
Provenance Analysis in Virtualized Environments

Azadeh Tabiban

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

September 2022

© Azadeh Tabiban, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Azadeh Tabiban

Entitled: Provenance Analysis in Virtualized Environments

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Dr. Sivakumar Narayanswamy
Chair

Dr. Frédéric Cuppens
External Examiner

Dr. Ferhat Khendek
External to Program

Dr. Mohsen Ghafouri
Internal Examiner

Dr. Suryadipta Majumdar
Internal Examiner

Dr. Lingyu Wang & Dr. Makan Pourzandi
Thesis Supervisor

Approved by
Dr. Zachary Patterson, Graduate Program Director

October 27th, 2022
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Provenance Analysis in Virtualized Environments

Azadeh Tabiban, Ph.D.

Concordia University, 2022

With the unprecedented need for remote working and virtual retail, there has been a worldwide

surge in the adoption of cloud and edge computing. On the other hand, the significant reliance

on virtual services has rendered the underlying virtualized environments supporting those services

an attractive target for cyber criminals. There exist provenance-based solutions for identifying the

root causes of security incidents and threat prevention by tracing the relationships between events at

lower abstraction levels (e.g., system calls of an operating system). However, the sheer scale of vir-

tualized environments means that such solutions would generate impractically large and complex

provenance graphs for human analysts to interpret, especially in the context of virtualized environ-

ments with tens of thousands of users and inter-connected resources. Moreover, most intended user

actions (e.g., creating a virtual function) generate a large number of events at lower abstraction lev-

els, while it is typically challenging to associate those triggered operations to the intended actions

of users, which further hinders understanding the provenance graphs. Finally, most works rely on

human analysts to interpret provenance graphs into human-readable forensic reports.

Therefore, the main focus of this thesis is to facilitate the investigation and prevention of se-

curity incidents through practical provenance-based solutions in virtualized environments such as

clouds and network functions virtualization (NFV). First, we propose a cloud management-level

provenance model to facilitate forensic investigations by capturing the dependencies between cloud

management operations, instead of low-level system calls. Based on this model, we design a frame-

work to construct management-level provenance graphs and prune operations that are irrelevant

to detected security incidents. Second, we propose an approach preventing security incidents in

clouds based on the management-level provenance graph. Third, we propose the first multi-level

provenance system for NFV built for capturing the relationship between management operations

across different levels of the NFV stack, and increasing the interpretability of the logged informa-

tion by leveraging the inherent cross-level dependencies. Fourth, we propose a solution to bridge

the gap between human understanding of natural languages and data provenance by automatically

iii

generating forensic reports explaining the root cause of security incidents based on the provenance

graphs.

iv

Acknowledgments

My academic journey has been supported by many amazing people who have had a role in the

outcome of this research one way or another. First, I would like to thank my academic supervisors,

Professor Lingyu Wang and Professor Makan Pourzandi, for their guidance and support. I learned

tremendously from them, and they are a great inspiration for me, not only in research, but also in

terms of leadership and support. I have been repeatedly impressed by the extent they truly care

about the success of their students. I will always be grateful and cherish how they believed in me

and my potentials, which even helped myself to trust my abilities more.

This thesis benefited from my collaboration with Ericsson Research. I am particularly grateful

for the wise and practical guidance I have received from my industrial advisors that I directly work

with, including Dr. Makan Pourzandi and Dr. Yosr Jarraya. I also appreciate the insight and

comments that I received from other specialists and researchers at different branches of Ericsson

which contributed to building more practical and timely solutions in my research.

I also sincerely appreciate the support and advice from our Dean, Professor Mourad Debbabi,

and thank my thesis committee for their insightful comments that improved the quality of my thesis

and presentation. I am also thankful to my friends and lab mates for making our lab a welcoming

home for me to pursue my Ph.D., and all the fruitful inspiring discussions, laughs and treats that

we had together.

I would also like to express my deepest gratitude to my family. I appreciate how they encour-

aged my sense of creativity, taught me the value of self-reliance, and provided me with a great

emotional security. I am a combination of who they are, and I feel I have achieved any success to

v

this day with their mind and heart. I cannot be more grateful for their precious presence in my life

and memory. Though, any word falls short in describing my appreciation.

vi

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Contributions . 3

1.3.1 Management-Level Forensic Analysis in Clouds 4

1.3.2 Preventing Recurring Security Incidents in Clouds 4

1.3.3 Towards Interpretable Multi-level Provenance Analysis in NFV 4

1.3.4 Automatically Interpreting Provenance Graphs into Textual Reports 5

2 Background 7

2.1 Data Provenance . 7

2.2 Cloud Infrastructure Model . 8

2.3 NFV Background . 9

3 Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Ap-

plication to OpenStack 11

3.1 Introduction . 11

vii

3.2 Threat Model and Assumptions . 14

3.3 Methodology . 15

3.3.1 Overview . 15

3.3.2 Runtime Provenance Construction . 16

3.3.2.1 Cloud Management-Level Provenance Model 16

3.3.2.2 Building the Provenance Graph 19

3.3.3 Offline Forensics Analysis . 20

3.4 Threat Prevention . 23

3.4.1 Regular Threat Prevention . 23

3.4.1.1 Regular Monitoring Policy Specification 24

3.4.1.2 Monitoring Policy Enforcement 25

3.4.2 Label-based Threat Prevention . 26

3.4.2.1 Propagation Rule Specification 27

3.4.2.2 Monitoring Label Propagation 27

3.4.2.3 Label-based Monitoring Policy Specification and Enforcement . 28

3.5 Implementation . 30

3.6 Evaluation . 34

3.6.1 Effectiveness . 36

3.6.1.1 Failing to Update Security Groups 36

3.6.1.2 Failing to Delete Resized VMs 38

3.6.1.3 Soft-rebooting Migrated VMs 39

3.6.1.4 Malformed Security Group Rules 40

3.6.2 Efficiency . 40

3.6.2.1 Experiments with Cloud Testbed 41

3.6.2.2 Experiments with Real Cloud 45

3.6.3 Size Reduction of Provenance Graph . 46

3.6.4 Resource Overhead . 46

viii

3.6.5 Correctness . 47

3.7 Discussion . 48

3.8 Related Work . 49

3.9 Conclusion . 51

4 ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Func-

tions Virtualization (NFV) 52

4.1 Introduction . 52

4.2 Threat Model and Motivating Example . 56

4.2.1 Threat Model and Assumptions . 56

4.2.2 Motivating Example . 57

4.3 ProvTalk . 60

4.4 Provenance Construction . 60

4.4.1 NFV Provenance Model . 60

4.4.2 Building the Provenance Graph . 61

4.5 Multi-level Pruning . 62

4.6 Aggregation . 64

4.6.1 Cross-level Aggregation . 65

4.6.2 Administrative Behavior Aggregation . 69

4.7 Rule-based Translation . 71

4.8 Implementation . 73

4.9 Evaluation . 75

4.9.1 Effectiveness . 76

4.9.1.1 Cloud-level Alert, NFV-level Root cause 77

4.9.1.2 NFV-level Alert, Cloud-level Root Cause 77

4.9.2 Graph Reduction Performance . 78

4.9.3 Efficiency . 82

ix

4.9.3.1 Scalability Evaluation with NFV Testbed 82

4.9.3.2 Experiments with Real-world Data 86

4.9.3.3 Comparing with DominoCatcher 87

4.9.4 Correctness . 88

4.9.5 User Studies . 90

4.10 Discussion . 93

4.11 Related Work . 94

4.12 Conclusion . 96

5 VinciDecoder: Automatically Interpreting Provenance Graphs into Textual Forensic

Reports with Application to OpenStack 97

5.1 Introduction . 97

5.2 Preliminaries . 101

5.2.1 Provenance Graph . 101

5.2.2 Neural Machine Translation . 101

5.2.3 Assumptions . 102

5.3 VinciDecoder . 102

5.3.1 Overview . 102

5.3.2 Path to Intermediary Language Translation (PILT) 103

5.3.3 Normalization . 105

5.3.4 Translation Model Training . 105

5.3.5 Automatic Report Generation . 106

5.4 Implementation and Evaluation . 107

5.4.1 Evaluation using Cloud Management-level Provenance Graphs 108

5.4.1.1 Implementation and Data Collection 108

5.4.1.2 Effectiveness Evaluation . 110

5.4.1.3 Performance Evaluation . 111

x

5.4.2 Large Scale Experiments using CVE-based Provenance Graphs 114

5.4.3 User-based Study . 116

5.5 Discussion . 118

5.6 Related Work . 118

5.7 Conclusion . 120

6 Other Contributions 121

7 Conclusion 123

Bibliography 125

xi

List of Tables

1 Mapping the common concepts in clouds to the PROV-DM Model. 17

2 Statistics of datasets generated in our cloud testbed. 35

3 Attack scenarios used to evaluate the effectiveness of DominoBlocker. The first

and second cases are showcased in Motivating Example, and the sixth case is show-

cased in Example 2. 35

4 The runtime overhead imposed by DominoBlocker in different size of clouds with

respect to the execution time of management operations. 43

5 The additional delay (in seconds) incurred to different management operations

(numbered as specified in Fig. 20). 43

6 The statistics of subnets used for evaluating the effect of cloud topology and dy-

namicity. 45

7 The coverage of DominoBlocker for the unique management API calls issued to

different cloud services. 48

8 Mapping of the common concepts in NFV stack to the PROV-DM Model. 61

9 Statistics of our NFV testbed datasets. 75

10 Attack scenarios used to evaluate the effectiveness of ProvTalk (the shaded rows

indicate the incident and root cause are located at different levels). 76

11 Comparing the size of OS-level provenance graphs generated following each man-

agement API call with ProvTalk. 85

xii

12 The number of types of management API calls. 89

13 Statistics of participants. PG means provenance-based analysis. (A), (L) and (N)

mean advanced, little and no knowledge, respectively. Numbers of participants are

shown in the first row of the tables related to each study. 90

14 Statements common in our two studies. To quantify the results, we convert par-

ticipants’ agreement level to scores between one and five (score five represents

Strongly agree). ScoreS and ScoreL represent the scores of our first and second

studies, respectively. 92

15 Statements specific to our second study. Scores are between one and five (score

five represents Strongly agree). 93

16 Statistics of our testbed datasets. 109

17 Attack scenarios used to evaluate the effectiveness of VinciDecoder. 110

18 Reports generated by VinciDecoder for five scenarios in Table 17. The sixth sce-

nario is showcased in Section 5.3.5. 111

19 Statistics of our datasets prepared with CVE entries. 115

20 Average quantified agreement levels for each group (scores will be explained later).

PG means provenance analysis. (A), (L), and (N) signs represent advanced, little

and no knowledge, respectively, as reported by the participants. 116

21 Survey statements and scores. The agreement level of participants are converted to

scores between one and five (score five represents Strongly agree). 117

xiii

List of Figures

1 An example of cloud virtual infrastructure showing the dependencies between vir-

tual resources. 8

2 High-level view of ETSI NFV reference architecture (left); Example of multi-level

network service deployment showing the dependencies between resources (right). . 10

3 An example of data leakage in clouds (top), logs of various cloud services (middle),

and the interdependent management operations leading to the attack (bottom). . . . 12

4 A highlevel overview of DominoBlocker. 16

5 The provenance graph corresponding to the scenario of Fig. 3. Nodes related to the

attacker’s steps are highlighted in yellow. 18

6 Example of pruning through finding the provenance graph nodes disjointed from

the target VM (e.g., VMa) and unrelated nodes according to the security incident

context. 21

7 The steps of our regular threat prevention scheme. The dashed arrows and blocks

correspond to the optional steps. 23

8 The regular monitoring policy used to prevent the incident in our Motivating Ex-

ample (Section 5.1). 25

9 Steps of our label-based prevention approach designed based on our regular threat

prevention mechanism (Fig. 7). The colored boxes are specific to our label-based

prevention. 27

xiv

10 Examples of two scenarios leading to network connectivity between VMa and VMb. 28

11 An example of propagation rules labeling nodes representing resources with net-

work connectivity to a VM. 29

12 Leveraging label-based monitoring policies to prevent scenarios of Fig. 10. Dashed

nodes and edges are related to the blocked operations. Green and orange nodes are

assigned with Sensitive and Nonsensitve monitoring labels, respectively. 31

13 The architecture of DominoBlocker and its integration with OpenStack. 32

14 The integration of DominoBlocker with OpenStack and the intercepted informa-

tion. 33

15 Applying our solution to investigate and prevent the port scanning incident (Row

three, Table 3). 37

16 Applying DominoBlocker to investigate and prevent the disk denial of service in-

cident (Row four, Table 3). 38

17 Applying DominoBlocker to investigate and notify the data corruption in a VM

(Row five, Table 3). 39

18 Applying DominoBlocker to investigate and notify the host unavailability (Row

seven, Table 3). 41

19 Comparing the delay of DominoBlocker with Vanilla and DominoCatcher [106] ap-

proaches based on our (a) Motivating Example and (b) Example 2 (D.B. Avg. stands

for the average additional delay experienced by users applying DominoBlocker). . 42

20 Evaluating the delay incurred to different operations. 44

21 Evaluating the (a) overhead in clouds with different network topology and (b) size

reduction of DominoBlocker. 45

22 Evaluating the resource overhead of DominoBlocker. 47

23 Attack scenario detected at the NFV-level (left); log-based analysis (middle); ex-

cerpts of the provenance graphs (right). 57

xv

24 An example output of ProvTalk (a), and comparing it to existing works [44, 112]

to highlight the different multi-level nature (b) and (c). 59

25 The overview of ProvTalk. 60

26 Excerpt of the provenance graph related to the incident discussed in Section 4.2.2

contrasting the effectiveness of one-level [106] and multi-level pruning. 63

27 An example of cross-level dependency mining for the NFV-level operation, Cre-

ateVNF (top); Scenarios leading to different extracted sequences of lower-level

operations corresponding to the CreateVNF operation (bottom). 66

28 Identifying the cross-level dependencies. 67

29 Example of cross-level dependency discovery (a) before and (b) after aggregation. 69

30 Steps of ABM module. 70

31 Example of administrative behavior aggregation and merging compound nodes. . . 71

32 Example of auto-generated textual description. 72

33 Example screenshot of ProvTalk showing the aggregated and expanded cloud-level

nodes and the information shown while hovering a node. 74

34 Root cause of the CPU DoS Identified by ProvTalk. 77

35 Root cause of port scanning identified by ProvTalk. 78

36 Evaluating the effectiveness of multi-level pruning. 79

37 Evaluating the effectiveness of aggregation. 80

38 Evaluating the training stage overhead. 82

39 Runtime delay imposed to API calls at different levels. 83

40 Evaluating the storage and computation cost of ProvTalk (PG denotes provenance

graph). 84

41 Excerpt of the OS-level provenance graph generated by SPADE [38] upon issuing

the CreateVNF operation. We magnified a subgraph to illustrate an example of the

relationships between processes and data objects in an NFV controller. 86

42 Comparing the effectiveness and overhead of ProvTalk and DominoCatcher [106]. 88

xvi

43 Participants’ agreement with the statements. 91

44 Motivating example. 99

45 An excerpt of a cloud management-level provenance graph (a); an example of NMT

Encoder-Decoder model (b). 102

46 Overview of VinciDecoder. 103

47 Simplified example path (left) translated into a primitive sentence (right). 104

48 Example paths in our intermediary language (left) and their corresponding manu-

ally written reports (right). Semantically related information are highlighted by the

same type of lines. 106

49 Automatically generated report on the incident discussed in our motivating example

(Section 5.1). 107

50 Verifying the information captured by our generated report. The semantically rele-

vant information are highlighted with the same type of line. 112

51 Evaluation with cloud management-level provenance graphs. 112

52 Comparing reports generated by training datasets with different numbers of sam-

ples (irrelevant parts of the generated reports are crossed out). 113

53 (a) Perplexity (the smaller is better) and (b) accuracy at different epochs; (c) the

growth of vocabulary size, and (d) the proportion of unseen words. 114

54 Evaluation with CVE-based provenance graphs. 116

55 Participants’ agreement with statements in Table 21. 117

xvii

Chapter 1

Introduction

1.1 Motivation

Virtualized environments, such as clouds and network functions virtualization (NFV), have been

widely adopted to provide users with the ability to self-provision their resources in a cost-effective

manner over the shared physical infrastructure [114, 83]. On the other hand, the self-service and

multi-tenancy nature of virtualized environments also implies a higher operational complexity and

greater chances of misconfigurations [119, 21, 66]. Adversaries may exploit such misconfigura-

tions to launch attacks on affected virtual resources. However, the sheer scale and complexity

of those environments also render explaining what may have caused a security incident, i.e., the

root cause analysis, far more challenging [1]. A manual approach to root cause analysis is typi-

cally impractical considering the sheer size of virtualized environments, and automated solutions

become essential for understanding, debugging, and preventing security attacks exploiting either

vulnerabilities or misconfigurations.

There exist root cause analysis solutions [2, 97, 1] that enable identifying failed components

in virtualized environments. However, those solutions do not pinpoint the configuration changes

causing the failures. On the other hand, provenance analysis (e.g., [49, 91, 92]) enables explaining

system behaviors through tracing the interactions between events and data objects in a system.

1

However, adopting existing provenance-based solutions in the context of virtualized environments

face certain challenges as we detail in Section 1.2.

1.2 Problem Statement

In this thesis, we address the limitation of existing solutions by facilitating provenance analysis in

virtualized environments. In particular, this thesis seeks to answer the following questions:

• How can we facilitate the identification of root cause operations that led to security incidents

in clouds and leverage the results to prevent recurring incidents?

• How can we facilitate the root cause analysis in multi-level NFV environments with poten-

tially no obvious link between a detected incident and its root cause through impractically

large and complex provenance graphs?

• How can we automate the interpretation of provenance analysis results into human-readable

forensic reports?

We elaborate those problems as follows.

Challenging interpretation of provenance graphs in clouds. Most existing provenance-based

solutions (e.g., [49, 92]) trace the relationships between system calls of operating systems at lower

abstraction levels which would generate prohibitively huge provenance graphs, especially in the

context of clouds with tens of thousands of cloud tenants and interconnected resources. Identifying

the root cause operations that led to the attack is challenging using such provenance graphs. Ad-

ditionally, the generated provenance graphs usually cannot be easily mapped to cloud management

operations to understand what went wrong at that level.

Challenging multi-level root cause analysis in NFV environments. NFV enables agile deploy-

ment of network services on top of clouds. However, as NFV involves multiple levels of abstraction

representing the same components, pinpointing the root cause of security incidents can become

2

challenging. For instance, a security incident may be detected at a different level from where its

root cause operations were conducted with no obvious link between the two. Moreover, existing

provenance analysis techniques may produce results that are impractically large for human analysts

to interpret due to the inherent complexity of NFV.

Costly manual report generation for security incidents. Most existing root cause analysis solu-

tions rely on human analysts to interpret provenance graphs for root causes of security incidents.

However, navigating and understanding a large and complex cloud-scale provenance graph can

be very challenging for human analysts. Without such an understanding, cloud providers cannot

effectively address the underlying security issues causing the incidents, such as vulnerabilities or

misconfiguration.

1.3 Contributions

In this thesis, we build effective and practical provenance analysis solutions for investigating and

preventing security incidents in virtualized environments. To this end, we design a cloud management-

level provenance model to encode the interdependencies between management operations. We also

propose a middleware-based framework to capture provenance metadata from different cloud ser-

vices and construct the provenance graph for supporting forensic analysis and threat prevention.

Next, we propose an interpretable multi-level provenance analysis approach for NFV environments.

Our approach links the provenance graphs at different levels of the NFV stack and improves the

interpretability of the results through removing irrelevant information and hiding redundant opera-

tions. Finally, we propose an approach to bridge the gap between data provenance and the results

of analyses in the form of a natural language. Our approach leverages natural language translation

techniques to automatically generate forensic reports explaining the root cause of security incidents

based on the provenance graphs. We elaborate those contributions as follows.

3

1.3.1 Management-Level Forensic Analysis in Clouds

First, we propose a novel provenance-based solution that enables root cause identification at a

higher abstraction level by tracing management operations in clouds. Specifically, we first define

our provenance model to capture the interdependencies between cloud management operations,

virtual resources and inputs. Based on this model, we design a framework to intercept operations,

construct management-level provenance graphs and prune irrelevant operations. We implement our

framework on OpenStack cloud platform as an attached middleware and validate its effectiveness

using security incidents based on real-world attacks. We also evaluate the performance through ex-

periments on our testbed, and the results demonstrate that our solution incurs insignificant overhead

and is scalable for clouds.

1.3.2 Preventing Recurring Security Incidents in Clouds

Second, we propose a management-level provenance solution to prevent security incidents in clouds

through identifying the interdependent suspicious management operations. Specifically, after iden-

tifying the causally interdependent malicious management operations in clouds, our solution mon-

itors the intercepted cloud management operations and blocks/notifies the identified chain of ma-

licious operations to prevent the recurrence of the previously detected incidents. We implement

this solution on OpenStack platform, and validate its effectiveness using security incidents based

on real-world attacks. We also demonstrate that our approach incurs insignificant overhead and is

scalable for clouds.

1.3.3 Towards Interpretable Multi-level Provenance Analysis in NFV

Third, we propose a provenance analysis system that handles the unique multi-level nature of NFV

and assists the analyst to identify the root cause of security incidents. Specifically, we first define

a multi-level provenance model to capture the dependencies between NFV levels. Next, we im-

prove the interpretability through three novel techniques, i.e., multi-level pruning, mining-based

4

aggregation, and rule-based natural language translation. We implement our approach on a Tacker-

OpenStack NFV platform and validate its effectiveness based on real-world security incidents. We

demonstrate that our solutions captures management API calls issued to all NFV services, and pro-

duces more interpretable results by significantly reducing the size of the provenance graphs (about

3.6 times reduction via the multi-level pruning scheme and two times reduction via the aggregation

scheme). Our user studies show that our approach facilitates the analysis task of real-world users

by generating more interpretable results.

1.3.4 Automatically Interpreting Provenance Graphs into Textual Reports

Fourth, we propose an automated approach for generating natural language forensic reports based

on provenance graphs. Our main observation is that the way nodes and edges compose a path in

provenance graphs is similar to how words compose a sentence in natural languages. Therefore,

our solution leverages a novel combination of provenance analysis, natural language translation,

and machine-learning techniques to generate forensic reports. We implement our solution on an

OpenStack cloud testbed, and evaluate its performance based on real-world attacks. Our user study

and experimental results demonstrate the effectiveness of our approach in generating high-quality

reports (e.g., up to 0.68 BLEU score for precision).

The rest of this thesis is organized as follows.

• Chapter 2 provides a background on data provenance, cloud infrastructure model and NFV.

• Chapter 3 discusses the challenge of provenance analysis in cloud environments. We present

our solution, DominoBlocker, which is a provenance-based framework focusing on manage-

ment operations of cloud infrastructure. We explain our novel mechanisms for investigating

and preventing security incidents in clouds using cloud management-level provenance anal-

ysis. Furthermore, we will detail the implementation and integration of our solution with

OpenStack cloud platform.

5

• Chapter 4 discusses the challenge of root cause analysis in multi-level NFV environments.

We then present our system, ProvTalk, for interpretable multi-level provenance analysis in

NFV. We discuss our multi-level provenance construction mechanism, detail our three novel

techniques to improve the interpretability of provenance graphs, and finally explain the im-

plementation and evaluation results.

• Chapter 5 discusses the challenge of creating human-readable reports about the root cause

of security incidents. We detail our framework, VinciDecoder, which automatically inter-

prets provenance graphs into human-readable forensic reports. We detail our rule-based and

learning-based mechanisms for generating forensic reports using provenance graphs. More-

over, we present our implementation details and evaluation results.

• Chapter 6 summarises our contributions in other co-authored publications focusing on cloud

security auditing.

• Chapter 7 concludes the thesis with summarizing this research and discussing potential future

directions.

6

Chapter 2

Background

This chapter provides a background on our research in data provenance, cloud infrastructure model

and NFV.

2.1 Data Provenance

Data provenance is a powerful technique to trace the interactions between data objects (e.g., vir-

tual resources or operating system files) and events (e.g., management operations or system calls)

by capturing the dependencies between them in a graph representation, namely provenance graph.

Based on a popular standard specification [18], nodes of a provenance graph are generally catego-

rized into three main types: entities, activities, and agents, where entities represent data objects,

activities represent transformations on those objects and agents represent software, persons or or-

ganizations on whose behalf activities are requested. Edges are defined between nodes to describe

their interdependencies, e.g., an entity WasGeneratedBy an activity, an activity Used an entity, or

an activity WasAssociatedWith an agent. In Chapter 3.3.2.1 and 4.4.1, we will explain how we

leverage this specification to define our provenance model.

7

2.2 Cloud Infrastructure Model

Fig. 1 shows an example of a cloud virtual infrastructure (based on OpenStack concepts [123]), with

cloud tenants provisioning and managing their virtual resources (e.g., VMs1) through management

API interfaces (without loss of generality, our running example focuses on network-related security

incidents).

Subnet1 Subnet2

Portb

IF1 IF2 Portmal

Tenanta Network Tenantb Network

Management API Interface

Cloud Tenants

Subnetz

Porta

Subnetx

IFx

Portx

Subnety

Porty Portz1 Portz2
Security

Groupy

Security

Groupx

IFy

VMx VMz2VMz1VMmalVMy VMa VMb

Figure 1: An example of cloud virtual infrastructure showing the dependencies between virtual
resources.

Cloud Virtual Infrastructure. As shown in Fig. 1, in the cloud virtual infrastructure, routers

interconnect subnets to route network traffic (e.g., between Subnet1 and Subnet2). A subnet (e.g.,

Subnet1) is associated with a Classless Inter-Domain Routing (CIDR), e.g., 10.0.0.0/24, and upon

a tenant’s request for the operation Attach-Subnet-to-Router, the subnet is attached to a router

through an interface, e.g., the interface IF1. Once a tenant requests for creating a VM, e.g., VMa,

the created VM is attached to a virtual port, e.g., Porta. Ports can be created in subnets and each

port is subsequently allocated with an IP address chosen from the IP address range of its connected

subnet. Moreover, ports are attached with one or several security groups (i.e., arrays of network

access rules specifying the allowed network traffic). Once a VM is attached to a security group, the

1The same concepts may be described by different terms in different platforms (e.g., instance or server [123] instead
of VM).

8

IP table of that VM is updated with the IP addresses of VMs from/to which the network traffic is

allowed according to the newly attached security group.

Interdependencies. Our above descriptions show that there may exist interdependencies between

cloud virtual resources caused by management operations. For instance, the operation Attach-

Subnet-to-Router causes an interdependency between a router and its attached subnets by adding

the IP addresses of the subnets to the routing table of the router. Moreover, the operation Add-

Security-Group causes an interdependency between the VMs attached to different security groups.

In Section 3.3.2.1, we define our provenance model capturing such interdependencies.

2.3 NFV Background

The left side of Fig. 2 illustrates a high-level view of the ETSI NFV reference architecture, where

a user-specified service description is implemented through the virtual network function (VNF)

block (which provides a high-level representation of network functions) and the NFV infrastruc-

ture (NFVI) block (which represents the underlying cloud infrastructure), while both blocks are

provided by the same network operator [31]. The right side of Fig. 2 shows an example of a multi-

level network service deployment with corresponding management modules, and depicts how the

actual deployment of a network service would correspond to the ETSI architecture. Specifically, the

VNF block in the ETSI architecture maps to the NFV level, where a network service is deployed as

several VNFs forming a VNF forwarding graph (VNFFG). The NFVI block in the ETSI architec-

ture is mapped to both the service function chaining (SFC level), where there are virtual resources

such as port pair groups, and the cloud level, where there are virtual resources such as VM, port

and subnet. Finally, users can manage those levels through management modules including Net-

work Function Virtualization Orchestrator (NFVO), Virtual Network Function Manager (VNFM),

Software Defined Networking Controller (SDN-C) and Virtualized Infrastructure Manager (VIM).

Fig. 2 demonstrates how dependencies may exist between resources either at the same level or

between different levels. For example, the solid lines at the NFV level indicate that the two VNFs,

9

 Within-level dependency Cross-level dependency

 Users’ issued API call Triggered lower-level API call

Cloud

SFC Cloud

Tenant

Subnet1

PortPairGroupb

PortPairb

NFV NFV

Client

NFVI Block

Virtual

Resources

Hypervisor
Hardware

EMS VNF

Service

Description

PortPairGroupa

PortPaira

VNF Block

Porta1 Porta2 Portb1 Portb2

ETSI Architecture

(Simplified View)

Port Chainx

VMa

VNFa

VMb

VNFb
VNFFGx

VNFM

NFVO

SDN-C

VIM

Figure 2: High-level view of ETSI NFV reference architecture (left); Example of multi-level net-
work service deployment showing the dependencies between resources (right).

namely VNFa and VNFb, are part of (and connected through) a VNFFG named VNFFGx (similar

dependencies exist between the port pair groups and port chains, the VMs and ports, as well as the

ports and subnets). Furthermore, the dashed lines represent dependencies across different levels.

For example, the dashed line between VNFa (NFV-level) and VMa (cloud-level) indicates that the

creation of VNFa will automatically trigger the creation of VMa. Similarly, the creation of VNFFGx

will automatically trigger the creation of PortChainx. Finally, a dashed line links PortPaira (SFC

level) to its two components (Porta1 and Porta2).

The above example shows how operations executed at different levels might affect resources

and consequently introduce (within-level or cross-level) dependencies in the NFV stack. These

dependencies are crucial to correctly identify the root cause of security incidents in NFV. To capture

those concepts, we define a multi-level provenance model in Section 4.4.1.

10

Chapter 3

Catching Falling Dominoes: Cloud

Management-Level Provenance Analysis

with Application to OpenStack

3.1 Introduction

Cloud computing provides the users with the benefit of provisioning their resources over the opti-

mally shared underlying physical infrastructure. However, the self-service and multi-tenancy nature

of clouds also leads to a higher complexity and greater chances of misconfigurations [119, 21, 66].

Adversaries may exploit those misconfigurations to launch attacks on virtual resources.

The added complexity of cloud environments may also render the important task of pinpoint-

ing the root cause of security incidents far more challenging [1]. There exist root cause analysis

solutions [2, 97, 1] for identifying failed components (e.g., switches) in clouds, although they do

not explicitly pinpoint the configuration changes causing the failures. Other existing solutions fo-

cus on explaining system behaviours through provenance analysis, i.e., tracing when and how data

objects are created and transformed. However, since most existing provenance solutions work at a

low abstraction level, e.g., system calls [117, 92, 91, 49], they become insufficient in the context

11

of clouds, as such solutions would generate a prohibitive amount of provenance metadata without

providing a big picture about the root cause.

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim

pointer at speaker.

IF2 Subnet2

Porta

Subnet1

Portb

Leakage to

VMa
VMmal

VMb

Nova

...
2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers"

…

Nova

...
2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers"

…

Nova

...
2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers"

…

Networking
...

2019-08-01 19:24 INFO

neutron.wsgi [req-0607d

ddacd bf6f8] "PUT /

v1.0/routers/87624"

…

Networking
...

2019-08-01 19:24 INFO

neutron.wsgi [req-0607d

ddacd bf6f8] "PUT /

v1.0/routers/87624"

…

Networking
...

2019-08-01 19:24 INFO

neutron.wsgi [req-0607d

ddacd bf6f8] "PUT /

v1.0/routers/87624"

…

Image
...

2019-07-28 22:19 INFO

neutron.wsgi [req-876gk

ddacd bf6f8] "POST /

v1.0/images" 201

…

Image
...

2019-07-28 22:19 INFO

neutron.wsgi [req-876gk

ddacd bf6f8] "POST /

v1.0/images" 201

…

Image
...

2019-07-28 22:19 INFO

neutron.wsgi [req-876gk

ddacd bf6f8] "POST /

v1.0/images" 201

…

Computing
...

2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers" 201

…

Computing
...

2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers" 201

…

Computing
...

2019-08-01 22:19 INFO

neutron.wsgi [req-9073k

ddacd bf6f8] "POST /

v1.0/servers" 201

…

Subnet1

IF1

Portmal

Portmal

2: Attach

Subnet1 to

Router1

4: Create

Portmal on

Router1

6: Update

Portmal

device-owner

1: Create

Router1

Router1

Portmal

IF1

Porta

3: Create VMa

in Subnet1

Subnet1

Portmal

5: Create VMmal

attached to

Portmal

Cloud

VMa VMmal

Logs

Causally Interdependent Operations

Figure 3: An example of data leakage in clouds (top), logs of various cloud services (middle), and
the interdependent management operations leading to the attack (bottom).

