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Abstract

Fairness in Dynamic Networks

Hamed Molaei

The main focus of this research is directed towards fairness in a dynamic network. Two specific

applications are mathematically formulated: heating, ventilation, and air conditioning (HVAC),

and code division multiple access (CDMA). In the first problem, namely, fair power allocation

for temperature regulation of a multi-unit building, the temperature of each unit is described by a

discrete-time dynamic equation. The formulation considers the effect of outside temperature and

heat transfer between the adjacent rooms. Temperature regulation is then described as a constrained

optimization problem, where the objective is to maintain the temperature of each unit within a

prescribed thermal comfort zone with a limited amount of power. An optimal control strategy is

presented to minimize the maximum mutual temperature difference between different units (long-

term fairness) while maintaining the temperature of each unit in the comfort zone or close to it at

all times, as much as possible (short-term fairness). Simulations demonstrate the effectiveness of

the proposed control strategy in regulating the temperature of every unit in a building. Regarding

the second application, an optimization-based fair reverse-link rate assignment strategy is proposed

for fair resource allocation in a CDMA network. The network is modeled in a star topology, where

the nodes represent either the base station (BS) or access terminals (ATs). The BS at every instant

computes the fair rate for each AT by minimizing the maximum disparity in users’ rates. Then, the

BS sends a single bit to all ATs at every instant. It is shown that if each AT could compute a specific

variable, called the coordinating variable, it can find its fair rate, which means the decision-making

strategy is distributed. The proposed method is computationally efficient, and simulations confirm

its efficacy in different scenarios.
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Chapter 1

Introduction

1.1 Preliminaries

Fairness is an old concept, but its root (”fair”) was formally described for the first time in 11th

century in the meaning of ”pleasing to the eye or mind especially because of fresh, charming, or

flawless quality.” In the current era, ”fair” means ”just”, ”equitable”, ”impartial”, ”unbiased”, and

”objective”. Each of the previously-mentioned definitions is described below [1]:

• ”fair” means a proper balance of conflicting interests; for example, a fair decision.

• ”just” means an exact following of a standard of what is right and proper; for example, a just

settlement of territorial claims.

• ”equitable” is a less rigorous notion than ”just”, implying equal treatment of all concerned;

for example, the equitable distribution of a property.

• ”impartial” means no favor or prejudice; for example, an impartial third party.

• ”unbiased”, implies in a stronger way than ”impartial” an absence of all prejudice; for exam-

ple, your unbiased opinion.
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• ”objective” means a tendency to view events or persons as apart from oneself and one’s own

interest or feelings; for example, not being objective about one’s own child.

Fairness has been studied in several problems in science and engineering such as:

• Algorithmic fairness in computer science [2, 3].

• Machine learning, where sources of unfairness and methods to mitigate them are studied[4,

5, 6, 7].

• The concepts of ”fair value” and ”fair price” in economics, which makes financial statements

easier to compare and balance sheets more reflective of real values [8].

• Network engineering, where the efficacy of the resource allocation methodologies is assessed

using fairness measures [9, 10, 11].

• Game theory problems, where players are not self-interested [12, 13, 14, 15].

Fairness has appeared in many researchers. Nevertheless, the essence of the current study is fair-

ness in resource allocation. Although all people can comprehend fairness and distinguish between

unfair and fair acts (or resource allocation in the current context), there is a tremendous variation

in defining and quantifying fairness. In other words, conceptually, fairness is trivial but mathe-

matically is challenging to define. Therefore, different indices are used for quantifying fairness.

Fairness is closely related to resource allocation, which is the distribution of limited resources to

multiple users. Therefore, fairness and resource allocation are described mathematically, and the

relationship between the two is specified. Once fairness is achieved, increasing resources corrupts

it. In this context, agreement on a definition of fairness is essential. Although all people perceive

fairness, this comprehension is affected by personal preferences and other factors. Thus, even in the

case of two people, they might have a skirmish, but both might believe they are acting fair. These

complexities do not exist in our problems, as personal preferences are excluded in our formulation.
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Now, we turn to depict the mentioned concepts and their relationships by the following exam-

ples:

Example 1. Let four apples be given to two friends. They can divide four apples among themselves

in many ways. For example, one of them might favor the other one over oneself. In this case,

friend 1 might get one apple and friend 2 three apples. However, if they are asked to divide the

apples fairly, the ground truth for fairness is equal distribution. Therefore, one common ground for

fairness is equality. However, in the following example, we will show that this is not always the

case. In this example, we only had one constraint: the number of apples was limited, which is a

coupled constraint because it constrains all users.

Example 2. Let an apple pie be given to two people. One of them is more hungry than the other.

Moreover, they are told to distribute the pie fairly, and if anything remains from it after distributing,

it would be a waste. In this example, we face two constraints: one individual constraint and one

coupled constraint. The individual constraint is that one of the individuals is less hungry than the

other. The coupled constraint is the amount of apple pie, which is limited. In this example, consider

that person 1 cannot eat more than one slice, the other can eat any amount, and no waste is allowed.

Here, fairness means that the lower capacity individual should get as much pie as they want, and

the other would get all remaining slices.

The above examples present some aspects of fairness in the current study with both coupled and

individual constraints. The users cannot get more than their capacity and cannot collectively exceed

the amount specified in the coupled constraint. Note that fairness is meaningful only when resources

are limited (coupled constraint), and restrictions on individual capacities only make the problem

more complex. If we only had coupled constraints and no individual constraints, then fairness would

mean equality. Individual constraints transform the fairness problem into a distribution problem that

is as equal as possible.

The distribution of resources to users can either follow particular dynamics or be performed
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at once. These correspond to two types of fairness problems, dynamic and static. An example of

dynamic fairness is the fair distribution of heat to every apartment in a building. On the other hand,

the distribution of apples in the previous examples is a static fairness problem.

Dynamic fairness is a more challenging problem because it involves multiple interacting users

with possible connections among their dynamics. Thus, the problem is to distribute resources fairly

in a dynamic network, and the notions of short- and long-term fairness in such settings are beneficial.

Note that, as mentioned earlier, quantifying fairness is not straightforward. Furthermore, defining

short- and long-term fairness is even more challenging. These notions will be further discussed in

the sequel.

As mentioned earlier, static fairness corresponds to a one-time allocation of resources, and dy-

namic fairness is a continuous allocation of resources over a specific or infinite time horizon. Also,

equality is the ideal fair distribution, but in the presence of constraints, we might not reach equality,

and we may need to distribute the resources as equally as possible. Mathematically, we desire to

minimize |xi − xj | or (xi − xj)
2, where i, j ∈ Nn := {1, . . . , n}, and n is the number of users,

and xi and xj are allocated resources to user i and j, respectively. In this function, there are a

combination of n users taken two at a time, i.e. C(n, 2), which can be a large number. Therefore, it

is desired to minimize the maximum of C(n, 2) values with any prescribed constraints. To describe

this mathematically, one can write:

minimize
x∈Rn

max
i,j∈Nn

(xi − xj)
2,

subject to p(x) < 0

q(x) = 0

(1.1)

in which xi and xj are resources allocated to user i and j, respectively, x is the vector of all users’

resources, p(x) is the inequality constraint, and q(x) is the equality constraint. In particular, when

there is only a single coupled constraint and upper bound for each individual, we have:
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minimize
x∈Rn

max
i,j∈Nn

(xi − xj)
2,

subject to
∑
i

xi ≤ x̄,

0 ≤ xi ≤ x̄i,

(1.2)

for which xi, xj , and x have the same meaning as (1.1). The constant x̄ denotes the upper bound of

the total resources, and x̄i represents the upper bound for individual resources of each user.

