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ABSTRACT 

Ontological and Machine Learning Approaches for Inspection of Facilities Using BIM 

Fardin Bahreini, Ph.D. 

Concordia University, 2022 

Facilities should be kept in good condition throughout their lifecycle by rigorous inspection 

processes. The semantic relationships between multiple inspection information during lifecycle 

phases, and inspection result representation are among the most critical issues that need to be 

addressed. So far, many studies have been done to identify, analyze, repair, and prevent defects. 

However, after capturing the defect information, there is a need for an ontology to organize and 

integrate relevant information and future actions. Additionally, the availability of inspection robots 

in buildings’ construction and operation phases has led to expanding the scope of applications and 

increasing technological challenges. BIM models comprise useful information about the building 

environment’s representation, which can help the inspection robot overcome task complexity. 

However, the research in this area is still limited and fragmented, and there is a need to develop 

an integrated ontology to be used as a knowledge model for logic-based inspection of building 

defects. 

Moreover, visual inspection using non-equipped eyes is the principal method of detecting 

structural surface defects, which is unsafe, time-consuming, expensive, and subjective to human 

errors. Using remote sensing, such as, cameras and LiDAR scanners, is one solution to overcome 

these shortcomings. The captured point cloud data from the real environment can assist in detecting 

the defects and taking further actions. Recently, machine learning methods attracted the attention 

of researchers for semantic segmentation and classification based on point clouds. However, no 

deep learning method is currently available for semantic segmentation of concrete surface defects 

based on raw point cloud data. Furthermore, the BIM model needs to be integrated with the results 

of defect semantic segmentation after the LiDAR-based inspection. 

Addressing the above issues, this research has the following objectives: (1) Developing an 

ontology for concrete surface defects; (2) Developing BIM-based ontology to cover the different 

types of information and concepts related to robotic navigation and inspection tasks; (3) 

Developing a method for point cloud-based concrete surface defects semantic segmentation; and 

(4) Developing a semi-automated process for as-inspected modeling. 

The first part of this research focused on the development of an ontology, called Ontology for 

Concrete Surface Defects (OCSD), to have a unified knowledge model where all the stakeholders 

can access information in a systematic manner. OCSD metrics include 333 classes, 51 relations, 

27 attributes, and 31 individuals. OCSD comprises high-level knowledge of the concepts and 

relationships related to surface defects, inspection, diagnosis, and 3R (Repair, Rehabilitation, and 

Replacement) processes. The application of OCSD was investigated in a case study and a survey 

was designed to evaluate the semantic representation of OCSD. Based on the evaluation, OCSD 

was able to provide a clear understanding of the concepts and relationships in the domain, and it 

can help future asset management systems benefit from the provided knowledge. 

The second part of this research focused on the development of an integrated ontology, called 

Ontology for BIM-based Robotic Navigation and Inspection Tasks (OBRNIT), to extend BIM 
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applications for robotic navigation and inspection tasks. OBRNIT metrics include 386 classes, 45 

relations, 52 attributes, and 8 individuals. OBRNIT comprises high-level knowledge of the 

concepts and relationships related to buildings, robots, and navigation and inspection tasks. BIM 

is considered as a reference that is integrated with the knowledge model. The semantic 

representation of OBRNIT was evaluated through a case study and a survey. The evaluation 

demonstrates that OBRNIT covers the domain’s concepts and relationships up to the point that 

satisfies the domain experts. Based on the evaluation, OBRNIT was able to give a clear 

understanding of the concepts and relationships in the domain, and it can help in the future in 

developing robotic inspection systems. 

The last part of this research focused on a method for point cloud-based defect semantic 

segmentation based on Normal Vector Enhanced Dynamic Graph Convolutional Neural Network 

(NVE-DGCNN) to automate the inspection process of concrete surface defects, including cracks 

and spalls. This part investigates two main characteristics related to surface defects, including the 

normal vector and depth. The network’s performance is improved by modifying the network and 

augmenting the dataset. Sensitivity analysis is applied to capture the best combination of 

hyperparameters and investigate their effects on the network performance. NVE-DGCNN resulted 

in 98.56% and 96.50% recalls for semantic segmentation of cracks and spalls, respectively. 

Furthermore, post-processing of the results of the defects semantic segmentation is done to semi-

automate the process of as-inspected modeling. This semi-automated process made it possible to 

manage and visualize the detected defects by extracting their dimensions and identifying the 

conditions on the 3D model. 
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CHAPTER 1.     INTRODUCTION  

1.1 Background 

Recent studies about Building Information Modeling (BIM) have demonstrated a strong potential 

for extending BIM applications to the operation and maintenance phase of facilities. On the other 

hand, ontology is a knowledge model that can help clarify and systematize implied knowledge in 

a way that is simple and logically understood by the user [1]. Ontology can create a unified 

knowledge model to exchange information among the construction industry and standardize the 

process and framework of using BIM for facilities management. Besides, inspection robots are 

used to automate inspection during the construction and operation phases. Advanced technologies 

(e.g. scanners, sensors) have made the inspection process more accurate and reliable [2]. 

Moreover, machine learning methods can be used for defect semantic segmentation using point 

clouds collected by a Light Detection and Ranging (LiDAR) scanner [3]. The detected surface 

defects information can be linked to the BIM model. Therefore, the inspection process can be more 

efficient by utilizing BIM-based inspection-related knowledge, and an integrated process of 

surface defect semantic segmentation and defect modeling. 

1.2 Problem Statement and Research Gaps  

The key problems of this research can be attributed to four main issues as follows: 

(1) The first issue is regarding the inspection, diagnosis, and repair of concrete surface defects. 

Facilities should be kept in good condition throughout their lifecycle by rigorous inspection 

processes. The considerable amount of data resulting from inspection should be managed in an 

efficient manner to avoid errors, reduce cost, and make the best use of available resources. The 

semantic relationships between multiple inspection information during lifecycle phases, and 

inspection result representation are among the most critical issues that need to be addressed [4]. 

So far, many studies have been done to identify, analyze, repair, and prevent defects. However, 

after capturing the defect information, the need for an ontology to organize and integrate relevant 

information and future actions still requires further studies and development. There is a need to 

streamline the research to reduce duplications in efforts and provide a high-level approach to model 

the knowledge related to the inspection, diagnosis, and repair of specific types of defects. 

(2) The second issue is regarding the challenges of robotic inspection in buildings’ construction 

and operation phases. The complexity of the interactions with the surrounding building 

environment is the main challenge for inspection robots [5]. BIM models comprise useful 

information about the building environment’s representation, which can help the inspection robot 

overcome task complexity. Moreover, an ontology can be used to overcome this challenge as a 

basis for the robot’s task planning and execution. Therefore, a variety of knowledge, including the 

robot’s low-level data related to perception and high-level data about the environment, objects, 

and tasks, needs to be integrated [6]. The robotic inspection must be performed in such a way that 

the process considers reliability, repeatability, and safety. Therefore, it is necessary to enhance 

operational consistency in the inspection environment [7]. Robotic inspection systems’ capabilities 

have progressed over time, and these systems have become dependent on multiple components 

with diverse functions. In most developed systems, the modules are created independently by 

different individuals with different technical expertise. Thus, a clear definition of the relationships 

between the system’s various components is needed. The system’s structure and related 
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components must have a straightforward design and documentation to solve this problem [8]. A 

clear and accurate description of the environment and the task can help autonomous robotic 

inspection [9]. The robot declarative knowledge represents the task’s objects, properties, and 

relationships in a semantic model [10]. The robot can use this declarative knowledge to perform 

the task more accurately. However, the research in this area is still limited and fragmented, and 

there is a need to develop an integrated ontology to be used as a knowledge model for logic-based 

inspection of building defects. 

(3) The third issue is regarding to the automated concrete surface semantic segmentation of point 

cloud data. Visual inspection using non-equipped eyes is the principal method of detecting 

structural surface defects, which is unsafe, time-consuming, expensive, and subjective to human 

errors [11]. Using remote sensing such as cameras and LiDAR scanners, is one solution to 

overcome these shortcomings. The captured point cloud data from the real environment can assist 

in detecting the defects and taking further actions. It will also provide a database for other 

maintenance measures after creating an integrated 3D model for existing structures. Image-based 

inspection using cameras is based on pattern recognition techniques [12]. Several studies focused 

on detecting defects automatically (e.g. spalling [13] or cracks [14]) and determining some 

characteristics such as the width of cracks [15, 16]. Several crack detection algorithms have been 

developed, which can be practically used for real-time crack analysis [17, 18], crack classification 

[19], and automating crack sealing [20, 21]. There are several challenges in supporting concrete 

inspection using image-based methods. Such methods are mostly defined for simple flat concrete 

surfaces and may fail in analyzing more complex geometries and materials [20]. Good lighting 

condition is one of the main issues that should be considered during implementing these methods 

[22]. Another shortcoming is the necessity of providing supplementary information, such as 

camera lens, focal length, or the distance from the camera to the target surface, before analyzing 

the images [23]. Moreover, in comparison to image data, measuring the defects dimensions such 

as depth is more accurate and reliable in point cloud-based methods. Although the initial cost of 

LiDAR scanner is more than cameras, it may be more profitable and economical in the long term.  

In order to automate the process of point cloud-based inspection, appropriate datasets and an 

efficient approach such as defect semantic segmentation are essential. Recently, machine learning 

methods attracted the attention of researchers for semantic segmentation and classification based 

on point clouds. Unlike other methods, such as the Hough Transform (HT) [24] and the Random 

Sample Consensus (RANSAC) approach [25], machine learning methods are robust and flexible. 

However, they rely on the point cloud density and size of the dataset. Moreover, training based on 

large datasets is time-consuming [26] and converting the point cloud into other representations 

increases the dataset size. Different methods such as classification, part segmentation, and 

semantic segmentation can be used to process the raw point cloud data [27]. This research focuses 

on semantic segmentation, which is based on the detailed information of each point. Although 

much work has been done for processing visual information with images, research on machine 

learning methods for semantic segmentation of raw point cloud data is still in its early stages [28]. 

Moreover, no deep learning method is currently available for semantic segmentation of the surface 

defects based on point clouds without converting the raw data to other representations (e.g. 

images).  

(4) The fourth issue is related to as-inspected modeling. Most existing structures do not have a 3D 

model; and even when available, it is not a complete model. LiDAR technology is commonly used 
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to create as-is BIM models. However, the as-is model does not include the inspection results [29]. 

Therefore, the BIM model needs to be integrated with the results of defect semantic segmentation 

after the LiDAR-based inspection.  

1.3 Research Objectives 

Given the problems explained in Section 1.2, the main objectives of this research are defined as 

follows: (1) Developing an ontology for concrete surface defects; (2) Developing BIM-based 

ontology to cover the different types of information and concepts related to robotic navigation and 

inspection; (3) Developing a method for point cloud-based concrete surface defects semantic 

segmentation; and (4) Developing a semi-automated process for as-inspected modeling.  

1.4 Thesis Organization 

The structure of the thesis is presented as follows: 

Chapter 2 Literature Review: This chapter reviews the literature related the major concepts used 

in this research, including facilities management using BIM, robotic inspection and navigation, 

inspection information modeling, ontology approach, and semantic segmentation of point clouds 

using deep learning. 

Chapter 3 Research Framework: The overview of the proposed framework is discussed briefly in 

this chapter. 

Chapter 4 Ontology for Concrete Surface Defects: This chapter elaborates on ontological approach 

to develop ontology for concrete surface defects. 

Chapter 5 Ontology for BIM-Based Robotic Navigation and Inspection Tasks: This chapter 

elaborates on an ontological approach to develop ontology for BIM-based robotic navigation and 

inspection tasks. 

Chapter 6 Point Cloud-Based Concrete Surface Defect Semantic Segmentation and As-Inspected 

Modeling: This chapter proposes a method for point cloud-based surface defect semantic 

segmentation using Normal Vector Enhanced Dynamic Graph Convolutional Neural Network 

(NVE-DGCNN). Moreover, this chapter proposes a semi-automated approach for the as-inspected 

modeling based on the results of semantic segmentation to integrate the defects with the BIM 

Model.  

Chapter 7 Summary, Conclusions, and Future Work: This chapter summarizes the present research 

work, highlights its contributions, investigates the limitations, and suggests recommendations for 

future research.
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CHAPTER 2.     LITERATURE REVIEW 

2.1 Introduction 

In this chapter, literature related to major concepts including concrete infrastructure management, 

robotic inspection and navigation tasks, inspection information modeling, ontology approach, and 

semantic segmentation of point clouds using deep learning, is reviewed. First, a review is provided 

of concrete infrastructure management and different types of concrete surface defects. In addition 

to reviewing inspection tasks during the construction and operation phases, the literature related 

to concrete surface inspection, diagnosis, and repair processes, and robotic inspection and 

navigation-related tasks is reviewed. Then, research about using robots for inspection and IFC-

based navigation is reviewed. Furthermore, the inspection information modeling literature and 

research gaps are reviewed. The ontology approach section explains ontology languages and tools, 

architecture, engineering and construction, and facilities management (AEC/FM) ontologies, and 

ontologies for robots. Finally, the machine learning approach for semantic segmentation of point 

clouds and local feature learning on point sets are reviewed. 

2.2 Concrete Infrastructure Management 

Regular inspection and appropriate Repair, Rehabilitation, and Replacement (3R) works are 

crucial for continued operations of infrastructure systems [30- 34]. 

2.2.1 Types of Defects 

Gheitasi and Harris [35] evaluated the effect of subsurface delamination of the reinforced concrete 

deck. Deterioration of concrete elements often occurs in steel bars as corrosion and section loss 

due to leakage from expansion joints adjacent to supports. Cracks in concrete are caused by dead 

and live loads, stresses due to temperature changes, and shrinkage. Each of these cracks can 

provide a space for the penetration of chloride, moisture, or salt, resulting in the formation of new 

defects. Figure 2-1 includes possible damage because of rebar corrosion (i.e. longitudinal cracks, 

spalling, delamination). 

 

Figure 2-1. Possible damage because of rebar corrosion [35] 
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Nielsen et al. [36] presented a framework to gather the concrete bridge defects data, investigate 

defect severity, and recommend a prioritized repair portfolio for critical components. Le and 

Andrews [37] classified the various components of the bridge according to the component type 

and material, and defined the extent of repair actions (e.g. repair or replacement) and related 

condition states based on the severity and extent of defects. Brandon et al. [38] asserted that bridge 

failure can be the result of issues in one of the following processes: design, construction, operation, 

or inspection.  

In some cases, the defect caused by a damage mechanism accelerates the process of other defect 

formation and leads to further damages. Therefore, the relationship between defects and the 

condition of the defected element requires further studies. For example, the acid reaction causes 

damage to the protective layer, and consequently, the hidden layer is exposed to the outside 

environment, which itself causes chloride penetration and corrosion. The aging process of concrete 

materials and various aggressive agents are among the factors that cause the damage of concrete 

over time [39]. The most common types of surface defects in concrete based on Concrete 

Structures Protection, Repair and Rehabilitation book [40] and Ontario structure inspection manual 

(OSIM) [41] are: (1) crack, (2) spalling, (3) delamination, (3) scaling, (4) disintegration, (5) 

erosion, (6) honeycombing, (7) pop-outs, (8) cold joints, (9) stratification, (10) segregation, (11) 

efflorescence, (12) exudation, (13) incrustation, (14) stalactite, (15) abrasion/wear, (16) slippery 

surface, and (17) stain. Table 2-1 shows the types of concrete defects based on OSIM.  

Crack defects are characterized by a partial or complete linear fracture on the concrete surface. An 

oriented crack is a type of cracks in the concrete surface that usually has a particular slope and 

direction. A mapped crack is a crack in the concrete surface that occurs randomly at close distances 

and without a fixed direction.  In addition, this crack usually covers a large area [42, 43]. Spalling 

is a defect characterized by a significant gap due to the local separation of concrete from a larger 

surface. Delamination is a defect characterized by the lack of bonding of the part of the separated 

concrete surface that is not entirely detached from the larger surface. Scaling is a defect 

characterized by the loss of part of the mortar or concrete surface in the form of surface peeling. 

Disintegration is a defect characterized by breaking concrete into smaller sections or parts, which 

usually occurs if the severe type of scaling is not controlled over time. Erosion is the mechanical 

damage and loss of mass caused by scrubbing sand and other particles in running water on a 

concrete surface. Honeycombing is a void between the coarse particles of concrete. Pop-out is a 

cone-shaped hole on the concrete surface. Cold joints are characterized by an interconnected linear 

separation at the joints between pouring two sets of concrete. Segregation is a defect due to the 

separation of cement and different sizes of aggregates. Stratification is characterized by separation 

in the form of the layered and horizontal structure due to high humidity and vibration. 

Efflorescence is characterized by white salt deposition on the concrete surface [44]. Exudation is 

the release of a substance from a compound, which in concrete is characterized by the release of 

gel-like material from surface pores [45]. Incrustation is characterized by the appearance of crusts 

or the accumulation of hard coating on the concrete surface [46]. Stalactites are a chemical reaction 

of water and minerals in concrete characterized by the accumulation of substances hanged from 

the surface. Abrasion is mechanical damage caused by scratching or rubbing the surface by 

vehicles or a sharp foreign object on the surface. Abrasion damage combined with solid particles 

such as sand can cause wear defects on the concrete surface. Slippery surface is a surface defect, 

which is characterized by the smoothness of the concrete surface [47]. This defect is dangerous 

and indicates a fair condition. Therefore, it should be fixed as soon as possible. Stain has different 
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colors, shades, and textures. The main types of stains include biological growth stains (e.g. fungi, 

beetle), dust stains, chemical reaction stains, corrosion stains, and water stains [48, 49]. 

Other types of concrete surface defects are: graffiti, bugholes, and flatness defect. Graffiti is the 

intentional act of painting or writing on the concrete surface [50]. Bugholes are small holes in the 

concrete surface that are formed by air entrapment in fresh concrete [51]. The flatness of the 

surface is a defect characterized by deviations in elevation and irregularity of the surface [52]. 
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1 

Table 2-1. Common types of concrete surface defects based on OSIM (adapted from [41]) 

Surface defect 

types 
Severity (all dimensions in mm) 

Crack Hairline (width < 0.1) Narrow (0.1 ≤ width ≤ 0.3) Medium (0.3 < width ≤ 1.0) Wide (1.0 < width) 

Spalling 
Light 

(Any direction < 150 or depth < 25) 

Medium 

(150 ≤ Any direction ≤ 300 

 or 25 ≤ depth ≤ 50) 

Severe 

(300 < Any direction ≤ 600  

or 50 < depth ≤ 100) 

Very severe 

(600 < Any direction  

or 100 < depth) 

Delamination Light (Any direction < 150) Medium (150 ≤ Any direction ≤ 300) Severe (300 < Any direction ≤ 600) 
Very severe (600 < Any 

direction) 

Scaling 

Light 

(depth ≤ 5 

without exposure of coarse 

aggregate) 

Medium 

(5 < depth ≤ 10 

with exposure of some coarse 

aggregates) 

Severe 

(10 < depth ≤ 20 

with aggregate particles standing out 

from the concrete and a few completely 

lost) 

Very severe 

(Depth > 20) 

Disintegration 

Light 

(Depth ≤ 25 

with some loss of coarse aggregate) 

Medium 

(25 < depth ≤ 50 

with considerable loss of coarse 

aggregate and exposure of 

reinforcement) 

Severe 

(50 < depth ≤ 100 

with substantial loss of coarse 

aggregate and exposure of 

reinforcement over a large area) 

Very severe 

(100 < depth 

and extending over a large area) 

Erosion 

Light 

(Depth ≤ 25 

with some loss of coarse aggregate) 

Medium 

(25 < depth ≤ 50 

with considerable loss of coarse 

aggregate and exposure of 

reinforcement) 

Severe 

(50 < depth ≤ 100 

with substantial loss of coarse 

aggregate and exposure of 

reinforcement over a large area) 

Very severe 

(100 < depth 

and extending over a large area) 

Honeycombing Light (depth ≤ 25) Medium (25 < depth ≤ 50) Severe (50 < depth ≤ 100) Very severe (100 < depth) 

Pop-Outs Light (depth ≤ 25) Medium (25 < depth ≤ 50) Severe (50 < depth ≤ 100) Very severe (100 < depth) 

Cold joints N.A. 

Segregation N.A. 

Stratification N.A. 

Efflorescence N.A. 

Exudation N.A. 

Incrustation N.A. 

Stalactite N.A. 

Abrasion/wear N.A. 

Slippery surface N.A. 

Stain N.A. 
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2.2.2 Inspection Methods 

Various methods can be used to inspect concrete surfaces. Computer vision methods can be used 

to detect anomalies in the collected data [3]. Crack measuring is a method to measure the 

characteristics of a crack on the concrete surface. Concrete cover and magnetic field measuring 

are interrelated methods to measure concrete cover by locating the rebars. Magnetic field 

measuring using devices such as magnetometer to measure the magnetic field in X, Y, and Z-axes 

[53]. Moisture/humidity measuring is another measurement method to inspect the concrete surface 

[54]. Infrared thermography is a measurement method which uses a thermal camera to measure 

the temperature of inspected concrete surfaces [55]. As most humidity measurement tools depend 

on the measurement of some other environmental features such as temperature, devices such as 

thermo-hygrometer can be used to measure the temperature and humidity of the air. A rubber 

hammer is a percussion tool. Usually, after macroscopic inspection of the concrete surface, a 

rubber hammer test is performed for secondary inspection. Colorimetric test strips are a tool to 

identify the types of salts on the concrete surface [56]. The surface absorption test evaluates the 

adsorption properties by measuring the amount of water that penetrates the concrete sample [57]. 

Half-cell potential test can be performed to specify the chance of corrosion within the 

reinforcement and the concrete surface [58].  

2.2.3 Causes of Defects 

Maksymowicz et al. [59] proposed a basic taxonomy of mechanisms for the causes of the damages 

to concrete bridges and classified them into the following three main categories: chemical, 

physical, and biological mechanisms. Each of these mechanisms has some consequences, which 

can result in unique damages (e.g. losses, deformations, displacements, etc.). 

Concrete surface defects can appear for a variety of reasons. The primary issues that might produce 

defects on concrete surfaces during the design phase are poor design and design-related errors. 

Some instances of poor design are as follows: (1) Concrete formwork has a significant effect on 

the shape of the surface, and improper design of formwork can cause defects in the concrete 

surface; (2) Expansion joints play an important role in controlling cracks. Thus the improper design 

of these joints and inappropriate selection of materials can cause defects in the concrete surface; 

and (3) The release agent prevents fresh concrete from sticking to the formwork and facilitates the 

forming process. Improper selection of the release agent can cause defects such as stains on the 

concrete surface [60].  

The main problems during the construction phase that can cause surface defects include: (1) Using 

defective formwork or incorrect use of formwork during construction can cause defects in the 

concrete surface; (2) Inappropriate transportation is a factor that can reduce the quality of concrete 

and cause defects such as cracking and segregation. (3) Too much or too little water in the concrete 

mix can cause defects such as surface cracking [61, 62]; (4) Inappropriate casting, as well as 

casting in inappropriate weather conditions, can also cause defects. For example, scorching 

temperatures cause the concrete to harden prematurely, and very high temperatures cause the 

concrete to lose strength before curing, which ultimately causes surface defects [63, 64]; (5) The 

inappropriate placement of casting joints causes deformation and defects in the concrete surface; 

(6) Inappropriate compaction causes defects in the concrete surface, such as honeycomb and 

bughole [65]; (7) Concrete needs to be cured for a sufficient time, and at suitable humidity and 

temperature to achieve the desired durability. Inappropriate curing can cause defects such as cracks 

in the concrete surface; (8) Inappropriate reinforcement placement in the correct position can lead 
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to poor performance and defects in the concrete surface; (9) Lack of sufficient concrete cover on 

the reinforcement causes the reinforcement to corrode, resulting in surface defects [66]; (10) 

Improper application of the release agent during construction can cause defects such as stains on 

the concrete surface; and (11) Insufficient supervision and the use of poorly skilled workmanships 

are other factors that contribute to defects in the concrete surface.  

The main problems during the operation phase that can cause surface defects include: (1) 

Environmental problems due to changes in temperature, humidity, and moisture, which can cause 

various factors (e.g. thermal stress) that play a role in forming surface cracks [67]; (2) Exposing 

concrete to fire can cause changes in the microstructures and defects such as cracks and 

delamination [68]; (3) Chemical mechanisms such as acid reactions, alkali-aggregate reactions, 

carbonation, chloride penetration, creation of composing salts, leaching, oil and fat influence, and 

sulfates reactions [59]; (4) Biological degradation mechanisms involve the accumulation of 

contamination and living organism activity; (5) Corrosion and expansion of reinforcement are 

other causes of surface defects during the operation that can be affected by environmental problems 

[69]; (6) Abrasion is the action of deterioration of concrete that causes wear. Wear is the loss of 

concrete mass caused by impact, friction, vehicle traffic, etc. [41, 70]; (7) Physical degradation 

mechanisms include creeping, shrinkage, material fatigue, extreme temperature influence, freezing 

actions, foundation displacement, and overloading [59]; (8) Load problems include static and 

dynamic over-loading, excessive vibration, and stress concentration that can lead to surface defects 

[71]; (9) Changes in the internal and external properties of concrete, including creep and shrinkage, 

can cause settlement or deformation, which are factors in the appearance of surface defects [72], 

[73]; and (10) Vandalism is also a cause of surface defects during the operation phase [74].  

During the maintenance phase, problems such as lack of maintenance and insufficient frequency 

of applying surface protection will cause aging deterioration and, consequently, concrete surface 

defects [75, 76]. 

The diagnosis methods to find the causes of concrete surface defects include: (1) The remote-

sensing-based diagnosis analyzes the results of inspection based on the remote sensing methods 

(e.g. analyzing temperature based on thermal images); (2) The magnetic-based diagnosis analyzes 

magnetic force information, rebar location, and size of the cover over time to notice the corrosion 

and other defects based on the results of inspection methods such as concrete cover measuring 

[77]; (3) The acoustic-based diagnosis, which is a simple method, analyzes the sound produced 

based on the results of the inspection methods, such as the rubber hammer test, to find the initial 

occurrence of some defects [78]; (4) The moisture/humidity-based diagnosis analyzes adsorption, 

moisture content, and humidity level data and finds the degree of porosity of concrete surfaces 

based on the results of inspection methods such as the initial absorption test; (5) The chemical-

based diagnosis analyzes the presence of harmful substances based on the results of the inspection 

methods such as colorimetric strips. Analyzing the results of this test helps to identify the types of 

harmful substances and defects caused by them on the concrete surface; (6) The electrochemical-

based diagnosis analyzes corrosion probability based on the results of inspection methods such as 

the half-cell potential test; (7) Crack monitoring diagnosis analyzes crack dimensions over time 

based on the results of inspection methods such as cracking measuring [79]. 

2.2.4 Condition Assessment 

Based on OSIM’s [41] classification of the severity and condition of concrete surface defects, the 

condition of defected element can be classified into excellent, good, fair, and poor. Excellent 
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condition is usually a condition in which the element or structure is newly constructed, and the 

element is without surface defects and does not require treatment. Good condition is when surface 

defects are visible and minor, but since these defects do not affect the element’s function, no 

corrective action is needed to treat the defect. Fair condition is a condition in which moderate 

defects are visible, and if 3R actions are cost-effective, preventive, corrective action will be taken 

(e.g. applying a protective surface coating). Poor conditions are conditions in which the defect is 

severe and seriously affects the performance of the element. In this case, there will be a need for 

treatment measures such as rehabilitation and replacement. The presence of medium cracks on the 

concrete surface indicates a fair condition, and the presence of wide cracks on the concrete surface 

indicates a poor condition. Since the presence of spalling in the concrete surface, regardless of the 

severity, indicates a serious problem and severe weakness in concrete, the appearance of this defect 

with any severity level indicates a poor condition that requires a corrective action. Moreover, the 

presence of delamination, disintegration, or erosion in the concrete surface with any severity level 

indicates a poor condition. In case of severe or very severe scaling, honeycombing or pop-out on 

the concrete surface, the element’s condition can be evaluated as poor. The appearance of cold 

joint, segregation, stratification, efflorescence, exudation, incrustation, stalactite, abrasion damage 

or wear, and slippery surface on the concrete surface indicate the element’s fair condition. 

2.2.5 Repair, Rehabilitation, and Replacement 

The 3R actions help to extend the actual useful life of a structure after the formation of defects or 

damages caused by defects. ISO (International Organization for Standardization) [80] provides a 

framework and fundamental principles for the maintenance and repair of existing concrete 

structures. The repair methods to deal with minor concrete surface defects are: (1) Surface cleaning 

is a method to remove water, dirt, debris, and stains from concrete surfaces [81]; (2) Irregularities 

related to non-flatness (bulge, roughness, waviness) can be repaired by methods such as surface 

grinding. Since excessive grinding also weakens the concrete surface, this issue should be 

considered when using this method [82]; (3) Protecting edges is a preventative method to protect 

the protruding edge of concrete surfaces from defects [60, 83]; (4) Using surface sealing or coating 

compounds, which is a preventative action, prevents the penetration of water and other destructive 

chemical solutions into the concrete surface and reduces damage caused by chemical reactions, 

corrosion of rebars, etc. The difference between surface sealers and surface coating is that the 

surface sealers penetrate the surface and usually apply in a thin layer. In contrast, surface coatings 

apply as a covering on top of the surface in a thicker layer than penetrating sealers. Minor concrete 

surface cracks can also be treated by applying the penetrating surface sealers (e.g. epoxy sealer, 

silicone sealer). The materials used for sealing and coating compounds have a wide variety of 

choices [84]. 

The methods of major repair of defective concrete include: (1) Rehabilitation and strengthening of 

concrete: excessive corrosion of the rebar weakens the strength and causes defects such as surface 

cracks. In such cases, in order to strengthen the concrete, the corroded parts are removed and 

replaced with new rebars [85]. Moreover, in cases where the concrete needs to be strengthened, 

fiber-reinforced polymers (e.g. glass fibers, steel fibers) can be used in concrete [86]; (2) Concrete 

repair or replacement: in order to repair or replace concrete, various measures are taken, including 

detaching and removing the loose part of the concrete, adding a new layer of concrete, and curing. 

curing is done for the added or replaced concrete to maintain the appropriate humidity and 



 

 

11 

 

temperature conditions at depth and surface, which plays a vital role in developing the strength 

and durability of concrete [87]. 

Concrete repair or replacement method include: (1) Crack filling: resin injection is a method to 

repair defective concrete. Some types of penetrating surface sealers (e.g. polyurethane) can be used 

for this purpose [88]; (2) Shotcrete placement: in the shotcrete method, concrete mortar is thrown 

on the surface at high speed to place high-strength, low-permeability concrete without using forms 

[89]; (3) Adding or replacing mortar or concrete. Various types of concrete or mortar can be used 

in this method. Some types of mortar or concrete include: (1) Conventional mortar or concrete: the 

main components of conventional mortar or concrete are water, cement, and aggregate, which can 

be used to repair or replace defective parts of surfaces [90]; (2) Preplaced aggregate concrete: this 

concrete is made of coarse clean aggregates that are compacted together and cement grout 

injection. Due to the fluidity of the cement grout injected in this method, the forms must be made 

in such a way that they can withstand more pressure than conventional concrete [91]. The defective 

parts of the concrete surface can be repaired or replaced with this concrete; (3) Polymer-modified 

mortar or concrete: this mortar or concrete consists of a combination of polymer with cement, and 

aggregate and polymer concrete mortar consist of only polymer and aggregate. Polymer-modified 

mortar or concrete is made from a combination of water and polymer additives, cement, and sand 

that require less water than conventional concrete. This mortar or concrete has high strength, 

adhesion, and density. Another feature of this mortar or concrete is reducing permeability and 

shrinkage [92], [93]; and (4) Epoxy mortar or concrete: this mortar or concrete is made from a 

combination of epoxy and sand or epoxy, sand, and coarse aggregate. This mortar or concrete has 

characteristics to protect the rebar against corrosion [94]. 

