
A bilevel product pricing problem with ranks and utilities:
Models and Algorithms

Abdul Moiz Ansari

A Thesis

in

The Department

of

Mechanical, Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Industrial Engineering) at

Concordia University

Montréal, Québec, Canada

August 2022

© Abdul Moiz Ansari, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Abdul Moiz Ansari

Entitled: A bilevel product pricing problem with ranks and utilities: Models and

Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Industrial Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Dr. Onur Kuzgunkaya, MIE

External Examiner
Dr. Dr. Navneet Vidyarthi, JMSB

Examiner
Dr. Dr. Onur Kuzgunkaya, MIE

Supervisor
Dr. Dr. Ivan Contreras

Approved by
Martin D. Pugh, Chair
Department of Mechanical, Industrial and Aerospace Engineering

2022
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

A bilevel product pricing problem with ranks and utilities: Models and Algorithms

Abdul Moiz Ansari

Product pricing is a revenue management strategy that facilitates the determination of the prices

of a series of products by understanding customer’s purchase behavior to optimize the firm’s rev-

enue. It is worth mentioning that contributions in the current literature mainly focuses on a single

purchasing behavior of the customer either by using utility or rank. To address this problem, we

propose a product pricing model incorporating both the customer’s utility and the rank. We present

a bilevel programming formulation to model this problem and present its corresponding single level

formulation. We present two algorithms to assess the validity of the single level formulation and

obtain high-quality solutions in reasonable CPU times. Results of computational experiments are

presented to assess the performance of the proposed algorithms, in comparison with the single level

formulation by solving it with a general purpose solver.

Keywords: Product pricing, Revenue management, Bilevel programming, Reservation price, Rank pric-

ing problem.

iii

Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful.

All praise is due to Allah, who bestowed upon me this opportunity and gave me the patience to

accomplish my master’s degree. Peace and blessings upon his final messenger and servant, Muham-

mad.

After that, I am grateful and indebted to my supervisor Dr. Ivan Contreras for his guidance

and patience throughout this journey, helping me accomplish my goals on time. His advice has

been a great help, assisting me with the best resources for each problem. Thanks to Professor Daria

Terekhov for her support and advice in the initial period of my program.

I must express my gratitude to my parents Abdul Rahim and Malka Javeria, and my brother

Ansari Osama for their unconditioned support, continuous prayers, and encouragement.

I would also like to thank my friends back in India for their motivation and support. Sincere

thanks to my friends and lab-mates for their help in writing the thesis. Jahidul and Safwan have

been great mentors to me throughout this journey, their constant advise helped me to stay focus and

on-track. I express my gratitude to my friends Akbar Ali and Sara Ahmed for putting up their time

to read my thesis and send their valuable feedback.

Thanks to Concordia University for providing me with this wonderful opportunity and the finan-

cial support during my study. At last, thanks to many other people whose names are not mentioned

here but have contributed to this research.

iv

Contents

List of Tables vii

1 Introduction 1

2 Literature Review 6

2.1 Product Pricing Problems . 6

2.2 Maximum utility product pricing model . 7

2.2.1 Rank Pricing Problem . 8

2.3 Solution Methodologies for Bilevel Programs 11

2.4 Complexity of the Proposed Model . 12

3 Problem Definition and Formulation 13

3.1 Problem Description . 13

3.2 Bilevel product pricing with utility and ranks (BPP-UR) 14

3.3 Single Level Non-Linear Reformulation . 15

3.4 Single Level Linear Reformulation (SLL) . 17

4 Solution Algorithms 19

4.1 Scatter Search Metaheurestic . 19

4.2 Price Perturbation Heuristic . 24

5 Computational Experiments 26

5.1 Comparing the Performances . 26

v

6 Conclusion and Future Research 32

Bibliography 33

vi

List of Tables

Table 1.1 Reservation Price . 5

Table 5.1 Algorithms’ Performance: Set 1 . 27

Table 5.2 Algorithms’ Performance: Set 2 . 28

Table 5.3 Algorithms’ Performance: Set 3 . 29

Table 5.4 SLL Performance: Set 4 . 30

Table 5.5 Algorithms’ Performance: Set 4 . 30

vii

Chapter 1

Introduction

Revenue Management (RM) is the practice of demand management decisions to establish pric-

ing and capacity decisions to maximize the firm’s revenue. The practice of RM originated from the

airline industry, dating back to the Airline Deregulation Act of 1978, by which the United States

removed federal control over fares and routes. This deregulation helped innovation and paved the

way for rapid changes in the airline industry. Ever since, RM has been extensively used in almost

all industries such as e-commerce, healthcare, manufacturing, and financial services.

A common objective for firms is to maximize profit by providing different services/products

at a competitive price to compete and survive in today’s challenging markets. Selling these ser-

vices/products to customers involves various challenges and uncertainties, as competitors selling

similar products make use of different methods to have an advantage over other firms. This compe-

tition forces the firms to better understand the needs and reactions of the customers, the value the

customers assign to a product, and the prices they are willing to pay, these are some of the decisions

that the firms should consider in order to maximize their revenue. These decisions are very difficult

to study as customers’ behavior can be different, and each customer has their unique purchasing

criteria. Revenue management aims to provide firms with the necessary techniques to make such

decisions easier. RM can be considered as a system that anticipates the customer’s decisions and

effectively reacts to them to maximize the firm’s profit. One of the best definitions of RM is by

Cross (2011) who formally defines it as ”the art and science of predicting real-time customer de-

mand at the micro-market level and optimizing the price and availability of products”. Hence, it

1

can be termed as a practice of managing customer demand through varying capacity or prices to

maximize profitability.

There has been tremendous success stories by firms incorporating the practice of RM. James

Whitehurst, former chief operating officer of Delta Airlines, in his keynote address summarized by

Garrow and Ferguson (2008) explains how Delta Airlines overcame bankruptcy and a loss of about

$2.2bn, within a span of about 2 years, Delta went from being one of the least profitable airlines to

the second most profitable airline in the United States. This was achieved by identifying the root

causes and implementing the practices of RM. This study highlights that the applications of RM can

be the difference between bankruptcy and being the most profitable firm. Cross (2011) reported that

the practice of RM helped Marriott Hotel to gain an additional revenue of US$100mn.

The practice of RM can be broadly classified into two categories, price-based which is com-

monly used by the retailing industries, and quantity-based heavily incorporated by the airlines as

described by Talluri et al. (2004). The price-based RM practice has seen widespread applications

and improvements. For example, Ford Motor Co. developed a new pricing strategy for its products

and in 1998, Ford tested out this new strategy in the first five U.S. sales regions, they collectively

beat their profit targets by $1 billion. While the 13 regions that used the old strategy, missed their

targets by about $250 million Coy (n.d.). Diverse industries have made use of the price-based RM

model, Poldrugovac et al. (2019) provides its significance for the camping industry, Ivanov and

Zhechev (2012) for the hotel industry and Bitran and Caldentey (2003) gives an overview of the

different pricing models used in RM.

Within the class of price-based RM, one of the widely researched models is the price setting

problem. The price setting problem is formulated as a bilevel program, which is an optimization

problem that has another optimization problem as its constraints. Thus, the price setting problem

involves a hierarchical relationship between two levels, a firm belonging to the upper level of hi-

erarchy (leader) aiming to determine taxes or prices for some activities to maximize their revenue.

While the consumers/customers belonging to the lower level of the hierarchy (follower) select the

activities to minimize their operating costs. This framework fits in many applications and has been

extensively used, for example, the toll optimization of highways studied by Heilporn et al. (2011),

truck toll systems, passenger transportation systems, pricing schemes for hotel rooms, car rentals,

2

etc. It also finds its applications in telecommunications as described by Bouhtou et al. (2007).

Labbé and Violin (2016) provides a review of price setting problems which can be modeled as

bilevel programs.

Another variant of price setting problems is the product pricing problem, which seeks to deter-

mine the prices of a series of products of a firm to maximize its revenue. Consider a firm selling

a series of products, the firm always finds it challenging to decide the prices of the products it is

offering. Selling the right product at the right price is a difficult task. If the firm decides to set low

prices, it will attract more customers but would generate low revenue, on the other hand, setting

high prices might put off potential customers. These types of managerial decisions are common but

difficult to be accounted for. We find applications of the product pricing problem in the manufactur-

ing and retail industries. Companies like Nike, which designs footwear, release a series of products

with variations in styles, colors, qualities, and, most importantly, prices. Phone and Car manufac-

turing companies such as Apple, Samsung, and Toyota, Honda, respectively, also release a series of

products with variations in price and functionalities. These companies have a series of products to

account for customer diversity. From the perspective of customers, product diversification leads the

customer to hold different reservation prices and rank for various products due to their style, colors,

quality, and so on.

