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Abstract

Overconvergent Modular Forms, Theoretical and Computational Aspects
Alexandre Johnson

In this thesis, we perform a review of the theory of overconvergent modular forms, then we explore
the distribution of the eigenvalues of the Hecke operator Tp by considering their p-adic valuations.
We begin by covering algebraic and geometric definitions of modular forms, then expanding these
definitions to overconvergent modular forms. We then introduce algortithms, from “Computations
with classical and p-adic modular forms” by Alan G. B. Lauder[6], which provide a method for
calculating the p-adic valuations of the aforementioned eigenvalues. In order to implement these
algorithms, programs were written for the Sagemath computer algebra program to perform the
necessary calculations. These programs were used to collect lists of p-adic valuations, for various
values of p and for spaces of modular forms of various weights and of various levels. The collected
data confirms the fact that the Gouvea-Mazur conjecture is false, but also indicates that it may be
a useful approximation of the true behavior at large weights or at large values of p, at least for the
first few slopes. It shows the existence of “plateaus” of weights which have the same slopes, up to
the precision used, even at low values of p and k. The reason for the existence of these “plateaus”
is unknown.
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Introduction

The purpose of this thesis is to examine the theoretical aspects of overconvergent modular forms,
as well as studying the distribution of the eigenvalues of the Hecke operator applied to these forms.

We begin in section 1 by going over the analytical definition of a modular form of weight k as a
function f : H→ C with certain conditions. After defining the concept of a q-expansion, we extend
the definition by introducing congruence subgroups Γ , and in particular the congruence subgroup
Γ1(N), to define modular forms of weight k and level Γ . Once these definitions are in place, we go
over the definition of Hecke operators, the main subject of this thesis, as well as Hecke eigenvalues
and Hecke eigenvectors.

Subsequently, we move on to define a few related concepts which are important to proofs pre-
sented later in the thesis. First, we define and prove the Valence formula for weakly modular forms
of weight k ≥ 0. We then use this to derive another theorem, and finally derive the Sturm bound
as a corollary of this theorem. The Sturm bound is then used in section 6 for calculating the Hecke
eigenvalues of overconvergent modular forms.

In section 2, we present and prove the Spectral Theorem for compact operators acting on Ba-
nach spaces, which will allow us to order the eigenvalues of the Hecke operator by their p-adic
valuation later in this thesis.

In section 3, we cover an alternate definition of modular forms, in relation to elliptic curves
over schemes, following the method of “p-adic properties of modular schemes and modular forms”
by Nicholas M. Katz[5]. We begin by covering the basic definition of modular forms of weight
k, though the definition of Katz does not include holomorphicity at ∞, as the definition used in
section 1 does, so this requirement was added. We then extend the definition to modular forms
with level N structure. However, the level N structure described by Katz is different from the one
in section 1. This discrepancy is resolved in section 4, as more groundwork must be covered before
it is possible to relate the two definitions, but the upshot is that a modular form of level N “à la
Katz” is a level Γ(N) form in the sense of section 1.

We then define the modular curve Mk and its normalization Mk, which we use to extend the
definition of modular forms to modular forms of weight k and level Γ(N) holomorphic at ∞ with
coefficients in K, for any Z[ 1n ]-module K. Once the definition is extended in this way, we present a
base change theorem, which required this extension of the definition. This base change is used in
the proof of a necessary lemma in section 5.

In section 4, we make the connection between the two definitions of modular forms we have
presented, allowing us to use both definitions interchangeably for the remainder of the thesis.
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Section 5 covers overconvergent modular forms themselves, which are the subject of this thesis.
We begin by defining ordinary and supersingular elliptic curves, as well as their relation to the Hasse
invariant. We then move on to defining overconvergent modular forms proper. The rest of the sec-
tion consists of examining the structure of the space of overconvergent modular forms more closely
in preparation for section 6, as we need to have this structure in order to calculate the eigenvalues.
In particular, we develop a decomposition B(R0, N, k, a) of M(R0, N, k), where M(R0, N, k) is the
space of modular forms over R0 of level N and weight k and the relation between them is given by

an isomorphism M
(
R0, N, k+ j(p− 1)

)
∼=

j⊕
a=0

B(R0, N, k, a), as well as a direct sum decomposition

H0
(
MN

⊗
Zp

R0,ω
⊗

k+(j+1)(p−1)
)
∼= Ep−1 ·H0

(
MN

⊗
Zp

R0,ω
⊗

k+j(p−1)
)⊕

B(R0, N, k, j+1), both of
which are essential for the algorithms in section 6.

Section 6 covers the actual algorithms, from “Computations with classical and p-adic modular
forms” by Alan G. B. Lauder[6], that we used to calculate the inverse of the eigenvalues of the
Hecke operator. A small modification is made to obtain the p-adic valuations, rather than the
inverse of the eigenvalues themselves. The algorithm is split into a level Γ1(1) version and a level
Γ1(N), N ≥ 2 version, as the level Γ1(1) version is both simpler to prove and faster to run on a
computer. Given a prime number p ≥ 5, a weight k and a precision m, the level Γ1(1) algorithm
returns the valuations of the inverse of the eigenvalues of the Hecke operator Tp modulo pm on
M(Zp, r, 1, k), which is then used to calculate the p-adic valuations of these inverted eigenvalues.
The level Γ1(N) version takes an extra input in the form of N, and returns the valuations of the
inverse of the eigenvalues of Tp modulo pm on M(Zp, r,N, k)). A Sagemath program was developed
in order to implement this algorithm, which can be found in the appendix.

Our next step is to prove that these algorithms indeed give the result that we desire. In order
to do this, we first prove a version of the algorithm which is modified to be easier to prove, and
then we prove that removing these modifications does not change the output of the algorithm,
thus proving that the original algorithm is indeed valid. Subsequently, we prove the level Γ1(N)
algorithm, but to do this we simply need to prove a slightly modified version of a lemma used in
the proof of the level Γ1(1) algorithm, and the rest of the proof follows exactly as in the case of
Γ1(1).

Section 7 covers our results and observations. As expected, as the Gouvea-Mazur conjecture
is known to be false, we do not consistently get the same set of slopes for weight k and weight
k + (p − 1). However, one pattern that emerges is that as p increases, the slopes calculated for
each subsequent value of k become increasingly comparable. In addition, even at low p-values, for
k+p(p−1), there are still certain “plateaus” of k values where the sets of slopes remain comparable,
which may be due to the presence of particular congruences.
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1 Analytical definition of modular forms

The most basic way to define modular forms is to do it analytically. In order to do so, we first
define weakly modular forms as follows.

Definition 1.1:

A weakly modular form of weight k is a holomorphic function f : H → C such that ∀ γ =[
a b

c d

]
∈ SL2(Z), f(γz) = (cz+d)kf(z), where the action of γ on z is the Mobius transformation,

i.e. γz = az+b
cz+d .

Another way to define this is via the action of γ on f, rather than on z. We define |kγ(z) by
f|kγ(z) = (cz + d)−kf(γz), which one can prove indeed defines an action. It is then clear that an
equivalent definition of a weakly modular form of weight k is a holomorphic function f : H → C
such that f|kγ = f ∀ γ ∈ SL2(Z).

Now, we define a modular form by looking at how a weakly modular form f acts at infinity.
Indeed, we wish to define something that is valid on the full fundamental domain of the action of
SL2(Z) on H, D =SL2(Z)\

H. This is a domain in C such that no two points in D are SL2(Z)-conjugate.

Note that SL2(Z) is generated by S =

[
0 −1

1 0

]
and T =

[
1 1

0 1

]
, thus a possible fundamental

domain, and the one which we will use, is D =
{
z ∈ H : −1

2 < Re(z) ≤ 1
2 , |z| ≥ 1

}
.

Figure 1: The fundamental domain for the SL2(Z)-action on H, plotted on H. Note that ρ = −1
2 +

√
3
2 i

and ρ+ 1 = 1
2 +

√
3
2 i.
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The sides of the domain are given by T , and the arc is given by S. Indeed, from T , we have
that Tz = z+ 1. Thus two points will be T -conjugate if they differ by exactly 1, which means that
the fundamental domain must have a width of 1 on the real number axis, with only one side of the
boundary included, generating the sides of the fundamental domain. Then, from S, we get that
Sz = −1

z . Now, if |z| < 1, then |−1
z | > 1 and vice versa. Thus, the fundamental domain can only

contain points either inside the circle of radius 1 centered at the origin or outside of the circle, in
order to not contain the S-conjugate points. This gives the circle |z| = 1 as one of the boundaries
of the fundamental domain, which then becomes an arc when intersecting with the lines generated
by T.

This domain extends to infinity, so we need to check how f acts at infinity. In order to do this,
we first need to define something called the q-expansion. Note that since f|kγ = f, we have in
particular that f|kT = f. This implies that f(z + 1) = f(z), which then implies that f is periodic
of period 1, and thus one can prove that f(z) =

∑
n∈Z

ane
2πizn =

∑
n∈Z

anq
n where q = e2πiz. This is

called the q-expansion of f.

Using this q-expansion, we can define what it means for a weakly modular form to be mero-
morphic, holomorphic or cuspidal at infinity:

Definition 1.2:

A weakly modular form is meromorphic at infinity if f =
∑

n>>−∞anq
n, i.e. if there is a lower

limit on the degree of the terms of its q-expansion.

Definition 1.3:

A weakly modular form is holomorphic at infinity if f =
∑
n=0

anq
n, i.e. if there are no terms of

negative degree in its q-expansion.

Definition 1.4:

A weakly modular form is cuspidal if f =
∑
n=1

anq
n, i.e. if there are no terms of degree ≤ 0 in

its q-expansion.

This is what finally allows us to define a modular form of weight k, as follows:

Definition 1.5:

A modular form of weight k is a weakly modular form of weight k which is holomorphic at
infinity. We denote the set of all modular forms of weight k by M(k).

Definition 1.6:

A cusp form of weight k is a weakly modular form of weight k which is cuspidal at infinity. We
denote the set of all cusp forms of weight k by S(k).
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Also, note that since we have defined how the function acts at infinity, we can view the modular
form as a function on H ∪ {∞}, rather than on H.

A simple example of a modular form, which will be used later in this thesis, is the Eisenstein

series Ek = 1− 2k
Bk

∞∑
n=1

σk−1(n)q
n, where σk−1(n) =

∑
d|n, d≥1

dk−1 and Bk are the Bernoulli numbers.

These can be written as 1
2ζ(k)

∑
(m,n)∈Z\{(0,0)}

1
(m+nz)k

, where ζ(k) is the Riemann zeta function. Indeed,

the first formulation is simply the Fourier series of this second one. It is then trivial to see that for
k > 2, k even, this is a modular form of weight k.

It is possible, and indeed required for the purposes of this thesis, to extend the definition further
by introducing structures called principal subgroups and congruence subgroups. These are defined
as follows:

Definition 1.7:

Let N ≥ 1, N ∈ Z. Then we define the principal subgroup of level N to be the subgroup{
γ ∈ SL2(Z) : γ ≡

[
1 0

0 1

]
mod N

}
, and we denote it by Γ(N).

Definition 1.8:

A congruence subgroup Γ is a subgroup of SL2(Z) of finite index such that ∃ N ≥ 1, N ∈ Z, s.t.
Γ(N) ⊆ Γ ⊂ SL2(Z).

The congruence subgroups relevant to this thesis, other than the principal subgroup itself, are:

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

[
a b

0 d

]
mod N

}
.

and

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

[
1 ∗
0 1

]
mod N

}
.

Congruence subgroups allow us to define weakly modular forms of weight k and level Γ where
Γ is any congruence subgroup, as follows:

Definition 1.9:

A weakly modular form of weight k and level Γ is a holomorphic function f : H→ C such that
f|kγ = f ∀ γ ∈ Γ . Denote the space of weakly modular forms of weight k and level Γ by m(Γ, k).

Note that this is a weaker condition than the original definition of weakly modular forms, as

5



Γ is contained within SL2(Z), thus extending the definition of weakly modular forms. However, as
the fundamental domain of the action of Γ may not be the same as the fundamental domain of the
action of SL2(Z), we need to examine how weakly modular forms act on this new fundamental do-
main in order to define our extended version of holomorphicity at∞. To do this, we need to define
the new fundamental domain. This is done in Prop 1.10, mentioned in the discussion immediately
following the proof of corollary 2.3.5 in [9]:

Prop 1.10:

Let Γ be a congruence subgroup and let {γi}
n
i=1 be a set of representatives for SL2(Z)/Γ . Then

every z ∈ H/Γ has a representative in DΓ =
n⋃
i=1

γiD.

This shows that DΓ is the fundamental domain of the action of Γ on H, and that it is indeed not
the same as the fundamental domain of the action of SL2(Z). We can even choose the {γi}

n
i=1 such

that DΓ is connected. This means that infinity may not be the only limit point of the fundamental
domain, thus to define meromorphic, holomorphic and cuspidal, we must address these points. We
call these limit points “cusp points”. The set of all cusp points of a given congruence subgroup Γ ,
Cusp(Γ), is Γ\

SL2(Z)/Γ∞ , where Γ∞ = StabSL2(Z)(∞). Indeed, this means that to calculate Cusp(Γ), we
take the modulus with respect to the set of matrices that go to infinity as z goes to infinity, and
so we are left with only the ones which converge to a point other than infinity. Then we take the
modulus with respect to Γ to make sure we stay inside the fundamental domain.

For this construction, defining meromorphic, holomorphic and cuspidal at infinity is no longer
sufficient. Rather, these must now be defined on the cusps of the weakly modular form.

Definition 1.11:

Let f be a weakly modular form of weight k and level Γ . Let c be a cusp of Γ . Note that c is a
class since Cusp(Γ) is a quotient group. Then we say:

• f is meromorphic at c if f|kγt is meromorphic at ∞, where t is a representative of the class c,
t ∈ Q ∪ {∞}, and γt is defined such that γt∞ = t.

• f is holomorphic at c if f|kγt is holomorphic at ∞, where t is a representative of the class c.

• f is cuspidal at c if f|kγt is cuspidal at ∞, where t is a representative of the class c.

Now that we have extended our definition of holomorphicity, we can also extend our definition
of modular forms:

Definition 1.12:

A modular form of weight k and level Γ is a weakly modular form of weight k and level Γ which
is holomorphic at all cusps of Γ . Denote the space of modular forms of weight k and level Γ by
M(Γ, k).

6



Definition 1.13:

A cusp form of weight k and level Γ is a weakly modular form of weight k and level Γ which is
cuspidal at all cusps of Γ .

We must now define the Hecke operators themselves, in order to then define the Hecke eigenval-
ues which are the focus of this thesis. In order to do so, however, double cosets must first be defined:

Definition 1.14:

Let Γ1 and Γ2 be two congruence subgroups and let γ ∈ GL2(Q)+ ∩M2(Z) where M2(Z) are the
2x2 matrices with entries in Z. Then we define the double coset to be

{
γ1 γ γ2 : γ1 ∈ Γ1 and γ2 ∈

Γ2
}
, and we denote it as

[
Γ1γΓ2

]
. Further, note that

[
Γ1γΓ2

]
=
⋃
j

Γ1αj where αj are the representa-

tives of Γ1 \ Γ1γΓ2. We define the corresponding double coset operator from M(Γ1, k) to M(Γ2, k) as

f|k

[
Γ1γΓ2

]
=
∑
αj

f|kαj.

Definition 1.15:

The Hecke operators are defined as Tγ :=
[
ΓγΓ
]
for Γ a congruence subgroup. This thesis will

only require Hecke operators of level Γ1(N), i.e. Hecke operators of the form Tγ :=
[
Γ1(N)γΓ1(N)

]
.

In particular, there are two important special cases of the Hecke operator. These are:

Tp := 1
pT

 1 0

0 p

 for p a prime number

and

< d >:= Tγd
, γd =

[
a b

c d

]
∈ Γ0(N) for d ∈

(
Z
NZ

)X
.

Examining the structure of the Hecke eigenvalue more deeply, we immediately see that:

[
Γ1(N)

[
1 0

0 p

]
Γ1(N)

]
=


p−1⋃
j=0

Γ1(N)βj if p|N

p−1⋃
j=0

Γ1(N)βj

⋃
Γ1(N)β if p ∤ N

,

where βj =

[
1 j

0 p

]
, β =

[
1 0

0 p

] [
ap 1

cN 1

]
, cN ≡ −1 mod p and a is some integer such that[

ap 1

cN 1

]
∈ SL2(Z).

7



This gives, for example, that for N=46:

T23 =
1
23

22⋃
j=0

Γ1(46)

[
1 j

0 23

]
and

T29 =
1
29

28⋃
j=0

Γ1(46)

[
1 j

0 29

]⋃
Γ1(46)

[
1 0

0 29

] [
29a 1

46c 1

]
.

This leads to the definition of a Hecke eigenvalue and a Hecke eigenvector. A Hecke eigenvector
of a particular Hecke operator Tp, p prime, is defined as a modular form f ∈ M(Γ1(N), k) such that
Tpf = λpf, where λp is the Hecke eigenvalue of f. A Hecke eigenform f is a simultaneous Hecke
eigenvector for all values of p s.t. there exists a character χ : ( Z

NZ)
× → C× s.t. < d > f = χ(d)f.

In the rest of the thesis, when we refer to Hecke operators, we mean only the ones of the form Tp,
p prime.

Finally, the action of the of the Hecke operator on the q-expansion of a modular form is as
follows:

Definition 1.16:

If f is a modular form of weight k and level Γ1(N), with q-expansion f =
∑
n=0

anq
n, then:

Tpf =


∞∑
n=0

(
apn + pk−1an

p
(< p > f)

)
qn if p ∤ N

∞∑
n=0

apnq
n if p|N

.

We now need to define a few concepts that are related to modular forms, which will be used
later in this thesis. The first thing we will define is the Sturm bound, but in order to define this,
we must use the Valence Formula:

Theorem 1.17 (Valence Formula):

Let f ̸= 0 be a weakly modular form of weight k ≥ 0, meromorphic on H ∪ {∞}. Then

ord∞(f) + 1
2ordi(f) +

1
3ordρ(f) +

∑
w∈W

ordw(f) =
k
12 where W =

[
SL2(Z) \H

]
\ {i, ρ}.

Proof:

We will use Cauchy’s “argument principal” to prove this. Recall that the “argument principal”
states that if we have a function f holomorphic on C ⊂ C, where C is a domain inside C, then∫
∂C

f ′(z)
f(z) dz = 2πi

∑
z∈Int(C)

ordz(f), where ordz(f) = residuez(
f ′

f ).

We will perform a contour integral around the fundamental domain and apply the “argument
principal”, and see that this will immediately result in the desired equation.

8



First, we set up the contour in the following diagram:

Figure 2: The contour e over which we will perform our integration. Note that ρ is defined as usual
for this fundamental domain. R > 1 is chosen arbitrarily as some upper bound in order to close the
loop. The curves on the vertical paths are simply examples to indicate that any poles or zeros on
the contour are avoided.

Avoiding the points at i, ρ and ρ + 1, as well as avoiding any other pole or zero x on the
boundary, we ensure that we have no zeros or poles on the contour, and that we can extract the
orders of i, ρ and ρ+ 1 later. Note that for the possible poles or zeros x, we circle them and their
corresponding point on the other side in opposite directions, in order for them to cancel out.

Now, calculate the contour integral:

First, compare
B∫
A

and
E∫
D ′
:

Applying the change of variables z→ z− 1 to
E∫
D ′

f ′(z)
f(z) dz gives the equation

E∫
D ′

f ′(z)
f(z) dz =

A∫
B

f ′(z−1)
f(z−1) dz = −

B∫
A

f ′(z)
f(z) dz, so these two parts of the integral cancel out.

Now, compare
D∫
C ′

and
B ′∫
C

:

Start with
D∫
C ′

f ′(z)
f(z) dz, then apply the change of variables z→ −1

z . Note that this maps
D∫
C ′

to
B ′∫
C

.

9



This implies that
D∫
C ′

f ′(z)
f(z) dz =

B ′∫
C

1
z2

f ′(−1
z
)

f(−1
z
)
, but note that f(−1

z ) = zkf(z), as −1
z =

[
0 −1

1 0

]
z,

so (cz + d)k = zk. This then means that z−2f ′(−1
z ) = kzk−1f(z) + zkf ′(z), and so we have

f ′(−1
z
)

z2f(−1
z
)
= k

z +
f ′(z)
f(z) .

So:
D∫
C ′

f ′(z)
f(z) dz =

B ′∫
C

1
z2

f ′(−1
z
)

f(−1
z
)

= −
C∫
B ′

f ′(z)
f(z) dz+

B ′∫
C

k
zdz

= −
C∫
B ′

f ′(z)
f(z) dz+ k

∫
30 degrees

1
zdz, since the arc of the section C to B ′ is 30 degrees

= −
C∫
B ′

f ′(z)
f(z) dz+

k2πi
12

= −
C∫
B ′

f ′(z)
f(z) dz+

kπi
6 .

Which finally gives
D∫
C ′

f ′(z)
f(z) dz+

C∫
B ′

f ′(z)
f(z) dz =

kπi
6 by reordering.

Now, for
B ′∫
B

f ′(z)
f(z) dz, the integral is around ρ and the angle is 60 degrees, so

B ′∫
B

f ′(z)
f(z) dz =

−2πi
6 ordρ(f)

= −πi
3 ordρ(f).

Now, for
C ′∫
C

f ′(z)
f(z) dz, the integral is around i and the angle is 180 degrees, so

C ′∫
C

f ′(z)
f(z) dz = −π ordi(f).

Now, for
D ′∫
D

f ′(z)
f(z) dz, the integral is around ρ and the angle is 60 degrees, so

D ′∫
D

f ′(z)
f(z) dz =

−2πi
6 ordρ+1(f)

= −πi
3 ordρ(f).

Finally, for at ∞:

f ′(z)
f(z) = 2πiq

f ′(z)
f(z) , q = e2πiz and dq = q dz, so

A∫
E

f ′(z)
f(z) dz becomes −

( ∫
|q|=e−2πR

f ′(q)
f(q) dq

)
, which is

equal to −2πi ord∞(f), under the change of variables z→ q, as R goes to infinity.

Thus, adding all of these together, we get:∫
e

f ′(z)
f(z) dz =

kπi
6 − πi ordi(f) −

2πi
3 ordρ(f) − 2πi ord∞(f).

But now we can apply the “argument principal”, to obtain
∫ f ′(z)

f(z) dz = 2πi
∑

w∈Int(e)
ordw(f). Note

that we do not have to restrict w to only the poles or zeros, as other points will necessarily have
an order of 0, and thus will not affect the result.
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Applying this gives 2πi
∑

w∈Int(e)
ordw(f) =

kπi
6 −πiordi(f)−

2πi
3 ordρ(f)− 2πiord∞(f), which then

implies that k
12 =

∑
w∈W

ordw(f) +
1
2ordi(f) +

1
3ordρ(f) + ord∞(f) as we let R→∞.

Q.E.D.

This then allows us to prove the following theorem:

Theorem 1.18:

M(k) are finite dimensional vector spaces, and dim
(
M(k)

)
=

{
⌊ k
12⌋ if k ≡ 2 mod(12)

⌊ k
12⌋+ 1 if k ̸≡ 2 mod(12)

.

Proof:

First, for k = 0, ..., 10, we immediately have:

dim
(
M(0)

)
= 1;

dim
(
M(2)

)
= 0;

dim
(
M(4)

)
= 1 (only E4);

dim
(
M(6)

)
= 1 (only E6);

dim
(
M(8)

)
= 1 (only E2

4 and E8, which are scalar multiples of each other);
dim

(
M(10)

)
= 1 (only E6E4 and E10, which are scalar multiples of each other).

