
DEEP REINFORCEMENT LEARNING FOR THE

COMPUTATION OFFLOADING IN MIMO-BASED EDGE

COMPUTING

Abdeladim Sadiki

A thesis

in

The Department

of

Concordia Institute of Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Quality Systems

Engineering

Concordia University

Montréal, Québec, Canada

July 2022

➞ Abdeladim Sadiki, 2022

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Abdeladim Sadiki

Entitled: Deep Reinforcement Learning for the Computation Of-

floading in MIMO-based Edge Computing

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Quality Systems Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Abdessamad Ben Hamza Chair

Dr. Abdessamad Ben Hamza Examiner

Dr. Zachary Patterson Examiner

Dr. Jamal Bentahar Supervisor

Dr. Rachida Dssouli Co-supervisor

Approved
Dr. Mohammad Mannan, Graduate Program Director

2022

Dr. Mourad Debbabi, Dean of Gina Cody School of

Engineering and Computer Science

Abstract

Deep Reinforcement Learning for the Computation Offloading in

MIMO-based Edge Computing

Abdeladim Sadiki

Multi-access Edge Computing (MEC) has recently emerged as a potential technology

to serve the needs of mobile devices (MDs) in 5G and 6G cellular networks. By offload-

ing tasks to high-performance servers installed at the edge of the wireless networks,

resource-limited MDs can cope with the proliferation of the recent computationally-

intensive applications. In this thesis, we study the computation offloading problem

in a massive multiple-input multiple-output (MIMO)-based MEC system where the

base stations are equipped with a large number of antennas. Our objective is to min-

imize the power consumption and offloading delay at the MDs under the stochastic

system environment. To this end, we introduce a new formulation of the problem as

a Markov Decision Process (MDP) and propose two Deep Reinforcement Learning

(DRL) algorithms to learn the optimal offloading policy without any prior knowledge

of the environment dynamics. First, a Deep Q-Network (DQN)-based algorithm to

solve the curse of the state space explosion is defined. Then, a more general Proximal

Policy Optimization (PPO)-based algorithm to solve the problem of discrete action

space is introduced. Simulation results show that our DRL-based solutions outper-

form the state-of-the-art algorithms. Moreover, our PPO algorithm exhibits stable

performance and efficient offloading results compared to the benchmarks DQN and

Double DQN (DDQN) strategies.

iii

Acknowledgments

First and foremost I would like to express my sincere gratitude to my supervisors

Dr. Jamal Bentahar and Dr. Rachida Dssouli for their invaluable support, patience

and feedback during my whole graduate program. I could not have undertaken this

journey without your endless encouragements and precious guidance. Thank you very

much.

I would like to extend my gratitude to my beloved parents and my family members

for their warm love, emotional and spiritual support during this experience. No

amount of words will be enough to tell how grateful I am to you. Thank you for

everything you have done for me.

I would also like to thank Concordia University for the funding and the facilities

they put under my disposal to achieve this work.

Last, but not least, I would like to thank all my friends for their help, the cherished

time we spent together and all the good memories we have shared.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Context . 1

1.2 Challenges and Motivations . 2

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Background and Literature Review 6

2.1 Reinforcement Learning . 6

2.1.1 Key Concepts . 6

2.1.2 Deep Reinforcement Learning 13

2.2 Computation Offloading in Multi-Access Edge Computing 15

2.2.1 Computation Offloading in MEC assisted with MIMO Technology 15

2.2.2 Reinforcement Learning for Computation Offloading in MEC . 16

2.3 Summary . 18

3 Computation Offloading Modeling and DRL-based Algorithms 19

3.1 System Model and Problem Formulation 19

3.1.1 Wireless Channel Model . 20

3.1.2 Computation Model . 22

3.1.3 System Cost . 23

3.2 Modeling the Problem using the RL Framework 24

3.2.1 State Space . 25

v

3.2.2 Action Space . 25

3.2.3 Reward Function . 25

3.3 DRL-based Computation Offloading-based Algorithms 26

3.3.1 Deep Q-Network (DQN)-based Solution 26

3.3.2 Proximal Policy Optimization (PPO)-based Algorithm 30

3.4 Summary . 34

4 Experiments and Simulation Results 36

4.1 Dataset . 36

4.2 Technology Stack Used for the Implementation 37

4.3 Simulation Results . 39

4.3.1 DQN-based Algorithm . 40

4.3.2 PPO-based Algorithm . 44

4.3.3 Performance Comparison . 47

4.4 Summary . 51

5 Conclusion and Future Work 54

vi

List of Figures

1.1 Multi-Access Edge Computing Architecture 3

2.1 Reinforcement Learning Framework 7

2.2 Examples of Model-Free and Model-Based Reinforcement Learning Al-

gorithms . 13

3.1 Problem description . 20

3.2 The structure of our Deep Q-Network (DQN) strategy 28

3.3 The structure of our Actor-Critic PPO strategy 32

4.1 Convergence time of the DQN strategy under different action levels . 41

4.2 Comparison between the effect of different action levels on the DQN

strategy convergence . 42

4.3 Convergence time of the DQN strategy under different values of α . . 43

4.4 Comparison between the performance of the DQN algorithm for dif-

ferent values of α . 44

4.5 Convergence time of the DQN strategy under different values of min-

batch sizes . 45

4.6 Comparison of the performance of the DQN algorithm under different

mini-batch sizes . 46

4.7 Convergence time of the PPO strategy 46

4.8 Comparison between the convergence performance of the PPO and

DQN strategies . 47

4.9 Convergence time of the PPO strategy under different values of α . . 48

4.10 Comparison of the performance of the PPO algorithm under different

values of α . 49

4.11 Convergence time of the PPO strategy under different values of S . . 50

4.12 Comparison of the performance of the PPO algorithm under different

values of S . 51

vii

4.13 Training performance of the PPO, DQN and DDQN strategies 52

4.14 Performance comparison under different task sizes 53

viii

List of Tables

3.1 Problem Formulation Notations . 21

3.2 Wireless channel model Notations . 22

3.3 Computation model Notations . 24

4.1 Comparison between PyTorch and TensorFlow 39

4.2 Simulation Parameters . 40

ix

Chapter 1

Introduction

This chapter introduces the general context of our research, which tackles the com-

putation offloading problem in Multi-Access Edge Computing (MEC) servers assisted

with the Multiple-Input Multiple-Output (MIMO) technology. Next, it discusses the

challenges of the problem and the motivations behind using Reinforcement Learning

(RL) to find an optimal solution. It also states the main contributions of this research.

Finally, it provides the organizational structure of the thesis and its outline.

1.1 Context

Over the last years, with the great progress in the development of smart Mobile De-

vices (MDs) and wireless communication systems, there has been an explosive growth

in the number of innovative applications that need a large amount of computing re-

sources, such as ultra high definition media streaming, Virtual-Reality/Augmented-

Reality (VR/AR) applications, real-time online 3D gaming, image processing, face

recognition [30], some of which may also have a delay-sensitive characteristic [54].

However, even with their high performing modern hardware, MDs are usually lim-

ited in terms of computation capabilities, battery duration, and storage capacities.

As a result, the Quality-of-Service (QoS) and Quality-of-Experience (QoE) of these

applications are significantly impacted when tasks are executed on MDs [17].

To overcome this limitation, a viable solution was to leverage the powerful re-

sources of specialized remote cloud servers to carry out the computation-intensive

tasks. This approach is known as Mobile Cloud Computing (MCC) [21]. Although

1

MCC could improve the battery life of MDs as well as the application experience

[25], its major drawback is the long distance between the MDs and the cloud server,

which results in a significant network congestion, a substantial latency of service and

performance degradation [11, 54].

To address the above issues, a recent promising approach, known as Multi-access

Edge Computing (MEC), has been proposed (Figure 1.1). The key idea underlying

MEC is to push cloud-like computing capabilities to the network edge (e.g., base

station) providing high performance services in close proximity to MDs [9, 21, 56].

Thereby, users can offload their computationally intensive and time-critical tasks to

the nearby MEC server (to which they are connected through wireless connections)

for processing rather than a centralized remote cloud server [10]. As a result, the

potential congestion can be decreased, the service delay can be reduced and the

energy usage of MDs can be significantly enhanced [36].

Currently, the 6th generation (6G) wireless communication network is getting

great attention from the research community. Along with MEC, which will be one

of the major elements of the 6G era [14], massive Multiple-Input Multiple-Output

(MIMO) is a key enabler technology to deliver the needs of the next generation net-

works [49]. Massive MIMO involves deploying a large number of antennas at the

base stations, which leads to a significant improvement in the system’s efficiency and

throughput [15]. As a result, using massive MIMO is significant as it substantially

assists computation offloading in MEC. In fact, by providing high spectral and en-

ergy efficiencies, massive MIMO will benefit the computation offloading with high

transmission rates and lower energy consumption [59].

1.2 Challenges and Motivations

Although MEC has enormous benefits, there remain several challenges. To begin

with, real-time applications are highly sensitive to the latency requirement, while

service latency is affected by various elements in offloading, such as transmission and

power allocation [10]. Moreover, the computation tasks are generated dynamically in

the MDs, so deciding what part of the given task should be offloaded to the edge is a

challenge in the offloading decision making process [11]. MDs are also limited in terms

2

of energy consumption that needs to be considered. Furthermore, the MEC environ-

ment keeps changing over time and enjoys a stochastic characteristic at three levels:

wireless channel, physical location of MDs and user mobility [10, 11]. As a result,

an efficient offloading framework under the stochastic MEC conditions has become a

major challenge. A number of offloading schemes have been proposed in the literature

[19, 25, 30]. The objective functions were designed as reducing the energy consump-

tion, satisfying the latency requirement or finding a trade-off between the energy and

latency [4]. The first studies were relying on classical optimization algorithms to solve

these objective functions. However, they do not consider the challenging dynamic as-

pect of the MEC environment as they focus solely on performance of a quasi-static

system [4]. Accordingly, emerging Reinforcement Learning (RL) has been recognized

as an effective approach to overcome this issue [4]. Some of the existing proposals use

Q-learning [4, 21] to develop dynamic computation offloading methods without any

prior knowledge of the MEC dynamics. Yet, due to the curse of state space explo-

sion [18], this approach is quickly outdated in favor of Deep Reinforcement Learning

(DRL), especially the Deep Q-Network (DQN) algorithm which is being used in the

majority of the most recent solutions [30, 62]. However, the common limitation in

these works is they are always considering discrete action space-based policies, which

makes them powerless to control continuous quantities such as the energy or the

latency. Recently, [59] considered studying MEC computation offloading under the

next generation massive MIMO technology.