To address these challenges, different types of product pricing models have been proposed to

model the diverse purchasing decisions of the customers. One of the most common methods to

model customer’s purchase behavior is the reservation price framework. Shioda et al. (2011) pro-

vided a review of the different models in the reservation price framework. In this framework, each

customer has a reservation price for each product which denotes how much the customer is willing

to pay for that product. Once the pricing strategy is known, the customer purchases the product

with the largest utility, which is the difference between the customer’s reservation price and the

final price of the purchased product. Whereas recently, Calvete et al. (2019) proposed a rank pricing

model. In this framework each customer has a rank allocated to the products offered by the firm

they are interested in buying, without having any ties between any two products, and they have a

fixed budget. Once the firm has set the prices of the products, each customer purchases his most

preferred product amongst the ones they can purchase, i.e., maximizing their preferences. If the

3

customer cannot afford anything they will not make a purchase. Domı́nguez et al. (2021) extended

on this model and developed a rank pricing problem with ties.

The rank pricing model solely focuses on maximizing the preferences of the customers. Whereas,

the reservation price model focuses on maximizing the customer’s utility, and a purchase is made if

the product’s price is within their budget or reservation prices. Often in the real world, customers

make more complex decisions rather than solely relying on a single criterion such as a rank or util-

ity. The customers might be willing to pay more than their reservation price if the product is to their

liking or provides much better functionality. This thesis aims to study and address the limitations of

the literature.

In this thesis, we propose an improved product pricing model that builds up on the two pricing

models described above. Each customer has a fixed budget, a fixed reservation price, and a pref-

erence rank for products they are interested in purchasing without ties. Once the pricing strategy

is known, each customer aims to maximize their net utility, which is the sum of the utility and the

preference rank. Hence, instead of having a single basis for making decisions, customers make

decision based on their preferences as well as savings. We also consider the fact that a customer

may even pay beyond their reservation price for a product, if the net utility for that product is the

highest. This provides a more robust model for the customer’s purchasing decision and focuses

more on the objective value of the customers. Also, we assume that each customer buys at most

one product i.e., unit demand. In case of ties between the net utility, the customer will choose the

product with the highest price which is termed as cooperative behavior in bilevel programming. A

cooperative behavior leads to optimistic solutions for the leader, when there are multiple options for

the follower, the leader assumes that the follower chooses the option which is most favorable to the

leader. On the other hand. a pessimistic solution is one where the leader protects himself against

the follower’s worst possible reaction. We refer the reader to Dempe (2002) for a more complete

discussion on this topic.

We present an example to highlight the difference between our model and the two models de-

scribed above.

Table (1.1) shows the reservation price, rank, utility, and the net utility of a customer for three

products. For a customer that has to choose between three products, given that the customer has a

4

Customer Budget Reservation Price Rank Utility Net Utility Product Price
Product 1 85 80 1 20 4.8 60
Product 2 85 75 2 17 5 58
Product 3 85 65 3 -15 -0.6 80

Table 1.1: Reservation Price

reservation price, rank for each product, and a fixed budget. We observe that in the case of the rank

pricing model by Calvete et al. (2019) the customer will select product three, as it is the highest

ranked product within their budget, while in the case of the reservation price model by Shioda et

al. (2011) the customer will choose product 1 as this product gives the highest utility. Whereas for

the model, we propose, the resulting net utility is highest for product 2, thereby the customer will

choose this product.

The main contributions of this thesis are:

• We introduce the Product Pricing Problem with utility and ranks (PP-UR), to have a better

representation of the customer’s purchasing behavior.

• We present the Bilevel formulation (BPP-UR) for the PP-UR.

• We propose a Single Level Mixed Integer Non Linear formulation of the BPP-UR and then

linearize it.

• We develop a metaheuristic and a heuristic to obtain high quality solutions and provide an

informal proof through computational experiments for the validity of the single level formu-

lation.

The remainder of this thesis is organized as follows. In Chapter 2, a comprehensive literature

review on product pricing problems is presented. Chapter 3 contains the problem description, nota-

tions, the BPP-UR and the single level formulation. In Chapter 4 we present the solution method-

ologies and computational results. Finally, we draw our conclusion in Chapter 5.

5

Chapter 2

Literature Review

In this chapter, we present a literature review on product pricing problems. We start by dis-

cussing some of the variations in the product pricing models, then we describe the utility product

pricing model and the rank pricing problem. Finally, we review some of the methodologies used to

solve bilevel problems.

2.1 Product Pricing Problems

Product Pricing Problems have gained wide attention in business, as varying the prices of the

products is the most natural mechanism for revenue management. Firms often use various methods

of dynamic pricing such as promotions and sales, to account for market fluctuations. With such wide

applications in different industries, different models have been proposed to capture the behaviors

of the customers and further improve the firm’s revenue, Talluri et al. (2004) provides a multitude

of models with regards to the same. Guruswami et al. (2005) presents an envy-free pricing model,

wherein the customer’s willingness to pay for the bundle is known. The customer purchases a

product only if their utility is non-negative, and the prices are assigned in such a way that the

allocation must be envy-free i.e., for given prices of the products the customer would not prefer any

other product.

Rusmevichientong et al. (2006) formulated product pricing models based on data collected by

General Motors (GM), the availability of accurate datasets helped them leverage their formulations.

6

The data is collected using an Auto Choice Advisor website, which records customers’ budgets and

requirements and then recommends a ranked list of vehicles based on their input. The recommended

vehicles’ price can be beyond their budget provided other requirements are satisfied. They propose

two models to capture the customer’s behavior, namely a Rank-Pricing and a Min-Pricing model. A

Rank-Pricing model is where a customer buys the vehicle under his budget from the recommended

list if and only if the higher-ranked vehicles are beyond his budget. For the Min-Pricing model, a

customer purchases the cheapest vehicle in their list that is within their budget without considering

the ranks. Often, firms segment the customers based on certain conditions, Bucarey et al. (2021)

proposed a pricing model for single-minded customer segment who purchase a subset of products

i.e., bundle. Each customer has a budget that determines the maximum price the customer is willing

to pay for that bundle. The customer purchases their bundle if the total price of the bundle set by

the firm is within their budget.

Zhao et al. (2021) categorize the customers into three categories based on the difference between

their reference and selling price namely loss-averse, gain-seeking, and loss-neutral, thus studying

the different customer segments jointly. Another method of modeling customer behavior is using

stochastic choice models, estimating the customer preferences. The most common approach to

determine the customer’s purchase probability is by using the multinomial logit model (MNL).

Hanson and Martin (1996) and Aksoy-Pierson et al. (2013) provide an overview of product pricing

models using the MNL approach. Bialas and Karwan (1984) proposed the first bilevel pricing

problem with linear problems at both levels.

2.2 Maximum utility product pricing model

In this section, we present the mathematical formulation proposed by Shioda et al. (2011) based

on the reservation price framework. As described in Chapter 1, once the pricing strategy is known,

the customer purchases the product with the largest utility, which is the difference between the

customer’s reservation price and the price of the product purchased. Let K and J denote the set of

customers and products. Each customer k ∈ K has a fixed reservation price rkj for each product j

and a demand of ηk. Decision variables xkj are equal to 1 if customer k purchases product j and 0

7

otherwise. The price set by the firm for product j is denoted by πj .

max
∑︂
k∈K

∑︂
j∈J

ηkπjx
k
j (1)

s.t. (rkj − πj)x
k
j ≥ rki x

k
i − πi ∀k ∈ K, ∀i, j ∈ J, ∀i, ̸= j (2)

(rkj − πj)x
k
j ≥ 0 ∀k ∈ K,∀j ∈ J (3)∑︂

j∈J∪0
xkj ≤ 1 ∀k ∈ K (4)

xkj ∈ {0, 1} ∀k ∈ K,∀j ∈ J (5)

πj ≥ 0 ∀j ∈ J (6)

In this mathematical model, the objective function (1) maximizes the firm’s revenue. Constraints

(2) ensure that each customer buys the product with the greatest difference between the reserva-

tion price and the price set by the company. Constraints (4) ensure that each customer chooses at

most one product j ∈ J or the dummy product 0, which denotes the no-purchase option. Finally,

constraints (5) and (6) make sure that the variables for products’ prices are non-negative and the

variables for customers’ selection choices are binary.

2.2.1 Rank Pricing Problem

Here we present the mathematical formulation proposed by Calvete et al. (2019). As stated

in Chapter 1 after the firm has set the prices of the products, each customer purchases their most

preferred product amongst the ones they can purchase, i.e., maximizing their preferences. If the

customer cannot afford anything they will not make a purchase. Let K and J denote the set of

customers and products. Each customer k has a subset of products Sk ∈ J which the customer is

interested to purchase, a preference value skj for each product j ∈ Sk, where skj > ski if customer k

prefers product j over product i, the preference of the customers are assumed to be without ties, i.e.,

the customer do not have the same preference value for any two products. As budgets can be equal

for different customers, let B = {b1, ..., bM},M ≤ |K| , the set of different budgets. To represent

8

the budget of customers a function σ: K → {1, ..,M} is used, such that σ(k) = l, if budget of

customer k is bl then we can say customer k1 is richer than customer k2 if σ(k1) > σ(k2) and the

richest customers will be with budget bM . The price set by the firm for product jis denoted by πj .

max
∑︂
k∈K

∑︂
j∈Sk

πjx
k
j (7)

s.t. πj ≥ 0 ∀j ∈ J (8)

where ∀k ∈ K,xk is an optimal solution of

maxxk

∑︂
j∈Sk

skjx
k
j (9)

∑︂
j∈Sk

xkj ≤ 1 (10)

∑︂
j∈Sk

πjx
k
j ≤ bσ(k) (11)

xkj ∈ {0, 1} ∀j ∈ Sk (12)

The objective (7) maximizes the revenue of the firm while constraints (8) ensure the prices of

products set by the firm are non-negative. The follower’s objective which is their preference value

is maximized by constraints (9). Constraints (10) ensure that each customer purchases only one

product or none, the constraints (11) establishes that the customer only purchases those products

which they can afford. Finally, constraints (12) ensure that the product selection variables of the

customers are binary.

