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Abstract 

The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex 

phenomenon bringing many difficulties to both numerical and experimental research. Advanced laser-

optical visualization of detonation structure may provide certain information of its reactive front, but 

the corresponding lead shock needs to be reconstructed building the complete flow field. Using the 

Multi-Layer Perceptron (MLP) approach, we propose in this study a shock front reconstruction method 

which can predict evolution of the lead shock wavefront from the state of the reactive front. The 

method is verified through the numerical results of one- and two-dimensional unstable detonations 

based on the reactive Euler equations with a one-step irreversible chemical reaction model. Results 

show that the accuracy of the proposed method depends on the activation energy of the reactive 

mixture, which influences prominently the cellular detonation instability and hence, the distortion of 

the lead shock surface. To select the input variables for training and evaluate their influence on the 

effectiveness of the proposed method, five groups, one with six variables and the other with four 

variables, are tested and analyzed in the MLP model. The trained MLP is tested in the cases with 

different activation energies, demonstrates the inspiring generalization capability. This paper offers a 

universal framework for predicting detonation frontal evolution and provides a novel way to interpret 

numerical and experimental results of detonation waves.  
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1. Introduction 

A detonation is a supersonic, combustion-driven compression wave across which there is a 

significant pressure and temperature increase. Due to its destructive nature and rapid release of energy, 

a wealth of fundamental research on this subject can be found in the literature and has been of wide 

interest for terrestrial and astrophysical explosions [1–4]. In recent years, the application of detonation 

process in propulsion systems attracts more and more attention, resulting in several types of 

detonation-based engines [5–8]. Such emerging technology trend in aerospace warrants a renewed 

focus for detonation research in developing new technique to aid interpretation of flow data and 

predicting the unsteady dynamics of detonation in various combustors. 

As shock-induced combustion[9 –11 ], the detonation dynamics depends on the wave frontal 

structure composed of shock-flame complex. Beyond classic steady Zeldovich–von Neumann–Döring 

(ZND) model prediction, realistic detonation waves are featured by transverse shocks, resulting in 

cellular instabilities on the detonation wavefront. Understanding of the cellular structure and its 

evolution has long been among the most important directions in the detonation physics field. For long, 

the use of smoked foils to record tracks of triple points has been the standard technique in observing 

the cellular detonation structure. By analyzing the records, quantitative study on the cell width has 

been performed thoroughly and tabulated, such as its dependence of reactants, equivalence ratio, initial 

pressure and temperature [12]. Moreover, analytical and semi-empirical models on the cell width have 

been proposed, correlating this dynamic parameter with parameters determined from chemical kinetics 

such as the induction zone length scale [13,14]. 

The movement of transverse waves, which plays the key role in the cellular structure, has not 

been studied thoroughly. In recent years, advanced optical technologies, such as PLIF (Planar Laser 

Induced Fluorescence) or CTC (Computed Tomography of Chemiluminescence), provide new 

experimental ways to “look inside” the cellular detonation [3]. It is observed that the interaction of 

shock and heat release may induce various reactive front morphologies, whose regularity depends on 

the fuels [15]. These results reveal the dynamic structure of cellular detonation, shedding light on the 

detonation research beyond the cell analysis of static smoked foils. However, PLIF only provides the 

information of heat release zone, and the wave surface, especially location of shocks, must be 

measured simultaneously through schlieren photography. This is because advanced optical 
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technologies, PLIF or CTC, are designed to capture the combustion tuned with a particular species 

concentration. The schlieren may be used to compensate this deficiency and get the complete wave 

surface, but it is limited to two-dimensional (2D) cellular detonations. On the three-dimensional (3D) 

detonations, CTC has shown its potential to be used to get 3D flame [16–18], but corresponding 3D 

shock measurement technology is still not available[19–22]. 