1.3 Contributions

In this work, we study the computation offloading problem in a MEC server powered

by massive MIMO technology. We consider the stochastic wireless channel variations

and the dynamically generated tasks at each mobile user, and we propose DRL-

based strategies that can learn a dynamic offloading policy under the varying MEC

conditions. In addition to the standard DQN-based strategy, we propose a novel

offloading strategy based on the Proximal Policy Optimization (PPO) technique to

support continuous action space. Therefore, the main contributions of this work are

summarized as follows:

❼ We formalize the computation offloading in a MEC with MIMO network under

4

stochastic wireless conditions and task arrivals as a joint minimization problem

between power consumption and offloading delay at each MD.

❼ To solve the formulated problem, we design a Markov Decision Process (MDP)

where the state space, action space and reward function are carefully formalized.

❼ A DQN-based algorithm is implemented based on our formulated MDP to learn

a computation offloading policy that can minimize the system cost.

❼ A novel PPO-based solution is introduced to derive better offloading policy over

the continuous power allocation action space.

❼ A series of simulations are conducted to compare the performance of the pro-

posed DRL-strategies. The results show that our PPO-based algorithm gives

better performance over the DQN strategy that is also used as benchmark. We

also compare our strategies with the DDQN solution proposed in [17]. The

results reveal that our DRL-based strategies outperform the state-of-the art

schemes.

1.4 Thesis Outline

The remaining parts of the thesis are organized as follows. In Chapter 2, we provide

the background knowledge required to understand this research, we review the key

concepts of RL as well as the most relevant papers related to the computation offload-

ing in MEC with various RL applications. In Chapter 3, the mathematical model of

the computation offloading in MIMO-based MEC is proposed and our RL formula-

tion of the problem is given. then, the two DRL-based strategies (DQN and PPO)

are explained in details. In Chapter 4, we go through the implementation details of

our strategies. We present the dataset and the software technologies used, and we go

through the conducted experiments and the simulation results for each strategy, in

addition to a performance compassion with other methods. In Chapter 5, we give a

summary of our research and some directions for future work.

5

Chapter 2

Background and Literature Review

In this chapter, we review some background knowledge required for the rest of the

thesis. We start by presenting an overview of Reinforcement Learning and its core

concepts in Section 2.1. Then, Section 2.1.2 presents Deep Reinforcement Learning

since it is adopted to solve our computation offloading problem. Next, in Section

2.2, we provide a review of the relevant related work to the Computation Offloading

problem in Multi-Access Edge Computing. We also discuss some proposals that

have considered the problem in a Multiple-Input Multiple-Output Edge Computing

network. Finally, Section 2.3 summarizes the chapter.

2.1 Reinforcement Learning

2.1.1 Key Concepts

Reinforcement Learning (RL) is sub-field of machine learning where an agent learns

the optimal behaviour (through trial and error) in a given environment by executing

actions and observing the outcomes. In the RL framework (Fig. 2.1), the agent has to

make decisions by observing the current state of the environment. The environment

reacts to the agent’s actions by sending a reward (positive or negative) and the new

state to the agent. The agent then tries to maximize the cumulative rewards through a

sequential decision-making process. This formalism incorporates the non determinism

aspect as well as the sense of cause and effect which can be applied to a wide range

of Artificial Intelligence (AI) problems [28].

One of the most important aspects of RL is that the agent does not require a priori

6

❼ R : S ×A×S −→ R is a reward function that outputs a scalar value r(t) based

on the current state at time t, s(t), the action taken a(t) and the next state

s(t+ 1).

❼ γ ∈ [0, 1) is a discount factor which reflects how much the agent cares about

future rewards depending on how γ is close to 1.

From the definition, An MDP is used as a mathematical formulation to model the

decision making process by which, depending on the current state of the environment

and the chosen action, the agent receives a reward. By satisfying the Markov property,

MDPs make it easier to compute the transition distribution from one state to the next.

The Markov property states that a future state will be determined only by the current

state, with all past states being ignored or treated as unimportant [53].

Policy Definition

A policy can be defined as the strategy that the agent uses to select actions. It means

that, at each state, the agent decides what actions to take based on its policy. In

formal terminology, a policy is a function (usually denoted by π) that maps states to

actions. There are two main categories of policies:

❼ Deterministic Policies The policy is given by π : S −→ A, where for each

state s, π(s) = a is the action to take at that state.

❼ Stochastic Policies In this case, The policy is described by π : S ×A −→ [0, 1]

where for each state-action pair (s, a), π(s, a) denotes the probability of choosing

action a in state s.

In general, the agent chooses its actions based on a policy π which is a mapping

from the state space to a probability distribution over actions. Following a policy π,

the sequence of states, actions and rewards resulting from the interaction of the agent

with the environment constitutes a trajectory (or episode) of that policy (usually

denoted by τ).

Reward and Return

The reward function defined above in the MDP section is extremely important in RL,

it outputs a scalar value depending on the current state, the action chosen and the

8

next state. It is the mean by which the agent tries to recognize the good behavior.

The discounted cumulative reward resulting from the trajectory is called a return:

G(t) =
+∞
∑︂

k=0

γkr(t+ k + 1)

The end goal of RL algorithms is to find an optimal policy π∗ that maximizes the

expected return [27].

Value Functions

In RL, the notion of value functions is used to attribute a value to states (or state-

action pairs) in order to describe how good is a state for the agent to be in (or how

good is the execution of a given action in a given state). This value is defined in

terms of the expected return if the agent starts in that state (or state-action pair).

It is worth noting that the expected future rewards the agent will receive depend on

what actions it will perform. As a result, value functions are defined according to a

particular policy [2].

The value of a state s with respect to a policy π, denoted V π(s) (aka the state-

value function or the V-function), is defined as the expected return when starting

in s and following π forever after. Formally:

V π(s) = Eπ[G(t)|s(t) = s]

where Eπ denotes the expected value of the return following the policy π, and t

denotes any time step.

Similar to the state-value function, another function is introduced to measure the

state-action pair, i.e, how good to perform action a in state s following a policy π.

This function is called the action-value function (aka the Q-function), denoted

Qπ(s, a) and defined as the expected return when starting from state s, performing

action a and following the policy π thereafter. Formally:

Qπ(s) = Eπ[G(t)|s(t) = s, a(t) = a]

Optimal Value Functions

Among all possible value-functions following different policies, the optimal value

function, denoted V ∗(s) is defined as the function that gives the high value for all

9

states:

V ∗(s) = max
π

V π(s)

The optimal action-value function, denoted Q∗(s, a) can also be defined as

the maximum expected return, over all policies, the agent gets when starting from

state s and taking action a :

Q∗(s, a) = max
π

Qπ(s, a)

Note that V ∗(s) is the maximum expected total reward when starting from state

s, so V ∗(s) is the maximum of Q∗(s, a) over all possible actions. The relation between

V ∗(s) and Q∗(s, a) is defined formally as follows:

V ∗(s) = max
a

Q∗(s, a)

Optimal Policy

As Q∗(s, a) gives the expected return when starting from state s, taking action a and

following the optimal policy π∗ forever after, there is an important connection between

Q∗(s, a) and π∗. The optimal policy π∗(s) will select the action that maximizes the

expected return when starting from state s [3]. Therefore, if the optimal Q-function

Q∗(s, a) is know, the optimal policy π∗(s) can be derived directly via:

π∗(s) = argmax
a

Q∗(s, a)

Advantage Functions

Another important quantity in RL is called the Advantage function. It describes how,

on average, a chosen action is better than the other actions. Formally, the Advantage

function. denoted Aπ(s, a), with respect to a policy π is the quantity that describes

how much better to perform action a in state s, over choosing an action randomly, and

following the policy π forever after [3]. Mathematically, it is defined as the difference

between the Q-function and the V-function:

Aπ(s, a) = Qπ(s, a)− V π(s)

The Advantage function is significantly important in Policy gradient methods like

the Proximal Policy Optimization algorithm which we are going to use to solve our

Computation Offloading problem.

10

Bellman Equations

The Bellman equation is one of the key components of many Reinforcement Learning

algorithms, and it can be found all throughout the RL literature. Its importance

relies on describing the relation between the value function in a state and the value

function of the next state. The Bellman equation states that the value function can

be decomposed into two parts, the immediate reward plus the discounted value of the

next state. Mathematically:

V π(s) = E[r(t+ 1) + γV π(s(t+ 1))|s(t) = s]

Similarly for the Q-function:

Qπ(s, a) = E[r(t+ 1) + γEa′Q
π(s(t+ 1), a′)|s(t) = s, a(t) = a]

The Bellman equation can be derived also for optimal value functions. Rather than

computing the expectation following a policy, we take the action that leads to the

maximum value [3]:

V ∗(s) = max
a

E[r(t+ 1) + γV ∗(s(t+ 1))|s(t) = s]

Q∗(s, a) = E[r(t+ 1) + γmax
a′

Q∗(s(t+ 1), a′)|s(t) = s, a(t) = a]

The particularity of the Bellman equation is that it simplifies the computation of the

value function. It basically transforms the computation of the value function into a

Dynamic Programming problem where the optimal solution can be found by breaking

the computation problem down into simpler, recursive sub-problems.

Off-Policy vs On-Policy Learning

RL algorithms can also be categorized depending on the learning policy the agent is

using. In off-policy methods, the behaviour policy (the agent uses to interact with

the environment) may not necessarily be the same as the target policy (the policy

that algorithm needs to find). For example, the agent could behave randomly on the

environment (the behaviour policy) and off-policy methods can still find the optimal

policy (the target policy). The advantage of this approach is to allow the agent to use

experience replay from older samples collected using different previous policies. This

11

improves exploration and sample efficiency because it does not require to recollect

new experience whenever the policy has been updated. An example of this approach

is the Q-learning algorithm [27] [51].

On the other hand, on-policy based methods attempt to improve the same policy

the agent is using to interact with its environment. This means that the behaviour

policy is the same as the target policy. In this case, the agent collects samples using its

current policy. Then, the same policy will be updated using the collected experience.

The new updated policy will be used in its turn to collect new data and the past

experience will be discarded. Therefore, the same policy will get improved gradually

until convergence towards an optimal policy [51]. The Proximal Policy Optimization

algorithm is an example of on-policy based methods.

