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Abstract 

Assessing the Impact of Active Signage Systems on Driving Behavior 

 and Traffic Safety    

Matin Giahi Foomani 

Concordia University, 2022 

Unsignalized Stop-Controlled Intersections (SCI) are widely used in North America, and account for 

one out of every ten collisions. Understanding how drivers and pedestrians behave at unsignalized 

intersections is critical for public safety. Drivers who do not obey the stop-sign’s indication by not 

coming to a complete stop or miss or fail to stop at SCI create a substantial safety risk. For decades, 

visibility and placement of road alignments and signage at intersections have been a concern among 

transportation safety specialists. Deployment of backlit Light-Emitting Diode (LED) or other illuminated 

signs (also known as active road signs) has been increased especially at hot-spots and locations with 

known safety problems, or potential collision risks. While these signs are expected to improve safety 

measures by regulating safe travelers’ passage, their performance is not yet fully understood. Although 

environmental factors such as intersection type, location, and road design are playing a major role, 

compositional variables such as driver behaviour, which can be explained in terms of carelessness, lack 

of attention, or overconfidence, is resulting in a failure to comply with the law of making a complete 

stop at SCI. 

Previous empirical research demonstrated some correlation between several variables such as traveller 

compliance with road signs and alignments, direct and indirect road safety measures, collision/conflict 

frequency, and road/traffic characteristics. These studies commonly employ before-after or cross-
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reference analyses to determine the long-term effects of various countermeasures at SCI. A few studies 

also utilized calibrated micro-simulations models to evaluate the surrogate safety measures at SCI.  

This thesis defines a methodology to evaluate the safety performance of a new and untested signage 

without putting traffic at long risk. To evaluate the performance of the signs, the suggested methodology 

investigates multiple parameters and identifies influencing variables in a conflict-based collision-

prediction model at SCI. The proposed methodology is applied to a real-world network in the city of 

Montreal, with several three-leg SCI equipped with different countermeasures. The experiment was 

designed in a fashion which isolates the influence of several variables, allowing the focus to be on the 

impact of the target variable (signage type). Field experiments have been performed to study the driver’s 

behavior in terms of approaching speed as well as quantitative analysis on reactions to various signs, 

using different sample groups from the same population. This research sets up a microsimulation model 

that captures drivers’ behaviour with respect to signage according to the observed data. A genetic 

algorithm was deployed to calibrate the microsimulation model in terms of turning movement counts 

and the critical conflicts were calculated at each intersection using vehicle trajectories. Collision-

prediction regression models was then developed for the intersections under investigation, using traffic 

volume and conflict.  

The results demonstrated a high correlation among countermeasures and drivers’ speed and compliance. 

The relationship between critical conflicts computed in microsimulation models and actual collisions 

was found to be statistically significant. The model which includes drivers' compliance in collision-

prediction regression was also found to fit the collision data better. However, the results of this study do 

not support the previous assumption that the conflict-based collision-prediction models fit the collision 

data better than the volume-based collision-prediction models at SCI, especially with drivers’ 

compliance supplementary data. Finally, while the backlit signs’ performance was marginally better than 

that of a normal LED active sign, the difference was not statistically significant. 
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The methodology suggested in this thesis has the potential to be implemented in safety performance 

evaluation of a countermeasure without placing traffic at danger for an extended period. For instance, 

when there is apprehension about an adverse effect. Future research could investigate leveraging drivers’ 

behaviour to countermeasures, to improve the performance of collision-prediction regression models 

like the one proposed in this thesis. Finally, the results from the performance assessment of the LED 

active signs can assist transportation specialists in deciding whether or not to deploy these 

countermeasures.  
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Résumé Analytique 

ÉVALUATION DE L’IMPACT DES SYSTÈMES DE SIGNALISATION ACTIVE  

SUR LE COMPORTEMENT AU VOLANT ET LA SÉCURITÉ ROUTIÈRE   

Matin Giahi Foomani 

Université Concordia, 2022 

Les intersections contrôlées par au moins un panneau d’arrêt sans signalisation sont largement utilisées 

en Amérique du Nord et sont responsables d’une collision sur dix. Pour la sécurité du public, il est 

primordial de comprendre le comportement des conducteurs et des piétons aux intersections non 

signalisées. Les conducteurs qui enfreignent les panneaux d’arrêt en ne s’arrêtant pas complètement, 

manquent l’arrêt ou omettent de s’arrêter aux intersections contrôlées par un panneau d’arrêt créent un 

risque de sécurité important. La visibilité et l’emplacement des tracés routiers et de la signalisation aux 

intersections, sont une préoccupation des spécialistes en sécurité de transport depuis des décennies. 

L’utilisation des diodes électroluminescente (DEL) rétroéclairées ou d’autres panneaux routiers 

illuminés (aussi nommés active road signs en anglais) a augmenté, surtout dans les zones à risque et 

intersections avec des problèmes de sécurité connus ou à risques de collision potentiels. Bien que ces 

panneaux routiers soient censés améliorer les mesures de sécurité en réglementant le passage sécuritaire 

des usagers de la route, leur performance n’est pas encore entièrement comprise. Alors que des facteurs 

environnementaux comme les types d’intersections, l’endroit et la conception des routes jouent un grand 

rôle, d’autres variables soit les comportements des conducteurs, tels que l’imprudence, le manque 

d’attention ou l’excès de confiance, entraînent un non-respect de la loi sur l’arrêt complet aux 

intersections contrôlées par un panneau d’arrêt. 
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La recherche empirique précédente a eu tendance à découvrir des liens entre plusieurs variables dont la 

conformité des conducteurs aux panneaux routiers et tracés routiers, les mesures de sécurité directe et 

indirecte de la route, la fréquence des conflits et collisions ainsi que les caractéristiques du trafic et de la 

route.  Ces études utilisent fréquemment des analyses avant-après ou des analyses à références croisées 

pour déterminer les effets à long terme de plusieurs contre-mesures aux intersections contrôlées par un 

panneau d’arrêt. Quelques études ont aussi utilisé des modèles de micro-simulations calibrés pour 

évaluer les mesures de sécurité de remplacement aux intersections contrôlées par un panneau d’arrêt. 

Cette thèse propose une méthodologie pour évaluer la performance de sécurité de nouvelle signalisation 

routière non testée sans faire courir de risques au trafic à long termes. Pour évaluer le rendement des 

panneaux routiers, la méthodologie suggérée examine plusieurs paramètres et identifie des variables 

influentes dans un modèle de prédiction de collisions causées par des conflits aux intersections contrôlées 

par un panneau d’arrêt. La méthodologie proposée est appliquée à un réseau réel dans la ville de 

Montréal, avec plusieurs intersections contrôlées par un panneau d’arrêt à trois voies comprenant 

différentes contre-mesures. Cette expérience a été conçue de manière à isolé l’influence de plusieurs 

variables, permettant de se concentrer sur l’impact de la variable ciblée (type de signalisation routière). 

Des expériences sur le terrain ont été réalisées pour étudier le comportement des conducteurs en termes 

de vitesse d’approche ainsi qu’une analyse quantitative de sa réaction face aux diverses signalisations 

routières, en utilisant différents sous-groupes d’une même population. Cette étude met en place un 

modèle de micro-simulation qui imite le comportement des conducteurs en matière de signalisation 

routière selon les données observées. Un algorithme génétique a été utilisé pour calibrer le modèle de 

micro-simulation en comptant les changements de direction. Quant à eux, les conflits critiques ont été 

calculés à chaque intersections en utilisant la trajectoire des véhicules. Un modèle de régression pour la 

prédiction des collisions a ensuite été développé pour les intersections sous enquête en utilisant le volume 

et les conflits du trafic. 
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Les résultats démontrent une grande corrélation parmi les contre-mesures, la vitesse et la conformité des 

conducteurs. La relation entre les conflits critiques compilés dans les modèles de micro-simulation et 

des collisions réelles était statistiquement significative. Le modèle qui incluait la conformité des 

conducteurs en régression pour la prédiction des collisions s’est également avéré mieux adapté aux 

données de collisions. Toutefois, cette étude ne supporte pas l’ancienne hypothèse que les modèles de 

prédiction des collisions basés sur les conflits, s’adaptent mieux aux données des collisions que les 

modèles de prédiction des collisions basés sur le volume des intersections contrôlées par un panneau 

d’arrêt, surtout avec les données supplémentaires relatives à la conformité des conducteurs. Enfin, alors 

que la performance des panneaux routiers rétroéclairées était légèrement mieux que celle des panneaux 

actifs normaux à DEL, la différence n’était pas statistiquement significative.  

La méthodologie suggérée dans cette thèse a le potentiel d’être utilisée dans l’évaluation de la 

performance de sécurité d’une contre-mesure sans mettre le trafic en danger pendant une période 

prolongée, par exemple, lorsqu’il y a une crainte d’une conséquence grave. Des recherches futures 

pourraient porter sur une meilleure compréhension des comportements des conducteurs vis-à-vis les 

contre-mesures, afin d’améliorer les performances des modèles de régression pour la prédiction des 

collisions, comme celui proposé dans cette thèse. En conclusion, les résultats de l’évaluation de la 

performance des panneaux actifs à DEL peuvent aider les spécialistes en transport, à déterminer 

l’utilisation appropriée d’une contre-mesure.  
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1 Chapter 1: Introduction 

The purpose of traffic engineering is to create a transportation system that is as efficient, comfortable 

and as safe as possible for all road users. Focusing on traffic safety, it is well understood that geometric 

design and traffic operations improvements can decrease risks, reducing collision, and their severity. 

Road safety is more than an engineering problem and the term “safety” needs more clarification. Beside 

engineering, there are 7 others ‘E’s that are necessary in a comprehensive safety approach including: 

Education, Enforcement, Emergency Medical Services, Environment, Economics, Evaluation, and 

Everyone.[1] Road collisions are mainly influenced by the interaction of human, vehicle, and 

environmental factors.[2] 

 

Figure 1 Road environment, human, and vehicle interaction 

Compliance to a road sign is a factor within “Human” and “Road Environment” which accounts for 26% 

of the collisions. The actual long-term or predicted safety performance of these factors is referred to as 

substantive safety. The quantitative measurement of substantive safety is related to collision frequency, 

severity, and type. These measurements are over a long enough period to provide a high level of 

confidence that the recorded collision is a fair representation for a safety performance prediction. 



2 

 

 

1.1 Problem Statement  

Developing sustainable road and highway safety preventive systems is a challenge for transportation 

professionals and it necessitates continued improvement efforts. Among the road facilities, intersections 

are known to be the most vulnerable infrastructure with 45% of total collisions [3]. While only a quarter 

of all driving occurs at night, the Highway Safety Information System (HSIS) reports that nighttime 

collisions account for 55 percent of all collisions. Furthermore, when all types of crossings with various 

control systems are considered, stop-sign operated intersections are the most vulnerable facilities, with 

the highest collision rate resulting in fatal or serious injuries. [4].  Twenty-one percent of collisions at SCI 

are known to be due to the environment surrounding the driver and “inadequate and poorly maintained 

signs” is often cited as a contributing factor [3]. About 8% of fatalities and 11% of total collisions occur 

at SCI. In Canada 1,739 individuals have lost their lives at SCI between 2008 and 2017 [5]. As a result, 

the SCI environment at night is a challenging and complex environment for drivers to navigate, and it is 

well-known as a primary contributor to traffic injuries and fatalities. Improved signage visibility at an 

intersection might hypothetically lower the likelihood of a collision, which is why transportation 

agencies propose LED stop-signs for areas with elevated risk [6]. Hence the assumption made in this 

study was that a “new” sign with even superior conspicuity features could cut the danger more. 

According to the Strategic Highway Safety Plans (SHSP) [7], the performance of highway safety is 

required to be evaluated for any “new” safety component or treatment.  

Classic road safety analysis requires historical data for evaluation. The challenge rests in safety related 

data availability to conduct analysis for a new or untested treatment and understanding their impact to 

road safety. The classic fashion for safety impact assessment of a new treatment with observing, 

monitoring, and recording collisions could put traffic at risk, while it is transportation professionals’ duty 
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to prevent future collisions and not cause them. Hence, there is hesitation among transportation 

specialists to install a not fully known treatment or making an alteration to signage, with uncertainty in 

their consequences.  

As of this date, we identified just a few research attempts, to evaluate the safety performance of a new 

regulatory sign without holding into the collision records. The main reason that historical data was not 

used was the limitation in data accuracy and availability [8,9]. Another challenge identified in these studies 

is the length of time and the magnitude of change necessary for the results to be statistically 

significant[10]. Understanding the limitations in surrogate safety analysis (see section 2.3.2 for full 

discussion), they are still widely used to evaluate traffic signage performance. For instance, some studies 

were successful in identifying indicators that fit the collision prediction models better than the 

conventional traffic volume [11–13]. These studies have been focused on conflicts pattern, speed 

distribution, braking habits, and deceleration, while some other studies looked at road users’ behavior in 

compliance to the active signage as a surrogate safety measure[8,14]. Meanwhile, inconsistency in the 

results has been identified [8] and previous research has paid little attention to urban areas and in particular 

to unsignalized intersections [13].  

The following questions were raised from gaps in the reviewed literatures on the topic: 

A. Is it possible to assess road safety in a more effective and timely manner? 

B. How to improve the safety of an experiment and avoid long term potential risk from testing 

a new treatment? 

C. Would a change in sample combinations affect the results of drivers’ behaviour assessment 

in a before-after, and cross-reference analysis at SCI? How may sample selection be 

improved? 

D. How to control the effects of independent variables in treatment performance analysis?  
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E. Are there any additional indications for preventative SCI safety analysis that suits the 

collision prediction models better than traffic volume? 

F. How to correlate and model road users’ behavior and surrogate safety indicators for a new 

or tested treatment? 

 

1.2 Research Aims and Objectives  

Traffic engineers have installed flashing lights on signs for several years with the hope that a flashing 

lit-emitted sign increases the conspicuity of the signage and is expected to reduce the frequency of 

collisions at SCI. Previous research has determined these installations had a positive impact on road 

safety (see section 2.4.2 for full discussion). However, there is inconsistency in the findings and it's 

unclear if the improvement was attributable only to the signs or perhaps undetected affecting factors. 

This research attempts to continue the work in preventive safety analysis of active signage to indicate 

and define impactful parameters through a methodology which allows assessment of these types of 

signage. 

A prototype of new and untested active signages was provided by a Montreal-based traffic signage 

company, Orange Traffic Co., to researchers associated with Concordia University for evaluation. In 

response to SHSP direction on necessity of testing any “New” safety component or treatment, a series 

of empirical studies was needed to evaluate this countermeasure and benchmark the behavior of drivers 

approaching SCI against classic active, and conventional signages.  

As for statistical study, the estimate of collision (as a safety performance measure), is a function of many 

parameters, including traffic volume, geometry, environment as well as frequency of conflict. By leveraging 

the observed driver behavior from the empirical study, a new variable could be introduced to the estimation 
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model. Therefore, this research aims to assess the value of this new variable for a better estimation of collision 

and conflict models.  

Previous statistical studies on collision frequency at SCI have suggested that the conflict-collision based 

models fits the collision data better than the traffic volume-collision based models (see section 2.3.2 for full 

discussion). By including various independent variables, this study attempted to explore and compare 

the performance of both conflict and volume-based models.  

The simulated conflict data can be generated indirectly using a microscopic traffic simulation, such as Vissim, 

Paramics, or Aimsun. However, the use of such models is justified only when they can adequately represent 

the real driving behaviour of vehicles on the road. Another aim of this research is to introduce driving reaction 

to signage into the model and look at the level of calibration required in a model, so that it can be used to 

produce critical conflicts under different scenarios. 

Finally, the aim of this study is to help transportation professionals in improvement of public safety by 

understanding the performance of active signage. Even though the new active signage is conceptually similar 

to the former ones, the research team was obligated to conduct the experiment in a short and effective manner, 

avoiding waiting and collecting collision data and risking travelers in the study.  

To realise these aims, the following objectives have been identified: 

1. Design an experiment to assess the performance of active signage in a fashion where most 

variables are controlled (e.g., geometry, environment, driving population), and identify and check 

the statistical significance of the remaining variables (e.g., light, absence of opposing traffic, 

pavement surface condition). Compare the outcomes of the studies while using different sample 

populations. This objective will enable experiment bias to be reduced (in response to questions 

‘C’ and ‘D’).  
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2. Examine changes in the behaviour of drivers approaching several stop-controlled intersections 

with various countermeasures to revalidate the performance of the active signs. This objective 

would provide qualitative metrics for compliance and speed patterns which then can be 

incorporated into the safety performance analysis and traffic microsimulation (in response to 

questions ‘E’ and ‘B’). 

3. Extend calibration methods for the microsimulation model to incorporate observed road counts, 

speed, and compliance to signage; and analyze how well the driving behaviour is represented in 

the microsimulation model. This objective will provide reliable critical conflict information 

which then can be used in statistical study (in response to question ‘A’). 

4. Establish a method of safety performance analysis for a new treatment using surrogate safety 

measures rather than historical collision by deploying information populated in objective ‘2’ and 

‘3’. This objective will enable researchers to improve the safety performance function of a certain 

class of SCI (i.e., three-legs) by deployment of variables related to drivers’ behavior (In response 

to question ‘E’). 

5. Benchmark the performance of BLS and understand the ability of a new treatment in 

commanding drivers’ attention within a short-term trail. This objective would enable traffic 

engineers to understand the safety effectiveness of these types of signs in term of number of 

conflicts reduced in different light/traffic volume settings (In response to questions ‘F’). 
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1.3 Method and Scope 

To achieve the goals set above, a research methodology including a three-pronged investigation of the 

safety related effects of active signs was designed: a field study, a traffic microsimulation model and a 

statistical study as shown in Figure 2. A detailed research framework is presented in Figure 6. 

 

 

Figure 2 Research Conceptual Framework  

Based on the research methodology, the following tasks were performed:  

1- Select the site and design the experiment; Previous studies on active signage assessment were 

performed either in long term before-after installation of a flashing sign or cross reference 

between SCI equipped and not-equipped with active signage. To meet the first objective, it was 

necessary to select identical SCIs in geometry design, where the study was taking place during 

the same time intervals while the experiment samples went through several intersections. A link 

in urban areas in the city of Montreal was identified and experiments were designed in a fashion 

so the same traffic were exposed to several types of active signage. Data collection was conducted 

before and after installation of BLS to complement the cross-reference analysis. The BLS was 

removed within two months. 
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2- Data collection and processing from several sources: this includes data gathered with high-

definition (HD) radars and 189 hours of video recording during 10 days. By deploying several 

image processing techniques, volume, speed, trajectories, compliance, and reaction to signage 

was captured. Supplementary data was gathered from several sources including local and national 

collision databases, weather conditions and rainfall, previous vehicle counts, and intersection 

drawings provided by the city. Several databases were created to provide concurrent access to 

the collected data. 

3- Developing and calibrating microscopic simulation models in Vissim: this task was to fulfill the 

requirement of objective 3 to emulate target conflicts. Traffic conflicts are interactions between 

travellers that occur when one or more of them take evasive efforts to avoid a collision and, 

unlike collisions, they have the advantage of giving a bigger sample size due to higher frequency 

of occurrence. Data from compliance, vehicle speed, and vehicle count were enforced into the 

model set-up. Genetic Algorithm was used to optimize the models against Turning Movement 

Counts (TMC)s. Four models were calibrated for morning, afternoon, and evening peak traffic 

as well as 4 hours of twilight and dusk. Calculated conflict was validated by sample real-world 

conflict to guarantee the integrity of conflict data.  

4- Evaluate compliance data using qualitative analysis. Several statistical models were developed 

for qualitative analysis including ANOVA for analysis of speed and Binomial and Multinomial 

Logistic Regression (MNL) for reaction and compliance. The main goal of the statistical 

modeling was to determine if, after controlling for several independent variables, the distribution 

over the three degrees of stopping compliance (i.e., 1– full-stop, 2– roll-through, and 3– blow-

through) was different for each intersection and treatment. 
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5- Developing Statistical models for conflict and collision. For the collision model, the collision 

data was extracted, and cross referenced between databases. Using the hourly traffic volume 

captured in the step 2 and compliance data from step 4, several statistical models were developed 

with Poisson regression and Negative Binomial regression models. The Conflict data from steps 

2 and 3 then were used to build collision-conflict regression models. The compliance data from 

step 4 was also used to evaluate the potential of improvement of these models. 

6- Evaluate the performance of the models: To meet the expectation of objective 4, measure of 

goodness-of-fit for collision and conflict models was performed using a variety of comparison 

indicators, including AIC. The estimated conflict results, from the best model for SCI with 

standard signage, was then compared to the performance of intersections utilizing BLS from 

step 2 to achieve final objective.   

 

1.4 Thesis Contribution  

The first and second objectives of this study are evaluating the performance of tested and, untested 

regulatory signs with higher conspicuity.  This study was able to reenforce the previous findings on the 

subjective benefits of active signage on road safety metrics. Beside the ‘compliance’ and ‘presence of 

opposing traffic’, other independent variables were assessed, such as pavement surface condition (e.g., 

wet, dry), turning maneuver, and ambient lights in the qualitative analysis. The same intersection 

geometry allowed for bias control as the result of design variance. The design of the experiment provided 

a unique opportunity to have same drivers attend several intersections and the benefit of this set-up was 

identified. Furthermore, based on our research in the available literature, the correlation between 

collision and compliance to the active signage at SCI has not been covered before and is the motive of 

the third and fourth objectives. The research achieved the goal of enriching the collision prediction 
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models by inclusion of the driver compliance and conflict. This study was conducted in urban areas 

where other studies focused in sub-urban or rural areas. Finally, two types of regulatory BLS signs were 

assessed for the first time and the findings are being shared. The assessment exposed the traffic to this 

new treatment for only two months and the proposed method warrants less “potential” risk to the public. 

 

1.5 Thesis Structure 

As indicated in Figure 3, this thesis is divided into five chapters. The current chapter outlines the 

research's context and motivation, as well as a glance into the rest of the thesis. In chapter 2, some of the 

most relevant literature is reviewed to present the existing methods adopted by agencies and research by 

academics for road signage improvement and evaluation in transportation and road safety. The different 

approaches and methods are presented and investigated while each influence, limitations and gaps are 

discussed. The main area of focus was on the investigation of treatments’ effects on road safety.  

 

Figure 3 Thesis Roadmap 
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Chapter 3 describes the design of the empirical research, qualitative study, and statistical study.  The 

method and process of building the microsimulation network using a genetic algorithm is also outlined 

in the chapter. Chapter 4 elaborates and presents the results of the analysis of driving behaviour in terms 

of speed and sign compliance under three scenarios. In the same chapter, the analysis of conflict data 

and the construction of collision-conflict regression models are detailed, followed by an evaluation of 

the regression models' performance. Finally, chapter 5 summarises the findings, offers the conclusions, 

and outlines potential future study directions.  
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2 Chapter 2: Literature Review 

This chapter consists of a focused summary of published research literature related to road safety. The 

review starts with an assessment of the correlation between sight distance and vehicle speed as a key 

design element for road alignment, marking and signage. It also contains a brief overview of road safety 

analysis using collision and/or conflict data as a safety measure. After this section, an overview of studies 

on microscopic traffic simulation and surrogate safety assessment models is being presented with a focus 

on conflict analysis at un-signalized intersections. Then, the next section of the review entails the efforts 

and studies underlining the limitations of traffic safety simulation models with respect to safety treatment 

effects, and some prior attempts on traffic signage evaluation is being presented. The final segment is 

focusing on the subject under consideration of this thesis, providing an in-depth overview of recent 

studies on the enhanced traffic signs and describes them here after. 

2.1 Introduction 

Road signs are visual graphics, symbols or messages that are created to display information and 

communicate with the road users. Traffic signs are defined as part of traffic control devices by the 

Federal Highway Administration (FHWA) and tailored by jurisdictional authorities around the globe to 

be used and regulate, warn, or guide traffic. For example, these guidelines enable traffic engineers, to 

estimate distance required according to the sign size and design considering the posted speed [6,15]. The 

traffic signs are among the countermeasures intended to decrease crash frequency and/or severity [15]. 

Over the past several decades, studies determined the time interval requirements for the drivers to detect, 

recognize, read, and respond to the roadside posted signs [16–18]. There are many factors influencing 

drivers’ perception and reaction to these signs (e.g., general lighting, drivers’ awareness or distraction 

level, quality of the sign, etc.) [19]. As a result, transportation professionals and specialists seek to 
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incorporate all these variables into design to ensure that a sign fulfils its primary function of conveying 

the message, at all times, and in a variety of settings. The challenge of interpreting the conventional signs 

in adverse nighttime conditions under adverse road weather such as rain, fog, snow or storm has been 

addressed in several studies [20,21]. Some studies have identified that low-contrast, low-diffusion, 

ambiguity, visual noise, clutter, information load, and complexity of signs could be root cause of some 

drivers’ failure to comprehend them [20,22]. As a result, through past decades, engineers have introduced 

new materials to improve retro-reflectivity of traffic signs’ face, hence enhance their visibility under 

various conditions. Efforts was put in place by authorities to improve visibility, boosting conspicuity 

and, legibility of these type of traffic control devices. Advances in electronics and miniaturisation is 

improving signs' attraction when needed. Signs with flashing lights, actuated signs and illuminated signs 

are some examples of these kind of efforts. Different guidelines recommend that light emitting diode 

(LED) units might be used in regulatory or warning signs (also known as Active Road Sign), to improve 

the conspicuity of signs[6]. These enhancements are expected to improve safety and reduce the frequency 

of collisions.[23] An overview of recent studies on this matter is performed and categorized as described here 

after. 

2.2 Sight Distance: 

The American Association of State Highway and Transportation Officials (AASHTO) has a set of 

recommendation for sight distances and associated design speeds, to meet safety requirements in 

geometric designs for highway ramps, intersections, horizontal and vertical alignments. The 

recommended values are based on driver’s perception and reaction to different stimuli such as the ability 

of drivers to recognize the need to take a decision and react with an appropriate response (e.g., turning, 

braking, etc.). For example, the recommended perception reaction time for horizontal and vertical 

alignments of uninterrupted facilities is 2.5 seconds [24,25]. The design values should be conservative and 
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typically accommodating at least 85% of the driving population. There are recommendations based on 

grades, vehicle types, geometry of intersections, number and capacity of approaches. For instance, in an 

intersection with stop-sign, AASHTO provides detail analysis for sight distance requirement while 

considering the time gap needed for vehicles performing both crossing and turning maneuvers. The sight 

distance for a passenger car, approaching a stopped controlled intersection is equal to 7.5 𝑠 of travel time 

at the design speed on the major road to the stop line[25,26]. This is a generic rule of thumb to estimate 

design speed while other parameters such as visibility and geometry might being ignored. The other 

driving behaviors to which the driver must attend and the amount of time these actions require are also 

not considered. 

AASHTO recommend Minimum Required Stopping Sight Distance (MRSSD) from the conflict line (for 

instance stop-line at intersection) to be calculated as follow [24]. 

 
𝑀𝑅𝑆𝑆𝐷 = 𝑉𝑠𝑇𝑟 +

𝑉𝑠
2

2𝑎 ± 2𝑔𝐺
 Eq. 1 

𝑉𝑠is the velocity or ‘set’ speed for side or traffic-controlled road (𝑚/𝑠), 𝑇𝑟 the driver’s perception–

reaction time (s), default 2.5 𝑠,  𝑔 the gravitational constant (~9.81𝑚/𝑠2  ), 𝑎 is the deceleration 

rate(𝑚/𝑠2), default 3.4 𝑚/𝑠2, and 𝐺 the grade in decimal. 

For SCI, the stop and/or YIELD signs AASHTO recommendation is that they should be visible from an 

enough distance to command drivers’ attention. The Eq. 1 is being used by transportation specialists to 

determine that distance. This is the same requirements for all other regulatory or warning signs such as 

chevron markings on sharp curves or pedestrian crossing and school zones. Therefore, it is critical that 

the Available Sight Distance (ASD) for any traffic control sign to be greater or at least equal to the 

minimum required stopping sight distance mentioned above [17]. Some studies investigated the proper 

ASD with respect to ambient light conditions and considered human factors such as drivers’ eyesight. In 
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one study, the maximum distance for sign identification and the appropriate installation distance was 

evaluated under nighttime condition. Traffic sign background luminance, luminance contrast, 

complexity of information, size of the symbols, and geometry of the facility are among the factors that 

was considered in the study [16,26] . 

Another study investigated both visibility (ability to observe the presence of signs) and legibility (ability 

to distinguish and read/interpret signs). Schnell et al. -2004, have deployed simulation to evaluate the 

required ASD in laboratory environment  [27]. The ASD for a sign may be determined via field testing 

experiments using drivers with minimum acceptable visual acuity. Awadallah et al. -2009, suggest 

testing these properties by measuring the sign retro-reflectivity[17]. Jones et al. -2012, proposed a 

technique to perform the test in a normal open road environment using digital cameras and stereoscopic 

image processing techniques[28]. .Altamira et al. -2010, proposed a tool to analyse availability of sight 

distance based on three dimensional (3D) visualization. All these studies had come to the same 

conclusion that visibility and legibility alone may not guarantee the performance of the sign since poor 

reaction times of drivers (decision/ command) and compliance to the sign may create a threat to the 

environment [18].  Limitations in the lab environment causes lack of confidence on safety performance 

measure since field and lab environment are principally different. It’s not possible to evaluate the safety 

matrix such as collision and conflict in a lab-controlled environment, therefore empirical studies are 

needed to fill these gaps.  

2.3 Road Safety Analysis 

Road safety analysis is used to advance our understanding of the state of practice in road safety, and 

consequently, improve the public safety within a given transportation network or facility. Through traffic 

safety analysis, one seeks to improve road safety by reducing vehicular conflicts and, implicitly, 

collision. Therefore, information about collisions frequencies or collisions severities, or both, is used to 
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assess and predict the safety performance of an existing or a new transportation facility. According to 

Highway Safety Manual (HSM) a “crash” (referred to as “collision” in Canadian literature) is defined as 

a set of events that results in injury or property damage due to at least one motorized vehicle with other 

motorized, un-motorized or stationary objects [29]. Collision type, geometry, operation, weather, and 

visibility conditions along with human factors are some of the most frequently used indicators in 

collision analysis [29].  

For level of injury HSM is recommending the American national injury standard which divides injury 

levels into categories according to KABCO where K represents the most severe injury and O means no 

injury, only property damage [30]. Subjective safety analysis is a form of safety assessment that represents 

the opinion of the road users, public or professionals to evaluate the level of safety of a given facility. 

Hence these kinds of analysis are more qualitative. Nevertheless, road safety management programs use 

rather objective safety analysis methodologies, which requires quantitative measures.  

The quantitative methods using collision data typically require large sample size from reference sites to 

develop reliable Safety Performance Functions (SPF). This can be costly or even impractical (e.g., not 

applicable to a new infrastructure or safety countermeasure). According to several studies a considerable 

number of collisions with injuries are not being reported in police database [31]. The underreported 

collisions are those with lower severity and/or without property damage (e.g., to avoid increasing 

insurance premium). Researchers have addressed the presence of underreporting in collisions[14,32–34]. 

The main challenge in many safety studies is lack of collision data or data quality with respect to data 

quality measures [35–37]. For example, in Québec, Société de l'Assurance Automobile (SAA) has defined 

a minimum damage threshold which, if not exceeded, allows these minor collisions to go unrecorded. 

Besides lack of data and sometimes limited availability, another major problem with objective safety 

analysis pertains to benchmarking new road safety treatments/implementations [38,39].  
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Non-collision-based research are widely considered as an alternative approach to the classical collision 

studies. These research entail studying specific recordable traffic parameters that can be associated with 

near-collision events, which are called surrogate safety measures. Using more eventful data in a shorter 

time period is expected to provide the grounds for reliable traffic safety analysis, without focusing on 

collision which is a rare event. Studying the surrogate measures has enabled traffic specialists to leverage 

computing and simulation power to mimic the real-world traffic conditions. These micro-simulation 

traffic models attempt to close the gap between insufficient events such as collision and limitation in 

observation period. In addition, it is important to highlight that these models are unable to measure safety 

performance directly by estimating “collision” . In this section a brief review of previous research on 

collision frequency analysis and traffic conflict assessment methods is presented.  

2.3.1 Collision Based Analysis 

Road safety assessment using collisions data needs collecting and processing the pertinent data. In North 

America, there are several sources that tracks and store this information, such as: Highway Performance 

Monitoring System (HPSM), Fatality Analysis Reporting System (FARS), National Electronic Injury 

Surveillance System (NEISS), and finally, Motor Carrier Management Information System (MCMIS). 

Transport Canada has also made this information available to public under national collision database 

(NCDB)[40]. The depth of data varies based on facility type and the location. Unfortunately, not all 

transportation facilities have enough data to meet HSM minimum three years of data requirement for 

collision analysis [29]. Collision data consist of three elements; collision types (based on the injury type) 

and initial impact type on the represented clusters, collision's location using the location’s GEOID, and 

date and time. Beside the collision data, secondary data are essential for safety analysis. The shape and 

characteristics of the infrastructure under the study as well as the operational data would be also 

necessary [41]. The physical characteristics includes length of the segment, area, road classification, 
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intersection type, and traffic control devices. For operational data usually average daily traffic (ADT) or 

average annual daily traffic (AADT) are incorporated[10]. 

There are two safety performance measures often being used: collision frequency and collision rate. 

Collision frequency represents the number of collisions observed in a given period, typically one year, 

and can be calculated using Eq. 2. Collision rate represents collision frequency with respect to a 

measured traffic volume (e.g., number of collisions per one thousand or one million vehicles).[38] 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑃𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑌𝑒𝑎𝑟𝑠 𝑜𝑟 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 

Eq. 2 

 

Collisions are nonnegative and discrete events which with deployment of some tools, are used to indicate 

the safety performance of the transportation facility (intersection, railroad link, terminal, …). There are 

several tools that are used which are mainly Poisson based. All these tools have the objective to find an 

estimates for collision frequency or severity and the variance. Figure 4 presents the extensions of 

Poisson-based models. The negative binomial (NB) is the most widely used among Poisson-based 

models due to its ability to address overdispersion[42].  
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Figure 4 Family tree of crash-frequency methodologies (Lord. D.2021)- Circle size indicates the relative popularity of one methodology.  

A simple regression model to estimate collision for a SCI using a single variable with consideration of 

AADT following Poisson distribution model, can be estimated from this regression model  [43–45]:  

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑦𝑒𝑎𝑟
= ln[𝛼(𝑀𝑎𝑗𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝐴𝐴𝐷𝑇)𝛽1(𝑀𝑖𝑛𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝐴𝐴𝐷𝑇)𝛽2] Eq. 3 

The parameters 𝛼 is the value of intercept, 𝛽1, and 𝛽2  are the regression parameters. These functions 

relate the collision number and types of collisions at a site to traffic volume and in more comprehensive 

form other road or drivers’ characteristics. They have been developed for each section of road (e.g., 

midblock, intersection), and different collision types (angles, rear-end), based on historical collision 

records. The regression model used for SPF assumes that collisions are following Poisson distribution 

[38]. The Binomial distribution is approximated by a Poisson distribution as this is commonly assumed 

in counts of rare events occurring in each time period. However, the Poisson distribution assumption 

leads to equality between mean and variance. Therefore, it does not allow for the variance to be adjusted 
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independently from the mean. As it is shown by many studies, over-dispersion (or rarely under-

depression) of collision data makes this assumption obsolete. Literature has identified two possible 

reasons for over-dispersion: heterogeneity (i.e., inaccuracy in observed data, overlooking an important 

attributes) and high proportion of zero accident periods [46].  

Some conjugate models such as two stage mixed Poisson models can address the random variations in 

the mean of the Poisson model. Among those, Poison-Gamma (Known as Negative Binomial) and its 

extensions and Zero-Inflated Regression Models are more well-recognized in road safety analysis  [47]. 

According to Persaud et al., the NB method is worth considering for situations where the main constrain 

is having access to enough reference group to calibrate required EB’s SPF [48].  

2.3.1.1 Observational Before-After Studies 

The performance measures are being used to benchmark a setting or a segment to another similar cases 

or understand the impact of a change in a “before” and “after” analysis. Statistical analyses are being 

employed to recognise these magnitudes. Hypothesis testing like t-test, z-test and H-test are being used 

to assess the statistical significance of estimate from an added treatments to an existing road section 

compared to the similar road sections [49]. The assumption that population distribution is normal is not 

always correct for the collisions [37,38,44]. The t-test is regularly deployed whenever two compared 

proportions are dependent, while z-test can be applied with null hypothesis of independent extents. H-

test (one-way ANOVA) is another hypothesis testing tool, but nonparametric, through which the 

combined distribution of the populations is being tested rather than between distributions [50]. H-test is 

widely used in safety assessment in comparison between populations, and the distribution of test 

statistics can be determined using the Eq. 4. 
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𝐻 = 12
𝑛(𝑛 + 1)⁄ + ∑

𝑅𝑗
2

𝑛𝑗
− 3(𝑛 + 1) 

Eq. 4 

Where: 

nj= number of measurements of the jth sample 

n= the total sample size from all combinations  

Rj= rank sum of sample j 

The changes observed in comparison may be in part due to the spontaneous Regression To the Mean 

(RTM) or site selection bias and not as the effect of treatment or change in countermeasure [39]. Hence, 

it is naïve (i.e., not statistically sound) to infer difference from a comparison on a non-random selection 

of a site to be only due to countermeasure. Hauer addressed this potential bias of RTM phenomenon by 

proposing a four-step improving approach for naive before-after study. In this method, a matching 

comparison group is used to control RTM where some (or all) of the changes are being removed due to 

any factors other than the treatment.  He also identified five groups of factors, and consequently, making 

the conventional assumption (i.e., the observed change is due to the effect of the treatment) questionable 

[39].  