Theoretical efforts are also made to the understanding of cellular detonation dynamics and to the 

derivation of detonation-shock evolution equation [23], notably using the theory of detonation shock 

dynamics (DSD) [24–26] by simplifying the detonation shock and reaction zone with an evolving 

surface described by a Dn–κ relationship. Using such analysis approach, worth noting are the recent 

works by Jackson & Short [27] and Jackson et al. [28], who apply the DSD to characterize the effect 

of the cellular instability on the lead shock shape and velocity evolution of the gaseous detonations, 

revealing some distinct features in different stages of evolution and that trajectories of all shock front 

portions collapsed to a common curve in velocity-curvature space. These studies provide a model to 

reconstruct the surface evolution and further clarify the underlying physical mechanisms for the cell 

motion. However, the current concepts derived from DSD suffer the underlying restriction conditions 

due to analytic approximations and hence, are applied only to weakly unstable detonation. 

Nowadays, machine learning has become more and more ubiquitous and adopted in many 

scientific research disciplines. Through machine learning, computers can develop the capability to 

learn through training and search through data sets to predict patterns and trends. This provides a good 

opportunity to develop a new direction for detonation modelling. In this study, we propose a shock 

front reconstruction method based on the information from the heat release region. Although the 

parameters of post-shock heat release can be calculated theoretically given the lead detonation shock 

and pre-shock parameters, the reverse process, i.e., from heat release region or flame to lead shock, 

cannot be easily achieved to close the coupling. Benefiting from the aforementioned rapid 

development of machine learning, the proposed shock front reconstruction concept is based on the 

MLP (Multi-Layer Perceptron) modelling. MLP is found to be a powerful tool in fluid mechanics 

research [29–31], but its application in gaseous detonations is limited in modeling the cell width [32]. 

Our recent study [33] proposed a method of predicting the wave configurations of cellular detonations 

based on the MLP, but POD (Proper Orthogonal Decomposition) is used to extract the features of the 

flow fields, which is complicated and requires big data difficult to be accumulated. In this investigation, 



Page 4 of 22 

 

one novel reconstruction method is proposed based on only the MLP, which is trained to build up the 

linkage of the lead shock wavefront and the state of the reactive front. Firstly, unstable detonations 

obtained numerically from the reactive Euler equations are used to train the MLP and provide mapping 

and feedback from the heat release zone to the lead shock. The input variables for model training and 

the effectiveness of the proposed MLP approach for reconstructing shock front motion are discussed. 

To this end, it is worth noting that in principle, the proposed MLP-based shock front reconstruction 

method is not restricted to 1D/2D or limited by the chemical reaction model. Proper data sets, however, 

must be carefully provided for the MLP to be trained. 

2. Numerical simulation methods and results 

An ideal detonation model given by the reactive Euler equations with a one-step Arrhenius 

kinetics is considered in this work. The non-dimensional governing equations with a single-step, 

irreversible chemical reaction are of the form: 
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All flow variables have been made dimensionless by reference to the uniform unburned state ahead of 
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The variables 𝜌, 𝑢, 𝑣, 𝑝, 𝑒 and 𝑄 are the density, velocities in x- and y- direction, pressure, total 

energy, and the amount of chemical heat release, respectively. For the chemical reaction,  is the 

reaction progress variable which varies between 0 (for unburned reactant) and 1 (for product). The 

reaction is controlled by the activation energy Ea and the pre-exponential factor k, which is chosen to 
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define the spatial and temporal scales, so the half-reaction zone length L1/2, i.e. the distance required 

for half the reactant to be consumed in the steady ZND detonation wave, is scaled to unit length. 

The governing equations are discretized on Cartesian uniform grids and solved numerically using 

the MUSCL-Hancock scheme with Strang’s splitting. The MUSCL-Hancock scheme is formally a 

second-order extension to Godunov’s first order upwind method by constructing the Riemann problem 

on the inter-cell boundary [34]. The scheme is made total variation diminishing (TVD) with the use 

of slope limiter MINBEE, and the Harten-Lax-van Leer-Contact (HLLC) approximate solver is used 

for the Riemann problem. In the simulations, we use the dimensionless parameters Q = 50 and γ = 1.2. 

These are used traditionally in numerical simulations as canonical values to investigate detonation 

wave phenomena [35]. The stability of the detonation is sensitive to Ea, which is adjusted to produce 

unstable detonations and cellular dynamics with different degrees of regularity. 

