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Abstract

The question of how viscosity influences the development of instabilities
within a rotating shallow layer of liquid, which gives rise to polygonal pat-
terns, has been investigated experimentally. A phase diagram of the existence
regions of these polygonal patterns is constructed in (Fr, Ta) plane, where
Fr is the Froude number and Ta is the Taylor number. The results show
that the effect of the viscosity on the domain of existence of the patterns
depends on the initial fluid height above the disc. The results also show
that the variation of viscosity does not affect the locking ratio between the
rotational frequencies of the pattern to the disc; the two frequencies remain
locked at approximately 1/3.
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1. Introduction

When water is placed in an open stationary cylindrical container and set
in rotation by a rotating disc located at the bottom of the container, gener-

∗Corresponding author
Email address: haitabd@hotmail.com (Hamid Ait Abderrahmane)

Preprint submitted to Experimental Thermal and Fluid Science March 27, 2017



ates coherent structures. These resemble to a large extent to the ones often
observed in nature. This type of flows are used as a laboratory model to study
complex geophysical and astrophysical phenomena [1, 2, 3]. In general, the
dynamics and stability of such fluid motion involve a solid body rotation and
a shear layer flow. The shear layer flow occurs in the outer region, because
of the cylindrical confining walls, while the solid body rotation evolves in the
inner region.

When the layer of water, above the disc, is shallow and the disc’s speed is
relatively high, a circular hollow-vortex core is formed. This devoid of liquid
region can undergo series of spontaneous symmetry-breaking, which have the
form of rotating polygons. The existence of these shapes, reported first by
Vatistas [4], became recently the subject of growing interests. Indeed, several
experimental studies were conducted to understand the mechanism behind
their formation and dynamics [7, 6, 5, 10, 11]. In addition, several theoretical
studies have also been conducted recently with the aim to explain the mech-
anism behind the rotating polygonal patterns [13, 16, 8, 9]. In these studies
the stability of the rotating hollow-core vortex was investigated. Assuming
the base flow as potential, Tophøj et al. [13] identified resonance between
gravity and centrifugal waves to be the cause of the polygonal patterns for-
mation. The model by Tophøj et al. was found quite appropriate when the
disc’s speed is high. However, when the disc’s speed is moderate, the central
region of the rotating flow is nearly in a solid-body rotation. In this situa-
tion, the suitable swirling flow model might be of the Rankine’s type, which
combines a solid body rotation of the inner region with the potential flow of
the outer region [8]. Using Rankine’s vortex model for the base rotating flow,
a new instability mechanism was proposed [9]. This mechanism involves the
interaction between gravity and ”Kelvin-centrifugal” waves. The rotating
wave patterns were also described as traveling cnoidal waves, solutions of a
Kortewege-de Vries equation [16].

The theoretical models mentioned above assumed that the fluid is invis-
cid; which is attractive because it allows for significant simplifications to the
problem. However, the experiments indicated that the fluid viscosity could
affect the phenomenon of the polygonal patterns formation and its role is in-
triguing. Recently, a simple experiment was conducted with liquid Nitrogen
in a hot kitchen pot at temperature of 200C [13]. In this case, the Leiden-
frost condition could be reached and a thin boiling film was formed around
the solid walls. The Nitrogen liquid was brought to rotation by stirring it
rapidly with a spoon. A cascade of polygons starting from 6-gon to 2-gon
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were observed within the hollow-core during the spin down process until the
liquid Nitrogen reached its quiescent state filling the entire bottom. In the
experiment the thin boiling film reduced the friction between the walls and
the rotating liquid Nitrogen. Other experiments, conducted with relatively
high viscosity fluids showed that viscosity could affect significantly the shape
of the rotating patterns [15]. In these experiments, patterns up to 11-gon
were observed and found able to travel in opposite direction to the disc rota-
tion. Moreover, higher N-gon were observed at lower disc’s speed, while the
lower N-gon were observed at higher disc’s speed. The phenomenon was also
found to exhibit strong hysteresis. In fact, it was discovered that completely
different patterns formed during the disc spin-up and spin-down procedure.
Experiments with fluids of moderate viscosities are very few. Jansson et
al. [14] conducted experiments with ethylene glycol (its viscosity is approx-
imately seven times than that of water); they found that viscosity reduces
the number of observable N-gon. They also revealed that viscosity appears
to have weak influence on the rotating frequency of the polygonal pattern.