Model-Based vs Model-Free RL

In the context of RL, a model of the environment is represented as a function which

predicts the states transitions and rewards [3]. In terms of MDP, the model of the

environment is the combination of the transition probability matrix T and the reward

function R.

A model of the environment can be used for planning, allowing the agent to

think ahead considering the various possible future choices and explicitly decide which

option to go with. From there, the agent can derive an optimal policy [3]. Methods

that use this kind of approach are calledModel-basedmethods. A recent well-known

example of model-based algorithms is MuZero [46] which is built upon the famous

AlphaZero [50] algorithm. The main issue with this approach is that the model of

the environment is usually unknown. In this case, the agent has to learn the model

first by approximating the states transitions and rewards function while it interacts

with the environment. However, as the learned model might just be approximation

of the ”real” model, the learned policy might be biased towards the learned model,

and behaves terribly on the real model. Therefore, the optimal policy might never be

found, which makes model-based learning fundamentally challenging to accomplish

[3].

On the other hand, Model-free methods don’t use a model to infer the policy. In

fact, their objective is to approximate the policy without estimating the environment

dynamics (states transitions and rewards function). In this case, the agent, using only

12

RL Algorithms

Model-Free Model-Based

Policy-Based

REINFORCE

TRPO

PPO

DQN

DDQN

Value-Based Learn the Model

I2A

World Model

AlphaGo

AlphaZero

MuZero

Given the Model

Figure 2.2: Examples of Model-Free and Model-Based Reinforcement Learning Algo-

rithms

the experience gained through its interaction with the environment, either estimates

the V-functions and then derive the policy or estimates directly the policy. The main

advantage of this approach is that a model of the environment is not required to

learn an optimal policy, as a result, it can be applied to different environments and

can readily adapt to new and unforeseen situations [6]. This is the reason why the

majority of modern RL algorithms are model-free and have been thoroughly developed

and validated in comparison to the model-based methods [3][6].

2.1.2 Deep Reinforcement Learning

Deep Learning (DL) is a machine learning technique concerned with algorithms

trying to mimic how the human brain learns using a type of structure called Artificial

Deep Neural Networks (DNN). The recent advent of DL pushes the machine

learning field to achieve results that were not possible before. For many tasks, such

13

as computer vision, speech recognition, language translation, deep learning models

outperforms all the conventional previous machine learning solutions [34] and even

exceeds human performance. The fascinating property of DNN is their ability to learn

and recognize patterns of features inside high-dimensional input of data (eg. images)

using complex operations through a network with multiple layers of abstraction.

DL has been applied to the field of RL as well, which gave birth to the field of

Deep Reinforcement Learning (DRL). The combination of RL algorithms with

DL techniques creates astounding breakthroughs in the AI world like the famous

recent DeepMinds’s MuZero algorithm that can play Chess, Go, Shogi and Atari

games with superhuman performance [46].

DL techniques allow RL to scale to previously intractable decision-making sit-

uations where the state space and action space are high-dimensional (for example

images, sounds or raw data from a robot’s sensor) [12]. In this setting, RL relies on

DL to represent the policy or other value functions as DNN in order to find the opti-

mal policy. The advantage of using neural networks to estimate the learned functions

relies on the fact that DNN are well suited to deal with high-dimensional data, which

is the case of most real-world problems, and they can learn gradually as the data

comes in from the agent’s experience within the environments.

DRL has already been used to solve a variety of problems, including robotics,

where the robot can learn an optimal policy based on camera inputs [35]. Self driving

cars, where the agent can learn the various aspects of driving a car such as object

and lane detection, trajectory optimization, steering, acceleration, breaking and so

many more [33]. Natural language processing, where the agent can learn how to

answer questions [20] and how to summarize a text [42]. Healthcare, where the RL

agent can learn policies to a wide range of applications such as automated medical

diagnosis, dynamic treatment regimes for chronic diseases, drug discovery, etc [58].

Engineering tasks such as energy optimization [39], industrial process control [40] and

Multi-Access Edge Computing which has been studied in this work.

14

2.2 Computation Offloading in Multi-Access Edge

Computing

MEC is emerging as a potential technology to cope with the limitations of the MDs

with regard to the rapid progress of the next generation of mobile applications [23].

Offloading execution to the edge improves the user experience by enhancing the de-

vice performance and lowering the energy consumption. Computation offloading tech-

niques for MEC have lately been extensively studied. In [55], the authors proposed

a partial offloading scheme as a joint minimization problem between the energy con-

sumption of the smart mobile device and the latency of application execution using

the dynamic voltage scaling technology. A novel framework was developed in [37]

for offloading computation tasks from a MD to the edge using the Radio Network

Information Service (RNIS) application programming interface (API) to drive the

user offloading decision. Another approach for the computation offloading problem

was given in [19]. In this work, the authors demonstrated that obtaining an optimal

solution for the computation offloading problem is NP-hard, so they used a game

theoretic approach to design an efficient offloading algorithm that can achieve the

Nash equilibrium. Similarly, to reduce the delay and save the battery life of the

user’s devices, the authors in [16] proposed an efficient offloading algorithm by trans-

forming the formulated NP-hard mixed integer non-linear problem into two solvable

sub-problems, namely task placement and resource allocation. In [32], the authors

studied the offloading problem over the 5th generation mobile network (5G). They

created an intelligent offloading model based on a metric that can satisfy the latency

requirements of user applications and achieve maximum energy saving.

2.2.1 Computation Offloading in MEC assisted with MIMO

Technology

Most of the previous mentioned works focus on the basic case in which both the users

and the base station are equipped with a single antenna. This fails to leverage the

benefits brought by the massive MIMO technology to MEC in terms of offloading

performance [60]. For this reason, researchers begin to investigate MEC assisted with

the MIMO technology. In [59], the authors studied the application of massive MIMO

on MEC. They showed that MIMO boosts the performance of offloading in MEC

15

by providing huge gains in spectral and energy efficiencies. Their results revealed

that using more antennas reduce the energy consumption and the system delay. The

work in [29] investigated the MEC computation offloading problem in massive MIMO

enabled heterogeneous networks (HetNets). The formulated problem was defined

as minimizing the energy consumption under a maximum latency requirement. An

iterative low-complexity algorithm based on alternating optimization was proposed

to solve this non-convex problem. Furthermore, the authors in [24] addressed the

computation offloading problem in MEC with multi-user MIMO communication as a

joint minimization of the energy consumption and time delay of MDs. The formulated

mixed-integer non-linear programming problem is solved by developing offloading

decisions based on semi-definite relaxation and rounding methods. Similar to [59],

the simulation results revealed that the use of MIMO communication in MEC reduces

sufficiently the energy consumption and time delay during computation offloading.

2.2.2 Reinforcement Learning for Computation Offloading in

MEC

Nevertheless, the MEC environment dynamics is usually complex and very challenging

due to several reasons such as the stochastic network channel conditions, tasks arrival

distribution, and power constraints of the MDs [18]. This makes the aforementioned

classical optimization techniques very limited as they are mainly modeled based on

a network snapshot and they must be reformulated when the dynamics changes over

time. Besides, most of them need a high number of iterations and may provide a local

rather than global optimum [10]. In fact, they mainly use heuristics to yield feasible

solutions, which makes them subject to two major limitations [43] [44] [45]:

1. The divergence likelihood of the heuristic algorithms increases with the prob-

lem’s input size.

2. The heuristic-based solutions do not allow the model to account for the dynamic

changes of the environment and learn from previous experiences.

Fortunately, the emerging artificial intelligence technology has shown potential

efficacy to tackle those limitations. Especially, RL is being identified as a suitable

framework to deal with the stochastic MEC network environment. In [21], the au-

thors used the Q-learning algorithm to jointly optimize the offloading decision with

16

resource allocation while minimizing energy consumption on the MDs under the la-

tency constraint. The same approach was adopted in [4]. The authors used the

Q-learning algorithm to find the optimal policy for resource allocation and compu-

tation offloading in MEC. Their results show that the proposed solution leads to a

significant decrease in energy consumption of the user’s devices compared to baseline

methods. However, classical RL algorithms cannot scale when the state space and ac-

tion space become huge [10], which is mostly the case in a MEC environment. DRL is

heavily used in recent proposals to address this issue. In [18], a DQN-based algorithm

was introduced to obtain the optimal computation offloading policy. The objective

was to minimize the long-term cost based on the channel characteristics between the

mobile user and the base station, the energy queue and the task queue states. The

same problem is solved in [17] using the Double DQN (DDQN) algorithm, which gave

significant improvement in computation offloading performance. The authors in [30]

used the DQN algorithm to design a joint task offloading and bandwidth allocation

decision in order to minimize the overall offloading cost in terms of energy, compu-

tation and delay. The authors in [62] applied DRL to intelligent Internet of Things

(IoT) inside a MEC with massive MIMO network. A DQN algorithm was proposed to

learn offloading decisions in order to improve the system performance and reduce the

latency and energy consumption. However, the cost function and the MDP formula-

tion are different compared to our work. In fact, to minimize their cost function, the

authors optimized the bandwidth allocation based on some deterministic predefined

criteria before optimizing the offloading strategy. In addition, they didn’t consider

the varying wireless channel conditions in their MDP formulation. Moreover their

DQN neural network architecture has not been fully specified. To overcome these

limitations, in our work we reformulate the problem without predefined criteria while

taking into consideration the stochastic wireless channel under the MIMO technology.

To use this work as a benchmark, we followed the authors’ approach to apply the DQN

algorithm with a clear presentation of our neural network architecture. Furthermore,

we introduced a new PPO algorithm for the computation offloading in order to solve

the limitation of the discrete action space in the DQN algorithm. The simulation

results (see Chapter 4) show that the PPO algorithm has better performance.

17

2.3 Summary

In this chapter, we provided the foundation background and key concepts of the field

of RL needed for the rest of this thesis. We also presented a review of the most

relevant studies related to our work, including the computation offloading in MEC

and in MEC assisted with the MIMO technology. Different RL and DRL solutions

that have been proposed for computation offloading are also reviewed. In the next

chapter, we will present the theoretical approach adopted to tackle our computation

offloading problem, the system model, the application of the RL framework and our

DRL-based algorithms used to find an optimal solution.