Current approaches to inspecting and maintaining concrete surfaces face challenges due to 

subjectivity and inefficiency. In order to take appropriate 3R actions, defects must be identified 

simultaneously, and the characteristic of each defect must be considered for appropriate future 

action [48]. 

2.3 Inspection Tasks During the Construction and Operation Phases 

2.3.1 Construction Inspection 

Inspection during the construction phase is an important task in the construction industry. Lack of 

proper inspection will increase the cost of maintenance in the operation phase. Based on Tayeh et 

al. [95], the main factors causing construction defects are: (1) misinterpretation of design, (2) 

inaccurate measurement, (3) damaged formwork, (4) poor installation method, (5) improper 

installation, (6) early formwork removal, (7) excavation tools close to the building, and (8) painting 

in unsuitable conditions or on unsuitable surfaces. Kim et al. [96] proposed a framework for 

dimensional and surface quality assessment of precast concrete elements using BIM and Light 

Detection and Ranging (LiDAR) scanning. 

Recent technologies (e.g. LiDAR scanner) are integrated with BIM to enhance the capabilities of 

construction inspection [97]. An accurate and comprehensive inspection of construction sites can 

be achieved with the aid of LiDAR scanner and sensors. These technologies can capture real-time 

data from the site [98, 99]. The use of computer vision techniques can help to inspect most of the 

surface defects [100, 101]. Bolourian and Hammad [102] considered the potential locations of the 

defects on the inspected surfaces and proposed a path planning method for LiDAR-equipped 

Unmanned Aerial Vehicle (UAV). Lundeen et al. [103] developed an adaptive inspection 
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framework for construction robots to detect the location and geometry of joints and fill these joints. 

Freimuth et al. [104] used BIM for UAV flight path planning for construction inspection. The 

object boundaries were defined in the georeferenced BIM and represented as a set of voxels in 

three main categories: (1) building geometry, (2) occupied voxels, and (3) safety layer. The safety 

layer is based on the minimum distance between the UAV and the objects. A graph is generated 

to relate the voxels (nodes), and each transition between nodes indicates a movement of the UAV 

using way-nodes.  

2.3.2 Inspection During Operation Phase 

The other area of inspection is inspection during the operation phase. Facilities need regular 

inspection to satisfy their predetermined functions. Imperfections in the facilities are described as 

defects, errors, faults, failures, quality deviations, nonconformances, anomalies, snags, reworks, 

etc. [105]. Preventive maintenance, reactive maintenance, and emergency services are the three 

main types of maintenance. For preventive maintenance, safety and efficient functioning condition 

are two main factors that need to be inspected regularly [33]. Metni and Hamel [106] used visual 

inspection for monitoring the structures at the operation phase and discussed the challenges of 

considering the orientation limits for UAVs. The orientation limits help the UAV to focus on the 

inspected object within the field of view of the sensor.  

To reflect the changes related to inspection during the operation phase, Chen et al. [107] focused 

on defect modeling. Aruga and Yabuki [108] proposed a cooperative management model for 

structures in the operation phase. Hammad et al. [109] developed an inspection ontology using 

BIM for lifecycle inspection and repair information modeling. This work focused on integrating 

all the inspection details into one model to facilitate accessing and updating the information at 

different life cycle phases. Kasireddy and Akinci [29] proposed integrating inspection data with 

IFC to support condition assessment.  

2.3.3 Post-disaster Inspection 

Post-disaster inspection is the third inspection type which should be done in the event of a disaster 

and before re-occupying the building to evaluate potential health and safety hazards. Search and 

rescue inspection are also done after disasters, which is a time-sensitive task, and it needs a quick 

action to reduce the potential injuries and damages [110- 112]. As an example, in case of a fire, 

inspection needs to be done to control the fire and rescue the people trapped in the building [113]. 

Inaccuracy, incompleteness, and poor communication are the key problems that affect this task 

[114]. 

2.4 Using Robots for Inspection 

With the advancement of technology, autonomous robots have evolved and are equipped with 

advanced capabilities, including quality and production control, reducing workers’ workload, 

enhancing the safety and efficiency in hazardous environments, and data gathering [115- 117]. 

Mobile robots are designed for sensing, navigation, inspection, and remote operation in dangerous 

situations. Service robots can be used for different purposes in the AEC/FM industry. Industrial 

cases show the variety in types, capabilities, and uses of robots. Autonomous unmanned systems 

including UAVs, Unmanned Ground Vehicles (UGVs), and Autonomous Underwater Vehicles 

(AUVs) can be used for quality inspection and measuring the installed quantities  [118, 119]. For 

instance, Doxel is a liDAR-equipped robot that scans construction sites to monitor the work. This 

robot can go along a set route and scrambles up the stairs and beams to compile the report of site 
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data [120]. Another example is Spot, which is a four-legged robot that can climb the stairs and 

move to the inspection spots, which are difficult for wheeled robots. This robot can perform tasks 

such as opening doors and grasping objects, progress inspection, thermal inspection, leak 

detection, noise detection, creating a digital twin, and comparing the surrounding environment 

with BIM [121]. Some types of climbing robots are designed to move on steel structures and 

inspect the surfaces. The lifting mechanism in these robots utilizes the magnet embedded in the 

robot wheels [122]. To perform inspection tasks, Cobalt is another type of robots which can detect 

a spill and leak in a pre-set zone and notify the specialists [123]. Denso [124] is a robot that consists 

of a robotic arm and a control module. It can be equipped with a LiDAR scanner for various 

purposes (e.g. inspection)  [125]. DiddyBorg robot [126], which is a six-wheeled high-torque 

robotics platform, can be customized by adding different sensors, including a camera and a LiDAR 

scanner to perform different tasks [127]. Some robots are developed for cleaning purposes and can 

be modified for inspection purposes. For instance, Roomba is an autonomous robotic cleaner, 

which can navigate the floor with the aid of sensors and detect walls and obstacles [128].  Another 

area that industrial robots can help is underwater inspection. As an example, Hydro-Québec 

developed an underwater robot for dam inspection. This robot can accomplish visual inspection 

using defect measurement, acoustic imaging, and surface reconstruction using sonar data [129]. 

Autonomous robots can be used to find defects in an urgent situation and disaster relief and can 

also help the survival of people. As an example, the Bipedal robot developed by Honda has features 

such as picking objects, 180-degree rotation, and going up and down the stairs and ladders, which 

can help in the process of emergency response, inspection, and maintenance [130]. 

2.4.1 Robotic control system for building inspection 

An autonomous robot control system enables robots to perform human activities in a building 

[131]. Cognitive Robot Abstract Machine (CRAM) is a software toolbox for designing and 

implementing cognitive-enabled autonomous robots, which is built using the Robot Operating 

System (ROS) framework. The two main parts of CRAM are: (1) CRAM Plan Language (CPL), 

and (2) Knowledge processing system (KnowRob). KnowRob contains a small core system and a 

large set of optional modules. It is based on SWI Prolog and Semantic Web library to access Web 

Ontology Language (OWL) files [132]. An autonomous system consists of a platform, mission 

computer, actuators, sensors, control system, a navigation system, datalink, and base station. The 

elements of an autonomous vehicle system that should be considered in the ontology are decision 

making, path planning, sensors, control, actuators, and robotic platform. Some examples of domain 

specifications in creating the ontology are different types of sensors (e.g. Global Positioning 

System (GPS), LiDAR), platform, task (e.g. navigation), and mission (e.g. inspection, rescue). 

Figure 2-2 demonstrates examples of UAVs domain specifications in creating the ontology. The 

entities’ relationships of the domains are shown in Figure 2-3. Figure 2-4 shows KnowRob-Map 

diagram. Different relationships such as allocated-to, have, consists-of, executes, etc., can be 

defined among these entities. The elementary knowledge representation of UGVs provides 

reasoning capabilities for the robot’s decision-making process. Sub-systems of this knowledge 

representation are locomotion (e.g. legged, wheeled), sensors, actuators, planning, and 

communication [133]. The decision-making concepts in the ontology can be extended for building 

inspection. 
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Figure 2-2. UAV domain specifications [133] 
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Figure 2-3. Entities’ relationships of robotic ontology [133] 

 

 

Figure 2-4. KnowRob-Map diagram [139] 
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2.4.2 Review of Robotic Inspection and Navigation Related Works 

In this section, the research about integrating some aspects of robotic, inspection, and navigation 

with BIM is reviewed. Table 2-2 lists a summary of most related papers including the following 

information: (1) the objectives of the inspection; (2) the building lifecycle phase (e.g. construction, 

operation) in which the inspection is conducted; (3) in case of using a robot, the type of the robot 

(i.e. UAV, UGV); (3) the type of sensor (i.e. RGB (Red, Green, and Blue)/depth camera, thermal 

camera, or LiDAR); (4) using BIM model or IFC concepts in the process; and in case of using 

BIM, considering mismatch between actual structure and the model; (5) using the knowledge-

based method (i.e. ontology); and (6) description of the objectives. The order of the papers is based 

on the most recent year of publication.  

Some studies focused on using different sensors and robots for inspection purposes. All the studies 

considered at least one type of sensor (i.e. LiDAR or camera), which could be an element of the 

robot in an integrated platform or could be mounted on the robot. The target element of the 

inspection was building/infrastructure elements and specific defects, such as cracks on steel or 

concrete surfaces. In addition to the review of most related papers to robotic inspection in Table 

2-2, Hamledari et al. [135] and Wang et al. [136] papers are added only because their works 

considered a mismatch between the actual structure and the BIM model. 

Despite the great benefits of the reviewed papers, they have the following main limitations: (1) 

Robot awareness about the environment and the accuracy of objects’ information and interactions 

during the task could be improved by considering a semantic description (i.e. ontology) [137- 143]; 

In most of these works, semantic description (i.e. ontology) was not considered (except [144]). (2) 

A standard BIM model was not used as a reference for navigation and localizing the defects. The 

comparison shows that several studies did not consider BIM in their work  [137, 139, 140, 142, 

144-148]; (3) In the case of having a BIM model, BIM elements were not updated based on 

mismatch consideration; and functional properties of BIM elements were not used for inspection 

[136, 149]. The BIM model is assumed to be complete and reliable [138], which is one of the main 

problems when using BIM-based robotic inspection. BIM models must be updated as the changes 

can occur in any building lifecycle phase. In some papers, the terms scan-to-BIM (e.g. [149]) and 

site-to-BIM (e.g. [135]) are often used interchangeably to refer to the process of creating as-built 

or as-is BIM models based on site conditions [150, 151]; and (4) Robotic navigation and obstacle 

detection were not considered in some studies [146-148, 152]. Navigation here refers to using a 

path generation method and obstacle avoidance based on sensor data.  

From the studied literature, the integration of knowledge of robotic inspection and the construction 

domain is a key factor of an effective and efficient inspection, which needs more attention. 
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 Table 2-2. Summary of most related papers to BIM-based robotic inspection and navigation tasks 
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An autonomous thermal 

scanning system with which to 

obtain 3D thermal models of 

buildings [143] 2019 

Indoor building 

elements 

O
p

er
at

io
n
 

✓ - ✓ ✓ ✓ ✓ - - Developed an autonomous platform using 
a LiDAR, RGB camera, and a thermal 

camera that navigates from one position to 

another to find the next best view position 

and provides a 3D thermal model by 

matching several 3D thermal images. 

A framework for automated 

acquisition and processing of as-

built data with autonomous 

unmanned aerial vehicles [149] 
2019 

Building 

elements 

C
o

n
st

ru
ct

io

n
  

✓ ✓ - ✓ ✓ 

 

- ✓ ✓ Proposed a framework for extracting 

inspection target locations based on BIM 

and 

using UAVs to automate as-built data 

generation. 

Automated robotic monitoring 

and inspection of steel structures 

and bridges [142] 2019 

Steel cracks 

O
p

er
at

io
n
 ✓ - ✓ ✓ ✓ - - - Designed a climbing robot, equipped with 

sensors to collect and analyze camera data. 

Automatic wall defect detection 

using an autonomous robot: a 

focus on data collection [145] 2019 

Walls 

O
p

er
at

io
n
 

✓ - ✓ ✓ - - - - Developed an autonomous robot-enabled 

data collection system for 

indoor wall condition assessment. 

Autonomous robotic exploration 

by incremental 

road map construction [137] 2019 

Indoor building 

elements 

O
p

er
at

io
n
 ✓ - ✓ ✓ - - - - Proposed a framework for 

autonomous robotic exploration in 2D 

unknown environments considering both 

path planning and decision-making in the 

exploration process. 
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Table 2-2. Summary of most related papers to BIM-based robotic inspection and navigation tasks (continued) 
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Planning and executing 

construction inspections with 

unmanned aerial vehicles [138] 2018 

Building 

roofs 

C
o

n
st

ru
ct

io
n

 ✓ ✓ - - ✓ - ✓ - Developed an integrated concept for 

planning and executing UAV collision-free 

flight paths to improve inspection tasks 

with case study. 

Tunnel structural inspection and 

assessment using an autonomous 

robotic system [139] 2018 

Concrete 

cracks 

O
p

er
at

io
n
 ✓ - ✓ ✓ ✓ - - - Developed a multi-degree- 

of-freedom (multi-DOF) robotic system to 

automate data collection and inspection 

using different sensors and LiDAR.   

Design and development of an 

inspection robotic system for 

indoor applications [140] 2018 

Building 

elements 

(tested on 

inspecting 

walls) 

O
p

er
at

io
n
 ✓ 

 

 

- ✓ - ✓ ✓ - - Developed an inspection robotic system 

considering the requirements of mobility, 

sensorization, communication, and 

hardware and software reliability. 

A semi-autonomous mobile robot 

for bridge inspection [146] 

2018 

Concrete 

cracks (tested 

on inspecting 

columns) 

O
p

er
at

io
n
 - - ✓ - ✓ - - - Proposed a robotic inspection system 

considering a customized truck and a 

robotic mechanism to capture pictures from 

the target area and associates them with the 

CAD model. 

IFC-based development of as-built 

and as-is BIMs using construction 

and facility inspection data: site-

to-BIM data transfer automation 

[135] 

2018 

Building 

elements: 

walls, doors, 

outlets, light 

fixtures O
p

er
at

io
n
 

- - 

 

- - ✓ - ✓ ✓ Proposed a computational solution that uses 

IFC schema to automatically update as-

designed BIM. 
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Table 2-2. Summary of most related papers to BIM-based robotic inspection and navigation tasks (continued) 
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Automated quality assessment of 

precast concrete elements with 

geometry irregularities using 

terrestrial laser scanning [136] 

2016 

Precast 

concrete 

elements 

C
o

n
st

ru
ct

io
n
 

 

- - - ✓ - - ✓ ✓ Estimated the dimensions of the elements 

using TLS LiDAR and compare it with 

as-designed BIM as a reference.  

Infrared building inspection with 

unmanned aerial vehicles [152] 

2015 

Building 

elements 

(tested on 

inspecting roof 

and roof 

windows) 
O

p
er

at
io

n
 - ✓ - - - ✓ - - A case study using UAV equipped with 

an IR camera for inspection of detached 

houses. 

Efficient search for known objects 

in unknown environments using 

autonomous indoor robots [144] 2015 

Indoor building 

elements 

O
p

er
at

io
n
 ✓ - ✓ - ✓ - - - Developed an ontology-based system for 

detecting inspection targets using vision 

sensors and implemented the system in 

ROS. 

A robotic crack inspection and 

mapping system for bridge deck 

maintenance [141] 2014 

Concrete 

cracks 

O
p

er
at

io
n
 ✓ - ✓ ✓ ✓ 

 

- - - Proposed a robotic crack inspection and 

mapping system using a robot equipped 

with cameras to capture images for 

inspection tasks. 
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Table 2-2. Summary of most related papers to BIM-based robotic inspection and navigation tasks (continued) 
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Low-cost aerial unit for outdoor 

inspection of building façades [147] 

2013 

Building facade 

and envelope 

elements 

(tested on 

facade 

openings) 

O
p

er
at

io
n
 

- ✓ - - ✓ 

 

- - - Presented a platform to analyze the 

potential of using UAV for building 

geometric inspection and creating a 3D 

point cloud based on captured images. 

Auto inspection system using a 

mobile robot for detecting concrete 

cracks in a tunnel [148] 
2007 

Concrete cracks 

(tested on 

inspecting 

walls) 
O

p
er

at
io

n
 

- - ✓ - ✓ - - - Proposed an image processing based 

mobile robotic system for 

crack detection. 
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2.5 BIM and IFC Applications in the Context of Inspection 

BIM is a new approach to model all the information related to buildings and infrastructure systems, 

respectively, by integrating this information with 3D models representing the geometrical and 

spatial characteristics of these systems. The international standard of BIM is the Industry 

Foundation Classes (IFC), which was developed by buildingSMART and has a detailed semantic 

representation of the building model [153, 154]. The IFC schema represents objects and their 

semantic relationships. Any semantic concept for data modeling needs to define relationships, 

including: (1) aggregation relationships (e.g. a door in a wall), (2) topological relationships (e.g. 

connection of two walls), and (3) directional relationships (e.g. a floor that is above another floor) 

[155]. Model View Definition (MVD) breaks down the IFC schema into smaller parts. Based on 

different needs, many structures and Levels of Details (LOD) can be defined for diverse areas. 

buildingSMART International developed an ifcDoc tool for editing and generating MVD for IFC 

Extensible Markup Language (IFCXML) [156]. Regarding the different lifecycle phases, BIM 

models of a building include as-designed at the design phase, as-built at the construction phase 

[157, 158], and as-is at the Operation and Maintenance (O&M) phase. It should be noted that each 

of these models has several versions and should be continuously updated to reflect design, 

construction, deterioration, and repair changes in the different phases of the lifecycle. 

Tang et al. [159] specified technological and organizational obstacles as the main challenges of a 

seamless sensing and modeling process. Kensek [160] studied the possibility of connecting sensing 

data and BIM. The case studies were implemented through scenarios using Ardunio, Dynamo, and 

Revit Application Programming Interface (API). Physical facility objects and their functions can 

be represented with the visual interface of BIM. This kind of representation in BIM can create a 

decision-making platform for FM. By integrating 3D models of buildings and sensing data, 

information such as real-time performance feedback can be displayed, and the decision support 

system for facility managers will be improved [161, 162]. This capability helps the facility 

managers to make better decisions during the lifecycle of assets [163, 164]. 

2.5.1 IFC-based Navigation 

Path planning in 3D spaces needs information related to spaces and their functions, geometry, and 

locations, assets and obstacles related to spaces, and accessibility of spaces. BIM can help to 

extract precise and up-to-date semantic and geometrical data from the building model [165, 166]. 

As an example, the wall is a building element which has the following main IFC entities: (1) 

IfcWallStandardCase for a wall when the thickness of the wall along the wall is constant or fully 

explained by a material layer set which represents the number of layers, the position, and the type 

of each layer. It is defining a wall with certain constraints to represent its parameters (e.g. height, 

thickness, offset from the axis) and geometric representation, (2) IfcWallElementedCase which is 

a combination of dependent elements. It is defined as a wall with certain constraints to represent 

its components and categorize all the parts, (3) IfcWall which is used to define all other walls (e.g. 

polygonal walls, L-shaped retaining walls, non-vertical walls). For floors and ceilings, the IFC 

standard uses IfcSlab as a core, and IfcCovering is used as a dependent element, which has the 

property sets of Pset_CoveringCeiling for ceiling and Pset_CoveringFlooring for floors. 

IFC schema represents objects and their semantic relationships. Lin et al. [165] used an IFC file 

as the input for path planning. They extracted all geometric and semantic information from the 

IFC file and mapped them to a planar grid. In their study, IFC2x3 [167] was used as a reference 

file. In IFC2x3, a spatial structure is defined under the category of IfcSpatialStructureElement. 
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The spatial structure in IFC includes IfcSite, IfcBuilding, IfcBuildingStorey, and IfcSpace. 

IfcElement includes IfcBuildingElement (e.g. walls and doors), IfcFurnishingElement and 

IfcDistributionElement (e.g. ducts, pipes, and cables). IfcElement is a generalization of all AEC 

products, which are represented as IfcProduct. Lin et al. [165] used some of these entities from the 

IFC2x3 standard. However, they did not consider IfcPath, which is a topological entity including 

the collection of oriented edges.  

The logical network is a representation of the full 3D building model and a detailed navigable 

network (e.g. spatial relations between floors, rooms with shared walls, etc.) [168]. Yan et al. [169] 

used a door-room connectivity graph method and a Revit file as a BIM model for collision-free 

path planning, considering walls and other objects as obstacles. The graph indicates the logical 

navigation between the centers of rooms’ nodes and determined centers of doors and openings on 

the edges of spaces without considering the closed or open state and direction of the door. 

Hazardous zones, such as path hazards (e.g. slipping, tripping and falling hazards), environmental 

hazards (e.g. high temperature), and unexpected hazards (e.g. burst pipe, radiation) are other 

factors that can cause problems for the robot during the operation [165, 170, 171]. Zverovich et al. 

[111] developed a method to select the safest and balanced path by considering path length and 

hazard proximity (i.e. distance and number of obstacles) based on the BIM model. Strug and 

Ślusarczyk [172] proposed an IFC-based method for investigating the accessible path for disabled 

people by considering attributes such as the width of openings, door types, and door opening 

directions. Ivanov [173] used a context-aware BIM-based navigation model, which can search for 

an optimal path by considering both capabilities of users to navigate in an unfamiliar environment 

and the status of all sensors. Furthermore, the integration of motion sensors with BIM-based 

knowledge of the path will improve navigation reliability [174]. 

Eastman et al. [175] extracted the information from the IFC file and mapped them to nodes and 

edges of a graph with Solibri Model Checker. The accessibility rule checking was done based on 

several rules, such as the width of doors and corridors. In their work, security zones for public, 

restricted, and secure parts were defined as a property set for each space and circulation path in 

the IFC file. Then, they automatically mapped building elements into a topological graph and a 

metric graph. Checking the path with respect to the spatial elements was done based on the 

topological graph. Analyzing the moving distances and their visualization was done using the 

metric graph. All the instances of IFCRelSpaceBoundary, which define the relationship between 

surrounding building elements and a space in an IFC standard, can be used to indicate the 

topological representations in each level [176]. Connection, separation, intersection, containment, 

and adjacency are examples of spatial relationships between the building elements defined by 

topological representations [177, 178]. In another effort, Rasmussen et al. [179] stated that 

topological relationships between zones and elements of a BIM model can be described as 

interface class in their proposed minimal Building Topology Ontology (BOT) ontology.   

Furthermore, they stated that topological relationships can be used to specify restricted zones in 

the navigation. BOT ontology can be used in combination with other ontologies to define the 

building products such as walls and windows. 

2.5.2 Inspection and Repair Information Modeling  

Several studies explored extending Building and Civil Infrastructure Information Modelling 

(BIM/CIM) for Inspection and Repair Information Modeling (IRIM). For example, in the area of 

facilities management, Hassanain et al. [180] developed an integrated maintenance management 
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prototype that demonstrated the potential uses of IFC to improve interoperability in the AEC/FM 

industry. Davila Delgado et al. [181] proposed an extension to the IFC data model standard for 

structural monitoring systems. Their extension could model the structural monitoring systems, 

store and retrieve obtained data, and visualize the BIM model’s data. Chen et al. [182] proposed 

an approach to monitor the state of assets using an embedded sensing system and IFC-based BIM 

model. Hammad et al. [183] also proposed a framework for life-cycle infrastructure information 

modeling and management. However, they did not discuss the details of the formal definition of 

this information. Some previous work, such as Mailhot and Busuio [184], focused on manually 

recording of the inspection data in a 2D or 3D location-based sketching. Figure 2-5 shows the 

manual recording of inspection data using sketches. However, as these methods are fragmented, 

they were not useful. 

 

(a) 2D Sketching 

 

(b) 3D Location-based Model 

Figure 2-5. Manual recording of inspection data using sketches [184] 

Defects are considered in two different phases of the lifecycle of infrastructure facilities: the 

construction (or manufacturing) phase and the O&M phase. In the construction phase, defects are 

caused by errors or imperfections in the construction. In the O&M phase, defects are caused by 

factors such as loads applied on the structure, environmental effects, and natural aging.  Although 

the causes of surface defects can be very different in these two phases, there are important 

similarities that can be exploited in developing IRIM from the point of view of type of defects (e.g. 

cracks, spalling) as well as the inspection processes and methods. 

2.5.2.1 IRIM in the Construction Phase 

Park et al. [185] proposed a framework for construction defect management using BIM and 

ontology-based data collection template. This framework proactively reduces the incidence of 

defects through an organized inspection plan. Figure 2-6 shows the proposed defect specific 

domain ontology including defect description, root cause analysis, impact analysis and control 

factor analysis. Kim et al. [96] proposed a framework for dimensional and surface quality 

assessment of precast concrete elements using BIM and LiDAR scanning. The proposed IFC-based 

entity-relationship model for the precast concrete element quality inspection is rather simple and 
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does not cover all the details needed for modeling the defects information in a comprehensive way. 

For example, as shown in Figure 2-7, the location of the defects is represented using ifcDirection, 

which is obviously not enough to specify the location of the defect on the 3D model of the 

structure.   

 

Figure 2-6. Defect domain ontology [185] 
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Figure 2-7. IFC-based entity-relationship model for precast concrete element quality inspection [96] 

2.5.2.2 IRIM in the O&M Phase 

Aruga and Yabuki [108, 186] proposed a cooperative management model for structures in the 

O&M phase. As shown in Figure 2-8(a), the maintenance management framework considers both 

the degradation level (i.e. condition assessment) and the measured values (i.e. inspection results). 

The evaluation based on inspection includes identifying the probable cause of the defect and 

predicts its future progress. Furthermore, the framework of the degradation and measured values 

shown in Figure 2-8(b) includes several inspection data types (e.g. sketch, photo, drawings) that 

could be used to identify the shape and location of the defects. However, this research did not 

discuss all the details of the IRIM.  

Hammad et al. [187] demonstrated the applicability of 4D visualization of bridge lifecycle 

information based on a standard model. They proposed a framework for a mobile model-based 

bridge lifecycle management system to link all the information related to the design, construction, 

inspection, and maintenance to a 4D model of a bridge combining different scales of space and 

time. However, their proposed system did not include measured data. 
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(a) Framework of maintenance management 

 

(b) Framework of degradation and measured values 

Figure 2-8. Frameworks for inspection and maintenance [108, 186] 

Kasireddy and Akinci [29] proposed integrating inspection data with IFC-Bridge. The advantages 

of this model are using IfcRepresentation and several contexts for representing the geometry of a 

defect from multiple inspections and using extended relationships from IFC and IFC-Bridge to 

link bridge element information with condition information. They stated that one limitation in their 

approach is that they used some classes from the present version of IFC-Bridge to represent other 

classes required for condition assessment. Motamedi et al. [188] proposed a defect/degradation 

model that includes various categories; defect types, relationships between elements and defects, 

and the processes related to inspection, evaluation and repair of defects. Their proposed model 

extended IFC model to include new required elements. However, they did not investigate an 

ontology related to inspection and repair modeling. Chen et al. [107] developed a product model 

for harbor structures degradation as shown in Figure 2-9. One of the main contributions of this 

work is that defects are classified according to the following types: surface degradation (e.g. 

change of color), addition degradation (e.g. corrosion), subtraction degradation (e.g. cracks), 

deformation, and material deterioration. However, this research focused on the defect modeling 
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for harbor structures and did not attempt to provide a general approach for IRIM. Hamledari et al. 

[135] proposed a computational solution that uses IFC schema to automatically update as-designed 

BIM based on construction and facility inspection data. 

 

Figure 2-9. IFC-based entity-relationship model for the precast concrete element quality inspection 

[107] 

Ma et al. [189] proposed an information model based on the IFC schema for damaged reinforced 

concrete structures from earthquake events. Their work was limited to structural elements. Based 

on their study, cracks can be represented as a texture on the element’s surface, and structural 

damages such as breakage can be represented by trimming the building elements. Tanaka et al. 

[190] proposed an information model based on IFC to support the bridge inspection process. 

Moreover, a web-based system was developed based on WebGL to show the inspection 

information and images of degraded parts. Tanaka et al. [191] continued their work and proposed 

a system to extract inspection and repair reports. However, their work did not cover the detailed 

semantic information for inspection and repair processes. Sacks et al. [192] proposed a SeeBridge 

system for bridge information modeling based on inspection data. Their approach was not 

independent of the type of structure, and a detailed model for defect data was not covered in their 

work [193]. Hüthwohl et al. [194] proposed a framework to integrate bridge defect information 

with BIM. In their approach, some defect characteristics (e.g. type and size) were considered, and 

texture images were used to represent defects. Hamdan and Scherer [195] presented a framework 

for representing structural damages in BIM. Their approach was based on the multi-model 

approach, and in their study, a layered structure was developed to represent and visualize the 

damage geometry. In another study, Hamdan et al. [196] proposed a framework for semi-automatic 

generation of damage models and machine-based interpretation of the recorded structural damage 
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data using ontology. Their work was based on a linked model approach, and a separate file was 

used to represent the damage model. This approach does not have all inspection data in one BIM 

model. Furthermore, their study relied on images that do not represent the defect’s geometry as 

accurately as point cloud data. They developed a small Concrete Damage Ontology (CDO) and 

only focused on some concrete structural damages. They developed another separate small 

ontology for structural damage assessment based on the German guideline “Instruction of Road 

Information Databases for Constructions” [196]. However, their damage assessment focused on 

identifying index factors for assessing the damaging impact on structural health, durability, and 

traffic safety. The link for their used ontology for structural damage assessment is not publicly 

available, and their ontology was based on German terminology. Moreover, they did not develop 

inspection and 3R process ontology. Additionally, their developed ontologies were not unified and 

comprehensive, and they did not consider all the semantic relationships required for modeling.  

Artus and Koch [197] presented two ways for modeling physical defects using IFC based on 

surface and void approaches. The texture images on top of the 3D component can represent the 

defect information in the surface-based approach. In the void-based approach, the defect geometry 

was subtracted from component geometry. Meshes from the point cloud can represent the spalling 

defect on the void element. Moreover, their void-based approach still has a problem with cracks 

geometry as cracks were modeled as extrusion of triangular profile. In another study, Artus et al. 