For fairness in a dynamic network, resource allocation needs to be considered in a prespecified

time horizon, with the network dynamics. The users in the network can be interacting or non-

interacting. For simplicity, we consider linear coupled constraints along with upper- and lower-

bound restrictions. Interaction among users can be represented by a matrix similar to the adjacency

matrix in graphs. We will investigate this problem in our research.

In controlling a group of competing agents with limited resources, fairness is a central problem.

Some real-world examples of this type of problem include heating, ventilation, and air conditioning

(HVAC) systems, code-division multiple access (CDMA) systems, and sensor networks, to name

only a few. For instance, in HVAC systems, the objective is to perform a fair distribution of the

available energy among all the units in a building to heat them. On the other hand, in CDMA

systems, it is aimed to allocate rates to all subscribed users in a fair manner in the presence of some

constraints. To incorporate a fair strategy in these systems, it is essential to mathematically describe

the governing network dynamics, which is unique in each application. In this study, we provide a

formulation for fairness that can be applied to systems with different dynamics.

1.2 Applications of Fairness

In the proceeding sections, two applications of fairness are introduced, and a brief description

for each of them is provided.
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1.2.1 Heating, Ventilation, and Air Conditioning Systems

Consider a building with several units, and, for simplicity, assume it has only one floor. There

would be dynamic coupling between units through the common walls. There would also be dynamic

interaction with the outside environment. We aim to heat every unit to the desired temperature for its

occupant, subject to the limited energy resources. Note that energy limitation is a realistic condition

concerning the existing energy restrictions. Based on the previous discussions, we deal with the

resource allocation problem subject to some constraints. One can define various optimization in-

dices and allocate the resources accordingly. For this study, we consider fairness as the performance

index. It might not be possible to achieve equal temperatures for all units because some might have

lower power for the heating appliances. However, we allocate resources as equally as possible. We

use a control strategy to reach the optimization objective. The heat-transfer model between the units

is based on well-known thermodynamics laws; therefore, we can use model-based control methods

such as model predictive control (MPC). The objective is then to design an MPC rule to achieve

both short- and long-term fairness.

1.2.2 Code-Division Multiple Access Systems

The reverse link rate in a code-division multiple access (CDMA) network can be selected arbi-

trarily considering three constraints:

• Rise over thermal (RoT) constraint

• Upper-bound limit for rates

• Single bit feedback signal from the base station (BS) to access terminals (ATs)

The RoT constraint acts as a coupled constraint because it is related to the rates of all ATs. If this

constraint is satisfied, the signals sent from ATs to the BS can be decoded successfully. The upper-

bound limits are, in fact, bounds on rates. In other words, the rates of the ATs’ communication links
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can not exceed a predefined limit. Moreover, all ATs will receive single-bit feedback (0 or 1) from

the BS. Therefore, this can be formulated as a constrained optimization problem, where the resource

allocation is to be optimized in terms of fairness, with limited resources (collective and individual).

Therefore, we need to use binary feedback to generate an optimal control signal in the context of

the bang-bang strategy.

1.2.3 Other Potential Applications

Some of the emerging areas where fairness in resource allocation can be crucial are listed below:

• Cable-driven parallel robots (CDPRs) in tele-operation applications

• Smart grids

• Social networks (SN)

Note that although the mathematical foundation of all applications is similar, the corresponding

optimization problem and its solution are different. We will discuss this issue for the two first

applications in detail in the next chapters.

1.3 Thesis Contributions

The novelties of the proposed approach can be summarized as follows:

• Using the min-max formulation for fairness in dynamic systems

• Providing an extendable formulation for fairness which can be used for a variety of systems

• Incorporating the dynamic coupling between the subsystems for a more realistic modeling in

the HVAC problem

• Using the proposed fairness formulation in the rate allocation problem in wireless networks
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1.4 Thesis Layout

This thesis is prepared in manuscript-based style according to the Student’s Guide to Thesis

Preparation, Examination Procedures and Regulations of the School of Graduate Studies, Concordia

University. It includes four chapters as described below.

In Chapter 2, an algorithm is developed for achieving fairness in a dynamic network, with a spe-

cial focus on the HVAC system. First, the temperature of different rooms in a multi-unit building

is formulated as a dynamic model, using the heat-transfer equations between the adjacent rooms as

well as that between exterior rooms and outside. Then, a multi-objective optimization problem is

defined, whose solution results in a long-term equitable strategy for a fair power allocation for the

users solving an optimal resource allocation. A control strategy is proposed by using model predic-

tive control (MPC) and solving an optimal resource allocation problem along with the constraints

that exists in a heating (or cooling) system. Two algorithms are developed to solve the problem.

Solution to this problem provides both short- and long-term fairness, as well as user comfort in all

building units. The theoretical findings are verified by simulations for realistic building models with

different parameters.

Chapter 3 investigates fairness in a CDMA system. This chapter starts by providing a math-

ematical background for a general CDMA system. Then, a multi-objective optimization problem

is defined, whose solution results in a fair strategy for reverse-link rate allocation from the base

station (BS) side. Several lemmas and theorems are presented to solve this optimization problem.

The describing function approach is used for stability analysis and characterizing the resultant limit

cycles. Finally, the efficacy of the proposed method is evaluated by simulation.

Chapter 4 concludes the thesis and provides ideas for future research directions.

8



Chapter 2

Heating, Ventilation, and Air

Conditioning Systems

2.1 Summary

Fair power allocation for temperature regulation in the heating, ventilation, and air conditioning

(HVAC) system of a multi-unit building is investigated in this section. The temperature of each unit

is described by a discrete-time dynamic equation, taking into account the effect of outside tempera-

ture as well as heat transfer between the adjacent rooms. Temperature regulation is then formulated

as a constrained optimization problem, where the objective is to maintain the temperature of each

unit within a prescribed thermal comfort zone with a limited amount of power. An optimal control

strategy is presented to minimize the maximum mutual temperature difference between different

units (long-term fairness) while maintaining the temperature of each unit in the comfort zone or

close to it at all times, as much as possible (short-term fairness). Simulations demonstrate the effec-

tiveness of the proposed control strategy in regulating the temperature of every unit in a building.
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2.2 Introduction

Commercial and residential buildings have considerable proportion of the global energy con-

sumption [16]. One of the primary energy uses in buildings is heating, ventilation, and air condi-

tioning (HVAC) systems. HVAC systems are widely used for thermal comfort in modern buildings

and have a 50% share of total energy usage in buildings [17]. According to [18], approximately 75%

of heating and cooling is still generated from fossil fuels. Such fossil fuel consumption accounts for

10% of greenhouse gas emissions and 25% of the total energy usage in the United States [19]. Thus,

there has been a growing interest in recent years in efficient power allocation for temperature control

of both residential and commercial buildings [20, 21, 22]. Large HVAC facilities require constant

supervision of technicians to adjust settings for optimal performance of the overall system [23, 24].