Also, dim
(
S(k + 12)

)
= dim

(
M(k)

)
, as they are in fact isomorphic under the isomorphism

M(k)→ S(k+ 12) where ∆ = (204E4)
3−(504E6)

2

1728 .
f 7→ ∆f

We are only left to prove that dim
(
M(k+ 12)

)
= dim

(
S(k+ 12)

)
+ 1:

Consider the map: M(k+ 12)→ C.∞∑
n=0

anq
n 7→ a0

The kernel of this map is immediately S(k + 12), because it implies that a0 = 0. Further, this
map is surjective, because a0 can have any value in C. Thus:

dim
(
M(k+12)

)
= dim(kernel)+dim(image) = dim

(
S(k+12)

)
+dim(C) = dim

(
S(k+12)

)
+1,

and this thus allows us to calculate the dimension recursively:

dim
(
M(k)

)
= dim

(
S(k)

)
+ 1 = dim

(
M(k− 12)

)
+ 1 = dim

(
S(k− 12)

)
+ 2 = dim

(
M(k− 24)

)
+ 2

= ...

= dim
(
M(k−12⌊ k

12⌋)
)
+⌊ k

12⌋.

But dim
(
Mk−12⌊ k

12
⌋
)
=

{
0 if k ≡ 2 mod(12)

1 if k ̸≡ 2 mod(12)
, so dim

(
M(k)

)
=

{
⌊ k
12⌋ if k ≡ 2 mod(12)

⌊ k
12⌋+ 1 if k ̸≡ 2 mod(12)

.

Q.E.D.
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As a corollary of that theorem, we finally obtain the Sturm bound:

Corollary 1.19 (Sturm bound):

Let f ∈ M(k) such that f =
∞∑
n=0

anq
n and an = 0 for n = 0, 1, ..., ⌊ k

12⌋. Then f = 0, and we call

⌊ k
12⌋ the Sturm bound.

There is also an extension of the Sturm bound which takes into account congruence subgroups,
which is as follows:

Theorem 1.20 (Sturm bound)[1]:

Let f ∈ M(Γ, K) such that f =
∞∑
n=0

anq
n, let m be the index of Γ in SL2(Z) and let an = 0 for

0 ≤ n ≤ ⌊km12 ⌋. Then f = 0, and we call ⌊km12 ⌋ the sturm bound.
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2 Spectral Theorem

In this section, we will introduce the spectral theorem for compact operators acting on Banach
spaces, which will allow us to order the eigenvalues of Tp by their p-adic valuations. In order to
do this, we first need the following definitions and theorems. Note that the Banach spaces in this
section are Banach spaces over a non-archimedian field:

Definition 2.1 [8]:

A compact operator A : X → Y is a specific type of linear operator between normed vector
spaces X and Y with the added condition that it belongs to the closure of the subspace of continu-
ous linear maps from X to Y of finite rank.

Definition 2.2 [8]:

A Banach space X is a normed vector space which is also complete, i.e. every Cauchy sequence
in X converges to a point in X.

Definition 2.3 [8]:

Let A be a compact endomorphism operator acting on a Banach space X over a non-archimedian
space K. If |A| ≤ 1, then the Fredholm determinant is defined as follows:

Let X0 be the set of x ∈ X s.t. |x| ≤ 1. Let R be the valuation ring of K, let m be the maximal
ideal of R, and let r be a non-zero ideal of R contained in m. Finally, let Xa = X0

rX0
. Passing to the

quotient, A defines an endomorphism Ar of Xr.

det(I− tAr) is well defined, as the image of Ar is contained in a submodule of finite type of Xr,
and has coefficients in K

r . We define the Fredholm determinant to be the projective limit of these
determinants, det(I− tA) = lim←−

r

det(I− tAr).

If |A| > 1, we simply choose a scalar c such that |cA| ≤ 1, which allows us to define det(I−tcA),
which then defines det(I− tA).

This then allows us to define the Fredholm resolvent:

Definition 2.4 [8]:

Let A be a compact operator acting on a Banach space X. For a Fredholm determinant

det(I − tA) =
∞∑

m=0

cmt
m, the Fredholm resolvent is defined as P(t,A) = det(I−tA)

I−tA =
∞∑

m=0

νmt
m

where νn is defined by: ν0 = I, νn = cn +Aνn−1.
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The last definition we will need is the following:

Definition 2.5:

Let X and Y be Banach spaces. Define K(X, Y) to be the vector space of continuous linear
operators from X to Y.

Beyond these definitions, we need the following:

Theorem 2.6 [8, Prop 12]:

Let A be a compact endomorphism operator acting on a Banach space X. If we have a zero a

of order h of the Fredholm determinant det(I− tA), then there exists a unique direct sum decom-
position of X into closed stable subspaces:

X = N(a) + F(a)
Where:

1) (I− aA)n = 0 for some n, over N(a);
2) (I− aA)n is invertible over F(a);
3) dim(N(a)) = h.

Finally, we need the following proposition, and more specifically we need a fact that we can
derive from this proposition:

Prop 2.7 [8, Prop 10]:

Let A be a compact operator acting on a Banach space X. The Fredholm resolvent P(t,A) is
the entire function of t with values in K(X,X). More precisely, for any real number M, we have
lim
n→∞ |νn|M

n = 0.

This proposition implies that lim
n→∞ |νn|M

n = lim
n→∞ |cn +Aνn−1|M

n = lim
n→∞ |cn +Acn−1 +A2cn−2 +

...+An−1c1+An|Mn = 0, and so, choosing M = p, we find that the coefficients cn go to zero faster
than any polynomial in p, which is the result that we will need.

Now, we are prepared to prove the spectral theorem:

Theorem 2.8 (Spectral Theorem):

Let A be a compact operator acting on a Banach space X. Then for any constant D, there are
only finitely many zeros of det(I− tA) with Newton slope smaller than D.

Proof:

Assume by contradiction that we have infinitely many zeros of det(I − tA) with slope < D.
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Now, by Theorem 2.6, we have that (I−aA)n = 0 for some n, over N(a), which implies that A has
only eigenvalues a−1 on N(a), and thus that N(a) is made up of all generalized eigenvectors for a−1.

By doing this for each a ∈
{
zeros of det(I− tA) with slope < D

}
, we get an infinite amount of

eigenvectors with eigenvalues a−1.

We then use these to start constructing the characteristic series of A:

Char(A) = (1− a−1
1 A)n1(1− a−1

2 A)n2 ....

But, since slope(ai) < D ∀ ai, we have, truncating the series to some integer m:
(1− a−1

1 A)n1 ...(1− a−1
m A)nm > (1− p−DA)n1 ...(1− p−DA)nm ,

which implies that the coefficients of the characteristic series do not go to zero faster than any
polynomial in p, but this contradicts Prop 2.7, so for any constant D, there are only finitely many
zeros of det(I− tA) with slope smaller than D.

Q.E.D.

This theorem is applied to the Hecke operator Tp, which is compact, acting on the space of
overconvergent modular forms M(R0, r,N, k), which can be viewed as a Banach space over Qp. The
structure of M(R0, r,N, k) is explored further in section 5.
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3 Geometric definition of modular forms

A second way to define modular forms, found in “P-adic Properties of Modular Schemes and Mod-
ular Forms” by Nicholas M. Katz [5], is to define them with respect to elliptic curves over schemes.

Let S be any scheme. Then an elliptic curve over a scheme S is a proper smooth morphism of
schemes p : E → S which is finitely presented, proper and flat, together with a section O ∈ E(S)
such that the geometric fibres, together with the points obtained by specializing O, are elliptic
curves in the usual sense, i.e. as defined over algebraically closed fields.

Let E be any elliptic curve over S. Denote by ωE/S the invertible sheaf p∗(Ω
1
E/S), and let Ω1

E/S

be the cotangent space. Then we define modular forms as follows.

Definition 3.1:

A weakly modular form f of weight k and level 1 is a rule f : E/S 7→ f(E/S) such that, for any
elliptic curve E/S over any scheme S, f(E/S) is a section of (ωE/S)

⊗
k over S and such that:

1) f
(
E/S

)
is stable with respect to the S-isomorphism classes of E/S. i.e. if E/S ∼= E ′/S, then

f
(
E/S

)
= f
(
E ′/S

)
;

2) Any change of basis g : S ′ → S commutes with f, i.e. f
(
ES ′/S ′) = g∗f

(
E/S

)
.

We denote the space of weakly modular forms of weight k and level 1 by m(k).

An equivalent definition, also presented in “P-adic Properties of Modular Schemes and Modular
Forms” is:

Definition 3.2[5]:

A weakly modular form of weight k and level 1 is a rule f : (E/R,ω) 7→ f(E/R,ω) such that,
for any 2-tuple (E/R,ω) where E/R is an elliptic curve over some ring R and ω is a basis of ωE/S,
f(E/R,ω) is an element of R and such that:

1)f
(
E/R,ω

)
is stable with respect to the R-isomorphism classes of

(
E/R,ω

)
. i.e. if

(
E/R,ω

)
∼=(

E ′/R,ω ′), then f
(
E/R,ω

)
= f
(
E ′/R,ω ′);

2)f
(
E, λω

)
= λ−kf

(
E,ω

)
∀ λ ∈ R×;

3)Any extension of scalars g : R→ R ′ commutes with f, i.e. f
(
ER ′/R ′,ωR ′

)
= g

(
f
(
E/R,ω

))
.

We denote the space of weakly modular forms of weight k and level 1 by m(k).

The correspondence between these two definitions stems from the equation f(E/S) =
f(E/R,ω) ·ω

⊗
k, which is obtained as follows:
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First, assume S is affine, i.e S = Spec(R) for some ring R, and define ω to be an invariant
differential of ωE/S. Then, from the elliptic curve E/S, we have a Weierstrass equation:

E/S : Y2Z+ a1XYZ+ a3YZ
2 = X3 + a2X

2Z+ a4XZ
2 + a6Z

3, Where a1, ..., a6 ∈ OS(S) = R.

Rewriting this equation in the coordinates x = X
Z and y = Y

Z gives the equation

E/S : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6.

Then, by [9, Prop III.1.5], we have that the invariant differential associated to a Weierstrass
equation for E/S is holomorphic and non-vanishing, which means that any two invariant differ-
entials of E/S, generated by two different Weierstrass equations, must differ only by scaling. For
example, if Char(R) ̸= 2, then the invariant differential, up to scaling, is dx

y . This implies that
E/S has only one invariant differential, up to scaling, and so that ωE/S is of rank 1. Thus, any
section of ωE/S = ωE/Spec(R) can be written as a multiple of ω which depends on ω and on E/R.

Furthermore, this also holds when taking tensor product, so that any section of
(
ωE/Spec(R)

)⊗ k
can

be written as a multiple of ω
⊗

k which depends on ω and on E/R.

Now, note that f(E/Spec(R)) is a section of (ωE/Spec(R))
⊗

k by definition. This implies that

f(E/Spec(R)) = f(E/R,ω) ·ω
⊗

k, and so we have obtained the desired correspondence in the affine
case.

Finally, if S is not affine, then it has an affine cover, so locally this equation still holds and we
get the desired correspondence.

Now, we need to define the q-expansion, as we did in section 1. In order to do so, we restrict
to schemes S lying over a fixed ring R0, and for the base change property, we only consider base
changes which are R0-morphisms.

Definition 3.3:

Let Tate(q) be the Tate curve, i.e. the curve over Z[[q]] given by y2 + xy = x3 + a4x + a6

where a4 = 5
∑
n

−n3qn

1−qn and a6 =
∑
n

−(7n5+5n3)qn

12(1−qn) , and let ωcan = dx
2y+x , the canonical differential of

the Tate curve. Then we define the q-expansion of a weakly modular form F of weight k to be the

Laurent series of f
((

Tate(q),ωcan

)
R0

)
, i.e. q-expansion = f

((
Tate(q),ωcan

)
R0

)
=
∑

anq
n. Note

that the subscript by R0 simply means that we base change the Tate curve to this ring.

This allows us to define holomorphicity at ∞:

Definition 3.4:

A weakly modular form f of weight k is holomorphic at∞ iff f
((

Tate(q),ωcan

)
R0

)
∈ Z[[q]]

⊗
Z R0.
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Which finally allows us to define modular forms:

Definition 3.5:

A modular form of weight k is a weakly modular form of weight k which is holomorphic at ∞.
We denote the space of modular forms of weight k by M(k).

Now, we can extend the definition of modular forms by adding a “level N structure”. For weakly
modular forms of level N, the definition is almost the same as the one previously stated, simply
with an extra condition added.

Definition 3.6:

Define a level N structure on E/S to be an isomorphism αN : E[N] −→ ( Z
NZ
)2
S
. A weakly modular

form of weight k and level N is then a rule f such that for any 2-tuple
(
E/S, αN

)
where E is an

elliptic curve over a scheme S and αN is a level N structure, f(E/S, αN) is a section of (ωE/S)
⊗

k

which satisfies the same conditions as before, i.e. such that:

1) f
(
E/S, αN

)
is stable with respect to the S-isomorphism classes of

(
E/S, αN

)
. i.e. if

(
E/S, αN

)
∼=(

E ′/S, α ′
N

)
, then f

(
E/S, αN

)
= f
(
E ′/S, α ′

N

)
;

2) Any change of basis g : S ′ → S commutes with f, i.e. f
(
ES ′/S ′, (αN)S ′

)
= g∗f

(
E/S, αN

)
.

We denote the space of weakly modular forms of weight k and level N by m(N, k).

The equivalent definition still holds as well, with the same modification:

Definition 3.7:

A weakly modular form of weight k and level N is a rule f such that for any triple
(
E/R,ω,αN

)
where E is an elliptic curve over a ring R, ω is a basis of ωE/S and αN is a level N structure,

f
(
E/R,ω,αN

)
is an element of R such that:

1)f
(
E/R,ω,αN

)
is stable with respect to the R-isomorphism classes of

(
E/R,ω,αN

)
. i.e. if(

E/R,ω,αN

)
∼=
(
E ′/R,ω ′, α ′

N

)
, then f

(
E/R,ω,αN

)
= f
(
E ′/R,ω ′, α ′

N

)
;

2)f
(
E, λω,αN

)
= λ−kf(E,ω,αN) ∀ λ ∈ R×;

3)Any extension of scalars g : R→ R ′ commutes with f, i.e. f
(
ER ′/R ′,ωR ′ , (αN)R ′

)
= g

(
f
(
E/R,ω,αN

))
.

We denote the space of weakly modular forms of weight k and level N by m(N, k).

Finally, exactly as in the previous definition, in order to define the q-expansions, we restrict
to schemes S lying over a fixed ring R0, and for the base change property, we only consider base
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changes which are R0-morphisms. Then, analogously to the previous definition, we define:

Definition 3.8:

A q-expansion of a weakly modular form f of weight k and level N is f
(
Tate(qN),ωcan, αN

)
for

all level N structures αN. Each choice of αN corresponds to a cusp and to a primitive Nth root of
unity.

Now, in order to make sense of the level N structure αN in this definition, note that the n-
torsion Tate curve Tate(q) is:

Tate(q)[n] ∼= {u ∈ K
×

qZ s.t.u
n ∈ qZ}

Now, solve the following equations:

1) Solve un = 1, getting 1, ζn, ζ2n, ..., ζn−1
n , where ζn is an nth root of unity;

2) Solve un = q, getting u = {ζin(q
1
n )}n−1

i=0 ;

3) Solve un = q2, getting u = {ζin(q
2
n )}n−1

i=0 = {ζin(q
1
n )2}n−1

i=0 ;

...

n) Solve un = qn−1, getting u = {ζin(q
n−1
n )}n−1

i=0 = {ζin(q
1
n )n−1}n−1

i=0 .

This is the last equation we need to check. Indeed, if un = qn, then we get u = {ζin(q
n
n )}n−1

i=0 =
{ζin(q)}

n−1
i=0 , which are elements of qZ, and so are not in the quotient space.

Thus there are n2 possible combinations of the solutions, which must be elements of Tate(q)[n]
since it is multiplicatively closed. Further, we know that Tate(q)[n] has n2 elements.

We thus obtain that, taking n = N for level N, Tate(q)[N] = {ζiN(q
1
N )j : 0 ≤ i, j ≤ N− 1, i, j ∈

Z}, where ζN is a primitive Nth root of unity. Note that this only makes sense if ζN ∈ R0 and

q
1
N ∈ R0, since we need the torsion points to be defined over R0. This then implies that all points

of Tate(q)[N] have coordinates in Z[[q]]
⊗

Z Z[
1
N , q

1
N , ζN], or that all points of Tate(q

N)[N] have

coordinates in Z[[q]]
⊗

Z Z[
1
N , ζN]. Thus that the level N structure αN makes sense, as they depend

on the choice of two N-torsion points.

Now, Definition 3.8 allows us to once again define holomorphicity at ∞:

Definition 3.9:

A weakly modular form f of weight k and levelN is holomorphic at∞ if f
(
Tate(qN),ωcan, αN

)
∈

Z[[q]]
⊗

Z R0[
1
N , ζN] for all level N structures αN where ζN is a primitive Nth root of unity. This

definition only makes sense if 1 ∈ R0.
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Which allows us to define modular forms of weight k and level N:

Definition 3.10:

A modular form of weight k and level N is a weakly modular form of weight k and level N that
is holomorphic at ∞. We denote the space of modular forms of weight k and level N by M(N, k).

Finally, we can find a certain base change theorem, which will be used in a later proof, but to
do this, we must first define the modular curve MN and MN, as well as extend our definition of
modular forms even further.

Definition 3.11:

Define MN as the scheme which is the representation of the functor “isomorphism classes of
elliptic curves with level N structure”. Thus MN is what modular forms have been defined on so
far, but it is not compact, so we define MN to be the normalization of P1

Z[ 1
N
]
in MN, which is proper.

Note that, as stated by Katz[5], MN can be partitioned into ϕ(N) connected components, each
corresponding to an Nth root of unity. This will be discussed in more detail over C in section 4, on
page 26.

This definition then allows us to extend our definition of modular forms, via the following the-
orem:

Theorem 3.12:

let U be the set of primitive N-th roots of unity, and for ζ ∈ U let (MN)ζ be the correspond-
ing connected components of MN. We choose (αN)ζ a cusp in each of the connected components
(MN)ζ, i.e. a level N structure. Then the map:

{ Modular forms of weight k and level N } → { q-expansion at (αN)ζ }ζ∈U
f 7→ { q-expansion of f at (αN)ζ}ζ∈U

is injective.

Proof:

We do this by proving that for every Nth root of unity ζ and for every weight k, we have that
the map:

{ Modular forms of weight k and level N on (MN)ζ} → { q-expansion at (αN)ζ }

is injective.

Now, for the weight 0 case. We need to show that the map

{ Modular forms of weight 0 and level N on (MN)ζ }
g−→ {q−expansion at (αN)ζ }
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is injective. Assume that a modular form f vanishes on the stalk, i.e. f ∈ ker(g). The stalk
at a point in MN can be calculated by choosing an affine open containing the point, and localizing
it on the ideal of functions vanishing at the cusp. This ideal is prime. Now, recall the following
result about localizations: Given a ring A and a prime ideal P, if f = 0 in AP, then

f
1 = 0

1 , i.e.
((f)(1) − (0)(1))x = 0 for x ∈ S = A \ P. Note that “f vanishing in the stalk” is exactly f = 0 in
a ring localized at a prime ideal, where the ring is the chosen affine open. Thus we see that there
is some x not in the prime ideal such that fx = 0. But the modular curve is integral, so it has
no non-zero divisors. Thus f = 0, and the kernel of the map is {0}, which implies that the map is
injective.

For the weight k > 0 case, we simply need to return to the same situation as in the weight 0 case.
Note that, locally, we have ω = dx

y R over some S = Spec(R). Thus all invariant forms are multiples

of dx
y . This implies that ω is isomorphic to OS via the map sending dx

y ∈ ω(S) to 1 ∈ OS(S) = R,

and so it is the trivial sheaf. Thus (ω)
⊗

k also becomes the trivial sheaf locally, since it is locally
the tensor product of the trivial sheaf. Thus we locally return to the same situation as in the case of
k = 0, and so we can apply the proof identically for the case of k > 0. Thus, we prove that the map:

{ Modular forms of weight k and level N on (MN)ζ} → { q-expansion at (αN)ζ }

is injective.

Gluing these maps together, we get that our original map:

{ Modular forms of weight k and level N } → { q-expansion at (αN)ζ }ζ∈U
is injective.

Q.E.D.

This then allows us to extend the definition of modular forms just a bit further:

Definition 3.13 [5]:

A modular form of weight k and level N holomorphic at ∞ over a ring R0 s.t. 1
N ∈ R0 is an el-

ement a of H0
(
MN, (ω)

⊗
k
⊗

Z[ 1
N
] R0

)
. We denote the space of these modular forms by M(R0, N, k).

Definition 3.14 [5]:

A modular form of weight k and level N holomorphic at ∞ with coefficients in K, for any Z[ 1N ]-
module K, is an element a of H0

(
MN, (ω)

⊗
k
⊗

Z[ 1
N
] K
)
.

Now that we have established a relation between cohomology and modular forms, we will define
a base change theorem having to do with cohomology. However, in order to do so, we first need
the following theorem:
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Theorem 3.15 (Flat base change) [10, Lemma 68.11.2]:

Let S be a scheme. Consider a Cartesian diagram of algebraic spaces

X ′
g ′
//

f ′

��

X

f
��

Y ′ g // Y

over S. Let F be a quasi coherent OX-module with pullback F ′ = (g ′)∗F. Assume that g is flat and
that f is quasi-compact and quasi-separated. For any i ≥ 0:

1) The base change map g∗Rif∗F→ Rif ′∗F
′ is an isomorphism ;

2) If Y = Spec(A) and Y ′ = Spec(B), then Hi
(
X, F

)⊗
A B = Hi

(
X ′, F ′).

This allows us to prove the following theorem:

Theorem 3.16 (Base change) [5, 1.7.1]:

Let n ≥ 3, and suppose either that k ≥ 2 or that k = 1 and n ≤ 11. Then for any Z[ 1n ]-module
K, the canonical map

K
⊗

H0
(
Mn, (ω)

⊗
k
)→ H0

(
Mn, K

⊗
(ω)

⊗
k
)

is an isomorphism.

Proof:

In order to prove this, we simply need to prove that H1
(
Mn, (ω)

⊗
k
)
= 0. We will prove that

this is indeed sufficient individually for K =
Z[ 1

n
]

pZ[ 1
n
]
and for K = Qp, which will be enough to prove

it for any K.

Case 1: K = Qp:

Note that Qp is flat as a Z[ 1n ]-algebra, so if we have a map g such that g∗ = Qp

⊗
Z[ 1

n
] •, then

g is flat. Thus we can obtain the desired result by applying the flat base change theorem with
F = (ω)

⊗
k and the diagram

Mn
g ′

//

f ′

��

Spec
(
Qp

)⊗
Spec
(
Z[ 1

n
]
)Mn

f

��
Spec

(
Z[ 1n ]

) g // Spec
(
Qp

)
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Indeed, Spec
(
Qp

)⊗
Spec
(
Z[ 1

n
]
)Mn = Mn, so we obtainQp

⊗
H0
(
Mn, (ω)

⊗
k
)
∼= H0

(
Mn,Qp

⊗
(ω)

⊗
k
)
.

Thus we have proven that the theorem holds for Case 1.

