

Upgrade in Kubernetes Clusters - State of Practice and Analysis from
Availability Perspective

Shresthi Garg

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

October 2022

© Shresthi Garg, 2022

CONCORDIA UNIVERSITY

School Of Graduate Studies

This is to certify that the thesis prepared

By: Shresthi Garg

Entitled: Upgrade in Kubernetes Clusters - State of Practice and Analysis from
Availability Perspective

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with re-
spect to originality and quality.

Signed by the final examining committee:

__ Chair
Dr. J. Paquet

__ Internal Examiner
Dr. O. Ormandjieva

__ Internal Examiner
Dr. J. Paquet

__ Thesis Supervisor
Dr. F. Khendek

__ Thesis Supervisor
Dr. M. Toeroe

Approved by: __

 Dr. L. Kosseim, Graduate Program Director
 Department of Computer Science and Software Engineering

_______________ 2022 __________________________________

 Dr. M. Debbabi, Dean,
 Faculty of Engineering and Computer Science

iii

ABSTRACT

Upgrade in Kubernetes Clusters – State of Practice and Analysis from

Availability Perspective

Shresthi Garg

Many systems must run without interruptions, yet they must upgrade to address issues,

such as fixing bugs or adding new functionalities. Delivering uninterrupted services is not just

the responsibility of the system providing the services but also the environment hosting the

system. So, it is essential to understand and analyze the service availability guaranteed during

an upgrade by the orchestration platform that hosts the system.

Kubernetes is a popular orchestrator of containerized workloads and services. It is essen-

tial to understand and analyze the impact of upgrades in a Kubernetes cluster: the effect of an

upgrade on the service availability, how a failure during an upgrade is taken care of by Kuber-

netes and by the tools managing the Kubernetes cluster; and the effects of an upgrade process

failure.

This thesis investigates, quantifies these impacts, and analyzes the causes. This thesis

identifies three upgrade levels in a Kubernetes cluster: Kubernetes cluster version upgrade,

Kubernetes application upgrade, and container runtime upgrade. We evaluate and analyze the

state of the practice of upgrades for each level by performing various experiments under dif-

ferent (failure) scenarios. For each experiment, the manual collection of event timestamps and

then the calculation of evaluation metrics (using collected timestamps) is a tedious and time-

consuming task. To tackle this issue, we devise and implement an “Auto-Metric collector” tool

iv

that automates this process of event collection and metric calculation. The results of our exper-

iments and analysis highlight the shortcoming of Kubernetes in identifying upgrade process

failure and taking remediation measures. We propose potential solutions for some of the iden-

tified shortcomings.

v

Acknowledgments

This work is an achievement; while it bears my name, it would not have been possible

without the help of these wonderful people: whom I would now like to thank. First and fore-

most, I thank God for guiding me and giving me strength through it all. As a close second, I

would like to thank my family: My father, who would always inspire me to see the big picture;

My mother, who would be my best friend and cheer me up on days that wouldn’t seem easy;

My brother, who would always be there for the advice whenever I needed one and make me

understand how hard work would always pay off, my best friend and partner, Mayank who has

been so patient, supportive and my biggest cheerleader throughout this journey.

If someone had asked me in the year 2019 about the mysteries of research, I would have

shrugged it off; now that I could only unravel it, it is because of my supervisors, Dr. Khendek

and Dr. Toeroe. I thank them for their guidance, for shaping my ideas, and for their belief in

me.

I would also like to thank my colleagues of MAGIC research lab, especially Siamak, for

his advice, support, and friendship.

This work has been conducted within the NSERC/Ericsson Industrial Research Chair in

Model-Based Software Management, which is supported by the Natural Sciences and Engi-

neering Research Council of Canada (NSERC), Ericsson and Concordia University.

vi

Table of Contents

List of Figures ... xi

List of Tables ... xiii

List of Acronyms ... xv

1 Introduction ... 1

1.1 Thesis Motivations .. 1

1.2 Thesis Contributions ... 2

1.3 Thesis Organization .. 3

2 Background ... 5

2.1 Service Availability .. 5

2.1.1 Service Availability during Upgrades ... 6

2.2 Containers ... 6

2.3 Introduction to Kubernetes ... 7

2.4 Kubernetes Cluster Architecture ... 7

2.5 Failure Handling with Kubernetes .. 12

2.5.1 Pod Failure ... 12

2.5.2 Node Failure .. 13

2.6 Upgrades in Kubernetes Clusters .. 14

2.6.1 Kubernetes’ Cluster Version Upgrade ... 15

2.6.2 Kubernetes’ Application Upgrade ... 15

2.6.3 Container Runtime Upgrade .. 15

3 Evaluation Method and Setup ... 16

3.1 Evaluation Method .. 16

3.2 Evaluation Cluster Setup ... 17

vii

3.2.1 Cluster Architecture ... 17

3.2.2 Application Deployment.. 18

3.3 Evaluation Scenarios ... 19

3.3.1 Upgrade Scenario .. 20

3.3.2 Failure Scenarios ... 20

3.4 Metrics for Evaluation .. 21

4 Auto-Metric Collector – a Tool to Automate the Process of Metric Collection 23

4.1 Problem Statement .. 23

4.2 Evaluation of Existing Tools .. 24

4.3 Collecting Metrics Via Auto-Metric Collector ... 25

4.3.1 Architecture ... 25

4.3.2 Operations .. 27

4.4 Conclusion .. 28

5 Kubernetes Cluster Version Upgrade ... 30

5.1 Current Practice of Upgrade ... 30

5.1.1 Kubeadm .. 31

5.1.2 kOps ... 34

5.2 Evaluation of Kubernetes’ Cluster Version Upgrade ... 37

5.2.1 RQ1: Evaluate the Impact on Application Services during Kubernetes’ Cluster

Version Upgrade ... 38

5.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade in the

Presence of Pod Failure, on its Failure Recovery Actions and on Application Services 41

