words, it gives computer systems the “learning” and “human-like decision making” ability 

(Michalski et al., 2013). ML is a subfield of AI, enabling machines to learn from the available data 

from processing data without explicit programming. ML algorithms are used to train a model that 

can explain the relationship between several dataset features. Those algorithms can be categorized 

into three main groups: supervised, unsupervised, and reinforced learning (Khallaf and Khallaf, 

2021). 

2.5.1.2 Deep Learning 

DL is a subset of ML that uses the experience of the dataset to be learned. The DL architecture is 

constructed by several layers including input, multiple hidden layers, and output, which are 

responsible for receiving data, extracting patterns, and producing results, respectively (Ongsulee, 

2018). Deep Neural Network (DNN) is a well-known ML network inspired by the biological 

neurons of human brains with multiple hidden layers. Convolutional Neural Network (CNN) is a 

class of Neural Network (NN) specialized in using a convolving process to learn the input 

characteristics.  

Although the breakthrough moment of CNN was in 2012, one of the main foundations of the works 

was invented by LeCun et al. (1998), which was an algorithm to recognize online handwriting. 

Each CNN hidden layer contains convolution feature extraction, nonlinear activation, and down-

sampling. In CNN, each layer unit receives input from a set of units located in a small 

neighborhood in the previous layer. The local features (e.g., oriented edges, corners, and end-

points) can be extracted by local receptive fields, which are the regions covered by a filter. A filter 

including weights is sliding or convolving around the input to generate a feature map. In a linear 

classifier, the weights are multiplied by the original pixel value for convolving (Lin and Shen, 

2018). To reduce the resolution of the feature map and the sensitivity of the shifts, each 

convolutional layer is followed by a subsampling (pooling) layer to aggregate information within 

a region (Sun et al., 2017).  

Linear activation functions are very simple to be solved, and their ability is limited in recognizing 

complex mapping. Therefore, nonlinear activation functions (e.g., Rectified Linear Unit (ReLU), 

Sigmond, Tanha) can be used to solve the complex nonlinear problem (Sharma et al., 2017). 

Nonlinear activation functions are essential to remove the redundant data while preserving the 

features and to solve complex problems of complicated networks. ReLU, which is widely-used 

due to its easy computation and fast convergence speed, can be calculated using Equation 2-1. It 

returns zero if it receives any negative value; otherwise, it returns the input value (Lin and Shen, 

2018).  

𝑓(𝑥) = max  (0, 𝑥) Equation 2-1 

Figure 2-5 shows a piecewise function created by ReLU. Having more linear regions improves the 

network performance (Montufar et al., 2014). The number of linear regions (Ω) is bounded by  

Ω ((
𝑛

𝑖
)(𝐿−1) 𝑑. 𝑛𝑑) 



13 

 

where L, d, and n represent the number of layers, input dimension, and the number of nodes, 

respectively (Montufar et al., 2014).  

 

Figure 2-5. Binary classification using ReLU (Montufer et al., 2014) 

Focusing on the most relevant features during training leads to higher accuracy in training and 

saves time (Brownlee, 2014). Although a neural network can be trained to distinguish between the 

levels of impact of different features in classification and segmentation, it may be confused, 

especially when the training dataset is not big. Therefore, the irrelevant features are removed from 

the dataset before training, or some methods (i.e., filtering and wrapping) can be used for feature 

selection (Chandrashekar and Sahin, 2014). 

2.5.2 Point Cloud Datasets 

Data plays an important role in any ML system. Therefore, collecting adequate datasets is 

necessary to achieve an accurate model. The dataset should be properly generated based on the 

system, which can be used for classification and semantic segmentation. Datasets should represent 

the appropriate parameters and include different cases and scenarios based on the requirement. For 

example, in the case of detecting defects, the dataset should include the defects in different sizes, 

directions, and types.  

The datasets are categorized into three groups based on the nature of the data: 2D or plain Red 

Green Blue (RGB), 2.5D or RGB-Depth, and pure volumetric or 3D datasets (Garcia-Garcia et al., 

2017). Since the focus of most of the previous research was on images, large-scale 2D datasets are 

available for semantic segmentation, such as PASCAL Visual Object Classes (VOC) (Everingham 

et al., 2015), PASCAL Context (Mottaghi et al., 2014), Semantic Boundaries Dataset (SBD) 

(Hariharan et al., 2011), Youtube-Objects (Prest et al., 2012), and SDNET2018 (Maguire et al., 

2018). These datasets include gray-scale or RGB images. 2.5D datasets contain both RGB 

information and depth maps such as SUN3D (Xiao et al., 2013) and NYUDv2 (Silberman et al., 

2012). 

3D datasets, including Computer-Aided Design (CAD) meshes or point clouds, are limited, and 

generating them is costly and difficult. Since point clouds are disordered data and only a few DL 

methods can process them, they are not popular. A benchmark for 3D Mesh Segmentation (Chen 

Class A 

Class B 

Shallow model 

Deep model 



14 

 

et al., 2009), Sydney Urban Object Dataset (Quadros et al., 2012), Large-Scale Point Cloud 

Classification Benchmark (Semantic3D) (Hackel et al., 2016), ShapeNet Part (Yi et al., 2016), and 

Stanford 3D Indoor Scene Dataset (S3DIS) (Armeni et al., 2017) are examples of available datasets 

for semantic segmentation (Garcia-Garcia et al., 2017). However, they have limited classes. The 

information of each dataset (i.e., the number of samples, the number of classes, their application) 

is listed in Table 2-2. 

Table 2-2. Examples of 3D datasets for semantic segmentation (Garcia-Garcia et al., 2017). 

3D datasets Number of 
mesh/points 

Number of 
Classes 

Application Sample of Classes 

A benchmark for 
3D Mesh 
Segmentation 

380 meshes 19 
General 
Objects 

human, cup, glasses, airplane, ant, chair, 
octopus, table, teddy, hand, plier, fish, 
bird, armadillo, bust, mech, bearing, 

vase, four-leg 

Sydney Urban 
Object Dataset 

41 MPts 26 
Urban 
Objects 

vehicles, pedestrians, signs, trees 

Semantic3D 4 BPts 8 
Urban 
Objects 

churches, streets, railroad tracks, 
squares, villages, soccer fields, castles 

ShapeNet Part 32 MPts 16/50 
Common 
Objects/parts 

airplane, earphone, car, motorbike, bag, 

mug, laptop, table, guitar, knife, rocket, 
lamp, chair, pistol, car, skateboard 

S3DIS 70.5 MPts 13 
Indoor 
Objects 

ceiling, floor, wall, column, beam, 
window, door, table, hair, bookcase, 
sofa, board, clutter 

 

2.5.3 Point Cloud-based Semantic Segmentation Using DL 

DL can be used for semantic segmentation of point clouds. Semantic segmentation aims to separate 

point clouds into several subsets and label each point according to the corresponding semantic 

meanings. Point clouds can be indirectly or directly used for semantic segmentation (Guo et al., 

2020). Using two most common indirect methods, called Multiview-based (Boulch et al., 2018; 

Yavartanoo et al., 2018; Zhao et al., 2018) and voxel-based methods (Maturana and Scherer, 2015; 

Wu et al., 2015; Wang and Lu, 2016), point clouds are transformed into intermediate 

representations, which are multi-view images and voxel grids, respectively. Transforming point 

clouds into these representations results in voluminous data with unclear invariances in some cases 

(Grilli et al., 2017). In multi-view-based methods, after learning from 2D projections, the 

intermediate segmentation results are projected back to the raw point cloud. The generated meshes 

are complex with combinatorial irregularities (Qi et al., 2017a). Unlike the dataset of a voxel-based 

approach, which contains an ordered grid of point clouds (Pierdicca et al., 2020), a point cloud-

based one does not require specific pre-processing, and the unordered dataset is trained directly. 

Moreover, learning from point clouds is easier than meshes due to their simplicity and unified 

structure. Due to the higher computational efficiency, point cloud-based methods have recently 

been popular in the construction industry (Yin et al., 2021). 

2.5.3.1 PointNet 

PointNet (Qi et al., 2017a) is the pioneer point cloud-based DL architecture designed for point 

cloud classification, part segmentation, and semantic segmentation directly. This network was 

proposed to overcome the problems related to voxelization and rendering point clouds. Its input is 



15 

 

a set of points, which has three main characteristics. First, these points are unordered. Interaction 

among neighboring points is the second important characteristic of these datasets. The points are 

not isolated, and the local structure of the combination of neighboring points affects the semantic 

information of the point sets. The third characteristic of point clouds is being invariant under 

transformation. These three characteristics are considered in designing the architecture of 

PointNet. As shown in Figure 2-6, the network learns each point features using shared Multilayer 

Perceptrons (MLPs), which is a supplement of a feed-forward network, and global features using 

symmetrical pooling functions. 

As shown in Figure 2-6, PointNet has two sets of MLP. The first MLP accepts blocks of points as 

input, and each layer extracts detailed features of points by passing through a “unit PointNet”, 

which is similar to one-by-one convolving on the blocks in CNNs. Every hidden layer includes 

batch normalization and the ReLU activation function. The main goal of this set of MLP is to 

extract local features per point from a 9-dimensional input including coordinates, colors, and 

normalized values of each point. The output of the first MLP is a vector of all input points, where 

every point has a weight. This vector represents the extracted local features of points. A max-

pooling layer is applied to the feature vector to down-sample the features, followed by the second 

set of MLP to extract the global features of each point. The segmentation network has a set of MLP 

fed by the concatenation of the extracted local and global features. Thus, the score of each point 

can be predicted based on both global semantics and local geometry. Each convolutional layer in 

this set of MLP is followed by a dropout layer, except the last one. The output of this network is a 

vector of predicted probabilities belonging to each class for every point. Qi et al. (2017a) used 

S3DIS (Armeni et al., 2017) to validate PointNet semantic segmentation. 

 

Figure 2-6. PointNet architecture (Qi et al., 2017a). 

2.5.3.2 PointNet++ 

PointNet has two main shortcomings: (1) lack of local context learning and (2) translation 

invariance limitation (Yin et al., 2021). To overcome these limitations, PointNet++ proposed by 

Qi et al. (2017b) has hierarchical feature learning, which uses multiple Vanilla PointNet learners 

with different scales. As shown in Figure 2-7, first, a set of center points is sampled using the 

furthest-point sampling algorithm. Another main step is determining the neighboring points around 

each sampled center point using query ball grouping. Then, Vanilla PointNet is applied for local 

feature learning from each center and neighborhood. Moreover, since the density of point clouds 



16 

 

is not unified in all parts of a real dataset, PoinNet++ uses multi-scale and multi-resolution 

grouping (Figure 2-8). 

 

Figure 2-7. PointNet++ architecture for single scale point grouping (Qi et al., 2017b). 

 

 

Figure 2-8. (a) Multi-scale grouping (MSG); (b) Multiresolution grouping (MRG) (Qi et al., 2017b) 

2.5.3.3 Point Cloud-based DL Application in Structural Inspection 

Some studies have been focused on the implementation of point cloud-based DL, such as PointNet, 

PointNet++, Dynamic Graph CNN (DGCNN), and PointCNN, for inspection of sewer defects 

(Haurum et al., 2021) and underwater pipes (Martin-Abadal et al., 2021). 

Nasrollahi et al. (2019) adapted PointNet for semantic segmentation of the concrete bridge surface 

defects, which resulted in 74.9% accuracy and 46.6% Intersection over Union (IoU) (Figure 2-9). 

Using adapted PointNet++ led to 3.9% and 1.6% increases in defect detection accuracy and IoU, 

respectively (Nasrollahi, 2019). 



17 

 

n
 x

7

MLP (64,64,64,128, 256, 512)

n
 x

 5
1

2

M
ax

 p
o

o
l 

FC MLP (128, 64)

64

MLP (1024, dp, 512, dp, 128, dp, 2)

n
 x

 3

In
p

u
t 

p
o

in
ts

O
u
tp

u
t 
sc

o
re

s

 n x 576

Classification Network

Segmentation Network

 

Figure 2-9. Adapted PointNet for defect detection (Nasrollahi et al., 2019) 

Kim et al. (2020) used PointNet to detect decks and piers of reinforced concrete bridges from point 

clouds. Due to the small size of the training dataset, only two types of components were detected. 

Kim and Kim (2020) detected five types of components (e.g., abutment, slab, pier, girder, surface) 

using three different DL networks: PointNet, PointCNN, and DGCNN. The results showed that 

the Overall Accuracy (OA) of DGCNN was 0.66% and 1.94% more than PointNet and PointCNN, 

respectively. To implement PointNet, the training dataset should be divided into partitions, which 

may cause losing global features of large-scale scenes such as bridge structures (Xia et al., 2022). 

Hence, Xia et al. (2022) proposed a combination of ML and local descriptors focused on local 

regions. Based on the results, the performance of their proposed method was 12.39% and 48.8% 

better than PointNet in terms of OA and mean Intersection over Union (mIoU), respectively. 

The proposed combined local descriptor and ML approach only concerns local regions and thus 

has the evident advantage when high precision semantic models are demanded. Haurum et al. 

(2021) proposed using PointNet and DGCNN for the sewer defect detection using point clouds. 

DGCNN performed much better than PointNet in terms of both OA and mIoU. Another application 

of PointNet is in detecting underwater pipes and valves (Martin-Abadal et al., 2021). Moreover, 

Yin et al. (2021) detected industrial objects (e.g., pipe, valve, beams, and tanks) using PointNet, 

PointNet++, and ResPointNet++ resulting in 94.02% OA and 87.34% mIoU. Koo et al. (2021) 

evaluated the application of PointNet and Multi-View Convolutional Neural Network (MVCNN) 

to classify ten types of infrastructure Building Information Model (BIM) elements including 

columns, culverts, retaining walls, sumps, and wing walls. To implement PointNet and MVCNN, 

each element was converted into point clouds and 12 multi-view images, respectively. Compared 

to PointNet, using MVCNN algorithm leads to better results. However, training those models is 

not practical due to their long computation time (Koo et al., 2021). Bahreini and Hammad (2021) 

adapted DGCNN to detect two types of concrete surface defects, cracks and spalls, which resulted 

in 95.94% and 71.06% OA and mIoU, respectively.  



18 

 

Table 2-3 illustrates the studies in inspection, which have been recently developed based on the 

well-known point cloud-based semantic segmentation models. Based on the literature review, only 

two studies focused on structural concrete surface defect detection (e.g., cracks and spalls). 

Moreover, the results can be directly compared only if the same dataset is used. 

 



19 

 

Table 2-3. Usage of point cloud-based methods in inspection (construction industry). 

Reference Objective Classes Method Results (%) Dataset 

Nasrollahi et al. 
(2019) 

- Concrete surface defect detection 2 classes (defect, non-defect) PointNet OA: 85.7 21.5MPts 

Pierdicca et al. 
(2020) 

- Semantic segmentation of 
historical architectural elements 

10 classes (arc, column, 
decoration, floor, door, wall, 

window, stairs, vault, roof) 

PointNet OA: 21.58 
mIoU: 10.93 

1MPts 

PointNet++ OA: 24.48 
mIoU: 17.96 

DGCNN OA: 54.67 
mIoU: 35.78 

PCNN OA: 39.50 
mIoU: 33.11 

Modified DGCNN OA: 71.61 
mIoU: 37.69 

Kim and Kim (2020) 
- Comparison of bridge 

component classification DL 
methods 

6 classes (abutment, slab, pier, 
girder, surface, background) 

PointNet OA: 93.83 
mIoU: 84.29 

N/A 
PointCNN OA: 92.55 

mIoU: 76.78 

DGCNN OA: 94.49 
mIoU: 86.85 

Kim et al. (2020) 
- Bridge components 

segmentation 
3 classes (deck, pier, 
background) 

PointNet OA: 94 
mIoU: 84 

N/A 

Haurum et al. (2021) 

- Built a publicly available sewer 

point cloud dataset 
- Apply two DL methods for 

defect classification of sewer  

4 classes (normal, displacement, 
brick,  
rubber ring) 

DGCNN OA: 47.93  
mIoU: 46.10 

17,027 Pts 
PointNet OA: 18.38  

mIoU: 18.52 

Yin et al.(2021) 

- Built a publicly available 
industrial indoor LiDAR dataset 
for 3D semantic learning. 

- Proposed two neural modules to 
learn local structures and enable 
deeper networks 

6 classes (I- beam, pipe, pump, 
rectangular beam, tank) 

PointNet OA: 53.02  
mIoU: 21.14 

5MPts 
PointNet++ OA: 70.58  

mIoU: 45.52 

ResPointNet++ OA: 94.02 
mIoU: 87.34 

 



20 

 

Table 2-3. Usage of point cloud-based methods in inspection (construction industry). (Cont.) 

Ref Objective Classes Method Results (%) Dataset 

Martin-Abadal et 
al. (2021) 

- Semantic segmentation of 
underwater pipe and valves 

3 classes (pipe, valve, 
background) 

PointNet Mean F1-score: 
89.3 262Pts 

Koo et al.(2021) 
- Classify infrastructure BIM 

elements 

10 classes (column, 3 
types of culverts, 5 types 
of walls, sump) 

PointNet OA: 83 
F1-score: 87 

1,496 elements 
MVCNN OA: 98 

F1-score: 98 

Bahreini and 
Hammad (2021) 

- Detect concrete surface 
defect detection 

3 classes (crack, spall,  
no defect) 

DGCNN OA: 95.94 
mIoU: 71.06% 49MPts 

Xia et al.(2022) 
- Bridge components 

segmentation 
2 classes (slab, pier) 

PointNet OA: 84.35 

mIoU: 45.92 
447MPts 

Proposed OA: 96.74 
mIoU: 94.72 



21 

 

2.5.4 Concrete Surface Defect Detection Using Point Cloud 

Damage detection using point clouds can be based on geometrical features or/and color 

information (Mohammadi et al., 2019). Hou et al. (2017) proposed the combination of clustering 

algorithms (e.g., k-means, fuzzy c-means, subtract, and density-based spatial) and color (RGB) 

and intensity information of the point cloud dataset to detect surface defects such as metal 

corrosion and section losses. The results showed that k-means and fuzzy c-means clustering had 

better performance in terms of accuracy. Moreover, due to the effect of lighting conditions on color 

information, this information is less reliable in comparison to intensity information (Hou et al., 

2017). 

Liu et al. (2011) presented an algorithm to detect defects based on distance and gradient criteria of 

concrete bridge surfaces. This method was applied on a bridge cap to detect and quantify mass 

losses. Laefer et al. (2014) contributed a mathematical basis for using TLS to detect cracks in unit-

block masonry (i.e., stone, brick, or concrete masonry units). According to the mathematical and 

experimental results, the general trend of this method was overestimated crack width. The most 

sensitive factor was the orthogonal distance. To have a reliable result in detecting the width of 

cracks less than 5 mm, the orthogonal scanner distance to the inspected surface should not be more 

than 10 m. Therefore, more sampling steps, as a function of scan distance, lead to higher accuracy. 

It is recommended to locate the TLS at a distance below 7.5 m from the target with a maximum 

30° FoV. In another study, a new automated technique that can simultaneously localize and 

quantify spalling defects on concrete surfaces using TLS was proposed by Kim et al. (2015b). The 

proposed technique was applicable for defects larger than 3 mm in depth and width. As the 

guidance for optimal scan parameter selection, the most accurate localization and quantification 

can be detected in distances less than 12 m and incidence angle less than 15°, while the angular 

resolution does not exceed 0.018° (Kim et al., 2015b). Moreover, the minimum subdivision size 

of the scanned surface (Δ) can be calculated using Equation 2-2. 

 𝛥𝑚𝑖𝑛 =
𝐿 × 𝛼𝑅

𝑐𝑜𝑠(𝛼1)
 Equation 2-2 

where 𝐿: distance between the scanned concrete surface and the scanner (m); 𝛼𝑅: angular 

resolution (rad); and 𝛼1: incidence angle (degree). 

Figure 2-10 illustrates: (a) an overview of scan points lying on a concrete surface; (b) the definition 

of the angle deviation from the reference direction in the x-z plane view; and (c) the definition of 

the distance deviation from the globally fitted plane in the x-z plane view. 



22 

 

 

 
Figure 2-10. (a) Overview of scan points, (b) angle deviation, and (c) distance deviation (Kim et al., 

2015). 

Guldur et al. (2015) developed a strategy to define an appropriate threshold considering RGB color 

values of point clouds and/or intensity values to detect defects. Two methods were used for damage 

detection: graph-based and surface normal-based methods. After applying those methods, 

clustering was used for grouping the defect points into individual defects. The above-mentioned 

methods are sensitive to noise, uneven density, and complicated structures (Te et al., 2018). As 

shown in Figure 2-11, Truong-Hong et al. (2016) proposed a framework for bridge inspection with 

a LiDAR including five main phases: (1) preprocessing, (2) database system, (3) inspection, (4) 

management system, and (5) bridge assessment. To take advantage of both RGB color and x y z 

coordinates of points, first, the images and 3D point cloud were collected. After removing the 

irrelevant points manually and registration (Walsh et al., 2013), RGB color for each point was 

generated by image matching (Truong-Hong et al., 2016). Segmentation was based on a developed 

methodology by Walsh et al. (2013) to identify objects in the scene. Sharp features were located 

where the normal vector of point clouds changed significantly. Before segmentation, those features 

were detected by selecting a local neighborhood of points around each point using the k-nearest 

neighbors method (Rabbani et al., 2006). The size of neighbors should be small enough to estimate 

local properties and large enough to neglect the noises. In case of a high level of noise, a large size 

of neighborhoods is required. Then, the outlier points should be identified and removed to avoid 

the errors caused by scene movement or edge split. Next, curvature or surface variation was 

estimated based on the local neighborhood to be used in the following step, extraneous point 

detection (Pauly et al., 2002). Another cause of errors was the points with small-scale details, 

called “extraneous point”. Based on standard deviation and the average value of the curvature, 

these points can be removed, and then the Gauss map clustering was used to detect sharp features 

(Weber et al., 2010). Figure 2-12 shows a sample of crack detection at a bridge abutment using 

both RGB color and x y z coordinates of points to detect cracks and identify their size by calculating 

the distance between their edge points (Truong-Hong et al., 2016). As a result, the smallest 

detectable crack had 4.12 mm width, and the accuracy and precision were not calculated. 



23 

 

 

Figure 2-11. Framework for bridge inspection using TLS (Truong-Hong et al., 2016). 

    
(a) Photo of a 

crack 
(b) A intensity 

point cloud 

(c) A RGB point 

cloud 
(d) Crack detection based on a point cloud 

Figure 2-12. Crack detection at an abutment of Lungsdorf Bridge (Truong-Hong et al., 2016). 

Moreover, Valença et al. (2017) integrated image processing and laser scanning considering the 

RGB value for each point to measure the crack characteristics (e.g., orientation, width, length). 

Figure 2-13 shows a sample of crack width and length characterization and measurements 

(Valença et al., 2017). 



24 

 

 

Figure 2-13. Sample of crack measurement (Valenca et al., 2017). 

Severe spalling can lead to an immediate structure collapse or failure (Luckai et al., 2014). 

Therefore, several studies have been focused on detecting and quantifying this type of defect based 

on point clouds (Teza et al., 2009; Liu et al., 2010; Olsen et al., 2010; Mizoguchi et al., 2013; 

Guldur and Hajjar, 2017). Olsen et al. (2010) proposed a slicing analysis to quantify the spalling 

volume of large-scale structural elements based on the cross-sectional slices of the point clouds. 

There are other approaches based on damage-sensitive features such as curvature (Teza et al., 

2009), distance and gradient (Liu et al., 2010), and surface normal (Guldur and Hajjar, 2017). Teza 

et al. (2009) proposed a Gaussian curvature-based surface detection method resulting in 52% and 

48% accuracy in detecting damaged and undamaged areas, respectively. Guldur and Hajjar (2017) 

showed that data fusion between point clouds and vision data could lead to a promising solution 

to quantify the area and volume of the spalls. 

Having an unordered nature, point clouds are mostly transformed into meshes (Kalfarisi et al., 

2020) or voxels (Chen and Li, 2016) used in ML, particularly in supervised learning methods. 

Unlike images, ML-based methods on point cloud datasets have not made much progress for this 

purpose. As shown in Table 2-4, some studies proposed a two-step approach including applying 

the ML-based method on images for defect detection and then using point clouds for quantification 

of the detected defects. For example, McLaughlin et al. (2020) proposed a methodology to quantify 

spalls in concrete bridges in two steps: (1) the defect detection in the images using CNN, and (2) 

extracting the defects and quantifying their area based on the collected point clouds fused with 

labeled images using the Euclidean distance segmentation and RANdom SAmple Consensus 

(RANSAC) algorithms. Some methodologies were developed to reconstruct a bridge model using 

point clouds and then detect and/or quantify the bridge surface defects using image processing 

(Kim et al., 2018; Chow et al., 2021). Another proposed approach is using a non-DL-based method 

to detect the defects and clustering to group the points and extract individual defects (Guldur et 

al., 2015). Turkan et al. (2018) proposed an adaptive wavelet neural network-based approach using 

point clouds to detect concrete surface defects. The developed network was fed by X and Y 

components and estimated the Z coordinate for defect detection and localization. The effect of data 

compression was investigated and improved from 21.2% to 63.9% in crack detection. The errors 

of four specimens varied between 1.4 mm to 2.8 mm depending on the size of the crack and the 

resolution of the point clouds. It was concluded that this method was not practical for detecting 

hairline defects (Turkan et al., 2018).  



25 

 

The available information regarding the samples and results of the most relevant papers are 

summarized in Table 2-4. Not only the sizes and types of the defects but also the data acquisition 

circumstances vary from one paper to another. Therefore, the results of these papers are not 

comparable. For instance, detecting a large spall from a short distance leads to better outcomes 

compared to a small crack from a long distance. Moreover, one of the major obstacles to comparing 

the results of those studies is the lack of unified evaluation metrics (e.g., accuracy, recall, error). 

The same evaluation factors (e.g., error) are not comparable unless their definitions are the same. 

For example, although both Guldur and Hajjar (2017) and McLaughlin et al.(2020) used errors to 

report the study evaluation, those factors were calculated based on different formulas and reflected 

different concepts. However, most ML methods are evaluated based on unified performance 

metrics such as accuracy, IoU, recall, and precision. 



26 

 

Table 2-4. Summary of the most related point cloud-based concrete surface defect detection studies. 

Reference 

Type of defect Features Methodology 

Results Size of defects 

D
ef

ec
t 

C
ra

ck
 

S
p

al
l 

C
o

rr
o

si
o

n
 

M
as

s 
lo

ss
 

G
eo

m
et

ri
ca

l 

C
o

lo
r 

/I
n

te
n

si
ty

 

M
L

 

N
o

n
-M

L
 

Teza et al. (2009)  - - - -  - - PC 

• Damaged accuracy (%): 

Circle (19 - 96) 

Rectangular (50-100) 

Square (50-100); 

• Sample of Defects: 

Circle (r = 20 cm);  

Rectangular (1020 cm2) 

Square (2020 cm2)  

Olsen et al. (2010) - -  - -   - PC N/A 

• Specimen size (cm3): 

Column: 7692442 

Beam: 5692777 

• Spall size (cm3): 

8,700 - 24,500 

Liu et al. (2011) - - - -   - - PC N/A 

• Defect volumes (m3): 

2.7110-3 - 9.1410-3 

• Defect Areas (m2): 

 4.2710-2 -7.9110-2 

Kim et al.(2015b) - -  - -  - - PC 

• Actual concrete panel (%): 

Accuracy: 68.3-91.3 

• Lab test (%):  

Recall: 49.8-92.3; Pre: 83.4-97.1 

• Spall size (mm3) 

Min: 10  10  4  

Max: 100  100  7  

Truong-Hong et al. (2016) -  -  -   - PC N/A 

• Area (cm2):  

0.93– 2.06 

• Dimensions (mm): 

W: 4– 12; L: 18 – 8  

Guldur and Hajjar (2016)  - - - -   PC PC 
• Classification (%): 

Accuracy: 93.5 

Pre: 94.5 

N/A 

  

  

  



27 

 

Table 2-4. Summary of the most related point cloud-based concrete surface defect detection studies. (Cont.) 

Reference 

Type of defect Features Methodology 

Results Size of defects 

D
ef

ec
t 

C
ra

ck
 

S
p

al
l 

C
o

rr
o

si
o

n
 

M
as

s 
lo

ss
 

G
eo

m
et

ri
ca

l 

C
o

lo
r 

/I
n

te
n

si
ty

 

M
L

 

N
o

n
-M

L
 

Hou et al.(2017)  - -  - -  PC - 
• Min clustering error (%): 

water staining: 10.1;   

Spall: 4.2  

N/A 

Guldur and Hajjar (2017) -   - -   PC PC 
• Error (%): 

Crack: 0.15 - 8.2;  

Spall: 0.43-1.62 

• Dimensions (in): 

Crack: L:1.88 – 11.95; W:1 

Spall: L: 11.7; W: 3.7  

Valença et al. (2017) -  - - -   - 
Img 

PC 
N/A 

• Crack size in images(mm):  

L: 30.1; W:1-4 

Turkan et al. (2018) -  - - -  - PC - 
• Error (mm): 

1.4 – 2.8  

• Dimensions (mm) 

L: 9.8 - 35.1; W: 8.9 – 15.5  

McLaughlin et al.(2020) - -  - -   Img PC 
• Error (%):  

25.9 

• Area (cm2):  

394 – 3,277  

Nasrollahi et al. (2019)  - - - -   PC - 
• Testing defect accuracy (%): 

14.9 – 87.5 (Avg: 69.5) 

• Testing sample size: 

Max depth (cm): 1.5 – 8.1 

Bahreini and Hammad 

(2021) 
-   - -   PC - 

• Testing recall (%): 

Spall: 89.77; crack: 55.2 

• Testing precision (%): 

Spall: 79.3; crack: 55.2 

• Testing IoU(%): 

spall: 72.72; crack: 44.68 

• Testing sample size: 

Max depth (cm): 1.5 – 8.1 

This research -   - -   PC -   

ML: Machine Learning; PC: Point Clouds; Img: Image; L: Length; W: Width; 

 



28 

 

2.5.5 Comparison between Image and Point Cloud-based Defect Semantic Segmentation  

Some of the recent image-based crack detection methods using ML are tabulated in Table 2-5. 

