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Abstract

Instance Segmentation With Contrastive Self-supervised Learning

Mohammadmatin Kaviani

Object detection or localization gradually progresses from coarse to fine digital image inference. It
provides the classes of the image objects and the location of the image objects that have been categorized.
The location is provided in the shape of bounding boxes or centroids. Semantic segmentation provides fine
inference by indicating labels for every pixel in the input image. Each pixel is labelled according to the
object class within which it is surrounded. Moreover, instance segmentation gives different sets of pixels of
interest for separate instances of objects. Thus, instance segmentation is defined as solving the problem of
object detection and semantic segmentation simultaneously.

This thesis is introducing a new self-supervised framework for instance segmentation and background
removal. We make use of a state-of-art self-supervised method called bootstrap your own latent for our
pretraining section and then by transfer learning, we transfer the representation learnt in this pretraining
to downstream task which is instance segmentation using Mask R-CNN. Two other existing state-of-art
methods of instance segmentation, namely, instance segmentation scheme using Mask R-CNN along with
random initial weights and that with ImageNet initial weights, respectively are implemented and compared
to our proposed framework. Comparing our method with those known methods in instance segmentation and
background removal, we find out that self-supervised learning outperforms both methods despite using no
labelled data in pretraining. Our experimental results indicate that the proposed framework outperforms the
instance segmentation and background removal using ImageNet initial weights and random initial weights
by 0.866% and 14.06% ,respectively, in average precision (AP). Moreover, the proposed self-supervised
framework has been designed to minimize the computations and the need for annotated datasets. This

design demonstrates that the proposed system can perform high-quality processing at a meagre computation
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cost for many applications. Hence, instance segmentation using self-supervised techniques is a practical
approach to lowering the barrier of computation resource requirements and labelled datasets to make them

more implementable and applicable to the general public.
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Chapter 1

Introduction

1.1 Background information

Image segmentation, such as instance segmentation and semantic segmentation, is an important element
in different visual understanding systems. It concerns partitioning pictures (or video frames) into multiple
components or objects Szeliski (2010). Segmentation plays a significant part in a wide range of applica-
tions Forsyth and Ponce (2011), including medical image analysis (e.g., tumour boundary extraction and
measurement of tissue volumes), autonomous vehicles (e.g., navigable surface and pedestrian detection),
video surveillance, and background removal to name a few. In other words, Image segmentation is the task
of clustering components of an image that belong to the identical object category. This procedure is also
called pixel-level classification. Classification may be described as the procedure of predicting a complete
input, i.e., prediction of the class of an object in the image or delivering a list of classes of objects in an im-
age based on their classification scores. Detection or object localization is an incremental step from coarse
to fine inference, which provides categories of the image objects and delivers the location of the classified
image objects in the shape of bounding boxes or centroids.

As we mentioned earlier, image segmentation can be pictured as a classification problem of pixels with
semantic labels (semantic segmentation) or partitioning of separate objects (instance segmentation). Se-
mantic segmentation conducts pixel-level labelling with a set of object classes (e.g., animal, human, table,

laptop) for all image pixels. Thus, it is typically a more challenging task than image classification, which



indicates a single label for the whole image. This segmentation aims to obtain acceptable inference by
assigning labels for each image pixel. Every pixel is class-labelled according to the object or region it is
surrounded by. Instance segmentation further develops the semantic segmentation coverage by detecting
and drafting each object of interest in the image (e.g., partitioning of individual cars). Simply, instance seg-
mentation can be defined as the task of finding simultaneous solution to object detection as well as semantic
segmentation.

One of the important problems in computer vision is salient object detection. This problem can also be
called image background removing, as in this problem foreground extraction or background removal is the
principal object. In recent years, salient object detection (SOD) has drawn a great number of computer vision
researchers’ attention. As mentioned, the goal of this task is to segments objects in the foreground as well as
classify the corresponding pixels and detect the background at the same time. Before deep learning methods
have been developed, this task had been done by traditional approaches such as thresholding Otsu (1979),
histogram-based bundling, region-growing Nock and Nielsen (2004), k-means clustering Dhanachandra,
Manglem, and Chanu (2015), watersheds Najman and Schmitt (1994), to more advanced algorithms such
as active contours Kass, Witkin, and Terzopoulos (1988), graph cuts Boykov, Veksler, and Zabih (2001),
conditional and Markov random fields Plath, Toussaint, and Nakajima (2009), and sparsity-based Starck,
Elad, and Donoho (2005)- Minaee and Wang (2019) methods.

However, nowadays deep learning methods are of interest to numerous researchers and scientists, this
method is the most widely used technique to resolve salient object detection related subjects. This task
widely applied to a great number of applications which investigates objects in foreground and has tons of
uses. For instance, in computer vision, applications like image understanding, image captioning, object
detection, semantic segmentation, instance segmentation, video summarization, etc. can be named. In
computer graphics, SOD plays a significant role in non-rendering photorealistic, image retargeting, image
recroping and so on. SOD has other applications in medical domains Wang et al. (2021).

Therefore, improvement of deep learning methods has increased the use of this technique in recent years
in SOD problems. After the first use of deep learning in solving SOD problems in 2015, SOD algorithms
based on deep learning represented marvelous results compared with conventional methods.

In figure 1.1 the comparison of visual recognition tasks in computer vision is shown. Sub figure (a)



(a) Image Classification (b) Object Detection

ﬁ

I

(c¢) Semantic Segmentation (d) Instance Segmentation

Figure 1.1: Comparison of different visual recognition tasks in computer vision X. Wu et al. (2020)

represents image classification in which only labels are assigned to the picture. In sub figure (b) object
detection predicting labels as well as drawing bounding boxes to localize objects, is shown. Sub figure
(c) and (d) are showing 2 types of segmentation. In (c), semantic segmentation classifies objects without
differentiating object instances and in (d), instance segmentation differentiates objects by assigning pixel-

level segmentation tasks X. Wu et al. (2020).

1.2 Motivation and contributions

In order to train deep neural networks to obtain better functionality and performance while solving dif-
ferent problems of computer vision, having a considerable number of labelled data is mandatory. To avoid
collecting and annotating massive datasets, self-supervised learning as a branch of unsupervised learning
methods has been developed to learn a good representation of unlabeled images. Due to the excellent
capability of Convolutional Neural Networks (CNN) in learning features at different levels of visual repre-
sentation, these networks are considered the foundation of many computer vision tasks like object detection,
semantic segmentation, instance segmentation, etc. Models that were already trained on massive datasets

like ImageNet are mostly known as pre-trained methods and are fine-tuned to solve various computer vision



problems. There are two reasons these pre-trained models on ImageNet dataset Deng et al. (2009), are used

as mentioned below:

* Learnt parameters from datasets with various data provide a great initial point to do different main-
stream tasks such as object detection and image segmentation. Hence, training networks for computer
vision problems like instance segmentation, semantic segmentation, etc, are done much faster, and the

defined objective function or loss function converges to the optimum point more quickly.

* Pretrained networks on massive datasets have learned good hierarchical features, and this can prevent
the over-fitting issue in computer vision tasks. The importance of this matter would be even more

visible when the labelled dataset is not as huge Jing and Tian (2020).

The performance of deep convolutional networks is affected by the depth of the network and the amount
of training data. Different types of these networks have been developed to increase the generalization of the
models, these including AlexNet Simonyan and Zisserman (2014), VGG Szegedy et al. (2015), Resnet Ku,
McKinley, and Kenney (2002). In addition, significant datasets like ImageNet and Openlmage Neumann,
Pinto, Zhai, and Houlsby (2020) have also been created which we can use to train our models. With these
models and training datasets, outstanding precisions have been acquired in most computer vision problems
Girshick, Donahue, Darrell, and Malik (2014) Long, Shelhamer, and Darrell (2015) Vinyals, Toshev, Ben-
gio, and Erhan (2015). However, collecting and annotating massive datasets is too time-consuming and
costly. For instance, a massive dataset used to train deep convolutional neural networks is named ImageNet,
containing about 1.3 million 2-dimensional images of 1000 classes. Humans manually labelled this dataset,
and this procedure takes a very long time for a human being to annotate the whole dataset. Compared to
natural image datasets, labelling other data sets like videos or overhead imagery and medical images is
more challenging to annotate. Accordingly, we were motivated to utilize one of the best self-supervised
learning methods, which have been developed in the past two years, without manual labelling and utilizing
pre-trained models as initial weights to better solve our SOD related problem. In this thesis, we used a
specific algorithm called BYOL, a self-supervised learning or unsupervised learning based on contrastive
learning, to learn visual representations. COCO 2014 dataset was utilized for pretraining. Then the weights

obtained from this process are used to solve our downstream task, which is instance segmentation followed



by background removal. In the training section, 20,000 images of COCO 2017 dataset are used. ImageNet
pre-trained models have been widely used for a long time in numerous computer vision applications in
supervised ways, and acceptable results have been acquired. This thesis aims to replace these supervised
pre-trained models with self-supervised ones. Solving instance segmentation and background removal prob-
lems proves the effectiveness of this method compared with pre-trained models on the ImageNet dataset.

Our contributions are as follows:

* We have verified the generalizability of self-supervised learning methods for solving background

removal and instance segmentation problems using the BYOL algorithm..

* We have suggested simple and minor changes to the BYOL algorithm to reduce convergence time in

pre-training to an acceptable level.

* We used the weights obtained using the BYOL algorithm to solve the instance segmentation and SOD
problem and compared the obtained model with the state where the initial weights of the ImageNet

database are obtained in a supervised way.

* For the first time, we use self-supervised pre-training methods to solve SOD-related problems and
examine the generalizability of contrastive self-supervised learning methods to SOD and segmentation
problems. In solving the instance segmentation and SOD problems, we have used only a relatively
small part of the coco 2017 dataset and assumed that it is challenging to obtain labelled data for these

problems, which is a correct assumption.

1.3 Scope and organization

To extract useful features from input images and classify the pixels accurately for segmentation applica-
tions, without need of having a large amount of labeled data, we could select better initial point to start our
training and this comes true by generating the initial weights of our mainstream tasks using self-supervised

learning. The contribution of this thesis contains 2 main parts:

* Obtaining initial weights by pretraining a deep neural network using unlabelled COCO dataset 2014

to better start our segmentation.



* Training a deep neural network with mentioned initial weights using COCO dataset 2017 in order to

remove backgrounds of still images as well as segmenting instances in the end.

This thesis’s organization is explained in the following. Description of self-supervised learning, pre-
text tasks, contrastive learning and a brief history of instance segmentation are given in chapter 2. The
proposed method to segment objects and remove background with detailed explanation of the algorithm is
shown in chapter 3. Chapter 4 provides the evaluation, numerical and visual comparisons. In particular,
the comparison is made between three methods, segmentation using self-supervised pretrained models, seg-
mentation using Imagenet pretrained model, and segmentation using random initial weights. A conclusion

of the research is presented in chapter 5.



