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Abstract The present study investigates the transmis-

sion of a detonation wave across a density interface.

The problem is first studied theoretically considering

an incident CJ detonation wave, neglecting its detailed

reaction-zone structure. It is found that, if there is a

density decrease at the interface, a transmitted strong

detonation wave and a reflected expansion wave would

be formed; if there is a density increase, one would ob-

tain a transmitted CJ detonation wave followed by an

expansion wave and a reflected shock wave. Numeri-

cal simulations are then performed considering that the

incident detonation has the ZND reaction-zone struc-

ture. The transient process that occurs subsequently

to the detonation-interface interaction has been cap-

tured by the simulations. The effects of the magnitude

of density change across the interface and different reac-
tion kinetics (i.e., single-step Arrhenius kinetics vs. two-

step induction-reaction kinetics) on the dynamics of the

transmission process are explored. After the transient

relaxation process, the transmitted waves reach the fi-

nal state in the new medium. For the cases with two-

step induction-reaction kinetics, the transmitted wave

fails to evolve to a steady detonation wave if the magni-

tude of density increase is greater than a critical value.

For the cases wherein the transmitted wave can evolve

to a steady detonation, the numerical results for both

reaction models give final propagation states that agree

with the theoretical solutions.
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1 Introduction

Inhomogeneities are inevitable in practical explosive mix-

tures. For example, in accidentally released clouds of

combustible fuel, nonuniformities in chemical compo-

sition are commonly present. Due to the temperature

difference between the released fuel clouds and the sur-

roundings (e.g., ground, ambient atmosphere), temper-

ature, and hence, density gradients may be formed within

the explosive mixture. Furthermore, in propulsion ap-

plications of detonation waves, such as Rotating Det-

onation Engines (RDEs), inhomogeneities in the form

of interfaces and concentration gradients are present in

the combustion chamber due to discretely located injec-

tion of reactants. It is therefore of practical importance

to examine how detonation waves interact with inho-

mogeneities.

The response of gaseous detonation waves to inho-

mogeneities is complicated by the fact that the detona-

tion wave structure is transient and spatially nonuni-

form. As such, a detonation wave complex propagates

in a nonuniform medium, its entire structure is sub-

jected to perturbations due to the presence of inhomo-

geneities. The wave propagation thus undergoes an un-

steady relaxation process in response to these perturba-

tions. Probing the dynamics underlying this relaxation

process may reveal some insights into the intrinsic prop-

agation mechanism of detonation waves.

Detonations propagating in reactive mixtures with

embedded nonuniformities have been experimentally im-

plemented in various ways. Bjerketvedt et al. studied a
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Fig. 1 Problem schematic: (a) A simplified model considering an incident CJ detonation wave without considering its detailed
structure and (b) a model considering an incident detonation wave with the ZND structure.

detonation wave propagating across an inert gap of air,

showing that whether a detonation can be re-initiated

downstream from the gap depends on the gap width and

the properties of the reactive mixtures. [1] In some stud-

ies, a reactive medium with gradual changes in chemi-

cal composition, e.g., a gradient in fuel concentration,

was created via diffusion of the reactants in a vertical

tube (or channel). [2,3] The propagation behavior of the

detonation wave at chemical composition gradients has

been recorded as gradual changes in the propagation ve-

locity and detonation cell size. [2,3] It is important to

note that, in both of the above-mentioned experimen-

tal scenarios, a finite length scale of the inhomogeneity,

i.e., the width of the inert gap or the length throughout

which the gradient is spread, has been introduced into

the system. This length scale in addition to the intrin-

sic length scales of the detonation waves further com-

plicates the underlying dynamics. Hence, introducing

an inhomogeneity of a negligible length comparing the

thickness of detonation structure might be a more eas-
ily diagnosable set-up to study this problem. Thus, the

interest in the transmission of a detonation wave across

an interface–over which the thermodynamic, flow, and

chemical properties change abruptly–is motivated.

A benchmark scenario for examining the transmis-

sion of a detonation wave across a discontinuity is the

transmission from a reactive mixture into an inert medium,

i.e., detonation-to-shock transmission. Some experimen-

tal studies on this problem have shown that the proper-

ties of the transmitted shock wave well agree with those

predicted by the theoretical models. [2,4,5]. Studies on

the transmission of a detonation wave across an inter-

face that separates two reactive mixtures with different

properties was first conducted by Strehlow et al. [6],

and later, by Kuznetsov et al. [7,8] and Li et al. [9,

10]. In these experimental set-ups, the two mixtures

were initially separated by a thin diaphragm or a slid-

ing valve. Rupture of the diaphragm and opening of

the valve likely disturb the interface, introducing con-

siderable uncertainties to the experimentally recorded

wave evolution downstream from the interface. Thus,

in an attempt to create an abrupt, planar discontinuity,

the head-on collision of a detonation wave with a weak

shock wave was studied [11,12]. In these cases, since

an incident detonation wave is subjected to an abrupt

change in density, pressure, temperature, and flow ve-

locity, it is rather difficult to diagnose the mechanisms

underlying the relaxation behavior of the transmitted

detonation wave into the shocked region.