[198] presented a framework that generates spalling defect geometries from photos and saves them 

into a data model using IFC based on surface and void features. However, their work was based 

on image data, which does not contain the depth of defects. Isailović et al. [199] proposed a use 

case for enhancing an IFC-based bridge model using the image-based classification to identify the 

spalling defect features. Their approach depends on collected images from the inspection, and 

defect characteristics were directly identified from photos, which is not as accurate as point cloud 

data. The most related previous studies are summarized in Table 2-3, including whether or not the 

following information is included in the studies: (1) the inspection process; (2) the diagnosis 

process; (3) the 3R process; (4) using conceptual model (i.e. ontology); and (5) using BIM model 

or IFC concepts in the process. 
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Table 2-3. Summary of related works to inspection information modeling 

Paper Year Type of defects 

Process 

O
n

to
lo

g
y
 

B
IM

 

In
sp

ec
ti

o
n
 

D
ia

g
n

o
si

s 

3
R

 

A BIM Based Framework for Damage 

Segmentation, Modeling, and 

Visualization Using IFC [198] 

2022 

Spalling 

- - - - ✓ 

A semantic modeling approach for the 

automated detection and interpretation 

of structural damage [196] 

2021 

Structural damages 

(Concrete 

inhomogeneity, Crack, 

Spalling, Chemical 

damage, Moisture 

damage, 

Reinforcement 

damage, Tendon 

damage) 

✓ ✓ - ✓ ✓ 

Modeling geometry and semantics of 

physical damages using IFC [197] 
2020 

Crack, Spalling 
- - - - ✓ 

Bridge damage: Detection, IFC-based 

semantic enrichment and visualization 

[199] 

2020 

Spalling 

✓    ✓ 

A generic model for the digitalization 

of structural damage [195] 
2018 

Non-specific structural 

damages 
- - - - ✓ 

Integrating RC bridge defect 

information into BIM model [194] 

2018 

Crack, Spalling, 

Scaling, Efflorescence, 

Rust staining, 

Abrasion/Wear, 

Exposed reinforcement 

- - - - ✓ 

SeeBridge as next generation bridge 

inspection: overview, information 

delivery manual and model view 

definition [192] 

2018 

Crack, Spalling, 

Scaling, Efflorescence, 

Rust staining, 

Abrasion/Wear 

✓ - - - ✓ 

Bridge Information Modeling based on 

IFC for supporting maintenance 

management of existing bridges [191] 

2018 

Non-specific defects 

✓ - ✓ - ✓ 

Bridge information model based on 

IFC standards and web content 

providing system for supporting an 

inspection process [190] 

2016 

Non-specific defects 

✓ - - - ✓ 

Information modeling of earthquake-

damaged reinforced concrete structures 

[189] 

2015 

Cracks, Structural 

damages (Braking, 

Buckling) 

- - - - ✓ 
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2.5.2.3 Limitations of Previous Research Related to IRIM 

Based on the review, in spite of the great benefits of the previous research related to IRIM, it has 

the following limitations: 

(1) Duplication of efforts: Different researchers have focused on IRIM related to different types 

of civil infrastructures (e.g. bridges or tunnels), different types of material/elements, or at different 

phases of the lifecycle (e.g. construction or O&M). For example, comparing the models proposed 

by Chen et al. [107] for harbor concrete structures, Kasireddy and Akinci [29, 200] for bridges, 

and Kim et al. [96] for precast concrete elements, it can be seen that they used very different levels 

of detail for representing the properties of defects (e.g. location and geometry). This will result in 

duplication of efforts and less efficient research progress. 

(2) Ad-hoc and shallow representation of concepts: One common aspect of most of the previous 

research works related to IRIM is that they focused on mapping a rudimentary data structure of 

the IRIM processes and products to the entities available in IFC or its derivatives (e.g. IFC-Bridge). 

This approach results in a rather ad-hoc and shallow models because not all the required entities 

are available in the current version of IFC. On the other hand, researchers are adding different 

entities that are duplicated but using variant terms. For example, the terms degradation and defect 

are used to represent the same concept. 

(3) Limitations related to information modelling: Several researchers have discussed the link 

between the physical measurements of defects in the inspection process and the resulting condition 

assessment (or severity evaluation) in the diagnosis process, and the following decisions about the 

3R actions. However, most of the previous research focused only on the modeling of defects. 

Therefore, more research is needed for modeling the other aspects of inspection, diagnosis and 3R 

information. 

(4) Lack of comprehensive modelling: Some of the previous research focused on a specific 

inspection technology and the IRIM was developed only to demonstrate that technology (e.g. Kim 

et al. [96]). 

2.6 Ontology Approach 

One of the most widely used definitions of ontology is explicit shared knowledge and 

conceptualization of the domain [201, 202]. Another definition of ontology by Gaševic et al. [203] 

is that the ontology contains and presents two main elements: the related vocabulary to the domain 

of interest, and the knowledge representation using this vocabulary to describe this domain. The 

ontology, in simple words, is a set of relations between a set of concepts as shown in formula (1) 

[204]. 

Ω= {C, R}                                                                (1) 

Where Ω is the ontology, C is the set of concepts of this ontology, and R is the set of relations 

between these concepts. The main types of concepts are: (1) Entities (e.g. project, operation, task, 

process, product, resource, and actor); (2) Attributes: Each entity has some attributes that make it 

different from other entities of the same type; (3) Relationships: El-Gohary and El-Diraby [205] 

classified the main types of relations among concepts as subsumption relations and partonomy 

relations. A subsumption relation reflects the is-a relationship between the concepts and is used to 

represent the relation between the general concept and a sub-concept. A Partonomy relation is a 

part-of relationship between the concept and its parts, which are built as patronymic hierarchies; 
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(4) Axioms: Axioms can be used to model and describe some constraints such as regulations, best-

practices and client requirements; (5) Strategies: Strategies refer to the methods that are used to 

accomplish the operations and tasks in the project; and (6) Modalities: A modality is used as an 

umbrella to cover a variety of operation states and the conditions that describe them, such as stage 

modality, temporal modality, and situation modality. Stage modality can be used to describe a 

process belonging to one of the lifecycle phases (i.e. initiating, design and planning, construction, 

monitoring and control, and decommissioning).  The steps for developing an ontology are: (1) 

Defining the purpose of the ontology (i.e. needs, scope, and users); (2) Building the taxonomy of 

concepts and their interrelations; (3) Developing the process model based on the taxonomy; (4) 

Ontology capturing and coding, where the terms referring to the relations and axioms are defined; 

(5) Ontology evaluation based mainly on experts’ interviews.  

2.6.1 Ontology Languages and Tools 

There are different tools and languages, which are used to build ontologies. Protégé [206], and 

OntoEdit [207] are two examples of the ontology’s editing environments [208]. Protégé provides 

various plug-ins that facilitate editing and visualizing the developed ontology. The Web Ontology 

Language (OWL) and Resource Description Framework (RDF) are examples of the languages that 

are used for representing the ontologies in human and machine-readable formats [209]. These 

languages provide a description of the complex relationships between the concepts in the ontology 

[210]. OWL provides the ability to describe complex concepts based on simpler ones available in 

the ontology. It has a reasoner that can be used for checking the consistency of the concepts defined 

in the ontology.  Ontologies typically can be developed as XML-based files and can be represented 

in a computer using logic languages such as Knowledge Interchange Format (KIF) [203]. KIF is 

like the First Order Logic (FOL) and can provide the encoding of knowledge using a variety of 

logical operators. 

2.6.2 Review of AEC/FM Ontologies 

Ontologies are usually used for a specific domain to facilitate a specific application. In 

construction, ontologies are used to organize and represent the shared knowledge between the 

different entities in the domain in a way that can handle the dynamic construction environment. 

Ontologies are used to overcome the complexities and create interaction between the different 

disciplines at different levels of construction projects. In this context, ontologies are used for 

different proposes, such as improving safety and enhancing quality. One of the advantages of the 

ontology approach is that inferring new logical knowledge from a set of stated axioms can be 

directly applied by reasoning engines [211]. 

The entire IFC schema is available in a large ifcOWL ontology, representing building data using 

semantic web and linked data technologies [212]. In addition to ifcOWL ontology, many 

ontologies have been developed in the AEC/FM industry.   Ding et al. [213] proposed a framework 

for risk knowledge management in BIM to improve the construction risk analysis process. In this 

framework, the ontology is used to model the risk knowledge and create the linkage between 

objects in BIM and the risks. Dibley et al. [214] proposed a framework for building monitoring 

using ontology and multi-agent systems (MAS). The framework supports real-time monitoring of 

the indoor environment using sensory data collected from various sensors. Adeleke and Moodley 

[215] proposed a framework to monitor and control air quality in the indoor environment, where 

data about the air and human activities are collected using sensors. Cacciotti et al. (2014) presented 

an ontology for the diagnosis of damage in order to process and manage cultural heritage damage 
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information. However, the detailed taxonomies for damages and the causes of damages were not 

developed in their ontology. Moreover, their approach was domain-specific, and it is not widely 

applicable for other types of structures [196]. Jung et al. [216] proposed an ontological approach 

to infer the causes of concrete cracks. However, their study was limited to crack defects, and their 

proposed approach does not support BIM. Lee et al. [217] developed a linked data system 

framework for sharing construction defect information using ontologies and BIM environment. 

El-Gohary and El-Diraby [205] proposed an infrastructure and construction process ontology that 

offers a formal representation of the process knowledge in the infrastructure and construction 

domain. El-Diraby [218] presented a domain ontology of construction knowledge, which contains 

the key terms’ conceptual architecture, relationships, and behaviors in the construction domain. 

Park et al. [185] briefly discussed the benefits of developing an ontology for proactive construction 

defect management. Venugopal et al. [219] proposed an ontological approach to building 

information model exchanges in the precast/prestressed concrete industry. Zeb and Froese [220] 

developed a transaction ontology in the domain of infrastructure management. Hammad et al. 

[109] developed an ontology for modeling lifecycle inspection and repair information of civil 

infrastructure systems. Stroga et al. [221] proposed a taxonomy of relations in the product and 

design engineering knowledge domain. In their study, more than 40 relations containing seven 

main classes of compositional relationship, spatial relationships, role relationship, general 

relationship, dependency relationship, influence relationship, and temporal relationship are 

suggested. Table 2-4 shows the relations that can be used in the domain of product and design 

ontology. 

Table 2-4. Relationships in product/design engineering ontology (adapted from [221]) 

Moreover, many minimal ontologies were created for the linked building data purpose. Linked 

building data principle means using a web-compatible standard for the exchange of web-based 

information [179]. The purpose of the linked building data method is to present and identify 

elements and damages using HTTP URIs (Uniform Resource Identifiers) in order to connect a 

query language or a reasoning engine.  Since this method describes the topology of a building 

without its geometry, it can be used to connect to other data sets [222].  

Compositional 

relations 

Spatial 

relations 

Role 

relations 

Dependency 

relations 

Influence 

relations 

Temporal 

relations 

General 

relations 

component of 
has direct 

contact to 
instrument aim/purpose/reason influence after/follows alternative 

element of 

has non-

direct 

contact to 

operand base of is opposing 
before/ 

proceeds 
criteria 

material of 
interacts 

with 
operator 

cause/factor/ 

stimuli 
is supporting co-occur delivers 

member of contains resource 
consequence/ 

response/ result 
- - 

has as an 

attribute 

portion of - input 
depends on/ 

presumption for 
- - represents 

- - output - - - realizes 

- -  - - - satisfies 
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BEO (Building Element Ontology) [223] and MEP (Mechanical, Electrical, and Plumbing) 

ontology [224] are two ontologies extracted from the IFC schema. These two ontologies do not 

include any relations, which can be used based on user requirements in different domains. Hamdan 

et al. [222] proposed Damage Topology Ontology (DOT), which is a small high-level ontology to 

describe any type of damage topology in general.  Later on, Hamdan et al. [196] proposed a small 

ontology called Concrete Damage Ontology (CDO) to define some damages in concrete structures. 

Rasmussen et al. [225] presented an Ontology for Property Management (OPM), which is a 

minimal high-level ontology for managing changes and property valuation over time. In another 

study, Rasmussen et al. [179] proposed BOT, which is a minimal ontology to describe building 

stories and space topology. Wenger et al. [226] developed Ontology for Managing Geometry 

(OMG) to connect the geometric description to the building element. Bonduel et al. [227] 

developed Ontology for Geometry Formats (FOG) to exchange descriptive geometric data. 

On the other hand, many studies focused on integrating the ontologies with BIM information. 

Niknam and Karshenas [228] proposed BIM Shared Ontology (BIMSO) based on UNIFORMAT 

II (ASTM 2020) classification system to be extended with different building domain ontologies. 

For example, they proposed BIM Design Ontology (BIMDO) to extend BIMSO for expressing the 

design properties of building elements.  Zhong et al. [229] proposed an ontology-based framework 

to support interior and exterior environmental monitoring and compliance checking. The 

framework integrates the building information from BIM, sensor data, and the related regulations, 

information and the design requirements. Zhu [230] developed TCEI-Ontology, which is the 

integration of time, cost, and environmental impacts to support multi-objective integrated analyses. 

TCEI-Ontology reused many of the available concepts from IFC because it has semantic-rich 

information related to the AEC/FM industry. In this regard, seven fundamental steps were 

considered to develop a multi-objective integrated ontology: (1) specifying the scope and domain 

of ontology, (2) adapting the available ontologies, (3) itemizing influential terms in the ontology, 

(4) specifying the hierarchy of classes, (5) specifying the properties of a class, (6) specifying facets 

which are properties to constrain property values, and (7) generating instances.  Kim et al. [231] 

proposed an ontology to integrate FM maintenance work information of traditional FM system 

database and BIM-based data. Wang and Issa [232] proposed extracting relevant IFC information 

from the BIM model and integrating it with GIS ontology to create an integrated ontology. Table 

2-5 shows the ontology metrics of some of the publicly available BIM-based ontologies. 
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Table 2-5. Ontology metrics of some of the publicly available BIM-based ontologies (adapted from 

[233]) 

Ontology 
Metrics 

Classes Relations Attributes Individuals 

BOT v.0.3.2 [179] 10 16 1 5 

FOG v.0.4 [227] 3 14 119 4 

ifcOWL v.4.1 [212] 1360 1644 5 1171 

DOT v.0.8 [222] 13 13 3 1 

MEP v0.1.0 [224] 484 0 1 1 

OMG v.0.3 [226] 8 17 2 0 

BEO v.0.1.0 [223] 183 0 1 1 

OPM v.0.1.0. [225] 17 8 4 1 

2.6.3 Ontologies for Robots 

In the robotic area, ontologies can be used for different applications such as general robotic 

purposes (e.g. standardization [234, 235], and ontologies for autonomous robots (e.g. 

description/reasoning about the environment and tasks [9, 236]. The robotic system utilizes and 

processes the ontology as the robot’s central data store [8]. To accomplish the tasks correctly, the 

autonomous robot needs to deal with high-level semantic data along with low-level sensory-motor 

data. Robot Operating System (ROS) [237] can also use several navigation methods, such as Lidar 

Odometry and Mapping (LOAM) and Simultaneous Localization and Mapping (SLAM), which 

help the robot to build its map based on the collected data about the environment [238]. 

Robotic ontologies embody the real-world description of objects, properties, and relationships in 

the domain [239]. KnowRob is an OWL-based robotic ontology that contains a small core system 

and a large set of optional modules, which are developed to perform human activities in a building. 

The KnowRob ontology v.1.0 has 742 classes, 176 relations, 119 attributes, and 23 individuals 

[132]. Bouguerra et al. [240] utilized semantic knowledge including environmental object 

description for execution monitoring of the robots in the indoor environments. Chella et al. [241] 

used a multi-perspective approach to represent qualitative and quantitative knowledge of an office 

indoor environment for robot operation. Wood [242] discussed the importance of combining task-

oriented description with object-oriented knowledge of ontologies for autonomous robots. Robotic 

autonomy can benefit from ontologies by extracting the knowledge needed to execute the task. In 

addition, using ontologies can help in defining the constrains of the behavior of the robot based on 

specified knowledge (e.g. safety policies) [243]. Ontologies have also been used for autonomous 

object recognition of robots based on the description of objects characteristic and visual concepts 

(e.g. color, texture) or images features [244- 246]. 

Habib and Yuta [247] used hierarchical map representation of the robot’s environment for 

collision-free path planning of the robot considering three structure levels of building, corridor, 

and room. In their work, all the objects are assumed to be flat and they did not consider vertical 

operational direction. Balakirsky and Scrapper [248]. Provided the robotic knowledge 

requirements for the basic development of a collision-free path. Understanding and representing 

knowledge about the obstacles in the ontology will enhance robot navigation to avoid potential 

accidents [249, 250]. Schlenoff et al. [251] developed an ontology for autonomous robots to assess 

the damage of collision with various objects during the navigation. Schlenoff and Messina [252] 
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presented the basic requirements for search and rescue robot ontology considering the integration 

of sensing and navigation. Description knowledge can be extended by rules to be used as a 

knowledge representation for the sensor-based understanding of multifarious tasks [253]. 

2.7 LiDAR-based Defect Detection 

LiDAR scanning is a non-contact measurement technology that has proven its potential in 

capturing accurate and instant point cloud data from object surfaces [254, 255]. However, the 

resolution and noise level of point cloud data pause some challenges in detecting small cracks 

[256]. Therefore, to overcome this limitation, an additional feature, which is the RGB color, is 

considered in deep learning models [11, 28]. Various methods have been applied to the point cloud 

data to detect surface defects. Geometry analysis and machine learning methods are two main 

approaches for detecting concrete surface defects.  

Gaussian curvature distribution can be used to calculate volume loss [257]. Another method to 

detect concrete surface defects is the crossing section method [258]. Laefer et al. [23] used 

fundamental mathematics to define the smallest width of unit-based masonry cracks, which can be 

detected with LiDAR scanner by considering the main parameters of depth and orientation of 

crack, orthogonal offset, and interval scan angle. Anil et al. [259] focused on the performance of 

LiDAR scanners by using an automated algorithm on point cloud data from reinforced concrete 

surfaces and asserted the possibility of detecting 1 mm crack based on point cloud data. Xu and 

Yang [260] used the Gaussian filtering method and image-generated data from the point cloud to 

detect the cracks of a concrete tunnel structure. Teza et al. [257] proposed an automatic method 

for the inspection of damaged areas of concrete bridge surfaces using a LiDAR scanner and 

Gaussian mean curvature computation. Makuch and Gawronek [261] proposed an automatic 

inspection system for reinforced concrete cooling tower shells using point cloud data and local 

surface curvature computation. Olsen et al. [258] proposed using cross sectional analysis to detect 

surface damage based on LiDAR scanner data. Liu et al. [262] utilized the distance and gradient-

based method to detect the defective area of bridge surfaces using laser scanner data. An automated 

classification algorithm for detecting historical building defects is suggested by Armesto-Gonzalez 

et al. [263]. Valença et al. [264] proposed a method combining image processing and LiDAR 

scanning technology to automate the process of capturing the geometrical characteristics of cracks 

on concrete bridges. Kim et al. [265] proposed a technique to indicate the location and measure 

the quantity of concrete surface spalling defects larger than 3 mm using LiDAR scanner data. 

Truong-Hong et al. [255] presented an approach to detect the bridge cracks using a LiDAR scanner 

and developed a tool to measure the length and width of cracks based on point cloud data and RGB 

color produced from an external camera. Tsai and Li [266] assessed the probability of using point 

cloud data to detect cracks with the dynamic-optimization-based segmentation method and assess 

the crack segmentation performance using the linear-buffered Hausdorff scoring method. 

Cabaleiro et al. [267] developed an automatic crack detection algorithm using LiDAR data for 

timber beams inspection to identify the crack geometrical characteristics. Mizoguchi et al. [268] 

proposed a customized region-growing algorithm along with an iterative closest point algorithm 

to detect the surface defects of concrete structures based on LiDAR scanner data. Nasrollahi et al. 

[269] proposed a method for detecting concrete surface defects based on collecting point cloud 

data from LiDAR scanners and using a Deep Neural Network (DNN). Guldur et al. [11] proposed 

a method to detect the defects using point clouds’ intensity and RGB values to define a threshold 

and extract the defect’s geometrical features [11]. However, their method was not based on using 
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the point cloud geometrical features in the detection process and was not suitable for complicated 

structures [270]. Guldur and Hajjar [271] developed damage detection algorithms for automatic 

surface normal-based defect detection and quantification using LiDAR scanner data. 

So far, different deep learning methods have been used to identify concrete surface defects using 

images, and progress in this area has reached an acceptable level [272]. Image-based methods are 

usually affected by the consistency and stability of light conditions for the captured images, and 

these methods are usually suitable only for simple flat surfaces [20, 22]. Table 2-6 compares some 

examples of the results of image-based deep learning methods for concrete surface crack detection. 

Although the papers discussed in this section have significant value in the field of defect detection, 

there is no deep learning method for semantic segmentation of concrete surface defects using raw 

point cloud data. 

Table 2-6. Examples of the results of image-based deep learning crack detection methods 

Author Year Paper 
Surface 

material 

CCN 

input 

data P
re

ci
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(%
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Yang et al. 

[273] 
2018 

Automatic pixel-level crack 

detection and measurement 

using fully convolutional 

network 

Concrete 

wall, 

pavement 
Image 81.73 78.97 79.95 

Liu et al. 

[274] 
2019 

Computer vision-based 

concrete crack detection using 

U-net fully convolutional 

networks 

Concrete Image 90 91 90 

Ali et al. 

[275] 
2021 

Performance evaluation of 

deep CNN-based crack 

detection and localization 

techniques for concrete 

structures 

Concrete Image 99.7 85 91.8 

Le et al. 

[276] 
2021 

Development of deep learning 

model for the recognition of 

cracks on concrete surfaces 
Concrete Image 96.5 98.8 97.7 

Vignesh et 

al. [277] 
2021 

Concrete bridge crack 

detection using convolutional 

neural network 
Concrete Image 96.69 99.55 98.1 

2.7.1 Deep Learning Approach 

Deep Neural Networks (DNNs) or deep feedforward networks utilize multiple deep layers along 

with highly optimized algorithms to learn from trained data sets without the process of manual 

feature extraction [278]. A DNN is formed by linking many functions. The DNN hidden layers 

represent the functions as the links in the network. The length of all links determines the network’s 

depth [279]. A DNN attempts to map a function y=f(x;θ) through learning the θ value from the 

optimal value function  f over the x value as an input. Training samples are dispersed in mini-

batches. An epoch is a single pass through all the training samples, and a step or iteration refers to 
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the training process over a mini-batch. Furthermore, the sum of the size of all data samples divided 

by the number of data samples in a mini-batch (batch size) equals the number of steps in an epoch.  

A Convolutional Neural Network (CNN) is a class of DNNs containing input, convolutional, 

subsampling, and output layers [280]. Each CNN layer receives inputs through the previous layer’s 

local receptive fields. Neurons extract basic geometric features such as edges, boundaries, and 

corners using local receptive fields, which are also known as filters or kernels. A feature map 

would be created by convolving a kernel with a unique weight vector over the entire image, and a 

feature detector that works for a part of an input image is supposed to work for the entire image. 

In order to extract multiple features from the input image, a convolutional layer creates multiple 

feature maps [280]. Each feature map has the same weight vector, which will enhance through the 

backpropagation process. 

Traditional neural networks utilize matrix multiplication on the entire input data in one point to 

generate an output unit, but CNN utilizes a kernel that is smaller than the input and results in fewer 

operations [279]. In the parameter sharing process, a weight vector is used over and over in a 

CNN’s layer to compute a layer’s results. Parameter sharing has no impact on forwarding 

propagation time but significantly impacts computational resources and model efficiency [281].  

Parameter sharing reduces the number of free parameters, which ultimately enhances a model's 

generalization capability [282]. In terms of computation volume, CNNs outperform traditional 

neural networks significantly. The first step of a CNN is the operation of multiplying a weight 

vector by the input data by convolving a kernel and establishing linear activations in a feature map 

[281]. The other two stages are nonlinear activation and subsampling feature mapping utilizing 

pooling functions. 

2.7.2 Semantic Segmentation of Point Clouds 

The use of point cloud-based deep learning methods is a breakthrough in identifying concrete 

surface defects in 3D points data. Point cloud-based deep learning methods are currently in their 

early stages, and very little research has been done in this area [272]. Data quality is critical in 

determining the best fitting function for any neural network. The datasets should reflect the 

appropriate parameters and provide various cases depending on the requirements. As a result, 

gathering sufficient datasets is required to obtain an accurate model. A point cloud is a set of data 

that includes the geometric information of sparse points collected in three dimensions. RGB and 

density information could also be included in point cloud datasets. Pixel-based, voxel-based, and 

3D point-based approaches are three main categories of CNN approaches based on data 

representation. 3D data is transformed into 2D representation in pixel-based approaches [283]. In 

voxel-based approaches, the 3D points are used to create voxels [284]. Qi et al. [285] presented 

3D point-based approaches to process point cloud data using 3D CNN and utilizing 3D recognition 

tasks such as object classification, part segmentation, and semantic segmentation. Since pixel and 

voxel-based methods are more common than point-based methods, 3D point cloud datasets are 

frequently converted into images or 3D-voxel grids before being used in deep learning. In certain 

circumstances, the transformation produces enormous data with uncertain invariances. 

Furthermore, point cloud data are easier to learn because of their clarity and consistent structure, 

but meshes are complicated and contain contradictory compositional patterns [286]. Although 

there are increasingly more recently developed networks that surpass PointNet performance on 

various datasets, PointNet remains a benchmark for point cloud semantic segmentation studies 

[287]. 



 

 

37 

 

PointNet is a cutting-edge CNN model for point cloud research that can be utilized straightly in 

classification, part segmentation, and semantic segmentation using multi-dimensional NumPy 

Python library arrays. PointNet was established in 2017 to address issues involving displaying 

point clouds and voxelization [286]. PointNet’s input is a set of points with three major features, 

which are considered when creating the PointNet architecture. First, these points are not in any 

particular sequence. The relationship of adjacent points is the next most essential feature of such 

datasets. The points are not apart from the other points, and the semantic content of the data points 

is influenced by the local structure of the composition of adjacent points. The third aspect of point 

clouds is their invariance under transformation. The semantic scene segmentation of the PointNet 

network was validated using the Stanford Large-Scale 3D Indoor Spaces dataset (S3DIS) [286, 

288].  

2.7.3 Local Feature Learning on Point Sets 

PointNet++, the second version of PointNet, outperforms PointNet for point cloud semantic 

segmentation because it extracts the point’s local characteristics utilizing multi-scale sampling [28, 

289]. In order to feed the CNN, the PointNet network normalizes the number of points in pre-set 

geometrical blocks. On the other hand, points have diverse densities in different sections of a point 

cloud, which may impair the segmentation process and result in the loss of valuable information. 

It is necessary to study the feasible minor groups of point sets to achieve the ideal aim of capturing 

every class’s important features in point clouds. In this regard, PointNet++ [289] feeds the CNN a 

mixture of non-uniform density data points. Moreover, considering a greater sample of the data 

points is also important, as the small sample of the data points in low-density areas does not provide 

valuable information. 

PointNet++ can extract the point’s local features using multi-scale sampling [289]. The multi-scale 

sampling is extremely powerful and useful for semantic segmentation with several labels, 

particularly when segmenting small objects. The network extracts local features from small 

samples of data points. Then the network groups the small samples into greater samples. This 

procedure is repeated until all of the point set’s local features have been extracted. However, 

Pointnet++ still treats individual points in local point sets independently. 

The Dynamic Graph CNN (DGCNN) is a recent network proposed by Wang et al. [27]. It is a new 

point-based CNN suitable for high-level tasks, such as object classification and semantic 

segmentation. DGCNN can improve capturing local geometric functions as it creates a local 

neighborhood graph and dynamically updates the graph with the nearest neighbors after each layer 

of the network. Compared to PointNet++, DGCNN rather than operating on individual points, 

iteratively performs convolution on edges, associating the neighborhood point pairs. 

Operation layer for edge feature generation in DGCNN is called EdgeConv, which can define the 

relationships between a point and its neighbors [27]. Figure 2-10 shows the mechanism of DGCNN 

edge feature generation. As shown in Figure 2-10(a), Xi and  Xj  are a point pair, and eij is hθ(Xi, Xj), 

which is the edge feature function; h is the function parameterized by the set of learnable 

parameters θ. Figure 2-10(b) shows the aggregation operation on the edge features associated with 

all the edges originating from each vertex, where Xi
’ is the EdgeConv operation, which is defined 

by applying aggregation operation at the i-th vertex.  
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(a) Computing an edge feature eij from a point pair Xi, Xj 

 

(b) Aggregation operation on the edge features associated with all the edges originating from each 

vertex 

Figure 2-10. Mechanism of DGCNN edge feature generation [27] 

The segmentation model of DGCNN involves a series of three EdgeConv layers and three fully 

connected layers. The parameter K in the model is the number of the edge features for each point, 

which is computed in each EdgeConv layer for the input of n points. Edge feature is the most 

important feature in concrete surface defect semantic segmentation. Wang et al. [27] stated that 

the model with their developed DGCNN improved the accuracy for classification task in 

comparison of PointNet++ for the same ModelNet40 [290] dataset. Furthermore, for the semantic 

segmentation task, they used Stanford large-scale 3D indoor spaces dataset (S3DIS) [291] and 

compared their work with PoinNet, for which their work achieved a higher accuracy. In another 

study, Pierdicca et al. [292] compared the performance of PointNet++ and DGCNN for semantic 

segmentation of historical architectural elements. They used a publicly available digital cultural 

heritage dataset with 11 labeled points clouds. Table 2-7 shows the results of the tests performed 

to compare the performance of PointNet++ and DGCNN. 

Table 2-7. Results of the tests performed on an unknown scene based on different network [292] 

Network Test Accuracy Precision Recall F1-Score 

DGCNN 74% 77% 74% 74% 

PointNet++ 53% 53% 53% 48% 

PointNet 35% 54% 35% 27% 
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2.8 Summary 

This chapter reviewed the concepts, technologies, and methods that are used in the current 

research. The literature review covered the review of concrete infrastructure management and 

different types of concrete surface defects. Inspection information modeling and limitations of 

previous research were explained. Furthermore, it explained the ontological approach and the 

related concepts of BIM-based inspection and robotic inspection and navigation tasks. The 

machine learning approach was also covered in this chapter, including object detection in point 

clouds dataset and deep neural network applications in semantic segmentation. 

Based on the reviewed literature, it is concluded that the main usage of BIM at the time being is 

limited to the design and construction phases of the lifecycle. Although several studies have 

proposed extending the usage of BIM to model defects in the construction and O&M phases, the 

research in this area is still limited and fragmented. In order to take full advantage of BIM 

throughout the infrastructure’s lifecycle, inspection-related information should be integrated with 

BIM to have a semantically unified knowledge model where all the stakeholders can access 

information in a systematic manner. Furthermore, robotic inspection needs to be integrated with 

the construction domain’s knowledge to be more effective and efficient. Moreover, LiDAR 

scanner is an emerging technology to detect surface defects. The literature review indicated that 

utilizing BIM-based inspection-related knowledge along with an integrated process of surface 

defect semantic segmentation and defect modeling have the potential of enhancing the efficiency 

of the inspection process.  
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CHAPTER 3.     RESEARCH FRAMEWORK 

3.1 Introduction 

An overview of the proposed framework is presented in this chapter. In addition to the ontological 

approach, explained in Chapters 4 and 5, Chapter 6 focuses on the machine learning approach for 

inspecting surface defects.  

First, the research framework for an ontology for concrete surface defects is explained in Section 

3.3. Then, the research framework of an ontology for BIM-based robotic navigation and inspection 

tasks is explained in Section 3.4. Finally, Section 3.5 explained the research framework for point 

cloud-based concrete surface defect semantic segmentation and as-inspected modeling. Detecting 

accurate defects is the main objective of this section. Understanding the accurate information about 

defective areas will help to perform further actions more efficiently.  

3.2 Overview of the Research Framework 

This section gives a brief overview of the proposed framework, which consists of three parts. The 

first part uses an ontological approach dedicated to developing ontologies, including an ontology 

for concrete surface defects and an ontology for BIM-based robotic navigation and inspection 

tasks. The first part uses an ontological approach to develop an ontology for concrete surface 

defects in the first phase, and the next phase is as-inspected modeling, which is dedicated to 

updating the as-is BIM model with analyzed defect information. The second part is dedicated to 

developing an ontology for BIM-based robotic navigation and inspection tasks. The third part 

focuses on one of the remarkable robotic inspection methods, LiDAR-based defect semantic 

segmentation using NVE-DGCNN. This part uses a machine learning approach for the inspection 

of surface defects using a LiDAR scanner. The last part is as-inspected modeling, which is 

dedicated to updating the as-is BIM model with analyzed defect information. An overview of the 

framework is shown in Figure 3-1. 