Motivating Example. Fig. 3 depicts the challenge faced by an administrator after the detection

of a data leakage from VMa to VMmal in the cloud virtual infrastructure (shown at the top of the

figure), i.e., he/she would have to inspect a large amount of log entries from various cloud services

(shown in the middle of the figure) in an attempt to understand the attack scenario (shown at the

bottom).

• An attacker from TenantB creates a port (Portmal) on a router belonging to TenantA by ex-

ploiting vulnerability OSSA-2014-0081.

• He/She then creates a VM attached to that port while exploiting another vulnerability

1https://security.openstack.org/ossa/OSSA-2014-008

12

(OSSA-2015-0181) to bypass anti-spoofing rules for this VM in order to launch DHCP

spoofing attack to impersonate a DNS server.

• He/She now can intercept TanantA’s traffic from VMa destined to VMb through Subnet1,

Router1 and Subnet2.

Pinpointing such attack steps and correlating them based on their interdependencies can be a

daunting task if done manually, e.g., at first glance, there may not be any apparent link between the

creation of VMa and the attachment of VMmal to Portmal. On the other hand, traditional provenance-

based solutions do not directly provide such a big picture, as they typically focus on low-level

details (e.g., system calls) of individual components (e.g., an OS). Additionally, interpreting and

correlating such low-level results in a cloud would be prohibitive considering its sheer scale.

To address those challenges, we propose in this research DominoBlocker, a provenance-based

solution for easier forensic analysis and prevention of security incidents in clouds. Our key idea is

to lift the provenance analysis to the cloud management-level, which enables tracing configuration

changes and identifying the ones causing attacks. Specifically, we first define a provenance model

to encode the interdependencies between management operations, virtual resources and inputs in

clouds. Moreover, we propose a middleware-based framework to intercept provenance metadata

from management API calls made to different cloud services and construct the provenance graph.

Additionally, we devise provenance-based forensic and prevention mechanisms, which leverage

cloud-specific user-oriented pruning and label propagation techniques, respectively. Finally, we

implement and experimentally evaluate a prototype of DominoBlocker on a real OpenStack cloud

testbed.

In summary, our main contributions are as follows.

• To the best of our knowledge, this is the first provenance-based solution focusing on manage-

ment operations of cloud infrastructures. Compared to existing provenance-based solutions,

our provenance model is defined at a higher abstraction level, and therefore, can provide a

1https://security.openstack.org/ossa/OSSA-2015-018

13

big picture about cloud configuration changes with increased interpretability that facilitates

subsequent analyses.

• In lifting the provenance analysis to the management-level, a set of novel mechanisms are

proposed as follows. First, our middleware-based solution can enable incremental prove-

nance construction, runtime analysis and enforcement by intercepting management API calls

issued to cloud services. Moreover, our user-oriented pruning techniques allow cloud tenants

to customize their forensic analysis based on their needs, security assumptions and user pref-

erences. Furthermore, our threat prevention mechanisms enable tenants to specify shortlisted

operations that trigger the verification of monitoring policies. Our label-based threat pre-

vention approach enables easier specification and more efficient verification of monitoring

policies.

• Our evaluation results show that DominoBlocker can provide a scalable tool for identifying

the root cause and preventing security incidents in cloud infrastructures with insignificant

performance and storage overhead.

3.2 Threat Model and Assumptions

Our in-scope threats include both external attackers who exploit existing vulnerabilities in the cloud

infrastructure management systems, and insiders, such as cloud users and tenant administrators,

who make the state of the cloud infrastructure exploitable either through mistakes or by malicious

intentions. We limit our scope to attacks that involve some operations directed through the cloud

management interfaces (e.g., command line and dashboard). We assume the cloud infrastructure

management system, the provenance building mechanism and the provenance storage are all pro-

tected with existing techniques such as remote attestation [57, 101], hash-chain-based provenance

storage protection [41] or type enforcement [16].

14

Out-of-scope threats include attacks that either involve no management operations or can com-

pletely bypass the cloud management interfaces, attackers who can temper with (either through

attacks or by using insider privileges) the cloud infrastructure management system (e.g., breaching

the integrity of the API calls) or the provenance solution itself. Finally, although our provenance

results may subsequently lead to the discovery of existing vulnerabilities or misconfigurations, our

focus is not on vulnerability analysis, intrusion detection, or configuration verification, and our

solution is expected to work in tandem with those solutions.

3.3 Methodology

We first provide an overview of our methodology, namely DominoBlocker, and then detail the

provenance construction and forensic analysis stages.

3.3.1 Overview

Fig. 4 depicts all three major modules of DominoBlocker and an overview of their mechanism.

Our runtime provenance construction module (solid line arrows in Fig. 4) incrementally constructs

the provenance graph based on the intercepted management API calls. Once a security incident

is detected (e.g., by a deployed intrusion detection system), our offline forensics analysis mod-

ule (dashed line arrows in Fig. 4) assists the analyst to identify the chain of suspicious operations

by pruning the provenance graph while causing no additional runtime delay. To prevent security

incidents, our runtime threat prevention module (dotted line arrows in Fig. 4) monitors the incre-

mentally constructed provenance graph and notifies or blocks the identified suspicious operations

captured by the provenance graph before they are applied to the cloud. We discuss these modules

in detail as follows.

15

API Req./Res.

Interception

Runtime

Threat Prevention

Offline

Forensics Analysis

Runtime

Provenance Construction

Provenance

Database

Management

API Calls

Potential

Root Cause

Incident

Detection

Runtime Provenance Construction

Offline Forensic Analysis

Runtime Threat Prevention

Action

Incident Properties

Decision

Query

Query

Cloud

DominoBlocker

Figure 4: A highlevel overview of DominoBlocker.

3.3.2 Runtime Provenance Construction

In this section, we define our cloud management-level provenance model and describe the prove-

nance construction module.

3.3.2.1 Cloud Management-Level Provenance Model

In general, provenance usually refers to a technique that captures the information flow between

sources and sinks [49]. In the context of cloud virtual infrastructures, we identify as sinks the

management operations (e.g., CreateVM and Updateport) that lead to changing the configuration

and state of some virtual resources (e.g., virtual machines and ports), which we identify as sources.

To represent our provenance model, we leverage W3C PROV-DM [18]. According to this spec-

ification, the provenance concept is generally visualized using a directed graph, namely provenance

graph, in which nodes are categorized into three main types: entities, activities, and agents, where

entities represent data objects, activities represent transformations on those objects and agents rep-

resent software, persons or organizations on whose behalf activities are requested. Relations are

defined between nodes to describe their interdependencies, e.g., an entity WasGeneratedBy an ac-

tivity, an activity Used an entity, or an activity WasAssociatedWith an agent.

To define our provenance model based on PROV-DM, we map the most common concepts in

16

Table 1: Mapping the common concepts in clouds to the PROV-DM Model.

Cloud Concept Description PROV

Model

Subtype

Cloud Tenant Groups of users owning an isolated set of
virtual resources.

Agent Tenant Admin,
other tenants

Cloud User Customers of the cloud infrastructure be-
longing to a tenant with specific privi-
leges to provision cloud resources.

Agent Admin user of
a tenant, other
users.

Operation
(lifecycle-
related)

Management API calls for deploying,
deleting, or updating cloud virtual re-
sources.

Activity Create-VM,
Update-Port, etc

Operation (state-
related)

Management API calls for performing ac-
tions on virtual resources.

Activity Start VM, Resize
VM, Change VM
Password, etc.

Resource The states of a virtual infrastructure re-
source. For example, a VM is run-
ning/stopped/paused.

Entity VMs, virtual
ports, virtual
subnets, etc.

Resource Config-
uration

The states of a virtual infrastructure con-
figuration, e.g., configuration state of the
virtual hardware for VMs.

Entity Security groups,
Flavors, etc.

Input changing
configurations

The input data causing a change to the
configuration state.

Entity Security group
rules, etc.

cloud virtual infrastructure management to this specification. Specifically, a summary of our prove-

nance model is shown in Table 1. Subtypes are added to refine the classification of PROV-DM based

on our needs. To illustrate our model, Fig. 5 shows an excerpt of the provenance graph describing

the management operations involved in our motivating example, as detailed in the following.

Entities. As explained in Table 8, entity vertices (shown as ovals in Fig. 5) represent states of cloud

virtual infrastructure resources, their configuration or inputs (e.g., a virtual router, security group,

VM, etc.). For instance, a state of a router can be associated with the addresses of its connected

networks, while a VM state can be either running or down. To avoid cycles, we adopt the node

versioning method as in [75, 91, 92], by creating a new version of an entity once an operation

affects its represented resource1. For example, as it is shown in Fig. 5, a new node representing

1Although node versioning naturally causes an increase in the size of the provenance graph, we will show that the
size of our provenance graph is sufficiently scalable in Section 5.4.

17

an updated version of Router1 (i.e., the node ⟨Router1, Version1⟩) is created when it is attached

to Subnet1. Each entity node is assigned with a label describing its subtype (e.g., VM, Port, etc.).

Moreover, entity nodes consist of a set of attributes for storing a unique ID assigned by the cloud to

the represented resources, the time at which the corresponding management API call is intercepted,

etc. Other attributes, such as attached networks for virtual routers or running/stopped for VMs, may

also be assigned when needed.

Activities. Activity vertices (shown as rectangles in Fig. 5) represent management API calls made

to either change the state of resources (e.g., StartVM) or to mange their lifecycle (e.g., CreateVM).

The management API calls can be made either directly by tenants or as the result of another oper-

ation request. For example, in OpenStack, once a tenant requests for creating a VM in a network,

his/her request is received by the compute service, which subsequently makes another request to

the networking service for binding a port in the specified network to the created VM. In such a

case, we consider those two API calls as separate activities. We assign each activity node a la-

bel describing its corresponding operation type, e.g., CreateVM. Moreover, each activity node has

several attributes, including a unique request ID assigned by the cloud management system to its

corresponding API call, the time that the request has been issued, etc.

Agents. Agent vertices (shown as diamonds in Fig. 5) correspond to the identity of the tenant

admins or users interacting with management API interfaces to provision or manage their resources.

Agents are identified using the unique ID of tenants or users.

VMmal

Version: 0

Create

VM

Portmal

Version: 2

Update Port

device_owner

Create

Port

Portmal

Version: 0Tenantb

Router1

Version: 1

Attach

Subnet to

Router

Create

Router

Tenanta Subnet1

Version: 2

Create

Port
Porta

Version: 0

Create

VM
VMa

Version: 0

WasGeneratedBy

Used

WasGeneratedByUsed
WasGeneratedBy

WasAssociatedWith

Used

Used

WasGeneratedBy

WasGeneratedBy

WasAssociatedWith

Used

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

Update Port

device_owner

Portmal

Version: 4

Used WasGeneratedBy

Porta

Version: 1
WasGeneratedBy

WasGeneratedBy

Portmal

Version: 3

Router1

Version: 0

Figure 5: The provenance graph corresponding to the scenario of Fig. 3. Nodes related to the
attacker’s steps are highlighted in yellow.

18

3.3.2.2 Building the Provenance Graph

Based on our defined cloud management-level provenance model, DominoBlocker constructs the

provenance graph during runtime in two main steps: data collection and graph generation.

Data Collection. To capture all management operations affecting cloud virtual resources, we de-

sign and deploy our interception mechanism as middlewares [107, 60] attached to all cloud man-

agerial services. These services include networking, computing, and storage services. Note that

this approach allows us to tackle the challenge of capturing all information required for provenance

construction, while standard cloud logs generally lack some details about the requested opera-

tions [67] (e.g., operations StartVM and StopVM may appear to be identical in the logs). Moreover,

DominoBlocker processes the intercepted management API calls according to the analyst’s pre-

specified rules. These rules are specified based on cloud API documentations [3] and applied to

extract the type of requested operations, the affected resources, and the user requesting the oper-

ation. More details on parsing the intercepted API calls and retrieving their parameters will be

provided in Section 3.5.

Graph Generation. At this step, DominoBlocker converts the extracted information into prove-

nance metadata as nodes and edges, and appends them to the provenance graph stored in the

database. Specifically, it first creates a node for each affected virtual resource and a node for

the requested operation. Next, it creates edges to capture the dependencies between operations and

the affected resources: Used edges are created from the operation node to the nodes represent-

ing the previous version of the affected resources. WasGeneratedBy edges are created from the

newly created resource nodes to the created operation node. Moreover, DominoBlocker creates a

WasAssociatedWith edge from the operation node to the node representing the cloud user/tenant

requesting those operations.

Example 1. According to Fig. 5, DominoBlocker creates a WasAssociatedWith edge from the

CreateRouter operation node to the node representing Tenanta (i.e., the cloud tenant created that

router). Upon the interception of the operation Attach-Subnet-to-Router, DominoBlocker creates a

19

node representing this operation. DominoBlocker also creates the node ⟨Router1, Version1⟩ and a

WasGeneratedBy edge from this node to the node Attach-Subnet-to-Router. It also creates a Used

edge from the node Attach-Subnet-to-Router to the node ⟨Router1, Version0⟩, which represents the

previous state of Router1.

In Section 3.3.3 and 3.4, we detail how the constructed provenance graph is leveraged to identify

and prevent the suspicious operations leading to an incident, respectively.

3.3.3 Offline Forensics Analysis

This module assists the analyst to identify the management operations leading to detected security

incidents using the provenance graph constructed prior to the detection. To detect the incident, we

can leverage existing detection mechanisms monitoring the infrastructure and the deployed VMs.

For instance, we can rely on three main types of detection methods: VM monitoring techniques [17]

(e.g., intrusion detection tools), cloud policy compliance verification [4], and cross-layer consis-

tency verification tools [63].

The analyst may face two challenges in identifying the root cause operations based on the

provenance graph. First, the provenance graph may include many irrelevant operations, which may

be challenging for the analyst to distinguish from the root cause operations. Second, the multi-

tenancy nature of clouds implies that different tenants may have significantly different requirements

based on their security assumptions and objectives of the investigation. To address these issues, we

propose two user-oriented pruning mechanisms, namely disjoint subgraph pruning and context-

based pruning, to automatically identify and remove irrelevant information from the provenance

graph. The analysts could narrow down the scope of their investigation by triggering the pruning

process and selecting the proper pruning mechanisms based on their requirements.

Disjoint Subgraph Pruning. This pruning mechanism removes all nodes that are not connected to

the subgraph attached to the node representing the target resource (i.e., the resource associated with

the detected incident). To this end, DominoBlocker first identifies the potentially relevant nodes by

20

WasGeneratedBy
WasGeneratedBy

Used

Subneta

Version:1

Router1

Version:1

WasGeneratedBy

Create

VM

WasGeneratedBy

Subnetb

Version:1

Attach

Subnet to

Router

Used

Router1

Version:2
Subnetb

Version:2

WasGeneratedBy

WasGeneratedBy

Used

VMb

Version:0

WasGeneratedBy

Subneta

Version:2

WasGeneratedBy

Add Subnet

Interface to

Router

Used Used

Subnetc

Version:4

Router2

Version:0

Router2

Version:1

WasGeneratedBy

Subnetc

Version:5

WasGeneratedBy

Add to Security

Group Used

VMa

Version:1
SecurityGroupa

Version:2

WasGeneratedBy

WasGeneratedBy

Add to Security

Group
Used

Used
VMx

Version:2

SecurityGroupa

Version:3

WasGeneratedBy

WasGeneratedBy

 Disjoint Subgraph Pruning

 Context-based Pruning

 Last Version of the Target Resource

 Followed Paths of Connected Networks

Create

VM

Subnetx

Version:1

Used

WasGeneratedBy

Attach

Subnet to

Router

Create

VM

VMa

Version:0

VMx

Version:1

Figure 6: Example of pruning through finding the provenance graph nodes disjointed from the
target VM (e.g., VMa) and unrelated nodes according to the security incident context.

following all paths of the form Resource1 - (Used/WasGeneratedBy) - ManagementOperation -

(WasGeneratedBy/Used) - Resource2 starting from the last version of the target resource node.

Next, DominoBlocker removes all nodes that cannot be reached through following such paths,

as the absence of a path between a group of nodes and the target resource implies the lack of

interdependencies between them and thus the former may be pruned.

Example 2. Fig. 6 shows an example provenance graph after applying disjoint subgraph prun-

ing. DominoBlocker starts following the paths from the starred VMa node and reaches the Add-

Security-Group node, which used the previous version of VMa and generated the new version of

SecurityGroupa. DominoBlocker further follows the operations affected VMa earlier in the prove-

nance graph, and reaches the Subneta node through the WasGeneratedBy edge from the CreateVM

node. It also reaches the Attach-Subnet-to-Router node that used Subneta and generated a new

version of Router1. Following this process, DominoBlocker finds all operations and resources

21

that potentially affected the target resource, VMa, as well as the operations and resources which

are later impacted by the changes made to VMa. On the other hand, the disjoint subgraph (e.g.,

Subnetc, Router2, and the operations affecting them), shown inside the dashed contour in red, is

pruned since there is no dependency between those nodes and VMa.

Context-Based Pruning. This pruning mechanism removes nodes that are not contextually de-

pendent on the target resource according to the analyst’s provided criteria. The analyst may spec-

ify those criteria based on the security assumptions in the cloud platform or detected incidents.

DominoBlocker follows paths in the provenance graph while checking the specified constraints to

identify a subgraph of resources and operations interdependent with the target virtual resource, and

remove the remaining nodes and edges.

Example 3. Fig. 6 shows an example of context-based pruning in the context of VMa data leakage

incident. Since the incident is detected by a network-based IDS, the analyst attempts to investigate

only the nodes of resources that are in a direct network connectivity with VMa as well as its attached

network, Subneta, and prune other nodes from the provenance graph. Based on a pre-specified set of

operations (e.g., CreateVM and Attach-Subnet-to-Router) that potentially create or update network

connections between resources, DominoBlocker automatically identifies resources connected to

Subneta through the provenance graph. To this end, DominoBlocker starts from the last version

of VMa node in the provenance graph and follows paths to identify the potentially relevant nodes

until it reaches operations that are not in the specified set. For instance, DominoBlocker keeps VMb

and its attached subnet, Subnetb, in the provenance graph as they are reachable from VMa through

Attach-Subnet-to-Router and CreateVM nodes. On the other hand, VMx, connected to Subnetx

through CreateVM node (in the green contour), is pruned in this step, as it cannot be reached from

VMa through the pre-specified operations.

Our offline forensics analysis module allows a more focused investigation towards identifying

the potential root cause. In the next section, we detail how DominoBlocker leverages the results of

forensics analysis to prevent the recurrence of security incidents in clouds.

22

3.4 Threat Prevention

To prevent the recurrence of security incidents, we propose two different mechanisms: regular

threat prevention and label-based threat prevention.

3.4.1 Regular Threat Prevention

Fig. 7 shows the main steps of our regular threat prevention scheme leveraging the output of our

forensics analysis module: 1) DominoBlocker either leverages an existing solution [36] or an ana-

lyst to specify a monitoring policy indicating the graph representation of the interdependent suspi-

cious operations (i.e., the operations identified through our forensic analysis). 2) During runtime,

DominoBlocker verifies the specified monitoring policy against the provenance graph updated upon

intercepting new management API calls. 3) DominoBlocker notifies/blocks the intercepted man-

agement API calls if it discovers the chain of suspicious operations is captured by the updated

provenance graph. 4) Additionally, DominoBlocker allows the analyst to further examine the oper-

ations captured prior to previous incidents, and 5) refine the specified chain of suspicious operations

accordingly. In Section 3.4.2, we explain how we modify those steps to support our proposed label-

based threat prevention approach.

Pattern RefinementMonitoring Policy Enforcement

Regular Monitoring Policy Specification

Cloud

1

3

4

5Policy:

Allow/Block/

Notify decision

Suspicious

operations

Management-level

Provenance

2 Management-level

provenance

Refined graph

pattern

Management-level

provenance

Forensic Analysis

Action: ...

Graph pat.: ...

Policy

:

Policy:

Figure 7: The steps of our regular threat prevention scheme. The dashed arrows and blocks corre-
spond to the optional steps.

23

3.4.1.1 Regular Monitoring Policy Specification

To prevent the recurrence of incidents, DominoBlocker is provided with monitoring policies con-

sisting of a suspicious graph pattern (a graph query capturing the suspicious operations) and an

enforcement action (e.g., notify or block). To obtain the graph pattern, DominoBlocker may lever-

age an existing work [36] to automatically obtain the graph patterns based on the results of forensic

investigations. Optionally (e.g., to ensure the correctness of the specified patterns), DominoBlocker

allows the analyst to manually specify the graph patterns. The specified graph pattern may corre-

spond to one of the following cases: 1) the precise attack steps: the operations precisely identified

through forensics investigations, 2) imprecise attack steps: the attack steps as well as several ir-

relevant operations (i.e., the operations that could not be differentiated from the attack steps by

the analyst through the forensics investigation, and thus are added to the suspicious graph pattern),

and 3) cloud security policies: a chain of operations that may violate the security requirements

(e.g., network isolation between VMs) of the cloud platform. Such properties are determined based

on the cloud tenants’ preferences and may be independent from the result of forensics analyses.

The specified monitoring policy is fed into DominoBlocker (Step 1 in Fig. 7) for preventing future

security incidents.

Example 1. Fig. 8 illustrates a monitoring policy preventing the attack described in our Motivating

Example (Section 5.1, Fig. 3). Pattern shows the graph representation of the suspicious operations

described in a graph query language (Cypher1). This monitoring policy specifies DominoBlocker

to notify the cloud admin once it detects the graph representation of operations creating a port on

another tenant’s router, or updating the device_owner field of a port immediately after that port is

attached to a newly created VM.

1Cypher Language, https://neo4j.com/developer/cypher-query-language

24

Pattern: {

//to detect disabling anti-spoofing rules

MATCH (op1:'CreateVM')<-[]-(r1:'port')<-[*]-(r2:'port')<-[]-(op2:'UpdatePortDeviceOwner'})

WHERE op2.TimeInSecond-op1.TimeInSecond < 1 AND r1.ID=r2.ID

//to detect accessing other tenants’ network

OR ((resource:'router')<--(op3:'CreatePort') AND resource.TenantID<>op3.TenantID)

RETURN op1.RequestID, op3.RequestID}

//to notify the admin about the potential threat

Action: notify

Figure 8: The regular monitoring policy used to prevent the incident in our Motivating Example
(Section 5.1).

3.4.1.2 Monitoring Policy Enforcement

This module verifies the provenance graph against the specified monitoring policy during runtime.

Specifically, at the interception of every management API call and before its execution, Domi-

noBlocker updates the provenance graph (as explained in Section 3.3.2.2). Next, DominoBlocker

verifies whether the suspicious graph pattern (e.g., Pattern in Fig. 8) is detected in the provenance

graph updated by the newly intercepted API call (Step 2 in Fig. 7). To this end, DominoBlocker

issues a query to the graph database searching for the suspicious graph pattern in the provenance

graph. If the graph pattern is detected, DominoBlocker either notifies the cloud admin about the

potential threat or blocks the newly requested operation (Step 3 in Fig. 7) based on the enforcement

action specified by the monitoring policy. To block a requested operation, DominoBlocker discards

the intercepted management API call and generates an error message displayed to the cloud user.

Moreover, DominoBlocker deletes the nodes and dependencies corresponding to the blocked op-

eration from the updated provenance graph. To avoid unnecessary delays, DominoBlocker can be

configured to trigger the verification upon the interception of a subset of API calls specified by the

analyst.

The analyst can configure DominoBlocker to conduct the enforcement once a portion of the

suspicious graph pattern is detected in the provenance graph. This is especially useful for cases

where the root cause operations are not precisely identified (the case of imprecise attack steps in

Section 3.4.1.1), and thus, the graph pattern includes operations irrelevant to the attack. Hence, by

25

enforcing the monitoring policy upon detecting a portion of the graph pattern, it is more likely to

prevent the completion of the attack. DominoBlocker also allows the analyst to periodically refine

the suspicious graph pattern. To this end, the analyst monitors the provenance graph constructed

prior to the incidents that could not be prevented by the specified monitoring policy (Step 4 in

Fig. 7). Since the irrelevant operations may occur less frequently prior to the recurrences of the

same incident, the analyst refines the specified graph pattern by removing such operations and

provides the updated monitoring policy (Step 5 in Fig. 7).

3.4.2 Label-based Threat Prevention

To facilitate the specification and verification of monitoring policies, we propose a label-based

threat prevention approach based on our regular prevention mechanism. In the following, we detail

our motivation for label-based threat prevention, its mechanism, and benefit over our regular threat

prevention mechanism.

Motivation. Specifying regular monitoring policies involves formalizing interdependent suspi-

cious operations into detailed graph patterns, which may require extensive manual efforts. More-

over, the analyst may need to specify several graph patterns corresponding to different scenarios

leading to similar security incidents, which increases the required effort. Finally, attempting to

detect suspicious graph patterns may trigger time-consuming queries for following paths of the

provenance graph. Hence, we propose a label-based threat prevention mechanism that enables

specifying more generic graph patterns covering multiple scenarios leading to the same incident,

and allows the enforcement of monitoring policies through single dependency verification instead

of potentially time-consuming queries following long paths of the provenance graph.

Fig. 9 shows the five major steps of our label-based threat prevention approach designed based

on our regular threat prevention scheme. In the following, we detail these steps.

26

Monitoring Policy

Enforcement

Label-based Monitoring

Policy Specification

Cloud

5

Policy:

Allow/Block/

Notify decision

2 Management-level

provenance

Action: ...

Graph pat.: ...

Policy

:

Policy:

Propagation Rule

Specification

Propagation

rule:

Security

Requirements

Prop. rule:

Monitoring Label

Propagation

Prop. rule:

4

1 3

Labeled

provenance

graph

Figure 9: Steps of our label-based prevention approach designed based on our regular threat pre-
vention mechanism (Fig. 7). The colored boxes are specific to our label-based prevention.

3.4.2.1 Propagation Rule Specification

To track changes affecting security-sensitive resources, DominoBlocker allows the analyst to as-

sign monitoring labels to different resource nodes, and specify label propagation rules (Step 1 in

Fig. 9). Specifically, cloud admins may have different assumptions about the security sensitivity of

resources based on the data processed by those resources, users accessing them, etc. Accordingly,

the analyst assigns monitoring labels to resources representing their different levels of sensitivity.

For instance, the nodes of VMs processing sensitive or non-sensitive information are assigned with

monitoring labels Sensitive and Nonsensitive, respectively. Moreover, the analyst provides propa-

gation rules that specify the properties of nodes that may pass the monitoring labels to their adjacent

nodes.

3.4.2.2 Monitoring Label Propagation

During runtime, monitoring labels are stored as a node property upon the creation of the resource

and its corresponding node. Next, DominoBlocker iteratively passes the monitoring label to the

nodes with properties specified by the propagation rules that are adjacent to the labeled nodes (Step

2 in Fig. 9).

27

Example 2. Fig. 10 (left) shows an example where a cloud admin requires network isolation

between VMa processing sensitive information and VMb. In Fig. 10 (right), we can see two sce-

narios (i.e., Scenario A and Scenario B) leading to direct network connectivity between VMa and

VMb. To enable label-based threat prevention, the nodes representing VMa and VMb are assigned

with monitoring labels Sensitive and Nonsensitive upon the creation of those VMs. To identify all

resources in network connectivity with VMa and VMb, Fig. 11 shows an excerpt of the propagation

rules (in Cypher language) that passes the monitoring labels to the nodes representing connected

resources through the operations CreateVM and Attach-Subnet-to-Router.

… … … …L) E1 2) EM 3) EN

(ScenarioB)

… … … …
1) EM 2) EN

EL: Create VMa in Subneta

EM: Attach Subneta to Router1

EN: Create VMb in Subnetb

EO: Attach Subnetb to Router1

L) E4

(ScenarioA)

Router1

4) EO …

3) EO …

Subneta Subnetb

VMa VMb

Figure 10: Examples of two scenarios leading to network connectivity between VMa and VMb.

3.4.2.3 Label-based Monitoring Policy Specification and Enforcement

To prevent resources with different levels of sensitivity from affecting each other, the label-based

monitoring policy specifies to notify/block the operations that create a dependency between nodes

with different monitoring labels (Step 3 in Fig. 9). During runtime, DominoBlocker verifies the

specified monitoring policy against the labeled provenance graph (Step 4 in Fig. 9). To enforce the

policy, DominoBlocker evaluates the monitoring labels of the nodes representing the most recent

version of the affected resources (Step 5 in Fig. 9). We note that this is in contrast with our regular

threat prevention mechanism, which may require tracing back the created operation node to the

initial versions of its affected resources on potentially long paths of the provenance graph.

28

while (srcRes1s):

 srcRes1 = srcRes1s[0]

 query = "WITH %s AS srcRes1s\

 OPTIONAL MATCH (res1{uuid:'%s'})-[:WasGeneratedBy]->(op) <-

[:WasGeneratedBy]-(srcres2) \

 WHERE res1.label<>[] AND srcres2.label=[] AND op.eventName IN

['CreateVM','AttachSunetToRouter'] \

\\To propagate labels through WasGeneratedBy edges and the listed

operations to other resources if they are not labeled

 SET op.label = res1.label \

\\For example, in Figure 7c, <SubnetB, version1> would be labeled

 SET srcres2.label = res1.label \

 ...

\\The same matches for Used edges (which label e.g., <Router1, version1>

...

\\To continue propagation:

 WITH srcres2, srcres22, FILTER(x IN srcRes1s \

WHERE x <> srcRes1s[0]) AS srcRes1s \

 WITH srcRes1s + COLLECT (srcres2.uuid) AS srcRes1s \

 RETURN srcRes1s " %(srcRes1s, srcRes1, srcRes1, srcRes1)

 srcRes1s = tx.run(query)

 srcRes1s = srcRes1s.data()[0].get('srcRes1s')

Figure 11: An example of propagation rules labeling nodes representing resources with network
connectivity to a VM.

Example 3. Fig. 12(a) depicts a label-based monitoring policy preventing the scenarios in Fig. 10

(Example 2) by blocking the operations causing dependencies between resources with different

monitoring labels. Fig. 12(b) and 12(c) show the provenance graphs corresponding to Scenario A

and Scenario B of Example 2, respectively, that are labeled based on the rules in Fig. 11. In Sce-

nario A (Fig. 12(b)), once a user creates VMa, DominoBlocker assigns the monitoring label Sen-

sitive to the node representing VMa and propagates this label to its connected network (Subneta)

through the CreateVM operation node (Step 1 in Fig. 12(b)). After intercepting the operation

Attach-Subnet-to-Router, DominoBlocker propagates the monitoring label Sensitive to the Router1

resource node through the node representing the newly intercepted operation (Step 2 in Fig. 12(b)).

Similarly, Subnetb node is assigned with the monitoring label Nonsensitive due to its connection

with VMb (Step 3 in Fig. 12(b)). Once a user attempts to enable network connectivity between VMa

and VMb by attaching Subnetb to Router1 (Step 4 in Fig. 12(b)), DominoBlocker verifies only the

label of the most recent version of Subnetb and Router1, and blocks this operation according to the

29

specified monitoring policy (Fig. 12(a)). Likewise, in Fig. 12(c), DominnoBlocker automatically

propagates the monitoring label Nonsensitive to networks and resources with network connectivity

to VMb for preventing Scenario B. Subsequently, the creation of VMa in Subneta, and its subse-

quent network connectivity with VMb is blocked as Subneta is assigned with the monitoring label

Nonsensitive due to its network connection with Subnetb and VMb. As we can see, our label-based

mechanism prevents both scenarios without following the potentially long paths at the interception

of operations breaching the network isolation.

We conclude that our label-based threat prevention approach enables easier specification and

monitoring of policies. Note that although we need our regular monitoring policies for monitoring

the specific properties of nodes (e.g., the elapsed time between operation nodes in our Motivating

Example), our label-based prevention mechanism can significantly ease the prevention of a vast

group of incidents where the attackers attempt to affect resources with different sensitivity levels.

In Section 3.6, we demonstrate that this approach also reduces the delay, especially in monitoring

larger provenance graphs.

3.5 Implementation

We implement DominoBlocker in a testbed based on OpenStack (a popular open source popular

cloud platform [123]). We note that only our data collection and enforcement mechanisms are

platform-specific, while the modular design of DominoBlocker makes it easily adaptable to other

cloud platforms (detailed discussion in Section 3.7). In the following, we describe the integration

of DominoBlocker with OpenStack and the architecuture of our approach as shown in Fig. 13.

Integration with OpenStack. We deploy DominoBlocker as a middleware and conduct a set of

preprocessing to enable intercepting management API calls and obtaining provenance metadata:

1. Intercepting Management API Calls: To intercept REST API calls issued to OpenStack ser-

vices (e.g., Nova and Neutron), we implement our framework as a Python WSGI middleware

30

Pattern: {

MATCH (a)--(operation)--(b)

WHERE a.Label < > b.Label and operation.RequestID = $InterceptedRequestID

RETURN operation.RequestName, operation.TenantID}

Action: block

(a) The label-based monitoring policy preventing the direct network connectivity
between VMa and VMb.