Statistical inference such as Empirical Bayes (EB) Method was originally deployed for observational 

before-after safety assessment of treatments and countermeasures [38]. EB is known to eliminate the 

effects of RTM better than the conventional comparison methods. For several decades this method has 

been the core of traffic safety studies used by transportation safety specialists and agencies around the 

world in conducting before and after studies either by deploying traffic flow factor, comparison groups 

or other techniques[39,51–56] . This method is used widely to provide general feedback about effect of a 

countermeasure. The results of a survey conducted by National Cooperative Highway Research Program 

(NCHRP) in United States and Canada reported EB as the most common method in before-after 

evaluations [57]. EB comprised a prediction and an estimation; Prediction of the expected collision rate 

during the “after” period, without treatment and, estimation of the collision rate of the treated site “after” 
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the conversion being deployed. To find the “predicted” collisions rate, two sets of information are being 

combined; the annual number of collisions that would be expected at the case study based on 

characteristics (i.e., traffic volume with an EB procedure in which regression model is being used), and 

the count of collisions in n years before conversion. 

These comparison sites should have similar geometric and traffic characteristics as treatment is applied. 

The variance and the mean from the regression model along with the collision distribution can deliberate 

the dispersion factor properties. There are several techniques which address the over/under dispersion 

phenomenon in EB [46]. Some of them will be explained in next sections. 

To estimate the expected collision per year during the “before” period (considering RTM effects the 

collision rate) Eq. 3 is being used with the “before” AADT combined with “before” collision count. For 

“after” period two steps need to be completed:   

Step 1 - Predict safety of an entity in the “after” period, had the treatment not been applied. For the 

“after” period, in order to estimate the expected collision per year ‘𝐴’, the collision rate can be calculated 

using same equation while “after” AADT value is being deployed. The ratio between before and after 

will then give a “predict” of what would have been the collision rate without the treatment. The 

summation of all ‘𝐴’ is then the predicted number of collisions in the “after” period. The variance of the 

collisions will depend on the method used for predicting the value and there are several methods 

available for the analysis [38]. 

Step 2 - Estimate the treated entity’s safety associated with the “after” period. The mean value of 

collisions and the variance in “after” period, denoted by ‘𝐵’, are estimated to be the same, since it is 

assumed that follows a Poisson distribution. The summation of all ‘𝐵’ values then will represent the 

‘estimate’ number of collisions after the treatment- Eq. 8 denotes the mean and variance of ‘prediction’ 

as well as ‘estimation’ for the after period. 



23 

 

�̂� = ∑ 𝐴 
Eq. 5 

𝑣𝑎𝑟 (�̂�) = ∑ 𝑣𝑎𝑟 𝐴 
Eq. 6 

  �̂� = ∑ 𝐵   𝑣𝑎𝑟   
Eq. 7 

𝑣𝑎𝑟�̂� = �̂� 
Eq. 8 

Where: �̂� is the “prediction” of collisions frequency for all sites/year A and �̂� is the “Estimation” of 

collisions frequency for all sites/year. 

 The target collision reduction value [δ] and its rate [𝜃] after treatment is installed will be: 

δ̂ = λ̂ − μ̂ 
Eq. 9 

𝜃 = �̂�/�̂� 
Eq. 10 

As mentioned in step 1 and 2, both �̂� and �̂� are random variables (have a mean and variance) and hence 

δ̂  and 𝜃  would also become a random variable. The step 3 and 4 in the EB method provide the δ̂  and 

𝜃  estimates and their variances using [Eq. 11-Eq. 14].[29,38]. 𝜃  indeed, is the Collision Modification 

Factor (CMF) which offer great assistance to road designers and used in the safety performance function 

to identify the proper treatment in making preventive decisions. The FHWA provides a searchable 

database of CMFs along with guidance and resources on using CMFs in road safety practice[58]. 

𝜃 =

𝜆
𝜇

𝜇 {1 + [
𝑣𝑎𝑟(𝜇)

𝜇2 ]}
 ,   

Eq. 11 

δ = μ − 𝜆 
Eq. 12 

𝑣𝑎𝑟(𝜃) =
𝜃2 {[

𝑣𝑎𝑟(𝜆)
𝜆2 ] + [

𝑣𝑎𝑟(𝜇)
𝜇2 ]}

{1 + [
𝑣𝑎𝑟(𝜇)

𝜇2 ]}
2  ,   

Eq. 13 

𝑣𝑎𝑟(δ) = var(μ) + 𝜆 
Eq. 14 
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The FHWA has also included a safety analysis module in the Interactive Highway Safety Design Model 

tool (IHSDM) which can be calibrated to estimate collision rates using the EB method. The efficiency 

of the method is recognized in literature and has been suggested under Highway Safety Manual (HSM) 

Part C - Predictive methods [56,59]. The more generic form of the prediction function mentioned earlier – 

known as Safety Performance Function (SPF) has been described in five steps by Garber [60].  

Summary 

Conventional before-and-after comparison of collision rates has limitations such as ignoring 

complementary data (e.g., drivers’ behaviour such as compliance to traffic control device). Even though, 

having control groups might improve the estimation it has not been recognized like statistical inference 

method, such as Empirical Bayes (EB). EB method has a proven record on literature reviewed and have 

been validated [39]. Some issues and drawbacks of these method has been addressed that may affect the 

validity of some results mainly caused by over-dispersion [56].     

In some studies, FB approach has been suggested to tackle some of the key issues with EB method, such 

site selection bias. A set-up of FB with zero-inflated NB modeling for prediction is an appropriate 

method to address data limitation on the control group as well as excess zero counts [61]. The 

sophistication cost of NB makes the EB method more attractive among traffic safety analysts[62].  

Finally, it is important to re-acknowledge that observational collision studies are opportunistic 

endeavours. Nevertheless, according to Hauer, to detect reliable effectiveness of a treatment the number 

of samples for collisions need to be enough, such that the standard deviation of the estimate should be 2 

to 3 times smaller than the expected effect [39]. This requires tens of thousands of collisions to be detected 

for a minor change in safety of only a few percentage points. This requirement is not feasible in most of 

the studies.  
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2.3.2 Conflict Based Analysis  

As previously mentioned, many collision datasets often present data quality challenges (e.g. inaccurate 

collision reporting, uncertainty of data, limited availability, etc.). In addition to data limitation, some 

research points out other uncertainties in Bayes methods to give the best collision estimate [63].  Elvik et 

al. -2004, suggests that road safety improvements are implemented for a variety of reasons and that a 

randomly high collision count is not among the key selected criteria. This study was conducted in 

Norway for both treated and untreated sites, over several years, and revealed that the random effect of 

fluctuation in collision rates were equally likely.  

In principle, collisions are rarely occurring events, while there are other more frequently types of events 

which can be correlated to the road safety performance. Estimation and appraisal of safety based on 

proxy information also known as “Surrogate Safety Measures” (e.g., time to collision, post-

encroachment time, deceleration rate, maximum speed, and speed differential) has been explored in 

many studies to overcome the shortage of collision data. Traffic conflicts represent the cornerstone of 

these measures to objectively assess the collision potential of a location without having to wait for the 

collision history to accumulate.  

Traffic conflicts are defined as interactions between travellers that occur when one or more take evasive 

actions (e.g., braking or weaving) to avoid a collision (i.e., if the travellers’ movement remains 

unchanged, that move may potentially lead to a collision [64]). Unlike collisions, conflicts have a distinct 

advantage as they are providing a larger sample size due to higher frequency of occurrence. This enables 

researchers and agencies to assess the safety of facilities more promptly. The concept of traffic conflicts 

first developed in late 60’s by industry (General Motors engineers) to identify safety issues related to 

vehicle fabrication. In that approach, a set of definitions and procedures was formed for observing traffic 

conflicts at intersections as an alternative to collisions [65].  Hydén demonstrated the relationship between 
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collision and conflict in a safety pyramid where, the basis of the pyramid is undisturbed passages 

followed by disturbed and interrupted passage. In the middle of the Hydén pyramid we have conflict 

with layers from light to critical conflict and “missed collision”. At the summit of the pyramid, a collision 

occurs with the severity KABCO, where "K" denotes a fatal injury [64].  

 

Figure 5 Hydén Safety Pyramid (Hydén, 1987) - collision scaled to KABCO 

Over the years, transportation professionals have attempted to better understand the amorphous 

relationship between several independent variables such as speed, traffic volume, conflict, and collisions, 

as the “dependent variable”. Numerous regression-based approaches have been used to develop 

predictive models that correlate conflicts and road and environment parameters [65–68]. These studies 

attempted to identify specific conflict patterns instead of simply using collision rates as diagnostic tool 

for traffic safety assessment. Rao et al. -1997 introduced a probabilistic model for SCI to determine the 

number of conflicts assuming a vehicle crossing time at the intersection is less than the average inter-

arrival time of vehicles on the opposite approaches [69]. The time to collision (TTC) first was introduced 

by Hydén -1987 whom attempted to relate TTC with speeds and determine conflict severity. The author 

investigated 50 intersections and demonstrated a correlation between reported collisions with injury and 



27 

 

observed serious conflicts[64]. In another study, Clennon and Thorson -1975 revealed a relative 

correlation among the intersection traffic flow and injury severity [70]. Caliendo & Guida -2007 

investigated the relationship between simulated conflicts and recorded collisions at two-way SCI in 

Italy[66,71]. The authors also tested whether collisions correlate better with conflicts than traffic flow. 

They introduced a conflict prediction function to model the expected number of collisions. The authors 

also discovered that their safety analysis approach outperformed the traditional traffic volume-based 

model by a small margin. 

The observation of conflicts can be performed either manually (human observers), semi-automatically 

or fully-automatically. FHWA introduced a user guide as a training aid and reference for practitioners 

and engineers for conflict observation [72]. Computer aid packages with image processing capabilities are 

frequently employed, as are telematics and sensor technologies, as well as vehicle trajectories generated 

from microsimulation models. The main challenge in conflict analysis is that the method is subjective 

and relies either on observers’ judgment, quality of image processing, accuracy of sensors or 

performance of simulation model. Several studies have yet criticized manual collection of conflict data 

for potential lack of consistency [70,73]. Nevertheless, Parker and Zageer study shows that there can be 

80% agreement between different observers[74], while Davis et al. 2014 recommend improving the 

manual data collection properties by setting up an observer panel and scoring system [9]. The surrogate 

safety measures, outlined in FHWA guideline included in conflict analysis are [75] [21]: 

• “Time to Collision”, represents the expected time for two or multiple road users to collide if they 

remain at their current speed and direction. When vehicles are on a collision course, the collision 

severity and risk of conflict increase when time to collision values become smaller. 

• “Post Encroachment Time”, is the time lapse between end of encroachment of a vehicle and the 

time that another vehicle (or road user) subsequently arrives and occupied the same spot. 

• “Deceleration Rate”, represents the rate at which a crossing vehicle must decelerate to avoid a 

collision. 
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• “Time Headway”, is the time laps between the passing of two consecutive vehicles past a known, 

fixed location. 

• “Conflict Type” ,describes whether the conflict is the result of a rear end, lane change, or crossing 

movement. 

• Speed related parameters such as “Maximum Speed” of either vehicle throughout the conflict, 

and “Delta Speed” which is the difference in vehicle speeds as observed with respect to direction 

and approach. 

 

2.3.2.1 Microscopic Simulation and SSAM 

Although the early computer-based modeling techniques were ineffective to replicate the real-world 

scenarios, the advancement in computational power and simulation algorithm has allowed for more 

traffic modeling opportunities. Gettman and Head –2003 investigated and defined the process in 

evaluation of road safety using microscopic traffic simulation software packs. This process was denoted 

as the Surrogate Safety Assessment Methodology (SSAM) which includes detailed guidelines for 

simulation development, calibration procedure, data extraction, and presenting the results [75]. Sayed-et 

al, have developed a similar tool that captures TTC (Time to Collision) as the critical conflict event from 

simulations [73]. Over time, SSAM evolved and became the foundation for future conflict analysis in 

objective safety assessment. In 2008, the Federal Highway Administration (FHWA) released a software 

package that generates surrogate measures from trajectory data files recorded in traffic microsimulation 

models. Most of commercially available microsimulation software generate vehicle trajectory as an 

output file[21] and several studies have deployed SSAM in their objective safety analysis for different 

road facilities such as intersections, homogeneous road segments, roundabouts [11,66,76–78]. The following 

section reviews the studies that considered conflict analysis at SCI facilities utilising SSAM. 
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2.3.2.2 Micro-simulation Approach Conflict Analysis at Intersections  

Intersections, in general, pose a safety risk due to the increase in crossing paths, as well as the increased 

likelihood for unsafe driver maneuvers due to complexity of the task. There are conflicts not only in 

vehicle trajectories of each approach, but also exposes risk for not-motorized traffic.  SSAM has sparked 

a growing interest in constructing microsimulation traffic models to investigate the traffic behavior and 

safety assessment of un-signalized intersections.  

Pirdavani et al. -2010, used Post Encroachment Time (PET) as the primary proxy safety indicator[79]. In 

this study the microsimulation software package used was PARAMICS and two parameters, speed limit 

and traffic volume, were selected as the calibrating parameters for this surrogate safety study. Four loop 

detectors were set at each approach of a four-leg intersection to capture data from the experiment, which 

defined four conflict zones inside the intersection. The findings of this study showed a significant 

correlation between the selected parameters and critical conflicts. Speed limit and traffic volume had a 

high impact on PET behavior. However, this method could only capture crossing conflicts and no other 

conflict types. The authors didn’t indicate if any calibration of the microscopic simulation was 

performed. Their approach was reused at a T-intersection in Mumbai, India. Similarly, the PET measure 

was used as the proxy conflict indicator and the two parameters of speed and volume extracted from the 

video recording was used to calibrate the microscopic simulation model, this research used another 

microsimulation software package namely VISSIM [80]. In order to detect the conflicts, the authors 

employed video recording along with image processing to identify unsafe maneuvers. The authors 

suggested breaking down the conflict area of the intersection under the study to small pieces using small 

rhombus tiles (unlike rectangular grid) for a better transformation from the camera screen coordinates to 

real-world coordinates. Depending on the combination of tiles occupied by the vehicles, the authors 

distinguished between safe and unsafe cases however this was not clear that how this could impact the 
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PET or TTC. There was no benchmark between their methodology and the regular rectangular grids 

however, by changing the traffic volume or vehicle trajectories they generated graphical correlations 

between PET and the frequency of conflicts.  

In another effort, El-Basyouny-2011 aimed to find the relationships between collisions and conflicts for 

signalized intersection. The authors compared volume-based to conflict-based SPF’s [81]. The data was 

collected from 51 signalized intersections in British Columbia, Canada and the authors deployed FB 

models for collision statistical analysis. As an alternative to Poisson, NB modeling based on average 

hourly conflicts (AHC) was proposed for the development of SPFs. The authors  developed conflict-

based regression models and found a significant correlation between collisions and conflicts upon 

adjusting for measurement errors compared with the ADT NB model. The proposed model fitted the 

collision data equally well. However, the regression model for the collision analysis did not contain any 

other independent variables, and the author did not specify whether geometric attributes of intersections 

were considered. This research focused on signalised intersections, which differ from SCI in terms of 

traffic operations.  

Another study investigated the estimate of collisions at SCI in Italy. The authors employed simulated 

conflicts for two-way SCI by calibrating an AIMSUN model instead of using observed conflict counts. 

Their finding was supporting the results from the earlier Canadian study, and also demonstrated a 

significant correlation between collisions and critical conflicts. The authors suggested that conflict-based 

models are a better alternative to conventional traffic volume-based model [66]. The collision model 

proposed by the authors has been derived from SCI regression model (Eq. 15) with volume per hour 

(VHP) and a dummy variable (DU) was introduced to unbiased rush hours’ time intervals. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 =  𝑒𝛽0+𝛽1𝐷𝑈(𝑉𝐻𝑃𝑀𝑖𝑛𝑜𝑟)𝛽2(𝑉𝐻𝑃𝑀𝑖𝑛𝑜𝑟)𝛽3 
Eq. 15 
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Where: 

 𝛽 is Vector of regression parameters (𝛽0 − 𝛽3) 

𝐷𝑈 is a dummy variable to control the effect of intersections with significant higher volume on Major 

in rush hours 

𝑉𝐻𝑃𝑀𝑖𝑛𝑜𝑟 is hourly volume on Minor links 

𝑉𝐻𝑃𝑀𝑎𝑗𝑜𝑟is hourly volume on Major links 

The collision-based regression model proposed by the authors, included three types of conflicts; 

crossing, rear-end and lane changing on both PET and TTC parameters. The regression model from Eq. 

16 estimates the frequency of collisions based on the independent variable, hourly conflict(𝑐𝑓).  

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 =  𝑒𝛽0+𝛽1𝐷𝑈(𝑐𝑓)𝛽2 
Eq. 16 

  

The authors conclude conflict-based SPF fits better to the collision data than the classic volume-based 

regression model. They also explained that due to close correlation between conflicts and traffic volume, 

when conflict variable is included in the volume-based regression model, it does not significantly 

contribute toward performance of the model and make traffic volume variable insignificant. This study 

has been developed later [82] in another SCI conflict investigation to develop collision prediction models 

based on traffic volume and the correlation with two other safety measures, conflicts, and delay. The 

authors included 133 two-way SCI (78 three leg and 55 four leg) in greater Toronto region. Vehicular 

traffic at each site was modeled with Synchro to estimate the intersection delay, and microscopic traffic 

simulations were conducted with VISSIM. The delay at intersection includes both left turn maneuver 

delays as well as delay at entering the intersection. This study also presented the value of developing 

conflict-collision prediction modeling compared to the traditional collision-volume modeling approach. 
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Lorion and Persaud research results both from the delays of each movement and conflict-based collision 

prediction models were shown to be reliable for types of intersection analyzed (i.e. three and four leg 

intersection, respectively). Neither the site attributes - geometry of these intersections were considered 

in this study nor the drivers’ behavior. The calibration process and the reliability of the micro-simulation 

model was also missing in the report. 

Several researchers have raised two main concerns about using simulated conflicts [66] [78].  First, unlike 

natural driver behavior, simulation behavior in the models has been designed in a fashion that avoids 

unsafe vehicle interactions. Second, there are many model parameters in micro-simulation models and 

several ways to model traffic in micro-simulation models (e.g., priority rules). These parameters can 

have a significant impact on the result in simulated conflicts. Hence in order to derive valid results, the 

selection of the right parameters and proper calibration of the model are essential.   

Essa and Sayed in a study intended to find out to what extent simulated traffic conflicts can accurately 

represent field-measures. They have identified a four-leg signalized intersection in BC to conduct the 

investigation. Two cameras on each approach were used to record vehicular movements for 60 hours. 

Automated conflict detection was carried out by utilizing image processing tools. After observing real 

world conflicts, the authors proposed to calibrate VISSIM in two steps using a genetic algorithm (GA) 

procedure. The authors concluded that there is a reasonable correlation between simulated and real-world 

conflicts (especially after appropriate calibration). Their study included one type of conflict (rear-end), 

and one surrogate safety measure indicator (TTC). This study was also conducted at signalized 

intersections, however driving behaviour is expected to be different from SCI [83]. 

2.3.2.3 Microsimulation Calibration 

According to studies mentioned in previous section, traffic conflicts provide useful insight into the traffic 

safety failure mechanism that leads to road collisions. They are more common and have a lower social 
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cost. However, the fundamental constraint remains, that simulation is not easily replicating real world 

driving conditions.  Despite the limitations in traffic microsimulations, the flexibility in modeling, being 

a low-cost process, and integrability in iterative operations, makes them an alternative tool in proactive 

safety studies. A microsimulation model still can be used to emulate the geometric alignment, traffic 

characteristics and driving behavior of the real-world network, if it goes through a proper calibration 

process. This emulation is highly dependent on how accurately the field conditions are represented by 

the embedded model parameters. Most of the traffic microsimulation software such as VISSIM, CORSIM, 

AIMSUN and PARAMICS have a large array of parameters that can be adjusted in the process of 

calibration to realistically reproduce road conditions and observe driving behavior. The calibration 

process usually starts with a default set of values as an input parameter and a search-based heuristic or 

meta heuristic algorithms deploying artificial intelligence to identify best fitting parameters. Different 

branches of genetic algorithms are widely used in research to find the near optimal simulation models 

parameters. The two primary categories that are often employed are Artificial Neural Networks (ANN) 

and genetic algorithms (GA). While GA performs well on traffic measurements with discrete values such 

as traffic counts, ANN usually performs well on continuous ones such as speed. [83–85]. 

2.4 Treatment Effects Analysis 

According to the Strategic Highway Safety Plans (SHSP) [7], the determination of highway safety 

improvement requires any component after implementation to be evaluated. The results of these 

evaluations would enable agencies to develop countermeasures that will reduce the rate and/or severity 

of collisions. In this section, the research studies on the evaluation methods of traffic signs are presented. 
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2.4.1 Traffic Signs Evaluation  

According to the Manual on Uniform Traffic Control Devices (MUTCD) one of the main conditions 

traffic signs must meet is to command drivers’ attention. The first traffic signs have been introduced in 

1895. Over the past 125 years the sheeting material has been evolved radically. Depending on their use 

and color, new sheeting, pigments, and film being manufactured, and new retroreflective prisms being 

employed to ensure road signs reflect an appropriate amount of light on an appropriate angle. In 1988 

3M company introduced diamond grade reflective sheeting with micro-cube corners which reflect a 

significantly higher percentage of light than previous reflective sheeting materials. This was followed 

by fluorescent yellow and green signs, and, in the past few decades, the regulatory-warning signs are 

equipped with overhead or embedded lightings (also known as active signs). The Traffic Association of 

Canada (TAC) characterise Active (illuminated) Signs as a type of road sign which is do not rely on 

vehicle headlights for illumination [86] . These types of signs are being visible from a greater distance 

and can emit light so they can be seen from further, typically over a kilometer. The Institute of 

Transportation Engineers (ITE) has provided guidelines and minimum performance and photometric 

requirements [22,87]. The flashing frequency recommended by FHWA is that all LED units shall flash 

simultaneously at a rate between 50 and 60 pulses per minute (~1hz). [6] 

The illuminated signs should be considered wherever reflectorized signs are not being effective. For 

example, where background light sources or other uncontrollable distractions reduces visibility, at 

decision points on high speed/high volume facilities or where vehicle headlights may not adequately 

illuminate the signs. Use of prismatic lens retro-reflective sheeting shall not be considered a substitute 

for sign illumination, especially in urban areas[86]. Some studies investigated the effectiveness of these 

kind of materials and compared them under different road conditions. In this section we investigate 

different methods in evaluation of such treatments. 
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Several empirical studies indicated the effects of different materials on sign conspicuity. Zwahlen and 

Schnell -1997 studied the benefits of fluorescent versus non-fluorescent color signs [88]. The authors 

reviewed a range of literature on peripheral vision aspects including same experiment on visual 

performance of fluorescent retroreflective signs. The attempts were to assess the visual performance in 

terms of detection distances, colour recognition and legibility [89]. The authors also conducted an 

experiment with participation of 18 individuals screening the color signs on a field test. The test variables 

were target sizes, colors and peripheral angles and the participants were trained to respond by indicating 

if they detected the colors and recognized the sign on a road tour. As it was expected, the fluorescent 

colors were detected with a higher frequency at greater distances due to higher luminance contrast. The 

experiment result on scatterplot has been approximated with linear regression on the detection and 

recognition percentages. The author suggested regression models to obtain an estimate for the detection 

and recognition percentages for the three fluorescent colors: orange, yellow, and yellow-green. However, 

the test has been conducted in an isolated environment, with all participants being college students. The 

sample size didn’t represent all driving population and the participants were alerted and instructed to 

look for the signs. The experimenter was seated in the front passenger seat and hence not engaged with 

driving tasks and finally the regression model deals with generous error due to dispersion in observation 

results [88,89].  

There are a few studies about measuring illumination intensity reflected from signs using electrical 

instruments such as handheld devices and mobile asset data collection. The Texas Transportation 

Institute (TTI) has introduced an advanced mobile asset collection method and conducted a study on the 

accuracy of the real-time reflectivity measurements [90]. However, measuring luminance in the field is 

not an easy effort and required quite sophisticated and expensive equipment. Even though federal 

highway administration recommendation is to use reflectivity measures to set the minimum visibility 

standards, however, the limitations are also outlined on the recommendation, such as the variation in 
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geometry of the facility and other influencing factors mentioned earlier under sight distance 

challenges[90].  

2.4.2 Enhanced Traffic Signs 

Gates et al. -2014, has evaluated signs with enhanced conspicuity properties. The study focused on 

driver’s behavior when they are exposed to the signs with the different material characteristics. Unlike 

previous efforts, this experiment was unbiased to peripheral vision aspects or illumination intensity of 

the signage. The signs performance was evaluated directly from driver’s indirect behavior. The mean 

vehicular speed was collected and considered as the indicator of drivers’ respond to the sign message. 

The authors used analysis of variance (ANOVA) to assess the differences between speed mean values, 

under different sign categories. In the model, multiple independent variables (i.e., sign treatments, light 

conditions) was presented, while the mean vehicle speed at the control points was the selected dependent 

variable. With only one independent variable, the study performed the one-way ANOVAs and the t-tests 

for 8 facilities operated with different treatments (e.g., fluorescent red stop-signs, flashing red LED stop-

signs). Fluorescent, prismatic sign sheeting, embedded LED was concluded to have statistically 

significant impact on the mean speed. According to the result from the study, the embedded LED stop-

sign can reduce 28.9% and 52.9% the number of vehicles not fully stopping, and the number of vehicles 

moving through the intersection without slowing down (blow-through traffic), respectively. This study 

was conducted in a rural area and no other independent variable was considered. Only one type of 

treatment was displayed at any given time to the test participants. While traffic, weather condition, 

geometry and driving population might be different at each intersection. Test on statistical significance 

on the report indicates some of the findings are not reliable enough and some misinterpretation on 

Nominal Logistic Regression was on the report [8].  
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Safety performance of flashing warning sign on human factors at rural intersections has been evaluated 

by Minnesota Department of Transportation[91]. Rural, two-way stop-controlled intersections with three 

types of improved treatments have been investigated. This study included before-after treatment 

installation analysis both on collision history and human factors. A survey from drivers was 

supplementing the data of the study. The result from this survey presented that, drivers tend to not believe 

in positive impact of the treatment on their speed since they indicated that they “reduce speeds equally” 

with or without the flashing lights.  Three years’ worth of study collision data consisting of 12 rural, 

two-way SCI, was collected for the before and after analysis with 40% improvement in favor of after 

treatment being upgraded to flashing light. Drivers’ speeds were measured by pavement-based magnetic 

sensors on both major and minor approaches. Despite the rather dramatic decrease in collision 

experience, the authors could not provide unequivocal evidence for safety benefits of overhead flashers 

from survey data and the observed speeds. The field study result and statistical collision test were 

inconsistent. However, the authors indicated sensor failures and complexity of the test as limitation. 

Control for possible regression-to-mean effects wasn’t included in the report as well as statistical 

significance of effects were not testified.The effect of influencing factors which possibly changes over 

time; traffic volume, weather, road user behavior, vehicle fleet, inclination in report collisions and other 

potential factors was ignored.  

As for collision reduction impact, a more recent study has investigated overhead flashing beacons 

efficiency at SCI in North Carolina [92]. This study focused on rural intersections and the treatment was 

an overhead beacon with flashing yellow on major approaches and flashing red beacon on stop-

controlled approaches. Thirty-four SCI in North Carolina on two-lane roads, with no turn lanes, and two-

way stop control have been used in the study. The authors had access to at least three years of post-

installation collision data, as well as average daily traffic (ADT) for the selected SCI. The authors 

deployed Empirical Bayes (EB) before-after method in order to control possible Regression-To-Mean 
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(RTM) effects. The authors have selected a calibration procedure to find adjusting factors for local 

collisions data for and safety performance function [93]. Hence for each treated intersection, five not-

treated intersections were chosen to comprise the reference group. The authors reported a 12% (± 6%) 

average decrease in all collisions. Despite of this finding, the rare occurrence of “ran stop-sign” collisions 

in the police reports and the rather high cost of the tested treatment made agency to conclude that overall 

collision reduction effects from the improvement were modest. The right-angle collision was not 

included in the study since selected SCI had no turning lane. The study didn’t investigate drivers’ 

behavior and it failed to justify if the sample size was enough to reflect the change in collision 

modification factor. 

Another report published by Federal Highway Administration on safety evaluation of flashing Beacons 

at SCI has included both rural and urban intersections [52]. A wide range of intersections including multi-

way SCI, on either two-lane or four-lane approaches, have been investigated. Not only overhead flashing 

beacon but also pole-mounted flashing red beacons above stop-signs was in the study. A fairly large 

number of SCI equipped with this treatment has been identified in North and South Carolina (100 

locations). The study has been designed with generic before-after safety analysis using the EB method.  

Not only collisions frequency (all, rear-end, and at-angle) but also collision severity (fatal ‘K’ and injury 

‘A-C’) has been investigated in this study. The author followed the method introduced by Hauer [39] to 

estimate the minimum required sample size. Based on minimum and optimum sample sizes, several 

hundred additional SCI were selected in the reference group in aggregated and disaggregated analyses. 

The results considering all intersections, revealed 13.3% reduction in at-angle collisions, and a 10.2% 

reduction in injury collisions with 4.6% and 4.9% standard error respectively. Sites with standard pole-

mounted beacon stop-sign (58.2% ±32.6%) seemed to show more reduction rather than overhead 

beacons (11.9% ±10.8%). The agency cautiously (due to the limitation in sample size) recommended the 

active signage of this kind, for the rural areas.   



39 

 

Some studies were centered around the drivers’ behavior to evaluate safety performance of the active 

stop-sign. In one study conducted by Arnold and Lantz, a T-SCI with a stop-sign on the minor approach 

was selected. This intersection had 14 reported collisions in only two years. Half of the collisions 

involved injuries. The drivers’ interaction with a stop-sign equipped with flashing LED at the corners 

has been investigated. The observation started from a week before and continued after installation of the 

sign. Three data collection stations (i.e., traffic counters) were used on the approach to collect 

approaching speed in three corresponding sessions. Data collection included three seven-days sessions: 

session 1 - before installation, session 2 - within a week after installation and session 3 - after a full 

season of the deployed treatment. For driver compliance, a site survey was performed at 15-minute 

intervals during the morning, lunch, afternoon, and evening peak periods. For compliance, data 

comprised under four categories with the number of motorists who came to a full stop (voluntarily or 

because of conflicting traffic), rolled through (0 to 3 mph), or blow through the stop-sign (over 3 mph). 

Overall, a decrease in average vehicle speed was reported in the range of 1.3 mph to 3.4 mph. The study 

has recorded a slight increase between the two last sessions on the average speed between stations 2 and 

3 (further from sign). The speed at the closest station (station one) remains unchanged on sessions two 

and three. Another finding was the positive impact of the flashing stop-sign on the speed reduction at 

nighttime - from 2% for daytime to more than twice at nighttime (4.2%-7.3%). The intersection under 

the investigation was selected due to high collision frequency with ADT of 7,100 𝑣𝑒ℎ/ℎ however, the 

correlation between speed reduction, volume and collision frequency was not reported. There was no 

mentioning of enough warm-up period after installation for session two. Calibration of the test equipment 

has not been performed after first session, statistical significance was not in the report and biased 

observers’ verdict might impacted the result [94].  

Another effort deployed a unique non-standard animated LED (scanning eyes) on top of a regular stop-

sign rather than active sign to attract drivers’ attention. The study was on a hotspot (4 collision in 3 years) 
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three-way, bidirectional SCI in St. Petersburg in FL. One hundred and twenty-six sessions were recorded 

and the result of the visual analysis shown the number of right-angle conflicts decreased from 4 to 1.4 

per session [95].   

Kwon et al. -2013, have suggested an advanced LED warning System. The proposed system actively 

detects vehicles presence on all approaches (specially with sight restrictions) and triggers LED blinker 

warning signs for the conflicting movements. Two phases of video data collection have been performed 

before and after installation. The drivers’ compliance to the traffic control devices was measured using 

video data analyzer. Speed mean and standard deviations was calculated. The result of this study showed 

the average vehicle speed after installation of the treatment on the main approach was slightly increased 

during the daytime and on the contrary significantly decrease (4.2 mph) at nighttime. However, the 

occurrence of the roll-through maneuver increased from 13% to 24% after the installation of the warning 

system. Statistical significance was not included in the report [96]. After few iterations, the authors 

replicate the surrogate traffic safety on the advanced LED warning system for rural intersections 

(ALERT). The before-after analysis revalidated the previous conclusion while the mean speeds after 

installation of ALERT for conflict and non-conflict periods were 47.9 mph and 51.8 mph, respectively. 

The authors also selected wait time for vehicles on the minor road to be used as the surrogate measure 

for drivers’ recognition of acceptable gap. The average wait time was 3.9 seconds during the conflict 

periods and 2.5 seconds during the non-conflict periods. The roll-through maneuver increased again after 

installation of ALERT [97]. The location was selected in a rural, low volume link and hence the treatment 

may not perform the same in a more active urban setting with higher light pollution.  The solution is also 

complex to be widely deployed and has high upfront and maintenance cost. Despite of the complexities, 

The National Committee on Uniform Traffic Control Devices (NCUTCD) have proposed Intersection 

Conflict Warning Systems (ICWS) and recommended to be included in the Manual [98]. 
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Monsere et al. -2015 and Jomaa et al. 2005, have evaluated two other applications of the actuated LED 

warning sign on speed alert [99] and sharp curve with chevron [100] . Both studies were being able to 

demonstrate an improvement in the mean speed however the impact on the safety performance measure 

remained uncertain.  

Some other studies strived to estimate the collision reduction for SCI with active signs. Davis et al, 

conducted a two-step comprehensive study on active stop-sign at SCI with respect to collision frequency, 

conflict patterns as well as drivers’ behavior. For the first step, a statistical procedure, based on Empirical 

Bayes (EB) method, was defined, and accounted for RTM bias using the reference sites. Traffic volume 

and other necessary data (e.g., geometry) were collected at different sites. Three-year worth of reported 

collision data for 255 SCI in Minnesota was included in the study. Fifteen SCI locations had the treatment 

installed, while the rest of the sites was grouped as the reference. The authors suggested an enhanced FB 

method - previously developed [33], to estimate the target collision at each SCI with an assumption that 

the treatment has not been installed. This method considers other covariates to ameliorate the estimation 

of conventional Full Bayes. In comparison to conventional EB method outlined in the HSM, the collision 

estimate was consistent with the result from the proposed method. The estimation on average right-angle 

collisions at SCI with active signs was 41.5% less than the estimation with assumption that the treatment 

has not been installed - between 0% and 70.8%, with 95% confidence. The result of this study reported 

a CMF of 0.585 for the countermeasure (Replace standard stop-sign with flashing LED stop-sign). For 

the second step, an empirical study was designed to evaluate stopping compliance, estimating speed of 

approaching vehicle to active sign, and finally, comparing the braking deceleration.  Video data was 

collected and processed to estimate deceleration and speed. Compliance to sign was manually captured. 

Multinomial Logistic Regression was used to summarize how the degree of compliance varies with 

respect to a condition.  For instance, the treatment increased the odds for “clear stops” vs “clear non-

stops” 6.4 times, whenever minor approach drivers encounter opposing traffic (ODDs with and without 
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treatment was respectively 4.2 and 10.6). However, the result was not disaggregated enough to present 

nighttime or road condition impacts. 

The effects of artificial ambient light on driving behaviour at 490 SCI in rural areas were explored in the 

state of Iowa. The results were compared to the same number of SCI without the "destination light". At 

treated sites, there was a 50% drop in the ratio of night-to-day collisions. According to Goswamy et al. 