Comparing the results of these papers is not possible unless the same sensor specifications (e.g., 

resolution) have been considered for data acquisition. The effect of the different environmental 

conditions (e.g., lighting) cannot be ignored even if the same sensor settings have been used. It can 

be concluded that the higher accuracy cannot be a reliable indication of the better methodology 

unless the same datasets are used. Therefore, comparing the results in Table 2-4 and Table 2-5 is 

not possible unless the comparison is based on the same input dataset. 

Table 2-5. Image-based semantic segmentation of surface defect using DL. 

Reference 

Type of defect Domain 

Methodology 
Best Results 

(%) 

Dataset 

size 

D
ef

ec
t 

C
ra

ck
 

S
p

al
l 

B
ri

d
g

e 

C
o

n
cr

et
e 

Lee et al. (2019)      CNN 

Precision: 87 

Recall: 74  

OA: 98 

242 cracks 

Lopez Droguett et al. 

(2020) 
     DenseNet 13 

Avg. mIoU: 94 

Avg. recall: 98 

256,115 

cracks  

153,316 

no-crack 

Hoskere et al. (2020)      Encoder-Decoder 

IoU: 

crack 68 

spall: 81 

341 cracks  

324 spalls 

Fu et al. (2021)(2021)      
ResNet 

(DeepLabv3+) 
mIoU: 65 

5,000 

cracks 

Mohammed Abdelkader 

et al. (2021) 
     NN 

OA: 90 

F1: 92 
60 spalls 

Wang et al. (2022)      ResNet, DenseNet 
IoU: 63 

Recall: 68 

2,446 

images 

 

2.6 UAV Path Planning  

UAV flight path planning can be an approach to automate and optimize the data collection process. 

A UAV can be equipped with camera (Janoušek and Faigl, 2013; Bircher et al., 2015, 2016b; 

Phung et al., 2017b; Rafanavicius et al., 2017; Freimuth and König, 2018), sonar camera (Englot 

and Hover, 2010; Hover et al., 2012), or LiDAR (Yoder and Scherer, 2016; Nasrollahi et al., 2018) 

to collect data. In path planning algorithms, which are based on different number of Degrees of 

Freedom (DoF) (i.e., x, y, z, yaw), several factors such as speed (Bircher et al., 2015), wind, and 

battery capacity (Guerrero and Bestaoui, 2013) can be considered. 

In path planning, there are two exploration methods based on the existence of the prior model of 

the object to be inspected: model-based and non-model-based methods (Almadhoun et al., 2016). 

In non-model-based methods, no initial knowledge about the object is available. This method can 

be applied in reconstructing a 3D object, structure (Yoder and Scherer, 2016), or environment 



29 

 

(Quin et al., 2013). In model-based exploration, the model must be available in advance, either as 

a BIM or 3D CAD model. The main objective of model-based VPI selection is to provide full 

visibility of the expected area. Figure 2-14 represents the general process of UAV path planning 

for a model-based path planning method, which includes three main phases: (1) Providing the 

model and defining the constraints (e.g., FoV, DoFs); (2) VPI selection considering some criteria 

(e.g., overlapping views, criticality) (Scott, 2009). The Model-based methods are categorized into 

set theory methods, graph theory methods, and computational theory methods (Scott et al., 2003). 

Set theory (Scott, 2009) and computational methods (Englot and Hover, 2010; Hover et al., 2012; 

Bircher et al., 2015) are used more often compared to the graph theory (Almadhoun et al., 2016). 

Art Gallery Problem (AGP) solvers, which are computational methods, can be used to find the 

minimum set of VPIs that cover the inspected area's surface. (3) Path planning, which is finding 

the shortest path passing through the selected VPIs by solving TSP. Moreover, some algorithms 

such as Rapidly-exploring Random Tree (RRT), RRT*, and A* can be used to find a short 

obstacle-free path between two VPIs. 

(1) Initial Documents/Considerations

(3) Path Planning

Reference Model
• BIM Model
• 3D Model

(2) VPI Selection

Criteria 
• Max/Full coverage
• Overlapping
• Criticality

Obstacle Avoidance 
• RRT*
• RRT
• A*

TSP Solvers
• GA
• PSO
• LKH

Sampling 
• Set Theory
• Computational Theory
• Graph Theory

Constraints
• FoVs
• DoFs
• Min and Max Distances

 

Figure 2-14. General process of UAV model-based path planning method. 

In the case of surveying or inspection using UAV, path planning has three main objectives: 

(1) Collision avoidance is the initial factor considered in all path planning algorithms. 

Collisions may be dynamic or static. For UAV inspection path planning, the static obstacles 

are considered including the body of the inspected structure and surrounding objects. 

(2) Minimum time-of-flight is an objective of path planning. The main part of this criteria is 

the time spent moving from one point to another (changing the position of the UAV), and 



30 

 

the rest is related to the rotation of the UAV. Therefore, shortening the length of the path 

plays the most effective role in minimizing the time of flight. 

(3) Full coverage is another objective of path planning called coverage path planning. It means 

that the UAV should not miss any part of the intended area. The existence of obstacles 

around the inspected structure may lead to difficulties in achieving full coverage. 

Therefore, the main objectives of path planning are minimum flight time and maximum 

coverage. 

2.6.1 Obstacle-free Path Planning Algorithms 

Several path planning algorithms have been developed to calculate the optimal or feasible obstacle-

free path between “start point” and “end point” such as A* (Hart et al., 1968), Bug (Lumelsky and 

Stepanov, 1987), RRT (LaValle and Kuffner Jr, 2001), and RRT* (Nasir et al., 2013) algorithms. 

2.6.1.1 Bug Algorithm 

Bug algorithm is a reactive planner in 2D configuration. Bug 1 and Bug 2 algorithms were 

proposed by Lumelsky and Stepanov (1987). In Bug 1 algorithm, the goal is to generate a feasible 

path from the start point (S) to the target one (T). A straight line is considered between S and T, 
and the object moves on the line until it hits the first obstacle at the hit point (H). Then, it keeps 

moving around the obstacle until it reaches H to find its boundary, the closest point of boundary 

called leave point (L) to T, and the shortest direction to move from H to L. Then, it moves toward 

T and in the case of the obstacle existence between L and T, new H and L is picked. Figure 2-15 

shows an example of Bug 1 algorithm with two obstacles. The difference between Bug 1 and Bug 

2 is in terms of finding the leave point. In Bug 2, it starts moving from S toward T on a line called 

m. If the path hits an obstacle, it keeps moving along the obstacle until it encounters the line m, 

and then returns to moving on line m toward T again. Bug 1 is an exhaustive search algorithm, and 

it considers all choices, which takes time. Bug 2 outperforms Bug 1 in many cases. Although Bug2 

does not need to go along the obstacle completely to find the leave point, it still needs to calculate 

whether the obstacle intersects the m line or not (Taylor and LaValle, 2009).  

 

Figure 2-15. Example of Bug 1 algorithm (Lumelsky and Stepanov, 1987). 

2.6.1.2 A* Algorithm 

A* is a search-based path planning algorithm, which proposed by Hart et al. (1968). It can be seen 

as an extension of the Dijkstra algorithm (Dijkstra, 1959), well-known blind best-first algorithm 

in path planning. Benefitting from heuristic distance estimates, the A* algorithm improves search 

efficiency. From a given start point to a given end (goal) point, A* moves forward in the graph 



31 

 

along the smallest expected total distance. The main goal of this algorithm is minimizing the path 

length, which is calculated based on Equation 2-3. 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 
Equation 2-3 

where 𝑔(𝑛) is the actual distance between the node n and start point, and ℎ(𝑛) is the estimate of 

the distance between n and the end point. If two nodes have the same f(n), the priority is given to 

the node with the smallest h(n). The key elements of the A* algorithm are OPEN list, CLOSED 

list, and f(n). The OPEN list is established to store the candidate nodes, which will be detected, 

while the CLOSED list is established to store the selected nodes of the final path. In accordance 

with the evaluation value, the nodes in the neighborhood are arranged from lowest to highest f(n) 

into the OPEN list. The node with the minimum evaluation value is transferred to the CLOSED 

list. Then the transferred node is regarded as the current node, and a new list is established based 

on the calculated f(n). The above process is repeated until the path reaches the target node (Fu et 

al., 2018). Figure 2-16 shows the schematic diagram of the A* algorithm path search. 

 

Figure 2-16. The schematic diagram of the A* algorithm path search (Fu et al., 2018). 

2.6.1.3 Rapidly-exploring Random Trees  

RRT is a popular single-query sampling-based planner. It is based on growing a tree of 

configurations to cover the state of space. The process starts from the initial point, continues over 

adding random leaves to the tree, and finishes when the predefined end point is reached (LaValle 

and Kuffner Jr, 2001). According to the pseudocode of RRT (Figure 2-17), first, 𝑥𝑟𝑎𝑛𝑑 is picked 

and connected to 𝑥𝑖𝑛𝑖𝑡. Then, the next 𝑥𝑟𝑎𝑛𝑑 is selected. After finding the nearest neighbor point 

of the tree (T) to 𝑥𝑟𝑎𝑛𝑑, called 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, a vertex between 𝑥𝑟𝑎𝑛𝑑 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is considered and a 

new point (𝑥𝑛𝑒𝑤) is selected with the distance of 𝜀 from its 𝑥𝑛𝑒𝑎𝑟 on the vertex. If some obstacles 

appear over connecting 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and 𝑥𝑟𝑎𝑛𝑑, that point is unacceptable. Otherwise, an edge (E) and 

a vertex (V) would be added to the tree, making a new leaf. A sample of RRT operation is 

represented in Figure 2-18. 

 



32 

 

 

Figure 2-17. Pseudocode of RRT algorithm. 

 

Figure 2-18. Extended operation (Kuffner and LaValle, 2000). 

Several improvements have been made to the RRT algorithm. Dual RRT Planner can be used when 

both the start 𝑥𝑖𝑛𝑖𝑡  and the end point 𝑥𝑒𝑛𝑑 of the path are determined. In this case, two paths starting 

from 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑒𝑛𝑑 are found simultaneously and expanded until both trees reach each other 

(Figure 2-19). 

 

Figure 2-19. Dual RRT (LaValle and Kuffner Jr, 2001). 

The main advantage of using an RRT is that it is a feasible solution for searching high-dimensional 

spaces (Kulling, 2009), and non-holonomic constraints could be taken into account. A non-

holonomic system can determine a differential relationship between state and inputs. It means that 

the history of the previous states is needed to determine the current state (Dong, 2015). This 

method can cover high DoFs, and steering is not required (LaValle and Kuffner Jr, 2001). 

Moreover, one of the desirable properties of this algorithm is its simplicity because it uses few 

parameters during the process. 

RRT 

1   𝑉 ← ሼ𝑥𝑖𝑛𝑖𝑡ሽ; 𝐸 ← ∅; 
2   for i = 1 to n do 

3    𝑥𝑟𝑎𝑛𝑑  SampleFree(); 

4    𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  Nearest_Neighbor (𝑥𝑟𝑎𝑛𝑑 , 𝑇 = (𝑉, 𝐸)); 

5    𝑥𝑛𝑒𝑤  Steer(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡); 

6    if ObstacleFree (𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤); 

7     𝑉 ← 𝑉 ∪ ሼ𝑥𝑛𝑒𝑤ሽ 

8     𝐸 ← 𝐸 ∪ ሼ𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤ሽ 

9   Return 𝑇 = (𝑉, 𝐸) 



33 

 

2.6.1.4 Rapidly-exploring Random Trees Star (RRT*) 

RRT* is very similar to RRT; however it can generate smoother path compared to RRT using two 

key modifications: selecting least cost parent and rewiring tree, which are shown in Figure 2-20 

and Figure 2-21. The following pseudocode describes the RRT* algorithm (Nasir et al., 2013). 

Same as RRT, RRT* starts by sampling a random point (𝑥𝑟𝑎𝑛𝑑) in C space, followed by finding 

the nearest neighbor (𝑥𝑛𝑒𝑎𝑟) to the 𝑥𝑟𝑎𝑛𝑑 and placing a new node (𝑥𝑛𝑒𝑤) at a radius distance of ∆𝑞 

from 𝑥𝑛𝑒𝑎𝑟 in the direction of 𝑥𝑟𝑎𝑛𝑑 if the connection between two nodes is collision-free. Then, 

in RRT*, neighboring points of 𝑥𝑛𝑒𝑤 are checked within the area of a ball of β(log(n)/n) radius, 

where n and β represent the dimension of the given space and the constant based on environment, 

respectively. Afterward, a parent node, which is a neighboring node that results in a shorter path 

to the start node, is found. Another modification is rewiring the tree. After successfully adding a 

new point and selecting the parent node, neighbors are checked once again. If considering 𝑥𝑛𝑒𝑤 as 

a parent for a neighbor node decreases the cost, the path from that node to the start node is rebuilt 

as shown in Figure 2-20(d) (Noreen et al., 2016).  

 

`

 

Figure 2-20. Near neighbor search and rewiring operations in RRT* (Noreen et al., 2016). 

1 

0 

3 

2 

4 

5 

6 

7 

8 

 
xstart 

x
new

 

x
near

 
1 

0 

3 

2 

4 

5 

6 

7 

8 

 x
start

 x
new

 

x
near

 

parent 

1 

0 

3 

2 

4 

5 

6 

7 

8 

 
x

start
 x

new
 

x
near

 

1 

0 

3 

2 

4 

5 

6 

7 

8 

 

x
start

 
x

new
 

x
near

 

(a) Finding near neighbors (b) Select best parent 

(c) Check cost for rewiring (d) Rewired tree 



34 

 

 

 

Figure 2-21. Pseudocode of RRT* algorithm (Nasir et al., 2013). 

2.6.1.5 Comparison between Path Planning Algorithms 

Three algorithms, Bug, A*, and RRT, were compared from different aspects of views such as 

optimality, completeness, query type, DoFs, and so on by Langari (2015). Bug algorithm is a 

simple planner which can take place in 2D and is practical for the object with two DoFs. A* is 

applied in 3D space (Marzouk and Ali, 2013). Nav-mesh can be used in the Unity 3D game engine 

to apply A*. Unlike these two algorithms (Bug and A*), RRT applies to the cases with two DoFs 

and more. However, this sampling-based algorithm cannot provide an optimal result (AlBahnassi 

and Hammad, 2011) 

Completeness is the state of finding the path, and Bug planner is able to complete the path in a 

reasonable time (AlBahnassi and Hammad, 2011). For the A* algorithm, depending on the size of 

graph grids, it may be complete or not. 

2.6.2 Coverage Path Planning Algorithms 

The coverage algorithms can be heuristic or complete based on the probability of coverage 

completeness in the free space (Galceran and Carreras, 2013). In most coverage path planning 

algorithms, the target space is decomposed into small pieces called cells, which can have square, 

triangle (Oh et al., 2004), or other shapes. Although using square cells leads to a lower resolution 

compared to triangular ones, it is suitable for mobile robotics path planning because most robots 

cannot adjust their movements to very small cells (Galceran and Carreras, 2013). Consequently, 

high-resolution grids are not necessary. Due to the simplicity of creating a grid map and marking 

the covered area, these algorithms are widely used (Thrun, 1998). However, to achieve a good 

result and accurate localization, a high capacity of the memory is required for storing high-

resolution cells (Castellanos et al., 1997). Figure 2-22 and Figure 2-23 represent two grid-based 

coverage path planning methods using wavefront and spanning trees algorithms, respectively. 

 

1   T  InitializeTree(); 
2   for k = 1 to K do 

3    𝑥𝑟𝑎𝑛𝑑  RANDOM_STATE (); 

4    𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  NEAREST_NEIGHBOR (𝑥𝑟𝑎𝑛𝑑 , T); 

5    (𝑧𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤 ,T𝑛𝑒𝑤)  STEER (𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡); 

6    if ObstacleFree (𝑧𝑛𝑒𝑎𝑟) then 

7     𝑋𝑛𝑒𝑎𝑟  NEAR(𝑥𝑛𝑒𝑤 , 𝑢, |𝑉|); 

8     𝑥𝑚𝑖𝑛  CHOOSE_PARENT (𝑋𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤, 𝑧𝑛𝑒𝑤);        

9     T  INSERT_NODE (𝑥𝑛𝑒𝑤 , 𝑥𝑚𝑖𝑛, 𝑇); 

10    T  REWIRE (𝑋𝑛𝑒𝑎𝑟 , 𝑥𝑚𝑖𝑛 , 𝑥𝑛𝑒𝑤, 𝑇); 

11  Return 𝑇 



35 

 

  
(a) Wavefront distance transform for the selection of 

the start position (S), goal position (G) 
(b) Coverage path generated using the wavefront distance 

transform with the selection of the start position (S) 

Figure 2-22. Coverage path planning using wavefront algorithm (Galceran and Carreras, 2013). 

 

  
(a) Approximate cell decomposition in mega cells and 

robot-sized cells 
(b) Coverage path generated with the Spanning trees 

algorithm 
Figure 2-23. Coverage path planning using spanning trees algorithm (Galceran and Carreras, 2013). 

2.6.3 Traveling Salesman Problem 

TSP is a Nondeterministic Polynomial (NP)-hard problem in combinatorial optimization aiming 

to find the shortest path if a traveling salesman wants to visit each city exactly once and return to 

the first city (Applegate et al., 2011). Complete historical development of this and related problems 

can be found in Hoffman et al. (2013), Applegate et al. (2011), and Cook (2014). Equations 2-4 

introduces the 𝑥𝑖𝑗variable to formulize TSP on m points. 

𝑥𝑖𝑗 = {
1  if the edge 𝑖 → 𝑗 is in the tour

0  otherwise                                        
 Equation 2-4 

where 𝑥𝑖𝑗 represents the path between points (cities) i and j. Moreover, only one edge can be made 

at each point (city). The problem and the additional constraints can be formulated as follow. 

𝑚𝑖𝑛 ∑ ∑ 𝑙𝑖𝑗𝑥𝑖𝑗

𝑚

𝑖=1

𝑚

𝑗=1

 Equation 2-5 

𝑠. 𝑡.  ∑ 𝑥𝑖𝑗

𝑚

𝑗=1

= 1 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚  

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

= 1 𝑓𝑜𝑟 𝑗 = 1, . . . , 𝑚  

https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Combinatorial_optimization


36 

 

where 𝑙𝑖𝑗  is the number of points (cities) and the length of the path between I and j (Hoffman et 

al., 2013). The constraints demonstrate that every point of the path must have only one path going 

towards it and another one going away from it. 

Several optimization methods are proposed for this problem, such as GA (Grefenstette et al., 1985; 

Hussain et al., 2017), Particle Swan Optimization (PSO) (Phung et al., 2017b), and Ant Colony 

Optimization (ACO) (Yang et al., 2018). 

2.6.3.1 Genetic Algorithms  

GAs are evolutionary algorithms used to solve optimization problems inspired by population 

biologic genetics. Although using this approach does not guarantee the optimal solution, it leads 

to a good near-optimal result in reasonable time (Hussain et al., 2017). A GA is used for solving 

NP-hard problems such as TSP. The fitness function in this method minimizes the path's length, 

which is computed based on the following formula. 

 𝑚𝑖𝑛 ∑ 𝑙𝑖
𝑛−1
𝑖=1  

Equation 2-6 

where n is the total number of points, which the path should pass through them. 𝑙𝑖  is the path 

between two points, which is selected from a set of n(n-1) paths between all points. The main GA 

operators are selection, crossover, and mutation.  

2.6.3.2 Particle Swarm Optimization Algorithm 

PSO is an intelligent optimization algorithm that belongs to a class of optimization algorithms 

called metaheuristics. PSO is based on the paradigm of swarm intelligence, and it is inspired by 

the social behavior of some animals such as birds and fishes. PSO is a simple optimization 

algorithm, and it is successfully applied to many applications in various fields of science and 

engineering like ML, image processing, data mining, and many other fields. Despite its simplicity, 

which is one of the key points of the PSO, it is a very powerful algorithm. Initially, PSO was 

introduced by Eberhart and Kennedy (1995). Over the last two decades, PSO has become one of 

the most useful and popular algorithms to solve optimization problems. Based on the behavior of 

bird flocking, a group of birds searching for a piece of food is considered. They only know the 

distance to the food, not its location. So, the most effective strategy is to follow the bird which is 

nearest to the food. 

PSO contains "particles” while each is a single solution with a fitness value. Each particle, which 

has a memory about the best position and the neighborhood’s positions, moves with the speed of 

V between its positions. The framework of a PSO is demonstrated in Figure 2-24. 



37 

 

 

Figure 2-24. Framework of a PSO algorithm (Goldbarg et al., 2006). 

2.6.3.3 Lin-Kernighan Heuristic Algorithm 

The Lin-Kernighan Heuristic (LKH) algorithm is a local optimization algorithm, which works 

based on exchanging one path to another. Given a feasible path, in each iteration the specific 

number of sub tours (𝜆) are exchanged to decrease the length of the current path. This process 

repeats until no exchange causes an improvement. As 𝜆 increases, in a longer computation time, 

better results can be achieved. Moreover, due to its time complexity of 𝑂(𝑛𝜆), increasing the 

number of points rapidly increases the number of operations. Therefore, this method is mostly 

practical for paths with small number of points (Helsgaun, 2000).  

2.6.3.4 Comparison between GA and PSO 

Most of the evolutionary techniques contain four main steps: random generation of an initial 

population, fitness value calculation for each subject, and reproduction of the population 

(Kachitvichyanukul, 2012). Both GA and PSO algorithms update the population and search for 

the optimum result using random techniques. They also do not guarantee complete success. Unlike 

GA, PSO does not have crossover and mutation, and the particles are updated by themselves with 

internal velocity (Borna and Khezri, 2015). The information-sharing mechanism is different in 

PSO and GA. In GA, chromosomes' population moves as a group, while sharing information 

towards an optimal area. However, PSO has a one-way information sharing mechanism from only 

gbest to others. It is still argued that which method has the higher convergence speed, GA (Gharib 

et al., 2015) or PSO (Goldbarg et al., 2006). 

2.6.4 UAV Path Planning for Inspection 

As shown Table 2-6, several efforts have been made to use automated structural inspection systems 

using a UAV equipped with a vision-based sensor. Bircher et al. (2015) proposed a path planning 

algorithm using LKH and RRT*, which is based on a mesh representation of the environment. 

First, one VPI is sampled for each triangle in the mesh considering the limitations (i.e., FoV, dmin, 

dmax). Then, the cost of moving from one VPI to another (path length), is computed, and RRT* is 

used in case of the presence of an obstacle between two VPIs. Based on the calculated cost matrix, 

the initial path is found using LKH. The short inspection path is computed using an alternating 

two-step optimization algorithm in their method. The new set of VPIs is selected in each iteration 

to minimize the path length and the rotation duration using convex problem formulation subjected 



38 

 

to visibility. Figure 2-25 shows how the boundaries of the VPI sampling space (gray planes) can 

be found based on the incidence angle, minimum angle (green plane), and maximum distance 

between the mesh and the equipment (red plane). The calculated path for turbine inspection is 

shown in Figure 2-26, which is a zigzag path. 

 

Figure 2-25. Finding boundaries of the sampling space (Bircher et al., 2015). 

 

 

Figure 2-26. Path planning using LKH and RRT* (Bircher et al., 2015). 

Phung et al. (2017a) also proposed a TSP-based path planning method for structural inspection 

using a camera-equipped UAV and VPIs were sampled considering FoV, focal length, sensor size, 

and overlapping percentage (Figure 2-27). Unlike Bitcher’s research (2016), A* and PSO were 

used instead of RRT* and LKH, respectively. 



39 

 

 

Figure 2-27. Generating VPIs (Phung et al., 2017a). 

On the other hand, Freimuth and König (2018) proposed a path planning method based on the A* 

algorithm. Dronecode Foundation software (Dronecode Project Inc., 2017) was used in this 

research. Despite of its ability to consider flight dynamics (e.g., wind and UAV speed) during 

flight simulation, constant speeds were considered in case studies. The main objective of their 

research was combining BIM and Dronecode to increase the degree of the automation of path 

planning in building inspection. 

Alves et al. (2020) focused on finding a short path between predefined locations in a building in 

real-time. Compared to A* and RRT, their proposed Fast Path Planning Method (FPPM) was more 

practical for real-time path planning. Although FPPM cannot find the optimal path, the 

computation time is much less than A* and RRT. Cao et al. (2020) proposed a path planning 

method in complex 3D environments like bridges and airplanes. The sampled viewpoints were set 

at distance D away from the surface point in the surface normal direction, as shown in Figure 2-28, 

where the dotted curve and the red dot represent the inspected surface and the sub-sample points, 

respectively. Also, the grey and red vectors indicate the normal directions and the sample 

viewpoints direction at distance D. Then, a global TSP was solved using Google OR-Tools (Perron 

and Furnon, 2020). The distance matrix was calculated based on the Euclidean distance between 

two points in this method. In case of any obstacle between two points, the path length was set to 

infinity. Then, the detailed coverage was calculated, and a collision-free path in each individual 

subspace was found solving local TSPs. Figure 2-29 shows an example of a test result where the 

orange lines and yellow rectangles indicate the path and the subspaces, respectively. The 

optimization method used in OR-Tools was not mentioned. However, this method may not be 

time-efficient for big-scale structures because solving global and local TSPs several times may 

need long computation time. Moreover, overlaps were not considered in selecting viewpoints.  

 

Figure 2-28. Sampling viewpoints (Cao et al., 2020). 



40 

 

 

Figure 2-29. Path planning of a bridge (Cao et al., 2020). 



41 

 

Table 2-6. Summary of the literature review of UAV path planning for inspection. 

Reference 

Path 

planning 

method 

Sensor 
Reference 

model 
Conditions 

Consideration 

for VPI 

generation 

VPI generation Path generation Application 
M

o
d

el
ed

-b
as

ed
  

N
o

n
-m

o
d

el
ed

 

b
as

ed
 

C
am

er
a
 

S
o

n
ar

 c
am

er
a 

L
iD

A
R

 

3
D

 C
A

D
 m

o
d

el
 

B
IM

 

2
D

 p
la

n
 

3
D

 p
o

in
t 

cl
o
u

d
 

Im
ag

es
 

V
ib

ra
ti

o
n
 

S
p

ee
d
 

W
in

d
 

B
at

te
ry

 c
ap

ac
it

y
 

D
o

F
 

F
u

ll
 c

o
v

er
ag

e 

O
v

er
la

p
p

in
g
 

C
ri

ti
ca

li
ty

 

O
p

ti
m

al
 p

at
h
 

Englot and 

Hover (2012) 
✓ -  - ✓  - ✓  -  - -  - - - - - 4  ✓ - - ✓ 

AGP (computational)  

Triangular mesh 

Improved RRT*                     

Redundant roadmap  

Ship hull 

inspection 

Guerrero and 

Bestaoui 

(2013) 

✓  -  -  -  - ✓  -  - -  - - ✓ ✓ ✓ 4 ✓ -  - ✓ 

Distance-based meshing 

method (triangular 

meshing) 

TSP solver: Zermelo 

Algorithm 

Structure 

inspection 

Janoušek and 

Faigl (2013)  
✓  - ✓  -  -  -  -  - -  - - - - - 3 ✓ - - ✓ 

Simultaneously with the 

path optimization 

 (the initial interest points 

are selected manually) 

PRM 

City-like 

environment 

inspection 

Dornhege et 

al. (2016) 
✓  -  -  -  -  -  -  - -  - - - - - 3  ✓ - - ✓ Set cover problem 

TSP solver: 

TFD/LKH  

Covering 3D 

environment  

Bircher et 

al.(2015) 
✓  - ✓  -  - ✓  -  - -  - - ✓ ✓ - 4 ✓ - - - 

AGP (computational)  

Triangular mesh 

LKH & RRT* & 

optimization of the 

generated path  

Structure 

inspection 

Yoder and 

Scherer (2016) 
 - ✓ ✓  - ✓  -  -  - -  - - - - - 4 ✓ - - - Next best view Next best view Bridge modeling 

Bircher et 

al.(2016b) 
  ✓  -  -  -  -  -  - -  - - ✓  ✓  -  4  ✓ - - ✓ Next best view  Next best view 

Bridge and 

indoor building 

modeling  

Phung et al. 

(2017a) 
✓ -  ✓  - - ✓  -  - ✓  - - - - - 3  ✓ ✓ - ✓ 

Sampled w.r.t FoV & 

overlapping (cube cells)  

TSP solver: 

PSO and A*  

Bridge and 

indoor building 

inspection  

                       



42 

 

Table 2-6. Summary of the literature review of UAV path planning for inspection. (Cont.) 

Reference 

Path 

planning 

method 

Sensor 
Reference 

model 
Conditions 

Consideration 

for VPI 

generation 

VPI generation Path generation Application 
M

o
d

el
ed

-b
as

ed
  

N
o

n
-m

o
d

el
ed

 

b
as

ed
 

C
am

er
a
 

S
o

n
ar

 c
am

er
a 

L
iD

A
R

 

3
D

 C
A

D
 m

o
d

el
 

B
IM

 

2
D

 p
la

n
 

3
D

 p
o

in
t 

cl
o
u

d
 

Im
ag

es
 

V
ib

ra
ti

o
n
 

S
p

ee
d
 

W
in

d
 

B
at

te
ry

 c
ap

ac
it

y
 

D
o

F
 

F
u

ll
 c

o
v

er
ag

e 

O
v

er
la

p
p

in
g
 

C
ri

ti
ca

li
ty

 

O
p

ti
m

al
 p

at
h
 

Rafanavicius 

et al. (2017) 
✓  - ✓ -   -  -  - ✓ -  - - - - - 3 - - - - Pre-defined manually 

Hierholzer's 

algorithm (Mission 

planner software)  

Power line 

inspection 

Luo et al. 

(2017) 
✓  - -  ✓  -  -  - -  - ✓ - - - - 3  ✓ - - ✓ Pre-defined manually 

Bezier Curve-PSO 

Based Algorithm 

 PV farm 

inspection 

Yang et al. 

(2018) 
✓  -  - ✓  -  -  -  - - ✓ - ✓ - - 2 ✓ ✓ - - 

Sampled w.r.t the FoV & 

overlapping (cube cells) 
ACO  Surveying 

Freimuth and 

König (2018) 
✓ - ✓ - - - ✓ - - - - - ✓ - 4 ✓ - - ✓ Pre-defined manually A* 

Building 

inspection 

Almadhoun et 

al. (2019) 
✓ - ✓ - - - - ✓ - - - - - - 3 ✓ - - ✓ 

Initial VPIs based on 

FoVs and range 

limitation (resampling 

after coverage 

evaluation) 

LKH and RRT* 
Inspection / 3D 

reconstruction 

Alves et al. 