 

Figure 3-1. Overview of the proposed framework 

3.3 Ontology for Concrete Surface Defects 

The BIM model will evolve during the different phases of the lifecycle to reflect the changes 

related to quality inspection and repair processes during the construction phase, as well as the 

inspection and maintenance processes during the O&M phase. As discussed in Section 2.5.2, In 

order to take full advantage of BIM or CIM throughout the infrastructure’s lifecycle, related defect 

information should be integrated with BIM to have a semantically unified knowledge model where 
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all the stakeholders can systematically access information in a systematic manner. Chapter 4 aims 

to develop an ontology for concrete surface defects (OCSD). The developed ontology covers four 

main groups of concepts: (1) inspection concepts, (2) diagnosis concepts, (3) 3R (Repair, 

Rehabilitation, and Replacement) concepts, and (4) defect concepts. Figure 3-2 shows the main 

types of OCSD concepts. The proposed method for developing OCSD uses the general approach 

and tools discussed in Section 2.2 and is based on the following steps: (1) defining the competency 

questions by analyzing the previous related research to identify the common aspects and 

limitations of available models; (2) identifying the steps for developing the ontology at a level of 

abstraction that can be applied to different structures/materials; and (3) extending the basic 

ontology to cover all the requirements defined in Step 1. Chapter 4 will provide an in-depth 

discussion of developing OCSD. 

 

Figure 3-2. Main groups of OCSD concepts (main entities marked in yellow) 

3.4 Ontology for BIM-based Robotic Navigation and Inspection Tasks 

As discussed in Section 2.5, several studies have used BIM for navigation purposes. Also, some 

studies focused on developing a knowledge-based ontology to perform activities in a robotic 

environment (e.g. CRAM). Chapter 5 aims to integrate robotic inspection with the knowledge of 

the construction domain. In this regard, an Ontology for BIM-based Robotic Navigation and 

Inspection Tasks (OBRNIT) is developed. This ontology can help system engineers involved in 

developing robotic inspection systems by identifying the different concepts and relationships about 

robotic inspection and navigation tasks based on BIM information. The developed ontology covers 

four main types of concepts: (1) robot concepts, (2) building concepts, (3) navigation tasks 

concepts, and (4) inspection tasks concepts. Figure 3-3 shows the main types of OBRNIT concepts. 

Developing an integrated ontology is a first step towards logic-based inspection. The use case is 

an inspection robot that is navigating in a building with partial knowledge of the environment 

because of changes in the available information due to construction and renovation scheduling 

issues, unexpected obstacles in the building, etc. As shown in Figure 3-4, to define the 

requirements of OBRNIT, UML (Unified Modeling Language) use case diagram is presented. The 

actor is a robot, and the associations between the actor and the use cases are shown with solid lines. 

Dependency relationships are shown with dotted lines. Includes relationships indicate that the 
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involved use case is a part of the base use case. Extends relationships indicate that the base use 

case does not depend on the extending use case, and specific criteria are needed for the occurrence 

of the extending use case. The details of the proposed method will be explained in Chapter 5. 

 

Figure 3-3. OBRNIT main types of concepts 
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Figure 3-4. Use case diagram of OBRNIT 

3.5 Point Cloud-Based Concrete Surface Defect Semantic Segmentation and As-Inspected 

Modeling 

LiDAR scanners can collect high-quality 3D point cloud datasets. In order to automate the process 

of concrete surface inspection, it is important to collect proper datasets and use an efficient 

approach to analyze them and find the defects. Deep Neural Networks (DNNs) have been recently 

used for detecting 3D objects within point clouds. Based on Section 2.7.2, in order to detect 

concrete surface defects, the CNN approach can be applied on point cloud datasets. Each neural 

network is trained for a unique purpose. Adaption of the right algorithm to a specific purpose can 

greatly improve the performance.  

Chapter 6 starts with investigating the adapted PointNet++ in the first phase. Then the DGCNN’s 

[27] ability to detect the edges is considered in the next phase. For the DGCNN, the work started 

with an adapted DGCNN and then the main network of this research, which is NVE-DGCNN was 

investigated. DGCNN is a deep neural network for classification, part segmentation, and semantic 

segmentation of point clouds, which is modified and adapted in this study to detect concrete surface 

defects. This algorithm is originally designed to detect indoor building elements. The semantic 

segmentation of DGCNN is adapted to detect surface defects using point cloud datasets from 

scanning concrete bridge surfaces. DGCNN can improve capturing local geometric functions as it 

creates a local neighborhood graph and dynamically updates the graph with the nearest neighbors 

after each layer of the network. DGCNN, rather than operating on individual points, iteratively 

performs convolution on edges associating the neighborhood point pairs. As the edge is an 
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important feature of the surface defects (e.g. cracks), using a deep learning method that can 

consider the edge feature and the relationship between neighboring points can improve the learning 

model’s accuracy and efficiency. Figure 3-5 shows the overall framework of the proposed for point 

cloud-based concrete surface defect semantic segmentation using NVE-DGCNN. There are six 

main steps for the inspection of surface defects using LiDAR scanner: (1) data collection, (2) 

manual annotation, (3) data pre-processing, (4) training and evaluation, (5) testing, and (6) 

sensitivity analysis. The detailed framework of the proposed method will be explained in Section 

6.2.2.  

Chapter 6 also proposes a method that includes post-processing of semantic segmentation results 

for the automated as-inspected modeling purpose. The results of the defect semantic segmentation 

will be used to locate the defects in the BIM Model. As explained in Section 2.5.2.3, the current 

BIM information does not support the representation and integration of defect information. 

Integrating detected defect information with BIM will facilitate accessing and updating the 

inspected defect information at different phases of the lifecycle resulting in improved efficiency 

and reduced rate of data input errors. As-inspected modeling will help to store the inspection in an 

efficient and precise way. It can also enable the tracking and analysis of the changes throughout 

the lifecycle. The as-inspected BIM model not only contains the basic geometry of defects, but 

also semantic information about their type, severity, etc. Chapter 6 will provide an in-depth 

discussion of LiDAR-based defect semantic segmentation using NVEDGCNN and as-inspected 

modeling.  
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Figure 3-5. Overall framework of the proposed method for point cloud-based concrete surface 

defect semantic segmentation using NVE-DGCNN 

3.6 Summary 

This chapter provided an overview of the proposed methodology of this thesis. The ontological 

approaches for developing an ontology for concrete surface defects and an ontology for BIM-based 

robotic navigation and inspection tasks were explained. The LiDAR-based method, which is an 

automated measurement method for robotic inspection, was explained. Moreover, the as-inspected 

modeling approach considered the integration of inspected surface defects with the 3D model and 

updating the as-is BIM. 
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CHAPTER 4.     ONTOLOGY FOR CONCRETE SURFACE DEFECTS 

4.1 Introduction 

The quality of buildings and infrastructure systems should be inspected for defects that are beyond 

the tolerance level, and the detected defects should be repaired. The main objective of this chapter 

is to develop an ontology to cover the different types of information and concepts related to the 

inspection, diagnosis, and repair, rehabilitation, and replacement (3R) of concrete surface defects. 

This chapter focuses on concrete surface defects regardless of the type of the structure and can be 

applied at different phases of the lifecycle (i.e. construction and O&M). The ontology is called 

OCSD (Ontology for Concrete Surface Defects).   

The rest of chapter is organized as follows. In Section 4.2, competency questions for the ontology 

are defined. Then, in Section 4.3, the methodology workflow is discussed. Section 4.4 focuses on 

the development of the ontology. Finally, Section 4.5 and Section 4.6 present the evaluation of the 

ontology and the conclusions, respectively. 

4.2 Competency Questions for OCSD 

The competency questions are defined to clarify the requirements of the inspection, diagnosis, and 

3R processes of concrete surface defects domain [293]. The following competency questions are 

defined for developing a unified ontology based on the reviewed literature and the limitations of 

previous research. 

(1) OCSD should follow a top-down approach where the common aspects of defects are molded 

at a higher level so that they can be shared by several types of structures and used at different 

phases of the lifecycle. For example, reinforced concrete surface cracks are very similar in tunnels 

and bridges although they are caused by different types of loads. This modeling approach will not 

only avoid duplicating efforts but will also provide a better-quality model, which grasps the 

essence of IRIM and can be further extended to cover the specific details related to the specific 

type of structure and the phase of lifecycle. 

(2) OCSD requires a comprehensive modeling. OCSD should cover as much details as possible 

about the generic aspects of the inspection, diagnosis, and repair processes (i.e. process modeling) 

and the resulting defect model (i.e. product modeling). This requires developing a clear taxonomy 

considering all the semantic relationships required for modeling. 

(3) OCSD should satisfy the needs of the state-of-the-art infrastructure management systems and 

guidelines. OCSD should reflect the common aspects of guidelines at an abstract level that can be 

applied to the widest category of structures. On the other hand, it is expected that the product and 

process models that can be developed based on OCSD will influence the current infrastructure 

management practices by creating an opportunity to re-engineer the processes used in these 

systems and enhancing additional aspects of IRIM in these systems (e.g. defect modelling). 

(4) OCSD should not be restricted to the resources available in the current modeling standard (i.e. 

IFC). In other words, OCSD can be used as a starting point to extend IFC. Therefore, before 

extending any BIM-based standard (i.e. IFC) for inspection purposes, it is necessary to understand 

the defects and inspection-related concepts at the abstract level.  

(5) OCSD should have the ability to accommodate new data collection technologies. The amount 

of inspection data is expected to grow exponentially with the availability of new technologies (e.g. 
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LiDAR, photogrammetry, etc.). OCSD should support these technologies and provide the means 

to accommodate the collected raw data and the resulting inspection information. 

4.3 Methodology Workflow 

This section explains the main steps for developing an ontology for concrete surface defects. 

OCSD development methodology is METHONTOLOGY. METHONTOLOGY is a clear, mature, 

and well-documented method [294, 295].  

As shown in Figure 4-1, the initial, development, and final stages are three main steps of ontology 

development in METHONTOLOGY. The best practices and knowledge in the inspection, 

diagnosis and 3R processes of concrete surface defects domain are used to develop OCSD. 

Determining the scope and main concepts and taxonomies of OCSD are the steps that should be 

considered in the initial stage. The scope of OCSD is defined based on the competency questions 

defined in Section 4.2. Moreover, the required level of covered details and the size of development 

is considered in this step. In the step of defining concepts and taxonomies, the related knowledge 

to OCSD is gathered based on literature from many sources such as textbooks, research papers, 

and online resources. At all steps of this stage, communication with end-users and professionals 

and getting feedback are essential. The list of requirements not only helps in the defining scope 

step but also helps in other stages of development. 

Constructing and verifying the initial structure of OCSD are considered in the development stage. 

The first step of this stage uses a formal language (e.g. OWL) to implement and represent the 

conceptual model. The formal language helps the ontology to be easily used by different systems. 

[296]. Based on the availability and maturity level of ontologies and to fulfill the competency 

questions defined in Section 4.2, OCSD is developed from scratch. In the next step of the 

development stage, ontology verification is technically examined based on the developed 

ontology’s consistency checking and competency questions. 

The final stage involves improving OCSD through experts’ and end-users suggestions and real-

world needs. Criteria-based evaluation method and a case study is used to evaluate OCSD. The 

entire ontology development life cycle involves knowledge acquisition, evaluation, and 

documentation. The final step is documenting the developed OCSD. The IDEF5 (Integrated 

DEFinition) [297] ontology description method is used to presents the details of input, output, 

control, and mechanism in each of the methodology steps (Figure 4-1). 
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Figure 4-1. Development workflow of OCSD (adapted from Taher et al. [298])
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4.4 Developing OCSD 

A few concepts from CDO ontology [196], which is a small ontology and mainly developed for 

concrete structural damages, are used as parts of this study. OCSD is developed using Protégé 

[206]. OCSD has 333 classes, 51 relations, 27 attributes, and 31 individuals. The current version 

of OCSD is available at https://github.com/OCSD-OWL/OCSD. 

OCSD covers five main groups of concepts related to process and product modeling, including: 

(1) inspection concepts, (2) diagnosis concepts, (3) 3R concepts, and (4) defect concepts, which 

are explained in the following sections. The concepts of ontology are semantically interrelated by 

the relationships defined between them. The types of relations used in OCSD are: is (e.g. point 

cloud is collected data), has (e.g. inspection process has target), uses (e.g. remote sensing method 

uses LiDAR), captures (e.g. image sensor captures image), performs (e.g. inspector performs 

inspection process), causes (e.g. temperature change causes thermal stress), affects (e.g. 

environmental problem affects reinforcement expansion), analyzes (e.g. crack monitoring analyzes 

crack dimension), evaluates (e.g. condition assessment evaluates extent of damage), determines 

(e.g. condition assessment determines condition), depends on (e.g. condition depends on severity), 

treats (e.g. 3R process treats host element), and chooses (e.g. 3R process chooses repair material). 

4.4.1 Process Modeling Concepts 

OCSD covers three main types of processes: (1) inspection concepts, (2) diagnosis concepts, and 

(3) 3R concepts, as explained below. 

4.4.1.1 Inspection Concepts 

Concrete surface inspection should be performed systematically and regularly to identify existing 

surface defects and detect possible future anomalies. The inspection concepts of OCSD cover the 

main concepts related to the inspection of concrete surface defects. Specific relationships are 

defined in OCSD to semantically interrelate different inspection methods and associated inspection 

results. Figure 4-2 shows OCSD inspection process’s main concepts and relationships. The main 

inspection concepts and relationships in Figure 4-2 are summarized in Table 4-1. The inspection 

process has an inspection method, which can be visual inspection, testing, or a method for 

measuring defects. The information of the inspector and inspection work schedule is covered in 

OCSD. Some concepts are duplicated in Figures 4-2, 4-3, 4-4, and 4-5 to improve the readability 

of the figures. Furthermore, the main concepts are marked in yellow. 

The inspection method can be chosen based on the order of complexity. As explained in Section 

2.2.2, measurement methods for the inspection of concrete surface defects are remote sensing 

methods (e.g. LiDAR), health monitoring (e.g. fiber-optic sensors), or methods to measure defects 

(e.g. crack), magnetic field, and environmental conditions (e.g. temperature, moisture, humidity). 

The collected data depend on the inspection method. For example, a visual inspection will produce 

images, and an inspection using LiDAR will produce point clouds. Post-processing of inspection 

data includes edge detection, shape extraction, and clustering. Inspection tools (e.g. binoculars) 

and measurement devices are used during the inspection to accomplish the process. Measurement 

devices for inspection include image sensors (e.g. RGB camera), LiDAR scanners, etc. Several 

devices can be used for crack measuring, including crack measuring magnifiers, crack width 

meters, vibrating wire crack meters, crack monitor gauges, crack measuring microscopes, and 

digital strain gauge deformation meters [299].   

https://github.com/OCSD-OWL/OCSD
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Testing includes destructive, semi-destructive, or non-destructive testing. Moreover, safety-related 

testing is mainly using to determine the serviceability of existing or repaired concrete elements. 

As discussed in Section 2.2.2, the testing methods that can be used for the inspection of concrete 

surface defects include rubber hammer test, half-cell potential test, initial surface absorption test, 

and colorimetric test strips. Each of the measurement methods and inspection tests has a result that 

will be used in the diagnosis process. At the end of the inspection, the inspector will prepare an 

inspection report. Inspection frequency is another important factor that can help to detect the 

defects at early stage. The inspected data can be archived in a time series format that allows easy 

retrieval and processing.  
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Figure 4-2. The main inspection process concepts and relationships 
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Table 4-1. The main inspection concepts and relationships 

Concepts Relationship Concepts 

Inspection Process is Process 

has Inspection Frequency, Inspection 

Method, Inspection Report, Target, 

Work Order, Work Schedule  

Inspector Performs Inspection Process  

is Actor 

Concrete Surface Defect, Element is Target 

Inspection Method has Collected Data, Inspection Tool 

Measurement, Testing, Visual Inspection is Inspection Method 

Visual Inspection uses Inspection Tool 

Binocular is 

Measurement has Measurement Device, Measurement 

Method, Measurement Result 

Concrete Cover Measuring, Crack 

Measuring, Health Monitoring, Infrared 

Thermography, Moisture/Humidity 

Measuring, Remote Sensing Method, 

Surveying 

is Measurement Method 

Concrete Cover Measuring has Magnetic Field Measuring, Rebar 

Location and Cover Coverage 

Information 

uses Cover Meter 

Magnetometer is 

Magnetic Field Measuring has Magnetic Force Information 

uses Magnetometer 

Crack Measuring has Crack Dimension, Crack Measuring 

Device 

Moisture/Humidity Measuring has Moisture/Humidity Information 

uses Thermo-hygrometer 

Infrared Thermography uses Thermal Camera 

Health Monitoring uses Fiber Optic Sensor, Wireless Sensor 

Remote Sensing Method has Remote Sensing Result 

uses Fiber Optic Sensor, Image Sensor, 

LiDAR, Wireless Sensor 

Computer Vision, Surveying is Remote Sensing Method 

Computer Vision has Analysis 

uses Collected Data, Hardware, Software 

Surveying uses Total Station 

Measurement Device is Inspection Tool 

Crack Measuring Device, Cover Meter, 

Fiber Optic Sensor, Image Sensor, LiDAR, 

Magnetometer, Thermo-hygrometer, Total 

Station, Wireless Sensor 

is Measurement Device 
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Table 4-1. The main inspection concepts and relationships (continued) 

Concepts Relationship Concepts 

Crack Measuring Magnifier, Crack 

Measuring Microscope, Crack Monitor 

Gauge, Crack Width Meter, Digital Strain 

Gauge Deformation Meter, Vibrating Wire 

Crack Meter 

is Crack Measuring Device 

LiDAR  Captures Point Cloud 

Image Sensor Captures Image 

Depth Camera, RGB Camera, Thermal 

Camera 

is Image Sensor 

Crack Dimension, Magnetic Force 

Information, Moisture/Humidity Information, 

Rebar location and Cover Coverage 

Information Remote Sensing Result 

is Measurement Result 

Testing has Test Result 

Destructive Testing, Non-destructive Testing, 

Safety Related Test, Semi-destructive Testing 

is Testing 

Half-cell Potential Test is Semi-destructive Testing 

has Corrosion Probability Estimation 

Colorimetric Test Strips, Initial Surface 

Absorption Test, Rubber Hammer Test 

is Non-destructive Testing 

Colorimetric Test Strips has Presence of Harmful Substance 

Initial Surface Absorption Test has Surface Absorption Characteristic 

Rubber Hammer Test has Rubber Hammer Result 

Corrosion Probability Estimation, Presence 

of Harmful Substance, Rubber Hammer 

Result, Surface Absorption Characteristic 

is Test Result 

 

Image, Measurement Result, Point Cloud, 

Test Result 

is Collected Data 

Post-processing of Inspection Data uses 

Clustering, Edge Detection, Shape Extraction is Post-processing of Inspection Data 

4.4.1.2 Diagnosis Concepts 

The diagnosis process is an auxiliary process that evaluates the information obtained from the 

inspection. OCSD defines specific relationships to semantically link diverse diagnosis methods, 

cause analysis, and condition assessment. Figure 4-3 shows OCSD diagnosis process’s main 

concepts and relationships. The main diagnosis concepts and relationships in Figure 4-3 are 

summarized in Table 4-2. The information of this process plays an important role in deciding the 

necessity of executing the 3R processes. The diagnosis process can be done at the office by an 

engineer different from the inspector. Therefore, the information of the engineer needs to be 

covered in OCSD. The diagnosis process is based on processing the collected inspection data and 

the information about the surrounding conditions. 

As shown in Figure 4-3, the diagnosis concepts of OCSD cover concepts related to analyzing the 

cause of the defect, predicting the defect progress, analyzing the impact of the defect on other 

elements of the structure and evaluating the extent of damage, assessing the condition of a concrete 
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element based on inspection results, assessing the condition of connected elements based on 

gathered data from the surrounding environment [200], and evaluating the need for 3R processes. 

The diagnosis process includes using tools and heuristic methods to interpret the inspection data. 

As discussed in Section 2.2.3, diagnosis methods will analyze the inspection results, whether 

remote sensing-based, magnetic-based, acoustic-based, chemical-based, etc., to find the causes of 

defects. 

OCSD covers various causes of concrete defects. The appearance of the defect on the concrete 

surface has a formation mechanism. As discussed in Section 2.2.3, the formation mechanism of 

the defect is initiated by one or more causes [300]. The actual cause of the defect is finally 

determined by analyzing the potential causes in the diagnosis process. Cause analysis of detected 

defects considers the relationships with the surrounding conditions, which can be reflected in the 

design, construction, operation, and maintenance phases.  

As discussed in Section 2.2.3, the main problems during the design phase that can cause defects 

on the concrete surface include poor design of formwork, expansion joints, etc. The main problems 

during the construction phase that can cause surface defects include non-conformity issues between 

design and the built structure, inappropriate mixing, poor workmanship, etc. Non-conformity 

issues refer to design and built structure discrepancies concerning elements’ attributes, such as 

location or dimensions. The main problems during the operation phase that can cause surface 

defects include environmental problems, load problems, etc. Lack of maintenance and insufficient 

frequency of surface protection are problems during the maintenance phase. 

Surface defects are often the result of a combination of causes. For example, suspended solids, 

such as soil, dirt, debris, and fine sand, can accumulate on the surface, causing problems for the 

bonding coats. Eventually, coating problems allow water and chemicals to penetrate the surface 

and cause defects [301, 302]. The presence of water, the effect of freeze and thaw (e.g. aggregate 

extension), attacks due to the presence of chemicals (sulfates, chlorides), and biological agents 

such as microorganisms, fungi, etc., are factors that cause surface defects (e.g. cracks) [303, 304]. 

At the end of the diagnosis process, the engineer will prepare a diagnosis report that includes 

information about the condition of the defect and the need for further actions and performing the 

3R processes.  
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 Figure 4-3. The main diagnosis process concepts and relationships
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Table 4-2. The main diagnosis concepts and relationships 

Concepts Relationship Concepts 

Diagnosis Process is Process 

has Cause Analysis, Condition 

Assessment, Defect, Diagnosis 

Method, Diagnosis Report, Impact 

Analysis on Other Element, 

Prediction of Defect Progress, Work 

Order, Work Schedule 

Selecting the 3R Method depends on Diagnosis Process 

Engineer performs 

is Actor 

Diagnosis Method has Acoustic-based, Chemical-based, 

Crack Monitoring, Diagnosis Tool, 

Electrochemical-based, Heuristic, 

Magnetic-based, Moisture/Humidity-

based, Remote Sensing-based 

analyzes Post-processing of Inspection Data 

Clustering, Edge Detection, Shape 

Extraction 

is 

Acoustic-based analyzes Rubber Hammer Result 

Crack Monitoring analyzes Crack Dimension 

Chemical-based  analyzes Presence of Harmful Substance 

Electrochemical-based  analyzes Corrosion Probability Estimation 

Magnetic -based analyzes Magnetic Force Information, Rebar 

Location and Cover Coverage 

Information 

Moisture/Humidity-based analyzes Surface Absorption Characteristic, 

Moisture/Humidity Information 

Remote Sensing-based analyzes Remote Sensing Result 

Condition Assessment evaluates Extent of Damage, Need for 3R 

Process 

evaluates Condition/Sate 

Need for 3R Process affects Selecting the 3R Method 

Cause Analysis determines Actual Cause, Cause 

Defect has Actual Cause, Formation Mechanism 

Formation Mechanism has Cause 

Actual Cause, Potential Cause, Problem 

During Construction, Problem During 

Design, Problem During Maintenance, 

Problem During Operation 

is 
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 Table 4-2. The main diagnosis concepts and relationships (continued) 

Concepts Relationship Concepts 

Casting in Inappropriate Weather 

Conditions, Early Removal of Formwork, 

Error, Improper Application of Release 

Agent, Inadequate Placement of Expansion 

Joint, Inappropriate Casting of Concrete, 

Inappropriate Compaction of Concrete, 

Inappropriate Curing of Concrete, 

Inappropriate Material of Expansion Joint, 

Inappropriate Mixing of Concrete, 

Inappropriate Placement of Reinforcement, 

Inappropriate Transport of Concrete, Lack 

of Cover, Non-conformity Issue between 

Design and Built Structure, Oversight 

Failure, Poor Quality of Raw Material, 

Poor Workmanship, Using 

Inadequate/Defective Formwork 

is Problem During Construction 

Error, Poor Design is Problem During Design 

Improper Design of Construction Process, 

Improper Design of Expansion Joints, 

Improper Design of Formwork, Improper 

Design of Reinforcement, Improper 

Selection of Release Agent 

is Poor Design 

Insufficient Frequency of Surface 

Protection, Lack of Maintenance 

is Problem During Maintenance 

Lack of Maintenance affects Aging Deterioration 

Aging Deterioration causes Problem During Operation 

Abrasion and Wear Effect, Environmental 

Problem, Load Problem, Reinforcement 

Corrosion, Reinforcement Expansion, 

Structure Settlement/Deformation, 

Vandalism 

is 

Environmental Problem affects Load Problem, Reinforcement 

Corrosion, Reinforcement Expansion 

Biological Agent, Chemical Attack, Fire 

Damage, Freeze and Thaw Effect, 

Moisture/Humidity Change, Suspended 

Solid Particle, Temperature Change, Water 

Presence, Wind Load 

is Environmental Problem 

Temperature Change causes Thermal Stress 

Thermal Stress affects Load Problem, Stress Concentration 

Sun Exposure  affects Temperature Change 

Moisture/Humidity Change affects Soil Change 

Soil Change causes Foundation Settlement 

Foundation Settlement is Structure Settlement/Deformation 
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 Table 4-2. The main diagnosis concepts and relationships (continued) 

Concepts Relationship Concepts 

Structure Settlement/Deformation affects Load Problem 

Excessive Vibration, Overload, Stress 

Concentration 

is 

Aggregate Expansion is Freeze and Thaw Effect 

Acid, Alkali-silica Reaction, Chloride, 

Organic Substance, Sulfate 

is Chemical Attack 

Wind Load affects Excessive Vibration 

4.4.1.3 3R Concepts 

In general, the term repair refers to restoring, renewing, or replacing concrete surface or element 

after primary placement [305]. OCSD presents specific relationships to semantically link various 

3R methods and related repair materials for defective components. Figure 4-4 shows OCSD 3R 

processes’ main concepts and relationships. The main 3R concepts and relationships in Figure 4-4 

are summarized in Table 4-3. In OCSD, repair refers to the specific actions that need to be done 

to treat the defective elements of the structure. Rehabilitation refers to the major repair of critical 

elements of the structure to reach the suitable service level. Replacement refers to the removal and 

replacement of defective areas or damaged elements of the structure. The 3R processes are based 

on the results of the diagnosis process and the condition of the defect, host elements, and impacted 

elements. After the diagnosis process, if further actions are required to maintain the element and 

the structure, the 3R processes will be done to treat the element. 

As shown in Figure 4-4, the 3R processes can be done by a 3R company. The information of the 

3R company and 3R work order are covered in OCSD. The 3R work order includes request and 

component ID, team or assigned person ID, date and time, location, estimated cost, status, and 

emergency level. The 3R processes include using material, tools, and methods to perform an 

acceptable level of concrete surface treatment. The quality-related specifications of materials, 

including bonding strength and durability of materials, are considered in OSCD. The 3R methods 

for treating concrete surface defects are surface cleaning, repair of surface irregularities, 

protecting protruding edges, surface sealing or coating, rehabilitation and strengthening of 

concrete, concrete repair or replacement as explained Section 2.2.5. 

As discussed in Section 2.2.5, methods used to repair or replace concrete with surface defects 

include filling cracks, placing shotcrete on the surface, and adding or replacing mortar or 

concrete. Different types of mortar or concrete, such as conventional mortar or concrete, 

preplaced aggregate concrete, polymer-modified mortar or concrete, and epoxy mortar or 

concrete, can be used to repair defective surfaces. At the end of the 3R processes, the actor will 

prepare 3R execution report that includes information about the actual 3R date, cost, etc. In 

addition, information about the treated surface defects can be archived in a way to allow relating 

this information to the future inspection data to track the element condition and reduce the potential 

cause of the defect by appropriate maintenance.  
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Figure 4-4. The main 3R processes concepts and relationships 
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Table 4-3. The main 3R concepts and relationships 

Concepts Relationship Concepts 

3R Process is Process 

has 3R Method, 3R Report, 3R Tool, Work 

Order 

chooses Repair Material 

treats Host Element, Impacted Element 

3R Company performs 3R Process  

is Actor 

chooses 3R Method 

3R Method uses Repair Material 

Repair Material has Repair Material Specification 

Bonding Strength, Durability is 

Work Order uses Diagnosis Report 

Work Order has Activity ID, Component ID, Cost, Date, 

Emergency Level, 

Infrastructure/Building ID, Location, 

Request ID, Time 

Concrete Repair/Replacement, Protecting 

Protruding Edges, Rehabilitation and 

Strengthening of Concrete, Repair of 

Surface Irregularities, Surface Cleaning, 

Surface Sealing/Coating 

is 3R Method 

Surface Grinding is Repair of Surface Irregularity 

Surface Sealing/Coating has Penetrating Sealer, Protective Coating 

Cover 

Acrylic Concrete Sealer, Epoxy Concrete 

Sealer, Polyurethane Concrete Sealer, 

Silane Concrete Sealer, Silicone Concrete 

Sealer  

is Penetrating Sealer 

Acrylic Coating, Bituminous Coating, 

Chlorinated Rubber Coating, Epoxy 

Coating, Polyurethane Coating, Polyvinyl 

Copolymers Coating, Terpolymers Coating 

is Protective Coating Cover 

Adding Fiber-reinforced Polymer, 

Adding/Removing Reinforcing Steel 

is Rehabilitation and Strengthening of 

Concrete 

Adding Fiber-reinforced Polymer has Fiber-reinforced Polymer 

Glass Fiber, Polymetric Fiber, Steel Fiber is 

Adding/Removing Reinforcing Steel has Reinforcing Steel 

Concrete Repair/Replacement has Adding Concrete Layer, Curing Concrete 

Repair, Removing Loose Concrete 

Detaching Loose Cover is Removing Loose Concrete 

Adding/Replacing Concrete/Mortar, Crack 

Filling, Shotcrete Placement 

is Concrete Repair/Replacement 

Resin Injection is Crack Filling 

uses Penetrating Sealer 
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Table 4-3. The main 3R concepts and relationships (continued) 

Concepts Relationship Concepts 

Adding/Replacing Concrete/Mortar has Mortar/Concrete 

Conventional Mortar/Concrete, Epoxy 

Mortar/Concrete, Polymer Modified 

Mortar/Concrete, Preplaced Aggregate 

Concrete 

is 

Acrylic Coating, Acrylic Concrete Sealer, 

Bituminous Coating, Chlorinated Rubber 

Coating, Conventional Mortar/Concrete, 

Epoxy Coating, Epoxy Concrete Sealer, 

Epoxy Mortar/Concrete,  

Fiber-reinforced Polymer, Polymer 

Modified Mortar/Concrete, Polyurethane 

Coating, Polyurethane Concrete Sealer, 

Polyvinyl Copolymers Coating, Preplaced 

Aggregate Concrete, Reinforcing Steel, 

Silane Concrete Sealer, Silicone Concrete 

Sealer, Terpolymers Coating 

is Repair Material 

4.4.2 Product Modeling Concepts 

The additional product-related concepts of OCSD cover the main concepts related to defects and 

repair product modeling, as explained below. 