For the 1D pulsating detonation wave simulations, an effective numerical resolution of 128 points 

per half-reaction length is used, which is sufficient to resolve the detailed features of the pulsating 

shock front with the activation energy close to the stability limit [36]. Besides, simulations allowing 

the detonation to run for thousands of half-reaction times are performed to ensure the ultimate correct 

nonlinear oscillatory behavior of the detonation propagation is achieved. The simulations are 

initialized by the steady solution of the ZND detonation, and zero-gradient boundary conditions 

extrapolated from the interior are imposed on the left and the right boundaries. 

The 2D flow fields behind the cellular detonation are obtained from the simulation results of 

detonation wave propagating in a rectangular tube. The slip boundary conditions are used on the upper 

and bottom wall of the tube, while zero-gradient boundary conditions are implemented on the left and 

the right boundaries. Initially static unburned gas with unity density and pressure fulfills the whole 

tube. The ignition zone with high temperature and pressure is used to initiate the detonation, and a 

self-sustained detonation propagating at nearly Chapman-Jouguet velocity is formed after traveling a 

certain distance. Relatively lower activation energies, Ea = 10 and Ea = 20, are used to obtain cellular 

detonation waves. About 10 grids per L1/2 is used for the following simulations of cellular detonations, 

which is shown sufficient to simulate the unstable structures. A few cases with fine grid, 20 grids per 

L1/2 in the case of Ea = 20, are tested to see the effects of grid resolution on the reconstruction. A 

sufficiently large domain width of 80 is used to ensure enough detonation cells are present. 
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Fig. 1 Pressure (left) and temperature (right) fields of cellular detonations with Ea = 10 (a) and 20 

(b). 

 

Fig. 2 Numerical smoked foil records with Ea = 10 (a) and 20 (b) to illustrate the detonation cells. 

 

The flow fields of cellular detonation after a long-time simulation avoiding the initial transient 

from the ignition zone are shown in Fig. 1. The self-sustained detonations are featured by cellular 

structures composed of reactive front, lead shock and transverse shock waves. The transverse waves 

propagate periodically in a direction perpendicular to the propagation of the lead shock wave. The 

reactive front is distorted by the lead and transverse waves, resulting in a series of irregular section. 

Results indicate that high Ea induces more unstable detonation wave, and vice versa. With the same 

height, there are fewer transverse waves in the case of Ea = 20, and the regularity of transverse waves 

is weak, as shown in Fig. 1. To verify the simulated results, numerical smoked foil records using 

maximum pressure trace are also generated during the computation. Figure 2 shows the numerical foil 
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records with Ea = 10 and 20. Generally these results are the same as previous studies qualitatively, e.g., 

[35, 37–41], and can be used as samples of our shock reconstruction method. 

3. Reconstruction method and results 

3.1 Shock front reconstruction based on MLP 

 

Fig. 3 A typical temperature field (a) and basic architecture of MLP (b). 

The idea of shock front reconstruction is to predict the shock motion through the information 

around the reactive front based on a state projection from reactive front to shock front established by 

MLP. In the 2D flow field as illustrated by Fig. 3(a), the reactive front is displayed by the black dashed 

curve, corresponding the reaction index  = 0.5, while the shock front by the white dashed curve, 

corresponding the location achieving twice of pre-shock pressure. In essence, the goal of the shock 

front reconstruction is to predict the location of the white dashed curve according to the flame surface 

parameters of the black one. Considering the parameters of reactive front are available, the problem is 

simplified to predict the distance LMLP between shock and reactive front. The use of MLP is thus to 

provide a nonlinear mapping relationship between LMLP and corresponding flame surface parameters, 

which can be established by learning from a large amount of shock-reactive front data extracted from 

the detonation wave flow field. The learning process is also known as the training process. Once the 

training is completed, the trained MLP can be used to quickly reconstruct complex detonation wave 

surface using measured or known flame surface parameters. 