(2020) 
✓ - ✓ - - - - ✓ - - - - - - 3 - - - - Pre-defined manually FPPM and GA 

Indoor 

inspection 

Cao et al. 

(2020) 
✓ - ✓ - - - - - ✓ - - - - - 4 ✓ - - ✓ Pre-defined manually LKH Inspection 

Hamledari et 

al. (2021) 
✓ - ✓ - - - ✓ - - - - - - - 3 ✓ - - ✓ Pre-defined manually 

TSP solver: 

ACO and Dijkstra 

algorithm 

Indoor 

inspection 



43 

 

2.7 Summary 

Condition assessment of bridges is one of the main concerns of bridge managers. Therefore, 

choosing the most appropriate method in all steps of bridge inspection (i.e., data acquisition and 

data analysis) results in high efficiency. Detecting surface defects, such as cracks and spalls, is 

important for assessing bridge conditions. Therefore, several studies have been focused on 

developing efficient technologies to detect surface defects. After comparing some technologies in 

visual inspection, a LiDAR-equipped UAV is found one of the best equipment for scanning the 

bridge surfaces from different aspects such as safety, time-efficiency, and accuracy.  

The first step of the bridge inspection is data acquisition. Several parameters related to LiDAR and 

UAV can significantly affect the quality of data collection. Flying the UAV at a close distance of 

the bridge surface with a perpendicular view allows collecting accurate data. Due to the existence 

of obstacles, the UAV may not be able to reach some parts of the surface or to scan it from a 

perpendicular view. Therefore, many methods were proposed to find a collision-free path with 

maximum coverage. TSP can be solved to optimize the path length, which includes two main steps: 

selecting the best VPIs and finding the path passing through them. According to our review, all 

previous methods selected the points based on the sensor characteristics, and without considered 

the level of criticality of the surface. Considering this factor in selecting VPIs helps increase the 

inspection quality of high-risk areas with perpendicular and overlapping views. Therefore, the 

condition assessment will be more reliable based on the collected point clouds.  

Although point cloud-based DL methods have been widely used in many fields, only limited 

researchers have developed surface defect detection approaches based on those models. Therefore, 

one popular point cloud-based semantic segmentation method, PointNet++, is selected as the basic 

network to train a defect detection model. 

Furthermore, a large dataset plays an important role in improving the performance of a DL 

network. Since there is a lack of dataset for concrete surface defect detection, it is necessary to 

provide a publicly available concrete surface defects dataset for point cloud-based semantic 

segmentation learning. 

 

 

 

 

 

 

 

 



44 

 

CHAPTER 3   POINT CLOUD-BASED CONCRETE SURFACE DEFECT 

SEMANTIC SEGMENTATION 

3.1 Introduction 

As explained in Section 1.4, the defects should be detected after scanning the bridge and collecting 

3D point clouds. This chapter aims to take advantage of both point clouds and DL-based semantic 

segmentation to detect concrete surface defects by applying a modified version of PointNet++ (Qi 

et al., 2017b) called Surface Normal Enhanced PointNet++ (SNEPointNet++). The structure of 

this chapter is as follows. First, all the aspects, which are considered in SNEPointNet++, are 

explained and the framework of the two adjusted networks are elaborated in Section 3.2.3. In 

Section 3.3, the adapted PointNet++ and SNEPointNet++ are validated using the point clouds, 

which are collected from four bridges in Montreal. The obtained experimental results and their 

discussion are presented in Section 3.4. Finally, the conclusions of the proposed method are 

outlined.  

3.2 Proposed Method 

3.2.1 Aspects Considered in the Method 

Considering that the PointNet++ semantic segmentation method was originally designed to detect 

indoor building elements, it cannot be applied in an off-the-shelf manner to the task of concrete 

surface defect detection. As such, four main aspects differentiate this study from the original one 

(Qi et al., 2017b), as explained below. 

(a) Creating a large high-quality point cloud dataset 

A sufficient point cloud dataset is a key issue in the point cloud-based semantic segmentation of 

surface defects. Unlike point clouds, many images of concrete cracks and spalls are available 

online, which can be used for training a DL model. Strict safety regulations, availability, and 

accessibility complications in scanning a bridge are the main reasons for the lack of point cloud 

datasets. Therefore, this study aims to provide a high-quality point cloud dataset to be used in 

surface defect detection by different groups of researchers. Furthermore, several data augmentation 

approaches such as shifting, flipping, and rotating can be applied to generate a bigger dataset based 

on the available one. In this work, the collected point cloud datasets were flipped, however, shifting 

and rotation were not applied because they can alter the characteristics of some defects (e.g., 

location and orientation of shear cracks). 

(b) Redefining the features of points to better capture the main features of defects 

 

In the original PointNet++, the objects in each class are very similar. For example, the heights of 

walls in an office are mostly the same and similar chairs are used in each office as well. However, 

in defect detection, each defect has a unique shape, which is very different from other defects. 

These variations make the learning process difficult. Nevertheless, all cracks and spalls have two 

main features; they are deeper and darker than their adjacent areas. Therefore, if trained properly, 

the network can learn to use these features (i.e., point location (xi, yi, zi) and color (R,G,B)) to 

distinguish between different types of defects and improve its performance.  

In addition, to capture the curvature change of the surface, this study proposes using normal 

vectors, as another input feature for training. The use of normal vectors for spall localization has 



45 

 

been suggested in other works, such as Kim et al. (2015b), which developed a methodology based 

on the changes in the depth and the normal vectors of defects. However, these works did not use 

ML. Let F(x, y, z) = 0 represents the surface, which is calculated based on local surface fitting 

method. For a point Po = (xo, yo, zo), the normal vector (𝑁⃗⃗ ) is computed using Equation 3-1 

(Silverman, 2002). 

𝑁⃗⃗ =  
𝛻𝐹

‖𝛻𝐹‖
 Equation 3-1 

where ∇𝐹 is the gradient of F and ‖𝛻𝐹‖ is the vector length. Ideally, as shown in Figure 3-1, the 

normal vectors of the no-defect area and the deepest point of a defect are perpendicular to the XZ 

plane, and the deviation between two adjacent normal vectors identifies the potential presence of 

a defect. 

Furthermore, in the original PointNet++ (Qi et al., 2017b), the normalized coordinate values of 

(Xi’, Yi’, Zi’) are also used, which provide the network with the relative location of each point with 

respect to all other points in the segment. These parameters are computed based on Equations 3-2, 

3-3, and 3-4 (Qi et al., 2017a).  

𝑋′𝑖 = 𝑥𝑖 /𝑥𝑚𝑎𝑥 Equation 3-2 

𝑌′𝑖 = 𝑦𝑖 /𝑦𝑚𝑎𝑥  Equation 3-3 

𝑍′𝑖 = 𝑧𝑖 /𝑧𝑚𝑎𝑥 Equation 3-4 

where 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , and 𝑧𝑚𝑎𝑥 are the maximum values of 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 in each segment, 

respectively. However, since the changes in depth indicate the possibility of defect existence, only 

𝑌′𝑖 is used in this research. Removing Xi’ and Zi’ helps the model to understand the contribution 

of depth in detecting surface defects. As shown in Figure 3-1, a reference plane matching the 

damaged surface is used to calculate the depth of the points of the defect (yi) with respect to that 

surface. It can be seen that the value of 𝑌′𝑖 increases with the depth of the defect. Moreover, ideally 

the normal vectors of the deepest point of a defect (𝑁1
⃗⃗⃗⃗  ) and the non-defect points (𝑁2

⃗⃗ ⃗⃗ ) are 

perpendicular to the reference plane.  

 

 

Figure 3-1. Cross-section of a sample defect with the normal vector and depth of a point. 

 

Figure 3-2 shows a sample of blocks of points in a segment. Unlike the original PointNet++, in 

this research, 2D convolving for wrapping the dataset is performed on the XZ surface (vs. the XY 

surface) using the blocks with the given size of AA.  

 

ymax 
y

i
 

𝑁⃗⃗ 𝑖 x 

y 

Reference plane 

𝑁⃗⃗ 1 

𝑁⃗⃗ 2 

(xi, yi, zi) 



46 

 

 

Figure 3-2. Sample of blocks of points in a segment. 

(c) Addressing the issue of imbalanced data for priority classes 

The imbalanced class distribution is one of the challenges in this research. Because not only the 

number of defects in each class (i.e., spalls and cracks) is different, but their sizes are also very 

different. Moreover, the largest part of the dataset belongs to the no-defect class, which has the 

least priority. Therefore, a weighted softmax cross-entropy loss function is applied to increase the 

contribution of the minority classes (spalls and cracks), which have priority. The weight (wi) and 

the cost weight of class i (Wi) are calculated using Equations 3-5 and 3-6 (Cui et al., 2019). 

𝑤𝑖 = 𝑁𝑖/(∑𝑁𝑖

𝐾

𝑖=1

) Equation 3-5 

𝑊𝑖 = 1/ 𝑙𝑜𝑔(1.05 + 𝑤𝑖) Equation 3-6 

where Ni and K represent the number of points in class i and the total number of classes, 

respectively.  

(d) Applying sensitivity analysis to adjust the hyperparameters in order to better capture the 

features of small defects. 

Sensitivity analysis is applied for observing how the changes of each hyperparameter impact the 

network’s performance. The hyperparameters related to the network architecture and the dataset 

should be adjusted in case of using different datasets and features. In this research, the sizes of 

defects are much smaller than the indoor building elements (e.g., chairs, tables), which were the 

focus of the original PointNet++ (Qi et al., 2017b). The following sensitivity analysis is applied to 

adjust the hyperparameters in order to better capture the features of small defects. The range of 

each hyperparameter is selected to cover the most promising values.  

(1) Hyperparameters related to the network architecture: 

• Number of sub-layers: Sub-layers in PointNet++ are responsible for extracting the 

features from the sampled and grouped points using the mini-PointNet networks. The 

learning capacity of a neural network increases exponentially with its depth (i.e., number 

of sub-layers) and polynomially with its width (i.e., number of nodes) (Montufar et al., 

A 

x 

y z 

x 

A 

A 

A 

A 

A 

  
A 

  

A 

A 

(a) Orthogonal view (b) Cross section 



47 

 

2014). As such, a sensitivity analysis on the number of sub-layers is performed to obtain 

the optimal network topology. In addition, two sets of features are used in the input layer 

(with and without the normal vectors) to study the impact on performance. 

• Sampling size: Having multiple sampling sizes is one of the advantages of PointNet++, it 

is expected to reach better results using a variety of sampling sizes for different layers. 

Although all defects are relatively small, their sizes vary in a wide range. Therefore, the 

optimal sampling sizes should be able to accommodate large defects such as severe spalls 

as well as small cracks. 

(2) Hyperparameters related to the dataset: 

• Size of the blocks and number of points in each block: The density of the dataset depends 

on the number of points in each block and the block size. If the density of a block is less or 

more than the predefined value, it will be up-sampled or down-sampled, respectively. In 

order to minimize the changes due to down-sampling and up-sampling, the number of 

points in each block and the block size must be adjusted considering the distribution of 

segments based on their densities.  

The original PointNet++ (Qi et al., 2017b) used 8,192 points in each 1.5 m1.5 m block 

for making a uniform dataset. Block sizes should be set based on the size of the segments 

and objects in each class (e.g., cracks, spalls). Therefore, it is expected to get better results 

using smaller blocks for defect semantic segmentation. Moreover, the number of points per 

block is selected based on the predefined block size so that the density of points fits within 

a reasonable density range. The density of points is calculated according to Equation 3-7. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎

𝐴𝑟𝑒𝑎 
 

Equation 3-7 

Figure 3-3 represents the process of defining the appropriate values for block size (BL) and number 

of points per block (NP). The initial values for the number of points per block (NP0) and block 

size (BL0) are defined as follows: 

NP0 = NPmin = original value Equation 3-8 

BL0 = BLmax ≤ min {Smin, Dmax} Equation 3-9 

where NPmin is 8,192 points per block, and Smin and Dmax are the sizes of the smallest segment and 

the biggest defect, respectively. In the first step, starting with NP0 and BL0, the density is 

calculated. If it is in the acceptable density range, which is defined based on the density of most 

of the segments to limit the changes in the dataset due to down-sampling and up-sampling, NP0 

and BL0 are considered as an acceptable combination (COM). Then, the other acceptable NPs for 

BL0 are determined by increasing NP value by a certain value of α* NP0 and the NP list is updated. 

If the density is not in the range, BL is decreased by β*BL0 and the acceptable NPs are selected out 

of the created NP list for new BL. For example, as will be explained in Section 3.3.3, in Table 3-4, 

first a list of acceptable NPs, including 22 NPs, is created for BL0, and then for BL1 the acceptable 

NPs are selected out of the available NP list. This process continues until the calculated density 

using the considered BL and NP0 is out of the predefined density range (O.R.). 



48 

 

Density 
in acceptable

 range?

YES

Start

Add NP  to NP list

NP = NP0 BL = BL0

Density = NP/BL

 Add (BL, NP) to COM 
list

NO
Add BL  to BL list

BL = BL-β *BL0

Consider NP = NP0

BL = BL0

YES NP = NP0 NO

YES

END

NP = NP+α *NP0

Select the next NP from 
NP list

NO

C
re

at
in

g 
lis

ts
 o

f n
um

be
r 

o
f p

oi
nt

s 
p

er
 b

lo
ck

s 
&

 
co

m
bi

na
ti

o
ns

C
reating lists o

f b
lo

ck sizes

 

Figure 3-3. Defining the values for sensitivity analysis for number of points per block and block size. 

• Stride size: Adding a stride in the data wrapping process may improve the results; 

however, it will increase the computation time. Therefore, sensitivity analysis helps to 

find the effect of stride size on the results and select the most suitable value. Figure 3-4 

shows a sample of adding 25% stride. 

 

Figure 3-4. Sample of stride. 

An efficient sensitivity analysis should be done in an organized multi-step process. As shown in 

Figure 3-5, the sensitivity analysis is applied in four steps. Step 1 aims to find the best architecture 

by varying the number of sub-layers and the sampling sizes, where the block size is set to its 

minimum value and the number of points per block is set to its maximum value because these 

values are expected to give the best results. For each number of layers, different combinations of 

sampling sizes are tried, and the performance metrics are calculated. Then, if it is the first case, a 

sub-layer is added to investigate the performance of a deeper network. Otherwise, the results are 

A 

A 

(a) Blocks with no stride 

A 

(b) Block with 25% stride 

A 

A A A A A 
A 

A 
A 

A 
A 

A 



49 

 

compared with the previous models to decide if more layers are required or not and to select the 

best model. 

After finding the best model in Step 1, the sensitivity analysis is applied to capture the best block 

size out of the values, which are specified based on Figure 3-3. In Step 2, the number of points per 

block and the stride size are fixed (i.e., maximum number of points and no stride). Based on the 

calculated performance metrics, the best value of the block size is selected. Having the best model 

and block size, Step 3 focuses on obtaining the best value for the number of points per block in 

case of no stride. Finally, Step 4 aims to investigate the effect of strides in different cases (i.e., 0%, 

25%, and 50% strides). 



50 

 

Define sampling size 
range

Calculate performance 
metrics

Select combinations of 
sampling sizes

Consider original 
number of layers

Add a new layer Compare resultsFirst case?
YES

Better results?
YES

NO

NO

Select best model

Calculate performance 
metrics

Select best block size

Calculate performance 
metrics

Select best number of 
points per block

Calculate performance 
metrics

Select best stride size

St
ep

 1
: S

el
e

ct
 A

rc
h

it
ec

tu
re

Step
 2: Sele

ct B
lo

ck Size
Step

 3
: Sele

ct N
u

m
b

er of 
P

oin
ts p

er B
lock

Step
 4

: Sele
ct Stride

 Size

Block size value 
from BL list

Fixed variables:
Maximum number of 

points per block, 
No stride

Fixed variables: 
No stride

List of values for 
stride 

F

e

Max and min 
defect widths

 

Figure 3-5. Sensitivity analysis framework.



51 

 

3.2.2 Performance Metrics 

Sensitivity analysis is applied and the best combination of hyperparameters is selected based on 

five performance metrics, which are computed using Equations 3-10 to 3-14. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  Equation 3-10 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  Equation 3-11 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) Equation 3-12 

𝐼𝑜𝑈 = 𝑇𝑃 (𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁)⁄  Equation 3-13 

𝑂𝐴 = (∑𝑇𝑃𝑖

𝑘

𝑖=1

)/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠) Equation 3-14 

where i and k are the class number and the total number of classes, respectively. Figure 3-6 shows 

an example of calculating True Positive (TP), False Negative (FN), True Negative (TN), and False 

Positive (FP) for a class (e.g., crack).  

 

Higher TP leads to detecting more points correctly, which leads to higher precision and recall. If 

the focus is mainly on detecting most defects, recall has the priority to evaluate the network 

performance. For example, a network with higher cracks precision is able to predict more cracks 

with a smaller number of other defects (i.e., spalls and no defects) miss-classified as cracks, while 

higher crack recall means missing less cracks and having less cracks miss-classified. On the other 

hand, IoU is a commonly used metric to measure the similarity between the ground-truth and 

predicted region (Rahman and Wang, 2016). Higher similarity requires minimizing FP and FN and 

maximizing TP. To ensure the efficiency of the proposed network, all these factors were 

considered in network performance evaluation. Most DL-based segmentation methods use simple 

loss functions (i.e., softmax) to optimize the OA (Rahman and Wang, 2016).  

 

 

Figure 3-6. Example of TP, TN, FP, and FN for the crack class. 

A comparison between the accuracy of the model during training and evaluation in each epoch 

gives insight into the learning behavior, such as overfitting and underfitting (Brownlee, 2016). 

There are other factors, including learning rate, batch size, and number of epochs, which should 

be set properly for training the model.  

True/Actual 

Crack Spall No defect 

Crack 

Spall 

No defect 

4 6 3 

1 

2 

2 

0 

6 

1 Predicted 

FP 

TP 

FN 

TN 



52 

 

3.2.3 Framework of Adjustments Made to PointNet++ 

This research is done in two stages. The first stage, adapted PointNet++, can be considered as a 

preliminary step and it focuses on answering the following questions: (1) Is flipping an appropriate 

approach for data augmentation? (2) Is focusing on depth of the points by removing X’ and Z’ and 

convolving on XZ surface beneficial? and (3) What are the best values for some hyperparameters 

such as stride sizes and number of points per block? To this end, the dataset is doubled by flipping 

horizontally, and the network is fed by a seven-dimensional array including x, y, z, R, G, B, and 

Y’. Moreover, this method is useful in the case of limited computation resources (i.e., limited 

Random-Access Memory (RAM)). 

After evaluating the performance of the adapted PointNet++ and ensuring its feasibility, all factors 

mentioned in Section 3.2.1 are applied in SNEPointNet++. Since flipping the dataset has not led 

to overfitting, the dataset is flipped twice (i.e., horizontally and vertically) in SNEPointNet++ to 

increase the size of the dataset. After preprocessing the dataset, the network is trained based on the 

points represented by a 10-dimensional vector with values of x, y, z, R, G, B, Nx, Ny, Nz, and Y’. 

Moreover, sensitivity analysis covers all the hyperparameters shown in Figure 3-5.  

Figure 3-7 represents the overall framework of the proposed defect semantic segmentation, where 

the dashed boxes are the steps which are different between the two stages. 

Data Collection

Data 
preprocessing

Annotation

Augmentation
(Flipping)

Training & 
Evaluation

Testing

Input features

x, y, z

Colors

Depth (Normalized Y)

Normal Vector

Normal Vector 
Calculation

Data preparation

Splitting Dataset

Training & 
Evaluation 

Dataset

Testing 
Dataset

Sensitivity Analysis

 
Figure 3-7. Overall framework of the proposed defect semantic segmentation 

 

3.3 Implementation and Case Study 

Figure 3-8 shows the implementation and the case study process of defect semantic segmentation 

in detail. As shown in this figure, the prior steps, which are mostly related to removing irrelevant 

points and registration of the collected point clouds, are common between adapted PointNet++ and 

SNEPointNet++. Although the process of some steps (i.e., annotation, data preprocessing) are the 

same for both networks, the inputs and outputs are different. 



53 

 

Data collection
(x,y,z,R,G,B)

Removing 
irrelavant points

Registration

Segmenting point 
clouds

Fitting reference 
plane

Calculating 
normal vector

Annotation

Flipping 
horizontally

Flipping vertically 
& horizontally

Data 
preprocessing

Splitting dataset

Training and 
evaluation

Testing

Annotated dataset 
with normal vector

Annotated dataset

Input dataset
(x,y,z,R,G,B,Nx,Ny,Nz,Y  

Input dataset
(x,y,z,R,G,B,Y  

Sensitivity Analysis (number 
of sub-layers, sampling size, 
block size, number of points 

per block, stride size)

Sensitivity Analysis 
(number of points per 

block & stride size)

Training & 
evaluation 

dataset
Testing dataset

Training & 
evaluation 

dataset
Testing dataset

Training and 
evaluation

Testing

A
d

a
p

te
d

 P
o

in
tN

et
++

SN
EP

o
in

tN
et++

 

Figure 3-8. Implementation and case study steps of adapted PointNet++ and SNEPointNet++.



54 

 

3.3.1 Data Collection 

The inputs of the proposed method, which are the 3D point cloud datasets, were scanned from four 

reinforced concrete bridges in Montreal using a FARO Focus3D scanner (FARO Technologies 

Inc., 2012). The 3D Faro LiDAR is equipped by a camera, which automatically captures images 

during scanning and detects the color of each point. The specifications of the scanner are tabulated 

in Table 3-1. 

 
Table 3-1. FARO Focus3D LiDAR specifications (FARO Technologies Inc., 2011). 

LiDAR 
Points per 

Second 

Field of View Angular 
Resolution 

Accuracy 
Measurement 

Range Vertical Horizontal 

FARO Focus 3D 976,000 305° 360° 0.009° ±2 mm 1.5 m – 120 m 

 

The locations of the scanned bridges are shown in Figure 3-9. Some studies focused on formalizing 

the scan planning to minimize the number of scanning stations (viewpoints) with full coverage of 

inspected surfaces considering scanning parameters and the required level of details (Aryan et al., 

2021; Huang et al., 2021). Since scan planning is out of the scope of this research, planning the 

scanning stations and acquisition parameter settings for each bridge are not optimized. To 

guarantee that the acquired datasets fully cover the scanning targets including several parts of the 

bridge substructures (i.e., abutments), they are scanned from several stations. Figure 3-10 shows 

samples of some scanning positions on the western side of Bridge 1. Moreover, increasing the 

number of stations may improve the datasets’ quality and increase the level of details due to more 

overlapping datasets. Besides, the scanner location impacts the incidence angle. A larger incidence 

angle gives a coarser dataset. Therefore, scanning the same surface with different incidence angles 

may help to generalize the trained model for different intensities. To this end, scanning Bridge 1 

based on two different scan settings provides two datasets with different incidence angles and 

different qualities and colors.  

The acquisition parameters, such as FoVs, resolution, quality, and the number of scanned points, 

are presented in Table 3-2. Quality, which varies between 1x and 6x, is related to the length of 

time to capture points. For example, 1x and 4x mean 1 µs and 8 µs per scan point, respectively. 

Higher slider leads to longer scanning time and less errors. (FARO Technologies Inc., 2017). The 

resolution is a factor to set the number of points acquired per rotation. It determines the density of 

the scan point and can be between 1/32 and 1. For instance, Faro can scan 710 Million and 0.7 

Million points over a full area scan with its highest (1/1) and lowest (1/32) resolutions, respectively 

(FARO Technologies Inc., 2011). In other words, the resolution factor directly affects the distances 

between scanned points. For example, the minimum distances between two points using (1/1) and 

(1/2) resolutions are 0.3 mm and 0.62 mm, respectively, at 2 m scanning distance. Therefore, the 

minimum detectable widths of the defects, which are located at the perpendicular view of the 

scanner, are 0.6 mm and 1.24 mm, respectively. In this case study, the minimum defect width (2 

mm) is higher than these values. Although using the highest resolution with maximum quality 

takes longer scanning duration, it is required to minimize the errors. However, this is not always a 

feasible option due to the battery limitations (i.e., its capacity and performance in harsh weather), 

as well as traffic restrictions. To prevent scanning irrelevant objects, the horizontal and vertical 



55 

 

FoVs can be decreased. Depending on the scan parameters, the required time and the approximate 

number of points can be calculated by the scanner in advance.  

CloudCompare (Girardeau-Montaut, 2020) is a 3D point cloud processing software. It has recently 

gained more popularity than some other software tools (e.g., Trimble (Trimble Inc., 2020) and 

ReCap (Autodesk Inc., 2021) due to its free accessibility and higher speed in simple tasks such as 

registration and removing irrelevant data. However, due to an inconsistency between the output 

format of the Faro scanner (*.fls) and the input format acceptable by the CloudCompare software 

(*.ply), a format conversion was required, which was performed using the ReCap software. 

 

  

(a) Bridge 1: Guy Street  (b) Bridge 2: Lucian L’Allier Street  

  
(c) Bridge 3: Avenue Atwater  (d) Bridge 4: Chemin Macdonald 

Figure 3-9. Data collection locations in Montreal. 
 
 

 

 

 

 



56 

 

 
Figure 3-10. Samples of scanning positions on the western side of Bridge 1. 

 

Table 3-2. Scanning information. 

 Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 

Bridge Number 1 1 2 3 4 

Number of Stations 8 4 6 4 2 

Horizontal FoV 23° to 259° 23° to 259° 0° to 360° 0° to 360° 0° to 360° 

Vertical FoV -43° to 71° -43° to 71° -63° to 90° -45° to 71° -60° to 90° 

Resolution 1/4 1/4 1/1 1/2 1/2 

Quality 6x 6x 2x 4x 4x 

Number of Points (Mpts) 25.5 25.5 710.7 134.5 177.7 

 

 

 

3.3.2 Data Preparation 

The first step in the data preparation is registering the scanned point clouds and removing the 

irrelevant points (i.e., buildings, trees). The following sections explain the other steps of preparing 

a raw point cloud dataset for training. 



57 

 

3.3.2.1 Segmenting Point Clouds 

Figure 3-11(b) shows three parts, which were segmented out of the scanned bridge surface after 

registration and removing irrelevant points. Although the sizes of the segments were not fixed, 

three simple rules were set based on experience: (1) Since the blocks have a box shape, the scanned 

surfaces are divided into rectangular segments; and (2) Each segment should be big enough to 

contain different sizes of defects and small enough to avoid covering many undamaged areas. 

Therefore, the minimum size of the segments was considered around 0.6 m  0.6 m and the average 

size was about 2 m  2 m. A high-quality dataset affects the accuracy of the annotation, while also 

segments with different densities are required to have an invariant network to the density of the 

dataset. This dataset is available at https://github.com/neshatbln/SNEPointNet2. 

 

 

Figure 3-11. Example of segmentation and annotation processes. 

 

3.3.2.2 Fitting Reference Plane 

Using CloudCompare, the Z-axis of the canonical coordinate system was set in the vertical 

direction. As shown in Figure 3-1, the X-axis is along the concrete bridge surface, and the Y-axis 

is perpendicular to the concrete surface (outside direction). As a result of this setting, the points 

representing defects will have negative Y values. 

(a) Scanned bridge (b) Segmenting the bridge point cloud 

(c) Segment example (d) Annotated segment 



58 

 

3.3.2.3 Calculating Normal Vectors 

Normal vectors, which were only considered in SNEPointNet++, were calculated in 

CloudCompare software and three attributes (Nx, Ny, and Nz) were added to each point. Figure 3-12 

shows a fitted segment on the XZ plane with some samples of points and their normal vectors. 

 

 

Figure 3-12. Sample of the fitted segment. 

 

3.3.2.4 Annotation 

Since this study aims to detect two types of concrete surface defects, cracks and spalls, the scanned 

point clouds were manually annotated and labeled into three classes: cracks, spalls, and no-defect. 

An example of an annotated segment is shown in Figure 3-11(d), where cracks, spalls, and non-

defect areas are shown in blue, green, and red, respectively. The statistical information of the 

combined dataset is given in Table 3-3. The prepared dataset contains 102 segments (around 27 

MPts) including 595 cracks (246,699 points) and 773 spalls (1,935,165 points). Based on the 

number of points of cracks and spalls, these classes are the minorities with a huge difference in the 

size of the data compared with the majority class, which is no defect. Figure 3-13 shows the 

distribution of the dataset based on segment density calculated using Equation 3-7. 

  

𝑁⃗⃗  

y 
x 

z 

ymax 

y 

z 

y 

(a) 3D view (b) Cross section of a segment 



59 

 

Table 3-3. Statistics of the annotated dataset before augmentation. 

Dataset 
Number of 

segments 

Number of 

points 

Cracks Spalls No defect 

Number 

of cracks 

Number 

of points 

Number 

of spalls 

Number 

of points 

Number of 

points 

Training & 
Evaluation 

81 21,313,285 475 182,430 588 1,252,551 19,878,304 

Testing 21 5,628,620 120 64,269 185 682,614 4,881,737 

Total 102 26,941,905 595 246,699 773 1,935,165 24,760,041 

 

 

Figure 3-13. Distribution of dataset segments based on density. 

3.3.2.5 Data Augmentation 

For adapted PointNet++, the dataset, which includes location and color features, was flipped 

horizontally using the Python code in Appendix A.1. For SNEPointNet++, a tripled size dataset, 

including location, colors, and normal vector features, was generated by flipping the original 

dataset twice, horizontally and vertically, using the Python code in Appendix A.2.  

3.3.2.6 Data Preprocessing  

The output of the data augmentation is a point cloud dataset including several annotated segments 

of bridge surface in TXT file format. In this step, first, the point cloud dataset attributes and the 

labels were concatenated and stored into NumPy format files.  