2018, the SCI with proper lighting can reduce property damage, injury, and overall collisions by 18 

percent, 24 percent, and 33 percent, respectively, at night. [12] 

Some other research examined the safety benefits of a sensor actuated, embedded LED lighting system 

at pedestrian crossing pavement markings. The authors have limited the focused only on the speed and 

deceleration rates with and without the presence of pedestrians. Both speed and deceleration rate were 

significantly reduced. The number of measurements was limited (200 total sample). Although no 

statistical test results were reported, a 19.3% and 16.4% drop in mean speed at zebra crossings was 

observed when the sponsor module was enabled or disabled, respectively. According to the authors this 

reduction “corresponds to a lower fatal accident and serious injuries risk” Patela-2020 which had lack 

of evidence, [101] 

The influence of the other factors in performance of the active signage was studied in a recent study by 

Rista et al. 2020. In a sampling of 13 sites, this study discovered a wide variety of driver yield rates, 

ranging from 5% to 88 percent. According to the authors, intersection configuration, crossing distance, 

traffic count, posted speed limit, location, sign face, approach side (near or distant), and other factors all 

may play a role in driver yielding. To determine the relationship between the dependent variable 

(Yield/not Yield) and the independent variable, the author utilised a logistic regression model. Hourly 

volumes, operational speed (as a binary), lane width deviation, and sidewalk presence were found to be 

predictors for log-odds of driver yielding probability. The authors adopted “a staged pedestrian 
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approach” which means that the study was obliged to increase a pedestrian traffic count. this approach 

will not be acceptable in an objective safety assessment. The independent variables chosen were all 

connected to the driving environment, while the dependent variable (Yield/not Yield) was the only driver 

behaviour variable in the study. The research was carried out in Texas, USA, and focused on active 

pedestrian crossing signs in rural area. There was no effort put into improving safety performance or 

analysing conflicts. [102] 

Another recent study conducted by TTI in 2021 strive to identify statistical interaction between treatment 

type and site characteristic variables with a larger sample size and staged pedestrian using ANCOVA 

models for site mean yield rates and logistic regression that considered the individual driver response to 

crossing pedestrian. This study has considered Pedestrian hybrid beacon, rectangular rapid flashing 

beacon and Light emitting diode signs. This study found higher yielding being present at night. The 

presence of yield lines as, speed limit group, number of lanes, lane with and hourly volume were also 

among variables impacting driver reaction. Like previous study, the result was on rural with tempered 

traffic count and not looking into the safety performance metrics. Using binomial logistic regression was 

limiting the study with more than two categorized which makes it difficult for continues variables like 

speed.[103]   

Another recent study utilized driving simulator to evaluate Stop sign configurations on driving Speed on 

simulation videos in rural Intersection using 32 rather young volunteers. The comparison was between 

regular Stop-sign, Stop-sign with advance notice and fluorescent stop-sign and drivers right of way. 

Driver speed was compared using ANOVA and conclusion was that the fluorescent sign reduced the 

average speed for 12.6km/h and 9.2km/h type 1>3 and 2>3 respectively. [104]  
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A recent study in the city of Montreal, evaluated the performance of SCI compared to uncontrolled 

approaches. Video collection from 100 intersections and 130,000 vehicles was used for to determine the 

within-site and within-approach correlations deploying linear mixed-effects regression models. The 

authors concluded that presence of stop-signs significantly reduced speed approach and variance, 

however there was not enough statistical evidence supporting the vehicle–pedestrian interactions. The 

authors recommended “implementing stop-signs to reduce pedestrian crashes may be less effective than 

other interventions” -Stipancic et al. 2021. surrogate measures such as TTC and PET was extracted 

through an automated process of image processing. Several covariates were identified in the study 

including control device configuration, geometric variables, time of day, etc. Three regression models 

were developed for speed, TTC and PET. TTC and PET was improved somehow for vehicle-vehicle 

however vehicle–pedestrian models had very few significant variables limiting the authors to make a 

conclusion for pedestrians’ safety. This study did not consider the stop-sign types (active signs vs 

regular) however the contribution on PET and TTC analysis and meaningful conclusion on general 

assumption of performance of stop-sign to reduce risk for pedestrians was significant.[105] 

2.5 Chapter Summary 

This chapter presented the review of available literature related to the proposed research topic. For 

decades, road safety analysis and modeling has been practiced by transportation specialists. Several 

assessment methods, tools and models were discussed that tend to evaluate quantitative and quantitative 

road safety measures. The collisions record is the primary safety measure that gives a sense for future 

safety performance of a facility. In order to evaluate the impact of a countermeasure or treatment 

collision data is necessary for before and after period. However, Data availability and quality of available 

data is a challenge. Due to the rare occurrence of traffic collisions, regression to the mean is essential in 

collision analysis. Several type of regression models are being used by traffic safety analyst including 



45 

 

Poisson and extensions of NB. Different branches of Empirical Bayes methods are a commonly accepted 

and explored for treatment before and after safety analysis. Other methods, such as Full-Bayes, were 

shown to improve collision estimate under certain conditions, as described in this chapter.  

The inability to resolve data quality concerns for unrecorded and poorly recorded collisions is frequently 

mentioned in various studies. The surrogate safety assessment, and conflict analysis, are used as 

alternative solutions to fill-up this gap, at the cost of not providing direct collision estimation. As 

presented in this chapter, there is strong correlation between conflicts and collisions. Transportation 

specialists have deployed manual and automated methods to detect and observe conflicts. Some of these 

methods was explored in this chapter. Computer-based modelling tools and data processing techniques 

have widened the window of opportunity for traffic engineers to emulate infrastructure modifications 

prior to deployment. However, the quality of a developed traffic model determines the success of safety 

impact assessment. Microsimulation model calibration and tools to extract collision observations are 

essential for computer-based, road safety conflict analysis. 

To evaluate safety effectiveness of a treatment, both changes in collision record (CMF) and surrogate 

safety assessment being suggested in literature. Before and after analysis of the collision history (with 

or without using a comparison group) have been frequently used to estimate safety effectiveness of a 

treatment or countermeasure. However, the same challenges for data availability remains. Deployment 

of a new untested treatment might have negative consequences and exposes travellers to risks which are 

difficult to quantify.  Stop controlled intersections are vulnerable facilities when inadequate design is 

used, or when visibility is hindered by obstacles. Improving signage visibility is one of the first 

amelioration solutions sought by transportation agencies. Traffic signs have evolved to improve drivers’ 

interaction in a dynamic driving environment. Regulatory and warning signs, (pedestrian crossing and 

stop-signs), have been cites in the literature as a risk element. New materials and design mechanisms are 

utilized to increase visibility of road signage. The enhancements have been evaluated in some non-
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collision and collision-based studies covered in this section. However, the results were either equivocal 

or not in agreement from report to report on stopping compliance or approaching speed. In the next 

chapters a case study for a newly introduced treatment will be presented and the safety impact using 

conflict-based models for 3-ways SCI will be assessed.  

3 Chapter 3: Methodology  

The literature review was included in the chapter 2 of this thesis and the inadequacies of the reported 

findings were discussed. This chapter describes the methodology and clarifies the steps and sequence of 

tasks to be carried out in order to make a safety assessment of new, or existing treatments with no (or 

insufficient) safety performance history. After a brief introduction, this chapter will present the design 

of an empirical study including selection of a testbed, design of an experiment and data collection. 

Following that, the micro-simulation modeling and calibration will be detailed, with underlining the data 

validation process from simulation representing observation. Then, the next section of the chapter entails 

the approaches in statistical modeling from base to top of the Hydén pyramid, from driver reaction to 

collision. The final segment will summarize the proposed methodology and introduces the next steps of 

the research.   

3.1 Introduction  

Previous studies on active signage assessment were performed either under a long term before-after 

analysis of a flashing sign or as a cross reference between SCI equipped and not-equipped with the active 

signage [8,9,14,33,102,106]. Drivers' reactions to signage could be affected by a combination of factors that 

aren't necessarily related to the type of signage such as: intersection configuration, weather condition, 

neighbourhood type, crossing distance, traffic counts, traffic mix, posted speed limits, location, and other 

factors. Some of these factors may change over time or from one site to another.  
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In this thesis the author strived to control some of these variables and evaluate the impact of the 

remaining ones. The site selection criteria were to find several SCIs with:[1] similar geometry design, 

[2] same traffic mix and count [3] to make concurrent experiments for observation. A link in urban area 

in the city of Montreal was identified and an experiment was design in a fashion that same traffic was 

exposed to several types of active signs within few minutes’ intervals. Two signs in the experiment were 

of BLS. During the “before” analysis, some intersections were standard stop-signs where two 

intersections were converted to BLS for the purpose of this study.  Data collection was also conducted 

before and after installation of the BLS to complement the cross-reference analysis. Data collection 

included speed/count-read, using 3 stations of high-definition (HD) radars and 189 hours of video 

recording within 10 days. With deploying several image processing techniques, volume, speed, 

trajectories, compliance, and the reaction to the active signs was captured[107].  
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Figure 6 Detailed Framework of the Study 

Supplementary data was gathered from several sources including local and national collision data bases, 

weather condition and rainfall, previous vehicle counts, and intersection drawings provided by the city. 

Several databases were created to process the data collected. The next three section in this chapter will 
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walk through the three analysis stages shown in Figure 6, which are “Field Study”, “Traffic Model 

Simulation” and “Statistical Method”. The analysis of the results is included in the subsequent chapters.  

3.2 Empirical Study  

In order to re-evaluate surrogate safety measures of a newly installed traffic control device the following 

objectives have been set out: 

• To classify the drivers’ compliance to the traffic control device. 

• To observe performance of each treatment under low light ambiance(daytime/twilight). 

• To observe interactions for both motorized, and mixed motorized with non-motorized traffic. 

• To record the approaching vehicles’ speed and traffic volume. 

• To estimate vehicles average deceleration magnitude. 

• To capture independent variables such as pavement, weather, and light condition. 

• To observe the speed variance.  

Two regulatory signs, Pedestrian crossing and stop-signs is investigated and several SCI for the test bed 

is identified for this study. As mentioned in the introductory chapter, about 8% of fatalities and 11% of 

total collisions occur at SCI.  

3.2.1 Experiment Site 

Several potential sites in the greater Montreal area were identified as possible study locations and being 

filtered using the following criteria.  

1. Intersections with similar structural and operational characteristics with respect to geometry, 

traffic flow, driver population mix and various transportation modes. 

2. SCI equipped with enhanced treatment (overhead beacon and post-mounted LED stop-sign)  

3. Ability to safely attach, mount and install data collection equipment. 

4. Accessible location to visit in an urban setting (i.e., within Montreal metropolitan community 

area). 



50 

 

5. Availability of at least 5 years of collision history for safety performance measures. 

A section under jurisdiction of Lachine borough (in the Greater Montréal Area) was found to meet the 

criteria listed above. The east-west arterial of Victoria Avenue includes four intersections along two-

lane bidirectional road. The five SCI between avenue 18th to the 33rd was identified for the empirical 

analysis and an extension of four more intersection for the simulation and/or statistical analysis. The 

study area concerns the section of Victoria Street (east/west axis) from 15th to 34th Avenue (north/south 

axis). Victoria Street itself is an extension of another major street; Notre-Dame Street. 

The intersections under study are: 

1. rue Victoria/15e Avenue (intersection with stop in all directions), 

2. rue Victoria/16e Avenue (intersection with stop in all directions), 

3. rue Victoria/18e Avenue (intersection with stop in all directions), 

4. rue Victoria/19e Avenue (non-stop, one-way intersection on secondary), 

5. rue Victoria/21e Avenue (intersection with stop in all directions and one-way on secondary), 

6. rue Victoria/25e Avenue (intersection with stop in all directions), 

7. rue Victoria/28e Avenue (intersection with stop in all directions), 

8. rue Victoria/32e Avenue (crossroads with traffic lights), 

9. rue Victoria/33e Avenue (intersection with stop in all directions and flashing lights on rue 

Victoria, one-way on secondary), 

10. rue Victoria/34e Avenue (intersection with stop on secondary). 
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It should be noted that 32nd Avenue is a main artery according to the hierarchy of the road network of 

the city of Montreal. Hence intersection “8” was not stop controlled, the data was only used for 

microsimulation calibration and not the statistical analysis. The traffic light signal timing has a protected 

phase for each of the pedestrian crossings (all red phase) to allow safe pedestrian crossing. Pedestrian 

pushbuttons are thus positioned at each corner of the intersection to allow users to call the protected 

phase.  

 

Figure 7 Study area and intersection control devices 

The intersection has the pedestrian traffic lights as well. Intersections “1” and “2” were also excluded 

from the simulation and conflict analysis, however the collision and volume data was used to enhance 

the quality of the collision prediction model for the link.  

Intersections before intersection “1” were ignored since the geometry and number of lanes were not 

consistent with the rest of the road segment (rue Victoria/1e Avenue: rue Victoria/8e Avenue -3 lanes, 

rue Victoria/8e Avenue: rue Victoria/14e Avenue -2 lanes). On street parking was not permitted on the 
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study section. There are minor roads access and egress traffic along the segment, with a posted speed 

limit of 40 km/h and a negligible longitudinal grade. 

Two intersections downstream from 18th avenue (25th and 28th) have same type of control devices. Both 

westbound approaches are provided with Active stop-signs.  

 

Figure 8 Treatment types 

There is a small commercial plaza with two access driveways, between avenue 25th and 28th (north side 

of Victoria Avenue). The subsequent intersection is a three-leg signalized intersection with a fixed cycle 

time. Avenue 33rd is a dog-leg intersection with a 30-m offset between northbound and southbound 

approaches. The eastbound approach passes southbound before stop-line (a one-way, left turn with local 

access only). The intersection has an overhead beacon supplementing standard pedestal-mounted retro-

reflective sheeting stop-sign. All signs meet regulation for stop (ARRÉT) P-010 described under section 

2B-05/4L.05 of MUTCD. Figure 9 presents the visual properties of two BLS signs and the regular LED 

sign and shows BLS sign is more legible specially in dark and from distance. All intersections pass the 

stop sight distance test described in section 2.2 with no obstacle preventing the drivers to visually see 

the signage from the recommended distance. 
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Figure 9 Visual comparison between BLS and LED (night and day) 

 

3.2.2 Experiment Design 

A hybrid data collection method was used in this study to measure per-vehicle speed, by combining 

information processed from digital video cameras and high-definition radars. The data comprises per 

drivers’ speed, correlative speed, headway, encroachment time, trajectory, maneuver, and traffic volume. 
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A pole mounting unit attached the radar and camera(s) to a telescopic mast (Figure 10). The radar 

projection was perpendicular to the street centerline and parallel to the stop-line, while the video camera 

was tilted at a suitable vantage point to cover the conflict zone and capture vehicle trajectories.  

  

Figure 10 Left-Camera positions and snapshot. Right- hybrid data collection station 

The research team used three mobile data collection points that were set up in advance to record morning 

peak and/or evening peaks. The equipment was powered via external batteries to complete up to 6hrs of 

data collection.  
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Tue Wed Mon Wed Mon Wed Fri Tue Wed Thu 

Minor 
 Date 

Location 2 3 6 8 6 8 10 14 15 16 

18th 

Victoria& Ave. 18   5 5  5     
30m WB Ave. 18   5   5     
30m EB Ave. 18    5  5     

21st 
Victoria& Ave. 21 7    7  6 7   

30m EB Ave. 21         5  

25th 
Victoria& Ave. 25 7 7 5  5  5  7  

30m EB Ave. 25   5  5     5 

28th 
Victoria& Ave. 28 7 7  5   7  7  

30m EB Ave. 28    5       
32nd Victoria& Ave. 32        7   

33rd 
Victoria& Ave. 33  7      7  7 

30m EB Ave. 33          5 
Table 2 Recording hours  
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The data collection points were either installed at a sub-set of the intersections under the study link or 

thirty meters upstream to the stop-line on WB or EB approaches. Data collection was conducted during 

month of December of 2014 and two months of April, July of 2015.   Table 2 summarizes the sessions. 

In total 32 sessions, 189 hours of usable recording was done in 10 days. The radar was set up at 30 meters 

upstream of the intersections 18th, 21st, 25th,28th and 33rd to analyze the variance in speed for all types of 

treatments. The sessions and data are presented in Appendix I. The summary of the other relevant 

environmental data is shown in the table below. 

 Date Sundown Weather 

Sunset Civil 7:30 8:30 12:00 13:00 16:30 17:30 18:00 22:00 

2014, Tue, Dec 02 16:13 16:46 Clear Mostly Cloudy Cloudy Snow Showers 

2014, Wed, Dec 03 16:12 16:46 Cloudy Snow Snow Cloudy 

2015, Mon, Apr 06 19:28 19:59 Cloudy Snow Snow Snow, Fog 

2015, Wed, Apr 08 19:30 20:01 Cloudy Cloudy Cloudy Snow 

2015, Mon, Jul 06 20:45 21:22 Cloudy Clear Clear Mainly Clear 

2015, Wed, Jul 08 20:44 21:21 Cloudy Mostly Cloudy Mainly Clear Cloudy 

2015, Fri, Jul 10 20:43 21:20 Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

2015, Tue, Jul 14 20:40 21:17 Mostly 

Cloudy 

Cloudy Cloudy Cloudy 

2015, Wed, Jul 15 20:40 21:16 Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

2015, Thu, Jul 16 20:39 21:15 Mainly Clear Mainly Clear Clear Mainly Clear 

 

Table 3 Light and weather characteristics 

3.2.2.1 Video footage from 30m upstream:  

The data collection points at 30 metres upstream was used to capture drivers’ compliance and first 

reaction. Video footage with perpendicular angle with the median line of the link was captured (see 

Figure 11). In transition from three-dimensional workspace into two-dimensional image, calibration and 

verification was essential. Detailed description of the manual video analysis is presented in previous 

work[13,108]. A measuring line was marked and annotated on the pictures. These grid lines were then 
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converted into a transparent layer and overlaid into the video using the available software. After this 

step, the video was run at 60fps rate (monitoring resolution for every 0.017 seconds) and whenever a 

driver first pressed brake (based on brake light), the vehicle location was marked as driver reaction point. 

(The front bumper line was set as the reaction line). The extracted data from the footage was displaying 

drivers’ reaction distribution.  

 

Figure 11 Image annotation and labeling at 30m point - (Victoria and 18th avenue)    

 

3.2.2.2 Video footage from the intersections: 

At the stop-line the speed detected by the radar and footage was correlated with compliance to the control 

device. The drivers’ compliance to the signage is correlated to speed of the driver at the stop line by ITE 

in the manual of transportation engineering studies. Three categories are defined; full stop (0 − 1 𝑘𝑚/ℎ), 

rolled through (1 −  5 ± 1 𝑘𝑚/ℎ) and blew through the stop-sign (more than 5 𝑘𝑚/ℎ) [109]. The high-

definition radar used in this study has 95% accuracy in speed detection with ±1 𝑘𝑚/ℎ. For video-based 

data collection, the number of frames is correlated with compliance. For instance, for a vehicle with a 

length 𝑙 and speed 𝑠, the total number of frames in which the object crosses a virtual line (Figure 12) can 

be calculated as follow: 

#frames =  
𝑙(𝑚)

𝑠 (
𝑚
𝑠 )

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑓𝑝𝑠) 
Eq. 17 
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For a passenger car with an average length of 4.5 m, a blow-through occurs when the total number of 

frames in which the vehicle occupies the pixels designated by the virtual lines is less than 95 frames (i.e. 

3 seconds).   

  

Figure 12 Left, image annotation and labeling at intersection - (westbound Victoria and 28th avenue), right, examples of video recording 

presenting road users’ tracks, identification number, and speed overlaid (Victoria and 21st avenue) 

If the front bumper covers two adjacent lines in 210 frames or more, it can be interpreted as a full stop. 

Subsequently, between these two thresholds falls under roll through. A manual visual cross-reference of 

the video recordings was undertaken in addition to image processing to group the number of motorists 

who came to a full stop willingly and those who came to a full stop due to conflicting traffic. The method 

for feature tracking analysis was recommended in previous studies [13,108,110]. A video analysis open-

source tool was used to generate trajectories for all moving objects in the video frames (Figure 12) track 

the vehicle's trajectories[111]. The trajectory files were then imported into SSAM. This data was only used 

for validation of the model. This process is described under section 3.3.2.5 where the actual conflict data 

is extracted from the microsimulation model.  
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3.2.2.3 Introducing the new treatment: 

For the purpose of this thesis, two new treatments were placed. The new treatments are a BLS standard 

pedestal-mounted stop (ARRÊT) and a BLS pedestrian crossing sign with 1Hz flashing backlit LED. 

The LED is embedded behind the sign-face. 

The sign follows the Quebec P-010 and MUTCD sign description under Section 2A.07. The prototype 

of a solar powered control device was built in house for the purpose of this thesis by the industrial partner, 

Orange Traffic (Figure 13). The installation was done by and with the permission of the city to replace 

the standard stop-sign on the westbound approach of the major road at Victoria and 25th avenue. 

 

Figure 13 Prototype of the BLS (left), control box (middle), switch from battery to solar panel(right)  

The BLS sheeting includes micro-prisms ranked III and IV under D4956-04 FHWA classifications with 

50 cd/lx/m2 luminous intensity. This makes retro-reflectivity same as the replaced static sign. The 

thickness of the panel is 12mm. The sign radiates uniform light which makes them legible from a greater 

distance compared to standard LED. The LEDs in standard sign are placed at an equal distance from the 

center of the sign which forms a flashing circle shape at night. The four legs intersection of Victoria 

Avenue and 18th Avenue was equipped with four pedestal-mounted retro-reflective sheeting stop-sign, 
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regulatory sign (ARRÉT) P-010. The east and west approach had an additional pedestrian-crossing sign 

(P-270-2). The eastbound approach was selected to have the new treatment installed while the westbound 

approach remained the same. The sign was mounted under the stop-sign like before.  

 

Figure 14 Site specification and data collection set-up 

On May 29th, 2015, the BLS signs were setup, with one month of warm-up time. The set-up was reversed 

after the data collection data in late July. The traffic was exposed to the sign for less than 3 months. 

3.3 Model Simulation and Conflict Analysis.  

Existing microsimulation software, as described in section 02.3.2, are powerful tool that allows 

transportation specialists to simulate traffic behaviour, extract vehicle trajectories, and even pollutants. 

To the best of the author’s knowledge, they do not, however, permit a direct assessment of road safety 

since aggressive behavior causing collision is inherently prohibited. The microsimulation approach has 

hitherto suffered from a lack of direct measures for evaluating safety using collisions.  

Conflict analysis, on the other hand, has the significant advantage of being an alternative approach in 

safety analysis, and even more so when collision data is limited. This limitation imposed by the random 
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variation in the number of collisions, as described in section 2.3.1 and forces researchers to consider 

alternate approaches, such as the use of micro-simulation and surrogate safety measures[83]. As 

previously determined, conflicts at unsignalized intersections are correlating better with collision than 

with traffic flow, hence they can be utilized in collision modelling [66,81]. In this section the methodology 

for building a network model to obtain calibrated conflict counts at intersections by using simulation and 

SSAM are presented, and a detailed procedure of model calibration is presented in Figure 15. 

 

Figure 15 Microsimulation set-up procedure utilizing GA 

Gettman et al. assessed various traffic simulation software compatibility with SSAM [21]. In the 

comparison study, VISSIM successfully presented comparable values of the “total number of conflicts”. 

PTV VISSIM 2021 was used to conduct the analysis by keeping some of the default values of driving 

behavior to reduce the risk of generating unrealistic maneuvers in simulation. Gettman et al. also 

suggests eliminating TTC and PET results equal to zero values in the model to avoid inaccuracies 

generated by model. 
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3.3.1 Building the Simulation Model 

City of Montreal maintains the as-built library of the drawings of the road sections. The section under 

study was imported into the software and the map overlay layer was used for validation and necessary 

adjustment. The result was a transition from drawings Figure 7 to a preliminary microsimulation model 

Figure 16. 

 

Figure 16 Snapshot of the built network 

Aside from the network's physical form, other network characteristics such as, connectors, conflict 

zones, reduce speed zones, signalization, control devices, sensors, desired speed was applied using the 

data collected from the experiment. The most valuable information for the network is the traffic 

assignment which defines the movement of the travelers in the network. Consequently, the data from the 

experiment and vehicle count from the city with 4 different time intervals was examined and 

incorporated into the model as shown in Figure 17.  



62 

 

 

Figure 17 Hourly, traffic counts Major and Minor 

 

The car-following model was implemented with the additional constraints for safe-to-stop braking 

distance. Lane-changing maneuvers are not allowed when vehicles are queuing up waiting to turn or 

advancing through the intersections. 

A major limitation of the VISSIM model was the inability of the model to reflect the same driver 

behavior at the stop-sign as it was captured from the experiment. There is no explicit feature available 

in VISSIM that can simulate a roll-through or blow-through behavior. Essentially, neither vehicles would 

be able to burn the stop-sign, nor they behave differently when a stop-sign type changes. Thus, all the 
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vehicles approaching to the stop-sign were making the expected, full-stop, before proceeding into the 

intersection. 

To bypass this limitation, two dummy links was added to the approaches in a fashion that travelers 

violate the stop rules while reducing their speed. The odd ratio for distribution was taken from the 

qualitative analysis made for this reason under section 4.2.2.1. 

 

Figure 18 Dummy links and their position with respect to the stop line. 

 This technique yielded three alternative results at the stop line: full-stop, roll-through, and blow-through. 

The treatment type at each approach, for the time of the day, determines the ratio of utilization of these 

dummy links.  The next section describes the processes of model calibration to represent the experiment, 

pattern in traffic, speed, density, queue, delay time, travel time, and most importantly vehicle trajectories 

and conflict.  
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3.3.2 Calibration of the Simulation Model 

The success of a traffic simulation model in delivering accurate results is determined by how well it was 

calibrated. Typically, the calibration of microsimulation models is carried out by using vehicle counts 

and, in some cases, average speed of vehicles on roads. Given that the focus of this research was on 

conflicts, it was important that the model is also be calibrated against observed conflicts. To the best of 

the author’s knowledge, available traffic microsimulation platforms (such as Paramics, VISSIM, or 

Aimsun) currently do not provide conflict estimates as a direct output of a model. In practice, conflict is 

being estimated by external modules (e.g., SSAM) that use the simulation output. Regrettably, the SSAM 

platform does not allow direct connectivity with any of the optimization platforms to conduct an iterative 

process. This along with the small size of the network, dictated the need for the model to be calibrated 

manually for the purposes of analysing conflicts in this research. However, as software packages expand 

and potentially produce conflict results, it is imperative to automate the calibration process using conflict 

in the objective function for the future research. Nonetheless, the model was still calibrated by carrying 

on one extra step in calibration. Due to the stochastic nature of the microsimulation, and the 

complex/non-linear relationship between model parameters and the objective function, heuristic methods 

are best for model calibration [112–114] 

Compared to the trial-and-error technique, the heuristic methods are robust, and the computation is 

automated to avoid exhaustive computation in search of the global optimum. Among the heuristic 

models, according to Ma et al., “One cannot safely say that one particular method outperforms all 

others”. In this research, a Genetic Algorithm (GA) was used because, compared to the other used 

optimization algorithms, GA is a multiple point search that reduces the number of search steps needed 

to determine optimal set of effective parameters. In addition, it has the advantage of not requiring 

gradient information without obvious disadvantages. While GA performs well on discrete data such as 
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TMC, other algorithms such as artificial neural network (ANN) usually performs better on continuous 

data such as speed. The technique has been widely used in similar research and the results have been 

shown to be stable in similarly formulated problems [85,112]. As such, the effort was spent to develop a 

Genetic Algorithm that could be expanded in the future for model calibration/validation.  

VISSIM is offering an interface (API) which enables inter-process communication between software. 

The interface is based on the Component Object Model (COM) technology and creates a hierarchical 

model in which software can alter the simulator's functions and parameters. These are the parameters 

that a user can change. The GA was coded in MATLAB as: the interface integration was plausible with 

VISSIM and as a mathematical software package it has built-in functions for optimization. It should be 

noted that conflict was a better parameter in optimization than TMCs however the current code should 

be treated as a proof-of-concept demonstrating the GA capabilities with capacity to expand and include 

conflict as part of the objective function once conflict becomes a direct output of a simulation.   

3.3.2.1 Calibration Parameters 

VISSIM includes about 190 driving behavior, vehicular and other parameters[115]. In this study driving 

behavior parameters are the predominant factors under consideration and therefore the significance of 

their impact needed to be identified to select from these parameters. VISSIM also contains psycho-

physical car-following model for longitudinal vehicle movement and a rule-based algorithm for lateral 

movements defined through the Wiedemann model 74.  Based on the previous studies, the sensitivity 

analysis process was conducted by investigation of variance ANOVA for different parameters under 

“driving behaviors” and the following parameters were used [36,73,83] . 

• Max and accepted deceleration (own and trailing) when vehicle can slow down safely without 

any dangerous with accepted deceleration.  
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• Maximum look ahead distance for what driver can see forward to react to other vehicles either 

in front or to the side. 

• Average standstill distance for the average desired distance between stopped cars and stop-lines.  

• Additive/multiple part of desired safety distance which determines the saturation flow rate. 

• minimum distance (headway) to the vehicle in front that must be available for a lane change.  

The table below summarizes the driving behaviour parameters that were used in this thesis as calibration 

parameters, their corresponding attribute name in VISSIM-COM, range and, the increments used in the 

genetic algorithm.  

 Range and increment  

Parameter Name (GA Gene) COM Attribute Min Max Step 

Max Deceleration Own (m/s2) MaxDecelOwn -4 -1 0.5 

Accepted Deceleration Own (m/s2) AccDecelOwn -4 -1 0.5 

Deceleration Reduction Distance (Own) (m) * DecelRedDistOwn 50 100 2 

Deceleration Reduction Distance (Trail) (m) DecelRedDistTrail 50 100 2 

Max Look Ahead Distance (m) LookAheadDistMax 100 300 8 

Avg Standstill Distance for Wiedemann 74 (m) W74ax 0 5 0.5 

Min clearance (front/rear) (m) (i.e., headway) MinFrontRearClear 0.1 5 0.1 

Additive part of safety distance W74bxAdd 1 3 0.1 

Multiplic. part of safety distance W74bxMult 1 3 0.1 

Table 4 Driving behaviour parameters used for network calibration. 

*1m/s2 per unit distance (DecelRedDistTrail and DecelRedDistDown): This reduces the Maximum deceleration with increasing distance 

from the emergency stop distance linearly by this value down to the Accepted deceleration. 

3.3.2.2 Objective Function 

Calibration of the parameters presented in Table 4 require the definition of goodness-of-fit measures to 

compare model outcomes to observations of the system being modelled. The Mean Square of Errors 
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(MSE), between model estimates and field measurements for turning movement counts (TMCs) is used 

in this case study. Some studies suggested alternative metrics such as traffic speed, or travel time/speed 

(2.3.2.3). Since speed distribution at multiple point was one of the experiment inputs which was 

employed in the model, hence there was no guarantee that it would be a proper metric. Vehicle turn at 

intersection, on the other hand, was deemed a key contributing factor in driver’s reaction at the stop signs 

(4.2.2.1).  There are two reasons for using the squared difference between the observed and simulated 

values: higher penalty is placed on larger errors and to avoid balancing out the errors of opposite signs[85]. 

𝑆𝑆𝐸 = ∑(𝐶𝑖
𝐸 − 𝐶𝑖

𝑀)2

𝑛

𝑖=1

 
Eq. 18 

     

where: 𝑖 is cross reference number for turn,  

𝑛 is the number of turning movement counts 

𝐶𝐸  and 𝐶𝑀 are observed and simulated volumes for a turn, respectively.  

GA is being used to define the function (𝑓) between SSE and the parameters (𝑗) suggested from Table 4 

and minimise SSE. 

min 𝑆𝑆𝐸 = 𝑓(𝑥𝑗) Eq. 19 

3.3.2.3 Genetic Algorithm for Model Calibration 

Driving behaviour parameters were calibrated using a genetic algorithm (GA) to reflect observed local 

conditions. The genetic algorithm, which is based on natural selection, the mechanism that drives 

biological evolution, is a technique for resolving both constrained and unconstrained optimization issues. 

In the next part, the chromosomes that make up the GA representation, the selection strategy, the 

chromosomal encoding, crossover, and mutation operators, as well as their parameters—population size, 

crossover frequency, and halting criteria is described. 
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Each of the GA-adjusted model parameters, such as headway, deceleration, and look ahead distance, 

represents a single gene on a chromosome. The real-value coding of the genes was chosen over binary 

coding because real-valued genes are more efficient, require less memory, have no loss of precision, and 

allow for higher mutation rates[116]. 

The size of the population is often limited by the time it takes to finish each simulation run. The 

assumption here was that the genetic algorithm would converge in an acceptable amount of time. A 

limited population size, on the other hand, could result in a rapid convergence to the local minimum. A 

significant population size, on the other hand, would operate as a random search, increasing the time to 

convergence to unfeasible limits.[117]. the population size is an important parameter which directly 

influences the ability to search an optimum solution in the search space. Some researchers have revealed 

that having a population size at least as large calibration parameters leads to the accuracy of getting an 

optimal solution. The initial population (with a population size of 9) was defined using random values 

(pseudorandom values drawn from the standard uniform distribution on the open interval 0 and1) for 

each parameter (gene). In order to evaluate the fitness of each chromosome, an average from the value 

of the objective function from 5 simulation runs is extracted while the same parameters are used in each 

simulation but different random seeds. After generation of the first population, in every iteration, a set 

of parents that have lower fitted values are being selected to breed the new offspring. 

Four actions are being made in breading. First the best chromosome (the elite) is being selected to the 

next generation. The roulette wheel selection and cross-over operator mechanism is used to generate six 

new offspring. The crossover operator in this method underlies the process of producing two children 

form each two parents using two-point crossover. Each parent can participate in more than one crossover 

process. There is no constraint on not repeating same parents in the roulette wheel selection process. 

From the remaining unselected parents not attending the cross-over operator (minimum 2 max 6), the 

best one is mutated to avoid premature convergence to local optimum. The selected chromosome will 



69 

 

be mutated or not with probability of mutation, the direction of change for to increase or decrease is 

using a fair coin toss trial and finally up to how many steps the gene is mutated is randomly selected for 

between the lower and upper boundaries. So far, 8 new parents are counted which includes; the elite 

from previous population, 6 from the roulette wheel and the chromosome from the outcome of mutation. 

The final chromosome in each iteration is a randomly generated new chromosome which is generated 

the same way from the process of initial process. This to avoid the early convergence even more and 

expand the search area outside of the search areas between the elites (Figure 15). 

This process is repeated until a termination criterion is reached. According to Saleh et al., the most 

common stopping conditions are[118]: 

• A solution is found that satisfies minimum criteria 

• Fixed number of generations reached 

• Allocated budget (computation time/money) reached 

• The highest-ranking solution’s fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results 

• Manual inspection 

• Combinations of the above 

For calibrating the microsimulation, the desired value of the objective function is zero (simulation 

matches all the observed counts). But 100% calibration is never achievable, so some realistic criterion 

would need to be set. The plateau reaching termination clause, offers a good balance between 

computational effort and controlling the uncertainty of the quality of results as the number of iterations 

without observing improvements can be controlled. Thus, the GA is allowed to run until no further 

improvements could be made for four consecutive generations within reasonable computational effort 

(a maximum of 15 iterations as the network is small). The process of updating the configuration file and 

running VISSIM was automated using MATLAB and the GA algorithm codes are included under section 

9.2. 
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3.3.2.4 GA Results 

The network was calibrated for the AM, Mid-day, PM peak hours and the four hours evening traffic. 

The following figures showing the convergence of the best solution for each of the modelling periods. 

As can be seen from the Figure 19, calibration of the AM and Mid-day models stopped after 12 and 11 

iterations, respectively as there was no improvement to the objective function. The PM model and the 

evening models, however, stops as the genetic algorithm reaches its maximum number iterations. 
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(c) 

 

(D) 

Figure 19 Improvement of the Value of the Best Solution's Objective Function for the a) AM Peak Hour, b) Mid-day Peak Hour, and c) 

PM Peak Hours d) Evening Peak Hour 

Table 5 summarizes the results from the GA and identifies the final chromosome for each period. 
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Range 

AM 

Calibrated 

Value 

PM 

Calibrated 

Value 

Mid-day 

Calibrated 

Value 

Evening 

Calibrated 

Value 

Max Deceleration Own (m/s2) [-4,-1] -2.5 -1.5 -3.5 -1 

Accepted Deceleration Own 

(m/s2) 
[-5,-1] -2 -1.5 -5 -4 

Deceleration Reduction Distance 

(Own) (m)  
[50,100] 78 86 86 78 

Deceleration Reduction Distance 

(Trail) (m) 
[50,100] 92 56 62 50 

Max Look Ahead Distance (m) [100,300] 276 236 300 132 

Avg Standstill Distance for 

Wiedemann 74 (m) 
[0,5] 4 2.5 2 0 

Min clearance (front/rear) (m) 

(i.e., headway) 
[0.1,5] 0.1 4.9 1.1 3.9 

Additive part of safety distance [1,3] 2.9 2.3 2.8 2.4 

Multiplic. part of safety distance [1,3] 2.6 2.6 2.4 3.0 

Table 5 Final Chromosome for each period 

The GEH parameter - measuring the percent error with respect to the mean value of the observed and 

simulated counts was also calculated for the final solution. The GEH is calculated by: 

𝐺𝐸𝐻 = √
(𝑂𝑏𝑠 − 𝑆𝑖𝑚)2

(𝑂𝑏𝑠 + 𝑆𝑖𝑚)
2⁄

 

Eq. 20 

 

Where: ‘𝑂𝑏𝑠’ is the observed turning movement count at a specific location, and ‘𝑆𝑖𝑚’ is the simulated 

turning movement count at a specific location. 
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7:30 8:30 

 
12:00 13:00 

 
16:30 17:30 

 
18:00 22:00 

Table 6 Turn count trendline between simulation and experiment 

GEH values below 5 are considered to be a good match between model volumes and observed counts. 

Common role for model calibration requires that at least 85% of the observed link volumes/turns in a 

traffic model have a GEH less than 5. In this model, 100% of the turns had a GEH of less than 5.  
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3.3.2.5 Validation of Conflict 

As mentioned above, VISSIM was used to construct the trajectories of all the simulated vehicles, and 

the recorded trajectory data was then analysed using SSAM to determine the vehicle conflicts in the 

network. The VISSIM vehicle trajectory data was used in SSAM to analyse the detected vehicle conflicts 

in the study area. Figure 20 shows the coordinate of the conflicts captured from the trajectory output file. 