Efficient power allocation in HVAC systems can be considered from a different perspective, such as

energy consumption efficiency and occupant thermal comfort. One important challenge in this type

of system is to allocate the power to different units or rooms in the building as fairly as possible,

given that allocating more heating power for one unit can come at the cost of possible discomfort

to people in another unit. Therefore, it is desired to keep the temperature of different units close to

each other and within the thermal comfort zone at all times as much as possible. On the other hand,

the power allocated to each unit and also the total available power at any point in time are limited,

adding to the complexity of the problem.

Different control strategies are proposed in the literature for thermal regulation in buildings.

These control methods include classical control, hard control, soft control, hybrid control, and other

control techniques, as demonstrated in Fig. 2.1 [25]. One of the well-established control methods for

HVAC systems is model predictive control (MPC) [26, 27, 28] because it can incorporate weather

forecast and occupancy profiles in real-time for decision-making [29]. In HVAC system, the goal

of MPC is to fined a control actions that minimize a cost function or multiple cost functions, while

ensuring the comfort of the occupants and respecting the constraint of the problem [30]. In HVAC
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systems, MPC methods offers more efficient control, higher energy savings and better indoor envi-

ronment, compared to classical control methods [31]. Optimization-based methods are employed

in [32, 33] to achieve the above objective using the model predictive control (MPC) framework.

In [34, 35], robust MPC techniques are used for temperature regulation to account for uncertainty

in the model of the building. In [36], authors proposed a mixed-integer linear programming-based

MPC strategy to improve the operation of the HVAC systems in buildings. A multi-objective genetic

algorithm is presented in [37] to optimize a number of set-points, including unit air temperatures

taking into account energy consumption and thermal comfort. The authors in [38] introduce an

HVAC control strategy whose objective is to achieve a human-sensation-based indoor thermal com-

fort as opposed to maintaining a constant indoor air temperature. The interested reader is referred to

[25] for a more detailed survey on control techniques for the HVAC systems, especially MPC-based

methods. Lexicographic fairness for bandwidth allocation and data collection is discussed in detail

in [39, 40]. In [41], a computationally efficient lexicographic minimax algorithm is developed to

achieve fairness by properly allocating resources. However, the method cannot be effectively used

for thermal regulation using an HVAC system as the resource allocation scheme in [41] is fixed

and not suitable for a dynamic system. On the other hand, there are some recent advances in fair

resource allocation in buildings. Fair heat distribution is of particular interest in HVAC systems due

to its impact on energy efficiency and user comfort [42]. Fair heat distribution in a system consist-

ing of several heating sources is addressed in [43]. The authors in [44] propose an optimal heat

allocation scheme by considering the heat flow through walls, investigating both deterministic and

statistical approaches. Moreover, in [45], fair cost distribution for a smart building is studied, and a

lexicographic minimax approach is provided for solving the problem.

While existing HVAC control techniques, including the ones cited in the previous paragraph, are

useful in regulating the temperature in some buildings, they are not as effective for buildings with

several units as they often ignore the heat transfer between adjacent units. Furthermore, most of
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the existing methods fail to consider both short-term and long-term fairness in power allocation for

thermal regulation. In the present work, the temperatures of different units in the building are mod-

eled by a dynamic equation, where the temperature of each unit is affected by not only the power

allocated to that unit but also by the heat transfer to/from its adjacent units. The problem is then

formulated as a constrained optimization, where fairness in power allocation is represented by an

appropriate cost function, and the maximum available power for each unit as well as the total avail-

able power is described by inequality constraints. One of the key features of the proposed method is

that it uses the prescribed thermal comfort zone as a design specification in the optimization process.

The efficacy of the proposed optimal power allocation method is verified by simulations.

2.3 Problem Formulation

Consider a building with n ∈ N units (rooms). The temperature of each unit is a function of the

amount of heating provided to that unit by the HVAC system as well as heat transfer between that

unit and its neighboring units. Thus, the temperature of different units is modeled as a dynamic,

interconnected network, where the state of each node at any instant is the temperature of that node.

Each link, on the other hand, represents the effect of heat transfer between two neighboring units at

any time. A unit whose neighbors are all inside the building is called an interior unit. In contrast, a

unit that is adjacent to at least one outside wall or window is referred to as an exterior unit.

Let the temperatures of different units evolve according to the following dynamic equation:

t(k + 1) = (I − L)t(k) +B1t
out(k) +B2q(k), (2.1)

where t(k) ∈ Rn is a column vector containing the temperatures of all units at time k, with its

i-th element ti(k) denoting the temperature of unit i ∈ Nn := {1, . . . , n} at time k ∈ N . Also,

the matrix L ∈ Rn×n is used to describe the adjacency of each unit to its neighboring units inside

12



Figure 2.1: HVAC control methods
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the building, and tout ∈ R is the outside temperature at time k (which is assumed to be the same

everywhere around the building). Moreover, B1 is a column vector representing energy transfer

between the exterior units and outside. Note that for any interior unit, the corresponding term in

vector B1 is, by definition, set to zero. Furthermore, q(k) ∈ Rm, m ≤ n, is a vector of the allocated

heating source powers at time k, and matrix B2 ∈ Rn×m describes the propagation of heat from the

source to units, affecting their temperatures.

Remark 1. The temperature dynamics in equation (2.1) is a linear approximation of the nonlinear

heat transfer dynamics.

Remark 2. The coefficient of matrix L corresponding to a pair of adjacent rooms is dependent on

the material within the wall separating those rooms as well as the area of the wall.

Remark 3. It is important to note that the notion of adjacency matrix in the context of heat transfer

in a multi-unit building is different from that used in graph theory.

Assumption 1. For simplicity and without loss of generality, it is assumed in this research that

every unit has one heating source, i.e., m = n. This means that the i-th element of vector q(k),

denoted by qi(k), is the power allocated to unit i at time k, and B2 is diagonal.

For the case when the outside temperature has been constant and the heating power for every

unit has been fixed for a sufficiently long time, one can derive the steady-state temperature for every

unit of the building through the following equation:

tss = B′
1t

out +B′
2qss, (2.2)

where tss ∈ Rn is the vector of steady-state temperatures of all units, and tout and qss are fixed

quantities as noted above. It is straightforward to verify that B′
1 = L−1B1 and B′

2 = L−1B2 in the

above equation, for the case when L is non-singular (in practice L is always nonsingular because it

is the sum of a positive-definite matrix and a positive semi-definite matrix).
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Remark 4. In the special case, if the adjacency of different units is neglected, matrix L in equation

(2.1) becomes a diagonal matrix, leading to the following simplified dynamic equation for the unit

temperatures:

t(k + 1) = At(k) +B1t
out(k) +B2q(k), (2.3)

where A = I − L. Since A and B2 are diagonal matrices, one can write the equation for the

temperature of each unit separately as:

ti(k + 1) = αiti(k) + β1it
out(k) + β2iqi(k), (2.4)

where αi is the (i, i)-th element of matrix A, and β1i and β2i are, respectively, the i-th element

of vector B1 and the (i, i)-th element of matrix B2, for any i ∈ Nn. It is implied from the above

equation that if no power is allocated to an interior unit (i.e. qi = 0 for some i ∈ Nn), the

temperature of that unit will not change over time, and the outside temperature will only affect

the exterior units. In practice, however, it is known that due to the adjacency of the units and the

resulting heat transfer between them, the outside temperature will eventually affect every interior

unit as well.