Rusmevichientong et al. (2006) observed that the optimal solution of the bilevel problem exists

such that πj will always be in the budget set B. Calvete et al. (2019) hence defined a new variable

vlj , j ∈ J, l ∈ {1, ..,M} representing the prices of products, such that vlj = 1 if the product j has

price bl .The price of the product j can be replaced using πj =
∑︁

l∈M blvlj . The bilevel problem

can be reformulated by replacing the πj variables by vlj . Constraints (8) can be replaced by the

9

following set of constraints:

∑︂
l∈M

vlj ≤ 1 ∀j ∈ J (13)

vlj ∈ {0, 1} ∀j ∈ J, l ∈ {1, ..,M} (14)

Constraints (13) ensure that each product j has only one price, and only one binary variable vlj

can take value 1 in a feasible solution ∀j ∈ J . Constraints (11) can be replaced by the following

constraints.

xkj ≤
σ(k)∑︂
l=1

vlj ∀k ∈ K, j ∈ Sk (15)

After replacing it with vlj variables , the matrix corresponding to feasible set of each lower level

problem of the bilevel problem is totally unimodular, enabling us to relax the integrality constraints

(12), according to Wolsey (2020).

The decision variables πj are parameters for the lower level problems, thus the lower level is

a linear program and thus convex. As a result, the Karush–Kuhn–Tucker (KKT) conditions are

necessary and sufficient for optimality and the bilevel problem can be formulated into a single level

optimization problem. Also, the strong duality theorem can be applied to the lower level problem.

Calvete et al. (2019) uses duality theory and transforms the bilevel problem into a single level

non-linear optimization problem and further linearizes it to obtain the following single level linear

formulation.

maxv,x,z
∑︂
k∈K

zk (16)

s.t.
∑︂
j∈Sk

xkj ≤ 1 ∀k ∈ K (17)

M∑︂
l=1

vlj ≤ 1 ∀j ∈ I (18)

10

∑︂
i∈B(k,j)

xki +

σ(k)∑︂
l=1

vlj ≤ 1 ∀k ∈ K, j ∈ Sk : B(k, j) ̸= 0 (19)

xkj +
M∑︂

l=σ(k)+1

vlj ≤ 1 ∀k ∈ K, j ∈ Sk (20)

zk ≤
σ(k)∑︂
l=1

blvlj + bσ(k)
∑︂

i∈Sk:i ̸=j

xki ∀k ∈ K, j ∈ Sk (21)

zk ≤ bσ(k)
∑︂
j∈Sk

xkj ∀k ∈ K (22)

vlj , x
k
j ∈ {0, 1}, zk ≥ 0 ∀k ∈ K, j ∈ Sk, l ∈ {1, ..,M} (23)

The variables zk for k ∈ K represents the profit obtained from customer K, it is obtained

by means of constraints (21) and (22). For a detailed description of the single level linearization

procedure, we refer the reader to Calvete et al. (2019).

2.3 Solution Methodologies for Bilevel Programs

Bilevel programming problems are a challenging class of optimization problems as they contain

two optimization problems hierarchically. The leader at the upper level and the follower at the lower

level both aim to optimize their payoff functions. Bilevel problems having linear functions at both

levels are in general shown to be NP-hard (Hansen et al. (1992)). Depending on the structure of

the bilevel problems, various exact solution methodologies have been proposed. If the lower level

is convex and satisfies a suitable constraint qualification, then it can be reformulated into a single

level optimization problem using KKT conditions of the lower level problem, or a strong duality

theorem can be applied to the lower level as described by Kleinert et al. (2021) in their survey paper.

These are some of the most common methods used to solve bilevel problems provided necessary

conditions are met. Sinha et al. (2017) provide a review of the different solution methodologies

implemented to solve bilevel problems ranging from classical to evolutionary methods.

However, these traditional methods are restricted to convexity conditions and cannot be applied

in the case of non-convex and non-linear lower levels. To overcome this complexity, the use of

11

heuristics is widely used, because they help us to overcome the various challenges of bilevel prob-

lems such as non-convexity and non-differentiability. Various metaheuristics have been used to

solve such bilevel problems.

Nested Heuristics have been widely practiced to solve bilevel problems. Ma (2016) proposed

nested Genetic Algorithms at both upper and lower levels to solve a non-linear bilevel problem,

Miao et al. (2016) also made use of a Genetic Algorithm to solve a Mixed Integer Non-Linear

Bilevel Program. Angelo and Barbosa (2015) used an Ant Colony and Differential Evolution at

the upper and lower level respectively, to solve a bilevel transportation routing problem, Gao et

al. (2011) used a particle swarm optimization based algorithm for both levels in the context of a

pricing problem in the supply chain. Balakrishnan et al. (2013) and Rajesh et al. (2003) made use

of a tabu search. The successful implementations of metaheuristics to solve bilevel problems with

non-convex lower levels motivates this work.

2.4 Complexity of the Proposed Model

We propose a bilevel program with discrete variables at the lower level, i.e., non-convex lower

level to model the customer behavior considering both rank and utility. In the model we propose, as

we consider the reservation prices of each customer for each product, whereas in the case of Calvete

et al. (2019) rank-pricing model, the model consisted of only prices, thus they were able to exploit

the property where the prices of the products will always be equal to the budget of the customers,

exploiting this property led to a totally unimodular constraint matrix in the lower level enabling

them to relax the integrality constraints. Thereby, the problem was reformulated to a single level

using strong duality as described in (2.2.1). In our case, the prices of the products are not necessarily

equal to the budget of customers, hence the lower level is non-convex. Thus, the KKT conditions

or strong duality are not applicable. It is interesting to observe the combination of reservation

prices and ranks makes the problem difficult to solve. Bilevel programming problems with discrete

variables in the lower level and continuous upper-level problems have been studied only by a few

articles as highlighted by Fanghänel and Dempe (2009). Hence, we make use of metaheuristics to

solve the bilevel problem.

12

Chapter 3

Problem Definition and Formulation

In this chapter we formally define the bilevel product pricing with utility and ranks (BPP-UR)

and propose a singe level linear formulation.

3.1 Problem Description

Let K and J denote the set of customers and products. Each customer k ∈ K has a positive

budget bk, a subset of products Sk ∈ J which the customer has interest to purchase, a preference

value skj for each product j ∈ Sk, where skj > ski if customer k prefers product j over product i. The

preference of the customers are assumed to be without ties, i.e., the customer do not have the same

preference value for any two product and it also has a fixed reservation price rkj for each product j

∈ Sk which denotes how much the customer k is willing to spend for product j.

We assume that the customers are interested in purchasing at least one product from the com-

pany, i.e., Sk ̸= 0 for k ∈ K, also each product is included in the list of preferences of at least

one customer, i.e., for any product j ∈ J there exists k ∈ K such that j ∈ Sk. Else, the customer

or the product can be removed from the optimization process. We also assume the customers have

unit demand. The reservation price rkj of each customer k ∈ K for product j ∈ Sk is less than the

budget bk of the customer. We do not account for competitors in this model. We make use of the

bilevel model commonly known as the single leader with multiple independent followers.

The BPP-UR aims at establishing prices for a set of products sold by a manufacturer/firm to

13

maximize its revenue by taking into account the customer’s reaction to the prices determined by

the firm. The objective function of the leader is to maximize the revenue, whereas the follower i.e.,

customers seeks to maximize their net utility. The net utility of each customer is defined as the

weighted sum of the utility and the preference rank.

3.2 Bilevel product pricing with utility and ranks (BPP-UR)

In this section, we provide the mathematical formulation of BPP-UR. To formulate the problem

we use a set of binary decision variables and a set of continuous decision variables.

For each customer k ∈ K and product j ∈ J we define:

xkj =

⎧⎪⎪⎨⎪⎪⎩
1 if customer k purchases product j ,

0 otherwise.

For each product j ∈ J we define, πj which represents the price set by the firm for product j.