viii

5.2.3 RQ2-2: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade, on its

Worker Node Failure Recovery Actions and on Application Services 48

5.2.4 RQ3: Evaluate the Impact of a Failure of the Kubernetes’ Cluster Version

Upgrade Process .. 56

5.2.5 Assessing the Achievable Service Availability, during Kubernetes’ Cluster

Version Upgrade, and in Presence of Failure during Upgrade (H1) 58

5.3 Overall Analysis and Potential Improvements ... 62

5.4 Conclusion .. 65

6 Kubernetes Application Upgrade .. 68

6.1 Current Practice of Upgrade ... 68

6.1.1 Upgrade Strategies for Stateless Application .. 68

6.1.2 Upgrade Strategies for Stateful Application .. 70

6.2 Evaluation of Application Upgrade Strategies ... 72

6.2.1 RQ1: Evaluate the Impact of Kubernetes’ Application Upgrade on the Application

Services ... 73

6.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Application Upgrade on the Recovery

from a Pod Failure and on Application Services .. 78

6.2.3 RQ2-2: Evaluate the Impact on the Pod (Application) Version post Recovery from

Failure ... 83

6.2.4 RQ3-1: Evaluate the Impact of the Kubernetes’ Application Upgrade Process

Failure on the Availability of the Application .. 84

6.2.5 RQ3-2: Evaluate the Remediation Measures Taken by the Respective Controller

(Deployment and StatefulSet Controller) when Kubernetes’ Application Upgrade Process

Fails ... 87

ix

6.2.6 Assessing the Achievable Service Availability during Kubernetes’ Application

Upgrade, and in Presence of Failure during Upgrade (H2) ... 89

6.3 Overall Analysis and Potential Improvements ... 92

6.3.1 Stateless Application ... 92

6.3.2 Stateful Application ... 94

6.4 Conclusion .. 95

7 Container Runtime Upgrade ... 97

7.1 Current Practice of Upgrade ... 97

7.1.1 Docker ... 99

7.1.2 CRI-O .. 100

7.2 Evaluation of Container Runtime Upgrade ... 102

7.2.1 RQ1: Evaluating the Impact of Container Runtime Upgrade on Service

Availability of Hosted Application Instances ... 104

7.2.2 RQ2: What is the Impact of Container Runtime Upgrade on Recovery from

Application Container Failure and on Application Services? ... 106

7.2.3 RQ3-1: Evaluating the Impact of Container Runtime Upgrade Process Failure on

Application Services ... 110

7.2.4 RQ3-2: Evaluating the Recovery Actions Taken by Container Runtime Tools

when their Upgrade Process Fails ... 114

7.2.5 Assessing the Achievable Service Availability, during Container Runtime

Upgrade, and in Presence of Failure during Upgrade (H3) ... 115

7.3 Overall Analysis and Potential Improvements ... 117

7.4 Conclusion .. 120

x

8 Conclusion .. 122

Bibliography .. 126

xi

List of Figures

Figure 2-1: An example of a Kubernetes cluster ... 8

Figure 2-2: Kubernetes storage creation and usage ... 12

Figure 2-3: Context of upgrade in Kubernetes .. 14

Figure 3-1: Evaluation Cluster Architecture .. 18

Figure 3-2: An example of Stateful Application deployed with the name “vod” managed by

State Controller .. 19

Figure 3-3: Metrics for stateless NGINX application .. 22

Figure 3-4: Metrics for stateful video streaming application ... 22

Figure 4-1: High-level architecture of Auto-Metric Collector .. 25

Figure 4-2: Integration of Auto-metric collector with Kubernetes and FEK stack 27

Figure 5-1: Master node upgrade process using kubeadm ... 32

Figure 5-2: Worker node upgrade process using kubeadm ... 33

Figure 5-3: An example of kOps managed single master Kubernetes cluster on AWS 34

Figure 5-4: Upgrade process flow in a kOps-created Kubernetes cluster 36

Figure 5-5: Single-master Kubernetes cluster: Service availability achieved when

Kubernetes’ cluster version upgrades for a year, managed by kOps, and kubeadm tool 60

Figure 5-6: HA-master Kubernetes cluster: Service availability achieved when Kubernetes’

cluster version upgrade for a year, managed by kOps, and kubeadm tool 61

Figure 5-7: Post the master node upgrade process failure, the figure showing the status of the

current config folder .. 64

Figure 6-1: Illustration of Recreate strategy for stateless application 69

Figure 6-2: Illustration of RollingUpdate strategy for stateless application 70

Figure 6-3: Illustration of OnDelete upgrade strategy for stateful application 71