Assumption 2. The power allocated to unit i at any time instant is upper-bounded by a pre-specified

value q̄i for any i ∈ Nn. Moreover, the total power provided to all units in the building cannot

exceed a prescribed value denoted by q̄, i.e., Σn
i=1qi ≤ q̄.

Remark 5. From the above assumption, it can be easily verified that the maximum achievable

steady-state temperatures vector for different units (when the outside temperature has been constant

for a long time) is upper-bounded by L−1B1t
out + L−1B2q̄ss, where q̄ss = [q̄1, . . . , q̄n]

T .

Remark 6. While the main focus of this study is on the heating mode of the HVAC systems, the

results can be easily extended to the cooling mode as well. The only difference in the formulation of
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the cooling mode is that matrix B2 is multiplied by −1. If a unit does not have any power source,

the corresponding coefficient in B2 will be zero.

Definition 1. A comfort zone is defined for each unit, which is characterized by an upper tempera-

ture tiu and a lower temperature til for the i-th unit. For simplicity and with no loss of generality,

it is assumed that all units have the same comfort zone with the upper and lower temperatures

denoted, respectively, by tu and tl.

Definition 2. In controlling the temperature of a multi-unit building, it is typically desired to min-

imize the maximum mutual difference between the unit temperatures in steady-state and also min-

imize the maximum instantaneous temperature in transient. The former objective will hereafter be

referred to as long-term fairness, and the latter will be called short-term fairness.

To proceed with the controller design, it is required to determine a long-term fair temperature

for every unit. Thus, a two-stage control algorithm is sought, where the first stage aims at regu-

lating the temperature while achieving short-term fairness, and the second stage is concerned with

guaranteed long-term fairness. Note that in the first stage, the desired temperature of the units is

neglected, and only the constraint on the total available power is taken into account (because the

desired temperature region is translated into the required power for achieving them). Algorithm 1

addresses the objectives of both stages, as discussed later.

To formulate fairness for the underlying interconnected network as an optimization problem,

the maximum mutual difference between unit temperatures is to be minimized (long-term fairness).

For a building with n units, this is mathematically described as:
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minimize
qss∈Rn

max
i,j∈Nn

(ti,ss − tj,ss)
2,

subject to
∑
i

qi,ss ≤ q̄,

qi,ss ≤ q̄i,

tss = B′
1t

out +B′
2qss,

(2.5)

where ti,ss denotes the temperature of unit i in steady state, and qss is the vector of steady-state

allocated powers.

Remark 7. The optimization problem above aims to minimize the difference between each room’s

temperature and that room’s desired temperature. The constraints in this optimization problem

reflect the limited heating resources.

The cost function described in (2.5) takes into account the mutual temperature differences be-

tween all units. It is to be noted that one can use the absolute value of temperature differences in

the objective function in (2.5), and squared values are used instead to simplify mathematical proofs.

Note that because of the coupled inequality condition, the constrained optimization problem (2.5)

may have multiple solutions. Therefore, without loss of generality, the coupled inequality is con-

sidered as equality for future results.

It is desired now to find a control law to achieve fair steady-state temperatures from any initial

conditions. To this end, a model predictive control (MPC) approach is to be used to tackle the
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following optimization problem:

minimize
qss∈Rn

max
i,j∈Nn

P∑
k=1

(ti(n+ k)− tj(n+ k))2,

subject to, min(q̄l, q̄) ≤
∑
i

qi(k) ≤ min(q̄u, q̄),

qi ≤ q̄i,

t(k + 1) = At(k) +B1t
out(k) +B2q(k),

(2.6)

where q̄l and q̄u are, respectively heating powers which yield temperatures tl and tu (the thermal

comfort zone), obtained from Algorithm 2, and P is the prediction horizon.

Algorithm 1 Fair power allocation strategy for thermal comfort.
1: update tout

2: initialize tl, tu
3: ql ← LONGTERM ALLOC(tl, t

out)
4: qu ← LONGTERM ALLOC(tu, t

out)
5: while true do
6: if |∆tout| > toutthreshold then
7: update tout

8: q̄l ← LONGTERM ALLOC(tl, t
out)

9: q̄u ← LONGTERM ALLOC(tu, t
out)

10: end if
11: q ← solve optimization (2.6)
12: end while

2.4 Main Results

A procedure is developed in Algorithm 1 for allocating power to different units such that short-

and long-term fairness is achieved. In this algorithm, at the beginning of each iteration, if the change

in outside temperature is greater than a prescribed threshold, new upper and lower bounds for the

total power should be derived according to Algorithm 2, because when outside temperature changes,

q̄l and q̄u are subject to change as well. After this step, power allocation for the subsequent interval
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Algorithm 2 The steady-state fair power allocation for thermal comfort
1: function LONGTERM ALLOC(tsp, tout)
2: tb,new ← [0 0 ... 0]T

3: Aeq = 1
4: beq = q̄
5: while (!(sum(tb,new) = sum(tb) and counter! = 0)) do
6: tb ← tb,new
7: q ← long-term fair allocation, considering Aeqq = beq.
8: t← new steady-state temperature according to q
9: tb,new ← ((t− tsp) ≥ 0)||tb,new

10: if all units have reached set-point then
11: tb ← tb,new
12: flag ← true
13: break
14: end if
15: if qi’s are greater than q̄i for some i then
16: flag ← true
17: break
18: end if
19: reinitialize Aeq and beq
20: for i = all elements in tb,new do
21: Aeq ← [A′

eq A(i, :)
′]′

22: beq ← [beq tsp]
′

23: end for
24: counter++
25: end while
26: Aeq, beq ← []
27: if flag then
28: for i = 1:n do
29: if tb(i) or (!tb(i) and tmax(i) > tsp) then
30: Aeq ← [A′

eq A(i, :)
′]′

31: beq ← [beq tsp]
′

32: else
33: Ii := zeros(1, n)
34: Ii(i)← 1
35: Aeq ← [AeqI

i′ ]
36: beq ← [beq q̄(i)]
37: end if
38: end for
39: end if
40: q ← optimization (2.5) with Aeqq = beq.
41: end function
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is obtained in line 11.

In Algorithm 2, given the upper and lower bounds of the thermal comfort zone tl and tu, the set-

point temperature tsp is set to tl and tu in lines 8 and 9 of Algorithm 1, respectively. More precisely,

in line 8 of Algorithm 1, tl is passed to Algorithm 2 to compute q̄l, the minimum required power for

reaching temperature tl for all units. Then in line 9 of Algorithm 1, the same procedure is repeated,

this time considering tu instead of tl, resulting in the minimum required power q̄u. The two values

obtained as the minimum required power are subsequently used in line 11 of Algorithm 1 to achieve

the desired thermal comfort zone. Note that Algorithm 2 uses the optimal strategy obtained by

solving (2.5) and applies it to the system. If the unit’s steady-state temperature is greater than the

set-point, then the temperature of that unit is regarded as tsp in the next iteration.

The algorithm stops when all units reach the set-point temperature (Line 10) or when there is

no improvement in fair allocation of power (Line 5). By computing the total power at the end of

the algorithm, the minimum required power for reaching either tl or tu can be obtained, which is

subsequently used in Algorithm 1. Note that since q̄l is the minimum required power for all units

to reach tl, if the total available power is chosen higher than this value, the temperatures of units

will be higher than tl. In other words, the minimum required power will be used first to raise the

temperatures of all units to tl, and then the excess power will be fairly distributed among all units to

further increase their temperature within the thermal comfort zone. Similarly, if the total available

power is less than q̄u, then the temperatures of all units will be less than tu, and hence all unit

temperatures are maintained within the desired range.