The basic architecture of MLP is shown in Fig. 3(b). It includes one input layer, several hidden 
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layers, and one output layer. In input and hidden layers, there are several neurons which connect with 

neurons of other layers. It is a pity that there are no rigorous rules on the number of layers/neurons in 

the research field of MLP so far. On the problem here, several trials indicate that two hidden layers, 

whose neurons are fixed to be six, are enough to achieve an acceptable MLP model, thus are used in 

different reconstruction cases for the convenience of comparative analysis. There are no doubts that 

MLP can be optimized further by elaborating the MLP architecture, but this one is enough to verify 

our methods. The neurons of input layer are variable, changing from 3 to 6, and the output layer has 

only one neuron to get LMLP. The mean of squared errors between the MLP output and the target of the 

training set is used here as performance function to evaluate the MLP. The activation function used in 

each layer plays an important role in the nonlinear mapping ability of the MLP. There are a number of 

common activation functions in the literature [42 ], and this work utilizes the hyperbolic tangent 

sigmoid transfer function for both two hidden layers, and the linear transfer function is used for the 

output layer. 

In the training, we use Nguyen-Widrow layer initialization function as the MLP initial method to 

generate initial weight and bias values for each layer, which is useful to reduce training time [43]. The 

weight and bias values of neurons are updated according to Levenberg-Marquardt optimization [44,45], 

which is adaptive between the steepest descent method and the Gauss-Newton method to achieve fast 

convergency rate. When the current solution is far from the minimum, the algorithm is essentially a 

steepest descent method with a small step size, which is relatively slow but guaranteed converge, but 

gradually switches to a Gauss-Newton method to approach a quadratic approximation when the current 

solution is close to the correct solution. Thus, this algorithm is very efficient for training moderate-

sized feedforward neural networks (up to a few hundred weights) [45]. Validation is used to stop 

training early if the network performance on the validation set fails to improve or remains the same 

for certain pre-set epochs. 

Given the mixtures, many transient flow fields may exist at certain instants, like those shown in 

Fig. 1. For each Ea, a data set consisting of 60 different shock-reactive front data is generated from the 

transient detonation flow fields every certain number of calculation steps, after the general structure 

approaches a steady state. The data set is further divided randomly as the training set and validation 

set, with the ratio 85% and 15%. Beside the training set and validation set, the test set is generated 

additionally from the subsequent detonation travelling flow fields, including 10 different shock-



Page 9 of 22 

 

reactive front data. For each transient flow field, we get 801 (corresponds to the grid numbers along 

y-direction) pairs of parameter values, which are extracted along the line parallel with x-axis. For each 

activation energy, one independent MLP will be trained using corresponding flow field data set 

described above. In order to quantitatively evaluate the reconstruction accuracy, the relative error 

between the MLP reconstruction length LMLP and the real distance between shock and reactive front 

Lreal is defined as follows: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝐿𝑀𝐿𝑃 − 𝐿𝑟𝑒𝑎𝑙

𝐿𝑟𝑒𝑎𝑙
× 100%                                                      (7) 

There are several different choices on the input variables. Considering the conservation of mass, 

momentum and energy in the flow, we choose density 𝜌, temperature 𝑇, and velocity 𝑢 and 𝑣. The 

corresponding gradients of temperature and density, 𝑇′ = 𝜕𝑇/𝜕𝑥  and 𝜌′ = 𝜕𝜌/𝜕𝑥 , are also 

introduced to verify the method, and the parameter dependence will be discussed in the later part. 

3.2 Application on 1D pulsating detonations 

 

Fig. 4 Time evolution of the lead shock pressure (red) and distance between shock and reactive front 

(black) for Ea = 27.0 (a) and Ea = 30.0 (b). 

We first use the proposed method to reconstruct the lead shock for the 1D pulsating detonations. 

When the activation energy is above and close to the stability limit, the 1D detonation can exhibit 

oscillatory behavior with constant period. The lead shock pressure after the initiation transient passed, 

is plotted in Fig. 4(a) for activation energy Ea = 27.0. The shock pressure is normalized by the von 

Neumann pressure of the corresponding steady ZND solution. The time evolution of the distance 

between the shock and reactive front of the pulsating detonation is also shown in Fig. 4(a). As can be 

seen, the pulsating detonation manifests a single-mode oscillation with both lead shock pressure and 

shock-reactive front distance exhibiting a similar periodic trend. With Ea increasing from 27.0 to 30.0, 

the instability of the detonation front migrates from a single-mode oscillation to a chaotic oscillation, 
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as illustrated in Fig. 4(b). These long-time nonlinear evolution results are in good agreement with 

those found in literature [36,46]. 