The Bilevel Formulation is as follows:

max
∑︂
k∈K

∑︂
j∈Sk

πjx
k
j (24)

s.t. πj ≥ 0 ∀j ∈ J (25)

where xkj is an optimal solution of:

max

⎧⎨⎩∑︂
k∈K

∑︂
j∈Sk

skjx
k
j ,

∑︂
k∈K

∑︂
j∈Sk

(︂
rkj − πj

)︂
xkj

⎫⎬⎭ (26)

s.t.
∑︂
j∈Sk

πjx
k
j ≤ bk ∀k ∈ K (27)

∑︂
j∈Sk

xkj ≤ 1 ∀k ∈ K (28)

xkj ∈ {0, 1} ∀j ∈ Sk (29)

For the leader (firm), the objective (24) aims to maximize the revenue. Constraints (25) ensure

the prices of the products set by the firm are non-negative. For the follower (customer’s) problem,

14

the objective (26) maximizes the net utility. Constraints (27) ensure that the customers will only

buy the products within their budget. Constraints (28), enforce the customers to buy one product or

none.

The proposed BPP-UR is a bilevel optimization problem with bi-objective functions at the

lower level, which is defined as a semivectorial bilevel optimization problem by Bonnel and Mor-

gan (2006). The most common approach in solving multi-objective optimization problems is the

weighted-sum method. If all the weights are positive, this approach provides sufficient conditions

for Pareto optimality, as shown by Marler and Arora (2010). We introduce a parameter w to scalar-

ize the lower level. Where w is the weights assigned by the decision maker. Thus the follower’s

objective (24) can be represented as:

max

⎛⎝∑︂
k∈K

∑︂
j∈Sk

wskjx
k
j +

∑︂
k∈K

∑︂
j∈Sk

(1− w)
(︂
rkj − πj

)︂
xkj

⎞⎠ (30)

3.3 Single Level Non-Linear Reformulation

We present the single level reformulation of the BPP-UR. The objective function of the follower

can be represented with the help of additional constraints. We follow the work by Shioda et al.

(2011) who represented the objective function of the follower as constraints for the maximum utility

product pricing model (MPP) as following:

(︂
rkj − πj

)︂
xkj ≥ rki x

k
j − πi, ∀k ∈ K, i, j ∈ J : i ̸= j (31)

Constraints (31) ensure that if the customer purchases a product, i.e. xkj = 1, the utility is

greater than all the other products. If xkj = 0 the constraints always holds.

The MPP does not have any budget and ranks. In the case of BPP-UP we can make a similar

comparison with certain additional conditions. We can compare the net utility of each customer

for each product, with the condition that the comparison must be done only when the products are

within the customer’s preferred set Sk and budget bk. Thus, the objective function of the follower

15

(30) can be represented by using the following constraint:

(︂
wskj + (1− w)

(︂
rkj − πj

)︂)︂
xkj ≥

(︂
wski + (1− w)rki

)︂
xkj

− (1− w)πi, ∀k ∈ K, i, j ∈ Sk, i : πi ≤ bk, i ̸= j

(32)

The set {i ∈ Sk : πi ≤ bk} can be represented by using disjunctive inequalities. We define

auxiliary variable qki as:

qki =

⎧⎪⎪⎨⎪⎪⎩
0, if πi ≤ bk,

1, otherwise

The constraint 32 can be represented as:

(︂
wskj + (1− w)

(︂
rkj − πj

)︂)︂
xkj ≥

(︂
wski + (1− w)rki

)︂
xkj

− (1− w)πi −Mqki , ∀k ∈ K, i, j ∈ Sk : i ̸= j

(33)

The auxiliary variable qki works as a switch when the price of product πi is less than equal to the

budget bk of the customer , the switch is off and comparison between net utility of each customer

for each product within the customer’s preferred set Sk is made. But, when budget is more than the

price, as the customer cannot purchase those products, the big M ensures that the constraint holds.

Using constraints (33) the single level reformulation of BPP-UP can be presented as following:

max
∑︂
k∈K

∑︂
j∈Sk

πjx
k
j (34)

s.t : πj ≥ 0, ∀j ∈ J (35)(︂
wskj + (1− w)

(︂
rkj − πj

)︂)︂
xkj ≥(︂

wski + (1− w)rki

)︂
xkj − (1− w)πi −Mqki , ∀k ∈ K, i, j ∈ Sk, i ̸= j (36)

bk ≥ πi

(︂
1− qki

)︂
+ Lqki , ∀k ∈ K, i ∈ Sk (37)

bk ≤ (πi − ϵ) qki + U
(︂
1− qki

)︂
, ∀k ∈ K, i ∈ Sk (38)∑︂

j∈Sk

πjx
k
j ≤ bk, ∀k ∈ K (39)

16

∑︂
j∈Sk

xkj ≤ 1, ∀k ∈ K (40)

xkj ∈ (0, 1), ∀k ∈ K, j ∈ J (41)

The objective function of the follower is replaced by constraints (36). Constraints (37) and (38)

ensure qki takes value of 1 when budget of customer bk is strictly less than the product price πk , else

0 otherwise. L and U are the lower and upper bound for the budgets. ϵ is a small value. Without the

usage of ϵ, qki variable would not be enforced to 0 when the budget of customer bk is equal to the

price of the product πk. The rest of the constraints are the same.

3.4 Single Level Linear Reformulation (SLL)

Formulation SLNL is non-linear because of the objective function (34), the constraints (36,

(37), (38) and 39). In order to linearize the constraints, we introduce continuous variables pkj and

tki , which are defined as:

pkj =

⎧⎪⎪⎨⎪⎪⎩
πj , if xkj = 1,

0, otherwise

tki =

⎧⎪⎪⎨⎪⎪⎩
πi, if qki = 1,

0, otherwise

Constraints (36) can be linearized by the following set of constraints which is similar to the

linearization technique used by Shioda et al. (2011).

pkj ≥ 0 ∀k ∈ K, j ∈ Sk (42)

pkj ≤ bkxkj ∀k ∈ K, j ∈ Sk (43)

pkj ≤ πj ∀k ∈ K, j ∈ Sk (44)

pkj ≥ πj − bmax

(︂
1− xkj

)︂
∀k ∈ K, j ∈ Sk (45)

Where bmax = maxk∈K
(︁
bk
)︁

, constraints (42) ensure price of product is positive, constraints (43)

17

ensure that the price of the selected product j ∈ J for customer k ∈ K is less than their budget.

Constraints (45) forces pkj to take value of πj when the customer purchases the product, i.e. xkj = 1.

Note that by adding constraints (43), the constraints (39) are not necessary.

Constraint (37) and (38) can be linearized by the following set of constraints:

πminq
k
i ≤ tki ≤ πmaxq

k
i ∀k ∈ K, i ∈ Sk (46)

− πmax

(︂
1− qki

)︂
≤ tki − πi ≤ −πmin

(︂
1− qki

)︂
∀k ∈ K, i ∈ Sk (47)

Constraints (46) ensure tki takes value of 0, when qki is 0, and constraints (47) enforce tki to take

value of 1, when qki is 1. Thus, the corresponding Singe level linear formulation is presented below.

max
∑︂
k∈K

∑︂
j∈Sk

pkj (48)

s.t.
∑︂
j∈Sk

xkj ≤ 1 ∀k ∈ K (49)

xkj ∈ (0, 1) ∀k ∈ K, j ∈ Sk (50)(︂
wskj + (1− w) rkj

)︂
xkj − (1− w) pkj ≥(︂

wski + (1− w) rki

)︂
xkj − (1− w)πi −Mqki ∀k ∈ K, i, j ∈ Sk, i ̸= j (51)

pkj ≤ πj ∀k ∈ K, j ∈ Sk (52)

pkj ≤ bkxkj ∀k ∈ K, j ∈ Sk (53)

pkj ≥ πj − bmax

(︂
1− xkj

)︂
∀k ∈ K, j ∈ Sk (54)

bk ≥ πi − tki + Lqki ∀k ∈ K, i ∈ Sk (55)

bk ≤ tki − ϵqki + U
(︂
1− qki

)︂
∀k ∈ K, i ∈ Sk (56)

πminq
k
i ≤ tki ≤ πmaxq

k
i ∀k ∈ K, i ∈ Sk (57)

− πmax

(︂
1− qki

)︂
≤ tki − πi ≤ −πmin

(︂
1− qki

)︂
∀k ∈ K, i ∈ Sk (58)

pkj , πj ≥ 0 ∀k ∈ K, j ∈ Sk (59)

The objective function of the leader (34) is replaced by (48), the rest of the constraints are same.

18

Chapter 4

Solution Algorithms

In this chapter, we present a metaheuristic and a nested heuristic to solve the BPP-UR. As pre-

viously established in Chapter 2, bilevel problems are a challenging class of optimization problems,

the difficulty that arises in solving bilevel problems is that unless a solution is optimal for the lower

level problem, it cannot be feasible for the overall problem as experimented by Angelo and Barbosa

(2015). This means that an approximate solution method cannot be used to solve lower-level prob-

lems as they do not guarantee optimality. Hence, to solve the lower-level problem to optimality,

we use an assignment heuristic, which assigns the products to the customers depending on their net

utility. The metaheuristic uses a scatter search algorithm to solve the upper level and the assignment

heuristic to solve the lower level. Whereas, the heuristic perturbs the prices by using the budgets of

the customers and uses the same assignment heuristic to solve the lower level.