Figure 6-4: Illustration of RollingUpdate upgrade strategy for stateful application 71

xii

Figure 6-5: Snippet of Progressing status of "myapp-deployment" Deployment when

progressing status fails ... 88

Figure 6-6: Service availability achieved when application deployed in a Kubernetes cluster

upgrades for a year (with and without failure) ... 91

Figure 6-7 : Snippet showing the value of the Conditions field of the Deployment 93

Figure 6-8: Snippet showing progressing status of StatefulSet “vod” stuck during the upgrade

.. 94

Figure 7-1: Illustration of the placement of CRI in a Kubernetes cluster 98

Figure 7-2: Interaction of kubelet with the containers running on that node via CRI 98

Figure 7-3: Illustration showing Docker as a container runtime in Kubernetes 99

Figure 7-4: Docker upgrade process flow for nodes in a Kubernetes cluster 100

Figure 7-5: Illustration showing CRI-O as a container runtime in Kubernetes 101

Figure 7-6: Illustration showing the common component of CRI-O 101

Figure 7-7: CRI-O upgrade process flow for nodes in a Kubernetes cluster 102

Figure 7-8: Service availability achieved when container runtime integrated with Kubernetes

cluster upgrades for a year (with and without failure) ... 117

xiii

List of Tables

Table 4-1: Evaluation of popular open-source monitoring tools ... 24

Table 5-1: kOps: service outage and service degradation during worker node upgrade 40

Table 5-2: kubeadm: stateless application pod failure during master node upgrade 42

Table 5-3: kubeadm: stateful application pod failure during master node upgrade 43

Table 5-4: kOps: stateless application pod failure during master node upgrade 44

Table 5-5: kOps: stateful application pod failure during master node upgrade 44

Table 5-6: kubeadm: stateless application pod failure during worker node upgrade 45

Table 5-7: kubeadm: stateful application pod failure during worker node upgrade 46

Table 5-8: kOps: stateless application pod failure during worker node upgrade 48

Table 5-9: kOps: stateful application pod failure during worker node upgrade 48

Table 5-10: kubeadm: stateless application – worker node failure during master node upgrade

.. 50

Table 5-11: kubeadm: stateful application – worker node failure during master node upgrade

.. 50

Table 5-12: kOps: stateless application – worker node failure during master node upgrade .. 51

Table 5-13: kOps- stateful application – worker node failure during master node upgrade ... 52

Table 5-14: kubeadm: Stateless application – worker node failure during worker node

upgrade ... 53

Table 5-15: kubeadm: Stateful application – worker node failure during worker node upgrade

.. 54

Table 5-16: kOps: stateless application – worker node failure during worker node upgrade . 54

Table 5-17: kOps: stateful application – worker node failure during worker node upgrade ... 56

Table 6-1: Stateless application: Impact on the application services during its upgrade 75

Table 6-2: Stateful application: Impact on the application services during its upgrade 78

xiv

Table 6-3: Stateless application pod failure during application upgrade 80

Table 6-4: Stateful application pod failure during application upgrade 82

Table 6-5: Stateless Application: Impact on application availability due to upgrade process

failure ... 85

Table 6-6: Stateful Application: Impact on application availability due to upgrade process

failure ... 87

Table 7-1: Impact on application services during Docker upgrade 105

Table 7-2: Stateless application container failure during Docker upgrade 108

Table 7-3: Stateful application container failure during Docker upgrade 108

Table 7-4: Stateless application container failure during CRI-O upgrade 110

Table 7-5: Stateful application container failure during CRI-O upgrade 110

Table 7-6: Impact on the application services due to Docker upgrade process failure (internal

failure) .. 113

Table 7-7: Impact on the application services due to CRI-O upgrade process failure (internal

failure) .. 114

xv

List of Acronyms

API Application Programming Interface

AWS Amazon Web Service

CNCF Cloud Native Computing Foundation

CNI Container Networking Interface

CRI Container Runtime Interface

FEK Filebeat Elasticsearch Kibana

GKE Google Kubernetes Engine

HA High Available

HTTP Hypertext Transfer Protocol

IP Internet Protocol

kOps Kubernetes Operation

NGINX Engine-X

NTP Network Time Protocol

OCI Open Container Initiative

OS Operating System

PV Persistent Volume

PVC Persistent Volume Claim

REST Representational State Transfer

RQ Research Question

SC State Controller

VLC VideoLAN Client

VM Virtual Machine

1

Chapter 1

1 Introduction

This chapter introduces the motivations and context for this thesis followed by its con-

tributions and organization.

1.1 Thesis Motivations

Many systems must provide continuous and uninterrupted services, like continuous op-

eration systems, for example, air traffic control, banking systems, and telecommunications sys-

tems. Service availability is a non-functional characteristic defined as the portion of time the

service is accessible in a period [1]. High availability is achieved when the system is available

at least 99.999% of the time. Therefore, the total downtime allowed in one year for highly

available systems is around 5 minutes [2]. Service availability is not only dependent on the

systems providing them; but also, on the environment that hosts and facilitates the orchestration

of such systems, like Kubernetes [3].

Kubernetes is an open-source platform for managing containerized workloads and ser-

vices. In Kubernetes, an application is encapsulated as a container image by a container runtime

tool such as Docker. These containerized applications are deployed in Kubernetes as pods.