 

Fig. 5 Extracted data used for training set of 1D pulsating detonations, displaying the variations of 

shock-reactive front distance on 𝑇, 𝜌, and 𝑢 with Ea = 27.0 (a) and 30.0 (b). 

Due to the different pulsating characteristic of detonations, the number of shock-reactive front 

data extracted for MLP training of each Ea is different. For Ea = 27.0, starting from the dimensionless 

time t = 1500, we extract the training data from three consecutive oscillation cycles with the time 

interval ∆t = 0.2 to set up corresponding MLP. Considering that the oscillation becomes obviously 

irregular for Ea = 30.0, more shock-reactive front data is extracted with the same time interval ∆t = 

0.2 to train the corresponding MLP, i.e., from the dimensionless time t = 3000 to 4000. Three input 

variables, i.e., 𝑇, 𝜌, and 𝑢, are used as the MLP input variables set to perform the reconstruction, 

since the above 1D pulsating detonations show relatively simple mapping relationships between the 

flame surface and the corresponding lead shock. Figure 5 displays the extracted data of each Ea used 

for the training of each MLP, which illustrates the nonlinearity dependence between the shock-reactive 

front distance and three input variables. Essentially, the shock front reconstruction for 1D pulsating 

detonations can be regard as a multiple regression issue mathematically. In addition to MLP, there are 

many other widely used traditional regression models. Considering the interpretability and the 

explicitness of different models, we utilize multiple linear regression (MLR) and multivariate second-

degree polynomial regression (MSPR) to reconstruct the shock front as comparisons to the proposed 
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MLP model. 

 

Fig. 6 Reconstruction results of Ea = 27.0 (a) and 30.0 (b) with different models, reconstruction input 

variables set 𝑇, 𝜌, and 𝑢. 

 

Table 1 Average relative error of 1D pulsating detonations with different reconstruction models. 

Reconstruction models 
Ea = 27.0 

(∆t = 0.2) 

Ea = 27.0 

(∆t = 0.1) 

Ea = 30.0 

(∆t = 0.2) 

Ea = 30.0 

(∆t = 0.1) 

MLR 7.293% 7.275% 53.394% 53.101% 

MSPR 2.023% 2.012% 32.535% 30.715% 

MLP 0.085% 0.082% 0.314% 0.313% 

 

The three different well-established models are used to reconstruct the shock-reactive front 

distance of the 1D pulsating detonations from the dimensionless time t = 1700 and 4200 for Ea = 27.0 

and 30.0, respectively. The reconstruction results corresponding to different activation energies, in 

which the test data is extracted with time interval ∆t = 0.2, are shown in Fig. 6. And Table 1 gives the 

average relative errors of each Ea test set with three different models. It can be seen that the prediction 

results of the three models are in good agreement with the real shock-reactive front distance curve of 

Ea = 27.0. However, as the Ea increases to be 30.0, the reconstructing errors increase significantly for 

MLR and MSPR. The prediction results of the two models have large deviations when the pulsating 

detonation exhibits violent oscillation at the peak and trough of each pulsation cycle. Especially for 

MLR, there are even non-physical results with negative lengths shown in Fig. 6(b). On the contrary, 

MLPs maintain good performance for different activation energies with all the average value of 

relative error below 0.5%, which indicates that MLP has a better nonlinear learning and prediction 

ability to reconstruct shock front of the 1D pulsating detonations. Although using the MLP introduces 



Page 12 of 22 

 

a "black-box" to reconstruct shock front, these comparison results of different models demonstrate a 

tradeoff between the interpretability and the prediction accuracy. Furthermore, for 2D or even 3D 

cellular detonations, MLP is able to take full advantage of its powerful big data learning ability from 

the prospective of better reconstruction and generalization. Furthermore, reconstruction results of 

average relative error for test data extracted with time interval ∆t = 0.1 are also shown in Table 1. It is 

found out that the errors corresponding different time interval are close with the same Ea and 

reconstruction model, demonstrating that the time interval ∆t of extracting test set data has little 

influence on the reconstruction results. 