4.1 Scatter Search Metaheurestic

Scatter search is an evolutionary metaheuristic which has been successfully applied to solve

nonlinear and hard optimization problems. It contrasts with other evolutionary procedures such as

genetic algorithms by providing strategic principles for joining solutions, whereas other evolution-

ary procedures resort to randomisation. It is based on formulations proposed in the 1960s for com-

bining decision rules, Glover (1997) described the scatter search frame work, Glover et al. (2003)

presented a simple scatter search tutorial. Scatter Search has been successfully implemented in a

19

bilevel problem by González Velarde et al. (2015) for determining highway tolls. The methodology

includes the following basic elements: Generation of a Population PSet, Extraction of Reference

Set RefSet from the Population, Combination of subsets from RefSet, and update of RefSet.

Scatter search differs widely from the population-based metaheuristics as it does not handle the

entire population, it only requires a subset of 10 to 20 solutions from the population, this subset

is called a reference set. Hence, unlike populations, the reference set of scatter search is relatively

small. Evolutionary metaheuristics work in a randomized way to generate new solutions, whereas

scatter search chooses two or more elements of a reference set in a systematic way to create new

solutions. How the reference set is generated initially and later updated, significantly affects the

performance of the scatter search algorithm. The construction of the initial RefSet can be based on

quality or diversity, the updating of RefSet can also be performed on these two factors. Generally,

a mix of both is selected to initialize the solution to have a balanced RefSet.

To solve the BPP-UR, we analyzed the implementation described in Glover et al. (2003). Scatter

search was taken as a basis to solve the upper level of the BPP-UR, where the leader(firm) deter-

mines the product prices to maximize their revenue. An assignment heuristic is used to solve the

problem at the lower level, which is described in Section 3.2. The scatter search algorithm consists

of five main steps. The pseudo-code for the scatter search metaheuristic is depicted in Algorithm 1.

We denote the solution with the worst upper-level objective in RefSet1 as worstobjref.

Step 1: The algorithm starts by generating PSet, an initial set of diverse solutions for the

price variables to be determined by the leader. This initial set is generated randomly to ensure

diversity as the improvement solutions are built on it, but at the same time, the initialization is

also done in a controlled manner, to guarantee that the generated initiated solutions are within the

budget of the customers, hence feasible. The lower bound for each product j ∈ J is set to the least

reservation price rkj offered by the customers k ∈ K for that product and the upper bound is set to

the maximum budget of the customers. The algorithm starts by dividing the range of price variables

into sub-ranges of equal size with a width of five. Then, a solution is constructed in two steps. First,

a subrange is randomly selected and then a value is randomly generated within that subrange. The

process is repeated to obtain a population of size |P | denoted as PSet.

Step 2: After the generation of the initial set of solutions, the improvement method is applied.

20

Algorithm 1: Scatter Search Metaheuristic Pseudo-code
Step 0: Initiate Data
Read the bilevel instance
Step 1,2: Generate and Improve Initial Solution
Use the diversification generator to generate an initial solution set (PSet) of size |P |.

Apply the Improvement method.
Step 3: Create Reference Set
Build RefSet of size b consisting of b1 high quality solutions and b2 diverse solutions.
Step 4: Create Subsets
while terminating condition do

NewElements← True
while NewElements do

for Each subset of two in RefSet do
Step 5: Combine Solutions and Check for Improvement
Apply the solution combination method to obtain new solutions xn and then

apply improvement method to obtain x∗n.
if x∗n is not in RefSet1 and upper-level objective is greater than equal to upper

level objective of worstobjref then
if upper-level objective of x∗n is equal to upper level objective of
worstobjref then

if lower-level objective of x∗n is better than lower-level objective of
worstobjref then

Add x∗n to RefSet1 and delete the worst solution currently in
RefSet1.

Make NewElements← True
end

else
Add x∗n to RefSet1 and delete the worst solution currently in RefSet1.
Make NewElements← True

end
end

end
end
if terminating condition is not reached then

Build a new RefSet, initialize with the solutions currently in RefSet1, fill the
remaining set using the diversification generator as described above

end
end

As the solutions generated are feasible, the improvement method always works on feasible solutions.

The improvement method used is the Nelder-Mead Simplex Method as proposed in Nelder and

Mead (1965), it is a classical local optimizer for unconstrained non-linear optimization problems. It

runs for a fixed number of iterations to improve the evaluation of the leader’s objective. We make

use of the well-known scipy python library provided by Virtanen et al. (2020) to implement the

21

Nelder-Mead Simplex Method.

Step 3: The next step is to build the RefSet, which consists of a combination of high qual-

ity and diverse solutions, generally, the high quality and diverse solutions each constitute 50% of

the RefSet denoted by sizes b1 and b2 respectively. The size of RefSet is b = b1 + b2. This

RefSet is used to generate new solutions by way of Solution Combination methods. The RefSet

is constructed by selecting the best b1 solutions from the PSet concerning the leader’s objective

function, the leader’s objective for each solution in the RefSet is evaluated by solving the lower

level problem described in 3.2 with the help of an assignment heuristic, the decision variables of the

upper level i.e., prices are parameters for the lower level, the PSet is sorted in decreasing order of

the leader’s objective and the desired size of b1 are selected. The selected solutions are then deleted

from PSet. Next, for each solution in PSet, the Euclidean distance with each solution RefSet

is computed, and the minimum Euclidean distance with RefSet is selected. After computing the

minimum Euclidean distance for each solution in PSet with the solutions in RefSet, the solution

which has the maximum of these minimum Euclidean distances is selected, this solution is then

added to the RefSet and deleted from PSet. This process is repeated b2 times. The resulting

RefSet consists of b1 high-quality solutions termed as Reference Set 1 (RefSet1) and b2 diverse

solutions termed as Reference Set 2 (RefSet2).

The pseudo-code for the assignment heuristic is depicted in Algorithm 2. The assignment

heuristic starts by computing the lower-level objective value which is described by:(︂
wskjx

k
j + (1− w)

(︂
rkj − πj

)︂
xkj

)︂
for each customer k ∈ K, for each product j ∈ J which lies in

their preferred set Sk and is within their budget bk. The customer selects the product which gives

them the highest objective value i.e., their net utility, in case of ties the selection will be of the

product which has the highest price, as we have assumed a cooperative behavior. Such a selection

will be beneficial to the leader.

22

Algorithm 2: Assignment Heuristic

for k=1; k ≤ K; k++ do
maxobj← 0
selectedprod← 0
for j=1; j ≤ J; j++ do

if sjk ̸= 0 and bk ≥ πj then
obj = wskjx

k
j + (1− w)

(︂
rkj − πj

)︂
xkj

if obj ≥ maxobj then
if obj =maxobj then

if πj > πselectedprod then
maxobj← obj
selectedprod← j

end
end

else
maxobj← obj
selectedprod← j

end
end

end
end

Step 4: After this, for every pair of solutions in the RefSet, a subset is generated. These

subsets are used to form a linear combination of RefSet. The resulting process creates three new

combined solutions, which are computed based on the following equations:

C1: x = x′ − d

C2: x = x′ + d

C3: x = x′′ + d

where x′ and x′′ are the RefSet solutions , d = r(x′′−x′)/2 and r is a random number between

(0, 1).

Step 5: After the solutions are combined, they are processed through the improvement method.

If the combined solution is different than the solutions present in RefSet1 and gives a better upper-

level objective value than the solution with the worst upper-level objective in RefSet1, a replace-

ment is done. A caveat here is as this is a bilevel problem if the combined solution’s upper-level

objective is equal to that of the solution with the worst upper-level objective in the RefSet1, these

23

solutions are also of interest to us, it could be possible for such combined solutions that the lower-

level objective is improved, thus those solutions are better bilevel solutions. Hence, we compare the

lower-level objectives to check for improvement and if there is an improvement the worst solution

with regards to the upper-level objective in RefSet1 is replaced by the combined solution. The

process is repeated until the combined solutions provide better quality solutions or all the subsets in

the RefSet are exhausted to combine solutions.

At this stage, the diversification method is used to generate a new RefSet2, the RefSet1

remains the same as it contains high-quality solutions. The new RefSet is obtained by combining

these two and the process is repeated for a fixed number of iterations.

4.2 Price Perturbation Heuristic

In this section, we present a solution algorithm that provides feasible solutions in a short amount

of time. We propose a nested heuristic to solve the upper and lower-level problems. Indeed, opti-

mality of solutions generated from the heuristics is not guaranteed, but good quality solutions are

obtained in a very short amount as compared to the scatter search metaheuristic described in the

previous section. The upper and lower level of the BPP-UR are relatively simple problems to solve,

provided the decision variables of the other level are known. If the leader determines the prices of

the products then the lower level becomes an integer optimization problem, where each customer

k ∈ K aims to optimize their net utility, and the purchase decision xkj of each customer for a prod-

uct can be determined using a heuristic. Similarly, if the purchase decisions of the customers are

known, then the upper level becomes an unconstrained optimization problem, which is to maximize

the price variables within its bound.