Kubernetes’ self-healing property for the deployed application ensures that the clusters always

function at the desired state. These healing capabilities of Kubernetes include restarting failed

containers to maintain the number of desired pods for the deployed application; rescheduling

the containers if the hosts fail; making sure the containers are marked as available only when

2

it is healthy; killing the containers that are not healthy. Thus, the self-healing mechanism for

the deployed application is one of the most crucial functionalities to ensure their service avail-

ability.

Upgrades are an essential part of the software lifecycle and maintaining service availa-

bility during upgrades can be tricky in a High Available (HA) distributed environment. For

example, during upgrades in a HA distributed system, it is problematic to provide application

services while maintaining a seamless user experience. As Kubernetes is a popular orchestrator

of containerized applications: The question is, to what extent is service availability sup-

ported/guaranteed during an upgrade in the Kubernetes cluster?

The thesis aims to answer this question. The goal is to evaluate the state of the practice

of upgrades in a Kubernetes cluster, quantify their impact, identify the shortcomings, and pro-

pose improvements.

1.2 Thesis Contributions

In this thesis, we investigate three upgrade levels in the context of the Kubernetes clus-

ter: the upgrade of the Kubernetes cluster version, the upgrade of the application hosted in the

Kubernetes cluster, and the upgrade of the container runtime tool. We qualitatively evaluate

them from service availability perspective, conduct various experiments to quantify the impact,

analyze and propose improvements. The main contributions of this thesis are summarized as

follows:

• Qualitatively evaluate the current practices of an upgrade for the identified levels in the

Kubernetes cluster.

• Perform different experiments to quantify the impact of the upgrade in the following

way:

3

o Evaluate the impact of the upgrade on the service availability of the deployed

application instance.

o Evaluate the impact of the upgrade in the presence of failure.

o Evaluate the impact of upgrade process failure.

o Assess achievable service availability for the deployed application, during up-

grade and in the presence of failure during upgrade.

• For quantitative evaluation, we devise a tool to automate the process of metric calcula-

tion. In this contribution, we:

o Address the complication of manual metrics collection for experiments of up-

grades and evaluate the existing tool.

o Implement an “Auto-Metric Collector” tool that runs outside the Kubernetes

cluster and observes any state change of the user-selected Kubernetes object.

o In the event of a change in a Kubernetes object, it would collect the defined

events and calculate the evaluation metrics.

• Finally, we analyze the results of the performed experiments, identify shortcomings,

and propose potential improvements.

1.3 Thesis Organization

This thesis is arranged into eight chapters. In Chapter 2, we provide background infor-

mation about Kubernetes: its objects, and an overview of its cluster architecture by discussing

components involved in hosting and managing the deployed application instances. This chapter

also discusses the context of upgrades in a Kubernetes cluster. In Chapter 3, we introduce our

evaluation approach, discuss the considered cluster setup and the evaluation metrics in the per-

formed experiments. In Chapter 4, we present the “Auto-Metric Collector” tool, devised, and

implemented to automate the calculation of evaluation metrics. In this chapter, we discuss the

4

architecture of the tool, its application, assumptions, and limitations. In chapters 5, 6 and 7, we

discuss the evaluation of the different levels of upgrades in the Kubernetes cluster, identify

shortcomings, perform analysis and propose potential solutions. In Chapter 8, we conclude this

thesis by summarizing the contributions and discussing possible future work.

5

Chapter 2

2 Background

In this chapter, we discuss the concept of service availability in Section 2.1; then we

provide an overview of containerization and containers in Section 2.2. In Section 2.3, we in-

troduce Kubernetes, followed by the summary and discussion of its architecture in Section 2.4,

and its failure handling in Section 2.5. Finally, in Section 2.6, we introduce and briefly discuss

the different levels of upgrades investigated in a Kubernetes cluster.

2.1 Service Availability

In [1], availability is defined as “the degree to which a system is functioning and is

accessible to deliver its services during a given time interval.” In [4], the availability of a sys-

tem can be viewed through the availability of its services. So, service availability can be de-

fined as:

Equation 1

Service Availability =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

where service uptime is the duration during which the system delivers the given service, while

service outage (also referred to as downtime) is the period during which the service is not

delivered [1].

High availability is achieved when the system is available at least 99.999% of the time.

Therefore, the total downtime allowed in one year for highly available systems is around 5

minutes as described in [2].

6

2.1.1 Service Availability during Upgrades

System must be upgraded based on their upgrade release cycle. Since services of the

system may be impacted during upgrade - especially in case of failure during upgrade, the total

service outage caused during system upgrade can be calculated as follows:

ServiceOutage = 𝑁𝑁𝑈𝑈 × 𝑆𝑆𝑈𝑈

where NU is the number of system upgrades in a year, and OU is the service outage for

a complete system upgrade. Next, we can use service outage to calculate the duration during

which the system delivers the given service i.e., service uptime, as follows:

ServiceUptime = 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

where TotalTime is the total agreed service time in a year. Finally, we substitute the

values of service outage and service uptime in Equation 1 to calculate service availability dur-

ing upgrade. The equation becomes as follows:

Equation 2

Service Availability =
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 − (𝑁𝑁𝑈𝑈 × 𝑆𝑆𝑈𝑈)

𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆

The service availability in the Equation 2 represents the availability of the services

offered by the system when it is upgraded in a year.