3.3 Application on 2D cellular detonations 

 Compared with the 1D pulsating detonations, the additional y-direction in the 2D flow field brings 

cellular surface of detonation waves along with reciprocating transverse shock waves, which makes 

the shock surface difficult to reconstruct. Consequently, more information from reactive front need to 

be provided to achieve high quality reconstruction. Thus, six parameters, 𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢 and 𝑣, 

are first used as MLP input variables set of the flow field reconstruction method mentioned above to 

reconstruct the lead shock surface of the 2D unstable cellular detonations. Detailed discussion on MLP 

input variables of 2D reconstruction will be presented in following Sec 3.4. 

 

Fig. 7 Typical reconstructed shock (white curve in pressure field) and relative error of shock distance 

with Ea = 10 (10 grids per L1/2) (a) and corresponding relative error frequency distribution histogram 

(b), MLP input variables set 𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢 and 𝑣. 
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Fig. 8 Typical reconstructed shock (white curve in pressure field) and relative error of shock distance 

with Ea = 20 (10 grids per L1/2) (a) and corresponding relative error frequency distribution histogram 

(b), MLP input variables set 𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢 and 𝑣. 

Typical reconstruction results from test set for the cases of Ea = 10 and 20 are shown in Figs. 7(a) 

and 8(a), respectively. It is observed that the reconstructed shock, plotted by the white curve in the 

flow fields, locates around the simulated lead shock, demonstrating that a well-trained MLP can 

predict the shock influenced by the reactive front precisely. The relative errors at different positions 

are also listed quantitatively. The error may be positive or negative, meaning the distance LMLP may 

be larger or smaller than its real value, but in a limited range. The error range is below 20% in the case 

of Ea = 10, but becomes large in the case of Ea = 20. 

The distribution of relative error is shown in Figs. 7(b) and 8(b) to facilitate further discussion. 

In the case of Ea = 10, close to 600 results among 801 pairs of data have an absolute value of relative 

error less than 5%. Although the error range becomes large when Ea increases to 20, again about half 

of the results have an absolute value of relative error less than 5%, which still supports the reasonable 

performance of this MLP-based reconstruction approach. In fact, it is not surprising that increasing Ea 

results in larger error. Results of both flow fields in Fig. 1 and numerical smoked foils in Fig. 2 

demonstrate that the detonation becomes unstable when increases Ea. This makes the relation of the 

shock and reactive front more involved, so raises the difficulty to reconstruct the shock. As can be 

seen from the MLP reconstruction results for 1D pulsating detonations, the results are almost the same 

as the simulated ones. In 2D cellular detonations, the leading shock is curved and with discontinuities 

induced by transverse shocks, these lead to unavoidable sources of error. 
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Fig. 9 Typical reconstructed shock (white curve in pressure field) and relative error of shock distance 

with Ea = 20 (20 grids per L1/2) (a) and corresponding relative error frequency distribution histogram 

(b), MLP input variables set 𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢 and 𝑣. 

To verify the influence of grid scale on the reconstruction results of MLP, 20 grids per L1/2 is used 

to carry out simulations for Ea = 20. The same procedure and MLP parameters are used to train and 

test the MLP, except that 801×2 pairs of shock-reactive front data are extracted from each transient 

flow field. For the cases of six input variables, i.e., 𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢 and 𝑣, typical reconstruction 

results from test set of Ea = 20 with fine grid are shown in Fig. 9. Results show that trained MLP still 

can reproduce the shock based on the parameters of the reactive front accurately. Figure 7(b) shows 

the corresponding error frequency distribution histogram, which has a similar distribution 

characteristic to that of Fig. 8(b) for Ea = 20 with 10 grids per L1/2. 

3.4 Discussion on input variables and generalization 

 

Fig. 10 Typical reconstructed shock (white curve in the pressure fields) and relative error of shock 
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distance with Ea = 10 (a) and 20 (b), MLP input variables set 𝑇, 𝜌, 𝑢 and 𝑣. 