VMa

Version:0

CreateVM

Used

WasGeneratedBy
WasGeneratedBy

AttachSubnet

ToRouter

Used

Used

Subneta

Version:0

Subneta

Version:1

Router1

Version:0

Router1

Version:1

WasGeneratedBy

CreateVM

Used

WasGeneratedBy

Subnetb

Version:0

Subnetb

Version:1

AttachSubnet

ToRouter

Used

Router1

Version:2

Subnetb

Version:2

WasGeneratedBy

WasGeneratedBy

Used

VMb

Version:0

WasGeneratedBy

Subneta

Version:2

WasGeneratedBy

1

2

3

4

(b) Provenance graph, Scenario A.

AttachSubnet

ToRouter

Used
Used

Subneta

Version:0

Router1

Version:0

Router1

Version:1

Subneta

Version:1

WasGeneratedBy

WasGeneratedBy

CreateVM

Used

WasGeneratedBy

Subnetb

Version:0

Subnetb

Version:1

VMb

Version:0

WasGeneratedBy

AttachSubnet

ToRouter

Used

Router1

Version:2

Subnetb

Version:2

WasGeneratedBy

WasGeneratedBy

Used

VMa

Version:0

CreateVM

Used

WasGeneratedBy
WasGeneratedBy

Subneta

Version:1

4

1

2

3

(c) Provenance graph, Scenario B.

Figure 12: Leveraging label-based monitoring policies to prevent scenarios of Fig. 10. Dashed
nodes and edges are related to the blocked operations. Green and orange nodes are assigned with
Sensitive and Nonsensitve monitoring labels, respectively.

similar to existing works [107, 60], and insert it into the filter chain ending at those services.

Fig. 14(a) depicts an excerpt of the updated Neutron API configuration and its filter chain

into which DominoBlocker is inserted. This configuration is stored in the api-paste.ini file

corresponding to each service.

2. Preprocessing for Information Extraction: To obtain provenance metadata, we specify pars-

ing and operation typing rules, based on which DominoBlocker will extract the information

31

DominoBlocker

OpenStack

Services

Neutron

Nova

Glance

 Runtime Provenance Construction

Requests Processor

Updated/Created

Resources

A
P

I
R

e
q

./
 R

e
s.

In
te

rc
e

p
to

r

Provenance

Graph

Builder

Database

(Neo4j)

Requested Operation

Type

Decision

Pattern Verifier

Decision Enforcer

 Offline Forensic Analysis

Tenant-basedNetwork Connectivity
Resource

 Security Levels

Pruned

Provenance Graph

Pruning

criteria

Monitoring

policy

Narrowed down

investigation

Runtime

Threat

Prevention

Detected incident

properties

Swift

Integration

Analyst

Cloud user

Management API call

Figure 13: The architecture of DominoBlocker and its integration with OpenStack.

of the intercepted management API calls, and identifies the type of the requested opera-

tions. DominoBlocker allows users to focus provenance analysis on a set of operations and

resources as well as OpenStack services. For instance, to investigate and prevent network-

related incidents, the analyst may provide parsing and typing rules only for management

API calls that are sent to Neutron service (networking service of OpenStack) and may affect

network-related configurations. Fig. 14(b) shows selected fields of an example API call at-

taching a port to a VM. In this example, the ID of the attached port (f91398) can be extracted

by parsing the PATH-INFO based on our specified rules. Similarly, our rules specify Domi-

noBlocker to parse other fields of the API call (i.e., wsgi.input, METHOD and PATH-INFO),

match them against our operation typing patterns, and determine that this request attaches a

port with the ID f91398 to a VM with the ID 131.

The aforementioned steps enable DominoBlocker to intercept management API calls and en-

force the monitoring policies (Step 1 above) and collect the necessary information for provenance

construction and threat prevention (Step 2 above).

Runtime provenance construction. As Fig. 13 shows, during runtime, API Requests/Responses

32

[composite:neutronapi_v2_0]

use = call:neutron.auth:pipeline_factory

noauth = cors http_proxy_to_wsgi ... DominoBlocker neutronapiapp

keystone = cors http_proxy_to_wsgi request_id catch_errors authtoken

keystonecontext DominoBlocker extensions neutronapiapp_v2_0

(a) Integrating DominoBlocker as a middleware with the networking service of OpenStack
(Neutron).

REQUEST_METHOD: “PUT”
openstack.request_id: “234dt”
HTTP_X_PROJECT_ID: “fb5s”
HTTP_X_USER_ID: “ax1h”
PATH_INFO: “/v2.0/ports/f91398”
wsgi.input: “{“port”: {“device_owner”: “network:--”}}”

(b) Information extracted from an API call attaching a port to a VM.

Figure 14: The integration of DominoBlocker with OpenStack and the intercepted information.

Interceptor intercepts the parameters of management API calls and passes them to Requests Pro-

cessor, which obtains the affected resources and the type of the requested operations based on our

specified rules. We note that the management API calls that are sent to OpenStack services for

creating a resource (e.g., the API call requesting CreateVM operation) do not include the ID of the

created resource. Therefore, DominoBlocker also intercepts the response of such API calls that are

sent from services back to management API interfaces to obtain the ID of the newly created re-

source. Then, Provenance Builder updates the provenance database implemented in Neo4j1 based

on the extracted information. We use py2neo2 as an interface between our middleware and the

graph query language, Cypher, for interacting with the database.

Offline forensic analysis. To facilitate identifying the root cause of an incident, the analyst initial-

izes his/her selected pruning mechanisms (detailed in Section 3.3.3) using our graphical interface,

through which the analyst selects and initiates the pruning scripts with the parameters reported

about the alert (e.g., time of the detection and the ID of the target VM). The analyst may also spec-

ify a time interval so that nodes and edges generated beyond that time interval are discarded in the

1Neo4j Graph Database, https://neo4j.com
2https://py2neo.org/v4

33

investigation. Moreover, as Fig. 13 shows, pruning may be conducted based on security assump-

tions (e.g., Network connectivity, Tenant-based, etc.) about the cloud or the detected incident. For

instance, DominoBlocker can be configured to prune all nodes corresponding to resources that are

not in a network connectivity with the target resource or are created/updated by different tenants.

Runtime threat prevention. To conduct threat prevention, Pattern Verifier issues a query to the

provenance graph database to detect the suspicious graph pattern specified by the monitoring pol-

icy. Once the specified graph pattern is detected in the provenance graph, the Decision Enforcer

blocks or notifies the requested operation according to the specified enforcement action: if the en-

forcement action is block, Decision Enforcer informs our API interceptors to generate ª403 Forbid-

den" response without passing the management API call to the cloud services. Moreover, Decision

Enforcer removes the nodes and edges representing the newly blocked operation and its affected re-

sources from the provenance graph. If the enforcement action is notify, Decision Enforcer informs

the API interceptors to log a warning message and pass the management API call to the endpoint

cloud services.

3.6 Evaluation

To evaluate DominoBlocker, we seek to answer the following questions:

RQ1: How effectively can DominoBlocker capture and prevent real-world attacks?

RQ2: How much does DominoBlocker affect the execution time of management operations?

How does the additional delay compare to the existing techniques and vary in different cloud se-

tups?

RQ3: How much can our pruning schemes reduce the size of the provenance graph? How does

it vary based on different pruning criteria provided by the cloud admin?

RQ4: What is the resource overhead of DominoBlocker in terms of storage and CPU?

RQ5: How completely and soundly can we capture the management API calls and prune the

provenance graph?

Testbed experimental setup and dataset. We run DominoBlocker on an Ubuntu 18.04 server

34

with eight virtual CPUs and 12 GB of virtual RAM. To generate diverse datasets, we create 55

subnets connected to different numbers of VMs in each dataset, and randomly vary the operations

affecting virtual resources (e.g., starting/locking VMs and creating/updating virtual ports). Table 2

shows statistics about the datasets generated in our cloud testbed. In Section 3.6.2.2, we describe

our dataset collected from a real cloud environment.

Table 2: Statistics of datasets generated in our cloud testbed.

Dataset D1 D2 D3 D4

of API calls 2435 4885 7352 9835
of nodes 4657 9072 13482 17904
of edges 3513 6866 10164 13438
Total # of VMs 352 611 875 1145
Average # of VMs per subnet 5 8 11 13

Table 3: Attack scenarios used to evaluate the effectiveness of DominoBlocker. The first and second
cases are showcased in Motivating Example, and the sixth case is showcased in Example 2.

Root Cause Vulnerability Detected

Incident

Type of Most Relevant

Management Operations

1 Race Condition to Bypass
Anti-spoofing Rules [107]

CVE-2015-5240 Data
Leakage

CreatePort, CreateVM,
UpdatePort

2 Proper Authorization Fail-
ure [119]

CVE-2014-0056 Data
Leakage

CreateRouter, CreatePort,
CreateVM

3 Failing to Update Security
Groups [66]

CVE-2015-7713 Port
Scanning

AddSecurityGroup,
StartVM, DeleteSecurity-
GroupRule

4 Failing to Delete Resized
VMs

CVE-2016-7498 Disk DoS CreateVM, ResizeVM,
DeleteVM

5 Soft-rebooting Migrated
VMs

CVE-2020-17376 Data Cor-
ruption

CreateVM, LiveMigrat-
eVM, SoftRebootVM,
CreateVM

6 Network Misconfiguration No CVE Data
Leakage

CreateVM, AttachSubet-
ToRouter, AttachSubet-
ToRouter

7 Malformed Security
Group Rules

CVE-2019-9735 Host
Unavail-
ability

CreateVM, CreateSecu-
rityGroup, AddSecurity-
GroupRule

35

3.6.1 Effectiveness

To answer RQ1, in our testbed, we automatically reproduce the attack scenario of seven security

incidents that involve cloud management operations via Bash scripts1. Some of these attacks are

discussed in existing works [66, 119, 107] focusing on cloud security verification. Table 3 summa-

rizes those attack scenarios, the most relevant operations, and the exploited vulnerabilities. For all

scenarios, DominoBlocker could successfully trace back the incidents to the root cause and prevent

the recurrence of attacks. We showcase the effectiveness of our approach based on all cases: the

scenario exploiting two vulnerabilities (first and second rows of Table 3) is presented in our Mo-

tivating Example; Example 2 showcases the prevention of the sixth case, and the other four cases

are detailed below.

3.6.1.1 Failing to Update Security Groups

In this scenario (Row three, Table 3), the analyst receives a port scanning alert due to ICMP traffic

from VMa, which belongs to Usera. Fig. 15(a) shows an excerpt of the provenance graph generated

by DominoBlocker. Using the provenance graph, the analyst can see that Usermal creates VMmal

in Subnetb (Step 1), and adds VMmal to SecurityGroupx (Step 2). The analyst can also observe that

a rule (SecuirtyGroupRulex) is added to SecurityGroupx to allow ICMP traffic from the VMs of

SecurityGroupx (e.g., VMmal) to the VMs of SecurityGroupa (Step 3). Next, Usera adds VMa to

SecurityGroupa (Step 4) and starts this VM (Step 5). Usera deletes SecuirtyGroupRulex (Step 6)

before connecting Subneta and Subnetb (Step 7). As deleting SecuirtyGroupRulex restricts ICMP

traffic to VMa, the port scanning incident is not supposed to happen. Hence, the analyst suspects

that the deletion of SecuirtyGroupRulex was not successfully applied due to a potentially existing

vulnerability (CVE-2015-77132), which disables the update of a security group for a running VM.

To prevent the recurrence of such attacks in the future, the analyst leverages the threat prevention

mechanism of DominoBlocker, which allows specifying the monitoring policy shown in Fig. 15(b).

1https://www.gnu.org/software/bash/manual/bash.html
2https://nvd.nist.gov/vuln/detail/CVE-2015-7713

36

During runtime, DominoBlocker verifies the provenance graph against the specified graph pattern

and notifies the admin once a user attempts to delete a security group rule applied to a running VM.

This enables the admin to closely verify that the deletion of the rule is applied prior to allowing

subsequent network connections made to such VMs.

SecurityGroupa

Start VM

Timestamp: “09:53:01”

Create

VM

Subneta

Attach Subnet to Router

Timestamp: “10:13:01”

Router1

Router1

Attach

Subnet to

Router WasGeneratedBy

Used

WasGeneratedBy

Used

Used

WasGeneratedBy

Used

WasGeneratedBy

Used

WasGeneratedBy

Delete Security Group Rule

Timestamp: “10:00:01”

Used

SecurityGroupRulex

Protocol: ICMP

Add Security

Group Rule
WasGeneratedBy

SecurityGroupa

WasGeneratedBy

Add Security

Group

Used

Used

SecurityGroupx

Used

Add Security

Group

VMmal

Used

WasGeneratedBy

SecurityGroupx

WasGeneratedBy

VMmal

Create

VM

Subnetb

WasGeneratedBy

WasGeneratedBy

Used

Subneta
Subnetb

Usera

Usermal

WasAssociatedWith VMb

Create VM
Subnetb

WasGeneratedBy

Userb WasAssociatedWith

WasGeneratedBy
Used

WasAssociatedWith

WasGeneratedBy

Router1

1

2

3

7

6

4

5

VMa

running: True

VMmal

VMa

running: False

VMa

VMa

VMb

(a) Root cause of the port scanning incident identified using Domi-

noBlocker.

Pattern: {

MATCH path = (a{EventType:'DeleteSecurityGroup'})-[:Used]->(b{ResourceType:'VM',

uuid:$VM-ID})-[*]->(c{ResourceType:'VM', uuid:$VM-ID})-[:WasGeneratedBy]-

>(d{EventType:'StartVM'})

WHERE ANY (node_on_path IN NODES(path) WHERE node_on_path.type <>

'StopVM')

RETURN a}

action: notify

(b) An example of a monitoring policy to detect and notify the admin once a security

group rule applied to a running VM is updated.

Figure 15: Applying our solution to investigate and prevent the port scanning incident (Row three,
Table 3).

37

3.6.1.2 Failing to Delete Resized VMs

In this scenario (Row four, Table 3), the analyst receives a disk denial of service alert once users

attempt to create VMs on Hostx. Using the provenance graph generated by DominoBlocker (as

shown in Fig. 16(a)), the analyst can observe that a user (i.e., Usermal) resizes several VMs (Step

1), and triggers another request for deleting those VMs after a few seconds (Step 2). Since deleting

a VM right after it has been resized is not a routine behavior in that cloud environment, while it is

conducted repeatedly by Usermal, the analyst suspects that Usermal exploits a potential vulnerability

(CVE-2016-74981) to keep Hostx occupied by preventing the actual deletion of resized VMs. Based

on this observation, the analyst specifies a monitoring policy that blocks the requests for deleting

VMs immediately after they are resized (Fig. 16(b)).

CreateVM

Usermal

VMa

Hostx

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

Used

ResizeVM

Timestamp: “11:10:01”

DeleteVM

Timestamp: “11:10:03”

Used

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

VM49

Used

WasGeneratedBy

Used

UsedWasGeneratedBy

WasGeneratedBy

ResizeVM

Timestamp: “06:53:58”

Used

WasGeneratedBy

Used

WasAssociatedWith

1

2

HostxCreateVM

VM50VM49

VM50

VM48

DeleteVM

Timestamp: “06:54:01”
DeleteVM

Timestamp: “09:24:32”

VM48 WasAssociatedWith

WasAssociatedWith

CreateVM CreateVMHostx

ResizeVM

Timestamp: “09:24:31”

(a) Root cause of the disk denial of service incident identified using DominoBlocker
(some edges and nodes are omitted for the sake of readability).

Pattern: {

//to detect the deletion of a resized VM

MATCH (op1:'ResizeVM')<-[]-(resouce1)<-[*]-(resource2)<-[]-(op2:'DeleteVM'})

WHERE op2.TimeInSecond-op1.TimeInSecond < $DeltaTimeInterval

AND resource1.id = resource2.id

RETURN op1, resource1, op2}

Action: block

(b) An example of a monitoring policy to detect and block the deletion of a VM
immediately after it is resized.

Figure 16: Applying DominoBlocker to investigate and prevent the disk denial of service incident
(Row four, Table 3).

1https://nvd.nist.gov/vuln/detail/CVE-2016-7498

38

3.6.1.3 Soft-rebooting Migrated VMs

In this scenario (Row five, Table 3), the analyst initiates an investigation to identify the root cause of

the corruption of VM1. The analyst cannot explain the incident by investigating the configurations

of VM1: he/she realizes that VM1 is not in network connectivity with other VMs, and only the

admin user is privileged to access it. Therefore, VM1 is not corrupted by other VMs sharing the

same network or users logged into this VM. On the other hand, after investigating the provenance

graph generated by DominoBlocker (Fig. 17(a)), the analyst realizes that VM1 is hosted by Hosta

which also hosts VM2. The analyst can also see that VM2 is created on a different host, i.e., Hostb

(Step 1), and later, is migrated to Hosta (Step 2). Next, another user (i.e., Usermal) soft-reboots

VM2 (Step 3) to exploit a vulnerability (CVE-2020-173761), which attaches the storage volume of

VM1 to VM2 on Hosta. Therefore, Usermal is allowed to corrupt the data of VM1, as it is accessible

through VM2. To prevent such incidents in the future, the analyst specifies the monitoring policy

shown in Fig. 17(b), which notifies the admin once a user attempts to soft-reboot a migrated VM.

SoftRebootVM

VM2

VM2

WasGeneratedBy

Used

WasGeneratedBy

Used

Used

CreateVM

WasGeneratedBy

WasGeneratedBy

WasGeneratedBy
Used

1

2
Hosta

VM2

VM1

CreateVM
LiveMigrateVM

Hosta

Hostb
Used

3

Usermal

WasAssociated

With

(a) Root cause of the data corruption incident identified using DominoBlocker.

Pattern: {

//to detect the soft-reboot of a live-migrated VM

MATCH (op1:'LiveMigrateVM')<-[]-(resouce1)<-[*]-(resource2)<-[]-(op2:'SoftRebootVM'})

AND resource1.id = resource2.id

RETURN op1, op2}

Action: notify

(b) An example of a monitoring policy to detect and notify the admin once a live-
migrated VM is rebooted (soft).

Figure 17: Applying DominoBlocker to investigate and notify the data corruption in a VM (Row
five, Table 3).

1https://nvd.nist.gov/vuln/detail/CVE-2020-17376

39

3.6.1.4 Malformed Security Group Rules

In this scenario (Row seven, Table 3), the analyst receives a performance alert from most VMs lo-

cated on Hosta. Fig. 18(a) shows an excerpt of the provenance graph generated by DominoBlocker.

Using the provenance graph, the analyst can see that a user, i.e., Usermal, creates a VM on Hosta

(Step 1), and attaches this VM to SecurityGroupx (Step 2). Next, Usermal specifies a malformed

security group rule allowing VRRP network traffic to the destination port 112 (Step 3). As spec-

ifying the destination port number for VRRP network traffic is not supported by OpenStack [5],

the analyst suspects that Usermal specifies such a rule to exploit a vulnerability (CVE-2019-97351),

which disables the security group rules of all VMs on Hosta, and leaves them prone to malicious

resource-intensive network traffic. Therefore, the analyst specifies a monitoring policy (Fig. 18(b))

which notifies the cloud admin once a user indicates the destination port number for the specified

security group rules.

Based on our evaluated attack scenarios, we can conclude that DominoBlocker is effective in

assisting the analyst to identify the root cause of security incidents and automatically preventing

those incidents in the future.

3.6.2 Efficiency

To answer RQ2, we measure the delay caused by DominoBlocker in the runtime execution of

cloud operations (i.e., the elapsed time between sending a request from management interfaces

and the completion of its execution). The additional runtime delay is incurred by our provenance

construction and threat prevention modules. The time required for the communication between

DominoBlocker and Neo4j database server is also considered in our measurements. We also com-

pare the delay introduced by DominoBlocker with the delay incurred by two other approaches: the

execution time of cloud operations (with no security solution applied) and the delay introduced

1https://nvd.nist.gov/vuln/detail/CVE-2019-9735

40

AddSecurity

Grouprule

SecurityGroupx

Protocol: VRRP

DestPort: 112

SecurityGroupx

WasGeneratedBy

Used

WasGeneratedByUsed

CreateVM

AddSecurityGroup

Used

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

VM30

Used

WasGeneratedBy

Used

Used
1 2

Hosta VMmal

VM31

AddSecurityGroup

CreateVM AddSecurityGroup

Hosta CreateVM

WasGeneratedBy

Hosta

Usermal

WasAssociatedWith 3

(a) Root cause of the host unavailability incident identified using DominoBlocker.

Pattern: {

//to detect the addition of a security group rule with a specified destination address

MATCH (op1:'AddSecurityGroup')<-[*]-(op2:'AddSecurityGroupRule')<-[]-(r:'SecurityGroupRule')

WHERE EXISTS(r.DesPort)

RETURN op2}

Action: notify

(b) An example of a monitoring policy to detect and notify the admin once a desti-
nation port is specified for an added security group rule.

Figure 18: Applying DominoBlocker to investigate and notify the host unavailability (Row seven,
Table 3).

by a more basic version of our work, DominoCatcher [106], which does not support threat pre-

vention. To evaluate both regular and label-based threat prevention mechanisms, we conduct our

evaluations for our Motivating Example and Example 2, which leverage regular (Fig. 8) and label-

based (Fig. 12(a)) monitoring policies, respectively. We conduct our experiments based on both

our testbed OpenStack cloud and a real cloud.

3.6.2.1 Experiments with Cloud Testbed

In this experiment, we evaluate the effect of the size and virtual network topology of the cloud on

the performance of DominoBlocker.

Effect of cloud size. To evaluate the efficiency for clouds having different sizes, we simulate at-

tack scenarios targeting VMs attached to random subnets of each dataset. Figures 19(a) and 19(b)

compare the runtime delay experienced by users without applying a security solution (Vanilla),

41

after applying DominoCatcher [106] and DominoBlocker to prevent the attack scenarios of our

Motivating Example (Section 3.1) and Example 2 (Section 3.4.2). DominoCatcher adds an average

delay of around 0.14 seconds to the execution time of operations for constructing the provenance

graph (without supporting threat prevention). DominoBlocker introduces the average accumulative

delays of 0.24 and 0.17 seconds for provenance construction and threat prevention based on the

monitoring policies of our Motivating Example and Example 2, respectively. The delay grows with

the size of the provenance graph, as locating nodes (for creating new dependencies in provenance

construction) and graph patterns (for threat prevention) are more time-consuming in larger prove-

nance graphs. Furthermore, our label-based threat prevention approach causes smaller delays (0.17

seconds in average) than our regular threat prevention approach, since the former only compares

the monitoring labels of the newly connected nodes (detailed in Section 3.4.2.3). In contrast, con-

ducting regular threat prevention requires tracing back long paths of the provenance graph, which

subsequently incurs a longer delay (around 0.24 seconds in average).

We also measure the ratio between the additional delay caused by DominoBlocker and the av-

erage execution time of management operations. Table 4 shows that in all datasets, the incurred

additional overhead is less than 8% of the execution time of management operations, which demon-

strates the scalability of our approach.

5101520

50100150

1

Vanilla DominoCatcher DominoBlocker

5 10 15 20
of graph nodes (x103)

2

4

6

8

Ti
m

e
(s

)

D.B. Avg. = 0.24 s

5 10 15 20
5.90
6.15
6.40

(a) Data leakage prevention (Motivating
Example).

5 10 15 20
of graph nodes (x103)

2

4

6

8

Ti
m

e
(s

)

D.B. Avg. = 0.17 s

5 10 15 20
5.90
6.15
6.40

(b) Network isolation (Example 2).

Figure 19: Comparing the delay of DominoBlocker with Vanilla and DominoCatcher [106] ap-
proaches based on our (a) Motivating Example and (b) Example 2 (D.B. Avg. stands for the average
additional delay experienced by users applying DominoBlocker).

42

Table 4: The runtime overhead imposed by DominoBlocker in different size of clouds with respect
to the execution time of management operations.

Threat Prevention

Dataset Provenance Const. Data Leakage Network Isolation

D1 1.25% 1.49% 1.47%
D2 1.81% 2.69% 2.20%
D3 2.64% 4.42% 3.23%
D4 3.90% 7.74% 4.87%

Different management operations. Fig. 20 compares the average delay caused by DominoBlocker

with the execution time of different management operations (Vanilla) in all datasets (shown in Ta-

ble 2). We observe that the delay incurred by DominoBlocker (maximum 8.07% average overhead)

is negligible compared with the execution time of management operations. Table 5 shows the total

additional delay incurred by DominoBlocker in datasets of different sizes. The maximum delay is

around 0.24 seconds for capturing the operations in the provenance graph and verifying the speci-

fied monitoring policy during runtime. Operations affecting multiple resources have a longer delay,

as adding such operations to the provenance graph requires locating and creating multiple resource

nodes and dependencies, which is more time-consuming. For instance, operation Attach-Port-To-

VM (encoded as Operation 4 in Table 5) has the highest overhead, since for adding this operation

to the provenance graph, DominoBlocker creates two edges between Attach-Port-To-VM operation

node and the nodes representing the affected VM and port. In summary, DominoBlocker incurs a

negligible additional overhead for all cloud management operations.

Table 5: The additional delay (in seconds) incurred to different management operations (numbered
as specified in Fig. 20).

Dataset/Operation 1 2 3 4 5 6

D1 0.087 0.086 0.087 0.088 0.09 0.09
D2 0.15 0.158 0.156 0.163 0.163 0.161
D3 0.262 0.260 0.254 0.264 0.263 0.259
D4 0.458 0.448 0.459 0.462 0.453 0.454

Average 0.24 0.238 0.239 0.244 0.242 0.241

Effect of virtual network topology in the cloud. To evaluate the effect of network topology, in

43

123456
Op

02
46
8

T
Vanilla Provenance Construction Prevention

1 2 3 4 5 6
Operations

0
2
4
6
8

Ti
m

e
(s

)

1. CreatePort

2. CreateRouter

3. CreateVM

3. StartVM

4. Attach-Port-To-VM

5. UpdatePortDeviceOwner

Figure 20: Evaluating the delay incurred to different operations.

this work, we simulate attack scenarios targeting VMs attached to subnets of four different sizes

in a provenance graph with 19,254 nodes. Table 6 shows the number of VMs and operations

affecting resources (e.g., VMs and ports) attached to each subnet. Fig. 21(a) shows that, in all

subnets, the delay of the provenance construction is around 0.229 seconds and the delay caused

by the threat prevention mechanism is around 0.455 and 0.286 seconds, for Motivating Example

(regular prevention) and Example 2 (label-based prevention), respectively. The delay does not vary

drastically for different subnets, since the complexity of paths connected to all subnets (e.g., the

number of edges connected to operation nodes) is similar due to the small difference between the

number of resources affected by different operations. Nevertheless, without leveraging monitoring

labels (i.e., regular prevention in Fig. 21(a)), the delay slightly increases with the size of subnets

(from 455 milliseconds for the smallest subnet to 460 milliseconds for the largest one), while our

label-based prevention mechanism has a similar delay in all subnets. One reason is that, based

on the regular monitoring policies, our threat prevention module traces back graph paths which are

longer for subnets with a larger number of resources in our datasets. In contrast, the additional delay

introduced by label-based threat prevention is similar in all subnets, since this approach verifies the

label of the last node on a path (instead of tracing back long paths), which shows the benefit of our

label-based prevention mechanism.

We conclude that DominoBlocker incurs a negligible runtime overhead to prevent attacks tar-

geting clouds with different sizes or virtual network topology.

44

Table 6: The statistics of subnets used for evaluating the effect of cloud topology and dynamicity.

Subnet

of connected VMs 10 90 195 304
of management operations 30 617 1349 1971

0 100 200 300
of VMs connected to subnets

0.3

0.4

0.5
Ad

di
tio

na
l d

el
ay

 (s
)

Regular Prev.
Label. Prev.
Prov. Const.

(a) Effect of network topology.

5 10 15 20
of graph nodes (x103)

0.97

0.98

0.99

1.00

Re
du

ct
io

n
fa

ct
or

Net. connectivity
Tenant-based

(b) Size reduction.

Figure 21: Evaluating the (a) overhead in clouds with different network topology and (b) size
reduction of DominoBlocker.

3.6.2.2 Experiments with Real Cloud

To evaluate the applicability of DominoBlocker in real cloud environments, we measure its effi-

ciency using the data collected from a research cloud hosted at one of the largest telecommuni-

cations vendors with hundreds of hosts and users. We note that since the installation of our data

collection mechanism was not allowed in this cloud, we construct the provenance graph based on

the logs automatically generated by the cloud infrastructure (although such logs lack sufficient in-

formation for provenance construction [67]). Our collected logs correspond to 1,148 management

API calls in the cloud environment of 354 VMs. Our constructed provenance graph consists of

2,157 nodes and 1,565 edges. On average, the delay incurred by DominoBlocker is around 0.037

seconds to add nodes and edges to this provenance graph representing the newly requested opera-

tions and affected resources. DominoBlocker causes the average delay of 8.4 and 8.1 milliseconds

to conduct threat prevention based on our regular (Motivating Example) and label-based (Exam-

ple 2) monitoring policies, respectively. We note that this delay is smaller than the delay measured

in our testbed dataset as this provenance graph is smaller than the provenance graphs constructed

based on our testbed cloud.

45

3.6.3 Size Reduction of Provenance Graph

To answer RQ3, we evaluate the effectiveness of our pruning schemes in reducing the size of the

provenance graphs based on two pruning criteria shown in Fig. 13: network connectivity (discard-

ing resources that are not in direct network connectivity with the target resource) and tenant-based

(discarding resources affected by different cloud tenants). Fig. 21(b) depicts the average reduction

for datasets of different sizes, where the reduction factor is the number of pruned nodes over the

total number of nodes. We can see that pruning based on network connectivity reduces the size

of the provenance graph by almost 99% in all datasets. The reason for this significant reduction

is that the number of resources in network connectivity with the target resource is much less than

the total number of resources. Therefore, pruning nodes of resources connected to other networks

significantly reduces the size of the provenance graph. Likewise, pruning nodes corresponding to

different tenants drastically decreases the size of the provenance graph (to around 4% of the orig-

inal size), since the number of nodes representing the operations and resources that are issued or

affected by each tenant is significantly smaller than the total number of graph nodes. We note that

although the measured reduction factor may vary for clouds with a different number of connected

resources or tenants, our results provide a useful approximation of the effectiveness of our pruning

scheme.

In summary, our pruning scheme effectively assists the analyst under various potential criteria

by remarkably narrowing down the root cause investigation.

3.6.4 Resource Overhead

To answer RQ4, we measure the storage and CPU overhead caused by DominoBlocker.

Storage consumption. Fig. 22(a) shows that for the provenance graph constructed by 120,000

management API calls, only 80-megabyte storage is required. This number of management API

calls is much higher than the number of management API calls issued in one day in a real cloud

reported in [119], which indicates that the storage cost of DominoBlocker is acceptable.

46

CPU consumption. We also evaluate the CPU overhead caused by DominoBlocker at different

rates of intercepted management API calls. In our experiments, we vary the rates of API calls such

that the time interval between each pair of consecutive API calls is a fraction of the time interval

between the same management API calls in the logs collected from our real research cloud platform.

Fig. 22(b) shows that the average CPU usage of DominoBlocker increases almost linearly with the

rate of intercepted management API calls. The rate of 500 API calls per hour is comparable to

the rate of API calls issued in our real research cloud, which incurs less than 2.5% CPU overhead.

Moreover, DominoBlocker causes less than 4% CPU consumption while intercepting around 3,000

API calls per hour, which demonstrates the scalability of our solution in clouds with higher rates of

configuration changes.

0 40 80 120
of API calls (x103)

0
20
40
60
80

St
or

ag
e

(M
B)

(a) Storage cost.

0 1 2 3
of API calls/hour (x103)

2.0
2.5
3.0
3.5
4.0

CP
U

us
ag

e
(%

)

(b) CPU consumption.

Figure 22: Evaluating the resource overhead of DominoBlocker.

3.6.5 Correctness

To answer RQ5, we evaluate how complete and sound DominoBlocker is in terms of capturing

changes in cloud environments and discarding irrelevant operations.

Completeness. All operations directed through cloud management interfaces are passed as API

calls to the endpoint services (e.g., computing, networking, image, and storage services). Hence,

by deploying DominoBlocker as middlewares attached to all managerial cloud services, we enable

100% coverage by capturing all management API calls. Moreover, processing the request body of

the intercepted API calls allows identifying all resources affected by each operation. We show the

47

number of unique types of API calls issued to the most commonly used cloud services (as specified

by OpenStack API documentation [3]) in Table 7.