2.2 Containers

Containerization technology encapsulates the application’s code and dependencies and

enables fine-grained resource control and isolation [5]. A container image is a lightweight ex-

ecutable software package that includes application code, associated dependencies, and librar-

ies. A container runtime engine, like Docker [6], is used to create a container image. Container

images become containers when they run on the container runtime engine.

7

Multiple containers can run on a single host - a virtual machine that runs an Operating

System (OS); however, containers remain isolated; the applications running inside these con-

tainers do not get impacted by other containers running on that host.

2.3 Introduction to Kubernetes

With the dawn of the Container Era, in a containerised environment, it is essential to

have a system that manages the containerized workload. Since, if in a production system a

container goes down, another one should be re-started. Automated orchestration of such a use

case is crucial to maintain minimum downtime and hence the availability of services. Kuber-

netes is an orchestrator platform that manages containerized workloads and services. It facili-

tates both declarative functionalities and workload automation. It was introduced by Google in

June 2014 at a Google Developer Forum [7]. Cloud Native Computing Foundation [8] currently

maintains its development and support.

Kubernetes orchestrates container-centric infrastructure and provides self-healing

mechanisms for the deployed application, service discovery, and load balancing. Thus, it acts

as a cluster manager and handles the deployment, management, upgrading, monitoring, and

scaling of containerized applications in a distributed environment.

2.4 Kubernetes Cluster Architecture

A group of nodes forms a Kubernetes cluster. Such nodes are either physical or virtual

machines on which we install Kubernetes. While the node(s) which has the Kubernetes com-

ponents installed for managing the orchestration of the cluster is referred as the master node

(or control-plane node), and the node(s) that host the deployed application instances is called

as a worker node. Since Kubernetes follows a master-slave architecture, its cluster has at least

one master node and at least one worker node. Figure 2-1 shows a high-level architecture of a

single master and two worker nodes Kubernetes cluster.

8

Figure 2-1: An example of a Kubernetes cluster

A user (usually a system administrator or a developer) can communicate with the Ku-

bernetes cluster using a command-line tool called kubectl. The master node component re-

ceives the commands sent via kubectl.

In a Kubernetes cluster, the master node includes a collection of components that runs

as static pods and are responsible for the orchestration of the cluster. These components are the

kube-apiserver, kube-controller-manager, and kube-scheduler. Master node components take

global decisions about the cluster through these processes while storing and fetching the clus-

ter’s state from another component called ETCD- a highly distributed key-value datastore. The

functions of these master node components are discussed in detail hereafter:

• kube-apiserver: The kube-apiserver component forms the heart of the orchestra-

tion operations. It acts as the front end for all Kubernetes components, management

devices, and command-line interfaces. It acts as an interface to create, update, or

9

configure Kubernetes clusters. The kube-apiserver exposes the HTTP API that al-

lows any component interacting with it to query and manipulate the state of Ku-

bernetes objects.

• kube-controller-manager: In Kubernetes, controllers are the brain behind the or-

chestration operations. Controllers are the control loops that watch the state of the

cluster and try to move the current state closer to the desired state. Logically there

are different controllers in a Kubernetes cluster, but for simplicity, they are com-

bined into a single binary (running as a single process). For example, the Node

controller is responsible for managing the node status; the Endpoints controller

takes care of the endpoint objects. While the Deployment Controller manages the

orchestration of a Stateless application, the StatefulSet Controller manages the

Stateful application and its associated storage.

• kube-scheduler: The kube-scheduler component of a master node is responsible

for scheduling the deployment of the pod(s) on an available worker node. As the

kube-scheduler distributes the workload, it ensures that the pre-defined constraints

mentioned for the application in its pod specification are met.

• ETCD: It is a key-value database that stores the data associated with every Kuber-

netes object (such as a pod or node). It contains information such as the current

state of the cluster, its configuration, and the state of Kubernetes objects. It imple-

ments locks within the cluster to avoid conflicts to maintain atomicity during con-

current operations. It uses Raft [9] consensus to fulfill its duties.

The worker node in a Kubernetes cluster hosts containerized application instances. To

deploy an application on Kubernetes, a deployment configuration YAML file is created, which

10

provides information regarding the management of the application instances on a cluster. For

example, the information related to container configuration, storage, and other Kubernetes re-

sources required to run the application is specified. Once the deployment configuration YAML

is provided to Kubernetes, it creates pods to host the application instance defined in the speci-

fication file.

Pods represent the smallest deployable units in a Kubernetes cluster. A pod can include

one or more application containers; that share resources such as storage, networking space, etc.

The containers in a pod share an IP address and a namespace, are always co-located and co-

scheduled, and run in a shared context on the same worker node. To spin and manage these

containers, a container runtime tool, like Docker, CRI-O [10] etc., must be installed on each

node of the Kubernetes cluster.

Each node in the cluster has a monitoring agent called kubelet. It registers itself to the

node on which it runs and gets the information about the containers running on it (from the

master node components). This information is called PodSpec- a YAML or JSON file that

describes the pod(s). Kubelet ensures that the container(s) defined in the PodSpec are running

and healthy. The Kubelet component of the worker node is also responsible for sending status

reports to the master node at a regular period of 10 seconds (by default). This periodic status

report is also referred to as heartbeat, where kubelet informs the master node about the status

of the worker node on which it is running and the containers running on that worker node.