In the present paper, we reexamine the role of the working fluid viscosity
in the formation and the dynamics of the polygonal patterns. We investigate
the role of moderate values of viscosity on the existence of polygonal pattern
in Taylor and Froude numbers space. We also examine the influence of the
viscosity on the frequency locking between the wave speed, at which the
polygonal patterns propagate around the hollow-core vortex, and rotational
frequency of the driving disc.

2. Experimental Details and Image Processing

The experiments were conducted in a 284-mm diameter stationary cylin-
drical container with a rotating 280-mm diameter disc near its bottom. The
shape of the vortex core was imaged from above as shown in Fig. 1.

The disc’s speed was controlled using a controller and incremented slowly.
Sufficient time was given to the fluid flow to stabilize between increments.
The disc’s rotational speed ranges from 75 to 267 rpms. Experiments with tap
water and aqueous glycerol mixtures, as the working fluids, were conducted
with three different initial liquid heights of 20, 30 and 40 mm above the
rotating disc. Eight different aqueous glycerol mixtures were used in the
experiments; the viscosities of these mixtures are 1, 2, 4, 6, 8, 11, 15 and 22
times the water’s dynamic viscosity, µ, (µ=1.002 ×10−3 Pa.s at 200). The
swirling flow and its instabilities were imaged from above at 30 frames per
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Figure 1: Schematic of the experimental setup and typical polygonal patterns following
the symmetry-breaking of the circular hollow-core vortex

second, using a CMOS high-speed pco.1200hs camera. The typical polygonal
patterns observed with water are shown in Fig.1.

The rotating frequency of the pattern was obtained using Fast Fourier
Transform (FFT) of the time series of the radial displacement for a given
point on the polygonal pattern contour, defined by its radius and its angle in
polar coordinates with origin at the center of the disc; see Ait Abderrahmane
et al. [12, 17] for further details. The patterns contours were obtained
using image processing algorithm which consists of a sequence of classical
image processing operations namely segmentation, noise filtration and edge
detection summarized below in Fig.2.
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Figure 2: Summary of the image processing technique

3. Results and Analysis

3.1. Phase diagram

The experiments indicate that the pattern phenomenon involves the pat-
tern wavenumber, N , the pattern rotational speed, ω, the fluid kinematic
viscosity, ν, the initial water height above the disc, h, the disc’s rotational
speed, Ω, and the disc’s and tank radius, R and Rt. The two latter param-
eters are constant in our experiment. Based on the Buckingham π theorem,
the variables of the problem can be grouped in three dimensionless numbers,
namely Taylor (Ta = h4Ω2

ν2
), Froude (Fr = RΩ√

gh
) and aspect ratio ( h/R ). g

stands for the gravity. The Taylor number characterizes the importance of
centrifugal force or inertial force due to the rotation of a fluid about a vertical
axis, relative to viscous forces. The Froude number describes the significance
of the centrifugal force relative to gravitational force. The aspect ratio char-
acterizes the shallow water conditions. The goal of our experiments is to
investigate the role of a moderate fluid viscosity on the formation and the
dynamics of the patterns. Hence, we varied the working fluid viscosity, the
disc’s speed and the initial fluid height above the disc. The two latter param-
eters were varied in the ranges where all polygonal patterns were observed.
In contrast, with others experiments [14, 10], the aspect ratio in our experi-
ments is limited to three values only (0.14, 0.21, 0.28). These values ensure
the shallow water condition and the observation of all possible polygonal
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patterns (up to hexagon).
A parametric study of the effects of the viscosity on patterns formation

and their stability has been carried out. Fig. 3 shows the phase diagram
in (Fr, Ta) plane, when the initial fluid height is h= 20 mm. With water
we observed triangular, square, pentagonal and hexagonal patterns. Increas-
ing the viscosity of the water, by adding gradually a controlled amount of
glycerol, resulted on the gradual shrinking of the interval of the Froude num-
ber within which the patterns occur. Increasing the fluid viscosity triggers
the transitions between unstable modes at low Froude numbers or low disc’s
speeds.