Results in Sec. 3.2 demonstrate that the idea of using MLP to reconstruct the lead shock of both 

1D and 2D unstable detonations is feasible primarily with 6 input variables. Since the flame surface 

information obtained from experiment results are usually very limited for most of practical cases, 

whether the proposed method is still effectiveness when the number of input variables for MLP is 

reduced, is especially vital to its engineering application. Thus, more reconstruction cases with less 

input variables are carried out to test the practicability of the proposed method. These tests are 

performed by using 4 input variables (𝑇, 𝜌, 𝑢 and 𝑣), and reconstruction results from test set for the 

cases of Ea = 10 and 20 cellular detonation flow fields are shown in Fig. 10. Generally speaking, the 

error increases noticeably after the gradients of temperature and density are removed. From the flow 

fields shown in Fig. 10, the reconstructed shock, displayed by white curve, remains nevertheless close 

to the simulated one. Additionally, the high activation energy of Ea = 20 induces again large error, due 

to the strong instability of corresponding 2D cellular detonations, which is similar to the results with 

six input variables. 

Table 2 Reconstruction results of test set with different MLP input variables set. 

Input variables set 
Ea = 10 

(10 grids per L1/2) 

Ea = 20 

(10 grids per L1/2) 

Ea = 20 

(20 grids per L1/2) 

𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢, 𝑣 4.10% 7.04% 7.33% 

𝑇, 𝜌, 𝑢, 𝑣 7.46% 11.10% 9.77% 

𝑇, 𝑇′, 𝑢, 𝑣 9.75% 14.77% 13.93% 

𝜌, 𝜌′, 𝑢, 𝑣 4.86% 8.28% 8.00% 

𝑇, 𝑇′, 𝜌, 𝜌′ 8.43% 11.41% 12.57% 

To give an overall estimation of reconstruction errors, the average relative error of all 

reconstruction test samples is calculated. Each input variables set has been trained for five times to 

exclude the effects of initiation in MLP, whose average error is shown in Table 2. Besides the two 

groups of input variables, three other groups with different input variables were performed. In the 

given five groups, the first group gives the best results, and removing the gradients of temperature and 

density increases the error from 4.10% to 7.46% with Ea = 10 and from 7.04% to 11.10% with Ea = 

20. The other groups remove the input variable of density, temperature and velocity, respectively. It is 
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found out that the 4th group gives the best results when keeping 4 input variables, in which the related 

variables of temperature are removed. We deduce that in the flow fields, the temperature variation 

between the shock and reactive front is modest, so plays a relatively weaker role in the reconstruction. 

Furthermore, effects of resolution are also tested through the Ea = 20 cases and shown in Table 2. It is 

found out that the errors corresponding the same input variables set are close with the same Ea, 

demonstrating that the reconstruction is not significantly sensitive to the accuracy of simulated results. 

Further analysis on the role of different variables, as well as the choosing strategy, is necessary in the 

future. 

 

Fig. 11 Error distribution of reconstruction results of six different Ea test set 

Another key problem of shock front reconstruction based on MLP is the generalization capability. 

It has been demonstrated that a well-trained MLP can accurately reconstruct the lead shock wavefront, 

given a fixed activation energy Ea. Considering the activation energy may vary in practical applications, 

further tests should be performed to examine the generalization capability at different activation 

energies. If the proposed method is robust in the lead shock reconstruction for different activation 

energies, it will be a flexible and powerful tool for future application on shock front reconstruction for 

detailed chemical reactions simulation and experimental results. In these further tests, we use the well-

trained MLP from the case of Ea = 20 with six input variables (𝑇, 𝑇′, 𝜌, 𝜌′, 𝑢, 𝑣), and the cellular 

detonation flow fields with six other activation energies, Ea = 14, 16, 18, 22, 24, 26, are reconstructed. 
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The main parameters of numerical simulations are the same, such as domain width 80 and 10 grids 

per L1/2, and the test set for each Ea is composed of 50 different transient flow fields extracted from 

different instants with every certain number of calculation steps. Figure 11 shows the mean relative 

error of every flow field for each Ea test set. For each flow field, the error is given by a point. Generally 

speaking, the relative error increases when Ea deviates from 20, the activation energy used to train the 

MLP. In the cases of Ea = 18 and 22, all the error points locate below 10%. In contrast, the error points 

mainly locate between 10% and 15% in the cases of Ea = 14 and 26. This should be attributed to the 

different mapping relationships between the reaction surface and the corresponding lead shock induced 

by the activation energy variation. 