Case 2: K =
Z[ 1

n
]

pZ[ 1
n
]
:

First, take the exact sequence 0 → Z[ 1n ]
Multiplication by p−−−−−−−−−−−−−→ Z[ 1n ] → Z[ 1

n
]

pZ[ 1
n
]
→ 0. The tensor

product operation by ω
⊗

k is exact, so applying
⊗

ω
⊗

k gives the exact sequence:

0→ Z[
1

n
]
⊗

ω
⊗

k Multiplication by p−−−−−−−−−−−−−→ Z[
1

n
]
⊗

ω
⊗

k → Z[ 1n ]
pZ[ 1n ]

⊗
ω

⊗
k → 0

Passing to the long exact sequence in cohomology which is generated by this short exact se-
quence, we get:

0→ H0
(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)→ H0

(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)→ H0

(
Mn,

Z[ 1
n
]

pZ[ 1
n
]

⊗
ω

⊗
k
)→→ H1

(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)→ ...

Now, if H1
(
Mn, (ω)

⊗
k
)
= 0, then H1

(
Mn,Z[ 1n ]

⊗
(ω)

⊗
k
)
= 0, because ω

⊗
k is defined over

Z[ 1n ], so Z[ 1n ]
⊗

ω
⊗

k = ω
⊗

k. This would give us the short exact sequence:

0→ H0
(
Mn,Z[

1

n
]
⊗

ω
⊗

k
)→ H0

(
Mn,Z[

1

n
]
⊗

ω
⊗

k
)→ H0

(
Mn,

Z[ 1n ]
pZ[ 1n ]

⊗
ω

⊗
k
)→ 0

And since the first map is multiplication by p, we get
H0
(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)

p

(
H0
(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)) ∼= H0

(
Mn,

Z[ 1
n
]

pZ[ 1
n
]

⊗
ω

⊗
k
)

by the basic properties of short exact sequences. Note that quotienting modulo p is the same as ten-

soring by
Z[ 1

n
]

pZ[ 1
n
]
, which then implies that

Z[ 1
n
]

pZ[ 1
n
]

⊗
H0
(
Mn,Z[ 1n ]

⊗
ω

⊗
k
)
∼= H0

(
Mn,

Z[ 1
n
]

pZ[ 1
n
]

⊗
ω

⊗
k
)
.

Now, recall that Z[ 1n ]
⊗

ω
⊗

k = ω
⊗

k, as previously noted, which implies that
Z[ 1

n
]

pZ[ 1
n
]

⊗
H0
(
Mn,ω

⊗
k
)

∼= H0
(
Mn,

Z[ 1
n
]

pZ[ 1
n
]

⊗
ω

⊗
k
)
. This is the result that we want, so we have

proven that H1
(
Mn, (ω)

⊗
k
)
= 0 is sufficient in this case.

Case 1 covers every case where the module is flat over Z[ 1n ], because if the module is flat, the

proof of case 1 will hold identically. Thus, since a module is flat over Z[ 1n ] iff it is torsion free, it
only remains to prove our claim for the case where K is not torsion free. But then this immediately
implies that K is a product of quotients of Z[ 1n ], and so the proof of case 2 will apply. Thus we

have proven that proving H1
(
Mn, (ω)

⊗
k
)
= 0 is sufficient to prove the theorem for any possible

Z[ 1n ]-module K. Now it is left to prove that H1
(
Mn, (ω)

⊗
k
)
is indeed 0.

First, for weight k = 2, note that (ω)
⊗

2 ∼= Ω1
Mn/Z[ 1n ]

(
log(Mn − Mn)

)
[5, Section 1.5]. Now,

by definition, on any of the connected components of Mn

⊗
Z[ 1n , ζn], deg(Ω

1
Mn/Z[ 1n ]

) = 2g − 2,

where g is the genus of the connected component. Further, note that each connected component

23



has at least one cusp, and thus at least one pole. Since poles raise the degree, this implies that

deg
(
Ω1

Mn/Z[ 1n ]

(
log(Mn−Mn)

))
> 2g−2, which then implies that the restriction of (ω)

⊗
2 to any

of the connected components has degree > 2g− 2. For higher weights k, the tensor product simply
sums the degrees, so once again we get that the degree is always > 2g− 2.

Now, given any divisor D on Mn, let ℓ(D) be the dimension of H0
(
X, LB(D)

)
, where LB(D) is

the line bundle associated with D. Note that by the definition of Serre duality:

dim
(
H1
(
Mn, (ω)

⊗
k
))

= dim

(
H0
(
Mn,

(
(ω)

⊗
k
)−1⊗

Ω1
Mn/Z[ 1n ]

))
.

Further, note that dim

(
H0
(
Mn,

(
(ω)

⊗
k
)−1⊗

Ω1
Mn/Z[ 1n ]

))
= ℓ
(
Ω1

Mn/Z[ 1n ]
− (ω)

⊗
k
)
. Then, by

the Riemann-Roch theorem[4], we have ℓ
(
(ω)

⊗
k
)
− ℓ
(
Ω1

Mn/Z[ 1n ]
−(ω)

⊗
k
)
= 1−g+deg

(
(ω)

⊗
k
)
.

But also, as noted by Silverman [9, Corollary 5.5], we have that if deg(D) > 2g−2, then ℓ(D) =
deg(D)−g+1, and we just proved that deg

(
(ω)

⊗
k
)
> 2g−2 on any of the connected components.

Together, these imply that deg
(
(ω)

⊗
k
)
− g + 1 − ℓ

(
Ω1

Mn/Z[ 1n ]
− (ω)

⊗
k
)
= 1 − g + deg

(
(ω)

⊗
k
)
.

By cancelling, we see that this implies that −ℓ
(
Ω1

Mn/Z[ 1n ]
− (ω)

⊗
k
)
= 0, and so implies that

ℓ
(
Ω1

Mn/Z[ 1n ]
− (ω)

⊗
k
)
= 0. Since ℓ

(
Ω1

Mn/Z[ 1n ]
− (ω)

⊗
k
)
= deg

(
H1
(
Mn, (ω)

⊗
k
))

, this then im-

plies that deg
(
H1
(
Mn, (ω)

⊗
k
))

= 0. Thus H1
(
Mn, (ω)

⊗
k
)
= 0, which by the first part of this

proof is sufficient to prove that K
⊗

H0
(
Mn, (ω)

⊗
k
) → H0

(
Mn, K

⊗
(ω)

⊗
k
)
is an isomorphism

for k ≥ 2. Thus this Theorem is proven for k ≥ 2.

For the case of weight k = 1, we can simply proceed by explicit calculation, as there are only 9
possible values of n. For this, we will use the equation [2, Theorem 3.6.1]: If ϵreg∞ > 2g − 2, then

dim
(
M(Γ, 1)

)
= ϵ

reg∞
2 .

For example, for n=7, we have:

Genus of M7 = g = 3, which implies 2g− 2 = 4.

and

Number of cusps of Γ(7) = 24.

And so we have that ϵreg∞ > 2g− 2, so by the formula[2, p.90]:

deg
(
⌊div(f)⌋

)
= k(g − 1) + ⌊k3⌋ϵ3 + k

2ϵ
reg∞ + k−1

2 ϵirr∞ , where ϵ3 is the number of elliptic points
of order 3, and ϵ

reg∞ is the number of regular cusps, and ϵirr∞ is the number of irregular cusps,

this gives deg
(
⌊div(f)⌋

)
> 2g − 2, where f is a meromorphic 1-form, which implies that the

restriction of ω to any connected component has degree > 2g− 2, and then the proof proceeds as
in the k ≥ 2 case. Thus this theorem is proven is all cases.

Q.E.D.
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4 Connections between analytic and geometric definitions

We will show that modular forms of weight k and level N in the geometric sense of section 3,
restricted to elliptic curves E/C over C, can be viewed as modular forms in the analytic sense of
section 1. First, recall the definition of section 3:

A modular form is a rule F :
{(

E/C,ω, αN

)} → C s.t.

1)F
(
E/C, λω,αN

)
= λ−kF

(
E/,ω,αN

)
;

2)F
(
E/C,ω, αN

)
is stable with respect to the C-isomorphism classes of

(
E/C,ω, αN

)
;

3)Any extension of scalars g : C→ C ′ commutes with F, i.e. F
(
EC ′/C ′,ωC ′ , (αN)C ′

)
= g

(
F
(
E/C,ω, αN

))
;

4) F is holomorphic at ∞.

Now, note that over C, an elliptic curve E is E(C) = C
Z+zZ . Also note that for τ ∈ C, dτ =

d(τ+ c), so dτ on E(C) is an invariant differential. Finally, note that ωE
C
= Cdτ =

{
λdτ : λ ∈ C

}
.

Indeed, any divisor must be of the form f(τ)dτ, because dτ is an invariant differential. But differ-
entials in ωE

C
are invariant, so ∀ f(τ)d(τ) ∈ ωE

C
, f(τ + c)d(τ + c) = f(τ)dτ ∀ c ∈ C. As we just

stated, d(τ + c) = d(τ), so f(τ + c) = f(τ) ∀ c ∈ C, which implies that f is a constant function in
C, which in turn implies that ωE

C
= Cdτ =

{
λdτ : λ ∈ C

}
.

Using this, and given F, we can now define f(z) = F
(

C
Z+zZ , dτ,<

1
N ,

Z
N >

)
, for z ∈ H, and we

will show that this satisfies the definition of section 1.

First, note that f is indeed a map H→ C.

Also, note that f(z) is holomorphic on H. Indeed, a modular form F is itself a section of
(ωE/S)

⊗
k. Now, we work locally over an open U ∈ MN for the modular curve MN, which is

an algebraic variety. Then we can fix a basis, and we can just pick ω as the basis, by choos-
ing U = Spec(R) small enough and affine. This basis allows us to pass between the two def-
initions of Katz, via the equation F

(
E/U,αN

)
= F

(
E/R,ω,αN

)
· ω

⊗
k. Then F

(
E,ω,αN

)
is

a section of OMN
(U). Thus we can view F

(
E/R,ω,αN

)
as a function. Now, consider the C-

points MN(C). By the GAGA theorem, since this is a complex variety, functions on this ring
define polynomial functions, and polynomial functions are by definition holomorphic. So we have

f(z) = F
(

C
Z+zZ , dτ,<

1
N ,

Z
N >

)
defines−−−−→ {polynomial functions}, which implies that f(z) is holo-

morphic on H.

Now, let γ ∈ SL2(Z). Then f(γz) = F
(

C
Z+γzZ , dτγ, <

1
N ,

γZ
N >

)
, and we must prove that

f(γz) = (cz+ d)kf(z).

First, we address the lattice. Note that Z+ γzZ = Z+ az+b
cz+dZ, which is homothetic to

(cz+ d)Z+ (az+ b)Z. Now we must prove that this is equal to Z+ zZ:
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Note that (az + b)d + (cz + d)(−b) = adz − bcz + bd − bd = (ad − bc)z, but since we are in
SL2(Z), (ad− bc) = 1, which implies that (az+ b)d+ (cz+ d)(−b) = z.

Further, note that (az + b)(−c) + (cz + d)a = −acz − bc + acz + ad = ac − bc = 1. Taken
together, we have found integers such that (az+ b)m+ (cz+ d)n = 1 and = z, which implies that

(cz+ d)Z+ (az+ b)Z = Z+ zZ. Thus f(γz) = F
(

C
Z+zZ , dτγ, <

1
N ,

γZ
N >

)
, and we have proven that

the lattice acts in the desired fashion.

Now, we address the dτ term:

Note that (cz + d)τγ = τ, i.e. dτγ = dτ
cz+d . Entering this into our modular form gives us

f(γz) = F
(

C
Z+zZ ,

dτ
cz+d , <

1
N ,

γZ
N >

)
, but by condition 1 of the geometric definition of a modular

form, this is immediately equal to (cz+ d)kF
(

C
Z+zZ , dτ,<

1
N ,

γZ
N >

)
. This gives us both the factor

of (cz+ d)k we require as well as showing that the dτ term acts as required.

Finally, we address the level N structure:

Note that < 1
N ,

γz
N >=< 1

N ,
az+b
cz+d

N >=< cz+d
N , az+b

N >. We know that these have to represent the

same point in the lattice as < 1
N ,

z
N >, because a modular form is stable under isomorphism. Thus

cz + d ≡ 1 mod N and az + b ≡ z mod N, which implies that c ≡ 0 mod N, d ≡ 1 mod N,
a ≡ 1 mod N, and b ≡ 0 mod N. These are exactly the conditions for γ ∈ Γ(N), and so

f(γz) = (cz+ d)kF
(

C
Z+zZ , dτ,<

1
N ,

γZ
N >

)
for γ ∈ Γ(N), i.e. f(γz) = (cz+ d)kf(z) ∀ γ ∈ Γ(N).

Thus, we have proven that f is a weakly modular form of level Γ(N), as defined in section 1.
Note that it is not a weakly modular form in M(k), as was assumed at the beginning of this proof,
but rather an element of M(Γ(N), k). This shows that a weakly modular form “à la Katz” defines
a weakly modular form of level Γ(N), but this definition is not unique. Indeed, by choosing a
different basis of the N-torsion used when defining f, we could get a different weakly modular form
in the sense of section 1. Two bases define the same form if the bases are SL2

( Z
NZ
)
equivalent,

hence we can get ϕ(N) different weakly modular forms in the sense of section 1. The knowledge of
these ϕ(N) is encoded in the original weakly modular form “à la Katz”. We will refer to the level
structure “à la Katz” as a “Katz level structure” for the remainder of this thesis.

Now, in the algorithm of section 6, we will need modular forms of level Γ1(N), so we need to
modify the definition of Katz slightly, to find the level structure which corresponds to this. To do

this, we replace our Katz level N structure αN :
( Z
NZ
)2 −̃→ E[N] by an injective map βN : Z

NZ ↪→ E[N].

Indeed, first note that we have: E[N] =
{

a
N + b

Nz : 0 ≤ a, b ≤ N − 1, z ∈ C
}
. Now, for

the mapping under γ, we get the same relation as before, where
(
1
N ,

z
N

)
7→ (

cz+d
N , az+b

N

)
implies

1
N 7→ cz+d

N ≡ 1
N mod N and z

N 7→ az+b
N ≡ z+b

N mod N, since for γ ∈ Γ1(N), a ≡ d ≡ 1 mod N

and c ≡ 0 mod N. We can easily encode this information as a map, 1
N + 1

Nz 7→ 1
N + z+b

N , which is
clearly equivalent to the map βN : Z

NZ ↪→ E[N],

1 7→ 1
N + z+b

N

which is the map we assumed originally. Thus, with this modification, we have a correspondence
between weakly modular forms of level Γ1(N), which is what we require.
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Finally, in order to extend our correspondence to modular forms, we need to prove that holo-
morphicity at ∞ is equivalent in both cases. Recall that, in the Katz definition, the q-expansion

is F
(
Tate(qN),ωcan, αN

)
, and F is holomorphic at ∞ iff F

((
Tate(qN),ωcan

)
C

)
∈ Z[[q]]

⊗
ZC, i.e.

iff F
((

Tate(qN),ωcan

)
C

)
∈
{ ∑

n=0

bnq
n : bn ∈ Z

}⊗
ZC. Furthermore, in the definition of section

1, we note that we have holomorphicity at ∞ if f =
∑
n=0

anq
n for an ∈ C. Written in this form, it

is immediate that these two definitions are equivalent, and so we have a correspondence between
the two definitions of modular forms of weight k and level Γ1(N). Further, this means that our
definition of Hecke operators from section 1 can be used for modular forms “à la Katz”, using this
equivalence.

27



5 Overconvergent modular forms

Before covering overconvergent modular forms themselves, we first discuss the concepts of super-
singular and ordinary elliptic curves.

Definition 5.1[9]:

For R a field of characteristic p and E/R an elliptic curve, we say that E/R is supersingular if
E[pr](Fp) = 0 ∀ r ≥ 1, r ∈ Z. Otherwise, E/R is said to be ordinary, and E[pr](Fp) =

Z
prZ .

The concept of supersingular and ordinary elliptic curves is closely tied to the something called
the Hasse invariant.

Definition 5.2 [7, Pages:3-22]:

For a curve C, the Hasse invariant of the curve is defined to be the rank of the matrix of the
Frobenius mapping applied to the curve. In the case of an elliptic curve, since it is of genus 1, the
Hasse invariant must be either 0 or 1.

The Hasse invariant is 0 iff the elliptic curve is supersingular, and it is 1 iff the elliptic curve
is ordinary. Indeed, from “The Arithmetic of Elliptic Curves” by Joseph H. Silverman[9], we have
the following proof of this fact:

Assume that the Hasse invariant of an elliptic curve E is 0. We will prove that it must be
supersingular. First, as noted in [9, II.2.11b], the Frobenius map is purely inseparable. Thus,
degs

(
ϕ̂r

)
= degs[p

r] =
(
degs[p]

)r
=
(
degs(ϕ̂)

)r ∀ r ≥ 1, r ∈ Z, where ϕ is the Frobenius mapping,

ϕ̂ is the dual of the Frobenius mapping, and degs is the degree of separability.

Applying [9, III.4.10a] to what we just noted, we find that #E[pr](Fp) = degs(ϕ̂r) = deg(ϕ̂)r.
Since we assume that the Hasse invariant is 0, the rank of the matrix is 0, therefore det(ϕ̂)r = 1.
This implies that #E[pr](Fp) = 1. Since 0 ∈ E[pr](Fp), this then implies that E[pr](Fp) = 0 ∀ r ≥ 1,
so E is supersingular.

This also works in the other direction, as if E[pr](Fp) = 0 ∀ r ≥ 1, then #E[pr](Fp) = 1. The only
way for this to be true is if det(ϕ̂)r = 1, i.e. if the rank of the matrix of the Frobenius mapping is
0. Thus E is supersingular iff the Hasse invariant is 0. It then also follows that the Hasse invariant
is 1 iff E is ordinary.

We now move on to defining overconvergent modular forms, referred to by Katz in “P-adic
Properties of Modular Schemes and Modular Forms”[5] as p-adic modular forms with growth con-
ditions, by adding onto the definition we already have.

First, in order to introduce the “p-adic” part of the modular forms, we introduce a ring R0 s.t.
R0 = lim←−

N

R0

pNR0
. Then, for the growth condition, we pick r ∈ R0. With these in place we can define

overconvergent weakly modular forms:
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Definition 5.3:

Let N ≥ 1 and N prime to p for some prime number p, and 3 ≤ N ≤ 11 if p = 2, N ≥ 2 if p = 3.
Then, for any elliptic curve E/S, where we restrict S to be an R0-scheme s.t. ∃ n >> 0 s.t. pn = 0

in S, for any level Γ(N) structure αN and for any Y section of ω
⊗

(1−p) such that Y · Ep−1 = r, we
define an r-overconvergent weakly modular form f of weight k and Katz level N, over R0 to be a

rule such that f(E/S, αN, Y) is a section of
(
ωE/S

)⊗ k
over S s.t.:

1) f
(
E/S, αN, Y

)
is stable with respect to the S-isomorphism classes of

(
E/S, αN, Y

)
. i.e. if(

E/S, αN, Y
)
∼=
(
E ′/S, α ′

N, Y
′), then f

(
E/S, αN, Y

)
= f
(
E ′/S, α ′

N, Y
′);

2) Any change of basis g : S ′ → S commutes with f.

The set of all such weakly modular forms is m(R0, r,N, k). Also, note that each modular form
in this sense is equivalent to ϕ(N) modular forms in the sense of section 1, parameterized by the
particular choice of level structure αN.

As in section 3, we have an equivalent definition in terms of quadruples:

Definition 5.4:

Let N ≥ 1 and N prime to p for some prime number p, 3 ≤ N ≤ 11 and p = 2, or N ≥ 2 and
p = 2. Then, for any elliptic curve E/R, where we restrict R to be an R0-algebra s.t. ∃ n >> 0 s.t.
pn = 0 in S, for any level Γ(N) structure αN, for any basis ω of ωE/S and for any Y ∈ R such that
Y ·Ep−1(E,ω) = r, we define an r-overconvergent weakly modular form f of weight k and Katz level
N over R0 to be a rule such that f

(
E/R,ω,αN, Y

)
is an element of R s.t.:

1) f
(
E/R,ω,αN, Y

)
is stable with respect to the R-isomorphism classes of

(
E/R,ω,αN, Y

)
. i.e.

if
(
E/R,ω,αN, Y

)
∼=
(
E ′/R,ω ′, α ′

N, Y
′), then f

(
E/R,ω,αN, Y

)
= f
(
E ′/R,ω ′, α ′

N, Y
′);

2) Any extension of scalars g : R→ R ′ commutes with f;

3) f
(
E/R, λω,αN, Y

)
= λ−kf

(
E/R,ω,αN, Y

)
for λ ∈ R×.

The set of all of such weakly modular forms is m(R0, r,N, k).

To define holomorphicity at ∞, we use a similar definition as before.

Definition 5.5:

Let f be an r-overconvergent weakly modular form of weight k and Katz level N over R0 . We
consider

f

(
Tate(qN),ωcan, αN, r

(
Ep−1

(
Tate(qN),ωcan

))−1
)

to be the q-expansion of f. f is holomorphic

at ∞ iff ∀ n ≥ 1, where n is an integer, and for all level Γ(N) structures αN,

f

(
Tate(qN),ωcan, αN, r

(
Ep−1

(
Tate(qN),ωcan

))−1
)

∈ Z[[q]]
⊗(

R0
pnR0

)
[ζN], when considered over

Z((q))
⊗(

R0
pnR0

)
[ζN].
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Also, note that
(
Ep−1

(
Tate(qN),ωcan

))−1
is not formally the inverse, as Ep−1 is not invert-

ible. It is simply formally defined such that, when multiplied by r, we obtain Y, from the equation
Y · Ep−1

(
Tate(qn),ωcan

)
= r.

As before, having defined holomorphicity at ∞, we can define overconvergent modular forms:

Definition 5.6:

An r-overconvergent modular form of weight k and Katz level N over R0 is an r-overconvergent
weakly modular form of weight k and Katz level N over R0 which is holomorphic at ∞. The set of
all such modular forms is M(R0, r,N, k).

In order to perform the calculations necessary for this thesis, we must examine the structure of
M(R0, r,N, k). To do this, we first need to prove the following proposition about m(R0, r,N, k):

Prop 5.7 [5, 2.3.1]:

When p is nilpotent in R0, and n ≥ 3 is prime to p, there is a canonical isomorphism

m(R0, r,N, k) = H0
(
Spec

MN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k
)

= H0

(
MN

⊗
R0,

⊕
j≥0

(ω)
⊗(

k+j(p−1)

)
(Ep−1−r)

)

=

H0

(
MN

⊗
R0,

⊕
j≥0

(ω)
⊗(

k+j(p−r)

))
(Ep−1−r) (because MN is affine)

=
⊗
j≥0

m
(
R0,N,k+j(p−1)

)
(Ep−1−r) .

Proof:

Note that, for simplicity, we write ω
⊗

1−p = L. Now, the functor

FR0,r,n : S 7→ { S-isomorphism classes of triples (E/S, αN, Y)
}

is the same as the functor

FR0,r,n : S 7→ { R0-morphisms g : S→MN

⊗
R0, with a section Y of g∗(L) s.t. Y · g∗(Ep−1) = r

}
.