18

Chapter 3

Computation Offloading Modeling

and DRL-based Algorithms

This chapter starts by presenting the system model and the mathematical formulation

of the MEC computation offloading problem in a MIMO based architecture. Next,

the problem is formulated in the light of the RL framework where a Markov Decision

Process (MDP) of the problem is provided. Then, two DRL-based strategies are

proposed. The first is based on the Deep Q-Network (DQN) algorithm and the other is

based on the state-of-the-art Proximal Policy Optimization (PPO) algorithm. Finally,

the chapter is concluded with a brief summary and a comparison of our proposed

strategies.

3.1 System Model and Problem Formulation

In a MEC architecture, multiple users are connected to a base station equipped

with a high performance server (Fig. 3.1). The servers are deployed at the edge

of the network to provide cloud-like services in close proximity of end-users. Thus,

the users offload their computation-intensive tasks to the close edge server they are

connected to, instead of remote cloud infrastructure. Thereby, enabling a wide range

of applications and services to work in real or near-real time performance.

In our problem formulation, we consider a set of K mobile single-antenna users

U = {u1, . . . , uK} communicate with a massive MIMO based MEC server through a

Base Station (BS) equipped with N antennas (N >> K). For simplicity but without

19

Symbol Meaning

BS Base station

N Number of antennas at the BS

n Antenna n at the base station , 1 ≤ n ≤ N

U Set of all users connected to the BS

K Number of users

uk User k in the network, 1 ≤ k ≤ K

t0 Length of a time slot

T System time {0, t0, 2t0, . . . }

t Time step t ∈ T

Table 3.1: Problem Formulation Notations

H(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

h11(t) h12(t) . . . h1K(t)

h21(t) h22(t) . . . h2K(t)
...

...
...

...

hN1(t) hN2(t) . . . hNK(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

hnk(t) ∈ C represents the channel response between the antenna of user k and the

nth BS antenna, and b(t) = [b1(t), b2(t), ..., bN(t)]
⊤ ∈ C

N×1 is the Additive White

Gaussian Noise (AWGN) which follows a complex normal distribution with zero mean

and variance σ2 : b(t) ∼ CN (0, σ2IN) (IN is the N ×N identity matrix). We assume

perfect CSI, and the Zero-Forcing (ZF) technique is adopted at the BS to suppress

the inter-user interference. Hence, the ZF-detection matrix at the BS is given by the

pseudo-inverse of its CSI Matrix H [60]:

V (t) = H(t)H(H(t)H(t)H)−1 (1)

Let hk(t) = [h1k(t), h2k(t), . . . , hNK(t)]
⊤ ∈ C

N×1 be the CSI between the user uk

and the BS and vk the k-th row of V , the normalized effective channel gain for user

uk can be defined as:

Γk(t) =
|vk(t)hk(t)|

2

σ2|vk(t)|2
(2)

21

Symbol Meaning

C Set of complex numbers

xk Transmitted complex signal of user k

x Transmitted signal vector from all the users to the BS

y Received signal in the uplink at the BS

H Channel state information matrix between the users and the BS

hnk Channel response between user k and the nth BS antenna

b Additive White Gaussian Noise (AWGN) vector

σ2 Variance of the AWGN

CN Complex normal distribution

IN Identity matrix with N rows and N columns

HH Hermitian matrix of H

()T Matrix transpose

V ZF-detection matrix

Γk Normalized effective channel gain for user uk

C Achievable channel capacity at user uk

W Channel bandwidth

ptr Transmission power

P tr Maximum transmission

Table 3.2: Wireless channel model Notations

Accordingly, the achievable channel capacity at user uk is given by:

Ck(t) = W.log2(1 + ptrk (t)Γk(t)) (3)

where W is the channel bandwidth in Hertz and ptrk (t) ∈ [0, P tr
k] is the transmit power

of user uk with P k
tr being its maximum transmission power constraint.

3.1.2 Computation Model

At each time t ∈ T , each user uk ∈ U has a computationally intensive task of size

mk(t) bits to be executed. We assume that the tasks are coming from an application

that can be partitioned, and therefore the user can offload part of it to the MEC

server to assist with the computation. Some examples of such applications include

22

image compression applications and virus detection software [4]. The MEC servers

are generally equipped with higher computational capability than the MDs and they

can serve multiple users at the same time. Motivated by the work in [55], we assume

that the MD of each user is equipped with the dynamic voltage and frequency scaling

(DVFS) technology, where the CPU frequency can be adjusted depending on the

computation needs. Table 3.3 contains all the variables used in our computation

model.

Let fk(t) ∈ [0, Fk] be the CPU frequency allocated to execute a task at time t

with Fk being the maximum frequency constraint of the MD. We denote by mlo
k (t)

the amount of data bits that the user can execute locally, hence:

mlo
k (t) =

t0fk(t)

ωk

(4)

where ωk (cycles/bit) is the number of cycles required to execute one bit of data.

We model the power consumption of the CPU executing this amount of data as

in [55] and [61] by:

plok (t) = ηfk(t)
3 (5)

where η is a coefficient that depends on the hardware architecture of the MD.

Let mtr
k (t) be the amount of data bits of the offloaded part to the edge server.

Assuming that the latency resulting from the MEC computation and the downlink

transmission is negligible, the time delay to get the result from the edge server is

given by:

dk(t) =
mtr

k (t)

Ck(t)
(6)

3.1.3 System Cost

To take into consideration both the energy consumption and the offloading latency,

we modeled the problem cost as a weighed sum of the total power consumption and

the time delay resulting from the offloading operation. As a result, we define the

system cost as:

Φk(t) = α(plok (t) + ptrk (t)) + (1− α)dk(t) (7)

where α is a positive number between 0 and 1 to determine the weight of the trade-

off between the energy and the delay. Our objective is to minimize the long-term

23

Symbol Meaning

m Size of a task

f Frequency of the CPU

F Maximum frequency of the CPU

mlo Size of the part of the task that is computed locally

ω Number of CPU cycles required to execute one bit of data

plo Local power consumption

η CPU hardware architecture coefficient

mtr Size of the part offloaded to the edge server

d Time delay to get the computation results

Table 3.3: Computation model Notations

cost by dynamically allocating the CPU frequency fk(t) for local computation and

the transmit power ptrk (t) for the offloading computation. Considering the maximum

frequency and power constraints, the corresponding problem can be formulated as:

argmin
fk(t),p

k
tr
(t)

Φk(t), ∀t ∈ T

s.t

fk(t) ∈ [0, Fk] ∀t ∈ T (8)

ptrk (t) ∈ [0, P tr
k] ∀t ∈ T (9)

3.2 Modeling the Problem using the RL Frame-

work

In order to apply DRL techniques, we formulate our problem as a MDP, taking

into consideration the stochastic wireless channel conditions and the variation of the

tasks to be executed. In our formulation, we consider the problem from the user’s

perspective, where the agent (the user’s mobile device) will try to find the optimum

policy to minimize its cost function. The fundamental blocks of our MDP are defined

as follows:

24

3.2.1 State Space

The state space is a representation of the environment the agent tries to interact

with. In our problem, the agent needs to observe, at each time slot t, the actual task

mk(t) that needs to be executed, and the wireless channel state information Hk(t)

in order to optimally decide the offloading part to the MEC server. As a result,

each user uk ∈ U will have its own internal representation of the environment. We

define sk(t) the representation of the environment from the uk user’s perspective at

each timestamp t ∈ T by the vector: sk(t) = (mk(t), h1k(t), h2k(t), ..., hNk(t)) where

hik(t), i ∈ {1, 2, ..., N} the CSI between the user uk and the i-th BS antenna.

3.2.2 Action Space

In our MEC system model, the agent needs to find the optimal offloading strategy

by allocating the optimal local execution power and the optimal offloading power for

remote MEC execution. Therefore, for a user uk, the action at time t is defined by the

tuple ak(t) = (fk(t), p
tr
k (t)) where fk(t) ∈ [0, Fk] is the allocated CPU frequency for

the local execution and ptrk (t) ∈ [0, P tr
k] is the transmission power for the offloading

execution. However, this action space is defined on the continuous domain and some

RL algorithms such as DQN do not support continuous action space. As a workaround

to this limitation, we adopt the same approach as in [5] and we devise the above

continuous domains into l ∈ {1, 2, . . . } levels. Thus, we define the set of available

CPU frequencies as F = {0, Fk

l
, 2Fk

l
, ..., Fk} and the set of available transmission

powers as P = {0,
P tr

k

l
,
2P tr

k

l
, . . . , P tr

k }. Accordingly, we define the l-level action space

in the discrete case as the Cartesian product of the two sets F and P as follows:

{(fk(t), p
tr
k (t))|fk(t) ∈ F and ptrk (t) ∈ P ; ∀t ∈ T }

3.2.3 Reward Function

Based on the state representation and the chosen action, the agent receives a reward

that guides the learning process. The agent goal is to choose the action that will give

the highest reward. The reward function is generally associated with the objective

function. In our formulation, the goal is to achieve the minimum overall cost of user

uk. Accordingly, the value of the reward must be negatively correlated to the value

of the cost. We define the immediate reward of a user uk ∈ U at time slot t ∈ T as

25

rk(t) = −Φk(t), where Φk(t) is the total cost defined in Equation 7.

3.3 DRL-based Computation Offloading-based Al-

gorithms

3.3.1 Deep Q-Network (DQN)-based Solution

Q-learning is one of most popular RL algorithms [27]. It is based on the action-value

function (or the Q-function) Qπ(s, a) which measures the expected return from state

s and taking action a following the policy π. The optimal action-action value function

Q∗(s, a) which gives the maximum expected return over all policies can be obtained

using the following Bellman optimally equation:

Q∗(s(t), a(t)) = E[r(t) + γ max
a(t+1)

Q∗(s(t + 1), a(t + 1))] (10)

The basic idea behind Q-learning is to use Equation 10 as a simple iterative

update:

Q(s(t), a(t))←− Q(s(t), a(t)) + β[r(t)+

γ max
a(t+1)

Q(s(t+ 1), a(t+ 1))−Q(s(t), a(t))] (11)

where β ∈ (0, 1] is the learning rate. Storing all Q-values in a table structure for each

state-action pair, and using Equation 11 plus an exploration and exploitation trade-

off to ensure all the action space is explored, the Q-learning algorithm will converge

eventually to the optimal Q-function [31].