Figure 3: Phase diagram spanned by the Taylor number, Ta, and the Froude number, Fr.
The initial fluid height is 20 mm.

At fluid height h= 30 mm, we observed oval, triangular, square and pen-
tagonal patterns with water as a working fluid; see Fig.4. Similarly to the
previous experiments, increasing the viscosity of the fluid resulted on the
shrinking of the region of existence of the pentagonal pattern until it disap-
peared at relatively low viscosity. The extent of the Froude interval, within
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Figure 4: Phase diagram spanned by the Taylor number, Ta, and the Froude number, Fr.
The initial fluid height is 30 mm.

which other patterns were observed, remained almost constant until a cer-
tain Taylor number. Bellow this threshold the extent of the intervals start to
narrow mainly from their lower limits until they become null in the case of
oval and square patterns. The interval of existence of the triangular pattern
started to shrink at lower Taylors numbers. The triangular pattern should
disappear at lower Taylors numbers, since no pattern were observed at higher
viscosities, when approximately 80 % of glycerol is mixed with water. For the
patterns other than the pentagon, one ca notice that bellow a certain Tay-
lor number, the Froude numbers at which these patterns appear increase.
In other words, at higher viscosities, the transitions were moved to higher
Froude numbers. It is also worth highlighting that, compared with the pre-
vious results in Fig.3, the lower and upper limits of the Froude interval are
decreasing gently; see Fig.4.

At h= 40 mm and water as working fluid, only oval, triangular and square
patterns were observed; see Fig.5. Increasing gradually the viscosity of the

7



Figure 5: Phase diagram spanned by the Taylor number, Ta, and the Froude number, Fr.
The initial fluid height is 40 mm.

Figure 6: Evolution of oval and triangular patterns with increasing of viscosity. The
snapshots correspond to three different viscosities; the viscosity is increased from left to
right from 1 to 22 through 8 times µ. The increase of the viscosity tends to open up the
pattern until to its quasi-circular shape.The initial fluid height is 30 mm
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Figure 7: Power spectrum of the rotating triangular pattern for three different water initial
fluid height h. The fluid is water only µ=1.002 × 10−3 Pa.s. The disc’s speed were 161
rpms for h=20mm, 134.5 rpms for h=30mm and 175 rpms for h=40mm.

water the interval of existence of the square pattern shrunk to zero. However,
the triangular and the oval patterns persisted for relatively high viscosities.
The region of existence of these two patterns should shrink to zero at higher
viscosities, as indicated above no clear polygonal pattern was observed when
80 % of glycerol was mixed with water.

The effect of increasing the fluid viscosity on a given pattern is shown in
Fig. 6. One can easily notice that the contours of the polygonal patterns
get distorted. When the fluid viscosity was increased, the shear at the disc’s
surface should have increased, which resulted in larger hollow-core vortex.
This enlargement reduces the area of the annular inner fluid region, which
is in solid body rotation. This squeeze of the annular inner region, which
hosts the polygonal patterns, limits the propagation of higher wavenumber
modes. This might explain why the highest modes have a narrower existence
region and why they are the ones that disappear first when the viscosity is
increased.