Indeed, MN is the representation of the functor “isomorphism classes of elliptic curves with

level N structure”, so the map S 7→ {S-isomorphism classes of (E/S, αN)
}

is isomorphic to the

functor S 7→ Hom
(
S,MN

)
=
{
morphisms S → MN

}
. Since we are now defined over the ring R0,

however, we actually have R0-linear maps g : S→MN

⊗
R0, rather than S→MN. Thus the map

S 7→ {S-isomorphism classes of (E/S, αN)
}

is isomorphic to the functor S 7→ Hom
(
S,MN

)
.
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However, this isomorphism is not enough, as we need to deal with the section Y of L s.t.
Y · Ep−1 = r. We can do this by noting that Ep−1 is a modular form over E/R0. Thus, to pull
back over S, we apply g∗ to Y and Ep−1. This implies that we must have a section Y of g∗(L) s.t.
Y · g∗(Ep−1) = r. As this is derived using the map g, adding this preserves the isomorphism, and
we have proven that these functions are indeed the same.

Now, further note that we can interpret the functor

FR0,r,n : S 7→ {R0-morphisms g : S→MN

⊗
R0, with a section Y of g∗(L) s.t. Y · g∗(Ep−1) = r

}
as

a sub-functor of the functor
FR0,n : S 7→ { R0-morphisms g : S→MN, with a section Y of g∗(L)

}
, as this second functor is sim-

ply the first functor with the last condition on Y removed. Note that this functor is representable
by the MN

⊗
R0-scheme Spec

MN

⊗
R0

(
Symm(L∨)

)
.

Indeed, first define open covers MN

⊗
R0 =

⋃
i

Spec(Bi) and S =
⋃
k

Spec(Ak). Note that we

choose the Spec(Bi) such that L∨ admits an invertible section l∨i . Now, for every space Spec(Bi),
consider its preimage g−1

(
Spec(Bi)

)
, and note S =

⋃
i

g−1
(
Spec(Bi)

)
. Then cover g−1

(
Spec(Bi)

)
by an open cover g−1

(
Spec(Bi)

)
=
⋃
j

Spec(Aij), which we can do because varieties are of finite

type by definition, and the modular curve MN defines a variety. Thus we have found an affine open
cover S =

⋃
i,j

Spec(Aij) of S such that g|Spec(Aij) factors through Spec(Bi).

Now, note that Spec
(
Symm(L∨)

)
over Spec(Bi) is isomorphic to

Spec
(
Ring of polynomials in d variables, d = dim(L∨)

)
over Spec(Bi). Over Spec(Bi), L

∨ admits

an invertible section l∨i . This is the basis over Spec(Bi). Thus:
Spec

(
Symm(L∨)

)
= Spec

(
Ring of polynomials in the variable l∨i as a ring in Bi

)
= Spec

(
Bi[l

∨
i ]
)

= Spec
(
Bi[l

∨
i ]
)
because Bi[l

∨
i ]) is affine.

=⇒ Spec
(
Symm(L∨)

)
= Spec

(
Bi[l

∨
i ]
)
over Spec(Bi).

Now, we can construct a homomorphism g̃i,j : Bi[l
∨
i ]→ Ai,j via the formula

g̃i,j
(∑

k

bk(l
∨
i )

k
)
=
∑

g(bk)
(
Y · g∗(l∨i )

)k
. We will use these to construct the morphism we will need

to prove that the functor is indeed representable by Spec
MN

⊗
R0

(
Symm(L∨)

)
.

In order to construct the homomorphisms, we begin with the homomorphism g : S→MN

⊗
R0.

Since we have the affine covers, and since g|Spec(Ai,j) factors through Spec(Bi), we get homomor-
phisms g : Spec(Ai,j) → Spec(Bi). But by the equivalence between homomorphisms of spectrums
and homomorphisms of rings, this gives g : Bi → Ai,j. This is the form of g that appears in the
formula which defines g̃i,j.

Now, we prove that this formula indeed defines a homomorphism with the desired properties.
First, we prove that the homomorphism g̃i,j defined by this formula maps from Bi[l

∨
i ] to Ai,j:

For the right hand side of the formula, note that g(bk) ∈ Ai,j since g maps from Bi to Ai,j.
Further, note that Y is a section of g∗(L) and that g∗(l∨i ) is a section of g∗(L∨) because l∨i is a
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section of L∨. Thus Y · g∗(l∨i ) ∈ Ai,j = g∗(L)0, which implies that
∑

g(bk)
(
Y · g∗(l∨i )

)k ∈ Ai,j, as
we want.

For the left hand side of the formula, simply note that
∑

bk(l
∨
i )

k is exactly a polynomial in
Bi[l

∨
i ]. Thus g̃i,j does indeed map from Bi[l

∨
i ] to Ai,j.

Now, we need to show that g̃i,j is a homomorphism. Let
∑
k

bk(l
∨
i )

k and
∑
m

b ′
m(l

∨
i )

k be two

elements of Bi[l
∨
i ]. Then:

g̃i,j
(∑

k

bk(l
∨
i )

k +
∑
m

b ′
m(l

∨
i )

m
)
= g̃i,j

(∑
(bk + b ′

k)(l
∨
i )

k
)

=
∑

g(bk + b ′
k)
(
Y · g∗(l∨i )

)k
=
∑ (

g(bk) + g(b ′
k)
)(
Y · g∗(l∨i )

)k
=
∑

g(bk)
(
Y · g∗(l∨i )

)k
+ g(b ′

k)
(
Y · g∗(l∨i )

)k
=
∑

g(bk)
(
Y · g∗(l∨i )

)k
+
∑

g(b ′
k)
(
Y · g∗(l∨i )

)k
= g̃i,j

(∑
k

bk(l
∨
i )

k
)
+ g̃i,j

(∑
m

b ′
m(l

∨
i )

m
)
.

So this is indeed a homomorphism, thus g̃i,j satisfies the desired properties.

Now, apply Spec to transform this map back to a homomorphism of the form g̃i,j : Spec(Ai,j)→
Spec(Bi[l

∨
i ]). We can glue these maps together to obtain a morphismG : S→ Spec

MN

⊗
R0

(
Symm(L∨)

)
.

So now, what we have is a morphism G : S → Spec
MN

⊗
R0

(
Symm(L∨)

)
that is defined by (g, Y)

where g is an R0 morphism and Y is a section of g∗(L).

This implies that FR0,n : S 7→ { R0-morphisms g : S → MN, with a section Y of g∗(L)
}
is iso-

morphic to the functor S→ Hom
(
S, Spec

MN

⊗
R0

(
Symm(L∨)

))
, which in turn implies that FR0,n

is representable by Spec
MN

⊗
R0

(
Symm(L∨)

)
. Finally, this implies that FR0,r,n is representable by

Spec
MN

⊗
R0

(
Symm(L∨)

(Ep−1−r)

)
, simply by adding in the condition Y ·g∗(Ep−1) = r. Thus we have proven

that

FR0,r,n : S→ {S-isomorphism classes of triples (E/S, αN, Y)) }

is isomorphic to

FR0,r,n : S→ Hom

(
S, Spec

MN

⊗
R0

(
Symm(L∨)

(Ep−1−r)

))
,

as desired. This then implies that the universal triple (E/S, αN, Y) is the inverse image on

Spec
MN

⊗
R0

(
Symm(L∨)

(Ep−1−r)

)
of the universal elliptic curve with Katz level N structure and growth con-

dition r on MN

⊗
R0, Thus every elliptic curve with Katz level N structure and growth condition

r defines a point x of Spec
MN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
.
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Using this fact, we can prove the isomorphism of the proposition. We want an isomorphism

m(R0, r,N, k) ∼= H0
(
Spec

MN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k
)
, so, for every element

h ∈ H0
(
Spec

MN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k
)
, we want to associate a modular form, i.e. a rule (E/S, αN, Y)→

f(E/S, αN, Y) ∈ ω
⊗

k. We just stated that each (E/S, αN, Y) defines a point x of SpecMN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
,

so we simply let f(E/S, αN, Y) = hx, where hx is the stalk of h at x. This clearly defines an isomor-
phism, so this is the isomorphism we want.

Thus m(R0, r,N, k) = H0
(
Spec

MN

⊗
R0

(Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k
)
, as desired.

Q.E.D.

This then allows us to obtain a similar relation for M(R0, r,N, k):

Prop 5.8 [5, 2.4.1]:

Let N ≥ 3, p ∤ N. Under the isomorphism of Prop 5.7, the submodule M(R0, r,N, k) ⊂
m(R0, r,N, k) is the submoduleH0

(
Spec

MN

⊗
R0

(
Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k

)
ofH0

(
Spec

MN

⊗
R0

(
Symm(L∨)

(Ep−1−r)

)
,ω

⊗
k

)
.

This immediately gives the following corollary, which is a result of the same form as Prop 5.7:

Corollary 5.9 [5, 2.4.1.1]:

H0

(
Spec

MN

⊗
R0

(
Symm(L∨)
(Ep−1−r)

)
,ω

⊗
k

)
= H0

(
MN

⊗
R0,ω

⊗
k
⊗ Symm(L∨)

(Ep−1−r)

)
= H0

(
MN

⊗
R0,

⊕
j≥0

ωk+j(p−1)

(Ep−1−r)

)
.

Further, we have the following lemma:

Lemma 5.10 [5, 2.6.1]:

Let N ≥ 3, and suppose either that k ≥ 2 or that k = 1 and N ≤ 11 or that k = 0 and p ̸= 2,
or that k = 0, p = 2, and N ≤ 11. For each j ≥ 0, the injective homomorphism

(5.10.1) H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
Ep−1−−−→ H0

(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

)
admits a section.

Proof:

To prove that this admits a section, we can simply show that

Coker

(
H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
Ep−1−−−→ H0

(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

))
is a finite free Zp-module.

Indeed, if the cokernel is such a module, then by extension it is a projective module. The relevant
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property of projective modules is that, for any projective module C and for any short exact se-
quence 0→ A→ B→ C→ 0, this exact sequence must be split.

Now, by definition of the cokernel, we have the following exact sequence:

0→ Ker(Ep−1)→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)→ H0
(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

)→→ Coker(Ep−1)→ 0

But recall that the map Ep−1 is injective, so Ker(Ep−1) = 0. Applying this produces the short
exact sequence:

0→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)→ H0
(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

)→ Coker(Ep−1)→ 0

We can now apply the fact that Coker(Ep−1) is projective, and so this short exact sequence is

split. Thus we have a section f : Coker(Ep−1) 7→ H0
(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

)
, which immedi-

ately gives a section h : H0
(
MN

⊗
Zp,ω

⊗
k+(j+1)(p−1)

)→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
.

Thus, having proven that Coker(Ep−1) being a finite free Zp-module is indeed sufficient, we
must now prove that it is indeed such a module:

First, note that ω
⊗

k+j(p−1) Ep−1−−−→ ω
⊗

k+(j+1)(p−1) is injective. Thus we have a short exact
sequence:

0→ ω
⊗

k+j(p−1) Ep−1−−−→ ω
⊗

k+(j+1)(p−1) → ω
⊗

k+(j+1)(p−1)

Ep−1ω
⊗

k+j(p−1)
→ 0

By definition of sheaf cohomology, we then have the exact sequence:

0→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
−→ H0

(
MN

⊗
Zp,ω

k+(j+1)(p−1)
)
−→
d2

−→
d2

H0
(
MN

⊗
Zp,

ωk+(j+1)(p−1)

Ep−1ωk+j(p−1)

)
−→
d3

H1
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)→ ...

But note that we can apply Theorem 3.16. Further, note that, as stated in its proof, this
theorem implies that H1

(
Mk,ω

⊗
k) = 0. By considering the conditions on k in the statement of

the current lemma, we find that, in terms of k, j, n and p, H1
(
MN

⊗
Zp,ω

⊗
k+j(p−1)) = 0

Applying this to the exact sequence of cohomologies results in:

0→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
−→ H0

(
MN

⊗
Zp,ω

k+(j+1)(p−1)
)
−→
d2

−→
d2

H0
(
MN

⊗
Zp,

ωk+(j+1)(p−1)

Ep−1ωk+j(p−1)

)
d3−→ 0

as an exact sequence of finite free Zp-modules. Further, this sequence commutes with arbitrary
change of base, because they are all free Zp modules. Thus:
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Coker(Ep−1) =
H0
(
MN

⊗
Zp,ωk+(j+1)(p−1)

)
im(Ep−1)

=
H0
(
MN

⊗
Zp,ωk+(j+1)(p−1)

)
Ker(d2)

= im(d2)
= ker(d3).

This implies that Coker(Ep−1) = ker(d3), which then implies that

Coker(Ep−1) = H0
(
MN

⊗
Zp,

ωk+(j+1)(p−1)

Ep−1ωk+j(p−1)

)
, which is a finite free Zp-module.

Q.E.D.

Now, for each possible choice of N, k, j, we choose a specific section of this map, whose exis-
tence we have just proven. Let the image of this section be denoted by B(N, k, j + 1). Note that
Ep−1·H0

(
MN,ω

⊕
k+j(p−1)

)
is of weight k+(j+1)(p−1), the same weight asH0

(
MN,ω

⊕
k+(j+1)(p−1)

)
,

and note that we have the short exact sequence

0→ H0
(
MN

⊗
Zp,ω

⊗
k+j(p−1)

)
−→ H0

(
MN

⊗
Zp,ω

k+(j+1)(p−1)
)
−→
d2

−→
d2

H0
(
MN

⊗
Zp,

ωk+(j+1)(p−1)

Ep−1ωk+j(p−1)

)
d3−→ 0.

Together, these produce the direct sum decomposition:

(5.10.2) H0
(
MN,ω

⊕
k+(j+1)(p−1)

)
∼= Ep−1 ·H0

(
MN,ω

⊕
k+j(p−1)

)⊕
B(N, k, j+ 1)

where B(N, k, j + 1) is the complement since it is obtained by the section of lemma 5.10, and
we define H0

(
MN,ω

⊕
k
)
:= B(N, k, 0).

Now, we work over R0, so define B(R0, N, k, j) := B(N, k, j)
⊗

Zp
R0. Taking the tensor with R0

on both sides of the relation gives us

H0
(
MN,ω

⊗
k+(j+1)(p−1)

)⊗
Zp

R0
∼=

(
Ep−1 ·H0

(
MN,ω

⊗
k+j(p−1)

)⊕
B(N, k, j+ 1)

)⊗
Zp

R0

i.e.

H0
(
MN

⊗
Zp

R0,ω
⊗

k+(j+1)(p−1)
)
∼= Ep−1 ·H0

(
MN

⊗
Zp

R0,ω
⊗

k+j(p−1)
)⊕

B(R0, N, k, j+ 1)

Now, iterating the direct sum decomposition, we have:

H0
(
MN,ω

⊗
k+(j+1)(p−1)

)
∼= Ep−1 ·H0

(
MN,ω

⊗
k+j(p−1)

)⊕
B(N, k, j+ 1)

∼= Ep−1 ·
(
Ep−1 ·H0

(
MN,ω

⊕
k+(j−1)(p−1)

)
⊕ B(N, k, j)

)⊕
B(N, k, j+ 1)

∼= (Ep−1)
j+1H0

(
MN,ω

⊗
k
)⊕

B(N, k, j+1)
⊕

E
(j+1)−j
p−1 B(N, k, j)

⊕
...
⊕

E
j
p−1

∼=
j+1⊕
a=o

E
(j+1)−a
p−1 B(N, k, a).
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This iteration also works for the R0 analogue we just defined, which gives us that

H0
(
MN,ω

⊗
k+j(p−1)

)⊗
R0

∼=
( j+1⊕

a=o
E
(j+1)−a
p−1 B(N, k, a)

)⊗
R0

∼=
j⊕

a=o
E
j−a
p−1

(
B(N, k, a)

⊗
R0

)
∼=

j⊕
a=o

E
j−a
p−1B(R0, N, k, a).

But note that H0
(
MN,ω

⊗
k+j(p−1)

)⊗
R0 = H0

(
MN,ω

⊗
k+j(p−1)

⊗
R0

)
, which is then equal to

M
(
R0, N, k + j(p − 1)

)
. This implies that any element in M

(
R0, N, k + j(p − 1)

)
can be written

uniquely as
∑

E
j−a
p−1ba for ba ∈ B(R0, N, k, a), but the Ej−a

p−1 do not depend on ba, so we can use the
ba as “coordinates”. Thus, we get an isomorphism:

(5.10.3) M
(
R0, N, k+ j(p− 1)

)
∼=

j⊕
a=0

B(R0, N, k, a)∑
E
j−a
p−1ba

∼=
∑

ba

Where ba ∈ B(R0, N, k, a).

Now, define:

Brigid(R0, r,N, k) =
{ ∞∑

a=0

ba, ba ∈ B(R0, N, k, a) : ∀ N > 0, N ∈ Z, ∃ CN > 0 s.t.

ba ∈ pN · B(R0, N, k, a) ∀ a ≥ CN

}
Now, before we use this definition to introduce the next proposition, we need to introduce the

following lemma.

Lemma 5.11 [5, Section 2.1]:

The Eisenstein series Ep−1 lifts to the Hasse invariant for p ≥ 5.

Proof:

Recall the Eisenstein series Ek = 1 − 2k
Bk

∞∑
n=1

σk−1(n)q
n. Note that for k = p − 1, p ≥ 5,

ordp(
−2(p−1)
Bp−1

) = 1. Thus −2(p−1)
Bp−1

= pa
b for some a

b ∈ Q s.t. p ∤ a
b . This implies that the coefficients

an of the q-expansion of Ep−1 are all elements of Q
⋂
Zp, which means we can reduce modulo p

to end up with a modular form over Fp. Then the q-expansion is just 1 because the rest of the
coefficients are multiples of p. But as noted in section 2.0 of “P-adic Properties of Modular Schemes
and Modular Forms”[5], A(Tate(q),ωcan) = 1, where A is the Hasse invariant viewed as a modular
form, so Ep−1 and A are modular forms with the same q-expansion. Further note that they are
also of the same level.

This implies that A ≡ Ep−1 mod p, and thus Ep−1 lifts to the Hasse invariant for p ≥ 5.

Q.E.D.
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Now we have everything required to prove the following proposition:

Prop 5.12 [5, 2.6.2]:

Let N ≥ 3, and suppose either that k ≥ 2 or that k = 1 and N ≤ 11 or that k = 0 and p ̸= 2,
or that k = 0, p = 2, and N ≤ 11. Let R0 be any p-adically complete ring, and suppose r ∈ R0

is not a zero divisor in R0. Then the inclusion of Brigid(R0, r,N, k) in the p-adic completion of
H0
(
MN,

⊕
j≥0

(ω)
⊗

(k+j(p−1))
)
induces, via the isomorphism (5.10.3), an isomorphism

Brigid(R0, r,N, k)→M(R0, r,N, k)∑
ba → "

∑
a≥0

ra·ba
(Ep−1)a

"

where "
∑
a≥0

ra·ba
(Ep−1)a

" has the value
∑
a≥0

ba(E/S, αN) · Ya on (E/S, αN, Y).

Proof:

First, we prove injectivity:

Note that the set

U =
{ ∑

a≥0

ba ∈ Brigid(R0, r,N, k) s.t. it can be written as (Ep−1 − r) · ∑
a≥0

sa with

sa ∈ M
(
R0, N, k+ a(p− 1)

)
and sa tending to zero as a→∞ }⋃{0}

is the kernel of the isomorphism, i.e. it is the set of elements
∑
a≥0

ba ∈ Brigid(R0, r,N, k, ) s.t.

"
∑
a≥0

ra·ba
(Ep−1)a

" =
∑
a≥0

ba(E/S, αN)·Ya = 0. Indeed, first note that (Ep−1−r) becomes 0 inM(R0, r,N, k)

by definition, since M(R0, r,N, k) is defined by taking the quotient by (Ep−1− r), so the elements of
U are clearly elements of the kernel of the isomorphism. Furthermore, (Ep−1 − r) is the only thing
that becomes 0 in M(R0, r,N, k), because the change between M(R0, r,N, k) and M(R0, N, k) is the
addition of the (Ep−1 − r) condition, as seen in Prop 5.8. Thus, the isomorphism we just found
relating B(R0, N, k, a) and M(R0, N, k+ j(p− 1)) means that the only other possible element of the
kernel is simply 0 ∈ Brigid(R0, r,N, k).

Thus, to prove injectivity, we simply need to prove that U = {0}, i.e. that ba = 0 ∀ a ≥ 0 for∑
a≥0

ba ∈ U.

Further, note that we actually only need to show that ∀N > 0, N ∈ Z, then ba ≡ 0 mod pN.
Indeed, if this is true, then we have:
ba ≡ 0 mod p

ba ≡ 0 mod p2

ba ≡ 0 mod p3

...

=⇒ ba = 0

37



Now, prove that this is the case:

First, note that Brigid(R0, r,N, k) is such that given any N > 0, ∃ l > 0 s.t. ba ∈ pN ·
B(R0, N, k, a) ∀ a ≥ l. This is equivalent to saying that given anyN > 0, ∃ l > 0 s.t. ba ≡ 0 mod pN

for a ≥ l, which further implies that given any N > 0, ∃ l > 0 s.t.
∑
a≥0

ba ≡
l−1∑
a=0

ba mod pN.

Also, note that
∑
a≥0

ba = (Ep−1 − r)
∑
a≥0

sa, and that sa ∈ M(R0, N, k + a(p − 1)). Thus

sa =
∑
c
Ea−c
p−1bc for bc ∈ B(R0, N, k, c), which then implies that

∑
a≥0

sa =
∑
a≥0

∑
c
Ea−c
p−1bc. Enter-

ing this into our equation for
∑
a≥0

ba gives
∑
a≥0

ba = (Ep−1 − r)
∑
a≥0

∑
c
Ea−c
p−1bc.

Now take mod pN on both sides. Since we noted that given any N > 0, ∃ l > 0 s.t.
∑
a≥0

ba ≡
l−1∑
a=0

ba mod pN, we get
l−1∑
a=0

ba ≡ (Ep−1 − r)
∑
a≥0

∑
c
Ea−c
p−1bc mod pN.

Now, assume that the a on the right side of the equation is greater than l − 1, i.e. assume
that this term does not go to zero. Then we have an element on the right side of the form xbc

for bc ∈ B(R0, N, k, c) and c > a. Since bc ∈ B(R0, N, k, c), then bc ̸∈ B(R0, N, k, a) for any
0 ≤ a ≤ l − 1, which is a contradiction because then the two sides cannot be equal. Thus we

must have
∑
a≥0

∑
c
Ea−c
p−1bc ≡

l−1∑
a=0

∑
c
Ea−c
p−1bc mod pN, which then implies that

∑
a≥0

sa ≡
l−1∑
a=0

sa mod pN.

Thus, we have proven that ba ≡ sa ≡ 0 mod pN ∀ a ≥ l, i.e. ba ≡ sa ≡ 0 mod pN ∀ a > l− 1.

Now, using this as our base case, we will prove that ba ≡ sa ≡ 0 mod pN ∀ a ≥ 0 by induction:

Let ba ≡ sa ≡ 0 mod pN ∀ a > M for some M. Now, bM+1 ≡ 0 mod pN by hypoth-
esis, but also,

∑
a≥0

ba = (Ep−1 − r)
∑
a≥0

sa, i.e.
∑
a≥0

ba = Ep−1

∑
a≥0

sa − r
∑
a≥0

sa. Comparing the

highest weight forms, we get bM+1 ≡ Ep−1sM − rsM+1 ≡ Ep−1sM mod pN, which implies that
Ep−1sM ≡ bM+1 ≡ 0 mod pN.

Now, restrict this equality to the ordinary locus, and note that the ordinary locus is dense
on the set of modular forms. Further, by Lemma 5.11, Ep−1 lifts to the Hasse invariant. Thus
Ep−1 is a unity on the ordinary locus, and so Ep−1sM ≡ sM mod pN on the ordinary locus. But
Ep−1sM ≡ 0 mod pN, so sM ≡ 0 mod pN on the ordinary locus.