Three type of conflict is identified in the area’s filtered in the software (intersections). Most studies use 

two surrogate metrics to assess traffic safety: Time to Collision (TTC) and Post Encroachment Time 

(PET). SSAM can estimate the TTC and PET values of each vehicle interaction automatically, allowing 

it to record all potential conflicts.  

 

 

Figure 20 Three-dimensional visualization of hourly conflict in SSAM, yellow: crossing, orange: lanechange, red: rearend  

Validation step would strive to looking into the conflict (cumulative both types) and the correlation 

between simulation and the conflicts from the experiment. Different conflict types: crossing, rear-end 

and lane changing can be detected by setting the threshold for TTC, and PET.  The type of conflict in 

the performed analysis is selected based on the characteristics of facility. More details about using GA 
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in simulation models calibration can be found in section 2.3.2.4. Based on previous studies, on a two-

lane SCI, over 85% of the actual conflict percentile are happening with TTC ≤ 1.5 Sec and PET ≤ 5 Sec. 

Zero values would need to be removed as these conflicts are caused by errors in the simulation as well 

as irrelevant conflicts outside of a 50-meter diameter of the intersection center and north/south bound 

conflicts. Conflict angle thresholds remained as default with 30^ and 80^ for rear-end and crossing angle 

consecutively. A two-sample test was caried out for validation process. Since the conflict data is discrete 

and not normally distributed, Mann-Whitney U-Test, which is nonparametric equivalent to the t-test, 

was used to validate the performance of the conflict data from the simulation with following hypothesis:  

• 𝐻0: There is no difference in samples of observation conflict with respect to data from simulation, 

• 𝐻1: There is a statistically significant difference in the samples between the two. 

Table 7 illustrates the observational and simulation conflicts, as well as their U-test rankings.  

Intersection Ave. 25th vs Victoria Ave. Ave. 28th vs Victoria Ave. 
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Table 7 Frequency of conflict simulation vs observation 



76 

 

 

The selected 𝑈𝑖  is the smallest of the two 𝑈1 and  𝑈2 described below:  

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

Eq. 21 

 𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

Eq. 22 

 

Where, 𝑛1 and 𝑛2 are the number of samples in each group, and 𝑅1and 𝑅2 are the sum of their ranks [119]. 

By plugging the lower 𝑈𝑖 = 𝑈2 in the Eq. 23, the Z value was calculated at 0.454, which is in the 95% 

region of acceptance: [-1.96: 1.96]. 

𝑍 = (𝑈𝑙 −
𝑛1𝑛2

2
)/√

𝑛1𝑛2(𝑛1 + 𝑛2 + 1)

12
 

Eq. 23 

Using R studio, the P-Value for a two-tailed test was extracted as 0.6499 which is greater than𝛼, hence, 

𝐻0 cannot be rejected. It follows that the randomly selected value of the simulation-based population is 

assumed to be equal to the randomly selected value of the field-observation population. In other words, 

the difference between the randomly selected value of these two populations is not big enough to be 

statistically significant and validation process is complete without a need to investigate other driving 

behavior parameters than the literature has recommended. 

3.4 Statistical Modeling 

The two preceding sections of this chapter have demonstrated the data collection procedures from, [1] 

an experiment, [2] external resources as well as [3] a calibrated microsimulation model.  In this section, 

several methodologies will be reviewed in alignment with the objective of the research established in 

first chapter. The methodology can be classified into three categories: 
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1. Investigating the effects of various countermeasures on variations in approaching vehicular speed 

using ANOVA.  

2. Qualitative evaluation of drivers' responses to various countermeasures. The focus would not 

only be on drivers’ compliance, but also on environmental factors (e.g., ambient light, pavement 

surface condition) and entails the following two methods:  

a. The braking habits as the first signal of drivers' reaction to plot samples distribution.  

b. Describe binomial and multinomial logistic regression models for drivers’ reaction 

analysis at ultimate decision point, stop-line, with respect to the primary parameter, 

signage type, and the approach to control several parameters in the regression models. 

Finally, the assessment methods available for the performance of each parameter as well 

as a benchmark models.   

3. The quantitative analysis section will walk through the process of the assessment of intersection 

safety performance. Several generalized linear models are presented for collision and conflict 

estimates and model evaluation performance and the measure of goodness-of-fit are being 

discusses.  

3.4.1 Analysis of Speed 

The speed and variance at each individual intersection were different. As a basic step, the differences 

between groups of data can be examined to see if they are statistically significant. It works by analyzing 

the levels of variance between the groups and variance within through samples taken from each of them. 

A t-test or pairwise t-test is a simple way to make the analysis of the variance, however, for more than 

two groups, the error of test would be a compound of each pairwise test.  For instance, null hypothesis 

of t-test between two groups would be at a significant level α = 0.05 with 95% confidence, while 
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pairwise between three groups would be increased to  α = 0.053.  which brings the confidence level to 

0.857. 

ANOVA, or analysis of variance, is a powerful statistical tool for demonstrating the difference between 

two or more means or components using significance tests (Eq. 24). It also demonstrates how to do 

numerous comparisons of the means of several populations. The ANOVA test compares two types of 

variation: variation between sample means and variation within each sample. One-way ANOVA test 

statistics are represented by the formula below[120]: 

ANOVA Coefficient(f) =
𝑀𝑆𝑇 (𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑔𝑟𝑜𝑢𝑝𝑠

)

𝑀𝑆𝐸 (𝑀𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑟𝑟𝑜𝑟 (𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠))
 

Eq. 24 

 

𝑀𝑆𝑇 =
∑ (

𝑆𝑖
2

𝑛𝑖
) −

𝑇2

𝑛
𝑘
𝑖=1

𝑘 − 1
 

Eq. 25 

𝑀𝑆𝐸 =
∑ ∑ 𝑌𝑖𝑗

2 − ∑ (
𝑆𝑖

2

𝑛𝑖
)𝑘

𝑖=1
𝑘
𝑗=1

𝑘
𝑖=1

𝑛 − 𝑘
 

Eq. 26 

 

Where; 𝑌𝑖𝑗 is an observation 𝑗 from group 𝑖, 𝑆𝑖 is the sum of group 𝑖, 𝑇 is the grand total of all 

observations, 𝑘 is number of groups, n is the total number of observations and 𝑛𝑖 is total observations 

for group 𝑖. 

3.4.2 Analysis of Drivers’ Compliance  

The compliance to the traffic control device of a drivers approaching to a SCI can be captured in two 

timeframes; first reaction which occurs when a driver reads, recognizes, and reacts to a signage and 
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second reaction which occurred when the decision is made by a driver to respond to the signage at the 

stop-line. In the following section the indications used to capture these moments are described.  

3.4.2.1 First Reaction to the signage  

Given that a driver is required to come to a complete stop at the stop-line, the deceleration rate is 

proportional to the time that the driver begins to brak. However, it’s worth to mention that there are 

additional parameters that might violate this assumption, including but not limited to: the length of the 

links between the intersections, slope of the approach, drivers’ intent to make a stop. Even though the 

link slope and distances between the intersections were nearly constant, the author would carefully 

consider whether the braking habit among the sample populations of drivers could be recognized as an 

indicator in performance of a treatment and commanding drivers to comply. As described in section 

3.2.2.1 the collected data from the footage showed different distributions of drivers’ reactions which will 

be discussed in section 4.2.2.  

3.4.2.2 Second Reaction to the Signage  

The study was carried out in three separate scenarios, each using a different data set from the collected 

samples (see section 3.2.2.2):  

A. Same drivers (stop-sign only): In this scenario, only the vehicles traveling across the whole length 

of the link and participating in at least three approaches out of four, were included in the study - 

to make sure that the analysed data reflects the compositional variation from different drivers 

entering into the experiments.  

B. Same direction (stop-sign only). In this scenario, all the vehicles despite of their departure from 

the study link was considered from all the samples. 
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C. Opposing directions (stop-sign and Pedestrian crossing). In this study the two approaches of a 

single intersection with different treatment were studied  

Where 𝐴 ∈ 𝐵  𝑎𝑛𝑑  𝐶 ∉  B 

As previously stated (section 3.2.2), the Manual of Transportation Engineering Studies recommends the 

reaction of motorists at stop-lines to be classified into three categories: full stop (0 − 1 𝑘𝑚/ℎ), rolled 

through (1 −  5 𝑘𝑚/ℎ) and blew through (greater than 5 𝑘𝑚/ℎ).  

If we consider driving compliance at the stop-line as the “dependent variable”, then we have multiple 

outcome levels on this Variable (i.e., compliance to the stop-sign). These outcomes essentially 

representing different groups (e.g., drivers those who blow-through the SCI intersection). These 

outcomes are nominal with no ordering ranks. If the outcome was ordered (e.g., low, high) in terms of 

category membership it was reflecting, then binomial or multinomial was not appropriate method and 

perhaps ordinal logistic regression was a better fit. Although ordinal logistic regression might be a 

reasonable approach to use for the dependent variable (driver compliance), the proportional odds would 

be violated since input variable has a disproportionate effect on a specific level of the outcome variable 

[9]. For predicting the collision and conflicts as they are continuous dependent variable, using a given set 

of independent features, linear regressions are used as it’s described in section 3.4.3 whereas logistic 

regression is only used to predict the categorical outcome [120].  

For 3 category dependent variables, K-1 (3-1=2) logistic regression models were developed using SPSS 

Statistics version 28.01.1 (14). That means one outcome is chosen as “Reference/Pivot” category and all 

the other K-1 outcomes are separately regressed against the pivot outcome. Last category is usually the 

“reference category”. 

The three outcomes would be: 
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• Category A: Blow through, 

• Category B: Roll through, 

• Category C: Full stop. 

Two models developed for: 

1. Category A with reference to category C, 

ln (
𝑝(𝐴)

𝑝(𝐶)
) = 𝑎1 + 𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑚𝑥𝑖𝑚 

Eq. 27 

 

Where α is the regression constant and 𝛽𝑖 are regression coefficients, 𝑥𝑖  𝑖 = 1, … , 𝑛 are the observations 

with m independent or explanatory variables. 

The Eq. 27 can be written for   𝑝(𝐴): 

𝑝(𝐴) =  𝑝(𝐶) ∗  𝑒(𝑎1+𝛽1𝑥𝑖1+ 𝛽2𝑥𝑖2+⋯+ 𝛽𝑚𝑥𝑖𝑚) Eq. 28 

 

2. Category B with reference to category C.  

𝑝(𝐵) for second model is given by:  

𝑝(𝐵) =  𝑝(𝐶) ∗  𝑒(𝑎2+𝛽1𝑥𝑖1+ 𝛽2𝑥𝑖2+⋯+ 𝛽𝑚𝑥𝑖𝑚) Eq. 29 

Finally, 𝑝(𝐶) is equal to 1 − [𝑝(𝐴) + 𝑝(𝐵)]  and hence: 

𝑝(𝐶) =  
1

1 +  𝑒(𝑎1+𝛽1𝑥𝑖1+ 𝛽2𝑥𝑖2+⋯+ 𝛽𝑚𝑥𝑖𝑚) +  𝑒(𝑎2+𝛽1𝑥𝑖1+ 𝛽2𝑥𝑖2+⋯+ 𝛽𝑚𝑥𝑖𝑚)
 

Eq. 30 

 

The independent (to compliance) categories varied with respect to: 
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• Categorical: 

o Treatment type (i.e. Standard, LED, BLS, and Beacon).  

• Dichotomous: 

o Pavement surface condition (wet or dry), 

o Conflict potential (absence of opposing traffic),  

o Natural ambient light (Before civic dawn), 

o Maneuver (move through approach or not).  

For each comparison on the two models (with 3 categories), the estimating parameters (e.g., treatment 

type) are predicting whether a driver reaction falls under reference category relative to target category 

(Category A or B). Table 8 shows the features and descriptions of the variables. 

The ‘Treatment type’ variable is represented by three dummy variables as follows: the first variable to 

represent comparisons between drivers passing through intersection with regular stop-sign (this serves 

as the baseline/reference category & is coded 0 across all dummy variables) and those passing through 

intersection with LED stop-sign (‘LED STOP’ variable) and set to 1. Another variable to represent 

drivers passing through intersection with BLS stop (‘BLS STOP’ variable). And the third variable to 

represent drivers passing through intersection with overhead beacon (‘Beacon STOP’ variable) – with 

the latter driver groups coded 1 on their respective dummy variable. 
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Variable 

Category 
Variable Name Variable Type # of outcomes Variable (Description) 

Dependent 
Driver 

Complacence 

Nominal - 

Category 
3 

FS (Full Stop) 

RT (Roll-Through) 

BT (Blow-Through) 

Independent Treatment type 
Nominal - 

Category 
4 

STOP (Standard STOP) 

LED (LED STOP) 

BLS (Backlit STOP)* 

BEACON (STOP with over 

head Beacon) 

Independent 
Pavement surface 

condition 
Boolean 2 

0 (Dry) 

1 (Wet) 

Independent Conflict potential Boolean 2 
0 (No opposing traffic/Ped) 

1 (Opposing traffic/Ped) 

Independent 
Natural ambient 

light 
Boolean 2 

0 (Prior to civic dawn) 

1 (After civic dawn) 

Independent Maneuver Boolean 2 
0 (Through) 

1 (Turn) 

Independent LED STOP 
Boolean 

(Dummy) 
2 

0 (Standard STOP) 

1 (LED STOP) 

Independent BLS STOP* 
Boolean 

(Dummy) 
2 

0 (Standard STOP) 

1 (Backlit STOP)* 

Independent Beacon STOP 
Boolean 

(Dummy) 
2 

0 (Standard STOP) 

1 (STOP with over head 

Beacon) 

* Treatment performance on the study 

Table 8 Variable description and characteristics 

The goodness-of-fit of a model in a logistic regression can be tested using the likelihood ratio statistic, 

where the results of a likelihood ratio (such as the chi-square test) reflect the fit of the model with full 

complement of predictors compared to the NULL model with no predictor. If this test indicates statistical 

significance, it means that there is a significant improvement in fit of the model relative to the base line.   

One of the more preferred alternatives of the pseudo-R-square is the McFadden’s test[121]. This can be 

considered as an index of the proportionate improvement in model fit relative to the null model[122]. 

𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛 =
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑛𝑢𝑙𝑙 − 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑓𝑢𝑙𝑙

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑛𝑢𝑙𝑙
 

Eq. 31 
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Although the indices from pseudo-R-square can be descriptive for rough analogy for the proportion of 

improvement between posterior and NULL model, but it cannot be interpreted as the actual proportion 

of variance accounted for as it is used in the context of least square regression [122].   

The parameter estimator in MNL can provide the predicted change in the log-odds of the target group in 

the dependent variable relative to the baseline group. This means for every 1 unit increase of the 

independent variable, while everything else stays the same, the relative odd for dependent variable will 

change with respect to direction of the coefficient (increase if 𝛽 > 1 or decrease if 𝛽 < 1). However, 

each predictor's likelihood ratio test had to be reviewed to ensure that they were statistically significant 

for the model before making such assumption.   

The result from this test would indicate (if the estimator parameter is statistically significant), what would 

be the log-odds for a driver to roll through instead of blow through if the stop-sign type changes from 

Standard to BLS knowing every other element remains the same.   

Previous studies on active signage system (section 2.4.2 ), the countermeasure was set up for a somewhat 

long period of time (few years) to compare the drivers’ behavior in a before and after analysis. In this 

study, the countermeasure was installed for only two months.  two scenarios was studied during that 

period with regard to the compliance at the stop-sign and one scenario for Pedestrian crossing. The 

performance of each scenario with respect to goodness-of-fit is also presented in the next chapter.  

 

3.4.3 Analysis of Conflict and Collision Model 

While a qualitative analysis of speed and drivers’ behaviour would provide valuable insight into the 

efficacy of various safety treatments at unsignalized intersections, collision is the best-known indicator 

for any road safety assessment (check section 2.3). The first part of this section will present the 
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methodology of analysing road safety at SCI using the historical collision data. In the absence of the 

collision data for after deployment of a treatment, conflict is used as a surrogate measure. In this section 

the approach of using a validated critical traffic conflict assessment derived from a microsimulation is 

presented as a proxy for road safety assessment. The process of extraction of the ‘target collisions’ from 

the observation (8 years period) is being presented. Poisson and NB estimation method are also presented 

along with the study plan to incorporate the experiment and simulation output data into the estimate 

models for collision and conflict.  

 

3.4.3.1 Collision History 

The collision data was extracted, and cross referenced between Transport Canada National Collision 

Database (TC-NCDB) and hard copies from the police records in borough of Lachine. The dataset 

combined includes all the required attributes for the collision study. That includes georeferenced, time 

tagged and collisions type. Despite acceptable data size and complete collision attributes for the network 

under study, there was no collision record for the BLS SCIs to allow a conventional safety performance 

evaluation. This  was attributable to the relative short timeframe of the study after installation of BLS (3 

months) and subsequent unavailability of relevant “after” collision data. However, the frequency of 

collision data and the period was significant enough for an attempt to build a safety performance function 

for the SCI. This would give an opportunity to consider the effect of the observed and simulated data 

from drivers’ behaviour, on the performance of not only conflict model but an actual SPF. Collision 

count was not sufficient to attempt severity analysis or analysis by collision type.  The inquiries made to 

the municipality and borough of Lachine, revealed that neither the average annual daily traffic of these 

intersections nor the SPF were available. Hence, only the average short-term count was used, as 

explained in the previous section.  
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Figure 21 Spatial distribution of the observed collision (QGIS) 

In order to view, filter and analyze the geospatial collision data an open-source geographic information 

system application was used. The available data was loaded on QGIS 3.22.2 and by several tasks, 

including the addition of a buffer to the link and filters, the collision data was extracted and cross 

referenced with the manual police report in excel. To make sure that no collision is being unrecorded 

from the data set, a manual validation of the collisions outside the buffer zone was done since there are 

instances that location of an accident is attributed to the closest civic address (e.g., a house number) 

while the detailed police report indicates the intersection.    

 

Intersection vs 

Victoria Ave 

Total Collision (collision used for the study) 

Day Night Twilight Grand Total 

18th 25 (17) 8 (5)  () 33 (22) 

19th 5 (1) 2 ()  () 7 (1) 

21st 9 (5) 6 (3) 1 () 16 (8) 

25th 17 (14) 7 (3)  () 24 (17) 

28th 12 (10) 7 (5) 2 (2) 21 (17) 

33rd 4 (1) 3 (1)  () 7 (2) 

34th 3 (1) 2 (2) 1 (1) 6 (4) 

Total 75 (49) 35 (19) 4 (3) 114 (71) 
Table 9 Collision count at intersections (2012-2018) 
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A more detailed analysis of the accident reports showed that the collisions occurred at specific periods. 

Over 62 percent of collisions at these intersections occurred during the three peak-hours of the day and 

the four-hour time periods during the night. Because these periods corresponded to peak traffic volumes 

and high traffic at night, it was considered worthwhile to use this sub-set as the “target collisions” for 

the study.   

 

3.4.3.2 Collision model selection 

As mentioned in section 2.3.1 the Poisson distribution approximate rare-event count data such as 

collisions. Poisson distribution is a series of Bernoulli trials which falls under the Binomial Distribution. 

In Bernoulli trials the collision is a ‘success’ with probability of 𝑝 and 𝑞 is the ‘failure’ probability (𝑞 =

1 − 𝑝). In the context of an intersection with 𝑁 passages (trials), a random variable 𝑌 can be considered 

that records the number of ‘success’ events out of 𝑁 trials. Hence a series of Bernoulli trials which is a 

Binomial distribution is given as follow: 

𝑝(𝑌 = 𝑦) = (
𝑁

𝑦
) 𝑝𝑦(1 − 𝑝)𝑁−𝑦 

Eq. 32 

 

Where, 𝑦 is a non-negative integer defined as number of collisions. Since it’s unlikely and rare for 

occurrence of ‘success’ with a large number of trials, it can be demonstrated that a binomial distribution 

can approximate a Poisson distribution. Let  𝑝 =
𝜆

𝑁
  (𝜆 mean of the Poisson distribution) so that a large 

trial size offset by the diminution of 𝑝 to produce a constant 𝜆 for all values of 𝑝.  



88 

 

𝑝(𝑌 = 𝑦) = (
𝑁

𝑌
)

𝜆

𝑁

𝑦

(1 −
𝜆

𝑁
)

𝑁−𝑦

 

Eq. 33 

While the binomial coefficient given as follow: 

(
𝑁

𝑌
) =

𝑁!

(𝑁 − 𝑦)! 𝑦!
 

Eq. 34 

and Eq. 33 given Eq. 34 will be: 

𝑝(𝑌 = 𝑦) = (
𝑁!

(𝑁 − 𝑦)! 𝑦!
) 𝜆𝑦 (

1

𝑁
)

𝑦

(
𝑁 − 𝜆

𝑁
)

𝑁−𝑦

=
𝜆

𝑦!

𝑦

(
𝑁! (𝑁 − 𝜆)𝑁−𝑦

(𝑁 − 𝑦)! 𝑁𝑁
) 

 

Eq. 35 

Hence as 𝑁 → ∞  

Eq. 35 by approximation can be shown as: 

𝑝(𝑌 = 𝑦) ≅
𝜆

𝑦!

𝑦

𝑒−𝜆 

 

Eq. 36 

 

Eq. 36 means that the probability of number of crashes per time interval to be equal to 𝑦 while if we 

considering Poisson as process in the interval 𝑖, then this equation can be shown  as: [42,123]  

 

𝑃(𝑦𝑖) ≅
𝐸𝑋𝑃(−𝜆𝑖)𝜆𝑖

𝑦𝑖!

𝑦𝑖

 
Eq. 37 

  

Where, 𝑦𝑖 is a nonnegative integer which represents the number of collisions on the intersection 𝑖, (𝑖 =

1,2,3, … , 𝑛) and 𝜆𝑖 is the Poisson parameter for that intersection. The safety performance function 𝜆𝑖 

gives the “expected” number of collisions per period (year) which indeed is the Poisson parameter, and 

it can be defined as a function of explanatory variables (e.g., traffic flow), as shown below: 
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𝜆𝑖 = 𝑓(𝑋𝑖; 𝛽) = 𝐸𝑋𝑃(𝛽𝑋𝑖) Eq. 38 

Where: 𝑋𝑖 is a vector of explanatory variable, 𝑖 is the facility (e.g., intersection or road section) and 𝛽 is 

a vector of regression parameters. Since flow and collision frequency have a proven non-linear 

relationship at intersections hence the Eq. 38 can be expanded as [124,125]: 

𝜆𝑖 = 𝐹1𝑖
𝛽1𝐹2𝑖

𝛽2𝑒𝛽0+𝛽3𝑋3𝑖+⋯+𝛽𝑛𝑋𝑛𝑖 
Eq. 39 

Where:𝐹1𝑖and 𝐹2𝑖  are vectors of flow (e.g., major road, minor road, motorist, non-motorist, …)  

From rearranging the exponential terms from Eq. 39 we get the following linear function which a 

regression model can then estimate the value of 𝛽 while the assumption is that collision at 𝑛  facilities 

are independent from each other and that the number of collisions at site 𝑖 represented by 𝜆𝑖 follows a 

Poisson distribution. 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1 ln(𝐹1𝑖) + 𝛽2 ln(𝐹2𝑖) + 𝛽3𝑋3𝑖 + ⋯ + 𝛽𝑛𝑋𝑛𝑖) Eq. 40 

By taking log from both sides: 

ln (𝜆𝑖) = 𝛽0 + 𝛽1 ln(𝐹1𝑖) + 𝛽2 ln(𝐹2𝑖) + 𝛽3𝑋3𝑖 + ⋯ + 𝛽𝑛𝑋𝑛𝑖 

 

Eq. 41 

We are interested to maximize the probability of collisions given 𝛽 (parameter of the model) and find a 

vector that best describes and models the probability function. The Maximum likelihood estimate 

generates Poisson parameters that are consistent and asymptotically normal and efficient Using and 

rearranging the  

Eq. 36 and Eq. 37 the likelihood function for 𝛽 is shown as: 

𝐿(𝛽) = ∏
𝐸𝑋𝑃(−𝐸𝑋𝑃(𝛽𝑋𝑖)(𝐸𝑋𝑃(𝛽𝑋𝑖)

𝑦𝑖

𝑦𝑖!
𝑖

 
Eq. 42 
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And ultimately a log from the likelihood function in Eq. 42 can construct a linear 

function for 𝛽 that is easy to manipulate for the estimation of the 𝛽. 

𝐿𝐿(𝛽) = ∑(

𝑛

𝑖=1

− 𝐸𝑋𝑃(𝛽𝑋𝑖) + 𝑦𝑖(𝛽𝑋𝑖) − 𝑙𝑛(𝑦𝑖!)) 

 

 

Eq. 43 

The following variable was considered in the Poisson model for the link under the study: 

Variable, (name) Description Data source 

𝜆𝑖 ,(Collision) Dependant variable for Collision model  
collision history  

3.4.3.1 

𝐹1,(𝐹𝑚𝑎  ) Hourly Flow of traffic in the Major Road (Victoria 

Avenue)  

Experiment and 

historical data 

𝐹2,(𝐹𝑚𝑖) Hourly Flow of traffic in the Minor Road (extensions 

of Victoria Avenue)  

𝐹3,(𝐹𝑝𝑒 ) Hourly count of pedestrians 

𝑋4, (FSBT) Compliance to the sign Full-stop ratio to blow-

through 
Qualitative study 

under section 4.2.2.1 

𝑋5, (FSRT) Compliance to the sign Full-stop ration to roll-

through  

𝑋6, (FSNon-FS) Compliance to the sign Full-stop to non-full stop 
 

𝑋7(Conf) 3.3.2 number of all conflicts at each intersection  
Simulation model in 

section 3.3.2 

Table 10 Collision frequency model covariate list 

After the calibration of the model with 𝛽𝑖, the estimate 𝜆𝑖 will be enhanced for each intersection with an 

updated 𝜆�̂� from the calibration of all explanatory variable. If all 𝛽𝑖 = 0 the result of the estimate defines 

the null model (known as naïve estimation). 
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3.4.3.3 Conflict model selection  

Given the data set of collision counts and section traits, the first step is to test the presence of 

“overdispersion”, to discriminate between the Poisson model and the NB or other models. It was 

mentioned in the section 2.3.1 that the Poisson model is vulnerable to over-dispersion (σ2 =

μ, where the mean, μ, is denoted by 𝜆) due to heterogeneity or high proportion of zero accident[46] . 

Poison-Gamma (known as Negative Binomial - NB) method is more suitable [48], because the number of 

zero accidents are significant.  

Considering the above comments, in this research the collision data was better fitted Poisson properties 

model (see section 4.3.2). However, unlike the collision, conflicts are better modelled through NB 

models [126] , as was the case for this study. The likelihood tests conducted was also supported a better 

fit of the NB model in comparison to Poisson (see section 4.3.3.1). When the equality σ2 = 𝜇 does not 

hold then NB will remove the restriction and variance can be different from the mean. The gamma 

variable in NB is a random effect with a mean equal to one hence it has no effect on the estimation of 

mean of NB while the variance of gamma is not equal to one (𝑉𝐴𝑅 = 𝛼) and hence can improve the 

variance estimate in NB. NB model is derived by rewriting the Eq. 38. such that, for each observation 

“i”:  

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖) Eq. 44 

The 𝐸𝑋𝑃(𝜀𝑖) is the gamma probability distribution term with both parameters 𝛼 > 0 and will help the 

variance to differ from the estimate of the mean.    

𝐸𝑋𝑃(𝜀𝑖)~Γ(𝛼, 𝛼) Eq. 45 

Hence the estimate for the variance of the Eq. 44 is given:     
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Var[𝑦𝑖|𝜆𝑖, 𝛼 ] = σ2  = 𝜆𝑖 +  1/𝛼𝜆𝑖
2 Eq. 46 

The parameter 𝛼 is the over-dispersion parameter, which can define the selection criteria between 

Poisson or NB. And finally, the probability for the dependent variable for each observation “i” is 

estimated as follow[123]: 

𝑃 (𝑦𝑖) = 𝑦𝑖|𝜆𝑖, 𝛼 =  
Γ (

1
𝑎) + 𝑦𝑖

Γ
1
𝑎 𝑦𝑖!

(
1/𝑎

(
1
𝑎) + 𝜆𝑖

)

1/𝛼

(
𝜆𝑖

(
1
𝑎) + 𝜆𝑖

)

𝑦𝑖

 

Eq. 47 

Consequently, the log-likelihood of the NB model is given as: 

 

𝐿𝐿(𝛽, 𝛼) = 𝑙𝑛 [∏
Γ (

1
𝑎) + 𝑦𝑖

Γ
1
𝑎 𝑦𝑖!

(
1/𝑎

(
1
𝑎) + 𝜆𝑖

)

1/𝛼

(
𝜆𝑖

(
1
𝑎) + 𝜆𝑖

)

𝑦𝑖

𝑖

] 

 

 

 

Eq. 48 

This maximum likelihood estimation can be estimated using iterative optimization methods or numerical 

methods (e.g., Newton-Raphson) to find the best answer for 𝛽 and 𝛼 that approximately solve this 

equation. For this purpose, a R language codes was implemented that maximizes the log-likelihood 

function. R-Studio version 2021 as an integrated development environment for running R script was 

used with the addition of the following libraries: MASS, stats, ggplot2, GGally and lmtest. Some libraries 

were used for statistical analysis and some for improving the visualization. The codes for all the 

statistical analysis can be found under Appendix III. 

For conflict regression model, we employed the same independent variables as in the Table 10 for the 

regression model, but the dependent variable was switched from collision to conflict.  

  Zero-inflated NB model was not considered since there was no intersection with “Zero-count” state, 

where the likelihood of the collision is extremely rare compared to “normal-count” state[127].   The same 
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can be said about Generalized NB model since there was no over-dispersion for the model hence, we 

expect no over-dispersion for any individual intersection. In the next section, the goodness of fit will 

describe the importance of having less parameters in the model. In AIC, the log-likelihood is not the 

only factor impacting the performance of a models, but the number of parameters will have an effect.  

3.4.3.4 Measures of Goodness-of-fit 

There are numerous goodness-of-fit statistics used to assess the overall fit of Poisson and NB regression 

models. Chi-square Pearson (Eq. 49) and Deviance (Eq. 50) statistics test are used to assess model's overall 

performance [47,123].  

𝑋2 = ∑
(𝑦𝑖 − 𝜆�̂�)

2

𝜆�̂�

𝑛

𝑖=1

 Eq. 49 

𝐺2 = 2 ∑{𝑦𝑖 ln 𝑦𝑖 − 𝑦𝑖𝑙𝑛𝜆�̂� − (𝑦𝑖 − 𝜆�̂�)}

𝑛

𝑖=1

 Eq. 50 

 

The result from these two tests can be compared against the degree of freedom (number of "𝑛" 

observations from which "𝑘" number of parameters "𝛽𝑖" substructed) with the ideal condition that degree 

of freedom matches Pearson statistics. Overdispersion occurs when the Pearson statistics 𝜒2/(𝑛 − 𝑘) >

1  - which indicates that the variance is over dispersed. This implies that the model is not fitting with the 

Poisson and using NB could be a better option (as observed on this study for conflict model). For NB, 

the Chi-square test would include the overdispersion parameter "�̂� =
1

𝑎
" estimate and hence (Eq. 49) 

and (Eq. 50) can be presented as: 
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𝜒2 = ∑
(𝑦𝑖 − 𝜆�̂�)

2

𝜆�̂� (1 + �̂�)

𝑛

𝑖=1

 

Eq. 51 

𝐺2 = 2 ∑(𝑦𝑖 𝑙𝑛 𝑦𝑖 − 𝑦𝑖𝑙𝑛𝜆�̂� − (𝑦𝑖 + �̂�)𝑙𝑛(
(𝑦𝑖 + �̂�)

(𝜆�̂� + �̂�)

𝑛

𝑖=1

 

Eq. 52 

 

The log-likelihood ratio test (LLR-T) is an appropriate approach to compare the prior analysis with no 

explanatory variable and the posterior (since the posterior is somehow correlated to the prior with a  

likelihood function).The equation bellow show how to estimate the difference log-likelihood between 

the prior and posterior mode with LLR-T which represent the statistical significance of the new 

estimators added to the model. 

LLR − T = −2(LL (Prior) − LL (Posterior)) Eq. 53 

 

Likelihood represents a probability with a negative value for log-likelihood (for instance a 0.1 likelihood 

would give a log-likelihood of -1) hence, the log-likelihood approaching 0 is the ideal. A pseudo−𝑅2 ( 

such as McFadden’s test which was an approximate to the 𝑅2 in MNL) is proposed using  the Pearson 

Chi-square for the Poisson model (Eq. 49): 

𝑅2 = 1 −
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 (𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)

𝑃𝑒𝑎𝑠𝑟𝑠𝑜𝑛 (𝑃𝑟𝑖𝑜𝑟)
 

Eq. 54 

To estimate the pseudo−𝑅2 in NB model, the overdispersion parameters from prior model (�̂�0) is 

compared to the overdispersion parameters of the posterior model (�̂�) and is presented as: 
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𝑅2 = 1 −
�̂�0𝑛 − 1

�̂�𝑛 − 𝑘
 

Eq. 55 

Where "𝑛" total number of observations and "𝑘" is the total number of parameters in the model.  

In Eq. 54 if we substitute the Pearson with log-likelihood, the 𝜌2  statistics test can be done. Both 𝑅2, 𝜌2 

values are between 0 and 1, with a higher value indicating a better performance. 

AIC is another commonly employed test where performance of several model is compared. This test is 

not only considering the log-likelihood of the model (e.g., in LLR-T), but also adding a panelizing term 

for the number of independent variable or coefficients (𝛽, 𝛼) that are employed. This will balance the 

goodness of fit versus the inclusion of variables in the model. Lower AIC means a better performance 

of the model [42].  

AIC = −2(LL − 𝑘) Eq. 56 

Since the sample size remain the same between the models under investigation in this study, there was 

no need to explore other measure of fit such as Bayes information criterion (BIC) to associate the penalty 

term with  "𝑛". 

3.5 Chapter Summary 

Traffic data collection and analysis are critical components of every study on transportation system. The 

ability of any research to produce favourable outcomes, depends on the data quality, integrity, and 

consistency. Three data sources have been recognised to be necessary for this thesis to achieve its goals. 

Data from the empirical study was assembled with external data such as intersection geometry, historical 

vehicle counts, and environmental data. This chapter addressed the concern that a poorly designed 

experiment, relying solely on deriver reaction to signage, is prone to biased results. This chapter builds upon 

previous research efforts with an experiment design that could address some of those limitations. By utilizing 
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the collected data from the experiment, a traffic microsimulation model was built, and the calibration process 

was outlined. Solution to a minimization objective function for TMCs using a genetic algorithm, on a simple 

study area network in the Montreal was presented. It was also discussed how to validate the calibration effort's 

results by comparing attributes of simulated and observed conflict. All of these efforts were made to ensure 

that the necessary data for both qualitative and quantitative statistical analysis was available for this 

research. The statistical analysis section of this chapter described several predictive modelling 

techniques such as regression analysis to determine the relationship between a dataset’s dependent (i.e., 

compliance, collision, conflict) and independent variables. For discrete data analysis (such as 

compliance), the logistic regression model was rectified with respect to the need of the study. The 

application of the generalized linear models and in particular Poisson regression and its extension, 

negative binomial was also presented. Evaluation techniques between models was also discussed, 

allowing for a more in-depth review of the results in the following section of this thesis. 

4 Chapter 4: Analysis and Results  

4.1 Introduction  

In the previous chapter, several sources of information were presented. It has been discussed that the 

essential data was acquired through observation from an experiment, inquiries from historical data, and 

extractions from a reliable traffic microsimulation.  Several methodologies were presented in alignment 

with the objective of the research. The focus on this chapter is the link between the information available 

for the study and road safety measures for the treatments under investigation at SCI. The analysis can be 

classified into two categories: 
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1. Qualitative analysis for (a) variance in approaching vehicular speed (ANOVA) with respect 

to various countermeasures, (b) distribution of braking habits and (c) drivers’ reaction at stop-

line 

2. Quantitative analysis with generalized linear models for collision and conflict estimates. 

The performance of the models is assessed in the final part of this chapter. Next and final chapter of the 

thesis summarizes the results and concludes with some findings and recommendations pertinent to the 

study. 

4.2 Drivers’ Behavior  

As previously indicated, the empirical testing was performed on two types of new and untested 

regulatory backlit LED based signs: a stop-sign and a Pedestrian crossing sign (Figure 9). This section 

summarises the data from each treatment's field research, as specified in the manual on uniform traffic 

control devices (MUTCD) as a critical step in evaluating a control device's performance. 

4.2.1 Analysis of Speed  

Speed was recommended as a major contributing surrogate collision measure in the previous studies 

assessing the effect of a treatment at SCI [8,9,67]. As a basic procedure, we used ANOVA as described in 

section 3.4.1 and a pairwise analysis was conducted between the observed variance and the average value 

of the approaching speeds. The HD radar was employed in multiple sessions to capture the speed of the 

approaching traffic at upstream, east bound of rue Victoria. The average speed and variance captured by 

the radar is summarised in Table 13. 
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Intersection & 

Victoria Ave. 
Treatment type 

Number 

of 

samples 

Average speed  

(𝒌𝒎/𝒉) 

Standard 

deviation 

(𝒌𝒎/𝒉) 

95% 

Confidence 

Interval 

21st Ave. Flex panel 100 35.79 5.3 ±1.05 

25th Ave. STOP (Standard) 100 36.31 4.61 ±0.91 

25th Ave. BLS 100 32.82 4.28 ±0.85 

28th Ave. LED 100 30.97 5.63 ±1.12 

33rd Ave. Beacon 100 35.01 6.18 ±1.22 

Total 500 34.17 5.59 ±0.5 
Table 11 Approaching speed average and variance 

As it is shown in graphs below, 75% percentile of the speed values for both LED and BLS signs are 

lower when compared to the other three treatments. The presence of the BLS signs also exhibits more 

uniform speed distribution.  