The pseudo-code for the price perturbation heuristic is depicted in Algorithm 3. The Heuristic

starts by initiating the products’ prices to be determined by the leader. We set the price of each

product j ∈ J to the least reservation price rkj offered by the customers k ∈ K for that product.

After the price is set, the prices become parameters for the lower level problem, and thus it is a

linear integer problem. We make use of the same assignment heuristic described previously at 2, to

determine the optimal product selection of each customer xkj with regards to their net utility. After

24

solving the lower level, we perturb the product’s prices randomly to one of the customer’s budgets.

The process is repeated for a fixed number of iterations.

Algorithm 3: Price Perturbation Heuristic
// Initiate Data
Read bilevel instance
Initialize: πj

bestobjective← 0
while terminating condition do

Solve the lower level problem using Assignment Heuristic 2
if objective value of leader is better than the bestobjective obtained then

modify the bestobjective
end
Perturb the product prices

end

25

Chapter 5

Computational Experiments

In this chapter, we present the results of computational experiments. We compare the perfor-

mance of the scatter search metaheuristic, and price perturbation heuristic with the solutions ob-

tained by solving the SLL of the BPP-UR as described in Chapter 3 using CPLEX. We present four

computational sessions. The aim of these sessions are:

(1) Provide a validity of the SLL formulation.

(2) Provide a metaheuristic and a heuristic that are computationally faster than the SLL formula-

tion.

(3) Assess the performance of the heuristics.

In this research, all solution procedures and algorithms are coded in python. CPLEX 12.10 is used as

the MIP solver. All computational experiments are conducted on an Intel(R) Core(TM) i7-7700HQ

CPU @ 2.80GHz with 24 GB of RAM running on a windows environment. The solver can use up

to 8 threads and a total time limit of 4h of CPU time (14400s) is imposed. CPLEX is used in its

default settings.

5.1 Comparing the Performances

We use product pricing instances proposed by Shioda et al. (2011), We assume the list of pre-

ferred products for each customer be 75% of |J |, rounded up, and the ranks are generated randomly.

26

The size of the instance is determined by the number of customers |K| and the number of

products |J |. We use four sets of instances of sizes 10 * 10, 20 * 10, 20 * 20, and 90 * 20 to

demonstrate our computational results, each Set of instances consists of 10 instances. The scatter

search parameters are, Population Size (P) is 100, size of RefSet is 10, with 5 each for RefSet1 and

RefSet2, and the maximum number of iterations is set to 3. We run the price perturbation heuristic

for 5000 iterations. To assess the metaheuristic and heuristic’s performance we run them for fifteen

independent times for each instance.

The computational results for Set 1 are summarized in Table 5.1. The first column is the name

of the instance. The next 4 columns indicate the results obtained from CPLEX by solving the

SLL, the columns Leader Obj and Follower Obj denote the total objective value of the leader and

follower respectively. The next column %GAP displays the relative gap between the best integer

feasible solution and the best bound found by CPLEX at termination. A %GAP of zero indicates

that CPLEX has solved the instance to optimality, and the column CPU(s) denotes the time taken by

CPLEX to find the optimal solution in seconds. Columns 6-11 represent the results obtained from

solving the BPP-UR using the scatter search metaheuristic. The Leader Obj avg and Follower Obj

avg represent the average obtained by running the metaheuristic for fifteen independent times, the

next 3 columns denote the minimum, maximum, and average relative optimality gap between the

leader’s objective obtained by CPLEX and that of the metaheuristic, finally, the average CPU time

in seconds is presented. Columns 12-17 represent the results obtained by solving the BPP-UR using

the price perturbation heuristic in a similar way.

Table 5.1: Algorithms’ Performance: Set 1
Single Level Linear Formulation Scatter Search Metaheuristic Price Perturbation Heuristic

Instance LeaderObj Follower Obj %GAP CPU(s) Leader Obj Follower Obj opt gap CPU(s) Leader Obj Follower Obj opt gap CPU(s)

avg avg min max avg avg avg avg min max avg avg

test 10k10ta1 203.00 56.00 0..00 0.56 195.93 59.38 2.46 6.90 3.48 2.09 191.80 62.08 4.43 6.40 5.52 0.25

test 10k10ta2 221.00 58.60 0.00 0.16 213.00 58.13 0.90 6.79 3.62 2.38 216.73 60.59 0.90 2.26 1.93 0.24

test 10k10ta3 228.00 55.80 0.00 0.55 222.66 56.96 1.32 3.51 2.34 2.37 223.07 57.97 0.88 3.07 2.16 0.26

test 10k10ta4 227.00 60.80 0.00 0.53 220.27 62.35 0.44 6.17 2.97 2.37 220.93 65.29 0.88 4.41 2.67 0.26

test 10k10ta5 214.00 56.20 0.0.00 0.61 201.20 58.29 2.80 9.81 5.98 2.22 203.20 61.95 3.74 6.07 5.05 0.28

test 10k10ta6 210.00 66.20 0.00 0.83 201.40 66.16 1.43 8.57 4.10 2.27 201.53 66.97 1.43 6.19 4.03 0.25

test 10k10ta7 228.00 53.20 0.00 0.25 224.40 55.87 0.44 4.39 1.67 2.18 225.13 58.69 0.44 1.75 1.26 0.29

test 10k10ta8 213.00 40.60 0.00 2.55 206.53 47.72 1.41 5.63 3.04 2.32 206.60 50.19 2.35 4.23 3.00 0.29

test 10k10ta9 231.00 60.40 0.00 0.63 222.20 63.27 1.73 8.66 3.81 2.51 224.80 62.36 0.87 3.90 2.68 0.27

test 10k10ta10 228.00 51.20 0.00 0.47 217.4 54.31 1.32 9.65 4.65 2.15 219.53 52.40 1.32 4.82 3.71 0.28

Average 0.00 0.71 1.43 7.01 3.56 2.29 1.72 4.31 3.20 0.27

27

For Set 1 Instances, we observe that CPLEX solves all 10 instances to optimality with an average

time of under 1 second. The scatter search metaheuristic also solves within an average time of 3

seconds with an average relative optimality gap of less than 4% for the 10 instances, the average

minimum and maximum relative optimality gap for the instances are 1.43% and 7% respectively,

and the worst deviation from optimality is within 10%. Whereas, the price perturbation heuristic

was able to solve with an average time of fewer than 0.3 seconds, which is even lower than the time

taken by the scatter search metaheuristic, the average relative minimum, maximum, and average

optimality gap for the 10 instances are 1.72%, 4.31% and 3.20% respectively. The results indicate

that both the metaheuristic and heuristic reach high-quality solutions for Set 1 within a short period

of time.

The next instance Set 2, consists of 20 Customers |K| and 10 Products |J |, computational results

are summarized in 5.2.

Table 5.2: Algorithms’ Performance: Set 2
Single Level Linear Formulation Scatter Search Metaheuristic Price Perturbation Heuristic

Instance LeaderObj Follower Obj %GAP CPU(s) Leader Obj Follower Obj opt gap CPU(s) Leader Obj Follower Obj opt gap CPU(s)

avg avg min max avg avg avg avg min max avg avg

test 20k10ta1 432.00 112.80 0.00 34.2 411.60 122.83 1.16 7.41 4.72 6.96 410.93 120.44 4.40 5.32 4.88 0.44

test 20k10ta2 424.00 116.60 0.00 17.70 413.67 108.97 1.42 4.95 2.44 8.36 380.80 102.88 9.20 11.08 10.19 0.47

test 20k10ta3 415.00 106.40 0.00 23.06 402.13 109.43 0.48 4.58 3.10 6.70 375.60 95.15 9.16 9.88 9.49 0.44

test 20k10ta4 422.00 119.00 0.00 26.09 400.33 118.08 2.61 7.58 5.14 8.77 391.87 116.20 5.69 8.06 7.14 0.57

test 20k10ta5 392.00 115.20 0.00 55.27 369.53 110.00 3.32 8.42 5.73 6.72 367.73 114.56 5.36 7.14 6.19 0.45

test 20k10ta6 434.00 110.60 0.00 14.78 408.93 117.60 3.92 8.06 5.78 7.33 414.27 120.96 3.00 5.30 4.55 0.47

test 20k10ta7 411.00 118.40 0.00 64.45 392.47 115.23 2.43 6.33 4.51 7.99 393.53 122.20 3.65 4.87 4.25 0.45

test 20k10ta8 434.00 117.20 0.00 22.84 415.60 117.44 1.84 8.76 4.24 7.10 415.20 118.32 2.76 5.07 4.33 0.48

test 20k10ta9 418.00 111.80 0.00 29.70 402.13 109.65 1.91 5.98 3.80 6.57 397.87 111.03 4.07 5.50 4.82 0.45

test 20k10ta10 435.00 114.60 0.00 60.33 423.47 116.77 0.23 6.90 2.65 7.60 424.73 118.75 1.84 3.22 2.36 0.43

Average 0.00 34.84 1.93 6.90 4.21 7.41 4.91 6.54 5.82 0.47

For the Set 2 Instances, we observe that CPLEX is again able to solve all the 10 instances

to optimality with an average time of about 35 seconds. The results from the metaheuristic are

obtained within an average time of below 8 seconds, with an average relative optimality gap of

about 4% for the 10 instances, the average minimum and maximum relative optimality gap for the

instance set are 1.93% and 6.90% respectively. For all the fifteen iterations for the instances no

solution’s relative optimality gap has gone beyond 9% which shows the metaheuristic can achieve

high-quality results consistently. The price perturbation heuristic was able to solve with an average

time of fewer than 0.5 seconds, the average relative minimum, maximum and average optimality

gap for the instance set is 4.91%, 6.54%, and 5.82% respectively. We observe that the deviations are

28

clustered around 5%, indicating the consistency of the algorithm. The heuristic was able to obtain

high-quality solutions within a fraction of a second, The metaheuristic was also able to obtain high-

quality solutions within 1/5th of the time utilized by CPLEX to solve to optimality.