But the ordinary locus is dense, so we have that sM vanishes on an open dense subset of the
modular curve. Further, since the modular curve is normal, the vanishing locus of a section must
be the whole curve, have codimension 1 or be empty. Since it vanishes on a dense open, it cannot
be empty, so it only remains to check that it cannot have codimension 1. If it had codimension
1, then the space would be defined by an ideal of height 1, which is a point on a modular curve.
Since it vanishes on an open dense set, it cannot be generated by an ideal that is a point. Thus the
vanishing locus cannot have codimension 1, and the only possibility remaining is that sM is zero
everywhere.

This implies that sM ≡ 0 mod pN.
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Now, note that bM ≡ Ep−1sM−1 − rsM mod pN, but we just showed that sM ≡ 0 mod pN, so
bM ≡ Ep−1sM−1 mod pN, and in particular bM mod pN ∈ im(Ep−1). But bM is also an element of
the complement of im(Ep−1), since bM ∈ B(R0, N, k,M) and
H0
(
MN,ω

⊗
k+(j+1)(p−1)

⊗
Zp

R0

)
∼= Ep−1 ·H0

(
MN,ω

⊗
k+j(p−1)

⊗
Zp

R0

)⊕
B(R0, N, k, j+ 1).

Therefore, bM ≡ 0 mod pN is the only possibility which does not cause a contradiction.
Thus we have proven that both bM ≡ 0 mod pN and sM ≡ 0 mod pN. Thus ba ≡ sa ≡
0 mod pN ∀ a > (M−1) for some M, and so the inductive step is proven. Therefore, by induction,
ba ≡ 0 mod pN ∀ N > 0, N ∈ Z, ∀ a ≥ 0, which implies that ba = 0 ∀ a ≥ 0, and thus that the
map is injective.

Now, for surjectivity:

For this, use (5.10.3). Note that, by definition, sa =
a−j∑
p−1

bj. Then, defining i = a − j, we get

sa =
∑

i+j=a

(Ep−1)
ibj(a).

Also, note that sa → 0 as a → ∞, which implies that bj(a) → 0 as a → ∞. Also, note that∑
a
sa =

∑
a

∑
i+j=a

(Ep−1)
ibj(a)

=
∑
a

∑
i+j=a

ribj(a) + (Ep−1 − r)
∑
a

∑
i+j=a

bj(a)
∑

u+v=i−1

(Ep−1)
u · rv.

But (Ep−1 − r) = 0 in M(R0, r,N, k), so
∑
a
sa =

∑
a

∑
i+j=a

ribj(a) in M(R0, r,N, k), i.e.
∑
a
sa has

the same image in M(R0, r,N, k) as
∑
a

∑
i+j=a

ribj(a). Now, note that bj(i+ j)→ 0 as i→∞, which

implies that ∀j, ∃b ′
j ∈ B(R0, N, k, j) such that

∑
i

ribj(i+ j)→ b ′
j . Also, bj → 0 as j→∞, so b ′

j → 0

as j→∞. This implies that
∑
a

∑
i+j=a

ribj(a) =
∑
j

∑
i

ribj(i+ j) =
∑
j≥0

b ′
j . As

∑
a
sa =

∑
a

∑
i+j=a

ribj(a),

this implies that
∑
a
sa and

∑
j≥0

b ′
j have the same image in M(R0, r,N, k) and b ′

j → 0 as j→∞.

This then implies that
∑
j≥0

b ′
j is an element of Brigid(R0, r,N, k) which has the same image

in M(R0, r,N, k) as
∑
a
sa. Since each element of M(R0, r,N, k) corresponds to some element of

M(R0, N, k), since M(R0, r,N, k) is obtained by taking the quotient with the ideal (Ep−1 − r), this
means that for any element a of M(R0, r,N, k), we have an element

∑
j≥0

b ′
j of B

rigid(R0, r,N, k) whose

image under the map is a.

This implies that surjectivity is proven, and so we have proven both surjectivity and injectivity,
which implies that the map is indeed an isomorphism.

Q.E.D.

With this proposition, we now have all of the structure necessary to introduce the algorithms.
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6 Algorithms

In order to examine the Hecke eigenvalues of modular forms, the algorithm found in “Computa-
tions with classical and p-adic modular forms”, by Alan G. B. Lauder [6] was used. The algorithm
is split into two cases. The first case takes as inputs a prime number greater than or equal to
5, an integer k and a positive integer m, and returns the p-adic valuations of the inverse of the
eigenvalues of Tp modulo pm on M(Zp, r, 1, k). The second case is a generalization of the first case,
and takes an extra input N, and returns results for modular forms of level Γ1(N). We implemented
these algorithms as Sagemath programs. The code we wrote for said programs can be found in the
appendix.

Algorithm for level Γ1(1):

Step 1:

• Initialize the algorithm by letting p be a prime ≥ 5, letting k be an integer, and letting m be a
positive integer.

• Calculate two additional variables, k0 and j, as the unique solution to the formulas k = k0+j(p−1)
and 0 ≤ k0 < p− 1.

• Compute the variable n as n =
⌊
p+1
p−1(m+ 1)

⌋
.

• Compute the dimension di of the space of classical modular forms of level 1 and weight k0+i(p−1),
for i running over i = 0, ..., n.

• Compute the difference between each successive dimension, denoted by mi, as mi = di−di−1 for
i = 1, ..., n and m0 = d0.

• Compute the variable l as the sum of these differences, l =
n∑
i=0

mi.

• Compute the variable m ′ as m ′ = m+ ⌊ n
p+1⌋, which will be used as the working precision of the

algorithm.

Step 2:

• Calculate a row reduced basis of q-expansions of the space of classical modular forms of weight
k0 + i(p − 1) and level Γ1(1) in Z[[q]]

(pm
′
,qlp)

, for i running from 0 to n. By a row reduced basis of

q-expansions, we mean that if we form a matrix from a given basis of q-expansions of the space,
where each row corresponds to one of the q-expansions and each column corresponds to a power of
the variable q, then the row reduced basis is the basis consisting of the q-expansions obtained by
row-reducing this matrix. Denote this row reduced basis by Dk0+i(p−1).

• For i running from 0 to n, define Wi to be the last mi elements of Dk0+i(p−1).
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Step 3:

• Compute the q-expansion of Ep−1, the Eisenstein series of weight p − 1, in Z[[q]]
(pm

′
,qlp)

. Call this

Ep−1(q).

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ei,s =

p

⌊
i

p−1

⌋
E−i
p−1(q)Wi[s], where Wi[s] is the sth element of Wi, in

Z[[q]]
(pm

′
,qlp)

.

Step 4:

• Define G(q) =
Ep−1(q)
Ep−1(qp) in Z[[q]]

(pm
′
,qlp)

.

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ui,s = G(q)jei,s
in Z[[q]]

(pm
′
,qlp)

.

• When implementing this algorithm as a computer program, it can be useful to compute G(q)j

using a quick exponentiation algorithm to save on processing time.

Step 5:

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ti,s = Tp(ui,s)

in Z[[q]]
(pm

′
,qlp)

.

Step 6:

• Define the l × l matrix T in Z[[q]]
(pm

′
)
using the elements ti,s where each row corresponds to one of

the ti,s and each column corresponds to a power of q.

• Define the l × l matrix E in Z[[q]]
(pm

′
)
using the elements ei,s where each row corresponds to one of

the ei,s and each column corresponds to a power of q.

• Calculate the matrix A s.t. T = AE in Z[[q]]
(pm

′
)
. If this has no solution, instead solve the equation

pT = AE for A.

• Calculate a = det(1−At) mod pm.

• Calculate the Newton slopes of a to find the p-adic valuations of the inverse of the eigenvalues
of Tp modulo pm, or of pTp if T = AE in Z[[q]]

(pm
′
)
has no solution.

Note that Newton polygons and slopes are defined as follows:
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Definition 6.1 [3]:

Let K be a field which is complete with respect to the p-adic valuation. Let f be a polynomial

f =
n∑
i=0

aix
i of degree n with ai ∈ K such that a0 ̸= 0, its Newton polygon NP(f) is defined to be

the lower boundary of the convex hull of {(i, ordp(ai)) : 0 ≤ i ≤ n} ⊂ R2, ignoring points where
ai = 0. As this provides information about the zeroes of the polynomial, we may also divide by
a0 and assume that a0 = 1. We call the slopes of the line segments which make up the Newton
polygon the newton slopes of the polynomial.

The Newton polygons give the p-adic valuations of the eigenvalues by the following theorem:

Theorem 6.2 [3]:

Let K be a field which is complete with respect to the p-adic valuation. Let f(x) = 1 + a1x +
a2x

2 + ...+ anx
n ∈ K[x] be a polynomial and let m1,m2, ...mr be the slopes of its newton polygon

(in increasing order). Let i1, i2, ..., ir be the corresponding lengths of the line segments. Then, for
each k, 1 ≤ k ≤ r, f(x) has exactly ik roots (in Cp, counting multiplicities) of p-adic valuation
−mk.

Note that, when applying the Hecke operator Tp in this algorithm, it always acts as:
f 7→ Tpf∞∑

n=0

anq
n 7→ ∞∑

n=0

apnq
n

despite the fact that p ∤ 1. This is because we are working with p-adic modular forms of level Γ1(1),
and so we are working in Γ1(1)

⋂
Γ0(p), which ensures that this formula is correct. This also holds

for the level Γ1(N) algorithm.

The algorithm for level Γ1(N) is similar, with only a few differences:

Algorithm for level Γ1(N):

Step 1:

• Initialize the algorithm by letting N be a positive integer, letting p be a prime ≥ 5 s.t. p does
not divide N, letting k be an integer, and letting m be a positive integer.

• Calculate two additional variables, k0 and j, as the unique solution to the formulas k = k0+j(p−1)
and 0 ≤ k0 < p− 1.

• Compute the variable n as n =
⌊
p+1
p−1(m+ 1)

⌋
.

• Compute the dimension di of the space of classical modular forms of level 1 and weight k0+i(p−1),
for i running over i = 0, ..., n.
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• Compute the difference between each successive dimension, mi, as mi = di − di−1 for i = 1, ..., n

and m0 = d0.

• Compute the variable l as the sum of these differences, l =
n∑
i=0

mi.

• Compute the variable m ′ as m ′ = m+ ⌊ n
p+1⌋, which will be used as the working precision of the

algorithm.

• Compute the Sturm bound l ′ of the space of classical modular forms of level Γ1(N) and weight
k0 + n(p− 1).

Step 2:

• Calculate a row reduced basis of q-expansions of the space of classical modular forms of weight
k0 + i(p − 1) and level Γ1(1) in Z[[q]]

(pm
′
,ql ′p)

, for i running from 0 to n. By a row reduced basis of

q-expansions, we mean that if we form a matrix from a given basis of q-expansions of the space,
where each row corresponds to one of the q-expansions and each column corresponds to a power of
the variable q, then the row reduced basis is the basis consisting of the q-expansions obtained by
row-reducing this matrix. Denote this row reduced basis by Dk0+i(p−1).

• For each i running from 0 to n, define Wi to be an empty set. Then, if i=0, W0=Dk0+0(p−1). If

i ̸= 0, then, for w running from 0 to di, check if the degree of the lowest term of the wth element of
Dk0+i(p−1) is different from the lowest term of any element of Dk0+(i−1)(p−1). If so, add that element
to the set Wi.

Step 3:

• Compute the q-expansion of Ep−1, the Eisenstein series of weight p − 1, in Z[[q]]
(pm

′
,ql ′p)

. Call this

Ep−1(q).

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ei,s =

p

⌊
i

p−1

⌋
E−i
p−1(q)Wi[s], where Wi[s] is the sth element of Wi, in

Z[[q]]
(pm

′
,ql ′p)

.

Step 4:

• Define G(q) =
Ep−1(q)
Ep−1(qp) in Z[[q]]

(pm
′
,ql ′p)

.

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ui,s = G(q)jei,s
in Z[[q]]

(pm
′
,ql ′p)

.

• When implementing this algorithm as a computer program, it can be useful to compute G(q)j

using a quick exponentiation algorithm to save on processing time.
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Step 5:

• For i running from 0 to n and for s running from 1 to mi, calculate the variables ti,s = Tp(ui,s)

in Z[[q]]
(pm

′
,ql ′p)

.

Step 6:

• Define the l× l ′ matrix T in Z[[q]]
(pm

′
)
using the elements ti,s where each row corresponds to one of

the ti,s and each column corresponds to a power of q.

• Define the l× l ′ matrix E in Z[[q]]
(pm

′
)
using the elements ei,s where each row corresponds to one of

the ei,s and each column corresponds to a power of q.

• Calculate the matrix A s.t. T = AE in Z[[q]]
(pm

′
)
. If this is not able to be solved, instead solve the

equation pT = AE for A.

• Calculate a = det(1−At) mod pm.

• Calculate the Newton slopes of a to then find the p-adic valuations of the inverse of the eigen-
values of Tp modulo pm, or of pTp if T = AE in Z[[q]]

(pm
′
)
has no solution.

Remark 6.3:

In order to prove the correctness of these algorithms, we require one last set of results. We
follow the strategy of [6, 2.1 to 2.3]:

Let 0 < ordp(r) <
1

p+1 , Let Q be a p-adic field, and let Q0 be the ring of integers of Q. Consider

an ordered basis {bi,s}
mi

s=1 of B(Q0, N, k, j), and note that this indeed has enough elements to form a
basis, since H0

(
MN,ω

⊕
k+(j+1)(p−1)

)
∼= Ep−1 ·H0

(
MN,ω

⊕
k+j(p−1)

)⊕
B(N, k, j+ 1). Further, note

that we have an isomorphism between Brigid(Q0, r,N, k) and M(Q0, r,N, k) from Prop 5.12, which
is
∑

ba → "
∑
a≥0

ra·ba
(Ep−1)a

", but note that a map of sums of this type can be separated into a set of

maps ba → " ra·ba
(Ep−1)a

" for each B(Q0, N, k, a). Applying these maps, we get an orthonormal basis

{ei,s}
s=mi

i≥0, s=0 of M(Q, r,N, k).

Now, write Tp ◦ G(q)j(ei,s) =
∑
u,v

Au,v
i,s (j)eu,v, where G(q)j is defined as in the algorithm. This

is possible, as we simply take Au,v
i,s (j) to be the matrix defined by this operator. Then, as noted

by Wan [12, p.457], since G(q)j ∈ M(Q0, r,N, 0), we get that ordp
(
Au,v

i,s (j)
)
≥ u(p− 1)ordp(r) − 1.

This is the final result we need before we prove the correctness of the algorithms.

Proof of correctness for level Γ1(1) algorithm:

Let p be a prime ≥ 5, let k be an integer, and let m be a positive integer, as required for the
algorithm of level Γ1(1).

First, ∀ i ≥ 0, define di = dim
(
M(Zp, 1, k0 + i(p − 1))

)
and mi = dim

(
B(1, k, i)

)
. Note that
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these definitions match up with the ones given in the algorithm, because the basis of B(1, k, i) is
Wi, which by definition has mi elements. This implies that d0 = m0 and di = mi −mi−1 for i ≥ 1

as in the algorithm.

Now, we have the following lemma:

Lemma 6.4 [6, Lemma 3.2]:

For 0 ≤ i ≤ N, the elements in Wi are the reduction modulo (pm ′
, qlp) of a basis for some

choice of the space B(1, k, j).

Proof of lemma:

Let Dk0+i(p−1) be as defined in the algorithm. Then for any i, the lowest term of the rth element

of Dk0+i(p−1) is q
r−1[11, Remark 2.21], which implies that for fr the rth element of Dk0+i(p−1) and

for g with lowest term 1, then clearly gfr has lowest term qr−1 as well. Note that the normalized
Eisenstein series Ep−1 has lowest term 1 by definition. Thus we can use Ep−1 in place of g, and
so Ep−1fr has lowest term qr−1, and so the rth element of the set

{
Ep−1fy : fy ∈ Dk0+(i−1)(p−1)

}
={

Ep−1f1, Ep−1f2, ..., Ep−1fr, ...
}
has lowest term qr−1.

Now, note that the mi elements of Wi are the tth elements of Dk0+i(p−1) for di ≥ t > di−1,

since they are the last mi elements of Dk0+i(p−1), i.e. they are the (di−1 + 1)th element through

the dth
i element inclusively. Thus the elements in Wi have lowest term qt−1 respectively, for

di ≥ t > di−1 = #Dk0+i(p−1). Thus, we have that:

Any element of
{
Ep−1f : f ∈ Dk0+(i−1)(p−1)

}
has lowest term qt−1 for some t ≤ di−1;

and, as we just proved:

any element in Wi has lowest term qt−1 for some t > di−1.

This implies there is no element of Wi whose lowest term is equal to the lowest term of any
element of

{
Ep−1f : f ∈ Dk0+(i−1)(p−1)

}
. Further, note that taking this modulo (pm ′

, qlp) does not
change this, because l ∗ p > di. Thus we have proven that, for any element of Ep−1 ·M

(
Zp, 1, k0 +

(i− 1)(p− 1)
)
, we can not construct its reduction modulo (pm ′

, qlp) as a non-zero Z
pm

′ -linear com-

bination of elements of Wi.

Note that B(1, k, j) is the complement of Ep−1 ·M
(
Zp, 1, k0+(i−1)(p−1)

)
, and so M

(
Zp, N, k0+

i(p− 1)
)
= Ep−1 ·M

(
Zp, 1, k0 + (i− 1)(p− 1)

)⊕
B(1, k, j), which finally implies that the elements

of Wi are the reduction modulo (pm ′
, qlp) of a basis for some choice of the space B(1, k, j).

Q.E.D.

Now, we will use this to prove correctness for a simplified version of the algorithm. The simpli-
fications are:
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Simplification 1) Let ϵ > 0 be an arbitrary rational number. Define nϵ := ⌊ (p+1)+ϵ
p−1 (m + 1)⌋.

Define lϵ := dnϵ . For all instances of the variables n and l in the algorithm, replace n by nϵ and
replace l by lϵ;

Simplification 2) Choose B some extension of Zp and choose r ∈ B such that ordp(r) =
1

p+1+ϵ .

redefine ei,s in the algorithm as ei,s = riE−i
p−1(q)Wi[s];

Simplification 3) Instead of doing all of the computations throughout the algorithm over the
quotient space Z

(pm
′
)
, or rather B

(pm
′
)
after implementing simplification 2, do the computations di-

rectly in B without taking the modulus.

Proof of simplified algorithm:

First, we prove that the output of this algorithm is the top lefthand corner of the matrix Au,v
i,s (j)

which is defined by the equation Tp
(
G(q)j(ei,s)

)
=
∑
u,v

Au,v
i,s (j)eu,v from remark 6.3.

Note that we have T = AE from the algorithm. Note that, recalling the definition of T and E

from the algorithm, T = AE implies:
t1,1
t1,2
...

timax,smax

 = A


e1,1
e1,2
...

eumax,vmax


with indices chosen to match Au,v

i,s (j). As A is an lϵ× lϵ matrix, and we have exactly lϵ elements ti,s
and lϵ elements eu,v, we can label the entries of A by the pairs (i, s) and (u, v), as a(i,s),(u,v). Then,
performing the matrix multiplication, we obtain ti,s = a(i,s),(1,1)e1,1+ ...+a(i,s),(umax,vmax)eumax,vmax ,
i.e. ti,s =

∑
u,v

a(i,s),(u,v)eu,v.

Furthermore, note that Tp
(
G(q)j(ei,s)

)
= ti,s by definition, and so, combining these two equa-

tions, we have that Tp
(
G(q)j(ei,s)

)
= ti,s =

∑
u,v

a(i,s),(u,v)eu,v.

Finally, from simplification 2, we have that 0 < ordp(r) =
1

p−1+ϵ < 1
p−1 , so we can see from (6.3)

that ei,s for 0 ≤ i, 1 ≤ s ≤ mi forms an orthonormal basis for the p-adic Banach space M(R, r,N, k)
so the eu,v and ti,s indeed match up between these two cases. Thus A is indeed the top lefthand
corner of Au,v

i,s (j), as desired.

Now, we examine the matrix Au,v
i,s (j) to determine that the output of the algorithm is indeed

what is required.

Note that for u ≥ p+1+ϵ
p−1 (m+ 1), and for 1 ≤ v ≤ mu we have:

ordp

(
Au,v

i,s (j)
)
≥ u(p− 1)ordp(r) − 1 by (6.3)

= u(p− 1) 1
p+1+ϵ − 1

≥ p+1+ϵ
p−1 (p− 1) 1

p+1+ϵ(m+ 1) − 1 = m.

Which implies that ordp(A
u,v
i,s (j)) ≥ m, so all of the coefficients in the rows of Au,v

i,s (j) labeled

by pairs (u, v) where u ≥ p+1+ϵ
p−1 (m + 1) and 1 ≤ v ≤ mu have p-adic valuation greater than or
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equal to m. Now, note that u ≥ 0, (p− 1) ≥ 0 and ordp(r) ≥ 0. Thus ordp
(
Au,v

i,s (j)
)
≥ −1 by (6.3),

and we can split this into two cases, ordp
(
Au,v

i,s (j)
)
= −1 or ≥ 0.

If ordp
(
Au,v

i,s (j)
)
≥ 0, then the entries are of the form x for x ∈ Z, and thus the matrix

(
Au,v

i,s (j)
)

has integral entries. If ordp
(
Au,v

i,s (j)
)
= −1, then the entries are of the form x

p for x ∈ Z, which then

implies that p
(
Au,v

i,s (j)
)
has entries of the form x for x ∈ Z, and so p

(
Au,v

i,s (j)
)
has integral entries.

In the case of Au,v
i,s (j) having integral entries, reducing

(
Au,v

i,s (j)
)
modulo pm results in an lϵ×∞

matrix, as stated by Lauder in “Computations with classical and p-adic modular forms”[6]. Indeed,
for example, for N ≥ 2, the proof is as follows:

Note that ordp
(
Au,v

i,s (j)
)
≥ m for u ≥ p+1+ϵ

p−1 (m+1), i.e. the entries of the rows are equivalent to

0 mod pm for u ≥ p+1+ϵ
p−1 (m+ 1). Note also that nϵ = ⌊p+1+ϵ

p−1 (m+ 1)⌋. This implies that u ≥ nϵ,

and so, in the worst case scenario, we have ordp
(
Au,v

i,s (j)
)
≥ m ∀ u ≥ nϵ + 1.

Now, note that we can view
(
Au,v

i,s (j)
)
modulo pm as an lϵ×∞ matrix if the entries for the rows

past row lϵ are zero modulo pm. Thus what we want is to prove that ordp
(
Au,v

i,s (j)
)
≥ m ∀ u ≥ lϵ.

Recall the definition of lϵ: lϵ = dnϵ , where di is defined to be the dimension of the space of modular
forms of level Γ1(N) and weight k0+i(p−1). Thus what we need to prove is that lϵ = dnϵ ≥ nϵ+1,
i.e. we need to prove that di ≥ i+ 1.

This is indeed true for N ≥ 2. Indeed, for modular forms of even weight, the equation for the
dimension of the space of modular forms of level Γ1(N) and weight k0 + i(p− 1) is [2](
k0+ i(p−1)−1

)
(gN–1)+ ⌊k0+i(p−1)

4 ⌋ϵ2+ ⌊k0+i(p−1)
3 ⌋ϵ3+ k0+i(p−1)

2 , where gN is the genus of Γ1(N),
ϵ2 is the number of elliptic points of order 2, ϵ3 is the number of elliptic points of order 3, and ϵ∞
is the number of cusps. The rate at which this grows with respect to i increases as N increases,
and even at N = 2, the genus is 3, so the dimension increases faster than i. Further, even at i = 0,
k0 = 2, we get d0 = 1 = 0+ 1, so di ≥ i+ 1.