 

Figure 22 Boxplot speed comparison 
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Honestly significant difference Tukey-HSD test was applied as a post-hoc method for a pairwise 

contrasts analysis [128,129].  The assumption of homogeneity of the variance from Levene’s test result was 

not statistically significant (0.08 at confidence level α=0.05). The significance p-value of ANOVA was 

0.001, which is also less than 0.05 - meaning there is a statistically significant difference somewhere 

among the speed means on our dependant variable in the 5 sample groups (Table 11).  

Levene Statistic df1 df2 Sig. 

.528 4 495 .080 

 Table 12 Test of Homogeneity of Variances 

The multiple comparison contrast between groups is presented in Table 14. As expected, difference 

among groups occurred as the average speed is statistically significant from at an alpha level of 0.05. 

There was not statistically significant in comparison between BLS and LED. Statistically significant 

reduction in upstream speed mean values were observed only for BLS and LED signs (%3.5 ±1.8 and 

%5.3 ±2.0 respectively). The other two treatment did not show a significant improvement on speed 

patterns in comparison to the standard stop-sign. Another interesting finding was the insignificant effects 

of the overhead flashing Beacon in comparison to standard stop (Std. STOP) sign which was 

unexpectedly insignificant. Previous reports have shown significant improvement in safety performance 

for this countermeasure [52,92]. This is perhaps attributable to the fact that this test is conducted in urban 

area and lower minor volume at intersection 33rd . 

  Sum of Squares df Mean Square F Sig. 

Between Groups 1973.58 4 493.39 17.94 .001 

Within Groups 13611.84 495 27.50     

Total 15585.43 499     
 

Table 13 Analysis of Variance, ANOVA 
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Intersection Victoria Ave. & 

 “Minor (treatment type)”  

Mean 

Difference 

Std. 

Error 
Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

21st  Ave. (Std. 

STOP) 

25th (Std. STOP) -.590 .7416 .932 -2.621 1.440 

25th Ave. (BLS) 2.898* .7416 .001 .868 4.929 

28th Ave. (LED) 4.747* .7416 .000 2.717 6.777 

33rd Ave (Beacon) .705 .7416 .877 -1.325 2.735 

25th (Std. 

STOP) 

21st Ave. (Std. STOP) .590 .7416 .932 -1.440 2.621 

25th Ave. (BLS) 3.489* .7416 .000 1.458 5.519 

28th Ave. (LED) 5.337* .7416 .000 3.307 7.368 

33rd Ave (Beacon) 1.295 .7416 .406 -.735 3.326 

25th Ave. (BLS) 

21st Ave. (Std. STOP) -2.898* .7416 .001 -4.929 -.868 

25th (STD. STOP) -3.489* .7416 .000 -5.519 -1.458 

28th Ave. (LED) 1.849 .7416 .094 -.182 3.879 

33rd Ave (Beacon) -2.193* .7416 .027 -4.224 -.163 

28th Ave. 

(LED) 

21st Ave. (Std. STOP) -4.747* .7416 .000 -6.777 -2.717 

25th (STD. STOP) -5.337* .7416 .000 -7.368 -3.307 

25th Ave. (BLS) -1.8488 .7416 .094 -3.879 .182 

33rd Ave (Beacon) -4.0420* .7416 .000 -6.072 -2.012 

33rd Ave 

(Beacon) 

21st Ave. (Std. STOP) -.7050 .7416 .877 -2.735 1.325 

25th (STD. STOP) -1.2953 .7416 .406 -3.326 .735 

25th Ave. (BLS) 2.1932* .7416 .027 .163 4.224 

28th Ave. (LED) 4.0420* .7416 .000 2.012 6.072 

*. The mean difference is significant at the 0.05 level. 

Table 14 Multiple comparison of the treatments 

The study at 18th avenue and Victoria Avenue yielded a speed result that included both approaches 

(Figure 9). The eastbound approach had BLS, whereas the westbound approach had a standard stop-sign 

(i.e., with retroreflective surface).Table 15 presents the summary of the data Table 15 captured from 

over 1500 vehicles passing through the intersection. More samples were collected because, unlike the 

previous test, these are two different and independent test samples. In this case, an independent t-test 

was used to assess the variance between the two groups. Table 16 shows that homogeneity of variance 
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is not significantly different (≥0.1), and that the p-value is near 0.05. Therefore, the null hypothesis (i.e., 

no difference between the means) is rejected, so it can be assumed that the difference in average speed 

between drivers exposed to the BLS and standard sign is statistically significant. 

A
v

g
. 

sp
ee

d
 Direction N Mean Std. Deviation Std. Error Mean 

Eastbound BLS 790 28.36 5.020 .179 

Westbound Standard 760 31.30 5.566 .202 

Table 15 Speed mean data at 30 m upstream intersection 18th Avenue 

  

Levene's Test t-test for Equality of Means 

F Sig. t df 

Significance 
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3.39 0.066 -10.93 1548 <.001 <.001 -2.939 0.269 -3.467 -2.412 

E
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    -10.9 1517.6 <.001 <.001 -2.939 0.27 -3.468 -2.411 

Table 16 Independent samples t-test 

The average speed on the west approach was somewhat lower (2.94 km/h), while the links on both sides 

of the intersection were nearly identical. Another finding showed that on the west approach, the speed 

dispersion was slightly better. When drivers move toward the BLS, the speed distribution became more 

uniform. The variability (STD 0.55) was lower on the eastbound side than on the westbound side, 
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implying that drivers approaching the BLS sign were reacting faster and in a milder and more even 

fashion. 

 

 

Table 17 Boxplot speed vs approach for intersection 18th Avenue and Victoria Avenue 

4.2.2 Qualitative Analysis  

   An example of the driver's initial reaction points as they are approaching each crossing is shown in 

Figure 23(.a) . The reaction of the drivers to the downstream stop-sign was monitored from a fixed 

vantage location (by observing the vehicle's brake lamp), as described in section 3.2.2.1. Figure 23(.b)  

is the distribution profile of the detected drivers’ reactions for all three signs. Even though drivers begin 

deceleration further from the stop-line when approaching an active signage, no marginal improvement 

was detected from this observation. The information presented below need to be carefully interpreted 

since the overall performance of the speed is a function of more factors to be considered than the 

treatment type as described in section 3.4.2.1 . 
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a. 

 

b. 

Figure 23 Reaction points for drivers according to the brake signal 

4.2.2.1 Stopping Compliance 

The purpose of the statistical modelling described in section 3.4.2.2 is to measure the compliance of the 

drivers at the decision stop-line and evaluate if the distribution of three degrees of stopping compliance 

changes for different treatments, while controlling for weather conditions, presence of nighttime lighting, 

maneuver, and the presence of opposing traffic. The outcomes of the three scenarios discussed before 

are reported in this section. 

4.2.2.1.1 Scenario 1 

For scenario one, more than 6,000 vehicles passed through west-bound of the link.  Only 1,156 vehicle 

samples satisfied the requirements needed for this scenario after excluding turning vehicles and those 

which were not in a sequence or whose compliance was unclear (i.e., pedestrian waiting at intersection 
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causing confusion of potential conflict, outlier data from video analysis), whereas more than half were 

enrolled in the targeted treatment (BLS) intersection.  

Table 18 summarizes the 3,468 observations recorded in the scenario one with two thirds of the drivers 

fully complying to the sign.  

 N Marginal Percentage 

Driver Complacence Blow-Through 143 4.1% 

Full Stop 2288 66.0% 

Roll-Through 1037 29.9% 

Total 3468 100.0% 

Table 18 Distribution of driver compliance in scenario one 

Based on the likelihood ratio test, we may conclude that at least one population’s slope of predictors is 

non-zero, and the model incorporating the full set of predictors represents a significant improvement in 

fit relative to the null model [𝐿𝑅𝑋2(14) = 350.168, 𝑝 < .001].  

Model 

Model Fitting Criteria Likelihood Ratio Tests 

AIC BIC -2 Log-Likelihood Chi-Square df Sig. 

Intercept Only 1267.168 1279.471 1263.168 
   

Final 945.000 1043.422 913.000 350.168 14 <.001 

 

The result from the other tests were in agreement with above and the McFadden Pseudo R-Square test. 

It can be concluded that the full model containing our predictors represents a 6.6% improvement in fit 

relative to the null model. The 𝑅2 limitations for non-linear models such as NML was described in 

section 3.4.2.23.4.2.2.  
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The LR chi-square test didn’t warrant the effect of “pavement surface condition (wet vs. dry )” on the 

final result since it had no statistically significant effect on the dependant variable (p> 0.05).  

Table 19 illustrates the scenario one final model's results, which included effects from whether an 

approaching car yielded to opposing traffic, whether the approach took place at night, whether the driver 

turned and an interaction effect for yielding for four types of stop-signs.  

Driver Compliance a B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

Blow-

Through 

Intercept -2.274 .165 190.349 1 <.001    

Natural 

ambient light 

-.673 .257 6.867 1 .009 .510 .309 .844 

Conflict 

potential 

.641 .192 11.198 1 <.001 1.898 1.304 2.763 

Maneuver -.462 .215 4.605 1 .032 .630 .413 .961 

LED STOP -.672 .231 8.455 1 .004 .511 .324 .803 

BLS STOP -1.713 .346 24.513 1 <.001 .180 .091 .355 

Beacon STOP -.419 .245 2.923 1 .087 .657 .407 1.063 

Roll-

Through 

Intercept -.423 .076 30.665 1 <.001    

Natural 

ambient light 

-.560 .105 28.207 1 <.001 .571 .465 .702 

Conflict 

potential 

.312 .089 12.289 1 <.001 1.367 1.148 1.628 

Maneuver -.065 .088 .551 1 .458 .937 .788 1.113 

LED STOP -.516 .101 25.921 1 <.001 .597 .489 .728 

BLS STOP -.827 .116 51.221 1 <.001 .437 .349 .548 

Beacon STOP -.431 .113 14.446 1 <.001 .650 .521 .812 

a. The reference category is: Full-Stop. 
Table 19 Scenario 1,  MNL parameter estimates 
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From the dependant variable, ‘full-stop’ is the desired response. Hence, the other two categories were 

compared to this reference category in the analysis. The negative regression slopes (B) for enhanced 

signs warrants the improvement of the full-stop vs blow-through, and the full-stop vs roll-through in 

almost all instances from a treated site to a standard stop-sign. When a coefficient B is negative, then 

this indicates that with increasing values on a predictor {0, Standard stop to 1, Treated stop-sign}, the 

chance of being in the reference category (Full-stop) to non-reference category (Blow-Through and Roll-

Through) is increasing, and vice-versa. For conflict potential with positive coefficient B with increasing 

value {0, non-Opposing Traffic: 1, Opposing Traffic} the risk of being in the non-reference category 

(Blow-Through and Roll-Through) is decreasing. 

The coefficient 𝛽 (Exp(B)) represents the predicted change in the log-odds of driver behavior falling 

under target group (blow through/roll through) relative to the baseline group which is the full stop. This 

means for every 1 unit increase of the independent variable, while everything else stays the same, the 

relative odd for dependent variable will change with respect to direction of the coefficient (i.e., increases 

if 𝛽 > 1 or decreases if 𝛽 < 1).  For instance, motorists at intersection with LED sign are at lower risk 

to blow-through than full-stop (negative slope). However, the odds of full-stop to blow-through will 

decreases from LED stop-sign to normal stop-sign (1 unit increase from 0) for 𝑒𝑥𝑝0.511 times if all other 

variables remain constant. 

 Table 20 and Table 21  present the odd ratio for drivers’ reaction as well as the percentage for each 

compliance category respectively.  
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Compliance Ratio 
Treatment 

STD LED BLS BCN 

 [
𝐹𝑆

𝑅𝑇
] ** 1.64 2.74 3.04 2.26 

[
𝐹𝑆

𝐵𝑇
] ** 10.81 20.40 27.64 19.21* 

* Rejected in MNL analysis 

** With and without the presence of opposing traffic or pedestrian crossing 

Table 20 Drivers' compliance odds with respect to treatment types under scenario 1 

Compliance category 
Treatment 

STD LED BLS BCN 

F
u
ll

 s
to

p
 No opposing traffic 39.96% 56.53% 57.34% 48.45% 

With opposing 

traffic 
18.76% 14.22% 15.91% 18.44% 

With and without 

Opposing traffic  

58.72% 70.75% 73.25% 66.90% 

Roll through 
35.85% 25.78% 24.10% 29.62% 

Blow through 
5.43% 3.47% 2.65% 3.48%* 

* Rejected in MNL analysis 

Table 21 Percentage of drivers falling into different categories under scenario 1  

As mentioned in section 2.4.2, the performance of the enhanced traffic signage is better at nighttime. 

The risk of accident is also increases at intersection in the presence of opposing traffic with crossing 

path. Arguably the most interesting effect of the enhanced signage is when there is a risk for the 

traveling drivers with opposing and turning traffic. To better understand the magnitude of this 

effect, Table 22 displays what is the odds ratio between reference category and other two 

categories, under nighttime vs. daytime conditions. 

Categories Ambient 

light 

Odd ratio 

STOP LED BLS BCN 

Full-stop  

to Blow-through 

Light 9.929 13.300 20.557 18.167* 

Dark 10.143 31.001 30.544 21.861* 

Full-stop  

to Roll-through 

Light 1.853 1.928 2.717 1.964* 

Dark 2.536 3.263 3.290 1.734* 

* Rejected in MNL analysis      
Table 22 Drivers' compliance odds with respect to ambient light for different treatments  
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For instance, at nighttime, at an approach equipped with a regular stop-sign, with an incoming turning 

vehicle, the likelihood for a driver to make a full-stop is 10 times more than blowing through the 

intersection. This odd is ~3 times more in the same setting at a BLS or LED stop-sign.  Another 

interesting finding is the performance of the BLS sign during daytime compared to the other treatments 

in commanding drivers’ behavior. This was not a surprise since the sign was harder to miss in daytime.  

The NML model performed well in predicting who would fall into the ‘Full Stop’ category (odd ration 

96.7%). However, it underperformed overall (73.7%) as predictor of group membership across all three 

levels of the dependent variable (Appendix II). 

4.2.2.1.2 Scenario 2 

Vehicle tracking was no longer a selection criterion in scenario 2, which meant that all vehicles flowing 

through the link, regardless of their entrance/exit intersection were considered. Near 9,000 samples were 

selected from over 11,500 vehicles passed through the link during the experiment. The samples with 

ambiguous compliance were eliminated from the study. 

Table 23 highlights the 9,097 observations recorded in the scenario two, which have about the same 

marginal percentage outcome as scenario one with 0.4% increase in both non-full-stop parameters 

categories and 1.8% (%66 vs %64.2 decrease if full stop category).  

 N Marginal Percentage 

Driver Complacence Blow-Through 405 4.5% 

Full Stop 5842 64.2% 

Roll-Through 2850 31.3% 

Total 9097 100% 

Table 23 Distribution of driver compliance in scenario two 
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The likelihood ratio test for the model is suggesting that incorporating the full set of predictors represents 

a significant improvement in fit relative to the null model [𝐿𝑅𝑋2(12) = 331.737, 𝑝 < .001].  

Driver Compliancea B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

Blow-

Through 

Intercept -2.347 .088 704.283 1 <.001    

Natural ambient light -.304 .114 7.171 1 .007 .738 .591 .922 

Conflict potential -.302 .123 5.989 1 .014 .739 .581 .942 

Maneuver 1.737 .131 175.690 1 <.001 5.681 4.394 7.345 

LED STOP -.974 .146 44.827 1 <.001 .377 .284 .502 

BLS STOP -.716 .176 16.614 1 <.001 .489 .347 .690 

Beacon STOP -.666 .154 18.634 1 <.001 .514 .380 .695 

Roll-

Through 

Intercept -.414 .041 101.265 1 <.001    

Natural ambient light -.196 .049 15.749 1 <.001 .822 .746 .906 

Conflict potential .064 .055 1.370 1 .242 1.067 .957 1.188 

Maneuver .401 .074 28.996 1 <.001 1.493 1.291 1.728 

LED STOP -.538 .061 76.955 1 <.001 .584 .518 .658 

BLS STOP -.684 .076 81.540 1 <.001 .505 .435 .586 

Beacon STOP -.371 .067 30.531 1 <.001 .690 .605 .787 

a. The reference category is: Full Stop. 

Table 24 Scenario 2 MNL Parameter estimates 
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The McFadden Pseudo R-Square test indicated that the full model containing the selected predictors 

represents a 2.3% improvement in fit relative to the null model, which indicate less improvement in 

comparison to scenario one. And finally, the “pavement surface condition (wet vs dry)” had no 

statistically significant effect on the dependant variable (p> 0.05) and hence was removed from the final 

model (Appendix II section 8.1). Table 24 demonstrates the results from the model for scenario two, 

which included effects from whether an approaching car yielded to opposing traffic, whether the 

approach took place at night, whether the driver turned and an interaction effect for yielding for four 

types of stop-signs. 

The reference category is ‘full-stop’ and the other two categories were compared to the reference in the 

analysis. The treatments coefficients (B) are showing negative regression slopes for all enhanced signs, 

which means improvement from reference category to the other categories which is in the same direction 

as results presented in Table 26.   The log-odds 𝛽 (Exp(B)) of driver behavior falling under target group 

(blow through/roll through) relative to the base group category increased in comparison to “Scenario 

one” for all odds. This means for every 1-unit increase (1 unit increase from 0) of the treatment type as 

independent variable, while everything else stays the same, the relative odd for dependent variable 

(compliance) will more likely changes on “Scenario two” in comparison to “Scenario one”.  For instance, 

the odds of, full-stop to blow-through, will decreases from LED stop-sign to normal stop-sign for 0.377 

under “Scenario two” compared to 0.349 times in “Scenario one” (given all other variables remain 

constant).  Figure 24 is trying to illustrate the error mean between different independent variables for 

both scenarios. As it shows the odds ratios in both scenarios for 95% of the data is within small range 

for the independent variable, treatment type, while the ambient light, opposing traffic and maneuver is 

covering a wider range.  
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Figure 24 Simple error bar mean for Exp(B) both scenarios 

Table 25 and Table 26 present the odd ratio for drivers’ reaction as well as the percentage for each 

compliance category respectively.  The percentage differences between each category (𝛿) in comparison 

to scenario 1 is showing increase pm all categories odd ratios in comparison to scenario one. This can 

be attributed to the fact that the overall FS vs non-FS slightly decreased by 1.8% under scenario two.  

Compliance Ratio 
Treatment 

STD (𝛿) LED (𝛿) BLS (𝛿) BCN (𝛿) 

 [
𝐹𝑆

𝑅𝑇
] ** 1.56 (4.6%) 2.52 (8.2%) 2.88 (5.1%) 2.20 (2.6%) 

[
𝐹𝑆

𝐵𝑇
] ** 10.49 (2.9%) 18.14 (11.1%) 23.73 (14.2%) 15.34 (20.2%)* 

* Rejected in MNL analysis  

** With and without the presence of opposing traffic or pedestrian crossing 

Table 25 Drivers' compliance odds with respect to treatment types under scenario 2 and the delta with Scenario one (in parenthesis) 
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Compliance category 
Treatment 

STD (𝛿) LED (𝛿) BLS (𝛿) BCN (𝛿) 

F
u

ll
-s

to
p
 

No opposing traffic 40.96% (1.01%) 54.36% (-2.17%) 53.48% (-3.86%) 51.88% (3.43%) 

With opposing 

traffic 
16.66% (-2.10%) 14.51% (0.28%) 18.52% (2.61%) 13.93% (-4.51%) 

With and without 

Opposing traffic 
57.62% (-1.10%) 68.87% (-1.89%) 72.00% (-1.25%) 65.81% (-1.09%) 

Roll through 36.89% (1.04%) 27.34% (1.56%) 24.97% (0.87%) 29.90% (0.28%) 

Blow through 5.49% (0.06%) 3.80% (0.33%) 3.03% (0.38%) 4.29% (0.81%)** 

* Rejected in MNL analysis 

Table 26 Percentage of drivers falling into different categories under scenario two and the delta with scenario one (in parenthesis)  

To get some idea of the magnitude of this change, Figure 25 displays how the estimated odds for 

dependent variable varied over different possibilities for treatments.  

 

Figure 25 Boxplot of changes between two scenarios by Treatment type 

Despite increase in odds of predicting category membership of the dependent variable in “scenario 2” 

arguably the performance of the model in predicting correctly a driver falling into the relative dependent 

variable (“Blow-through” and “Roll-through”) was very poor. For instance, the model correctly 

predicted a driver falling into the ‘Roll-through’ group at a rate of 57/ (57+2793)*100% = 2%. The 
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model correctly predicted a driver falling into the ‘Full stop’ at a rate of 98.2%. The overall classification 

accuracy for the model dropped significantly from 73.7% to 63.7% (Appendix II section 8.1). 

4.2.2.1.3 Scenario 3 

The "scenario 3" study involved 4504 motorists approaching the same intersection from two different 

directions on the same link (Ave. Victoria). Hence, each driver is most likely attending the experiment 

only once and motorists on the two approaches are not correlated. West approach is equipped with the 

BLS pedestrian crossing and East approach with conventional sign as described in section 3.2.2.3. Both 

signs are complemented with a stop-sign at the top. The geometry of the approaches is identical. The 

data was collected for 15 hours on 3 different sessions during the peak evening hours and after civic 

sunset. Previous studies have indicated that pedestrian crossings coupled with a stop-sign overall 

performs better on both vehicle speed and driver reaction[12,130]  . The drivers' compliance at the stop line 

with and without traffic (pedestrians or motorists) for the two treatments (BLS and standard) is 

summarised in the table below. 

 STD BLS Grand Total 

Full-stop 

Total 65.49% 74.92% 71.71% 

Opposing traffic 
Without 48.34% 54.12% 52.15% 

With 17.16% 20.80% 19.56% 

Roll- through 

Total 29.62% 22.92% 25.20% 

Opposing traffic 
Without 19.50% 16.22% 17.34% 

With 10.11% 6.70% 7.86% 

Blow-through 

Total 4.89% 2.15% 3.09% 

Opposing traffic 
Without 3.98% 1.88% 2.60% 

With 0.91% 0.27% 0.49% 
Table 27 Distribution of driver compliance in scenario three 

The results from Multinomial logistic regression, determines if the distribution across the three stopping 

compliance categories varied with respect to the approaching driver requiring to yield to opposing traffic 

or the type of treatment they have been exposed to. Since there were only two types of treatment in 
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scenario two, there was no need to introduce a dummy variable to allow a between group comparison.  

The ambient light and maneuver had no significant statistically effect on stopping compliance and hence 

both variables were excluded from the model. 

Compliance a B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

Roll-

through 

Intercept -.849 .061 193.498 1 <.001    

Treatment Type -.390 .072 29.661 1 <.001 .677 .589 .779 

Conflict potential .187 .076 6.151 1 .013 1.206 1.040 1.398 

Blow-

through 

Intercept -2.445 .126 376.247 1 <.001    

Treatment Type -.958 .175 30.088 1 <.001 .384 .273 .540 

Conflict potential -.696 .236 8.672 1 .003 .499 .314 .792 

a. The reference category is: Full-stop. 

Table 28 Scenario 3  MNL Parameter estimates 

Arguably, the response variable falling into “Full-stop” category increases when the explanatory variable 

“Treatment Type” is changing from Standard sign to BLS Ped-crossing (0 to 1).   

The important finding from this experiment was the statistical significance of the model compared to the 

baseline or null (when all of the regression coefficients in the model are equal to zero). The Chi-Square 

test results [𝐿𝑅𝑋2(4) = 71.265, 𝑝 < .001] was showing less statistical significance than the other two 

scenarios, while both Pearson and Deviance test failed (p=.091 and p=.090 respectively) this was the 

same issue observed in the before and after studies on the fit of the model. [33] 
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In other words, the 𝜒2statistic test is [𝐿𝑅𝑋2(3) = 53.384, 𝑝 < .001], if there is in fact no effect of the 

predictor variables “Treatment Type”. Clearly the model performed well in predicting who would fall 

into the ‘Full-stop’ category. However, it performed poorly overall when predicting the category 

membership across all three levels of our dependent variable with 0% falling into the ‘Roll-through’ and 

‘Blow-through’ category. Finally, the result from McFadden fitness test shows only 1.1% improvement 

with full set of predictors under Scenario 3. 

 

 

  



116 

 

4.3 Collisions and Conflict Estimations 

The objective of the quantitative analysis in the present section is to determine the estimated expected 

number of rare events (e.g., collision), on a given intersection during the four focused intervals. In the 

section 3.4.3 the process of extracting historical data from the collision database and amending into a 

geospatial software was described. Poisson and Poisson-gamma models, maximizing their likelihood 

functions and test of goodness of fit was also presented.  

The first part of this section gives an overview of the data being used in the GLM models, followed by 

the outlines for finding a vector (β) that best describes and models the collision probability functions 

(maximizes the probability of collision, given the parameters of the model). In the last part of this section, 

‘conflict’ is being considered as the ‘dependent variable’ whereas traffic flow and drivers’ behaviour are 

utilized as the predictors.  

4.3.1 Data Description and Correlations  

The following parameters was necessary for the analysis: 

• Collision: For each collision data in Table 9, a variety of details is recorded in the NDCB. The 

number of total collision used for each time period including both ‘property damage’ and 

‘injury/fatal’ collisions. This was due to the fact that there were too few injury collisions available 

to make an analysis only on the basis of crash severity and to author’s knowledge there is no 

defined method to link the severity of the collision within conflict analysis domain in urban areas.  

• Conflict: The process of performing and calibrating microsimulation models was described in 

the section 3.3. These efforts were to identify the frequency of the critical conflicts (0 < TTC ≤ 

1.5 s and 0 < PET ≤ 5 s) for each intersection scenario. Collisions were assumed to be highly 
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probable when conflicts were characterized for having TTC and PET values falling within the 

range.  

• Average traffic volume: Total traffic entering each intersection was observed during empirical 

study which varied from 800 to 2795 vehicles per period on Ave. Victoria and no-entry to 620 

on the minor approaches and 15 to 219 pedestrians/cyclists. The turning traffic volumes (right 

turn, left turn, and straight on) entering each of the six intersections in the four periods were 

recorded and the TMC at intersections 19th and 34th was extracted from the previous studies by 

the city.  

• Compliance: The three scenarios (described under section 4.2.2.1) combined have provided the 

necessary posterior information for the regression models in the quantitative analysis with respect 

to drivers’ compliance to the signage. The odds for drivers’ compliance to the treatment while 

there is a potential conflict with an opposing traffic was extracted for FS to RT, FS to BT and FS 

to non-FS for daytime and nighttime. The assumption for selecting this particular behaviour was 

that collision or conflict are more probable in the presence of opposing traffic.  

The summary of the above-mentioned data is detailed in the Table 29 on the next page. 
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Interval: peak-hours  and Evening (7:30-8:30),(12:00-13:00), 

(16:30-17:30), (18:00-22:00) 

Drivers' behaviour odd ratio with respect to the 

ambient light when opposing traffic presented 

7 years 

Collision 

Total 

critical 

conflict 

Average traffic flow  
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[
𝐹𝑆

𝑅𝑇
] [

𝐹𝑆

𝐵𝑇
] [

𝐹𝑆

𝑛𝑜𝑛𝐹𝑆
] 

𝑭𝒎𝒂 (
𝒗𝒆𝒉

𝒉
) 𝑭𝒎𝒊 (

𝒗𝒆𝒉

𝒉
) 𝑭𝑷𝒆𝒅 (

𝒑𝒆𝒅

𝒉
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BCN N 
(1),(0), 

(1), (0) 

(18),(8), 

(9),(11) 

(1407),(1101), 

(1749),(2170) 

(81),(83), 

(69),(94) 

(116),(129), 

(219),(190) 
2 24.33 30.50 2.47 2.98 2.25 2.71 

BLS Y N/A 
(47),(36), 

(28),(14)) 

(1609),(1140), 

(2091),(2044) 

(310),(245), 

(388),(441) 

(98),(75), 

(101),(142) 
1 23.89 33.00 2.91 4.89 2.60 4.26 

LED Y 
(2),(5), 

(6),(4) 

(26),(41), 

(33),(10) 

(2166),(1533), 

(2795),(2778) 

(134),(374), 

(495),(620) 

(34),(29), 

(52),(54) 
1 16.22 28.00 2.50 4.20 2.17 3.65 

STO

P* 

Y/

N 

(7),(7), 

(6),(10) 

(132),(130), 

(137),(101) 

(1371),(1069), 

(1824),(2166) 

(358),(259), 

(329),(346) 

(37),(41), 

(56),(129) 
1 11.55 10.65 1.75 2.13 1.52 1.77 

STO

P-

Ped 

Y 
(7),(4), 

(6),(5) 

(57),(32), 

(48),(25) 

(1504),(1020), 

(1973),(2086) 

(274),(270), 

(382),(475) 

(102),(88), 

(110),(134) 
3 16.91 18.79 1.69 2.01 1.56 1.91 

BLS

-Ped 
Y N/A 

(44),(28), 

(33),(12  

(2081),(1378), 

(2237),(2186) 

(597),(412), 

(589),(425) 

(23),(51), 

(48),(146) 
3 24.35 34.78 3.11 5.12 4.19 4.86 

Table 29 Collison count, average conflict frequency from microsimulation, average traffic flow, compliance to the signage. 
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A significant correlation between recorded collisions and critical conflicts computed in microsimulation 

models was observed (0.792). This may not come as a surprise since when critical conflicts in the unit 

time increase, the expected number of collisions should logically increase too, and vice-versa. The traffic 

volumes also had a good level of conformity with both collision and conflict values (Figure 26-b). This 

was also consistent with previous studies (see section 2.3.1 for full discussion).  Compliance on the other 

hand, had an inverse correlation with both collision and conflict, expecting an increase in compliance 

ratio decreases the frequency of both.  

 

a. 

 

b. 

Figure 26 a) correlation between all variables,(b) regression plane illustrating correlation between collisions at intersections with the 

traffic volume and critical conflict from the simulation 

. 

Figure 26-a illustrates the correlation and direction of all the covariates used in the GLM models. The 

correlation of variables is presented in the format of a matrix (horizonal variables are the codes used in 

rStudio while the vertical labels are the definition of that variable). The correlation of a variable with 

itself is indeed 1 and is displayed as a line while a low correlation is in the format of a pale circle. For 
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instance, variable conflict ([𝑐𝑜𝑛𝑓]) has a high direct correlation with 𝑓𝑚𝑎 and indirect correlation with 

[
𝐹𝑆

𝑛𝑜𝑛𝐹𝑆
]. Similar covariates may cancel out each other's effect if used in the same regression model, 

hence in the following two sections, several scenarios and models are shown, and their performance are 

discussed. 

4.3.2 Collision Estimation 

As mentioned in section 3.4.3.2, collision (Y) is considered “success” in Bernoulli trials, and Binomial 

distribution is the appropriate probability model that accounts for a set of Bernoulli trials. It was also 

shown that among the discrete distribution models, the binomial distribution can be approximated by a 

Poisson distribution or the extensions such as Poisson-gamma, zero-inflated and other widely used 

models to estimate collision (see section 2.3.1 for more detail). Furthermore, a suitable method to 

account for fluctuation of collision counts, which occur at a given intersection during a given unit of 

time (e.g., an interval in several years), is to assume that collision counts are random variables with the 

Poisson probability law. The ‘expected’ number of collisions per unit of time (𝜆) for the given 

intersection can then be estimated from Eq. 37. In section  3.4.3.3 it was mentioned that in some cases, 

collision counts appear to be “over-dispersed” or “under-dispersed” with respect to the theoretical 

variability consistent with the Poisson model (σ2 = VarY = 𝜆). In order to account for this 

overdispersion, the expected number of accidents per unit of time in the Poisson model incorporates 

Gamma variate with 𝜇 = 1 𝑎𝑛𝑑 𝜎2 ≠ 1 that can help the variability of over-dispersion. Under this 

assumption, it was shown that the expected’ number of collisions follows a Negative Binomial model, 

and the variance can be estimated from the Eq. 44, allowing for the variance of accident counts to be 

greater than the mean with utilization of the gamma parameter. 



121 

 

Before determining the vector (β) that captures the collision probability functions most reliably, the 

appropriate model has to be selected by investigating the signals of “over-dispersion and goodness of fit. 

The next section will describe a few models and check for their validity and performance in estimation 

of collision and its variance.  

 

4.3.2.1 Naïve Model 

The native model is basically the null model which is not utilizing any posterior information for the 

estimate. Hence the estimate is solely based on the recorded collisions variable as the prior data. The 

objective function in Eq. 43and Eq. 48 can be described as the maximizing log-likelihood function of 

Poison and NB Models for collision frequency at interactions under the study. By only maximization of 

the models with respect to the parameter 𝜇, ultimately, the best approximator will return the average of 

collision frequency.  

The following RStudio two function classes are being used to carry out the modeling hereafter: 

• The function of GLM under the “Stat” Package for Poisson model 

• the function of GLM.NB under the “MASS” Package for NB model  
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Figure 27 Poisson vs NB probability mass function 

 

Estimate 

𝛽0 
Std. 

Error z value Pr(>|z|) 

Degrees 
of 

freedom 

Pearson 
Chi- 

Square 

Over 
Dispersion 

Ratio 
Log-

Likelihood 

Poisson 9.30E-01 0.119 7.84 4.49E-15 27 51.648 1.9129 -62.536 

NB 9.30E-01 0.182 5.12 3.06E-07 26 22.024 0.847 -58.208 
Table 30 NULL Poisson and NB regression models estimates for intercepts 

Figure 27 shows a comparison between the PMF of the two null models and Table 30 provides the 

estimates for the coefficient of the intercept, which have significant p-values for both models. More 

especially, over-dispersion is obsevered in the Poisson model with a  Pearson Chi-Square [𝜒2(27) =

 51.648 𝑎𝑡  𝑃 > 0.5], hence the value for variance form Poisson can not be used. From the Eq. 39 

the value Poisson estimate is:  

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0) = 𝐸𝑋𝑃( 0.9305) = 2.5357 Eq. 57 

These results indicate that for each intersection, the expected annual crash frequency is 2.536 for each 

interval which indeed is the average of the collision variable from all enteries "𝑖". By using 𝛼 (0.53), the 

variable of the NB model from Eq. 46 was found to be 2.829 which is somehow higher than the estimated 

variable in Poisson model from Eq. 57. 
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4.3.2.2 Alternative Models  

The objective of alternative models is to estimate the expected number of collisions on a given 

intersection as a function of not only collision counts, but also traits such as traffic flow, geometric 

design variables, environmental conditions, drivers’ behaviour etc. To put it another way, it is believed 

that collision frequency has a “systematic” component, and that explanatory variables may account for 

this non-random component. Subsequently, a regression model where the explanatory variables (and 

possibly combinations of them) act as “covariates” may provide a better estimate. Several alternative 

models are constructed and presented by including the posterior data into GLM. A traditional traffic 

volume-based collision-prediction model was first developed as the “Base model”. This has allowed 

assessing the collision-prediction capabilities of traditional traffic volume-based model with the 

following alternative collision prediction models: 

• Base model, Volume based (Eq. 58).  

• Alternative 1, compliance-volume based (Eq. 59). 

• Alternative 2, compliance-conflict-volume based (Eq. 60). 

• Alternative 3, compliance-conflict based (Eq. 61). 

• Alternative 4, conflict based (Eq. 62). 

As mentioned in section 3.4.3.2, to obtain the estimates for vector β (β and 𝛼 for NB), of the unknown 

parameters β, the likelihood function under the governing model (or equivalently its logarithm) is 

maximized. In Table 31 the estimates of the parameters of the five following regression models are 

presented. 
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𝜆𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1Dv). (𝑓𝑚𝑎)𝛽2 . (𝑓𝑚𝑖)𝛽3 
Eq. 58 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1Dv + 𝛽2𝐹𝑆𝐵𝑇 + 𝛽3𝐹𝑆𝑅𝑇). (𝑓𝑚𝑎)𝛽4 . (𝑓𝑚𝑖)𝛽5 
Eq. 59 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1Dv + 𝛽2𝐹𝑆𝑁𝐹𝑆). (𝑓𝑚𝑎)𝛽3 . (𝑓𝑚𝑖)𝛽4(𝑐𝑜𝑛𝑓)𝛽5 
Eq. 60 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1𝐹𝑆𝐵𝑇 + 𝛽2𝐹𝑆𝑁𝐹𝑆). (𝑐𝑜𝑛𝑓)𝛽3 
Eq. 61 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽0). (𝑐𝑜𝑛𝑓)𝛽1 
Eq. 62 

 

The base model establishes a relationship between collision and traffic volumes. Furthermore, a dummy 

variable (𝐷𝑣) has been considered which takes value ‘1’ for the evening time intervals and ‘0’ elsewhere. 