4.4.2.1 Defect Concepts 

The defect is the final product of the inspection process. The diagnosis process examines the 

defect, and finally, if necessary, the 3R processes will focus on treating the defect. Since defects 

play a key role in all of these processes, OCSD should cover the concepts of defects as the main 

product of these processes. Detailed semantic relationships are defined in OCSD to connect 

different types of concrete surface defects and their impact on defective elements. OCSD concrete 

surface defects and the condition of the defected concrete surfaces main concepts and relationships 

are shown in Figure 4-5. The main concepts and relationships in Figure 4-5 are summarized in 

Table 4-4. 

As discussed in Section 2.2.1, the attributes of defects are defined based on common types of 

concrete surface defects [40, 41, 306, 307]. As shown in Figure 4-5, the defected product in OCSD 

covers information related to host and impacted elements, defect types, and condition of the 

defected concrete surfaces. The host element is the defective element. When there is a defect, the 

host element is usually weakened, which affects other elements, leading to the formation of new 

defects related to this process. As discussed in Section 4.4.1.2, the actual cause of the defect will 

be determined in the process of cause analysis from the potential causes. Defects are defined by 

features such as generation period, orientation, location, dimensions, shape or patterns, and 

severity. Depending on the defect types, the changes in concrete surface forms include addition, 

deformation, section loss, and subtraction. 

As discussed in Section 2.2.1, common types of surface cracks include: cracks, spalling, 

delamination, scaling, disintegration, erosion, honeycombing, etc. A functional defect is a defect 

that disrupts the expected performance of an element or structure. Issues caused by any, or a 
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combination, of defects in the concrete surface can change the condition of the element, causing a 

functional defect of the element or structure. 

As explained in Section 2.2.4, the definition of levels of severity and conditions of some specific 

concrete surface defects in OCSD are based on the Ontario structure inspection manual (OSIM) 

[41]. The value of severity of each defect based on Table 2-1 is added as an individual’s property 

set in OCSD. The severity of surface defects can be categorized as light, medium, sever, and very 

severe, and the condition of an element can be categorized into excellent, good, fair, and poor. In 

cracks, the severity can be divided into hairline, narrow, medium, and wide. The condition of the 

element depends on the severity of the defect.  

The presence of some concrete surface defects indicates a specific condition in the element. For 

example, the presence of cold joints is a fair element condition. Moreover, some defects, such as 

stains, can have different conditions based on specific information. For example, some stains, such 

as those caused by biological growth and dust, do not indicate the weakness of the element, and 

the condition of the element can be assessed as good. However, some stains, such as stains caused 

by chemical reactions, water, and corrosion, indicate an abnormal condition in the element, and 

the condition of the element can be assessed as fair. Graffiti, bughole, and flatness defects only 

affect the appearance of the concrete and do not affect the strength of the concrete, so the condition 

of the defective element is considered good in the presence of these defects [40, 41]. 

4.4.2.2 Repair Product Modeling Concepts 

Repair product modeling should cover the following information: (1) host and impacted elements; 

and (2) modified model of the element after the 3R process including changes in the geometry and 

materials. 
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Figure 4-5. The main defects and the condition of the defected concrete surfaces concepts and relationships
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Table 4-4. The main defects and the condition of the defected concrete surfaces concepts and 

relationships 

Concepts Relationship Concepts 
BIM Model, Defect, Related Defect, 

Structure 

is Product 

BIM Model has Structure 

Defect has Actual Cause, Defect Definition, Defect 

Type, Formation Mechanism, Host 

Element, Impacted Element, Related 

Defect 

Structure has Element 

Host Element, Impacted Element is 

Impacted Element has Related Defect 

Formation Mechanism has Cause 

 Actual Cause, Potential Cause is 

Cause Analysis determines Actual Cause, Cause 

Defect Definition has Dimension, Generation Period, 

Location, Orientation, Severity, 

Shape/Pattern 

Dimension affects Severity 

Defect Type has Form Change, Potential Cause 

Addition, Deformation, Section Loss, 

Subtraction 

is Form Change 

Concrete Surface Defect, Functioning 

Defect 

is Defect Type 

Condition Assessment determines Condition 

Excellent Condition, Fair Condition, 

Good Condition, Poor Condition 

is 

Condition depends on Severity 

has Condition Issue 

Malfunction is 

Condition Issue causes Functioning Defect 

Fair Condition, Poor Condition causes Malfunction 

Abrasion Damage/Wear, Bughole, Cold 

Joint, Crack, Delamination, 

Disintegration, Efflorescence, Erosion, 

Exudation, Flatness Defect, Graffiti, 

Honeycombing, Incrustation, Pop-out, 

Scaling, Segregation, Slippery Surface, 

Spalling, Stain, Stalactite, Stratification  

is Concrete Surface Defect 

Biological Growth Stain, Chemical Stain, 

Dust Stain, Rust Stain, Water Stain 

is Stain 

Mapped Cracking, Oriented Cracking is Crack 

Crack has Crack Severity 

Hairline Crack, Medium Crack, Narrow 

Crack, Wide Crack 

is  
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Table 4-4. The main defects and the condition of the defected concrete surfaces concepts 

and relationships (continued) 

Concepts Relationship Concepts 

Delamination has Delamination Severity 

Light Delamination, Medium 

Delamination, Severe Delamination, Very 

Severe Delamination 

is 

Disintegration has Disintegration Severity 

Light Disintegration, Medium 

Disintegration, Severe Disintegration, 

Very Severe Disintegration 

is 

Erosion has Erosion Severity 

Light Erosion, Medium Erosion, Severe 

Erosion, Very Severe Erosion 

is 

Honeycombing has Honeycombing Severity 

Light Honeycombing, Medium 

Honeycombing, Severe Honeycombing, 

Very Severe Honeycombing 

is 

Pop-out has Pop-out Severity 

 Light Pop-out, Medium Pop-out, Severe 

Pop-out, Very Severe Pop-out 

is 

Scaling has Scaling Severity 

Light Scaling, Medium Scaling, Severe 

Scaling, Very Severe Scaling 

is 

Spalling has Spalling Severity 

Light Spalling, Medium Spalling, Severe 

Spalling, Very Severe Spalling 

is 

Crack Severity, Delamination Severity, 

Disintegration Severity, Erosion Severity, 

Honeycombing Severity, Pop-out Severity, 

Scaling Severity, Spalling Severity 

is Severity 

Light Delamination, Light Disintegration, 

Light Erosion, Light Spalling, Medium 

Delamination, Medium Disintegration, 

Medium Erosion, Medium Spalling,  

Severe Delamination, Severe 

Disintegration, Severe Erosion, Severe 

Honeycombing, Severe Pop-out, Severe 

Scaling, Severe Spalling, Very Severe 

Delamination, Very Severe 

Disintegration, Very Severe Erosion, Very 

Severe Honeycombing, Very Severe Pop-

out, Very Severe Scaling, Very Severe 

Spalling, Wide Crack 

is Poor Condition 
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Table 4-4. The main defects and the condition of the defected concrete surfaces concepts and 

relationships (continued) 

Concepts Relationship Concepts 

Abrasion Damage/Wear, Chemical Stain, 

Cold Joint, Efflorescence, Exudation, 

Incrustation, Medium Crack, Medium 

Honeycombing, Medium Pop-out, 

Medium Scaling, Rust Stain, Segregation, 

Slippery Surface, Stalactite, Stratification, 

Water Stain 

is Fair Condition 

Biological Growth Stain, Bughole, Dust 

Stain, Flatness Defect, Graffiti, Hairline 

Crack, Light Honeycombing, Light Pop-

out, Light Scaling, Narrow Crack 

 

is Good Condition 

4.5 Evaluation of OCSD 

Ontology tools perform the consistency evaluation during the verification process [308, 309], 

[310]. In this regard, to evaluate the consistency and identify the subsumption relationships, 

HermiT OWL Reasoner, which is based on the hypertableau algorithm is applied [311]. Two other 

evaluation methods are used for evaluating the usefulness of OCSD: (1) application-based 

evaluation, and (2) qualitative criteria-based evaluation. The application-based evaluation is used 

to demonstrate the benefits of the ontology using a case study. This approach judges whether the 

ontology is suitable and meets the objectives. The qualitative criteria-based evaluation assesses the 

correctness and presentation of the main concepts and relationships of the developed ontology.  

4.5.1 Consistency Evaluation Using Protégé 

In protégé, a description logic reasoner is used to perform the verification process and test the 

consistency criteria for OCSD [308, 309]. OWL HermiT Reasoner explores the relationships and 

discovers the implicit relationships between classes. Furthermore, it verifies the concepts hierarchy 

and clarifies any inconsistencies in the ontology. For example, no individual can be at the same 

time an instance of two classes, which the reasoner can check. HermiT OWL reasoner was utilized 

during OCSD development stage and clarified some inconsistencies in the ontology. These results 

were utilized as feedback and input to rectify problems before going on to the final step. 

4.5.2 Case Study 

The application-based evaluation is used to demonstrate the benefits of OCSD using a case study. 

This approach judges whether the ontology is suitable and meets the objectives. In the ontology 

development process, evaluating the content of the ontology is an essential step towards improving 

the developed ontology [312, 313]. The evaluation of OCSD is investigated in a case study in 

Section 6.6, where a specific inspection method based on deep learning using point clouds is used 

to semi-automatically create the as-inspected BIM model. 
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4.5.3 Criteria-based Evaluation 

The adequacy of the semantic representation of OCSD was evaluated through a survey comprising 

of 11 questions related to different components of OCSD. The information of the respondents was 

collected through the first question.  

The second question was about the benefits of inspection, diagnosis, and repair related information 

modeling of concrete surface defects. The third and fourth questions were about the clarity and 

comprehensiveness of the main inspection concepts and relationships of OCSD. The fifth and sixth 

questions investigated the clarity and comprehensiveness of the main diagnosis concepts and 

relationships of OCSD. The seventh and eighth questions investigated the clarity and 

comprehensiveness of the 3R concepts and relationships of OCSD. The ninth and tenth questions 

investigated the clarity and comprehensiveness of the defect concepts and relationships of OCSD. 

The eleventh question considered OCSD capabilities to influence the future BIM-based asset 

management systems. The questions of this survey are listed in Table 4-5. 

The five-point Likert scale was used to obtain the qualitative values of the answers. Figures 4-2, 

4-3, 4-4, and 4-5 were used in the survey to present some details of OCSD. The survey was sent 

to 101 internationally recognized experts selected based on their knowledge in BIM, concrete 

construction, inspection, diagnosis, and repair. 

The results of OBRNIT survey including the total number of participants, the respondents’ 

profiles, and the survey answers are available at https://github.com/OCSD-OWL/Survey-Result. 

Table 4-5. The evaluation questions of OCSD 

Q1 Name, organization/university, area of expertise, and years of experience. 
Q2 Developing a unified ontology for modeling inspection, diagnosis, and repair related information of 

concrete surface defects will facilitate accessing and updating the information, and streamlining the 

processes at different phases of the lifecycle resulting in improved efficiency and reduced rate of data 

input errors. Do you agree with this statement? 

○ Strongly agree   ○ Agree   ○ Neither agree nor disagree   ○ Disagree   ○ Strongly disagree   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q3 Figure 4-2 represents the high-level concepts and relationships of the ontology for the inspection 

process of concrete surface defects. 

Do you find this representation clear and provide good understanding of the concepts in the domain? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q4 Based on Figure 4-2, do you find the representation comprehensive? 

Comprehensiveness here means representing the main concepts and relationships for modeling the 

inspection-related information of concrete surface defects. 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive    

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q5 Figure 4-3 represents the high-level concepts and relationships of the ontology for the diagnosis process 

of concrete surface defects. 

The diagnosis process is based on processing the collected inspection data and the information about the 

surrounding conditions. 

Do you find this representation clear and provide good understanding of the concepts in the domain? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all   ○ No answer 

Comments: ……………………………….………………………………………………………………... 
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Table 4 5. The evaluation questions of OCSD (continued) 

Q6 Based on Figure 4-3, do you find the representation comprehensive? 

Comprehensiveness here means representing the main concepts and relationships for modeling the 

diagnosis-related information of concrete surface defects. 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive    

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q7 Figure 4-4 below represents the high-level concepts and relationships of the ontology for the 3R 

(Repair, Rehabilitation, and Repair) processes of concrete surface defects. 

Do you find this representation clear and provide good understanding of the concepts in the domain? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q8 Based on Figure 4-4, do you find the representation comprehensive? 

Comprehensiveness here means representing the main concepts and relationships for modeling the 3R-

related information of concrete surface defects. 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive    

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q9 Figure 4-5 below represents the high-level concepts and relationships of the ontology for the defects and 

condition of the defected concrete surfaces.  

Do you find this representation clear and provide good understanding of the concepts in the domain? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q10 Based on Figure 4-5, do you find the representation comprehensive? 

Comprehensiveness here means representing the main concepts and relationships for modeling concrete 

surface defects and condition of the defected surfaces. 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive    

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q11 OCSD provided knowledge is expected to influence the future BIM-based asset management systems 

and allow a new level of coordination and collaboration among the stakeholders of the project. Do you 

agree with this statement? 

○ Strongly agree   ○ Agree   ○ Neither agree nor disagree   ○ Disagree   ○ Strongly disagree   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

4.6 Summary and Conclusions 

This chapter focused on the development of an ontology, called OCSD, for concrete surface defects 

to have a unified knowledge model where all the stakeholders can access information in a 

systematic manner. There are 333 classes, 51 relations, 27 attributes, and 31 individuals in OCSD. 

OCSD comprises high-level knowledge of the concepts and relationships related to concrete 

surface defects, inspection, diagnosis, and 3R processes. In addition, the consistency of OCSD was 

evaluated using HermiT OWL reasoner. A survey was designed and conducted to evaluate the 

semantic representation of OCSD. The evaluation proves that OCSD satisfies the domain experts 

and covers the domain’s main concepts and relationships. Based on the evaluation, OCSD was 

able to provide a clear understanding of the concepts and relationships in the domain. The 

application of OCSD is investigated in a case study in Section 6.6. The evaluation demonstrates 

that OCSD can answer all the competency questions defined in Section 4.2 as follows: (1) OCSD 

was developed based on a top-down approach, and it is not dependent on specific types of 

structures and can be used at different phases of the lifecycle; (2) OCSD covers the main 

information about the generic aspects of the inspection, diagnosis, and repair processes, and based 

on the evaluation, it has comprehensive modeling; (3) OCSD reflects the common aspects of OSIM 
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guidelines at an abstract level and can be applied to all types of concrete structures; (4) OCSD has 

the main inspection-related concepts at the abstract level that can be used to extend the IFC 

standard; and (5) OCSD is able to accommodate new data collection technologies and the 

associated inspection data. 

OCSD is expected to provide the following benefits: (1) OCSD can help future asset management 

systems benefit from the provided knowledge and efficiently develop, modify, and process the 

ontological knowledgebase. The knowledge model can be used as the first step for the purpose of 

re-engineered processes of infrastructure management systems, analysis reflecting the defects and 

repair changes of the structure, and visual analytics to support diagnosis processes [314]. 

Moreover, OCSD knowledgebase can be used to develop concrete surface inspection expert 

systems, software or checklists; (2) All the details of the inspection, diagnosis, and 3R are 

integrated in OCSD, and this integration will facilitate accessing and updating the information, 

and streamlining the processes at different phases of the lifecycle resulting in improved efficiency 

and reduced rate of data input errors; (3) OCSD allows a new level of coordination and 

collaboration among the stakeholders of the project; and (4) It can be used as a starting point to 

extend IFC for missing inspection-related information. 



 

 

70 

 

CHAPTER 5.     ONTOLOGY FOR BIM-BASED ROBOTIC NAVIGATION AND 

INSPECTION TASKS 

5.1 Introduction 

Inspection is indispensable in the construction industry. Robots are used to automate the process 

of inspection during the construction and operation phases. The use of advanced technologies (e.g. 

LiDAR scanners and sensors) has made the inspection process more accurate and reliable [2]. As 

explained in Section 2.6.3, the robotic system utilizes and processes the ontology as the robot’s 

central data store [8]. The BIM-based approach is also expected to improve the inspection process. 

Besides, unstructured and unknown environments (e.g. post-disaster situations) can be better 

inspected with the help of robotic inspection. The objective of this chapter is to develop BIM-

based ontology to cover the different types of information and concepts related to robot navigation 

and inspection tasks. This ontology aims to help system engineers involved in developing robotic 

inspection systems by identifying the different concepts and relationships about robotic inspection 

and navigation tasks based on BIM information. The navigation concepts in this chapter are 

dependent on using the semantic knowledge based on the BIM concepts for navigation tasks. The 

use case is an inspection robot that is navigating in a building with partial knowledge of the 

environment because of changes in the available information due to construction and renovation 

scheduling issues, unexpected obstacles in the building, etc. 

5.2 Methodology Workflow 

In this section, the methodology workflow steps to develop OBRNIT are similar to what is 

explained in Section 4.3. The competency questions need to be defined as a part of the 

requirements of the robotic inspection domain [293]. The competency questions are identified 

based on the use case diagram as explained in Section 3.4 (Figure 3-4) and reviewed literature to 

define the key challenges OBRNIT can address, as shown in Table 5-1. 

Table 5-1. Competency questions of OBRNIT 

Q1  How to locate the defect in the BIM model? 

Q2  How to relate the mobility characteristics of the robot with the conditions of the building based 

on the BIM model? 

Q3 How to benefit from the BIM model in defining the path of the robot? 

Q4 How to use the sensors of the robot to find the mismatches with the BIM model for replanning 

the path of the robot? 

Q5 How to select the suitable sensors of the robot for the specific inspection task? 

The methodology for developing OBRNIT is METHONTOLOGY, which is clear, well-

documented, mature, and based on the experience of other domains ontology development [294], 

[295]. OBRNIT development based on METHONTOLOGY includes the initial, development, and 

final stages as shown in Figure 5-1. The best practices and knowledge in the robotic inspection 

domain are used to develop OBRNIT.  

The initial stage involves steps to specify the scope, main concepts, and the taxonomies of 

OBRNIT. The scope of OBRNIT is defined based on the requirements. Research papers, 

textbooks, and online resources are used as sources for the requirements (e.g. properties). The 
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ontology needs to cover all the concepts about the robot characteristics, building characteristics, 

and inspection and navigation tasks.  

Furthermore, this step helps to consider the size of the development and the level of detail that 

needs to be covered in OBRNIT. The next step is defining the concepts and taxonomies for 

OBRNIT. The data related to OBRNIT are gathered in this step. The list of requirements from the 

defining scope step helps the process of ontology development. Communication with experts and 

end-users along with getting feedback from them is essential at the whole cycle of this stage.  

The development stage is devoted to constructing and verifying the initial structure of OBRNIT. 

In the first step of the development stage, the conceptualization model is clearly represented and 

implemented in a formal language (e.g. OWL) to be later accessible by computers and used by 

different systems [296]. The development of OBRNIT involves reusing and adapting BIM 

concepts. BEO v.0.1.0 [223, 233], which is based on the IfcBuildingElement subtree in the IFC 

specification and ifcOWL ontology [212], is a good starting point for including the relevant BIM 

concepts to OBRNIT. BEO is available in OWL format, which facilities the integration process. 

Moreover, BOT v.0.3.2 [179] and DOT v.0.8 [222] ontologies are integrated and adapted in the 

development of OBRNIT to represent the required concepts related to damages and building 

topology, respectively. 

The ontology integration in the METHONTOLOGY method can be done at the conceptualization 

level [315]. The methods to reuse available ontologies are: (1) ontologies merging, (2) ontologies 

alignment, and (3) ontologies integration. Ontologies merging refers to unifying two or more 

available ontologies by comparing the available ontologies and finding similarities between their 

domain information [315]. Ontologies alignment refers to mapping the concepts and relationships 

in two or more available ontologies to find equivalency between them. This method requires the 

smallest number of changes, and it is a simpler form of merging [316, 317]. Ontologies integration 

refers to integrating one or more available ontologies in the process of developing a new ontology 

by adapting, extending, specializing, or assembling [315]. The ontology integration method is 

selected in this chapter as it saves the effort to reuse and adapt the components that are needed to 

complete OBRNIT [318]. The next step of the development stage is verifying the developed 

ontology. Based on the consistency rules and competency questions, this process examines the 

ontologies from the technical perspective. 

The final stage is to add new, or modify existing, relationships and evaluate OBRNIT with experts 

and end-users through evaluation questions. In this stage, the ontology is improved with the 

suggestions of the domain experts and end-users to fulfill the real-world requirements. OBRNIT 

evaluation is done through a case study and a criteria-based evaluation method [319]. Similar 

ontologies in the robotic inspection domain are not available to compare the developed ontology 

with a benchmark ontology or high-level standards in the domain. The final step is documenting 

the developed OBRNIT. Obtaining knowledge, evaluation, and documentation are involved 

throughout the whole life cycle of ontology development. Each step of the METHONTOLOGY is 

presented using IDEF5 (Integrated DEFinition) [297] ontology description method, which 

includes detailed information about the input, output, control, and mechanism.  The next section 

explains in detail about the ontology development. The following section focuses on the 

verification and evaluation steps. 
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Figure 5-1. Development workflow of OBRNIT (adapted from Taher et al. [298]) 
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5.3 Developing OBRNIT 

Some concepts from BIM and KnowRob ontology [132] are used as parts of this study. Protégé 

[206] is used to develop OBRNIT and to integrate it with BEO, BOT, and DOT [320]. OBRNIT 

has 386 classes, 45 relations, 52 attributes, and 8 individuals. The current version of OBRNIT is 

available at https://github.com/OBRNIT/OBRNIT.  

OBRNIT covers four main groups of concepts including: (1) robot concepts, (2) building concepts, 

(3) navigation task concepts, and (4) inspection task concepts, which are explained in the following 

sections. Figure 5-2(a) shows the main concepts and relationships of OBRNIT. Figure 5-2(b) 

shows the inspection task concepts. Some concepts are duplicated in Figure 5-2(a) and (b) to 

improve the readability of the figures. Color coding is used to group the concepts pertaining to 

each of the four groups. However, the figures are simplified by adding the colors only to the main 

concepts of the ontology. The relationships between concepts show how the ontology components 

are semantically interrelated. The types of relations used in the developed ontology are: is, has, 

uses, affects, performs, causes, captures, has state, has time, has target, and measures (e.g. thermal 

camera measures temperature). 
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Figure 5-2. Concepts and relationships of OBRNIT: (a) Main concepts 
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Figure 5-2. Concepts and relationships of OBRNIT (continued): (b) Inspection task concepts 
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5.3.1 Robot Concepts 

The robot concepts of OBRNIT cover the main functions of a robot along with the related 

knowledge of the inspection and navigation tasks. Declarative abstract knowledge about the tasks 

and environment should be encoded in the robot controller and used to determine proper actions 

for a specific task.  

KnowRob ontology represents semantic models using object detection applied to the acquired 

point clouds enriched by encyclopedic, common-sense, and action-related knowledge [134]. From 

the BIM point of view, this ontology is primitive and does not provide full support of building 

elements. For example, the concept of a wall is only mentioned as a part of the edges of a region’s 

surface and does not have dimensions, material, connectivity, type, etc. Walls may play a major 

role in inspection and navigation tasks because they define the boundaries of robots’ movements 

or can be obstacles, or the main target of inspection. Other building elements, such as ceilings, 

columns, and windows, are not covered in KnowRob.  

As shown in Figure 5-2(a), mobility and sensing are the two main functions of robots. The 

mismatches between the path found based on the non-updated BIM model (Section 0) and the as-

is state of the surrounding environment (Section 5.3.3) will cause an obstacle for the robot 

movement, and consequently its performance. Robot concepts cover basic attributes (e.g. type, 

size), robots’ performance (e.g. movements, degrees of freedom (DOF)), robots’ constraints (e.g. 

safety distance), and sensors for navigation and inspection tasks. The DOF define the modes for 

the motion capability of the robot.  The types of robots considered In OBRNIT are UAV and UGV. 

UGV refers to any type of crawling, climbing, and other ground-based robots. The movement of 

UAVs is in the 3D spaces of the building. However, UGVs move following the floors and may be 

able to climb the stairs.  In this case, there are some constraints on the movement, such as the 

maximum height of a stair step that they can climb. Also, the flying movement of a UAV has 

constraints, which mainly depend on the size of the UAV.  

Sensors can be used for inspection (e.g. RGB camera, thermal camera) and navigation purposes 

(e.g. depth camera, GPS). LiDAR and cameras are two different types of sensors. Cameras collect 

images, which can be RGB/depth/thermal images. LiDAR scanners is a remote sensing method, 

which collects point cloud from the environment. The accuracy and field of the view of the robots’ 

sensor, as well as its type, affect the robot’s inspection performance. The concepts related to 

inspection tasks are explained in Section 5.3.4. The main robot concepts and relationships in Figure 

5-2(a) are summarized in Table 5-2. 
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5.3.2 Building Concepts 

The BIM model can provide information about the environment of the robotic inspection. Every 

building element that affects the robot navigation and inspection processes should be included in 

OBRNIT. As explained in Section 5.3, the integration process starts with integrating BEO. The 

required concepts, which are not included in BEO, are added from ifcOWL ontology, or defined 

based on the required concepts for robotic navigation and inspection. The process of integrating 

BIM concepts with OBRNIT aims to link the available BIM concepts with the developed OBRNIT 

concepts, including related building concepts (e.g. BIM mismatch concepts), robot concepts, and 

inspection and navigation tasks concepts. Some research focused on robots that can open a closed-

door with specific access control or use a handle, knob, or button [321]. For example, Cobalt 

Access [123] can open locked doors by using the door’s access control reader. However, passing 

through locked doors without human intervention is still one of the main issues for most of the 

robots. Figure 5-3 shows robot access control concepts in OBRNIT. The state of the door can be 

open or closed, locked or unlocked, mechanically locked, or electronically locked.  

Table 5-3 shows examples of building concepts reused from BEO, BOT, ifcOWL, and new 

concepts defined in OBRNIT. Building concepts of OBRNIT includes the following: (1) Concepts 

reused from BEO ontology; (3) Concepts reused from BOT; (4) Concepts reused from ifcOWL: 

Some necessary concepts, which are not included in BEO (e.g. the furniture concept), are added 

from ifcOWL ontology. HVAC elements are also added from ifcOWL ontology in order to 

consider HVAC system defects; (5) Concepts adopted from Building Management Systems 

(BMS): Some concepts related to the state of the door are required for navigation purposes. These 

concepts are adopted from BMS; and (6) New building concepts defined based on OBRNIT needs: 

These concepts include BIM mismatch concepts. In addition, the following relationships are 

defined to link building-related concepts to navigation and inspection concepts: (1) Relationships 

Table 5-2. Main robot concepts and relationships 

Concepts Relationship Concepts 

Robot performs Inspection Task, Navigation Task 

has Constraint, Degrees of Freedom, Movement, 

Processor, Robot Size, Robot Type, Sensor 

uses Path 

UAV, UGV is Robot Type 

Obstacle for Robot affects Buffer Zone, Movement 

causes Path Replanning 

Robot Size, Safety Distance affects Buffer Zone 

Buffer Zone affects Buffer-Width 

Safety Distance is Constraint 

Processor performs Computer Vision 

Sensor has Accuracy, Field of View, Measurement, Range, 

Resolution, Sensor Type 

Degrees of Freedom affects Movement 

Movement has Constraint 

Horizontal Move, Vertical Move is Movement 

Vertical Move uses Stairs 

Horizontal Move uses Door-Corridor, Door-Room, Window-

Corridor, Window-Room 
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to define the links between spaces for navigation paths (e.g. door-corridor), (2) Relationships to 

define a BIM object as the point of interest of inspection, and (3) Relationships to define obstacles 

or constraints for the robot movement (e.g. a narrow door). 

Table 5-3. Examples of reused, adopted, and new building concepts in OBRNIT 

Concept’s source Example concepts 

Concepts reused from BEO Beam, column, covering (ceiling and flooring), door, stair, wall, window 

Concepts reused from BOT Space, zone 

Concepts reused from 

ifcOWL 

HVAC system 

Room, corridor 

Furniture (e.g. table, shelving) 

Concepts adopted from BMS Open door, closed door, locked door, unlocked door 

New building concepts Access point 

Temporary structure (e.g. falsework/scaffolding) 

BIM model (as-designed, as-built, as-is) 

Mismatch between as-designed/as-built BIM and as-is state of 

surrounding environment (missing objects, unexpected objects, non-

conformity issues), deviation in dimension, deviation in location, 

material issue, unexpected state, damaged building element 

Mismatch reason (communication problem, documentation problem, 

human error), change order, inaccurate documentation, missing 

documentation 

Furthermore, the mismatches between the as-designed or as-built BIM model and the as-is state of 

the surrounding environment should be semantically represented in OBRNIT. By implementing a 

BIM model of a building, all the information about the elements is available through this model. 

Identifying the potential types of mismatches is the first step to define a logic-based robotic 

inspection system that can reduce delays and reworks. Having a rich semantic database about the 

spaces and building components can enhance the overall efficiency of the robot. Also, the 

information about the path has a major role when the goal is finding the optimal route and avoiding 

collisions with existing barriers. Different spaces in the building can form different zones. Spaces 

(e.g. rooms) can be used to generate nodes for generating the path of the robot, which is explained 

in the Section 5.3.3. The dimensions of a space can be used to define these nodes inside or on the 

edges of the space. The main building spaces for robot path planning are rooms, corridors, and 

stairs. The functionality of rooms and specifications of spaces can be different (e.g. security level 

for access to public/restricted room) [175]. 

The mismatches between the information in the available BIM model and the reality cause 

navigation problems for robots. The preliminary model of the BIM at the design phase is called 

as-designed BIM. As-built BIM includes all the changes during the construction phase. As-is BIM 

includes the updated information of the facility and all the changes (e.g. repair, replacement, etc.) 

at the time of data collection. In some cases, the lack of adequate communication in the design 

phase, insufficient documentation, or errors of the contractor can turn into unexpected results 

including information mismatches between the as-designed BIM model and the as-is state of the 

building. The same problem can occur in the operation phase, where renovation issues can cause 

mismatches between the non-updated as-built BIM and the as-is state of the building. The 

assumption in OBRNIT is that the path planning is based on a reference BIM model, but this model 

is not as-is and reliable. The semantic mismatch between the as-designed BIM model (or as-built 
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BIM model) and the as-is state of the surrounding environment could be caused by one of the 

following problems: (1) there is an object in the BIM model, which does not exist in reality. This 

problem can be the result of design changes during the construction phase (e.g. removing a door) 

where the changes are not applied in the BIM model; (2) there is an object in the building which 

is not included in the last updated BIM model; or (3) there is a discrepancy between the BIM model 

and the actual building with respect to objects’ attributes, such as location or dimensions. As shown 

in Figure 5-2(a), these problems that the robot can face in a building are classified as missing 

objects, unexpected objects, and non-conformity issues. Each of these issues could be linked with 

fixed or mobile objects. For instance, building elements (e.g. access points) can be missing objects, 

and furniture and temporary structures (e.g. falsework) can be unexpected objects. Also, classes 

related to non-conformity should cover material issues, unexpected states (e.g. damaged building 

element, a closed-door which is expected to be open), and deviation in location or deviation in 

dimensions (e.g. narrow door), etc. As shown in Figure 5-2(a), each of the main mismatch entities 

has one or more causes and effects. For instance, some of the causes are human errors, 

documentation problems (e.g. change request was not documented), and communication problems 

during the different phases of AEC/FM. Each of these reasons causes a problem that can be 

described as an effect (e.g. obstacles for a robot). A narrow door (i.e. deviation in dimensions) or 

a closed-door (i.e. different states from what is expected) are examples of non-conformity that can 

cause problems for a robot during its operation. The main robot concepts and relationships in 

Figure 5-2(a) are summarized in Table 5-4. 