As for modular forms of odd weight, the equation for the dimension becomes [2](
k0+ i(p− 1)− 1

)
(gN− 1)+ ⌊k3⌋ϵ3+ k

2ϵ
reg∞ + k−1

2 ϵirr∞ , where ϵreg∞ is the number of regular cusps and
ϵirr∞ is the number of irregular cusps. Once again, as N increases, the rate at which the dimension
grows with respect to i also increases, and even at N = 3, the smallest N where odd weights are
possible, the genus is 8, so the dimension increases faster than i. Further, even at i = 0, k0 = 1,
we get d0 = 1 = 0+ 1, so di ≥ i+ 1.

This implies that for N ≥ 2, di ≥ i + 1, which implies that ordp(A
u,v
i,s (j)) ≥ m ∀ u ≥ lϵ. Thus

reducing
(
Au,v

i,s (j)
)
modulo pm results in an lϵ ×∞ matrix for the N ≥ 2 case.

The fact that reducing
(
Au,v

i,s (j)
)
modulo pm results in an lϵ×∞ matrix implies that the reverse

characteristic series of Au,v
i,s (j) is congruent to the reverse characteristic polynomial of A mod pm.
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Indeed, as an example, for lϵ = 2, let:

Au,v
i,s (j) mod pm =


a b e . . .

c d f . . .

0 0 0 . . .
...

...
...

. . .


and

A =

[
a b

c d

]
.

Now, calculate the reverse characteristic polynomial of Au,v
i,s (j) mod pm:

det
(
I−tAu,v

i,s (j)
)
mod pm = det

( 1 0 0

0 1 0

0 0 1

+
 −ta −tb −te

−tc −td −tf

0 0 0

) = det

( 1− ta −tb −te

−tc 1− td −tf

0 0 1

)

= det

([
1− ta −tb

−tc 1− td

])
.

Now, calculate the reverse characteristic polynomial of A:

det(I− tA) = det

([
1 0

0 1

]
+

[
−ta −tb

−tc −td

])

= det

([
1− ta −tb

−tc 1− td

])
.

Which is the same result as for Au,v
i,s , and so the reverse characteristic polynomials of A and

Au,v
i,s (j) are congruent modulo pm, which concludes this example.

The fact that the two reverse characteristic polynomials are congruent implies that the second
to last line of the algorithm is indeed the characteristic polynomial we want, which implies that
the output of the algorithm is indeed the inverse of the eigenvalues that we want, modulo pm.

Now, in the case of Au,v
i,s (j) not having integral entries, The same argument outputs the re-

verse characteristic series of pTp mod pm instead of Tp. However, note that if we have det(1 −
pAt) mod pf(p)m, where f is some polynomial function, then we can calculate det(1−At) mod pm.
Indeed, we can show this as follows:

First, try f(p) = p, the smallest possible polynomial, in characteristic 0. In this case, we have:
det(I − Apt) mod ppm = 1 + a1pt + a2(pt)

2 + ... + al(pt)
l, and what we want to calculate is

det(I − At) mod pm = 1 + b1t + b2t
2 + ... + blt

l. In order to do this, we take a1
p , a2

p2
, ..., al

pl
, thus

we lose at most a precision of l, and we get det(I−At) mod ppm−l = 1+ a1
p t+ ...+ al

pl
tl.

Thus, as long as pm− l ≥ m, then we can reduce modulo pm and get the coefficients we want.
Thus to calculate det(1 − At) mod pm, we need pm − m ≥ l, i.e. we need (p − 1)m ≥ l. We
can increase m until this is true, as l increases more slowly than m, so for sufficiently large m, we
can indeed calculate det(1 − At) mod pm. Since f(p) = p is the smallest non-constant, non-zero
polynomial then we can do this for any other polynomial as well, and so this is proven for any
polynomial f(p).
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Furthermore, in both the original paper by Lauder and in our work, the second case never arose,
so it is likely that this can be ignored for most situations. Thus, we have proven the simplified
algorithm.

Q.E.D.

Now, we want to use the fact that the simplified algorithm is true to prove that the unmodified
algorithm is true. We will do this by proving that we can remove each simplification in turn.

• To remove simplification 3, we require det(1 − At) mod pm to give the same result when A

is calculated modulo pm ′
rather than modulo pm. In order to solve T = AE for A, we invert the

matrix E and solve A = TE−1. In the case of working over B
(pm

′
)
, this calculation is:

T = AE mod pm ′
=⇒ A = TE−1 mod pm ′+ordp(E−1)

Now, the final result of the algorithm is reduced modulo pm, so for the algorithm to output the
same result without simplification 3, we need m ′ + ordp(E

−1) ≥ m.

Note that ordp(ei,s) ≤ nϵ
p+1 . Since E is upper triangular, this implies that ordp(E

−1) ≥ −nϵ
p+1 .

Indeed, let M be an upper triangular n× n matrix


a1,1 a1,2 a1,3 . . . a1,n

0 a2,2 a2,3 . . . a2,n

0 0 a3,3 . . . a3,n
...

...
...

. . .
...

0 0 0 . . . an,n

.
Then M−1 is:

1
a1,1

−a1,2
a1,1a2,2

det(A)
a1,1a2,2a3,3

det(B)
a1,1a2,2a3,3a4,4

det(C)
a1,1a2,2a3,3a4,4a5,5

. . .

0 1
a2,2

−a2,3
a2,2a3,3

det(D)
a2,2a3,3a4,4

det(E)
a2,2a3,3a4,4a5,5

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . . . . . . . . . . 1
an,n


where we let A = 2 × 2 submatrix of M with a1,3 in its top right corner, B = 3 × 3 submatrix of
M with a1,4 in its top right corner, C = 4 × 4 submatrix of M with a1,5 in its top right corner,
D = 2× 2 submatrix of M with a2,4 in its top right corner and E = 3× 3 submatrix of M with a2,5

in its top right corner.

Note that we always have exactly one more element of M multiplied in the denominator than in
the numerator. Since ordp(ei,s) ≤ nϵ

p+1 , if we assume every element has the maximal valuation of nϵ
p+1 ,

then each non-zero element of the inverse has p-adic valuation ≥ −nϵ
p+1 , since all but one order cancel,

which implies that ordp(E
−1) ≥ −nϵ

p+1 , as expected. This implies that m ′ + ordp(E
−1) ≥ m ′ − nϵ

p+1 ,

but nϵ
p+1 ≤

⌈
nϵ
p+1

⌉
= m ′ − m, and so m ′ + ordp(E

−1) ≥ m ′ − nϵ
p+1 ≥ m ′ − (m ′ − m) = m, i.e.

m ′ + ordp(E
−1) ≥ m.
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As mentioned earlier, this is sufficient to prove that the algorithm outputs the same result
working over B

(pm
′
)
, and so simplification 3 can be removed.

• To remove simplification 1, simply note that we can choose ϵ to be any real number > 0, so
simply choose ϵ small enough that nϵ = ⌊ (p+1)+ϵ

p−1 (m+ 1)⌋ = n, and so l = lϵ as well. Thus simpli-
fication 1 can be removed.

• To remove simplification 2, note that the only difference left is that in the original algorithm we

define ei,s = p

⌊
i

p−1

⌋
E−i
p−1(q)Wi[s] and in the simplified algorithm we define ei,s = riE−i

p−1(q)Wi[s],

ordp(r) =
1

p+1+ϵ .

Note that we can define a diagonal matrix Pϵ which acts as a change of basis matrix, where

the entries on the diagonal are δi,s := rip
−⌊ i

p−1
⌋, s.t 0 ≤ ordp(δi,s) < 1. For the order of ri to be

sufficient to cancel out the order of p−⌊ i
p−1

⌋ such that 0 ≤ ordp(δi,s) < 1, we may need to shrink ϵ

again, but this does not cause any issues.

This change of basis matrix does indeed transform from the basis of the original case to the
basis of the simplified case. Indeed:

Pϵei,s = Pϵ
p

⌊
i

p−1

⌋
E−i
p−1(q)

Wi[s]

= δi,s
p

⌊
i

p−1

⌋
E−i
p−1(q)

Wi[s] because ei,s is the reduction mod (pm ′
, ql,p) of the basis of B(N, k, j) by

lemma 6.4.

= rip

⌊
i

p−1

⌋
p
−

⌊
i

p−1

⌋
Ei
p−1(q)

Wi[s]

= ri

Ei
p−1(q)

Wi[s], which is the (reduced) basis we calculate in the simplified case.

Now, define γ := max{ordp(δi,s)} < 1 and let Aϵ be the matrix resulting from the application
of the revised simplified algorithm, i.e. the algorithm with only simplification 2 applied, and let A
be the matrix resulting from the full unmodified level Γ1(1) algorithm.

Now, the way we obtain Aϵ is by using a different basis, so if we are working in characteristic
0, i.e. modulo p∞, then Pϵ immediately gives P−1

ϵ APϵ = A.

Now, for mod m cases, for 2× 2 matrices:

Let A =

[
a b

c d

]
, let Aϵ =

[
a ′ b ′

c ′ d ′

]
, and let Pϵ =

[
x1 0

0 x2

]
, where x1 = r1p

⌊ 1
p−1

⌋ and

x2 = r2p
⌊ 2
p−1

⌋.

Then P−1
ϵ APϵ =

[
a bx2

x1
cx1
x2

d

]
. Thus we have a loss of precision only from x1

x2
and x2

x1
. Now,

γ = max(ordp(xi)), so in the worst case scenario, we lose a precision of γ. This implies we have the
equality mod pm−γ, rather thanmod pm, i.e. P−1

ϵ APϵ ≡ Aϵ mod pm−γ. This proof holds in exactly
the same way for n×n matrices of any size. This implies that Aϵ ≡ P−1

ϵ APϵ mod pm−γ in all cases.

50



If Au,v
i,s (j) has integral entries, this is sufficient to prove the correctness of the algorithm. In-

deed, since m − γ ≥ m, taking mod pm will not change the equality we have, and so we get
det(1−At) ≡ det(1−Aϵt) ≡ det

(
1−Au,v

i,s (j)t
)
mod pm because m− γ > m− 1, as required.

Finally, if Au,v
i,s (j) does not have integral entries, simply define p

(
Au,v

i,s (j)
)
, and then apply the

same procedure to this matrix. We get the characteristic series of pTp mod pm instead of Tp, as
required.

Q.E.D.

Proof of correctness for the level Γ1(N) algorithm:

This proof is the same as for the level Γ1(1) algorithm, with one difference: instead of the lemma
we use at the beginning of that proof, we instead use the following lemma:

Lemma 6.5 [6, Lemma 3.6]:

For 0 ≤ i ≤ n, the elements in Wi from step 2 of the algorithm are the reduction modulo
(pm ′

, ql ′p) of a basis for some choice of the space B(N, k, j).

Proof of lemma:

Note that Ep−1(q) has leading term 1. This is a property of the normalized Eisenstein series.
Then, by considering the row reduced bases Dk0+i(p−1) and Dk0+(i−1)(p−1), defined the same way
as earlier, we can find a space C in M

(
Zp, N, k0 + i(p − 1)

)
such that M

(
Zp, N, k0 + i(p − 1)

)
=

Ep−1 · M
(
Zp, N, k0 + (i − 1)(p − 1)

)⊕
C. Indeed, as noted in Definition 3.13, modular forms of

level Γ(N) and weight k defined over Zp can be viewed as elements of H0
(
MN, (ω)

⊗
k
)
. Thus,

M(Zp, N, k) = H0
(
MN, (ω)

⊗
k
)
, and so, by (5.10.2), we know that M

(
Zp, N, k0 + i(p − 1)

)
=

Ep−1 ·M
(
Zp, N, k0 + (i− 1)(p− 1)

)⊕
B(N, k, j).

Now, take an element u of Ep−1 ·M
(
Zp, N, k0 + (i− 1)(p− 1)

)
which is also an element of the

basis Ep−1 ·Dk0+(i+1)(p−1) of Ep−1 ·M
(
Zp, N, k0 + (i− 1)(p− 1)

)
.

=⇒ u = Ep−1 · x for some x ∈ M
(
Zp, N, k0 + (i− 1)(p− 1)

)
= Ep−1 · bi,s where bi,s ∈ Dk0+(i−1)(p−1) since Dk0+(i−1)(p−1) is a basis.

This then implies that ordp(u) = ordp(Ep−1 · bi,s)
= ordp

(
(1−

∑
n=1

anq
n) · bi,s

)
= ordp(bi,s + bi,s

∑
n=1

anq
n)

= ordp(bi,s).

This implies that for any element x of the basis Dk0+i(p−1) of M
(
Zp, N, k0 + i(p − 1)

)
, x ∈

Ep−1 · M
(
Zp, N, k0 + (i − 1)(p − 1)

)
iff ordp(x) = ordp(bi,s) for some bi,s ∈ Dk0+(i+1)(p−1). Note

that looking at the position of the leading entries of the matrices gives the valuation of the cor-
responding q-expansion. Therefore, if the position of the leading entry of a certain row of the
matrix corresponding to the base Dk0+i(p−1) is different from the position of the leading entry of
any row of the matrix corresponding to the base Dk0+(i+1)(p−1), then it is not part of the basis of
Ep−1 ·M

(
Zp, N, k0 + (i− 1)(p− 1)

)
.
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But note that a property of the direct sum is A = B
⊕

C ⇔ basisA = basisB
⋃
basisC, and

we know that
(
basisM(Zp,N,k0+i(p−1))

)
=
(
basis

Ep−1·M
(
Zp,N,k0+(i−1)(p−1)

))⋃Wi. Together, this

implies that M
(
Zp, N, k0 + i(p− 1)

)
= Ep−1 ·M

(
Zp, N, k0 + (i− 1)(p− 1)

)⊕
Span(Wi).

Note that we also know that M
(
Zp, N, k0 + i(p − 1)

)
= Ep−1 · M

(
Zp, N, k0 + (i − 1)(p −

1)
)⊕

B(N, k, j), from (5.10.2). Further, note that since l ′ is the Sturm bound, then if one of the

rows reduces to a row of zeros modulo ql ′ , then by definition of the Sturm bound the q-expansion
is itself zero, since this means that all coefficients of the q-expansion of order < l ′ are 0, but this is
impossible because 0 cannot be an element of a basis. Thus none of the rows reduce to a row of zeros.

Thus B(N, k, j) and Span(Wi) are equivalent, modulo pm ′
since the bases we used were already

reduced, as defined in the algorithm.

Q.E.D.

So we have an analogue of lemma 6.4, and it is trivial to see that using this lemma, the rest of
the proof is exactly the same as in the level Γ1(1) case.
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7 Results

Using the Sagemath computer algebra program, we wrote a program to implement the algorithm
described in the previous section, and ran it for many different combinations of inputs. As noted
in the previous section, the algorithm takes as input 4 variables: p, a prime number greater than
or equal to 5; an integer k, the weight of the modular forms; a positive integer N, which defines
the level Γ1(N) of the modular forms; and a positive integer m, which defines the precision.

For each triplet (N,p,m), N = 1, m = 100, 5 ≤ p ≤ 19 or 23, p prime, we calculated the slopes
of the inverse of the first few eigenvalues of Tp for k = 2 + (p2)(p − 1)j for j running from 0 to
10 or 20, as well as for k = 4 + (p2)(p − 1)j for j running from 0 to 10 or 20. We then repeated
a similar process for N = 2. After this, we repeated the same process, for N = 1, 2 and 3, using
k = 2+ p(p− 1)j and k = 4+ p(p− 1)j rather than k = 2+ (p2)(p− 1)j and k = 4+ (p2)(p− 1)j.
The data is as follows:
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Figure 3: Slopes of the inverse eigenvalues of Tp for level N = 1 and weight k = 2+ p2(p− 1)j for
j running from 0 to 10.

(a) p = 5, m = 100

k Slopes

2 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

102 0,-2,-5,-6,-9,-10,-11,-14,-15,

202 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

302 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

402 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

502 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

602 0,-2,-5,-6,-9,-10,-11,-14,-15,-21

702 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

802 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

902 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

1002 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

(b) p = 7, m = 100

k Slopes

2 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

296 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

590 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

884 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

1178 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

1472 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

1766 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

2060 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

2354 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

2648 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

2942 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

(c) p = 11, m = 100

k Slopes

2 0,0,-2,-3,-4,-5,-5,-6,-7,-8

1212 0,0,-2,-3,-4,-5,-5,-6,-7,-8

2422 0,0,-2,-3,-4,-5,-5,-6,-7,-8

3632 0,0,-2,-3,-4,-5,-5,-6,-7,-8

4842 0,0,-2,-3,-4,-5,-5,-6,-7,-8

6052 0,0,-2,-3,-4,-5,-5,-6,-7,-8

7262 0,0,-2,-3,-4,-5,-5,-6,-7,-8

8472 0,0,-2,-3,-4,-5,-5,-6,-7,-8

9682 0,0,-2,-3,-4,-5,-5,-6,-7,-8

10892 0,0,-2,-3,-4,-5,-5,-6,-7,-8

12102 0,0,-2,-3,-4,-5,-5,-6,-7,-8

(d) p = 13, m = 100

k Slopes

2 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

2030 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

4058 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

6086 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

8114 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

10142 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

12170 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

14198 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

16226 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

18254 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

20282 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

(e) p = 17, m = 100

k Slopes

2 0,0,-1,-2,-3,-3,-4,-5,-6,-6

4626 0,0,-1,-2,-3,-3,-4,-5,-6,-6

9250 0,0,-1,-2,-3,-3,-4,-5,-6,-6

13874 0,0,-1,-2,-3,-3,-4,-5,-6,-6

18498 0,0,-1,-2,-3,-3,-4,-5,-6,-6

23122 0,0,-1,-2,-3,-3,-4,-5,-6,-6

27746 0,0,-1,-2,-3,-3,-4,-5,-6,-6

32370 0,0,-1,-2,-3,-3,-4,-5,-6,-6

36994 0,0,-1,-2,-3,-3,-4,-5,-6,-6

41618 0,0,-1,-2,-3,-3,-4,-5,-6,-6

46242 0,0,-1,-2,-3,-3,-4,-5,-6,-6

(f) p = 19, m = 100

k Slopes

2 0,0,-1,-2,-2,-3,-4,-4,-5,-6

6500 0,0,-1,-2,-2,-3,-4,-4,-5,-6

12998 0,0,-1,-2,-2,-3,-4,-4,-5,-6

19496 0,0,-1,-2,-2,-3,-4,-4,-5,-6

25994 0,0,-1,-2,-2,-3,-4,-4,-5,-6

32492 0,0,-1,-2,-2,-3,-4,-4,-5,-6

38990 0,0,-1,-2,-2,-3,-4,-4,-5,-6

45488 0,0,-1,-2,-2,-3,-4,-4,-5,-6

51986 0,0,-1,-2,-2,-3,-4,-4,-5,-6

58484 0,0,-1,-2,-2,-3,-4,-4,-5,-6

64982 0,0,-1,-2,-2,-3,-4,-4,-5,-6

(g) p = 23, m = 100

k Slopes

2 0,0,0,-1,-2,-2,-3,-3,-4,-4

11640 0,0,0,-1,-2,-2,-3,-3,-4,-4

23278 0,0,0,-1,-2,-2,-3,-3,-4,-4

34916 0,0,0,-1,-2,-2,-3,-3,-4,-4

46554 0,0,0,-1,-2,-2,-3,-3,-4,-4

58192 0,0,0,-1,-2,-2,-3,-3,-4,-4

69830 0,0,0,-1,-2,-2,-3,-3,-4,-4

81468 0,0,0,-1,-2,-2,-3,-3,-4,-4

93106 0,0,0,-1,-2,-2,-3,-3,-4,-4

104744 0,0,0,-1,-2,-2,-3,-3,-4,-4

116382 0,0,0,-1,-2,-2,-3,-3,-4,-4
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Figure 4: Slopes of the inverse eigenvalues of Tp for level N = 1 and weight k = 4+ p2(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

4 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

104 0,-1,-3,-5,-8,-10,-11,-12,-14

204 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

304 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

404 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

504 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

604 0,-1,-3,-5,-8,-10,-11,-12,-14,-19

704 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

804 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

904 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

1004 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

(b) p = 7, m = 100

k Slopes

4 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

298 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

592 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

886 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

1180 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

1474 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

1768 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

2062 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

2356 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

2650 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

2944 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

(c) p = 11, m = 100

k Slopes

4 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

1214 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

2424 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

3634 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

4844 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

6054 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

7264 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

8474 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

9684 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

10894 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

12104 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

(d) p = 13, m = 100

k Slopes

4 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

2032 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

4060 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

6088 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

8116 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

10144 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

12172 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

14200 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

16228 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

18256 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

20284 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

(e) p = 17, m = 100

k Slopes

4 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

4628 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

9252 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

13876 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

18500 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

23124 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

27748 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

32372 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

36996 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

41620 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

46244 0,-1,-1,-1,-1,-3,-4,-4,-5,-6

(f) p = 19, m = 100

k Slopes

4 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

6502 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

13000 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

19498 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

25996 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

32494 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

38992 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

45490 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

51988 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

58486 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

64984 0,-1,-1,-1,-1,-3,-3,-4,-5,-5

(g) p = 23, m = 100

k Slopes

4 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

11642 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

23280 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

34918 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

46556 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

58194 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

69832 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

81470 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

93108 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

104746 0,-1,-1,-1,-1,-1,-3,-3,-4,-4

116384 0,-1,-1,-1,-1,-1,-3,-3,-4,-4
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Figure 5: Slopes of the inverse eigenvalues of Tp for level N = 2 and weight k = 2+ p2(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