Chapter 2

Previous work using deep learning in

instance segmentation

2.1 Introduction

Having expandable pretrained features causes scientists to be able to transfer obtained weights to dif-
ferent problems and datasets. This enables computer vision problems to be solved more accurately and
decreases need of massive labelled datasets and reduce convergence time as well. Transfer learning is an
approach in which a model is trained in a big dataset, and if the model reaches satisfactory results in defined
problem, we could transfer the weights to other problems and similar datasets. Therefore, pre-training is
usually performed on a large dataset called the upstream dataset, and then the knowledge gained using this
process is transferred to another set of data called downstream problems. For example, pretrained weights
on the ImageNet dataset, which is for 1000-class classification, are transferable to related tasks such as
semantic segmentation Girshick et al. (2014), object recognition Long et al. (2015), etc., and on these
downstream tasks, we fine tune ImageNet initial weights, and as we mentioned, in this case the need for
labeled data is very low. Pretrained weights on the ImageNet dataset are often transferred to other computer
vision issues, but other approaches can be considered to avoid supervised training. One of these approaches
is to use unsupervised methods to pre-train the features and then transfer the learning. To learn the visual

features of unlabeled data, a general solution is to define various auxiliary problems to be solved by neural



networks, when these networks are able to reach the objective of such problems by minimizing the cost func-
tion, they learn well and these weights can be used for other computer vision problems as well. Auxiliary
problems that have been developed for learning visual features include coloring gray images Zhang, Isola,
and Efros (2016), painting images Pathak, Krahenbuhl, Donahue, Darrell, and Efros (2016), image puzzle
problems Noroozi and Favaro (2016), and so on. Auxiliary problems should usually have two important

characteristics, which are:

(1) One can capture the features of videos or images by solving auxiliary problems (pretext tasks) by

convolutional networks.

(2) For pretext tasks, pseudo-tags can be extracted using the data themselves based on the features and
characteristics of the video and video data sets, automatically or semi-automatically without human

intervention Jing and Tian (2020).

The general trajectory of how to use self-monitoring learning methods is shown in figure 2.1.

Self-supervised Pretext Task Training
Unlabeled Dataset

P -
---.---l

Knowledge Transfer

Supervised Downstream Task Training
Labeled Dataset

Figure 2.1: Framework of self-supervised learning.

During the self-supervised pre-training phase, a pretext task is designed for convolutional neural net-
works to solve, and pseudo-tags of this problem are obtained automatically based on the characteristics of
the dataset; The convolutional network is then trained to solve the objective function of these tasks. After

the self-supervised training phase is completed, the learned features can be transferred to the main tasks,



which are also called downstream tasks. For core tasks, we usually have datasets with few samples; For this
reason, pre-learned networks using self-supervised learning methods are employed, which avoids the prob-
lem of over-fitting the data of the main issue. In general, the initial layers of neural networks learn general
features such as edges, corners, and textures; The deeper layers learn the top-level features associated with
the task [6]. In this chapter, we first define some of the concepts and terminologies in learning methods, then
describe self-supervised learning methods based on pretext-task solving, and finally introduce contrastive

self-supervised learning methods as well as the common architectures.

2.2 Term definition

First, we identify and introduce the words in this area, to make it easier for the reader to continue.

Human labels: Refers to the labels provided by humans.

Pseudo-labels: Labels that are generated automatically or semi-automatically based on the dataset char-
acteristics used without human intervention or with minimal human intervention Jing and Tian (2020).

Pretext tasks: Tasks are pre-designed to be solved by neural networks, and visual properties are learned
by solving the objective function of these tasks Jing and Tian (2020).

Downstream task: They are computer vision applications that are used to evaluate the features learned
using self-monitoring learning methods. These applications can be highly learned from pre-taught models;
Benefit when human labeled data is rare. In general, human tags are necessary to solve the downstream prob-
lem. However; In some applications, the downstream problem can be equated with the auxiliary problem,
in which case data labels are not used to solve the auxiliary problem Jing and Tian (2020).

Supervised learning: Supervised learning is a technique in which human-annotated labels are used to
train a network Jing and Tian (2020).

Unsupervised learning: Refers to methods that do not use human-produced labels to solve the problem
Jing and Tian (2020).

Semi-supervised learning: Refers to learning methods that use a small amount of labeled data along
with large amounts of unlabeled data to learn features.

Weakly-supervised learning: Refers to feature learning methods that use weak or incorrect labels to



solve a problem that normally requires stronger labels Jing and Tian (2020).

Self-supervised learning: These methods are a subset of unsupervised feature learning methods learn-
ing. By its classical definition, refers to feature learning methods in which neural networks are explicitly
trained using data whose labeling process is automated. The second definition of self-supervised learning
methods is that if we use a method to learn features that uses parts of the data available to us to estimate
other parts or information of other parts of the data, our method can be a self-supervised learning method
Jing and Tian (2020).

Because no human annotations are required to produce pseudo labels during self-monitoring training,
largescale unlabelled datasets can be operated for self-supervised training. self-supervised approaches ac-
quired good results and the gap with supervised techniques in performance on downstream tasks gets smaller

by training with these pseudo labels.

2.3 Commonly-used feature learning methods

Based on data labelling types, feature learning methods can fall into one of four categories: supervised
learning, semi-supervised learning, weakly supervised learning, and unsupervised learning. In this section,

we will explain the different learning methods in more detail.

2.3.1 Supervised leaning

Having a data set such as X, in the supervised learning for each instance of the X; data from the X

dataset, there is also a corresponding man-made tag with the Y; attribute. Having an N set of training data,

ie. D ={X;,i=0,....., N}, the cost function of training data at the time of training is defined as follows:
1 (X
loss(D) = I%in N <Z; loss (X, YZ)> (1)

Using man-made labels, supervised learning methods have shown good solutions to many computer
vision problems Szeliski (2010) Forsyth and Ponce (2011) Otsu (1979) Donahue, Krihenbiihl, and Darrell
(2016). However; Collecting and tagging large datasets is usually very costly and difficult, and in some

cases, such as medical and satellite imagery, should be done by experts in the field of tagging. For this

10



reason, semi-supervised learning methods, weakly supervised learning and non-supervised learning methods

have been proposed to minimize the cost of data labelling Jing and Tian (2020).

2.3.2 Unsupervised learning

Learning without supervision refers to methods of learning features that perform learning without the
need for man-made labels. This learning method involves two approaches: (1) completely observer-free
learning, in which the methods used do not require labels, (2) and self-supervised learning, which uses auto-
matically generated pseudo-labels and learn the properties of data. In this thesis, we will focus exclusively

on self-supervised learning methods.

2.3.3 Semi-supervised learning

To learn visual representations in a semi-supervised way, with a small tagged data set X and a large
unlabeled dataset such as Z, for each instance of the X; data set in the X set, the corresponding human-
generated label with the Y; attribute also exists. In this case, for an N set of human-labeled training data,
ie.D; = {Pz-}fio and for an M set of unlabeled data, i.e. Dy = {Zi}i]\io at the time of training, the objective

function is defined as follows:
1 (& 1 (&
loss (D1, D2) = Hbinﬁ <;loss (Xi,l/'i)) + i (Zl loss (Xi,R(Zi,X))> ()
1= 1=

In this regard, the expression R (Z;, X) is a function that is defined according to the problem to deter-
mine the relationship between unlabeled educational data and human-labeled educational set Jing and Tian

(2020).

2.3.4 Weakly-supervised learning

To learn the visual features of weakly supervised data, with a data set such as X, there will also be a
weak, incomplete C; label for each instance of X; data from the X dataset. Now if the defined data set has N

training samples, ie D = {X;,i = 0, ...., N'}, the cost function model is defined as follows when teaching:
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N
loss(D) = n%in% <; loss (X, Cl)> 3)

Because the cost of labelling in weak supervision is much lower than in labelling in strong supervision,
collecting and annotating large datasets is easy. Recently, in some works, images collected from the internet
using hashtags as category label has been used Mahajan et al. (2018) Li, Wang, Li, Agustsson, and Van Gool

(2017) to extract visual features from images, thereby good accuracy has been achieved.

2.3.5 Self-supervised learning

Compared to supervised learning methods that require input data X; and human-generated Y; labels;
Self-supervised learning only uses X; input data along with P; pseudo-labels, which automatically generate
P; for predefined auxiliary problems. P; pseudo-labels can be generated automatically using image or
video attributes. For example, pseudo-labels can be generated based on image content or traditional image
processing methods Mahendran, Thewlis, and Vedaldi (2018), Sayed, Brattoli, and Ommer (2018), Korbar,
Tran, and Torresani (2018), Owens and Efros (2018), Kim, Cho, and Kweon (2019), Jing, Yang, Liu, and
Tian (2018), Fernando, Bilen, Gavves, and Gould (2017) and Z. Ren and Lee (2018).

Having a set of N training data, ie D = Pii\io, the cost function for training data is defined in equation

N
loss(D) = mein% (; loss (X, Pi)) @)

As long as pseudo-labels are generated automatically and without human intervention, the method used
is self-monitoring. In this section, we examine self-supervised learning methods from various aspects such

as network architecture, pretext task problems, and their applications.

2.4 Common architectures of deep neural networks

Regardless of the category of learning methods, whether supervised learning, or unsupervised, etc.,
most of these methods use the same or similar architectures. In this section, we briefly introduce common

architectures for learning image properties. Various two-dimensional convolution neural networks have been
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Figure 2.2: Residual network (ResNet) architecture.

developed to learn image properties, such as AlexNet, VGG, GooglLeNet Z. Ren and Lee (2018), ResNet
And DenseNet Huang, Liu, Van Der Maaten, and Weinberger (2017). To further explore each of these
architectures, we recommend the original article of each of these models to readers. However, because we
used the ResNet50 model in our dissertation, we describe the architecture of this model.

Residual network architecture (ResNet)

We know from experience that deeper networks are likely to perform better, however, training deeper
networks is very difficult for two reasons: gradient fade and gradient explosion. The ResNet architecture
provides solutions to help us avoid these problems. This model uses escape connections in convolutional
blocks by sending feature maps from the previous block to the next block to prevent the gradients from
fading and exploding. Details of escape connections are shown in figure 2.2.

Using escape connections, it becomes very easy to train deep neural networks on GPU-equipped sys-
tems. ResNet networks with different widths have been developed to categorize images. Due to the small
model size, low number of parameters, and excellent performance, ResNet models with different depths are
often used as the base model for many computer vision tasks. Convolution blocks with escape joints are

also widely used in many architectures.

2.5 A brief of pretext and downstream tasks

Most self-supervised learning approaches follow a schematic such as figure 2.3.
In general, a pretext task problem is defined for the convolutional network to solve it, by doing this

task, the visual properties of the images are learned. For the defined pretext task, P-labels can be obtained
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Figure 2.3: Feature representation schematic using self-supervised learning algorithms.

automatically or semi-automatically, without human intervention, based on the characteristics of the data
itself. The convolutional network optimizes its parameters by minimizing the error between the network
prediction and the P-labels. After the training on the pretext task is completed, the convolutional models
have learned good visual properties that can be transferred to other computer vision problems Jing and Tian

(2020).

2.5.1 Learning visual features by solving pretext tasks

To get rid of very large data set labeling, a pretext task is generally defined for convolutional neural
networks to solve these problems using pseudo-tags that are generated automatically with minimal human
intervention. So far, many problems have been designed and used, such as slicing objects on the screen
Jing et al. (2018), painting Pathak et al. (2016), clustering Z. Ren and Lee (2018), coloring Fernando et
al. (2017), jigsaw puzzle, etc. do. Effective pretext tasks ensure that meaningful features are well learned
during the problem-solving process. For example, consider coloring an image where the goal is to turn gray
images into color. To produce true color images, it is necessary that networks learn the content information
and the structure of the images. In this case, the existing data, the X set, are gray images obtained by linear
conversion on RGB color images, and our pseudo-labels, or Ps, are RGB color images themselves. X; and
P; training data pairs can be generated in real time at very low cost. Self-supervised learning with other

pretext tasks has a similar approach to coloring images.
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2.5.2 Famous pretext tasks that have been used abundantly

Based on the characteristics of the dataset, which are used to design pretext tasks, we can divide these
problems into 4 categories, which are: Generation Based Methods, Context-Based Methods, Free Semantic-
Label Based Methods and Cross Modal-Based Methods.