This was done to consider the fact that a larger “cumulative” traffic volume was used for the four hours 

evening time (18:00-22:00) compared to the lower volume during peak periods. The dummy variable 

was only used with models which incorporate flow covariate.  
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Performance Metrics                   

Degree of Freedom 24 22 22 24 26 

Deviance 32.067 23.746 18.282 28.618 34.146 

Pearson Chi Square 28.4509 20.5838 15.6242 23.3293 28.8755 

Over Dispersion Ratio 1.1855 0.9356 0.7102 0.9721 1.1106 

Log Likelihood -46.893 -42.732 -40 -45.168 -47.932 

AIC 101.785 97.4641 91.9995 98.3357 99.8634 

Table 31 Regression Model for collision as a function of traffic volumes, drivers’ compliance, and total conflicts  
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The Pearson-Chi-square test (𝜒2) for the base and alternative models was less than 𝜒2 [𝑝 = 0.05] with 

respect to their degree of freedom. For instance, this value for base model is between ‘0.1’ and ‘0.05’ 

[𝜒2(24) = 36.415 and 𝜒2(24) = 33.196] which suggest statistically significant similarity between 

observations and estimations. Therefore, there is no strong reason to reject the hypothesis that the data 

follow a Poisson model. The ratio between Pearson and degree of freedom (𝜒2/𝑑𝑓≅1) is also close to 

1 which is an expected outcome from Poisson model.  

When using the ‘alternative 1’ model it was found that the p-value of the traffic flow on the major 

approach (𝑓𝑚𝑎) and compliance (𝑐𝑜𝑚𝑝) covariates are between ‘0.05’, and ‘0.1’ level of significance. 

With somewhat less confidence than the base model, the alternative model may be carefully accepted. 

That means that even though the addition of the drivers’ behavior and FS to non-FS compliance slightly 

improved performance of the null model in Eq. 58 however the model itself is less favorable.   

The covariates of flow in the alternative model ‘2’ on the other hand, were not found to be significant. 

This was expected due to the high correlation between traffic volumes and critical conflict and was 

reported in previous studies. That simply implies that the conflict together with the traffic volume is not 

contributing to the performance of the model. As the result, the Eq. 60 is not an acceptable alternative 

model to be proposed for safety performance function due to unacceptable parameters β for the flow on 

the major road (𝑓𝑚𝑎).  

The last two alternative models imply not using the traffic flow but deploying conflict for posterior 

model. While ‘alternative 3’ have incorporated the drivers’ reaction to the signage, ‘alternative 4’ is 

simply using critical conflict as the estimator for the collision estimation. The performance metrics of 

both models rejects the null hypothesis as there is statistically significant relationship between the 

observation and fitted values from the models.   
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While there have been some valid alternative models optional to the null model, however, their goodness 

of fit and performance, in line with section 3.4.3.4 with respect to null and base on one hand and among 

themselves will be assessed in the following section.  

4.3.2.3 Performance Analysis of the Models 

Three measures to assess the significance of the covariates entering the regression model are provided; 

Pseudo-R square (Eq. 54), likelihood ratio test (Eq. 53) and AIC with (Eq. 56). Even though the 

comparison of pseudo-R-square would be valid assumption since they are the same data, predicting the 

same outcome, they won’t provide solid evidence for non-linear regression models such as Poisson and 

NB. Hence, in this situation, the higher pseudo-R-squared cautiously indicates which model better 

predicts the outcome. 

  Null Base Alternative 1 Alternative 2 Alternative 3 Alternative 4 

Lo
g likelih

o
o

d
 ratio

 te
st 

Null 
(0), 0, 

[1] 
(3), 31.286, 
[7.399e-07] 

(5), 39.607, 
[1.792e-07] 

(5), 45.072, 
[1.403e-08] 

(3), 34.736, 
[1.385e-07] 

(1), 29.208, 
[6.502e-08] 

Base   (0), 0, [1] 
(2), 8.321,    
[1.56e-02]  

(2), 13.786,   
[1.02e-03] 

(1), 3.4494,   
[2.2e-16]  

(2), 2.0783, 
[3.5372e-01] 

Alternative 1 
  

  (0), 0, [1] 
(0), 5.4646,  

[2.2e-16] 
(2), 4.8716,   

[8.7532e-02] 
(4), 10.399,    
[3.421e-2] 

Alternative 2       (0), 0, [1] 
(2), 10.336, 
[5.695e-03] 

(4), 15.864,   
[3.207 e-03] 

Alternative 3         
(0), 0, [1] (2), 5.5277, 

[6.31e-02] 

Alternative 4           (0), 0, [1] 

               

 AIC 120.417 101.785 97.4641 91.9995 98.3357 99.8634 

 Pseudo-R2 0 0.149 0.384 0.533 0.302 0.136 

        

  p<0.001 p<0.01 p<0.05 p<0.1 p>0.1 
 

 

Table 32 Comparison of the performance between null, base and alternative models. (DF), 𝜒2
, [p-value]  
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LLR-T and AIC are commonly used to report performance of safety models with respect to the 

significance of the covariates entering the model as an alternative to 𝑅2 as coefficient of determination. 

AIC has the advantage of considering the number of covariates into the account. 

The performance of all the models is summarized in Table 32 with the following key findings:  

• The LLR-T found a statistically significant difference between the null model and all five 

alternative models. Hence, the null model is being rejected compared to the base model and 

alternative models. This indicates the objectivity of introducing the covariates into the model to 

improve the estimates. 

• Moreover, alternative 1 compared to the base model found moderate evidence against the null 

hypothesis in favor of the alternative. That implies that introducing the compliance covariates 

into the base model can contribute to a more reliable estimate. The AIC value suggests better 

performance of the alternative 1 model. 

• Even though the conflict-based model (alternative 4) is showing a slight AIC improvement (99.9 

vs 101.8), the LLR-T didn’t find evidence against the null hypothesis. That suggests the 

similarity between these two models and the conflict-based model does not have a statistically 

significant advantage compared to the collision-based model. 

• In this study, once compliance is factored into the conflict-based model (alternative 3), the 

performance of the model exceeds the classic volume-based models (base and alternative 1) with 

very strong evidence against the null hypothesis in favor of the alternative for base model and 

weaker evidence against the null hypothesis in favor of the alternative for alternative 1. This is 

an interesting finding in line with previous reports on the potential of the conflict-based collision 
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prediction model and demonstrates the value of driver’s behavior parameters in the regression 

models. 

• The AIC value between the models suggests that the SPF models either volume based, or conflict 

based perform better when drivers’ compliance is included as the covariates.  

This quantitative study hence recommends Eq. 59 or Eq. 61(depending on the availability of either traffic 

volume or conflict, respectively) with the following estimates for parameters: 

𝜆𝑖 = 𝐸𝑋𝑃(−6.86 + 0.745 ∗ dv + 0.029 ∗ 𝐹𝑆𝐵𝑇 − 0.618 ∗ 𝐹𝑆𝑅𝑇). (𝑓𝑚𝑎)0.847. (𝑓𝑚𝑖)
0.361 

Eq. 63 

𝜆𝑖 = 𝐸𝑋𝑃(−4.031 − 0.026𝐹𝑆𝐵𝑇 − 0.874𝐹𝑆𝑁𝐹𝑆). (𝑐𝑜𝑛𝑓)1.172 
Eq. 64 

 

4.3.3 Conflict Estimation  

As mentioned in section 2.3.2, collision is assumed to be very probable when conflicts are characterized 

by a time to collision (TTC) and post-encroachment time (PET) below the threshold values of 1.5 and 5 

seconds, respectively. In the absence of the collision data, conflicts are a considered to be reliable 

alternative for quantitative safety analysis. As mentioned in the section 3.3.2 a calibrated model, which 

is compatible with the applied microsimulation software, VISSIM, was used for identifying the number 

of critical conflicts at the intersections of the study. That included the critical conflict recorded for 

intersections equipped with ‘new’ (BLS) and already ‘tested’ (LED) treatments. In order to address the 

last key question of this research - “to correlate and model road users’ behavior and surrogate safety 

indicators for a new or tested treatment”, three conflict estimation statistical models are presented 

henceforth. If critical conflict frequency is considered as the prior estimate, the explanatory variables or 

possibly a combination of them could act as “covariates” and may provide a better conflict frequency 
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estimate utilizing regression models. Figure 28 depicts the characteristics of the critical conflicts and 

their correlation with traffic volume (minor, major and pedestrian combined). 

  

 

a. 

 

b. 

Figure 28 (a) Hourly traffic volume vs critical conflict (b), regression plane illustrating correlation between collisions at intersections 

traffic volume and critical conflict from simulation. 

 

4.3.3.1 Conflict Estimation Models 

The null model is using the prior data or “observed” conflict to estimate the conflicts at each intersection 

for the period of “observation”. Model A tends to use the observed drivers’ compliance odds-ratios 

(Table 31) for predicting conflicts. Model B would seek to enhance the estimations by entering combined 

traffic volumes covariate into the previous models. All three models reported overdispersion ratio in 

Poisson model equal to 8.842, 6.685 and 6.456, respectively. This was an indicator of overdispersion 

due to heterogeneity and perhaps presence of unobserved covariates. However, these three models were 

fitted in Poisson/Gamma or Negative Binomial (NB) model as the scaled deviance values and the 
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Pearson values indicating goodness of fit for all three models at the 95% level. The over-dispersion ration 

in the three instances was reported 1.02, 1.17 and 1.19, respectively, indicating that data follows a 

Poisson/Gamma model.  

  

Model 

Null 

Model A 

(Conflict vs 

compliance)  

Model B  

(Conflict vs 

compliance & flow) 

Variables  Coefficients  p  Coefficients  p  Coefficients  p  

(Intercept) 3.26 <0.001  4.318 <0.001 -1.799 0.364 

Dum     0.603 <0.001 

LED, BLS   0.959 0.002 1.053 <0.001 

ln flow     0.811 0.002 

comp FS BT   0.02 0.139 0.0352 0.073 

comp FS RT   -0.744 <0.001 -0.973 <0.001 

Performance Metrics             

Degree of Freedom 34 31 29 

alpha 0.305 0.199 0.11 

phi 3.274 5.018 9.06 

Deviance 37.437 36.9 37.77 

Pearson Chi Square 34.547 36.118 34.523 

Over Dispersion Ratio 1.016 1.165 1.19 

Log Likelihood -145.114 -138.22 -130.479 

AIC 294.228 286.441 274.96 
Table 33 Regression Model for critical conflicts as a function of traffic volumes and drivers’ compliance 

 The AIC on model B indicates a better performance compared to model A, and the same goes with the 

lower log likelihood of model A. The log-likelihood test between the two models also presents 

statistically significant outcome  LLR − T(2) = 15.483, 𝑝 = 4.343 ∗ 10−4 indicating that model B and 

A are different, with very strong evidence against the null hypothesis that these two models are the same. 

Hence the estimate of the conflict ‘𝐶�̂�’ for intersection ‘𝑖’ for the time period ‘𝑡’can be derived from 

equation below with the variance using  Eq. 46 with 𝛼 = 0.11 from Table 33.  

𝐶�̂�𝑖,𝑡 = 𝐸𝑋𝑃(−1.799 + 0.603Dv + 1.053 𝐵𝐿𝑆 + 0.0352 𝐹𝑆𝐵𝑇

− 0.973 𝐹𝑆𝑅𝑇). (𝑓 𝑠𝑢𝑚)0.811 

Eq. 65 
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4.3.3.2 Conflict Reduction Rates 

For a plausible candidate intersection to be upgraded to a flashing LED stop-sign or flashing BLS, the 

benefits associated with the sign would require to be assessed. Hence, a prediction of the collision 

reduction is essential for decision making (e.g., cost-benefit or cost-effectiveness analysis). As 

mentioned in the section 2.3.1 , CMF is widely used in road safety practice, and the FHWA under crash 

modification factor clearinghouse provides a searchable database along with guidance and resources[58]. 

As of this writing, there are two CMF reported for the LED stop-signs (see Figure 29) [9,33]. For instance, 

the approximate CMF multiplicative factor proposed by one of these studies is 0.59 (𝜎 = 0.18)  with 

collision reduction factor (CRF) of approximately 41.5% (with 95% confidence intervals for the safety 

effectiveness 0%-70.6%)[9].  

 

Figure 29 Countermeasure: Replace standard stop-sign with flashing LED stop-sign (http://www.cmfclearinghouse.org/) 

Although lack of collision data for BLS prevented the quantitative analysis to provide a CMF, however, 

Table 34 summarizes conflict as the surrogate safety measure performance for different treatments and 

the odd ratio of conflict at intersection with regular sign vs LED and BLS at the estimation point.   
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 Ped-Crossing stop-sign 

 Day Night Day Night 

Regular 47.55(45.7), ±22.3 25.15(25), ±12.3 48.23 (50.33) ±22.6 20.1 (30.1) ±10.01 

BLS 33.04(35), ±15.8 12.02(12) ±6.4 36.47(37.1) ±17.3 8.06(14.2) ±4.58 

LED  
 35.65(33.33) ±16.9 10(15.8) ±5.46 

Reduction rate (BLS) 1.44 2.09 1.32 2.49 

Reduction rate (LED)   1.35 2.01 
Table 34 Conflict reduction for regular, LED and BLS stop-signs- estimated hourly conflict (observed hourly conflict), variance  

By way of explanation, naïve interpretation using the prior information, intersection equipped with BLS 

stop-sign would anticipate having an average of a conflict for every 1.3 and 2.5 conflicts of the regular 

stop-sign during daytime and nighttime respectively.  That is, a 24.4% reduction in estimated conflict 

during daytime and 59.9% reduction during nighttime. The overall weighted conflict reduction for an 

intersection upgraded to BLS and LED would be 46.2% and 40.9% accordingly (considering 9h 17m 

average time between civic twilight start and end for month of April and July).  

In order to include the effect of the ‘observed variable’, (which in this case is the frequency of critical 

conflict from the simulation model) and trade-off with ‘expected value’ from the negative binomial 

model, Bayesian approach is deployed. This approach is to update the parameter of the model on the 

bases of ‘observation’ estimator which indeed is the EB estimator and can be estimated using the Eq. 11 

and Eq. 13  . Hence, the estimate from Table 34 is improved and updated and the results is presented in 

Table 35. The estimation provided for the ‘regular’ signage is based on intersections which did not 

convert to BLS. In order to predict the expected frequency of critical conflicts of the intersection in the 

after period, if it would have not been converted to BLS, Eq. 65 can be used with ‘after’ period traffic 

volume and compliance ratios for regular stop-sign. This is the first step in the EB before-and-after 

analysis and will calculate the value of μ in equation Eq. 5, which is equal to the variance for the assumed 

Poisson distribution. 
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 Ped-Crossing Stop-Sign 

 Day Night Day Night 

Signage Type: 𝑬𝑩𝜽 𝑬𝑩𝜽𝒗𝒂𝒓
 𝑬𝑩𝜽 𝑬𝑩𝜽𝒗𝒂𝒓

 𝑬𝑩𝜽 𝑬𝑩𝜽𝒗𝒂𝒓
 𝑬𝑩𝜽 𝑬𝑩𝜽𝒗𝒂𝒓

 

Regular  47.24 39.43 25.11 18.43 48.55 41.14 22.41 17.23 

Regular adjusted (μ) 50.54 50.54 24.64 24.64 47.05 47.05 20.56 20.56 

BLS 33.44 26.57 12.01 6.84 36.59 29.41 10.45 6.38 

LED         35.15 27.64 12.11 7.70 
Table 35 EB critical conflict estimator for intersections using regular, regular adjusted with traffic volume, BLS and LED signage  

As mentioned in section 2.3.1, there are two essential tasks for a before-and-after study in road safety 

studies; A ‘prediction’ of what would have been the safety of an entity in the period after had the 

treatment not been applied. And the ‘estimation’ on what the safety of the treated entity in the after 

period was. While the ‘Regular adjusted’ is providing the ‘prediction’, the 𝑬𝑩𝜽 estimates the frequency 

of the conflict for the intersection with BLS after adjustment to prior and posterior information and 

indeed is the estimate �̂�.  
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Table 36 Potential conflict effects of converting from regular stop-sign to BLS stop-sign at 3-legs intersection (night and day) 

Once ‘prediction’ and ‘estimation’ steps are completed, the impact of a treatment then can be assessed 

by comparing �̂� and μ̂ and their variances. The Eq. 11 and Eq. 13 are being used to estimate the delta for 

reduction �̂� and the reduction factor �̂� . The reduction factor can be used in Eq. 65 to estimate the conflict 

decrease of a target three-leg intersection with a known average hourly flow with conversion from a 

regular sign to BLS. Based on the results from Table 36 the EB method adjusted the reduction in the 



135 

 

estimated conflict frequency for the daytime to an estimate point of 23.8% and 51.5% during nighttime. 

With 95% confidence interval, the worst and best expected conflict frequency improvement could be 

between 0% - 54.8% and 21.3%-81.8% for daytime and nighttime, respectively. 

 

 

4.4 Chapter Summary 

In this chapter qualitative and quantitative safety analysis for several treatments, including the 

underlining target treatment (BLS), at SCI was presented. The analysis demonstrated the ability of the 

methodology in chapter 3 to improve some safety estimations. The set-up of the empirical test allowed 

a significant (10%) improvement in categorical outcome prediction models for drivers’ compliance. 

Three scenarios were presented in the qualitative analysis, by using a combination of the results, drivers’ 

behavioural driver covariate was supplied. This covariate subsequently is used in the GLM models. 

Several safety performance functions for three-leg SCI were discussed and their performance was 

compared with respect to collision estimation. So far only a few studies have looked at conflict-based 

collision estimation models. But those studies did not consider drivers behaviour in their models and the 

‘observed’ conflict was also deployed without consideration of random variability nature of conflict. 

The table below summarizes the key estimates for BLS which can be benchmarked against LED stop-

sign with a known CMF. 

 Day Night 
 Full stop to non full stop Conflict Full stop to non full stop Conflict 

Regular stop-sign to BLS 41.3% 24.4% 58.3% 59.9% 

Regular stop-sign to LED 29.8% 26.1% 51.4% 50.3% 
Table 37 Compliance ratio and conflict frequency reduction estimations for LED and BLS stop-sign treatments. 
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In the before-and-after safety assessment of the BLS, empirical bayes method was deployed with traffic 

flow factors. The result suggests a significant improvement at nighttime with a modification factor 0.48 

with 95% CI [0.33, 0.64] for stop BLS and 0.468 with 95% CI [0.26, 0.66] for pedestrian crossing. 

Although there was a slight improvement on nighttime estimation point for BLS in comparison to LED, 

no significant improvement was observed for the daytime.  
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5 Chapter 5: Conclusion and Recommendations 

5.1 Summary: 

To improve safety at stop-operated intersections, traffic engineers use traffic signages with flashing 

lights. There are few studies evaluating the safety impact and the performance of these signages to the 

road users. On the other hand, MUTCD guidelines require the safety performance of any ‘new and 

untested’ signages to be assessed. Two new treatments with flashing lights for stop-controlled 

intersections: backlit flashing stop-signs, and pedestrian crossing signs are evaluated in the study. 

Although many analysis tools have been developed and applied in a wide variety of areas, the focus of 

the research beforehand was placed on statistical models tailored specifically for the characteristics of 

critical conflict at intersections with various stop-control devices and drivers’ reactions to these signs.  

For drivers’ behaviour analysis, the influence made by unobserved covariates in the statistical models 

was controlled either by including them into the model or eliminating them in a tailored empirical study. 

It was shown in this thesis that the outcomes from the before-and-after analysis in prediction models 

with categorical outcome is not reliable for all results. Meanwhile, using the same sample-set in 

experiments warrant confidence in certain results. As for conflicts analysis, in line with the literature, 

collisions at unsignalized intersections are correlating better with conflicts than traffic-flow. Hence, they 

can be utilized in collision safety performance modelling [66,81].  

To calculate the critical conflicts, microsimulation models were set up, and the models' parameters were 

captured from the Genetic Algorithm utilizing heuristic methods. The MSE, between model estimates 

and field measurements for TMC’s, was used and ultimately the conflict data was validated with field 

measures. Several collision prediction models were presented and compared. It is shown that accident 

estimations obtained from conflicts and compliance models had a better performance in comparison to 
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classic traffic flow-based models. The results show that reasonable collision estimates are obtained by 

using the conflicts and compliance rather than traffic flow, while the estimated collisions are in the range 

of 95% Poisson confidence intervals of the observed collisions. The estimates (fitted values) from the 

proposed model compared to the actual collision recorded also conformed better when conflict-

compliance were the covariates, as shown in the Figure 30. The performance of the traffic flow-based 

model was shown to improve slightly by introducing drivers’ compliance in the safety performance 

function. 

 

Figure 30 Fitted values from the models (estimate) vs recorded accident 

Specifically, the AIC as the goodness-of-fit for the model with ‘critical conflict only’ improved to 99.9 

compared to ‘traffic flow only’ with an AIC 101.9. This minor improvement has been reported in the 

previous studies [66,81]. However, the Log-Likelihood ratio test indicates strong similarity between these 

two models, and hence there was not enough evidence to promote ‘critical conflict only’ model compared 

to ‘traffic flow only’. Lastly, the estimated conflict frequency reduction in daytime and nighttime was 

presented to be 23.8% and 51.5%, respectively, for the backlit flashing stop-sign. Similarly, the backlit 

pedestrian crossing sign showed 35.1% and 53.2% improvements for daytime and nighttime, 

respectively. To our knowledge, there are no examples in the literature on conflict-compliance models 

for unsignalized intersections, and no safety performance indicators are available for the backlit 

regulatory signage. Although this research represents a more robust verification approach for assessing 
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safety at SCI using critical conflicts and compliance as a surrogate safety measure, it is yet premature to 

make a generalization that observed collision would be reduced with the same rate as reported conflict 

reduction.  

5.2 Research Contributions 

This work of research focused on the important topic of road safety assessment and active road signage with 

the goal to small contribution to the knowledge of safety as sustainability measure. Contributions were 

made toward design a methodology on road safety analysis which is more focused on drivers’ reactions and 

interactions with active road signage. Some inconsistencies and ambiguity in performance of active road 

signage has been reported in the literature.  

This study reaffirms the positive impact of active signage specially at nighttime. A step forward from the 

previous list of assessed active signage was made and backlit sings performance was assessed in this study. 

The proposed test methodology warrants less risk to public since the observation period was rather short.  

Another contribution was to demonstrate collision-prediction models which deployed drivers’ compliance in 

estimation and showing the added value of this predictor in the models. While past research had their attention 

on rural or sub-urban regions, this investigation was carried out in an urban setting.  

5.2.1 Design an Unbiased Test 

In the qualitative analysis  of the active signages, the design of the experiment was unbiased for the 

following reasons: 

1. Same sample was being exposed to minimum 3 intersections: This was to somewhat control 

the variation in human factors. The previous studies in the before and after setting were using 

different sample type and size entering the intersections. It was shown that for models using same 

samples they better passed the likelihood tests. 
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2. Same road condition applied in each intersection: For instance, if the road condition for the 

first intersection was ‘wet’, all the consecutive intersections for that sample would have been the 

same knowing the driver will exit them withing five minutes. Beside that, the pavement surface 

condition, wet/dry, was considered in the analysis and was insignificant after all. 

3. Ambient light was considered: For an estimation of collision in Phoenix with less average 

nighttime-travel, using the CMF (based on the study in Minnesota) might not work. Inclusion of 

the odd likelihood compliance ratio on the other hand, for day and night would provide a more 

reliable SPF. It was shown in this research that the performance of the active signage decreases 

significantly during the daytime. 

4. Critical reaction was considered: The odd ratios provided from this study was filtered for only 

the impactful maneuvers with consideration of the potential conflict with presence of opposing 

traffic. The method found significant correlation between drivers’ compliance and conflicts. 

5. Active signage test in the city:  The light pollution is usually higher in the urban areas. A driver 

that missed to read or recognize a sign may not have deliberately violated the command, but 

simply missed the signages and that might increase when the conspicuity properties is less a 

reason of the failure. This study presents the urban area results without generalizing results for 

all urban intersections. 

6. Using intersections with similar properties: In a cross-reference analysis, not only different 

samples are being used, but also there is a risk for an unobserved variable from undetected 

differences on the road properties. Same geometry and major links in the design of the 

experiment, reduces this variability.  
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5.2.2 Contributions in Modeling  

A simulation model was calibrated, and several statistical models are presented in this study. 

1. A properly calibrated simulation model: genetic algorithm was developed to carry out the 

calibration of the microsimulation model to extract critical conflict.  

a. The algorithm can thus be utilised by other researchers trying to calibrate other road 

networks based on compliance profiles.  

b. In section 3.3.2 it was shown how to set up a model to overcome limitations of 

reproducing drivers’ compliance to signage at intersections with respect to different 

control devices.  

c. Since there is no direct output for conflict from the microsimulation, a process of 

validation based on limited observed conflict was presented and it was shown that using 

MSE, between model estimates and field measurements for TMCs is an appropriate 

approach, while compliance profile is given, in the calibration process. 
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2. Better properties of the estimation models: 

a. In chapter 4, the MNL models, although the design of the test was controlling some of 

the observed and potentially unobserved variables, several independent variables was 

deployed to improve the models’ performance. A 10% improvement was shown between 

the MNL models.   

b. Conflict-compliance models for unsignalized intersections was presented and the SPF 

performances was compared. It was shown that the performance of this model was better 

than conflict or traffic flow only models. 

c. It was shown in this study that using the compliance properties as covariate, improves the 

estimation of the classic traffic volume-based model. Other researchers focusing on 

assessment of an intersection equipped with active signage system could use the outcome 

of the model from this research to inform their studies so that if drivers’ compliance enters 

the regression model when traffic volume is already present it does significantly 

contribute toward reducing unexplained variability. 

d.  This study didn’t find evidence to accept previous assumption that estimations from a 

conflict-based model is necessarily better than volume-based models. 

3. Commentary on Performance Assessment of BLS 

Two types of regulatory BLS signs were assessed for the first time with following findings: 

a. An EB method was carried out to find the estimated conflict for the before-and-after 

installation, where conflict frequency was adjusted based on the traffic volume and 
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compliance profile. The estimations show installation of BLS would reduce conflict 

frequency as outlined in section 4.3.3.2.  

b. One of the objectives of this research was to avoid ‘potential’ risk of installation of an 

equipment with unknown performance properties. Hence fortunately, there was no 

observed collision within the short period of installation of BLS. However, it was shown 

that the performance of BLS and LED signage on conflict analysis are alike with 

statistically insignificant improvement in nighttime performance for BLS. That 

cautiously infers the best possible CMF to be deployed for BLS signage would be the 

only available CMF for LED sign provided by FHWA.  IT was shown in section 4.3.3 

compliance covariate will improve the SPF and account for BLS effects.  

c. While BLS performance was the focus of the evaluation process, the results from 

conflict estimation in section 4.3 reassures the better performance of both BLS and LED 

signs.  

The presented methodology and reported results expanded the understanding of performance of the 

active signage systems, contribution was made to improve some of the modeling for better predictions 

and estimations, and finally, this was a validation on the positive impact of these type of control devices 

on road safety. The findings of this thesis open the door to a new scenario of research based on conflicts 

and compliance that is worth investigating specially in the absence of accident data. 
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5.2.3 Active Signage Performance  

• While all types of active signage have shown improvement for approaching vehicular speed 

profiles, there was no statistically significant difference between BLS and LED. On the average 

speed point between the active signs versus the regular stop-sign, the speed was shown to be 

reduced by about 3.5𝑘𝑚/ℎ, 5.3𝑘𝑚/ℎ  and 1.3𝑘𝑚/ℎ for BLS, LED and overhead beacon, 

respectively, on a 40 𝑘𝑚/ℎ urban link.  

• For the pedestrian crossing signs, there was also a statistically significant speed reduction from 

31.3 km/h to 28.4 Km/h, with better and more uniform approaches of vehicles to the BLS 

approach. 

• For both LED and BLS, the findings of the qualitative study showed a statistically significant 

improvement in the drivers' full-stop to non-full-stop odds ratio. The overhead beacon couldn't 

statistically stand for this outcome. The full-stop to blow-through odds ratio for drivers with 

opposing traffic at night was improved three times (from 10 to 30) for LED and BLS. As for the 

roll-through behaviour, under the same condition, drivers made 24.2% more full-stop at 

approaches with LED or BLS than they did with the regular stop-sign (from 2.5 to 3.3). 

• In the preceding situation, drivers approaching BLS made more full-stops during the daylight. 

BLS improved LED performance 35.1% for blow-through and 29.1% for roll-through. Both 

active signages performed better than regular stop-sign during daytime, while this was not as 

substantial as at night.  

• The quantitative analysis for nighttime shown, the hourly estimated conflict frequency for BLS 

and LED are 35.2 (𝜎 = 5.9) and 36.6 (𝜎 = 6.0), respectively, while the projected frequency for 

regular stop-sing is 47.1 (𝜎 = 6.9).  
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• The conversion of a regular stop-sign to BLS is anticipated to reduce the hourly conflict 

frequency between 0% - 54.8% and 21.3% - 81.8% for daytime and nighttime, respectively. The 

estimate points for daytime and nighttime are 23.8% and 51.5%, respectively. 

• There was no collision data for BLS to estimate the safety performance for this type of signage. 

However, there was enough statistically significant evidence in similarity between LED and BLS 

on their performance with regard to conflict and drivers’ behaviour. With an assumption which 

was made by many studies before about conflict and collision correlation, it can be cautiously 

concluded that the BLS is somewhat at the same performance as LED the sign for collision 

reduction with CMF of 0.585 and %41.5 CRF. 
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5.3 Research Limitation 

The following are the key limitations of the proposed methodology and the outcomes: 

1. Collision is the globally recognized road safety measure. Like many other non-collision-based 

studies, this limitation became the motive to look at other more frequent measures such as 

drivers’ behaviour and critical conflict. Hence, the absence of a complete ‘recorded’ collisions 

data set is a major limitation in the safety assessment for BLS. 

2. This research was based on the total collision numbers only so that the severity of collision has 

not been investigated due to data limitations and inability to conflict analysis in recognition of 

injury severity classification.  

3. Unavailability of reference sites for BLS was another limitation that prevented this study to 

conduct before-and-after studies with traffic flow factors, rather than study with comparison 

group.  

4. Calibration process for microsimulation was not against observed conflicts, this limitation is due 

to inability of traffic microsimulation platforms, which do not provide conflict estimates as a 

direct output of a model. It is imperative to automate the calibration process for future research, 

if this ability becomes available for iterative method using conflict as an output.  
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5.4 Recommendation and Future Work  

a) Developing an API within the microsimulation that can calculate conflict will make it possible 

to remove the validation process described in section 3.3 and calibrate the model directly against 

conflict. 

b) A larger simulation model can benefit from some improvement in the objective function. By 

using a multi-objective optimization function that calibrates to counts, speed and conflict 

information it will provide a reliable model. 

c) This study used a subset of collision data to avoid limitations imposed in zero inflated model. In 

the future studies, if the collision frequencies are significant enough, the study can include more 

periods rather than the three peak periods and limited nighttime. 

d) Use compliance in different settings of SPF with other predictors that may have correlation  

adding Performance of the signs with higher conspicuity is higher at nigh time. This is 

something that was missing in the previous studies and perhaps in future studies would be 

important to adjust the crash modification factor based on this variance.  

e) Use of other drivers’ behavior properties (e.g., deceleration rates, approaching speed) may offer 

great assistance to road designers and/or traffic operators in making preventive decisions based 

on robust estimation model. 

f) This study was limited to only two regulatory signs. Investigation of other regulatory or warning 

signs would bring more insight to the performance of these active road signage. For instance, 

sharp curves on rural roads for can be considered as another infrastructure which benefits from 

the backlit chevron signs. At the time of writing this thesis there are no CMF is reported for this 

type of LED signages. 



148 

 

g)  New and growing data have become more and more available. Much more data is captured 

through autonomous and connected technologies. This significantly greater information give 

advantage than that of traditional data sources which is basically relying of incomplete collision 

data. The use of data mining and machine learning techniques might be an alternative to the 

traditional road safety analysis used in this thesis, given the massive and complicated datasets 

expected to be available.  