Table 7: The coverage of DominoBlocker for the unique management API calls issued to different
cloud services.

Cloud service Compute Network Object storage Image
of unique API calls 313 251 16 31
Our coverage (%) 100 100 100 100

Soundness. To ensure the soundness of provenance analysis while following graph paths, Domi-

noBlocker stores the interception time of management API calls as a property in operation nodes.

Moreover, all edges except WasAssociatedWith point to the past, which captures the temporal or-

der between nodes in a path. To preserve the soundness of our pruning schemes, DominoBlocker

prunes only the nodes and edges that are identified to be irrelevant to the detected incident based on

the pruning criteria provided by the cloud admin. Furthermore, DominoBlocker follows paths in

both forward and backward directions to identify the nodes that are potentially involved in prepar-

ing the condition for the incident or are affected by the attack, and prune other nodes.

3.7 Discussion

In this section, we discuss the scope and future directions of DominoBlocker.

Applicability to other platforms. Although this work focuses on the OpenStack cloud, Domi-

noBlocker can be applied to other cloud platforms with an initial effort of adapting to their man-

agement operations and virtual resources. Furthermore, we have studied the applicability of our

data collection and enforcement mechanisms in different clouds. For example, in the Amazon

cloud, it is possible to intercept and validate API calls before they are received by the endpoint

application using AWS Lambda plug-in [67]. Our management-level provenance model can also

be applied to Kubernetes (a major container orchestrator) [89] to capture the causal relationship

between management operations.

48

Integrating with other provenance-based solutions. DominoBlocker can be integrated with OS-

level provenance solutions to narrow down analysis on low-level system calls. For example, the

analyst may leverage DominoBlocker to identify the exploited resources, and subsequently, apply

OS-level provenance solutions to analyse the events affecting such resources. Moreover, we will

leverage existing provenance-based techniques [118, 42] to automatically detect the chain of po-

tentially malicious operations through identifying anomalous paths of the provenance graph. We

also plan to investigate the effect of mimicry attacks complicating provenance analysis and apply

adversarial machine learning techniques for studying such attacks.

Distributed Systems. DominoBlocker can support provenance analysis in distributed systems

(e.g., several controller nodes) by deploying our middlewares on each node capturing and commu-

nicating provenance metadata with a central node and database. However, similar to most existing

provenance solutions [92, 81], the support for distributed systems is coupled with some challenges

(e.g., the runtime delay caused by transmitting provenance records, the need for secure transmis-

sion protocols, etc.). In our future work, we will evaluate the effect of such challenges on the

performance of DominoBlocker.

3.8 Related Work

Provenance-based security solutions have been explored by many existing works (e.g., [49, 92, 40,

91, 42, 117, 112]). Most of these solutions focus on capturing system transformations through trac-

ing low-level system calls. For instance, King et al. [49] leverage OS-level provenance graphs for

investigating security incidents in operating systems. Hi-Fi [94] proposes a kernel-level provenance-

based solution to monitor malicious behavior. LPM [16] applies provenance analysis to ensure the

authenticity of communications. CamQuery [92] enables efficient runtime provenance analysis

(e.g., data loss prevention) by tracing userspace and in-kernel executions. Network provenance-

based solutions (e.g., [23, 22]) focus on reference packet events and network traffic. The authors

in [121] leverage negative provenance to explain the absence of events. Multi-layer provenance

49

solutions (e.g., [62, 74, 44]) enable more accurate analysis by integrating application logs into the

OS-level provenance graphs. Nodoze [43] and ProvDetector [118] focus on triaging alerts and de-

tecting malicious programs, respectively, in enterprise environments. The authors in [13] propose

a solution to build a model of attack signatures using sequence learning. Although most of those

solutions can be extended to clouds, in contrast to our work, they cannot directly enable identifying

the management operations leading to security incidents. There exist solutions (e.g., [124, 72])

focusing on summarizing OS-level provenance graphs at a higher abstraction level based on hu-

man expertise and machine learning techniques. However, unlike our work, those solutions cannot

directly trace cloud management operations, and DominoBlocker can complement those solutions

by tracing cloud configuration changes at a higher abstraction level (i.e., management operations)

without relying on error-prone human expertise for such abstraction.

There also exist provenance-based threat detection and prevention solutions applied to virtu-

alized environments. In [40], the authors propose an anomaly detection solution based on low-

level system calls for containers. CLARION [25] is a solution for generating precise provenance

graphs tracing system calls across different namespaces in container environments. Winnower [42]

enables more scalable threat detection by inducing the Deterministic Finite Automata (DFA) rep-

resenting the provenance graphs of replicated container applications, and prevents the recurrence

of the detected threats. In [117], the authors propose a provenance-based solution for investigat-

ing and preventing incidents in the Internet of Things (IoT) environments. The authors in [115]

leverage data provenance to conduct flow-level forensics in software defined networking (SDN)

environments. ProvSDN [112] is a provenance-based solutions that prevents the flow of sensitive

information to unprivileged applications. Lu et al. [59] leverage data provenance to investigate the

data access, and Bates et al. [15] propose a provenance-based access control approach for ensuring

storage security in clouds. In [81], the authors propose a tenant-aware solution for enhancing ac-

cess control in OpenStack. DominoBlocker can work in tandem with those solutions (as explained

in Section 3.7) by tracing the information flows between virtual resources at a higher abstraction

level.

50

3.9 Conclusion

Preventing security incidents is crucial for ensuring the secure adoption of cloud computing. In

this work, we developed DominoBlocker, the first management-level provenance solution for pre-

venting security incidents in clouds. DominoBlocker leveraged the concept of data provenance

to find the management operations leading to attacks in cloud virtual infrastructures and provided

efficient pruning mechanisms to pinpoint the root causes and prevent future recurrent incidents.

We integrated DominoBlocker to OpenStack and demonstrated the effectiveness of our approach

based on real-world attack scenarios. Moreover, our evaluations using our diverse testbed datasets

showed that DominoBlocker introduces a negligible overhead. As future work, we plan to integrate

our framework with low-level provenance-based techniques. Furthermore, we will use machine

learning techniques for detecting potentially malicious operations during runtime.

51

Chapter 4

ProvTalk: Towards Interpretable

Multi-level Provenance Analysis in

Networking Functions Virtualization (NFV)

4.1 Introduction

Today, softwarized services are increasingly deployed over virtual resources (e.g., containers or

VMs) sharing underlying physical infrastructures [114, 83]. In particular, NFV enables the re-

placement of proprietary devices with software network services and allows for more dynamic and

agile network service deployment in the cloud [31]. This new paradigm converts traditional net-

working into a multi-level NFV stack by running virtual services over multiple levels of virtual

resources. Each level of the NFV stack is operated by a different managerial component accessible

through its API interface to create, modify or delete network services and their related resources.

Such added complexity of NFV may increase the risk of vulnerabilities and misconfiguration in

the deployed services [76, 96]. For instance, by exploiting CVE-2020-12689 [45], an attacker

can gain unauthorised access to the NFV management API, and compromise other clients’ network

52

services. The multi-level nature of NFV together with its sheer scale and complexity may also ren-

der pinpointing the root cause of security incidents more challenging. Existing solutions in NFV

(e.g., [100, 53]) mainly focus on localizing failed components instead of identifying the activities

leading to the incident.

Unique challenges of provenance analysis in NFV. Data provenance is a well-established tech-

nique used for root cause analysis that has been applied in other domains such as IoT (e.g., [117]),

SDN (e.g., [115]), cloud (e.g., [106]) and operating systems (e.g., [118]). Most existing approaches

rely on tracking system-level events (detailed in Section 4.9.3 and 4.10). The existing management-

level solution [106] is limited to clouds with no support for multi-level/cross-level analysis (more

comparison in Section 4.9.3.3). However, applying provenance analysis to each level of the NFV

stack (e.g., cloud), while ignoring the relationships between levels, would be insufficient. For in-

stance, a user request for creating a network service may lead to a series of operations to create

virtual resources across different levels of the NFV stack. Without capturing the dependencies be-

tween such operations and resources, a provenance analysis would not be able to link a security

incident to its root cause if they happen to be at different levels of the NFV stack.

There exist provenance analysis solutions for other multi-level systems (e.g., SDN). However,

one unique aspect of NFV that distinguishes it from those systems is that different NFV levels

are actually representing the same components (e.g., a virtual firewall) with different degrees of

abstraction (e.g., as a service, a virtual network function, or a virtual machine) as detailed in Sec-

tion 2.3. In contrast, most existing multi-level provenance solutions (e.g., [62, 74, 44]) mainly

focus on multiple systems working together while each plays a different role (e.g., SDN controller

vs. applications [112], or the operating system of the host vs. applications [44]). Therefore, their

provenance graphs do not need to be explicitly segregated into different levels that can be mapped

back to each other. In other words, although those solutions can analyse the interactions between

different systems, they do not support the need for analysing the information flows to/from different

abstractions of the same resources that we face in NFV (which will be further illustrated through a

concrete example in Section 4.2.2).

53

Moreover, the sheer scale of NFV environments implies impractically large and complex prove-

nance graphs for human analysts to interpret. Some recent works (e.g., [124, 72]) focus on assisting

the analyst by identifying the high-level abstraction of behavior corresponding to different parts of

the provenance graph. However, these approaches still require some level of domain-knowledge.

For instance, the analyst may be required to determine a label (e.g., program compilation) for each

extracted subgraph in the training dataset [124]. Determining such labels can be especially chal-

lenging in a multi-tenant environment like NFV considering the complexity and interleaving nature

of the users’ behavior.

Key ideas. In this work, we argue that the uniqueness of NFV not only leads to novel challenges

in provenance analysis but also brings about new opportunities. To explore such opportunities,

we propose ProvTalk [109], an interpretable multi-level provenance analysis approach for assisting

security analysts to investigate the root cause of security incidents in NFV. The key insight behind

ProvTalk is that the multi-level aspect of NFV intrinsically provides higher level semantics corre-

sponding to lower-level concepts (e.g., a virtual firewall is represented as a virtual network function

or virtual machine at lower levels). By establishing such a cross-level mapping, we can trace a secu-

rity incident back to its root causes located at a different level, while improving the interpretability

of the provenance graph. Specifically, ProvTalk links the provenance graphs at different levels of

the NFV stack through capturing the cross-level dependencies between different abstractions of

the same network service, which also implicitly captures the cross-level dependencies among op-

erations. Then, based on the captured dependencies, ProvTalk improves the interpretability of its

results in three steps. First, ProvTalk removes irrelevant information from provenance graphs by

propagating the pruning label of nodes across different levels based on the established dependencies

between resources and operations. Second, through mining (system or user-related) frequent pat-

terns, ProvTalk hides redundant nodes by visually aggregating them into a single node (which can

be expanded to reveal the hidden details when necessary). Third, ProvTalk leverages a rule-based

approach to automatically translate details of a provenance graph into a human-readable format to

provide high-level guidance to analysts.

54

In summary, our main contributions are as follows.

• To the best of our knowledge, ProvTalk is the first provenance-based solution specifically

designed for NFV. Our provenance model captures the unique multi-level nature of NFV

environments, and provenance analysis using ProvTalk allows tracing a security incident

back to its root cause potentially located at a different level.

• We propose three novel techniques to improve the interpretability of provenance graphs. The

multi-level pruning and mining-based aggregation schemes can both reduce the size and com-

plexity of provenance graphs, and the rule-based translation can provide useful guidance to

analyzing provenance graphs. These techniques can not only ease the task of human analysts

in applying ProvTalk to large scale NFV environments, but also be potentially applied to

other multi-level virtual environments.

• We implement ProvTalk and integrate it into our Tacker-OpenStack [88] testbed as an at-

tached middleware. We validate the effectiveness of ProvTalk based on real-world security

incidents. Our experiments using both real-world data and testbed data show that ProvTalk

produces more interpretable provenance graphs with significant reduction in their sizes, with-

out losing the information vital for the investigation. We demonstrate that ProvTalk can cap-

ture all management API calls while incurring an insignificant storage, latency and computa-

tional overhead. Finally, our user studies show that ProvTalk can markedly ease the analysis

task of real-world users.

The remainder of this chapter is organized as follows: Chapter 4.2 provides NFV background

and motivates our solution. Chapter 4.3 describes our methodology. Chapter 4.8 details the imple-

mentation of ProvTalk, and Chapter 4.9 presents our experimental results and user studies. Chap-

ter 4.10 discusses limitations and future work. Chapter 4.11 reviews related work. Chapter 4.12

concludes the report.

55

4.2 Threat Model and Motivating Example

This section defines our threat model and describes a motivating example for ProvTalk.

4.2.1 Threat Model and Assumptions

Our in-scope threats include both external attackers who exploit existing vulnerabilities in the NFV

stack, and insiders, such as NFV clients, cloud users and tenant administrators, who make the NFV

stack exploitable either through mistakes or by malicious intentions. As our provenance model

focuses on capturing management operations, we limit our scope to attacks that involve operations

directed through the NFV management interfaces (e.g., command line and dashboard). Similar to

most existing provenance solutions, we assume our solution is deployed by the owner of the system,

and thus it has access to the full NFV stack, and we assume the NFV stack management modules,

the provenance building mechanism and the provenance storage are all protected with existing tech-

niques such as remote attestation [57, 101], hash-chain-based provenance storage protection [41]

or type enforcement [16].

Out-of-scope threats include attacks that involve no management operations or resources cap-

tured in the provenance graph, and attacks that can completely bypass the NFV management in-

terfaces. Moreover, as with most works on provenance analysis, we do not consider attackers who

can temper (either through attacks or by using insider privileges) the infrastructure management

system (e.g., breaching the integrity of the API calls and databases of services) or the provenance

solution itself. Although our framework provides more interpretable information for easier anal-

yses, it relies on the human analysts to pinpoint the root cause at the end. Finally, although our

provenance results may lead to the discovery of existing vulnerabilities or misconfigurations, our

focus is not on vulnerability analysis, intrusion detection, or configuration verification, and our

solution is expected to work in tandem with those solutions.

56

4.2.2 Motivating Example

In this section, we provide a motivating example to show the benefit of applying ProvTalk. Fig. 23

illustrates an attack scenario (left) and the challenges faced by a security analyst (middle and right)

in investigating the root cause.

Tedious log investigation. Upon receiving an alert from the virtual IDS (VNFids) about unau-

thorized SSH traffic, an analyst begins investigating the root cause of this incident. As shown in

Fig. 23 (middle), the analyst may need to inspect thousands of log entries at all levels of the NFV

stack. However, this can be cumbersome if done manually, since there is no apparent relationship

between those entries.

• • •

Update-Port-Chain

Create-Port-Pair-group

Create-Port-Pair

CreateVNFFG

CreateVNF

CreateVNF

CreatePortChain

CreatePortPairGroup

CreatePort

CreateVM

UpdatePort

Alert!UpdateVNF

Config_SSH

PortChainx

VMmal

VNFFGxVNFfw VNFids

PortPairmal

PortPairGroupmal

VMa VMb

NFV

SFC

Cloud

Portmal1 Portmal2

NFV level logs:

• Create VNFFG

• Create VNF

SFC level logs:

• Create PortChain

• Create Port-Pair

• Update Port-Chainx

• ...

Cloud level logs:

• Create Port

• Create VMmal

• Update Portmal2

devide_owner

• ...

Operations Resources Operation-resource within-level dependencies

VNFFGx

VNFfw

VNFids

VNFfw

PortPairGroupaCreatePortChain

CreatePortPair

Port-Pair-Groupmal

Port-Pairmal

PortChainxPortChainx

PortPaira PortPairb

PortPairGroupb

VMz

PortChainz

PortPairz

Portz1

VNFFGz

CreateVNFFG

Operations and resources irrelevant to the incident

What caused this?

CreatePortPairGroup

Logs Provenance graphsNFV stack
Unauthorized

SSH traffic

CreatePort

CreateVM

UpdatePort

UpdatePort

CreatePort
CreatePort

CreateVM

UpdatePort

UpdatePort

VMa

CreateVM

CreatePort

CreatePort

VMa

UpdatePort-

device-owner

Subnet1
Subnet1

Porta2

Porta2

Subnet1

Portb2Porta1

VMb

VMbPortb1

Portb1

Portb2 Portmal2 Portmal1

Portmal1Portmal2

Portmal2

VMa Porta1

Figure 23: Attack scenario detected at the NFV-level (left); log-based analysis (middle); excerpts
of the provenance graphs (right).

Lack of cross-level dependencies. To establish the relationships between log entries, assume the

analyst applies a provenance analysis tool (e.g., [49, 106]) to each level. As shown in Fig. 23 (right),

the tool would generate a provenance graph that shows the virtual IDS (VNFids) becomes part of

VNFFGx through CreateVNFFG operation, where it is preceded by a virtual firewall (VNFfw). The

analyst can also see that VNFfw is configured to filter the SSH traffic (by UpdateVNF-Config-SSH

operation), and thus, the security incident (unauthorized SSH traffic) is not supposed to happen.

At this point, the analyst is unable to proceed further using the provenance graph at the NFV-level

57

alone, since no other operations at this level can explain what caused the incident.

Size and complexity of multi-level analysis. For the sake of this example, now suppose the ana-

lyst manually establishes the cross-level dependencies based on his/her experiences. For instance,

he/she can identify that VNFFGx is deployed as PortChainx at a lower (SFC) level. He/she could

then link the provenance graphs at different levels to each other, and continue the investigation at

the lower (SFC and cloud) levels. However, the sheer scale of NFV environments and the existing

dependencies among a large number of resources (e.g., there may be hundreds of VMs attached

to Subnet1) mean that pinpointing the root cause among all the nodes and edges in the provenance

graph is still very challenging. On the other hand, the provenance graph contains a lot of irrelevant

or redundant information. For instance, in Fig. 23 (right), the grayed out portion of the provenance

graph is actually irrelevant to the incident, since it corresponds to an irrelevant VNFFG (VNFFGz).

Moreover, the groups of green and blue nodes at the cloud-level are triggered by the platform after

each NFV-level operation CreateVNF, and thus are redundant. Leaving such information as-is in

the provenance graph can make the analysis time consuming and error-prone.

Example output of ProvTalk. ProvTalk is designed to address all the aforementioned challenges

in an automatic fashion, so analysts can focus on the most relevant information for identifying the

root cause. For example, Fig. 24a illustrates the result of ProvTalk corresponding to the above

example. While we leave the details (e.g., the hexagons and hatched box) to section 4.3, the attack

scenario is self-explanatory from the figure as follows. First, the attacker creates two ports (i.e.

Portmal1 and Portmal2). Next, he/she updates the device_owner field of Portmal2, and immediately

creates VMmal attached to this port so that he/she can exploit a vulnerability [86] for spoofing the

IP address of the enterprise sending network traffic into VNFFGx. Finally, the attacker inserts the

port pair group of VMmal into the port-chain corresponding to VNFFGx (via Update-Port-Chain

operation). The attacker can then send malicious traffic using VMmal inserted between the virtual

firewall and IDS services to evade them.

Comparison to existing works. In Fig. 24a, we can see the provenance graph generated by

58

ProvTalk is explicitly divided into three disjoint levels, with nodes corresponding to a common

resource ªmapped to" each other (e.g., VNFfw vs. VMa). In contrast, Fig. 24b and 24c show that the

provenance graphs of existing ªmulti-tier" provenance techniques (e.g., [44, 112]) usually do not

have such explicit separation between levels, as they focus more on the information flow between

multiple systems that play different roles (e.g., operating system vs. application in Fig. 24b, or

application vs. control plane in Fig. 24c). Therefore, such works are not designed to support the

need for capturing the information flow to/from different abstractions of the same resource in NFV.

Update-Port-Chain

Subnet1

CreateVM

07:10:06.001

VNFFGXCreateVNFFG

NFV

SFC

Cloud

CreateVNF

CreateVNF
MappedTo

MappedTo

Deploy

VNFFG

Admin

Routine

Deploy

VNF

Deploy

VNF

UpdateVNF

Config_SSH

CreatePort

Subnet1

Portmal2

PortPairGroupaPortPairGroupa

Portmal2Portmal2

PortPairGroupbPortPairGroupb

Portmal1

Portmal1

VMmalPortb1 Portb2

VMa

PortChainx

Version: 1

VMb

Version: 0

CreatePort

UpdatePort-device_owner

07:10:05.123

Portmal2

CreatePortPairGroup

CreatePortPair

PortPairmal
A

d
m

in
 R

o
u

ti
n

e

-
e

x
p

a
n

d
e

d
 -

PortChainx

Version: 0

Port-Pair-Groupmal

VNFids

VNFfwVNFfw

Porta1 Porta2

(a) The result of ProvTalk for the attack scenario of Fig. 23 (details in
Section 4.6). Nodes visualizing the same resource have the same light
colors.

Process (e.g.,

postgresql)

Process

(e.g. httpd)
Application log

(e.g., y.y.y.y POST…
HTTP/1.1 200 ...

Application log

(e.g., SELECT * FROM

users WHERE …)

Socket (e.g.,

z.z.z.z)

(b) An example provenance graph of Omega-
Log [44] for comparison.

App function call

(e.g., PacketContext

inPacket())

App (e.g., fwd)

Control plane dataobject

(e.g., InboundPacket)

(c) An example provenance graph of
ProvSDN [112] for comparison.

Figure 24: An example output of ProvTalk (a), and comparing it to existing works [44, 112] to
highlight the different multi-level nature (b) and (c).

59

4.3 ProvTalk

In this section, we detail different modules of our approach. Fig. 25 shows an overview of ProvTalk

consisting of three main stages: provenance construction, training and investigation.

Processing & Mapping Rules

NFV Stack

Cloud

SFC

NFV

Translation Rules

Provenance graph

and

textual description

Incident Alert

Database

 Investigation

Cross-level Dependency

Discovery (CDD)

Administrative Behavior

Discovery (ABD)

Rule-based Translation

Port chain was updated

by a non-admin ...

Multi-level Pruning

 Training

Cross-level Dependency Mining (CDM)

Operation1: CreateVNF

Frequent Operation Sequences:

Operation2: ...

Administrative Behavior

Mining (ABM)

Cross-level Dependency

Discovery (CDD)

 ProvTalk

Pruning Rules

Data collected

from the

controlled

environment Provenance Construction

Provenance Graph

Building

A
P

I
R

e
q

./
 R

e
s.

 I
n

te
rc

e
p

to
r

……
……

+

Figure 25: The overview of ProvTalk.

4.4 Provenance Construction

In this section, we define our NFV provenance model, and describe the provenance construction

module.

4.4.1 NFV Provenance Model

We define a platform-independent provenance model based on the standard specification PROV-

DM [18]. Table 8 shows a summary of nodes defined in our provenance model, their related NFV

concepts and their mapping into the PROV-DM model. Subtypes refine nodes classification with

respect to NFV concepts. The example provenance graph in Fig. 24a follows this model to show

two types of nodes: entities and activities. Entities (shown as ovals) represent virtual resources

(e.g., VMmal), and activities (shown as boxes) represent management operations (e.g., CreateVM).

To avoid cycles, we adopt the node versioning method as in [75, 92], where a new version of

an entity is created if an operation affects its represented resource. For example, Fig. 24a shows

that a new node representing PortChainx (i.e., the node ⟨PortChainx,Version1⟩) is created after it

gets updated by Update-Port-Chain operation. Directed edges denote the dependency between an

60

operation and its generated or used resources. For instance, the edge from Update-Port-Chain to

PortPairGroupmal shows that this operation uses PortPairGroupmal to update PortChainx. Finally,

we represent cross-level dependencies by edges labeled as MappedTo, which connect the entities

related to the same resource at different levels, e.g., the edge between VNFids and VMb in Fig. 24a.

Table 8: Mapping of the common concepts in NFV stack to the PROV-DM Model.

NFV Concept Description PROV-DM Subtype

NFV Client Customers of network services
with specific privileges and
service requirements.

Agent NFV user admin,
other tenants.

Cloud Tenant A group of users owning
an isolated set of virtual re-
sources.

Agent Tenant Admin, other
tenants

NFV Client Oper-
ation

Management API calls for up-
dating the life-cycle or state of
network services.

Activity Create-VNF, Update-
VNFFG, etc

Cloud Provider
Operation

Management API calls for up-
dating the life-cycle or state of
virtual resources.

Activity Create-VM, Update-
Port, etc

Network service
component

The states of individual or
chain of services such as IDS.

Entity VNF, VNFFG, etc.

Network service
configuration

The states of a deployed
network service configuration,
e.g., virtual firewall rules.

Entity VNF descriptors, etc.

Cloud Resource The states of a virtual infras-
tructure resource, e.g., a run-
ning/stopped VM.

Entity VMs, virtual ports,
etc.

Cloud Resource
Configuration

The states of a virtual in-
frastructure configuration, e.g.,
VM virtual hardware.

Entity Security groups, Fla-
vors, etc.

Input for changing
configurations

An input data causing a change
to the configuration state.

Entity Security group rules,
etc.

4.4.2 Building the Provenance Graph

To capture all operations affecting virtual resources, we deploy our event interception mechanism

as middlewares [107, 106] attached to managerial services at all levels of the NFV stack. These

services include but are not limited to networking, compute, storage, image and NFV orchestration

61

services. In Section 4.9.4, we show that intercepting all management API calls through the deploy-

ment of our middlewares is enough to satisfy the completeness property. Moreover, to process the

intercepted API calls, we define a set of parsing and typing rules according to cloud and NFV doc-

umentations [90, 82, 87]. Specifically, the information required for building the provenance graph

is embedded in the intercepted API calls. Therefore, upon intercepting each API call and based on

the provided rules, ProvTalk parses the fields of that API call, identifies the type of the requested

operation (e.g., CreateVNF), determines the affected virtual resources, and the ID of the user issu-

ing that API call. Next, it creates nodes representing the operation and the affected resources with

edges capturing their dependencies. ProvTalk also stores the extracted information (e.g. user ID)

and the time of interception as node attributes. Then, it appends the created nodes and edges to the

provenance graph stored in the backend graph database.

Additionally, to capture the cross-level dependencies between resources, we provide ProvTalk

with a set of mapping rules. Upon the creation of each NFV-level resource, NFV platforms auto-

matically store the ID of that resource and its lower-level associated resource in specific cells of

the platform databases. Therefore, we define rules specifying the queries for extracting the IDs of

those resources and creating MappedTo edges between their nodes. For instance, the ID and asso-

ciated virtual service of a VM are stored in two columns in the same row of table nova_instances.

Accordingly, we define the rule ªUpon the interception of CreateVNF operations, ProvTalk should

issue a query to nova_instances table to extract VM-ID from the same row storing the ID of the

created VNF".

4.5 Multi-level Pruning

The provenance graph may include a large number of nodes and edges that are irrelevant to the

target incident. Most of the existing pruning techniques are designed for single-level provenance

models [106, 117, 92], and they remove irrelevant nodes according to the analyst’s provided pruning

criteria. However, in the specific context of multi-level NFV environments, this approach has the

62

limitation of identifying and pruning irrelevant nodes only at the same level as where the target

incident is detected. In other words, those techniques do not factor in the dependencies between

provenance graphs captured at different levels, which can be useful in identifying the potentially

irrelevant nodes across different levels. The analyst could certainly provide additional pruning

criteria for identifying irrelevant nodes at every level. However, this requires more effort from the

analyst, and it also assumes he/she has a good understanding about all levels of the NFV stack

and corresponding security assumptions. The reliance on such assumptions may make the pruning

error-prone and result in pruning nodes that are indeed relevant to the attack.

NFV

Cloud

UpdatePort

UpdatePort CreateVM

CreatePortUpdatePort

device_owner

One-level

Pruning

Multi-level

Pruning

Last version of the

targeted resource

One of the

scanned paths

SFC

Portb2

Portb1

Portb1

VMb

Portmal2 Portmal1

Portmal1Portmal2

VMbCreatePort

CreateVM

UpdatePort

CreatePortChain

CreatePortPair

VMz

PortChainz

PortPairz

Portz1

VNFFGz

CreateVNFFG CreateVNFFG VNFFGx

MappedTo

Update-Port-Chain

Create-Port-Pair-group

Port-Pair-Groupmal

PortChainx

CreatePortChain

PortChainx

PortPairGroupb

CreatePortPairGroup

VNFids

VMmal

MappedTo MappedTo

Figure 26: Excerpt of the provenance graph related to the incident discussed in Section 4.2.2 con-
trasting the effectiveness of one-level [106] and multi-level pruning.

To address those issues, we propose a multi-level pruning mechanism to automatically identify

and keep the potentially relevant nodes across different levels by leveraging cross-level dependen-

cies (Section 4.4.1). Specifically, after labeling all the potentially relevant nodes at the same level

as the target resource (i.e., the resource associated with the incident), ProvTalk passes the label

assigned to each resource to its corresponding resources at other levels via the cross-level depen-

dencies (MappedTo edges). Next, ProvTalk further follows all paths to pass the labels to all the

reachable nodes. To further narrow down the analysis, ProvTalk allows the analyst to specify some

additional constraints about the nodes passing the labels. Finally, ProvTalk discards nodes that are

63

not labeled as they are not reachable from the target resource.

Example 1. Fig. 26 shows an excerpt of the provenance graph in our motivating example (Sec-

tion 4.2.2) contrasting one-level pruning (e.g., [106]) with multi-level pruning. Both approaches

first identify the target resource VNFFGx (starred node), assign it a label and pass it to all reach-

able nodes meeting the provided criteria. Then, all non-labeled nodes are pruned. For the one-level

pruning, as the cross-level dependencies are not considered, the label is only passed to all reachable

nodes at the same level (e.g. VNFids, CreateVNF). Thus, only the group of nodes at the NFV-level

(inside dashed blue box) are pruned, leaving the graph at other levels with potentially irrelevant

nodes. In contrast, ProvTalk leverages cross-level dependencies (i.e., MappedTo edges) to pass the

label from the target resource to nodes at lower levels (e.g., PortChainx and the path specified by

an arrow). Thus, the irrelevant nodes inside the green box can also be identified and pruned.

4.6 Aggregation

The pruned provenance graph may still include a large amount of redundant information. However,

pruning those is not a viable option as they may contain valuable information about the root cause.

For example, some operations such as CreatePortPair and CreatePortPairGroup (hatched box in

Fig. 24a) are frequently issued by cloud admins as a part of routine maintenance tasks. However,

as explained in Section 4.2.2, they may also be part of the attack steps (e.g., operations issued by

the attacker to insert a malicious VM into a port chain). Hence, if we hypothetically remove those

operations due to their redundancy, the analyst would fail to pinpoint the root cause. Additionally,

there is no systematic way of associating high-level semantics to those frequent operations, which

could make the provenance graph easier to understand. For instance, the analyst cannot identify the

cloud-level operations in Fig. 23 (groups of blue and green nodes) that were automatically triggered

after each NFV-level operation CreateVNF.

Therefore, we propose an aggregation-based solution that visually aggregates the nodes cor-

responding to such operations into a compound node labeled with the corresponding NFV-level

64

operation or administrative routine. Our aggregation technique is designed to be fully reversible

such that each compound node can be easily expanded to show the original nodes, which allows

the analyst to easily recover the potentially useful details of the aggregated nodes (hexagons and

hatched box in Fig. 24a). Our approach consists of two mining-based schemes for cross-level oper-

ations and administrative tasks operations, which involve training and investigation stages. Similar

to most approaches in this area (e.g., [39]), we collect training data from a controlled environment

to ensure there is no involvement of malicious actors.

4.6.1 Cross-level Aggregation

The sequence of lower-level operations automatically triggered after an NFV-level operation are

generally fixed, and thus frequently appear in the provenance graph causing redundancy. To avoid

this, ProvTalk leverages a mining-based approach to model such sequences, and then applies the

model to identify and aggregate the lower-level nodes corresponding to each NFV-level operation.

Cross-level Dependency Modeling (CDM). Since lower-level operations are generally triggered

shortly after their corresponding NFV-level operations, we leverage this intuition to build a model

of those lower-level operations generated within a small time interval. To this end, our API intercep-

tors log operations triggered at all levels (i.e., NFV, SFC, and cloud) with a timestamp indicating the

time when ProvTalk intercepts each operation. Next, based on those timestamps, ProvTalk extracts

a sequence of lower-level operations triggered within tCDM seconds after each logged NFV-level

operation. The analyst may determine the interval tCDM based on studies of the NFV platform (e.g.,

computational power).

However, since there may be many operations issued at almost the same time in a real-world

NFV environment, the extracted sequences may include irrelevant lower-level operations (e.g., the

operations triggered by other NFV-level operations). To address this issue, we model relevant op-

erations by deriving frequent patterns of lower-level operations. Specifically, for each NFV-level

operation, we feed the extracted sequences to our sequential pattern mining algorithm (an efficient

65

self-supervised method for discovering the frequent patterns of ordered items in a controlled envi-

ronment), which then outputs the list of mined patterns with their frequencies (i.e., support [116]).