Concerning the difficulties in devising experiments

to examine the transmission of a detonation wave across

an undisturbed interface, it is perhaps more convenient

to approach this problem via theoretical analysis and

computational simulations. In the current study, a det-

onation wave subjected to an abrupt change in density

and temperature is considered in a one-dimensional sys-

tem with initially uniform pressure and stationary flow.

The objective of this study is to probe the response

of the detonation wave to various magnitudes of den-

sity increase and decrease across the interface. To this

end, two different models are used in this study: (1) A

simple model with an incident Chapman-Jouguet (CJ)

detonation wave wherein the reaction zone structure of

the detonation is neglected (as shown in Fig. 1(a)); (2) a

more complex model considering an incident detonation

wave with the corresponding Zel’dovich-von Neumann-

Döring (ZND) reaction-zone structure (as shown in Fig.

1(b)). The simple model with an incident CJ wave can

be analytically solved to obtain the steady-state prop-

erties of the transmitted detonation. To examine the

relaxation process, the second model considering the

ZND wave profile needs to be solved numerically. In

this paper, these two models are referred to as the CJ-

wave model and the ZND-wave model, respectively.

This paper is organized as follows. Section 2 is fo-

cused on the CJ-wave model. The analytic results of the

transmitted detonation are presented in this section.

The ZND-wave model is shown in Sect. 3. The numer-
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ical results of the relaxation process of the transmitted

detonation are presented in this section. In Sect. 4, the

simulation results of the steady-state velocity of the

transmitted detonation are compared with the corre-

sponding theoretical results. The findings of this study

are summarized in the Conclusion (Sect. 5).

2 The CJ-wave model

This model considers a one-dimensional system with

calorically ideal gas. An incident detonation wave prop-

agates rightward and transmits across an interface over

which initial density and temperature changes abruptly

while maintaining the same pressure. The flow in the

system is initially stationary. The adiabatic index γ

is the same on both sides of the interface. If the in-

cident detonation wave is considered as the CJ solution

(as shown in Fig. 1(a)), without taking the detailed

reaction-zone structure into account, then a standard

wave interaction analysis of the transmission problem

can be carried out. The x-t diagram of the wave pro-

cess is shown in Fig. 2. The flow behind the incident

detonation (in Region 2 shown in Fig. 2) is assumed to

be uniform. This assumption is valid in the case where

the back boundary of the system is very far downstream

from the CJ wave so that the trailing Taylor rarefaction

wave has very shallow gradients.

Across the interface, the initial density either in-

creases (ρ1 > ρ0) or decreases (ρ1 < ρ0). While main-

taining the same initial pressure across the interface,

i.e., p0 = p1, the initial temperature downstream from

the interface T1 must be varied reciprocally to the change

in density as follows,

ρ1
ρ0

=
T0
T1

(1)

The change in the acoustic impedance z = ρc = ρ
√
RT

across the interface is thus related to the change in den-

sity as follows,

z1
z0

=
ρ1
√
RT1

ρ0
√
RT0

=

√
ρ1
ρ0

(2)

Equation 2 shows that, as density increases across the

interface, acoustic impedance increases; as density de-

creases, acoustic impedance decreases. For this prob-

lem, it is thus valid to consider the density ratio at the

interface as an indicator of the corresponding acoustic-

impedance ratio. Although shock-impedance ratio should

be considered to predict shock-interface interactions,

according to the analysis performed by Haselbacher [13],

for the case wherein γ is the same on both sides of the

interface, considering acoustic-impedance ratio is suffi-

ciently accurate for making this prediction. Therefore,
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Fig. 2 x-t diagram showing a CJ detonation wave transmit-
ting across a density interface.

all the results presented in this paper are parametrized

by the magnitude of density increase and decrease across

the interface, which is reported as ∆ρ = (ρ1 − ρ0)/ρ0
in percentage.