∎  
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Table 38 Recording sessions and hours 
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Table 39 Sample recorded TMCs report sheets for intersection under study 
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Table 40 External volume data provided by borough of Lachine  
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Table 41 Flow synchronization for microsimulation model (21h00-22h00 in period 4) 
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Figure 31 Ambient light during the study days 
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Date/Time (LST) 
Temp 
(°C) 

Visibility (km) Weather 

2014-12-02 0:00 -7.6 24.1 NA 

2014-12-02 1:00 -8.7 24.1 Clear 

2014-12-02 2:00 -10.4 24.1 NA 

2014-12-02 3:00 -11.2 24.1 NA 

2014-12-02 4:00 -12.6 24.1 Clear 

2014-12-02 5:00 -14.1 24.1 NA 

2014-12-02 6:00 -14.8 24.1 NA 

2014-12-02 7:00 -14.9 48.3 Clear 

2014-12-02 8:00 -14.4 48.3 NA 

2014-12-02 9:00 -13.1 24.1 NA 

2014-12-02 10:00 -12.6 24.1 Mainly Clear 

2014-12-02 11:00 -11.9 24.1 NA 

2014-12-02 12:00 -10.7 24.1 NA 

2014-12-02 13:00 -10 24.1 Mostly Cloudy 

2014-12-02 14:00 -9.3 24.1 NA 

2014-12-02 15:00 -9.8 48.3 NA 

2014-12-02 16:00 -10 48.3 Cloudy 

2014-12-02 17:00 -9.7 24.1 NA 

2014-12-02 18:00 -10 24.1 NA 

2014-12-02 19:00 -9.7 24.1 Cloudy 

2014-12-02 20:00 -9 24.1 Snow 

2014-12-02 21:00 -9.4 1.6 Snow 

2014-12-02 22:00 -9 1.6 Snow 

2014-12-02 23:00 -8.2 2 Snow 

2014-12-03 0:00 -5.4 2.4 Snow 

2014-12-03 1:00 -3.2 4.8 Snow 

2014-12-03 2:00 0.2 9.7 Snow 

2014-12-03 3:00 1.2 24.1 Snow 

2014-12-03 4:00 1.4 24.1 Snow 

2014-12-03 5:00 1.8 24.1 Rain,Snow 

2014-12-03 6:00 2 24.1 Rain 

2014-12-03 7:00 2.8 24.1 Cloudy 

2014-12-03 8:00 2.8 24.1 Drizzle 

2014-12-03 9:00 2.8 24.1 NA 

2014-12-03 10:00 3.1 4.8 Drizzle,Fog 

2014-12-03 11:00 3.1 8.1 Rain,Fog 

2014-12-03 12:00 3.2 11.3 Rain 

2014-12-03 13:00 3.3 16.1 Cloudy 

2014-12-03 14:00 2.8 8.1 Rain 

2014-12-03 15:00 1.8 8.1 Rain,Snow,Fog 

2014-12-03 16:00 0.6 3.2 Snow 

2014-12-03 17:00 0.3 3.2 Snow 

2014-12-03 18:00 0.8 4.8 Snow 

2014-12-03 19:00 1.2 11.3 Snow 

2014-12-03 20:00 1.5 16.1 Snow Showers 

2014-12-03 21:00 1 24.1 NA 

2014-12-03 22:00 0.8 24.1 Mostly Cloudy 

2014-12-03 23:00 0.2 6.4 Snow Showers 

2015-04-06 0:00 -4.1 24.1 NA 

2015-04-06 1:00 -5 24.1 Clear 

2015-04-06 2:00 -5.5 24.1 NA 

2015-04-06 3:00 -5.4 24.1 NA 

Date/Time (LST) 
Temp 
(°C) 

Visibility (km) Weather 

2015-04-08 8:00 -0.5 48.3 NA 

2015-04-08 9:00 1.9 48.3 NA 

2015-04-08 10:00 3 48.3 Cloudy 

2015-04-08 11:00 4.5 48.3 NA 

2015-04-08 12:00 4.2 48.3 NA 

2015-04-08 13:00 5.5 48.3 Cloudy 

2015-04-08 14:00 5.3 48.3 NA 

2015-04-08 15:00 5.3 48.3 NA 

2015-04-08 16:00 4.7 48.3 Cloudy 

2015-04-08 17:00 3.7 48.3 NA 

2015-04-08 18:00 3.2 19.3 Snow 

2015-04-08 19:00 0.5 2.4 Snow 

2015-04-08 20:00 0.4 4 Snow 

2015-04-08 21:00 0.5 4.8 Snow 

2015-04-08 22:00 0.5 4 Snow 

2015-04-08 23:00 0.6 8.1 Snow 

2015-07-06 0:00 19.8 24.1 NA 

2015-07-06 1:00 19.4 24.1 Mainly Clear 

2015-07-06 2:00 18.7 24.1 NA 

2015-07-06 3:00 18.4 24.1 NA 

2015-07-06 4:00 17.5 24.1 Mostly Cloudy 

2015-07-06 5:00 17.4 24.1 NA 

2015-07-06 6:00 19.1 24.1 NA 

2015-07-06 7:00 20.4 24.1 Cloudy 

2015-07-06 8:00 21.4 24.1 NA 

2015-07-06 9:00 22.4 24.1 NA 

2015-07-06 10:00 23.9 24.1 Clear 

2015-07-06 11:00 24.9 24.1 NA 

2015-07-06 12:00 26 24.1 NA 

2015-07-06 13:00 27.3 24.1 Mainly Clear 

2015-07-06 14:00 27.7 24.1 NA 

2015-07-06 15:00 27.9 24.1 NA 

2015-07-06 16:00 27.9 24.1 Clear 

2015-07-06 17:00 27.7 24.1 NA 

2015-07-06 18:00 26.8 24.1 NA 

2015-07-06 19:00 26.2 24.1 Mostly Cloudy 

2015-07-06 20:00 25.4 24.1 NA 

2015-07-06 21:00 24.9 24.1 NA 

2015-07-06 22:00 23.8 24.1 Mainly Clear 

2015-07-06 23:00 21.7 24.1 NA 

2015-07-08 0:00 22.8 11.3 Rain Showers 

2015-07-08 1:00 21.3 9.7 Rain Showers 

2015-07-08 2:00 17.9 16.1 Rain Showers 

2015-07-08 3:00 16.9 24.1 NA 

2015-07-08 4:00 16 24.1 Mainly Clear 

2015-07-08 5:00 15.2 24.1 NA 

2015-07-08 6:00 15.8 24.1 NA 

2015-07-08 7:00 16.6 24.1 Mainly Clear 

2015-07-08 8:00 17.4 24.1 NA 

2015-07-08 9:00 18.3 24.1 NA 

2015-07-08 10:00 18.1 24.1 Mostly Cloudy 

2015-07-08 11:00 19.4 24.1 NA 

Date/Time (LST) 
Temp 
(°C) 

Visibility (km) Weather 

2015-07-10 16:00 28.1 48.3 Mainly Clear 

2015-07-10 17:00 27.5 48.3 NA 

2015-07-10 18:00 26.9 48.3 NA 

2015-07-10 19:00 25.7 48.3 Clear 

2015-07-10 20:00 24 24.1 NA 

2015-07-10 21:00 22.6 24.1 NA 

2015-07-10 22:00 22 24.1 Mostly Cloudy 

2015-07-10 23:00 21.8 24.1 NA 

2015-07-14 0:00 22.5 24.1 NA 

2015-07-14 1:00 22.5 24.1 Mainly Clear 

2015-07-14 2:00 22.5 24.1 NA 

2015-07-14 3:00 22.1 24.1 NA 

2015-07-14 4:00 22 24.1 Mostly Cloudy 

2015-07-14 5:00 22 24.1 NA 

2015-07-14 6:00 22.7 24.1 NA 

2015-07-14 7:00 23.9 24.1 Mostly Cloudy 

2015-07-14 8:00 24.5 24.1 NA 

2015-07-14 9:00 25.7 24.1 NA 

2015-07-14 10:00 26.5 24.1 Mainly Clear 

2015-07-14 11:00 26.8 22.5 NA 

2015-07-14 12:00 27.1 24.1 NA 

2015-07-14 13:00 25.1 24.1 Cloudy 

2015-07-14 14:00 25.7 24.1 NA 

2015-07-14 15:00 25.2 22.5 NA 

2015-07-14 16:00 25.4 24.1 Cloudy 

2015-07-14 17:00 25 24.1 NA 

2015-07-14 18:00 22.8 24.1 NA 

2015-07-14 19:00 22.4 24.1 Cloudy 

2015-07-14 20:00 21.2 20.9 NA 

2015-07-14 21:00 21.7 24.1 NA 

2015-07-14 22:00 21.7 24.1 Cloudy 

2015-07-14 23:00 18.1 24.1 NA 

2015-07-15 0:00 16.9 24.1 NA 

2015-07-15 1:00 15.6 24.1 Cloudy 

2015-07-15 2:00 15.1 24.1 NA 

2015-07-15 3:00 14 24.1 NA 

2015-07-15 4:00 13.9 24.1 Mostly Cloudy 

2015-07-15 5:00 13.8 24.1 NA 

2015-07-15 6:00 13.7 24.1 NA 

2015-07-15 7:00 14.1 24.1 Mainly Clear 

2015-07-15 8:00 14.9 24.1 NA 

2015-07-15 9:00 15.8 24.1 NA 

2015-07-15 10:00 16.7 48.3 Mostly Cloudy 

2015-07-15 11:00 18.5 48.3 NA 

2015-07-15 12:00 18.9 48.3 NA 

2015-07-15 13:00 20 48.3 Mainly Clear 

2015-07-15 14:00 20.9 48.3 NA 

2015-07-15 15:00 21.8 48.3 NA 

2015-07-15 16:00 23 48.3 Clear 

2015-07-15 17:00 22.6 48.3 NA 

2015-07-15 18:00 21.9 48.3 NA 

2015-07-15 19:00 20.5 48.3 Clear 
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2015-04-06 4:00 -4 24.1 Mainly Clear 

2015-04-06 5:00 -4 24.1 NA 

2015-04-06 6:00 -3.5 24.1 NA 

2015-04-06 7:00 -2.8 24.1 Cloudy 

2015-04-06 8:00 -1.5 24.1 NA 

2015-04-06 9:00 0.2 24.1 NA 

2015-04-06 10:00 1 48.3 Cloudy 

2015-04-06 11:00 1.8 48.3 NA 

2015-04-06 12:00 2.6 48.3 NA 

2015-04-06 13:00 2.5 19.3 Snow 

2015-04-06 14:00 1.1 4.8 Snow 

2015-04-06 15:00 0.6 19.3 Snow 

2015-04-06 16:00 0.7 4.8 Snow 

2015-04-06 17:00 0.4 2.8 Snow 

2015-04-06 18:00 0.3 2.4 Snow,Fog 

2015-04-06 19:00 0.2 4.8 Snow,Fog 

2015-04-06 20:00 0.3 4.8 Fog 

2015-04-06 21:00 0.2 8.1 Fog 

2015-04-06 22:00 -0.2 4.8 Fog 

2015-04-06 23:00 -0.8 2.4 Fog 

2015-04-08 0:00 -3 24.1 NA 

2015-04-08 1:00 -2.5 24.1 Mainly Clear 

2015-04-08 2:00 -1.6 24.1 NA 

2015-04-08 3:00 -1.9 24.1 NA 

2015-04-08 4:00 -2.5 24.1 Mostly Cloudy 

2015-04-08 5:00 -2.6 24.1 NA 

2015-04-08 6:00 -2.6 48.3 NA 

2015-04-08 7:00 -1.6 48.3 Cloudy 
 

2015-07-08 12:00 19.8 24.1 NA 

2015-07-08 13:00 21.3 24.1 Mostly Cloudy 

2015-07-08 14:00 22.2 24.1 NA 

2015-07-08 15:00 22.8 24.1 NA 

2015-07-08 16:00 22.7 24.1 Mainly Clear 

2015-07-08 17:00 22.7 24.1 NA 

2015-07-08 18:00 22.1 24.1 NA 

2015-07-08 19:00 21.2 24.1 Mostly Cloudy 

2015-07-08 20:00 20.2 24.1 NA 

2015-07-08 21:00 19.5 24.1 NA 

2015-07-08 22:00 18.3 24.1 Mainly Clear 

2015-07-08 23:00 17.5 24.1 NA 

2015-07-10 0:00 17.7 24.1 NA 

2015-07-10 1:00 17.1 24.1 Mainly Clear 

2015-07-10 2:00 17 24.1 NA 

2015-07-10 3:00 16.8 24.1 NA 

2015-07-10 4:00 16.6 24.1 Mainly Clear 

2015-07-10 5:00 16.4 24.1 NA 

2015-07-10 6:00 16.8 24.1 NA 

2015-07-10 7:00 18.2 24.1 Mainly Clear 

2015-07-10 8:00 20.3 24.1 NA 

2015-07-10 9:00 22.6 24.1 NA 

2015-07-10 10:00 24.3 24.1 Mainly Clear 

2015-07-10 11:00 25.9 24.1 NA 

2015-07-10 12:00 26 24.1 NA 

2015-07-10 13:00 27.8 24.1 Mainly Clear 

2015-07-10 14:00 28 24.1 NA 

2015-07-10 15:00 28.1 24.1 NA 
 

2015-07-15 20:00 18.6 24.1 NA 

2015-07-15 21:00 17.2 24.1 NA 

2015-07-15 22:00 16.1 24.1 Mainly Clear 

2015-07-15 23:00 15.3 24.1 NA 

2015-07-16 0:00 15 24.1 NA 

2015-07-16 1:00 13.7 24.1 Clear 

2015-07-16 2:00 13 24.1 NA 

2015-07-16 3:00 12.2 24.1 NA 

2015-07-16 4:00 11.8 24.1 Mainly Clear 

2015-07-16 5:00 12 48.3 NA 

2015-07-16 6:00 13.6 48.3 NA 

2015-07-16 7:00 15.4 48.3 Mainly Clear 

2015-07-16 8:00 17.1 48.3 NA 

2015-07-16 9:00 18.5 48.3 NA 

2015-07-16 10:00 19.9 48.3 Mainly Clear 

2015-07-16 11:00 20.3 48.3 NA 

2015-07-16 12:00 20.9 48.3 NA 

2015-07-16 13:00 21.9 48.3 Mostly Cloudy 

2015-07-16 14:00 22.6 48.3 NA 

2015-07-16 15:00 22.5 48.3 NA 

2015-07-16 16:00 22.7 48.3 Clear 

2015-07-16 17:00 23.1 48.3 NA 

2015-07-16 18:00 22.3 24.1 NA 

2015-07-16 19:00 21.4 48.3 Clear 

2015-07-16 20:00 19.9 48.3 NA 

2015-07-16 21:00 19.1 24.1 NA 

2015-07-16 22:00 18.8 24.1 Mainly Clear 

2015-07-16 23:00 17.6 24.1 NA 
 

Table 42 Weather during study period 
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Inter. Col comp_FS.BT comp_FS.RT comp_FS.NFS conf f_ma f_mi f_ped 

1 18th 7 16.91 1.69 1.56 57 1504 274 102 

2 18th 4 16.91 1.69 1.56 32 1020 270 88 

3 18th 6 16.91 1.69 1.56 48 1973 382 110 

4 18th 5 18.79 2.1 1.91 25 2086 475 134 

5 (BLS)18th   24.35 3.11 4.19 44 1609 310 98 

6 (BLS)18th   24.35 3.11 4.19 28 1140 245 75 

7 (BLS)18th   24.35 3.11 4.19 33 2091 388 101 

8 (BLS)18th   34.78 5.12 4.86 12 2044 441 142 

9 19th 0 11.55 1.75 1.52 6 1522 0 20 

10 19th 1 11.55 1.75 1.52 14 1056 0 33 

11 19th 0 11.55 1.75 1.52 13 1934 0 40 

12 19th 0 10.65 2.13 1.77 11 2152 0 75 

13 21st 2 11.55 1.75 1.52 8 1407 107 43 

14 21st 2 11.55 1.75 1.52 22 1020 63 37 

15 21st 1 11.55 1.75 1.52 32 1818 104 65 

16 21st 3 10.65 2.13 1.77 11 2092 102 163 
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17 25th 5 11.55 1.75 1.52 55 1586 504 40 

18 25th 4 11.55 1.75 1.52 59 1401 369 81 

19 25th 4 11.55 1.75 1.52 37 2014 495 66 

20 25th 4 10.65 2.13 1.77 30 2450 389 180 

21 (BLS)25th   23.88 2.91 2.6 47 2081 597 23 

22 (BLS)25th   23.88 2.91 2.6 36 1378 412 51 

23 (BLS)25th   23.88 2.91 2.6 28 2237 589 48 

24 (BLS)25th   33.1 4.89 4.26 14 2186 425 146 

25 28th 2 16.22 2.5 2.17 26 2166 134 34 

26 28th 5 16.22 2.5 2.17 41 1533 374 29 

27 28th 6 16.22 2.5 2.17 33 2795 495 52 

28 28th 4 28 4.2 3.65 10 2778 620 54 

29 33rd 1 24.33 2.47 2.25 18 1407 81 116 

30 33rd 0 24.33 2.47 2.25 8 1101 83 129 

31 33rd 1 24.33 2.47 2.25 9 1749 69 219 

32 33rd 0 30.5 2.98 2.71 11 2170 94 190 

33 34th 0 11.55 1.75 1.52 17 970 465 48 



186 

 

34 34th 0 11.55 1.75 1.52 27 800 346 15 

35 34th 1 11.55 1.75 1.52 12 1532 390 55 

36 34th 3 10.65 2.13 1.77 24 1972 547 98 

 

Min.     0 10.65 1.69 4.86 6 800 0 15 

 

1st Qu. 0.75 11.55 1.75 2.6 12 1405.5 100 42.25 

 

Median  2 16.22 2.13 1.77 25.5 1783.5 357.5 70.5 

 

Mean  2.535 17.873 2.412 2.25 26.055 1743.722 295.638 83.333 

 

3rd Qu. 4 24.33 2.91 1.52 33.75 2091.25 447 111.5 

 

Max.  7 34.78 5.12 1.52 59 2795 620 219 

Table 43 Collision, Flow, Conflict and log of flow and Conflict 
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8 Appendix II (results) 

8.1 Qualitative Analysis (SPSS) 

 

• Scenario 1 

 

Case Processing Summary 

 N 

Marginal 

Percentage 

Driver 

Complacence 

Blow-

Through 

143 4.1% 

Full Stop 2288 66.0% 

Roll-Through 1037 29.9% 

Valid 3468 100.0% 

Missing 0  

Total 3468  

Subpopulation 38a  

a. The dependent variable has only one value observed in 

11 (28.9%) subpopulations. 
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Model Fitting Information 

Model 

Model Fitting Criteria Likelihood Ratio Tests 

AIC BIC 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept 

Only 

1267.168 1279.471 1263.168    

Final 945.000 1043.422 913.000 350.168 14 <.001 

 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 921.510 60 <.001 

Deviance 765.622 60 <.001 

 

Pseudo R-Square 

Cox and 

Snell 

.096 

Nagelkerke .122 

McFadden .066 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 
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AIC of 

Reduced 

Model 

BIC of 

Reduced 

Model 

-2 Log 

Likelihood of 

Reduced 

Model Chi-Square df Sig. 

Intercept 1455.310 1541.428 1427.310 514.309 2 <.001 

Pavement 

condition 

947.176 1033.295 919.176 6.176 2 .056 

 Natural 

ambient light 

1065.966 1152.084 1037.966 124.966 2 <.001 

 Conflict 

potential 

1013.991 1100.110 985.991 72.991 2 <.001 

 Maneuver 952.475 1038.594 924.475 11.475 2 .003 

LED STOP 996.207 1082.326 968.207 55.207 2 <.001 

BLS STOP 1074.755 1160.874 1046.755 133.755 2 <.001 

Beacon STOP 968.501 1054.620 940.501 27.501 2 <.001 

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a 

reduced model. The reduced model is formed by omitting an effect from the final model. The 

null hypothesis is that all parameters of that effect are 0. 

 

Parameter Estimates 

Driver 

Complacencea B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence Interval for 

Exp(B) 

Lower Bound Upper Bound 
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B
lo

w
-T

h
ro

u
g

h
 

Intercept -2.274 .165 190.349 1 <.001    

Natural 

ambient 

light 

-.673 .257 6.867 1 .009 .510 .309 .844 

Conflict 

potential 

.641 .192 11.198 1 <.001 1.898 1.304 2.763 

Maneuver -.462 .215 4.605 1 .032 .630 .413 .961 

LED STOP -.672 .231 8.455 1 .004 .511 .324 .803 

BLS STOP -1.713 .346 24.513 1 <.001 .180 .091 .355 

Beacon 

STOP 

-.419 .245 2.923 1 .087 .657 .407 1.063 

R
o

ll-T
h
ro

u
g

h
 

Intercept -.423 .076 30.665 1 <.001    

Natural 

ambient 

light 

-.560 .105 28.207 1 <.001 .571 .465 .702 

Conflict 

potential 

.312 .089 12.289 1 <.001 1.367 1.148 1.628 

Maneuver -.065 .088 .551 1 .458 .937 .788 1.113 

LED STOP -.516 .101 25.921 1 <.001 .597 .489 .728 

BLS STOP -.827 .116 51.221 1 <.001 .437 .349 .548 

Beacon 

STOP 

-.431 .113 14.446 1 <.001 .650 .521 .812 

a. The reference category is: Full Stop. 
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Classification 

Observed 

Predicted 

Blow-

Through Full Stop 

Roll-

Through 

Percent 

Correct 

Blow-Through 41 85 17 28.7% 

Full Stop 0 2204 84 96.3% 

Roll-Through 0 645 392 37.8% 

Overall 

Percentage 

1.2% 84.6% 14.2% 73.7% 

Table 44 Scenario one Model Classification 
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•  Scenario 2 

 

Likelihood Ratio Tests with all independent variables 

Effect 

Model Fitting Criteria Likelihood Ratio Tests 

AIC of 

Reduced 

Model 

BIC of 

Reduced 

Model 

-2 Log 

Likelihood of 

Reduced 

Model Chi-Square df Sig. 

Intercept 1941.886 2041.506 1913.886 690.918 2 <.001 

Pavement 

condition 

1272.009 1371.629 1251.322 3.378 2 .185 

 Natural 

ambient light 

1271.563 1371.183 1243.563 20.596 2 <.001 

 Conflict 

potential 

1260.592 1360.212 1232.592 9.624 2 .008 

 Maneuver 1408.744 1508.364 1380.744 157.776 2 <.001 

LED STOP 1348.091 1447.711 1320.091 97.123 2 <.001 

BLS STOP 1351.894 1451.514 1323.894 100.926 2 <.001 

Beacon STOP 1294.430 1394.050 1266.430 43.462 2 <.001 

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a 

reduced model. The reduced model is formed by omitting an effect from the final model. The 

null hypothesis is that all parameters of that effect are 0. 

 

After removing independent variables (Pavement condition) 
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Case Processing Summary 

 N 

Marginal 

Percentage 

Driver 

Complacence 

Blow-

Through 

405 4.5% 

Full Stop 5842 64.2% 

Roll-Through 2850 31.3% 

Valid 9097 100.0% 

Missing 0  

Total 9097  

Subpopulation 32a  

a. The dependent variable has only one value observed in 2 

(6.3%) subpopulations. 

 

Model Fitting Information 

Model 

Model Fitting Criteria Likelihood Ratio Tests 

AIC BIC 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept 

Only 

1027.195 1041.426 1023.195    
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Final 719.458 819.078 691.458 331.737 12 <.001 

 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 415.784 50 <.001 

Deviance 448.824 50 <.001 

 

Pseudo R-Square 

Cox and 

Snell 

.036 

Nagelkerke .045 

McFadden .023 

 

Likelihood Ratio Tests 

Effect 

Model Fitting Criteria Likelihood Ratio Tests 

AIC of 

Reduced 

Model 

BIC of 

Reduced 

Model 

-2 Log 

Likelihood of 

Reduced 

Model Chi-Square df Sig. 

Intercept 1860.603 1945.992 1836.603 1145.145 2 <.001 

 Natural 

ambient light 

735.787 821.175 711.787 20.329 2 <.001 
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 Conflict 

potential 

724.135 809.524 700.135 8.677 2 .013 

 Maneuver 882.503 967.891 858.503 167.045 2 <.001 

LED STOP 826.403 911.792 802.403 110.945 2 <.001 

BLS STOP 807.933 893.321 783.933 92.475 2 <.001 

Beacon STOP 759.535 844.923 735.535 44.076 2 <.001 

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a 

reduced model. The reduced model is formed by omitting an effect from the final model. The 

null hypothesis is that all parameters of that effect are 0. 

 

Parameter Estimates 

Driver Complacencea B 

Std. 

Error Wald df Sig. 

Exp(B

) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

Blow-

Through 

Intercept -2.347 .088 704.2

83 

1 <.001    

 Natur

al ambient 

light 

-.304 .114 7.171 1 .007 .738 .591 .922 

 Confli

ct potential 

-.302 .123 5.989 1 .014 .739 .581 .942 

 Mane

uver 

1.737 .131 175.6

90 

1 <.001 5.681 4.394 7.345 
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LED STOP -.974 .146 44.82

7 

1 <.001 .377 .284 .502 

BLS STOP -.716 .176 16.61

4 

1 <.001 .489 .347 .690 

Beacon 

STOP 

-.666 .154 18.63

4 

1 <.001 .514 .380 .695 

Roll-

Through 

Intercept -.414 .041 101.2

65 

1 <.001    

 Natur

al ambient 

light 

-.196 .049 15.74

9 

1 <.001 .822 .746 .906 

 Confli

ct potential 

.064 .055 1.370 1 .242 1.067 .957 1.188 

 Mane

uver 

.401 .074 28.99

6 

1 <.001 1.493 1.291 1.728 

LED STOP -.538 .061 76.95

5 

1 <.001 .584 .518 .658 

BLS STOP -.684 .076 81.54

0 

1 <.001 .505 .435 .586 

Beacon 

STOP 

-.371 .067 30.53

1 

1 <.001 .690 .605 .787 

a. The reference category is: Full Stop. 

 

Classification 



197 

 

Observed 

Predicted 

Blow-

Through Full Stop 

Roll-

Through 

Percent 

Correct 

Blow-Through 0 381 24 0.0% 

Full Stop 0 5739 103 98.2% 

Roll-Through 0 2793 57 2.0% 

Overall 

Percentage 

0.0% 98.0% 2.0% 63.7% 
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• Scenario 3  

Case Processing Summary 

 N 

Marginal 

Percentage 

Compliance Full-stop 3230 71.7% 

Roll-through 1135 25.2% 

Blow-

through 

139 3.1% 

Valid 4504 100.0% 

Missing 0  

Total 4504  

Subpopulation 4  

 

Model Fitting Information 

Model 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept 

Only 

124.418    

Final 53.153 71.265 4 <.001 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 4.797 2 .091 

Deviance 4.808 2 .090 

 

Pseudo R-Square 

Cox and 

Snell 

.016 

Nagelkerke .021 

McFadden .011 

 

Likelihood Ratio Tests 

Effect 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood of 

Reduced 

Model Chi-Square df Sig. 

Intercept 778.146 724.994 2 <.001 

Treatment 

Type 

106.537 53.384 2 <.001 

Opposit Traffic 71.058 17.905 2 <.001 
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The chi-square statistic is the difference in -2 log-

likelihoods between the final model and a reduced model. 

The reduced model is formed by omitting an effect from 

the final model. The null hypothesis is that all parameters 

of that effect are 0. 

 

Parameter Estimates 

Compliancea B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

Roll-

through 

Intercept -.849 .061 193.49

8 

1 <.001    

Treatment 

Type 

-.390 .072 29.661 1 <.001 .677 .589 .779 

Opposit 

Traffic 

.187 .076 6.151 1 .013 1.206 1.040 1.398 

Blow-

through 

Intercept -2.445 .126 376.24

7 

1 <.001    

Treatment 

Type 

-.958 .175 30.088 1 <.001 .384 .273 .540 

Opposit 

Traffic 

-.696 .236 8.672 1 .003 .499 .314 .792 
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a. The reference category is: Full-stop. 

 

Classification 

Observed 

Predicted 

Full-stop 

Roll-

through 

Blow-

through 

Percent 

Correct 

Full-stop 3230 0 0 100.0% 

Roll-through 1135 0 0 0.0% 

Blow-through 139 0 0 0.0% 

Overall 

Percentage 

100.0% 0.0% 0.0% 71.7% 
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8.2 Quantitative Analysis (rStudio) 

Table 45 Collision, Flow, Conflict and log of  flow and Conflict 
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Table 46 Collision models performances - likelihood ratio tests - Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Base and Alternative vs Null Base vs Alternative Alternatives with each other 

> #Base compared to Null 

Model 1: Col ~ 1 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -62.536                          

2   4 -46.893  3 31.286  7.399e-07 *** 

 

> #Alternative 1 compared to Base 

Model 1: Col ~ ln_f_ma + ln_f_mi + 

Dum 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

comp_FS.BT + comp_FS.RT + Dum 

  #Df  LogLik Df Chisq Pr(>Chisq)   

1   4 -46.893                       

2   6 -42.732  2 8.321     0.0156 * 

 

> #Alternative 2 compared to 

Alternative 1 

Model 1: Col ~ ln_f_ma + ln_f_mi + 

comp_FS.BT + comp_FS.RT + Dum 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

ln_conf + comp_FS.NFS + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   6 -42.732                          

2   6 -40.000  0 5.4646  < 2.2e-16 *** 

 

> #Alternative 1 compared to Null 

Model 1: Col ~ 1 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

comp_FS.BT + comp_FS.RT + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -62.536                          

> #Alternative 3 compared to Base 

Model 1: Col ~ ln_f_ma + ln_f_mi + 

Dum 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

ln_conf + comp_FS.NFS + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)    

> #Alternative 1 compared to 

Alternative 3 

Model 1: Col ~ ln_conf + 

comp_FS.NFS + comp_FS.BT 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

comp_FS.BT + comp_FS.RT + Dum 
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2   6 -42.732  5 39.607  1.792e-07 *** 

 

1   4 -46.893                         

2   6 -40.000  2 13.786   0.001015 ** 

 

  #Df  LogLik Df  Chisq Pr(>Chisq)   

1   4 -45.168                        

2   6 -42.732  2 4.8716    0.08753 . 

> #Alternative 2 compared to Null 

Model 1: Col ~ 1 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

ln_conf + comp_FS.NFS + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -62.536                          

2   6 -40.000  5 45.072  1.403e-08 *** 

 

> #Alternative 3 compared to Base 

Model 1: Col ~ ln_f_ma + ln_f_mi + 

Dum 

Model 2: Col ~ ln_conf + 

comp_FS.NFS + comp_FS.BT 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   4 -46.893                          

2   4 -45.168  0 3.4494  < 2.2e-16 *** 

 

> #Alternative 2 compared to 

Alternative 3 

Model 1: Col ~ ln_conf + 

comp_FS.NFS + comp_FS.BT 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

ln_conf + comp_FS.NFS + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)    

1   4 -45.168                         

2   6 -40.000  2 10.336   0.005695 ** 

> #Alternative 3 compared to Null 

Model 1: Col ~ 1 

Model 2: Col ~ ln_conf + 

comp_FS.NFS + comp_FS.BT 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -62.536                          

2   4 -45.168  3 34.736  1.385e-07 *** 

 

> #Base compared to Alternative 4 

Model 1: Col ~ ln_conf 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq) 

1   2 -47.932                      

2   4 -46.893  2 2.0783     0.3537 

> #Alternative 4 compared to 

Alternative 2 

Model 1: Col ~ ln_conf 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

ln_conf + comp_FS.NFS + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)    

1   2 -47.932                         

2   6 -40.000  4 15.864   0.003207 ** 

 

> #Alternative 4 compared to Null 

Model 1: Col ~ 1 

Model 2: Col ~ ln_conf 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -62.536                          

2   2 -47.932  1 29.208  6.502e-08 *** 

 

 > #Alternative 4 compared to 

Alternative 1 

Model 1: Col ~ ln_conf 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

comp_FS.BT + comp_FS.RT + Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq)   

1   2 -47.932                        

2   6 -42.732  4 10.399    0.03421 * 

 

  > #Alternative 4 compared to 

Alternative 2 

Model 1: Col ~ ln_conf 

Model 2: Col ~ ln_f_ma + ln_f_mi + 

Dum 

  #Df  LogLik Df  Chisq Pr(>Chisq) 

1   2 -47.932                      

2   4 -46.893  2 2.0783     0.3537 

 

  > #Alternative 4 compared to 

Alternative 3 

Model 1: Col ~ ln_conf 

Model 2: Col ~ ln_conf + 

comp_FS.NFS + comp_FS.BT 

  #Df  LogLik Df  Chisq Pr(>Chisq)   

1   2 -47.932                        

2   4 -45.168  2 5.5277    0.06305 . 

 

Table 47 Conflict models performances- likelihood ratio tests - Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> #Compare Null NB and 

Conf_Compliance_NB 

Model 1: conf ~ 1 

> #Compare Null NB and 

Conf_Compliance_NB 

Model 1: conf ~ 1 

> #Compare Null NB and 

Conf_Compliance_NB 

Model 1: conf ~ 1 
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Model 2: conf ~ 1 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   1 -242.79                          

2   2 -145.11  1 195.36  < 2.2e-16 *** 

 

Model 2: conf ~ comp_FS.RT + 

comp_FS.BT + LED 

  #Df  LogLik Df  Chisq Pr(>Chisq)    

1   2 -145.11                         

2   5 -138.22  3 13.787    0.00321 ** 

 

Model 2: conf ~ comp_FS.RT + 

comp_FS.BT + LED 

  #Df  LogLik Df  Chisq Pr(>Chisq)    

1   2 -145.11                         

2   5 -138.22  3 13.787    0.00321 ** 

 

> #Compare Null NB and NB 

Conf_flow_compliance_NB 

Model 1: conf ~ 1 

Model 2: conf ~ ln_Flow + 

comp_FS.BT + comp_FS.RT + dum + 

LED 

  #Df  LogLik Df Chisq Pr(>Chisq)     

1   2 -145.11                         

2   7 -130.48  5 29.27  2.052e-05 *** 

 

> #Compare Conf_Compliance_NB 

and NB Conf_flow_compliance_NB 

Model 1: conf ~ comp_FS.RT + 

comp_FS.BT + LED 

Model 2: conf ~ ln_Flow + 

comp_FS.BT + comp_FS.RT + dum + 

LED 

  #Df  LogLik Df  Chisq Pr(>Chisq)     

1   5 -138.22                          

2   7 -130.48  2 15.483  0.0004343 

*** 
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8.3 Optimization (MATLAB) 
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9 Appendix III (Codes) 

9.1 Statistical Analysis in “R” language  

#Thesis "ASSESSING THE IMPACT OF ACTIVE SIGNAGE SYSTEMS ON DRIVING BEHAVIOR AND TRAFFIC SAFETY" 
#Matin Foomani  Foomani[at] gmail . com 
 
# Environment preparation------------------------------------------------------------- 
 
rm(list=ls())#clearing environment and remove variables 
current_directory = dirname(rstudioapi::getSourceEditorContext()$path) #Getting the directory (same path as code) 
setwd(current_directory)#Setting the current directory of the files as the active directory of R-studio 
 
#Loading Data sets 
 
db1 <- read.csv("Col_data.csv", header = TRUE)#DB1 is the set for Collision (no collision records fro BLS) 
db2 <- read.csv("Con_data.csv", header = TRUE)#DB2 is the set for conflict (with more records for BLS) 
 
#Import Packages used throughout the program  
library("MASS")    
library("stats") 
library("sjPlot") 
library("ggplot2") 
library("GGally") 
library("lmtest") 
library("FactoClass") 
library("scatterplot3d") 
library("corrplot") 
 
# Build subset of data amending to data-------------------------------------------------- 
 
#Making a subset of DB 
db1_sub = subset(db1, select = -c(record,Site,Time,Dum,legs,bi_mi))   
db2_sub = subset(db2, select = -c(record,Site.1,Site,Time,Dum, LED,legs,bi_mi))   
#sapply(db1_sub,mean) # the average of each column 
#sapply(db1_sub,sd)   # the standard deviation of each column 
sapply(db1_sub,summary) #all summary 
sapply(db2_sub,summary) #all summary 
 
write.csv(db1_sub, file = "results/general/db_sum_collision.csv") # Export Results 
write.csv(db2_sub, file = "results/general/db_sum_conflict.csv") # Export Results 
 
#*** calculating log of flow and Conflict (10^-10 for values = 0) 
#*For Collision DB1 
db1$ln_f_ma = log(db1$f_ma+exp(10^-10))   # log of Major Flow  
db1$ln_f_mi = log(db1$f_mi+exp(10^-10))   # log of minor Flow  
db1$ln_f_ped  = log(db1$f_ped+exp(10^-10))# log of Ped Flow  
db1$ln_conf  = log(db1$conf+exp(10^-10))# log of Conflict  
db1$ln_Flow = log(db1$f_ma + db1$f_mi + db1$f_ped)# log of Traffic Flow (combined) 
db1$sum_f= db1$f_mi + db1$f_ma + db1$f_ped # Sum of flows 
#*For Conflict DB2 
db2$ln_f_ma = log(db2$f_ma+exp(10^-10))   # log of Major Flow  
db2$ln_f_mi = log(db2$f_mi+exp(10^-10))   # log of minor Flow  
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db2$ln_f_ped  = log(db2$f_ped+exp(10^-10))# log of Ped Flow  
db2$ln_conf  = log(db2$conf+exp(10^-10))# log of Conflict  
db2$ln_Flow = log(db2$f_ma + db2$f_mi + db2$f_ped)# log of Traffic Flow (combined) 
db2$sum_f= db2$f_mi + db2$f_ma + db2$f_ped # Sum of flows 
 
#View(columns name)  
colnames_db1 <- colnames(db1) #Column names (kept the same lables) 
print(colnames_db1) #Print lable 
 
colnames_db2 <- colnames(db2) #Column names 
print(colnames_db2) #Print lable 
 
# Views and Visualization ------------------------------------------------- 
 
#Collision Counts VS conflict 
options(device = "window") 
 
png(file="results/general/Coll_Conf.png", width=600, height=500) 
 
plot(db1$conf, db1$Col, main = "Number of Collisions vs Conflicts",  
     ylab="", xlab = "", pch = 9, cex = 2.5 , col = "darkgreen", cex.main=1, cex.axis=1) 
 
title(xlab = "Number of Conflicts", ylab = "Number of Collisions", line=2.5, cex.lab=1) 
 
 
dev.off() 
 
#Collision Counts VS total volume 
png(file="results/general/Coll_flow.png", width=600, height=500) 
 
plot(db1$f_mi + db1$f_ma + db1$f_ped, db1$Col, main = "Number of Collisions vs Traffic Volume",  
     ylab="", xlab = "", pch = 9, cex = 2.5, col = "darkgreen", cex.main=2, cex.axis=2) 
 
title(xlab = "Traffic Volume", ylab = "Number of Collisions", line=2.5, cex.lab=1) 
 
dev.off() 
 
#Conflict Counts VS total volume 
png(file="results/general/Conf_flow1.png", width=600, height=500) 
 
plot( db2$sum_f, db2$conf , main = "Number of Critical Conflict vs Traffic Volume",  
     ylab="", xlab = "", pch = 9, cex = 2.5 , col = "darkgreen", cex.main=1, cex.axis=1) 
 
title(xlab = "Traffic Volume", ylab = "Number of Conflicts", line=2.5, cex.lab=1) 
 
dev.off() 
 
 
#Histogram for Collision 
png(file="results/general/Histogram_conf.png", width=600, height=500) 
 
#GGplot library 
library(ggplot2) 
#Plot of the histogram 
 
 
ggplot(db2, aes(conf)) + 
  geom_histogram(breaks=seq(0, 60, by=9), color = "black", fill = "gold" ,linetype="dashed") + 
  labs(title="Histogram of conflict Counts at Intersections", 
       x="Conflict Counts per Intersection", y= "Number of observations") + 
  theme(text = element_text(size=20)) 
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ggplot(db2, aes(conf)) +  
  geom_histogram(breaks=seq(0, 60, by=9),  
                 col="red",linetype="dashed",  
                 aes(fill=..count..)) + 
  scale_fill_gradient("Count", low="green", high="red") 
 
 
 
ggplot(db2, aes(conf)) +  
  geom_histogram(aes(y =..density..),  
                 breaks=seq(0, 60, by = 9),  
                 col="black",  
                 fill="gold",  
                 alpha=1) +  
   
  geom_density(col=1) +  
  labs(title="Histogram of conflict Counts at Intersections", 
       x="Conflict Counts per Intersection", y= "Number of observations") + 
  theme(text = element_text(size=20)) 
 
 
 
dev.off() 
 
 
#3D plots Choose one scatterplot3d or plotly Show Dr. Alecsandru first 
png(file="results/general/matrix_3d.png", width=500, height=500) 
db_sub_Var_3d = subset(db1, select = c(  Col, sum_f, conf)) 
var_matrix <- as.matrix(db_sub_Var_3d) 
x<-var_matrix[,1] 
y<-var_matrix[,2] 
z<-var_matrix[,3] 
df <- data.frame(x, y, z) 
LM <- lm(y ~ x + z, df) 
s3d <-scatterplot3d (x, z, y,pch=19 ,  type = "p",scale.y=.4 , grid=TRUE , box=TRUE, angle=46, color = "darkgrey", 
                     main = "Regression plane", xlab="Collisions (four period in 7 years )",ylab="Hourly critical conflicts",zlab="Average hourly 
traffic Volume Major and Minor") 
 
 
#addgrids3d(x, y, z, grid = c("xy", "xz", "yz"), col.grid = "grey",scale.y=0.4 , lty.grid=par("lty"), angle=46) #Used grid on xy 
 
# compute locations of segments 
orig     <- s3d$xyz.convert(x, z, y) 
plane    <- s3d$xyz.convert(x, z, fitted(LM)) 
i.negpos <- 1 + (resid(LM) > 0) # which residuals are above the plane? 
 