Assumption 3. It is assumed that if unit i ∈ Nn has a heater, the effect of that heater on that unit’s

temperature will be greater than that of any other unit. In other words, ∂ti/∂qi > ∂tj/∂qi, , where

j ∈ Nn, j ̸= i. A similar assumption holds for the case of cooling sources.

Definition 3. Given a column or row vector, the superscript m− is used hereafter to generate

another column or row vector whose elements are the first m − 1 elements of the original vector.
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The superscript m+, on the other hand, is used to generate another column or row vector consisting

of elements m, . . . , n of the original vector. For example, qm
−

ss is a vector of the steady-state values

of the allocated power of the heating system for units 1 to m − 1, and qm
+

ss is a vector of the

steady-state power of the heating system for units m to n.

Definition 4. For any matrix B ∈ Rn×n, Bm+
is a matrix consisting of rows m to n of B. Also,

the short-hand notations of Bm+
− and Bm+

+ denote matrices consisting of the first m − 1 columns

and columns m to n of Bm+
, respectively.

Definition 5. P is a (n−m)×(n−m+1) matrix with diagonal elements of all 1, and the elements

to the immediate right-hand side of the diagonal elements are all −1.

The minimax problem in (2.5) is equivalent to the following minimization problem:

minimize
qss∈Rn

γ

subject to (ti,ss − tj,ss)
2 ≤ γ, i, j ∈ Nn∑

i

qi,ss = q̄,

qi,ss ≤ q̄i,

tss = B′
1t

out +B′
2qss.

(2.7)

Theorem 1. Given a multi-unit building, let the units be numbered based on their steady-state

temperatures such that t1,ss < ... < tr,ss = . . . = tn,ss. Let m be the largest integer between r and

n for which qm
−

ss = q̄m
−

. Then, the solution for (2.5) can be obtained as:

qm
+

ss =

PB
′m+

+

2

1T


−1−PB

′m+

1 tout − PB
′m+

−
2 q̄m

−

q̄ −
∑m−1

i=1 q̄i

 , (2.8)

where 1T is a row vector of all ones with appropriate dimension.
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Proof. It is assumed that units with lower long-term optimal temperatures (which are units 1, . . . , r−

1) do not have the same exact steady-state temperature, which is a realistic assumption in practice.

Using Lagrange multipliers for the constrained optimization problem described by (2.7) yields:

L =γ +
∑
∀i,j

λi,j((ti,ss − tj,ss)
2 − γ)

+ ζ(
n∑

i=1

qi,ss − q̄) +
n∑

i=1

σi(qi,ss − q̄i).

Since the desired minimum is a regular point, the first Karush-Kuhn-Tucker (KKT) condition is

given by:

∂L

∂γ
= 0,

which results in
∑

∀i,j λi,j = 1; therefore, one can simply eliminate γ in the Lagrangian formula-

tion. Removing γ and writing KKT condition for the new problem yields:

∂L

∂ζ
= 0,

∂L

∂qi,ss
= 0,

σi(qi,ss − q̄i) = 0, i ∈ Nn

λi,j((ti,ss − tj,ss)
2 − γ) = 0, ∀i, j ∈ Nn

λi,j ≥ 0, σi ≥ 0, ∀i, j ∈ Nn.

According to Assumption 3 it can be proved that ζ ̸= 0. Units are renumbered using the scheme

described earlier, ti,ss ̸= tj,ss, and hence


λi,j = 0, i ∈ Nr−1, j ∈ Nn

∂L
∂qi,ss

= 0,

yields qi,ss = q̄i. If there exists any other unit for which qi = q̄i, i ∈ {r, . . . , n} it is assigned a

number between r and m− 1, i.e. qm
−

ss = q̄m
−

ss . Thus, for i ≥ m, the corresponding σi is zero. For
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units m, . . . , n since tm = . . . = tn hence Ptm
+
= 0. Thus,

P (B
′m+

1 tout +B
′m+

2 qss) = 0

⇒ PB
′m+

2 qss = −PB
′m+

1 tout,

⇒

PB
′m+

+

2

1T

 qm
+

ss =

−PB
′m+

1 tout − PB
′m+

−
2 q̄m

−

q̄ −
∑m−1

i=1 q̄i

 .

From the above result and noting that that for units 1, . . . ,m− 1 we have qi = q̄i, it results that:

qm
+

ss =

PB
′m+

+

2

1T


−1−PB

′m+

1 tout − PB
′m+

−
2 q̄m

−

q̄ −
∑m−1

i=1 q̄i

 (2.9)

Using Theorem 1, it is straightforward to obtain the steady-state temperature of every unit in the

special case when there is no heat transfer between them. This special case is addressed in the next

proposition.

Proposition 1. Neglecting the effect of heat transfer between the adjacent units and reordering units

as proposed in Theorem 1, the following solution is obtained for the optimization problem described

by (2.5):

ti,ss =
q̄ +

∑n
k=m

β1k
β2k

tout −
∑m−1

k=1 q̄k∑n
k=m

β1k
β2k

, i = m, . . . , n

ti = touti +
β2i
β1i

q̄i, i = 1, . . . ,m− 1.

(2.10)

Proof. By neglecting the heat transfer between adjacent units (i.e., using equation (2.4)), it is

straightforward to show that B′
1 = I and B′

2 = diag(β21

β11
, . . . , β2n

β1n
) in equation (2.2). Therefore,

one can decompose the following matrix into the product of a lower triangular matrix and upper
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triangular matrix, as follows:

PB
′m+

+

2

1T

 =

 I 0

β1m

β2m

β1m

β2m
+

β1(m+1)

β2(m+1)
. . .

∑n
i=m

β1i

β2i


 PB

′m+
+

2

0 . . . 0 β2n

β1n


The inverse of the above matrix can be obtained as:

PB
′m+

+

2

1T


−1

=



β1m

β2m

β1m

β2m
. . . β1m

β2m

0
β1(m+1)

β2(m+1)
. . .

β1(m+1)

β2(m+1)

...
...

. . .
...

0 0 . . . β1n

β2n




1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

−
β1m
β2m∑n

i=m β1i/β2i
−

β1m
β2m

+
β1(m+1)
β2(m+1)∑n

i=m β1i/β2i
. . . 1∑n

i=m β1i/β2i


.

(2.11)

Considering equation (2.3) in steady state and substituting in it the steady-state allocated power

obtained from (2.8), one arrives at:

tm
+

ss = 1tout +B
′m+

+

2

PB
′m+

+

2

1T


−1 −Ptout

q̄ −
∑m−1

i=1 q̄i

 . (2.12)

The proof is completed by replacing the inverse matrix in the above equation from (2.11).

Remark 8. Proposition 1 implies that the optimal strategy obtained by solving (2.5) allocates power

to units with the lowest maximum achievable temperature first, then the ones with the second-lowest
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Figure 2.2: The floor map of the building in Example 3. The double-sided arrows represent heat
transfer between two neighboring units (yellow arrows) or between a unit and outside (green ar-
rows).

maximum achievable temperature, and so on. All other units with higher achievable temperatures

reach consensus in their temperature.

2.5 Simulation Results

Three examples are presented in this section to illustrate the theoretical findings.