Generation Based Methods: Visual features are learned during the process by which the image is
generated. As an example of these methods, we can name image colorization Zhang et al. (2016), super
resolution Ledig et al. (2017), image impainting Pathak et al. (2016) and produce images using Generative
adversarial network Goodfellow et al. (2014) Chen, Zhai, and Houlsby (2018).

Context-based methods: In designing this type of task, the content features of images and videos, such
as context similarity, spatial structure, local structure, etc., are considered. We briefly describe each of these

cases.

* Context similarity: These are pretext tasks defined based on the similarity of the content between
different parts of the image. for example; Image clustering methods are part of this category Caron,

Bojanowski, Joulin, and Douze (2018).

* Spatial Context Structure: These types of pretext tasks used to train convolutional neural networks are
based on spatial relationships between different parts of the image. For example, the jigsaw puzzle
problem is predicting the lost content of the image and detecting geometric transformations applied

to the images Jing et al. (2018).

* Temporal Context Structure: The temporal arrangement of video frames is used as a signal to train
convolutional neural networks. The convolutional network is trained to determine whether video
frames have entered the network in the correct order or not or predict the order of the frames Lee,

Huang, Singh, and Yang (2017).

Free semantic-label based methods:
These types of auxiliary problems train neural networks using semantic labels that are generated auto-

matically. Hardcode algorithms Faktor and Irani (2014), Stretcu and Leordeanu (2015) or game engines
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Z. Ren and Lee (2018) generate the labels. For example; Fragmentation of moving objects and predic-
tion of relative depth prediction Jiang, Larsson, Shakhnarovich, and Learned-Miller (2018), contour detec-
tion Z. Ren and Lee (2018), etc., are among these issues.

Cross Modal-Based Methods: This kind of pretext task train ConvNets to verify that there are two
different channels input data matches each other for example; They examine the harmony of sound with

image Korbar et al. (2018); Sayed et al. (2018).

2.6 Comparing self-supervised learning methods based on solving pretext

tasks

Supervised learning is not only dependent on large amounts of labeled data, but also grapples with
other challenges such as generalization error, spurious correlation, and adversarial attack Liu et al. (2021).
Recently, self-supervised learning methods have combined productive and reciprocal approaches to learn
the intrinsic properties of data using unlabeled data. In this area, the common approach is to define various
pretext tasks that help to learn features without the use of data tags. Things like painting pictures, coloring
pictures gray, enhancing the quality of the image damaged by noise, predicting the frames of a video,
matching the video with the sound, etc., have been useful for learning the features of images and videos.

This section compares the effectiveness of self-supervised learning methods, features of images and
videos. For self-supervised learning, the learnt parameters by self-supervised learning are utilized as pre-
trained models and after that, these parameters are fine-tuned on downstream tasks such as image classifica-
tion, object identification, semantic segmentation, etc. are evaluated.

As mentioned earlier, the effectiveness of self-supervised learning methods is achieved by adjusting
the weights learned on downstream tasks such as image categorization, semantic segmentation, and so
on. The table below shows the performance of image classification on ImageNet Deng et al. (2009) and
Places Kuehne, Jhuang, Garrote, Poggio, and Serre (2011) datasets.

During the self-supervised training, most of the methods were trained on the ImageNet dataset with
the AlexNet neural network. After the self-supervised training step, a linear classification is conducted on

different cannulation layers that are also frozen. The classification performance on the two datasets shows
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ImageNet Places

Method Pretext Tasks convl conv2 conv3 convd convs convl conv2 convd convd convs
Places labels [8] — — — — — — 22.1 35.1 40.2 43.3 44.6
ImageNet labels Eb‘j — 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 394 38.7
Random(Scratch) [8] - 11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5
ColorfulColorization [18] ~ Generation 125 245 304 315 303 160 257 206 303 297
BiGAN [122] ~ Generation 17.7 24.5 31.0 29.9 28.0 214 26.2 27.1 26.1 24.0
SplitBrain {42] Generaion 177 293 354 352 328 213 307 340 341 32,5
ContextEncoder [19 Context 14.1 20.7 21.0 19.8 155 18.2 23.2 234 21.9 184
ContextPrediction [41] Context 16.2 233 30.2 3.7 29.6 19.7 26.7 31.9 32.7 30.9
Jigsaw [20) — Context 18.2 288 340 339 271 230 321 355 348 313
Learning2Count [130] Context 18.0 30.6 34.3 32.5 25.7 233 339 36.3 34.7 29.6
DeepClustering [14] Context 134 323 41.0 39.6 38.2 19.6 33.2 39.2 39.8 347

Table 2.1: Comparison of the accuracy of self-supervised learning methods when transferring to Places and
ImageNet datasets from different layers of the AlexNet model Jing and Tian (2020)

the quality of the features learned by solving various pretext tasks.

As shown in table 2.1, the overall performance of self-supervised learning methods is lower than that
of the models trained to monitor both the ImageNet and Places datasets. Of all the self-supervised learning
methods, the DeepCluster algorithm has the highest efficiency. Based on the performance shown in the table

above, we conclude:

(1) Features at different layers get better by solving pretext tasks. The efficiency of self-supervised learn-

ing methods is always better than the performance of algorithms trained from scratch.

(2) All self-supervised learning methods improve performance by using the features of conv3 and conv4
layers, while they perform worse on downstream tasks by using the features of convl, conv2 and
conv5 layers. This decrease in accuracy may be due to the fact that surface layers extract more
general low-level features from images, and deeper layers record high-level features associated with

pretext tasks, which in both cases solving high-level downstream problems alone is not enough.

(3) When the datasets used for training the pretext task and the downstream task are different, Self-
supervised features learning methods can achieve comparable accuracy to supervised methods in the

ImageNet dataset.

In addition to image classification, object recognition and semantic segmentation are also used as down-

stream issues to evaluate the performance of features learned through self-supervised learning methods. In
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Method Pretext Tasks Classification Detection Segmentation

ImageNet Labels 8] — 79.9 56.8 48.0
Random(Scratch) [8] — 57.0 44.5 30.1
ContextEncoder [19] Generation 56.5 44.5 29.7
BiGAN [122] Generation 60.1 46.9 35.2
ColorfulColorization [18] Generation 65.9 46.9 35.6
SplitBrain [42] Generation 67.1 46.7 36.0
RankVideo [38] Context 63.1 47.2 35.41
PredictNoise [46] Context 65.3 49.4 37.1!
JigsawPuzzle [20] Context 67.6 53.2 37.6
ContextPrediction [41] Context 65.3 51:1 —
Learning2Count [130] Context 67.7 51.4 36.6
DeepClustering [44] Context 73.7 55.4 45.1
WatchingVideo [81] Free Semantic Label 61.0 52.2 —
CrossDomain [30] Free Semantic Label 68.0 52.6 —
AmbientSound [154] Cross Modal 61.3 — —
TiedToEgoMotion [95] Cross Modal — 41.7 —
EgoMotion [94] Cross Modal 54.2 43.9 —

Table 2.2: Self-supervised learning methods accuracy on different computer vision tasks Jing and Tian
(2020)

this case, the ImageNet dataset is commonly used in pretraining. Also, the very famous AlexNet model has
been selected as the base network. Table 2.2 lists the performance of image classification, object recognition
and semantic segmentation on the PASCAL VOC2007 dataset. As shown in table 2.2, the performance of
some self-supervised learning methods used for solving pretext tasks on semantic segmentation and object
identification datasets is similar to that of fully supervised learning on the ImageNet dataset.

The difference in accuracy obtained for semantic segmentation and object identification in self-supervised
and supervised learning is less than %3 higher for supervised pre-training, which indicates that the features
learned by self-supervised learning algorithms have the ability to generalize to other tasks like instance
segmentation and SOD. Among the self-supervised learning methods, the DeepCluster Caron et al. (2018)
algorithm has shown the best accuracy on all problems.

Despite all the creativity that researchers have expended in defining various pretext-tasks that are defined
according to their data characteristics, pre-trained models using these methods in solving other computer
vision problems could not perform better than the previously trained ImageNet models in a supervised

manner. For this reason, it was necessary to develop other methods to minimize the gap between supervised
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and unsupervised learning methods. One of these approaches is contrastive self-supervised learning, which

we will explain in detail in the following sections.

2.7 Contrastive self-supervised learning methods

As we have mentioned, in recent years, self-supervised learning methods have become very popular
among other machine learning methods because they eliminate our need for large-scale labeled data. These
methods can use pseudo-labels extracted from the data itself as monitoring signals and apply the obtained
visual representations or features to other computer vision problems, also known as downstream problems.
In particular, contrastive self-supervised learning methods have become very important among other self-
supervised learning methods, and in computer vision applications and natural language processing, etc., the
highest accuracy has been achieved by using contrastive learning methods. The general goal of contrastive
learning methods is to have similar properties in the feature space of different versions of an image obtained
by applying different data processing methods, while trying to keep other images in the data set or category
as far away as possible in the feature space. In this chapter, we want to review self-supervised learning
methods that are based on creating competition between data in a category or a whole set of data. Also,
We look at common pretext tasks used for feature interaction learning, and take a closer look at common
architectures developed for this purpose in recent years. Then the performance of different methods using
several downstream problems such as image categorization, object identification, and so on are compared.

Recent advances in deep learning have made these methods an integral part of many intelligent systems.
The ability to learn rich and valuable patterns from the vast amount of data available today has made deep
neural networks an extremely important component of computer vision tasks such as image sorting, object
recognition, semantic segmentation, and more. Also, deep neural networks are also widely used for natural
language processing applications such as language models, sentence categorization, and more. However,
supervised approaches to learning features from labelled data have become saturated, as they require us to
manually label millions of data. For example, labelling an ImageNet dataset at the image level with about
fourteen million images takes 22 years. And we must keep in mind that image-level labeling will not be
accurate for other computer vision tasks, such as semantic segmentation. We also need experts in the same

field to label some types of data, so that data labeling can be done accurately. For example, for medical or
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satellite image data, it is necessary for experts to do the labeling, which in some cases costs a lot of time and
money to projects. The need for large data labelling is due to the fact that many modern computer systems
that are also monitored try to extract a form of image features by finding a pattern between tags and data
points. In this regard, works such as GRAD-CAM Selvaraju et al. (2017) have been done to demonstrate a
technique for visually describing the decisions made by the model.

Traditional supervised learning approaches are highly dependent on the number of labelled data. Fur-
thermore, Although access to large amounts of data in today’s world is in many cases simple, the lack of
data tags has led researchers to find alternative ways to learn features without the need for human-labelled
data. Here, self-supervised learning methods play a key role in shaping the development of deep learning
methods without the use of labeled data. In these methods, according to the characteristics of the data itself,
a supervising signal is provided.

Unlike generative models, contrastive-learning is an approach that aims to group similar samples side by
side and dissimilar data far apart. The main idea of these methods is shown in figure 2.4. To achieve this, it
is necessary to use a similarity metric to measure the proximity of images in the feature space. Specifically
for computer vision tasks, a cost function or cross-objective function is defined based on the properties
extracted from the images. For example, one data is selected from a training sample and another version
is obtained by applying different data augmentation methods. During the tutorial, as shown in figure 2.4,
the augmented version of the image is considered a positive pair, and the other examples in the dataset or
category (depending on what method is used) is considered as a negative pair.