Since pods can be created and destroyed dynamically due to various reasons, such as

during scaling operation of the deployment replicas, due to a rolling update, or due to failure,

etc., pod’s IP addresses might change over time, thus causing communication disruption in

11

cases where the IP address was the point of communication. A Kubernetes Service is an ab-

straction that defines a set of pods as an endpoint and a policy to access them. Kubernetes can

update the endpoint when a set of pods in service changes.

The networking on each node is managed by a component called Kube-proxy; it also

applies networking rules and allows running containers to be accessible to the external world.

When a Service is guaranteed through ClusterIP or NodePort, kube-proxy forwards it to the

appropriate pod. The kube-proxy can run in three proxy modes - userspace, iptables, and ipvs;

the networking differs depending on the selected proxy mode. The default proxy mode is ip-

tables.

Storage is another significant aspect that should be considered while managing contain-

erized applications. Two storage abstractions are present with Kubernetes: Volumes and Per-

sistent Volumes (PV). While the former is used for storing temporary data in a pod, the latter

is for storing data regardless of the pod’s lifecycle. For pods to start using these volumes, they

need to be claimed (via a persistent volume claim), and the claim is referenced in the specifi-

cation for a pod. A Persistent Volume Claim (PVC) describes the amount and characteristics

of the storage required by the pod, finds any matching persistent volumes, and claims those.

Storage Classes depict default volume information. Figure 2-2 shows the creation of Persistent

Volume and its claim.

12

Figure 2-2: Kubernetes storage creation and usage

2.5 Failure Handling with Kubernetes

Kubernetes provides the deployed applications with a self-healing capability as the

most significant feature for maintaining availability. It does that by continuously monitoring

and repairing its object. In this sub-section, we present an overview of the failure-handling

measures carried out by Kubernetes.

2.5.1 Pod Failure

When any pod is deployed, the container runtime tool spins the application container(s)

specified in the pod template. Also, an additional parent container may be created depending

on the container runtime used. For example, if the container runtime is Docker, a parent con-

tainer called a pod container is also created for each pod.

Kubernetes monitors the containers on a worker node by communicating with the

kubelet component on that worker node. This kubelet component continuously communicates

with the container runtime tool to fetch the condition of the containers running on the node. If

13

the application container crashes, kubelet reacts according to the defined restartPolicy, whose

default value is Always, meaning that any failed container is always restarted.

 As stated earlier, if the container runtime is Docker, the pod container is the parent

container, if the pod container crashes, the associated application container also fails, and the

pod loses its Ready status. When Kubernetes is informed of this failure by kubelet, it removes

the pod from the endpoint list to avoid any service requests to the failed pod. Next, it creates a

new pod, and when the new pod’s status becomes Ready, it is assigned an IP address by the

CNI (Container Network Interface) [11]. These changes are reflected in the iptables by the

kube-proxy component of the master node. The pod starts getting service requests when its IP

address is in the iptables, and thus failed pod is recovered.

2.5.2 Node Failure

In a Kubernetes cluster, the kubelet component sends the status of its worker node to

the master node at a regular interval (by default every 10 seconds), also referred to as heart-

beats. If Kubernetes loses connection with the worker node for some reason, such as the node

reboot, the master node stops receiving heartbeats from this worker node. On the fourth missed

heartbeat, the master node marks the worker node’s state as NodeNotReady. The pods on that

node are then marked for termination, and the pod’s status shows Completed. After waiting for

the duration specified in the pod-eviction-timeout [12] (by default, 5 minutes), Kubernetes will

initiate the eviction of the pods on the failed worker node and re-schedule them on available

healthy nodes.

If the worker node becomes available again, its services (like kubelet and Docker) are

restarted, and its kubelet starts sending heartbeats to the master node. When the master node

receives these heartbeats, it marks the node’s state as NodeReady. Kubelet on the recovered

node then communicates with the master node to fetch the information about the pods deployed

14

on that worker node. Now, either of two things can happen: if the worker node has become

available before the elapse of the pod-eviction-timeout timer, kubelet restarts the pods on the

recovered worker node; else, if the node has recovered after the pod-eviction-timeout, then the

pods have already been restarted on other nodes, and so the kubelet communicates with the

container runtime to delete the information about those containers from the recovered worker

node as a garbage collection measure.

2.6 Upgrades in Kubernetes Clusters

Upgrades are an essential part of the software lifecycle. There can be various reasons a

system might require an upgrade, such as bug fixes, new functionality, an upgrade of the un-

derlying technology, etc. An upgrade can cause service disruptions and is an essential aspect

to be considered for High Availability.

As Kubernetes operates on a container level, everything at the container level; and be-

neath; can be upgraded. Figure 2-3 shows the possibilities (context) of upgrades in a Kuber-

netes cluster. The upgrade of hardware and operating system is not covered in the scope of the

work.

Figure 2-3: Context of upgrade in Kubernetes

Upgrade in a Kubernetes cluster can be divided into the following three levels:

15

2.6.1 Kubernetes’ Cluster Version Upgrade

A Kubernetes cluster is created by various tools available to the practitioner, like ku-

beadm [13], kOps [14], and GKE [15]. A Kubernetes cluster version upgrade involves upgrad-

ing the Kubernetes version of the master nodes (i.e., the master node components), followed

by the Kubernetes version upgrade of the worker node. As the master node is responsible for

the management of the cluster, and worker nodes for hosting the application instances, so up-

grading the Kubernetes version of these nodes would impact the cluster orchestration and the

application deployed in its cluster.