The original PointNet++ semantic segmentation model is designed and evaluated based on S3DIS 

dataset in the Hierarchical Data Format (HDF) as *.h5 files. HDF is an abstract data management 

and storing model (The HDF Group, 2021). Therefore, the normalized value of y (Y’) was 

calculated and added to each point and the annotated point clouds were wrapped inside the blocks 

and saved in HDF5 format. The number of points in each block, block sizes, and stride sizes are 

the variables, which can be adjusted in this step. The dataset density is not homogeneous and 

depends on the distance between the scanner and the surface, incidence angle, and step sizes. To 



60 

 

have a homogeneous dataset, the number of points in all batches was unified by down-sampling 

or up-sampling. 

3.3.3 Training and Testing 

The method was implemented using TensorFlow-GPU 1.15.1, Cuda 11.0, and python 3.6. The 

number of batches and initial learning rate were assumed to be 24 and 1e-3, respectively. The 

learning rate decayed 50% every eight epochs until the minimum value of 1e-5 was reached. Based 

on the original PointNet++ (Qi et al., 2017b), ReLU and softmax were used as activation functions 

and ADAM was considered as the optimization method. Sensitivity analysis was applied to find 

the best combination of hyperparameters and adapt the network.  

Table 3-4 shows the lists of values for number of points per block, block sizes, and the density of 

their combinations, which were defined based on Figure 3-3. Based on Equation 3-9, the initial 

block size (BL0) was considered 40 cm, which was smaller than the smallest dimension of segments 

(46 cm) and the biggest defect size (60 cm) in this research. On the other hand, the density in each 

case should be between 9,000 pts/m2 and 329,000 pts/m2, which is the density range for 85% of 

segments in the dataset. As shown in Table 3-4, the block size was decreased when the density 

was out of range (O.R.).  

  



61 

 

Table 3-4. List of number of points per block, block sizes, and their densities. 

 Block Size (cm2) 

BL0 BL1 BL2 BL3 

40 x 40 30 x 30  20 x 20 10 x 10 

N
u

m
b

er
 o

f 
p
o

in
ts

 p
er

 b
lo

ck
 

NP0 8,192 51,200 91,022 204,800 819,200 (O.R.) 

NP1 10,240 64,000 113,778 256,000 - 

NP2 12,288 76,800 136,533 307,200 - 

NP3 14,336              89,600*                159,289* 358,400 (O.R.) - 

NP4 16,384            102,400*                182,044* - - 

NP5 18,432            115,200*                204,800* - - 

NP6 20,480            128,000*                227,556* - - 

NP7 22,528            140,800*                250,311* - - 

NP8 24,576            153,600*                273,067* - - 

NP9 26,624            166,400*                295,822* - - 

NP10 28,672            179,200*                318,578* - - 

NP11 30,720            192,000*                341,333 (O.R.) - - 

NP12 32,768            204,800* - - - 

NP13 34,816            217,600* - - - 

NP14 36,864            230,400* - - - 

NP15 38,912            243,200* - - - 

NP16 40,960            256,000* - - - 

NP17 43,008            268,800* - - - 

NP18 45,056            281,600* - - - 

NP19 47,104            294,400* - - - 

NP20 49,152            307,200* - - - 

NP21 51,200            320,000* - - - 

* Cannot be applied due to computation resource limitations (i.e., RAM) 
** All densities are in pts/m2 

 

3.3.3.1 Adapted PointNet++ 

Training and testing were performed on a cloud computing platform, called Compute Canada 

(2021), using 2 GPUs, 24 GB RAM per GPU, and 32-core CPU. Figure 3-14 shows the adapted 

PointNet++ fed by 7-dimensional vectors. The hierarchical point set feature learning starts with 

sampling N1 points out of all n points of the dataset in the first sub-layer and considering each 

point as the centroid of a region. Then, the points in the radius of 5 cm from the centroids are 

grouped and fed locally into a mini PointNet, which is comprised of three MLPs with 32, 32, and 

64 nodes followed by a max pooling operation to extract new features. The learning process 

continues considering 10 cm, 20 cm, and 30 cm radiuses for grouping the points around N2, N3, 

and N4 number of centroid points, respectively, in three more sub-layers. Afterwards, in the next 

phase, to interpolate the learning features the inverse process is applied using four mini PointNet 

units, which are fed by two sets of features: (1) the features from the previous MLP, which are 

interpolated to fit to the current MLP; and (2) the features from the corresponding mini PointNet 

in the previous learning set (sampling and grouping). Finally, two Fully-Connected (FC) layers 

are added to reach the score (m) for n points using the weighted Softmax function. 



62 

 

In the preliminary sensitivity analysis, the hyperparameters were limited to the number of points 

per block and stride size. As shown in Table 3-5, nine cases (Case A1-A9) were defined based on 

three numbers of points (i.e., 8,192 points, 10,240 points, and 12,288 points) and three stride sizes 

(i.e., 0%, 25%, and 50%) for the largest block size (40 cm  40 cm). The results of training, 

evaluation, and testing are shown in Table 3-5 and Table 3-6. 

As shown in Figure 3-15, changes in the number of points and stride sizes have effects on 

computation time. Although the highest recalls for both cracks and spalls belong to Case A9, 

training this model takes the longest time (20 hours and 35 minutes) among all. Training Case A3  

takes 14 hours less than Case A9 and leads to only 2% and 0.2% decreases in crack and spall 

recalls, respectively. Considering 10,240 points per block with 50% stride (Case A8) results in the 

best performance in all terms except spall recall. In comparison with Case A8, although increasing 

the number of points in Case A9 improves spall recall by 2.9% with no effect on crack recall, it 

decreases the time efficiency and performance of the network in terms of precision, F1-score, and 

IoU. To this end, if there is a time limitation and the only focus is on not missing defects, Case A3 

would be a reliable choice for training a model. Otherwise, the overall performance of Case A8 is 

the best. 



63 

 

 

 
n

 x
 (

x,
y,

z,
R

,G
,B

,Y
  

P
oi

n
tN

e
t:

 M
LP

(3
2

,3
2

,6
4

)x
N

1

P
oi

n
tN

e
t:

 M
LP

(6
4

,6
4

,1
2

8)
xN

2

P
oi

n
tN

e
t:

M
LP

(1
2

8,
1

28
,2

5
6)

xN
3

P
oi

n
tN

e
t:

 M
LP

(2
5

6,
2

56
,5

1
2)

xN
4

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(5

 c
m

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(1

0 
cm

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(2

0 
cm

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(3

0 
cm

)

P
oi

n
tN

e
t:

 M
LP

 (2
5

6,
25

6)
xN

3

P
oi

n
tN

e
t:

 M
LP

(2
56

,2
5

6)
xN

2

P
oi

n
tN

e
t:

 M
LP

(2
56

,1
2

8)
xN

1

P
oi

n
tN

e
t:

 M
LP

(1
28

,1
2

8,
1

28
)x

n

In
te

rp
o

la
te

In
te

rp
o

la
te

In
te

rp
o

la
te

In
te

rp
o

la
te

FC
 (1

28
)

D
ro

p
ou

t

FC
 (m

)

O
u

tp
u

t 
sc

o
re

 (
n

 x
 m

)

Sampling and Grouping Interpolating
 

Figure 3-14. Architecture of adapted PointNet++ of the performance. 



64 

 

 
Table 3-5. Training and evaluation results of adapted PointNet++ for various stride sizes and numbers of 

points per block. 

Case 
Number of points 

per block 

Stride size 

(cm  cm) 

Training Evaluation 

Mean loss 
OA 
(%) 

Mean loss 
OA 
(%) 

A1 8,192 
4040  
(0%) 

0.120 98.4% 0.135 96.2% 

A2 10,240 0.087 98.7% 0.102 96.8% 

A3 12,288 0.094 98.7% 0.107 96.7% 

A4 8,192 
4030 

(25%) 

0.089 98.7% 0.134 96.3% 

A5 10,240 0.079 98.8% 0.114 96.7% 

A6 12,288 0.074 98.9% 0.115 96.7% 

A7 8,192 
4020 
(50%) 

0.108 98.5% 0.127 96.5% 

A8 10,240 0.071 99.0% 0.100 97.1% 

A9 12,288 0.086 98.7% 0.094 97.0% 

 

 

Table 3-6. Testing results of adapted PointNet++ for various stride sizes and numbers of points per 

block. 

Case 

Cracks Spalls No defects 

Pre.  
(%) 

Recall 
(%) 

F1  
Score 
(%) 

IoU 
(%) 

Pre.  
(%) 

Recall 
(%) 

F1  
Score 
(%) 

IoU 
(%) 

Pre.  
(%) 

Recall 
(%) 

F1  
Score 
(%) 

IoU 
(%) 

A1 27.6 21.9 24.4 13.9 66.9 69.6 68.3 51.8 95.3 95 95.2 90.8 

A2 38.4 45.2 41.6 26.2 67.6 77.5 72.2 56.5 96.5 94.4 95.5 91.3 

A3 39.7 48.1 43.5 27.8 68.0 80.4 73.7 58.4 96.9 94.4 95.6 91.6 

A4 29.5 26.5 27.9 16.2 75.8 75.7 75.7 60.9 96 96.2 96.1 92.5 

A5 42.9 43.5 43.2 27.5 74.9 79.6 77.2 62.8 96.6 95.8 96.2 92.7 

A6 41.7 49.3 45.2 29.2 76.6 75.6 76.1 61.4 96.2 96.1 96.1 92.6 

A7 22.2 24.4 23.3 13.2 70.2 79.4 74.5 59.4 96.3 94.3 95.3 91 

A8 46.6 50.1 48.3 31.8 80.0 77.7 78.9 65.1 96.3 96.6 96.5 93.2 

A9 42.4 50.1 45.9 29.8 75.2 80.6 77.8 63.6 96.9 95.7 96.3 92.8 

 



65 

 

 

Figure 3-15. Testing results and training time of cases A1-A9. 

Figure 3-16 represents the effect of stride and the number of points in each block on the adapted 

PointNet++ crack semantic segmentation. Based on Figure 3-16, adding the stride improves the 

network performance except in Case A5, which causes a decrease of 1.7% in crack recall. On the 

other hand, increasing the 25% stride to 50% for the blocks with 8,192 points decreases the 

efficiency of the model. In contrast, this change in strides causes improvement in the case of 10,240 

points per block, while it has only minor impacts on training a model with 12,288 points. 

Therefore, the effect of strides on the overall performance of the model becomes less pronounced 

by increasing the number of points. This result can be interpreted that by feeding the model with 

more points, the model reaches its maximum learning capacity, and the provided information by 

strides may be redundant or lead to overfitting. 

Based on the outcomes of spall semantic segmentation using adapted PointNet++ in Figure 3-17, 

adding 25% stride improves the network performance in terms of IoU, recall, and precision, and 

only in the case of having 12,288 points the spall recall decreases by 4.8%. There is no clear pattern 

with respect to increasing the stride to 50%. The effect of changing the number of points is more 

prominent in the case of increasing 8,192 points to 10,240 points. For instance, the highest 

performance improvement is a 10% increase in precision with 50% stride, and the number of points 

increases from 8,192 points to 10,240 points. 

  

0

2

4

7

9

12

14

16

19

21

0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4 A5 A6 A7 A8 A9

Tr
ai

n
in

g 
Ti

m
e 

(h
o

u
rs

)

R
ec

al
l (

%
)

Case

Cracks Spalls Training time



66 

 

 
(a) Precision 

 
(b) Recall 

 
(c) IoU 

Figure 3-16. Effect of stride and number of points on crack semantic segmentation using adapted 

PointNet++. 

27.6

38.4 39.7

29.5

42.9 41.7

22.2

46.6
42.4

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Pr
ec

is
io

n
 (%

)

Number of points per block

0%

25%

50%

Stride size

21.9

45.2 48.1

26.5

43.5
49.3

24.4

50.1 50.1

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

R
ec

al
l (

%
)

Number of points per block

0%

25%

50%

Stride size

13.9

26.2 27.8

16.2

27.5 29.2

13.2

31.8 29.8

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Io
U

 (
%

)

Number of points per block

0%

25%

50%

Stride size



67 

 

 
(a) Precision 

 
(b) Recall 

 

(c) IoU 

Figure 3-17. Effect of stride and number of points on spall semantic segmentation using adapted 

PointNet++. 

66.9 67.6 68
75.8 74.9 76.6

70.2
80

75.2

0
10
20
30
40
50
60
70
80
90

100

8,192 10,240 12,288

Pr
ec

is
io

n
 (%

)

Number of points per block

0%

25%

50%

Stride size

69.6
77.5 80.4

75.7 79.6 75.679.4 77.7 80.6

0
10
20
30
40
50
60
70
80
90

100

8,192 10,240 12,288

R
ec

al
l (

%
)

Number of points per block

0%

25%

50%

Stride size

51.8
56.5 58.460.9 62.8 61.459.4

65.1 63.6

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Io
U

 (%
)

Number of points per block

0%

25%

50%

Stride size



68 

 

3.3.3.2 SNEPointNet++ 

Training and testing of SNEPointNet++ were performed on a LAMBDA workstation, with 3 

NVIDIA RTX A6000 GPUs, 48 GB RAM per GPU, and AMD Ryzer Threadripper 3960x 48-core 

CPU. Most of the algorithms were developed in Python 3.8 and the environment was created in a 

Docker container. Based on Figure 3-5, the sensitivity analysis includes four main steps. In Step 

1, various sampling sizes between 2.5 cm and 40 cm, which is the maximum value smaller than 

the smallest segment, for three number of sub-layers were considered to find the best architecture. 

In Step 2 and Step 3, the block sizes and number of points per block were selected out of the 

predefined values in Table 3-4. The values of hyperparameters in each step of the sensitivity 

analysis of the case study are shown in Table 3-7, and the detailed process is explained in the 

following. 

Table 3-7. Hyperparameter values in each round of sensitivity analysis. 

Hyperparameters 
Step 1 Step 2 Step 3 Step 4 

(Series M) (Series B) (Series N) (Series S) 

Sub-layers & 
sampling size 

Sublayers: 4,5,6 
Sampling sizes: 
between 2.5 cm-

40 cm 

Best of  
Series M 

Best of  
Series M 

Best of  
Series M 

Block size 
(cm  cm) 

20  20 
20  20 
30  30 
40  40 

Best of  
Series B 

40  40 

Number of points 
per block 

12,288 12,288 
8,192 
10,240 
12,288 

8,192 
10,240 
12,288 

Stride size 0% 0% 0% 
0% 
25% 
50% 

 

(a) Effect of number of sub-layers and sampling size 

In Step 1, four, five, and six sublayers were considered to find the effective depth of 

SNEPointNet++. The widths of defects vary between 0.2 cm (i.e., hairline cracks) and 50 cm (i.e., 

severe spalls). Moreover, the smallest size of segments is 46 cm. Therefore, a relatively wide range 

of 2.5 cm to 40 cm was considered for the sampling size of each sub-layer. The training and 

evaluation results and the training time for the five best networks are shown in Table 3-8, while 

their testing results are illustrated in Table 3-9. Comparing the results by the number of layers 

shows that increasing the number of layers from four (M1 and M2) to five (M3 and M4) leads to 

higher efficiency. Compared to the best 5-layer network (M4), adding the sixth layer does not 

improve the learning process due to overfitting.  

Considering 5-layer networks, the combination of smaller sampling sizes (M4) results in around 

2% to 3% improvement over M3 in crack precision and IoU, while there are 0.8% and 0.6% 

reductions in recall and IoU of spalls, respectively. Considering the network performance in terms 

of both crack and spall semantic segmentation, M4 is selected as the most efficient architecture, 

which is shown in Figure 3-18. 



69 

 

Table 3-8. Training and evaluation results of the top five combinations of sublayers and sampling sizes. 

Case 
Number 

of  

layers 

Sampling size in each layer (cm) Training Evaluation Training 
time 

(Hrs:mins) 1 2 3 4 5 6 Mean loss 
OA 
(%) 

Mean loss 
OA 
(%) 

M1 
4 

5 10 20 30 - - 0.072422 98.1 0.073447 97.7 27:46 

M2 2.5 10 20 30 - - 0.080615 97.8 0.080318 97.5 28:03 

M3 
5 

5 10 20 30 40 - 0.064733 98.3 0.064739 98.1 29:52 

M4 2.5 5 10 20 30 - 0.058815 98.3 0.057952 98.1 30:35 

M5 6 2.5 5 10 20 30 40 0.055237 98.3 0.056810 98.1 32:43 

 

Table 3-9. Testing results of the top five combinations of sublayers and sampling sizes. 

Case 

Cracks Spalls No defects 

Pre.  

(%) 

Recall  

(%) 

IoU  

(%) 

Pre.  

(%) 

Recall  

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

M1 67.4 90.6 63.9 86.3 90.1 78.8 99.2 98.5 97.7 

M2 68.9 90.7 64.3 85.1 89.8 77.7 99.2 98.4 97.6 

M3 71.2 91.3 66.6 90.4 91.2 83.1 99.4 98.5 98.0 

M4 73.3 93.0 69.2 89.9 92.0 82.5 99.3 98.8 98.1 

M5 70.9 93.6 67.6 90.6 90.5 82.8 99.2 98.8 98.1 



70 

 

 

 

 

n
 x

 (
x,

y,
z,

R
,G

,B
,N

xN
yN

zY
  

P
oi

n
tN

e
t:

 M
LP

 (3
2,

3
2,

6
4)

xN
1

P
oi

n
tN

e
t:

 M
LP

(6
4,

64
,1

28
)x

N
2

P
oi

n
tN

e
t:

 M
LP

(1
28

,1
2

8,
2

56
)x

N
3

P
oi

n
tN

e
t:

M
LP

(2
5

6,
2

56
,5

12
)x

N
4

P
oi

n
tN

e
t:

M
LP

(5
1

2,
5

12
,1

02
4)

xN
5

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(5

 c
m

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(1

0 
cm

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(2

0 
cm

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(3

0 
cm

)

Sa
m

p
lin

g 
&

 G
ro

up
in

g 
(2

.5
 c

m
)

P
oi

n
tN

e
t:

 M
LP

 (5
12

,5
1

2)
xN

4

P
oi

n
tN

e
t:

 M
LP

(2
56

,2
5

6)
xN

3

P
oi

n
tN

e
t:

 M
LP

(2
56

,2
5

6)
xN

2

P
oi

n
tN

e
t:

 M
LP

(2
56

,1
2

8)
xN

1

P
oi

n
tN

e
t:

 M
LP

(1
28

,1
2

8,
1

28
)x

n

In
te

rp
o

la
te

In
te

rp
o

la
te

In
te

rp
o

la
te

In
te

rp
o

la
te

In
te

rp
o

la
te

P
oi

n
tN

e
t:

 F
C

 (1
28

)x
n

D
ro

p
ou

t

P
oi

n
tN

e
t:

 F
C

 (m
)

O
u

tp
u

t 
sc

o
re

 (
n

 x
 m

)

Sampling and Grouping Interpolating

 

Figure 3-18. Architecture of SNEPointNet++ with the best performance (Case M4). 

 



71 

 

(b) Effect of block size and number of points per block 

In Step 2 and Step 3, two series of cases (B and N) were defined to adjust block size and number 

of points per block, respectively. The list of the predefined values is shown in Table 3-4. As shown 

in Table 3-7, to find the best combination of block size and number of points per block, first block 

size and then number of points per block were set. In set B, considering three block sizes of 20 cm 

 20 cm, 30 cm30 cm, and 40 cm  40 cm with 12,288 points per block leads to uniform densities 

of 307,200 pts/m2, 136,533 pts/m2, and 76,800 pts/m2, respectively. As shown in Table 3-10, 

decreasing the block size from 40 cm  40 cm to 30 cm  30 cm results in better performance for 

both cracks and spalls. Although decreasing the block size from 30 cm  30 cm (Case M4-B30) 

to 20 cm20 cm (Case M4-B20) improves the network performance for crack semantic 

segmentation, the spall recall and IoU decrease by 2.5% and 6.6%, respectively. It can be 

concluded that very small block sizes cannot be well-trained for larger defects (i.e., spalls). The 

most efficient block size was 20 cm  20 cm due to its considerable effect on crack detection.  

Table 3-11 represents the testing results of three cases defined based on different numbers of points 

(8,192 points, 10,240 points, and 12,288 points) per 20 cm  20 cm block. It can be seen that more 

points per block result in better performance.  

Table 3-10. Testing results for different block sizes. 

Case 
Block 
size 

(cmcm) 

Density 

(Pts/m2) 

Cracks Spalls No defects 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

M4-B20 20  20 307,200 73.3 93.0 69.2 89.9 92.0 82.5 99.3 98.8 98.1 

M4-B30 30  30 136,533 61.7 81.5 54.2 94.0 94.5 89.1 99.5 98.4 97.9 

M4-B40 40  40 76,800 44.4 62.3 34.9 84.5 86.4 74.6 99.0 98.6 97.6 
 

Table 3-11. Testing results for different numbers of points per block. 

Case 

Number 
of points 

per 
block 

Density 

(Pts/m2) 

Cracks Spalls No defects 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

IoU 

(%) 

M4-B20-N12 12,288 307,200 73.3 93.0 69.2 89.9 92.0 82.5 99.3 98.8 98.1 

M4-B20-N10 10,240 256,000 62.2 85.8 57.9 83.0 87.7 76.2 99.3 98.5 97.5 

M4-B20-N8 8,192 204,800 51.0 81.7 49.2 80.4 88.2 72.6 99.5 98.4 97.9 

(c) Effect of stride size 

In Step 4, the stride could not be applied on 20 cm20 cm due to the computation resource 

limitations (i.e., RAM size). Therefore, it was decided to consider the minimum possible block 

size (40 cm40 cm) and investigate the effect of stride size (0%, 25%, and 50%) on the results for 

three different number of points per block (8,192 points, 10,240 points, and 12,288 points). The 

testing results of the SNEPointNet++ for nine cases are tabulated in Table 3-12. 



72 

 

Table 3-12 and Figure 3-19 show the effect of increasing the stride size for different numbers of 

points in the case of crack semantic segmentation. It can be seen that by adding the strides (Cases 

M4-S4, M4-S5, and M4-S6), the performance mostly improves in terms of precision and IoU. 

These improvements are more dominant for the smaller number of points because there is more 

missing information, which can be provided using strides. Unlike IoU and precision, adding stride 

does not have any noticeable effect on recall for small number of points (Case M4-S4), while it 

improves the performance for larger number of points (Cases M4-S5 and M4-S6). The main reason 

for this trend can be the negative impact of increasing the number of points in the blocks with no 

stride (Cases M4-S1, M4-S2, and M4-S3). To evaluate the effect of increasing the stride size on 

model performance, Cases M4-S4, M4-S5, and M4-S6 are compared with Cases M4-S7, M4-S8, 

and M4-S9, respectively. The results demonstrate gradual improvements in crack IoUs and 

precisions and minor fluctuations in recalls. 

Figure 3-20 shows the testing results of spall semantic segmentation for Cases M4-S1 to M4-S9. 

The greatest improvement due to adding strides belongs to Case S6 with 12,288 points, where 

recall and IoU increased 5.9% and 5.7%, respectively. Although increasing the stride size from 

25% to 50% results in a 6% increase in spall precision of Case M4-S8, it does not lead to a 

significant improvement in the performance, and even in two cases, the spall recalls decrease. In 

general, compared to cracks, spall semantic segmentation performance is less sensitive to the stride 

size. 

Comparing the results of Case A8 in Table 3-6 with Case M4-S8 in Table 3-12 shows that the 

modifications in the SNEPointNet++ (without decreasing the number of block sizes) lead to 29.6% 

and 13.7% increases in cracks and spalls recalls, respectively, while they result in 8.6% and 16.8% 

performance improvement for crack and spall semantic segmentation, respectively, in terms of 

IoU. 

Table 3-12. Testing results for various stride sizes and numbers of points per block. 

Case 

Number 
of points 

per 
block 

Stride 
size 

(cmcm) 

Cracks Spalls No defects 

Pre.  
(%) 

Recall 
(%) 

F1  

Score 
(%) 

IoU 
(%) 

Pre.  
(%) 

Recall 
(%) 

F1  

Score 
(%) 

IoU 
(%) 

Pre.  
(%) 

Recall 
(%) 

F1  

Score 
(%) 

IoU 
(%) 

M4-S1 8,192 

4040 

(0%) 

17.0 74.8 27.7 16.1 85.7 90.3 87.9 78.5 99.5 98.6 99.0 98.1 

M4-S2 10,240 30.5 67.1 41.9 26.6 82.5 90.0 86.1 75.6 99.4 98.4 98.9 97.8 

M4-S3 12,288 44.4 62.3 51.8 34.9 84.5 86.4 85.4 74.6 99.0 98.6 98.8 97.6 

M4-S4 8,192 

4030 
(25%) 

31.2 74.1 43.9 24.1 85.3 92.9 88.9 80.1 99.5 98.2 98.9 97.8 

M4-S5 10,240 42.9 76.4 55.0 37.9 82.8 92.4 87.4 77.6 99.4 98.2 98.8 97.7 

M4-S6 12,288 44.0 77.1 56.0 38.9 86.1 92.3 89.1 80.3 99.4 98.6 99.0 98.0 

M4-S7 8,192 

4020 
(50%) 

36.0 72.5 48.1 31.7 86.4 94.1 90.1 82.0 99.5 98.5 99.0 98.0 

M4-S8 10,240 45.0 79.7 57.6 40.4 88.8 91.4 90.1 81.9 99.4 98.9 99.1 98.3 

M4-S9 12,288 45.8 75.1 56.9 39.8 89.1 91.4 90.3 82.3 99.4 98.9 99.1 98.3 



73 

 

 
(a) Precision 

 
(b) Recall 

 
(c) IoU 

Figure 3-19. Effect of stride on crack semantic segmentation using SNEPointNet++. 

17

30.5

44.4

31.2

42.9 44
36

45 45.8

0
10
20
30
40
50
60
70
80
90

100

8,192 10,240 12,288

Pr
ec

is
io

n
 (%

)

Number of points per block

0%

25%

50%

Stride size

74.8
67.1

62.3

74.1 76.4 77.1
72.5

79.7
75.1

0
10
20
30
40
50
60
70
80
90

100

8,192 10,240 12,288

R
ec

al
l (

%
)

Number of points per block

0%

25%

50%

Stride size

16.1

26.6
34.9

24.1

37.9 38.9
31.7

40.4 39.8

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Io
U

 (
%

)

Number of points per block

0%

25%

50%

Stride size



74 

 

 
(a) Precision 

 
(b) Recall 

 
(c) IoU 

Figure 3-20. Effect of stride on spall semantic segmentation using SNEPointNet++. 

85.7 82.5 84.585.3 82.8 86.186.4 88.8 89.1

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Pr
ec

is
io

n
 (%

)

Number of points per block

0%

25%

50%

Stride size

90.3 90 86.4
92.9 92.4 92.394.1 91.4 91.4

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

R
ec

al
l (

%
)

Number of points per block

0%

25%

50%

Stride size

78.5 75.6 74.6
80.1 77.6 80.382 81.9 82.3

0

10

20

30

40

50

60

70

80

90

100

8,192 10,240 12,288

Io
U

 (
%

)

Number of points per block

0%

25%

50%

Stride size



75 

 

3.4 Discussion 

3.4.1 Training, Evaluations, and Testing Results 

Table 3-13 summarizes the parameters and hyperparameters of the original PointNet++ and the 

two adjusted networks. The results of the training, evaluation, and testing of the best models of 

adapted PointNet++ and SNEPointNet++ are tabulated in Table 3-14 and Table 3-15. Using 

adapted PointNet++ was useful as an initial step to ensure the feasibility of applying PointNet++ 

in this research domain. Compared to adapted PointNet++, SNEPointNet++ performance in 

detecting the cracks is 43% and 37% better in terms of recall and IoU, respectively. Moreover, in 

SNEPointNet++, the recall and IoU of spalls are 14% and 17% higher than in the adapted 

PointNet++, respectively. Furthermore, the SNEPointNet++ improves the semantic segmentation 

performance of cracks more than spalls. The ground truth and the predicted results of three 

segments are visualized in Figure 3-21, where spalls, cracks, and no-defect classes are shown in 

green, blue, and red, respectively.  

As mentioned before, the datasets play an important role in the learning process. The main 

differences between the two adjusted networks are data augmentation and input features. The 

adapted PointNet++ used only horizontal flipping of the collected dataset. In contrast, the dataset 

used in SNEPointNet++ is three times bigger than the raw dataset due to flipping horizontally and 

vertically. Comparing Sample 1 in Figure 3-21(b) with Figure 3-21(c), most of the unpredicted 

crack points in the adapted PointNet++ were considered as no defects. On the other hand, as shown 

in Figure 3-21(d), the normal vector can be a helpful factor in the learning process. Another reason 

for the improved results of SNEPointNet++ is the deeper network and adding the smaller sample 

sizes (e.g., 2.5 cm) without removing other sample sizes. Hence, cracks have more chances to be 

detected. 

Figure 3-21(c) is a sample of network performance in differentiating between the defects and 

human-based color changes on the surface (i.e., inspectors’ marking, graffiti). It can be seen that 

the network efficiently performed in detecting a line, which looks like a crack, as no defect. This 

is a good example of the advantage of point clouds over images. 



76 

 

Table 3-13. Comparison between PointNet++ and adjusted networks (best configurations). 

 

Table 3-14. Training and evaluation results. 

Method 
Training Evaluation 

Mean loss OA (%) Mean loss OA (%) 

Adapted PointNet++ 0.071 99.01 0.100 97.12 

SNEPointNet++ 0.059 98.3 0.058 98.1 
 

Table 3-15. Testing results. 

Method 

Cracks Spalls No defects 

Pre. 

(%) 

Recall 

(%) 

F1  

Score 

(%) 

IoU 

(%) 

Pre. 

(%) 

Recall 

(%) 

F1  

Score 

(%) 

IoU

(%) 

Pre. 