Example 3. Consider a multi-unit building with the floor map depicted in Fig. 2.2, and let the

parameters related to the building and environment be n = 6, β1 = 0.1, B1 = [β1, ..., β1]
T , B2 =

diag([0.1 0.18 0.09 0.11 0.12 0.095]), q̄1 = 20, q̄2 = 10, q̄3 = 25, q̄4 = 25, q̄5 = 20, q̄6 = 20,

q̄ = 110, t(0) = [5 2 7 1 0 0]T , and tout = 0. Assume there is no heat transfer between different

units. The results of the optimal strategies obtained by solving the optimization problem (2.6) are

demonstrated in Fig. 2.3. Note that it is assumed in this example that there is no predefined thermal

comfort zone for the units. In other words, lines 8 and 9 of Algorithm 1 are replaced by q̄l ← q̄

and q̄u ← q̄, respectively (this means that Algorithm 2 is not executed in this case). The simulations

confirm that this approach exhibits short-term fairness.

Example 4. To verify short-term fairness property of the proposed method, consider a building with
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two units, and let the building parameters be β1 = 0.1, B1 = [β1, β1]
T , B2 = diag([0.20, 0.20]),

q̄1 = q̄2 = 14, q̄ = 25, t(0) = [2 28]T , and tout = 0. The results are presented in Fig. 2.4, which

show that both short-term and long-term fairness are achieved using this approach.

Example 5. Consider a multi-unit building with the same floor map as in Example 3 (i.e., the one

given in Fig. 2.2). Assume that the heat transfer between two adjacent units is not negligible, and

let the adjacency matrix be given by:

L =



7β1 −2β1 −β1 −3β1 0 0

−2β1 8β1 −2β1 0 −3β1 0

−β1 −2β1 9β1 −2β1 −2β1 −2β1

−3β1 0 −2β1 6β1 0 0

0 −3β1 −2β1 0 8β1 −2β1

0 0 −2β1 0 −2β1 5β1



.

The simulation results, in this case, are provided in Fig. 2.5, which demonstrates the effectiveness

of the proposed technique in achieving long-term fairness. This figure shows that under the optimal

strategy developed in this work, the temperatures of all units settle within the thermal comfort zone

while preserving short- and long-term fairness.

2.6 Conclusions

In this chapter, fair allocation of energy resources in a multi-unit building is investigated where

it is desired to reach a thermal comfort zone for every unit with limited energy resources. Unlike

existing strategies that often ignore the heat transfer between adjacent units, the proposed method

uses an adjacency matrix to model the heat exchange dynamics. The Problem is then formulated as a

constrained optimization where it is desired to achieve short-term and long-term fairness. Analytical

solutions are provided for the optimization problem with and without heat transfer dynamics, and

26



(a)

(b)

Figure 2.3: Temperatures and power allocation for the units in the building of Example 3 without
taking the heat transfer between the units into consideration. (a) Room temperatures obtained by
using the minimax approach, and (b) power allocation for the units obtained by using the minimax
approach.
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(a)

(b)

Figure 2.4: Temperatures and power allocation for the units in the building of Example 4 without
taking the heat transfer between the units into consideration. (a) Room temperatures obtained by
using the minimax approach, and (b) power allocation for the units obtained by using the minimax
approach.
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Figure 2.5: Allocated power and resulting temperature over 24 hours in the system of Example 5.
(a) Temperatures of different units obtained by using the proposed method, and (b) power allocated
to each unit using the proposed method.

fair steady-state temperatures of all units are derived in long term. Simulations for three different

building models demonstrate the efficacy of the proposed optimal strategy in achieving short- and

long-term fairness with limited resources.
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Chapter 3

Fair Rate Assignment in Reverse-Link

CDMA

3.1 Summary

This chapter studies fair dynamic rate allocation in a CDMA network. An optimization-based

fair reverse-link rate assignment strategy is proposed. The network is modeled in a star topology,

where the nodes represent either the base station (BS) or access terminals (ATs). The BS at every

time instant computes the fair rate for each AT by minimizing the maximum disparity in user rates.

Then, the BS sends a single bit to all ATs at every time instant. It is shown that if each AT could

compute a specific variable, called the coordinating variable, it can find its fair rate, which means

the decision-making strategy is distributed. The proposed method is computationally efficient, and

simulations confirm its efficacy in different scenarios.
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3.2 Introduction

Code-division multiple access (CDMA) 2000 standard was developed for high-speed wireless

communication networks. One of the primary advantages of this technology is that it does not limit

the user’s frequency spectrum, hence optimizing the bandwidth utilization. In the past two decades,

there have been several improvements in this type of network, and the technology continues to be

dominant in many mobile telephone standards.

Fairness is one of the critical problems in wireless communication networks. The authors in

[46] presents two categories of fairness measures in rate assignment: quantitative and qualitative.

Two quantitative fairness measures are introduced in [47] and [48], respectively, based on Jain’s

index [49] and entropy [50]. The two main qualitative fairness measures, on the other hand, are

max-min fairness [51, 52, 53, 54, 55] (which is often defined based on the notion of bottlenecks

[56]), and proportional fairness (which is applied to the rate per unit charge). Lexicographic fair-

ness for bandwidth allocation and data collection is discussed in detail in [39], [40]. The authors

in [41] develop a computationally efficient lexicographic minimax algorithm to allocate resources

appropriately. Two types of fairness, namely dynamic and static, are studied in [39], [40], [41]. The

concept of fairness has also been applied to other applications, such as HVAC systems [57].

Authors in [58] provide two reverse-link algorithms in CDMA are proposed. They formulated

the problem as a utility maximization problem. It is shown that both MAC algorithms solve this util-

ity maximization problem and therefore show fair behavior. Koksal et al. [59] provide two metrics

for measuring fairness for MAC protocols. The focus of their research was more on short-term fair-

ness rather than considering fairness in an extended period, long-term fairness. In [60], a distributed

rate control algorithm is proposed, which controls reverse-link rate for all ATs using a pricing mech-

anism to guarantee short- and long-term fairness. The authors in [61] provide two algorithms for

optimal reverse link rate assignment using only a single-bit feedback signal. The rate assignment

problem is formulated in the context of resource allocation in [62], where the stability criteria are
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developed in the presence of time delay. The authors in [63] develop models by analysis and simu-

lation to evaluate network fairness. Four bandwidth allocation methods are developed in [64], and

their fairness properties are analyzed for variable bit rate traffic. Moreover, there have been some

valuable advancements in fairness in wireless sensor networks recently. For example, the authors

in [65] investigate spectrum competition among users in a wireless network. This becomes a more

prevalent problem when dealing with an exponentially increasing quantity of intelligent terminals.

The work [66] proposes a fair and energy-efficient resource allocation in a specific wireless network

setting. Furthermore, there is often a conflict between two objectives: energy efficiency and spec-

tral efficiency. The above article transforms this conflict into a solvable minimization problem that

results in a fairness-aware spectral and energy-efficient output. Furthermore, as a result of slower

flow convergence during the loss recovery phase and flat-rate reduction during congestion control,

the multi-hop wireless network shows poor throughput stability and flow fairness performance.. In

[67], the authors propose feedback-assisted recovery to address this problem. In [68], the user co-

operation method in wireless networks is investigated. The proposed method can mitigate inherent

user unfairness issues in wireless network settings, resulting in more satisfaction for all users. The

authors in [69] study resource allocation under a fairness-energy-throughput. This will lead to an

increase in spectral efficiency and higher quality of service.