Finally, we identify the most frequent patterns related to each NFV-level operation, which are pro-

vided to the CDD module during the investigation stage.

Example 1. Fig. 27 depicts modeling the lower-level management operations triggered by the

NFV-level operation, CreateVNF. ProvTalk extracts sequences of lower-level operations logged

shortly after each CreateVNF (shown by rows of the Sequences table). We show two example

scenarios causing different extracted sequences corresponding to the CreateVNF operation. Sce-

nario1 describes cases where a single user issues a CreateVNF operation. Scenario2 describes

cases where two NFV-level operations, CreateVNF and DeleteVNF, are issued at approximately

the same time, and thus the extracted sequence includes an irrelevant operation, DeleteVM (trig-

gered by DeleteVNF). To derive the operations triggered by CreateVNF, ProvTalk retrieves the

most frequently observed patterns in Sequences table, which yields [CreatePort, CreatePort, ...]

with the support value of 60%.

NFV-level

operation1:

CreateVNF

C
re

a
te

V
N

F

A
p

p
e

a
ra

n
ce

 N
o

.

Mined patterns

for CreateVNF:

[CreatePort, Create-

Port, CreateVM, ...]

Frequent patterns

[CreatePort, Create-

Port, CreateVM, ...]

Frequent patterns

601
2

.. ...

...

...
...
...3

Sup.

Logged

Management

API Calls

Extracted lower-level logs Sequential

pattern

mining

DeleteVNF
CreatePort CreatePort CreateVM ... time

CreateVNF

(1
st

 or 2
nd

 appearance) CreatePort CreatePort CreateVM ... time

CreateVNF

(3
rd

 appearance)

Extracted logs in the absence of other NFV-level operations:

Extracted logs in the presence of other NFV-level operations:

Sequences

[CreatePort, CreatePort, ..]
[CreatePort, CreatePort, ..]
[CreatePort, DeleteVM, ..]

DeleteVM

Figure 27: An example of cross-level dependency mining for the NFV-level operation, CreateVNF

(top); Scenarios leading to different extracted sequences of lower-level operations corresponding
to the CreateVNF operation (bottom).

66

Cross-level Dependency Discovery (CDD). During the investigation stage, CDD identifies and ag-

gregates the nodes related to the mined operations corresponding to the same NFV-level operation

(e.g., CreateVNF). This can be challenging, since there usually exist many nodes representing the

same type of operation (e.g., several CreatePort nodes in Fig. 23). Our key insight is that, since all

the triggered operations correspond to the same NFV-level operation, we can expect some depen-

dency among them. Additionally, due to cross-level dependencies between resources, if an opera-

tion affects a resource at the NFV-level, a triggered operation will affect its associated lower-level

resource. Based on such intuition, Fig. 28 shows how CDD works. First, CDD identifies the node

representing the resource affected by an NFV-level operation (e.g., a created VNF at NFV-level)

and its lower-level associated resource connected by a MappedTo edge (e.g., its corresponding VM

at cloud-level). Next, to start an iteration, it tags the operation node connected to the resource node,

removes that operation from the mined sequence, then tags the next connected resource node on the

path. The iteration stops once the sequence is empty. Finally, CDD visually aggregates the tagged

nodes into a compound node labeled as the corresponding NFV-level operation.

Identify NFV-level

affected resource and

lower-level associated

resource

- Tag operation connected

to resource node

- Remove tagged operation

from mined sequence

Is mined

sequence

empty?

Tag connected resource node yes

Tagged Provenance graph

- Provenance graph

- Mined sequence

- NFV-level operation

No

Figure 28: Identifying the cross-level dependencies.

To provide additional detail for our cross-level dependency discovery, we provide Algorithm 1,

which elaborates the steps of the CDD module. For every NFV-level operation, CDD identifies

and tags the nodes representing its affected resource, as well as the lower-level node connected

through a MappedTo edge. It also tags the node representing the operation connected to the

lower-level tagged node and removes that operation from the mined sequence (Line 1-3). Then,

it starts an iteration over the remaining mined operations where it searches for paths of the type

(op2)←(res)←(op1), where op1 is a tagged node and the operation type stored at node op2 is in the

67

mined sequence. It tags res and op2 nodes, and removes op2 from the mined sequence (Line 8-9).

At the end of the iteration, based on the pre-specified threshold values and the number of operations

remaining in the sequence, CDD aggregates the tagged nodes while labeling them with either the

corresponding NFV-level operation (line 10-11), or adding partially-mismatched prefix to the label

(line 12-13), or it does not aggregate them (line 14-15). Note that the analyst can configure the

threshold values based on their platform. For instance, environments with a higher variety of ser-

vices would have more various sets of lower-level operations, and therefore, he/she should provide

higher threshold values in those cases.

Algorithm 1 Cross-level Dependency Discovery

 Inputs:

graph ← Multi-level Provenance Graph

MinedOps ← Mined Sequences of Operations

nfvAPIs ← NFV API Calls

Thl, Thh ← High and Low Threshold Values

 Outputs:

Provenance graph with aggregated nodes

 1: foreach nfvAPIi ∈ nfvAPIs do

 %the resource and operation connected with MappedTo edge

 2: First_Operations,graph ← MapTagger(graph, nfvAPIi)

 3: LeftOps ← OperationRemover(MinedOps, first_Operations)

 4: while iteration < MinedOps_len do

 5: if iteration > MinedOps_len then

 6: break

 7: else

 %tagging other connected operations and resources

 8: graph, FoundOperations ← Tagger(graph, LeftOps)

 9: LeftOps ← OperationRemover(LeftOps, FoundOperations)

 %finalizing or removing tags from aggregation candidates

10: if LeftOps_len < Mined_len*Thl then

11: graph←Aggregator(graph)

12: if LeftOps_len ∈ [MinedOps_len*Thl, MinedOps_len*Thh] then

13: graph ← MismatchAggregator(graph)

14: if LeftOps_len> MinedOps_len*Thh then

15: graph←TagUndoer(graph)

16: return graph

Example 2. Fig. 29 depicts an example aggregation related to CreateVNF operation. CDD

68

identifies the lower-level node ⟨V M f w,Version 3⟩ associated with VNFfw. Next, it identifies the

nodes representing the operations triggered by CreateVNF and their affected resources (Fig. 29a).

The identified nodes are visually aggregated into a compound node (the hexagon in Fig. 29b),

which is labeled as DeployVNF1.

CreateVNF
VNFfw

ID: xxx

UpdatePort

VMfw

ID: xxx-pair

Version: 3

Port1fw

Port2fw

UpdatePort

VMfw

Port1fwVMfw Port2fw

CreateVM

Port1fwPort2fw

CreatePortCreatePort

NFV

Cloud

MappedTo

Subnet2Subnet1

Subnet1 Subnet2

(a)

CreateVNF VNFfw
ID: xxx

VMfw
ID: xxx-pair

Version: 3

Port1fw

Subnet2Subnet1

Subnet2
Subnet1

MappedTo

Port2fw

NFV

Cloud

Deploy VNF

(b)

Figure 29: Example of cross-level dependency discovery (a) before and (b) after aggregation.

4.6.2 Administrative Behavior Aggregation

To further ease the interpretation, we aggregate the routine administrative operations (e.g., mainte-

nance tasks) repetitively appearing in the provenance graph. ProvTalk mines the frequent sequences

representing the paths (that are not aggregated by CDD) in the training stage, and aggregates the

paths matching the mined sequences in the investigation stage.

Administrative Behavior Modeling (ABM). This module builds a model of routine administra-

tive behavior based on frequent paths and using sequential pattern mining [116]. Fig. 30 shows

the steps of our ABM module: 1) ABM retrieves all paths with the length of at most lroutine.

1We use the label DeployVNF, instead of CreateVNF, to make referring to compound nodes easier in the report.

69

The analyst can adjust lroutine based on the requirements of the investigated platform, e.g., the

regularity of life-cycle management of resources. 2) ABM converts the retrieved paths into

string sequences. Our intuition is that nodes compose a path in a similar way that items com-

pose an ordered sequence. Formally, a causal path can be translated into a sequence of items

[f (res_nodei), f (op_nodei), f (res_nodei+1), ...] where f is the function for obtaining the string

representation of a node. In this work, we use the resource or operation type attribute as the string

representation of each node. For example, the path (Port1)←(CreateVM)←(VM1)←(StartVM) is

converted into the following sequence: [Port, CreateVM, VM, StartVM]. 3) Finally, we apply the

sequential pattern mining algorithm BIDE [116] to identify the most frequent patterns which are

used by ABD during the investigation stage.

Step1:

Path

extraction

Step2:

Path

conversion

Step3:

Mining frequent

patterns

[StartVM,...]

[LockVM,...]
[...]

Provenance

graph

Paths Sequences

[Start..]

[...]
70

Seq. Freq.

Frequent pat.

Figure 30: Steps of ABM module.

Administrative Behavior Discovery (ABD). This module identifies and aggregates the paths with

a corresponding sequence that matches the patterns mined by ABM. Specifically, ABD retrieves

all paths with the length of at most lroutine. Next, it converts those paths into sequences of string

elements as described in the previous step (the ABM module), while it also captures the IDs (a

unique number automatically assigned to each node by the graph database) of the consisting nodes.

Then, it identifies the sequences that are observed among the frequent patterns mined by ABM. If

a matching sequence is identified, the ABD module finds the nodes corresponding to that sequence

using their unique IDs and aggregates them into a single Admin_Routine compound node. More-

over, to increase the number of aggregated nodes represented by each compound node (i.e., the

reduction power of our scheme), we merge Admin_Routine nodes with common aggregated nodes.

Example 3. Fig. 31 shows an example of administrative behavior aggregation. As we can see on

70

the left, two paths are converted into sequences Sequencek and Sequencej, and are initially aggre-

gated into the blue and red shaded compound nodes. However, due to their common aggregated

node, ABD merges them into one single compound node (right side).

CreateVM

UpdatePort

StartVM Admin

Routine

Sequencek = [CreateVM, Port, UpdatePort]
Sequencej = [CreateVM, VM, StartVM]

Subnet1

Port1

VM1 Subnet1

Figure 31: Example of administrative behavior aggregation and merging compound nodes.

In Fig. 24a, we have shown our motivating example provenance graph after applying both

aggregation schemes. As we can see, the resulted provenance graph is significantly smaller and

more interpretable with the assigned labels.

4.7 Rule-based Translation

To further enhance the interpretability of the provenance graph and facilitate the analysis, we pro-

pose a rule-based technique to translate the captured information into a human-readable text. As

we demonstrate in Section 4.9.5, the generated text can provide useful guidance to the analyst in

investigating the provenance graph and identifying the root cause. The analysts may also take ad-

vantage of the generated text for filing a report describing the result of their investigations. To this

end, ProvTalk first backtracks from the node corresponding to the target resource (e.g., the node

VNFFGx in Fig. 24a) to retrieve all paths connected to this node. ProvTalk also allows the analyst

to specify a time interval so that only paths generated during that time will be translated. Next, it

extracts the information captured in each path, and generates a textual description reflecting those

information and the incident alert.

As an example, Fig. 32 shows the automatically generated description of the highlighted path

in Fig. 24a. The generated text is organized in three paragraphs: the first paragraph reflects the

71

information extracted from the incident alert as well as the number of operations represented in the

path. The second paragraph details the information extracted from the path, and the last paragraph

includes the information necessary for identifying the described path in the provenance graph.

By the detection time 21-01-06 11:44:07.769, there are 6 operations performed in

the specified time interval 0:00:15.454 hours corresponding to the target entity

VNFFGx created by admin user using 2 VNFs.

User 12ddf created PORTmal2 at 07:10:03.403. He updated device_owner

Portmal2 at 07:10:05.123. And created VMmal using that port(s) after 0:00:0.878

hours. Then, he created PortPairmal using that port(s) after 0:00:03.202 hours.

And created PortPairGroupmal using that PortPair(s). He updated PortChainx,

using that PortPairGroup(s) after 0:00:02.239 Hours.

More details can be found in the provenance graph following this node path [215

- 211 - 208 - 207 - 204 - 202]. Node(s) (UpdatePortChain-ID: 215) worth a closer

look: nonAdmin user (ID: 12ddf) modifies admin (ID: 53atb) modified resource(s).

Figure 32: Example of auto-generated textual description.

Path Translation. ProvTalk automatically follows graph paths to extract and include the following

four node attributes in sentences of the second paragraph): 1) user: ProvTalk treats the user issuing

an API call as the subject of the sentence, and identifies it by the user ID attribute stored in operation

nodes. 2) operations: ProvTalk treats operation type node attribute as the verb of the sentence.

3) resources: resources affected by each operation are treated as objects, and are identified by

the entities from which there is an edge pointing to an activity (Section 4.4.1). 4) timestamps:

ProvTalk includes the timestamp attribute (stored in operation nodes) as the propositional phrase

in the sentence. Additionally, to smooth the transition between sentences, it uses pronouns and

transitional words. ProvTalk also applies pre-defined sentence templates to automatically form

the descriptions. To support aggregation, analysts can configure ProvTalk to treat the label of

compound nodes as the verb of generated sentences.

To enable retrieving the information not already reflected in the generated text, the third para-

graph describes the unique IDs of the corresponding nodes, using which the analyst can map the

generated text back to the provenance graph. Additionally, ProvTalk can be configured to include

72

specific parts of the extracted information that may deserve more attention.

4.8 Implementation

We implement ProvTalk in a testbed based on Tacker [88], SFC [87] and OpenStack [83] (a pop-

ular platform supporting NFV for telecommunication service providers [113, 84]). We note that

only our API interception mechanism is platform-specific (i.e., OpenStack/Tacker), while the mod-

ular design of our approach makes it readily adaptable to other multi-level virtualized platforms

(see Section 4.10 for detailed discussion). To intercept provenance metadata from the REST API

calls issued to different services (i.e., Tacker, SFC, and Openstack services, e.g., Nova and Neu-

tron), we implement our provenance construction module as Python WSGI middleware [120, 60],

which stores the provenance graph in Neo4j [80] database, and uses Cypher language [78] to query

the database. We implement pruning and aggregation modules in Python, and use BIDE algo-

rithm [116] to mine frequent sequences. We set the interval tCDM to 15 seconds (Section 4.6.1)

and lroutine to 10 (Section 4.6.2). We also use the Thh=0.8 and Thl=0.5 as the thresholds in our

aggregation. Our translation module exports the provenance graphs into JSON format [79], and

uses SimpleNLG Python realiser [37] for generating sentences. To visualize the provenance graphs

and enable the interaction with ProvTalk, we provide a frontend graphical user interface. We use

Cytoscape [28] to visualize the provenance graph, and support the aggregation and expansion of

compound nodes. We show a screenshot of our interface with the magnified excerpt of a prove-

nance graph in Fig. 33. A brief summary of recent incident alerts is displayed in our interface (not

shown in Fig. 33). By selecting each incident, users can see the provenance graph corresponding

to each incident, and then invoke the pruning and aggregation options. Users can click on the com-

pound nodes (blue hexagon in Fig 33) to expand them and visualize the aggregated nodes (appeared

in the blue rectangle). Users can also examine the information about the operations and affected

resources (the green box in Fig. 33), by hovering over their corresponding nodes.

To demonstrate that our approach can potentially be applied to environments where intercepting

73

NFV

Cloud

ML-based Aggregation: Aggregate AllExpand All

DeployVNFFG

UpdatePort

CreateVNF CreateVNF

CreateVNFFG

VM

VM

VM

Port

UpdateVNFFG

DeployVNF

Aggregate All

VNFVNF

VM

{"eventName":"CreateVNFFG", "reqid": "212dqe",

"timestamp": "2021-01-10 21:44:07.769", "userID”: "23w2r"}

Figure 33: Example screenshot of ProvTalk showing the aggregated and expanded cloud-level
nodes and the information shown while hovering a node.

API calls may not be feasible, we implement a log processor for extending ProvTalk to work with

infrastructure logs (e.g., logs generated by Neutron-Server services by default). A challenge is that

some details of the API calls are not captured by their corresponding log entries [67]. For instance,

Neutron-Server does not log all resources affected by most API calls such as the virtual subnet

attached to a created port. To collect some missing details, we devise methods for automatically

inferring them through correlating the log entries of different services based on the ID of resources

as index. For example, by correlating Neutron-Server and DHCP-agent logs, we extract the virtual

subnet that is attached to a port. We implement this method as a log processor module using Python

to automatically extract and correlate our required information from different services’ logs. This

additional module can potentially extend the scope of application for ProvTalk to cover other virtual

environments as long as there exists the logging capability.

74

4.9 Evaluation

To evaluate ProvTalk, we seek to answer the following questions:

RQ1: How effective is the provenance model at capturing real-world attacks in NFV environ-

ments?

RQ2: To what extent can ProvTalk reduce the size of the provenance graph? What is the effect

of accuracy on the performance? How does it compare to the existing techniques?

RQ3: What is the overhead introduced by ProvTalk in terms of latency, computation and stor-

age? How does it compare to the existing OS-level provenance techniques?

RQ4: How complete and sound is ProvTalk in terms of capturing and analysing all management

API calls?

RQ5: How helpful is the enhanced interpretability in root cause analysis for real-world users?

Experimental Setup and Dataset. We run ProvTalk on an Ubuntu 18.04 server equipped with Intel

Xeon Bronze 3104 CPU @1.70GHz and 128GB of RAM. We conducted our experiments based on

both our testbed and a real research cloud dataset. To generate diverse sequences of operations in

our dataset, we deploy 31 different types of VNFs while randomly varying their parameters (e.g.,

the number of virtual ports), and seven variations of VNFFGs with varying parameters (e.g., the

number of VNFs per VNFFG). Table 9 shows statistics about the datasets generated in our NFV

testbed.
Table 9: Statistics of our NFV testbed datasets.

Training Datasets Testing Datasets

of API calls (in thousands) 6 9 12 15 3 6 9 12

of nodes (in thousands) 11 16 21 28 5 10 15 20

of VMs (in hundreds) 6 8 10 11 3 6 9 11

of VNFs (in hundreds) 3 5 6 6 3 4 6 7

75

Table 10: Attack scenarios used to evaluate the effectiveness of ProvTalk (the shaded rows indicate
the incident and root cause are located at different levels).

Root Cause Detected Incident Most Relevant Management Operations Vulnerability

Stealthy node injection into a VNFFG [110] Unauthorized Ac-
cess

Create-Port-Pair, Create-Port-Pair-Group,
Update-Port-Chain

CVE-2017-
2673

Bypassing anti-spoofing rules in net-
work [107]

Unauthorized Ac-
cess

Create-VNFFG, Create-Port, Create-VM,
Update-Port

CVE-2015-
5240

Firewall VNF misconfiguration CPU DoS Create-VNFFG, Update-VNFFG, Update-
VNF

CVE-2017-
7400

Malformed security group rule addition Host Unavailability Create-Security-Group, Create-Security-
Group-Rule, Create-VM

CVE-2019-
9735

Overlapping security group rule addition Host Unavailability Create-Security-Group, Create-Security-
Group-Rule, Create-VM

CVE-2019-
10876

Update of security group is not applied [66] Data Leakage Add-Security-Group, Start-VM, Delete-
Security-Group-Rule

CVE-2015-
7713

Neutron proper authorization failure [119] Port Scanning Create-Router, Create-Port, Create-VM CVE-2014-
0056

Wrong VLAN ID [21] Data Leakage Create-Network, Update-Network Not specified
Failing to delete VMs in resize state Disk DoS Create-VM, Resize-VM, Delete-VM CVE-2016-

7498
Excessive VM creation on the same host [64] Disk DoS Create-VM Not specified

4.9.1 Effectiveness

To answer RQ1, we automatically reproduce in our testbed 10 attack scenarios that involve NFV

management operations (as discussed in e.g., [110, 66, 21]) via a Bash script. Table 10 summarizes

those scenarios, the most relevant operations and the vulnerabilities that are exploited through the

requested operations for launching the attack. We evaluate the effectiveness of ProvTalk on these

attacks as we know the precise ground truth (attack steps) published in the existing works1 and

the publicly reported vulnerabilities [29]. For all the 10 attacks, we successfully trace back to the

root cause of the reported incident using ProvTalk. Note that due to the novelty of NFV, very few

papers exist on NFV-specific attacks or vulnerability exploits which limit our choice of attacks

(although given the prevalence of NFV 5G telecommunication, we envision an extensive research

on this matter in the future). We showcase the effectiveness of our approach based on four cases:

two vulnerabilities in Table 10 presented in the motivating example (first and second rows) and two

cases presented below (third and seventh rows). We choose those scenarios because their incidents

are detected at a different level from where the root cause operations are conducted, which make

the analyses more challenging.

1Most of these works (e.g., [110, 66]) focus on security verification (rather than provenance analysis), and thus we
cannot directly compare our results with these solutions.

76

4.9.1.1 Cloud-level Alert, NFV-level Root cause

In this scenario (see Table 10, third row), a VNFFG with a virtual firewall is protecting an end-

to-end network service. The analyst receives a high CPU utilization alert from VMb. Using the

provenance graph generated by ProvTalk (Fig. 34), the analyst can observe that the VM generat-

ing the alert at cloud-level (VMb) corresponds to VNF1 (1). He/She can also see that VNF1 was

included in VNFFGz (2). Moreover, according to the provenance graph, VNFFGz was updated by

the admin for chaining a preceding virtual firewall (3). However, shortly after adding the firewall,

another user changed its configurations so that it will not filter syn-flood traffic (4). As updating

the configuration to allow syn-flood traffic right after the insertion of a firewall in a VNFFG is not a

routine behavior and is conducted by a non-admin user, the analyst can attribute this to a potential

privilege escalation by that user.

UpdateVNFFG

User: admin

MappedTo

UpdateVNF

config: synflood

User: non-admin

CreateVNFMappedTo

MappedTo

2 3

VNFfw

VNF1

PortChainx

PortPairGroupa

PortPairGroupb

VMa

VMb

VNFfwVNFFGz

VNFFGx

PortChainx

Porta2Porta1 Portb1 Portb2

Subnet1

Subnet1 Deploy

VNF

Deploy

VNFFG

Deploy

VNF

Update

VNFFG

1

Create

VNFFG
VNF1

CreateVNF

4

NFV

SFC

Cloud

Figure 34: Root cause of the CPU DoS Identified by ProvTalk.

4.9.1.2 NFV-level Alert, Cloud-level Root Cause

In this scenario (see Table 10, seventh row), the analyst receives a port scanning alert from a vir-

tual IDS service, VNFids. Using the multi-level provenance graph generated by ProvTalk (Fig. 35),

he/she can easily identify that VNFids is associated with VMb, which is created in Subnet1 (1).

He/She can also observe that an attacker from a different cloud tenant creates another port in

77

Subnet1 attaching it to Router1 (2), and then creates a VM attached to this port (3). As this chain of

operations shows that a different tenant could enter the network of the target resource, the analyst

suspects that an attacker exploited a vulnerability in the NFV platform [85] to send malicious traffic

to Subnet1, which is detected by VNFids.

MappedTo

2

VNFids

PortPairGroupb

VMa

VNFFGz

PortChainx

Porta1 Porta2

Subnet1 Deploy

VNF

Deploy

VNFFG

1

CreateVNFFGVNFids

CreateVNF NFV

SFC

Cloud

CreatePort

Tenant: mal

Subnet1Subnet1

CreateVM

CreateSubnet

User: admin
Subnet1Subnet1

Router1Router1

VMmalVMmal

MappedTo

3

PortmalPortmal

Figure 35: Root cause of port scanning identified by ProvTalk.

4.9.2 Graph Reduction Performance

To answer RQ2, we measure the reduction in the size of the provenance graph after applying our

pruning and aggregation.

Comparing multi-level pruning with one-level pruning. To measure the effectiveness of multi-

level pruning, we apply both multi-level pruning and one-level (NFV-level) pruning on provenance

graphs of different sizes for the same incident. Fig. 36a shows that the reduction factor (i.e., the

number of pruned nodes over that of all nodes) of multi-level pruning scheme is significantly higher

(on average, by almost 3.6 times) than the one-level pruning scheme in all datasets. Furthermore,

Fig. 36b shows that multi-level pruning removes a larger number of nodes representing resources

than those representing operations. The reason is that most operations affect several resources at

the same time, therefore, pruning an operation will automatically prune its many related resources.

78

5 11 16 21
of graph nodes (x103)

0.0
0.1
0.2
0.3
0.4

Re
du

ct
io

n
fa

ct
or

Average ratio = 3.6
Multi-level pruning
One-level pruning

(a) Multi-level vs. one-level effectiveness.

6 11 16 21
of graph nodes (x103)

0

2

4

6

8

of

 n
od

es
 (x

10
3) Resources

Operations

(b) Multi-level pruned resources vs. operations.

Figure 36: Evaluating the effectiveness of multi-level pruning.

Aggregation. We measure the effectiveness of our aggregation for datasets of different sizes, while

varying the minimum support values (aka min-sup) [116]. The min-sup value indicates the mini-

mum acceptable frequency of mined patterns in our training data, and thus, by varying the min-sup

value from low to high, we can evaluate the performance for moderately to highly conservative

scenarios respectively. Fig. 37a shows the ratio between the number of nodes in the original graph

and that of the non-aggregated nodes. Fig. 37a shows that, on average, the number of nodes in

the original provenance graph is around 2.6 times larger than the number of non-aggregated nodes

and the reduction ratio increases with the size of the dataset. The reason is that, in larger prove-

nance graphs, there usually exist more diverse sequences of operations, which increases the level

of redundancy, and hence, allows for more aggregation. Moreover, smaller min-sup values lead to

a lower ratio of non-aggregated nodes in smaller datasets, in contrast with larger datasets where

reduction is similar for all measured values. The reason is that smaller datasets are more likely to

lack the patterns mined via greater min-sup values, i.e., some of the most frequent mined patterns

in the training data.

Fig. 37b shows the ratio between the number of nodes in the original provenance graph and in

the one after aggregation (which consists of non-aggregated and compound nodes). On average, our

aggregation schemes decrease the size of the provenance graph by half, which shows the usefulness

of our approach in providing a smaller provenance graph for investigation with the added higher-

level semantics. Furthermore, the ascending trend of the curve shows that, as the size of the original

provenance graph grows, our aggregation schemes is more effective in terms of reducing the graph

79

3 6 9 12
of datasets' entries (in thousands)

2.2

2.4

2.6

2.8

of
 o

rig
./n

on
-a

gg
r.

no
de

s

min-sup = 5
min-sup = 20
min-sup = 80

(a) Aggregated portion growth.

3 6 9 12
of datasets' entries (in thousands)

1.6

1.8

2.0

2.2

of

 o
rig

./a
fte

r a
gg

r.
no

de
s

min-sup = 5
min-sup = 20
min-sup = 80

(b) Size reduction growth.

3 6 9 12
of datassets' entries (in thousands)

0

2

4

6

8

of

 a
gg

re
ga

te
d/

co
m

po
un

d
no

de
s

Total
Cross-level
Adminstrative

(c) Accuracy effect on size reduction.

0.25 0.50 0.75 1.00
Simulated accuracy

1.4

1.6

1.8

2.0

2.2

of

 o
rig

./a
fte

r a
gg

r.
no

de
s

12k API
9k API

6k API
3k API

(d) Aggregation power growth.

Figure 37: Evaluating the effectiveness of aggregation.

size. One reason is that in larger provenance graphs there usually exist more overlapping compound

nodes subsequently aggregated into a single compound node (Section 4.6). In other words, as the

size of the provenance graph grows, larger groups of nodes are aggregated into a single compound

node, which leads to a greater reduction power. We can also see that lower min-sup values lead to

a greater size reduction in smaller testing datasets, which is aligned with our results of Fig. 37a.

To gain more insights into the effectiveness of the aggregation, we evaluate the aggregation

power of our approach (i.e., the number of aggregated nodes represented by compound nodes).

Fig. 37c shows that the ratio between the total number of aggregated nodes and that of the com-

pound nodes grows with the size of the provenance graph. On average, 5.69 aggregated nodes are

80

represented by each compound node. To evaluate the performance of each aggregation scheme, we

measure their contribution to reducing the size of the provenance graph separately. As we can see

in Fig. 37c, for all datasets, the ratio between the number of compound nodes and the aggregated

nodes they represent is higher for the administrative aggregation scheme. This can be partially

explained by the merging we conduct on overlapping compound nodes related to the administrative

behavior (Section 4.6). Note that we do not merge cross-level compound nodes, as each of those

nodes corresponds to a particular NFV-level operation and are labeled accordingly. Moreover, the

ratio between aggregated and compound nodes under both schemes increases with the size of the

provenance graph, which shows the better performance of both schemes for larger datasets.

Effect of accuracy on the reduction power. To evaluate how much the reduction power of

ProvTalk may be affected by inaccuracies of our aggregation module, we simulate different ac-

curacy values (of the frequent pattern mining step of our aggregation module) ranging from 20%

up to 97%. To do so, we first manually verify the paths that are identified to be related to cross-

level dependencies or administrative behaviors in our testing datasets. Then, we configure ProvTalk

to randomly select a number of validated paths and leave them non-aggregated in the provenance

graph. We determine the number of these ignored paths according to the desired accuracy value

and the total number of paths extracted from the provenance graph. Fig. 37d shows the variation

in the size reduction caused by different accuracy values in our four testing datasets. On average,

the lowest accuracy value of 20% decreases the reduction power by almost 0.19 times only (i.e.,

preserving the total reduction power of around two times). It is also worth noting that since our

aggregation module provides a more compact instance of the provenance graph (rather than dis-

carding the nodes or the attack detection), low accuracy values would only affect the reduction

power without losing vital information or generating false alarms.

81

4.9.3 Efficiency

To answer RQ3, we measure the efficiency of ProvTalk based on our NFV testbed and real-world

dataset.

4.9.3.1 Scalability Evaluation with NFV Testbed

To evaluate our approach in environments with a large number of diverse management API calls

and deployed virtual services, we run ProvTalk on datasets generated in our NFV testbed (Table 9).

Training time consumption. We measure the time required by the training stage of ProvTalk.

Worthy to note that this is a one-time cost since the lower-level operations triggered by NFV-level

API calls and administrative tasks do not change very frequently. Fig. 38a shows the time required

by the CDM module for extracting the logged lower-level operations and running sequential pattern

mining algorithm over the extracted operations. While the time required by both steps grows almost

linearly with the size of the dataset, the total time does not exceed 80 seconds for the largest dataset.

Fig. 38b depicts the time required by the CDD and ABM modules. Although the required time

increases with the size of the datasets, it remains under four minutes in total for the largest dataset.

6 9 12 15
of datasets' entries (in thousands)

0

20

40

60

80

Ti
m

e
(s

ec
)

Extracting
Mining

(a) CDM module steps delay.

6 9 12 15
of datasets' entries (in thousands)

0

1

2

3

4

Ti
m

e
(m

in
)

CDD
ABM

(b) CDD and ABM modules delay.

Figure 38: Evaluating the training stage overhead.

Runtime delay. We measure the delay caused by ProvTalk in the runtime execution of NFV man-

agement operations. Fig. 39 shows that, on average, ProvTalk adds around a two-millisecond delay

82

for logging the information of most cloud-level operations. Longer delays (around eight millisec-

onds) mostly correspond to operations which also have a longer execution time (e.g., CreateVM has

an execution time of above 10 seconds [65]). The average delay increases to 4 and 6 milliseconds

for SFC-level and NFV-level operations (which also have a longer execution time). In summary,

ProvTalk incurs a negligible overhead of around 0.04% additional delay to NFV management op-

erations.

1. CreateVM 2. StartVM 3. UpdatePort 4. LockVM

5. LinkSubnets 6. CreateNet. 7. CreateVMPass. 8. CreatePortPair

9. CreatePortChain 10. CreatePortPairGroup 11. UpdatePortChain 12. DeletePortChain

13. CreateVNFFG 14. CreateVNF 15. DeleteVNF 16. UpdateVNFFG

17. UpdateVNF 18. DeleteVNFFG

1 2 3 4 5 6 7
0

4

8

Ti
m

e
(m

s)

Avg.

(a) Cloud-level.

8 9 10 11 12
0

4

8

Ti
m

e
(m

s)

Avg.

(b) SFC-level.

13 14 15 16 17 18
0

4

8

Ti
m

e
(m

s)

Avg.

(c) NFV-level.

Figure 39: Runtime delay imposed to API calls at different levels.

Storage cost. We also evaluate the storage consumption of ProvTalk. Fig. 40a shows that the

storage required by ProvTalk remains significantly lower than the logs generated by the platform.