2.1 Theoretical analysis

The problem is defined for a given incident detonation

Mach number, MD,i = MCJ,i, and properties on each

side of the interface. As the incident detonation reaches

the interface, as shown in Fig. 2, a reflected wave and a

transmitted detonation are formed. The reflected wave

can be a shock wave or a rarefaction wave depending

on the nature of the acoustic impedance mismatch at

the interface. The transmitted detonation can be the

strong, weak, or CJ detonation solution. The weak det-

onation solution can be eliminated in general. [14,15]

If the transmitted detonation wave is the strong so-

lution, the product flow (in Region 4 shown in Fig. 2) is

subsonic and uniform up to the contact surface. If the

transmitted detonation wave is CJ, then the flow can

either be uniform up until the contact surface or there

can be an expansion wave trailing behind the transmit-

ted detonation wave. Thus, there can be either a trans-

mitted strong or CJ detonation wave with uniform flow

behind it or a transmitted CJ detonation wave with an

expansion wave behind it. Thus, there are four possible

configurations of the transmitted detonation and the

reflected wave as summarized in Table 1.
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Table 1 Possible wave configurations

case reflected wave transmitted detonation

1 shock wave strong or CJ with uniform flow
2 shock wave CJ with expansion wave
3 expansion wave strong or CJ with uniform flow
4 expansion wave CJ with expansion wave

For the incident and transmitted detonation waves,

the relationships across the wave are given as follows,

pd+
p−

=
γ + η ± γs
η(1 + γ)

ρd+
ρ−

=
γ + 1

(γ + η ∓ s)
=

D

D − u+

MD =
D

c−

(3)

where

s = ±
√

(1− ηD)2 −KηD

ηD =
1

MD
2 = (1 +

K

2
)−

√
K(1 +

K

4
)

K = 2(γ2 − 1)
Q

γp−v−

(4)

Variables p, ρ, v, u, and c are pressure, density, specific

volume, particle velocity, and the speed of sound respec-

tively, MD is the Mach number of the detonation wave,

D is its velocity and Q is the chemical heat released

per unit mass in the reaction. In the above equations,

the “+” and “−” indicate the properties behind and

in front of the wave, respectively. The “D” subscript

indicates that these flow values are at the end of the

detonation reaction zone. In this way, one can distin-
guish the state “D+” at the exit of a detonation wave

and the state “+” behind a shock wave. The strong and

weak detonation solutions are associated with the pos-

itive and negative values of s in Eq. 4, respectively. If

s = 0, the CJ solution is obtained.

In the reflected wave is a shock, the pressure and

flow velocity behind the shock wave can be obtained

via the Rankine-Hugoniot relations as follows,

p+
p−

=
2γMs

2 − (γ − 1)

γ + 1

u+ − u−
c−

=
2(Ms

2 − 1)

(γ + 1)Ms

(5)

where Ms is the shock wave Mach number and c is the

sound speed.

For an expansion wave–either reflected from the in-

terface or trailing a transmitted CJ detonation–the change

in pressure and flow velocity can be obtained via the

isentropic relations and the characteristic equations (i.e.,

constant Riemann invariant along a characteristic), re-

spectively, as follows,

c+
c−

= (
p+
p−

)
γ−1
2γ

u+ +
2

γ − 1
c+ = u− +

2

γ − 1
c−

(6)

With these relations for detonation, shock, and ex-

pansion waves, knowing the Mach number of the in-

cident CJ detonation MCJ,i and the initial properties

across the interface, the configuration of the transmit-

ted detonation and the reflected wave with unique prop-

erties can be solved by applying mechanical equilibrium

conditions at the advected contact surface, i.e., pL = pR
and uL = uR.

2.2 Theoretical solutions

The problem was solved for a range of incident detona-

tion Mach numbers (3.0 to 7.3) with a range of density

changes (-50% to +50%). The solution wave pattern

was found to depend on whether there is a density in-

crease or decrease. For a density decrease (and temper-

ature increase), a transmitted strong detonation and

a reflected expansion wave are obtained. This result-

ing wave configuration corresponds to Case 3 in Table

1 and is depicted in Fig. 3(a). For a density increase

(and temperature increase), a transmitted CJ detona-

tion with an expansion wave and a reflected shock wave

are obtained. This resulting wave configuration corre-

sponds to Case 2 in Table 1 and is depicted in Fig. 3(b).

The detailed analytic solutions for these two cases can

be found in the Appendix.

The degree of overdrive of the transmitted detona-

tion is defined as f = D2
t /D

2
CJ where Dt is the speed

of the transmitted detonation and DCJ the CJ detona-

tion in the downstream medium (on the right of the in-

terface). This is plotted against the percentage density

change for selected incident detonation Mach numbers,

MD,i = MCJ,i in Fig. 4. For all cases, the transmitted

detonation is strong (f > 1) for a density decrease and

CJ (f = 1) for a density increase. The degree of over-

drive f increases with increasing magnitude of density

decrease and increasing MCJ,i.