Then the model is trained in a way to separate positive samples from negative ones. To separate these
samples, we use the pretext tasks that are described in the following. By doing this, the model can learn
good indicators that can be useful for performing other computer vision tasks. The idea for this comes from
an interesting experiment conducted in 2016 by Epstein Epstein (18.02.2016/n.d.). The story goes that Mr.
Epstein asks his students to draw a picture of a dollar bill on paper without looking at it. The results of this
experiment show that the human brain does not need to see the detailed information of each object to be able
to distinguish between two different objects, but instead uses more general features to identify and separate
objects.

Much work has been done in this area which combines sampling approach at the sample level with
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Figure 2.4: The main idea in cross-learning: the original image and the augmented data version are brought
closer together and the original image is separated from the negative examples Jaiswal et al. (2020)
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Figure 2.5: Accuracy of classifying different contrastive learning methods on the ImageNet dataset Jaiswal
et al. (2020)

contrastive learning as a self-supervised approach, and thus achieve very good accuracy. However, recent
methods such as SWAV Caron et al. (2020), MoCo He, Fan, Wu, Xie, and Girshick (2020) and SimCLR
Chen et al. (2020) algorithms use advanced approaches and show results that are very comparable to the
best supervised learning methods on ImageNet Deng et al. (2009) dataset. Figure 2.5 shows a comparison

of the efficiency of these methods.

2.7.1 Common architectures for self-supervised contrastive learning

Contrastive learning methods are highly dependent on the number of samples or negative pairs in the
data set or category to be able to learn good image representations or features. These tasks can be considered
as a matter of searching for a word within a dictionary. In some cases, the size of this dictionary is the size
of the total images in the training dataset, and in some cases, its size is a subset of a training dataset. A very
interesting way to categorize the methods in contrastive learning can be based on the technique used in these

methods to collect and construct negative samples compared to positive samples or pairs when teaching
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Figure 2.6: Common architectures in contrastive self-supervised learning

the model. Based on which approach is chosen, we divide the methods in contrastive learning into four

categories which is shown in figure 2.6.

Methods based on the use of end-to-end architectures

End-to-end learning is a very complex learning system that uses gradient-based learning, so that all
the modules used are derivative. This architecture prefers very large batch sizes to be able to collect a
large number of negative samples, forcing these negative samples to compete with the positive ones, and to
learn. Except for the original images and their augmented version, the rest of the images in the category
are considered negative examples. The procedure is to use two encoder networks, which are query encoder
Q and K key encoder, as shown in figure 2.6. The two selected encoder networks can be different or
identical and can be updated end-to-end during the training using the backpropagation algorithm. Using the
contrastive loss function, the network converges to a direction where the positive samples are close together
in the feature space and the negative samples are as far apart as possible. In these methods, the query encoder
is trained using the original image, and the key encoder is trained on the positive pair of images and other
negative samples. The feature vectors q and k are generated using these encoders and are used to calculate
the similarity to the corresponding input using a similarity metric described below. In many cases, the metric

that measures the similarity of these vectors is a function of cosine similarity, which is the interior product
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of the normalized state of the vectors obtained from the corresponding encoders.

Recently, SimCLR Chen et al. (2020), a successful end-to-end model has been introduced with three
different versions which in the first version, the batch size is 4096 and with 1000 epochs, the model is trained.
The figure 2.7 shows that despite the simplicity of the end-to-end architectures, the methods that follow this
architecture can work better with large batch sizes and a large number of training epochs. Another well-
known work that follows end-to-end architecture is presented in the article by Oord, Li, and Vinyals (2018).
In this article, learning the features of high-dimensional time series data is done by predicting the future in
the property space by autoregressive models with the help of contrastive function. This approach makes the
model traceable by using negative pair data sampling. In algorithms that follow this architecture, the number
of negative samples used to properly train the network depends on the size of the batch, as the negative batch
is selected from within the batch. Because batch size is limited to GPU memory size, the ability to scale
large batch sizes for methods that use this architecture is a fundamental challenge. Furthermore, for large
batch sizes, these methods suffer from Mini-Batch Optimization Problem and require effective optimization

methods, which are described in the article Goyal et al. (2017).
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Figure 2.7: Linear evaluation models (ResNet-50) trained with various batch sizes and epochs Chen et al.
(2020)
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Methods based on using a memory bank

Because of the problems with large batch sizes and their negative effect on optimization during training,
one possible solution is to keep a separate dictionary called a memory bank. In the following, we will
explain the concept of memory bank more.

Memory bank:The purpose of maintaining a memory bank is to accumulate a large number of features
of different samples that are used as negative samples during training. To achieve this, a dictionary is created
that stores and updates the features of the samples that were last entered in the model. The memory bank (M)
contains a feature representation (m) for each instance I in the D dataset. The m indicator is an exponential
moving average of the indicators or attributes calculated during previous epochs. Memory bank, replacing
negative instances of m; with the corresponding representation in the memory bank, provides instruction
without the need to resize. That is, negative samples that are necessary for mutual learning are extracted
from the memory bank. The representation of each instance in the memory bank is updated the last time it is
given to the model. That is, as soon as the data is last given to the model, its corresponding properties in the
memory bank are updated and replaced with the last representation obtained from the sample. Therefore,
the sampled keys related to encoder are in several different steps during the previous epochs. The PIRL
algorithm Misra and Maaten (2020) is one of the recent successful methods that extracts good features from
images and uses a memory bank to provide negative samples during training. In figure 2.8, we see how the

PIRL algorithm works.
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This approach requires algorithms to construct image representations that are covarient to any pretext
problem used. Basically, the PIRL algorithm chose the jigsaw puzzle as the pretext problem. Another well-
known work that uses the idea of a memory bank is designed in the article Misra and Maaten (2020), in
which a non-parametric version of the Soft Max classifier is implemented, which has a higher scalability
for large data applications. However, maintaining a memory bank during training can be very complicated.
One of the disadvantages of this approach is that updating the memory bank requires a lot of computing

resources because the features in the memory bank become obsolete quickly and require frequent updates.

Methods based on using a momentum encoder

To solve the problems that arose for the memory bank, we can replace the memory bank with a separate
module called momentum encoder. The momentum encoder produces a series of encoded keys in a dictio-
nary. In this dictionary, the keys encoded in the current category are added to the queue, and the keys for
the oldest category are removed from the queue. The dictionary keys are defined on the fly by a set of data
samples in the category during the training. The momentum encoder has some of the same parameters as
the request encoder or Q shown in figure 2.6. After performing any forward propagation in the momentum
encoder, no error propagation is performed and instead, the parameters of this encoder are updated based on

the request encoder parameters using equation 5 He et al. (2020).

O = m* 6 + (1 —m) * 64, m[0, 1) 5)

In this equation, m, is a number between zero and one, called the momentum coefficient. Only the
request encoder parameters or theta, are updated during the training using the error propagation algorithm.
Updating the momentum encoder causes the weights of this network to change at a slower speed than the
Q network. As a result, although the keys in the queue are encoded by different encoders (in different
categories), the difference between the representations obtained from this encoder in different steps is very
small.

The advantage of using this architecture over the previous two methods is that there is no need to teach
two separate models. Furthermore, there is no need to maintain a memory bank, which itself has a lot of

computation at the time of the update.
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Figure 2.9: Comparing contrastive learning algorithm with SWAV algorithm Misra and Maaten (2020)

Clustering-Based Methods

All three architectures described above focus on comparing positive and negative examples using a
similarity criterion, and attempt to place similar items in the feature space close together and dissimilar
items in the feature space, keep away from each other. By doing this, The model can learn great features.
In contrast, clustering-based learning architecture follows an end-to-end approach using two encoders that
share their parameters; But instead of using a contrastive approach between samples, it uses clustering
algorithms to cluster similar features. One recent work that uses the cluster-based feature learning approach
is the SWAV Misra and Maaten (2020) algorithm, which is shown in figure 2.9.

Figure 2.9 shows the difference between contrastive learning architecture and clustering-based method
in the best way. The goal here is not only to bring similar pairs of specimens closer together, but also to
ensure that other similar features are included in a cluster. For example, in the image property space, the
properties obtained for the cat image should be similar to or close to the dog class characteristics, as both
are in the animal cluster. Also, the characteristics of these two classes should be as similar as possible to
the characteristics obtained for the home class, because it has a separate cluster. In sample-based learning,
each instance in the data set is considered as a separate class. This factor causes the input sample to be
considered a negative pair relative to the original image when the input sample is compared to other samples
in the same class, and because the network tries to separate the negative pairs as much as possible, network
weights are updated incorrectly. To illustrate the problem in more detail, let us give an example. Suppose we

have a picture of a cat class among a bunch of images that are going to enter the network altogether. When
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giving this batch of images to the model, other images in the category are considered as negative examples.
Now the problem arises when, in addition to the cat image, there are other cat images other than the one we
mentioned in the batch, in this case all other images of the cat class are considered as negative examples and
the network is not directed to the right point. This mode forces the model not to consider two images of the

cat class similar during training. This problem is explicitly solved using clustering-based algorithms.

2.7.2 Common encoders in contrastive self-supervised learning architecture

It is correct to say that encoders play the most important role in any self-supervised learning system,
as they are responsible for mapping input samples to the feature space. Figure 2.10 shows the role of an

encoder in self-monitoring learning methods.

gradient to train
encoder weights

<

A

Encoder

(ResNet) Extracted Features Contrastive Learning

1

Downstream Tasks
(After training)

Figure 2.10: Transfer learning in self-supervised learning methods Jaiswal et al. (2020)

Without effective features, the category model will face a fundamental problem in learning the differ-
ences and distinctions between different categories. Much of the work done in the field of self-supervised-
contrastive-learning has used the ResNet model as an encoder. Among the various models of ResNet ar-
chitecture, the ResNet50 network has been used extensively due to its balance between learning power and
network size. In an encoder, the output of a specific layer is merged to provide a one-dimensional feature
vector for each instance. Depending on the approach chosen, this feature vector can be upsampled or down-

sampled. For example, in the work presented by Misra and Maaten (2020), the ResNet50 architecture is
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used in such a way that the output features of the fifth block (res5) are merged on average so that for each
sample or input image, a vector containing 2048 numbers is produced. They then apply a linear mapping or
linear layer to this vector and convert the feature vector to a 128-dimensional vector. They also examined
the features of other blocks, such as res2, res3, and res4, to evaluate the performance of the features learned
at different layers. As might be expected, the properties extracted from the last blocks of the encoder have
better properties than the output of the primary layer blocks, and respond better to other computer vision
problems. Similarly, in the paper Chen, Zhai, Ritter, Lucic, and Houlsby (2019) a traditional ResNet model
is used as the encoder in which the features are extracted from the output of Global Average-Pooling. In
addition, a multi-layer perception block with only one linear layer is applied to the obtained features to map
these feautres to a space with other dimensions, now in the current space, the cost function or contrastive
loss function is calculated Lorre, Rabarisoa, Orcesi, Ainouz, and Canu (2020) Tao, Wang, and Yamasaki

(2020).