The reason is that the generated logs contain a large amount of information (e.g., listing deployed

services) that are less important for security analysis, and thus are not included in the provenance

graphs. Fig. 40b compares the storage required by ProvTalk and processed logs (containing only

the information that we store as the attributes of nodes). Since the processed logs do not capture

the relationships between operations necessary for the analyses, the size of the provenance graphs

is greater than the processed logs, while it remains around 10 megabyte in the largest dataset with

20,000 API calls. To evaluate the storage cost of ProvTalk for environments with different available

services, we measure the storage required for provenance graphs that are recorded at each level

83

separately. Fig. 40c shows that the storage related to OpenStack API calls is significantly higher

than the others, which can be caused by the higher number of API calls at this level (triggered both

by cloud users and the platform after NFV-level operations). On the other hand, SFC operations

consume the least amount of storage, due to the limited type and number of API calls that are

attributed to this level.

2 4 6 8 10 12 14 16 18 20
of datasets' entries (in thousands)

0

100

200

300

St
or

ag
e

co
st

 (M
B) Raw Logs

ProvTalk

(a) PG vs. raw logs storage cost.

2 4 6 8 10 12 14 16 18 20
of datasets' entries (in thousands)

0

5

10

15

St
or

ag
e

co
st

 (M
B) Processed Logs

ProvTalk

(b) PG vs. processed logs storage cost.

2 4 6 8 10 12 14 16 18 20
of datasets' entries (in thousands)

0

2

4

6

8

St
or

ag
e

co
st

 (M
B) Tacker

SFC
OpenStack

(c) per level of PG storage cost.

0 1 2 3
of API calls per hour (in thousands)

1.5
2.0
2.5
3.0
3.5

CP
U

us
ag

e
(%

)

(d) PG construction CPU usage.

Figure 40: Evaluating the storage and computation cost of ProvTalk (PG denotes provenance
graph).

CPU consumption. We measure how the rate of incoming API calls impacts the CPU usage.

To simulate setups with different workloads, we vary the rate of received API calls per hour so

that the time elapsed between every two consecutive API calls would be a fraction of the time

elapsed between the same API calls in our real data. Fig. 40d shows that the CPU usage during

the construction of the provenance graph increases almost linearly with the rate of received API

calls. The rate of about 1,000 API calls per hour is comparable to the workload of our research

cloud which incurs less than 1.25% CPU consumption. For enterprises with higher rates of API

calls (e.g., 3,000 API calls per hour), the CPU consumption remains under 3.5%, which shows the

scalability of our approach.

84

Comparing with OS-level provenance approaches. We also evaluate the benefit of tracking

management API calls over their corresponding OS-level events. Table 11 shows the size of the OS-

level provenance graph generated following each management API call as well as the provenance

graph constructed by ProvTalk (two bottom rows). To build the OS-level provenance graph, we

deploy a widely used open source tool, SPADE [38], in our controller host. We show an excerpt

of the OS-level provenance graph generated after CreateVNF operation in Fig. 41. We can see

that the OS-level provenance graphs would be impractically large in NFV environments (reaching

millions of nodes and edges) even under a moderate workload of a research cloud with thousands

of API calls issued during only a few days (Section 4.9.3.2). Additionally, in contrast with OS-

level events, API management interfaces are usually accessible to a broad range of NFV/cloud

customers (e.g., AWS CloudTrail) [51], which may include potentially malicious users. Therefore,

by tracking management operations, ProvTalk enables an effective analysis on a vast group of

security incidents in NFV, while avoiding the cost of large OS-level provenance graphs. Moreover,

tracking management API calls provides a higher-level perception of changes in the NFV stack,

and thus enables easier root cause identification.

Table 11: Comparing the size of OS-level provenance graphs generated following each manage-
ment API call with ProvTalk.

OS-level CreateVNF DeleteVNF CreatePortChain LockVM

of nodes 2582 2548 13065 234

of edges 12692 10116 38585 615

Storage (mb) 3.3 2.4 9.9 0.27

ProvTalk CreateVNF DeleteVNF CreatePortChain LockVM

of nodes 16 16 35 2

of edges 19 19 42 2

85

path: /usr/lib/pyt

tac

subtyp

type

path: /usr/lib/python2.7/dist-packages/tackerclient

subtype: directory

type: Artifact

path: /etc/hosts

sybtype:file

name: nova-api

type: Process

cwd: /var/lib/heat

name: heat-engine

type: Process

Figure 41: Excerpt of the OS-level provenance graph generated by SPADE [38] upon issuing the
CreateVNF operation. We magnified a subgraph to illustrate an example of the relationships be-
tween processes and data objects in an NFV controller.

4.9.3.2 Experiments with Real-world Data

We evaluate the applicability of our approach by using 5 days of OpenStack logs collected from a

real research cloud hosted at a major telecommunications vendor with hundreds of hosts and users.

Although logs generated by the platform lack sufficient information [67], we build the provenance

graph using those logs as we were not allowed to install API interceptors in this cloud (detailed

in Section 4.8). Those logs consist of 1,882 API calls affecting the deployment configuration of

354 VMs. Note that the number of the extracted API calls is smaller compared to our NFV testbed

dataset, due to the unavailability of Tacker-level logs in that environment. Accordingly, ProvTalk

generates a provenance graph of 2,157 nodes in 99.8 seconds which consumes only 2.53 megabytes

storage. Thus, ProvTalk imposes negligible storage costs in real-world virtualized environments.

We conclude that unlike existing techniques localizing failed components (e.g., [53, 100]),

ProvTalk facilitates identifying the root cause activities, while incurring reasonable costs.

86

4.9.3.3 Comparing with DominoCatcher

We compare the overhead and performance of ProvTalk with DominoCatcher [106]. While

DominoCatcher can only support the cloud level, ProvTalk can be applied to different virtual en-

vironments (e.g., cloud only, cloud and SFC, and cloud/SFC/NFV). Therefore, while all the exper-

iments are based on cloud-level provenance graphs (the only level captured by DominoCatcher),

we have applied ProvTalk under three scenarios, i.e., cloud-level only (ProvCloud), considering

the cross-level dependencies between cloud/SFC levels (ProvSFC), and cloud/SFC/NFV levels

(ProvNFV).

Size reduction. Fig. 42a shows the reduction of cloud-level provenance graphs of our testing

datasets after applying the pruning schemes of DominoCatcher and ProvTalk (under aforemen-

tioned scenarios). The reduction factor is the number of pruned nodes over the total number of the

cloud-level nodes. As Fig. 42a shows, the pruning schemes of ProvCloud and DominoCatcher

have a similar reduction factor as neither of them captures cross-level dependencies. In con-

trast, ProvSFC and ProvNFV provide around 13% and 60% further reduction, respectively, which

confirms the added benefits of our multi-level pruning schemes. In addition, Fig. 42b compares

the total reduction enabled by both the pruning and aggregation techniques of ProvTalk with

DominoCatcher. The administrative aggregation of ProvCloud enables around 71% further re-

duction compared with DominoCatcher. In constrast, ProvNFV has twice the reduction factor of

DominoCatcher. Note that there is a smaller reduction caused by ProvSFC. The reason is that

ProvSFC first prunes the portion of cloud-level nodes that corresponds to the routine administrative

behavior, and thus a smaller number of nodes will remain to be aggregated by ProvSFC.

Overhead. Fig. 42c shows that ProvNFV consumes only around 5 megabytes additional amount

of storage compared with DominoCatcher. The additional storage cost increases as the number

of NFV-level operations and resources grows (from 300 to 700 VNFs in our testing datasets).

The storage required by DominoCatcher is similar to that by provenance graphs of ProvCloud, as

both schemes capture only the dependencies between cloud-level operations. Note that ProvSFC

87

491419
0.40.60.81.0

x

DominoCatcher ProvCloud ProvSFC ProvNFV

5 10 15 20
of cloud-level nodes (x103)

0.4
0.6
0.8
1.0

Re
du

ct
io

n

(a) Pruning reduction.

5 10 15 20
of cloud-level nodes (x103)

0.4
0.6
0.8
1.0

Re
du

ct
io

n

(b) Pruning and aggregation reduction.

5 10 15 20
of cloud-level nodes (x103)

0

4

8

12

St
or

ag
e

(M
B)

(c) Storage cost.

5 10 15 20
of cloud-level nodes (x103)

0.5
1.0
1.5
2.0

CP
U

us
ag

e
(%

)

(d) CPU usage.

Figure 42: Comparing the effectiveness and overhead of ProvTalk and DominoCatcher [106].

requires an insignificant additional amount of storage (around 0.2 megabyte) compared with Prov-

Cloud due to the small number of API calls related to SFC-level. Fig. 42d shows that, on average,

ProvNFV consumes around 0.5% higher CPU resources than DominoCatcher and other imple-

mented levels of ProvTalk due to capturing the dependencies across all levels. The CPU consump-

tion of ProvSFC is close to DominoCatcher due to the lower number of operations at SFC-level.

In conclusion, we can see that the low storage and CPU consumption of ProvSFC in addition to its

effectiveness (Fig. 42a, 42b) demonstrate the benefit of our solution for virtual environments with

only the cloud and SFC levels. Although ProvNFV has a slightly higher storage and CPU cost, it

leads to significant reduction (twice that of DominoCatcher).

4.9.4 Correctness

To answer RQ4, we evaluate how completely and soundly ProvTalk can capture and process

changes in the NFV stack.

88

Completeness. Our analysis shows that all operations directed through NFV management inter-

faces are passed as API calls to the endpoint services to be applied to the NFV stack. Deploying

ProvTalk as a middleware attached to all those services ensures the completeness property as it can

capture all management API calls (i.e., 100% coverage). Table 12 shows the number of unique

types of management API calls (according to Tacker-OpenStack documentation [3]) that are is-

sued to most commonly used services. Moreover, we conduct an exhaustive study of all database

tables in the NFV platform and devise an entity-relationship (ER) model to ensure all cross-level

relationships are captured by constructed provenance graphs.

Table 12: The number of types of management API calls.

Services Tacker Nova Neutron Glance Swift Heat

Unique API calls 73 313 251 31 16 58

Coverage (%) 100 100 100 100 100 100

Soundness. ProvTalk stores the interception time of API calls at all services to preserve the tem-

poral order of events during backtracking on the provenance graph. Moreover, our pruning scheme

preserves the soundness property by leveraging the cross-level dependencies as follows. At the

same level as where the incident is detected, ProvTalk prunes only the nodes identified to be irrele-

vant according to the defined pruning policies (which is consistent with [106, 92]). Our multi-level

pruning leverages cross-level dependencies to only prune the nodes at other levels that correspond

to the irrelevant nodes identified by the existing techniques. Also, our aggregation schemes en-

sure the soundness property by preserving all the relationships between the aggregated nodes and

the rest of the provenance graph. In other words, all edges pointing to/from each group of aggre-

gated nodes will point to/from their representative compound node, and the compound nodes can

be expanded to show the aggregated nodes in the original form.

89

4.9.5 User Studies

To answer RQ5, we conducted two user studies1 based on standard practices [14] in which the

participants have to identify the root cause of an incident using ProvTalk. In our first study (static

outputs), participants are provided with the outputs of ProvTalk that we obtained in advance. In

our second study (live interaction), participants could directly interact with ProvTalk, trigger each

module, and/or analyse the output of customized queries (e.g., nodes related to operations requested

by non-admin users).

Table 13: Statistics of participants. PG means provenance-based analysis. (A), (L) and (N) mean
advanced, little and no knowledge, respectively. Numbers of participants are shown in the first row
of the tables related to each study.

1st (Static outputs) Industry (14) Academia (7)

Background (NFV-PG) A-A A-L A-N L-L L-N A-L L-L
Participants (%) 14 19 5 19 9 5 29
Scores 3.89 4.19 4 4.1 4.38 3.92 4.26

2nd (Live interaction) Industry (6) Academia (11)

Background (NFV-PG) A-A A-L A-N A-L L-L L-N N-N
Participants (%) 12 17 6 35 12 12 6
Scores 4.78 3.91 4.36 4.14 4.44 4.28 4.05

Participants. To conduct both studies, we recruited participants from a telecommunication indus-

trial organization and graduate students working in cybersecurity from our university. Table 13

shows the statistics of participants in each study and the average score for all provided statements.

In the beginning of both studies, we provided a brief review of an attack story (our motivating

example in Section 4.2.2), and asked the participants to express their level of agreement with our

provided statements. Our web-based platform showed the outputs generated by ProvTalk in split-

screen together with the statements. Table 14 shows the list of statements common between our

two studies. Table 15 shows the additional statements specific to our second study (live interac-

tion). Participants could express their agreement level by choosing either Strongly agree, Agree,

Neutral, Disagree or Strongly disagree. To quantify the results, we calculated the average scores

1Those studies have been approved by Research Ethics/Office of Research of our university.

90

by assigning an integer between one and five to each option (five represents Strongly agree and one

represents Strongly disagree).

100 50 0 50 100

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19

Qu
es

tio
ns

Strongly Disagree Disagree Neutral Agree Strongly Agree

100 50 0 50 100

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

Qu
es

tio
ns

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

(a) Based on the first study.

100 50 0 50 100

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19

Qu
es

tio
ns

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

(b) Based on the second study.

Figure 43: Participants’ agreement with the statements.

Results. According to Table 13, ProvTalk achieves scores above 3.8 among all groups. Fig. 43

shows the distribution of participants’ agreement with statements of our studies. Based on our

results, pinpointing the root cause is challenging for most participants using the multi-level prove-

nance graph (Q1-3). The results from Q4 and Q5 demonstrate the advantage of our multi-level

pruning over the existing schemes in making the provenance graph easier to understand. The results

(Q6-9) affirm the analysis becomes easier with our aggregation schemes by decreasing the size of

the provenance graph and assigning expressive labels to compound nodes (i.e., adding semantics).

Additionally, most participants find the expansion of compound nodes helpful for detailed analyses

(Q10). The generated textual description facilitates the analyses for most participants (Q11-12),

and they can easily associate the descriptions with their corresponding parts of the provenance

graph for detailed analyses (Q13). We show the average quantified score for the aforementioned

statements in Table 14.

Added benefit of live interaction. There is a slight difference between agreement levels in the

two studies, with a more significant gap in some cases, especially Q4 and Q9. We believe that the

91

Table 14: Statements common in our two studies. To quantify the results, we convert participants’
agreement level to scores between one and five (score five represents Strongly agree). ScoreS and
ScoreL represent the scores of our first and second studies, respectively.

Module Statement Code ScoreS ScoreL

Multi-level Provenance
Given the incident and the provenance
graph at each level, it is almost impos-
sible to find the root cause.

Q1 4.2 4.41

Given the incident alert and the con-
nections between levels, I could find
the path from the incident to the root
cause.

Q2 3.85 3.94

It is time-consuming to recognize the
root cause among all graph nodes.

Q3 4.4 4.24

Pruning
One-level pruning made it easier to
identify the attack-related graph nodes.

Q4 2.85 3.71

Multi-level pruning made it easier to
identify the attack-related graph nodes
(w.r.t one-level pruning).

Q5 3.65 3.94

Aggregation

Cross-level aggregation made un-
derstanding the relationship between
nodes at different levels easier.

Q6 4.3 4.11

The graph seems less complex after
cross-level aggregation.

Q7 4.65 4.41

The labels inside the compound nodes
are helpful in understanding the prove-
nance graph.

Q8 4.35 4.35

It was easier to find the root cause af-
ter aggregating and labeling adminis-
trative behavior-related nodes.

Q9 3.6 4

Expanding the compound nodes can
provide useful details in an on-demand
basis.

Q10 4.4 4.41

Rule-based Translation
Seeing this generated textual descrip-
tion would have made identifying the
root cause much easier.

Q11 4.3 4.58

The generated text is similar to what
was described about the attack story in
the beginning.

Q12 4.15 4.52

It is easy to map the summary with the
provenance graph.

Q13 4.25 4.23

92

improved results in our second study (live interaction) is due to the added capabilities of participants

to directly play with all modules or make customized queries (as shown by Q14-15). Additionally,

interactive features such as zooming and node dragging render the effectiveness of ProvTalk more

visible to participants (as shown by Q16-Q19).

Table 15: Statements specific to our second study. Scores are between one and five (score five
represents Strongly agree).

Statement Code Score

Live interaction with ProvTalk enabled searching for certain relationships
between nodes (e.g., those satisfying given properties), which made the anal-
ysis easier.

Q14 4.17

Live interaction with ProvTalk enabled highlighting certain relationships be-
tween nodes (e.g., those satisfying given properties), which made the analy-
sis easier.

Q15 4.17

Hovering over nodes shows all of their properties, which enables easier ac-
cess to more information.

Q16 4.23

Zooming feature enhanced the visibility of different nodes. Q17 4.41
Node dragging feature made understanding the relationships between nodes
easier.

Q18 4.35

Aggregation/compression of any node of my choice made the analysis eas-
ier.

Q19 4.37

Based on the results of our studies, we conclude that ProvTalk can effectively facilitate the

analysis for both expert and non-expert users.

4.10 Discussion

We discuss limitations and future directions of ProvTalk.

Integration with system-level solutions. ProvTalk can potentially be integrated with system-level

provenance solutions to provide mutual benefits (e.g., ProvTalk can guide system-level solutions to

focus on specific resources, whereas the latter can corroborate the findings of ProvTalk with low-

level details). Moreover, we envision that the system calls captured within virtual resources (e.g.,

using SPADE system [38]) can be integrated with the provenance graph generated by ProvTalk in

a manner consistent with previous works (e.g., [44, 74]).

93

Other platforms. While we focus on OpenStack-Tacker platform in this work, our approach can

be extended to other NFV platforms with an initial effort of adapting to their management opera-

tions. For instance, in AWS cloud, we could map the NFV-level of our provenance model to AWS

CloudFormation services [102]. Our model can also be mapped to container-based platforms such

as Kubernetes-Tacker [89]. Additionally, as we show in Section 4.9.4, the only engineering effort

required for collecting the information of our interest is to plug in API interceptors suitable for the

studied platforms (e.g., AWS Lambda in AWS cloud [103]).

More complex modeling approaches. Since ProvTalk focuses on assisting, instead of replacing

human analysts, we are less concerned with the accuracy of our aggregation approach. Neverthe-

less, in our future work, we will investigate the effect of using different learning and embedding

techniques (e.g., [47, 77]) on the reduction power. Moreover, we plan to extend ProvTalk to au-

tomatically detect anomalous behavior [118, 42] and translate it into a human-readable text [30].

Additionally, we will apply adversarial machine learning to study potential attacks (e.g., adversarial

event sequences) against our solution.

Limitations around limited coverage and applicability. ProvTalk does not cover system-level

events inside individual virtual resources, and it can potentially be integrated with system-level

provenance solutions in order to address the scalability issue of the latter in a complex NFV system.

To maintain the applicability of ProvTalk, analysts will need to periodically update the models

trained by CDM and ABM modules. Finally, ProvTalk is designed to facilitate the investigation of

management operations by human analysts instead of replacing them.

4.11 Related Work

NFV incident investigation. Existing role/permission-based techniques (e.g., [11]) focus on inci-

dent prevention, and cannot be applied to investigate the attacks bypassing such techniques [45].

Several incident investigation solutions have been proposed for NFV platforms (e.g., [100, 53])

94

to enable locating malfunctioning components through alert correlation techniques. Chain-

Guard [33] and SFC-Checker [111] verify the correct forwarding behavior of service function

chains. vSFC [126] enables identifying a wide range of security threats (e.g., packet injection

attacks). Unlike ProvTalk, these solutions do not directly identify the root cause operations.

Provenance-based solutions. Provenance-based security analysis has been extensively studied

in the literature [49, 94, 92, 91, 43, 44, 42, 72]. The authors in [92, 40, 91] improve the cap-

ture mechanism by building the provenance graphs based on the information captured by Linux

Security Module hooks. LPM [16] leverages data provenance to ensure authenticated system com-

munications. CamQuery [92] increases the efficiency of provenance analyses through tracing both

userspace and in-kernel executions. As a management-level solution, ProvTalk may work in tan-

dem and complement those system-level techniques.

Past frameworks for layered provenance (e.g., [62, 74, 44]) integrate application logs into the

OS-level provenance of hosts to enable more accurate analysis by removing irrelevant dependen-

cies. The authors in [43] and [118] leverage OS-level provenance to triage alerts and detect ex-

ploited instances of a program instead of root cause analysis. There exist network provenance-

based techniques [23, 22] focusing on network traffic and reference packet events instead of man-

agement operations initiated by users (which is the focus of ProvTalk). ProvThings [117] proposes

a provenance-based approach for auditing the IoT applications across different devices. In SDN

environments, FORENGUARD [115] provides flow-level forensics and ProvSDN [112] monitors

the access to sensitive data for unprivileged applications. In [121], the authors identify the absence

of events in distributed systems. In [42], the authors produce a behavioral model of distributed

applications to identify anomalous events in a cluster. Bates et al. [15] propose a provenance-based

access control mechanism ensuring cloud storage security. The authors in [81] propose a tenant-

aware solution to enhance OpenStack access control mechanism. DominoCatcher [106] tracks

cloud management operations in single-level provenance graphs. Our experiments show that our

approach can reduce the size of cloud-level provenance graphs twice as much as DominoCatcher

does (see Section 4.9.3.3 for detailed results). Moreover, unlike our work, none of these solutions

95

can support tracking information flow to/from different visualizations of the same resources that

we face in NFV. Finally, summarization solutions (e.g., [124]) abstract user behaviors using audit

logs. However, such abstraction is already intrinsically provided by NFV stack. ProvTalk leverages

the distinct visualizations of resources that already exist at different levels of the NFV stack to infer

the semantics of lower-level events and facilitate the analyses.

4.12 Conclusion

In this chapter, we presented ProvTalk, the first multi-level provenance solution for NFV. ProvTalk

leveraged data provenance concept to find the management operations leading to attacks in NFV

platforms and provided efficient pruning, aggregation and translation mechanisms for users to pin-

point the root cause of security incidents. We integrated ProvTalk to Tacker-OpenStack and demon-

strated the efficacy of our approach based on real attack scenarios. Moreover, based on our experi-

ments on performance and storage cost, our system substantially reduces the size of the provenance

graph with insignificant runtime and storage overhead. Finally, our user studies results show that

our approach remarkably facilitates the identification of root cause of security incidents.

96

Chapter 5

VinciDecoder: Automatically Interpreting

Provenance Graphs into Textual Forensic

Reports with Application to OpenStack

5.1 Introduction

With the recent worldwide surge in adopting cloud computing, there is an increasing need for

explaining the root cause of security incidents in large scale cloud infrastructures [1]. Sharing de-

tailed forensic reports about such root causes and attack techniques can raise cybersecurity aware-

ness, and improve threat detection and attack prevention techniques [48]. However, most existing

provenance-based solutions (e.g., [117, 106, 91]) would face a critical challenge in such a context,

i.e., it would be impractical to rely on human analysts to interpret the large and complex provenance

graphs produced by such solutions for a large cloud with tens of thousands of inter-connected vir-

tual resources [70].

There exist rule-based approaches (e.g., [109]) for generating textual summaries of provenance

graphs. However, only relying on a set of specified rules [109] would not be sufficient, as the

unpredictable nature of security incidents [122] will necessitate to constantly develop new rules,

97

which may be costly especially for large clouds. We will further illustrate such limitations through

the following example.

Motivating example. Fig. 44(a) depicts a provenance graph (left), and an analyst manually per-

forming the task of creating a human-readable report (right) based on the provenance graph. Specif-

ically, upon receiving an alert about the leakage of network traffic, the analyst begins investigating

the suspicious paths of the provenance graph (left) generated by existing tools (e.g., [118]) to manu-

ally report the root cause as shown in Fig. 44a (right) (the exploit of a vulnerability [12] by updating

the device_owner field of a port attached to a created VM). However, such a task can be challeng-

ing to an analyst, especially as a real world cloud provenance graph may have tens of thousands of

nodes and edges [106].

• Key ideas. Fig. 44(b) shows the two main approaches adopted by our solution, namely

VinciDecoder [108], for automatically interpreting provenance graphs into forensic reports.

First, our rule-based approach generates customized forensic reports based on lexicons and

grammar rules as illustrated in Fig. 44(b) (bottom left). Such rules are specified by the ana-

lyst according to his/her criteria (e.g., domain-knowledge) and understanding of the existing

paired provenance graphs and forensic reports for similar types of future attacks. Second, for

use cases where such criteria are too dynamic (e.g., new types of attacks) for a rule-based

approach to handle, we also propose a learning-based approach (bottom right) which auto-

matically learns the correspondence between pairs of provenance graphs and forensic reports

using Neural Machine Translation (NMT). Specifically, similar to words (e.g., verbs and ob-

ject) of a sentence, there is a dependency between nodes (e.g., operations and their affected

resources) in a provenance graph, which inspires us to train a translation model by applying

NMT to provenance graphs (source language) paired with human-readable reports (target

language), and automatically translate future provenance graphs into a natural language in-

terpretation using the trained model.

• Challenges. Although our vision for adopting NMT seems plausible, realizing VinciDecoder

98

 Provenance Graph

type: router

resourceID: Router2

type: AttachSubnet_to_Router

time: 14:00:24.620

user: admin

type: subnet

resourceID: Subnet3

type: VM

resourceID: VMc
type: StartVM

time: 13:03:25.311

user: admin
type: CreateVM

time: 12:05:18.254

user: admin

type: subnet

resourceID: Subnet3

type: VM

resourceID: VMmal

type: CreateVM

time: 12:00:50.441

user: non-admin

type: CreatePort

time: 12:00:14.433

user: non-admin

type: UpdatePort_device_owner

time: 12:00:45.535

user: non-admin

type: port

resourceID:

Portmal

type: port

resourceID: Portmal

type: CreateVM

time: 12:05:16.093

user: admin

type: port

resourceID:

Portmal

type: UpdatePort_device_owner

time: 12:00:50.892

user: non-admintype: subnet

resourceID: Subnet1

type: VM

resourceID: VMa

 Manually Written

Report

The attacker could

bypass the anti-IP

spoofing rules by

changing the

device_owner field

of a port … Attack

steps: Creating a ...

type: subnet

resourceID: Subnet1

type: subnet

resourceID: Subnet1

type: CreateVM

time: 12:05:18.254

user: admin

type: VM

resourceID: VMc

type: AttachSubnet_to_Router

time: 12:00:17.193

user: admin

type: subnet

resourceID: Subnet2type: router

resourceID: Router1

type: router

resourceID: Router1

type: AttachSubnet_to_Router

time: 13:00:15.419

user: admin

type: subnet

resourceID: Subnet3

type: CreateVM

time: 12:05:17.143

user: admin

type: VM

resourceID: VMx

type: UpdatePort_device_owner

time: 12:00:46.001

user: non-admin

type: port

resourceID:

Portmal

type: subnet

resourceID: Subnet1

type: CreateSubnet

time: 10:00:14.923

user: admin

type: UpdateRouter

time: 09:00:23.412

user: admin

type: UnlockVM

time: 13:03:25.311

user: admin

type: CreateVM

time: 12:05:18.254

user: admin

CreateVM

time: 12:00:50.441

user: non-admin

port

resourceID:

Portmal

UpdatePort_device_owner

time: 12:00:50.892

user: non-admin

(a) Challenges of interpreting provenance graphs: an excerpt of the provenance graph (left); an analyst manually
creating a report based on the provenance graph (right).

.. connected to subnet … created a
Forensic Report (Incident 1)

Provenance Graph (Incident 2)

CreatePort portsubnet
Provenance Graph (Incident 1)

if verb != "delete" then

 if Obj in ["subnet", "router"] then

 Obj.Pre("connected to a").add(obj)

 else if Obj = "port" then

 Obj.Pre("attached").add(obj)

else …
if obj["user"] != prev.user["user"]

 Obj.Post(", by different user")

. . .

Forensic Report (Incident 2)

...

. . .

Rule-based generation of forensic reports Learning-based generation of

forensic reports

Provenance

Graph

Forensic

Report

Provenance

Graph
Forensic

Report

(b) Our main idea: provenance graphs of several incidents (top left); existing forensic reports (top right); auto-
matic generation of forensic reports (bottom left and right).

Figure 44: Motivating example.

requires addressing the following two main challenges. First, NMT is typically applied to tex-

tual data, whereas provenance graphs are usually stored as nodes and edges. To address this,

VinciDecoder converts paths of provenance graphs into primitive sentences of node prop-

erties (detailed in 5.3.2). Second, it is challenging to generate high quality reports with a

limited number of paired provenance graphs and reports for training. To address this, Vin-

ciDecoder leverages tens of thousands of CVE entries and their corresponding provenance

graphs to train NMT (detailed in 5.4.2).

In summary, our main contributions are as follows:

99

± To the best of our knowledge, VinciDecoder is the first solution for generating forensic re-

ports based on provenance analysis results using both rule-based and learning-based tech-

niques. By reducing the reliance on human analysts to interpret and document large and

complex provenance graphs, our approach can avoid the limitations, human error, and delay

that are natural to such manual efforts, and thus improve the practicality of provenance anal-

ysis in large-scale cloud environments, enable automated documentation of root causes for

security incidents, and allow for more timely incident-response.

± To automatically generate reports using NMT, we design several mechanisms as follows.

VinciDecoder first converts provenance graph paths into primitive sentences representing

properties of nodes, and removes instance-specific information to avoid mis-translation; it

then learns a translation model based on the paired primitive sentences and reports; finally,

when given target paths, VinciDecoder applies the learned model to the primitive sentences

representing the paths to generate the forensic report. Optionally, our rule-based approach

can form forensic reports by linking the node properties extracted from the target path based

on pre-specified rules.

± We implement VinciDecoder on an OpenStack-based cloud testbed, and validate its effective-

ness based on real-world security incidents. Our experiments and user study show that Vin-

ciDecoder generates high-quality results (e.g., up to 0.68 BLEU score for precision) with suf-

ficient readability for human analysts (e.g., 92% of our participants agree that understanding

the attack steps is much easier using VinciDecoder’s report than using provenance graphs).

The rest of this chapter is organized as follows: Section 5.2 provides some background on data

provenance and NMT. Section 5.3 details our methodology. Section 5.4 describes our implemen-

tation and presents the evaluation results. We discuss different aspects of our work and the related

work in Section 5.5 and Section 5.6, respectively. We conclude the chapter in Section 5.7.

100

5.2 Preliminaries

This section provides a background on data provenance, NMT and our assumptions.

5.2.1 Provenance Graph

As a powerful technique to capture the dependencies between data objects (e.g., virtual resources

or operating system files) and events (e.g., management operations or system calls) in a graph

representation, data provenance has been applied to clouds. We show an example of a cloud

management-level provenance graph [106] in Fig. 45(a) consisting of two types of nodes: enti-

ties (shown as ovals) and activities (shown as boxes), where entities represent virtual resources

(e.g., a virtual port Portmal), and activities represent cloud management operations (e.g., an oper-

ation CreateVM). Each node stores several properties such as the type of the operations/resources

and the user who triggers the operations. Edges indicate the dependency between an operation and

its affected resources. For example, in Fig. 45(a), the edge from CreateVM to Portmal shows that

this operation attaches Portmal to the created VM VMmal.

5.2.2 Neural Machine Translation

Neural Machine Translation (NMT) [105] builds a conditional probability model, P(Y |X), such

that the likelihood of a target sentence Y given a source sentence X is maximized [46]. As Fig. 45(b)

shows, NMT usually consists of an encoder and a decoder, which typically utilize recurrent neural

networks (RNN) such as a Long Short-Term Memory (LSTM) [47]. To initialize the training,

LSTM cells are assigned with random weights, and the encoder captures the semantics of X by

encoding it into a fixed-length vector H. Then, the decoder generates the target sentence given the

computed vector H. NMT computes the deviation of the generated sentence from the reference

sentence Y and improves the model by optimizing the assigned weights based on other pairs of

sentences. In Section 5.3.4 and 5.3.5, we detail how VinciDecoder leverages this mechanism to

generate forensic reports.

101

CreateVM

12:00:46.441

non-admin

CreatePort

12:00:45.535

non-admin

VM

VMmal

port

Portmal

UpdateDevice_owner

12:00:46.362

non-admin

port

Portmal

subnet

Subnet1

port

Portmal

UpdateDevice_owner

12:00:48.369

non-admin

CreateVM

10:50:42.132

admin

VM

VMa

subnet

Subnet1

CreateVM

03:15:16.101

admin

VM

VMb

(a)

CreateVM Port

Null

E
n

c
o

d
e

r

187 232 91 ...

LSTM

cell

X sentence

Y sentence

H vector

LSTM

cell

D
e

c
o

d
e

r

...User .

...User .created

(b)

Figure 45: An excerpt of a cloud management-level provenance graph (a); an example of NMT
Encoder-Decoder model (b).