While the network performance in this type of network can be formulated as a classical control

problem, most of the methods described in the previous paragraphs do not tackle the problem from a

control-theoretic perspective. Such a viewpoint could help improve the network performance using

powerful closed-loop control techniques. A constrained optimization strategy is developed in this

work to enhance fairness in a wireless communication network. The analysis and design methods

are based on a classical closed-loop control system, where the binary feedback signal from the BS

to each user or AT is modeled as a nonlinear two-stage controller. The solution to the problem is

obtained using the Karush-Kuhn-Tucker (KKT) conditions. It is also shown how the describing
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function method can be used to identify permanent oscillations in the assigned rates.

The remainder of this chapter is planned as follows. In Section III, the problem statement

along with some useful background information is presented. Then, in Section IV, the main results

are given. Next, simulations are provided in Section V for different scenarios, which support the

efficacy of the theoretical results. Finally, the concluding remarks are presented in Section VI.

3.3 Problem Formulation

Now, we get back to a CDMA network. Consider a CDMA network with n ATs and one BS, as

shown in Fig. 3.1. ATs cannot communicate with each other, and only receive one single bit from

the BS. This is, in fact, the feedback signal and is the same for all ATs [60].

Figure 3.1: An example of a wireless communication network with one BS and n ATs (users)

Each AT can transmit at rates belonging to a prespecified finite set Γ. Let the selected rate for

the i-th AT at time instant t be Ri(t). Denote the ratio of transmitted power to the pilot power by

Ti(t). The relation between Ri(t) and Ti(t) is described by a function as follows:

Ti(t) = F (Ri(t)) (3.1)

The function F (.) can be derived from the IS-856 standard, depicted in Fig. 3.2 [60]. According

to this figure, F (.) could be approximated with a first-order or third-order fit. For simplicity, we
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consider a first-order approximation.

Figure 3.2: Graphical representation of function F (.)

For the BS to properly decode the received signal from the ATs, the rise-over-thermal (RoT)

criteria given below needs to be satisfied [60]:

Z(t) = 10 log10(1 +
n∑

i=1

Ti(t)Ppilot

N0W
) (3.2)

Z(t) ≤ Zth (3.3)

where Z(.) is the RoT at the BS, Ppilot is the received pilot power from the ATs, N0W is the power

of noise and interference, and Zth is the RoT threshold to be met for the BS to decode the signals.

Using (3.2), (3.3) and substituting Ti’s from (3.1) yields:

n∑
i=1

F (Ri(t)) ≤ N0W (10Zth/10 − 1)/Ppilot (3.4)

It is straightforward to show that by using the first-order approximation for F (.) one obtains:

n∑
i=1

Ri(t) ≤ Rt (3.5)
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where the parameter Rt is a threshold that can be easily obtained from (3.4). Let gi be the long-term

average rate guarantee for AT i. Let also ρi(k) be an exponentially weighted average rate with the

time constant m ≥ 2, satisfying the following relation:

ρi(k) =
1

m
((m− 1)ρi(k − 1) +Ri(k)) (3.6)

Definition 6. The long-term fairness means a scalar c exists such that

lim
k→∞

ρi(k) = cgi (3.7)

except when cgi exceeds the maximum feasible transmission rate [60].

In the next section, it will be shown that the notion of fairness in a CDMA setting is equivalent

to that of max-min fairness.

3.4 Main Results

Consider the following optimization problem:

minimize max
i,j∈Nn

(
Ri

gi
− Rj

gj
)2

subject to: Ri ≤ R̄

n∑
i=1

Ri(t) ≤ Rt

(3.8)

in which Ri is the steady-state transmission rate of the i-th AT, gi is its guaranteed rate, R̄ is the max-

imum rate for the users, and Rt is the threshold defined based on the coupled inequality reflecting

the maximum allowable interference.

Remark 9. It is to be noted that the strict inequality optimization (3.8) has a trivial solution, which
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is zero for all variables; that is why in the optimization problem, the coupled constraint should be

considered as equality.

Remark 10. In the performance index given in (3.8), a quadratic term is used instead of the absolute

value because for the analytical solution this function needs to be differentiable.

Now, reformulate the problem defined by (3.8) as follows:

minimize
γ,Ri,Rj

γ

subject to: (
Ri

gi
− Rj

gj
)2 ≤ γ

Ri ≤ R̄

n∑
i=1

Ri(t) ≤ Rt

(3.9)

To solve the above problem, one can write the Karush–Kuhn–Tucker (KKT) conditions. To this

end, define the Lagrangian as:

L(γ,R) = γ +
∑
i,j

ξij((
Ri

gi
− Rj

gj
)2 − γ)

+
∑
i

σi(Ri − R̄) + ζ(

n∑
i=1

Ri(t)−Rt)

(3.10)

The KKT conditions are then given by:

ξij((
Ri

gi
− Rj

gj
)2 − γ) = 0

σi(Ri − R̄) = 0

ξij ≥ 0, σi ≥ 0

∂L

∂γ
= 0,

∂L

∂Ri
= 0,

∂L

∂ζ
= 0

(3.11)

The results derived in the sequel are obtained based on the above formulation.
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Lemma 1. There exists at least one ordered pair (i0, j0) for which the coefficient ξi0j0 in (3.11) is

strictly positive.

Proof. It is known that the derivative of the Lagrangian in (3.10) with respect to γ should be zero.

In other words:

∂L

∂γ
= 0⇒

∑
ij

ξij = 1, ξij ≥ 0 (3.12)

From the above equation, it can be concluded that at least one of the ξij’s is strictly positive.

Let Ri/gi’s be ordered in descending sequence, i.e., R1/g1 ≥ . . . ≥ Rm/gm > . . . >

Rm′/gm′ ≥ . . . ≥ Rn/gn.

Lemma 2. There exist m and m′ such that for all i ̸= 1, . . . ,m or j ̸= m′, . . . , n , the coefficient

ξij is absolutely zero.

Proof. The proof follows immediately by using the above ordered sequence in the KKT conditions

(3.11).

Lemma 3. The value of ζ in (3.10) is strictly negative.

Proof. We know that ∂L/∂Rt = 0, for t = 1, . . . , N . From Lemma 2 one can write:

2

R1
g1
− RN

gN

gt

∑
i

ξi,t + σt + ζ = 0⇒ ζ = −2
R1
g1
− RN

gN

gt

∑
i

ξi,t − σt (3.13)

According to Lemma 1, there exists at least one pair (i0, j0) for which ξi0,j0 > 0 and for all other

pairs ξi,j ≥ 0. Therefore, by selecting t = i0 or i = j0 in the above equation, it is guaranteed that

ζ < 0.

Lemma 4. For i = m+ 1, . . . , N , we have Ri = R̄.

Proof. For all i = m+1, . . . ,m′− 1, it follows from Lemma 2 that ξi,j = 0 for any j = 1, . . . , N .

. Thus, it results from (3.13) that σi = −ζ > 0. From the KKT conditions in (3.11) we know that
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σi(Ri − R̄) = 0, and that σi > 0. This results in Ri = R̄ for i = m+ 1, . . . ,m′ − 1.