 

Figure 5-3. Robot access control concepts 
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Table 5-4. Main building concepts and relationships 

Concepts Relationship Concepts 

As-built Model, As-designed Model, As-is 

Model 

is BIM Model 

BIM Model has Building Element, Distribution 

Element, Furniture, Mismatch 

between  

As-designed/As-built BIM model and 

As-is state of surrounding 

Environment, Zone, Temporary 

Structure 

Ceiling, Door, Floor, Stairs, Wall, Window is Building Element 

HVAC is Distribution Element 

Zone has Space 

Space has Corridor, Node, Room 

Chair, Drawer, Shelving, Table is Furniture 

Falsework/Scaffolding is Temporary Structure 

Door, Window is Access Point 

Window has state Broken Window 

Broken Window is Damaged Building Element 

Damaged Building Element is Building Defect 

Door has state Closed Door, Locked Door, Open 

Door, Unlocked Door 

Closed Door, Narrow Door causes Obstacle for Robot 

Missing Object, Non-conformity Issue, 

Unexpected Object 

is Mismatch between As-designed/As-

built BIM model and As-is state of 

surrounding Environment 

has Reason 

affects Obstacle for Robot 

Access Point affects 

Deviation in Dimension, Deviation in Location, 

Material Issue, Unexpected State 

is Non-conformity Issue 

Closed Door, Damaged Building Element is Unexpected State 

Narrow Door is Deviation in Dimension 

Non-conformity Issue is Building Defect 

Missing Object is Building Element 

Unexpected Object is Building Element, Furniture, 

Temporary Structure 

Communication Problem, Documentation 

Problem, Human Error 

is Reason 

Inaccurate Documentation, Missing 

Documentation 

is Documentation Problem 

Documentation Problem affects Documentation 

Change Order is Communication Problem 

has time During Construction, During Design, 

During Operation 
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5.3.3 Navigation Concepts 

The navigation task in OBRNIT refers to the act of performing navigation by the robot. As shown 

in Figure 5-2(a), navigation concepts cover the main information related to the path of the robot 

including nodes and links, which can be used for path planning. The navigation task has a network, 

and it uses the information of this network for path planning. Different types of navigation sensors 

can be used including GPS, LiDAR scanner, and depth camera. A LiDAR scanner can be used to 

support both the inspection task (Section 5.3.4) and the navigation task. The robot uses the path 

for performing the navigation task. A path has attributes including the length, direction, and buffer-

width. A node can be the origin or destination of a path, or a way-node on the path. Spaces (e.g. 

room, corridor) and access point elements of a building (e.g. doors, windows) can be nodes of a 

path. For example, if a robot must move from a corridor to a room, the center point of the corridor 

is the origin node, the center point of the room is the destination node, and the door of the room is 

a way-node. Positions of the way-nodes vary based on the obstacles on the way of the robot. These 

obstacles may be unexpected objects detected by the robot as explained in the Section 0. New links 

on the path connect these way-nodes to the origin and the destination nodes and each other [165]. 

Links connect nodes and define the direction of the path. Examples of links are the links connecting 

a window to a room (in case of UAV), a door to a corridor, or a door to a room, based on the 

defined building elements and spaces as explained in Section 0. Links can be horizontal or vertical 

(e.g. stairs’ links are vertical). Figure 5-4 shows a simple example, where Node 1 at the center of 

Room 1 is the origin node and Node 2 at the center of Room 2 is the destination node. Link 1 is 

the shortest link to connect the origin to the destination nodes; but it crosses two obstacles (i.e. the 

walls of the rooms). Nodes 3 to 7, which are way-nodes on the path, and the links between them 

are added to create an obstacle-free path (path A). As explained in the Section 0, the state and 

dimensions of access points (e.g. doors and windows) are important to enable the robot movement 

over the path. For example, a closed or narrow door can be an obstacle for the robot’s navigation. 

The main navigation concepts and relationships in Figure 5-2(a) are summarized in Table 5-5. 

 

Figure 5-4. Example of using BIM for path planning 
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Table 5-5. The main navigation concepts and relationships 

Concepts Relationship Concepts 

Navigation Task  has Navigation Network 

uses Navigation Sensor 

Navigation Network has Node, Link 

Depth Camera, LiDAR, RGB Camera is Inspection Sensor, Navigation sensor, 

Sensor Type 

GPS is Navigation Sensor, Sensor Type 

Navigation Sensor is Sensor 

Node inside Space, Node on Edge of Space, 

Node on Path 

is Node 

Space has 

Destination, Origin, Way-node is Node on Path 

Door-Corridor, Door-Room, Link on Path, 

Stair, Window-Corridor, Window-Room 

is Link 

Path Planning has Path, Path Planning Method 

Path Replanning uses Path Planning 

Path has Buffer-Width, Link on Path, Node on 

Path, Obstacle for Robot, Path 

Length 

5.3.4 Inspection Concepts 

Section 4.4.1.1 explained the main inspection concepts of OCSD, which is mainly dedicated to the 

inspection of concrete surface defects. Similar to OCSD, OBRNIT covers some types of concrete 

surface defects such as cracks and spalls. However, OBRNIT is not only about concrete surface 

defects and covers different types of building element defects (e.g. missing parts). Moreover, 

different inspection methods can be used based on OCSD to inspect concrete surface defects. 

OBRNIT mainly focuses on robotic inspection based on the remote sensing method to perform the 

robotic inspection.  

The inspection is the main task of the robot in OBRNIT and is mostly performed using vision 

sensors (e.g. LiDAR scanners, cameras). As explained in Section 5.3, DOT concepts are integrated 

to link with building defects concepts of OBRNIT. Examples of concepts reused from DOT are: 

damage, damage pattern, documentation, and defect. In this section, the attributes of inspection-

related tasks of OBRNIT are defined based on common defects in buildings [322]. OBRNIT covers 

only major types of defects related to ceiling, beam, column, wall, floor, roof, door, and window 

elements. However, it does not cover all types of building defects. Building elements can have 

different types of defects that the robot can inspect based on their material. For example, concrete 

surfaces can have defects such as cracks, spalling, and efflorescence. Moreover, some types of 

defects such as missing roofs can be detected after a disaster occurrence. As shown in Figure 

5-2(b), The inspection task has an inspection method, which can be visual inspection or a method 

for the measurement/detection of physical conditions (e.g. broken glass) or environmental 

conditions (e.g. temperature). The method of inspection is based on the sensor’s 

measurement/detection and acquired datasets. Measurement/detection devices for inspection are 

radio-frequency ID (RFID) readers, image sensors (i.e. RGB and thermal cameras), and LiDAR 

scanners. RFID is a technology that uses radio frequencies to detect the objects. RFID tags can be 

attached to separate object instances and linked with BIM information [323]. Inspection using 
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cameras produces images while inspection using LiDAR scanners produces point clouds. These 

images and point clouds can be used to detect surface defects, deformations, non-conforming 

elements, etc. The quality of LiDAR data is defined based on two main parameters of density and 

[324]. The density of a point cloud is represented by the number of points in a specific area. The 

distance between the two points which are next to each other defines the point spacing. Computer 

vision methods can be used for anomaly detection on the collected data [3]. Also, the information 

of computer vision methods can be used for obstacle detection and navigation tasks (Section 5.3.3).  

Defects can cause damage to the building elements. A damage occurs when a defective element 

loses its function. For example, water leakage from the ceiling is a defect, which can cause damage 

to the ceiling elements over time. There are several causes for defects formation and damage 

occurrence. Defects and damages have various patterns and characteristics.  

OBRNIT covers two main types of defects, including building defects and HVAC system defects. 

The point of interest of the inspection task is defined by the inspection purpose, which can be 

general scanning, inspecting mechanical systems (e.g. HVAC), or detecting building defects.  

General robotic scanning aims to update the BIM model or to collect data of a hazardous building, 

which is unsafe to inspect by human inspectors. The malfunctions of the HVAC system affect the 

environment temperature and air quality. Defected HVAC elements or related building elements 

(e.g. improper insulation) can be evaluated by thermal cameras. In the case of inspecting building 

defects (e.g. surface/material defects), specific building elements (e.g. doors, walls, floors, etc.) 

are the points of interest, and each of them can be a target for the inspection task. For example, 

defective gasket and improper insulation are some types of window frame defects; and the ceiling 

can be inspected for different types of defects such as leakage, stain, discoloration, bulging, 

spalling, delamination, and efflorescence. Some issues related to non-conformity can be 

considered as building defects, as discussed in Section 0. Furthermore, the detected defects can be 

used to update the available BIM model to create an up-to-date as-is BIM model. The inspection 

concepts and relationships in Figure 5-2(b) are summarized in Table 5-6. 
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Table 5-6. The main inspection concepts and relationships 

Concepts Relationship Concepts 

Inspection Task has Inspection Method, Point of 

Interest 

Measurement/Detection, Visual Inspection is Inspection Method 

Visual Inspection uses Inspection Sensor 

Inspection Method 

 

has Collected Data 

uses Sensor 

Computer Vision 

 

is Remote Sensing Method 

uses Collected Data 

Measurement/Detection has Measurement/Detection Device, 

Measurement/Detection Method 

Remote Sensing Method is Measurement/Detection Method 

GPS, Image Sensor, LiDAR, RFID Reader  is Measurement/Detection Device 

Depth Camera, RGB Camera, Thermal Camera is Image Sensor 

Thermal Camera measures Temperature 

Image Sensor 

 

captures Image 

is Inspection Sensor, Navigation 

Sensor, Remote Sensing Method, 

Sensor Type 

Image, Point Cloud is Collected Data 

LiDAR captures Point Cloud 

is Inspection Sensor, Navigation 

Sensor, Remote Sensing Method, 

Sensor Type 

Inspection Sensor is Sensor 

Building Defect, General Scanning, HVAC System 

Defect 

is  Point of Interest 

Bowing/Buckling, Broken Part, Building Defect, 

Bulging, Burned Part, Crack, Defective Gasket, 

Discoloration, Efflorescence, Evenness Defect, 

Excessive Gap, Flatness Defect, HVAC System 

Defect, Hole/cavity, Improper Insulation, 

Inadequate Height, Inadequate Thickness, Incorrect 

Slope, Leakage, Lifted Part, Loose Part, Mis-

aligned Door, Mis-aligned Window, Missing Beam, 

Missing Ceiling, Missing Column, Missing Door, 

Missing Part, Missing Roof, Missing Wall, Missing 

Window, Narrow Door, Narrow Window, Peeled 

Part, Spalling/Delamination, Stain, Unexpected 

Beam, Unexpected Ceiling, Unexpected Column, 

Unexpected Door, Unexpected Roof, Unexpected 

Wall, Unexpected Window, Water Ponding, Wrong 

Material 

is Defect 

Broken Door, Broken Window, Fallen Beam, Fallen 

Ceiling, Fallen Column, Fallen Wall 
is Damage 

 

Defect causes 

has Defect Pattern 
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Table 5-6. The main inspection concepts and relationships (continued) 

Concepts Relationship Concepts 

Damage has Damage Pattern 

HVAC System Defect affects HVAC System, Temperature 

Building Defect has target Beam Defect, Ceiling Defect, 

Column Defect, Door Defect, 

Floor Defect, Roof Defect, Wall 

Defect, Window Defect 

Bowing/Buckling, Broken Part, Crack, 

Discoloration, Efflorescence, Hole/Cavity, Missing 

Beam, Peeled Part, Spalling/Delamination, Stain, 

Unexpected Beam, Wrong Material 

is Beam Defect 

Bowing/Buckling, Broken Part, Bulging, Burned 

Part, Crack, Discoloration, Efflorescence, Evenness 

Defect, Flatness Defect, Hole/Cavity, Leakage, 

Lifted Part, Loose Part, Missing Ceiling, Missing 

Part, Peeled Part, Spalling/Delamination, Stain, 

Unexpected Ceiling, Wrong Material 

is Ceiling Defect 

Bowing/Buckling, Broken Part, Crack, 

Discoloration, Efflorescence, Hole/Cavity, 

Inadequate Height, Inadequate Thickness, Missing 

Column, Peeled Part, Spalling/Delamination, Stain, 

Unexpected Column, Wrong Material 

is Column Defect 

Door Frame Defect, Door Panel Defect, Inadequate 

Height, Mis-aligned Door, Missing Door, Narrow 

Door, Unexpected Door 

is Door Defect 

Broken Part, Burned Part, Crack, Discoloration, 

Lifted Part, Loose Part, Missing Part, Peeled Part, 

Stain, Wrong Material 

is Door Panel Defect 

Broken Part, Burned Part, Crack, Discoloration, 

Excessive Gap, Lifted Part, Loose Part, Missing 

Part, Peeled Part, Stain, Wrong Material 

is Door Frame Defect 

Bowing/Buckling, Broken Part, Bulging, Burned 

Part, Crack, Discoloration, Efflorescence, Excessive 

Gap, Hole/Cavity, Incorrect Slope, Leakage, Lifted 

Part, Loose Part, Missing Part, Peeled Part, 

Spalling/Delamination, Stain, Water Ponding, 

Wrong Material 

is Floor Defect 

Broken Part, Bulging, Burned Part, Crack, 

Discoloration, Efflorescence, Hole/Cavity, Incorrect 

Slope, Leakage, Lifted Part, Loose Part, Missing 

Roof, Missing Part, Peeled Part, Stain, Unexpected 

Roof, Water Ponding, Wrong Material 

is Roof Defect 
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Table 5-6. The main inspection concepts and relationships (continued) 

Concepts Relationship Concepts 

Bowing/Buckling, Broken Part, Bulging, Burned 

Part, Crack, Discoloration, Efflorescence, 

Evenness Defect, Flatness Defect, Hole/Cavity, 

Inadequate Height, Leakage, Lifted Part, Loose 

Part, Missing Part, Missing Wall, Peeled Part, 

Spalling/Delamination, Stain, Unexpected Wall, 

Wrong Material 

is Wall Defect 

Glass Defect, Inadequate Height, Mis-aligned 

Window, Missing Window, Narrow Window, 

Unexpected Window, Window Frame Defect 

is Window defect 

Broken Part, Burned Part, Crack, Defective 

Gasket, Discoloration, Excessive Gap, Improper 

Insulation, Leakage, Lifted Part, Loose Part, 

Missing Part, Peeled Part, Stain, Wrong Material 

is Window Frame defect 

Broken Part, Crack, Loose Part, Missing Part, 

Stain, Wrong Material 

is Glass Defect 

Biological Growth Stain, Chemical Stain, Dust 

Stain, Rust Stain, Water Stain 

is Stain 

Broken Glass, Defective Gasket, Improper 

Insulation 

affects Temperature 

5.4 Evaluation and Discussion 

Ontology evaluation is a main step in the ontology development, which refers to the process of 

evaluating if the developed ontology is correct and if it represents the main concepts and 

relationships [312, 313]. Two evaluation methods are used for evaluating the usefulness of 

OBRNIT: (1) application-based evaluation, and (2) qualitative criteria-based evaluation. The 

application-based evaluation is the evaluation of a developed ontology using a case study. This 

approach judges whether the ontology is suitable to perform the task and meets the objectives. 

However, it is not used to evaluate the design or the contents of the ontology [312]. On the other 

hand, the qualitative criteria-based evaluation approach is used to evaluate the ontology based on 

criteria such as clarity, coherence, correctness, and expandability. As explained in Section 4.5.1 

consistency criteria are tested using the HermiT OWL Reasoner in the verification process [308, 

309]. HermiT OWL Reasoner, which is based on the hypertableau algorithm, is used for 

identifying subsumption relationships and consistency evaluation [311]. The reasoner clarified 

some inconsistencies in the ontology. As described in Section 5.2, these results were utilized as 

feedback and input to Step 3 to fix the problems before going to the final step. 

5.4.1 Case Study 

Figure 5-5 shows a hypothetical case study of using an inspection robot to find the leakage in one 

of the rooms on the 9th floor in a building at Concordia University. The aim of the case study is to 

demonstrate the applicability of OBRNIT based on specific information about the building 

extracted from a BIM model and information about the inspection robot. The assumption is that 

the robot partially knows the environment based on a non-updated BIM model. After defining the 

inspection point of interest in Room 9-215, which is leakage in the ceiling, the robot navigates to 

reach this point of interest to perform the inspection task. Path planning is based on a reference as-
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built BIM model. The inspection robot will use an image sensor to capture images of the ceiling. 

Table 5-7 shows the inspection task specifications. The FLIR PackBot robot [325] is assumed as 

the robot used in the case study. The robot type is UGV, and it has horizontal and vertical (e.g. 

climbing the stairs) mobility. The inspection robot specifications are shown in Table 5-8.  

Examples of BIM-based information are shown in Table 5-9. This information includes the objects 

in Room 9-215 and the inspection point of the interest, as well as the spaces/objects from the 

elevator on the 9th floor to the door of Room 9-215. This table only contains the walls of Room 9-

215, and it does not show the other walls of the entire 9th floor. The navigation network and path 

planning concepts for the desired path are shown in Table 5-10. The origin node is in front of the 

elevators on the 1st floor, and the destination node is inside Room 9.215. The path has three parts. 

The first part is the vertical movement in the elevator from the origin node to the 9th floor (Figure 

5-5(a)). The second part of the path is the horizontal movement from the 9th floor elevator hall to 

the door of Room 9-215 (Figure 5-5(b)). The shortest path (Path A) uses Corridors 9-A1 and 9-A2 

(Nodes 2, 3`, 4`, and 7). However, this path is blocked with scaffoldings, which are used for a 

renovation project, and create an obstacle for the robot. Therefore, the robot must follow a longer 

path (Path B) to reach the room.  The robot obtains information about the scaffoldings from an up-

to-date BIM model, if available, or from its sensing ability. Having an up-to-date BIM model (i.e. 

as-is model) results in a higher confidence level with respect to obstacles. After detecting the 

obstacle, the robot replans a new path (Path B). The involved corridors to reach Room 9-215 in 

Path B are Corridor 9-A1, Corridor 9-A3, Corridor 9-A4, and Corridor 9-A2, which contain Nodes 

2,3,4,5, 6, and 7. The last part of the path is the horizontal movement inside the room from the 

door to the destination node (i.e. the inspection point of interest) as shown in Figure 5-5(c). The 

robot will learn from performing the navigation task. After finding the mismatch with the as-built 

BIM model (i.e. the scaffoldings), the robot stores them as a reference point for performing the 

next tasks. Figure 5-5(d) shows the robot collecting images of leakage in the room.  

The case study demonstrates that OBRNIT can answer all the competency questions (Table 5-1) 

and it covers all the concepts necessary for the planning of the robotic building navigation and 

inspection. Integrating mobility characteristics of the robot and the knowledge about the 

surrounding environment have been used to help the robot define the appropriate path based on 

the robot type and constraints and meet the requirement for the inspection task. The movement of 

the robot has constraints, which mainly depend on the size of the robot (e.g. a door, which is 

narrower than the width of the robot, is a constraint for the robot movement). The ontology has 

been used to help the robot use a suitable sensor for the specific inspection task. Furthermore, the 

field of view of the camera of the robot is a constraint for the inspection task (for this specific case 

is not a problem). Moreover, the robot benefits from the BIM model to define the path based on 

defining the nodes and links of the path. In addition, the robot benefits from the BIM model 

information to locate the inspection object. The case study shows how several concepts are 

extracted from the BIM model of the building. Examples of these concepts include concepts related 

to the navigation task (moving to the specific floor and the specific room, and then moving to the 

point of interest in the room), as well as the inspection task (orienting the camera to the leakage 

area based on the field of view and collecting images). 
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(a) BIM model of the whole building with the green part showing the vertical movement of the 

robot from the ground floor to the 9th floor 

 

(b) BIM model of the 9th floor and involved corridor spaces for the path from elevator to Room 9-

215 

                                            

 

Figure 5-5. Case study of using an inspection robot 

 

(c) Path of inspection robot in Room 9-215 (d) Robot collecting images of leakage in the room 
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Table 5-7. Inspection task specifications 

Concept in OBRNIT 

Point of interest Ceiling defect 

Type of defect Leakage 

Inspection method Measurement/Detection 

Measurement/Detection device Image sensor 

Table 5-8. Inspection robot main specifications 

Concept in OBRNIT Specifications 

Robot type (UGV) FLIR PackBot 

Movement 
Horizontal move 

Vertical move 

Sensor type (camera) 
4 RGB wide angel cameras with zoom and illumination (supports an 

optional 5th camera with thermal capability) 

Field of view 60° to 110° 

Degrees of freedom 8 

Size 

Length 88.9 cm 

Width 52.1 cm 

Height 17.8 cm 
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Table 5-9. Examples of IFC-based information of Room 9.215 and the spaces/objects outside the 

room 

IfcEntity Name Tag Concept in OBRNIT 

R
o

o
m

 9
-2

1
5
 

IfcColumn M_Round Column: 610mm Diameter 364991 Column 

IfcCovering Compound Ceiling: 600 x 600 mm grid 2, white 378778 Ceiling (point of 

interest for leakage 

inspection) 

IfcCurtainWall Curtain Wall: Storefront 363008 Curtain wall 

IfcDoor M_Single-Flush:0915 x 2134mm:379291 379291 Door 

IfcFurniture M_Furniture_System-Standing_Desk-Rectangular: 

1500x750 mm 

 

372571 Table 

 IfcFurniture 373006 

IfcFurniture 373129 

IfcFurniture 373192 

IfcFurniture 373239 

IfcFurniture 373486 

IfcFurniture 373630 

IfcFurniture 374087 

IfcFurniture 374640 

IfcFurniture 374723 

IfcFurniture M_Chair–- Executive 

 

376992 Chair 

 IfcFurniture 377394 

IfcFurniture 377583 

IfcFurniture 377646 

IfcFurniture 377711 

IfcFurniture 377776 

IfcFurniture 377859 

IfcFurniture 377916 

IfcFurniture 377983 

IfcFurniture 378050 

IfcFurniture M_Shelving: 1240 x 0305 x 1500 mm 368134 Shelving 

IfcFurniture 370460 

IfcFurniture M_Cabinet-File 4 Drawer:1000 x 0457 mm 367042 Drawer 

 IfcFurniture 367118 

IfcFurniture 368542 

IfcSlab Floor: Generic Floor–- 400mm 359802 Flooring 

IfcSpace Room – 9-215  Room 

IfcWallStandardCase Basic Wall: Interior–- 138mm Partition  

 

360817 Wall 

IfcWallStandardCase 360875 

IfcWallStandardCase 360745 

IfcWallStandardCase 361005 

IfcWallStandardCase 361035 

IfcWallStandardCase Basic Wall: steel- 200 mm concrete masonry unit (CMU) 361214 

IfcBuildingElementProxy Elevator: 1300 x 950mm 263782 Transport element -

elevator IfcBuildingElementProxy 263642 

IfcBuildingElementProxy 263853 

IfcBuildingElementProxy Site_Scaffolding 321511 Falsework/scaffolding 

IfcSpace Corridor – 9-A1 - Corridor 

 IfcSpace Corridor – 9-A2 - 

IfcSpace Corridor – 9-A3 - 

IfcSpace Corridor – 9-A4 - 

IfcStair Assembled Stair: ”" max riser 1”" tread 258349 Stair 
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Table 5-10. Navigation network and path planning concepts 

Concept in OBRNIT 

Parts of the path to reach inspection 

point of interest 

Links 

connecting 

nodes 

Obstacles for robot 

Vertical path in the elevator shaft from  

the 1st floor to the 9th floor 
1-2 - 

Horizontal 

path in 

corridors 

on the 9th 

floor 

Path A 
2-3`-4`-7 

 
Scaffoldings, walls, door 

Path B 2-3-4-5-6-7 Walls, door 

Horizontal path inside Room 9-215 7-8-9-10 Chairs, tables 

5.4.2 Criteria-based Evaluation 

A survey was conducted to evaluate the adequacy of the semantic representation of the concepts 

and relationships of OBRNIT. The survey includes eight questions, which are related to the 

different components of OBRNIT. These questions reflect the coverage of the concepts and 

semantic relationships between the classes and aim to measure the clarity and comprehensiveness 

of OBRNIT. The first question was about the respondents’ information. The second question was 

about BIM and its benefits for inspection robots. The third and fourth questions considered the 

clarity and comprehensiveness of the main concepts of OBRNIT. The fifth and sixth questions 

were about the clarity and comprehensiveness of the inspection part of OBRNIT. The seventh 

question was about a statement related to the complexity of interactions between components in 

OBRNIT. Finally, the last question considered OBRNIT capability for system development. The 

survey questions of OBRNIT are listed in Table 5-11. A five-point Likert scale is used to get 

quantitative values of the answers. The survey was sent to 105 internationally recognized experts 

selected based on their knowledge in BIM, construction, and robotic inspection.  

The results of OBRNIT survey including the total number of participants, the respondents’ 

profiles, and the survey answers are available at https://github.com/OBRNIT/Survey-Result. 
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Table 5-11. The evaluation questions of OBRNIT 

Q1 Name, organization/university, area of expertise, and years of experience. 

Q2 BIM (Building Information Modeling) information extends the declarative knowledge of the environment 

for the performance of the cognitive robot during navigation tasks. Do you agree with this statement? 

○ Strongly agree   ○ Agree   ○ Neither agree nor disagree   ○ Disagree   ○ Strongly disagree   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q3  Figure 5-2(a) represents the high-level concepts and relationships of the ontology for BIM-based robotic 

navigation and inspection tasks. Do you find this representation clear? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all    ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q4 Based on Figure 5-2(a), do you find the representation comprehensive in integrating the main concepts 

related to OBRNIT? 

Comprehensiveness here means representing the main concepts to robotic navigation and inspection using 

BIM, and not replicating all the concepts of building elements, robots, etc. 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive     

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q5  Figure 5-2(b) shows the high-level concepts and relationships of the ontology for inspection-related tasks. 

Do you find this representation clear? 

○ Very clear   ○ Clear   ○ Somewhat clear   ○ Not so clear   ○ Not clear at all   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q6 Based on Figure 5-2(b), do you find the representation comprehensive? 

○ Very comprehensive   ○ Comprehensive   ○ Somewhat comprehensive   ○ Not comprehensive    

○ Missing lots of concepts   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q7 OBRNIT defines complex declarative knowledge where the same concept is used in multiple relationships 

related to different tasks. For example, a door can be an obstacle for the robot in a navigation task or the 

main target of inspection in an inspection task. Another example, a LiDAR scanner can be a sensor for 

navigation or inspection tasks. Do you agree with this statement? 

○ Strongly agree   ○ Agree   ○ Neither agree nor disagree   ○ Disagree   ○ Strongly disagree   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

Q8 OBRNIT is expected to help the development of robotic navigation and inspection systems. Do you agree 

with this statement? 

○ Strongly agree   ○ Agree   ○ Neither agree nor disagree   ○ Disagree   ○ Strongly disagree   ○ No answer 

Comments: ……………………………….………………………………………………………………... 

5.5 Summary and Conclusions 

This chapter developed an integrated ontology, called OBRNIT, to extend BIM applications for 

robotic navigation and inspection tasks. There are 386 classes, 45 relations, 52 attributes, and 8 

individuals in OBRNIT. OBRNIT comprises high-level knowledge of the concepts and 

relationships related to buildings, robots, and navigation and inspection tasks. BIM is considered 

as a reference that is integrated with the knowledge model. The HermiT OWL reasoner was used 

to evaluate the consistency of OBRNIT. The evaluation demonstrates that the ontology is 

consistent, and all implicit relationships have been represented. The application of OBRNIT was 

investigated in a case study. In addition, a survey was designed and conducted to evaluate the 

semantic representation of OBRNIT. The evaluation demonstrates that OBRNIT covers the 

domain’s concepts and relationships up to the point that satisfies the domain experts. Based on the 

evaluation, OBRNIT was able to give a clear understanding of the concepts and relationships in 

the domain, and it can be applied for developing robotic inspection systems. OBRNIT is expected 

to provide the following benefits: (1) OBRNIT can help system engineers involved in developing 
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robotic inspection systems by identifying the different concepts and relationships about robotic 

inspection and navigation tasks based on BIM information; (2) capturing the essential information 

from BIM can help to develop a seamless knowledge model to cover the missing parts of BIM; 

and (3) Using ontological knowledge can help overcome the complexity in interactions between 

components in the robotic inspection system. OBRNIT can be used as a first step towards logic-

based inspection, which can help robots to perform inspection tasks autonomously without the 

help of human judgment. It is difficult to prove that an ontology enables additional capabilities for 

systems that would not be possible without it [8]. However, using a central ontological 

knowledgebase can facilitate the development of robotic inspection systems. 
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CHAPTER 6.     POINT CLOUD-BASED CONCRETE SURFACE DEFECT SEMANTIC 

SEGMENTATION AND AS-INSPECTED MODELING 

6.1 Introduction 

As explained in Chapter 2, DNNs have been recently used for detecting 3D objects within 3D point 

clouds. This chapter proposes an approach for detecting concrete surface defects (i.e. cracks and 

spalls) using adapted Normal Vector Enhanced DGCNN (NVE-DGCNN). This chapter started 

with exploring the adapted PointNet++ in the first phase. Then the DGCNN’s ability to detect the 

edges is considered in the next phase. For the DGCNN, the work started with an adapted DGCNN, 

and then the main network of this research, which is the NVE-DGCNN was investigated in the 

next step. The proposed method is applied to a point cloud dataset from four concrete bridges in 

Montreal. The experimental results show the usefulness and robustness of the proposed NVE-

DGCNN in detecting concrete surface defects from 3D point cloud data. Furthermore, post-

processing of semantic segmentation results was done in this chapter to create an as-inspected BIM 

model. 

6.2 Methodology 

6.2.1 Modified CNN Models 

DGCNN, which was originally designed to detect indoor building elements, is modified and 

adapted to automate the inspection process of concrete surface defects, including cracks and spalls. 

DGCNN is selected in this research because it considers the edge feature, which is the most 

valuable feature in concrete surface defects semantic segmentation. As explained in Section 6.1, 

exploring adapted PointNet++ in this research was an initial step. Therefore, in the first phase, 

PointNet++ was adapted, and sensitivity analysis was performed to identify the effect of 

hyperparameters and compare the network results with the adapted DGCNN, which is the main 

network of this research. Therefore, this research is based on three modified CNN models, 

including adapted PointNet++, adapted DGCNN, and NVE-DGCNN, which are explained as 

follows: 

(a) Adapted PointNet++: The following modifications have been done:  

• Network input parameters: The network input parameters such as the class number, number 

of points per block, block size, and stride are modified based on annotated segments, sizes of 

the structural defects, and density of segmented parts. 

• Sampling size: In contrast with the original PointNet++, the sampling size is modified based 

on the smallest dimension of segments in the prepared dataset. The original PointNet++ 

considered the network’s sampling sizes of 10, 20, 40, and 80 cm. In this study, the smallest 

dimension of segments in the prepared dataset is 46 cm. Therefore, the sampling sizes are 

decreased to 5, 10, 20, and 30 cm. 

• Convolving direction: The X-axis is set along the concrete surface, the Z-axis is set in the 

vertical direction of the canonical coordinate system, and the Y-axis is set perpendicular to the 

surface and in the direction of the depth of the defects. The depth of defects is set to have 

positive Y values. 

• Modification related to the normalized coordinates: The normalized values of the X and Z 

coordinates are removed from the PointNet++ network, and the input variables for the adapted 

PointNet++ are XYZ, RGB, and Y’.  
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• Loss function: In adapted PointNet++, the method of cost-sensitive loss function was selected. 