2.7.3 Contrastive self-supervised models training

To train encoder, a pretext task is executed by using the contrastive cost function to propagate the error
in the network. As we have already mentioned, the main idea in contrastive learning is to bring similar
examples closer together in the feature space and to separate the negative examples as much as possible. To
achieve this, a similarity criterion is employed to calculate and determine the proximity of two samples in
the feature space. In cross-learning, the criterion for similarity in many cases is cosine similarity, which is
used as a basic method in many cross-learning methods. The cosine similarity of two variables or vectors is

the cosine of the angle between these two vectors and is mathematically defined as:

A-B
<os(0) = 1Al ©)

The focus of cross-learning is on comparing the features obtained for the samples using the noise con-

trastive estimation function Gutmann and Hyvérinen (2010). This function is defined as:

exp (sim (¢, k) /7)
exp (sim (g, k) /7) + exp (sim (q,k_) /7)

(N

Lycg = —log
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In equation (7), q represents the original sample, k. represents the positive sample, and k_ represents
the negative sample. And the superparameter has been used in many recent methods and is called the
Temperature Hyper-Parameter. The basic idea behind the NCE cost function was to calculate a nonlinear
logistic estimate that would separate the observed data from the artificially generated noise. If the number

of negative instances increases, another type of NCE cost function called InfoNCE can be used, namely,

exp (0212

exp (sim(z,k+)> 4 Zfio exp (sim(g,k”)

Lynce = —log 3

In equation 8, k; represents negative examples. Like other deep learning methods, contrastive learning
can use many optimization algorithms for training. The learning process is such that the parameters of
the encoder network are learned by minimizing the cost function. The SGD optimization algorithm is
one of the most popular algorithms used to optimize the objective function in contrastive-learning methods
Bojanowski and Joulin (2017) Z. Wu, Xiong, Yu, and Lin (2018) Z. Wu et al. (2018) Misra and Maaten
(2020). The estimate for the cost function gradient relative to the parameters made using this algorithm is
approximate. Because it replaces the actual gradient of the cost function with respect to the parameters that
should be calculated based on all training samples with the calculation of the gradient based on the cost
function calculated on a small subset of training data. The crucial parameter that must be determined for the
Stochastic Gradient Descent algorithm is the learning rate. In practice, the rate of learning should decrease
over time. In many deep learning approaches, an upgraded mode of the SGD algorithm such as momentum
is used.

Another optimization method used in some of these methods is the adam algorithm. Because some end-
to-end methods use large batch sizes during network training, using SGD-based optimization algorithms
that scale the learning rate linearly is not possible. To stabilize the training, the Layer wise Adaptive Rate

Scaling (LARS) You, Gitman, and Ginsburg (2017) algorithm with cosine learning rate is used.
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Chapter 3

Instance segmentation using modified

bootstrap your own latent (BYOL)

3.1 Proposed self-supervised learning framework for instance segmentation

Generally, computer vision pipelines that use self-supervised learning concern executing two tasks:
a pretext task and a downstream task. Downstream tasks are application-specific tasks that employ the
knowledge learned during the pretext task. Figure 3.1 illustrates how knowledge is transferred to a down-
stream task. In this figure, the higher line represents self supervised pretraining using BYOL algorithm
and the lower line is trained using Mask R-CNN for instance segmentation and background removal even-
tually. Transfer learning execution on these high-level vision tasks proves the generalization ability of the
learned features. Some of the common downstream tasks in computer vision are classification, detection,
segmentation, future prediction, etc. In our work, instance segmentation using self-supervised learning is
performed as downstream task followed by background removal.

As mentioned in the previous chapter, a number of self-supervised learning methods known as instance
segmentation using contrastive learning, perform better in representation learning of ImageNet dataset
images than other recent methods which can minimise the accuracy gap between supervised and self-
supervised learning. Since these self-supervised methods, do not need labelled data in pretraining, we could

benefit from the numerous unlabelled data in real world, as collecting unlabelled dataset is not difficult in
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plenty of applications. Our downstream task results obtained using COCO 2014 with almost 82,000 unla-
belled images for pretraining using BYOL are comparable with the results using ImageNet initial weights
trained on 1.3 million labelled data in a supervised way.

As mentioned earlier, we are utilising COCO 2014 dataset and BYOL algorithm which is a self-supervised
method, for learning a rich representation of unlabeled images for dense prediction tasks like instance seg-
mentation and then background removing which was done by applying a post processing to instance seg-
mentation. It is worth mentioning that before solving background removing problem, at first three different
weights, namely, random initial weights, ImageNet supervised initial weights and pretrained weights ob-
tained from BYOL algorithm are used to initialise Mask R-CNN on COCO dataset 2017 and then instance
segmentation problem is solved using these three initial weights. Afterwards, for each model a certain
type of post-processing is applied to solve our downstream task or background removal. Obtained results
prove the effectiveness of self-supervised pretraining using BYOL algorithm in instance segmentation and
background removing problems.

Instance segmentation and background removal combined with self-supervised learning to obtain initial
weights is so innovative. It outperforms Mask R-CNN using random initial weights and can compete with
Mask R-CNN using ImageNet initial weights obtained from training on almost 1.3 million labelled images.
In addition, we made minor changes in the pretraining self-supervised model (BYOL) middle layers to
reduce the computations and speed up our training and convergence. Furthermore, in Mask R-CNN paper
He et al. (2017), the final goal is instance segmentation. Therefore, to add background removal of still
images, we added a post-processing to Mask R-CNN to remove the background or detect foreground in input
images. In general, self-supervised learning is a technique that pretrains the network to learn visual features
and then the pretrained network can be fine-tuned using the annotated data. In the following subsections,
self-supervised pretraining using BYOL and then instance segmentation and background removal using

Mask R-CNN are explained in details. To train the models, NVIDIA Tesla K80 is used.
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Figure 3.1: The framework of self-supervised instance segmentation and background removal

3.2 BYOL algorithm for pretraining

3.2.1 A brief about BYOL algorithm

BYOL is an algorithm based on contrastive learning that does not require negative samples which is the
foundation of some other methods like MoCo and SimCLR. This factor causes BYOL to be computationally
more efficient compared to other methods like SimCLR. Furthermore, this algorithm outperforms other
methods in terms of efficiency. In the following chart, we show the performance of this method compared
to other existing algorithms:

In Figure 3.2, X axis represents the number of the parameters of each model and Y axis shows accuracy
during on the linear evaluation on ImageNet dataset using ResNet-50 as backbone. A linear evaluation
is a standard evaluation protocol to train a linear classifier on top of (frozen) representations learnt by
self-supervised approaches. As shown, pretrained weights using BYOL algorithm, despite having fewer
parameters than other algorithms like MoCo and AMDIM, could reach a considerable accuracy so that the
difference between this algorithm and supervised one is only 2%. Accordingly, this method is utilised for

pretraining visual features in this thesis. The general schematic of the BYOL algorithm is shown in figure
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Figure 3.2: Demonstration of accuracy of BYOL compared with supervised and other unsupervised models
Grill et al. (2020)

3.3. BYOL minimizes a similarity loss between gp(zp) and s¢(2;), where ¢ is the trained weights, ¢ is an
exponential moving average of ¢ and s, means stop-gradient. Stop gradient is an operation that prevents the
models from getting trivial solutions. At the end of training, only fjy is retained for next steps, and yy is used
as the image representation only used in pretraining Grill et al. (2020).

Before diving into the mathematical aspect of figure 3.3, let’s consider an example. Assume that x is the
input image of a cat. T and T are two different augmented views of this cat. For instance, random cropping
is applied to the first view and gaussian blurring to the second view. The goal is to predict the second view’s
features using the first view’s features. Indeed, they both have to have the same representations as both
views are generated from one image. Hence, if the first view shows the representations of a cat, the second

view has to follow and shows similar representations. Once the prediction of the second view is different
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than first view, the online and target networks’ parameters are updated.
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Figure 3.3: BYOL'’s architecture Grill et al. (2020)

BYOL'’s objective is to learn a representation 3y which can be utilsed later for downstream tasks. BYOL
uses two online and target neural networks to learn. The online network is a set of weights and consists of
three stages: an encoder fy, a projector gy and a predictor gy as shown in figure 3.3. The target network has
the identical architecture as the online network, with a different set of weights. The target network provides
the regression targets to train the online network, and its parameters are an exponential moving average of
the online parameters . Indeed, given a target decay rate 7 € [0, 1], after each training step we perform the
following update:

E+—1E(1—1)0 9)

Given a set of images D, an image x is sampled uniformly from D, BYOL produces two augmented views
v=t(x) and v’ = t’(x) from x by applying respectively image augmentations t ~ T and t’ ~ T’. From the first
augmented view v, the online network outputs a representation yg = fy(v) and a projection zg = gg(y).
The target network outputs y; = fy;(v") and the target projection z’¢ = g¢(y’) from the second augmented

view v’. Finally, we obtain a prediction gy(29) of 2/¢ and I - normalize both gy(2¢) and z; to obtain

— __qelzg) =t A
o (20) = ayzgyy, W04 2 == 2¢/ ’

zé ) Grill et al. (2020). The loss function used is mean squared error
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which is the difference between 12 normalized online and target networks’ representations.

<Q¢9 (20) 722>

/
lao o)l - | =2,

LEYOL 2 |Igg (z9) — 2|5 =2 — 2 (10)

3.2.2 Image augmentations

BYOL’s image augmentations are similar to SImCLR Chen et al. (2020). SimCLR is a framework for
contrastive learning of visual representations. It learns representations by maximizing agreement between
differently augmented views of the same data example through a contrastive loss in the latent space. Ini-
tially, a randomly selected patch is resized to 224%224. Then a random horizontal flip followed by a color
distortion are applied. In the end, Gaussian blurring and solarization (this is optional) are applied to the
chosen patch. A detailed explanation is in the following. Choosing a right augmentation is of importance
in contrastive learning. For example, SimCLR does not perform properly once we remove color distortion
from image augmentations. As an explanation, SImCLR demonstrates that crops of the same image usually
share their colour histograms Chen et al. (2020). Therefore, when a contrastive task only depends on arbi-
trary crops as image augmentations, it can be solved mainly by focusing on colour histograms alone. Hence,
the representation only keeps colour histograms information. To solve this , SimCLR adds colour distortion
to its image augmentations. Instead, BYOL keeps any information seized by the target representation in its
online network to enhance its predictions. Thus, even if augmented views of an identical image share the
identical colour histogram, BYOL is still incentivized to maintain other features in its representation. Due
to that, we believe BYOL is more potent for the selection of image augmentations than contrastive methods.

For self-supervised training, BYOL utilises following image augmentations Grill et al. (2020):

* Random cropping: a random patch of the image, with an area of 8% to 100% is chosen and then

resized to 224*224 which is our target size;
 Left-right flip: it is a feature that turns an image horizontal or vertical;

* Colour jittering: the brightness, contrast and saturation of the image are changed or shifted uniformly

and they are applied to the chosen patches.;

36



* Colour dropping: A conversion to greyscale is applied, namely, for a pixel with colour intensity (r,g,b),

the greyscale intensity is computed as 0.2989r + 0.5870g + 0.1140b;

* Gaussian blurring: A kernel of 23*23 with a standard deviation uniformly sampled over [0.1,2.0] is

utilised.

* Solarization: a color transformation is used to invert all pixels above a threshold value of magnitude.

3.2.3 Demonstration of BYOL workflow
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Figure 3.4: BYOL example and the two augmented views for an arbitrary input image He et al. (2017)

Figure 3.4 represents the visual architecture of the BYOL method. As explained, it does not utilize
negative samples; instead, it directly lowers the similarity of feature representation of the identical picture
under various augmentation. Negative pairs are pictures from different batches unlike positive pairs. BYOL
requires smaller batch sizes which cause fewer computations. For simplicity, we can call the online network
student, and the target network teacher. The teacher model is updated only through an exponential moving

average from the student’s parameters.