We now prove the same result for Ri with i = m′, . . . , N . For this, we know that based on

(3.9), the function γ is minimized. Assume Ri < R̄; then, we can increase Ri by a sufficiently

small value δR and decrease this amount from Rj for j = 1, . . . ,m′ − 1. Now, all constraints are

satisfied but we have a lower value for γ which contradicts with the assumption γ was minimized.

This completes the proof.

Theorem 2. For the set of equations and inequalities in (3.11), we have:

Ri = R̄, m+ 1 ≤ i < N

Ri =
gi∑m
i=1 gi

(Rt − (N −m)R̄), 1 ≤ i ≤ m

(3.14)

where m is the largest value for which:

Rm ≤ R̄ (3.15)

Proof. From Lemma 4, we know that Ri = R̄ for all i = m + 1, . . . , N , proving the first part of

the theorem. As a result:
m∑
i=1

Ri = Rt − (N −m)R̄ (3.16)

From the sorting order discussed before, we have:

Ri

gi
=

Rj

gj
, i = 1, . . . ,m, j = 1, . . . ,m (3.17)

Equations (3.16) and (3.17), yields:

Ri =
gi∑m
i=1 gi

(Rt − (N −m)R̄), 1 ≤ i ≤ m (3.18)

Again, from the special sorting order, we know that m is the largest value for which Ri = Rj for
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all i, j = 1, . . . ,m. This completes the proof.

So far, the fairness and maximum allowable interference constraints are satisfied. It is desired

now to use a binary signal transmitted from the BS to each user to generate a bang-bang control law

for every AT. To this end, equation (3.14) can be rewritten as:

Ri = min{R̄,
gi∑

i=m ngi
(Rt − (N −m)R̄)} (3.19)

Let C = 1∑
i=m ngi

(Rt − (N −m)R̄), which can be computed at the BS. Thus:

Ri = min{R̄, Cgi} (3.20)

According to the above formula, if the value of C was available to an AT, it could calculate the

steady-state fairness by itself. Consider the network depicted in Fig. 3.1. Initially, all ATs consider

the parameter C to be equal to zero. A bang-bang control strategy is then proposed as follows. At

each time instant, the BS obtains ideal value of C as Cideal = 1∑
i=m ngi

(Rt − (N − m)R̄). If

the ATs’ estimated value of C is greater than the value for Cideal, the BS sends S = 1 to all ATs;

otherwise, it sends S = −1 to them, and the ATs update the value of C using the following formula:

If S = 1 then Ci(t) = Ci(t− 1) + ∆C, 1 ≤ i ≤ n

If S = −1 then Ci(t) = Ci(t− 1)−∆C, 1 ≤ i ≤ n

(3.21)

Once the value of C is updated for all ATs, they can calculate their long-term fair rate.

At the next step, we aim at using the describing function analysis to the above-mentioned bang-

bang controller. To this end, assume that the sinusoidal input A(t) = A sin(t) is applied as an input

to the ideal switch. Therefore, the output would be:
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Figure 3.3: The nonlinear closed-loop system with on-off control N and linear system G, for de-
scribing function analysis.

B(t) = ∆C, 0 ≤ ωt ≤ π

B(t) = ∆C, π ≤ ωt ≤ 2π

(3.22)

As the output is an odd function, the cosine coefficients of its Fourier transform are zero, and in

particular, a1 = 0. As for the sine coefficients, we have:

b1 =
4∆C

π
(3.23)

Hence, the phase angle of the describing function is:

arctan(a1/b1) = 0 (3.24)

Consequently, the describing function can be written as:

N(A,ω) =
b1
A
0◦ =

4∆C

πA
(3.25)

The feedback law described in equation (3.21) can be decomposed into an ideal switch (on-off

controller) plus a discrete-time integrator. Note that in a limit cycle, the following relation holds:

G(iω) = − 1

N(A,ω)
(3.26)
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where G(iω),is the Fourier transform of a discrete integrator defined in (3.21). This means that:

1

1− eiω
= − πA

4∆C
⇒ A = −4∆C

π

1

1− eiω
(3.27)

In order for the above equation to have a real solution for A, we should have ω = (2k+1)π for any

integer k, which yields A = 2∆C
π . This means that the amplitude of the limit cycle is proportional to

the value of the parameter ∆C, and hence, one can attenuate the oscillations arbitrarily by a proper

choice of increments in (3.21). It is to be noted that by decreasing ∆C convergence time increases

accordingly.

3.5 Simulation Results

Example 6. Consider a wireless network with six users and the following parameters: R̄ = 10,

Rt = 50, g = [2, 4, 5, 7, 9, 11], and ∆C = 0.05. The results of fair long-term rate assignment

using a distributed scheme are depicted in Fig. 3.4. The results show that the long-term fairness

is achieved by using the proposed binary data as feedback signal from the BS to ATs. The figure

also confirms the existence of limit cycles. We have observed that the amplitude of these oscillations

depend on ∆C, as expected, and can be adjusted accordingly.

Example 7. Consider a wireless network with two users, and let R̄ = 10, Rt = 18, g = [10, 9], and

∆C = 0.05. The results in this case, analogously to the previous example, are depicted in Fig. 3.5.

Similar to the previous example, the results show that the fair rate assignment objective is achieved

in this case too, with permanent oscillations with relatively small amplitude in the steady-state. If

the same guaranteed rate is considered for both users, both rates will converge to the same value.

The proposed algorithm proves effective for the case of a varying number of users too. For

example, consider the case where at time t = 25, the number of users in Example 6 changes from 6

to 8. Suppose that: R̄ = 10, Rt = 60, g = [2, 4, 5, 7, 9, 11, 12, 13], and ∆C = 0.05. The results are
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Figure 3.4: The results obtained by using the proposed algorithm with six users in Example 6

given in Fig 3.6. The results show that the fairness objective is achieved in this case as well.

3.6 Conclusions

In this chapter a novel approach to achieve fairness in a CDMA network reverse-link rate as-

signment was studied. The solution is formulated as a first-order update rule. The approach is

computationally simple, with a closed-form solution. The method can also be extended to the case

where the network variables are coupled. The users experience fairness when the maximum mutual

differences of their rates are minimized. It is shown that, as expected intuitively, the optimal solu-

tion corresponds to the case where the users with lower rates are considered critical. Simulations

confirm the effectiveness of the method.
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Figure 3.5: The results obtained by using the proposed algorithm with users in Example 7

Figure 3.6: The results obtained by using the proposed algorithm in a network with a varying
number of users.
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Chapter 4

Conclusions and Future Work

In this work, we investigated fairness in a dynamic network with multiple users and limited

resources. The problem was formulated in a constrained optimization framework, and effective

methods were proposed to solve it. In particular, we studied two applications: heating, ventilation,

and air conditioning (HVAC) and code-division multiple access (CDMA). In the first application,

it is desired to reach a fair steady-state temperature in different units of a building. There is a

thermodynamic coupling between each pair of adjacent units due to the heat transfer. An analytical

solution for the optimization problem was provided, verified by simulations. As for the second

application, it is aimed to assign data rates to different users connected to a base station in a wireless

communication network. Practical limitations on the individual and collective rates in the network

were considered, and fairness was subsequently formulated as a constrained optimization problem.

An analytical solution was presented for this problem as well, and simulation results were provided

to confirm the findings. In future work, one can investigate the application of balanced resource

allocation in parallel cable robots to increase the system’s lifetime.
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