The cost-sensitive loss function is a method based on assigning different costs to the 

imbalanced data classes [326]. This method was selected as this network considers weighted 

sampling in the model. In the weighted sampling process, different sampling probabilities are 

assigned to each sample during the training. In this method, every set of batches may have 

different weight distribution and the weight vector of classes is calculated for every set of 

batches separately. Therefore, the contribution of classes with higher cost weights will increase 

by updating the sampling weights [327]. This process makes the model learn from each class 

equally. The probability of occurrence of class i and the cost weight of label i are calculated 

dynamically in the training process by using Equation 6-1 [328-330]. The cost weights of labels 

tend to be inversely related to the sample’s class percentage in the overall dataset. 

Cost weight of Labeli =
1

log(1.05 +
Ci

∑ Ci
N
i=1

)
 

Equation 6-1 

Where N is number of classes and Ci is total number of points for each class.  

As shown in Figure 6-1, the first hidden layer of adapted PointNet++ has four sub-layers for 

sampling N1, N2, N3, and N4 points out of n points in each sub-layer and grouping the points in the 

radius of 5, 10, 20, and 30 cm from the centroid of a region to feed the mini PointNet MLPs. Then 

four mini PointNet MLPs are applied to interpolate the learning features from previous MLPs. The 

last layers are two Fully-Connected (FC) layers with a dropout layer in the middle to classify the 

n points in three classes using the cost-sensitive loss function. The implementation of adapted 

PointNet++ is explained in Section 6.4. 
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Figure 6-1. Architecture of adapted PointNet++ (adapted from [289])
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(b) Adapted DGCNN: The following modifications have been done:  

• Network input parameters: Similar to the adapted PointNet++, the adapted DGCNN 

network input parameters such as the class number, number of points per block, block size, 

and stride are modified based on annotated segments, sizes of the structural defects, and 

density of segmented parts. Wang et al. [27] used the block size of 1 m × 1 m on the XY 

surface for rooms with a height of 3 m to detect indoor building elements using DGCNN. 

The number of points of 4,096 is used for their training process. This setting results in a 

very low density of points for detecting most types of defects in this study (e.g. medium-

size spalls). In the adapted DGCNN, the block size of 40 cm × 40 cm is set based on the 

sizes of the structural defects in the dataset. Moreover, the density of points in each block 

is increased by raising the number of points. 

• KNN of the EdgeConv layer: In this study, in contrast with the original DGCNN, using 

the normalized X, Y, and Z coordinates of points for the KNN of the EdgeConv layer was 

considered to be unsuitable because normalization can destroy the critical information 

about the depth in the Y direction, which is much smaller than X and Z coordinates. A test 

was performed based on the original DGCNN to examine the effect of using the normalized 

location values for the KNN, which will be shown in Section 6.4.2. The test result showed 

that the models’ performance declined significantly by considering the normalized location 

values for KNN. Therefore, the KNN for the EdgeConv layer of the adapted DGCNN is 

modified to compute the KNN based on the XYZ coordinates. 

• Convolving direction: Similar to the adapted PointNet++, in adapted DGCNN, the depth 

of defects is set in the direction of the Y coordinate value. 

• Modification related to the normalized coordinates: Similar to the adapted PointNet++, 

the input point variables of adapted DGCNN are changed from a 9-dimensional vector 

(XYZ, RGB, and X’Y’Z’) to a 7-dimensional vector (XYZ, RGB, and Y’) by removing the 

normalized values of the X and Z coordinates, and this vector is fed to the network. 

• Loss function: As the defects’ number of points in this research is less than the non-defect 

number of points (defect points are almost 14% of the whole point cloud), which is known 

as the issue of imbalanced datasets, a weighted softmax cross entropy loss function is 

utilized to adapt the DGCNN models to the prepared dataset, and the corresponding weight 

vector is set based on the distribution of points label among the three classes. The method 

of distribution-based loss function is selected as a label weight score of classes is not 

dependent on how the instances are sampled, which can be more practical in this case. The 

label weight score of class i is calculated statically and added to the model using Equation 

6-2 and Equation 6-3 [281, 331].  

                Distribution of points with classi label =
∑ Ci

N
i=1

Ci
 Equation 6-2 

                Label weight score of classi =
Distribution of points with classi label

∑ Distribution of poInts with classi labelN
i=1

 Equation 6-3 

Where N is the number of classes and Ci is the total number of points for each class.  

Figure 6-2 shows the architecture of the adapted DGCNN. The parameter K in the model is the 

number of edge features calculated for each point in each EdgeConv layer with an input of n points. 
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The segmentation model of adapted DGCNN involves a series of three EdgeConv layers, a max-

pooling layer to extract global features of the block, and three FC layers with a dropout layer in 

the middle to classify the n points in three classes using the weighted softmax cross entropy loss 

function.  

(c) NVE-DGCNN: The only modification in addition to the those in adapted DGCNN is the 

consideration of normal vector in NVE-DGCNN. The adapted DGCNN method was enhanced by 

considering the normal vector feature in the NVE-DGCNN. The NVE-DGCNN model is modified 

to compute the KNN based on XYZ coordinates, and the contribution of the minority classes is 

increased during the training of the network by modifying the loss function, as in the case of 

adapted DGCNN. NVE-DGCNN is modified to consider a 10-dimensional vector by adding the 

components of the normal vector (Nx, Ny, and Nz) as additional point features to the 7-dimensional 

vector in adapted DGCNN. The input variables are XYZ, RGB, NxNyNz, and Y’. The segmentation 

model of NVE-DGCNN also involves a series of three EdgeConv layers, a max-pooling, and three 

fully connected layers. Figure 6-3 shows the architecture of the NVE-DGCNN. The adapted 

DGCNN and NVE-DGCNN hyperparameters are shown in Table 6-1. 
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Figure 6-2. Architecture of adapted DGCNN (adapted from [27]) 
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Figure 6-3. Architecture of NVE-DGCNN (adapted from [27])
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Table 6-1. DGCNN, adapted DGCNN and NVE-DGCNN hyperparameters 

6.2.2 Steps of Applying the Modified CNN Models 

There are six main steps in applying the modified CNN models: (1) data collection, (2) manual 

annotation, (3) data pre-processing, (4) training and evaluation, (5) testing, (6) sensitivity analysis. 

Figure 6-4 shows the proposed method for concrete surface defect semantic segmentation using 

adapted DGCNN and NVE-DGCNN in detail. However the normal vector estimation and 

sensitivity analysis steps are only implemented for NVE-DGCNN. 

6.2.2.1 Data Collection 

The geometric features of defects, particularly the depth, play a significant role in extracting 

important features and having accurate results. Currently, most of available online datasets for 

concrete surface defects are image-based. Therefore, data collection is an important step and has 

to be done accurately. The scanner position and the scanning parameters, such as resolution, 

quality, Field of View (FOV), and the number of scanned points, are the factors that can affect the 

visibility of defects in the collected point cloud data.

Parameter DGCNN Adapted DGCNN NVE-DGCNN 

Classes 
Building indoor objects 

(11 classes) 

Cracks, spalls, 

no-defect 

Cracks, spalls, 

no-defect 

Input Variables 
X, Y, Z, R, G, B, X’, Y’, 

Z’ 
X, Y, Z, R, G, B, Y’ X, Y, Z, R, G, B, Nx, Ny, Nz,Y’ 

Number of points 

in each block 
4,096 pts 8,192 pts 8,192 pts 

Size of blocks (m) 1 m  1 m Zmax 0.4 m Ymax 0.4 m 0.4 m Ymax 0.4 m 

Stride N.A. 0% 25% 

Convolving 

direction 
XY surface XZ surface XZ surface 

Number of nearest 

neighbors (k) 
20 20 20 

Number of epochs 100 50 50 

Optimizer Adam Adam Adam 

Data 

augmentation 
Random rotation Flipping horizontally Flipping horizontally 

Weight vector for 

loss function 

Softmax cross entropy Weighted Softmax cross entropy Weighted Softmax cross 

entropy 

Learning rate 1e-3 (decays exponentially to a minimum of 1e-5) 
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Figure 6-4. Proposed method for concrete surface defect semantic segmentation using adapted DGCNN and NVE-DGCNN 
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6.2.2.2 Data preparation 

After data collection, irrelevant points of the point cloud data in each scan need to be eliminated, 

and all the scans will be prepared for registration. Then, different areas are cut from the registered 

point cloud data, and different parts are segmented in each area. The selected parts need to be 

manually annotated based on the types of targeted surface defects. As shown in Figure 6-4, in this 

research, two main types of surface defects, which are cracks and spalling, are considered. Each 

part of the dataset is annotated into three categories of crack, spalling, and non-defect. 

Furthermore, in this research, to enlarge the size of the dataset, the augmentation method of 

flipping the point cloud is used, where the annotated parts are flipped with respect to the YZ plane. 

6.2.2.3 Data pre-processing 

This research considers two approaches for preparing the dataset and feeding the MLP classifier 

of the CNN network. In the first approach, the original dataset files are converted into data label 

files, which are 2D matrices with XYZRGBL in each line. Then, each part is split into blocks, and 

for each block, normalized location values on the Y surface are added [27]. Each point is 

represented as a 7-dimensional vector of XYZ, RGB, and Y’. These features were used for the 

training process of the adapted PointNet++ and the adapted DGCNN. In the second approach, an 

additional hand-crafted point feature, which is the normal vector (Nx, Ny, and Nz) is added to feed 

a MLP classifier of NVE-DGCNN. Previous works, such as Hyeon et al. [332] investigated the 

effect of considering normal vectors as an additional feature for semantic segmentation of building 

elements and stated that considering the normal vectors in CNN networks can improve the model’s 

performance.   

Then, the sizes of blocks are defined based on the sizes of the structural defects (smallest segment 

or the largest defect) in the dataset. In this research, the smallest dimension of segments is 46 cm, 

and the largest defect size is 60 cm. Hence, the selected block size in the data pre-processing step 

is assumed to be at least 40 cm × 40 cm on the XZ surface, with the depth of the defects as the third 

dimension, which is equal to the depth of the deepest defect in each segment.  As shown in Figure 

6-4, in this step, the wrapped and normalized points inside the blocks are converted to Hierarchical 

Data Format (HDF) [333], and HDF5 files are used for the training process in the next step. 

6.2.2.4 Training and evaluation 

As discussed in Section 6.2.1, a series of three EdgeConv layers followed by three fully-connected 

layers are included in the segmentation model of DGCNN, and the number of the K-nearest 

neighbors of a point for EdgeConv layers is specified for the input of n points in the model. The 

number of the K-nearest neighbors of a point for EdgeConv layers is set equal to 20 following the 

suggested value by Wang et al. [27].  

6.2.2.5 Testing 

To validate the model accuracy, the unseen parts of the dataset, which are not used in the training 

and evaluation steps, are used for the testing step. The confusion matrix is used to describe the 

model’s performance using the equations presented in Table 6-2. In this research, the term overall 

accuracy refers to the percentage of correct predictions for the test data. Furthermore, the recall is 

assumed to be more relevant than precision as the process of concrete surface inspection aims to 

minimize the chance of missing actual defect points, which can be achieved by minimizing the 

False Negative prediction of the model. Recall is more important when the outlay of missing the 
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correct prediction is more significant than the outlay of the wrong prediction. Precision is more 

important when the outlay of the wrong prediction is more significant than the outlay of missing 

the correct prediction. F1 score, which is the harmonic mean of precision and recall, is used when 

the model's resistance to the outliers is more critical. Intersection over Union (IoU) is used when 

computing the area of overlap between the bounding boxes of prediction and ground-truth is more 

important [328]. 
Table 6-2. Model performance metrics 

Performance metrics Equation 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Intersection over Union (IoU) 
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

Overall accuracy 
𝑇𝑃𝐶𝑟𝑎𝑐𝑘 + 𝑇𝑃𝑆𝑝𝑎𝑙𝑙 + 𝑇𝑃𝑁𝑜𝑛−𝑑𝑒𝑓𝑒𝑐𝑡

𝐴𝑙𝑙 𝑝𝑒𝑟𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
 

Note: TP refers to true positives, FP refers to false positives, and FN refers to false negatives 

6.2.2.6 Sensitivity analysis 

As shown in Figure 6-4,  sensitivity analysis was done in this research to investigate the effect of 

different input variables on the network’s performance. The dataset’s density depends on the block 

size and the number of points per block. Blocks with densities more than the pre-set value result 

in up-sampling. On the other hand, densities less than the pre-set value for each block result in 

down-sampling. Therefore, the distribution of segments based on their densities should be 

considered. The hyperparameters related to the dataset, which are considered in this research, are: 

(1) number of points, (2) size of the block, and (3) size of stride. The number of points per block 

is selected based on the density range and the pre-set default block size (40 cm × 40 cm). The 

number of points per block of 8,192 is selected as the first acceptable value. Then the density of 

points in each block is increased by raising the number of points. The density of most segments of 

the prepared dataset is between 9,049 and 329,369 pts/m2. Figure 6-5 shows the list of number of 

points per block, block sizes, and their densities. Increasing the number of points to more than 

12,288 could not be applied due to computation resource limitations (i.e., RAM). Moreover, the 

density of the block with the size of 20 cm × 20 cm and number of points of 14,336 is more than 

329,369 pts/m2, which is out of the range for this research. Then the block size is decreased for the 

same pre-set number of points to increase the density of points in each block. Stride can be added 

to shift the number of points per block over the input matrix. Considering the overlapped number 

of points per block may improve the results. Therefore, the effect of stride on the results is 

considered in the sensitivity analysis. 
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Figure 6-5. List of number of points per block, block sizes, and their densities 
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6.2.3 As-Inspected Modeling 

Figure 6-6 shows the workflow of the as-inspected modelling process. The following main steps 

are used to semi-automate the process of as-inspected modeling: 

 

Figure 6-6. Workflow of as-inspected modeling 

(1) Defects semantic segmentation: The as-built bridge model is assumed to be available. The 

semantic segmentation results of NVE-DGCNN for crack and spall defects are used for the as-

inspected modeling purpose. 

(2) Clustering of segmented defects: Density-based spatial clustering, which is proposed by Liu 

et al. [334], is used in this step to create spatial proximity relationships to cluster the defects [335]. 

(3) Calculating main dimensions of each defect: An algorithm is used to find the Minimum 

Bounding Box (MBB) for each cluster [336, 337], and geometrical information of cracks and spalls 

including the defects’ length, width, and depth are calculated based on the Euclidean distance 

between the corners of the associated bounding box.  

(4) Defining the severity level of each defect and condition of element: The severity level of 

each defect is defined based on Table 6-3. This table shows the severity levels of crack and spall 

defects used in OCSD (Section 4.4), which are based on the OSIM [41]. The element condition is 

defined based on the severity level. 

Table 6-3 Severity of crack and spall defects in OCSD based on OSIM [41] 

Surface 

defect types 
Severity (all dimensions in mm) 

Crack 
Hairline 

(width < 0.1) 
Narrow 

(0.1 ≤ width ≤ 0.3) 
Medium 

(0.3 < width ≤ 1.0) 
Wide 

(1.0 < width) 

Spall 
Light 

(Any direction < 150 

or depth < 25) 

Medium 

(150 ≤ Any 

direction ≤ 300 

or 25 ≤ depth ≤ 50) 

Severe 

(300 < Any 

direction ≤ 600 

or 50 < depth ≤ 100) 

Very severe 

(600 < Any direction 
or 100 < depth) 

(5) Aligning segmented defects to the initial coordinate system: The segmented defects are 

aligned to the initial coordinate system by considering each point’s normal vector using the Normal 

Iterative Closest Point (NICP) algorithm [338], which is proposed by Serafin and Grisetti [339]. 

Although some tools such as CloudCompare software can be used to align the point clouds 
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manually by picking at least four pairs of reference points in the source and target point clouds, 

this process is time consuming. 

(6) 3D meshing of segmented defects: In this step, the clusters of detected defects are converted 

into the 3D mesh product using 3DReshaper software to have an accurate model of the defect 

objects. 

(7) Importing defects as objects in BIM model: In this step, a Dynamo script using Mesh Toolkit 

[340] is utilized to import the 3D mesh defects into the BIM model (Appendix A). Although the 

case study that will be explained in Section 6.5 is about bridge inspection, where the structure 

model is refer to as Bridge Information Model (BrIM), the term BIM will be used in the rest of 

this chapter. 

6.3 Data Collection and Dataset Pre-processing  

This study used point cloud datasets from four reinforced concrete bridges in Montreal, scanned 

using a FARO Focus3D scanner [341]. The specifications of this scanner are presented in Table 

6-4. The images of the scanned bridges are shown in Figure 6-7. Table 6-5 shows the scanning 

parameters. CloudCompare software [342] is used to register and eliminate the irrelevant points of 

the point cloud data. The scanned data’s quality depends on the two main parameters of density 

and accuracy [324]. The number of points in a specific area represents the point cloud density 

[343]. The resolution parameter represents the number of points that the scanner uses to measure 

the environment during the scanning process (between 1 (710.7 million points) - 1/32 (11.1 million 

points)), and the quality represents the number of times the scanner hits the same point during the 

scanning (between–1x - 8x) [344]. Therefore, the distance between two points next to each other 

depends on the resolution parameter. 

The scanning process in this step is affected by several factors, such as the battery capacity and 

performance limitations especially in severe weather conditions, scanning time, and traffic 

constraints. For this reason, different settings, including different numbers of stations, were used 

to scan each of the bridges. In some scans, the FOV was reduced to avoid scanning irrelevant 

objects (e.g. moving vehicles). 

Table 6-4. FARO Focus3D LiDAR scanner specifications [354] 

LiDAR 
Points per 

Second 

Field of View Angular 

Resolution 
Accuracy 

Measurement 

Range Vertical Horizontal 

FARO Focus 3D 976,000 305° 360° 0.009° ±2 mm 1.5 m – 120 m 
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(a) Bridge 1: Guy Street 

 

(b) Bridge 2: Lucian L’Allier Street 

 

(c) Bridge 3: Avenue Atwater 

 

(d) Bridge 4: Chemin Macdonald 

Figure 6-7. Scanned bridges 

Table 6-5. Scanning parameters of four scanned bridges in Montréal 

Scans 
Number of 

Stations 
Resolution Quality 

Horizontal 

FoV 
Vertical 

FoV 

Number 

of Points 

(Mpts) 

Bridge 1 
Scan 1 8 1/4 6x 23° to 259° -42.5° to 71° 25.5 

Scan 2 4 1/4 6x 23° to 259 ° -42.5° to 71° 25.5 
Bridge 2 Scan 3 6 1/1 2x 0° to 360° -60° to 90° 710.7 
Bridge 3 Scan 5 4 1/2 4x 0° to 360° -45° to 71° 134.5 
Bridge 4 Scan 6 2 1/2 4x 0° to 360° -60° to 90° 177.7 

The prepared dataset includes 102 selected segmented parts from the scanned bridges. The number 

of annotated cracks in the selected parts is 595, and the number of annotated spalls is 773. The 

annotation process is done manually in CloudCompare software using the following rules based 

on experience: (1) a specific range of 150,000 pts to 400,000 pts is considered for the number of 

points of each selected part; (2) the scanned surfaces are classified into rectangular parts because 

of the box shape of the blocks in the model; and (3) the part size should consider the higher density 

of points in some parts and it should not contain more than the maximum defined number of points, 

which is 400,000 pts. Furthermore, the handcrafted normal vector feature (Nx, Ny, and Nz) is 

computed in CloudCompare software to prepare the NVE-DGCNN dataset. The annotated datasets 

are split into five areas. Area 1 to 3 are used for training, Area 4 is used for evaluation, and Area 

5 is dedicated to testing. The total number of segmented parts after adding the flipped data is 204 

parts. The statistical information of the dataset, including the flipped data, is given in Table 6-6. 

Figure 6-8 shows the structure of preparing the dataset, including a sample of an annotated 
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segment, where yellow, red, and blue represent the non-defect, crack, and spalling, respectively.  

 

 

Figure 6-8. The structure of the dataset 

6.4 Implementation of the Modified CNN Models 

6.4.1 Adapted PointNet++  

The adapted PointNet++ was studied to identify the effect of the hyperparameters mainly the 

number of points and strides. In this sensitivity analysis, nine cases are defined and validated using 

three numbers of points (8,192, 10,240, 12,288) and three stride sizes (0%, 25%, 50%). As 

discussed in Section 6.2.2.6, the values for these two parameters in the sensitivity analysis are 

related to the values of the raw dataset. The convolving direction is set to XZ surface, and the initial 

block size is set to 40  Ymax  40 cm. Training and testing were performed on a cloud computing 

platform using 2 NVIDIA P100 Pascal GPUs, 24 GB RAM per GPU, and a 32-core CPU. The 

Table 6-6. The statistics of the prepared dataset 

Dataset 

Number 

of 

segmented 

parts 

Number of 

points 

Defects Non-defects 

Crack Spalling 

Number of 

points 
Number 

of 

cracks 

Number 

of points 

Number 

of spalls 

Number 

of points 

Training 

(59.5%) 

Area 1 32 10,418,902 264 104,256 226 715,768 9,598,878 

Area 2 44 11,003,768 334 112,436 266 282,822 10,608,510 

Area 3 42 10,651,316 160 67,714 356 744,356 9,839,246 

Evaluation 

(19.6%) 
Area 4 44 10,552,584 192 80,454 328 762,156 9,709,974 

Testing 

(20.9%) 
Area 5 42 11,257,240 240 128,538 370 1,365,228 9,763,474 

Total 204 53,883,810 1,190 493398 1,546 3,870,330 49,520,082 
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number of epochs is set to 50. The initial learning rate is 0.001 and the learning rate decays 

exponentially to a minimum of 1e-5.  

Three cases were with 0% (40 cm) stride (A to C), which means there is no overlapping in the 

training datasets and convolutions. In all cases with the same block size and stride, the number of 

points increased from 8,192 to 12,288. In three cases (D to F), the stride was decreased by 25% 

(30 cm), and in the remaining cases (G to H), the stride considered was 50% (20 cm).  

Table 6-7 shows the output results of calculated accuracies and mean losses for training and 

evaluation, and Table 6-8 shows the testing results. Figure 6-9 shows recall test results for 

PointNet++ cases. Figure 6-10 shows the effect of stride based on the average recall value. As 

shown in this figure, both crack and spalling recalls were improved by decreasing the stride value. 

Decreasing the stride to 50% improved the crack recall by almost 2%. Figure 6-11 shows the effect 

of the number of points based on the average recall value. As shown in this figure, increasing the 

number of points will increase the recall of defects in the adapted PointNet++ network.  

Table 6-7. Training and evaluation results for adapted PointNet++ 

Case 

Number of 

points in 

each block 

Block size 

(cm) 

Stride 

(cm) 

Training Evaluation 
Training 

time 
Mean 

loss 

Overall 

Accuracy 

Mean 

loss 

Overall 

Accuracy 

A 8,192 40×40 40 (0%) 0.120 98.4% 0.135 96.2% 4h 42m 

B 10,240 40×40 40 (0%) 0.087 98.7% 0.102 96.8% 5h 42m 

C 12,288 40×40 40 (0%) 0.094 98.7% 0.107 96.7% 6h 36m 

D 8,192 40×40 30 (25%) 0.089 98.7% 0.134 96.3% 7h 32m 

E 10,240 40×40 30 (25%) 0.079 98.8% 0.114 96.7% 8h 57m 

F 12,288 40×40 30 (25%) 0.074 98.9% 0.115 96.7% 10h 34m 

G 8,192 40×40 20 (50%) 0.108 98.5% 0.127 96.5% 14h 33m 

H 10,240 40×40 20 (50%) 0.071 99.0% 0.100 97.1% 17h 36m 

I 12,288 40×40 20 (50%) 0.086 98.7% 0.094 97.0% 20h 35m 
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Table 6-8. Testing results for adapted PointNet++ 

Case 

Cracks Spalling Non-defect 

Precision Recall F1 score IOU Precision Recall 
F1 

score 
IOU Precision Recall 

F1 

score 
IOU 

A 27.6 21.9 24.4 13.9 66.9 69.6 68.3 51.8 95.3 95.0 95.2 90.8 

B 38.4 45.2 41.6 26.2 67.6 77.5 72.2 56.5 96.5 94.4 95.5 91.3 

C 39.7 48.1 43.5 27.8 68.0 80.4 73.7 58.4 96.9 94.4 95.6 91.6 

D 29.5 26.5 27.9 16.2 75.8 75.7 75.7 60.9 96.0 96.2 96.1 92.5 

E 42.9 43.5 43.2 27.5 74.9 79.6 77.2 62.8 96.6 95.8 96.2 92.7 

F 41.7 49.3 45.2 29.2 76.6 75.6 76.1 61.4 96.2 96.1 96.1 92.6 

G 22.2 24.4 23.3 13.2 70.2 79.4 74.5 59.4 96.3 94.3 95.3 91.0 

H 46.6 50.1 48.3 31.8 80.0 77.7 78.9 65.1 96.3 96.6 96.5 93.2 

I 42.4 50.1 45.9 29.8 75.2 80.6 77.8 63.6 96.9 95.7 96.3 92.8 

 

 

Figure 6-9. Recall testing results for adapted PointNet++
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Figure 6-10. Effect of stride based on the average recall value for adapted PointNet++ 

 

 

Figure 6-11. Effect of the number of points based on the average recall value for adapted 

PointNet++ 
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6.4.2 Adapted DGCNN 

A Compute Canada cluster is used to implement this case study using 4 NVIDIA V100 Volta 

GPUs with 32 GB RAM per GPU, 24 CPUs, and 123 GB of memory. The available memory on 

the hardware constraints the possible volume of computation. The number of epochs is set to 50. 

The initial learning rate is 0.001 and it decays exponentially to a minimum of 1e-5. The percentage 

of the defect points is almost 14% of the whole point cloud and is much less than the no-defect 

points (86%). Therefore as discussed in Section 6.2.1, a weighted softmax cross entropy loss 

function is defined in the model based on the points distribution of the classes (crack, spalls, and 

non-defect), which is [0.714, 0.271, 0.016]. By using a weighted loss function, the effective weight 

of points of each class in the correcting process of backpropagation can be adjusted. 

In the first step, to implement the adapted DGCNN, three cases are defined with different numbers 

of input points of 8,192, 10,240, and 12,288 (Case A1 to C1), which are sampled for each block 

during the training process. The training and evaluation results, including the overall accuracy and 

mean loss of Cases A1 to C1, are presented in Table 6-9. Precision, recall, F1 score, IoU, and 

overall accuracy are calculated to evaluate the semantic segmentation results for Cases A1 to C1. 

The test results of the adapted DGCNN (Table 6-10) show the detecting recall for cracks and spalls 

for Case C1 (12,288 points) are 58.67% and 87.40%, respectively. Figure 6-12 shows recall test 

results for adapted DGCNN. Increasing the number of points from 8,192 to 12,288 improved the 

crack semantic segmentation recall from 55.20% to 58.67%. However, this increase resulted in 

decreasing the spall recall from 89.77% to 87.40%, and non-defect recall from 97.17% to 96.64%. 

This is because increasing the number of points sometimes can cause overfitting [345].  

 

Table 6-9. Training and evaluation results for adapted DGCNN 

Case 

Number of 

sampled points 

for each block 

Block 

size 

(cm) 

Training Evaluation 

Training 

time 
Mean 

loss 

Overall 

accuracy 

(%) 

Mean 

loss 

Overall 

accuracy 

(%) 

A1 8,192 40×40 0.0022 97.54 0.0081 97.50 13h 44m 

B1 10,240 40×40 0.0024 97.39 0.0090 97.65 16h 35m 

C1 12,288 40×40 0.0030 97.04 0.0082 96.88 20h 18m 

Table 6-10. Testing results for adapted DGCNN (%) 

C
as

e 

O
v

er
al

l 

ac
cu

ra
cy

 

Crack Spalling Non-defect 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1

 s
co

re
 

IO
U

 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1

 s
co

re
 

IO
U

 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1
 

IO
U

 

A1 95.94 69.98 55.20  61.76 44.68 79.30 89.77 84.2 72.72 98.54 97.17 97.85 95.79 

B1 95.59 68.95 55.31 61.38 44.28 77.47 89.41 83.0 71.0 98.48 96.82 97.64 95.39 

C1 95.24 49.73 58.67 53.83 36.83 77.00 87.40 81.9 69.3 98.48 96.64 97.55 95.22 
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Figure 6-12. Recall test results for adapted DGCNN 

As the depths of segmented parts are different, and the learning process depends on the maximum 

depth of the part’s defects, the recall result of the tests is categorized based on the depth of 

segmented parts used in the test as shown in Table 6-11. As shown in this table, deeper parts can 

increase recall up to 80.04% for crack and 93.33% for spall. 

Table 6-11. Defect semantic segmentation recall based on the depth of defects for adapted DGCNN 

(%) 

As shown in Table 6-12, the comparison of the adapted PointNet++ and adapted DGCNN shows 

that for the same number of points of 8,192, 10240, and 12288, and block size of 40 × 40 cm with 

0% stride, DGCNN achieved a higher recall. 

Table 6-12. Comparison of the recall results of adapted PointNet++ and adapted DGCNN (%) 

Furthermore, as explained in Section 6.2.1, a test was performed based on the original DGCNN to 

examine the effect of using the normalized X, Y, and Z values for the KNN. The test was performed 

for the number of points of 8,192, and block size of 40 × 40 cm with no stride. As shown in Table 

6-13, the comparison of the DGCNN with original KNN and adapted DGCNN with modified KNN 

shows that the models’ performance declined significantly by considering the normalized location 

values for KNN. 
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Case 

Number of 

sampled points 

for each block 

Depth (cm) 

D≤3 3<D<7 7≤D 

Crack Spall Crack Spall Crack Spall 

A1 8,192 35.22 90.78 44.87 87.59 76.91 92.68 

B1 10,240 36.65 88.48 42.52 86.99 79.00 93.22 

C1 12,288 39.22 81.91 48.07 84.39 80.04 93.33 

Case 

Number of 

sampled points for 

each block 

Block 

size 

(cm) 

Adapted PointNet++ Adapted DGCNN 

Crack Spall Crack Spall 

A1 8,192 40×40 21.9 69.6 55.20  89.77 

B1 10,240 40×40 45.2 77.5 55.31 89.41 

C1 12,288 40×40 48.1 80.4 58.67 87.40 
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Table 6-13. Comparison of the recall results of DGCNN with original KNN and Adapted DGCNN 

(%) 

Three samples of the test results for Case C1 from the adapted DGCNN are shown in Figure 6-13. 

Case 

Number of 

sampled points for 

each block 

Block 

size 

(cm) 

DGCNN with original 

KNN 

Adapted DGCNN with 

modified KNN 

Crack Spall Crack Spall 

A1 8,192 40×40 41.17 41.27 55.20  89.77 

 Sample 1 Sample 2 Sample 3 

Original 

Segmented 

part 

   

Manual 

Annotation 

   

Adapted 

DGCNN 

   

                   Figure 6-13. Test results from three samples of adapted DGCNN (Case C1) 
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6.4.3 NVE-DGCNN 

This part of the implementation defines fifteen cases based on the NVE-DGCNN to identify the 

effect of the hyperparameters on the performance. 

The training and evaluation results, including the overall accuracy and mean loss of Cases A2 to 

O2 are presented in Table 6-14. Precision, recall, F1 score, IoU, and overall accuracy are calculated 

to evaluate the testing of the cases as shown in Table 6-15. The results show that decreasing the 

block size to 20 × 20 cm or adding the 50% stride for the block with the size of 40 × 40 cm will 

decrease the crack and spall recall. The best test results of the NVE-DGCNN show the recall for 

cracks and spalls were for Case J2 (8,192 points and 25% stride), which are 98.56% and 96.50%, 

respectively. Figure 6-14 shows recall test results for NVE-DGCNN. 