It is worth noting that the state and action spaces grow with the complexity of the

problem. Thus, using a table in the memory to store each state-action pair is very

expensive in terms of computation, especially when trying to update the Q-values

for each cell on the table. As a result, applying standard Q-learning in this case is

time and memory consuming, and may even diverge [57]. This is known as the curse

of high dimensionality problem [18]. In fact, the state space of our problem grows

with the number of antennas at the base station. The action space increases as well

depending on the l-level action we need (see the MDP design, Section 3.2).

26

To overcome this limitation, function approximation can be used to learn the Q-

values. Recent advances in Deep Learning (DL) have revolutionized the field of RL,

leading to the creation of the excited field of DRL. The usage of Deep Neural Network

(DNN) as function approximator gives the agent the ability to learn from complex

environments [26]. Deep Q Network (DQN) [38] is one of the effective algorithms

that combines DL with RL. As shown in Figure 3.2, our DQN strategy uses DNN

with weights θ to approximate the Q function. For every iteration, these weights

get updated using gradient decent to converge towards the optimal Q values. Algo-

rithm 1 provides a pseudo-code of our cost minimization strategy based on the DQN

algorithm.

In Algorithm 1, we start by building a DNN used as a function approximator for

the action-value function Q. The input of the model is a state vector, and the output

is a layer containing as many neurons as the number of elements of our action space,

which depends on the l-level action parameter l given as input (line 2). We then

initialize a queue ∆ as a reply buffer of size C given as input. It will be used to store

the past experience of our agent, namely the state, action, reward and the next state

observed by executing that action (line 3).

Inside the learning loop (line 4), which will be running for a maximum of I iter-

ations (episodes) given as input, we start by resetting our environment to a random

state s (line 5). Each episode is limited by L learning steps. In every step, we start

by deciding on the action to take following the ϵ-greedy policy, which is an efficient

method to achieve a trade-off between exploration and exploitation. Here ϵ is a num-

ber between zero and one. at the beginning, ϵ will be close to ϵ0, which we set to

one (ϵ0 = 1) to allow more exploration. With every iteration, ϵ will decay accord-

ing to a decay factor ϵd = 5000 until it reaches ϵf = 0.001 as the agent should use

more the knowledge learned through its experience with the environment. We use

the exponential decay formula to decrease ϵ in every iteration, which is defined as

ExpD(ϵ0, ϵf , ϵd) = ϵf + (ϵ0 − ϵf) ∗ exp(−
i+L∗(iteration−1)

ϵd
) (line 8). Then, we generate

a random number ξ between zero and one. If ξ ≤ ϵ, the algorithm picks a random

action a from the action space (lines 10), and in this case, we say that the agent is

exploring. Otherwise, the algorithm picks the action with the maximum Q-value from

the neural network (lines 12), and in this case we say that the agent is exploiting, i.e.

using the results of the training process so far.

27

Algorithm 1 DQN strategy for cost minimization

1: Input: reply buffer capacity C, discount factor γ, maximum number of iterations

I, episode length L, mini-batch size B, l-level action l

2: Create a Deep Neural Network and initialize its weights θ with random values

Q(θ)

3: Initialize a queue ‘∆‘ as a reply buffer with capacity C;

4: for iteration← 1 ... I do

5: s ← Get the state vector as defined in our MDP

6: for i← 1 ... L do

7: # Following ϵ-greedy policy

8: ϵ ← ExpD(ϵ0, ϵf , ϵd)

9: if Random number ξ ≤ ϵ then

10: a← Select randomly a frequency and a power transmission tuple from

the discrete action space as defined in the MDP
11: else

12: a← argmaxQ(s; θ)

Get a predicted action by forwarding the state s through the neural

network
13: end if

14: Execute the action a on the environment

15: Get the reward r and the next state s′

16: Push (s, a, r, s′) into ∆

17: if length(∆) ≥ B then

18: ∆′ ← Sample a random mini-batch of size B from ∆

19: Y ← Get the Q-values by forwarding the states s ∈ ∆′

through the neural network
20: X ← Get the next Q-values by forwarding next

states s′ ∈ ∆′ through the neural network
21: R ← All the rewards r from our mini-batch ∆′

22: Ŷ ← R + γ X # Element wise operations

23: loss ← MSE(Y, Ŷ)

24: Backpropagate the loss using gradient decent with the Adam optimizer

25: Dequeue the old element from ∆

26: s ← s′

27: end if

28: end for

29: end for 29

Executing the selected action on the environment, the agent gets the reward r and

the next state s′. This transition of (state, action, reward, next state) will be pushed

to the replay buffer ∆ (lines 14-16). If Q has enough values, we sample a random

mini-batch of size B from it, in the hope of making our data more independent and

identically distributed (i.i.d) to provide better convergence performance when training

the neural network (line 18). The replay buffer ∆ will play the role of a data-set as

if we are in a supervised learning context, we calculate the predicted Q-values using

the states s stored in ∆ (line 19), then we forward the next states s′ through the

network to get the Q-values of the next states (line 20). We can then calculate the

expected Q-values using the Bellman equation (lines 22). In our implementation, we

used the mean squared error to calculate the loss between the expected Q-values and

the predicted Q-values as the following: MSE(Y, Ŷ) = 1
|Y |

∑︁|Y |
i=1(Yi−Ŷ i) (line 23) and

we used the Adam optimizer for the gradient decent algorithm to backpropagate this

loss through the neural network (lines 24). At the end of the iteration, we remove the

old element from the replay buffer ∆ to free the space to the next transition, keeping

the agent on softly updating and learning as new data are being pushed to the buffer

(line 25), and we assign the next state value to the actual state variable (line 26).

3.3.2 Proximal Policy Optimization (PPO)-based Algorithm

DQN has solved the problem of learning the Q-values for complex environments with

high dimensional state space using Deep Neural Networks. However, it can only han-

dle discrete and low-dimensional action spaces. Recently, Schulman et al. proposed

the Proximal Policy Optimization (PPO) algorithm [48], a cutting-edge DRL method

which can be applied to discrete as well as continuous state and action spaces. More-

over, the authors argue that it outperforms the other algorithms on their benchmark

while providing a good balance between ease of tuning, efficient sampling and simple

implementation.

PPO is based on the Actor-Critic approach. As shown in Figure 3.3, the Actor-

Critic framework uses two separate neural networks: the Actor and the Critic. The

former represents directly the policy π of the agent which controls the offloading

scheme and decides on the amount of data that should be computed locally and the

transmission power of the offloaded part to the MEC server. It receives the state

containing the current task size and the wireless channel vector as input, and outputs

30

a probability distribution over the actions. The agent chooses its next action by

sampling from this distribution. The latter is used to approximate the value function

V π(s) = Eπ{
∑︁∞

k=0 γ
kr(t + k + 1)|s(t) = s}, which estimates how rewarding a given

state can be for the agent. It receives the same state of the Actor as input and outputs

the estimated value of V π(s). In other words, Actor-Critic is a combination of policy

optimization and value optimization, the Actor decides which action to take and the

Critic evaluates this action and tells the Actor how it should adjust.

During the learning process, PPO stores the interaction of the agent with the

environment into a memory. This memory will be used to update the Actor-Critic

networks. Unlike DQN’s experience replay buffer, the PPO algorithm uses all the

memory and not just a sample mini-batch to update the neural networks. Moreover,

after each update, the entire memory is cleared and not just the oldest element. The

updated networks are then used to collect new experience and refill the memory.

Policy optimization is based on the policy gradient methods, which use a stochastic

gradient ascent algorithm to maximize an objective function. The most common

objective function has the following form [48]:

LPG = Et[log πθ(a(t)|s(t))Â(t)] (12)

and the gradient estimator is given by :

g = Et[∇θ log πθ(a(t)|s(t))Â(t)] (13)

where πθ is the policy neural network with parameters denoted by θ and Â(t) is an

estimator of the advantage function defined by:

A(t) = Q(s(t), a(t))− V (s(t)) (14)

However, this approach can be unstable due to the large updates when performing

multiple optimization steps on the policy [48]. To solve this issue, PPO provides

another objective function in order to limit the new policies to get far from the old

policies. Let ρt(θ) denote the probability ratio between the new policy πθ and the old

policy πθold :

ρt(θ) =
πθ(a(t)|s(t))

πθold(a(t)|s(t))
(15)

The new objective function is given by:

L = Et[min(ρt(θ)Â(t), clip(ρt(θ), 1− ϵc, 1 + ϵc)Â(t))] (16)

31

where ϵc is a hyperparameter between zero and one, and clip is a function that clips

the probability ratio to keep it inside the interval [1− ϵc, 1+ ϵc]. The intuition behind

this objective function is to keep the old and new policies close to each other by

taking the minimum between the unclipped term and the clipped term inside some

small interval controlled by ϵc. As far as the advantage function, there are several

function estimators [47], PPO uses a truncated version of the Generalized Advantage

Estimator (GAE):

Â(t) = δ(t) + (γλ)δ(t+ 1) + ...+ (γλ)T−t+1δ(T − 1), (17)

where δ(t) = r(t) + γV (s(t+ 1))− V (s(t)) (18)

with T is a given length and λ is a hyperparameter.

Our PPO-based strategy for cost minimization is illustrated in Algorithm 2. We

start by creating two randomly initialized DNNs: one for the Actor (we denote its

parameters by θ) and the other for the Critic (we denote its parameters by ϕ) (lines

2-3). The input of the Actor and the Critic networks is the state vector as defined in

our MDP (Section 3.2). The output of the Actor is a layer containing two neurons

according to our action tuple. On the other hand, the output of the Critic is a layer

that contains one neuron representing the estimation of the value function of the state

given as input. In line 4 we create a memory list to store the experience of the agent.

This will be used later to fit the Actor and Critic networks. We run the algorithm

for E epochs given as input (line 5). Inside this learning loop, we start by gathering

the experience by running the policy πθ in the environment for T time-steps (line 6).

First, the agent observes the actual state of the environment, which consists of the

task that needs to be executed and the channel state information between the user and

the edge server (line 7). Then, an action is sampled from the probability distribution

based on the predictions of the policy network πθ as in line 8. It consists of the CPU

frequency allocated for the task and the transmission power of the offloaded part.