3 The ZND-wave model

In this model, the incident detonation wave has the

ideal ZND reaction-zone structure. Transient response

of the transmitted detonation can thus be captured via

numerical simulations. The governing equations of this

model and the numerical methodologies used to solve
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Fig. 3 x-t diagrams showing the resulting wave configurations for the cases with density (a) decrease and (b) increase across
the interface.
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these equations are presented in Sect. 3.1 and 3.2, re-

spectively. The simulation results of the relaxation pro-

cess are shown in Sect. 3.3 where the effects of the mag-

nitude of density decrease and increase and various re-

action kinetics are explored.

3.1 Governing Equations

This model is governed by the one-dimensional, reactive

Euler equations:

∂U

∂t
+
∂F(U)

∂x
= S(U) (7)

U =


ρ

ρu

E

ρλ

 ,F(U) =


ρu

ρu2 + p

(E + p)u

ρuλ

 ,S(U) =


0

0

0

ω̇

 (8)

where e is the total energy per unit mass given by,

e =
p

(γ − 1)ρ
+
u2

2
+ λQ (9)

The variables in the governing equations are nondimen-

sionalized with respect to the initial state 0 upstream

from (i.e., on the left side of) the interface face.

The governing equations are coupled with a chem-

ical kinetic law for the reaction rate, ω̇. The reaction

progress variable is denoted as λ, where λ = 0 for reac-

tants and λ = 1 for products. In this study, two differ-

ent reaction rate laws were considered, i.e., single-step

kinetics and two-step induction-reaction kinetics.

The simpler case is a single-step reaction law in the

Arrhenius form as follows,

∂(ρλ)

∂t
= ω̇ = kρ(1− λ)exp

(
−Ea

T

)
(10)
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where Ea is the activation energy and T is temperature.

A pre-exponential constant for a given mixture k is used

to define spatial and temporal scales.

A more realistic reaction model includes an induc-

tion zone. The reaction zone is modeled in the same way

and the induction zone is also of an Arrhenius type as

follows,

∂(ρλ)

∂t
= ω̇ = (1−H(1− ξ))krρλexp

(
−Er

T

)
∂(ρξ)

∂t
= H(1− ξ)ρkiexp

[
Ei

(
1

T+
− 1

T

)] (11)

H(1− ξ) =

{
1 ξ < 1

0 ξ ≥ 1
(12)

where there is a reaction zone progress variable, λ and

an induction zone progress variable, ξ. They increase

from 0 at the beginning of their respective zones to

1 at the end. There are also two activation energies

and pre-exponential factors, E i and k i for the induc-

tion zone and E r and k r for the reaction zone. T+ is

the temperature at the shocked state. Parameters for

specifying activation energy εi and εr are defined to be

Ei/µ and Er/µ, respectively, where µ is the tempera-

ture jump across the leading shock of the detonation.

3.2 Numerical methodology

The computational domain was defined on a one-dimen-

sional, uniform Cartesian grid. Transmissive boundary

conditions were applied on the left and right of this

domain. The governing equations are numerically in-

tegrated using the method of fractional steps and two

second-order finite volume schemes. These are the slope-

limited centered (SLIC) and the upwind weighted av-

eraged flux (WAF) schemes. [16]. The upwind WAF

scheme with an exact Riemann solver was used with the

single-step Arrhenius kinetic model. The SLIC scheme

was used with the two-step induction-reaction kinetic

model. Validations of these codes in gaseous detonation

simulations can be found in Refs. [17,18].

The resolution was assessed by comparing the com-

putational grid size to the characteristic length of the

reaction zone coupled to the leading shock front. For

the single-step Arrhenius reaction model, the charac-

teristic length scale corresponds to the half reaction

zone length of the initial, steady ZND wave. For the

two-step induction-reaction kinetic model, the initial,

steady induction zone length is used as the character-

istic length scale. A resolution of 100 grid points per

characteristic length of the reaction zone was used, as

verified in previous convergence studies [17,18]. The

pre-exponential factors were scaled such that the char-

acteristic lengths of the reaction zone were unity. For

the two-step induction-reaction kinetic model, ki is set

to be the particle velocity behind the shock front in the

shock-fixed frame, uD,+.

A rightward-propagating detonation was initialized

by imposing the steady ZND wave solution on the grid

near the left end of the domain. The leading shock

front is initially 10 characteristic reaction-zone lengths

away from the left boundary. The ZND solution was

obtained by integrating the governing equations for a

steady state, i.e., Eq. 7 with ∂U/∂t = 0, considering

the Mach number of the leading shock is the MCJ. The

ODELS solver included in the the FORTRAN library

ODEPACK was used to perform this numerical inte-

gration. The Backward Differentiation Formula (BDF)

methods are implemented in this solver to tackle stiff

equations. [19] The detonation was allowed to propa-

gate over a sufficient distance (at least 400 character-

istic reaction-zone lengths of the incident ZND deto-

nation) before the interface was encountered in order

to eliminate influences from the rear boundary of the

system.