(%) 

Recall 

(%) 

F1  

Score 

(%) 

IoU 

(%) 

 Adapted 

PointNet++ 
46.6 50.1 48.3 31.8 80.0 77.7 78.9 65.1 96.3 96.6 96.5 93.2 

SNEPointNet++ 73.3 93.0 82.0 69.2 89.9 92.0 90.9 82.5 99.3 98.8 99.0 98.1 

Parameter PointNet++ Adapted PointNet++ SNEPointNet++ 

Classes 
Building indoor objects 

(11 classes) 

Cracks, spalls, 

 no-defect  
Cracks, spalls, no-defect 

Data augmentation Random rotation Flipping horizontally 
Flipping 

horizontally and vertically 

Convolving 
direction 

XY surface XZ surface XZ surface 

Size of blocks (m) 1.5  1.5 Zmax 0.4 Ymax 0.4 0.2 Ymax,0.2 

Stride  N.A. 50% 0% 

Input Variables x, y, z, R, G, B, X’, Y’, Z’ x, y, z, R, G, B, Y’ x, y, z, R, G, B, Nx, Ny, Nz,Y’ 

Number of points  
in each block 

8,192 pts 10,240 pts 12,288 pts 

Number of sub-
layers 

4 4 5 

Sampling sizes (cm) 10, 20, 40, 80 5, 10, 20, 30 2.5, 5, 10, 20, 30 

Number of epochs 200 50 50 

Learning rate 1e-3 (decays exponentially to a minimum of 1e-5) 



77 

 

 
(a) Original segment (b) Ground truth 

(c) Predicted 
(Adapted PointNet++) 

(d) Predicted 
(SNEPointNet++) 

  
  
  
  

S
am

p
le

 1
 

    

S
am

p
le

 2
 

    

S
am

p
le

 3
 

    
Figure 3-21. Three samples of semantic segmentation. 



78 

 

3.4.2 Testing Results Based on Segment Depth 

Testing results of the adapted PointNet++ (Case A8) and SNEPointNet++ (Case M4-B20-N12) are 

classified based on the maximum depth of each sample (segment) in Table 3-16. As shown in 

Figure 3-22, despite the low recall for segments with less than 5 cm depth, SNEPointNet++ 

modifications significantly improve the performance of semantic segmentation of deeper defects, 

especially cracks. The results show that the deepest segments have the highest recalls for both 

cracks (81% recall and 64% F1-Score) and spalls (93% recall and 87% F1-Score) using adapted 

PointNet++. Using SNEPointNet++ improves the performance up to 98% and 99% recalls for 

semantic segmentation of cracks and spalls, respectively. Moreover, the cracks of deeper segments 

can be detected using SNEPointNet++ with 98% recall and 96% F1-score. These results validate 

the basic hypothesis of this research about the ability of point cloud-based DL methods to better 

detect defects by exploiting the depth information. 

Table 3-16. Classifying the testing results based on the segment depth. 

Depth (cm) Defect type 

Adapted PointNet++ SNEPointNet++ Number of 

segments 

ratio (%) Recall (%) 
F1-score 

(%) 
Recall (%) 

F1-score 

(%) 

D ≤ 3 
Cracks 11.8 15.7 42.6 36.2 

9.5 
Spalls 69.9 71.33 79.9 79.8 

3 < D ≤ 5 
Cracks 12.0 15.3 65.3 53.9 

14.3 
Spalls 67.6 69.0 82.2 76.0 

5 < D ≤ 7 
Cracks 54.0 51.3 92.3 89.3 

42.9 
Spalls 66.9 75.3 85.7 89.7 

7 < D 
Cracks 81.1 63.9 97.5 96.3 

33.3 
Spalls 92.6 87.0 98.6 97.7 

 

  
(a) Cracks (b) Spalls 

Figure 3-22. Classifying testing results based on depth of segments. 

3.4.3 Comparison with Image-Based Methods 

The recent image-based methods have reached around 98% (Le et al., 2021) to 99% (Vignesh et 

al., 2021) recalls in concrete surface defect classification. However, classification is not the 

appropriate approach to find the semantic information of each point individually, which is the 

objective of this research. 

0

20

40

60

80

100

D ≤ 3 3 < D ≤ 5 5 < D ≤ 7 7 < D

R
ec

al
l (

%
)

Depth of Segment (cm)

Adapted PointNet++ SNEPointNet++

0

20

40

60

80

100

D ≤ 3 3 < D ≤ 5 5 < D ≤ 7 7 < D

R
ec

al
l (

%
)

Depth of Segment (cm)

Adapted PointNet++ SNEPointNet++



79 

 

The similar image-based semantic segmentation results are tabulated and compared with 

SNEPointNet++ in Table 3-17. Compared to this research, the results of Lopez Droguett et al. 

(2020) were 25% and 4% higher in terms of IoU and recall, respectively, for crack semantic 

segmentation. A huge dataset, which was built using image processing form the captured videos 

of five bridge structures, is one of the main reasons of their high network performance. Although 

Lee et al. (2019) trained a model with the 14% higher precision in crack semantic segmentation, 

SNEPointNet++ leads to 19% and 2% higher recall and F1-score, respectively. Considering the 

recall as the most beneficial performance metric in bridge inspection, SNEPointNet++ is more 

practical than Lee et al. (2019). Although Fu et al. (2021) and Wang et al. (2022) used a bigger 

dataset than SNEPointNet++, their networks results are 18% and 20% lower, respectively, in terms 

of IoU crack semantic segmentation. Compared to SNEPointNet++, Hoskere et al. (2020) detected 

cracks and spalls with 1% and 2% less IoU, respectively. To this end, the performance of 

SNEPointNet++ is better than the image-based methods, except Lopez Droguett et al. (2020), 

which used a very large dataset. 

Table 3-17. Comparison between SNEPointNet++ and image-based DL semantic segmentation methods. 

Reference 
Type of 
Defect 

Sample size 

Results (%) 

 I
o

U
 

 R
ec

a
ll

 

P
re

ci
si

o
n
 

 F
1

-s
co

re
 

Lee et al. (2019) Crack 242 cracks  74 87 80 

Hoskere et al. (2020) 
Crack 341 cracks 68    

Spall 324 spalls 81    

Lopez Droguett et al. (2020) Crack 256,115 cracks 94 
97 

(Av.) 
 

97 
(Av.) 

Mohammed Abdelkader et al. (2021) Spall 60 spalls    92 

Fu et al. (2021) Crack 5,000 cracks 65    

Wang et al. (2022) Crack 2,446 images 63 68   

SNEPointNet++ 
Crack 595 cracks 69 93 73 82 

Spall 773 spalls 83 92 90 91 

3.4.4 Comparison with Point Cloud-Based Methods 

The results of the similar point cloud-based methods and SNEPointNet++ are summarized in Table 

3-18. To compare point cloud-based surface defect detection methods, they are categorized into 

three groups based on the types of detects (i.e., cracks, spalls, and both). The results of crack 

detection methods are incomparable because the papers used different metrics (i.e., error) or 

visualization approaches to show the results. Although the dataset of Valença et al.(2017) included 

cracks with 0.1 mm to 4 mm width, the minimum detectable crack width was 1 mm. Turkan et al. 

(2018) proposed the only DL-based method in this category, which is not comparable due to 

showing the results based on errors. 

In the case of spall detection, the best result of Kim et al. (2015b) was 92% average recall and 97% 

average precision for ten samples with the sizes between 10 mm  10 mm  4 mm and 100 mm 

 100 mm  7 mm. Due to scanning larger spalls in an ideal situation in terms of incidence angle 

and distance, better results are expected. Moreover, another experiment showed that their proposed 

method was not able to detect spalls with less than 4 mm depth.  



80 

 

The last group, which belongs to spall and crack detection methods, includes two studies. Unlike 

the method of Guldur and Hajjar (2017), the adapted DGCNN (Bahreini and Hammad, 2021) and 

the proposed networks of this research were evaluated using the same dataset. The efficiency of 

SNEPointNet++ is 10% and 24% higher than the adapted DGCNN in terms of IoU of spalls and 

cracks, respectively. 

  



81 

 

Table 3-18. Comparison between SNEPointNet++ and similar point cloud-based methods. 

Reference 

Method Type 
of 

Defect 

Sample size/ dimensions 
(cm) 

Results (%) 

DL 
Non-

DL 

Io
U

 

 R
ec

a
ll

 

 P
re

. 

 F
1

 

N
.C

.*
 

Truong-Hong et al. (2016)   Crack L: 1.8 – 0.8; W: 0.4– 1.2      

Valença et al. (2017)   Crack L: 3.0; W:0.1-0.4      

Turkan et al. (2018)    Crack 
L: 1.0 – 3.5; 
W: 0.9 – 1.6; D: 0.1-0.5 

     

Kim et al. (2015b)   Spall 
Minimum: 1.01.00.4 
Maximum: 10100.7 

 
68 to 

92 
83 to 

97 
  

McLaughlin et al. (2020)   Spall A: 394 – 3,277      

Guldur and Hajjar (2017)   
Crack L: 4.8–30.4; W :2.5      

Spall L: 29.7; W: 9.4      

Bahreini and Hammad 
(2021) 

  
Crack Minimum: W: 0.2; D:0.1 45 55 70 62  

Spall W:0.5 - 60 73 89 79 84  

SNEPointNet++   
Crack Minimum W: 0.2; D:0.1 69 93 73 82  

Spall W:0.5 - 60 83 92 90 91  

*N.C: Not Comparable; W: Width; L: Length; A: Area; D: Depth; F1: F1-score; Pre: Precision 
 

3.5 Summary and Conclusions 

This chapter proposed SNEPointNet++, which is a novel point cloud-based method for semantic 

segmentation of two types of surface defects (i.e., spalls and cracks) simultaneously and without 

transforming the point cloud into other representations. This method is able to focus on two main 

characteristics related to surface defects: normal vector and depth. It also considers the challenges 

related to the size of the dataset and imbalanced classes. Sensitivity analysis is applied to capture 

the best combination of hyperparameters and investigate their effects on network performance. A 

case study was conducted using the collected point cloud dataset from four bridges to validate the 

proposed method. The created high-quality point cloud dataset, including 1,785 cracks and 2,319 

spalls with a minimum width of 2 mm and 5 mm, respectively, is publicly available at 

https://github.com/neshatbln/SNEPointNet2/tree/main/Data for future research in concrete surface 

defect detection. 

Based on the case study, it can be concluded that: (1) in SNEPointNet++, using the main features 

related to surface defects (i.e., depth, color, and normal vectors) and taking into account the issues 

related to the point cloud dataset (i.e., small size of the dataset, imbalanced dataset) resulted in 

93% (IoU:69.2%) and 92% (IoU:82.5%) recalls for semantic segmentation of cracks and spalls, 

respectively. Moreover, this network can detect the spalls and cracks of the segments deeper than 

7 cm, which have very severe defects, with 99% and 98% recalls, respectively; (2) SNEPointNet++ 

is more accurate than other DL and non-DL point cloud-based methods. Although one recent DL 

image-based semantic segmentation method (Lopez Droguett et al., 2020) has higher performance, 

this can be explained by the much larger dataset used in that research; (3) SNEPointNet++ with 

the best performance has five sublayers with 2.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm sampling 

sizes; (4) based on the sensitivity analysis, for the 20 cm x 20 cm blocks, more points per block 

results in higher efficiency. Moreover, considering 12,288 points per block, decreasing the block 

size improves the network performance for crack semantic segmentation due to increasing the 

density of each block, and consequently, providing more crack points. However, the optimum 

https://github.com/neshatbln/SNEPointNet2/data


82 

 

block size for spall semantic segmentation is 50% of size of the biggest defect and using smaller 

blocks leads to a drop in the efficiency of the network because of missing the boundaries of spalls 

in smaller blocks. Additionally, having stride improves the network performance in terms of IoU. 

However, high stride values are not beneficial in the case of higher number of points per block 

(i.e., 12,288); and (5) SNEPointNet++ is invariant to the resolution setting of the LiDAR due to 

using different settings during data collection (i.e., 1/1, 1/2, and 1/4 resolutions). However, in order 

to detect cracks with width as small as 2 mm, using the highest resolution is required.  

. 

 

 

 

 



83 

 

CHAPTER 4   LIDAR-EQUIPPED UAV PATH PLANNING 

CONSIDERING POTENTIAL LOCATIONS OF DEFECTS FOR BRIDGE 

INSPECTION 

4.1 Introduction 

According to Section 1.4, in addition to minimizing the flight time of a collision-free path for the 

UAV, it is crucial to ensure that all critical bridge surfaces are covered more than once from near 

perpendicular views. Several parameters can influence the accuracy of the data, such as the 

incidence angle of the laser beam and the distance between the scanner and the structure. Small 

incidence angles and minimum distances are required to achieve high-quality data and avoid 

missing some high-risk defects. As mentioned in Section 2.6.4, doing a structural analysis before 

path planning provides a good perspective about the high-risk spots. The proposed method extends 

available path planning methods to consider the level of criticality of different areas and collect 

more accurate data from these areas. The proposed path planning method is fully explained in 

Section 4.3, followed by implementing the method for a hypothetical three-span bridge. The last 

section includes the conclusions and future work. 

4.2 Considerations, Requirements, and Constraints 

Considering the requirements and constraints gives a better perspective on selecting the most 

appropriate UAV for bridge inspection. In this section, several factors which are considered 

directly or indirectly in path planning are explained. 

(1) Mounting location: Most commercially available solutions mount the scanner under the UAV 

because they are designed for surveying purposes (Figure 4-1(b)). However, for structural 

inspection purposes, the LiDAR can be mounted either on top (Figure 4-1(a)) or under the UAV 

(Figure 4-1(b)), depending on the relative location of the inspected area of the structure. 

  
(a) MIT RANGE (Bachrach et al., 2011) (b) Bigone 8 Hsepro LiDAR (Italdron Inc., 2019) 

Figure 4-1. Scanner position on top of the UAV in (a) and under (b). 

(2) Metrology method: There are two types of metrology methods for LiDAR: Time-of-Flight 

(ToF) and Phase-Shift (PS) (Kim et al., 2015b). ToF, sometimes called Pulse-Based, sends a 

straight laser pulse toward the object with constant power. It can calculate the device-object 

distance with the measured time the laser pulse takes to travel between the point of emission and 

the scanned surface. The PS system modulates the power of the beam and sends off a continuous 

sinusoidal laser beam. To compute the distance, the difference between the emittance phase and 

reflected laser beams is measured (Pfeifer and Briese, 2007). ToF is useful for measuring long 

ranges with an accuracy of 4-10 mm at 100 m, while PS functions best in short-range cases of 2-4 



84 

 

mm at 20 m (Kim et al., 2015b). PS scanners have lower ranges, higher measurement rates, and 

usually better precision than scanners based on ToF (González-Jorge et al., 2012). 

(3) Maximum takeoff weight and payload: the maximum takeoff weight is the maximum weight at 

which a UAV is allowed to fly. The payload is the combined weight of all carried devices (e.g., 

scanner, minicomputer, batteries, and Global Positioning System (GPS)). The payload affects the 

UAV flight time, as carrying a heavier payload consumes more energy. Scanner weight is one of 

the major loads in the UAV payload and should be carefully considered. An accurate light scanner 

is expensive, and choosing the best option is contingent on the available budget. 

(4) Size of UAV: The shorter arms of smaller UAVs allow them to fly closer to the inspected 

surface and collect more accurate data. However, the downside of using smaller UAVs is their 

reduced capacity to carry the scanner and other mounted equipment due to their takeoff-weight 

limitations.  

(5) Minimum (dmin) and maximum distances (dmax): A specific distance range should be considered 

during inspection regarding safety issues and scanner characteristics. The density of the scanned 

point cloud decreases with longer distances.  

(6) Battery capacity: The battery capacity impacts the flight time. Adding more batteries helps the 

UAV fly further but increases system weight. The battery capacity may not be enough for scanning 

all the structure surfaces in one trip. Therefore, several two-way trips should be considered to cover 

the entire surface (Guerrero and Bestaoui, 2013). 

(7) Vibration: Vibration of the LiDAR-equipped UAV during inspection causes scanning angle 

errors, placement angle errors, and flight path errors, which result in an inaccurate 3D point cloud 

dataset. Designing a suitable LiDAR-equipped UAV platform with an appropriate engine, body 

shape, and installed dampers can decrease vibration (Li et al., 2015). Moreover, error correction 

methods consider and analyze the impact of vibration on accuracy (Li et al., 2019). 

(8) DoFs: As shown in Figure 4-2, the UAV has six DoFs: three displacements (x, y, z) and three 

rotations (yaw, pitch, and roll). UAV pitch and roll are generally constrained to keep the vehicle 

horizontally. At least three DoFs should be considered in 3D path planning. Some studies focused 

on optimizing yaw rotation as well as displacements (Bircher et al., 2015). 

 

Figure 4-2. Six degrees of freedom of a UAV (Getbestcopter, 2016). 

(9) LiDAR parameters: The 3D scanners have two FoVs. The FoV is an important parameter in 

visibility analysis. Other important parameters of the scanner are step size (∆𝜃), incidence angle 



85 

 

(𝛼1), and beam diameter (𝑑𝑏). These parameters are shown in Figure 4-3. The accuracy of a point 

cloud depends mainly on measurement resolution, angular resolution, and scanning speed.  

(10) Safety: Before the operation, any safety risk related to equipment (i.e., weight, speed, noise), 

environment (i.e., wind, temperature), jobsite (i.e., location, traffic), mission (i.e., distance to 

structures) should be determined and managed (Xu and Turkan, 2022). For instance, the center of 

gravity must be fixed since the UAV stability may change when mounting additional devices. 

Depending on the controlling method, interruption of GPS signals or remote-control signals may 

lead to accidents. Moreover, the flight should be conducted in wind-free conditions. 

(11) Regulations: The safety rules should be followed to ensure safe operation. Flight operation 

permission may be needed depending on the UAV size to ensure the safety of people, equipment, 

and buildings. According to Appendix C, which is an example of the application for special flight 

operation certification, flight permission requires several documents including scan plan, 

certificates, insurance. 

 

  
(a) Horizontal and vertical FoVs (b) Beam diameter (Goldwasser 1998) 

 
(c) Step size (∆𝜃) and incidence angle (𝛼1) 

Figure 4-3. LiDAR specifications. 

4.3 Developing Path Planning Considering Potential Locations of Defects 

As mentioned in Sections 1.4, to improve bridge inspection using LiDAR-equipped UAV, a new 

path planning method is proposed in this research where a UAV will fly according to a generated 

path to scan the surface and collect point clouds considering several requirements and constraints.  

The proposed method defines potentially damaged areas using structural analysis and IVs 

matching the levels of criticality (low, medium, high). IVs are assigned to cells created on the 

bridge surface. Next, VPIs are determined, through which the UAV should pass. VPIs help the 

db 

Cross Section 
FoV ∆𝜃 

𝛼1 

dmax 

dmin 

Scanner 



86 

 

scanner collect data at corresponding locations from the shortest allowable distances and near 

perpendicular angles. Surface visibility from the VPIs is calculated using ray tracing. Finding the 

optimal path requires two steps: (1) calculating the path length matrix using A* to find a collision-

free path between two VPIs separated by an obstacle; and (2) solving the TSP using GA, taking 

all VPIs into consideration. The objective function for evaluating the optimal path is the minimum 

path length with acceptable visibility. Figure 4-4 shows the proposed framework for planning an 

obstacle-free path accounting for potential locations of defects. Further details are explained 

below. 



87 

 

Start

Constraints

Considerations

Model bridge in 
engineering software

Analyze the bridge 
structure

Determine three ranges for 
moment and shear

(high, mid, low)  

Shear or moment 
of the zone is high?

Shear
 & moment of the zone 

are low?

High risk zone Low risk zone

Assign the IV to each cell

Calculate size of cells

Create cells on surfaces

Assume 50% overlap Assume 25%  overlap

Select initial VPIs

Calculate the cost Matrix 
using A*

Calculate visibility using ray 
tracing considering the IV

Visibility acceptable?

Add VPIs

NO

NO

NO

End

YES

YES

Medium risk zone

Se
le

ct
 in

it
ia

l V
PI

s
A

ss
ig

n
 I

V
 t

o
 c

el
ls

YES

C
al

cu
la

te
 o

p
ti

m
u

m
 p

a
th

Solve TSP using GA

Assign the IV to each cell Assign the IV to each cell

Assume no overlap

 

Figure 4-4. Proposed framework for path planning. 

Since the proposed method is model-based, the bridge model should be accessible. If the BrIM 

model is available and compatible with the structural analysis software, it can be imported into the 

software. Otherwise, the 3D structure should be modeled based on available documents and 



88 

 

information. The proposed method has three main parts: (1) Assign IVs to cells, (2) select initial 

VPIs, and (3) calculate an optimum path. 

4.3.1 Assign IVs to Cells 

First, the cell size (𝐶𝑠) is computed prior to bridge surface division into cells for detailed visibility 

analysis. As Figure 4-5 demonstrates, the minimum cell size (equivalent to minimum scan spacing) 

can be calculated via Equation 4-1. This size should be small enough to achieve high accuracy in 

proportion to scanner resolution. 

𝐶𝑠,𝑚𝑖𝑛 = ∆𝑚𝑖𝑛=
𝑑𝑚𝑖𝑛 × 𝛼𝑅

𝑐𝑜𝑠(𝛼1)
 Equation 4-1 

 

Figure 4-5. Calculating minimum cell size. 

where ∆𝑚𝑖𝑛: minimum scan spacing (m); 𝑑𝑚𝑖𝑛: minimum scan distance between inspected surface 

and scanner (m); 𝛼𝑅: angular resolution (radian); and 𝛼1: incidence angle (degree). The maximum 

cell size (𝐶𝑠,𝑚𝑎𝑥) depends on the FoV and can be calculated based on Equation 4-2. 

𝐶𝑠,𝑚𝑎𝑥 = 2 tan(
𝐹𝑜𝑉𝑚𝑖𝑛

2
) 𝑑𝑚𝑖𝑛 Equation 4-2 

Then, the bridge deck surface, which should be inspected, is meshed into equal cells based on the 

calculated size. Figure 4-6 shows the bottom surface of a 2-span bridge deck meshed into equal 

cells. The total number of cells (𝐶𝑡) can be calculated using Equation 4-3. 

𝐶𝑡 = ∑
𝑊𝐷 × 𝑙𝑖

𝐶𝑠
2

𝑘

𝑖=1

 Equation 4-3 

where k is the number of spans, and 𝑊𝐷  and 𝑙𝑖  are the width of the deck and the length of the ith 

bridge span (unsupported part), respectively. 

 

Figure 4-6. The meshed bridge surface. 

𝐹𝑜𝑉 

𝑑𝑚𝑖𝑛 

∆ 
𝛼1 

𝛼𝑅 

𝐿𝑖𝐷𝐴𝑅 

l
p
 

a a 

W
D
 

l
1
 l

2
 

L
D
 



89 

 

On the other hand, based on bridge design codes (e.g., American Association of State Highway 

and Transportation Officials (AASHTO), Canadian Standards Association (CSA) S6), loads (i.e., 

dead loads, vehicle live load, pedestrian live load) are applied to the bridge model to perform the 

structural analysis and find the bridge deformation, bending moment, and shear diagrams. The 

absolute values of the calculated moment (M) and shear (V) on the bridge are split into three equal 

ranges (low, medium, high) as follows. 

Table 4-1. Determine three ranges for shear and bending moment. 

Range Shear (kN) Bending Moment (kN.m) 

High 2
3⁄ |𝑉𝑚𝑎𝑥| ≤ |𝑉|     2

3⁄ |𝑀𝑚𝑎𝑥| ≤ |𝑀| 

Medium 1
3⁄ |𝑉𝑚𝑎𝑥 | ≤ |𝑉| < 2

3⁄ |𝑉𝑚𝑎𝑥| 
1

3⁄ |𝑀𝑚𝑎𝑥| ≤ |𝑀| < 2
3⁄ |𝑀𝑚𝑎𝑥 | 

Low |𝑉| < 1
3⁄ |𝑉𝑚𝑎𝑥|                         |𝑀| < 1

3⁄ |𝑀𝑚𝑎𝑥 | 

As shown in Figure 4-7, each row of cells is considered as one zone and its level of criticality (low, 

medium, or high) is defined based on the magnitude of the moment and shear at the middle of the 

row as follows: (1) A zone in high moment or high shear range is considered high-risk. (2) If both 

shear and moment are low in a zone, it is assumed a low-risk zone; and (3) All remaining zones 

are considered medium-risk. It is assumed that the zones with the high level of criticality have 

more potential for surface defects. Each cell inherits an IV based on the zone it occupies (Figure 

4-7). Figure 4-8 shows the cells grouped into three zones: high-risk (red), medium-risk (yellow), 

and low-risk (green), where LD, a, lp, WD, and li are the total bridge length, the abutment width, the 

piers width, the deck width, and the length of ith deck, respectively 

 

Figure 4-7. Determining the level of criticality of each zone. 

High range 

Medium range 

Medium range 

Low range 
Medium range 

High range 

Low range 
Medium range 

High range 

Cs 

 High range 

 Medium range  

 Low range 
Cs: cell width 

Bending moment diagram 

Shear diagram 



90 

 

 

Figure 4-8. Assigning IVs to cells. 

4.3.2 Select Initial VPIs 

As mentioned before, there are two steps for solving TSP. A set of VPIs is generated; then, the 

path, which passes through each VPI once and returns to the first point, is found. Despite many 

methods based on minimizing the number of VPIs, the proposed method focuses on selecting the 

best set of VPIs with respect to the level of criticality. To have an accurate data collection, the 

laser beams have to reach the defect edges that may not be possible in some cases, such as the 

large incidence angle, obstacle existence between the defect and LiDAR, and large step size. 

Consequently, to decrease the errors caused by these issues and to improve the accuracy of VPIs 

selection, two factors are considered:  

(a) In the case of perpendicular views of the inspected surface, the laser beam can reach all parts 

of the defects, raising accuracy in detecting defect size. 

Considering perpendicular view for each VPI leads to providing the smallest possible incidence 

angles in each FoV. Moreover, smaller incidence angle and consequently denser point clouds result 

in higher accuracy in detecting the size of the defect. As shown in Figure 4-9, the actual width (w) 

and depth (d) of defect B, located far from the VPI1 (the center of the LiDAR), are not equal the 

detected width (w’) and depth (d’), while the actual and detected sizes of defect A are the same 

(incidence angle = 0°). In addition, both defect A and defect B are mis-detected if an obstacle 

blocks some LiDAR rays as shown in Figure 4-10.  

(b) Another factor is overlapping views. Scanning defects from more than one VPI and providing 

overlapping views give a better estimation of the defect size because the possibility of the laser 

beam reaching the defect edges is increased, as shown in Figure 4-9. Moreover, providing 

overlapping views leads to collecting denser point clouds, which results in higher accuracy. 

Therefore, to increase the collected data accuracy, the overlapping views can be considered in VPI 

selection. Since providing overlapping views for the entire surface is time-consuming, this factor 

is considered only for high-risk zones. Moreover, too many overlaps may lead to errors due to 

overfitting in the registration of point clouds (Tam et al., 2013). 

High-risk zone (IV = 3)  
Medium-risk zone (IV = 2) 
Low-risk zone (IV = 1) 

l
p
 

a a 

W
D
 

l
1
 l

2
 

L
D
 



91 

 

 

Figure 4-9. Scanning defects. 

 

Figure 4-10. Scanning defects in case of an obstacle. 

As Figure 4-11 shows, the maximum visible area from a minimum distance (dmin) translates to   

𝑙𝐻 × 𝑙𝑉 , where 𝑙𝐻 and 𝑙𝑉 are calculated using Equations 4-4 and 4-5, respectively. 

𝑙𝐻 = 2𝑑𝑚𝑖𝑛 𝑡𝑎𝑛(𝐹𝑜𝑉𝐻 2⁄ ) 
Equation 4-4 

𝑙𝑉 = 2𝑑𝑚𝑖𝑛 𝑡𝑎𝑛(𝐹𝑜𝑉𝑉 2⁄ ) 
Equation 4-5 

where FoVH is horizontal and FoVV vertical. 

VPI2 

w 

d d 

d’ 

VPI1 

Defect A Defect B 
w = w” 

d" 

w' w, d : actual sizes 

w’, d’ : detected sizes from VPI1 

w”, d” : detected sizes from two VPIs 

VPI 

w w 
w’ 

d d 

d’ 

Defect A Defect B 

Obstacle 

w’ 



92 

 

 

Figure 4-11. Maximum visible area from VPI located at minimum distance from surface. 

Figure 4-12 details VPIs distribution under a bridge deck. This distribution follows the following 

rules:  

(a) For full coverage in the direction of the length of the deck (x-axis), VPIs are placed on several 

rows along the length of the deck separately a distance of 𝑙𝐻. Equation 4-6 can calculate the number 

of rows (Px) using LD (the deck length), a (the abutment width), and lp (the piers width). 

𝑃𝑥 =  (𝐿𝐷 − 𝑎 − 𝑙𝑝) 𝑙𝐻⁄  Equation 4-6 

(b) Selecting the number of VPIs and their distances in the y-direction depends on the criticality 

level of their corresponding row. Considering a 50% overlap view for VPIs in high-risk zones with 

perpendicular views, each cell can be scanned at least twice during data collection. Consequently, 

the distance between those VPIs should be 𝑙V ⁄ 2. In the mid-risk zones, VPIs are located 3𝑙𝑉 /4 far 

from each other to provide 25% overlap. To cover all low-risk zones without overlap, distances 

between corresponding VPIs are considered equal to 𝑙V.  

Equation 4-7 calculates the number of VPIs per row (Py), and Equation 4-8 calculates the total 

number of VPIs (Ptot). 

𝑃𝑦 = {

2𝑊𝐷 𝑙𝑉⁄                       𝑓𝑜𝑟 𝐻𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑧𝑜𝑛𝑒

4𝑊𝐷 3𝑙𝑉 ⁄                      𝑓𝑜𝑟 𝑀𝑖𝑑 𝑟𝑖𝑠𝑘 𝑧𝑜𝑛𝑒

𝑊𝐷 𝑙𝑉 ⁄                           𝑓𝑜𝑟 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑧𝑜𝑛𝑒
 Equation 4-7 

𝑃𝑡𝑜𝑡 = ∑ 𝑃𝑦
𝑃𝑥

1
 

Equation 4-8 

where 𝑊𝐷  is the deck width.  

The average overlapping count indicates the average number of times a cell appears from scanning 

from different angles and can be calculated using Equation 4-9.  

Overlapping count =  ∑ CSi

𝑁

𝑖=1
𝑁⁄  Equation 4-9 

where CS𝑖  is equal to the number of times that cell i is seen and N is the total number of cells. 

VPI 

FoVH d
min

 
  

l
H
 

l
V
 

x 
  

y 
  

FoVV 



93 

 

 

Figure 4-12. Selecting VPIs based on criticality levels. 