5.2.3 Assumptions

We assume the accuracy of provenance analysis results provided by existing tools (e.g., [118]), such

as suspicious paths capturing the attack steps or malicious behavior. We also assume the correctness

and completeness of provenance-based root cause analysis solutions (e.g., [118, 42]) in identifying

suspicious paths capturing the attack steps. We assume that the provenance construction tool is

not compromised. Finally, similar to most other learning-based data-to-text techniques (e.g., [95]),

we assume the availability of a sufficient amount of training data (i.e., paired forensic reports and

suspicious paths) for training our model1.

5.3 VinciDecoder

In this section, we provide an overview of VinciDecoder, detail its different modules, and describe

the interaction between them.

5.3.1 Overview

Fig. 46 shows an overview of VinciDecoder, which consists of two main phases: learning phase and

automatic report generation phase. In the learning phase, VinciDecoder collects paired suspicious

1In Section 5.4.2, we discuss how we obtain more pairs of reports and paths for training.

102

paths and reports for training, and then transforms suspicious paths into primitive sentences in our

intermediary language (Section 5.3.2), which represents the properties of a node as a compound

word, and removes the instance-specific information (Section 5.3.3). Next, it applies NMT to train

a translation model profiling the correspondence between the obtained sentences and their forensic

reports (Section 5.3.4). In the automatic report generation phase, VinciDecoder applies the trained

translation model to generate forensic reports based on the suspicious paths of the provenance graph

associated with the newly detected incident (Section 5.3.5). Optionally, VinciDecoder can generate

reports using our rule-based mechanism (Section 5.3.5).

Identified

suspicious paths
Learning

Existing reports

Translation

Model Training

Primitive sentences

Automatic Report

Generation

Normalized

reports

Normalized primitive sentences

Translation

model

Provenance

Analysis

Tool

Newly identified

Suspicious path

VinciDecoder

Normalization

Primitive

sentence

Translation

Normalized

primitive sentence

Path to Intermediary

Language Translation (PILT)

Rule-based Report Generation

Pre-specified rules

Forensic

report

Cloud

In
ci

d
e

n
t

a
le

rt

Normalization

Path to Intermediary

Language Translation (PILT)

Learning-based

Rule-based

Figure 46: Overview of VinciDecoder.

5.3.2 Path to Intermediary Language Translation (PILT)

NMT can be applied to textual sentences, which renders its application to provenance graphs chal-

lenging. To address this, the PILT module converts each suspicious path into a primitive sentence

by querying the database to sequentially scan the nodes, extract their properties, and record them as

one compound word of the sentence (see Fig. 46). Algorithm 2 details the mechanism of PILT as

follows: PILT extracts the properties type and user from operation nodes and appends them to the

103

created primitive sentence (line 3-5). Moreover, it calculates the elapsed time between the times-

tamp properties stored at two consecutive operation nodes (line 6-7) and appends the calculated

value with a proper post-fix (e.g., ª-millisecond", ª-hours", etc.) to the sentence (line 8-9). The

elapsed time may be interesting for reporting the incidents where the attacker attempts to issue a

large number of operations in a short period of time, e.g., to launch race condition or DoS attacks.

PILT also records the type and the identifier of resources (line 10-13). In the next section, we detail

how obtained sentences are modified and leveraged to train the translation model.

Algorithm 2 Path to Intermediary Language Translation

Input: path ← Suspicious path identified by the provenance analysis tool

Output: SenRepresentingPath

1. foreach node ∈ path do

2. if isOperation(node) then %Appending the operation properties to sentence

3. OperationType ← node["data"]["OperationType"]

4. User ← node["data"]["user"]

5. SenRepresentingPath.append("type:" + OperationType + "user:" + User)

 %Appending the approximate elapsed time between operations to sentence

6. if isNotFirstNode(node) then

7. ElapsedTime ← ThisOperation – PreviousOperationTime

8. ElapsedApprox ← ElapsedTimeApproximator (ElapsedTime)

9. SenRepresentingPath.append(ElapsedApprox)

10. else if isResource(node) then%Appending resource properties to sentence

11. ResourceType ← node["data"]["ResourceType"]

12. ResourceID ← node["data"]["ID"]

13. SenRepresentingPath.append("type:" + ResourceType + "ID:" + ResourceID)

14. return SenRepresentingPath

Example 1. Fig. 47 shows the translation of a path (left) into a primitive sentence (right) in our

intermediary language. As we can see, the properties of each node (e.g., the node representing

CreatePort operation) are represented by a word (e.g., ªtype:CreatePort,user:non-admin") in the

obtained sentence.

type:CreatePort

time:12:00:14.433

user:non-admin

type:UpdatePort

time:12:00:45.535

user: non-admin

type:port

resourceID:

Portmal

...“type:Port,resourceID:Portm

al”“type:UpdatePort,user:nona

dmin,ElapsedTime: 31-sec”

Figure 47: Simplified example path (left) translated into a primitive sentence (right).

104

5.3.3 Normalization

To allow NMT to focus on generic words in the primitive sentences instead of application-specific

ones (which may lead to mis-translation), VinciDecoder needs to remove instance-specific infor-

mation from the dataset before feeding it to NMT. Specifically, the forensic reports and their corre-

sponding primitive sentences used for training may contain values (e.g., the name/ID of resources)

that are related to semantics of the specific scenarios (which NMT is not aware of). Retaining

such values is known to reduce the quality of the reports generated by the trained neural translation

model [98]. Therefore, VinciDecoder identifies and replaces all instance-specific values (e.g., the

number preceding the string ª-millisecondsº1) with a placeholder (i.e., \0), and the name of the

applications or software platforms with the word ªplatformº based on our specified rules.

5.3.4 Translation Model Training

This module builds a translation model to profile the correspondence between the existing forensic

reports and their associated suspicious paths. To this end, we leverage NMT [50], as it automatically

captures the context of words and nodes (i.e., the dependencies between words in a report and

nodes in a path) using embeddings. By applying NMT, VinciDecoder first projects words of a

report and the words of the obtained primitive sentences (i.e., properties of nodes) into a high-

dimensional numerical vector space such that words/nodes with similar contexts have closer vector

representations. Next, VinciDecoder builds a translation model based on the derived vectors that

optimally maps each provided forensic report to its paired primitive sentence.

Example 2. Fig. 48 shows an excerpt of the training dataset composed of the primitive sentences

obtained from the suspicious paths (left) and their corresponding manually created reports (right).

The semantically related information on each side are illustrated with the same type of lines.

1Despite removing the numbers, the range of the elapsed time (e.g., milliseconds vs. hours) retains useful informa-
tion about the incidents.

105

...

A non-admin user creates a port, then creates

a VM attached to that port, and immediately

updates the port device_owner field so the

anti-spoofing rule is bypassed due to the

vulnerability exploit.
...

“type:CreatePort,ElapsedTime:\0-seconds,user:non-admin,

ID: Portmal” “type:port,user:non-admin” “type:CreateVM,

Elapsed Time:\0-seconds,user:non-admin” “type:port,

user:non-admin” “type:UpdatePortDeviceOwner, Elapsed

Time: \0-milliseconds”

Figure 48: Example paths in our intermediary language (left) and their corresponding manually
written reports (right). Semantically related information are highlighted by the same type of lines.

5.3.5 Automatic Report Generation

Once a new security incident is detected, VinciDecoder automatically generates forensic reports

based on the suspicious path identified by existing tools (e.g., [118, 42]) using our learning-based

and rule-based techniques.

Learning-based report generation. After building the translation model in the learning phase,

VinciDecoder can be applied to generate forensic reports based on the detected suspicious path.

Specifically, VinciDecoder converts the suspicious path into a primitive sentence in our intermedi-

ary language, and removes the instance-specific information by following the same techniques as

mentioned in Section 5.3.2 and Section 5.3.3. Next, it applies the translation model to each normal-

ized primitive sentence to automatically generate the corresponding forensic report. To improve the

quality of generated reports, VinciDecoder also allows the analyst to conduct post-editing [54] by

identifying the instance-specific information using the primitive sentences and adding them to the

reports.

Rule-based report generation. To ensure the applicability of our approach when there is a lack

of a sufficient number of reports for training, VinciDecoder is also equipped with a rule-based

mechanism, which enables translation without training data. Specifically, VinciDecoder sequen-

tially scans nodes on each path, and extracts the following properties stored at each node: the type

and ID of resources/operations, the user triggering an operation, and the elapsed time between the

timestamp values stored in two consecutive operation nodes. Then, it creates an ordered list, where

each item represents the properties of a node. Next, VinciDecoder generates sentences based on

106

our specified rules by sequentially linking the items such that the extracted user, resource, opera-

tion and elapsed time are included as the subject, object, verb and propositional phrase in generated

sentences, respectively (detailed in Appendix). Finally, an introductory and a concluding sentence

are generated to describe an overview of the incident (e.g., describing the time of the detection).

Algorithm 3 shows our rule-based mechanism generating reports based on the cloud

management-level provenance graphs (e.g., the provenance graph in Fig. 44). To generate fluent

sentences, we specify rules for indicating different subjects (line 2-5). We add resources extracted

from the names of operations (e.g., a VM in CreateVM) through the template a $resource_type

named $main_resource_name (line 7-9). We specify various rules (line 11-20) for describing other

affected resources connected to an operation node. We also specify rules to record other infor-

mation such as the elapsed time between operations (line 21-26). Through such rules specifically

designed for each type of operations, resources, and users, VinciDecoder generates reports when

there is an insufficient amount of training data for generating high quality reports.

Example 3. Fig. 49 shows the report related to the incident in our motivating example (Sec-

tion 5.1). The report starts with explaining the number of operations in the suspicious path, contin-

ues with describing the attack steps, and concludes with indicating the ID of nodes in the suspicious

paths.

By the detection time, there are 4 operations performed in 1 minute corresponding to the resource vmmal. A nonadmin

user created a port named portmal on a subnet. Once done, this user modified portdeviceowner after less than a minute.

(S)He also created a vm named vmmal on that port after less than a second. Then, (s)he modified that portdeviceowner

after less than a second. More details can be found in the provenance graph in path [416 - 419 - 422 - 425].

Figure 49: Automatically generated report on the incident discussed in our motivating example
(Section 5.1).

5.4 Implementation and Evaluation

In this section, we detail the implementation of VinciDecoder and evaluate our solution.

107

Algorithm 3 Rule-based Report Generation
Input: path ← Suspicious path identified by the provenance analysis tool

 Middle_Sentence_Subjects = ["Next, this user", "Later, he/she", "He/She also",

 "This user then", "Once done, he/she "]

Output: Description

1. foreach node ∈ path do

2. if isFirstNode(node) or isNotEqualPreviousUser(node) then%User of the first operation

3. Subj_main ← Admin_NonAdmin_Specifier(userID, adminID)

4. else %Other users with prior words (e.g., "Once done, he/she")

5. Subj_main ← random_choice(Middle_Sentence_Subjects)

6. if isAnOperation(node) then

7. Verb, MainObject ← OperationType.split(operation)

8. MainObject ← MainObject.setDeterminer("a")

9. MainObject ← addAfter("with the ID " + MainObject["id"])

10. OtherAffectedResources ← EndOfOutgoingEdges(node)

11. foreach SecondaryObject ∈ OtherAffectedResources: %Choosing prior words

12. if verb != "delete" then

13. SecondaryObject.addBefore("on").addAfter(resource["id"])

14. else

15. SecondObject.addBefore("from a").addAfter(resource["id"])

16. if previousUser(resource) != operation["user"] then %Update by a different user

17. SecondaryObject.addAfter(", previously affected by a different user,")

18. if isNotFirstNode(node) then %Range of elapsed time between operations

19. ElapsedTime ← TimeRangeDescriptor(ThisOperation – PreviousOperationTime)

20. if isAlertNode(node) then

21. MainObject.addAfter(", which is associated to the alert.")

22. sentence.setSubj(Subj_main).setVerb(Verb).setObj(MainObject) %Form sentence

23. sentence.addAfter(SecondaryObject).addAfter(ElapsedApprox)

24. if ThisOperation = PreviousOperation then %Emphasize the repetition

25. sentence.addComponent("again")

26. PathDescription.append(sentence)

27. return Description

5.4.1 Evaluation using Cloud Management-level Provenance Graphs

To evaluate VinciDecoder under different scenarios (e.g., various lengths of suspicious paths), we

apply VinciDecoder to cloud management-level provenance graphs generated in our testbed cloud.

5.4.1.1 Implementation and Data Collection

We implement VinciDecoder in a cloud testbed based on OpenStack [83] (a popular open-source

cloud platform). We note that only our PILT module (Section 5.3.2) and our rules (Appendix)

108

are platform-specific, and the modular design of VinciDecoder makes it easily portable to other

platforms or provenance models (e.g., OS-level provenance [49]). We export provenance graphs

from Neo4j [80] into JSON format for processing. We leverage Open-Source Toolkit for Neural

Machine Translation (ONMT) [50] (a popular tool for language translation). Similar to some other

solutions (e.g., [118]), we choose the default options for embedding paths (i.e., 500 dimensional

vector) as well as the batch size and the dropout rate (i.e., 64 and 0.3, respectively). We leverage the

metrics in [104] to evaluate our approach.We run VinciDecoder on an Ubuntu 20.04 server equipped

with 128 GB of RAM. We generate the provenance graphs through deploying and updating different

types of virtual resources. Moreover, we enrich our training dataset by leveraging the rule-based

mechanism (detailed in Section 5.3.5). To simulate reports authored based on various writing styles,

we specify rules capturing the writing styles of our different authors.

Table 16: Statistics of our testbed datasets.

Training

Dataset Dtr-size1 Dtr-size2 Dtr-size3 Dtr-size4

of paths 2000 4000 6000 8000
lmin 4 4 4 4

2.5 Dataset Dtr-len1 Dtr-len2 Dtr-len3 Dtr-len4

of paths 2000 2000 2000 2000
lmin 4 8 12 16

Testing

Dataset Dts1 Dts2

of paths 2000 2000
lmin 4 8

Table 16 shows the statistics of our datasets. To evaluate the effect of length and number

of available samples (i.e., the suspicious paths) on the performance, we conduct our experiments

based on two groups of training datasets: 1) varying the number of paths: four datasets (Dtr-size1

to Dtr-size4) each consisting of a different number of paths with the same minimum length; 2) vary-

ing the length of paths: four datasets (Dtr-len1 to Dtr-len4) consisting of the same number of paths

with different specified minimum lengths. We randomly select 70% and 30% of the paths from

each training dataset to build and validate (used by NMT to automatically tune the hyperparame-

ters in training [46]) the models, respectively. Our training and testing datasets are selected from

109

disjoint parts of the provenance graph, so we can evaluate the ability of VinciDecoder in handling

unseen datasets. We also evaluate our approach based on two testing datasets with paths of different

minimum lengths as shown in Table 16.

5.4.1.2 Effectiveness Evaluation

We reproduce in our testbed eight real-world incident scenarios that involve cloud management

operations, and apply VinciDecoder to generate reports based on the captured provenance graphs.

Table 17 shows those scenarios and corresponding incidents. Most of those scenarios are discussed

in previous works (e.g., [110, 119, 64, 21, 107]) focusing on security verification. For all cases,

our generated reports capture all operations that led to the incidents. Table 18 demonstrates the

effectiveness of VinciDecoder based on five scenarios. We also showcased our result for the sixth

scenario in Section 5.3.5. The other two scenarios (Table 17, seventh and eighth rows) involve

fewer types of operations and are thus omitted due to space limitation.

Table 17: Attack scenarios used to evaluate the effectiveness of VinciDecoder.

Index Root cause Incident

1 Improper authorization [119] Port Scanning
2 Failed update of security groups [107] Data leakage
3 Soft-rebooting migrated VM [9] Data corruption
4 Deleting resized VM [8] Disk utilization
5 Incorrect role assignment [110] Data leakage
6 Race condition in update port [107] Data leakage
7 Wrong VLAN ID [21] Data leakage
8 Excessive VM creation on a host [64] Disk utilization

Example of verifying the captured information. Fig. 50(a) shows the automatically generated

report explaining the operations (i.e., the creation of a rogue port on a router created by a different

user) to exploit a vulnerability [7] that led to the attack on VMa (Table 17, first row). VinciDecoder

correctly details the steps described by the manually created report shown in Fig. 50(b).

110

Table 18: Reports generated by VinciDecoder for five scenarios in Table 17. The sixth scenario is
showcased in Section 5.3.5.

Index Provenance graph path Automatically generated report

1

CreateVM

12:52:10.152

non-admin

AttachRouterToSubnet

12:00:41.424

admin

VM

VMmal

CreatePort

12:51:46.531

non-admin

router

Router1

subnet

Subnet1

CreatePort

10:50:42.032

admin

subnet

Subnet1

subnet

Subnet2

router

Router1

subnet

Subnet1

port

Porta

port

Porta An admin user created a port named porta on a subnet. This
admin user attached that subnet to a router after around 1
hours. A nonadmin user created a port on that subnet and
on that router, previously affected by a different user. After
that, (s)he created a vm named vmmal, which is associated
to the alert.

2 StartVM

05:51:05.515

admin

VM

VMb

CreateVM

05:50:12.101

admin

VM

VMb

subnet

Subnet1

CreateVM

03:27:16.923

non-admin

DeleteSecurityGroupRule

07:00:56.315

admin

Security-group

SG1

Security-group

SG1

VM

VMmal

subnet

Subnet1

VM

VMb

AddSecurityGroup

06:59:46.012

admin

A nonadmin user created vm named vmmal on a subnet.
An admin user created a vm named vmb on that subnet.
Once done, (s)he started that vm vmb. Then attached a
securitygroup named SG1 on that vm. The administra-
tor deleted securitygrouprule from that SecurityGroup after
around 1 minutes.

3 SoftRebootVM

13:52:18.141

non-admin

vm

VMa

VMLiveMigrate

13:51:26.031

admin

host

host1

vm

VMa

An admin user livemigrated a vm named vma to a host.
A nonadmin user softrebooted that vm, previously affected
by a different user.

4

ResizeVM

01:18:01.142

non-admin

vm

VMa

CreateVM

01:17:13.531

non-admin

host

host1

vm

VMa

DeleteVM

01:18:57.127

non-admin

A nonadmin user created a vm named vma on a host. Later,
(s)he resized that vm after less than a minutes. Next, (s)he
deleted that vm after less than a minute.

5 ChangeVMPassword

21:43:11.127

non-admin

vm

VMa

CreateVM

18:05:51.012

admin

subnet

subnet1

vm

VMa

An admin user created a vm, named vma on a subnet. A
nonadmin user changedpassword a vm, previously affected
by a different user after around 3 hours.

5.4.1.3 Performance Evaluation

We showcase the high quality of generated reports with different number and length of paths in

training datasets based on well known translation metrics BLEU and ROUGE [104]. BLEU (pre-

cision) measures the fraction of the generated information that are relevant to the manually written

reports and ROUGE (recall) indicates the fraction of information from the reference reports that

are included in automatically generated reports. As VinciDecoder proposes the first learning-based

provenance translation solution, we cannot directly compare our results to existing works, while

we note that scores above 0.5 are generally known to reflect high quality translations [55].

Number of training samples. Fig. 51(a) shows that, in most cases, there is a minor variation in the

evaluated performance as the number of the training samples increases. This can be explained by

the possibility that our translation models trained by larger datasets may become more biased [61]

due to the frequent appearances of similar patterns of cloud management operations. To further

illustrate this effect, Fig. 52 compares an excerpt of a manually written report of a path with the

111

Automatically generated report: By the detection

time, there are 4 operations performed in 3 hours

corresponding to the alert entity of vm vmmal. An

admin user created a port named porta on a subnet.

This admin user attached a subnet named subnet1 on

a router after around 1 hours. A nonadmin user

created a port on a subnet and on a router,

previously affected by a different user. After that, he

created a vm named vmmal, which is associated with

the alert. This node (ID: 60) might worth a closer

look because this operation is performed on admin

resource by nonadmin user.

(a) Automatically generated report.

Manually written report [2]:

The l3-agent does not check tenant_id and allows

tenants to plug ports into other's routers if the

device_id is set to another tenants router.

use admin’s credential

$ source openrc admin

Create router as admin

$ neutron router-create admin-router

use a different cloud tenant’s credential

$ source openrc non-admin

Create port with the router device_id

$ neutron port-create --device-id (router-id)

(b) Manually created report about exploiting the same
vulnerability [7].

Figure 50: Verifying the information captured by our generated report. The semantically relevant
information are highlighted with the same type of line.

0.02.5
0.0
0.5

Dts1 BLEU Dts1 ROUGE Dts2 BLEU Dts2 ROUGE

Dtr size1 Dtr size2 Dtr size3 Dtr size4
Training datasets

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

(a) Effect of the number of training
samples.

Dtr len1 Dtr len2 Dtr len3 Dtr len4
Training datasets

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

(b) Effect of the length of training
samples.

10 20 30 40 50
of epochs

0.1

0.3

0.5

0.7

Pe
rfo

rm
an

ce

BLEU ROUGE

(c) Effect of the number of epochs.

Figure 51: Evaluation with cloud management-level provenance graphs.
ones generated by VinciDecoder based on the four training datasets. As we can see, larger train-

ing datasets (e.g., Dtr-size4) cause more extra or missing information in the generated reports. We

conclude that our approach remains useful even with a limited number of training samples.

Length of training samples. Fig. 51(b) shows that the performance decreases when the length of

paths in the training dataset increases, which may be due to the degraded performance of NMT for

longer sentences [27]. The reduction is more significant for Dts1 due to the difference between the

length of paths in this testing dataset (with minimum four nodes) and that of paths in the training

datasets, Dtr-len3 and Dtr-len4 (with minimum 12 and 16 nodes). The training datasets Dtr-len1 and

Dtr-len2 (with paths of minimum four and eight nodes) cause a noticeably higher performance for

Dts1 than for Dts2 due to the general positive impact of shorter paths of Dts1 on the performance and

the similarity between training and testing datasets regarding the lengths of paths.

112

Dtr-size4: An Admin user created a port named \0 connected to that subnet. Then created a port named\0

connected to that subnet. This Admin user created a port named \0 connected to that subnet after

around minutes. Once done, he created a port named \0 connected to that subnet. He created a server

named \0 attached to that port after less than a minute. [not using pronoun] This Admin user modified a

port named \0 after less than a minute. Then updated a port named \0.

Dtr-size3: [missing create server] An Admin user updated a port named \0. The administrator updated a

port named \0 , after around \0minutes.

Dtr-size1: An Admin user created a server

named \0 attached to that port. Once done, he

updated a port named\0 [missing elapsed time].

Dtr-size2: An Admin user created a server named \0

attached to that port. [not using pronoun] The Admin

user modified a port named\0, after less than a minute.

Path (converted to a sentence in the intermediary language): '"type:CreateServers,user:Admin,

ElapsedTime:\0-seconds” “type:port” “type:UpdatePorts,user:Admin,ElapsedTime:\0-seconds”
Manually written report: An admin user created a server attached to a port, named \0. He later updates

that port after less than a minute.

Figure 52: Comparing reports generated by training datasets with different numbers of samples
(irrelevant parts of the generated reports are crossed out).

Number of epochs. Fig. 51(c) shows that the performance is significantly improved with the

number of epochs (i.e., the number of times NMT iterates through a training dataset). We also

measure the perplexity (i.e., the extent a trained model could predict a newly provided data [24])

and the accuracy for different numbers of epochs and training datasets. Fig. 53(a) shows that the

perplexity decreases to around 1.2 after 20 epochs, and Fig. 53(b) shows that the accuracy increases

to around 97% after 40 epochs. We conclude that the perplexity and accuracy of VinciDecoder

improve with the number of epochs, and reach almost constant values after training over maximum

40 epochs.

Out-of-vocabulary evaluation. Fig. 53(c) shows that, without normalization (Section 5.3.3), the

size of the vocabulary significantly grows with the size of the dataset, which may subsequently

reduce the performance. Furthermore, Fig. 53(d) shows that, on average, the proportion of unseen

words in the testing dataset (i.e., words that do not exist in the training datasets, and thus may

be translated incorrectly) is around 6% less after conducting normalization. This shows that our

normalization technique effectively increases the applicability of the trained models for describing

new provenance graphs in testing datasets. In summary, our results demonstrate the feasibility and

113

5 15 25 35
of epochs

0

20

40

60

80
Pe

rp
le

xi
ty

Dtr size1
Dtr size2
Dtr size3
Dtr size4

(a)

0 15 30 45
of epochs

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Dtr size1
Dtr size2
Dtr size3
Dtr size4

(b)

2 4 6 8
of training paths (x103)

0
5

10
15
20
25

Vo
ca

bu
la

ry
 (x

10
3)

No normalization
With normalization

(c)

2 4 6 8
of training paths (x103)

35

40

45

50

Un
se

en
 v

oc
ab

. (
%

) No normalization
With normalization

(d)

Figure 53: (a) Perplexity (the smaller is better) and (b) accuracy at different epochs; (c) the growth
of vocabulary size, and (d) the proportion of unseen words.

quality of the produced reports for datasets with different number and length of paths.

5.4.2 Large Scale Experiments using CVE-based Provenance Graphs

As our evaluation in Section 5.4.1 is limited to the data collected from our testbed, to evaluate our

approach based on more realistic and larger scale datasets, we apply VinciDecoder to CVE-based

provenance graphs in this section.

Data Collection. The performance of NMT may be adversely affected by the scarce available pairs

of input data [32]. Therefore, to enrich our dataset, we adopt an approach similar to recent works

(e.g., [36, 99, 20]) on extracting provenance graphs from cyber threat intelligence (CTI) reports

such as vulnerability databases [10]. Similar to such solutions, we leverage a combination of

rule-based and machine learning techniques (e.g., Part-of-Speech Tagging [26]) to extract different

components of provenance graphs (e.g., affected systems, attackers’ activities, and the impact of

114

attacks), which allows us to generate a large number of provenance graphs paired with their CTI

reports to train our translation model. To this end, we processed 60,000 CVE entries. Inspired

by existing solutions (e.g., [99]), to decrease the verbosity of CVE entries and facilitate extracting

provenance information, we apply a summarization technique1 to the entries, and subsequently,

extract provenance metadata. Finally, we clean the dataset my removing the entries from which

the attackers’ activities and impact cannot be extracted, and we obtain six datasets with the total

number of 40,151 entries as shown in Table 19. We randomly select 80%, 10% and 10% of entries

in each dataset for training, testing and validation, respectively.

Table 19: Statistics of our datasets prepared with CVE entries.

D1 D2 D3 D4 D5 D6

Total before cleaning 30000 36000 42000 48000 54000 60000
Total after cleaning 20626 25188 28575 32333 36283 40151
Training 16600 20271 22997 26022 29201 32314
Validation 2060 2514 2852 3227 3621 4007
Testing 1966 2403 2726 3084 3461 3830

Number of epochs. We showcase the high quality of our generated reports by first identifying the

number of epochs that yields the highest performance (average BLEU and ROUGE scores) for each

dataset. Fig. 54(a) shows that VinciDecoder achieves higher performance with smaller datasets

after a fewer number of epochs (e.g., 30 epochs for D1). This can be explained by the possibility

that training on smaller datasets for a larger number of epochs would cause overfitting [73], which

decreases the performance. On the other hand, the performance related to our larger datasets (D4,

D5 and D6 in Fig. 54(b)) remains high for a larger number of epochs. For instance, we maximise

the performance by training on our largest dataset (D6) for 100 epochs.

Number of training samples. We measure the performance of VinciDecoder trained with different

datasets for the number of epochs that achieved the highest performance in Fig. 54(a) and 54(b)

(e.g., 30 and 100 epochs for D1 and D6, respectively). Fig. 54(c) shows that both the BLEU and

ROUGE scores remain almost similar and above 0.68 and 0.74, respectively, for all datasets. This

1https://pypi.org/project/nlpaug/

115

shows that despite the complex content and various writing styles that are natural to CVE reports,

VinciDecoder performs well in generating such reports1.

20 40 60 80 100
of epochs

0.60

0.64

0.68

0.72

Pe
rfo

rm
an

ce

D1
D2

D3

(a) Performance vs. # of epochs
(smaller datasets).

20 40 60 80 100
of epochs

0.60

0.64

0.68

0.72

Pe
rfo

rm
an

ce

D4
D5

D6

(b) Performance vs. # of epochs
(larger datasets).

D1 D2 D3 D4 D5 D6
Dataset

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

BLEU ROUGE

(c) Performance vs. size of datasets.

Figure 54: Evaluation with CVE-based provenance graphs.

5.4.3 User-based Study

To evaluate the quality and usefulness of our generated reports, we conduct a user study2 based

on standard practices [14], where participants have to evaluate the factual correctness and fluency

of the reports generated by VinciDecoder. Our participants include eight cybersecurity researchers

working in a major telecommunication organization and five graduate researchers working in cy-

bersecurity labs of our university. Table 20 shows the percentage of participants in each group,

their reported level of expertise, and the average score for all statements.

Table 20: Average quantified agreement levels for each group (scores will be explained later). PG
means provenance analysis. (A), (L), and (N) signs represent advanced, little and no knowledge,
respectively, as reported by the participants.

Industry Academia

Background (Cloud-PG) A-A A-L A-N L-L L-N A-L
Participants (%) 15 23 8 8 8 38
Scores (out of 5) 3.83 4.28 3.83 3.83 3 4.13

1Note that while both sets of our experiments in Section 5.4.1 and 5.4.2 show high quality reports, directly com-
paring their results is not meaningful as their reports are of incomparable lengths (e.g., cloud management-level prove-
nance graph-based reports are typically longer which has a negative effect on the performance).

2This study has been identified as quality assurance by Research Ethics/Office of Research of our university, which
means it requires no ethics approval.

116

At the beginning of the study, we show an attack scenario (our motivating example in Sec-

tion 5.1) to the participants. Next, we provide the participants with the provenance graph, the

report generated by VinciDecoder, and the manually written report. Our study asks participants to

evaluate their investigation with and without VinciDecoder, and accordingly express their level of

agreement with the provided statements (shown in Table 21) by choosing one of the following op-

tions: Strongly agree, Agree, Neutral, Disagree and Strongly disagree. We then quantify the results

by assigning an integer between one and five to each option, where five means Strongly agree and

one means Strongly disagree.

Table 21: Survey statements and scores. The agreement level of participants are converted to scores
between one and five (score five represents Strongly agree).

Statement Score

S1 Understanding attack steps using the generated text is easier than using the path. 4.3
S2 The generated text is consistent with the explained attack scenario. 3.92
S3 The generated text is consistent with the path regarding the relationships of op-

erations.
4.31

S4 The generated text captures all the information of the suspicious path. 4
S5 The generated text is sufficiently fluent compared with the manually written

report.
3.46

S6 The generated text is consistent with the manually written report regarding at-
tack steps.

3.92

100 50 0 50 100

S1
S2
S3
S4
S5
S6St

at
em

en
ts Strongly Disagree

Disagree
Neutral
Agree
Strongly Agree

Figure 55: Participants’ agreement with statements in Table 21.

Fig. 55 shows the distribution of participants’ agreement with each statement. For most partici-

pants, understanding the attack steps is much easier using our generated report than the provenance

graph (S1). According to most participants, our generated report contains no information con-

tradicting the described attack scenario and the provenance graph (S2 and S3). Additionally, the

117

results (S4) affirm that all the information captured by the provenance graph is reflected in our

generated report. Most users find the generated report almost as fluent as the manually created

one (S5), while the slightly lower fluency is expected for automatically generated reports [54]. Fi-

nally, the attack steps described by the generated report is consistent with the report created by the

human analyst (S6). We show the average quantified scores in Table 20. VinciDecoder achieves

scores above three among all groups despite their low level (little or no) of expertise, which confirm

the benefits of VinciDecoder to users in investigating incidents.

5.5 Discussion

In this section, we discuss future directions and limitations of VinciDecoder.

Application to other models. Our approach is generic enough to support various provenance

models (e.g., [49, 72] and [117] for the OS and Internet of things environments, respectively) after

converting paths into primitive sentences capturing both nodes and edges as words in our intermedi-

ary language. Likewise, an interesting future direction is to apply VinciDecoder to other graphical

security models such as attack graphs [20] paired with their corresponding textual interpretation.

Coverage. In this work, we leverage NMT for generating forensic reports from long suspicious

paths, as it is known to perform well in translating long sentences [105]. In our future work, we will

further investigate the possibility of applying other translation techniques [58] that may increase

the performance of VinciDecoder. Finally, our goal is to assist analysts, instead of replacing them,

by allowing them to focus on more important but light-weight tasks, e.g., validating the report to

ensure its legal value.

5.6 Related Work

Provenance-based security solutions have been extensively explored [49, 92, 91, 117, 106].

King et al. [49] propose data provenance to investigate security incidents in operating systems.