3.3 Results

Since the incident detonation has a reaction zone of fi-

nite thickness, the final state cannot be achieved instan-

taneously downstream of the density interface. There

is an unsteady period during which the detonation re-

sponds to the abrupt change in density. Subsequently,

the detonation gradually relaxes to its final downstream

state. Note that all the length scales reported in this

section are normalized by δ the 90%-complete reaction

zone length (where λ = 0.9) in the corresponding ZND

solution. The x-coordinates are shifted so that the inter-

face is initially located at x/δ = 0. All the simulations

presented in this section are for the cases with Q = 50

and γ = 1.2.

3.3.1 Dynamics of the relaxation process

In this subsection (Sect. 3.3.1), the transient dynamics

of the relaxation process is first studied using the sim-

pler reaction model, i.e., single-step Arrhenius kinetics

with Ea = 20.

A sample case with a density decrease and temper-

ature increase across the interface is first considered.

In Fig. 5(a), pressure contours are plotted as an x-t

diagram showing the evolution of the flow field in the

course of a detonation wave with the ZND structure

transmitting across the interface for the case with a
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density decrease of ∆ρ = −25%. The contour lines of

the absolute value of density gradient are plotted as

thin gray curves in Fig. 5(a). On this x-t diagram, the

transmitted detonation, advected contact surface, and

reflected rarefaction wave can be identified. In the case

with a density decrease (and temperature increase while

maintaining the same pressure) over the interface, there

is correspondingly a decrease in acoustic impedance.

The leading shock wave encountering such an interface

thus generates a reflected rarefaction wave and under-

goes an abrupt decrease in shock pressure. [20]

In Fig. 5(b), the history of the leading shock pres-

sure ratio p+/p0 is plotted as a function of the normal-

ized leading shock position xs/δ to show the full relax-

ation process of the transmitted detonation for the case

with a density decrease of ∆ρ = −25%. The location of

the interface is indicated by the thin dash line in Fig.

5(b). Immediately downstream from the interface, as

expected on the basis of gasdynamic considerations, the

shock pressure undergoes an abrupt decrease to about

80% of its its initial value, i.e., the von Neumann pres-

sure of the incident detonation. This is followed by a

rapid re-acceleration up to a distance of xs/δ ≈ 5. Sub-

sequently, at a location xs/δ ≈ 20 downstream from

the interface, the leading shock pressure decreases to

be within 5% of the steady-state value.

A sample case with a density increase and temper-

ature decrease across the interface is next considered.

In Fig. 6(a), pressure contours are plotted as an x-t

diagram showing the evolution of the flow field in the

course of a detonation wave with the ZND structure

transmitting across the interface for the case with a

density increase of ∆ρ = +20%. The contour lines of

the absolute value of density gradient are plotted as

thin gray curves in Fig. 6(a). On this x-t diagram, the

transmitted detonation, advected contact surface, and

reflected shock wave can be identified. In the case with a

density increase (and temperature decrease while main-

taining the same pressure) over the interface, there is

correspondingly an increase in acoustic impedance z =

ρc = ρ
√
RT . The leading shock wave encountering such

an interface thus generates a reflected shock wave and

undergoes an abrupt increase in shock pressure. [20]

In Fig. 6(b), the history of the leading shock pres-

sure ratio p+/p0 is plotted as a function of the normal-

ized leading shock position xs/δ to show the full relax-

ation process of the transmitted detonation for the case

with a density increase of ∆ρ = +20%. The location of

the interface is indicated by the thin dash line in Fig.

6(b). Upon the detonation-interface interaction there is

an abrupt increase of approximately 10% in the leading

shock pressure ratio. This is followed by a decay to a

minimum in the leading shock pressure at xs/δ ≈ 10,

which corresponds to a sub-CJ state of approximately

85% of the CJ detonation velocity of the gas down-

stream the interface. Subsequently, the wave acceler-

ates and reaches a peak shock pressure of p+/p0 ≈ 59

at xs ≈ 30. The leading shock pressure then gradually

decreases. At a location xs/δ ≈ 37 downstream from

the interface, the leading shock pressure decreases to

be within 5% of a steady-state value.

3.3.2 Effect of the magnitude of density decrease and

increase ∆ρ

In Fig. 7(a), the evolution histories of the leading shock

pressure p+/p0 are plotted as functions of the normal-

ized leading shock position xs/δ for the cases with single-

step Arrhenius kinetics (Ea = 20) and density decreases

of −15%, −25% and −35%. As shown in Fig. 7(a), the

relaxation processes for different magnitudes of den-

sity decrease are qualitatively similar, i.e., an abrupt

decrease in shock pressure followed by an acceleration

phase to reach a peak shock pressure, and then a rel-

atively slow decay to a steady state. At the interface

(indicated by the vertical dash line in Fig. 7(a)), the

magnitude of the abrupt drop in shock pressure be-

comes greater for increasingly large density decrease.