This action is used then to compute the size of the task that can be executed locally

based on the CPU frequency allocated, and the delay generated from the offloading

operation according to the transmission energy (lines 9-10). In line 11, the system

cost Φ(t) is calculated using Equation (7) and the aforementioned computed values,

and the negative of this value is assigned to the reward as in line 12. We finish the

iteration by storing the collected data into the memory. After collecting the data,

33

the algorithm uses the entire memory to update the DNNs. First, it uses the rewards

stored in the memory to build a list of discounted cumulative rewards R̂ to be used as

a target to fit the Critic network (line 15). Then, the advantage function is estimated

using GAE for each time-step along the memory, based on the predictions of the Critic

network Vϕ (line 16). Here the estimate advantage list Â will be used to compute

the Actor loss using Equation (16) as in line 13. Next, we forward the states from

the memory through the value function network Vϕ to create the list R. This is used

to find the loss of the Critic network by computing the Mean-Squared Error (MSE)

between R and R̂:

MSE(R, R̂) =
1

|R|

|R|
∑︂

i=1

(Ri − R̂i) (19)

where |R| is the number of elements in the list R. Finally, the algorithm updates the

DNNs of the Actor and the Critic. We use the gradient ascent algorithm with the

Adam optimizer to update the Actor network πθ since this is a maximization problem

towards the parameter θ that produces the highest return (line 19). Then, we use

gradient descent with the Adam optimizer to fit the value function represented by

the Critic network (line 20). We repeat this process for a number of epochs until

convergence.

3.4 Summary

In this chapter, we presented the system design of the computation offloading problem

in MIMO-based MEC, specifying the wireless channel model, the computation model

and the system cost. Moreover, in order to apply the RL methodology, we formulated

the problem as an MDP defining its state space, action space and reward function.

Then we proposed two DRL-based solutions to solve the problem. The first strategy is

based on the DQN algorithm to deal with the large state space. The second strategy is

based on the PPO algorithm which, in addition to what the DQN algorithm provides,

solves the issue of the discrete action space. In the next chapter, we will present the

implementation details of these algorithms and the results of the simulations and

experiments.

34

Algorithm 2 PPO strategy for cost minimization

1: Input: Number of epochs E, Steps per epoch T, clip hyperparameter ϵc, GAE

factor λ

2: Create the Actor Network (the policy π) and initialize its weights θ with random

values

3: Create the Critic Network (the value function V) and initialize its weights ϕ with

random values

4: Create the memory list

5: for e ← 1 ... E do

6: for t ← 1 ... T do

7: s← Get the state vector as defined in section 3.2

8: a ← Sample the allocated frequency and transmission power from

the probability distribution predicted by the Actor network πθ

9: Compute the size of the part allocated for local

execution using equation (4)
10: Compute the delay of the offloaded part using

equation (6)
11: Calculate the system cost Φ using equation (7)

12: r ← −Φ

13: Store the experience in the memory

14: end for

Using the experience stored in the memory we compute the following:

15: R̂ ← Compute the discounted cumulative rewards

16: Â ← Estimate the advantage function using (GAE) (equation (17)) with

the help of the critic network Vϕ

17: Lactor ← Compute the Actor loss using equation (16)

18: Lcritic ← MSE(R, R̂)

R obtained by forwarding the states through Vϕ

19: Update the Actor network πθ by backpropagating Lactor using stochastic

gradient ascent with the Adam optimizer
20: Update the Critic network Vϕ by backpropagating Lcritic using gradient

descent with the Adam optimizer
21: end for

35

Chapter 4

Experiments and Simulation

Results

This chapter presents the conducted simulation experiments used to evaluate and

compare the performance of our proposed strategies: DQN and PPO. We start by

introducing the dataset used to conduct the experiments in Section 4.1. Then, We

present a brief review of the different technologies and frameworks used in the imple-

mentation of the DRL-based algorithms in Section 4.2. The results of the simulation

along with the performance comparison with other baseline methods are provided in

Section 4.3. Finally, Section 4.4 concludes this chapter.

4.1 Dataset

To conduct the simulation experiments and evaluate the performance of our proposed

strategies, the open MaMIMO dataset [22] 1 was used. It was collected at KU Leuven

ESAT-TELEMIC using a massive MIMO tesbed. It contains the CSI measurements of

a massive MIMO system with many single-antenna users connected to a base station

equipped with 64 antennas transmitting and receiving simultaneously. 252004 CSI

samples in total were generated with location accuracy of less than 1 mm and each

CSI measurement is represented by a matrix of the form H ∈ C
64×100.

1https://homes.esat.kuleuven.be/~sdebast/measurements/measurements_index.html

36

https://homes.esat.kuleuven.be/~sdebast/measurements/measurements_index.html

4.2 Technology Stack Used for the Implementa-

tion

Python

Python is an open source object oriented programming language that supports the

development of a diverse variety of applications. It becomes one of the most popular

programming languages among the Artificial Intelligence (AI) community developers

in the last decade due to its numerous benefits that make it particularly ideal for

machine learning and deep learning projects.

Python has acquired a large ecosystem of machine learning frameworks which can

be applied out of the box and make the development of complex machine learning

and deep learning projects relatively easy to build. In addition, Python’s syntax is

simple which makes it easy to use and read. It helps also in rapidly prototype and

iterate the machine learning models and makes the project accessible even for non-

or-novice programmers who are usually part of any real-world application. Moreover,

Python comes with a variety of visualization tools that represents the large amount of

data in machine learning projects in a human-readable format. Furthermore, Python

enjoys a big thriving community of developers who are providing excellent support

and high-quality documentation online.

Thanks to its countless advantages, Python remains undoubtedly the best choice

for AI applications compared to other programming languages. It is being used by

many big firms and companies due to its power and scalability to handle massive

machine learning and deep learning projects.

PyTorch

PyTorch is an open source Python framework for machine learning, developed by the

Facebook AI Research team to facilitate the path from research to production [7].

It is an optimized library to process calculations on tensors using GPUs and CPUs

in Deep Learning (DL) applications. PyTorch is based on four architectural design

principles that provide great flexibility in terms of ease of use and implementation

speed, as stated on the Pytorch paper [41]:

❼ Be Pythonic: Python’s ecosystem is very popular among data scientists and

37

machine learning practitioners in general, that’s why PyTorch uses Python and

keeps its programming interface intuitive and consistent. Also to easily integrate

with Python’s tools for plotting, debugging and data processing.

❼ Put researchers first: PyTorch’s aim is to make it as easy and productive

for researchers as possible. This is achieved by handling all the computations

complexities of deep learning models internally and expose intuitive APIs to

the programmer.

❼ Provide pragmatic performance: Although PyTorch offers great flexibility

and implementation speed, it delivers compelling performance. It also provides

additional tools for researchers if they want to control and improve the perfor-

mance of their code.

❼ Worse is better: The field of AI is continually progressing, having a simple

internal implementation of PyTorch even if it is slightly incomplete, will make

it easy to maintain, fair enough to implement new features given the limited

engineering resources and capable to adapt to new situations.

PyTorch’s particularity is that it uses dynamic tensor computations compared to

static dataflow graphs that is being used by many popular deep learning frameworks

such as TensorFlow [8]. Table 4.1 gives a brief head to head comparison between

PyTorch and TensorFlow. Although static computation graphs offer enhanced per-

formance and scalability, they are hard to use, not easy to debug and not flexible.

Therefore, PyTorch’s goal is to overcome those limitations (by leveraging dynamic

eager computation with automatic differentiation and GPU acceleration) without

sacrificing performance. This achived trade-off makes PyTorch a very popular frame-

work among the AI research community [41].

Compute Canada

We run our experiments on Compute Canada which is a powerful High Performance

Computing (HPC) platform for research. It integrates high performance comput-

ers (close to a petaFLOP of computing performance), long-term storage that can

be accessed online with high speed read and write over Canada’s high performance

38

Framework PyTorch TensorFlow

Developed By FAIR Lab (Facebook AI Re-

search Lab)

Google Brain Team

Computation

mechanism

Dynamic tensor execution Static dataflow graphs

Focus Research Industry

Visualization Tensorboard Tensorboard

Debugging Python’s standard debug-

gers

tfdbg library (TensorFlow

debugger tool)

Popular RL

projects

rlpyt, SLM-Lab, jetson-

reinforcement, ...

TF-Agents, trfl, deep-rl-

tensorflow, ...

Table 4.1: Comparison between PyTorch and TensorFlow

networks, resources and tools for data analysis, and many research facilities around

the country. [13]

Researchers, independently of their disciplines, their skill levels, their system or

their location, can access the various resources of Compute Canada through dedicated,

secure, in-house software programs developed by highly qualified specialists working

in the organization. In addition, they develop new software, both on the system

level and the application level that can work inside this sophisticated and complex

architecture. Furthermore, Compute Canada provides a full ecosystem of computing

facilities, ranging from small lab computing to very large systems to the GPGPU

architectures and cloud computing. It also provides a vast amount of data storage

(petabytes of capacity) to accommodate the large size of data-sets used in the scientific

research such as machine learning, gene sequencing, medical imaging, satellite data,

etc. [13]

4.3 Simulation Results

In this section, we conduct simulation experiments to evaluate and compare the per-

formance of our proposed solutions: DQN and PPO-based algorithms. We used

Python with the Pytorch library and we run our experiments on the Cedar Compute

39

Parameter Value

N 64

W 1MHz

σ 10−9

fmax 1.5GHz

ptrmax 2W

ω 500cycles/bit

η 10−26

t0 1 ms

Table 4.2: Simulation Parameters

Canada cluster [1], which is a High Performance Computing (HPC) resource having

a total of 94,528 CPU cores, 1352 GPU devices and from 125GB to 3022GB of RAM

and a total of 22926TB of storage capacity. The simulations are conducted with the

help of the MIMO LAB Dataset (Section 4.1).

In our simulation, we set the number of antennas to N = 64, the channel band-

width to W = 1 MHz and the variance of the AWGN to σ2 = 10−9 W . In addition,

we assume that the maximum CPU frequency of the mobile device is fmax = 1.5 GHz

and the maximum transmission power is ptrmax = 2 W , the number of cycles required

to execute one bit of data is ω = 500 cycles/bit and the coefficient of the CPU power

consumption is η = 10−26 [55]. Moreover, we assume that the sizes of the input

tasks are uniformly distributed between mmin = 10 Mbits and mmax = 30 Mbits as

the work in [30]. Finally, the width of the time slots is set to t0 = 1 ms. All the

parameters are listed in Table 4.2. We compared our solutions with the following

benchmarks: DDQN, GREEDY and RANDOM.