118

ProvDetector[118] is a provenance solution to detect anomalous programs using embedded sen-

tences representing paths. SteinerLog [19] detects attack campaigns across multiple hosts using

alert correlation. Some of the recent solutions (e.g., [109, 72, 125]) focus on increasing the inter-

pretability of provenance graphs. ATLAS [13] adopts sequence learning to model the signature

of attacks. In [71, 36, 99], the authors enable threat hunting using the graph capturing the at-

tackers’ behavior. Such a graph can be either manually [71] or automatically [36, 99] constructed

based on the attackers’ behavior that is described by open-source cyber threat intelligence (CTI)

reports. There exist efforts adapting provenance analysis to domains other than operating systems

such as the Internet of Things (IoT) (e.g., [117]) and SDN environments (e.g., [115, 112]). Wu

et al. [121] propose an approach explaining the absence of events. The authors in [59] and [15]

propose a provenance-based investigation and access control scheme for clouds, respectively. The

authors in [81], propose a solution to enhance the access control mechanism in OpenStack. Chen

et. al [25] propose CLARION to capture precise provenance graphs across namespaces of different

containers. Unlike our work, none of those solutions generates a human-readable description of

the provenance graph, and our approach can be applied to most of those solutions to automatically

translate their results into natural language reports.

Several solutions [52, 95, 56] have been proposed to generate human-readable descriptions

based on non-linguistic information. The authors in [95] propose a solution to generate textual

summaries about basketball games based on tables of information using NMT. [56] is a neural text

generation solution to generate the first sentence of a Wikipedia entry based on a provided infobox.

Finally, [52] proposes a solution that generates abstracts for scientific papers (with the BLEU score

of around 0.14) based on paired titles and knowledge graphs (with 4.43 edges, on average). None

of those solutions are designed for generating forensic reports based on typically larger and more

complex provenance graphs that are natural to the security context or cloud scale. ProvTalk [109]

proposes a rule-based approach for generating textual summaries of provenance graphs, which is

generalized and complemented with a learning-based approach in VinciDecoder.

119

5.7 Conclusion

In this chapter, we presented VinciDecoder, the first solution for automatically translating prove-

nance analysis results into human-readable forensic reports using both rule-based and learning-

based techniques. To this end, we first explored the characteristics of the provenance graph to

represent it in an intermediary language, which can then be translated into a natural language. We

showed the feasibility of our approach by implementing VinciDecoder based on an OpenStack

cloud, and demonstrated the high quality of generated reports for real-world incident scenarios us-

ing both numerical (up to 0.56 and 0.68 BLEU scores for cloud management-level and CVE-based

provenance graphs, respectively) and user-based evaluations. As future work, we will integrate

VinciDecoder with other (e.g., OS-level) provenance analysis tools. We will also explore other

translation techniques and hyperparameters (i.e., the size of embedding vectors and batch size),

which may further improve the effectiveness of our approach.

120

Chapter 6

Other Contributions

Security verification ensures the compliance of cloud environments with specified sets of security

properties. There exist solutions that hold the execution of management operations to first verify

the compliance of clouds updated by those operations [21]. To reduce the additional delay caused

by those verification tasks, proactive solutions (e.g., [66]) initiate an early compliance verification

upon predicting suspicious management operations based on the most recent intercepted opera-

tion and its frequently subsequent operations. Such an early initiation means that the verification

task can be completed by the time the suspicious operation is intercepted, and thus the verification

decision (e.g., deny/allow) can be immediately enforced. To this end, my early research in the do-

main of cloud security [107, 67, 69, 68] contributed to building and presenting such an interception

and decision enforcement mechanism, log processing engine, and learning frequent sequences of

operations as we detail below.

Runtime API call interception and verification decision enforcement. We first built a middle-

ware for intercepting management API calls and runtime policy enforcement. Additionally, this

middleware addresses the key challenge of event type identification by enriching logs with the ex-

tracted details of management API calls that are not captured by standard cloud log entries. To

build this work, we first studied the design of OpenStack services and chains of Web Server Gate-

way Interfaces (WSGI) [11], which are basically chains of functions called by each management

121

API call to conduct a certain task (e.g., authorization) on the received API call and pass it to the

next function on the chain, and finally, to the endpoint service. Next, we designed our middleware

as an additional WSGI and inserted it into the filter chain corresponding to each managerial service.

Additionally, we integrated this work with an existing proactive security verification approach [66]

to enable efficient policy compliance verification, and demonstrated its effectiveness in preventing

exploits of vulnerabilities through a use case scenario.

Log processor and learning frequent sequences of events. We also built a processor engine for

OpenStack cloud logs. To this end, we studied the structure of logs generated by networking and

computing services of two different versions of OpenStack that were deployed in our testbed cloud

and a real cloud environment hosted by a telecommunication vendor. Specifically, we investigated

patterns of different fields in log entries, and identified which component each field represents (e.g.,

affected resources, cloud tenants requesting the logged operation, type of operations, etc.), and

accordingly designed rules for processing log entries and extracting those fields using Logstash [6].

To identify the operations that usually precedes the suspicious ones, we learned frequent sequence

of operations by adopting SPMF [34] and applying various pattern mining techniques such as

PrefixSpan [93] and MaxSP [35] on our temporally ordered events. Additionally, to enable applying

Bayesian Network for learning such preceding operations, we designed a customised algorithm for

building the structure of the network. Finally, we implemented a graphical user interface, which

can be adopted by the cloud admins to easily monitor the verified security properties and the events

that are blocked/warned/allowed based the verification results.

122

Chapter 7

Conclusion

The increasing attention drawn to cyber attacks in virtualized environments coupled with their high

dynamicity and operational complexity highlights the importance of security mechanisms that can

be practically applied to such environments. In this thesis, we presented effective and practical

provenance-based solutions to facilitate forensic analysis and threat prevention mechanisms in vir-

tualized environments. To this end, we first lift the provenance analysis to the cloud management-

level (as opposed to e.g., system call-level) which facilitates the forensic analysis and threat pre-

vention in clouds by tracing configuration changes at a higher abstraction level. We also provided

efficient mechanisms to further facilitate the investigation by pruning the provenance graphs and

prevent security incidents. Second, we built a system for multi-level provenance analysis in NFV

environments. Our system enables tracing back incidents to their root cause operations at different

levels of the NFV stack. We also improve the interpretability of multi-level provenance graphs by

leveraging the inherent cross-level dependencies in NFV environments. Third, we built a frame-

work to automate the creation of forensic reports by translating the result of provenance analysis

into forensic reports.

As future work, we plan to integrate our management-level provenance solutions (i.e., ProvTalk

and DominoBlocker) with system-level provenance works to provide mutual benefits (e.g., our so-

lutions can guide system-level solutions to focus on specific resources, while the latter can provide

123

detailed analysis on those resources). Moreover, we envision that the system calls captured within

virtual resources (e.g., using SPADE system [38]) can be integrated with the provenance graph

generated by our solutions in a manner consistent with previous works (e.g., [74]). Furthermore,

we will integrate VinciDecoder with existing approaches for identifying suspicious paths and sub-

graphs of provenance graphs (e.g., [118]). We will also investigate the effect of using different

learning and embedding techniques on the reduction power of ProvTalk, and leverage different

translation mechanisms, which may further improve the quality of reports generated by VinciDe-

coder.

124

Bibliography

[1] Cisco AVOS, Accessed August 30, 2022. https://github.com/CiscoSystems/

avos.

[2] Vitrage RCA service, Accessed August 30, 2022. https://governance.

openstack.org/tc/reference/projects/vitrage.html.

[3] Tacker-OpenStack API, Accessed August 30, 2022. https://docs.openstack.

org/api-ref/.

[4] OpenStack Congress, Accessed August 30, 2022. https://wiki.openstack.org/

wiki/Congress.

[5] Adding malformed security group rule, Accessed February 14, 2022. https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9735.

[6] Logstash, Accessed August 31, 2022. https://www.elastic.co/logstash/.

[7] CVE-2014-0056. Accessed July 28, 2022, https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-0056/.

[8] CVE-2016-7498. Accessed July 28, 2022, https://nvd.nist.gov/vuln/detail/

CVE-2016-7498.

[9] CVE-2020-17376. Accessed July 28, 2022, https://bugs.launchpad.net/nova/

+bug/1890501.

125

[10] CVE details. Accessed June 14, 2022, https://www.cvedetails.com/

vulnerability-list/.

[11] Openstack wsgi. Accessed August 30, 2022, Middleware Architecture.

https://docs.openstack.org/keystonemiddleware/latest/

middlewarearchitecture.

[12] OSSA-2015-018. Accessed August 30, 2022, https://security.openstack.

org/ossa/OSSA-2015-018.

[13] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay Celik,

Xiangyu Zhang, and Dongyan Xu. ATLAS: A Sequence-based Learning Approach for At-

tack Investigation. In USENIX Security, pages 3005±3022, 2021.

[14] Ahlem Assila, Houcine Ezzedine, et al. Standardized usability questionnaires: Features and

quality focus. Electronic Journal of Computer Science and Information Technology: eJCIST,

2016.

[15] Adam Bates, Benjamin Mood, Masoud Valafar, and Kevin R. B. Butler. Towards Secure

Provenance-based Access Control in Cloud Environments. In CODASPY, pages 277±284,

2013.

[16] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. Trustworthy Whole-

System Provenance for the Linux Kernel. In USENIX Security, pages 319±334, 2015.

[17] Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. A Survey on Hypervisor-based Monitor-

ing: Approaches, Applications, and Evolutions. ACM Computing Surveys (CSUR), 48(1):10,

2015.

[18] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cresswell, Yolanda

Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker, et al. PROV-DM: The PROV

126

Data Model. Technical Report REC-prov-dm-20130430, W3C, 2013. W3C Recommenda-

tion. Accessed August 30, 2022. https://www.w3.org/TR/prov-dm/.

[19] Bibek Bhattarai and Howie Huang. SteinerLog: Prize Collecting the Audit Logs for Threat

Hunting on Enterprise Network. In ASIA CCS, pages 97±108, 2022.

[20] Hodaya Binyamini, Ron Bitton, Masaki Inokuchi, Tomohiko Yagyu, Yuval Elovici, and Asaf

Shabtai. A Framework for Modeling Cyber Attack Techniques from Security Vulnerability

Descriptions. In KDD, page 2574±2583, 2021.

[21] Sören Bleikertz, Carsten Vogel, Thomas Groû, and Sebastian Mödersheim. Proactive Se-

curity Analysis of Changes in Virtualized Infrastructures. In ACSAC, pages 51±60. ACM,

2015.

[22] Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. One primitive to

diagnose them all: Architectural support for internet diagnostics. In Proceedings of the

Twelfth European Conference on Computer Systems, pages 374±388, 2017.

[23] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. The good,

the bad, and the differences: Better network diagnostics with differential provenance. In

Proceedings of the 2016 ACM SIGCOMM Conference, pages 115±128, 2016.

[24] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for

language modeling. Computer Speech & Language, 13(4):359±394, 1999.

[25] Xutong Chen, Hassaan Irshad, Yan Chen, Ashish Gehani, and Vinod Yegneswaran. CLAR-

ION: Sound and Clear Provenance Tracking for Microservice Deployments. In USENIX

Security, pages 3989±4006, 2021.

[26] Alebachew Chiche and Betselot Yitagesu. Part of speech tagging: a systematic review of

deep learning and machine learning approaches. Journal of Big Data, 9(1):1±25, 2022.

127

[27] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the

Properties of Neural Machine Translation: Encoder±Decoder Approaches. In SSST, pages

103±111. ACL, 2014.

[28] Cytoscape. Cytoscape: Open Source Platform for Complex Networks. Accessed August 30,

2022. https://cytoscape.org/.

[29] CVE Details. OpenStack Vulnerabilities. Accessed August 30, 2022,

https://www.cvedetails.com/vulnerability-list/vendor_id-

11727/Openstack.html.

[30] Abhishek Dwaraki, Shachi Kumary, and Tilman Wolf. Automated Event Identification from

System Logs Using Natural Language Processing. In 2020 International Conference on

Computing, Networking and Communications (ICNC)). IEEE, 2020.

[31] European Telecommunications Standard Institute. Network Functions Virtualisation (NFV);

Architectural Framework. Technical Report ETSI GS NFV 002, V1.2.1, 2014.

[32] Marzieh Fadaee, Arianna Bisazza, and Christof Monz. Data Augmentation for Low-

Resource Neural Machine Translation. In ACL, pages 567±573, 2017.

[33] Matthias Flittner, Johannes M Scheuermann, and Robert Bauer. ChainGuard: Controller-

Independent Verification of Service Function Chaining in Cloud Computing. In NFV-SDN,

pages 1±7. IEEE, 2017.

[34] Philippe Fournier-Viger. SPMF, Accessed August 30, 2022. http://www.philippe-

fournier-viger.com/spmf/index.php.

[35] Philippe Fournier-Viger, Cheng-Wei Wu, and Vincent S Tseng. Mining maximal sequential

patterns without candidate maintenance. In International Conference on Advanced Data

Mining and Applications, pages 169±180. Springer, 2013.

128

[36] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu, Prateek Mittal,

Sanjeev R Kulkarni, and Dawn Song. Enabling Efficient Cyber Threat Hunting with Cyber

Threat Intelligence. In ICDE, pages 193±204. IEEE, 2021.

[37] Albert Gatt and Ehud Reiter. SimpleNLG: A Realisation Engine for Practical Applications.

In ENLG, pages 90±93, 2009.

[38] Ashish Gehani and Dawood Tariq. Spade: Support for provenance auditing in distributed

environments. In Middleware, 2012.

[39] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer. Unicorn:

Runtime Provenance-based Detector for Advanced Persistent Threats. In NDSS, 2020.

[40] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo Seltzer. FRAP-

puccino: Fault-Detection Through Runtime Analysis of Provenance. In HotCloud, 2017.

[41] Ragib Hasan, Radu Sion, and Marianne Winslett. The Case of the Fake Picasso: Preventing

History Forgery with Secure Provenance. In FAST, pages 1±14, 2009.

[42] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and Thomas Moyer. To-

wards Scalable Cluster Auditing Through Grammatical Inference over Provenance Graphs.

In NDSS, 2018.

[43] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li,

and Adam Bates. NoDoze: Combatting Threat Alert Fatigue with Automated Provenance

Triage. In NDSS, 2019.

[44] Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta, and Adam Bates. OmegaLog:

High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis. In NDSS,

2020.

[45] Red Hat. CVE-2020-12689: Keystone Credential Modification, 2020. Accessed August 30,

2022. https://access.redhat.com/security/cve/cve-2020-12689/.

129

[46] Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, and Tie-Yan Liu. Decoding with

Value Networks for Neural Machine Translation. Advances in Neural Information Process-

ing Systems, 30, 2017.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation,

9(8):1735±1780, 1997.

[48] Chris Johnson, Lee Badger, David Waltermire, Julie Snyder, Clem Skorupka, et al. Guide to

cyber threat information sharing. NIST special publication, 800(150), 2016.

[49] Samuel T. King and Peter M. Chen. Backtracking Intrusions. In SOSP, pages 223±236,

2003.

[50] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. Open-

NMT: Open-Source Toolkit for Neural Machine Translation. In Proceedings of ACL, System

Demonstrations, pages 67±72. ACL, 2017.

[51] Oldřich Kodym, Lukáš Kubáč, and Libor Kavka. Risks associated with logistics 4.0 and

their minimization using blockchain. Open Engineering, 10(1):74±85, 2020.

[52] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi.

Text Generation from Knowledge Graphs with Graph Transformers. In NAACL, 2019.

[53] Dan Kushnir and Maayan Goldstein. Causality Inference for Failures in NFV. In INFOCOM

WKSHPS, pages 929±934. IEEE, 2016.

[54] Samuel Läubli, Rico Sennrich, and Martin Volk. Has Machine Translation Achieved Human

Parity? A Case for Document-level Evaluation. In EMNLP, pages 4791±4796. ACL, 2018.

[55] Alon Lavie. Evaluating the Output of Machine Translation Systems. AMTA Tutorial, 86,

2010.

130

[56] Rémi Lebret, David Grangier, and Michael Auli. Neural Text Generation from Structured

Data with Application to the Biography Domain. In EMNLP, pages 1203±1213. ACL, 2016.

[57] Min Li, Wanyu Zang, Kun Bai, Meng Yu, and Peng Liu. MyCloud: Supporting User-

Configured Privacy Protection in Cloud Computing. In ACSAC, pages 59±68. ACM, 2013.

[58] Adam Lopez. Statistical Machine Translation. ACM Computing Surveys (CSUR), 40(3):1±

49, 2008.

[59] Rongxing Lu, Xiaodong Lin, Xiaohui Liang, and Xuemin (Sherman) Shen. Secure Prove-

nance: The Essential of Bread and Butter of Data Forensics in Cloud Computing. In ASIA

CCS, pages 282±292, 2010.

[60] Yang Luo, Wu Luo, Tian Puyang, Qingni Shen, Anbang Ruan, and Zhonghai Wu. OpenStack

Security Modules: A Least-invasive Access Control Framework for the Cloud. In IEEE

CLOUD, pages 51±58, 2016.

[61] Alexandra L’Heureux, Katarina Grolinger, Hany F. Elyamany, and Miriam A. M. Capretz.

Machine learning with big data: Challenges and approaches. IEEE Access, 5:7776±7797,

2017.

[62] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. MPI:

Multiple Perspective Attack Investigation with Semantic Aware Execution Partitioning. In

USENIX Security, pages 1111±1128, 2017.

[63] Taous Madi, Yosr Jarraya, Amir Alimohammadifar, Suryadipta Majumdar, Yushun Wang,

Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. ISOTOP: Auditing Virtual Networks

Isolation Across Cloud Layers in OpenStack. ACM Transactions on Privacy and Security

(TOPS), 22(1):1, 2018.

131

[64] Taous Madi, Mengyuan Zhang, Yosr Jarraya, Amir Alimohammadifar, Makan Pourzandi,

Lingyu Wang, and Mourad Debbabi. QuantiC: Distance Metrics for Evaluating Multi-

Tenancy Threats in Public Cloud. In CloudCom, pages 163±170. IEEE, 2018.

[65] Suryadipta Majumdar, Gagandeep Singh Chawla, Amir Alimohammadifar, Taous Madi,

Yosr Jarraya, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. Prosas: Proactive

security auditing system for clouds. IEEE Transactions on Dependable and Secure Comput-

ing, 2021.

[66] Suryadipta Majumdar, Yosr Jarraya, Momen Oqaily, Amir Alimohammadifar, Makan

Pourzandi, Lingyu Wang, and Mourad Debbabi. LeaPS: Learning-based Proactive Secu-

rity Auditing for Clouds. In ESORICS, pages 265±285. Springer, 2017.

[67] Suryadipta Majumdar, Azadeh Tabiban, Yosr Jarraya, Momen Oqaily, Amir Alimohammad-

ifar, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. Learning Probabilistic De-

pendencies among Events for Proactive Security Auditing in Clouds. Journal of Computer

Security, 27(2):165±202, 2019.

[68] Suryadipta Majumdar, Azadeh Tabiban, Meisam Mohammady, Alaa Oqaily, Yosr Jarraya,

Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. Multi-level proactive security au-

diting for clouds. In DSC, pages 1±8. IEEE, 2019.

[69] Suryadipta Majumdar, Azadeh Tabiban, Meisam Mohammady, Alaa Oqaily, Yosr Jarraya,

Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. Proactivizer: Transforming existing

verification tools into efficient solutions for runtime security enforcement. In European

Symposium on Research in Computer Security, pages 239±262. Springer, 2019.

[70] Hui Miao and Amol Deshpande. Understanding Data Science Lifecycle Provenance via

Graph Segmentation and Summarization. In ICDE, pages 1710±1713. IEEE, 2019.

132

[71] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. Poirot:

Aligning Attack Behavior with Kernel Audit Records for Cyber Threat Hunting. In CCS,

pages 1795±1812, 2019.

[72] Sadegh Momeni Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V. N. Venkatakr-

ishnan. HOLMES: Real-Time APT Detection through Correlation of Suspicious Information

Flows. In IEEE S&P, pages 1137±1152, 2019.

[73] Tom M Mitchell. Machine Learning. McGraw-hill New York, 1997.

[74] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana L.

MacLean, Daniel W. Margo, Margo I. Seltzer, and Robin Smogor. Layering in Provenance

Systems. In USENIX ATC, 2009.

[75] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I Seltzer.

Provenance-aware Storage Systems. In USENIX ATC, pages 43±56, 2006.

[76] Andrés F Murillo, Sandra Julieta Rueda, Laura Victoria Morales, and Álvaro A Cárdenas.

SDN and NFV Security: Challenges for Integrated Solutions. In Guide to Security in SDN

and NFV, pages 75±101. Springer, 2017.

[77] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang

Liu, and Shantanu Jaiswal. graph2vec: Learning Distributed Representations of Graphs.

CoRR, abs/1707.05005, 2017.

[78] Neo4j. Cypher Query Language. Accessed August 30, 2022. https://neo4j.com/

developer/cypher-query-language/.

[79] Neo4j. Export to json. Accessed August 30, 2022, https://neo4j.com/labs/

apoc/4.1/export/json/.

[80] Neo4j. Neo4j Graph Platform. Accessed August 30, 2022. https://neo4j.com/.

133

[81] Dang Nguyen, Jaehong Park, and Ravi Sandhu. Adopting Provenance-based Access Control

in OpenStack Cloud IaaS. In NSS, pages 15±27. Springer, 2014.

[82] Openstack. NFV API reference. Accessed August 30, 2022. https://developer.

openstack.org/api-ref/nfv-orchestration/v1/.

[83] OpenStack. Open Source Cloud Computing Infrastructure. Accessed August 30, 2022.

https://www.openstack.org/.

[84] OpenStack. OpenStack Foundation Report, Accelerating NFV Delivery with OpenStack.

Technical report. Accessed August 30, 2022. https://object-storage-ca-ymq-

1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/www-

assets-prod/marketing/OpenStack-NFV-A4.pdf.

[85] OpenStack. OSSA-2014-008: Routers can be cross plugged by other tenants. Accessed Au-

gust 30, 2022, https://security.openstack.org/ossa/OSSA-2014-008.

[86] OpenStack. OSSA-2015-018: Neutron Firewall Rules Bypass Through Port Update.

Accessed August 30, 2022. https://security.openstack.org/ossa/OSSA-

2015-018.html.

[87] OpenStack. Service Function Chaining Extension for OpenStack. Accessed August 30,

2022. https://docs.openstack.org/networking-sfc/latest/.

[88] OpenStack. Tacker Documentation. Accessed August 30, 2022. https://docs.

openstack.org/tacker/.

[89] OpenStack. Kubernetes as VIM in Tacker, 2021. Accessed August 30, 2022.

https://specs.openstack.org/openstack/tacker-specs/specs/

queens/Kubernetes-as-VIM.html.

[90] Opentsack. API Reference. Accessed August 30, 2022. https://developer.

openstack.org/api-ref/.

134

[91] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers, Margo

Seltzer, and Jean Bacon. Practical Whole-System Provenance Capture. In SoCC, pages

405±418. ACM, 2017.

[92] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant, David Ey-

ers, Jean Bacon, and Margo Seltzer. Runtime Analysis of Whole-System Provenance. In

CCS, pages 1601±1616. ACM, 2018.

[93] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen,

Umeshwar Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-growth: The

prefixspan approach. IEEE Transactions on knowledge and data engineering, 16(11):1424±

1440, 2004.

[94] Devin J. Pohly, Stephen E. McLaughlin, Patrick D. McDaniel, and Kevin R. B. Butler. Hi-Fi:

Collecting High-Fidelity Whole-System Provenance. In ACSAC, pages 259±268, 2012.

[95] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation with content se-

lection and planning. In Proceedings of the AAAI conference on artificial intelligence, vol-

ume 33, pages 6908±6915, 2019.

[96] François Reynaud, François-Xavier Aguessy, Olivier Bettan, Mathieu Bouet, and Vania Co-

nan. Attacks against Network Functions Virtualization and Software-Defined Networking:

State-of-the-art. In NetSoft, pages 471±476. IEEE, 2016.

[97] Areeg Samir and Claus Pahl. A Controller Architecture for Anomaly Detection, Root Cause

Analysis and Self-Adaptation for Cluster Architectures. In Intl Conf on Adaptive and Self-

Adaptive Systems and Applications, 2019.

[98] Manuel A Borroto Santana, Francesco Ricca, and Bernardo Cuteri. Reducing the Impact of

out of Vocabulary Words in the Translation of Natural Language Questions into SPARQL

Queries. arXiv preprint arXiv:2111.03000, 2021.

135

[99] Kiavash Satvat, Rigel Gjomemo, and VN Venkatakrishnan. EXTRACTOR: Extracting At-

tack Behavior from Threat Reports. In EuroS&P, pages 598±615. IEEE, 2021.

[100] Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun. Anomaly Detec-

tion and Root Cause Localization in Virtual Network Functions. In ISSRE, pages 196±206.

IEEE, 2016.

[101] Nabil Schear, Patrick T Cable II, Thomas M Moyer, Bryan Richard, and Robert Rudd. Boot-

strapping and Maintaining Trust in the Cloud. In ACSAC, pages 65±77. ACM, 2016.

[102] A. W. Services. Mapping AWS Services to the NFV Framework, 2021. Accessed August

30, 2022. https://aws.amazon.com/cloudformation/.

[103] Amazon Web Services. Amazon virtual private cloud. Accessed August 30, 2022, https:

//aws.amazon.com/vpc.

[104] Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of Unsu-

pervised Metrics in Task-Oriented Dialogue for Evaluating Natural Language Generation.

CoRR, abs/1706.09799, 2017.

[105] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural

Networks. Advances in neural information processing systems, 27, 2014.

[106] Azadeh Tabiban, Yosr Jarraya, Mengyuan Zhang, Makan Pourzandi, Lingyu Wang, and

Mourad Debbabi. Catching Falling Dominoes: Cloud Management-Level Provenance Anal-

ysis with Application to OpenStack. In CNS, pages 1±9. IEEE, 2020.

[107] Azadeh Tabiban, Suryadipta Majumdar, Lingyu Wang, and Mourad Debbabi. PERMON:

An Openstack Middleware for Runtime Security Policy Enforcement in Clouds. In SPC,

pages 1±7. IEEE, 2018.

136

[108] Azadeh Tabiban, Heyang Zhao, Yosr Jarraya, Makan Pourzandi, and Lingyu Wang. Vin-

ciDecoder:Automatically Interpreting Provenance Graphs into Textual Forensic Reports

with Application to OpenStack. In NordSec, 2022.

[109] Azadeh Tabiban, Heyang Zhao, Yosr Jarraya, Makan Pourzandi, Mengyuan Zhang, and

Lingyu Wang. ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Net-

working Functions Virtualization (NFV). In NDSS, 2022.

[110] Sudershan Lakshmanan Thirunavukkarasu, Mengyuan Zhang, Alaa Oqaily, Gagan-

deep Singh Chawla, Lingyu Wang, Makan Pourzandi, and Mourad Debbabi. Modeling NFV

Deployment to Identify the Cross-level Inconsistency Vulnerabilities. In CloudCom, pages

167±174. IEEE, 2019.

[111] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee, Jeongkeun Lee, and Joon-

Myung Kang. SFC-Checker: Checking the Correct Forwarding Behavior of Service Func-

tion Chaining. In NFV-SDN, pages 134±140. IEEE, 2016.

[112] Benjamin E Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard Skowyra, James

Landry, Adam Bates, William H Sanders, Cristina Nita-Rotaru, and Hamed Okhravi. Cross-

App Poisoning in Software-Defined Networking. In CCS, pages 648±663. ACM, 2018.

[113] Verizon. Verizon Network Infrastructure Planning. Technical report, 2016. Accessed August

30, 2022. https://m.iotone.com/files/pdf/vendor/Verizon_SDN-NFV_

Reference_Architecture.pdf.

[114] VMware. VMware vSphere, 2020. Accessed August 30, 2022. https://www.vmware.

com/ca/products/vsphere.html.

[115] Haopei Wang, Guangliang Yang, Phakpoom Chinprutthiwong, Lei Xu, Yangyong Zhang,

and Guofei Gu. Towards Fine-grained Network Security Forensics and Diagnosis in the

SDN Era. In CCS, pages 3±16. ACM, 2018.

137

[116] Jianyong Wang and Jiawei Han. BIDE: Efficient Mining of Frequent Closed Sequences. In

ICDE, pages 79±90. IEEE, 2004.

[117] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and Logging in the Internet

of Things. In NDSS, 2018.

[118] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Junghwan Rhee,

Zhengzhang Chen, Wei Cheng, C Gunter, et al. You Are What You Do: Hunting Stealthy

Malware via Data Provenance Analysis. In NDSS, 2020.

[119] Yushun Wang, Taous Madi, Suryadipta Majumdar, Yosr Jarraya, Amir Alimohammadifar,

Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. TenantGuard: Scalable Runtime

Verification of Cloud-Wide VM-Level Network Isolation. In NDSS, 2017.

[120] WSGI. Python WSGI Middleware. Accessed August 30, 2022, https://wsgi.

readthedocs.io/en/latest/libraries.html.

[121] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. Di-

agnosing Missing Events in Distributed Systems with Negative Provenance. In ACM SIG-

COMM, pages 383±394, 2014.

[122] Salifu Yusif and Abdul Hafeez-Baig. A Conceptual Model for Cybersecurity Governance.

Journal of Applied Security Research, 16(4):490±513, 2021.

[123] Michael Zamot. Accessed August 30, 2022, Where does OpenStack fit in a pub-

lic cloud world? https://opensource.com/article/18/3/openstack-

public-cloud-world.

[124] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and Jian Mao.

Watson: Abstracting behaviors from audit logs via aggregation of contextual semantics. In

NDSS, 2021.

138

[125] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and Jian Mao.

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of Contextual Seman-

tics. In NDSS, 2021.

[126] Xiaoli Zhang, Qi Li, Jianping Wu, and Jiahai Yang. Generic and Agile Service Function

Chain Verification on Cloud. In IWQoS, pages 1±10. IEEE/ACM, 2017.

139

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Contributions
	Management-Level Forensic Analysis in Clouds
	Preventing Recurring Security Incidents in Clouds
	Towards Interpretable Multi-level Provenance Analysis in NFV
	Automatically Interpreting Provenance Graphs into Textual Reports

	Background
	Data Provenance
	Cloud Infrastructure Model
	NFV Background

	Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Application to OpenStack
	Introduction
	Threat Model and Assumptions
	Methodology
	Overview
	Runtime Provenance Construction
	Cloud Management-Level Provenance Model
	Building the Provenance Graph

	Offline Forensics Analysis

	Threat Prevention
	Regular Threat Prevention
	Regular Monitoring Policy Specification
	Monitoring Policy Enforcement

	Label-based Threat Prevention
	Propagation Rule Specification
	Monitoring Label Propagation
	Label-based Monitoring Policy Specification and Enforcement

	Implementation
	Evaluation
	Effectiveness
	Failing to Update Security Groups
	Failing to Delete Resized VMs
	Soft-rebooting Migrated VMs
	Malformed Security Group Rules

	Efficiency
	Experiments with Cloud Testbed
	Experiments with Real Cloud

	Size Reduction of Provenance Graph
	Resource Overhead
	Correctness

	Discussion
	Related Work
	Conclusion

	ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions Virtualization (NFV)
	Introduction
	Threat Model and Motivating Example
	Threat Model and Assumptions
	Motivating Example

	ProvTalk
	Provenance Construction
	NFV Provenance Model
	Building the Provenance Graph

	Multi-level Pruning
	Aggregation
	Cross-level Aggregation
	Administrative Behavior Aggregation

	Rule-based Translation
	Implementation
	Evaluation
	Effectiveness
	Cloud-level Alert, NFV-level Root cause
	NFV-level Alert, Cloud-level Root Cause

	Graph Reduction Performance
	Efficiency
	Scalability Evaluation with NFV Testbed
	Experiments with Real-world Data
	Comparing with DominoCatcher

	Correctness
	User Studies

	Discussion
	Related Work
	Conclusion

	VinciDecoder: Automatically Interpreting Provenance Graphs into Textual Forensic Reports with Application to OpenStack
	Introduction
	Preliminaries
	Provenance Graph
	Neural Machine Translation
	Assumptions

	VinciDecoder
	Overview
	Path to Intermediary Language Translation (PILT)
	Normalization
	Translation Model Training
	Automatic Report Generation

	Implementation and Evaluation
	Evaluation using Cloud Management-level Provenance Graphs
	Implementation and Data Collection
	Effectiveness Evaluation
	Performance Evaluation

	Large Scale Experiments using CVE-based Provenance Graphs
	User-based Study

	Discussion
	Related Work
	Conclusion

	Other Contributions
	Conclusion
	Bibliography