As mentioned earlier, an exponentially moving average of the online network’s parameters is used for the
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target network. The network consists of an encoder (Resnet50) and a projector (dense layer with a ReLU).
The online network has a predictor in addition which is the same as the projector. The architectures are
shared between these two networks but not the weights. The output of the encoder module is used as the final
representation in the downstream task. A single training iteration includes generating two augmentations
of one image, sending them through the two networks to acquire the projections, and using the prediction
module in the online (student) network to obtain the predicted projection of the target (teacher) network.
The online network is updated by gradient descent, and the target network is updated by an exponential

moving average.

3.2.4 Architecture used for pretraining

A 50-layer convolutional neural network, ResNet-50, He, Zhang, Ren, and Sun (2016), is used as our
base parametric encoders (backbone) fp and f¢, as shown in figure 3.3. Followed by this encoder (back-
bone), we have a projection head which is a multi-layer perceptron (MLP). MLP is composed of one or more
layers of neurons. Data is provided to the input layer; there may be one or more hidden layers providing
levels of abstraction. Predictions are made on the output layer, also named the visible layer. The linear
output of this MLP has 4096 dimensions. Therefore, this layer maps the output of adaptive average pooling
layer in backbone (ResNet-50) that has 2048 to 4096 dimensions. Afterwards, the projection head module
uses a ReLLU activation function layer and another linear layer to map 4096 features to 256.

According to our experiments on COCO 2014 in pre-training using BYOL algorithm, we found that if
we reduce the number of middle layer neurons in MLP from 4096 to 2048, the defined objective function for
BYOL algorithm converges faster that is our goal. After the projection head with 2048 linear neurons, we
design a prediction head module whose number of linear neurons is set to 256 based on experiments. This
prediction head module has exactly the same architecture as projection head. In addition, in our pretrain-
ing with BYOL, instead of adopting random initial weights, we employed ImageNet initial weights which

decreases the convergence time as well as improves the final results in instance segmentation.

3.3 Downstream task: instance segmentation

At first, a quick explanation of Mask R-CNN is provided and then the implementation is described:
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3.3.1 Mask R-CNN

Mask R-CNN is a state-of-the-art model for instance segmentation which extends Faster R-CNN by
adding a similar unit to bounding box recognition branch S. Ren et al. (2015) for predicting segmentation

masks. Since Mask R-CNN is a newer version of Faster R-CNN, we will first take a look at Faster R-CNN.

Rol pooling

proposals

Region Proposal Network

feature map

4
Figure 3.5: System flow in Faster R-CNN S. Ren et al. (2015)

As shown in figure 3.5, the system, called Faster RCNN, consists of two phases. The first phase is a
deep convolutional network generating proposals, and the second phase is a Fast RCNN Girshick (2015)
making use of these proposed regions. The following gives a detailed description of the two phases.

Phase 1: The first phase as shown in figure 3.6, is a deep convolutional network with Region Proposal

Network (RPN), which proposes regions of interest (ROI) from the feature maps output by the convolutional
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neural network. The input image goes into a CNN, called backbone, which is usually a pretrained network
such as ResNet50. Figure 3.6 shows that the RPN utilizes a sliding window strategy to estimate anchor
boxes from the feature maps. At each spatial window, multiple anchor boxes are of pre-calculated scales
and aspect ratios, allowing the model to detect objects of a broad range of scales and aspect ratios in the
image. Then we will have a binary classification (cls1) showing whether the anchor has an object or not (and
categorize into classes foreground and background) and then a bounding box regression (bbox1) will refine
bounding boxes. If the anchor has highest intersection over union (IOU) with respect to ground truth, it is
categorized as positive label which is foreground class. At each sliding window area, various proposals (max
k) are anticipated corresponding to anchor boxes. So, the reg layer has 4k results containing the locations of
k boxes, and the classification layer shows 2k scores that calculate likelihood of existence of an object for

every region of proposal.

l 2k scores ‘ I 4k coordinates ‘ = k anchor boxes
cls layer ‘ ’ reg layer .
256-d
t intermediate layer
o |
-

shiding window

conv feature map

Figure 3.6: Region proposal network S. Ren et al. (2015)

In Faster R-CNN there are two losses that are bbox binary classification loss, L.;s and bbox regression
loss, Lypyoz- Binary classification loss is a loss function that is used in binary classification tasks that answer

a question with only two choices such as yes or no. The bounding box loss is a loss function that provides
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the error between the predicted and ground truth bounding box.

Hence, at this stage, there are two losses i.e. binary classification loss, Lcls1 and bounding box regres-
sion loss, Lbbox]1.

The top (positive) anchors output by the region proposal network (RPN), called proposals or ROI are

handed to the following phase.
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Figure 3.7: Representation of the two phases of Mask R-CNN He et al. (2017)

Phase 2: The subsequent stage is basically Fast R-CNN in addition to ROI pooling layer, separates
feature maps from every ROI, and performs classification and bounding box regression. The ROI pooling
layer changes over the segment of feature map corresponding to every (variable estimated) ROI into fixed
size to be sent into a fully connected layer. For instance, as shown in figure 3.8, for a 8x8 feature map, the
ROl is 7x5 in the base left corner, and the ROI pooling layer sends out a proper size 2x2 feature map. Then,

at that point, the accompanying activities would be performed:

41



¢ Divide the ROI into 2*2;

* Perform max-pooling on each subsection;

pooking sections

input reglon proposal

max values in sections

Figure 3.8: Region projection and pooling section

Then the softmax classification of objects such as vehicles, people, etc. is performed by fc layer and
at the second stage, a multi-task loss on each sampled Rol is defined i.e., object classification loss (into
multiple classes), Lcls2, and bbox regression loss, Lbbox2.

Mask R-CNN employs the same first phase as the Faster R-CNN but its second phase comprises binary
mask prediction as well as class score and bounding box as shown in figure 3.7. The mask uses positive
ROIs and predicts mask utilising fully convolutional network (FCN). In other words, Mask R-CNN is Faster

R-CNN plus FCN as shown in figure 3.9.
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Figure 3.9: Mask R-CNN architecture He et al. (2017)

The loss function of Mask R-CNN is defined as:

L = Lcls + Lbbox + Lmask (11

Suppose we train for an Rol with a ground-truth class g and a bounding-box regression target r. Then p
is the output of our softmax sibling layer, which is a probability distribution on the K data classes, including

the background class. We represent the output of the regressor sibling layer as
th = <t§,t'§,t'fu,t’,j) (12)
a tuple of bounding box for each class k. As a result, our multi-task loss is given by:
L(p.g,t%,r) = Las(p, 9) + Alg = 1] Lioc (9, 7) (13)

with,

Lcls(pa g) = —1ngg (14)

where p, is the probability of class g. In equation (12), Lo (t9,7) represents a smooth L; loss which is
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defined as:

Lo (t9,1) = Z smoothy, (t/ —r;) (15)
e{z,y,w,h}
where
0.5z lz| <1
smoothr, (z) = (16)

|| — 0.5 otherwise

Furthermore, X indicates a hyperparameter (often assigned to 1 in He et al. (2017)) that specifies the relative
weight of the regression loss vs. the classification loss to the overall loss.

The Lcls (Lcls1+Lcls2) is the classification loss, which tells how correct the predictions are to the right
class, and Lbbox (Lbbox1+Lbbox2) is the bounding box loss, which tells how accurate the model is at
localization, as discussed above.

In Mask R-CNN, there is also Lmask, as well as two mentioned losses, for mask prediction, which is
calculated by taking the binary cross-entropy between the predicted mask and the ground truth. This loss
penalizes wrong per-pixel binary classifications. Mask R-CNN assigns a binary mask for each class for each
of the Rols, and the mask loss for a particular Rol is calculated based only on the mask corresponding to its
true class, which helps prevent the mask loss from being affected by class predictions.

In total there are five losses used in Mask R-CNN:

RPN-class-loss, Lcls1: RPN (bbox) anchor binary classifier loss;

RPN-bbox-loss, Lbbox1: RPN bbox regression loss;
¢ fastrcnn-class-loss, Lcls2: loss for the classifier head of Mask R-CNN.
* fastrcnn-bbox-loss, Lbbox2: loss for Mask R-CNN bounding box refinement.

* maskrcnn-mask-loss, Lmask: mask binary cross-entropy loss for the mask head

3.3.2 Training our model for instance segmentation

Mask R-CNN is used to conduct our instance segmentation downstream task. To train Mask R-CNN, we

first import all required libraries and datatset. 20,000 images are used to train our model, 5,000 for validation
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and 5,000 for test. afterwards, we need to transfer our initial weights obtained in our pre-training section. In
our implementation, we used Detectron 2 which is FAIR’s (Facebook Al research) next-generation platform
for object detection and segmentation. As discussed, we have three different initial weights to start our
training and in the first, initial weights acquired by self supervised pre-training are used. then, the results are
compared to the same models with random initial weights and ImageNet initial weights. Using the training
dataset, the weights are being fine-tuned. The training for downstream task was conducted on Google Colab

using NVIDIA Tesla K80.

3.3.3 Background removal

Using the masks generated by instance segmentation, we can apply a post-processing to remove the
background of any input images. In this research we assume that images have one instance. First we read
the image and then predict the instance using DefaultPredictor. DefaultPredictor Create a simple predictor
with the given configuration that runs on a single input image to predict the instance. Then we create a mask
from the predicted output on image and remove the background of object by checking the value of every
pixel and if the pixel does not belong to the mask, that pixel is background and its value is set to zero. The

following is the pseudo code for the background removal:
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Algorithm 1 Background removal
Result: Background removed images

Input : Load instance segmentation model to make mask prediction
Im load an image to remove its background

Set training data-set path

predictor = DefaultPredictor(cfg) Create predictor (model for inference)
mask = outputs[’instances”].pred_masks predict the masks in the image

1 = len(mask[0][0]) number of the rows of the image

j = len(mask[0]) number of the columns of the image
test = im (mask[0]) store the original image in a variable

while i,j are less than the number of rows and columns do

if not mask then
| test[jl,il] = 255; it is background

else
| itis foreground;

end

end

Output : Background removed image

3.4 Summary

The detailed explanation of our method for instance segmentation and background removal is given in
this chapter. This system is composed of three parts, self-supervised pre-training, instance segmentation
using Mask R-CNN and background removal. The pretrainig is to learn the knowledge needed for the
downstream task by solving the pretext tasks and then we use the backbone (weights) to better conduct our
instance segmentation. Then the result of instance segmentation which is pixel-wise localisation of instances
is used for background removal and Finally, the post-processing was added to remove the background from

input images using instance segmentation mask predictions. In addition, the proposed method which is
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instance segmentation followed by background removal using BYOL self-supervised initial weights is com-
pared with two other existing methods, namely, instance segmentation and background removal once using
ImageNet initial weights and the other time using random initial weights.

In conclusion, the proposed method designed based on self-supervised learning segments instances pre-

cisely and we obtained very good results in instance segmentation and background removal.
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Chapter 4

Evaluation

4.1 Introduction

The proposed framework for instance segmentation and background removal has been explicated in
detail in the previous chapter. It will be trained and tested with commonly used dataset, namely COCO 2017,
for its performance evaluation in this chapter. As discussed, instance segmentation using a self-supervised
method called BYOL is implemented and compared to two other existing methods. The details concerning
conducted experiments in self-supervised pretraining step using BYOL algorithm to be trained and tested
with COCO 2014 dataset are elaborated. The experimental work is divided into two main steps which are:
1. Self-supervised weights pretraining using BYOL algorithm on COCO 2014 train dataset. 2. Transferring
acquired weights from the last step to instance segmentation (downstream task) and using COCO 2017
dataset to train and test, followed by background removal. All training and testing were performed on

NVIDIA TESLA K80.