2.6.2 Kubernetes’ Application Upgrade

Kubernetes manages the containerized applications deployed in its cluster; these appli-

cations can either be Stateful or Stateless. Kubernetes has native upgrade strategies defined for

an application that depends on the kind of application- Deployment for Stateless application or

StatefulSet for Stateful application as mentioned in its deployment configuration. A Kubernetes

application upgrade involves upgrading the deployed application’s version using the men-

tioned native strategies.

2.6.3 Container Runtime Upgrade

The container runtime tool is installed on each node of a Kubernetes cluster, and it is

responsible for creating and managing the containers. Kubelet communicates with the con-

tainer runtime tool to get the status of the containers running on a worker node for the creation

and deletion of the pod and other pod’s management-related operations, so the upgrade of a

container runtime tool can lead to possible disruptions in the services provided by these tools.

A Kubernetes container runtime upgrade involves manually upgrading the container runtime

tool’s version on each node of a Kubernetes cluster.

16

Chapter 3

3 Evaluation Method and Setup

This chapter introduces the approach of evaluating upgrades in a Kubernetes cluster. In

Section 3.1, we discuss the overall process of the evaluation; then, we describe the cluster

architecture and its settings in Section 3.2. Section 3.3 introduces different evaluation scenarios

and associated experiments considered in this thesis. The metrics are presented in Section 3.4.

3.1 Evaluation Method

In this thesis, we performed evaluations for all the identified levels of upgrades in a

Kubernetes cluster, as mentioned in Section 2.6. These levels of an upgrade are evaluated with

respect to service availability, and their impact is quantified through experiments. Following

are the research questions we are aiming to answer:

RQ1: How does an upgrade impact the service availability of a hosted application?

RQ2: How does an upgrade impact the recovery from a failure?

RQ3: What is the impact of a failure of the upgrade process, and what recovery measures are

taken?

Depending on the upgrade level-specific characteristics, these questions may be refined

further in the subsequent chapters.

Kubernetes deploys a containerized application instance as a pod. A pod goes through

different phases in its lifecycle caused by various factors, such as scaling events, pod failure,

17

application container failure etc. Kubernetes (via Kubelet) monitors the state of the pod and

publishes relevant events if it detects any change in the state of the pod. Thus, it is crucial to

understand the pod’s lifecycle through these events to evaluate the impact on service availabil-

ity. These events and their relations with each other are further explained in Section 3.4.

For the evaluation, we conducted experiments covering several scenarios and measured

the defined availability metrics (through these events) to address the research questions. Each

scenario is repeated ten times, and the average values of the measurements are shown in the

tables of Chapters 5 through Chapter 7. The unit of measurement for all the experiments is in

seconds, with an accuracy of milliseconds. The process of collection of metrics is automated

by the “Auto-metric collector” tool. The architecture and functioning of the tool are discussed

in detail in Chapter 4. The experiment setup and the availability metrics are explained in the

following sections.

3.2 Evaluation Cluster Setup

In this section, we discuss the cluster architecture and its configuration for the per-

formed experiments.

3.2.1 Cluster Architecture

For the experiments, we considered two cluster architectures, as shown in Figure 3-1,

a single-master Kubernetes cluster with two worker nodes and a Highly Available (HA) Ku-

bernetes cluster with three masters and two worker nodes. In a HA Kubernetes cluster setup,

the number of master nodes runs in an odd number, with three being the minimum number.

Thus, it is necessary to have at least three different machines (running as master nodes) to

configure the HA Kubernetes cluster.

18

Since the nodes of clusters must be on different machines for experimenting with high

availability, we used Virtual Machines (VM) to imitate multiple physical machines. Kuber-

netes version 1.18.1 was installed on all these nodes that run Ubuntu 18.06 as Operating System

(OS). Docker version 19.06 was used as a container runtime to spin the containers. All the

experiments are performed under the default configuration of Kubernetes.

Figure 3-1: Evaluation Cluster Architecture

These architectures may be refined in the subsequent chapters based on the scenarios

considered for different upgrade levels.

3.2.2 Application Deployment

For all the experiments, two pods are deployed in the cluster, with one pod running on

each of the two worker nodes.

We considered stateless and stateful applications: a simple NGINX webserver applica-

tion was selected as the stateless application, while a VLC video-streaming application was

chosen as the stateful application.

The State Controller managed the availability of the stateful application described in

[16] and presented in Figure 3-2, it runs on a separate VM in our cluster setting. The pods of

19

the stateful application are deployed in pairs, and the State Controller assigns them active and

standby labels. While the active pod (pod with the active label) actively provides the streaming

service, the standby pod (pod with the standby label) replicates the state of the streaming ser-

vice provided by the active pod. If the active pod fails, the State Controller performs a failover

to the standby pod, and this way, it manages the service availability.

In our experiment setting, for both single master and HA master cluster architecture,

the State Controller runs on a separate VM and communicates with the master node to perform

failover.

Figure 3-2: An example of Stateful Application deployed with the name “vod” managed by State Controller

3.3 Evaluation Scenarios

This section describes the scenarios considered and the experiments performed to an-

swer the defined Research Questions mentioned in Section 3.1.