4.3.3 Calculate the Optimum Path 

In the proposed method, path planning is based on solving TSP using GA. The fitness function in 

this method minimizes path length, computed based on Equation 4-10. 

Minimum path length = 𝑚𝑖𝑛 ∑ 𝑙𝑘
𝑁−1
𝑘=1  

Equation 4-10 

where N is the total number of VPIs through which the path should pass. 𝑙𝑘  is the obstacle-free 

path length between two VPIs, selected from N (N-1) paths between all VPIs.  

 

Therefore, the path length matrix is first calculated as shown in Figure 4-13, where lij and LNxN are 

the distance between points i and j and the path-length matrix, respectively. If there is no obstacle 

between two VPIs, the path length, which is a direct line between point i and j, is equal to 

√∆𝑥2 + ∆𝑦2 + ∆𝑧2 . Otherwise, the path length is calculated based on the generated path between 

two points using A*.  

  

High-Risk Zone 

Mid-Risk Zone 
Low-Risk Zone 

VPIs 
Multi-Covered Cell 

x 

y z 



94 

 

Algorithm: path length matrix calculation 

1: i, j ← 0 

2: while i < N do 

3:         lij=0 

3:  j ← i+1 

4:         while j < N do 

5:   if there is an obstacle between point i and point j 

6:    Calculate lij = lji using A* between points i and point j 

7:  else 

8:   lij = lji = √∆𝑥2 + ∆𝑦2 + ∆𝑧2 

9:   j←j+1 

10: end while 

11: i←i+1 

12: end while 

13: return path length matrix 
Figure 4-13. Path length matrix calculation pseudocode. 

The main GA operators are selection, crossover, and mutation. The GA steps are: 

Step 1. Population initialization: many feasible paths, which can be parents for the next generation, 

are generated, and the fitness value (path length) of each path is computed.  

Step 2. Selection: two parents are picked from the population to produce off-springs. 

Step 3. Crossover: an operator for generating new children from parents. 

Step 4. Mutation: a random process based on swapping the sequence of points. Occasionally, two 

points are picked and their location on the path is switched. 

Step 5. Evaluation: evaluating the off-springs based on fitness values.  

Step 6. Replacement: if the new offspring is fitter than the previous fittest path, it is considered as 

the fittest path. 

Step 7. Repeating: the number of generations (N) is pre-determined and steps 2 to 6 are repeated 

N times. 

After selecting the shortest path, to calculate total coverage, the visibility from each VPI is 

calculated using ray tracing and considering levels of criticality. This method is based on previous 

work (Albahri and Hammad, 2017) for calculating surveillance cameras coverage in buildings and 

is modified to calculate LiDAR-equipped UAV coverage in this research. To reflect the level of 

criticality in this step, weighted values are calculated, which depend on the number of cells and 

their corresponding IV. Therefore, covering the most critical areas is prioritized over any other 

part of the inspected surface. Total coverage is computed as in the following equations: 

 𝑊𝑎𝑖
= 𝐼𝑉𝑖 ∑ 𝐶𝑖𝑗

𝑛
𝑗=1  Equation 4-11 

 𝐶𝐶𝑎𝑖
= 𝐼𝑉𝑖 ∑ 𝐶𝑖𝑣

𝑛′

𝑣=1  
Equation 4-12 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 
∑ 𝐶𝐶𝑎𝑖

3
𝑖=1

∑ 𝑊𝑎𝑖
3
𝑖=1

 Equation 4-13 

where i (1:3) is the number of zone levels of criticality (low, medium, and high). 𝑊𝑎𝑖
 is the weight 

of the area 𝑎𝑖 , 𝐶𝑖𝑗 = 1 represents the cell j in the ith level, and n is the total number of cells in the 

ith zone level. 𝐼𝑉𝑖  is the importance value assigned to all cells in zone level i, 𝐶𝑖𝑣 = 1 is the covered 



95 

 

cell v in zone level i and 𝑛′ is the total number of covered cells in ith zone level. 𝐶𝐶𝑎𝑖
 is the weighted 

covered cells in area 𝑎𝑖 . If there is inadequate visibility, new VPIs should be added to the low-risk 

zone and the path updated. 

4.4 Implementation and Case Study 

To demonstrate the applicability of the proposed algorithm to typical bridge inspection problems, 

a four-span concrete bridge, located in Alberta, Canada, is used in the case study. As shown in 

Figure 4-14, the bridge consists of four lanes with two sidewalks, covering 15.6 m in width and 

62 m in length. A Velodyne LiDAR PUCK mounted on a UAV (Matrice 100) facing upward is 

hypothetically considered as the equipment to scan the bottom surface of the bridge (Velodyne 

LiDAR Inc., 2015). The payload of the UAV including the LiDAR (590 g) and other parts is 

around 1 kg (Papachristos et al., 2019). Based on Table 4-2, although the flight range can be further 

increased using an additional battery, this is not possible because the extra battery will exceed the 

payload of the UAV. The relation between the flight time of a Matrice 100 and its payload using 

a TB48D battery is shown in Figure 4-15. The figure also shows that, with the LiDAR weight, a 

maximum flight time of 16 minutes can be achieved for the payload 1 kg. 

 

Figure 4-14. Inspected bridge in Alberta, Canada. 

Table 4-2. Takeoff weight and flight time for Matrix 100. 

 
Max Takeoff 
Weight (g) 

Weight with 
(battery/ies) (g) 

Max payload 
(g) 

Flight time  
(no payload) (min) 

with one battery 3,600 2,355 1,245 28 

with two batteries 3,600 3,031 569 40 

 

 
Figure 4-15. Relation between flight time and payload for Matrix 100. 



96 

 

CSiBridge 2017 (Computers and Structures Inc., 2017), a structural bridge design software that 

supports importing and exporting of International Foundation Class (IFC) file format, is used to 

model the bridge. Based on the CSA S6-14 – Canadian Highway Bridge Design Code (Canadian 

Standards Association, 2014), the loads are applied to calculate the bending moment (M) and shear 

(V) of the sections. Figure 4-16 and Figure 4-17 show the modeled bridge structure and the 

structural analysis results including bending moment and shear diagrams, respectively. 

 

Figure 4-16. Modeled bridge structure. 

  
(a) Bending Moment Diagram (b) Shear Diagram 

Figure 4-17. Results of bridge structural analysis. 

 

The calculated bending moments and shear forces are classified into three groups based on Table 

4-1.  

{
0 ≤ |𝑀| < 3041 𝑘𝑁.𝑚                                               ∶ 𝑙𝑜𝑤 𝑀

3041 𝑘𝑁.𝑚 ≤ |𝑀| < 6082 𝑘𝑁.𝑚                  ∶ 𝑚𝑒𝑑𝑖𝑢𝑚 𝑀
6082 𝑘𝑁.𝑚 ≤ |𝑀|                                                       ∶ ℎ𝑖𝑔ℎ 𝑀

 Equation 4-14 

{
0 ≤ |𝑉| < 924 𝑘𝑁                                      ∶ 𝑙𝑜𝑤 𝑉

924 𝑘𝑁 ≤ |𝑉| < 1848 𝑘𝑁               ∶ 𝑚𝑒𝑑𝑖𝑢𝑚 𝑉
1848 𝑘𝑁 ≤ |𝑉|                                           ∶ ℎ𝑖𝑔ℎ 𝑉

 Equation 4-15 

 

The bottom surface of the bridge deck is divided into rows with the maximum 3.9-meter width, 

calculated using Equation 4-4. Based on the criticality levels, three defined IVs (1, 2, 3) are 

assigned to the rows including 6 rows in high-risk zones, and 8 and 2 in mid- and low-risk zones, 

respectively. Assuming 50%, 25%, and 0% overlaps for high-, mid-, and low-risk zones, 

respectively, and using Equations 4-4 to 4-8, 90 VPIs are sampled and distributed in the 16 rows 

as shown in Figure 4-18. 

-9,123 kN-m 

Bending Moment (kN-m) 0 

Bridge length (m) 
0 12 31 50 62 

-10,000 

10,000 

Shear (kN) 
0 

Bridge length (m) 
0 12 31 50 62 

2,746 kN 3,000 

-3,000  -2,772 kN 



97 

 

 

low-risk zone (IV =1) 

mid-risk zone (IV=2) 

high-risk zone (IV=3) 

 VPIs 

Figure 4-18. Risk zones and sampled VPIs (bottom view of bridge). 

The path planning phase is done in a cross-platform game engine called Unity 3D (Unity 

Technologies, 2018), which is supported in Windows using the programming language C#. In 

Unity, the files can be imported as assets including the attributes of all elements separately (e.g., 

name, size). Also, Unity includes a class, called NavMesh, for pathfinding between two objects in 

the meshed area using the A* graph search algorithm. In this phase, Revit 2017 (Autodesk Inc., 

2019) works as an intermediary software between CSiBridge and Unity 3D. The bridge structure 

is imported into Revit 2017 in RVT format and then exported as a file in Film Box (FBX) format 

for use in Unity 3D (Figure 4-19). 

 

Figure 4-19. Importing the model into Unity. 

A safe flight requires a minimum distance from the bridge (dmin,z) of 1 m. According to the UAV 

arm size and the space required for rotation, dmin,x and dmin,y are assumed as 60 cm. The selected 

value for the angular resolution αR is 2°. Assuming the horizontal and vertical FoVs are equal to 

105° and using Equations 4-1 and 4-2, the cell size should be between 3.5 cm and 285.6 cm. To 

speed up the calculations, the surfaces under the bridge are divided into 50×50 cm2 cells. Figure 

4-20 shows 4,816 cells created on the surfaces of the beams and the deck, of which 602, 2838, and 

1376 cells belong to low-, mid-, and high-risk zones, respectively. 3,024 cells are created on 

horizontal surfaces (the lower surfaces of the deck and beams) and 1,792 cells on vertical surfaces 

(the side surfaces of the beams). 

 

 

 

(a) 3D view (b) Bottom view 
Figure 4-20. Meshed surface of the bridge. 



98 

 

A 90  90 path length matrix is calculated using A*, which is used to solve TSP and determine a 

path passing through all VPIs. As shown in Figure 4-21, the results of running the optimization 

four times with 15,000 generations, where the size of the population is 100, vary between 275.5 m 

and 276.8 m. Each iteration takes less than 1 minute on a personal computer with Intel®Core™i7-

8700 CPU (3.20 GHz) and 16 GB RAM. The time complexity is O(mn), where m and n are the 

population size and the number of VPIs, respectively (Kang et al., 2016). The pink line in Figure 

4-22 is the visualization of the shortest 3D obstacle-free path with 275.5 m length and 100% 

visibility. The visible area is shown in blue. Assuming a 0.5 m/s speed, the UAV flight would take 

9.2 min to scan the bridge deck. Based on Figure 4-15, this time is within the flying time (i.e., 16 

min). 

 

Figure 4-21. Four optimization results. 

 
(a) 3D view 

 
(b) Bottom view 

Figure 4-22. Visual representation for the calculated path. 

As explained in Section4.3, a smaller incidence angle results in higher accuracy in detecting the 

size of the defect. Because the assumed FoVs of the LiDAR are 105°, the possible range of the 

incidence angle for vertical surfaces of the beams is between 37.5° and 90° and for horizontal 

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000

Pa
th

 le
n

gt
h

 (m
)

Generation

Iteration 1

Iteration 2

Iteration 3

Iteration 4



99 

 

surfaces is between 0° and 52.5°. Figure 4-23 shows the cumulative distribution of the percentage 

of cells in each zone at any given incidence angle. As expected, the maximum incidence angle in 

the high-risk zones is 52° which is less than that of the mid- and low-risk zones (62°). Increasing 

the overlapping views resulted in better incidence angles for both horizontal and vertical cells.  

 

Figure 4-23. Percentage of cells in each zone at any given incidence angle. 

To examine the influence of the overlapping percentages on the path quality, which is evaluated 

based on incidence angles and overlapping counts, three sets of overlapping percentages are 

defined: (1) 50% for all zones, (2) 50%, 25%, and 0% for high-, mid-, and low-risk zones, and (3) 

no overlapping views. The number of VPIs and the calculated path lengths are shown in Table 4-3. 

As shown in Table 4-3, decreasing the overlapping percentages leads to fewer VPIs, resulting in 

shorter paths. Although minimizing the path is one of the main objectives of path planning, the 

accuracy of the collected data is important. For the first set of VPIs, the average incidence angles 

and overlapping counts for all zones are 22.9° and 2, respectively. Compared to the first set, 

considering no overlaps for all zones in the third set results in a 12% decrease in the path length 

and a 43% increase in the average incidence angles. 

Moreover, in the first set, the overlapping counts for all zones is double that of the third set. 

Although scanning a cell from different views increases the accuracy of the point cloud, it also 

increases the size of the point cloud. The second set is defined to take advantage of overlapping 

views based on the level of criticality. Compared to the third set, the path length of the second set 

increases by 9%, while the average incidence angles decrease by 43% and 11% for high- and mid-

risk zones, respectively. More overlapping counts means higher density and accuracy for the point 

clouds belonging to more risky areas. 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

Pe
rc

en
ta

ge
 o

f c
el

ls
 (

%
)

Incidence angle (degree)

High-risk zone

Mid-risk zone

Low-risk zone

Vertical cells
Horizontal cells

62°52°



100 

 

Table 4-3. Path planning results for three cases. 

Set 

Overlapping 
percentage 

Average incidence 
angle (°) 

Average overlapping 
count Path 

length 
(m) 

Number 
of VPIs Low-

risk 
Mid- 
risk 

High- 
risk 

Low-
risk 

Mid- 
risk 

High- 
risk 

Low-
risk 

Mid- 
risk 

High- 
risk 

1 50 50 50 22.9 22.9 22.9 2 2 2 284.6 112 

2 0 25 50 32.8 29.5 22.9 1 1.3 2 275.5 90 

3 0 0 0 32.8 32.8 32.8 1 1 1 249.4 64 

 

4.5 Conclusions 

The path planning method is proposed to inspect bridges and detect surface defects. One of the 

main advantages of the proposed method is that LiDAR and UAV are used to collect high-quality 

3D point clouds safely at close distances. In order to have a safer inspection, the point cloud is 

collected using an obstacle-free path for a UAV. Moreover, automated approaches in all three main 

steps of the proposed methodology, finding minimum path length (using GA), obstacle avoidance 

(using A*) and coverage calculation (using ray tracing), leads to shorter processing time with less 

workload. The conclusions of this research are as follows: (1) The proposed method can find an 

obstacle-free path with minimum length and acceptable visibility. The result of this method is near-

optimal, reliable, and time-effective. (2) the method gives the inspector the perspective on potential 

locations of surface defects to provide perpendicular and overlapping views efficiently in sampling 

the VPIs. Considering the highest overlapping views for high-risk zones improves the accuracy of 

the detected size of defects and avoids spending too much time on scanning the medium- and low-

risk zones. (3) Calculating the visibility with respect to the level of criticality leads to prioritizing 

covering the high-risk zones.  

As shown in the proposed framework, the algorithm includes two main steps: defining the 

viewpoints and finding the shortest path. Path planning can be applied to any type of sensor (e.g., 

camera) and is not specific to LiDAR. However, the first step has been tailored for LiDAR by 

considering the minimum incidence angle and perpendicular view in selecting VPIs, which can be 

adjusted in case of using a camera. 

 



101 

 

CHAPTER 5   SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 

5.1 Summary of Research 

This research aims to improve bridge inspection by proposing an efficient and automated data 

collection method and a DL-based defect detection method. Its focus was placed on semantic 

segmentation of concrete surface defects (i.e., cracks and spalls) using point clouds and LiDAR-

equipped UAV path planning. This research covered a comprehensive review of the related 

literature and identified the research gaps in this domain. The proposed methods were explained 

in detail and their applicability was validated in case studies. 

In Chapter 2, the literature review, different concrete surface defect detection techniques using 

point clouds and semantic segmentation DL methods were reviewed. Then, the concept of path 

planning methods and the related previous studies were discussed to find the best approach to 

bridge the gaps. 

Chapter 3 focus was on creating a publicly available dataset and developing a semantic 

segmentation method for concrete surface defects (i.e., spalls, cracks) using an adjusted network 

called SNEPointNet++. The aspects considered in the development of SNEPointNet++ based on 

PointNet++ were mainly regarding the differences between the application and classes of these 

networks, such as the small size of defects, the most beneficial features of defects (i.e., depth, 

normal vectors), and less points in the classes with higher priority (i.e., cracks, spalls). To this end, 

a point cloud dataset was first created based on the scans from four bridges in Montreal. The dataset 

was then augmented by flipping horizontally and vertically. This dataset, which contained the 

coordinates, color, normal vector, and depth of the points, was used as the input of 

SNEPointNet++. The model was trained and evaluated using 60% and 20% of the dataset, 

respectively, and tested using the remaining unseen part. Sensitivity analysis was subsequently 

applied to capture the best values for the hyperparameters of the network. 

The focus of Chapter 4 was on the path planning of a LiDAR-equipped UAV considering the 

potential locations of defects. The proposed path planning method was applied and simulated on a 

3-span bridge in Alberta, Canada. A* and GA were used to find the shortest path through VPIs 

selected based on the scanning requirements and the level of criticality of different parts of the 

bridge. 

5.2 Research Contributions and Conclusions 

This research has the following contributions: 

(1) Developing a point cloud-based DL method for semantic segmentation of concrete bridge 

surface defects (e.g., cracks and spalls), called SNEPointNet++, considering the main 

features for defects (i.e., color, depth, and normal vector) and taking into account the issues 

related to the point cloud dataset (i.e., smaller size of the dataset, imbalanced dataset). The 

following conclusions can be drawn from this contribution: 

• SNEPointNet++ was able to detect spalls and cracks simultaneously and without 

transforming the point cloud into other representations with 93% (IoU:69.2%) and 92% 

(IoU:82.5%) recalls, respectively. Moreover, the results demonstrated the effectiveness 

of the proposed network in detecting defects of deeper segments (i.e., up to 99% recall 

for spalls in the segments deeper than 7 cm). 



102 

 

• SNEPointNet++ is more efficient than other point cloud-based methods as well as most 

of the currently available image-based DL semantic segmentation methods. 

• Based on the sensitivity analysis, it can be concluded that the most efficient 

SNEPointNet++ has five sublayers with 2.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm 

sampling sizes, where the maximum value of the number of points per block (12,288 

points per block) and minimum block size (20 cm  20 cm) are considered. In addition, 

the network performance can be improved by adding stride. 

• Although SNEPointNet++ is invariant to resolution, a dataset collected by the highest 

resolution is required to detect small cracks of 2 mm width.  

 

(2) Developing an obstacle-free path planning method to inspect bridges safely and detect 

surface defects using LiDAR-equipped UAV considering potential locations of defects. The 

automated approaches in all three main steps of the proposed methodology, finding minimum 

path length using GA, obstacle avoidance using A*, and coverage calculation using ray 

tracing, lead to shorter processing time. Regarding this contribution, the following 

conclusions can be drawn: 

• The proposed method can find an obstacle-free path with minimum length and 

acceptable visibility. The result of this method is near-optimal, reliable, and time-

effective. 

• The method gives perspective on the potential locations of surface defects to provide 

perpendicular and overlapping views efficiently in sampling the VPIs. Considering the 

highest overlapping views for high-risk zones improves the accuracy of the detected 

size of defects and avoids spending too much time on scanning the medium- and low-

risk zones. 

• Calculating the visibility with respect to the level of criticality leads to giving priority 

to covering the high-risk zones. 

 

(3) Providing a point cloud dataset to detect two main concrete surface defects, spalls and crack, 

which is publicly available at SNEPointNet++ Dataset (Bolourian, 2022). The lack of a point 

cloud dataset for bridge inspection, particularly surface defect detection, is one of the main 

obstacles of point cloud-based DL methods in this field. By making our dataset publicly 

available, other researchers can benefit from the dataset for future improvements in this field. 

5.3 Limitations and Future Work 

Despite the above-mentioned contributions, there are some limitations in this research that should 

be addressed in the future. These limitations are as follows: 

(1) While the proposed LiDAR-equipped UAV path planning method is promising to meet the 

objectives of this research, the calculated path could not be applied in the site experiments 

due to the lack of an affordable high-quality light 3D LiDAR that can be mounted on the 

available UAV (Matric100). To this end, site experiment using an appropriate LiDAR-

equipped UAV is one of the future works. Moreover, using LiDAR-equipped UAV flying 

based on the planned path is highly recommended for future point cloud dataset expansion 

due to the high efficiency and accuracy of this technique resulting from close range scanning 

and consideration of several factors (i.e., overlapping views, levels of criticality) in path 

planning. 



103 

 

 

(2) One of the shortcomings of point cloud-based semantic segmentation in this research is the 

limited size of the dataset. Therefore, the future effort to increase the dataset can focus on 

collecting more point clouds from different parts of the damaged bridges using UAV and 

TLS. Moreover, the point clouds can be generated using Generative Adversarial Networks 

(GAN) (Li et al., 2018) and synthetic point clouds (Mohammadi et al., 2019). 

 

(3) The defect detection case study is limited to planar surfaces. Although this method was not 

evaluated on curved surfaces (e.g., columns), it is expected to be still applicable due to 

consideration of the normal vector. To evaluate the performance of SNEPointNet++, a 

dataset including curved surfaces should be provided by scanning specific bridge elements 

such as circular columns or caps of piers. If the performance is not acceptable, considering 

the curvature as an input may improve the network performance. 

 

 

(4) One of the limitations in training SNEPointNet++ was the shortage of computation storage 

(i.e., RAM). In the future, having more resources will make the opportunity to expand the 

sensitivity analysis and improve the network performance. For example, since increasing the 

number of points per block from 10,240 points to 12,288 points significantly improves the 

network performance, the same trend is expected for larger values of the number of points 

per block. Moreover, strides can be added to smaller blocks (e.g., 20 cm  20 cm). Besides, 

other hyperparameters (i.e., depth and width of PointNet units, number of points in each 

sample) can be adjusted in SNEPointNet++.  

 

(5) Inspectors require specific information about defects (i.e., size, severity). Therefore, future 

efforts should aim to: 

• Classify the dataset into more classes considering their levels of severity (i.e., medium, 

severe) or type of the cracks (i.e., shear cracks). This approach requires more data in 

terms of variety and quantity. 

• Extract the defects individually using supervised instance segmentation, clustering, or 

other non-ML methods, and then measure their dimensions. Moreover, the extracted 

defects can be transferred into a BrIM model to be used in path planning. Comparing 

the new as-is BrIM model and the previous one is an efficient approach for evaluating 

the defect propagation and bridge condition assessment. 

 

(6) SNEPointNet++ performance was validated based on an augmented dataset including four 

features (i.e., 3D coordinates, colors, normal vector, depth). However, the effects of each 

feature and each of the aspects, which were considered for model improvement, were not 

investigated separately. In the future, these aspects can be applied in separate steps to 

quantify their individual impact on the network performance.  

 

(7) The proposed LiDAR-equipped UAV path planning can be further improved by considering 

operation conditions (i.e., wind, vibration, speed) and more DoFs of the UAV. Moreover, 

localization and mapping methods (e.g., Simultaneous Localization and Mapping (SLAM)) 

will be evaluated in case of loosing GPS signal under the bridge.  

 



104 

 

REFERENCES 
Adhikari, R. S., Moselhi, O., and Bagchi, A. (2014). “Image-based retrieval of concrete crack 

properties for bridge inspection.” Automation in Construction, 39 (1): 180–194. DOI: 

10.1016/j.autcon.2013.06.011 

Ahlborn, T. M., Shuchman, R., Sutter, L. L., Brooks, C. N., Harris, D. K., Burns, J. W., Endsley, 

K. A., Evans, D. C., Vaghefi, K., and Oats, R. C. (2010). An evaluation of commercially 

available remote sensors for assessing highway bridge condition. Michigan: Michigan 

Technological University 

AlBahnassi, H., and Hammad, A. (2011). “Near real-time motion planning and simulation of 

cranes in construction: Framework and system architecture.” Journal of Computing in Civil 

Engineering, 26 (1): 54–63. American Society of Civil Engineers. DOI: 10.1.1.404.477 

Albahri, A. H., and Hammad, A. (2017). “A novel method for calculating camera coverage in 

buildings using BIM.” Journal of Information Technology in Construction (ITcon), 22 (2): 

16–33. DOI: http://www.itcon.org/2017/2 

Almadhoun, R., Taha, T., Dias, J., Seneviratne, L., and Zweiri Y. (2019). “Coverage Path Planning 

for Complex Structures Inspection Using Unmanned Aerial Vehicle (UAV).” Intelligent 

Robotics and Applications, 243–266. Switzerland: Springer 

Almadhoun, R., Taha, T., Seneviratne, L., Dias, J., and Cai, G. (2016). “A survey on inspecting 

structures using robotic systems.” International Journal of Advanced Robotic Systems, 13 

(6): 1–18. DOI: 10.1177/1729881416663664 

Alves, R., Silva de Morais, J., and Yamanaka, K. (2020). “Speeding Up On-Line Route Scheduling 

for an Autonomous Robot Through Pre-Built Paths.” Robotica, 1–13. DOI: 

10.1017/S0263574720000594 

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2011). The traveling salesman 

problem: a computational study. Princeton, New Jersey: Princeton university press 

Armeni, I., Sax, S., Zamir, A. R., and Savarese, S. (2017). “Joint 2d-3d-semantic data for indoor 

scene understanding.” Computer Vision and Pattern Recognition, 2 (1702.01105). DOI: 

doi.org/10.48550/arXiv.1702.01105 

Aryan, A., Bosché, F., and Tang, P. (2021). “Planning for terrestrial laser scanning in construction: 

A review.” Automation in Construction, 125: 103551. DOI: 10.1016/j.autcon.2021.103551 

Autodesk Inc. (2019). “Revit.” https://www.autodesk.com/products/revit/overview 

Autodesk Inc. (2021). “ReCap.” https://www.autodesk.ca/en/products/recap/ 

Bachrach, A., Prentice, S., He, R., and Roy, N. (2011). “RANGE–Robust autonomous navigation 

in GPS‐denied environments.” Journal of Field Robotics, 28 (5): 644–666. Wiley Online 

Library. DOI: 10.1002/rob.20400 

Bahreini, F., and Hammad, A. (2021). “Point Cloud Semantic Segmentation of Concrete Surface 

Defects Using Dynamic Graph CNN.” 38th International Symposium on Automation and 

Robotics in Construction, 379–386. Dubai, UAE 

Barazzetti, L., and Scaioni, M. (2009). “Crack measurement: Development, testing and 

applications of an automatic image-based algorithm.” ISPRS Journal of Photogrammetry 

and Remote Sensing, 64 (3): 285–296. Elsevier 

Bennett, T. (2015). “Exploring Reality Computing for Civil Infrastructure.” 

https://informedinfrastructure.com/12620/reality-computing-for-civil-infrastructure/ 

Bien, J., and Zwolski, J. (2007). “Dynamic tests in bridge monitoring–systematics and 

applications.” 25th Conference & Exposition on Structural Dynamics, 1–10. Orlando, 

Florida 



105 

 

Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., and Siegwart, R. (2015). 

“Structural inspection path planning via iterative viewpoint resampling with application to 

aerial robotics.” Proceedings - IEEE International Conference on Robotics and 

Automation, 6423–6430 

Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., and 

Siegwart, R. (2016a). “Three-dimensional coverage path planning via viewpoint 

resampling and tour optimization for aerial robots.” Autonomous Robots, 40 (6): 1059–

1078. DOI: 10.1007/s10514-015-9517-1 

Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Siegwart, R. (2016b). “Receding horizon" 

next-best-view" planner for 3Dexploration.” International Conference on Robotics and 

Automation (ICRA), 1462–1468. Stockholm, Sweden 

Bolourian, N. (2022). SNEPointNet++ Dataset, Accessed June 2022. 

https://github.com/neshatbln/SNEPointNet2/tree/main/Data 

Boon, K., and Lovelace, D. C. (2014). The domestic use of unmanned aerial vehicles. USA: Oxford 

University Press 

Borna, K., and Khezri, R. (2015). “A combination of genetic algorithm and particle swarm 

optimization method for solving traveling salesman problem.” Cogent Mathematics, 2 (1): 

1048581. DOI: 10.1080/23311835.2015.1048581 

Boulch, A., Guerry, J., Le Saux, B., and Audebert, N. (2018). “SnapNet: 3D point cloud semantic 

labeling with 2D deep segmentation networks.” Computers & Graphics, 71: 189–198 

Brownlee, J. (2014). “An Introduction to Feature Selection - Machine Learning Mastery.” Data 

Preparation. Accessed May 24, 2021. https://machinelearningmastery.com/an-

introduction-to-feature-selection/ 

Brownlee, J. (2016). “How To Improve Deep Learning Performance.” Accessed May 23, 2021. 

https://machinelearningmastery.com/improve-deep-learning-performance/ 

Burri, M., Nikolic, J., Hürzeler, C., Caprari, G., and Siegwart, R. (2012). “Aerial service robots 

for visual inspection of thermal power plant boiler systems.” 2nd International Conference 

on Applied Robotics for the Power Industry (CARPI), 70–75. Zurich, Switzerland 

Canadian Standards Association. (2014). CSA S6-14 – Canadian Highway Bridge Design Code. 

Canada: CSA Group 

Cao, C., Zhang, J., Travers, M., and Choset, H. (2020). “Hierarchical Coverage Path Planning in 

Complex 3D Environments.” International Conference on Robotics and Automation 

(ICRA), 3206–3212. Paris, France: IEEE 

Castellanos, J. A., Tardós, J. D., and Schmidt, G. (1997). “Building a global map of the 

environment of a mobile robot: The importance of correlations.” International Conference 

on Robotics and Automation, 1053–1059. Albuquerque, New Mexico 

Chandrashekar, G., and Sahin, F. (2014). “A survey on feature selection methods.” Computers and 

Electrical Engineering, 40 (1): 16–28. Pergamon. DOI: 

10.1016/j.compeleceng.2013.11.024 

Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). “A benchmark for 3D mesh segmentation.” 