4.2 Dataset

To conduct our experiments in the thesis both versions of COCO dataset are used. For self-supervised
pretraining, 2014 version of COCO is used that contains 82,783 training images. For the downstream task
which is instance segmentation followed by background removal, 20k images are randomly selected from

COCO dataset 2017 for training. Then, 5k images are selected as validation data and S5k as test data.
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As we know, COCO dataset contains 81 different classes labelled both box-wise and pixel-wise and are
mostly utilised for dense prediction problems such as object detection and instance segmentation. Table 4.1

represents the distribution of intances in validation data:

category | #instances | category | #instances | category | #instances
K I | I |: I
person | 10777 | bicycle | 314 | car | 1918 |
motorcycle | 367 | airplane | 143 | bus | 283 |
train | 190 | truck | 414 | boat | 424 |
traffic light | 634 | fire hydrant | 101 | stop sign | 75 |
parking meter | 60 | bench | 411 | bird | 427 |
cat | 202 | dog | 218 | horse | 272 |
sheep | 354 | cow | 372 | elephant | 252 |
bear | 71 | zebra | 266 | giraffe | 232 |
backpack | 371 | umbrella | 407 | handbag | 540 |
tie | 252 | suitcase | 299 | frisbee | 115 |
skis | 241 | snowboard | 69 | sports ball | 260 |
kite | 327 | baseball bat | 145 | baseball gl.. | 148 |
skateboard | 179 | surfboard | 267 | tennis racket | 225 |
bottle | 1013 | wine glass | 341 | cup | 895 |
fork | 215 | knife | 325 | spoon | 253 |
bowl | 623 | banana | 370 | apple | 236 |
sandwich | 177 | orange | 285 | broccoli | 312 |
carrot | 365 | hot dog | 125 | pizza | 284 |
donut | 328 | cake | 310 | chair | 1771 |
couch | 261 | potted plant | 342 | bed | 163 |
dining table | 695 | toilet | 179 | tv | 288 |
laptop | 231 | mouse | 106 | remote | 283 |
keyboard | 153 | cell phone | 262 | microwave | 55 |
oven | 143 | toaster | 9 | sink | 225 |
refrigerator | 126 | book | 1129 | clock | 267 |
vase | 274 | scissors | 36 | teddy bear | 190 |
hair drier | 11 | toothbrush | 57 | | |
total | 36335 [ | | | [

Table 4.1: Self-supervised learning methods accuracy on different computer vision tasks Jing and Tian
(2020)

4.3 Evaluation metrics

This section describes the evaluation metrics used to compare the performances of different models.
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4.3.1 Intersection over union (IoU)

Intersection over union (IoU) is a metric that measures how perfectly a prediction, such as a mask,

overlays with the ground truth. More specifically, it is described as:

Tol — area (predi.cti.on N ground truth ) 17
area (prediction U ground truth)

A perfect overlap gives IoU = 1, and if there is no overlap IoU = 0. Figure 4.1 below depicts a graphical

illustration of the concept of Intersection over Union (IoU).

Prediction

Ground-truth

Figure 4.1: The left subfigure is the area of the intersection and the right subfigure is the area of union

4.3.2 Average precision

One standard metric used to assess instance segmentation tasks is average precision (AP) for some IoU
threshold. AP is defined based on two metrics, namely precision and recall. Employing the subsequent

denotations:

* TP = true positive (the number of correctly predicted objects)
» FP = false positive (the number of predictions that incorrectly predicted the presence of an object)
* FN = false negative (the number of missed objects)

the precision and recall are defined as:

50



TP

Il = ———— 1
reca TP+ N (18)
TP
precision = TP+ FP (19)

where a prediction is usually categorized as a true positive (TP) if the IoU between the prediction and a
ground truth is bigger than some threshold. Otherwise, it is categorized as FP. So the average precision is

calculated as:

1
AP — / p(r)dr 20)
0

where p(r) is the precision at recall r. Estimating the AP over some interpolated points for every recall value

is also common. The average precision with N interpolation points is:

1
AP = N Z Dinterp (T‘) 210
r€{0.0,...,1.0}

where Pinterp(r) is the maximum precision for recalls greater than r, i.e. Everingham, Van Gool, Williams,
Winn, and Zisserman (2010),

Pinterp(r) = max p(7) (22)

>
4.3.3 Cosine similarity

Cosine similarity is a measure of similarity that can be used to compare documents or, say, give a ranking
of documents with respect to a given vector of query words. It is defined as the division between the dot
product of two vectors and the product of the euclidean norms or magnitude of each vector. Let A and B be

two vectors for comparison. Using the cosine measure as a similarity function, we have

A-B

similarity(A, B) = cos(f) = W

(23)

where || A|| is the Euclidean norm of vector A = (A , Ay, A3, ..., A},) defined as \/A% + A3+ + A2

and the same definition applies to || B||.
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4.4 Pretraining using BYOL algorithm

To learn visual operators that are useful and transferable to the downstream task like instance segmen-
tation and then background removal, BYOL algorithm is selected and pre-trained on COCO 2014 dataset.
As mentioned ealier, BYOL algorithm has Siamese architecture so that only one side of this architecture
weights are updated by back propagation algorithm. The architecture of this algorithm is totally symmetric
and the only difference is in stop-gradient operator which applies to one part of the model. To run our
expretiments, ResNet50 is utilised as backbone in BYOL model. As we know, there are various types of
ResNet such as ResNet18, ResNet101, etc. Altough ResNet50 is more preferred as it has more complex
patterns learning capacity and less computational resources and it becomes a standard in contrastive visual
operator learning. As mentioned earlier, we use this model as backbone in our experiments. Following
this backbone, we have projection head which is a MLP whose linear layer output has dimensions of 4096.
Hence, this layer maps the output of Adaptive Average Pooling in ResNet50 backbone that has 2048 layers
to a vector with 4096 numbers. This linear layer is followed by a projection head module using a ReLU
activation function layer and eventually another linear layer is used to map the 4096 dimensional vector to
256 dimension space. According to the experiments conducted in pretraining step using BYOL algorithm,
we have found experimentally that if we reduce the number of middle layer neurons from 4096 to 2048,
the objective function defined for the BYOL algorithm converges faster, which is desirable. Following the
projection head module, the BYOL algorithm has a prediction head module that has exactly the same ar-
chitecture as projection head. For this module, based on our experimental tests, the number of linear layers
is set to 2048 and 256, respectively. It should be noted that at each time of pre-training, after making any
modifications like changing the number of linear layers in the BYOL architecture, we have trained the re-
sulting model on COCO2014 dataset and the mode in which the model could minimize the loss function
the best is selected as the final model whose weights can be used in our downstream task. Furthermore, in
self-supervised pretraining, batch size is set at 64 and for 250k and 350k iterations, we have trained this
model to choose the best mode where the cost function is minimized. Figure 4.2 shows the changes in the
cost function of the BYOL algorithm with respect to the number of iterations of each experiment:

According to figure 4.2, we can see that the dark orange model has been able to minimize the cost

function related to the BYOL algorithm, which is actually a cosine similarity function. The hyperparameters
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Figure 4.2: Loss function changes over iteration

of the model whose cost function is marked in dark orange color are as follows: 2048 and 256 neurons are
placed in the linear layers of the projection head module, respectively. Projection head is shown in figure
3.3.

Figure 4.3 below shows how the learning rate changes with respect to the number of iterations:

As shown in figure 4.3, we first set the learning rate to large values and then after a little while of training
the model, we decrease the learning rate by using a learning rate schedule in which the learning rate changes
over time (training epochs). We have set other hyperparameters such as weight decay and gradient clip to
le-4 and le-1 respectively. We have used the PyTorch and Pytorch-Lightning frameworks to implement the
mentioned items. Pytorch-Lightning is a wrapper written on PyTorch that makes training self-supervised
learning models very simple. Also, this framework is very suitable for distributed training or training using
hardware equipped with TPU. In the following sections, we carry out the second stage of the work and use

the obtained weights to solve the instance segmentation problem.
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Figure 4.3: Learning rate changes over iteration

4.5 Mask R-CNN hyperparameters fine-tuning

For Mask R-CNN we constructed a model using ResNet50-FPN backbone. The model is trained for
100000 iterations with 8 images per batch and by experimenting with different values of learning rates in
our work, Ir=0.03 is chosen and we set two step decays in which the learning rate changes over time (training
epochs) at 40,000 and 80,000. Learning rate schedule seeks to adjust the learning rate during training by
reducing the learning rate according to a pre-defined schedule. In other words, we use adaptive learning
rates instead of a constant learning rate. The dataloader number of workers is set to 4. Num_workers tell
the data loader how many sub-processes to use for data loading. If the num_worker is zero, the GPU has
to wait for the CPU to load data. Theoretically, having greater num_workers results in more efficiently
loading data in the CPU and less wait time for GPU. For the training, we firstly use initial weights generated
by BYOL self-supervised algorithm and then compare it with random initial weights and ImageNet initial

weights results in the end.
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4.6 Testing results

As mentioned earlier, the results are compared in three different conditions. In the first subsection, four
losses , namely, bounding box loss, classification loss, mask loss and total loss for three different methods
are shown. In the following subsection, the average precision (AP) of all three methods are calculated and
shown. Finally, a visual demonstration of background removal using these three methods is provided and a
numerical and visual comparison were made between these methods.

In the following charts, there are two curves shown in each subfigure. The faded curves show the actual
values, and the solid lines represent the same curve after smoothing using an exponential moving average.

The function that carries out this smoothing is defined as:

Vi= Vi1 4+ (1 =)0 (24)

where V4 is the value of moving average at epoch t, 3 is the smoothing factor which is set to 0.99 and 6, is

the value at epoch t.

4.6.1 Loss charts

Loss is the penalty for a poor prediction. It is a number indicating how bad the model’s prediction was on
a single example. If the model’s prediction is ideal, the loss is zero; otherwise, the loss is greater. Training
a model aims to discover a set of weights and biases that have a low loss. The first results, figure 4.4, are
representing the losses of instance segmentation using BYOL self-supervised method. A loss function is a
measurement of how satisfactorily a prediction model is able to predict the desired outcome. As mentioned,
the model is trained on 20,000 images of COCO dataset 2017. In each series of experiments, four losses

related to MASK R-CNN which are loss_box, loss_cls, loss_mask and total loss are shown:
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Figure 4.4: These four charts represent losses using BYOL algorithm initial weights to train our model: a)
Top left sub_figure represents bounding box loss of training over iteration. b) Top right sub_figure represents
classification loss of our training over iteration. c) Lower left sub_figure represents mask loss of our training
over iteration. d) Lower right sub_figure represents total loss which results from the three other losses.

In figure 4.4, it is seen that in all subfigures, the loss curves are trending downward which implies that
the model is performing well.
In figure 4.5, we depict the same charts which are bounding box loss, classification loss, mask loss and

total loss using fully supervised ImageNet initial weights.
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Figure 4.5: These four charts represent losses using ImageNet initial weights to train our model. a) Top
left sub_figure represents bounding box loss of training over iteration. b) Top right sub_figure represents
classification loss of our training over iteration. c) Lower left sub_figure represents mask loss of our training
over iteration. d) Lower right sub_figure represents total loss which results from the other three shown losses.

In figure 4.5, we observe that the curves are converging. the final value of each loss curve is shown in

table 4.2.