2 0,0,-1,-2,-2,-2,-4,-5,-5,-6

102 0,0,-1,-2,-2,-2,-4,-5,-5,-6

202 0,0,-1,-2,-2,-2,-4,-5,-5,-6

302 0,0,-1,-2,-2,-2,-4,-5,-5,-6

402 0,0,-1,-2,-2,-2,-4,-5,-5,-6

502 0,0,-1,-2,-2,-2,-4,-5,-5,-6

602 0,0,-1,-2,-2,-2,-4,-5,-5,-6

702 0,0,-1,-2,-2,-2,-4,-5,-5,-6

802 0,0,-1,-2,-2,-2,-4,-5,-5,-6

902 0,0,-1,-2,-2,-2,-4,-5,-5,-6

1002 0,0,-1,-2,-2,-2,-4,-5,-5,-6

(b) p = 7, m = 100

k Slopes

2 0,0,0,-1,-2,-2,-3,-3,-3,-3

296 0,0,0,-1,-2,-2,-3,-3,-3,-3

590 0,0,0,-1,-2,-2,-3,-3,-3,-3

884 0,0,0,-1,-2,-2,-3,-3,-3,-3

1178 0,0,0,-1,-2,-2,-3,-3,-3,-3

1472 0,0,0,-1,-2,-2,-3,-3,-3,-3

1766 0,0,0,-1,-2,-2,-3,-3,-3,-3

2060 0,0,0,-1,-2,-2,-3,-3,-3,-3

2354 0,0,0,-1,-2,-2,-3,-3,-3,-3

2648 0,0,0,-1,-2,-2,-3,-3,-3,-3

2942 0,0,0,-1,-2,-2,-3,-3,-3,-3

(c) p = 11, m = 50

k Slopes

2 0,0,0,0,-1,-1,-2

1212 0,0,0,0,-1,-1,-2

2422 0,0,0,0,-1,-1,-2

3632 0,0,0,0,-1,-1,-2

4842 0,0,0,0,-1,-1,-2

6052 0,0,0,0,-1,-1,-2

7262 0,0,0,0,-1,-1,-2

8472 0,0,0,0,-1,-1,-2

9682 0,0,0,0,-1,-1,-2

10892 0,0,0,0,-1,-1,-2

12102 0,0,0,0,-1,-1,-2

(d) p = 13, m = 50

k Slopes

2 0,0,0,0,-1,-1,-1

2030 0,0,0,0,-1,-1,-1

4058 0,0,0,0,-1,-1,-1

6086 0,0,0,0,-1,-1,-1

8114 0,0,0,0,-1,-1,-1

10142 0,0,0,0,-1,-1,-1

12170 0,0,0,0,-1,-1,-1

14198 0,0,0,0,-1,-1,-1

16226 0,0,0,0,-1,-1,-1

18254 0,0,0,0,-1,-1,-1

20282 0,0,0,0,-1,-1,-1

(e) p = 17, m = 50

k Slopes

2 0,0,0,0,0,-1,-1

4626 0,0,0,0,0,-1,-1

9250 0,0,0,0,0,-1,-1

13874 0,0,0,0,0,-1,-1

18498 0,0,0,0,0,-1,-1

23122 0,0,0,0,0,-1,-1

27746 0,0,0,0,0,-1,-1

32370 0,0,0,0,0,-1,-1

36994 0,0,0,0,0,-1,-1

41618 0,0,0,0,0,-1,-1

46242 0,0,0,0,0,-1,-1

(f) p = 19, m = 36

k Slope

2 0,0,0,0,0,0

6500 0,0,0,0,0,0

12998 0,0,0,0,0,0

19496 0,0,0,0,0,0

25994 0,0,0,0,0,0

32492 0,0,0,0,0,0

38990 0,0,0,0,0,0

45488 0,0,0,0,0,0

51986 0,0,0,0,0,0

58484 0,0,0,0,0,0

64982 0,0,0,0,0,0
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Figure 6: Slopes of the inverse eigenvalues of Tp for level N = 2 and weight k = 4+ p2(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slope

4 0,0,-1,-1,-1,-3,-3,-4,-5,-5

104 0,0,-1,-1,-1,-3,-3,-4,-5,-5

204 0,0,-1,-1,-1,-3,-3,-4,-5,-5

304 0,0,-1,-1,-1,-3,-3,-4,-5,-5

404 0,0,-1,-1,-1,-3,-3,-4,-5,-5

504 0,0,-1,-1,-1,-3,-3,-4,-5,-5

604 0,0,-1,-1,-1,-3,-3,-4,-5,-5

704 0,0,-1,-1,-1,-3,-3,-4,-5,-5

804 0,0,-1,-1,-1,-3,-3,-4,-5,-5

904 0,0,-1,-1,-1,-3,-3,-4,-5,-5

1004 0,0,-1,-1,-1,-3,-3,-4,-5,-5

(b) p = 7, m = 100

k Slopes

4 0,0,-1,-1,-1,-1,-3,-3,-4,-4

298 0,0,-1,-1,-1,-1,-3,-3,-4,-4

592 0,0,-1,-1,-1,-1,-3,-3,-4,-4

886 0,0,-1,-1,-1,-1,-3,-3,-4,-4

1180 0,0,-1,-1,-1,-1,-3,-3,-4,-4

1474 0,0,-1,-1,-1,-1,-3,-3,-4,-4

1768 0,0,-1,-1,-1,-1,-3,-3,-4,-4

2062 0,0,-1,-1,-1,-1,-3,-3,-4,-4

2356 0,0,-1,-1,-1,-1,-3,-3,-4,-4

2650 0,0,-1,-1,-1,-1,-3,-3,-4,-4

2944 0,0,-1,-1,-1,-1,-3,-3,-4,-4

(c) p = 11, m = 50

k Slopes

4 0,0,-1,-1,-1,-1,-1

1214 0,0,-1,-1,-1,-1,-1

2424 0,0,-1,-1,-1,-1,-1

3634 0,0,-1,-1,-1,-1,-1

4844 0,0,-1,-1,-1,-1,-1

6054 0,0,-1,-1,-1,-1,-1

7264 0,0,-1,-1,-1,-1,-1

8474 0,0,-1,-1,-1,-1,-1

9684 0,0,-1,-1,-1,-1,-1

10894 0,0,-1,-1,-1,-1,-1

12104 0,0,-1,-1,-1,-1,-1

(d) p = 13, m = 50

k Slopes

4 0,0,-1,-1,-1,-1,-1

2032 0,0,-1,-1,-1,-1,-1

4060 0,0,-1,-1,-1,-1,-1

6088 0,0,-1,-1,-1,-1,-1

8116 0,0,-1,-1,-1,-1,-1

10144 0,0,-1,-1,-1,-1,-1

12172 0,0,-1,-1,-1,-1,-1

14200 0,0,-1,-1,-1,-1,-1

16228 0,0,-1,-1,-1,-1,-1

18256 0,0,-1,-1,-1,-1,-1

20284 0,0,-1,-1,-1,-1,-1

(e) p = 17, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

4628 0,0,-1,-1,-1,-1

9252 0,0,-1,-1,-1,-1

13876 0,0,-1,-1,-1,-1

18500 0,0,-1,-1,-1,-1

23124 0,0,-1,-1,-1,-1

27748 0,0,-1,-1,-1,-1

32372 0,0,-1,-1,-1,-1

36996 0,0,-1,-1,-1,-1

41620 0,0,-1,-1,-1,-1

46244 0,0,-1,-1,-1,-1

(f) p = 19, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

6502 0,0,-1,-1,-1,-1

13000 0,0,-1,-1,-1,-1

19498 0,0,-1,-1,-1,-1

25996 0,0,-1,-1,-1,-1

32494 0,0,-1,-1,-1,-1

38992 0,0,-1,-1,-1,-1

45490 0,0,-1,-1,-1,-1

51988 0,0,-1,-1,-1,-1

58486 0,0,-1,-1,-1,-1

64984 0,0,-1,-1,-1,-1

57



Figure 7: Slopes of the inverse eigenvalues of Tp for level N = 1 and weight k = 2+ p(p− 1)j for j

running from 0 to 10.

(a) p = 7, m = 100

k Slopes

2 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

44 0,-2,-3,-4,-21,-21,-21,-21

86 0,-2,-3,-4,-7,-8,-9,-42

128 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

170 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

212 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

254 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

296 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

338 0,-2,-3,-4,-8,-9,-10,-12,-14,-15

380 0,-2,-3,-4,-7,-8,-9,-12,-14,-15

422 0,-2,-3,-4,-7,-8,-9,-11,-13,-14

(b) p = 11, m = 100

k Slopes

2 0,0,-2,-3,-4,-5,-5,-6,-7,-8

112 0,0,-2,-3,-4,-5,-5,-6,-7,-8

222 0,0,-2,-3,-4,-5,-5,-6,-7,-8

332 0,0,-2,-3,-4,-5,-5,-6,-7,-8

442 0,0,-2,-3,-4,-5,-5,-6,-7,-8

552 0,0,-2,-3,-4,-5,-5,-6,-7,-8

662 0,0,-2,-3,-4,-5,-5,-6,-7,-8

772 0,0,-2,-3,-4,-5,-5,-6,-7,-8

882 0,0,-2,-3,-4,-5,-5,-6,-7,-8

992 0,0,-2,-3,-4,-5,-5,-6,-7,-8

1102 0,0,-2,-3,-4,-5,-5,-6,-7,-8

(c) p = 13, m = 100

k Slopes

2 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

158 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

314 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

470 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

626 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

782 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

938 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

1094 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

1250 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

1406 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

1562 0,-1,-2,-3,-4,-5,-6,-6,-6,-7

(d) p = 17, m = 50

k Slopes

2 0,0,-1,-2,-3,-3,-4

274 0,0,-1,-2,-3,-3,-4

546 0,0,-1,-2,-3,-3,-4

818 0,0,-1,-2,-3,-3,-4

1090 0,0,-1,-2,-3,-3,-4

1362 0,0,-1,-2,-3,-3,-4

1634 0,0,-1,-2,-3,-3,-4

1906 0,0,-1,-2,-3,-3,-4

2178 0,0,-1,-2,-3,-3,-4

2450 0,0,-1,-2,-3,-3,-4

2722 0,0,-1,-2,-3,-3,-4

(e) p = 19, m = 50

k Slopes

2 0,0,-1,-2,-2,-3,-4

344 0,0,-1,-2,-2,-3,-4

686 0,0,-1,-2,-2,-3,-4

1028 0,0,-1,-2,-2,-3,-4

1370 0,0,-1,-2,-2,-3,-4

1712 0,0,-1,-2,-2,-3,-4

2054 0,0,-1,-2,-2,-3,-4

2396 0,0,-1,-2,-2,-3,-4

2738 0,0,-1,-2,-2,-3,-4

3080 0,0,-1,-2,-2,-3,-4

3422 0,0,-1,-2,-2,-3,-4

(f) p = 23, m = 50

k Slopes

2 0,0,0,-1,-2,-2,-3

508 0,0,0,-1,-2,-2,-3

1014 0,0,0,-1,-2,-2,-3

1520 0,0,0,-1,-2,-2,-3

2026 0,0,0,-1,-2,-2,-3

2532 0,0,0,-1,-2,-2,-3

3038 0,0,0,-1,-2,-2,-3

3544 0,0,0,-1,-2,-2,-3

4050 0,0,0,-1,-2,-2,-3

4556 0,0,0,-1,-2,-2,-3

5062 0,0,0,-1,-2,-2,-3
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Figure 8: Slopes of the inverse eigenvalues of Tp for level N = 1 and weight k = 4+ p(p− 1)j for j

running from 0 to 10.

(a) p = 7, m = 100

k Slopes

4 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

46 0,-1,-3,-4,-22,-22,-22,-22

88 0,-1,-3,-4,-6,-7,-9,-10,-43

130 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

172 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

214 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

256 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

298 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

340 0,-1,-3,-4,-7,-8,-10,-11,-13,-15

382 0,-1,-3,-4,-6,-7,-9,-10,-13,-15

424 0,-1,-3,-4,-6,-7,-9,-10,-12,-14

(b) p = 11, m = 100

k Slopes

4 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

114 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

224 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

334 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

444 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

554 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

664 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

774 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

884 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

994 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

1104 0,-1,-1,-3,-4,-5,-6,-6,-7,-8

(c) p = 13, m = 100

k Slopes

4 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

160 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

316 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

472 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

628 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

784 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

940 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

1096 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

1252 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

1408 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

1564 0,-1,-1,-1,-3,-4,-5,-6,-7,-7

(d) p = 17, m = 50

k Slopes

4 0,-1,-1,-1,-1,-3,-4

276 0,-1,-1,-1,-1,-3,-4

548 0,-1,-1,-1,-1,-3,-4

820 0,-1,-1,-1,-1,-3,-4

1092 0,-1,-1,-1,-1,-3,-4

1364 0,-1,-1,-1,-1,-3,-4

1636 0,-1,-1,-1,-1,-3,-4

1908 0,-1,-1,-1,-1,-3,-4

2180 0,-1,-1,-1,-1,-3,-4

2452 0,-1,-1,-1,-1,-3,-4

2724 0,-1,-1,-1,-1,-3,-4

(e) p = 19, m = 50

k Slopes

4 0,-1,-1,-1,-1,-3,-3

346 0,-1,-1,-1,-1,-3,-3

688 0,-1,-1,-1,-1,-3,-3

1030 0,-1,-1,-1,-1,-3,-3

1372 0,-1,-1,-1,-1,-3,-3

1714 0,-1,-1,-1,-1,-3,-3

2056 0,-1,-1,-1,-1,-3,-3

2398 0,-1,-1,-1,-1,-3,-3

2740 0,-1,-1,-1,-1,-3,-3

3082 0,-1,-1,-1,-1,-3,-3

3424 0,-1,-1,-1,-1,-3,-3

(f) p = 23, m = 50

k Slopes

4 0,-1,-1,-1,-1,-1,-3

510 0,-1,-1,-1,-1,-1,-3

1016 0,-1,-1,-1,-1,-1,-3

1522 0,-1,-1,-1,-1,-1,-3

2028 0,-1,-1,-1,-1,-1,-3

2534 0,-1,-1,-1,-1,-1,-3

3040 0,-1,-1,-1,-1,-1,-3

3546 0,-1,-1,-1,-1,-1,-3

4052 0,-1,-1,-1,-1,-1,-3

4558 0,-1,-1,-1,-1,-1,-3

5064 0,-1,-1,-1,-1,-1,-3
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Figure 9: Slopes of the inverse eigenvalues of Tp for level N = 1 and weight k = 4 + p(p − 1)j
and k = 2 + p(p − 1)j, p = 5, m = 100, for j running from 0 to 20. The number of k values was
increased compared to other sets of data, in order to more clearly examine the patterns that appear.

(a) k = 2+ p(p− 1)j

k Slopes

2 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

22 0,-2,-10,-10,-10,-10,-10,-10,-10,-19

42 0,-2,-5,-6,-20,-20,-20,-21

62 0,-2,-5,-6,-9,-30,-31

82 0,-2,-5,-6,-9,-10,-11,-40

102 0,-2,-5,-6,-9,-10,-11,-14,-15

122 0,-2,-6,-7,-10,-10,-10,-13,-14,-19

142 0,-2,-5,-6,-10,-11,-12,-15,-16,-20

162 0,-2,-5,-6,-9,-11,-12,-15,-16,-20

182 0,-2,-5,-6,-9,-10,-11,-15,-16,-20

202 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

222 0,-2,-6,-7,-10,-10,-10,-13,-14,-19

242 0,-2,-5,-6,-10,-11,-12,-15,-16,-22

262 0,-2,-5,-6,-9,-11,-12,-15,-16,-20

282 0,-2,-5,-6,-9,-10,-11,-15,-16,-20

302 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

322 0,-2,-6,-7,-10,-10,-10,-13,-14,-19

342 0,-2,-5,-6,-10,-11,-12,-15,-16,-20

362 0,-2,-5,-6,-9,-11,-12,-15,-16,-20

382 0,-2,-5,-6,-9,-10,-11,-15,-16,-20

402 0,-2,-5,-6,-9,-10,-11,-14,-15,-20

(b) k = 4+ p(p− 1)j

k Slopes

4 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

24 0,-1,-3,-11,-11,-11,-11,-11,-11,-11

44 0,-1,-3,-5,-21,-21,-21,-21

64 0,-1,-3,-5,-8,-10,-31,-32

84 0,-1,-3,-5,-8,-10,-11,-12,-41

104 0,-1,-3,-5,-8,-10,-11,-12,-14

124 0,-1,-3,-6,-9,-11,-11,-11,-13,-16

144 0,-1,-3,-5,-9,-11,-12,-13,-15,-18

164 0,-1,-3,-5,-8,-10,-12,-13,-15,-18

184 0,-1,-3,-5,-8,-10,-11,-12,-15,-18

204 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

224 0,-1,-3,-6,-9,-11,-11,-11,-13,-16

244 0,-1,-3,-5,-9,-11,-12,-13,-15,-18

264 0,-1,-3,-5,-8,-10,-12,-13,-15,-18

284 0,-1,-3,-5,-8,-10,-11,-12,-15,-18

304 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

324 0,-1,-3,-6,-9,-11,-11,-11,-13,-16

344 0,-1,-3,-5,-9,-11,-12,-13,-15,-18

364 0,-1,-3,-5,-8,-10,-12,-13,-15,-18

384 0,-1,-3,-5,-8,-10,-11,-12,-15,-18

404 0,-1,-3,-5,-8,-10,-11,-12,-14,-18

60



Figure 10: Slopes of the inverse eigenvalues of Tp for level N = 2 and weight k = 2+ p(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

2 0,0,-1,-2,-2,-2,-4,-5,-5,-6

22 0,0,-1,-2,-2,-2,-10, −81
8 , −81

8 , −81
8

42 0,0,-1,-2,-2,-2,-4,-5,-5,-6

62 0,0,-1,-2,-2,-2,-4,-5,-5,-6

82 0,0,-1,-2,-2,-2,-4,-5,-5,-6

102 0,0,-1,-2,-2,-2,-4,-5,-5,-6

122 0,0,-1,-2,-2,-2,-5,-6,-6,-7

142 0,0,-1,-2,-2,-2,-4,-5,-5,-6

162 0,0,-1,-2,-2,-2,-4,-5,-5,-6

182 0,0,-1,-2,-2,-2,-4,-5,-5,-6

202 0,0,-1,-2,-2,-2,-4,-5,-5,-6

(b) p = 7, m = 50

k Slopes

2 0,0,0,-1,-2,-2,-3

44 0,0,0,-1,-2,-2,-3

86 0,0,0,-1,-2,-2,-3

128 0,0,0,-1,-2,-2,-3

170 0,0,0,-1,-2,-2,-3

212 0,0,0,-1,-2,-2,-3

254 0,0,0,-1,-2,-2,-3

296 0,0,0,-1,-2,-2,-3

338 0,0,0,-1,-2,-2,-3

380 0,0,0,-1,-2,-2,-3

422 0,0,0,-1,-2,-2,-3

(c) p = 11, m = 36

k Slopes

2 0,0,0,0,-1,-1

112 0,0,0,0,-1,-1

222 0,0,0,0,-1,-1

332 0,0,0,0,-1,-1

442 0,0,0,0,-1,-1

552 0,0,0,0,-1,-1

662 0,0,0,0,-1,-1

772 0,0,0,0,-1,-1

882 0,0,0,0,-1,-1

992 0,0,0,0,-1,-1

1102 0,0,0,0,-1,-1

(d) p = 13, m = 36

k Slopes

2 0,0,0,0,-1,-1

158 0,0,0,0,-1,-1

314 0,0,0,0,-1,-1

470 0,0,0,0,-1,-1

626 0,0,0,0,-1,-1

782 0,0,0,0,-1,-1

938 0,0,0,0,-1,-1

1094 0,0,0,0,-1,-1

1250 0,0,0,0,-1,-1

1406 0,0,0,0,-1,-1

1562 0,0,0,0,-1,-1

(e) p = 17, m = 36

k Slopes

2 0,0,0,0,0,-1

274 0,0,0,0,0,-1

546 0,0,0,0,0,-1

818 0,0,0,0,0,-1

1090 0,0,0,0,0,-1

1362 0,0,0,0,0,-1

1634 0,0,0,0,0,-1

1906 0,0,0,0,0,-1

2178 0,0,0,0,0,-1

2450 0,0,0,0,0,-1

2722 0,0,0,0,0,-1

(f) p = 19, m = 36

k Slopes

2 0,0,0,0,0,0

344 0,0,0,0,0,0

686 0,0,0,0,0,0

1028 0,0,0,0,0,0

1370 0,0,0,0,0,0

1712 0,0,0,0,0,0

2054 0,0,0,0,0,0

2396 0,0,0,0,0,0

2738 0,0,0,0,0,0

3080 0,0,0,0,0,0

3422 0,0,0,0,0,0
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Figure 11: Slopes of the inverse eigenvalues of Tp for level N = 2 and weight k = 4+ p(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

4 0,0,-1,-1,-1,-3,-3,-4,-5,-5

24 0,0,-1,-1,-1,-3,-3,-11,-11,-11

44 0,0,-1,-1,-1,-3,-3,-4,-5,-5

64 0,0,-1,-1,-1,-3,-3,-4,-5,-5

84 0,0,-1,-1,-1,-3,-3,-4,-5,-5

104 0,0,-1,-1,-1,-3,-3,-4,-5,-5

124 0,0,-1,-1,-1,-3,-3,-5,-6,-6

144 0,0,-1,-1,-1,-3,-3,-4,-5,-5

164 0,0,-1,-1,-1,-3,-3,-4,-5,-5

184 0,0,-1,-1,-1,-3,-3,-4,-5,-5

204 0,0,-1,-1,-1,-3,-3,-4,-5,-5

(b) p = 7, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

46 0,0,-1,-1,-1,-1

88 0,0,-1,-1,-1,-1

130 0,0,-1,-1,-1,-1

172 0,0,-1,-1,-1,-1

214 0,0,-1,-1,-1,-1

256 0,0,-1,-1,-1,-1

298 0,0,-1,-1,-1,-1

340 0,0,-1,-1,-1,-1

382 0,0,-1,-1,-1,-1

424 0,0,-1,-1,-1,-1

(c) p = 11, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

114 0,0,-1,-1,-1,-1

224 0,0,-1,-1,-1,-1

334 0,0,-1,-1,-1,-1

444 0,0,-1,-1,-1,-1

554 0,0,-1,-1,-1,-1

664 0,0,-1,-1,-1,-1

774 0,0,-1,-1,-1,-1

884 0,0,-1,-1,-1,-1

994 0,0,-1,-1,-1,-1

1104 0,0,-1,-1,-1,-1

(d) p = 13, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

160 0,0,-1,-1,-1,-1

316 0,0,-1,-1,-1,-1

472 0,0,-1,-1,-1,-1

628 0,0,-1,-1,-1,-1

784 0,0,-1,-1,-1,-1

940 0,0,-1,-1,-1,-1

1096 0,0,-1,-1,-1,-1

1252 0,0,-1,-1,-1,-1

1408 0,0,-1,-1,-1,-1

1564 0,0,-1,-1,-1,-1

(e) p = 17, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

276 0,0,-1,-1,-1,-1

548 0,0,-1,-1,-1,-1

820 0,0,-1,-1,-1,-1

1092 0,0,-1,-1,-1,-1

1364 0,0,-1,-1,-1,-1

1636 0,0,-1,-1,-1,-1

1908 0,0,-1,-1,-1,-1

2180 0,0,-1,-1,-1,-1

2452 0,0,-1,-1,-1,-1

2724 0,0,-1,-1,-1,-1

(f) p = 19, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

346 0,0,-1,-1,-1,-1

688 0,0,-1,-1,-1,-1

1030 0,0,-1,-1,-1,-1

1372 0,0,-1,-1,-1,-1

1714 0,0,-1,-1,-1,-1

2056 0,0,-1,-1,-1,-1

2398 0,0,-1,-1,-1,-1

2740 0,0,-1,-1,-1,-1

3082 0,0,-1,-1,-1,-1

3424 0,0,-1,-1,-1,-1
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Figure 12: Slopes of the inverse eigenvalues of Tp for level N = 3 and weight k = 2+ p(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

2 0,0,0,-1,-2,-2,-2,-2,-4,-5

22 0,0,0,-1,-2,-2,-2,-2,-10,-10

42 0,0,0,-1,-2,-2,-2,-2,-4,-5

62 0,0,0,-1,-2,-2,-2,-2,-4,-5

82 0,0,0,-1,-2,-2,-2,-2,-4,-5

102 0,0,0,-1,-2,-2,-2,-2,-4,-5

122 0,0,0,-1,-2,-2,-2,-2,-5,-6

142 0,0,0,-1,-2,-2,-2,-2,-4,-5

162 0,0,0,-1,-2,-2,-2,-2,-4,-5

182 0,0,0,-1,-2,-2,-2,-2,-4,-5

202 0,0,0,-1,-2,-2,-2,-2,-4,-5

(b) p = 7, m = 50

k Slopes

2 0,0,0,-1,-1,-2,-2

44 0,0,0,-1,-1,-2,-2

86 0,0,0,-1,-1,-2,-2

128 0,0,0,-1,-1,-2,-2

170 0,0,0,-1,-1,-2,-2

212 0,0,0,-1,-1,-2,-2

254 0,0,0,-1,-1,-2,-2

296 0,0,0,-1,-1,-2,-2

338 0,0,0,-1,-1,-2,-2

380 0,0,0,-1,-1,-2,-2

422 0,0,0,-1,-1,-2,-2

(c) p = 11, m = 36

k Slopes

2 0,0,0,0,0,-1

112 0,0,0,0,0,-1

222 0,0,0,0,0,-1

332 0,0,0,0,0,-1

442 0,0,0,0,0,-1

552 0,0,0,0,0,-1

662 0,0,0,0,0,-1

772 0,0,0,0,0,-1

882 0,0,0,0,0,-1

992 0,0,0,0,0,-1

1102 0,0,0,0,0,-1

(d) p = 13, m = 36

k Slopes

2 0,0,0,0,0,-1

158 0,0,0,0,0,-1

314 0,0,0,0,0,-1

470 0,0,0,0,0,-1

626 0,0,0,0,0,-1

782 0,0,0,0,0,-1

938 0,0,0,0,0,-1

1094 0,0,0,0,0,-1

1250 0,0,0,0,0,-1

1406 0,0,0,0,0,-1

1562 0,0,0,0,0,-1

(e) p = 17, m = 36

k Slopes

2 0,0,0,0,0,0

274 0,0,0,0,0,0

546 0,0,0,0,0,0

818 0,0,0,0,0,0

1090 0,0,0,0,0,0

1362 0,0,0,0,0,0

1634 0,0,0,0,0,0

1906 0,0,0,0,0,0

2178 0,0,0,0,0,0

2450 0,0,0,0,0,0

2722 0,0,0,0,0,0

(f) p = 19, m = 36

k Slopes

2 0,0,0,0,0,0

344 0,0,0,0,0,0

686 0,0,0,0,0,0

1028 0,0,0,0,0,0

1370 0,0,0,0,0,0

1712 0,0,0,0,0,0

2054 0,0,0,0,0,0

2396 0,0,0,0,0,0

2738 0,0,0,0,0,0

3080 0,0,0,0,0,0

3422 0,0,0,0,0,0
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Figure 13: Slopes of the inverse eigenvalues of Tp for level N = 3 and weight k = 4+ p(p− 1)j for
j running from 0 to 10.