This trend is due to the fact that the magnitude of

the decrease in acoustic impedance over the interface

increases for greater magnitudes of density decrease.

Further, it can be noticed in Fig. 7(a) that, as the mag-

nitude of density decrease increases, the subsequent in-

crease in shock pressure becomes steeper, and the peak

shock pressure decreases. Recall that, for a greater mag-

nitude of density decrease, the increase in temperature

is greater, resulting in a greater shock temperature of

the transmitted detonation after the interface, T+,t.

Since the reaction rate is an exponential function of

temperature (Eq. 10), this greater shock temperature

leads to a more rapid reaction rate, and thus, a steeper

increase in shock pressure of the transmitted detona-

tion.

In Fig. 7(b), the evolution histories of the leading

shock pressure p+/p0 are plotted as functions of the

normalized leading shock position xs/δ for the cases

with single-step Arrhenius kinetics (Ea = 20) and den-

sity increases of +10%, +20%, and +30%. At the inter-

face, as shown in Fig. 7(b), the abrupt increase in shock

pressure is more pronounced for increasing greater mag-

nitudes of density increase over the interface. This trend

can again be explained on the basis of gasdynamic con-

siderations: the magnitude of the increase in acous-

tic impedance over the interface increases for greater

magnitudes of density increase. For increasingly greater

magnitude of density increase, the downstream temper-
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ature decreases more while maintained the same pres-

sure at the interface. The shock temperature of the

transmitted detonation thus decreases, i.e., lower T+,t.

Since the reaction rate is exponentially dependent upon

temperature, the lower shock temperature results in a

longer low-shock-pressure phase (i.e., the “dip” in shock

pressure as shown in 7(b)) of the transmitted detona-

tion for increasingly greater magnitude of density in-

crease.

Since the activation energy Ea is nondimensional-

ized with respect to the temperature of the initial state

upstream from the interface, while holding the value

Ea = 20 fixed, the effective activation energy is greater

due to the decrease in initial temperature downstream

from the interface. A greater effective activation energy

leads to more pronounced inherent instabilities of det-

onation. [21,22] Some oscillations can thus be observed

for case with a large density increase ∆ρ = +30% in

the low-shock-pressure phase as shown in Fig. 7(b).

3.3.3 Effect of reaction kinetics

The effect of different reaction kinetics on the transient

process has also been explored, specifically the addition

of an induction zone, by repeating the simulations us-

ing the two-step induction-reaction kinetic model. For

the case with density decrease ∆ρ = −25%, as shown

in Fig. 8(a), the result of the shock pressure history
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considering a two-step induction-reaction model with

εi = 8 and εr = 1 is qualitatively similar to that ob-

tained using single-step Arrhenius kinetics (as shown

in Fig. 5(b)). Thus, the overall dynamics of the trans-

mission process for a density-decrease interface is not

qualitatively altered by considering different reaction

kinetics. In order to explore the effect of the induction-

reaction kinetics, the transient process that occurs im-

mediately downstream from the interface needs to be

placed under scrutiny.

In Fig. 8(b), the spatial profiles of induction progress

variable ξ (blue curves) and reaction rate ω̇ (red curves)

are plotted on an x-t diagram in a short time range dur-

ing which the detonation transmits across the interface

for the case with density decrease ∆ρ = −25%. Unlike

with single-step kinetics, the increased shock temper-

ature for the transmitted detonation, T+,t cannot im-

mediately impact the exothermic reaction due to the

presence of an induction zone. After the interface (at

t ≈ 80.5), a contact surface separates the gas that has

already mostly reacted on the left from the fresh re-

actants at T+,t on the right. At this instant, the fresh

shocked gas is still undergoing an induction process,

i.e., has not yet begun to release energy, as ξ < 1. By

x/δ ≈ 0.5 and t ≈ 81, ξ = 1 is attained and reaction

of the fresh gas is seen to begin in the reaction rate

profiles, leading to the acceleration of the wave.

Figure 9(a) shows the change in leading shock pres-

sure the case with ∆ρ = +20% considering two-step

induction-reaction kinetics model with εi = 8 and εr =

1. It is evident that the presence of the induction zone

alters the transient dynamics, resulting in the failure of

detonation re-initiation downstream from the interface.

In Fig. 9(b), the spatial profiles of induction progress

variable ξ (blue curves) and reaction rate ω̇ (red curves)

are plotted on an x-t diagram in a short time range dur-

ing which the detonation transmits across the interface

for the case with density increase ∆ρ = +20%. The

decreased shock temperature for the transmitted deto-

nation results in a decrease in the induction rate ∂ξ/∂t.