The final experiment was done using random initial weights on the same 20,000 images of COCO 2017.
Like before, there are 4 losses to be shown which are bounding box loss, classification loss, mask loss and

total loss. In figure 4.6, these charts are presented:
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Figure 4.6: These four charts represent losses using random initial weights to train our model. a) Top
left sub_figure represents bounding box loss of training over iteration. b) Top right sub_figure represents
classification loss of our training over iteration. c) Lower left sub_figure represents mask loss of our training
over iteration. d) Lower right sub_figure represents total loss which results from the addition of three shown

losses.

The corresponding losses to our training for instance segmentation using three different initial weights

are depicted in table 4.2 for each of the methods. The total loss when we are using random initial weights

to train our model with is 0.9601 which shows the effectiveness of not using random initial weights in our

training for instance segmentation.

Method Loss BB | Loss Cls | Loss Mask | Total loss
ImageNet weights | 0.2316 0.2572 0.2686 0.7574
BYOL weights 0.2456 0.2369 0.252 0.7345
From scratch 0.2934 0.3296 0.337 0.9601

Table 4.2: Final loss values of three methods for instance segmentation after 100 epochs.

58



As it can be seen, our proposed framework for instance segmentation using BYOL initial weights out-
performs the instance segmentation using ImageNet initial weights by 0.0229 in total loss. Moreover, we
are able to see the effectiveness of transfer learning in a self-supervised way as we achieve lower total loss
value using BYOL algorithm compared to the two method using ImageNet initial weights despite using way

lower number of images for pretraining.

4.6.2 Average precision (AP)

In table 4.3, the Average Precision (AP) of each of the models is shown for comparison. We evaluate
with instance segmentation using Mask R-CNN architecture He et al. (2017), then fine-tune with 20,000
images of COCO 2017 and report the results with 5,000 images of test COCO 2017 using the standard AP,
AP50, AP75, AP,, AP,, and AP, metrics.

Method Backbone AP AP50 | AP75 AP, AP, AP,

ImageNet weights | ResNet-50 FPN | 27.62 | 43.764 | 30.152 | 13.366 | 28.90 | 36.98

BYOL weights | ResNet-50 FPN | 28.486 | 44.474 | 31.094 | 10.03 | 30.98 | 38.573

From scratch ResNet-50 FPN | 13.56 | 23.496 | 14.133 | 4.774 | 13.96 | 19.254

Table 4.3: Instance segmentation benchmark results.

Furthermore, a comparison between APs in instance segmentation for different items is presented in
figure 4.7. It represents how much better BYOL performs in segmenting ten classes out of all eighty classes

defined by COCO dataset.
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Figure 4.7: APs of ten classes compared between our proposed method and two other existing methods

As can be seen in Figure 4.7, in these classes, for example, classes of giraffe, cat and person, the instance
segmentation network with initial weights of self-supervised learning have a better performance. This is
because the model has learned more distinctive features than the other two weighting methods because of
the contrastive loss. Although the supervised initial weights based on the ImageNet dataset work well, in

self-supervised learning, the model has learned better discriminator features by exploiting unlabeled data.

4.6.3 False negative, false positive and accuracy

In addition to loss charts, false negative and false positive as well as the accuracy of our proposed method
is compared to two other existing methods. In this experiment, the model is trained on the same dataset and
for 50,000 iterations. The batch size is set to 8 and the data loader number of workers is set to 4. Learning
rate is 0.03 like before and we set one step decay at 32,000. In the following parts, we will first compare
false negative charts, then false positive charts and finally accuracy charts of these three methods. Figure

4.8 represents false negative charts for the three methods:
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(a) False negative BYOL (b) False negative ImageNet (c) Falase negative without initial
weight

Figure 4.8: These three charts represent false negative rate of a) instance segmentation using BYOL self
supervised weights b) instance segmentation using ImageNet fully supervised weights c) instance segemn-
tation using random initial weights.

As it is shown in figure 4.9, the rate of false negatives decrease over time and our proposed method
achieves comparable results compared to the method ImageNet weights are used and much better results

than instance segmentation using random initial weights.

10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k (8] 10k 20k 30k 40k

(a) False positive BYOL (b) False positive ImageNet (c) False positive without initial
weight

Figure 4.9: These three charts represent false positive rate of a) instance segmentation using BYOL self
supervised weights b) instance segmentation using ImageNet fully supervised weights c) instance segemn-
tation using random initial weights.

The results in figure 4.10 represent the performance of our proposed method and getting almost the same
results as instance segmentation using ImageNet initial weights despite having much fewer labelled data.
The results while not using initial weights or using random initial weights show the importance of initial

weights in our final results.
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Figure 4.10: These three charts represent accuracy of a) instance segmentation using BYOL self supervised
weights b) instance segmentation using ImageNet fully supervised weights c) instance segmentation using
random initial weights.

According to the experimental results, the accuracy obtained from BYOL initial weights and that from

ImageNet initial weights are so close.

4.6.4 Background removal

After instance segmentation, our final goal is background removal using a post-processing process as
explained in 3.3.3. In this section we are applying our model to different images with different background
complexity and compare the results using three different methods. 1) Background removal using instance
segmentation with our initial weights obtained from BYOL algorithm. 2) Background removal using in-
stance segmentation with ImageNet initial weights. 3) Background removal using instance segmentation
with random initial weights.

Figure 4.11 depicts the background removed images using our method with comparison to ground truth:
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Ground truth

Figure 4.11: The results of the proposed method are shown in the middle row. The upper photos are the
original ones and the lower photos are the ground truth pictures.

The second series of results represent background removing using ImageNet initial weights along with

ground truth for comparison as shown in figure 4.12:
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Ground truth

Figure 4.12: The results of the background removal using ImageNet initial weights are shown in the middle
row. The upper photos are the original ones and the lower photos are the ground truth pictures.

The third and last series of the pictures are obtained by using random initial weights for training and

they are compared with ground truth as shown is figure 4.13:
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4

Ground truth

Figure 4.13: The results of the background removal using random initial weights are shown in the middle
row. The upper photos are the original ones and the lower photos are the ground truth pictures.

In order to compare these methods on the same images, we now apply the models on a number of images
and place them next to each other as shown in figure 4.14. This comparison shows the effectiveness of using
BYOL initial weights in instance segmentation and background removal in practice which is because of the
more distinctive features learned by the model compared to the two other methods. In addition to the visual
comparison, we also measure the similarity of the results using cosine similarity. For every result obtained
from each method, cosine similarity is measured using the result and ground truth from the same image. The
output is a value in percentage meaning that the closer the obtained value measure is to 100%, the better the
model performed the background removal. We compute this measure on 63 images and obtain the average
score as shown in table 4.4 for each of three methods: Background removal using BYOL initial weights,

background removal using ImageNet initial weights and Background removal using random initial weights:
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Figure 4.14: Comparison of three methods for background removal, Column (a) represents original images
in each row, Column (b) represents background removal using BYOL initial weights, Column (c) represents
background removal using ImageNet initial weights, Column (D) represents background removal using
random initial weights and finally, column (e) represents ground truth for each row.
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Method | BYOL | ImageNet | Random

Average | 91.83% | 89.11% | 83.29%

Table 4.4: The average percentage of the results by calculating cosine similarity for 72 images.

According to the obtained average score, our proposed method outweighs background removal using
ImageNet initial weights and that using random initial weights methods by 2.82% and 8.54%, respectively.

Training our proposed model using BYOL initial weights on Google colab took 38 hours for 100,000 it-
erations. Training the model with ImageNet initial weights took 36.5 hours approximately and with random
initial weights took almost 37 hours for the same number of iterations. The greatest privilege that our pro-
posed method has over ImageNet is that in our method we do not need labelled data in our pretraining phase
which is way more cost effective and less time consuming. In other words, ImageNet uses about 1,000,000
labelled images to generate the weights used in computer vision tasks such as instance segmentation. In our
proposed method, we only use 82,000 unlabelled images to generate the weights for instance segmentation

and still obtain comparable results.

4.7 Summary

The proposed system is evaluated with dataset COCO 2017. It performs very well thanks to our self-
supervised initial weights using modified BYOL. To test the consistency of the proposed system, the exper-
iments have been repeated three times, i.e., training and testing the proposed system from initial state. The
losses and average precision of the test results obtained from the three experiments are very similar. More-
over, our proposed framework is compared to two other cutting edge methods using same amount of training
data and the results show that our proposed method can perform even better than those trained supervisedly.

To test the generalizability of the proposed system, the model is applied to 63 images of different com-
plexity to remove their background. The obtained visual and numerical results represent that our method
handles most of the conditions. The results of the proposed system are compared with those of the two CNN
systems reported in recent years. The proposed system yields good results under the lowest computation
complexity. It has: very good average precision, i.e., 28.486; the highest accuracy in cosine similarity com-

pared with ground truth in background removal, i.e., 91.83%; and the best visual results as shown in figure
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4.14. The high performance of the proposed system owes to the efficient self-supervised initial weights and
the modifications made on the mid layers of the CNN in pretraining. The test results also confirm that the

self-supervised initial weights efficiently contribute to the high performance.
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Chapter 5

Conclusion

Instance segmentation and background removal are the two tasks we worked on in this thesis and they are
of high importance in image segmentation. Instance segmentation is a special form of image segmentation
that deals with detecting instances of objects and demarcating their boundaries. The accuracy of the seg-
mentation has been very important and with that we can detect object boundaries or types. we use instance
segmentation to do background removal and the accuracy of both instance segmentation and background
removal using our proposed method are compared with two other existing methods in this thesis.

To achieve this goal, a new method which is a combination of three parts is developed, implemented and
tested on different samples. this method consists of a pretraining being carried out using BYOL architecture
and a training using Mask R-CNN and a post-processing to fulfill the background removal. Furthermore, we
developed a method by which instance segmentation can be done not only for still images, but for different
types of medical , multi spectral, gray scale images.

The pretraining block is implemented on COCO 2014 dataset containing around 82,000 training images
and around 42000 validation and test set. This first step is to produce the initial weights being used in
our next block as an initial point to improve the accuracy. All the images used in this section are 100%
unlabelled.

The second block which segments instances and then removes backgrounds, is a Mask R-CNN using
those generated initial weights. By fine-tuning these weights we achieve our goal of instance segmentation

and background removal and then we compared our proposed framework with existing state-of-art methods.
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The system has been trained and tested by using COCO 2017 dataset, and the results including the four
losses which are bounding box loss, mask loss, classification loss and total loss are compared with two other
state-of art methods. The number of iterations in this part is 100,000 on 20,000 training images of COCO
2017 and 5,000 test images of COCO 2017.

The final block concerns the step after instance segmentation, called background removal. In this block,
we apply a post-processing to segmented images to acquire background removed images. 150 images are
compared with two existing state-of-art methods and then to the ground truth.

To evaluate the consistency of the performance, each experiment is conducted 3 times. In each of the
experiments, training data, validation and test data are kept the same to make our comparisons fair. The test
results are compared to other existing methods. The average precision of our proposed system is 28.486
which is better compared to two other existing methods which are 13.56 and 27.62 for instance segmenta-
tion using random initial weights and instance segmentation using ImageNet initial weights, respectively.
Moreover, in background removal, our proposed system over weighs background removal using random
initial weights and background removal using ImageNet initial weights by 8.54% and 2.72%, respectively.

It should be noted that the proposed method can be used for any type of object detection, segmentation
and background removal in images and videos. Compared to ImageNet that used 1.3 million labelled images
to train and generate its initial weights for different purposes, in our system we used only about 82,000
images that are unlabelled and the final results suggest that our proposed method outperforms that method.
The work presented in this thesis indicates that in order to train models for segmentation purposes, we
do not have to label a huge amount of data, instead we can rely on self-supervised techniques and obtain

comparable result which is less expensive and less time consuming.
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