Table 3 Average errors based on 50 flow fields in the cases of each Ea. 

Ea Average error 

14 10.83% 

16 8.77% 

18 7.72% 

20 7.04% 

22 7.09% 

24 10.21% 

26 12.54% 

 

Although the error increases when Ea either increases or decreases, we think that the deviation is 

acceptable, and the average errors of all flow fields are shown in Table 3. It should be noted that the 

error has reached above 7% already in the case of Ea =20 with the test samples generated from the 

same Ea flow fields. When Ea decreases to be 14, the error increases to be about 10.83%, less than 

twice of the basic error. However, it is surprised that the error does not increase dramatically when Ea 

increases. When Ea increases to be 26, the error is about 12.54%, still less than twice of the basic error. 

Theoretically, increasing Ea introduces a number of unstable modes, and then leads to the more 

complicated cellular structures, as illustrated in Fig. 2. Nevertheless, the MLP trained by low Ea data 

still performs well given high Ea, indicating the proposed method has a good generalization capability. 



Page 18 of 22 

 

4. Conclusion 

A novel method of reconstructing the lead shock of unstable detonation is proposed and tested in 

this study. Within the detonation structure, the lead shock and the reactive front are coupled. Benefiting 

from the rapid development of advanced laser-based optical diagnostics within the combustion 

community, measurement of the flow and kinetic details as well as the location of reactive front can 

be achieved. It is the objective of this work to link such information to predict the lead shock evolution 

and to obtain a complete picture of cellular detonation dynamics. Using multi-layer perceptron (MLP) 

method, we propose a shock reconstruction method which can predict the lead shock evolution from 

details of the reactive front. The application of the proposed method is analyzed and verified 

thoroughly through the numerical results of 1D pulsating detonations and 2D cellular detonations 

using the reactive Euler equations with a one-step irreversible chemical reaction model. For 

detonations with two activation energy values, effects of input variables number are also studied by 

analyzing the error of trained MLP. Furthermore, the extensible of reconstruction method is 

investigated by reconstructing flow field with different activation energies, which shows the proposed 

method has well generalization capability. 

This work is performed based on 2D cellular detonation from numerical simulations, and one-

step irreversible chemical reaction model is employed to generate the data set. However, it should be 

noted that this shock reconstruction method is universal and expandable. It should be not limited to 

2D, but capable of reconstructing 3D shock. The 1D pulsating detonations reconstruction results show 

that the average relative error is below 1%. From 1D to 2D, the curved shock may raise the error, so 

it is expected of larger error from 2D to 3D, but there should be no principal obstructions. On the other 

side, the one-step irreversible chemical reaction model is actually a limitation to this method. With 

detailed chemical reactions, more species distributions are simulated and thus defining the reactive 

front has more choices, helpful to improve the MLP reconstruction. Moreover, the present concept 

may provide a novel way of combing numerical and experimental results. The numerical simulations 

can generate big data, in which the projection of many different characteristic values can be extracted. 

In contrast, the lack of enough information in experiments becomes serious, such as the reactive front 

without lead shock measured at the same time. The MLP can thus be used widely to combine the 

numerical and experimental results, and provide a new framework to interpret results of detonation 
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waves.  

As a preliminary work, a rather simple MLP is chosen to focus the feasibility of the reconstruction 

idea. Undoubtedly, the results will be improved greatly benefiting from more advanced deep learning 

technologies developed recently. One of the main problems of this method derives from the MLP 

output, with only one neuron predicting the shock and reactive front distance LMLP. Theoretically, this 

mapping should be performed along the streamlines, so this method performs well in 1D detonations. 

For 2D detonations, the reactive front not only influences the lead shock exactly ahead, but also the 

neighboring shock. Therefore, the one neuron is oversimplified, and the scalar LMLP should be replaced 

by a vector. Furthermore, using the information from historic flow fields is also a good idea 

considering the pattern of cellular detonations. These spatial and temporal physical consideration 

could be implemented by the new technologies in the machining learning, such as CNN (Convolution 

Neural Network) or RNN (Recurrent Neural Network). 
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