(a) p=5, m = 100

k Slopes

4 0,0,-1,-1,-1,-1,-3,-3,-3,-4

24 0,0,-1,-1,-1,-1,-3,-3,-3,-11

44 0,0,-1,-1,-1,-1,-3,-3,-3,-4

64 0,0,-1,-1,-1,-1,-3,-3,-3,-4

84 0,0,-1,-1,-1,-1,-3,-3,-3,-4

104 0,0,-1,-1,-1,-1,-3,-3,-3,-4

124 0,0,-1,-1,-1,-1,-3,-3,-3,-5

144 0,0,-1,-1,-1,-1,-3,-3,-3,-4

164 0,0,-1,-1,-1,-1,-3,-3,-3,-4

184 0,0,-1,-1,-1,-1,-3,-3,-3,-4

204 0,0,-1,-1,-1,-1,-3,-3,-3,-4

(b) p = 7, m = 50

k Slope

4 0,0,-1,-1,-1,-1,-1

46 0,0,-1,-1,-1,-1,-1

88 0,0,-1,-1,-1,-1,-1

130 0,0,-1,-1,-1,-1,-1

172 0,0,-1,-1,-1,-1,-1

214 0,0,-1,-1,-1,-1,-1

256 0,0,-1,-1,-1,-1,-1

298 0,0,-1,-1,-1,-1,-1

340 0,0,-1,-1,-1,-1,-1

382 0,0,-1,-1,-1,-1,-1

424 0,0,-1,-1,-1,-1,-1

(c) p = 11, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

114 0,0,-1,-1,-1,-1

224 0,0,-1,-1,-1,-1

334 0,0,-1,-1,-1,-1

444 0,0,-1,-1,-1,-1

554 0,0,-1,-1,-1,-1

664 0,0,-1,-1,-1,-1

774 0,0,-1,-1,-1,-1

884 0,0,-1,-1,-1,-1

994 0,0,-1,-1,-1,-1

1104 0,0,-1,-1,-1,-1

(d) p = 13, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

160 0,0,-1,-1,-1,-1

316 0,0,-1,-1,-1,-1

472 0,0,-1,-1,-1,-1

628 0,0,-1,-1,-1,-1

784 0,0,-1,-1,-1,-1

940 0,0,-1,-1,-1,-1

1096 0,0,-1,-1,-1,-1

1252 0,0,-1,-1,-1,-1

1408 0,0,-1,-1,-1,-1

1564 0,0,-1,-1,-1,-1

(e) p = 17, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

276 0,0,-1,-1,-1,-1

548 0,0,-1,-1,-1,-1

820 0,0,-1,-1,-1,-1

1092 0,0,-1,-1,-1,-1

1364 0,0,-1,-1,-1,-1

1636 0,0,-1,-1,-1,-1

1908 0,0,-1,-1,-1,-1

2180 0,0,-1,-1,-1,-1

2452 0,0,-1,-1,-1,-1

2724 0,0,-1,-1,-1,-1

(f) p = 19, m = 36

k Slopes

4 0,0,-1,-1,-1,-1

346 0,0,-1,-1,-1,-1

688 0,0,-1,-1,-1,-1

1030 0,0,-1,-1,-1,-1

1372 0,0,-1,-1,-1,-1

1714 0,0,-1,-1,-1,-1

2056 0,0,-1,-1,-1,-1

2398 0,0,-1,-1,-1,-1

2740 0,0,-1,-1,-1,-1

3082 0,0,-1,-1,-1,-1

3424 0,0,-1,-1,-1,-1

We can first observe that for each subsequent k, the slopes are not the same. This is expected,
as the Gouvea-Mazur conjecture is known to be false. However, we note that, as p increases, the
slopes for various values of k become more and more similar, until they become identical, up to
the precision used. Further, this occurs sooner when using the equations k = 2+ (p2)(p− 1)j and
k = 4+ (p2)(p− 1)j for k than when using the equations k = 2+ p(p− 1)j and k = 4+ p(p− 1)j.
This could indicate that this property of approaching the same slopes depends on the weight of
the modular forms, and that the properties that cause the Gouvea-Mazur conjecture to fail become
less and less dominant at high weights. Another possibility is that more eigenvalues must be cal-
culated at high weights in order for the properties that cause the Gouvea-Mazur conjecture to fail
to dominate the behavior of the slopes.
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Also, as would be expected, there is no significant difference between using k = 2+(p2)(p− 1)j
and k = 4 + (p2)(p − 1)j, or between using k = 2 + p(p − 1)j and k = 4 + p(p − 1)j. The specific
slopes are different, but the behavior of the slopes is essentially unchanged.

Table 1: Slopes of the inverse eigenvalues of Tp for level N = 1 , p = 7 and m = 100 for various
weights k.

k Slopes

44 0, -2, -3, -4, -21, -21, -21, -21

46 0, -1, -3, -4, -22, -22, -22, -22

48 0, -2, -2, -2, -5, -23, -23, -23

340 0, -1, -3, -4, -7, -8, -10, -11, -13, -15, -16

2104 0, -1, -3, -4, -8, -9, -11, -12, -14, -16, -17

We can also observe that, even at low weights, certain values of k do appear to produce the
same slopes, creating “troughs” of sorts where the slopes do not match, surrounded by “plateaus”
where they do match. An example of this structure can be found in figure 7 (a). Weights
k = 2, 128, 170, 212, 254, 296 and 422 all have the same slopes, but k = 44, k = 88 and
k = 338, k = 380, the “troughs”, have slopes that do not match these usual slopes.

The reason for the existence of this pattern is unknown, but congruences do not appear to
explain it on their own, as higher congruences are not always sufficient for the slopes to match.
Indeed, for the case of k = 46, as seen in figure 8 (a), one would expect the output to match the
case of k = 340, as these two values are congruent modulo 72(7 − 1) = 294, and thus are close
7-adically in Z∗

7. However, as can be seen in table 1, this is not the case, and even increasing the
congruence to 73(7− 1) does not cause the slopes to match.

Further, there appears to be an additional unusual phenomenon taking place around k = 46,
as seen again in table 1, as the jump from −4 to −22 is quite large. This was unexpected, as only
figure 7 (a) and figure 9 (a) and (b) show a similar sudden change in slope, and it is also very
different from the slopes for other weights in the same tables. Further calculations showed that a
similar phenomenon occurs at k = 48 and k = 44, as shown in table 1, thus this does not appear
to be a one-off event. The reason for this jump is unknown as of now, but we have thoroughly
troubleshot the program used to calculate these results, and the program outputs what is expected
for certain known sets of slopes, so a bug in the program is likely not at fault.

65



References

[1] Jose Ignacio Burgos Gil and Ariel Pacetti. Hecke and Sturm bounds for Hilbert modular forms
over real quadratic fields. Math. Comp., 86(306):1949–1978, 2017.

[2] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005.
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Appendix A

Sagemath Code:
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Code for level Γ1(1) algorithm:

Given p>= 5 prime, integer k and positive integer m:

Step 1

Compute the k0 and j:

[1]: ((k0,j),)=Polyhedron(ieqs=[[0,1,0], [p-2,-1,0]], eqns=[[-k, 1,p-1]]).
↪→integral_points()

[2]: k0=k % (p-1)

Compute n:

[3]: n=floor(((p+1)/(p-1))*(m+1))

For i=0,. . . ,n, compute di, the dimension of the space of classical modular forms of level 1 and
weight k0+i(p-1):

[4]: d=list('d_%d' % s for s in range(0,n))
for i in range(0,n):

d[i]=dimension_modular_forms(Gamma1(1),k0+i*(p-1))

Compute the mi:

[5]: M=list(var('m_%d' % s) for s in range(0,n))
M[0]=d[0]
for i in range(1,n):

M[i]=d[i]-d[i-1]

Compute l:

[6]: l=sum(M[i] for i in range(0,n))

Compute the working precision mp:

[7]: mp=m+floor(n/(p+1))

Step 2

For each 0≤i≤n, denote by Dk0+i(p−1) a row reduced basis of q-expansions in Z[[q]]
(pmp,qlp)

of the space
of classical modular forms of weight k0+i(p-1) and level 1. First, define a function that returns the
row-reduced basis of q-expansions:

[8]: R.<q> = PowerSeriesRing(ZZ,default_prec=2*(p*l))
def Mrr(k0,i):

return ModularForms(Gamma1(1),k0+i*(p-1)).q_echelon_basis(prec=(l*p))
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Now, define a reduction modulo (pmp, qlp):

[9]: def ordred2(a,p):
a += O(q^((l*p)+1))
a += q^(l*p)
b=a.polynomial()
ordred2_b=b.coefficients(sparse=False)
ordred2_coeff=list('ordred2_coeff_%d' % s for s in range(0,(l*p)))
for i in range(0,(l*p)):

ordred2_coeff[i]=Mod(ordred2_b[i],p^mp)
return R(ordred2_coeff)

Now calculate all the bases, reduce modulo (pmp, qlp), and store them in a list:

[10]: ListBasis=list('M_%d' % s for s in range(0,n))
for i in range(0,n):

if k0+i*(p-1) == 0:
Mrri=list('Mrri_%d' % s for s in range(0,1))
Mrri[0]=1
ListBasis[i]=Mrri

else:
Mrri=list('Mrri_%d' % s for s in range(0,len(Mrr(k0,i))))
for y in range(0,len(Mrr(k0,i))):

Mrri[y]=ordred2(Mrr(k0,i)[y],p)
ListBasis[i]=Mrri

Define Wi:

[11]: def W(i):
if M[i]==0:

return []
else:

return ListBasis[i][-M[i]:]

Step 3

Compute the q-expansion in Z[[q]]
(pmp,qlp)

of the Eisenstein series Ep−1(q):

[12]: eisen=ordred2(eisenstein_series_qexp(p-1,p*l,normalization='constant'),p)

Now define the elements ei,s by defining them in a double list:

[13]: Matrixe=[[1 for s in range(0,M[i])] for i in range(0,n)]
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[14]: for i in range(0,n):
if M[i]==0:

adsadsa=3
else:

for s in range (0,M[i]):
Matrixe[i][s]=ordred2((ordred2(p^floor(i/

↪→(p+1))*(eisen)^(-i),p))*(ordred2(W(i)[s],p)),p)

Step 4

Define eisenq = Ep−1(qp):

[15]: def ordredq2(a,p):
a += O(q^((l*p)+1))
a += q^(l*p)
b=a.polynomial()
ordredq2_b=b.coefficients(sparse=False)
ordredq2_coeff=list('ordredq2_coeff_%s' % s for s in range(0,(l*p)))
for i in range(0,(l*p)):

ordredq2_coeff[i]=Mod(ordredq2_b[i],p^mp)
return R(ordredq2_coeff)

[16]: eisenq=ordredq2(eisenstein_series_qexp(p-1,l*p,normalization='constant').subs({q:
↪→q^p}),p)

Now, use this to define G(q):

[17]: def G(q):
return eisen/eisenq

Now, calculate G(q)j using a fast exponentiation routine:

[18]: def FastPower(a,n):
if (n==0):

return 1
X=power(a,n/2)
X=X*X
if(n%2==1):

X=X*a
return X

Now, define the ui,s:

[19]: Matrixu=[[1 for s in range(0,M[i])] for i in range(0,n)]
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[20]: for i in range(0,n):
if M[i]==0:

adsadsa=3
else:

for s in range (0,M[i]):
Matrixu[i][s]=ordred2((G(q)^j)*Matrixe[i][s],p)

Step 5

Calculate the ti,s:

[21]: Matrixt=[[1 for s in range(0,M[i])] for i in range(0,n)]
for i in range(0,n):

if M[i]==0:
adsadsssa=3

else:
abcd=Matrixu[i][s].polynomial().coefficients(sparse=False)
for s in range (0,M[i]):

List_t=list('M_%d' % s for s in range(0,l))
for y in range(0,l):

List_t[y]=abcd[p*y]
Matrixt[i][s]=R(List_t)

Step 6

Define the matrix T:

First, define the base ring:

[22]: S=Integers(p^mp)

Now initialize the matrix:

[23]: T=matrix(ring=S,nrows=l,ncols=l)

Now define a new function to reduce modulo ql . This will return a list of coefficients, rather than
a polynomial:

[24]: def ordred3(a,p):
a += O(q^(l+1))
a += q^l
b=a.polynomial()
ordred3_b=b.coefficients(sparse=False)
ordred3_coeff=list('ordred3_coeff_%d' % s for s in range(0,(l)))
for i in range(0,(l)):

ordred3_coeff[i]=Mod(ordred3_b[i],p^mp)
return ordred3_coeff
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Now calculate the entries of T. Each row of T corresponds to a non-zero element of Matrixt, and
the l entries in that row correspond to the coefficients:

[25]: j=0
i=0
s=0
while j<l:

if M[i]==0:
i += 1

else:
while s<M[i]:

for k in range(0,l):
T[j,k]=ordred3(Matrixt[i][s],p)[k]

s+=1
j+=1

else:
s=0
i+=1

Define the matrix E:

[26]: E=matrix(ring=S,nrows=l,ncols=l)

[27]: j=0
i=0
s=0
while j<l:

if M[i]==0:
i += 1

else:
while s<M[i]:

for k in range(0,l):
E[j,k]=ordred3(Matrixe[i][s],p)[k]

s+=1
j+=1

else:
s=0
i+=1

Solve T=AE for A. If this has no solution, multiply by p and try again:

[28]: try:
E.solve_left(T)
A=E.solve_left(T)

except:
A=E.solve_left(p*T)
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[29]: Poly.<x>=PolynomialRing(ZZ)

Define one last function for reduction:

[30]: def ordred4(b,p):
ordred4_b=b.coefficients(sparse=False)
ordred4_coeff=list('ordred4_coeff_%d' % s for s in range(0,len(ordred4_b)))
for i in range(0,len(ordred4_b)):

ordred4_coeff[i]=Mod(ordred4_b[i],p^m)
return Poly(ordred4_coeff)

Calculate the characteristic series of A, then calculate the Newton slopes:

[31]: characteristic=ordred4((identity_matrix(S,l)-A*x).determinant(),p)

[32]: characteristic.newton_slopes(p)
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Code for level Γ1(N) algorithm:

Given N>=2, p>= 5 prime not dividing N, integer k and positive integer m:

Step 1

Compute the k0 and j:

[1]: ((k0,j),)=Polyhedron(ieqs=[[0,1,0], [p-2,-1,0]], eqns=[[-k, 1,p-1]]).
↪→integral_points()

[2]: k0=k % (p-1)

Compute n:

[3]: n=floor(((p+1)/(p-1))*(m+1))

For i=0,. . . ,n, compute di, the dimension of the space of classical modular forms of level 1 and
weight k0+i(p-1)

[4]: d=list('d_%d' % s for s in range(0,n))
for i in range(0,n):

d[i]=dimension_modular_forms(Gamma1(N),k0+i*(p-1))

Compute the mi:

[5]: M=list(var('m_%d' % s) for s in range(0,n))
M[0]=d[0]
for i in range(1,n):

M[i]=d[i]-d[i-1]

Compute lo :

[6]: lo=sum(M[i] for i in range(0,n))

Compute the working precision mp:

[7]: mp=m+floor(n/(p+1))

Compute the sturm bound l:

[8]: l=ModularForms(Gamma1(N),k0+n*(p-1)).sturm_bound()

Step 2

For each 0≤i≤n, denote by Dk0+i(p−1) a row reduced basis of q-expansions in Z[[q]]
(pmp,qlp)

of the space
of classical modular forms of weight k0+i(p-1) and level N.

[9]: R.<q> = PowerSeriesRing(ZZ,default_prec=(p*l))
Poly.<x>=PolynomialRing(ZZ)
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First, define a reduction modulo (pmp, qlp):

[10]: def ordred2(a,p):
b=Poly(a)
b+= x^(2*(l*p))
ordred2_b=b.coefficients(sparse=False)
ordred2_coeff=list('ordred2_coeff_%d' % d for d in range(0,(l*p)))
for i in range(0,(l*p)):

ordred2_coeff[i]=Mod(ordred2_b[i],p^mp)
return R(ordred2_coeff)

Now, define a function that returns the row-reduced basis of q-expansions:

[11]: def Mrr(k0,i):
return ModularForms(Gamma1(N),k0+i*(p-1)).q_echelon_basis(prec=(l*p))

Now calculate all the bases, reduce modulo (pmp, qlp), and store them in a list:

[12]: ListBasis=list('M_%d' % s for s in range(0,n))
for i in range(0,n):

if k0+i*(p-1) == 0:
Mrri=list('Mrri_%d' % s for s in range(0,1))
Mrri[0]=1
ListBasis[i]=Mrri

else:
Mrri=list('Mrri_%d' % s for s in range(0,len(Mrr(k0,i))))
for y in range(0,len(Mrr(k0,i))):

Mrri[y]=ordred2(Mrr(k0,i)[y],p)
ListBasis[i]=Mrri

[13]: def W(i):
F=list('f_%d' % s for s in range(0,M[i]))
t=0
if i==0:

F=ListBasis[0]
else:

while t<M[i]:
for w in range(0,d[i]):

if all(R(ListBasis[i][w]).polynomial().ord() !=␣
↪→R(ListBasis[i-1][y]).polynomial().ord() for y in range(0,d[i-1])):

F[t]=ListBasis[i][w]
t+=1

else:
none=1

return F

75



Step 3

Compute the q-expansion in Z[[q]]
(pmp,qlp)

of the Eisenstein series Ep−1(q):

[14]: eisen=ordred2(eisenstein_series_qexp(p-1,p*l,normalization='constant'),p)

Now define the elements ei,s by defining them in a double list:

[15]: Matrixe=[[1 for s in range(0,M[i])] for i in range(0,n)]

[16]: for i in range(0,n):
if M[i]==0:

none=1
else:

for s in range (0,M[i]):
Matrixe[i][s]=ordred2((ordred2(p^floor(i/

↪→(p+1))*(eisen)^(-i),p))*(ordred2(W(i)[s],p)),p)

Step 4

Define eisenq = Ep−1(qp):

[17]: eisenq=ordred2(eisenstein_series_qexp(p-1,l*p,normalization='constant').subs({q:
↪→q^p}),p)

Now, use this to define G(q):

[18]: def G(q):
return eisen/eisenq

Now, define the ui,s:

[19]: Matrixu=[[1 for s in range(0,M[i])] for i in range(0,n)]

[20]: for i in range(0,n):
if M[i]==0:

none=1
else:

for s in range (0,M[i]):
Matrixu[i][s]=ordred2((G(q)^j)*Matrixe[i][s],p)
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Step 5

Calculate the ti,s:

[21]: Matrixt=[[1 for s in range(0,M[i])] for i in range(0,n)]
for i in range(0,n):

if M[i]==0:
none=1

else:
for s in range (0,M[i]):

abcd=(R(Matrixu[i][s])+q^(l*p+1)).polynomial().
↪→coefficients(sparse=False)

List_t=list('M_%d' % s for s in range(0,l))
for y in range(0,l):

List_t[y]=abcd[p*y]
Matrixt[i][s]=R(List_t)

Step 6

Define the matrix T:

First, define the base ring:

[22]: S=Integers(p^mp)

Now initialize the matrix:

[23]: T=matrix(ring=S,nrows=lo,ncols=l)

Now define a new function to reduce modulo ql . This will return a list of coefficients, rather than
a polynomial:

[24]: def ordred3(a,p):
b=Poly(a)
b+= x^(2*(l*p))
ordred3_b=b.coefficients(sparse=False)
ordred3_coeff=list('ordred3_coeff_%d' % s for s in range(0,(l)))
for i in range(0,(l)):

ordred3_coeff[i]=Mod(ordred3_b[i],p^mp)
return ordred3_coeff
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Now calculate the entries of T. Each row of T corresponds to a non-zero element of Matrixt, and
the l entries in that row correspond to the coefficients:

[25]: jv=0
i=0
s=0
while jv<lo:

if M[i]==0:
i += 1

else:
while s<M[i]:

for k in range(0,l):
T[jv,k]=ordred3(Matrixt[i][s],p)[k]

s+=1
jv+=1

else:
s=0
i+=1

Define the matrix E:

[26]: E=matrix(ring=S,nrows=lo,ncols=l)

[27]: j=0
i=0
s=0
while j<lo:

if M[i]==0:
i += 1

else:
while s<M[i]:

for k in range(0,l):
E[j,k]=ordred3(Matrixe[i][s],p)[k]

s+=1
j+=1

else:
s=0
i+=1

Solve T=AE for A. If this has no solution, multiply by p and try again:

[28]: try:
E.solve_left(T)
A=E.solve_left(T)

except:
E.solve_left(p*T)
A=E.solve_left(p*T)
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Define one last function for reduction:

[29]: def ordred4(b,p):
ordred4_b=Poly(b).coefficients(sparse=False)
ordred4_coeff=list('ordred4_coeff_%d' % s for s in range(0,len(ordred4_b)))
for i in range(0,len(ordred4_b)):

ordred4_coeff[i]=Mod(ordred4_b[i],p^m)
return Poly(ordred4_coeff)

Calculate the characteristic series of A, then calculate the Newton slopes:

[30]: characteristic=ordred4((identity_matrix(S,lo)-A*x).determinant(),p)

[31]: characteristic.newton_slopes(p)
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