4.3.1 DQN-based Algorithm

To implement the DQN-based algorithm, we used a fully connected feed-forward

Neural Network with 1 hidden layer having 64 neurons and ReLU (Rectified Linear

Unit ReLU(x) = max(0, x)) as the activation function. We set γ = 0.99 and the

learning rate for the Adam optimizer to 10−3. The replay buffer capacity is set to

C = 1000 and the mini-batch size to B = 900. Figure 4.1 shows the convergence of the

DQN strategy for multiple levels of action. The algorithm reaches stable performance

40

C
os

t

Time

(a) 4-level action

C
os

t

Time

(b) 5-level action

C
os

t

Time

(c) 6-level action

Figure 4.1: Convergence time of the DQN strategy under different action levels

after 300 episodes of training in average.

Figure 4.2 shows all the levels on the same graph. The results show that when

the level increases, the cost decreases. This is because the more we sample from the

continuous interval of the action, the more the action space becomes larger, and more

the algorithm has the chance to find a better action to minimize the cost.

In Figure 4.3, we set the action level to 5 and we investigate the effect of the

weight factor α used in equation 7 on the DQN strategy. The figure shows that

DQN converges for the different values of α. The results in Figure 4.4 show the that

when we give more weight to the delay (α = 0.4), the system cost decreases but the

algorithm takes more time to converge. On the other hand, if we give more weight

41

C
os

t

Episode

4-level action

5-level action

6-level action

Figure 4.2: Comparison between the effect of different action levels on the DQN

strategy convergence

to the energy, the system cost increases and the algorithm converges faster.

Figure 4.8 shows the effect of the mini-batch size on the performance of the DQN

strategy. The mini-batch is sampled randomly from the replay buffer to train the

neural network. From the results on the figure 4.6, we can see that changing the mini-

batch size has different effects on the convergence performance. For instance, when the

mini-batch size is 900, the algorithm converges gradually towards a minimum cost and

then it shows a stable performance. When the mini-batch size is 950, the algorithm

does not even converge and it seems to have a random behaviour. Meanwhile, when

the batch-size is 1000, the algorithm seems to converge again but quickly and towards

another different cost with huge margin difference with the 900 performance.

From the previous results, we notice that, besides the limitation of the sampling

mechanism, the DQN algorithm is very sensitive to the hyper-parameters tuning,

changing one parameter can lead to a different behaviour and therefore a different

performance.

42

C
os

t

Time

(a) α = 0.4

C
os

t
Time

(b) α = 0.5

C
os

t

Time

(c) α = 0.6

Figure 4.3: Convergence time of the DQN strategy under different values of α

43

C
os

t

Time

(a) B = 900
C

os
t

Time

(b) B = 950

C
os

t

Time

(c) B = 1000

Figure 4.5: Convergence time of the DQN strategy under different values of

min-batch sizes

45

B = 900

B = 950

B = 1000

C
os

t

Episode

Figure 4.6: Comparison of the performance of the DQN algorithm under different

mini-batch sizes

C
os

t

Time

Figure 4.7: Convergence time of the PPO strategy

46

C
os

t

Time

(a) PPO strategy

C
os

t

Time

(b) DQN strategy

Figure 4.8: Comparison between the convergence performance of the PPO and

DQN strategies

of the PPO algorithm. The results show a noticeable stable performance for different

values of α where the algorithm converges towards the same minimum cost in contrast

with the DQN strategy which is highly sensitive to the hyperparameters.

Figure 4.12 shows the performance of our PPO algorithm for different values

of the parameter S (steps per epoch) which also represents the length of the PPO

memory. For every epoch, the training memory will contain S steps to train the Actor

and the Critic networks. The results show that there is no significant effect on the

convergence time of the PPO algorithm when slightly changing S in contrast with

the DQN algorithm. Moreover, PPO converges towards the same minimum under the

three different values of S, which means that it is more stable and not very sensitive

to hyper-parameters tuning.

4.3.3 Performance Comparison

In order to examine the performance of the proposed solutions, we compare them

with different schemes by calculating the system cost resulting from applying each of

the following strategies:

❼ The PPO strategy: the trained model of our PPO algorithm.

❼ The DQN strategy: the trained model of the DQN algorithm.

❼ The DDQN strategy: proposed in [17], which is an adaptation of the DQN

47

C
os

t

Time

(a) α = 0.4

C
os

t
Time

(b) α = 0.5

C
os

t

Time

(c) α = 0.6

Figure 4.9: Convergence time of the PPO strategy under different values of α

48

C
os

t

Time

(a) S = 900

C
os

t
Time

(b) S = 950

C
os

t

Time

(c) S = 1000

Figure 4.11: Convergence time of the PPO strategy under different values of S

50

C
os

t

Time

(a) PPO strategy

C
os

t

Time

(b) DQN strategy

C
os

t

Time

(c) DDQN strategy

Figure 4.13: Training performance of the PPO, DQN and DDQN strategies

52

C
os

t

Task size m

PPO
DQN

GREEDY

RANDOM

DDQN

Figure 4.14: Performance comparison under different task sizes

53

Chapter 5

Conclusion and Future Work

MEC is a promising technology for next-generation 5G and 6G mobile networks to

bring cloud-like capabilities to the edge of the network and closer to the customers.

By offloading the computation-intensive tasks to the edge server, high demanding

applications enjoy a reduced latency and near real-time performance. Defining the

optimal computation offloading strategy is a key component towards better network

performance. After going through the literature review and studying the promising

results of DRL in problem optimization, we tried in this work to find an optimal

DRL-agent for the computation offloading problem.

In this thesis, we addressed the computation offloading problem in a mutative

MIMO-based MEC environment considering the stochastic time-varying wireless chan-

nels and computation task arrivals. We formulated our problem with the objective of

minimizing the long-term cost in terms of energy consumption and offloading delay

under the constraints of the limited computation capacity and transmission energy of

the MDs. A MDP has been designed for the problem, and two DRL-based strategies

have been introduced to learn a dynamic offloading policy without any prior knowl-

edge of the environment. These two strategies are: the DQN strategy with discrete

action space, also used as benchmark, and the PPO strategy with continuous ac-

tion space. From our simulations using a dataset, we found that the DQN strategy,

although it gives good results, is highly sensitive to hyperparameters tuning in the

learning phase compared to the PPO strategy, which exhibits stable performance and

much better results. Moreover, both DRL algorithms achieve superior performance

over other baseline strategies. For instance, the PPO strategy improved the average

54

cost by 12% compared to the DQN and DDQN strategies, as they both converge

towards the same minimum cost, and by 37%, 73% compared to the RANDOM and

GREEDY strategies respectively. Also, the average cost of the DQN strategy is im-

proved by 21% compared to the RANDOM strategy, and by 52% compared to the

GREEDY strategy.

The challenges we went through during this research are related to the modeling of

the real-world MIMO-based MEC environment as well as the difficulties of applying

DRL algorithms on it. Capturing the stochastic wireless channel variations of the

MIMO-based MEC and the dynamically generated tasks at each mobile user into

a mathematical model was challenging. In addition to the difficulties of defining a

suitable MDP model of our problem, including the state space, action space and the

reward function, applying DRL algorithms was also challenging because of the curse of

the state space explosion and the continuous action space. Furthermore, training the

neural networks during the simulations was not a straightforward task, because they

are computationally intensive, need more time to converge and sometimes hard to tune

due to the decent number of hyper-parameters. Despite the mentioned challenges,

our solution to overcome those limitations is provided in details and the decisions we

made are also explained.

In summary, we have been able to analyze and apply DRL algorithms to create

smart software agents that can control the computation offloading in the stochastic

multi-user MIMO-based MEC network. As future work, our research can be extended

in many ways. One can study the offloaded tasks allocation on the MEC server taking

into account more environment details such as its power and computation capacities.

one can also explore the optimal computation offloading strategy to multiple base

stations based on other characteristics such as their geo-location and band-with ca-

pability. Another potential way to extend this work is to investigate the case where

multiple edge servers are connected to the same base station and how the offloaded

tasks can be shared between them.

55

Bibliography

[1] Cedar - cc doc. https://docs.computecanada.ca/wiki/Cedar. (Accessed on

07/05/2021).

[2] 3.7 Value Functions, Dec 2018. [Online; accessed 13. Jan. 2022].

[3] Part 1: Key Concepts in RL — Spinning Up documentation, Mar 2020. [Online;

accessed 18. Jan. 2022].

[4] A Q-learning based method for energy-efficient computation offloading in mobile

edge computing. Proceedings - International Conference on Computer Commu-

nications and Networks, ICCCN, 2020-August, 2020.

[5] A machine learning approach for task and resource allocation in mobile-edge

computing-based networks. 8(3):1358–1372, feb 2021.

[6] What Is Model-Free Reinforcement Learning?, Dec 2021. [Online; accessed 20.

Jan. 2022].

[7] PyTorch documentation — PyTorch 1.10.1 documentation, Jan 2022. [Online;

accessed 29. Jan. 2022].

[8] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,

Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol

56

https://docs.computecanada.ca/wiki/Cedar

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. 2016.

[9] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge comput-

ing: A survey. IEEE Internet of Things Journal, 5(1):450–465, 2018.

[10] Laha Ale, Ning Zhang, Xiaojie Fang, Xianfu Chen, Shaohua Wu, and

Longzhuang Li. Delay-aware and energy-efficient computation offloading in mo-

bile edge computing using deep reinforcement learning. IEEE Transactions on

Cognitive Communications and Networking, 2021.

[11] Taha Alfakih, Mohammad Mehedi Hassan, Abdu Gumaei, Claudio Savaglio, and

Giancarlo Fortino. Task offloading and resource allocation for mobile edge com-

puting by deep reinforcement learning based on SARSA. IEEE Access, 8:54074–

54084, 2020.

[12] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. A Brief Survey of Deep Reinforcement Learning. aug 2017.

[13] Susan Baldwin. Compute Canada: Advancing computational research. Journal

of Physics: Conference Series, 341(1), 2012.

[14] Jianyu Cao, Wei Feng, Ning Ge, and Jianhua Lu. Delay characterization of

mobile-edge computing for 6G time-sensitive services. IEEE Internet of Things

Journal, 8(5):3758–3773, 2021.

[15] Robin Chataut and Robert Akl. Massive MIMO systems for 5G and beyond net-

works—overview, recent trends, challenges, and future research direction. Sen-

sors (Switzerland), 20(10):1–35, 2020.