This reduction in induction rate elongates the induction

zone (as indicated in Fig. 9(b)) and causes the reaction

zone to decouple from the leading shock. Unsupported

by energy release, the transmitted detonation wave fails

to re-initiate and eventually decays into a nonreactive

shock wave.

Sets of parametric studies have then been performed

to determine the critical conditions marking the limit

beyond which the transmitted detonation cannot prop-

agate in the density increase cases. The activation en-

ergy governing the induction process εi and the per-

centage density increase are systematically varied in

these parametric studies. Figure 10 shows the histories

of leading shock pressure as a function of the leading

shock position for cases with εi = 8, εr = 1, and rela-

tively small magnitudes of density increase at the inter-

face. As shown in Fig. 10, for the cases with ∆ρ ≤ 3%,

the transmitted detonation can self-sustainably prop-

agate; for cases with ∆ρ ≥ 4%, the transmitted det-

onation fails to re-initiate. Hence, the critical density

increase for successful transmission is determined as

∆ρcr = 3.5± 0.5% for the case with εi = 8 and εr = 1.

Holding εr = 1 the same, the critical density increase

∆ρcr has been determined for the cases with εi = 5, 6,

and 7. The results of ∆ρcr (marked as black squares)

are plotted on a logarithmic scale as a function of εi
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in Fig. 11. As shown in this figure, for a smaller εi,

the transmitted detonation can withstand perturbation

of a greater magnitude, i.e., a greater density increase

at the interface. A straight line can be fitted to the

data plotted on a logarithmic scale, suggesting that the

activated nature of the induction kinetics is responsible

for the critical behavior of the transmitted detonation.

4 Comparison of numerical and theoretical

results

In the preceding section, the simulation results of the

ZND-wave model show that an expansion wave is re-

flected from the interface for the cases with a density

decrease, and a reflected shock wave for the cases with

a density increase, which agree with the analytic so-

lution of the CJ-wave model. The numerical results of

the steady-state velocity of the transmitted detonations
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can be compared with the corresponding theoretical re-

sults. In Fig. 12, the degree of overdrive f = D2
t /D

2
CJ

of the transmitted detonation is plotted against per-

centage density change, which is varied from -35% to

+30%. Note that the DCJ is the CJ detonation veloc-

ity in the medium downstream from (on the right side

-40 -20 0 20 40

∆ρ, %

f 
=

 D
t2

/D
C

J
2

1.04

1.02

1.0

0.98

single-step, numerical
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Fig. 12 Degree of overdrive f of the transmitted detonation
for ∆ρ = -35% to 30%. Comparison of the numerical results
and the theoretical analysis

of) the interface. The simulation results of the two re-

action models (i.e., single- and two-step kinetics) are

compared with the theoretical results. Only the simu-

lation results for the two-step kinetics with εi = 8 and

εr = 1 are plotted on Fig. 12. Thus, only the results

with the single-step Arrhenius model are compared to

the theoretical result for the density increase case due

to the fact that the two-step kinetic model was seen

to lead to failure of the transmitted detonation with a

density increase greater than 3.5%, as shown in Sect.

3.3.3.

For the cases with an increase in density, the degree

of overdrive is unity f = 1, indicating a transmitted

CJ detonation. For the cases with a decrease in den-

sity, the degree of overdrive is greater than unity, i.e.,

f > 1, indicating a transmitted strong detonation. De-

gree of overdrive f increases with increasingly greater

magnitude of ∆ρ. Numerical results for both single- and

two-step models are seen to agree with the theoreti-

cal predictions within 0.3%. This agreement suggests

that the steady-state propagation velocity of a success-

fully transmitted detonation can be predicted know-

ing the properties of the incident detonation and the

initial mixtures on both sides of the interface, indepen-

dent of the detailed chemical kinetics and the relaxation

dynamics. The critical conditions determining whether

detonations can withstand the perturbation at the in-

terface and successfully transmit, however, depend on

the nature of the chemical kinetics.
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5 Conclusion

The transmission of a detonation wave across an in-

terface with a change in acoustic impedance has been

studied analytically and computationally. Knowing the

strength of the incident detonation wave and the prop-

erties in the media on both sides of the interface, the

properties of the reflected wave and the transmitted

detonation wave can be solved analytically, without con-

sidering the detailed reaction-zone structure. The ana-

lytic results have demonstrated that, for the cases with

a density decrease (thus, a decrease in acoustic impedance)

at the interface, a transmitted strong detonation and

a reflected rarefaction wave are formed; for the cases

with a density increase (i.e., an increase in acoustic

impedance), a transmitted CJ detonation followed by

an expansion fan and a reflected shock wave are formed.