Acm transactions on graphics (tog), 73. ACM 

Chow, J. K., Liu, K., Tan, P. S., Su, Z. S., Wu, J., Li, Z., and Wang, Y.-H. (2021). “Automated 

defect inspection of concrete structure.” Automation in Construction, 132: 103959. DOI: 

10.1016/j.autcon.2021.103959 

Compute Canada Org. (2021). “Compute Canada.” https://www.computecanada.ca/ 

https://github.com/neshatbln/SNEPointNet2/data


106 

 

Computers and Structures Inc. (2017). “CsiBridge.” Accessed January 20, 2007. 

https://www.csiamerica.com/products/csibridge 

Cook, D., Vardy, A., and Lewis, R. (2014). “A survey of AUV and robot simulators for multi-

vehicle operations.” Autonomous Underwater Vehicles Journal, 1–8. DOI: 

10.1109/AUV.2014.7054411 

Crosby, C. (2016). “Introduction to LiDAR, Terrestrial Laser Scanning Applications” 

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. (2019). “Class-Balanced Loss Based on 

Effective Number of Samples.” Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 9268–9277. Xi’an, China 

Dawood, T., Zhu, Z., and Zayed, T. (2017). “Machine vision-based model for spalling detection 

and quantification in subway networks.” Automation in Construction, 81: 149–160. 

Elsevier. DOI: 10.1016/j.autcon.2017.06.008 

Demir, N., and Baltsavias, E. (2012). “Automated modeling of 3D building roofs using image and 

LiDAR data.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 35–40. Melbourne, Australia 

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs.” Numerische 

mathematik, 1 (1): 269–271. Springer 

Dong, Y. (2015). “What’s the difference between RRT and RRT* and which one should be used.” 

https://www.youtube.com/watch?v=JeEk_CWcRFI 

Dorafshan, S., and Maguire, M. (2018). “Bridge inspection: human performance, unmanned aerial 

systems and automation.” Journal of Civil Structural Health Monitoring, 8 (3): 443–476. 

Springer 

Dornhege, C., Kleiner, A., Hertle, A., and Kolling, A. (2016). “Multirobot Coverage Search in 

Three Dimensions.” Journal of field Robotics, 33 (4): 537–558 

Dronecode Project Inc. (2017). “A linux foundation collaborative project.” 

https://www.dronecode.org 

Eberhart, R., and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Sixth 

International Symposium on Micro Machine and Human Science, 39–43. Nagoya, Japan: 

IEEE 

Englot, B., and Hover, F. (2010). “Inspection planning for sensor coverage of 3D marine 

structures.” International Conference on Intelligent Robots and Systems (IROS), 4412–

4417. Taipei, Taiwan 

Englot, B., and Hover, F. S. (2012). “Sampling-based coverage path planning for inspection of 

complex structures.” 22nd International Conference on Automated Planning and 

Scheduling, 29–37. Atibaia, Brazil 

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. 

(2015). “The pascal visual object classes challenge: A retrospective.” International journal 

of computer vision, 111 (1): 98–136. Springer 

Facelift Ltd. (2017). “Bronto S46 XDT.” 

http://www.facelift.co.uk/piclibrary/picture.cfm?pic=331 

FARO Technologies Inc. (2011). “User Manual FARO Laser Scanner Focus 3D” 

FARO Technologies Inc. (2012). Faro Laser Scanner Focus 3D X 130 -NEO-Tech 

FARO Technologies Inc. (2017). “Quality Setting Function on the Focus3D.” Accessed May 24, 

2021. 

https://knowledge.faro.com/Hardware/3D_Scanners/Focus/Quality_Setting_Function_on

_the_Focus3D 



107 

 

Freimuth, H., and König, M. (2018). “Planning and executing construction inspections with 

unmanned aerial vehicles.” Automation in Construction, 96: 540–553. DOI: 

10.1016/j.autcon.2018.10.016 

Fu, B., Chen, L., Zhou, Y., Zheng, D., Wei, Z., Dai, J., and Pan, H. (2018). “An improved A* 

algorithm for the industrial robot path planning with high success rate and short length.” 

Robotics Autonomous System, 106: 26–37 

Fu, H., Meng, D., Li, W., and Wang, Y. (2021). “Bridge Crack Semantic Segmentation Based on 

Improved Deeplabv3+.” Journal of Marine Science and Engineering, 9 (6): 671 

Gagnon, M., Gaudreault, V., and Overton, D. (2008). Age of public infrastructure: A provincial 

perspective. Statistics Canada 

Galceran, E., and Carreras, M. (2013). “A survey on coverage path planning for robotics.” Robotics 

and Autonomous Systems, 61 (12): 1258–1276. DOI: 10.1016/j.robot.2013.09.004 

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. 

(2017). “A review on deep learning techniques applied to semantic segmentation.” 

Computer Vision and Pattern Recognition, arXiv, 1: 1704.06857. DOI: 

10.48550/arXiv.1704.06857 

Getbestcopter. (2016). “How to build a quadcopter with Arduino?” 

http://www.getbestcopter.com/how-to-build-a-quadcopter-with-arduino/ 

Gharib, A., Benhra, J., and Chaouqi, M. (2015). “A performance comparison of PSO and GA 

applied to TSP.” International Journal of Computer Applications, 130 (15): 34–39. 

Foundation of Computer Science 

Girardeau-Montaut, D. (2020). “CloudCompare” 

Goldbarg, E. F. G., de Souza, G. R., and Goldbarg, M. C. (2006). “Particle Swarm Optimization 

for the bi-objective degree constrained minimum spanning tree.” Congress on 

Evolutionary Computation (CEC), 420–427. Vancouver, BC, Canada: IEEE 

González-Jorge, H., Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P., and Arias, P. (2012). 

“Monitoring biological crusts in civil engineering structures using intensity data from 

terrestrial laser scanners.” Construction and Building Materials, 31: 119–128. Elsevier. 

DOI: 10.1016/j.conbuildmat.2011.12.053 

Government of Canada. (2021). “Part D - Bridge Inspection.” Guideline for Bridge Safety 

Management. Accessed May 24, 2021. https://tc.canada.ca/en/rail-

transportation/guidelines/guideline-bridge-safety-management/part-bridge-

inspection#_3.3.1_-_Visual 

Grefenstette, J., Gopal, R., Rosmaita, B., and Van Gucht, D. (1985). “Genetic algorithms for the 

traveling salesman problem.” the first International Conference on Genetic Algorithms and 

their Applications, 160–168. Lawrence Erlbaum 

Grilli, E., Menna, F., and Remondino, F. (2017). “A review of point clouds segmentation and 

classification algorithms.” The International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 339–345. Nafplio, Greece 

Guan, H., Li, J., Yu, Y., Chapman, M., and Wang, C. (2015). “Automated Road Information 

Extraction From Mobile Laser Scanning Data.” IEEE Transactions on Intelligent 

Transportation Systems, 16 (1): 194–205. DOI: 10.1109/TITS.2014.2328589 

Guerrero, J. A., and Bestaoui, Y. (2013). “UAV path planning for structure inspection in windy 

environments.” Journal of Intelligent & Robotic Systems, 69 (1): 297–311. DOI: 

10.1007/s10846-012-9778-2 



108 

 

Guldur, B., and Hajjar, J. F. (2016). “Automated classification of detected surface damage from 

point clouds with supervised learning.” 34th International Symposium on Automation and 

Robotics in Construction (ISARC), 1–7. Taipai, Taiwan: Vilnius Gediminas Technical 

University, 

Guldur, B., and Hajjar, J. F. (2017). “Laser-based surface damage detection and quantification 

using predicted surface properties.” Automation in Construction, 83: 285–302. Elsevier. 

DOI: 10.1016/j.autcon.2017.08.004 

Guldur, B., Yan, Y., and Hajjar, J. F. (2015). “Condition Assessment of Bridges Using Terrestrial 

Laser Scanners.” Structures Congress, 355–366 

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M. (2020). “Deep learning for 3D 

point clouds: A survey.” IEEE transactions on pattern analysis and machine intelligence, 

1–27. DOI: 10.1109/tpami.2020.3005434 

Habel, R. (2017). “Laser Road Imaging System.” http://www.pavemetrics.com 

Hackel, T., Wegner, J. D., and Schindler, K. (2016). “Contour detection in unstructured 3D point 

clouds.” the IEEE Conference on Computer Vision and Pattern Recognition, 1610–1618. 

Las Vegas, NV, USA 

Hamledari, H., Sajedi, S., McCabe, B., and Fischer, M. (2021). “Automation of Inspection Mission 

Planning Using 4D BIMs and in Support of Unmanned Aerial Vehicle–Based Data 

Collection.” Journal of Construction Engineering and Management, 147 (3): 04020179. 

American Society of Civil Engineers. DOI: 10.1061/(ASCE)CO.1943-7862.0001995 

Hampel, U., and Maas, H.-G. (2009). “Cascaded image analysis for dynamic crack detection in 

material testing.” Journal of Photogrammetry and Remote Sensing, 64 (4): 345–350. 

Elsevier. DOI: 10.1016/j.isprsjprs.2008.12.006 

Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Malik, J. (2011). “Semantic contours from 

inverse detectors.” IEEE International Conference on Computer Vision, 991–998. 

Barcelona, Spain 

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). “A formal basis for the heuristic determination 

of minimum cost paths.” Transactions on Systems Science and Cybernetics, 4 (2): 100–

107. IEEE. DOI: 10.1109/TSSC.1968.300136 

Haurum, J. B., Allahham, M. M., Lynge, M. S., Henriksen, K. S., Nikolov, I. A., and Moeslund, 

T. B. (2021). “Sewer Defect Classification using Synthetic Point Clouds.” 16th 

International Conference on Computer Vision Theory and Applications, 891–900. Vienna, 

Austria 

Helsgaun, K. (2000). “An effective implementation of the Lin–Kernighan traveling salesman 

heuristic.” European Journal of Operational Research, 126 (1): 106–130. DOI: 

10.1016/S0377-2217(99)00284-2 

Hoffman, K. L., Padberg, M., and Rinaldi, G. (2013). “Traveling Salesman Problem.” 

Encyclopedia of operations research and management science, 1573–1578. Springer. DOI: 

10.1007/978-1-4419-1153-7_1068 

Hoskere, V., Narazaki, Y., Hoang, T. A., and Spencer Jr., B. F. (2020). “MaDnet: multi-task 

semantic segmentation of multiple types of structural materials and damage in images of 

civil infrastructure.” Journal of Civil Structural Health Monitoring, 10: 757–773 

Hou, T.-C., Liu, J.-W., and Liu, Y.-W. (2017). “Algorithmic clustering of LiDAR point cloud data 

for textural damage identifications of structural elements.” Measurement, 108: 77–90. 

DOI: https://doi.org/10.1016/j.measurement.2017.05.032 



109 

 

Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., and Leonard, J. J. 

(2012). “Advanced perception, navigation and planning for autonomous in-water ship hull 

inspection.” The International Journal of Robotics Research, 31 (12): 1445–1464. Sage 

Publications. DOI: 10.1109/IROS.2010.5648908 

Hsien-Ke, L., Jallow, M., Nie-Jia, Y., Ming-Yi, J., Jyun-Hao, H., Cheng-Wei, S., and Po-Yuan, C. 

(2017). “Comparison of Bridge Inspection Methodologies and Evaluation Criteria in 

Taiwan and Foreign Practices.” the International Symposium on Automation and Robotics 

in Construction, 1–8. Taiwan: IAARC 

Huang, H., Zhang, C., and Hammad, A. (2021). “Effective Scanning Range Estimation for Using 

TLS in Construction Projects.” Journal of Construction Engineering and Management, 

147 (9): 04021106. American Society of Civil Engineers. DOI: 10.1061/(ASCE)CO.1943-

7862.0002127 

Hussain, A., Shad Muhammad, Yousaf Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., and 

Gani, S. (2017). “Genetic Algorithm for Traveling Salesman Problem with Modified Cycle 

Crossover Operator.” Computational intelligence and neuroscience, 2017: 1–8. DOI: 

10.1155/2017/7430125 

Hutchinson, T. C., and Chen, Z. (2006). “Improved Image Analysis for Evaluating Concrete 

Damage.” Journal of Computing in Civil Engineering, 20 (3): 210–216. American Society 

of Civil Engineers. DOI: 10.1061/ASCE0887-3801200620:3210 

Italdron Inc. (2019). “Bigone 8 Hsepro LiDAR.” http://www.italdron.com/professionals-drones-

and-accessories/professionals-drones/bigone-8hse-pro-laser-scan 

Janoušek, P., and Faigl, J. (2013). “Speeding up coverage queries in 3D multi-goal path planning.” 

International Conference on Robotics and Automation (ICRA), 5082–5087. Karlsruhe, 

Germany 

Jiang, H., Yan, F., Cai, J., Zheng, J., and Xiao, J. (2020). “End-to-End 3D Point Cloud Instance 

Segmentation Without Detection.” 12796–12805 

Kachitvichyanukul, V. (2012). “Comparison of three evolutionary algorithms: GA, PSO, and DE.” 

Industrial Engineering and Management Systems, 11 (3): 215–223. Korean Institute of 

Industrial Engineers 

Kang, S., Kim, S.-S., Won, J., and Kang, Y.-M. (2016). “GPU-based parallel genetic approach to 

large-scale travelling salesman problem.” The Journal of Supercomputing, 72 (11): 4399–

4414. DOI: doi.org/10.1007/s11227-016-1748-1 

Khallaf, R., and Khallaf, M. (2021). “Classification and analysis of deep learning applications in 

construction: A systematic literature review.” Automation in construction, 129: 1–16. DOI: 

10.1016/j.autcon.2021.103760 

Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., and Riley, M. (2018). “Unmanned 

aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D 

modelling.” Structure and Infrastructure Engineering, 14 (1): 124–136. Taylor & Francis. 

DOI: 10.1080/15732479.2017.1330891 

Kim, H., and Kim, C. (2020). “Deep-Learning-Based Classification of Point Clouds for Bridge 

Inspection.” Remote Sensing, 12 (22): 3757. DOI: doi.org/10.3390/rs12223757 

Kim, H., Yoon, J., and Sim, S.-H. (2020). “Automated bridge component recognition from point 

clouds using deep learning.” Structural Health Monitoring, 27 (9): e2591. DOI: 

doi.org/10.1002/stc.2591 



110 

 

Kim, I.-H., Jeon, H., Baek, S.-C., Hong, W.-H., and Jung, H.-J. (2018). “Application of Crack 

Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned 

Aerial Vehicle.” Sensors, 18 (6): 1881. Multidisciplinary Digital Publishing Institute 

Kim, J. W., Kim, S. B., Park, J. C., and Nam, J. W. (2015a). “Development of crack detection 

system with unmanned aerial vehicles and digital image processing.” Advances in 

structural engineering and mechanics, 33 (3): 25–29 

Kim, M. K., Sohn, H., and Chang, C.-C. (2015b). “Localization and Quantification of Concrete 

Spalling Defects Using Terrestrial Laser Scanning.” Journal of Computing in Civil 

Engineering, 29 (6): 1–12. DOI: 10.1061/(ASCE)CP.1943-5487.0000415 

Koch, C., and Brilakis, I. (2011). “Pothole detection in asphalt pavement images.” Advanced 

Engineering Informatics, 25 (3): 507–515. Elsevier. DOI: 10.1016/j.aei.2011.01.002 

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., and Fieguth, P. (2015). “A review on computer 

vision based defect detection and condition assessment of concrete and asphalt civil 

infrastructure.” Advanced Engineering Informatics, 29: 196–210. DOI: 

10.1016/j.aei.2015.01.008 

Koo, B., Jung, R., Yu, Y., and Kim, I. (2021). “A geometric deep learning approach for checking 

element-to-entity mappings in infrastructure building information models.” Journal of 

Computational Design and Engineering, 8 (1): 239–250 

Kroll, A., Baetz, W., and Peretzki, D. (2009). “On autonomous detection of pressured air and gas 

leaks using passive IR-thermography for mobile robot application.” International 

Conference on Robotics and Automation (CRA), 921–926. Kobe, Japan: IEEE 

Kuffner, J. J., and LaValle, S. M. (2000). “RRT-connect: An efficient approach to single-query 

path planning.” International Conference on Robotics and Automation (CRA), 995–1001. 

San fransisco, USA 

Kulling, K. C. (2009). “Optimal and receding-horizon path planning algorithms for 

communications relay vehicles in complex environments.” Massachusetts Institute of 

Technology 

Laefer, D. F., Truong-Hong, L., Carr, H., and Singh, M. (2014). “Crack detection limits in unit 

based masonry with terrestrial laser scanning.” NDT and E International, 62: 66–76. DOI: 

10.1016/j.ndteint.2013.11.001 

Langari, S. M. (2015). “Enhanced Path Planning Method for Improving Safety and Productivity 

of Excavation Operations.”, Master Thesis, Concordia University 

Lattanzi, D., and Miller, G. R. (2015). “3D scene reconstruction for robotic bridge inspection.” 

Journal of Infrastructure Systems, 21 (2): 04014041. ascelibrary.org. DOI: 

10.1061/(ASCE)IS.1943-555X.0000229 

LaValle, S. M., and Kuffner Jr, J. J. (2001). “Randomized kinodynamic planning.” The 

International Journal of Robotics Research, 20 (5): 378–400. SAGE Publications. DOI: 

10.1177/02783640122067453 

Le, T., Gibb, S., Pham, N., La, H. M., Falk, L., and Berendsen, T. (2017). “Autonomous robotic 

system using non-destructive evaluation methods for bridge deck inspection.” 

International Conference on Robotics and Automation (ICRA), 3672–3677. Singapore 

Le, T.-T., Nguyen, V.-H., and Le, M. V. (2021). “Development of Deep Learning Model for the  

Recognition of Cracks on Concrete Surfaces.” Applied Computational Intelligence and 

Soft Computing, e8858545. Hindawi. DOI: 10.1155/2021/8858545 



111 

 

Lee, D., Kim, J., and Lee, D. (2019). “Robust concrete crack detection using deep learning-based 

semantic segmentation.” International Journal of Aeronautical and Space Sciences, 20 (1): 

287–299 

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Lampinen, J., Kaartinen, H., Kukko, A., Puttonen, E., 

and Hyyppä, H. (2016). “Object Classification and Recognition From Mobile Laser 

Scanning Point Clouds in a Road Environment.” IEEE Transactions on Geoscience and 

Remote Sensing, 54 (2): 1226–1239. DOI: 10.1109/TGRS.2015.2476502 

Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhutdinov, R. (2018). “Point Cloud GAN.” 

arXiv:1810.05795 [cs, stat] 

Li, M., Hu, Y., Zhao, N., and Qian, Q. (2019). “Modeling and analyzing point cloud generation in 

missile-borne LiDAR.” Defence Technology, 16 (1): 69–76. DOI: 

doi.org/10.1016/j.dt.2019.10.003 

Li, Z., Yan, Y., Jing, Y., and Zhao, S. G. (2015). “The design and testing of a LiDAR platform for 

a UAV for heritage mapping.” The International Archives of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 40 (1): 17. DOI: 10.5194/isprsarchives-XL-1-

W4-17-2015 

Lin, G., and Shen, W. (2018). “Research on convolutional neural network based on improved Relu 

piecewise activation function.” Procedia Computer Science, Recent Advancement in 

Information and Communication Technology:, 131: 977–984. DOI: 

10.1016/j.procs.2018.04.239 

Liu, P., Chen, A., Huang, Y.-N., Han, J.-Y., Lai, J.-S., Kang, S.-C., Wu, T.-H., Wen, M.-C., and 

Tsai, M.-H. (2014). “A review of rotorcraft Unmanned Aerial Vehicle (UAV) 

developments and applications in civil engineering.” Smart Structure and Systems, 13 (6): 

1065–1094. DOI: 10.12989/sss.2014.13.6.1065 

Liu, W., Chen, S., Boyajian, D., and Hauser, E. (2010). “Application of 3D LiDAR scan of a bridge 

under static load testing.” Materials Evaluation, 68 (12): 1359–1367 

Liu, W., Chen, S., and Hauser, E. (2011). “LiDAR-based bridge structure defect detection.” 

Experimental Techniques, 35 (6): 27–34. Wiley Online Library. DOI: 10.1111/j.1747-

1567.2010.00644.x 

Lopez Droguett, E., Tapia, J., Yanez, C., and Boroschek, R. (2020). “Semantic segmentation 

model for crack images from concrete bridges for mobile devices.” Proceedings of the 

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 1–14. DOI: 

https://doi.org/10.1177/1748006X20965111 

Luckai, J., Polak, M. A., and Walbridge, S. (2014). “A methodology for evaluating the effects of 

spalling on the structural capacity of reinforced concrete bridge.” Canadian Journal of 

Civil Engineering, 41 (3): 197–205. DOI: 10.1139/cjce-2011-0263 

Lumelsky, V. J., and Stepanov, A. A. (1987). “Path-planning strategies for a point mobile 

automaton moving amidst unknown obstacles of arbitrary shape.” Algorithmica, 2 (1): 

403–430. Springer. DOI: 10.1007/BF01840369 

Luo, X., Li, X., Yang, Q., Wu, F., Zhang, D., Yan, W., and Xi, Z. (2017). “Optimal path planning 

for UAV-based inspection system of large-scale photovoltaic farm.” Chinese Automation 

Congress (CAC), 4495–4500. Jinan, China: IEEE 

Maguire, M., Dorafshan, S., and Thomas, R. (2018). “SDNET2018: A concrete crack image 

dataset for machine learning applications.” Digital Commons. 

https://digitalcommons.usu.edu/all_datasets/48/ 



112 

 

Martin-Abadal, M., Piñar-Molina, M., Martorell-Torres, A., Oliver-Codina, G., and Gonzalez-Cid, 

Y. (2021). “Underwater Pipe and Valve 3D Recognition Using Deep Learning 

Segmentation.” Journal of Marine Science and Engineering, 9 (1): 5 

Maru, M., Bekele, D., Lee, K., Demissie, T., and Seunghee, P. (2021). “Comparison of Depth 

Camera and Terrestrial Laser Scanner in Monitoring Structural Deflections.” Sensors, 21 

(1): 201. DOI: https://doi.org/10.3390/s21010201 

Marzouk, M., and Ali, H. (2013). “Modeling safety considerations and space limitations in piling 

operations using agent based simulation.” Expert Systems with Applications, 40 (12): 

4848–4857. Elsevier. DOI: 10.1016/j.eswa.2013.02.021 

Maturana, D., and Scherer, S. (2015). “Voxnet: A 3D convolutional neural network for real-time 

object recognition.” IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), 922–928. Hamburg, Germany: IEEE 

Mcful, H. (2018). “Drones are Breaking Ground in Bridge Inspection” 

McLaughlin, E., Charron, N., and Narasimhan, S. (2020). “Automated Defect Quantification in 

Concrete Bridges Using Robotics and Deep Learning.” Journal of Computing in Civil 

Engineering, 34 (5): 04020029 

Metni, N., and Hamel, T. (2007). “A UAV for bridge inspection: Visual servoing control law with 

orientation limits.” Automation in Construction, 17 (1): 3–10. Elsevier. DOI: 

10.1016/j.autcon.2006.12.010 

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). Machine learning: An artificial 

intelligence approach. Springer-Verlag Berlin Heidelberg 

Mirza, S. (2006). “Durability and sustainability of infrastructure — a state-of-the-art report.” 

Canadian Journal of Civil Engineering, 33 (6): 639–649. DOI: 10.1139/l06-049 

Mizoguchi, T., Koda, Y., Iwaki, I., Wakabayashi, H., Kobayashi, Y., Shirai, K., Hara, Y., and Lee, 

H. S. (2013). “Quantitative scaling evaluation of concrete structures based on terrestrial 

laser scanning.” Automation in Construction, 35: 263–274. Elsevier B.V. DOI: 

10.1016/j.autcon.2013.05.022 

Mohammadi, M. E., Wood, R. L., and Wittich, C. E. (2019). “Non-Temporal Point Cloud Analysis 

for Surface Damage in Civil Structures.” ISPRS International Journal of Geo-Information, 

8 (12): 527. DOI: https://doi.org/10.3390/ijgi8120527 

Mohammed Abdelkader, E., Moselhi, O., Marzouk, M., and Zayed, T. (2021). “Entropy-Based 

Automated Method for Detection and Assessment of Spalling Severities in Reinforced 

Concrete Bridges.” Journal of Performance of Constructed Facilities, 35 (1): 04020132 

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). “On the number of linear regions 

of deep neural networks.” Advances in Neural Information Processing Systems, 27: 1–9 

Morgan, D., and Falkner, E. (2001). Aerial mapping: methods and applications. Florida, USA: 

CRC Press 

Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., Urtasun, R., and Yuille, A. 

(2014). “The role of context for object detection and semantic segmentation in the wild.” 

IEEE Conference on Computer Vision and Pattern Recognition, 891–898. Columbus, OH, 

USA 

Nasir, J., Islam, F., Malik, U., Ayaz, Y., Hasan, O., Khan, M., and Muhammad, M. S. (2013). 

“RRT*-SMART: A rapid convergence implementation of RRT.” International Journal of 

Advanced Robotic Systems, 10 (7): 299–311. SAGE Publications Sage UK: London, 

England. DOI: 10.5772/56718 



113 

 

Nasrollahi, M. (2019). “Automated Bridge Inspection for Concrete Surface Defect Detection 

Using Deep Neural Network Based on LiDAR Scanning.” Master Thesis, Concordia 

University 

Nasrollahi, M., Bolourian, N., and Hammad, A. (2019). “Concrete Surface Defect Detection Using 

Deep Neural Network Based on LiDAR Scanning.” CSCE Conference, 1–10. Laval 

Nasrollahi, M., Bolourian, N., Zhu, Z., and Hammad, A. (2018). “Designing LiDAR-equipped 

UAV platform for structural inspection.” 35th International Symposium on Automation 

and Robotics in Construction (ISARC), 1–6. Berlin, Germany: IEEE 

Noreen, I., Khan, A., and Habib, Z. (2016). “Optimal Path Planning using RRT* based 

Approaches: A Survey and Future Directions.” International Journal of Advanced 

Computer Science and Applications, 7 (11): 97–107. DOI: 

10.14569/IJACSA.2016.071114 

NTSB. (2008). Collapse of I-35W Highway Bridge Minneapolis, Minnesota August 1, 2007. 

National Transportation Safety Board, 1–178. Washington DC 

Oh, J. S., Choi, Y. H., Park, J. B., and Zheng, Y. F. (2004). “Complete coverage navigation of 

cleaning robots using triangular-cell-based map.” IEEE Transactions on Industrial 

Electronics, 51 (3): 718–726. IEEE. DOI: 10.1109/TIE.2004.825197 

Olsen, M. J., Kuester, F., Chang, B. J., and Hutchinson, T. C. (2010). “Terrestrial Laser Scanning-

Based Structural Damage Assessment.” Journal of Computing in Civil Engineering, 24 (3): 

264–272. DOI: 10.1061/(asce)cp.1943-5487.0000028 

Ongsulee, P. (2018). “Artificial intelligence, machine learning and deep learning.” 15th 

International Conference on ICT and Knowledge Engineering (ICT&KE), 1–6. Bangkok, 

Thailand: IEEE 

Ontario Ministry of Transportation. (2008). Ontario Structure Inspection Manual (OSIM). St. 

Catharines, Ontario: Policy, Planning & Standards Division Engineering Standards Branch 

Bridge Office 

Papachristos, C., Khattak, S., Mascarich, F., and Alexis, K. (2019). “Autonomous navigation and 

mapping in underground mines using aerial robots.” Aerospace Conference, 1–8. Montana, 

USA: IEEE 

Pauly, M., Gross, M., and Kobbelt, L. P. (2002). “Efficient simplification of point-sampled 

surfaces.” conference on Visualization (VIS), 163–170. Boston, MA, USA: IEEE 

Computer Society 

Perron, L., and Furnon, V. (2020). “Or-tools.” Google. 

https://developers.google.com/optimization/ 

Pfeifer, N., and Briese, C. (2007). “Laser scanning–principles and applications.” GeoSiberia-

International Exhibition and Scientific Congress, cp-59. Novosibirsk, Russia: European 

Association of Geoscientists & Engineers 

Phung, M. D., Hoang, V. T., Dinh, T. H., and Ha, Q. (2017a). “Automatic crack detection in built 

infrastructure using unmanned aerial vehicles.” The 34th International Symposium on 

Automation and Robotics in Construction, 823–829. Taipei, Taiwan 

Phung, M. D., Quach, C. H., Dinh, T. H., and Ha, Q. (2017b). “Enhanced discrete particle swarm 

optimization path planning for UAV vision-based surface inspection.” Automation in 

Construction, 81: 25–33. DOI: 10.1016/j.autcon.2017.04.013 

Pierdicca, R., Paolanti, M., Martini, F., Massimo, M., Morbidoni, C., Malinverni, E. S., Frontoni, 

E., and Lingua, A. M. (2020). “Point cloud semantic segmentation using a deep learning 

framework for cultural heritage.” Remote Sensing, 12 (6): 1005 



114 

 

Prest, A., Leistner, C., Civera, J., Schmid, C., and Ferrari, V. (2012). “Learning object class 

detectors from weakly annotated video.” Computer Vision and Pattern Recognition 

(CVPR), 3282–3289. Providence, RI, USA: IEEE 

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). “Pointnet: Deep learning on point sets for 3d 

classification and segmentation.” Computer Vision and Pattern Recognition (CVPR), 4–

23. Honolulu, HI, USA: IEEE 

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). “PointNet++: Deep Hierarchical Feature 

Learning on Point Sets in a Metric Space.” Advances in Neural Information Processing 

Systems, 1–14. Neural information processing systems foundation 

Quadros, A., Underwood, J. P., and Douillard, B. (2012). “An occlusion-aware feature for range 

images.” International Conference onRobotics and Automation (ICRA), 4428–4435. St. 

Paul, MN, USA: IEEE 

Quin, P., Paul, G., Alempijevic, A., Liu, D., and Dissanayake, G. (2013). “Efficient neighborhood-

based information gain approach for exploration of complex 3D environments.” 

International Conference on Robotics and Automation (ICRA), 1343–1348. Karlsruhe, 

Germany 

Rabbani, T., Van Den Heuvel, F., and Vosselmann, G. (2006). “Segmentation of point clouds 

using smoothness constraint.” International archives of photogrammetry, remote sensing 

and spatial information sciences, 36 (5): 248–253. DOI: 10.1.1.118.5346 

Rafanavicius, V., Cimmperman, P., Taluntis, V., Man, K. L., Volkvicius, G., Jurkynas, M., and 

Bezaras, J. (2017). “Efficient path planning methods for UAVs inspecting power lines.” 