The next Instance Set consists of 20 Customers |K| and 20 Products |J |, computational results

are summarized in 5.3.

Table 5.3: Algorithms’ Performance: Set 3

Single Level Linear Formulation Scatter Search Metaheuristic Price Perturbation Heurestic

Instance LeaderObj Follower Obj %GAP CPU(s) Leader Obj Follower Obj opt gap CPU(s) Leader Obj Follower Obj opt gap CPU(s)

avg avg min max avg avg avg avg min max avg avg

test 20k20ta1 469.00 289.40 0.00 37.55 433.27 256.72 2.77 8.74 6.38 11.48 441.47 273.17 3.84 6.82 5.87 0.67

test 20k20ta2 452.00 259.4 0.00 27.58 433.27 261.64 2.21 5.97 4.14 11.61 433.27 262.71 2.43 5.09 4.14 0.67

test 20k20ta3 442.00 263.20 0.00 168.03 418.60 260.25 2.26 9.05 5.29 13.35 421.73 266.63 3.85 5.66 4.59 0.66

test 20k20ta4 458.00 263.00 0.00 0.39 435.33 252.75 1.75 7.21 4.91 10.88 440.13 248.87 3.28 4.37 3.90 0.68

test 20k20ta5 457.00 264.00 0.00 6.80 433.33 262.68 2.63 8.32 5.18 12.94 434.20 256.07 3.94 6.13 4.99 0.75

test 20k20ta6 454.00 274.60 0.00 200.08 428.53 254.01 3.08 8.15 5.61 11.85 430.93 279.21 4.19 5.95 5.08 0.72

test 20k20ta7 464.00 271.00 0.00 1123.30 445.07 259.67 2.59 5.82 4.08 12.51 443.67 266.25 3.23 5.17 4.38 0.68

test 20k20ta8 443.00 267.00 0.00 0.47 428.13 258.83 2.03 5.19 3.36 11.97 428.20 260.27 2.48 3.84 3.34 0.70

test 20k20ta9 450.00 247.00 0.00 54.64 428.93 265.63 2.00 6.44 4.68 12.48 424.47 267.23 4 6.67 5.67 0.69

test 20k20ta10 452.00 259.80 0.00 109.7 431.00 252.43 1.77 6.44 4.65 13.86 425.07 257.12 4.87 6.64 5.96 0.68

Average 0.00 172.85 2.31 7.15 4.83 12.29 3.61 5.63 4.79 0.69

For the Set 3 Instances, CPLEX solves to optimality all the 10 instances in the set with an av-

erage time of about 3 minutes. On the other hand, the metaheuristic was able to obtain solutions

with an average relative optimality gap of about 5% within 13 seconds, its average worst and best

deviations are 7.15% and 2.15% respectively. The heuristic achieves a solution much quicker as

compared to CPLEX or the metaheuristic. achieving solutions within an average relative optimal-

ity gap of less than 5% within a second. Its worst deviations fare better than the metaheuristic

with an average value of 5.63%, the average minimum deviation is 3.61%. Both the metaheuristic

and heuristic consistently achieve high-quality solutions quickly within small deviations from the

optimal solution obtained by CPLEX.

Lastly, we run our algorithms on a much larger instance consisting of 90 Customers |K| and

20 Products |J |, the results for instance Set 4 are presented in two tables, in a slightly different

format as CPLEX was not able to solve these instances to optimality. Table 5.4 provides the results

obtained from CPLEX by solving the SLL, Columns 2 and 3 show the Lower and Upper Bound

found by CPLEX. The next column %GAP represents the gap between the upper and the lower

bound. Finally, the time taken by CPLEX in seconds is shown.

29

Table 5.4: SLL Performance: Set 4
Single Level Linear Formulation

Instance LeaderObj LB LeaderObj UB Follower Obj %GAP CPU(s)

test 90k20ta1 1935.00 2094.00 1169.00 8.22 time

test 90k20ta2 1968.00 2091.00 1173.60 6.25 time

test 90k20ta3 1961.00 2077.95 1176.80 5.96 time

test 90k20ta4 1970.00 2083.00 1084.40 0 5.74 time

test 90k20ta5 1941.00 2072.00 1126.60 6.75 time

test 90k20ta6 1925.00 2073.00 1196.00 7.69 time

test 90k20ta7 1933.00 2053.89 1179.00 6.25 time

test 90k20ta8 1945.00 2061.00 1175.20 5.96 time

test 90k20ta9 1971.00 2070.00 1163.40 5.02 time

test 90k20ta10 1949.00 2089.99 1106.40 7.23 time

Average 0 6.51

Table 5.5 provides a comparison between the scatter search metaheuristic, and the price pertur-

bation heuristic with the results obtained from CPLEX. The table shows the best objective value

of leader (BestOFL), the average objective value of the leader (AverageOFL), and the average

objective value of the follower (AverageOFF) obtained from the fifteen runs of the metaheuris-

tic and the heuristic. We calculate the %GAP between the metaheuristic’s solutions and the lower

bound found by CPLEX as LB−OFL
LB × 100, the GAP between the metaheuristic’s best and average

OFLs and CPLEX’s LB are calculated in the respective %GAP LB columns. Likewise, we also

calculate the gap between the metaheuristic’s solutions and the upper bound found by CPLEX as

UB−OFL
UB × 100 which are presented in the % GAP UB columns for the best and average solutions.

Finally, we do the same calculations for the price perturbation heuristic.

Table 5.5: Algorithms’ Performance: Set 4

Scatter Search Metaheuristic Price Perturbation Heuristic

Instance Best Average Best Average

Best OFL %GAP LB %GAP UB Average OFL Average OFF %GAP UB %GAP LB CPU(s) Best OFL %GAP LB %GAP UB Average OFL Average OFF %GAP LB %GAP UB CPU(s)

test 90k20ta1 1870.00 3.36 10.70 1856.53 1090.87 4.06 11.36 292.89 1881.00 2.79 10.17 1868.27 1113.92 3.45 10.78 3.00

test 90k20ta2 1881.00 4.42 10.04 1853.47 1146.27 5.82 11.34 243.86 1889.00 4.01 9.66 1860.67 1146.91 5.45 11.02 2.58

test 90k20ta3 1901.00 3.06 8.52 1878.27 1138.01 4.22 9.61 252.86 1906.00 2.80 8.28 1895.93 1194.33 3.32 8.76 2.85

test 90k20ta4 1913.00 2.89 8.16 1894.73 1137.37 3.82 9.04 287.00 1903.00 3.40 8.64 1891.60 1891.60 3.98 9.19 2.88

test 90k20ta5 1895.00 2.37 8.54 1866.60 1128.19 3.83 9.91 252.63 1871.00 3.61 9.70 1862.60 1179.52 4.04 10.11 3.00

test 90k20ta6 1899.00 1.35 8.39 1867.67 1155.05 2.98 9.91 281.48 1875.00 2.60 9.55 1864.13 1189.23 3.16 10.08 2.93

test 90k20ta7 1887.00 2.38 8.13 1863.47 1123.04 3.60 9.27 251.44 1886.00 2.43 8.17 1877.00 1168.17 2.90 8.61 2.86

test 90k20ta8 1896.00 2.52 8.01 1838.53 1146.72 5.47 10.79 331.22 1848.00 4.99 10.33 1830.93 1120.96 5.86 11.16 2.95

test 90k20ta9 1908.00 3.20 7.83 1873.60 1169.23 4.94 9.49 307.28 1894.00 3.91 8.50 1882.13 1193.39 2.77 9.08 2.77

test 90k20ta10 1902.00 2.41 8.99 1872.00 1134.80 3.95 10.43 301.10 1859.00 4.62 11.05 1846.73 1127.96 2.77 11.64 3.40

Average 2.80 8.73 4.27 10.12 280.17 3.52 9.41 3.77 10.04 2.92

The computational results from Table 5.4 show that CPLEX is not able to solve the instances to

optimality within the time limit of 14400s. CPLEX achieves an average gap of 6.51% between its

30

lower bound and the best upper bound it achieves. The metaheuristic and the heuristic were able

to find solutions within a 5% deviation from CPLEX’s lower bound for all the instances. Although

it doesn’t outperform CPLEX results obtained were very consistent from both the algorithms with

average deviations from CPLEX’s lower bound around 4%. For all the instances the algorithm’s

results are within 11% deviation from CPLEX’s upper bound, with the average deviation lying near

10%. If we observe the deviations of best solutions obtained by the algorithms with the LB of

CPLEX’s solution, the average is within 4%. The metaheuristic takes an average time of 280s while

the heuristic runs for just 3 seconds.