Thus, the transmitted detonation can be the CJ deto-

nation solution or an overdriven strong detonation de-

pending on the nature of the property mismatch at the

interface.

This transmission problem has been investigated com-

putationally considering an incident detonation wave

with the ZND reaction-zone structure so that the tran-

sient relaxation process of the transmitted wave was

has been captured. For the cases with a density de-

crease, the overall behavior of the relaxation process is

qualitatively similar for both single-step Arrhenius ki-

netics and two-step induction-reaction kinetics. For the

cases with a density increase and two-step kinetics, if

the magnitude of the density increase is greater than a

critical value, the transmitted wave fails to propagate

as a self-sustainable detonation.

For the cases wherein the transmitted wave relaxes

to a steady-state detonation, the simulation results of

the final propagation velocity agree with the theoretical

solutions. This agreement suggests that, if a detonation

wave can successfully propagate after the transmission,

the transient relaxation process and the reaction kinet-

ics have no effect on the final propagation of the trans-

mitted wave. The reaction-zone dynamics responding

to the perturbation exerted by the abrupt change in

acoustic impedance at the interface however determines

whether the transmitted wave can eventually evolve to

a steady detonation in the downstream medium.

Appendix: Analytic solutions of the CJ-wave model

Density decrease

The solution for the case with a density decrease across

the interface consists of a transmitted strong detonation

and a reflected expansion wave. This wave configuration

corresponds to Case 2 in Table 1 and is depicted in Fig.

3(b). The initial properties at 0, 1, and 2 are known.

Equations 3 and 4 are used to relate the states in front

of and behind the transmitted detonation (1 and 4):

p4
p1

=
ηD,t + γ(1 + s)

ηD,t(1 + γ)

u4 = Dt

[
1− γ + ηD,t − s

γ + 1

] (13)

with

Dt =
c1√
ηD,t

s =
√

(1− ηD,t)2 −KηD,t

K = 2(γ2 − 1)
Q

γp1v1

(14)

where Dt is the velocity of the transmitted strong det-

onation.

The characteristic equations (Eq. 6) express the change

across the reflected expansion wave from 2 to 3:

u3 = u2 +
2c2
γ − 1

[
1−

(
p3
p2

) γ−1
2γ
]

(15)

The flow behind both transmitted and reflected waves

are uniform so that p3 = pL, u3 = uL, p4 = pR, and

u4 = uR. The condition of mechanical equilibrium at

the advected contact surface requires that p3 = p4 and

u3 = u4. The following equation can thus be derived

to solve for one unknown ηD,t, which is related to the

transmitted detonation velocity Dt via Eq. 14,

c1√
ηD,t

[
1−

(
γ + ηD,t − s

γ + 1

)]

= u2 +
2c2
γ − 1

[
1−

(
ηD,t + γ(s+ 1)

p2ηD,t(γ + 1)

) γ−1
2γ
] (16)

This equation can be solved iteratively to obtain ηD,t,

and thus, the transmitted detonation velocity Dt.

Density increase

The solution for the case with a density decrease across

the interface consists of a transmitted CJ detonation

followed by an expansion wave and a reflected shock

wave. This wave configuration corresponds to Case 2 in

Table 1 and is depicted in Fig. 3. Since the transmitted

detonation is of the CJ solution, the flow properties at

5 are known from Eq. 3. These properties can then be

related to those behind the expansion wave (at 4) using

Eq. 6:

u4 = u5 −
2c5
γ − 1

[
1−

(
p4
p5

) γ−1
2γ

]
(17)
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This pressure and particle velocity behind the expan-

sion wave at 4 are equal to those on the right side of

the contact surface, i.e., pR = p4 and uR = u4.

The normal shock relations Eq. 5 are used to relate

p3 and u3 behind the reflected shock to those in front

the shock at 2:

p3
p2

=
2γMs,r − (γ − 1)

γ + 1

u3 = u2 − (p3 − p2)

[
2

(γ+1)ρ2

p3 + γ−1
γ+1p2

] 1
2

(18)

where Ms,r is the Mach number of the reflected shock

wave. The properties on the left of the contact sur-

face are thus pL = p3 and uL = u3. The condition of

mechanical equilibrium at the advected contact surface

requires thatpL = pR and uL = uR. Thus, the follow-

ing two equations can be obtained for two unknowns p4
and u4:

u4 = u5 −
2c5
γ − 1

[
1−

(
p4
p5

) γ−1
2γ
]

u4 = u2 − (p4 − p2)

[
2

(γ+1)ρ2

p4 + γ−1
γ+1p2

] 1
2

(19)

These equations can be simultaneously solved by iter-

ation. Once p4 and u4 are obtained, the properties of

the transmitted detonation can then be solved via Eq.

17.
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