The influence of the viscosity on the polygonal patterns that follows the
hollow-core vortex instability seems to depend on the initial working fluid
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Figure 8: Power spectrum of the rotating triangular pattern observed at an initial fluid
height of h = 40 mm for three different viscosities. The disc’s speed were 175 rpms for
1 × µ, 163 rpms for 6 × µ and 150 rpms for 11 × µ. (µ indicates water’s viscosity)

height. At lower height the viscosity lowers the disc’s speed at which the
hollow-core vortex undergoes instability and unstable modes bifurcate to
its subsequent one. It also reduces the parameter domain of the unstable
modes. At intermediate fluid height the increase of fluid viscosity shrinks
the domain of existence of the highest unstable mode. However, for lower
modes, the viscosity started to influence noticeably the instable modes only
bellow a certain Taylor number. At high viscosities the transitions to higher
modes occurs at high Froude numbers or high disc’s speed. At higher fluid
height, the viscosity shrunk the domain of existence of the highest unstable
mode but seems to slightly enlarge the domain of the lower unstable modes.

Compared to the work by Jansson et al. [14], who considered only two
values of viscosity, several viscosities were considered in this work. The vis-
cosity was found that it influences the polygonal pattern formation. The
fluid height seems to affect the way the viscosity influence the hollow-core
instability and transitions between polygonal patterns. This influence should
be an interesting research question that one should investigate in the future.
At this time, we can conjecture that the increase of the height of the fluid in
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the outer region near the walls should promote the development of a merid-
ional flow in this flow region[18]. The development of this meridional flow
combined with the increase in fluid viscosity should lead to high dissipation
of perturbations energy in the outer region (shear flow region). This dissipa-
tion should affect the polygonal patterns phenomenon. Indeed, it is thought
that the instability mechanism leading to the formation of the patterns is due
to the energy flowing from the shear layer into the inner annular solid-like
body rotation region [19]. Hence, if part of this energy is dissipated within
the secondary (meridional) flow in the outer shear layer, the modes or the
polygones within the hollow-core region should appear more stable. This
conjuncture may explain the persistence of some low wavenumber unstable
mode at high fluid viscosity, when the fluid height is relatively high. The
polygonal patterns appear to be more stable when the viscosity and fluid
height get increased.

Figure 9: Power spectrum in the case of three polygonal patterns. Initial fluid height is
h = 40 mm and viscosity 4µ.The disc’s speed were 130 rpms for N = 2, 166 rpms for
N = 3 and 227 rpms for N = 4.

3.2. Polygonal pattern frequency ratio (fp/fd)

Using water as the working fluid, Vatistas et al. [12] have found that the
pattern’s frequency to disc’s speed ratio (fp/fd) is approximately constant
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and equals to 1/3, irrespective of the polygon and disc’s speed. This obser-
vation has been confirmed for the three different heights investigated in the
present study; see Fig.7, which depicts the power spectra at three different
initial heights for the triangular pattern.

Similar frequency locking was observed when the viscosity of the fluid is
increased. Fig.8 shows a superposition of power spectrum of the triangular
pattern, obtained with three different viscosities: one, six and eleven times
the water’s viscosity, indicated here by µ. This figure clearly shows that the
locking between frequencies of the pattern and the disc remains around 1/3
and unaffected by the fluid’s viscosity. Fig.9 illustrates the power spectra of
all patterns observed using aqueous glycerol mixture (four times the viscosity
of water). This figure also shows that the locking holds for all the observed
patterns.

4. Concluding Remarks

We investigated the effect of liquid viscosity on the formation of the polyg-
onal patterns within the hollow-core vortex, generated by rotating a disc
near the bottom of a cylindrical container under shallow layer conditions.
The phase diagram in Taylor and Froude numbers plane, which delimits the
regions where the various N-gon pattern can be observed, are displayed. The
viscosity was found to reduce the domain of existence of the given pattern
until its disappearance in favor of a quasi-circular shape. The experiments
revealed that the initial fluid height above the disc affect the way the viscos-
ity influence the pattern formation and their endurance. Another important
observation is that viscosity had almost no effect on the frequency locking
between the polygonal pattern and the disc’s speed. For all viscous mixtures
the polygonal pattern’s rotating frequency, fp, was found to approximately
equal to 1/3 the disc’s frequency, fd. Hence, the viscosity does not affect the
rotating frequency of the patterns, which confirms the results by Janssonet
al. [14].