[16] Min Chen and Yixue Hao. Task offloading for mobile edge computing in software

defined ultra-dense network. IEEE Journal on Selected Areas in Communica-

tions, 36(3):587–597, 2018.

[17] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and

Medhi Bennis. Optimized computation offloading performance in virtual edge

57

computing systems via deep reinforcement learning. IEEE Internet of Things

Journal, 6(3):4005–4018, 2019.

[18] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and

Mehdi Bennis. Performance optimization in mobile-edge computing via deep

reinforcement learning. arXiv, pages 1–6, 2018.

[19] Xu Chen, Lei Jiao, and Wenzhong Li. Efficient Multi-User Computation Of-

floading for. IEEE/ACM Transactions on Networking, 24(5):2795–2808, 2016.

[20] Eunsol Choi, Daniel Hewlett, Alexandre Lacoste, Illia Polosukhin, Jakob Uszko-

reit, and Jonathan Berant. Coarse-to-Fine Question Answering for Long Docu-

ments Eunsol : Hierarchical Question Answering for Long Documents. 2016.

[21] Boutheina Dab, N. Aitsaadi, and R. Langar. Q-learning algorithm for joint

computation offloading and resource allocation in edge cloud. 2019 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM), pages 45–52,

2019.

[22] Sibren De Bast and Sofie Pollin. MaMIMO CSI-based positioning using CNNs:

Peeking inside the black box. 2020 IEEE International Conference on Commu-

nications Workshops, ICC Workshops 2020 - Proceedings, 2020.

[23] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar,

and Albert Y. Zomaya. Edge intelligence: The confluence of edge computing and

artificial intelligence. IEEE Internet of Things Journal, 7(8):7457–7469, 2020.

[24] Changfeng Ding, Jun bo Wang, Hua Zhang, Min Lin, and Jiangzhou Wang.

Joint MU-MIMO precoding and resource allocation for mobile-edge computing.

IEEE Transactions on Wireless Communications, 20:1639–1654, 2021.

[25] Thinh Quang Dinh, Quang Duy La, Tony Q.S. Quek, and Hyundong Shin. Learn-

ing for computation offloading in mobile edge computing. IEEE Transactions on

Communications, 66(12):6353–6367, 2018.

[26] Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to discount

deep reinforcement learning: Towards new dynamic strategies. pages 1–9, 2015.

58

[27] Vincent François-lavet, Peter Henderson, Riashat Islam, Marc G Belle-

mare, Vincent François-lavet, Joelle Pineau, and Marc G Bellemare. An

introduction to deep reinforcement learning. (arxiv:1811.12560v1 [cs.lg])

http://arxiv.org/abs/1811.12560. Foundations and trends in machine learning,

II(3 - 4):1–140, 2018.

[28] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,

and Joelle Pineau. An Introduction to Deep Reinforcement Learning. arXiv,

Nov 2018.

[29] Yuanyuan Hao, Qiang Ni, Hai Li, and Shujuan Hou. Energy-efficient multi-user

mobile-edge computation offloading in massive MIMO enabled HetNets. IEEE

International Conference on Communications, 2019-May, 2019.

[30] Liang Huang, Xu Feng, Cheng Zhang, Liping Qian, and Yuan Wu. Deep re-

inforcement learning-based joint task offloading and bandwidth allocation for

multi-user mobile edge computing. Digital Communications and Networks,

5(1):10–17, 2019.

[31] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-

ment learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,

1996.

[32] Mahbub E. Khoda, Md Abdur Razzaque, Ahmad Almogren, Mohammad Mehedi

Hassan, Atif Alamri, and Abdulhameed Alelaiwi. Efficient computation offload-

ing decision in mobile cloud computing over 5G network. Mobile Networks and

Applications, 21(5):777–792, 2016.

[33] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al

Sallab, Senthil Yogamani, and Patrick Pérez. Deep Reinforcement Learning for

Autonomous Driving: A Survey. arXiv, Feb 2020.

[34] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[35] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning

Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-

Scale Data Collection. arXiv, Mar 2016.

59

[36] Hao Meng, Daichong Chao, and Qianying Guo. Deep reinforcement learning

based task offloading algorithm for mobile-edge computing systems. ACM In-

ternational Conference Proceeding Series, pages 90–94, 2019.

[37] Farouk Messaoudi, Adlen Ksentini, and Philippe Bertin. On using edge comput-

ing for computation offloading in mobile network. 2017 IEEE Global Communi-

cations Conference, GLOBECOM 2017 - Proceedings, 2018-January:1–7, 2017.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep

reinforcement learning. pages 1–9, 2013.

[39] Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio Liotta,

Michael E. Webber, Madeleine Gibescu, and J. G. Slootweg. On-Line Building

Energy Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart

Grid, 10(4):3698–3708, May 2018.

[40] Rui Nian, Jinfeng Liu, and Biao Huang. A review On reinforcement learning:

Introduction and applications in industrial process control. Comput. Chem. Eng.,

139:106886, Aug 2020.

[41] Adam Paszke, Sam Gross, James Bradbury, Zeming Lin, Zach Devito, Fran-

cisco Massa, Benoit Steiner, Trevor Killeen, and Edward Yang. PyTorch : An

Imperative Style , High-Performance Deep Learning Library. (NeurIPS), 2019.

[42] Romain Paulus, Caiming Xiong, and Richard Socher. A Deep Reinforced Model

for Abstractive Summarization. arXiv, May 2017.

[43] Hani Sami and Azzam Mourad. Dynamic on-demand fog formation offering

on-the-fly IoT service deployment. IEEE Transactions on Network and Service

Management, 2020.

[44] Hani Sami, Azzam Mourad, Hadi Otrok, and Jamal Bentahar. Demand-driven

deep reinforcement learning for scalable fog and service placement. IEEE Trans-

actions on Services Computing, 2021.

[45] Hani Sami, Hadi Otrok, Jamal Bentahar, and Azzam Mourad. AI-based resource

provisioning of IoE services in 6G: A deep reinforcement learning approach. IEEE

Transactions on Network and Service Management, 2021.

60

[46] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, Timothy Lillicrap, and David Silver. Mastering Atari, Go, Chess

and Shogi by Planning with a Learned Model. arXiv, Nov 2019.

[47] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter

Abbeel. High-dimensional continuous control using generalized advantage esti-

mation. 4th International Conference on Learning Representations, ICLR 2016

- Conference Track Proceedings, pages 1–14, 2016.

[48] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. pages 1–12, 2017.

[49] Nir Shlezinger, George C. Alexandropoulos, Mohammadreza F. Imani, Yonina C.

Eldar, and David R. Smith. Dynamic metasurface antennas for 6G extreme

massive MIMO communications. IEEE Wireless Communications, 28(2):106–

113, 2021.

[50] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mas-

tering Chess and Shogi by Self-Play with a General Reinforcement Learning

Algorithm. arXiv, Dec 2017.

[51] Richard S. Sutton, Francis Bach, and Andrew G. Barto. Reinforcement Learning:

An Introduction. MIT Press Ltd, 2018.

[52] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double Q-Learning. 30th AAAI Conference on Artificial Intelligence, AAAI

2016, pages 2094–2100, 2016.

[53] N I Ver. Deep Reinforcement Learning Variants of Multi-Agent Learning Algo-

rithms Alvaro Ovalle Casta ˜. 2016.

[54] Jiadai Wang, Lei Zhao, Jiajia Liu, and N. Kato. Smart resource allocation

for mobile edge computing: A deep reinforcement learning approach. IEEE

Transactions on Emerging Topics in Computing, pages 1–1, 2019.

61

[55] Yanting Wang, Min Sheng, Xijun Wang, Liang Wang, and Jiandong Li. Mobile-

edge computing: Partial computation offloading using dynamic voltage scaling.

IEEE Transactions on Communications, 64(10):4268–4282, 2016.

[56] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for offloading and au-

toscaling in energy harvesting mobile edge computing. arXiv, 2017.

[57] Xin Xu, Lei Zuo, and Zhenhua Huang. Reinforcement learning algorithms with

function approximation: Recent advances and applications. Information Sci-

ences, 261:1–31, 2014.

[58] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement Learning in Health-

care: A Survey. arXiv, Aug 2019.

[59] Ming Zeng, Wanming Hao, Octavia A. Dobre, Zhiguo Ding, and H. Vincent

Poor. Massive MIMO-assisted mobile edge computing: Exciting possibilities

for computation offloading. IEEE Vehicular Technology Magazine, 15(2):31–38,

2020.

[60] Ming Zeng, Ming Zeng, Wanming Hao, Octavia A. Dobre, and H. Vincent Poor.

Delay minimization for massive MIMO assisted mobile edge computing. IEEE

Transactions on Vehicular Technology, 69(6):6788–6792, 2020.

[61] Weiwen Zhang, Yonggang Wen, Kyle Guan, Dan Kilper, Haiyun Luo, and

Dapeng Oliver Wu. Energy-optimal mobile cloud computing under stochastic

wireless channel. IEEE Transactions on Wireless Communications, 12(9):4569–

4581, 2013.

[62] Rui Zhao, Xinjie Wang, Junjuan Xia, and Liseng Fan. Deep reinforcement learn-

ing based mobile edge computing for intelligent Internet of things. Physical

Communication journal, pages 1–18, 2020.

62

	List of Figures
	List of Tables
	Introduction
	Context
	Challenges and Motivations
	Contributions
	Thesis Outline

	Background and Literature Review
	Reinforcement Learning
	Key Concepts
	Deep Reinforcement Learning

	Computation Offloading in Multi-Access Edge Computing
	Computation Offloading in MEC assisted with MIMO Technology
	Reinforcement Learning for Computation Offloading in MEC

	Summary

	Computation Offloading Modeling and DRL-based Algorithms
	System Model and Problem Formulation
	Wireless Channel Model
	Computation Model
	System Cost

	Modeling the Problem using the RL Framework
	State Space
	Action Space
	Reward Function

	DRL-based Computation Offloading-based Algorithms
	Deep Q-Network (DQN)-based Solution
	Proximal Policy Optimization (PPO)-based Algorithm

	Summary

	Experiments and Simulation Results
	Dataset
	Technology Stack Used for the Implementation
	Simulation Results
	DQN-based Algorithm
	PPO-based Algorithm
	Performance Comparison

	Summary

	Conclusion and Future Work