International Conference on Platform Technology and Service (PlatCon), 1–6. Busan, 

Korea 

Rahman, M. A., and Wang, Y. (2016). “Optimizing Intersection-Over-Union in Deep Neural 

Networks for Image Segmentation.” Advances in Visual Computing, 234–244. Cham: 

Springer 

Rashidi, M., Mohammadi, M., Sadeghlou, S., Abdolvand, M., Truong-Hong, L., and Samali, B. 

(2020). “A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: 

Review and Future Directions.” Remote Sensing, 12 (22): 3796 

Reshetyuk, Y. (2006). “Investigation and calibration of pulsed time-of-flight terrestrial laser 

scanners.” Ph.D. Stockholm, Sweden: Royal Institute of Technology (KTH), Department 

of Transport and Economics 

Scott, W. R. (2009). “Model-based view planning.” Machine Vision and Applications, 20 (1): 47–

69. Springer. DOI: 10.1007/s00138-007-0110-2 

Scott, W. R., Roth, G., and Rivest, J.-F. (2003). “View planning for automated three-dimensional 

object reconstruction and inspection.” Computing Surveys (CSUR), 35 (1): 64–96. 

Association for Computing Machinery (ACM). DOI: 10.1145/641865.641868 

Sharma, S., Sharma, S., and Athaiya, A. (2017). “Activation functions in neural networks.” 

Towards data science, 6 (12): 310–316 

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). “Indoor segmentation and support 

inference from rgbd images.” European Conference on Computer Vision, 746–760. 

Florence, Italy: Springer 

Silverman, R. (2002). Modern calculus and analytic geometry. Dover Publications 

Sun, M., Song, Z., Jiang, X., Pan, J., and Pang, Y. (2017). “Learning Pooling for Convolutional 

Neural Network.” Neurocomputing, 224: 96–104. DOI: 10.1016/j.neucom.2016.10.049 



115 

 

Synergy Positioning Systems Ltd. (2018). “Faro in the air, underground, everywhere 3D 

scanning.” Accessed July 6, 2020. https://synergypositioning.co.nz/news/faro-in-the-air-

underground-everywhere-3D-scanning 

Tam, G. K. L., Cheng, Z. Q., Lai, Y. K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, 

X. F., and Rosin, P. L. (2013). “Registration of 3d point clouds and meshes: A survey from 

rigid to Nonrigid.” IEEE Transactions on Visualization and Computer Graphics, 19 (7): 

1199–1217. DOI: 10.1109/TVCG.2012.310 

Taylor, K., and LaValle, S. M. (2009). “I-Bug: An intensity-based bug algorithm.” IEEE 

International Conference on Robotics and Automation, 3981–3986. Kobe, Japan 

Te, G., Hu, W., Zheng, A., and Guo, Z. (2018). “Rgcnn: Regularized graph CNN for point cloud 

segmentation.” the 26th ACM international conference on Multimedia, 746–754. Seoul, 

Republic of Korea 

Teza, G., Galgaro, A., and Moro, F. (2009). “Contactless recognition of concrete surface damage 

from laser scanning and curvature computation.” Non-Destructive Testing and Evaluation 

International, 42 (4): 240–249. Elsevier. DOI: 10.1016/j.ndteint.2008.10.009 

The HDF Group. (2021). “Ensuring long-term access and usability of HDF data and supporting 

users of HDF technologies.” Accessed May 24, 2021. https://www.hdfgroup.org/ 

The Vertikal Press. (2015). “Fatal Underbridge Inspection.” Accessed July 5, 2020. 

https://www.craneaccidents.com/2015/08/report/fatal-underbridge-inspection/ 

Thrun, S. (1998). “Learning metric-topological maps for indoor mobile robot navigation.” 

Artificial Intelligence, 99 (1): 21–71. Elsevier. DOI: 10.1016/S0004-3702(97)00078-7 

Transports Canada. (2012). “Guideline for bridge safety management” 

Trimble Inc. (2020). “Trimble Software.” https://go2.trimble.com/downloadTBC.html  

Truong-Hong, L., Falter, H., Lennon, D., and Laefer, D. F. (2016). “Framework for bridge 

inspection with laser scanning.” EASEC-14 Structural Engineering and Construction, 1–

8. Ho Chi Minh City, Vietnam 

Turkan, Y., Hong, J., Laflamme, S., and Puri, N. (2018). “Adaptive wavelet neural network for 

terrestrial laser scanner-based crack detection.” Automation in Construction, 94: 191–202. 

DOI: https://doi.org/10.1016/j.autcon.2018.06.017 

Unity Technologies. (2018). “Unity 3D Game Engine.” https://unity3d.com/unity  

Valença, J., Puente, I., Júlio, E., González-Jorge, H., and Arias-Sánchez, P. (2017). “Assessment 

of cracks on concrete bridges using image processing supported by laser scanning survey.” 

Construction and Building Materials, 146: 668–678. DOI: 

10.1016/j.conbuildmat.2017.04.096 

Velodyne LiDAR Inc. (2015). “Velodyne LiDAR PUCKTM.” Accessed July 31, 2019. 

https://www.amtechs.co.jp/product/VLP-16-Puck.pdf 

Vignesh, R., Narenthiran, B., Manivannan, S., Arul Murugan, R., and RajKumar, V. (2021). 

“Concrete Bridge Crack Detection Using Convolutional Neural Network.” Materials, 

Design, and Manufacturing for Sustainable Environment, 797–812. Springer 

Walsh, S. B., Borello, D. J., Guldur, B., and Hajjar, J. F. (2013). “Data processing of point clouds 

for object detection for structural engineering applications.” Computer‐Aided Civil and 

Infrastructure Engineering, 28 (7): 495–508. Wiley Online Library. DOI: 

10.1111/mice.12016 

Wang, J., Liu, Y., Nie, X., and Mo, Y. L. (2022). “Deep convolutional neural networks for 

semantic segmentation of cracks.” Structural Control and Health Monitoring, 29 (1): 

e2850 



116 

 

Wang, Z., and Lu, F. (2016). “VoxSegNet: Volumetric CNNs for semantic part segmentation of 

3D shapes.” Transactions on Visualization and Computer Graphics, 26 (9): 2919–2930 

Weber, C., Hahmann, S., and Hagen, H. (2010). “Sharp feature detection in point clouds.” Shape 

Modeling International Conference (SMI), 175–186. Beijing, China: IEEE 

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). “3d shapenets: A 

deep representation for volumetric shapes.” IEEE conference on computer vision and 

pattern recognition, 1912–1920. Boston, USA 

Xia, T., Yang, J., and Chen, L. (2022). “Automated semantic segmentation of bridge point cloud 

based on local descriptor and machine learning.” Automation in Construction, 133: 

103992. DOI: doi.org/10.1016/j.autcon.2021.103992 

Xiao, J., Owens, A., and Torralba, A. (2013). “Sun3d: A database of big spaces reconstructed using 

sfm and object labels.” IEEE International Conference on Computer Vision (ICCV), 1625–

1632. Sydney, Australia 

Xu, X., Yang, H., and Neumann, I. (2015). “Concrete Crack Measurement and Analysis Based on 

Terrestrial Laser Scanning Technology.” Sensors and Transducers Journal, 186 (3): 5 

Xu, Y., and Turkan, Y. (2019). “Bridge Inspection Using Bridge Information Modeling (BrIM) 

and Unmanned Aerial System (UAS).” Advances in Informatics and Computing in Civil 

and Construction Engineering, 617–624. Springer International Publishing 

Xu, Y., and Turkan, Y. (2022). “Risk Assessment for Using UAS in Construction: A Fuzzy 

Analytical Hierarchy Process.” Construction Research Congress, 441–451. Arlington, 

USA: American Society of Civil Engineers 

Yang, C.-H., Tsai, M.-H., Kang, S.-C., and Hung, C.-Y. (2018). “UAV path planning method for 

digital terrain model reconstruction–A debris fan example.” Automation in Construction, 

93: 214–230. Elsevier. DOI: 10.1016/j.autcon.2018.05.024 

Yavartanoo, M., Kim, E. Y., and Lee, K. M. (2018). “Spnet: Deep 3d object classification and 

retrieval using stereographic projection.” Asian Conference on Computer Vision, 691–706. 

Berlin, German: Springer 

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., and 

Guibas, L. (2016). “A scalable active framework for region annotation in 3D shape 

collections.” ACM Transactions on Graphics, 35 (6): 210:1-210:12. DOI: 

10.1145/2980179.2980238 

Yin, C., Wang, B., Gan, V. J., Wang, M., and Cheng, J. C. (2021). “Automated semantic 

segmentation of industrial point clouds using ResPointNet++.” Automation in 

Construction, 130: 103874 

Yoder, L., and Scherer, S. (2016). “Autonomous exploration for infrastructure modeling with a 

micro aerial vehicle.” Field and service robotics, 427–440. Springer. DOI: 10.1007/978-

3-319-27702-8_28 

Zhang, B., Tang, L., and Roemer, M. (2014). “Probabilistic weather forecasting analysis for 

unmanned aerial vehicle path planning.” Journal of Guidance, Control, and Dynamics, 37 

(1): 309–312. DOI: 10.2514/1.61651 

Zhao, R., Pang, M., and Wang, J. (2018). “Classifying airborne LiDAR point clouds via deep 

features learned by a multi-scale convolutional neural network.” International journal of 

geographical information science, 32 (5): 960–979 

Zhu, Z., and Brilakis, I. (2008). “Detecting air pockets for architectural concrete quality assessment 

using visual sensing.” Electronic Journal of Information Technology in Construction, 13: 

86–102. Citeseer 



117 

 

APPENDIX A.  DATA AUGMENTATION 

A.1.  Flipping Horizontally without Normal Vector 

import os 
import glob 
import sys 
import numpy as np 
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 
ROOT_DIR = os.path.dirname(BASE_DIR) 
sys.path.append(BASE_DIR) 
 
data_dir = os.path.join(ROOT_DIR, 'data') 
mirrored_dir = os.path.join(data_dir, 'mirrored') 
if not os.path.exists(mirrored_dir): 
    os.mkdir(mirrored_dir) 
anno_paths = [line.rstrip() for line in open(os.path.join(BASE_DIR, 'meta/anno_paths_.txt'))]  
 
 
for anno_path in anno_paths: 
    print(anno_path) 
    elements = anno_path.split('/') 
    area = os.path.join(mirrored_dir+'/'+elements[-3]) 
    if not os.path.exists(area): 
        os.mkdir(area) 
    part = os.path.join(area+'/'+elements[-2]) 
    if not os.path.exists(part): 
        os.mkdir(part) 
    output_dir = os.path.join(part+'/'+'Annotations') 
    if not os.path.exists(output_dir): 
        os.mkdir(output_dir) 
    input = np.loadtxt(data_dir+'/'+'bridge'+'/'+elements[-3]+'/'+elements[-2]+'/'+elements[-
2]+'.txt', dtype=np.float, delimiter=' ') 
    num=len(input) 
    out = input 
    for i in range(num): 
        out[i,0] = -input[i,0] 
    np.savetxt(part+'/'+elements[-2]+'.txt', out, fmt='%.3f %.3f %.3f %d %d %d') 
    for f in glob.glob(os.path.join(data_dir, 'bridge', anno_path, '*.txt')):  
        out_filename = os.path.basename(f) 
        input = np.loadtxt(f, dtype=np.float, delimiter=' ') 
        print (f) 
        num=len(input) 
        print (num) 
        out = input 



118 

 

        for i in range(num): 
            out[i,0] = -input[i,0] 
        np.savetxt(output_dir+'/'+out_filename, out, fmt='%.3f %.3f %.3f %d %d %d') 

  



119 

 

A.2.  Flipping Horizontally and Vertically with Normal Vector 

import os 
import glob 
import sys 
import numpy as np 
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 
ROOT_DIR = os.path.dirname(BASE_DIR) 
sys.path.append(BASE_DIR) 
 
data_dir = os.path.join(ROOT_DIR, 'data') 
mirrored_dir = os.path.join(data_dir, 'mirrored') 
if not os.path.exists(mirrored_dir): 
    os.mkdir(mirrored_dir) 
anno_paths = [line.rstrip() for line in open(os.path.join(BASE_DIR, 'meta/anno_paths_.txt'))] 
 
 
for ann_path in anno_paths: 
    print(ann_path) 
    elements = ann_path.split('/') 
    area_h = os.path.join(mirrored_dir+'/'+elements[-3]+’h’) 
    area_v = os.path.join(mirrored_dir+'/'+elements[-3]+’v’) 
 
    if not os.path.exists(area_h): 
        os.mkdir(area_h)  
    if not os.path.exists(area_v): 
        os.mkdir(area_v) 
 
    part_h = os.path.join(area_h+’/’+elements[-2]) 
    part_v = os.path.join(area_v+'/'+elements[-2]) 
    if not os.path.exists(part_h): 
        os.mkdir(part_h) 
    if not os.path.exists(part_v): 
        os.mkdir(part_v) 
 
    output_dir_h = os.path.join(part_h+'/'+'Annotations') 
    output_dir_v = os.path.join(part_v+'/'+'Annotations') 
 
    if not os.path.exists(output_dir_h): 
        os.mkdir(output_dir_h) 
    if not os.path.exists(output_dir_v): 
        os.mkdir(output_dir_v) 
     input = np.loadtxt(data_dir+'/'+'bridge'+'/'+elements[-3]+'/'+elements[-2]+'/'+elements[-
2]+'.txt', dtype=np.float, delimiter=' ') 



120 

 

    num=len(input) 
    out_h = out_v= input 
    for i in range(num): 
        # vertically: 
        Out_v[i, (2,8)] = -input[i, (2,8)] 
        # horizontally: 
        Out_h[i,(0,6)] = -input[i,(0,6)] 
        np.savetxt(part_h + '/' + elements[-2] + '.txt', out_h, fmt=’%.3f %.3f %.3f %d %d %d %.3f 
%.3f %.3f’) 
        np.savetxt(part_v + '/' + elements[-2] + '.txt', out_v, fmt='%.3f %.3f %.3f %d %d %d %.3f 
%.3f %.3f') 
    for fv in glob.glob(os.path.join(data_dir, 'bridge', anno_path, '*.txt')): 
        out_filename = os.path.basename(fv) 
        input = np.loadtxt(fv, dtype=np.float, delimiter=' ') 
        print (fv) 
        num=len(input) 
        print (num) 
        out_h = out_v = input 
        for i in range(num): 
            # horizontally: 
            out_h[i, (0,6)] = -input[i, (0,6)] 
            # vertically: 
            out_v[I,(2,8)] = -input[I,(2,8)] 
 
        np.savetxt(output_dir_h + ‘/’ + out_filename, out_h, fmt=’%.3f %.3f %.3f %d %d %d %.3f 
%.3f %.3f’) 
        np.savetxt(output_dir_v + '/' + out_filename, out_v, fmt='%.3f %.3f %.3f %d %d %d %.3f 
%.3f %.3f') 
  



121 

 

APPENDIX B.  DATA ARRANGEMENT 

B.1.  Step 1: Preparing Dataset 

The collected data should be got ready to use in the learning process. In ML, more data lead to 

better results and a more reliable model. Therefore, instead of using each scanned bridge as one 

input, their surfaces are divided to make many point cloud sets. Each set may include one or more 

defects, which should be annotated manually. In this step, preparing point cloud data sets, the 

following rules should be considered: 

• The reference plane is on XZ plane, and the surface defects such as cracks and spalling 

are located behind the plane. It means the y coordination of defects is negative. 

• Only the coordinates (x, y, z) and RGB of each point should be kept in raw data. Other 

parameters, three scalars, are deleted in CloudCompare software. 

• Since the blocks have a box shape, the scanned surfaces are divided into rectangular 

segments 

• Each segment should be big enough to contain different sizes of defects and small enough 

to avoid covering many undamaged areas. 

• In the segments with lower density the distance between points are higher, which lead to 

lower accuracy in annotation and adding more points randomly during up-sampling.  

• The same pattern should be considered in data annotation.  

• The points are classified into three classes: spall, crack, and nondefect. 

Several rectangular segments are selected and cut from each scan of the bridges using the following 

considerations: 1) the minimum size of the segments was considered around 0.6 m  0.6 m and 

the average size was about 2 m  2 m.; 2) The number of points should not be less than 150,000 

or more than 400,000 points. Figure B-1 shows a sample of a segment of the bridge, which is 

selected for annotation as an input. 

 

Figure B-1. A segment of a concrete bridge including defects in Cloud Compare. 

The file is named as “part_segment number”. The file is saved in *.txt format (e.g. part_01.txt) in 

a folder with the same name (e.g. part_01). Moreover, “Annotations” folder should be created in 

this folder (Figure B-2). 



122 

 

 

Figure B-2. Arrangement of dataset. 

After separating and saving all segments, open the *.txt file in CloudCompare and use the 

translate/rotate tool  to put the surface in the y direction and segment in  all spalls and cracks 

one by one using segment tool . Select all cracks on the left column, save  them in folder 

Annotations as “crack”. Do the same for spalls and save them as “Spal”. The numbering is done 

automatically starting from 000000. Any remaining point is assigned to “nondefect” class and 

saved as one file: “nondefect_000000”. 

Note: during segmentation, you can use “scalar” or RGB mode. But, before saving the annotated 

segments, delete the scalar using . In training and testing, only this parameter is not used. 

Note: If the segmented piece is not located in the main “selected” piece, the error “there is not 

enough memory” will appear. 



123 

 

Note: Follow the exact rule for naming the files. 

B.2.  Step 2: Preprocessing Dataset 

As shown in Figure B-2, the raw data is stored in “bridge” and two empty folders “bridge_npy” 

and “bridge_npy_h5” are created to store numpy and h5 files, respectively. First, based on some 

given parameters (e.g., size of the block, stirde size) in indoor_3dutil.py, all the point clouds which 

are listed in “/sem_seg/meta/anno_paths.txt”, are converted into *.npy format using 

collect_indoor3d_data.py. The name of the numpy files should be listed as 

“/sem_seg/meta/all_data_label.txt”. Then, some parameters (e.g. number of points, block size, 

stride size) are set in “gen_indoor3d_h5.py”, which is used to generate the h5 files based on the 

npy. The list of h5 files should be written in “all_files.txt” file as shown in Figure B-2. These files 

are used as the input of the training model. 

B.3.  Step 3: Training and Testing 

“train_and_test_multigpu.py” is used for training the dataset and testing it on multi GPUs. The 

results including a model, the confusion matrix, and the required calculated parameters during 

training and testing, are stored in “log” folder. 



124 

 

APPENDIX C.  APPLICATION FOR FLIGHT OPERATION 

CERTIFICATION 

C.1.  Application Form 

 



125 

 

 

 



126 

 

 

  



127 

 

C.2.  Supporting Documents 

• Mandatory Documents  

o Copy of Liability Insurance Certificate: It is Attached  

o Operation Manager’s Qualification Details: The operation Manager, Ms. Neshat 

Bolourian, who is the pilot of this operation as well, works on a research related to 

“Structure Inspection Using UAV”. In this operation, she aims to test the UAV. Until now, 

her experience is only limited to flying a small drone in her lab and she does not have any 

chance to fly a bigger drone yet. So, there is not any Official Qualification Document 

available now.  

o Ground Supervisor’s Qualification Details: The ground supervision, Dr. Amin Hammad, 

is a professor at Concordia University and he was the supervisor of many projects in last 

years. “Bridge Inspection Using UAV” is the subject of one of the researches under his 

supervision right now. At this stage, his student (Ms.Neshat Bolourian) wants to test UAV. 

No Official Qualification Document is available right now.  

o UAV Pilot Qualification Details: The pilot, Ms. Neshat Bolourian, is the same as 

Operation Manager. As explained before, she has only small experience with a small 

drone. She does not participate in any classes to take Pilot Certificate till now.  

o Visual Observer’s Qualification Details: Ms.Negar Salimzadeh, is the visual observer of 

the operation and one of the students of research group. Although she does not have a 

chance to participate in an operation yet, she is familiar with her duties and 

responsibilities.  

o Manufacturer UAV Specifications & Limitations: The attached UAV manual includes all 

specification and limitations.  

o Site Survey/Plan of Operation: It explained in Section 3 in detail.  

o Security Plan: It explained in Section 4 in detail.  

o Emergency Plan: It explained in Section 5 in detail.  

o Proof of Corporation: It is not available.  

o UAV Operation and Maintenance Procedure: It is attached.  

o Description of UAV System Modification: It is not applicable.  

• Optional Documents  

o Property Owner’s Permission: The owner of the property is Concordia University and the 

permission is attached.  

o Operations Manual: The manual of UAV (DJI Matrice 100) is attached.  

o Check List: It is attached.  

o Operational Flight Plan: It is explained in Section 3.  

C.3.  Site Survey/Plan of Operation 

The following figures shows the location of the operation site. The hatched area is the football field of 

Concordia University located at 7200 Sherbrooke St. W. , Montreal, QC, H4B 1R2 (45° 27' 28.54",-

73° 38' 10.36"). 



128 

 

 

Also, the following figures represent other information related to the operation: 

 

 

• Pre-flight Procedure 



129 

 

Before starting the operation, the following steps will be done:  

1. Preparing permissions and required documents.  

2. Verifying SFOC approval.  

3. Setting the plan and recheck the path.  

4. Checking the weather whether it is sunny  

5. Checking the area and ensure that the condition and environment is same as before.  

6. Checking the obstacles and clean the area if possible  

7. Verifying flight batteries are fully charged and stable  

8. Placeing UAV at the take-off point  

9. Turning on camera and controller  

10. Checking the Bluetooth connection between the remote control and the UAV  

11. Calibrating the UAV  

12. Announcing takeoff to the team  

• In-flight Procedure 

During the flight, flight path for the UAV and other obstacles should be monitored. In operation 

plan the flight path is a circle with 10 meter diameter at around 15 m above the ground. Although 

Matrice 100 has BTH function, the battery level should be monitored. The pilot will announce 

landing as soon as it starts. If there is not any obstacle or people, UAV will be landed.  

For take-off, we have following steps:  

1. Placing UAV on the flat ground,  

2. Powering on the battery,  

3. Launching the camera,  

4. Waiting until the Aircraft Status Indicator flashes green,  

5. Pushing the throttle stick up slowly to take off or use Auto Takeoff  

And for landing:  

1. Hovering over a level of surface,  

2. Gently pulling down on the throttle stick down for 3 seconds until the motors come to a 

stop.  

During the flight, four members of our team (guards) will stand around the site and protect other 

people not to enter the site. 

• Post-flight Procedure 

After finishing the flight, all equipment will be powered down, checked and brought back to the cases. 

Anything that was put at the place by the team such as notification, sign, etc. should be removed. 

C.4.  Security Plan 

The operation is done at the middle of a football field with the standard size (105 by 68 meters). 

Before starting the procedure, any obstacles such as nets, ball, etc. will be removed. After removal 

of people from operating area, only the team members will be allowed to enter the field. So, for 

commencing take-off and landing should be announced to the team in advance.  



130 

 

The permission to access the filed, which is the property of Concordia University, is attached to 

this form.  

Flight limits on height and distance can be set. So, the drone will not fly over limitations. 

Moreover, the permission from aerodrome authorities is not provided. The operation site is 8.9 km 

far from the nearest aerodrome authorities, Aéroport Pierre-Elliott-Trudeau, Dorval, QC (less than 

9 km).  

The operating temperature is between -10°C to 40°C. The UAV should not be used in adverse 

weather conditions including raining, snowing, fog, and wind speeds exceeding 10 m/s. In case of 

low battery and low GPS signal, it should be returned to home. 

C.5.  Emergency Plan 

In case of any accident, we should call Concordia University Security (514 848 2424- ext. 3700). 

Regarding their rules, they are responsible to call 911, provide necessary equipment (first aid kits, fire 

extinguisher, etc.) or emergency medicals and supports on site. Because of the easy accessibility to the 

site and availability of emergency equipment at campus, the applicant can deal with many disasters 

resulting from operation. 

C.6.  UAV Operation and Maintenance Procedure 

Operation is subject to the following two conditions: (1) the device may not cause harmful 

interference, and (2) this device must accept any interference received, including interference that 

may cause undesired operation. This device has warranty for one year which cover any damages 

related to the Matrice 100. Otherwise, the company will not get the responsibility of the damages. 

We provided 4 guards for wings to reduce the potential for damage. 

C.7.  Copy of Liability Insurance 

  



131 

 

C.8.  Summary of the Operation 

(1) Contact information  

• Applicant  

Name: Dr.Amin Hammad  

Address: Concordia Institute for Information Systems Engineering (CIISE), Concordia 

University  

1515 Ste-Catherine Street West, EV7.634, Montreal, Quebec, H3G 2W1  

Tel: (514) 848-2424 ext: 5800, Fax: (514) 848-3171  

E-mail: hammad@ciise.concordia.ca  

• Company  

Concordia University  

• Operation Manager  

Name: Neshat Bolourian  

Address: Department of Civil, Building and Environmental Engineering, Concordia 

University, 1455 de Maisonneuve Blvd. West, EV-9.215, Montreal, QC H3G 1M8  

Tel: (514) 848-2424 (ext.7074), Cell: (514) 946-6065  

e-mail: n_bolour@encs.concordia.ca  

(2) Operation  

• Purpose of Operation  

The main purpose of this operation is testing the drone in context of the research. This research is 

done under supervision of Dr. Hammad at Concordia University. So, Concordia University 

supports it and gives the permission to use on its property. Before running the main case study of 

the research, a simple test is required. So, this VLOS operation is needed. The flight may only take 

around 30 min.  

The applicant and the operation manager will be present at the site during the operation.  

• Date of Operation  

The best time for operation is the weekend morning (good light condition with less passengers). 

The planned date is August 26th, 2017. The historical average weather of this day is between 17°C 

and 25°C. And the alternative date is August 26th, 2017. The total required duration is estimated 3 

hours which includes 30 minutes for the flight operation.  

o Planned date and time : August 26th, 2017 , 8 am – 5 pm  

o Planned date and time : August 27th
 to September 9th

 2017 , 8 am – 5 pm  

• Operation Location 

The following figure shows the location of the operation site. The hatched area is the football field 

of Concordia University located at 7200 Sherbrooke St. W. , Montreal, QC, H4B 1R2 (45° 27' 

28.54",-73° 38' 10.36"). Also, the following figures represent other information related to the 

operation. 

 



132 

 

 

 

• Equipment 

➢ Matrice 100  

Matrice 100 is used in this operation which is controlled by a remote control.  

 
The diagonal wheelbase is equal to 650 mm. The specifications are: 

 



133 

 

 

 

     
Matrice 100 has “smart return to home”, “low battery return to home” and “fail safe return to 

home” ability. It will be activated automatically when the signal of the remote control is lost. Also, 

it can automatically return home if the current battery level becomes low.  
The method of takeoff and landing is vertical and the navigation equipment is A2 PRO PLUS GPS 

Module. The operating temperature is between -10°C to 40°C. It should not be used in adverse 

weather conditions including raining, snowing, fog, and wind speeds exceeding 10 m/s. 

➢ Remote Controller 

The remote controller is powered by a 2S rechargeable battery with a capacity of 6000mAh. The 

combined system operates at 2.4 GHz with maximum signal transmission range of 2 km. The 

screen of the controller (ipad) Pros the following information: (1) flight mode, (2) GPS signal 

strength, (3) IOC setting, (4) system status, (5) battery level indicator, (6) remote controller signal, 

(7) HD video link signal strength, (8) battery level, (9) general setting, (10) camera operation bar, 

(11) mini map, (12) flight telemetry (flight attitude and radar function including speed in both H/V 

directions, role and pitch, etc.), (13) Home point settings, (14) RTH, (15) Gimbal operation mode, 

(16) auto takeoff/landing, (17) livestream and (18) back.  



134 

 

 

• Personnel 

o Supervisor: 

Dr. Amin Hammad has been working as a professor in Concordia Institute for Information Systems 

Engineering (CIISE) since 2003. There are several research projects which are done under his 

supervision regarding sustainability and infrastructure management. One of his current projects is 

about infrastructure inspection using UAV. In his lab, the research group is working on simulating 

and developing a new path planning method and detecting the defects of structures. Meanwhile, 

they want to test Matrice 100 in the context of the research.  

o Operation Manager (Pilot)  

Ms. Neshat Bolourian is a PhD student at Concordia University. She has been doing research about 

“bridge inspection using UAV” under supervision of Dr. A. Hammad from September 2015. In this 

step of the project, she wants to do a simple test with the drone which will be used in the further 

implementation and real case study. 

  



135 

 

APPENDIX D.  LIST OF PUBLICATIONS 

Journal Papers 

• Bolourian, N., Nasrollahi, M., Bahreini, F., & Hammad, A. (2022). Point cloud-based concrete 

surface defect semantic segmentation using modified PointNet++. Journal of Computing in 

Civil Engineering (Submitted). 

• Bolourian, N., & Hammad, A. (2020). LiDAR-equipped UAV path planning considering 

potential locations of defects for bridge inspection. Automation in Construction, 117, 103250.  

Book Chapter 

• Bolourian, N., & Hammad, A. (2019). Path planning of LiDAR-equipped UAV for bridge 

inspection considering potential locations of defects. In Advances in Informatics and 

Computing in Civil and Construction Engineering (pp. 545-552). Springer, Cham. 

Conference Papers 

• Bolourian, N., Hammad, A., & Ghelmani, A. (2022). Point cloud-based concrete surface 

defect semantic segmentation using modified PointNet++. In 29th EG-ICE International 

Workshop on Intelligent Computing in Engineering, Denmark.  

• Nasrollahi, M., Bolourian, N., & Hammad, A. (2019). Concrete surface defect detection using 

deep neural network based on lidar scanning. In Proceedings of the CSCE Annual Conference, 

Laval, Greater Montreal, QC, Canada (pp. 12-15). 

• Nasrollahi, M., Bolourian, N., Zhu, Z., & Hammad, A. (2018). Designing LiDAR-equipped 

UAV platform for structural inspection. In ISARC. Proceedings of the International 

Symposium on Automation and Robotics in Construction (Vol. 35, pp. 1-8). IAARC 

Publications. 

 

• Bolourian, N., Soltani, M. M., Albahria, A. H., & Hammad, A. (2017). High level framework 

for bridge inspection using LiDAR-equipped UAV. In ISARC. Proceedings of the 

International Symposium on Automation and Robotics in Construction  (Vol. 34). IAARC 

Publications. 

 

 