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

12



5. References

[1] Lewis, B.M and Hawkins, H.F. Polygonal eye walls and rain bands in
hurricanes. B. Am. Meteorol. Soc, 63 (11) (1982) 1294-1301.

[2] Aguiar, A.C.B. Read, P.L. Wordsworth, R.D. Salter, T. and Yamazaki,
Y.H. A laboratory model of Saturn’s North Polar Hexagon. Icarus, 206
(02) (2010) 755-763.

[3] Nezlin, M. V. Polyachenko, V. L. Snezhkin, E. N. Trubnikov, A. S. and
Fridman, A. M. Interarm vortices predicted by laboratory simulation of
spiral structure. Soviet Astronomy Letters, 12 (1986) 213-219.

[4] Vatistas G. H. A note on liquid vortex sloshing and Kelvin’s equilibria.
J. Fluid Mech., 217 (1990) 241-248.

[5] Bach, B. Linnartz, E. C. Vested, M. H. Andersen, A. and Bohr, T.
From Newton’s bucket to rotating polygons : experiments on surface
instabilities in swirling flows. J. Fluid Mech., 759 (2014) 386-403.

[6] Ait Abderrahmane, H., Fayed, M., Ng, H. D. and Vatistas, G. H. A
note on relative equilibria in a rotating shallow water layer. J. Fluid
Mech., 724 (2013) 695-703.

[7] Iima, M. and Tasaka, Y. Dynamics of flow structures and surface shapes
in the surface switching of rotating fluid. J. Fluid Mech., 789 (2016)
402-424.

[8] Mougel, J., Fabre, D. and Lacaze, L. Waves and instabilities in rotating
free surface flows. Mech. Ind., 15 (2014) 107-112.

[9] Fabre, D. and Mougel, J. Generation of three-dimensional patterns
through wave interaction in a model of free surface swirling flow. Fluid
Dyn Res, 46 (2014) 061415.

[10] Iga, K. Yokota, S. Watanabe, S. Ikeda, T. Niino,H. and Misawa, N.
various phenomena on a water vortex in a cylindrical tank over a rotating
bottom. Fluid Dyn Res, 46 (2014 ) 031409.

[11] Poncet, S. The stability of a thin water layer over a rotating disc revis-
ited. Eur. Phys. J. Plus, 129 (2014) 167

13



[12] Vatistas, G. H., Abderrahmane, H. A. and Siddiqui, M. H. K. Ex-
perimental confirmation of kelvin’s equilibria. Phys. Rev. Lett., 100
(2008) 174503.

[13] Tophøj, L. Mougel, J. Bohr, T. and Fabre, D. Rotating polygon in-
stability of a swirling free surface flow. Phys. Rev. Lett., 110 2013
194502.

[14] Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. and Bohr,
T. Polygons on a rotating fluid surface. Phys. Rev. Lett., 96 (2006)
174502.

[15] Vatistas, G. H., Wang, J. and Lin, S. Experiments on waves induced in
the hollow core of vortices. Exp Fluids, 13 (1992) 377-385.

[16] Amaouche, M. Abderrahmane, H. A. and Vatistas, G. H. Nonlinear
modes in the hollow-cores of liquid vortices. Eur. J. Mech., 41 (2013)
133-13.7

[17] Ait Abderrahmane, H. Siddiqui, M. H. K. and Vatistas, G. H. The
stability of a thin water layer over a rotating disc revisited. Phys. Rev.
E , 80 (2009) 066305.

[18] Lopez, J.M, and Marques, F. Mode competition between rotating waves
in a swirling flow with reflection symmetry. J. Fluid Mech., 507 (2004)
265?288.

[19] Ait Abderrahmane, H. Siddiqui, K. Vatistas, G.H. Fayed, M. and Ng,
H.D. Symmetrization of a polygonal hollow-core vortex through beat-
wave resonance. Phys. Rev. E,83 (2011) 056319.

14