 

 

 

 

Table 6-14. Training and evaluation results for NVE-DGCNN 

Case 

Number 

of points 

per block 

Block 

size 

(cm) 

Stride 

(cm) 

Training Evaluation 

Training 

time Mean loss 

Overall 

accuracy 

(%) 

Mean loss 

Overall 

accuracy 

(%) 

A2 8,192 

40×40 40 (0%) 

0.0012 98.60 0.0097 98.58 14h 46m 

B2 10,240 0.0008 99.12 0.0077 98.36 18h 35m 

C2 12,288 0.0009 98.76 0.0070 98.62 20h 26m 

D2 8,192 

30×30 30 (0%) 

0.0013 98.74 0.0092 95.16 21h 01m 

E2 10,240 0.0007 99.13 0.0104 95.50 27h 05m 

F2 12,288 0.0013 98.67 0.0069 95.26 31h 46m 

G2 8,192 

20×20 20 (0%) 

0.0011 98.97 0.0090 94.84 41h 44m 

H2 10,240 0.0008 99.14 0.0117 98.14 52h 50m 

I2 12,288 0.0016 98.46 0.0148 97.58 65h 14m 

J2 8,192 

40×40 
30 

(25%) 

0.0004 99.53 0.0064 97.47 19h 50m 

K2 10,240 0.0006 99.34 0.0077 98.05 24h 35m 

L2 12,288 0.0006 99.29 0.0087 96.63 29h 4m 

M2 8,192 

40×40 
20 

(50%) 

0.0003 99.62 0.0084 97.88 36h 41m 

N2 10,240 0.0003 99.62 0.0091 97.56 44h 55m 

O2 12,288 0.0004 99.59 0.0080 97.28 55h 31m 
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Table 6-15. Testing results for NVE-DGCNN (%) 
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A2 8,192 

40×40 
40 

(0%) 

98.28 92.71 96.20 94.42 89.43 89.97 95.30 92.56 86.15 99.44 98.67 99.06 98.13 

B2 10,240 98.34 92.97 95.49 94.22 89.06 90.95 94.60 92.74 86.46 99.36 98.83 99.09 98.20 

C2 12,288 98.13 93.75 95.32 94.53 89.63 88.57 95.53 91.92 85.04 99.47 98.48 98.97 97.97 

D2 8,192 

30×30 
30 

(0%) 

98.12 94.16 97.57 95.84 92.01 88.95 94.91 91.83 84.90 99.39 98.52 98.95 97.93 

E2 10,240 97.96 96.49 94.94 95.71 91.76 90.11 91.53 90.81 83.17 98.96 98.79 98.87 97.77 

F2 12,288 98.29 95.43 97.78 96.59 93.40 83.76 95.31 89.16 80.44 99.64 98.53 99.08 98.18 

G2 8,192 

20×20 
20 

(0%) 

93.14 96.26 95.47 95.86 92.05 62.69 92.99 74.89 59.86 99.08 93.13 96.01 92.33 

H2 10,240 97.54 93.31 97.52 95.37 91.15 88.52 89.53 89.02 80.22 98.72 98.53 98.63 97.30 

I2 12,288 97.07 97.38 90.36 93.74 88.21 87.81 85.32 86.55 76.29 98.18 98.61 98.39 96.84 

J2 8,192 

40×40 
30 

(25%) 

98.88 95.98 98.56 97.25 94.65 95.55 96.50 96.02 92.35 99.46 99.27 99.36 98.73 

K2 10,240 98.17 93.67 97.64 95.61 91.60 92.83 94.18 93.50 87.79 99.11 98.83 98.97 97.95 

L2 12,288 98.34 96.72 95.87 96.29 92.85 91.35 94.52 92.91 86.76 99.30 98.86 99.08 98.18 

M2 8,192 

40×40 
20 

(50%) 

98.42 97.32 97.68 97.50 95.13 93.15 93.78 93.47 87.74 99.16 99.06 99.11 98.24 

N2 10,240 98.44 96.41 97.23 96.82 93.84 94.10 92.92 93.51 87.80 99.06 99.22 99.14 98.29 

O2 12,288 98.47 96.93 94.02 95.45 91.30 93.92 93.22 93.57 87.91 99.10 99.24 99.17 98.36 
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Figure 6-14. Recall test results for NVE-DGCNN 
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For sensitivity analysis of NVE-DGCNN, fifteen cases (Case A2 to O2) are defined and validated 

using three numbers of points of 8,192, 10,240, and 12,288, and three block sizes of 40 × 40 cm, 

30 × 30 cm, and 20 × 20 cm. Moreover, the stride could not be applied on 20 × 20 cm due to the 

computation resource limitations (i.e., RAM size). Therefore, the effect of stride size is 

investigated for the block size of 40 × 40 cm by applying 0%, 25%, and 50% strides (40, 30, and 

20 cm). Nine cases were studied with 0% stride (A2 to I2). In all cases with the same block size 

and stride, the number of points increased from 8,192 to 12,288 (Case A2 to O2). In three cases 

(J2 to L2), the stride was decreased by 25%, and in the remaining cases (M2 to O2) the stride 

considered was 50%. 

Figure 6-15 shows the effect of the number of points based on the average recall value. As shown 

in this figure, increasing the number of points will decrease the recall of defects in the NVE-

DGCNN network. Based on [27], this can be explained by the mismatch between the density and 

the value of the number of the K-nearest neighbors. Moreover, increasing the number of points 

may occasionally result in overfitting [345]. Figure 6-16 shows the effect of block size based on 

the average recall value. As shown in this figure, decreasing the block size to 25% (30 cm × 30 

cm) will increase the crack recall by 1.17%. However, the accuracy of spall decreased by 0.17%. 

The recall of both crack and spall was decreased by decreasing the block size to 50% (20 cm × 20 

cm). Figure 6-17 shows the effect of decreasing the stride based on the average recall value. As 

shown in this figure, decreasing the stride to 25% (30 cm) improved the crack recall by 1.63%. 

The recall of both crack and spall was decreased by decreasing the stride to 50% (20 cm). 

NVE-DGCNN improves the semantic segmentation performance of cracks a little more than spalls 

(almost 2% in Case J2). Adding the normal vector feature to the points specifies additional 

geometric information. On the other hand, the range of the change of normal vector in crack is less 

than in spalls. Therefore considering the normal vector may increase the chance of detecting cracks 

more than spall. In the testing phase, most of unforeseen crack points were considered as non-

defects in adapted DGCNN, but where correctly classified as cracks in NVE-DGCNN. 

Furthermore, the EdgeConv layer can detect the edges by applying an operation on edges to define 

the relationships between a point and its neighbors [27, 346]. Three samples of the best results for 

Case J2 from the NVE-DGCNN are shown in Figure 6-18. As shown in this figure, the NVE-

DGCNN detected most of the cracks when the normal vector feature was added to the points. In 

addition, in Sample 2, the network efficiently detected a line that looks like a crack as a non-defect. 

This example indicates the advantage of point cloud-based methods over image-based methods. 
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Figure 6-15. Effect of the number of points based on the average recall value for NVE-DGCNN (all 

cases) 

 

Figure 6-16. Effect of block size based on the average recall value for NVE-DGCNN (cases with 0% 

stride) 
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Figure 6-17. Effect of stride size based on the average recall value for NVE-DGCNN 
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NVE-

DGCNN 

   

                     Figure 6-18. Test results from three samples of NVE-DGCNN (Case J2) 
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As shown in Table 6-16, deeper parts can increase recall up to 99.38% for crack and 99.41% for 

spall for Cases J2. 

Table 6-16. Semantic segmentation recall based on the depth of defects for NVE-DGCNN (%) 

 

 

 

As shown in Table 6-17, the comparison between adapted DGCNN and NVE-DGCNN shows that 

using normal vector as an additional point feature improved the model’s accuracy for the same 

number of points of 8,192, 10240, and 12288, and block size of 40 × 40 cm with 0% stride. 

Table 6-17. Comparison of the results of adapted DGCNN and NVE-DGCNN (recall %) 

 

 

 

 

 

 

In addition, to determine the effect of K-nearest neighbors in the model, five cases with different 

numbers of K (5, 10, 15, 20, and 25) are defined for Case J2, which has the best performance. As 

Table 6-18 shows, the case of K equal to 20 (suggested value by Wang et al. [27]) still has the best 

performance and increasing the number of K will decrease the network’s performance. As 

explained earlier in this section, mismatch between the density and the value of the number of the 

K-nearest neighbors may decrease the performance [27]. 

 

6.5 Case Study of As-inspected Modeling 

This section aims to automate the process of as-inspected modeling based on the results of the 

concrete surface defects semantic segmentation, including cracks and spalls. The goal of the case 

study is to implement as-inspected modelling. The case study involves one of the scanned bridges 

in Section6.3. The scan stations were located under the bridge on Rue Lucien-L'Allier between Rue 

Case 

Number of 

sampled 

points for 

each block 

Depth (cm) 

D≤3 3<D<7 7≤D 

Crack Spall Crack Spall Crack Spall 

J2 8,192 94.67 94.75 99.32 97.36 99.38 99.41 

Number of 

sampled 

points for 

each block 

Block 

size 

(cm) 

Adapted DGCNN NVE-DGCNN 

Crack Spall Crack Spall 

8,192 40×40 55.20  89.77 96.20 95.30 

10,240 40×40 55.31 89.41 95.49 94.60 

12,288 40×40 58.67 87.40 95.32 95.53 

Table 6-18. Results of best NVE-DGCNN case with different numbers of K-nearest neighbors 

C
as

e
 

Number of 

sampled points 

for each block 

Stride 

(cm) 

Number of 

nearest neighbours 

(K) 

Crack Spalling 
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J2-1 

8192 30 (25%) 

5 98.14 95.22 

J2-2 10 97.67 94.23 

J2-3 15 98.21 94.21 

J2-4 20 98.56 96.50 

J2-5 25 97.34 94.98 
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Saint-Antoin West and René-Lévesque Boulevard West, Montreal. Figure 6-19 shows the images 

of bridge. 

  

Figure 6-19. Images of the bridge 

The point cloud registration process is done with Trimble RealWorks, and the point cloud of the 

bridge is cleaned up from most unrelated data using Recap Pro. Figure 6-20 shows the registered 

scan of the bridge. 

 

Figure 6-20. Cleaned up scan of the bridge 

The inspector usually focuses on scanning the areas that are expected to have defects. However, 

in this study, an additional step of scan-to-BIM was done, as the 3D model of the bridge was not 

available. In this step, the registered scan file was exported to “. rcs” format, and then imported 

into Autodesk Revit 2019 software. Figure 6-21(a) shows the imported cloud data in Revit 

software. Figure 6-21(b) shows the 3D model of the bridge based on point cloud data. 
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(a) Imported point cloud data in Revit 

  
(b) 3D model of the bridge 

Figure 6-21. 3D model of the bridge based on point cloud data 
 

As Figure 6-22 shows, a sample of the point cloud on the abutment surface of the bridge is selected 

for defect semantic segmentation.  

 

Figure 6-22. Selected part from point cloud data 

Figure 6-23(a) shows crack and spall defects on point cloud data. Figure 6-23(b) shows detected 

crack and spall defects using NVE-DGCNN. As discussed in Section 6.2.3, detected crack and 

spall defects’ length, width, and depth were calculated using density-based spatial clustering and 
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the MBB algorithm. Figures 6-24(a) and (b) show the clusters of the cracks and spalls, respectively. 

Figure 6-25(a) shows an example of the MBB of crack cluster Number 0 of in the sample. Figure 

6-25(b) shows an example of the MBB for spall cluster Number 2 in the sample. Tables 6-19 and 

6-20 show the geometrical and semantic information of cracks and spalls of the sample, 

respectively. 

 

     (a) Original point cloud               (b) Detected defects using NVE-DGCNN 

Figure 6-23. Visualization of detected spalls and cracks of the sample 

 

                      (a) Clusters of cracks                                  (b) Clusters of spalls 

 Figure 6-24. Clusters in the sample 
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       (a) cluster Number 0 of cracks                  (b) cluster Number 2 of spalls 

Figure 6-25. An example of MBBs for cracks and spalls clusters in the sample 

Table 6-19. Geometric and semantic information of crack defects in the sample 

Cluster 

number 

Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 
Severity Condition 

0 423 45 4 Wide 
Poor condition 

1 339 41 4 Wide 

Table 6-20. Geometric and semantic information of spall defects in the sample 

Cluster 

number 

Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 
Severity Condition 

0 90 69 8 Light 

Poor condition 

1 376 108 35 Medium 

2 391 324 68 Medium 

3 127 53 3 Light 

4 1,168 495 64 Very sever 

The 3D model of the as-inspected bridge based on point cloud data is used for defect product 

modeling. After applying clustering and MBB algorithms, the segmented defects are aligned to 

the initial coordinate system using NICP algorithms, as explained in Section 6.2.3. Then, the 

segmented defects with an aligned coordinate system are saved as new files to be used in the 3D 

modeling step. The results of aligned segmented defects look similar to Figure 6-22. 

The clusters of detected defects are converted to 3D mesh products to have an accurate model of 

the defect objects. A Dynamo script using Mesh Toolkit [340] is utilized to import the 3D mesh 

defects into the BIM model. Figure 6-26 shows the imported defect objects into the model of the 

bridge abutment in Revit. Finally, the semantic information of each defect, including defects type, 

the severity level, and the condition of the defected element, are added manually to the BIM model. 

Figure 6-27 shows an example of semantic information for cluster Number 4 of spalls in the BIM 

model. 
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Figure 6-26. Imported bridge abutment’s defect objects in Revit 

 

Figure 6-27. An example of semantic information for cluster Number 4 of spalls in BIM 

6.6 OCSD Evaluation Based on Point Cloud Semantic Segmentation and As-inspected 

Modeling 

This section aims to evaluate the usage of OCSD based on the case study explained in Section 6.5. 

The remote sensing method is used in the inspection process. Table 6-21 shows examples of the 

related OCSD inspection process concepts and relationships used in the case study. 
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Table 6-21. Related OCSD inspection process concepts and relationships 

Concept Relationship Concept 

Concrete surface defects is Inspection target 

Remote sensing is Measurement method 

Computer vision (semantic 

segmentation) 
is Remote sensing method 

LiDAR (Faro Focus3D scanner) is Measurement device 

Point cloud is Collected data 

Clustering (density-based Spatial 

clustering) 
is Method of processing inspection data 

Crack, spalling is Concrete surface defect types 

Crack defect form change  is Fracture 

Spall defect form change is Section loss 

In this section, the diagnosis and 3R processes are based on the engineering judgment. The 

conditions of concrete surfaces are determined based on defect dimensions and semantic 

information of OCSD. Cause analysis is a heuristic method based on inspector’s experience. The 

causes of defects in this case study are the environmental problems during the operation phase, 

including water, freeze and thaw effect, and well as the lack of maintenance during the 

maintenance phase. As the condition of the sample is poor, there is a need for 3R processes. Table 

6-22 shows examples of the related OCSD diagnosis process concepts and relationships used in 

the case study. 

Table 6-22. Related OCSD diagnosis process concepts and relationships 

Concept Relationship Concept 

Remote sensing-based method is Diagnosis method 

Cause analysis is Heuristic method 

Problem during operation (water 

presence, freeze and thaw effect) 
is Defects Cause 

Problem during maintenance (lack of 

maintenance) 

Poor condition is Condition 

Condition assessment evaluates Need for 3R processes (in this case YES) 

The last step is dedicated to the 3R actions. The bridge is located in harsh weather conditions, and 

the concrete surface is exposed to water presence. Therefore, this step should be done in two 

phases. The first phase is fixing with mortar compound, and the next phase is waterproofing the 

surface with epoxy coating. Conventional mortar is selected as the repair material as a matching 

compound, which has thermal expansion close to the existing material of the bridge. The first step 

before repairing the surface is removing the loose material and cleaning the surface. As the cracks 

are wide, they should be filled with conventional mortar. Conventional mortar is also applied to 

the cleaned surface to repair the spall defects. After applying a new surface layer, the next step is 

curing the new material to gain the required strength. Due to the bridge’s location and its exposure 

to harsh weather and water, epoxy coating is applied as a waterproofing compound. Table 6-23 

shows the examples of related OCSD 3R processes concepts and relationships used in this case 

study. 
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Table 6-23. Related OCSD 3R processes concepts and relationships 

Concept Relationship Concept 

Concrete repair 
is 3R method 

Surface sealing/coating 

Conventional mortar, epoxy  is Repair material  

Removing loose concrete 

is Concrete repair Adding mortar 

Crack filling 

Epoxy Coating  is Protective coating cover 

The above evaluation confirms that OCSD covers the domain’s concepts and relationships needed 

in the case study for inspection, diagnosis, and 3R processes of concrete surface defects. With the 

aid of OCSD and as-inspected product model, any changes can be tracked and visualized 

throughout the lifecycle. 

6.7 Discussion 

In another research, Bolourian et al. [347] investigated the effect of adding normal vectors, to the 

adapted PointNet++ (SNEPointNet++). The best results of this network along with the best results 

of the NVE-DGVNN are shown in Table 6-24. Compared to SNEPointNet++, NVE-DGCNN 

recalls in detecting cracks and spalls are 5.56 % and 4.50 % better, respectively. 

Table 6-24. Comparison between best results of the NVE-DGCNN and SNEPointNet++ (%) 

Method 
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SNEPointNet++ 
[347] 

73.3  93.0  81.9 69.2  89.9  92.0  90.6 82.5  99.3  98.8  99.0 98.1 

NVE-DGCNN 95.98 98.56 97.25 94.65 95.55 96.50 96.02 92.35 99.46 99.27 99.36 98.73 

Table 6-25 shows that the current image-based classification methods have reached 99.5% recall 

in concrete surface crack defect classification. However, this study aimed to determine the 

semantic information of each point separately, while the classification methods are not suitable for 

this purpose. Moreover, the proposed method focused on multiclass point cloud semantic 

segmentation while the image-based methods focused on binary classification or binary semantic 

segmentation. To this end, the performance of NVE-DGCNN recall is higher than previous image-

based semantic segmentation methods. 
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Table 6-25. Comparison between NVE-DGCNN and image-based computer vision methods 
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Yang et al. [273] 2018 - ✓ - 

Concrete 

wall, 

pavement 

Image Crack 81.73 78.97 79.95 

Liu et al. [274] 2019 - ✓ - Concrete Image Crack 90 91 90 

Lopez Droguett et al. 

[348] 
2020 - ✓ - Concrete Image Crack N/A 97.9 97.5 

Ali et al. [275] 2021 ✓ - - Concrete Image Crack 99.7 85 91.8 

Le et al. [276] 2021 ✓ - - Concrete Image Crack 96.5 98.8  97.7 

Vignesh et al. [277] 2021 ✓ - - Concrete Image Crack 96.69 99.55 98.1 

Mohammed 

Abdelkader et al. [349] 
2021 - ✓ - Concrete Image Spall N/A N/A 90.98 

NVE-DGCNN ours - - ✓ Concrete 
Point 

cloud 

Crack 95.98 98.56 97.25 

Spall 95.55 96.50 96.02 

Moreover, the previous point cloud-based works for concrete defects such as [255, 264, 265, 271], 

utilized different metrics (i.e. error) or visualization approaches to show the results. Therefore, the 

results are incomparable.  

6.8 Summary and Conclusions  

This chapter developed a new method for point cloud-based defect semantic segmentation (NVE-

DGCNN) to automate the inspection process of concrete surface defects, including cracks and 

spalls, without transforming the point cloud into other representations. Moreover, this chapter 

investigated two main characteristics related to surface defects (i.e. normal vector and depth). The 

challenges related to the size of the dataset and imbalanced classes were studied. Sensitivity 

analysis was applied to capture the best combination of hyperparameters and investigate their 

effects on the network performance. In addition, post-processing of the semantic segmentation was 

done to automate the process of as-inspected modeling. 

The network’s performance was improved by modifying the network (e.g., KNN for EdgeConv 

and the loss function) and by augmenting the dataset (i.e. by flipping the point cloud data). The 

testing showed the usefulness and robustness of the proposed method in detecting concrete surface 

defects from 3D point cloud data. Moreover, the results showed that the normal vector can be an 

important factor in the learning process of the model and detecting the edge of cracks. 

It is concluded that: (1) NVE-DGCNN resulted in 98.56% and 96.50% recalls for semantic 

segmentation of cracks and spalls, respectively. NVE-DGCNN is more accurate than other point 

cloud-based methods; (2) The sensitivity analysis results showed that decreasing the size of blocks 

to less than 30 × 30 cm decreased the recall, as increasing the density of blocks can cause 

overfitting or failure in Euclidean distance computing. Moreover, decreasing the stride to 25% 
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improved the network performance in terms of recall for the block size of 40 × 40 cm. However, 

decreasing the stride to 50% was not beneficial and decreased the recall. Finally, the sensitivity 

analysis showed that NVE-DGCNN is not very sensitive to the points density; (3) The case study 

showed that deeper cracks and spalls in the dataset are easier to detect. In deeper samples, the 

recalls for cracks and spalls reached 99.38% and 99.41%, respectively; (4) The semi-automated 

process of as-inspected modeling made it possible to manage and visualize the detected defects by 

collecting their dimensions and identifying the conditions on the 3D model; and (5) The semantic 

representation of OCSD was evaluated through the case study to demonstrate its benefits, and the 

evaluation indicates that the domain's concepts and relationships related to the case study are 

covered in OCSD. Moreover, the case study validates the systematic approach of OCSD and 

expands the usability of concrete infrastructure management through the defect product model as 

a critical component of OCSD.  
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CHAPTER 7.     SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 

7.1 Summary of Research 

This research aims to enhance the efficiency of facilities inspection by proposing BIM-based 

inspection-related Knowledge models along with an integrated process of surface defect semantic 

segmentation and defect modeling. 

In Chapter 2, facilities management, and different types of concrete surface defects were reviewed. 

Furthermore, the ontological approach and the related concepts of BIM-based inspection and 

robotic inspection and navigation tasks were covered. Moreover, defect information modeling and 

limitations of previous research were explained. Finally, point cloud-based deep neural network 

applications in semantic segmentation were discussed. Chapter 3 explained the overall proposed 

framework of this research. 

Chapter 4 focused on the development of an ontology, called OCSD, for concrete surface defects 

to have a unified knowledge model where all the stakeholders can access information in a 

systematic manner. OCSD metrics include 333 classes, 51 relations, 27 attributes, and 31 

individuals. OCSD comprises high-level knowledge of the concepts and relationships related to 

surface defects, inspection, diagnosis, and 3R processes. Consistency of OCSD was evaluated 

using HermiT OWL reasoner. The application of OCSD was investigated in a case study and a 

survey was designed to evaluate the semantic representation of OCSD. OCSD considers the BIM 

model of the defect as a critical component through a systematic approach. The defect product 

model will help the stakeholders benefit from accessing the defect information and condition of 

defected elements, which will result in enhancing the efficiency of inspection and repair processes. 

Chapter 5 focused on the development of an integrated ontology, called OBRNIT, to extend BIM 

applications for robotic navigation and inspection tasks. OBRNIT metrics include 386 classes, 45 

relations, 52 attributes, and 8 individuals. OBRNIT comprises high-level knowledge of the 

concepts and relationships related to buildings, robots, and navigation and inspection tasks. BIM 

is considered as a reference that is integrated with the knowledge model. The HermiT OWL 

reasoner was used to evaluate the consistency of OBRNIT. The semantic representation of 

OBRNIT was evaluated through a case study and a survey. Although having an actual case study 

using an inspection robot is interesting, for the purpose of OBRNIT evaluation, considering the 

specifications of the inspection robot in the case study is enough. 

Chapter 6 focused on developing a method for LiDAR-based defect semantic segmentation based 

on NVE-DGCNN to automate the inspection process of concrete surface defects, including cracks 

and spalls. This chapter investigated two main characteristics related to surface defects, including 

normal vector and depth. The network’s performance was improved by modifying the network 

(e.g., KNN for EdgeConv and the loss function) and by augmenting the dataset (i.e. by flipping 

the point cloud data). The challenges related to the size of the dataset and imbalanced classes were 

studied. Sensitivity analysis was applied to capture the best combination of hyperparameters and 

investigate their effects on the network performance. Furthermore, post-processing of the results 

of the concrete surface defects semantic segmentation was done to semi-automate the process of 

as-inspected modeling. As-inspected BIM includes the updated information of the facilities at the 

time of data collection. The BIM model was used to capture and visualize the semantic 

segmentation results by reflecting the geometric and semantic information of defects and 

identifying the element conditions on the BIM model. 
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7.2 Research Contributions and Conclusions 

This research results in the following contributions:  

(1) Developing an ontology (OCSD) for inspection, repair, and 3R processes of concrete 

surface defects. The current version of OCSD is available at https://github.com/OCSD-

OWL/OCSD. The following conclusions can be drawn from this contribution: 

• The evaluation proves that OCSD satisfies the domain experts and covers the domain’s 

main concepts and relationships. OCSD was able to provide a clear understanding of the 

concepts and relationships in the domain. 

• OCSD can help future asset management systems benefit from the provided knowledge 

and efficiently develop, modify, and process the ontological knowledgebase.  

• The semantic representation of OCSD was evaluated through the case study to demonstrate 

its benefits, and the evaluation indicates that the domain's concepts and relationships 

related to the case study are covered in OCSD. Moreover, the case study validates the 

systematic approach of OCSD and expands the usability of concrete infrastructure 

management through the defect product model as a critical component of OCSD. 

(2)  Developing BIM-based ontology (OBRNIT) to cover the different types of information 

and concepts related to robot navigation and inspection tasks. The current version of 

OBRNIT is available at https://github.com/OBRNIT/OBRNIT. The following conclusions can 

be drawn from this contribution: 

• The evaluation demonstrates that OBRNIT covers the domain’s concepts and relationships 

up to the point that satisfies the domain experts. Based on the evaluation, OBRNIT was 

able to give a clear understanding of the concepts and relationships in the domain, and it 

can be applied for developing robotic inspection systems. 

• OBRNIT extends the BIM application for robotic navigation and inspection tasks. 

OBRNIT can help system engineers involved in developing robotic inspection systems by 

identifying the different concepts and relationships about robotic inspection and navigation 

tasks based on BIM information. 

•  (3) Developing a method (NVE-DGCNN) for point cloud-based concrete surface 

defects semantic segmentation. The following conclusions can be drawn from this 

contribution: 

• NVE-DGCNN resulted in 98.56% and 96.50% recalls for semantic segmentation of cracks 

and spalls, respectively. NVE-DGCNN is more accurate than other point cloud-based 

methods. 

• The sensitivity analysis results showed that decreasing the size of blocks to less than 30 × 

30 cm decreased the recall, as increasing the density of blocks can cause overfitting or 

failure in Euclidean distance computing. Moreover, decreasing the stride to 25% improved 

the network performance in terms of recall for the block size of 40 × 40 cm. However, 

decreasing the stride to 50% was not beneficial and decreased the recall. Finally, the 

sensitivity analysis showed that NVE-DGCNN is not very sensitive to the points density. 

• The case study showed that deeper cracks and spalls in the dataset are easier to detect. In 

deeper samples, the recalls for cracks and spalls reached 99.38% and 99.41%, respectively. 

 (4) Developing a semi-automated process for as-inspected modeling. The following 

conclusion can be drawn from this contribution: 

https://github.com/OCSD-OWL/OCSD
https://github.com/OCSD-OWL/OCSD
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• The semi-automated process of as-inspected modeling made it possible to manage and 

visualize the detected defects by collecting their dimensions and identifying the conditions 

on the 3D model. 

7.3 Limitations and Future Work  

Despite the above-mentioned contributions, this research has some limitations that should be 

addressed in the future. The limitations can be organized in four categories as follows: 

(1) Limitations related to OCSD ontology 

• The scope of this research does not cover all possible concepts of concrete surface 

inspection, diagnosis, and 3R processes. For example, some types of inspection, such as 

underwater inspection, are not covered in OCSD. In the future, OCSD will be extended to 

cover other types of related concepts. 

• OCSD knowledgebase can be used in the future to develop concrete surface inspection 

expert systems, software, or checklists. 

(2) Limitations related to OBRNIT ontology 

• The scope of this research does not address the low-level path planning and the problem of 

SLAM [350]. Future work will focus on further development of OBRNIT to integrate it 

with low-level robotic capabilities to make the robot more autonomous. The abstract 

knowledge can be combined with robot action-related procedural knowledge to make the 

tasks executable [10]. 

• A planning language system for reasoning over the ontological knowledgebase for the 

execution of plans can be developed, benefiting from previous research [149]. 

• Extending OBRNIT will be considered by linking it with other available ontologies (e.g. 

Sensor Ontology) [351]. 

(3) Limitations related to the point cloud-based semantic segmentation  

• A larger dataset is expected to improve the learning process resulting in better performance 

of the model. Therefore, Future work will focus on collecting and preparing more data to 

enlarge the dataset. Moreover, due to computing resource limitations (i.e. memory and 

processors limitation), it was impossible to study the effect of increasing the number of 

input points of the model to more than 12,288 per block. Having more computing resources 

will make the opportunity to expand the sensitivity analysis. 

• The proposed method only considered flat surfaces. The performance of the network on 

curved surfaces needs more investigation. 

• In the future, the dataset can be classified into more classes in order to consider the levels 

of severity as described in OCSD. However, more data in terms of variety and quantity 

needs to be considered. 

• The effects of each point feature on the performance of the NVE-DGCNN network were 

not examined independently (e.g. color). Therefore, in the future, it is important to 

investigate the impact of each feature on network performance. 

(4) Limitations related to the as-inspected modeling 

• As-inspected modeling will help store the inspection results efficiently and precisely, 

resulting in tracking and analysis of the defect changes throughout the lifecycle. The 

version control (i.e. time-series) of as-inspected modeling and tracking of the changes of 

the as-inspected BIM models will be investigated in the future. Furthermore, the BIM 
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model can be modified after performing repairs. In this regard, time-series of as-repaired 

models needs to be considered. 

• In this research, the defect's semantic information, such as severity level, is added manually 

to the BIM model. Future work will focus on a fully automated approach to integrate the 

semantic knowledge of OCSD with as-inspected modeling. 
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APPENDIX A    PYTHON CODE FOR POINT CLOUD ALIGNMENT  

NICP algorithm (adapted from [338]): 

import numpy as np 
from pyoints import (storage, 
    Extent, 
    transformation, 
    filters, 
    registration, 
    normals,) 
from pyntcloud import PyntCloud  
import numpy as np 
import pandas as pd 
import os 
import sys 
import pdb 
 
A = storage.loadPly('bridge-sample.ply') 
print(A.shape) 
print(A.dtype.descr) 
B = storage.loadPly('Defect.ply') 
print(B.shape) 
print(B.dtype.descr) 
output_dir = “./Alighned/” 
if not os.path.exists(output_dir): 
    os.makedirs(output_dir) 
     
coords_dict = { 
    'A': A.coords, 
    'B': B.coords,} 
n_th = np.sin(15 * np.pi / 180) 
radii = [d_th, d_th, d_th, n_th, n_th, n_th] 
nicp = registration.ICP( 
    radii, 
    max_iter=300, 
    max_change_ratio=0.0003, 
    update_normals=True, 
    k=1) 
T_dict, pairs_dict, report = nicp(coords_dict, normals_dict) 
for key in coords_dict: 
    coords = transformation.transform(coords_dict[key], T_dict[key]) 
PyntCloud.to_file(B, output_dir+'aligned_defect.ply') 
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APPENDIX B.    DYNAMO SCRIPT USING MESHTOOLKIT 

 

Figure B-1. Dynamo Script using Mesh Toolkit [340] 

 