# draw residual distances to regression plane 
segments(orig$x, orig$y, plane$x, plane$y, col = "red", lty = c(2, 1)[i.negpos],  
         lwd = 1.5) 
# draw the regression plane 
s3d$plane3d(LM, draw_polygon = TRUE, draw_lines = TRUE,  
            polygon_args = list(col = rgb(0.8, 0.8, 0.8, 0.8))) 
 
# redraw positive residuals and segments above the plane 
wh <- resid(LM) > 0 
segments(orig$x[wh], orig$y[wh], plane$x[wh], plane$y[wh], col = "red", lty = 1, lwd = 1.5) 
s3d$points3d(x[wh], z[wh], y[wh], pch = 19) 
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dev.off() 
 
#Correlation Matrix 
 
#Create a new subset with the dependent and ind-variable  
print(colnames_db1) 
db2_sub_Var = subset(db2, select = c(Col, conf, sum_f  ,f_ma , f_mi, f_ped,bi_mi, comp_FS.BT,comp_FS.RT,comp_FS.NFS))   
cor_matrix <- cor(db2_sub_Var)#~ computing pairwise correlations of variables 
write.csv(cor_matrix, file = "results/general/cor_matrix.csv") #saving the results in a CSV file 
 
#computing the absolute value of correlations(the direction doesn't matter) 
abs_cor_matrix <- abs(cor_matrix) 
 
 
#saving in PNG file: 
png(file="results/general/correlation2.png", width=800, height=600) 
 
 
#Using CORRPLOT to change labels (only rows) 
 
rownames(cor_matrix) <- c("Accident", "Conflict", "All volume", "Volume Major", "Volume Minor", "Pedestrian and Cyclist ", "Minor 
bidirectional",  
                          "Compliance FS to BT","Compliance FS to RT","Compliance FS to non-FS") 
corrplot(cor_matrix, method = 'ellipse', type = 'upper', tl.col="Black",) 
dev.off() 
 
 
#PMF for NB and Poisson models remained under each section since models needed to be created first before starting the plot. 
 
# Collision Analysis ------------------------------------------------------ 
 
## Null Models ============================================================ 
### Step 1, NULL model with Poisson (only intercept) 
 
glm_po_0 <- stats::glm(Col ~ 1, data = db1, family = poisson(link = "log"))  
# link function is log, because we are using ln(lmb) in SPF (Check section 3.4.3 in thesis) 
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_0, "Poisson-Null") 
 
#Data for probability mass function (Poisson Only): 
beta_0 = glm_po_0[["coefficients"]][["(Intercept)"]] #Beta for intercept in NULL 
Lmb_po_0 = exp(beta_0)#SPF of NULL Model: also mean value of the Poisson distribution 
variance_po_0 = Lmb_po_0 #Variance of Poisson (which is equal to mean value) 
crash_count <- 0:15 #Range of crash counts to plot the Poisson distribution: 
Pr_Y_PO_0 <- dpois(crash_count, lambda=Lmb_po_0) #Probability of collisoin using Poisson distribution 
 
#create file and plot 
png(file="results/poisson/Poisson_PMF_NULL_Model.png", width=600, height=500) 
plot(crash_count, Pr_Y_PO_0, type='l', lwd=6, lty = 3, col = "brown",  
     cex.main=1, cex.lab=0.8, ylab='Probability',  xlab ='Collision Count',  
     main=paste("Poisson  PMF of NULL model (mu =",  round(Lmb_po_0, digits = 3), ")")) 
 
dev.off() 
 
 
 
### Step 2, NULL model with NB (only intercept) 
 
#MASS library  
glm_nb_0 <-  MASS::glm.nb(Col ~ 1, data = db1, link = "log") 
source("Customized_Writing_Functions.R") 
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generating_NegativeBinomial_results(glm_nb_0, "NB-NULL")   
 
 
#Data for probability mass function (NB) 
beta_nb_0 = glm_nb_0[["coefficients"]][["(Intercept)"]]#beta_0 for intercept 
phi_nb_0 = glm_nb_0$theta#PHI 
alpha_nb_0 = 1/phi_nb_0#alpha 
mu_nb_0 = exp(beta_nb_0)#SPF for NULL Model NB 
variance_nb_0 = mu_nb_0 + (1/phi_nb_0)*mu_nb_0^2 # Variance of NB 
crash_count <- 0:15 
Pr_Y_NB_0 <- dnbinom(crash_count, mu=mu_nb_0, size=phi_nb_0, log = FALSE)#Probability of Collision using NB 
 
#create file and plot 
png(file="results/negative_binomial/PO_NB_PMF_NULL_Model.png", width=800, height=500) 
plot(crash_count, Pr_Y_NB_0, type='l', lwd=2, lty = 2, col = "blue4", cex.main=.8, cex.lab=1,  
     ylab='Probability',xlab ='Collision Count',  
     main=paste("                                                                NB mu (Blue) =",  round(mu_nb_0, digits = 3),  
                ", phi =", round(phi_nb_0, digits = 3)," ")) 
 
dev.off() 
 
 
#create combined plot 
 
png(file="results/general/PO_NB_PMF_NULL_Model.png", width=800, height=500) 
plot(crash_count, Pr_Y_NB_0, type='l', lwd=2, lty = 2, col = "blue4", cex.main=.8, cex.lab=1,  
     ylab='Probability',xlab ='Collision Count',  
     main=paste("                                                                NB mu (Blue) =",  round(mu_nb_0, digits = 3),  
                ", phi =", round(phi_nb_0, digits = 3)," ")) 
par(new=TRUE) 
plot(crash_count, Pr_Y_PO_0, type='l', lwd=2, lty = 2, col = "red2",  
     cex.main=.8, cex.lab=0.1,  axes=FALSE, 
     main=paste(" PO mu (Red) =",  round(Lmb_po_0, digits = 3),"                                                                       ")) 
 
dev.off() 
 
 
#Compare Null Poisson and NB (STEP 1&2) 
lmtest::lrtest(glm_po_0, glm_nb_0) 
 
## Alternative Models ============================================================ 
 
### Step 1 Base Model (flow only) Poisson 
glm_po_1 <- stats::glm(Col ~ ln_f_ma + ln_f_mi  +Dum , data = db1, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_1, "Poisson-BASE") 
 
### Step 2 Base (flow only) NB 
glm_nb_1 <- MASS::glm.nb(Col ~ ln_f_ma + ln_f_mi  +Dum , data = db1,  link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_1, "NB-BASE") 
 
 
### Step 3 Alternative 1 Poisson 
glm_po_2 <- stats::glm(Col ~ ln_f_ma + ln_f_mi  +comp_FS.BT +comp_FS.RT +Dum, data = db1, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_2, "Poisson-Alternative 1") 
 
### Step 4 Alternative 1 NB 
glm_nb_2 <- MASS::glm.nb(Col ~ ln_f_ma + ln_f_mi  +comp_FS.BT +comp_FS.RT +Dum, data = db1,  link = "log") 
source("Customized_Writing_Functions.R") 
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generating_NegativeBinomial_results(glm_nb_2, "NB-Alternative 1") 
 
 
### Step 5 Alternative 2 Poisson 
glm_po_3 <- stats::glm(Col ~ ln_f_ma + ln_f_mi +ln_conf +comp_FS.NFS +Dum , data = db1, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_3, "Poisson-Alternative 2") 
 
### Step 6 Alternative 2 NB 
glm_nb_3 <- MASS::glm.nb(Col ~ ln_f_ma + ln_f_mi +ln_conf +comp_FS.NFS +Dum , data = db1,  link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_3, "NB-Alternative 2") 
 
 
### Step 7 Alternative 3 Poisson 
glm_po_4 <- stats::glm(Col ~ ln_conf +comp_FS.NFS +comp_FS.BT, data = db1, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_4, "Poisson-Alternative 3") 
 
### Step 8 Alternative 3 NB 
glm_nb_4 <- MASS::glm.nb(Col ~ ln_conf +comp_FS.NFS +comp_FS.BT,  data = db1,  link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_4, "NB-Alternative 3") 
 
 
### Step 9 Alternative 4 Poisson 
glm_po_5 <- stats::glm(Col ~ ln_conf  , data = db1, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_5, "Poisson-Alternative 4") 
 
### Step 10 Alternative 5 NB 
glm_nb_5 <- MASS::glm.nb(Col ~ ln_conf , data = db1,  link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_5, "NB-Alternative 4") 
 
### Step 11 Base and Alternative vs Null 
#Base compared to Null 
lmtest::lrtest(glm_po_0, glm_po_1) 
#Alternative 1 compared to Null 
lmtest::lrtest(glm_po_0, glm_po_2) 
#Alternative 2 compared to Null 
lmtest::lrtest(glm_po_0, glm_po_3) 
#Alternative 3 compared to Null 
lmtest::lrtest(glm_po_0, glm_po_4) 
#Alternative 4 compared to Null 
lmtest::lrtest(glm_po_0, glm_po_5) 
 
 
### Step 12 Base vs Alternative 
#Alternative 1 compared to Base 
lmtest::lrtest(glm_po_1, glm_po_2) 
#Alternative 3 compared to Base 
lmtest::lrtest(glm_po_1, glm_po_3) 
#Alternative 3 compared to Base 
lmtest::lrtest(glm_po_1, glm_po_4) 
#Base compared to Alternative 4 
lmtest::lrtest(glm_po_5, glm_po_1) 
 
### Step 13 Alternatives with each other  
#Alternative 2 compared to Alternative 1 
lmtest::lrtest(glm_po_2, glm_po_3) 
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#Alternative 1 compared to Alternative 3 
lmtest::lrtest(glm_po_4, glm_po_2) 
#Alternative 2 compared to Alternative 3 
lmtest::lrtest(glm_po_4, glm_po_3) 
#Alternative 4 compared to Alternative 2 
lmtest::lrtest(glm_po_5, glm_po_3) 
#Alternative 4 compared to Alternative 1 
lmtest::lrtest(glm_po_5, glm_po_2) 
#Alternative 4 compared to Alternative 2 
lmtest::lrtest(glm_po_5, glm_po_1) 
#Alternative 4 compared to Alternative 3 
lmtest::lrtest(glm_po_5, glm_po_4) 
 
 
# Conflict Analysis ------------------------------------------------------- 
 
##%%%%%%%%%%%%%%%%%% Step 1 Conflict Null Poisson 
glm_po_6 <- stats::glm(conf ~ 1, data = db2, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_6, "Conf_Null_Po") 
 
#%%%%%%%%%%%%%%%%%% Step 2 Conflict Null NB 
glm_nb_6 <- MASS::glm.nb(conf ~ 1, data = db2, link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_6, "Conf_Null_NB") 
 
 
##%%%%%%%%%%%%%%%%%% Step 3 Conflict and compliance variables Poisson 
glm_po_7 <- stats::glm(conf ~ comp_FS.RT +comp_FS.BT +LED, data = db2, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_7, "Conf_compliance_Poisson") 
 
 
#%%%%%%%%%%%%%%%%%% Step 4 Conflict and compliance variables NB 
glm_nb_7 <- MASS::glm.nb(conf ~ comp_FS.RT +comp_FS.BT +LED, data = db2, link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_7, "Conf_Compliance_NB") 
 
 
##%%%%%%%%%%%%%%%%%% Step 5 Conflict, flow and compliance variables Poisson 
glm_po_8 <- stats::glm(conf ~ ln_Flow  +comp_FS.NFS  +comp_FS.RT + Dum , data = db2, family = poisson(link = "log"))  
source("Customized_Writing_Functions.R") 
generating_Poisson_results(glm_po_8, "Conf_Flow_compliance_Poisson") 
 
#%%%%%%%%%%%%%%%%%% Step 6 Conflict, flow and compliance variables NB 
glm_nb_8 <- MASS::glm.nb(conf ~  ln_Flow  +comp_FS.BT  +comp_FS.RT  + Dum +LED, data = db2, link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_8, "Conf_flow_compliance_NB") 
 
 
#%%%%%%%%%%%%%%%%%% Step 6 Conflict and flow only NB 
glm_nb_9 <- MASS::glm.nb(conf ~  ln_Flow  + Dum +LED, data = db2, link = "log") 
source("Customized_Writing_Functions.R") 
generating_NegativeBinomial_results(glm_nb_9, "Conf_flow_NB") 
 
 
 
#Compare Null Poisson and NB (STEP 1&2) 
lmtest::lrtest(glm_po_6, glm_nb_6) 
#Compare Null NB and Conf_Compliance_NB 
lmtest::lrtest(glm_nb_6, glm_nb_7) 
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#Compare Null NB and NB Conf_flow_compliance_NB 
lmtest::lrtest(glm_nb_6, glm_nb_8) 
#Compare Conf_Compliance_NB and NB Conf_flow_compliance_NB 
lmtest::lrtest(glm_nb_7, glm_nb_8) 
 
 
# Extract fitted Values --------------------------------------------------- 
 
#write fitted Values (all of collision) 
fitted_col <- data.frame (glm_po_1_2$fitted.values,glm_po_2$fitted.values,glm_po_1_1$fitted.values) 
write.csv(fitted_col, file = "results/general/fitted_Col.csv") # Export Results 
 
#write fitted Values (all of Conflict) 
fitted_con <- data.frame (glm_nb_7$fitted.values) 
write.csv(fitted_con, file = "results/general/fitted_Con.csv") # Export Results 
 
 
# Mann-Whitney U-Test (Conflict Simulation and recorded) ------------------ 
 
 
#Mann-Whitney U-Test to asse the correlation between Observed and simulated  
#Data only from intersection 25th (first five read) and 28th, (second five read) 
# Time series: 07:00 09:00 -  12:00 14:00 - 16:00 18:00 - 18:00 20:00 - 20:00 22:00  
x1<-c(55,59,37,17,13,6,41,33,8,2) #Simulation Conflict 
x2<-c(44,38,40,14,8,4,38,23,5,3) #Observed conflict 
wilcox.test(x1, x2, alternative = "two.sided", paired = FALSE, exact = FALSE, correct = TRUE) 
 
#mirror histogram  
png(file="Sim1.png", width=300, height=200) 
par(mar=c(0,5,3,3)) 
hist(x1 , main="" , xlim=c(0,60), ylab="Frequency (Simulation)", xlab="", ylim=c(0,4) , xaxt="n", las=1 , col="Gold", breaks=5) 
dev.off() 
 
png(file="Obs1.png", width=300, height=200) 
par(mar=c(5,5,0,3)) 
hist(x2 , main="" , xlim=c(0,60), ylab="Frequency (Observation)", xlab="Number of conflicts", ylim=c(4,0) , las=1 , col="tomato3"  , 
breaks=5) 
dev.off() 
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9.2 Genetic Algorithm in MATLAB 

%#Thesis "ASSESSING THE IMPACT OF ACTIVE SIGNAGE SYSTEMS ON DRIVING BEHAVIOR AND TRAFFIC SAFETY" 
%Matin Foomani  Foomani[at] gmail . com 
clear; %clear the environment 
clc; 
%%  
%{ 
 ======================================================================== 
 General info 
 The line below lists Methods for class COM.Vissim_Vissim: 
 Vissim.methods  
 to get the value type of each method us: 
 Vissim.invoke  
 below command reveal the properties of an object 
 Vissim.fields 
 ======================================================================== 
%} 
% Load traffic simulation Model 
Vissim = actxserver('Vissim.Vissim'); 
Path='G:\My Drive\Education\PhD\Analysis\MATLAB';  
Vissim.LoadNet([Path '\vissim_MD_01.inpx']) %file location. 
uiwait(msgbox('Please Increase simulation speed in Vissim GUI, and number of runs to 1, then enter 
any key to continue',"Attention","help")); 
%pause; 
sim=Vissim.Simulation; %defines the ISimulation Object 
 
% ******* Load Observed TMCs 
load("Obs_AM_TMCs.mat"); 
Obs_TMCs_Vol=cell2mat(Obs_AM_TMCs(:,2)); %to change from 'cell' (text) to 'double' (number) 
 
% ********************************************************************** 
% ******************* Set handels for Calibration Parameter/Genes******************* 
% ********************************************************************** 
 
vnet=Vissim.Net; %defined the network object 
DriveBeh=vnet.DrivingBehaviors; %link to the parapters that are related to driver's behavior  
RoadTypes=DriveBeh.GetMultiAttValues('Name');%to test if the connection is wokring. this is to get 
the "roadtype". The roadtype used for this study is called 'Urban (Lachine)' Item(6) in roadtype. 
%******************** Checking COM attributes (internal check, can be removed) 
Max_Dcc_O=DriveBeh.ItemByKey(6).get('AttValue','MaxDecelOwn'); %Max Deceleration Own (m/s2) 
Acc_Dcc_O=DriveBeh.ItemByKey(6).get('AttValue','AccDecelOwn');% Accepted Deceleration Own (m/s2) 
DecelRedDistOwn=DriveBeh.ItemByKey(6).get('AttValue','DecelRedDistOwn');%DecelRedDistOwn 
DecelRedDistTrail=DriveBeh.ItemByKey(6).get('AttValue','DecelRedDistTrail');%DecelRedDistTrail 
Max_LAH_Dis=DriveBeh.ItemByKey(6).get('AttValue','LookAheadDistMax');%Max Look Ahead Distance (m) 
Avg_SS_Dis=DriveBeh.ItemByKey(6).get('AttValue','W74ax'); %Avg Standstill Distance for Wiedemann 74 
(m) 
Min_head=DriveBeh.ItemByKey(6).get('AttValue','MinFrontRearClear'); %Min clearance (front/rear) (m) 
Add_SS_Dis=DriveBeh.ItemByKey(6).get('AttValue','W74bxAdd'); %Additive part of safety distance 
[Value for the determination of the desired safety distance d. Enables the adaption of the time 
needs.] 
Multi_SS_Dis=DriveBeh.ItemByKey(6).get('AttValue','W74bxMult'); %Multiplic. part of safety distance 
[Value for the determination of the desired safety distance d. Enables the adaption of the time 
needs. Greater value = greater distribution (standard deviation) of safety distance.] 
%uiwait(msgbox('COM help says Avg_SS_Dist should be between -1 and 1, but here is 
2!!!',"Attention","help"));  
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InitialChromosome=[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_
head,Add_SS_Dis,Multi_SS_Dis];%read all the reading from above (all 9 parameters into one variable). 
 
% ********************************************************************** 
% ******************* Generate Initial Population*********************** 
% ********************************************************************** 
 
Pop_size=9; %% 9 (the same as number of calibration parameters rule of thumb) 
[~,NoOfGenes]=size(InitialChromosome); %number of parameters being calibrated (returnd 9).  
Tested_mat=zeros(1,NoOfGenes); % This matrix keeps track of all the combinations tested 
Initial_pop=[]; %Empty matrix  
Summary_matrix=[]; %Empty matrix 
[m,n]=size(Initial_pop); %read for stopping criteria  
Steps=[0.5,0.5,2,2,8,0.5,0.1,0.1,0.1]; %Step for each of the 9 parameters.  
ULs=[-1,-1,100,100,300,5,5,3,3]; %uper limits  
LLs=[-4,-4,50,50,100,0,0.1,1,1]; %lower limits  
DCC_Range=[-4:0.5:-1]; %Max_Dcc and Acc_Dcc (the first two parameters) 
DCC_Dist_Range=[50:2:100];%DecelRedDistOwn and DecelRedDistTrail(Next two parameters)  
LH_Dist_Range=[100:8:300];%Max_LAH_Dis 
SS_Dis_Range=[0:0.5:5];%Avg_SS_Dis 
H_Range=[0.1:0.1:5];%Min_head 
Safety_Dis_Range=[1:0.1:3];%Multi_SS_Dis and Add_SS_Dis (last two paramters) 
 
%Start with initial polulation  
while m<Pop_size %size of the matrix generated in line 82 
    
    
[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_head,Add_SS_Dis,Mu
lti_SS_Dis]=Vis_CreatChromosome(DCC_Range,DCC_Dist_Range,LH_Dist_Range,SS_Dis_Range,H_Range,Safety_D
is_Range); %will take you to "Vis_CreatChromosome" function 
    
chromosome=[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_head,Ad
d_SS_Dis,Multi_SS_Dis];%create chromosome from the out put of the function 'Vis_CreatChromosome' 
    if(sum(ismember(Tested_mat,chromosome,'rows'))==0) %to check is yjere any chromosome in 
"tested_mat" which is exactly the same as the generated chromosome. This is to avoid counting a 
repeated chromosome in "M" matrix. 
         
        %Function to set the variables in Vissim 
        Vis_SetDST_2(chromosome,vnet,DriveBeh); %call Vis_SetDST_2 and set variables from chromosome 
into VISSIM 
        sim.RunContinuous(); %which is the same as Vissim.Simulation.RunContinuous() %runs 
simulation 
        [MSE,GEH0to5,GEH5to10,GEHover10]=Vis_Calculate_MSE_2(vnet,Obs_TMCs_Vol);%this function is 
taking the output from VISSIM and make the calcualtion for MSE and GEH 
        Summary=[chromosome,MSE,GEH0to5,GEH5to10,GEHover10];%keep the output of the 3 steps above in 
a summary Matix 
        Initial_pop=[Initial_pop;Summary]; 
        Tested_mat=[Tested_mat;chromosome]; 
        Summary_matrix=[Summary_matrix;Summary]; 
        [m,n]=size(Initial_pop); 
     elseif (sum(ismember(Tested_mat,chromosome,'rows'))>1) 
        msgbox('choromosome repeated more than once!!!') 
    end 
end 
Tested_mat=Tested_mat(2:Pop_size+1,:); %removes the first line from the TestedMat (this was all 0) 
 
 
% ********************************************************************** 
% ******************* RUN Genetic Algorithm **************************** 
% ********************************************************************** 
 
% ****** 1- select best from current run, 2-Cross-ver, 3- Mutate 4-Generate 
% one new (random gens) 
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% ***** NOTE: for proof of concept, we are using MSE as the objective 
% function to be minimized (not GEH) 
% In the future, if conlict could be generated directly through 
% microsimulation or through a 3rd party application which work in 
% itterative manner, it would be better to use conflict than MSE.  
 
dim=NoOfGenes+1; % Column number in the InitialPop (i.e., parent_mat) that represents the objective 
function (change if needed (here we are using MSE, therefore column 13) 
Delta_best_MSE=0; 
Iteration_num=1; 
Max_itirations=15; % FUTURE Research: with the SSAM connection, change to 30 
Stopping_criteria=4; % can be increased with SSAM conenction and conflict 
num_of_delta_zero=0; 
Best_MSE=[]; 
 
while (Iteration_num<=Max_itirations && num_of_delta_zero<Stopping_criteria)  %stopping 
criteria,(iteration number=15, four times with 0 improvement) 
    [Parents_selected,New_generation,best_index]=Vis_Run_GA_2(Initial_pop,dim,Steps,ULs,LLs); %start 
the fuction 'Vis_Run_GA_2' to generate parents 
    Best_MSE=[Best_MSE;[Iteration_num,Initial_pop(best_index,dim)]]; 
    if Iteration_num>1 
        Delta_best_MSE=Best_MSE(Iteration_num-1,2)-Best_MSE(Iteration_num,2); 
    end 
    if Delta_best_MSE<0 
        msgbox('Change in the MES of the best solution is NEGATIVE!!!!',"Error??","error") %just in 
case! 
        pause; 
    end 
    if Delta_best_MSE==0 
        num_of_delta_zero=num_of_delta_zero+1 
    else 
        num_of_delta_zero=0 
    end 
     
    if mod(Iteration_num,2)==0 
        fprintf([sprintf('%d',Iteration_num),'  iterations completed']); 
    end 
    Iteration_num=Iteration_num+1 
    Parents_mat=New_generation; %new generation is created with new parents 
    [mm,nn]=size(Parents_mat); 
    Initial_pop=[]; 
    for k=1:mm 
        chromosome=Parents_mat(k,:); 
        if(sum(ismember(Tested_mat,chromosome,'rows'))==0) 
            %Function to set the variables in Vissim 
            Vis_SetDST_2(chromosome,vnet,DriveBeh); 
            sim.RunContinuous(); %which is the same as Vissim.Simulation.RunContinuous() %runs 
simulation 
            [MSE,GEH0to5,GEH5to10,GEHover10]=Vis_Calculate_MSE_2(vnet,Obs_TMCs_Vol); 
            Summary=[chromosome,MSE,GEH0to5,GEH5to10,GEHover10]; 
            Initial_pop=[Initial_pop;Summary]; 
            Tested_mat=[Tested_mat;chromosome]; 
            Summary_matrix=[Summary_matrix;Summary]; 
             
        else 
            Org_index=find(ismember(Tested_mat,chromosome,'rows')>0); %if it was used before do not 
run again just read from summary. 
            Summary=[chromosome,Summary_matrix(Org_index,dim:dim+3)]; 
            Initial_pop=[Initial_pop;Summary]; 
        end         
         
    end 
end 
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% ********************************************************************** 
% **************************** End of GA ******************************* 
% ********************************************************************** 
 
[I,c] = (min(Summary_matrix)); 
Best=c(dim); 
Idata = (-pi/4):0.1:(pi/4); 
Idata = (cos(Idata)-cot(Idata)); 
uiwait(msgbox(['The optimal parameters are:    ',num2str(Summary_matrix(Best,1:dim-1))],'End of 
Optimization','custom',Idata,pink(size(Idata,2)))); 
uiwait(msgbox(['The minimum MSE from Best_MSE is:    ',num2str(Best_MSE(Iteration_num-1,2))],'End of 
Optimization (MatinFoomaniEnd)','custom',Idata,pink(size(Idata,2)))); 
     
%Popup the results!  
 
datapoints=vnet.DataCollectionMeasurements; 
Decs=vnet.Detectors; 
 
 

Function +++++++++++++++Vis_CreatChromosome+++++++++++++++++ 

function 
[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_head,Add_SS_Dis,Mu
lti_SS_Dis]=Vis_CreatChromosome(DCC_Range,DCC_Dist_Range,LH_Dist_Range,SS_Dis_Range,H_Range,Safety_D
is_Range) 
 
[~,DCC_Range_Size]=size(DCC_Range); 
Max_Dcc_O=DCC_Range(floor(1+DCC_Range_Size*rand)); %Rand function in matlab Uniformly distributed 
pseudorandom numbers. 
Acc_Dcc_O=DCC_Range(floor(1+DCC_Range_Size*rand)); 
 
[~,Dcc_Dist_Size]=size(DCC_Dist_Range); 
DecelRedDistOwn=DCC_Dist_Range(floor(1+Dcc_Dist_Size*rand)); 
DecelRedDistTrail=DCC_Dist_Range(floor(1+Dcc_Dist_Size*rand)); 
 
[~,LH_Dist_Size]=size(LH_Dist_Range); 
Max_LAH_Dis=LH_Dist_Range(floor(1+LH_Dist_Size*rand)); 
 
[~,SS_Dist_Size]=size(SS_Dis_Range); 
Avg_SS_Dis=SS_Dis_Range(floor(1+SS_Dist_Size*rand)); 
 
[~,H_Size]=size(H_Range); 
Min_head=H_Range(floor(1+H_Size*rand)); 
 
[~,Safety_Dist_Size]=size(Safety_Dis_Range); 
Add_SS_Dis=Safety_Dis_Range(floor(1+Safety_Dist_Size*rand)); 
Multi_SS_Dis=Safety_Dis_Range(floor(1+Safety_Dist_Size*rand)); 
 
 
 

Function +++++++++++++++ Vis_SetDST+++++++++++++++++ 

 
 
%******************** Setting COM attributes  
vnet.DrivingBehaviors.ItemByKey(6).set('AttValue','MaxDecelOwn',chromosome(1)); %Max Deceleration 
Own (m/s2) 
DriveBeh.ItemByKey(6).set('AttValue','AccDecelOwn',chromosome(2));% Accepted Deceleration Own (m/s2) 
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DriveBeh.ItemByKey(6).set('AttValue','DecelRedDistOwn',chromosome(3)); 
DriveBeh.ItemByKey(6).set('AttValue','DecelRedDistTrail',chromosome(4)); 
DriveBeh.ItemByKey(6).set('AttValue','LookAheadDistMax',chromosome(5));%Max Look Ahead Distance (m) 
DriveBeh.ItemByKey(6).set('AttValue','W74ax',chromosome(6)); %Avg Standstill Distance for Wiedemann 
74 (m) 
DriveBeh.ItemByKey(6).set('AttValue','MinFrontRearClear',chromosome(7)); %Min clearance (front/rear) 
(m) 
DriveBeh.ItemByKey(6).set('AttValue','W74bxAdd',chromosome(8)); %Additive part of safety distance 
[Value for the determination of the desired safety distance d. Enables the adaption of the time 
needs.] 
DriveBeh.ItemByKey(6).set('AttValue','W74bxMult',chromosome(9)); 
%vnet.ReducedSpeedAreas.ItemByKey(RSA_No(k,2)).set('AttValue','DesSpeedDistr(11)',chromosome(Counter
)); 
end 

 

Function +++++++++++++++ Vis_Calculate +++++++++++++++++ 

function [MSE,GEH0to5,GEH5to10,GEHover10]=Vis_Calculate_MSE(vnet,Obs_TMCs) 
 
Nodes=vnet.Nodes; 
NameOfNodes=vnet.Nodes.GetMultiAttValues('Name'); %listing for user info 
[NoNodes,n]=size(NameOfNodes); 
[No_TMCs,n]=size(Obs_TMCs); 
 
k=1; 
vnet.Nodes.ItemByKey(1).Movements.GetMultiAttValues('Vehs(1,1,All)'); %(Simulation 
Run,TimeInterval,VehType) 
vnet.Nodes.ItemByKey(1).Movements.GetMultiAttValues('Vehs(Avg,1,All)'); 
TempResults=[]; 
for i=1:NoNodes 
    
TempResults=[TempResults;vnet.Nodes.ItemByKey(i).Movements.GetMultiAttValues('Vehs(Avg,1,All)')]; 
    TempResults(end,:)=[]; %I delete the last row imported because Vissim outputs an extra Avg of 
all movements for the node, which is not needed  
    [m,n]=size(TempResults); 
    %for j=1:m-1 
     %   Sim_TMCs(k,1)=cell2mat(TempResults(j,2)); 
      %  k=k+1; 
    %end 
end 
TempResults=TempResults(:,2); 
for GG=1:m 
    Sim_TMCs(GG,1)=cell2mat(TempResults(GG,1)); 
end 
Sim_TMCs=double(Sim_TMCs); 
% ******* Calculating the MOEs (Mean Square of errors, and GEHs) 
GEHs=zeros(m,1); 
MSE=0; 
 
for i=1:No_TMCs 
    Temp=(Obs_TMCs(i,1)-Sim_TMCs(i,1))^2; 
    MSE=MSE+Temp; 
    GEH(i,1)=sqrt(2*Temp/(Obs_TMCs(i,1)+Sim_TMCs(i,1))); 
end 
 
MSE=MSE/m; 
GEH0to5=sum(GEHs<=5)/m*100; 
GEH5to10=(sum(GEHs<=10)-sum(GEHs<=5))/m*100; 
GEHover10=sum(GEHs>10)/m*100; 
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if GEH0to5+GEH5to10+GEHover10==100 
    disp('All Good with GEHs'); %all tests for GEH passed. 
    %pause; 
else 
    disp('sum of GEHs are',num2str(GEH0to5+GEH5to10+GEHover10),'!!!!!!'); %Just to make sure!  
    pause; 
end 
 
end 

 

Function +++++++++++++++ Vis_Run_GA +++++++++++++++++ 

function [Selected_parents,New_generation,best]=Vis_Run_GA_2(Parents_mat,dim,Steps,ULs,LLs) 
 
New_pop=[]; 
temp=[]; 
temp2=[]; 
Mutate_pop=[]; 
[m,n]=size(Parents_mat); 
MSEsum=0; 
 
ProbOfSelec_mat=zeros(m-1,1); 
Com_ProbOfSelec_mat=zeros(m-1,1); 
 
% ******* Identify and Keep the best parent in the next iteration (Pass over the best 
% combination to the next generation) 
[I,c] = (min(Parents_mat));% 'I' min of each column and 'c' position of that minimum (which row) 
C=c(dim); 
New_pop=[New_pop,Parents_mat(C,:)]; 
 
% ******* Remove the best answer parent to do the rest of GA 
temp=[temp;Parents_mat(1:C-1,:)]; 
temp=[temp;Parents_mat(C+1:m,:)]; 
temp2=temp; 
 
%Probabilty of Selcetion (pre-step to roulette wheel. 
tempSum=sum(temp); 
MSEsum=MSEsum+tempSum(dim); 
 
for j=1:m-1 
   ProbOfSelec_mat(j,1)= temp(j,dim)/MSEsum; %probofselection is based on MSE of each chromosme 
divided to summary fo all. 
   if j==1 
       Com_ProbOfSelec_mat(j,1)=ProbOfSelec_mat(j,1); 
   else 
       Com_ProbOfSelec_mat(j,1)=ProbOfSelec_mat(j,1)+Com_ProbOfSelec_mat(j-1,1); 
   end    
end 
 
% ******* generate roulette wheel for this generation 
Roulette_mat=rand(m-3,1); % excluding the best and 2 that will be mutated, 6 parents will be 
selected  
% ******* Find the indices for selected parents matrix 
Index_parent=Return_Index_2(Roulette_mat,Com_ProbOfSelec_mat); 
New_pop=[New_pop;temp(Index_parent,:)]; % New_pop is the selected parents that will produce new 
children through CrossOver 
% remove the Index_parent row from temp2 (to have the non-selected parents 
% at the end) [deleteing a row afects the row numbers-> therfore, change its MSE to 
temp2(Index_parent,dim)=inf;% infinity; so that it won't be a "best unselected solution" 
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% Crossover : (for m-2 chromosomes: All except the ones that will be mutated) 
Selected_parents=New_pop(:,1:dim-1); % only the chromosomes of the New-pop 
 
% *** find Mutate_pop 
for b=1:2 %we take two but remove one of the chromosomes  
    [~,cc] = (min(temp2)); 
    CC=cc(dim); 
    Mutate_pop=[Mutate_pop;temp2(CC,1:dim-1)]; 
    temp2(CC,dim)=inf; 
end 
 
best=C; 
 
New_generation_crossover=Vis_new_generation_2(Selected_parents); %use the function of 
'Vis_new_generation_2" for crossover from 6 parents to 6 childrens 
New_generation_mutated=Vis_Mutation_2(Mutate_pop,Steps,ULs,LLs); %use the functiuon of 
'Vis_Mutation_2' for mutation  from 1 parent to 1 children 
New_generation=[New_generation_crossover;New_generation_mutated]; 
 

Function +++++++++++++++ Vis_new_generation +++++++++++++++++ 

 

% ******* This function does the crossover 
function New_Generation=Vis_new_generation_2(SelectedParents) 
temp_pop=[]; 
% ******** The best solution is passed over without any changes 
temp_pop=[temp_pop;SelectedParents(1,:)]; 
 
[m,n]=size(SelectedParents); 
num=(m-1)/2; 
% Use the two-point crossover method to produce off-springs 
for i=1:num 
    CrossOverPoints=sort(floor(1+(n-1)*rand(2,1))); 
 
    
child1=[SelectedParents(2*i,1:CrossOverPoints(1)),SelectedParents(2*i+1,CrossOverPoints(1)+1:CrossOv
erPoints(2)),SelectedParents(2*i,CrossOverPoints(2)+1:n)]; 
    
child2=[SelectedParents(2*i+1,1:CrossOverPoints(1)),SelectedParents(2*i,CrossOverPoints(1)+1:CrossOv
erPoints(2)),SelectedParents(2*i+1,CrossOverPoints(2)+1:n)]; 
 
    temp_pop=[temp_pop;child1;child2]; 
end 
New_Generation=temp_pop; 

 

Function +++++++++++++++ Vis_Mutation +++++++++++++++++ 

function [New_generation_mutated]=Vis_Mutation_2(Mutate_pop,Steps,ULs,LLs) 
 
% Random decision to mutate (if not mutate, it will replace with a NEW 
% chromosome all together; 
% If mutate, the get the direction of mutation, and increase it by 3 steps 
% (NOTE that this number was sleected based on the fact that the search 
% areas have a range between 10 to 26 potential values. This number can be 
% modified in the future) 
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[h,hh]=size(Mutate_pop); %hh is the counter for the gene (same as it would be in Steps, ULs, and 
LLs) 
New_generation_mutated=[]; 
 
for j=1:h-1 
    Gene=Mutate_pop(j,:); 
    for i=1:hh 
        if rand(1)>=0.5   % whether or not a gene will be mutated (probability of mutation) 
            if rand(1)>=0.5 %direction of adding: increase 
                if Gene(i)+(5*Steps(i))<=ULs(i) 
                    New_Gene(i)=Gene(i)+(3*Steps(i)); 
                else 
                    New_Gene(i)=ULs(i); 
                end 
            elseif Gene(i)-(3*Steps(i))>=LLs(i) %decrease 
                New_Gene(i)=Gene(i)-(5*Steps(i)); 
            else 
                New_Gene(i)=LLs(i); 
            end                      
        else 
            New_Gene(i)=Gene(i); 
        end   
    end 
    New_generation_mutated=[New_generation_mutated;New_Gene]; 
end        
 
DCC_Range=[-4:0.5:-1]; 
DCC_Dist_Range=[50:2:100]; 
LH_Dist_Range=[100:8:300]; 
SS_Dis_Range=[0:0.5:5]; 
H_Range=[0.1:0.1:5]; 
Safety_Dis_Range=[1:0.1:3]; 
[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_head,Add_SS_Dis,Mu
lti_SS_Dis]=Vis_CreatChromosome(DCC_Range,DCC_Dist_Range,LH_Dist_Range,SS_Dis_Range,H_Range,Safety_D
is_Range); 
 
New_Gene=[Max_Dcc_O,Acc_Dcc_O,DecelRedDistOwn,DecelRedDistTrail,Max_LAH_Dis,Avg_SS_Dis,Min_head,Add_
SS_Dis,Multi_SS_Dis]; 
New_generation_mutated=[New_generation_mutated;New_Gene]; 

 

 