We observe from the results of the four sets of instances, that the algorithms show good per-

formance against CPLEX in terms of speed, generating high-quality solutions in a short amount of

time consistently, thereby providing a cheaper computational option.

31

Chapter 6

Conclusion and Future Research

In this thesis we studied a product pricing problem with ranks and utilities, extending the ex-

isting formulations on the maximum product pricing problem and the rank pricing problem. The

problem aims at determining optimal product prices for a firm offering a series of products to unit

demand customer segments. We modeled the problem as a bilevel problem and presented its single

level linear formulation. We then developed a scatter search metaheuristic and a price perturbation

heuristic.

We presented a computational study of the bilevel and single level formulation. We observe

that the solutions from the bilevel formulation were not outperforming the single-level formulation,

providing an informal validity for the SLL. CPLEX was able to solve the small and medium-sized

instances to optimality. For the larger-size instances, CPLEX could not solve it to optimality in

the time limit we specified. Furthermore, the algorithms performed much faster and were able to

achieve high-quality results within a short amount of time. The metaheuristic and the heuristic

obtained near-optimal solutions for the small and medium-sized instances, for larger-size instances,

they achieved an average optimality gap of 4.27% and 3.77% respectively.

For future research, several directions are possible. Additional work can be done on modeling

customer purchase behaviors. One could consider multiple leaders with multiple followers, model-

ing the firm’s competitors to make it even more realistic. Mathematical proof for transforming such

non-linear bilevel problems into a single level formulation can be studied.

32

References

Aksoy-Pierson, M., Allon, G., & Federgruen, A. (2013). Price competition under mixed multino-

mial logit demand functions. Management Science, 59(8), 1817–1835.

Angelo, J. S., & Barbosa, H. J. (2015). A study on the use of heuristics to solve a bilevel program-

ming problem. International Transactions in Operational Research, 22(5), 861–882.

Balakrishnan, A., Banciu, M., Glowacka, K., & Mirchandani, P. (2013). Hierarchical approach for

survivable network design. European Journal of Operational Research, 225(2), 223–235.

Bialas, W. F., & Karwan, M. H. (1984). Two-level linear programming. Management science,

30(8), 1004–1020.

Bitran, G., & Caldentey, R. (2003). An overview of pricing models for revenue management.

Manufacturing & Service Operations Management, 5(3), 203–229.

Bonnel, H., & Morgan, J. (2006). Semivectorial bilevel optimization problem: penalty approach.

Journal of Optimization Theory and Applications, 131(3), 365–382.

Bouhtou, M., van Hoesel, S., van der Kraaij, A. F., & Lutton, J.-L. (2007). Tariff optimization in

networks. INFORMS journal on computing, 19(3), 458–469.

Bucarey, V., Elloumi, S., Labbé, M., & Plein, F. (2021). Models and algorithms for the product pric-

ing with single-minded customers requesting bundles. Computers & Operations Research,

127, 105139.

Calvete, H. I., Domı́nguez, C., Galé, C., Labbé, M., & Marin, A. (2019). The rank pricing problem:

models and branch-and-cut algorithms. Computers & operations research, 105, 12–31.

Coy, P. (n.d.). The power of smart pricing companies are fine-tuning their price strategies–and it’s

paying off. Bloomberg. Retrieved 2010-04-10, from https://www.bloomberg.com/

33

https://www.bloomberg.com/news/articles/2000-04-09/the-power-of-smart-pricing
https://www.bloomberg.com/news/articles/2000-04-09/the-power-of-smart-pricing

news/articles/2000-04-09/the-power-of-smart-pricing

Cross, R. G. (2011). Revenue management: Hard-core tactics for market domination. Currency.

Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business Media.

Domı́nguez, C., Labbé, M., & Marı́n, A. (2021). The rank pricing problem with ties. European

Journal of Operational Research, 294(2), 492–506.

Fanghänel, D., & Dempe, S. (2009). Bilevel programming with discrete lower level problems.

Optimization, 58(8), 1029–1047.

Gao, Y., Zhang, G., Lu, J., & Wee, H.-M. (2011). Particle swarm optimization for bi-level pricing

problems in supply chains. Journal of Global Optimization, 51(2), 245–254.

Garrow, L., & Ferguson, M. (2008). Revenue management and the analytics explosion: Perspectives

from industry experts. Journal of Revenue and Pricing Management, 7(2), 219–229.

Glover, F. (1997). A template for scatter search and path relinking. In European conference on

artificial evolution (pp. 1–51).

Glover, F., Laguna, M., & Martı́, R. (2003). Scatter search. In Advances in evolutionary computing

(pp. 519–537). Springer.

González Velarde, J. L., Camacho-Vallejo, J.-F., & Pinto Serrano, G. (2015). A scatter search algo-

rithm for solving a bilevel optimization model for determining highway tolls. Computación

y Sistemas, 19(1), 05–16.

Guruswami, V., Hartline, J. D., Karlin, A. R., Kempe, D., Kenyon, C., & McSherry, F. (2005). On

profit-maximizing envy-free pricing. In Soda (Vol. 5, pp. 1164–1173).

Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel

programming. SIAM Journal on scientific and Statistical Computing, 13(5), 1194–1217.

Hanson, W., & Martin, K. (1996). Optimizing multinomial logit profit functions. Management

Science, 42(7), 992–1003.

Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2011). Valid inequalities and branch-and-cut

for the clique pricing problem. Discrete Optimization, 8(3), 393–410.

Ivanov, S., & Zhechev, V. (2012). Hotel revenue management–a critical literature review. Tourism:

an international interdisciplinary journal, 60(2), 175–197.

34

https://www.bloomberg.com/news/articles/2000-04-09/the-power-of-smart-pricing
https://www.bloomberg.com/news/articles/2000-04-09/the-power-of-smart-pricing

Kleinert, T., Labbé, M., Ljubić, I., & Schmidt, M. (2021). A survey on mixed-integer program-

ming techniques in bilevel optimization. EURO Journal on Computational Optimization, 9,

100007.

Labbé, M., & Violin, A. (2016). Bilevel programming and price setting problems. Annals of

operations research, 240(1), 141–169.

Ma, S. (2016). A nonlinear bi-level programming approach for product portfolio management.

SpringerPlus, 5(1), 1–18.

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective optimization:

new insights. Structural and multidisciplinary optimization, 41(6), 853–862.

Miao, C., Du, G., Xia, Y., & Wang, D. (2016). Genetic algorithm for mixed integer nonlinear

bilevel programming and applications in product family design. Mathematical Problems in

Engineering, 2016.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer

journal, 7(4), 308–313.

Poldrugovac, K., Janković, S., & Peršić, M. (2019). The significance of competitive pricing and

revenue management in the camping industry. International Journal of Revenue Management,

11(1-2), 76–88.

Rajesh, J., Gupta, K., Kusumakar, H. S., Jayaraman, V. K., & Kulkarni, B. D. (2003). A tabu search

based approach for solving a class of bilevel programming problems in chemical engineering.

Journal of Heuristics, 9(4), 307–319.

Rusmevichientong, P., Van Roy, B., & Glynn, P. W. (2006). A nonparametric approach to multi-

product pricing. Operations Research, 54(1), 82–98.

Shioda, R., Tunçel, L., & Myklebust, T. G. (2011). Maximum utility product pricing models and

algorithms based on reservation price. Computational Optimization and Applications, 48(2),

157–198.

Sinha, A., Malo, P., & Deb, K. (2017). A review on bilevel optimization: from classical to evo-

lutionary approaches and applications. IEEE Transactions on Evolutionary Computation,

22(2), 276–295.

35

Talluri, K. T., Van Ryzin, G., & Van Ryzin, G. (2004). The theory and practice of revenue manage-

ment (Vol. 1). Springer.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . . SciPy

1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wolsey, L. A. (2020). Integer programming. John Wiley & Sons.

Zhao, N., Wang, Q., Cao, P., & Wu, J. (2021). Pricing decisions with reference price effect and

risk preference customers. International Transactions in Operational Research, 28(4), 2081–

2109.

36

	List of Tables
	Introduction
	Literature Review
	Product Pricing Problems
	Maximum utility product pricing model
	Rank Pricing Problem

	 Solution Methodologies for Bilevel Programs
	Complexity of the Proposed Model

	Problem Definition and Formulation
	Problem Description
	Bilevel product pricing with utility and ranks (BPP-UR)
	Single Level Non-Linear Reformulation
	Single Level Linear Reformulation (SLL)

	Solution Algorithms
	Scatter Search Metaheurestic
	Price Perturbation Heuristic

	Computational Experiments
	Comparing the Performances

	Conclusion and Future Research
	Bibliography