20

3.3.1 Upgrade Scenario

Pods may get terminated and re-created during upgrades in a Kubernetes cluster. For

example, in a kOps managed Kubernetes cluster during the Kubernetes version upgrade of a

worker node, the pod running on it is gracefully evicted and scheduled on an available worker

node. RQ1 focuses on the impact on service availability during an upgrade; to answer this, we

perform the upgrade and observe/measure its impact on the deployed application instances.

3.3.2 Failure Scenarios

Kubernetes provides a self-healing capability for the deployed application as a most

significant feature for maintaining their high availability. It continuously monitors and repairs

its object (such as a pod). Kubernetes’s kube-apiserver communicates with the Kubelet com-

ponent running on each worker node to get the status of the worker node and the containers

running on it. The following experiments have been performed to simulate the failure scenar-

ios; for evaluating the service availability guaranteed by Kubernetes through its recovery ac-

tions.

Pod Failure: Pod container runs as a process in the OS and may crash. In this scenario, the

failure is simulated by killing the pod process from the OS.

Application Container Failure: Since each application container runs as a process on the OS,

we simulate application container failure by killing its associated process.

Node Failure: In this scenario, a node hosting a pod is failed. This scenario is simulated by

Linux’s reboot command.

Upgrade Process Failure: In this scenario, the ongoing upgrade process is failed. The simu-

lation of this failure differs on the type of upgrade and is refined in Chapters 5, 6, and 7 respec-

tively.

21

3.4 Metrics for Evaluation

In this section, we discuss the various events identified during these experiments; and

use their relationships to define the respective metrics presented in Figure 3-3 for stateless

application and Figure 3-4 for stateful application.

During an ongoing upgrade, we evaluate the impact on application services in terms of

service outage and service degradation, shown in Figure 3-3 for stateless application and Figure

3-4 for stateful application. To evaluate this impact, we define these metrics below.

Service Outage: The duration for which the application was not providing the service, i.e.,

the number of pods actively providing the application service, was zero.

Service Degradation: The duration for which the actual number of pods actively providing

application service was less than the desired number of pods.

In the event of failure, we measure the failure recovery in terms of failed unit outage

time. To evaluate this, we define the metrics as shown in Figure 3-3 for stateless application

and Figure 3-4 for stateful application, and their relation is summarized below:

Detection Time: The time between the failure event we introduced and when Kubernetes de-

tects the failure event.

Repair Time: The time between the detection of failure event and when the pod failed due to

the failure event is repaired.

Assignment Time: The time between the re-creation of the pod and when the service provided

by the failed pod is available again.

Failed unit outage Time: The duration for which the failed unit was not providing service. It

is the sum of detection time, repair time and assignment time.

22

The Figure 3-3 shows the way metrics are measured for a stateless NGINX application.

Figure 3-3: Metrics for stateless NGINX application

The following Figure 3-4 shows the way metrics are measured for a stateful video

streaming application whose failover is managed by State Controller (SC).

Figure 3-4: Metrics for stateful video streaming application

23

Chapter 4

4 Auto-Metric Collector – a Tool to Au-
tomate the Process of Metric Collec-
tion

This chapter introduces the Auto-Metric collector tool developed to monitor the pre-

defined events, collect their timestamps, and calculate metrics automatically. In Section 4.1,

we briefly discuss the need for a tool for our research, followed by an evaluation of three of

the existing popular open-source tools in Section 4.2. In Section 4.3, we explain the high-level

architecture of the Auto-Metric collector, its integration with Kubernetes and the Filebeat-Elas-

ticsearch-Kibana stack. We finally present our conclusion in Section 4.4, where we discuss the

assumptions and limitations associated with the tool.

4.1 Problem Statement

 Event monitoring, timestamp collection and metric calculation are not only tedious, but

it requires significant manual efforts and is also prone to human errors. In an estimate, each of

our manual experiments for a scenario takes around 10-11 minutes to capture data and calculate

metrics; and another 10-12 minutes per set for data analysis and visualization. So, for every

100 scenarios, more than 18 hours of continuous work is needed to get the required metrics

calculated and analyzed.

Though various open-source tools are available in the market to monitor the resources

in a Kubernetes cluster, the question is: would those tools cater to the needs of our experiments

with the much-needed granularity of milliseconds precision in all scenarios?

24

4.2 Evaluation of Existing Tools

To answer the previous question, we evaluated Prometheus [17], Kubernetes Dash-

board [18] and cAdvisor [19], three of the popular open-source tools well integrated with Ku-

bernetes. Following are the evaluation criteria we considered:

• Granularity: The metric data needed for our experiment should be in milliseconds preci-

sion.

• Applicability: The ability of the tools to collect events specific to our work.

• Controllability: The ability to control the metric collection at a specific time.

Table 4-1 summarizes the monitoring tools’ evaluation against the defined criteria.

Table 4-1: Evaluation of popular open-source monitoring tools

 Tools

Evaluation criteria
Prometheus Kubernetes Dashboard cAdvisor

Granularity

Applicability

Controllability

With the above evaluation, it is evident that existing tools do not meet our needs. The

common issue with open-source tools is the lack of fine-grain monitoring. Since Kubernetes

stores, the timestamp of the events to seconds precision, most tools available in the market

expose these events through metrics. Furthermore, these tools are mostly suited for resource

and performance monitoring and utilize the metrics exposed by Kubernetes; consequently, col-

lecting specific events and metrics is not possible. Thus, designing a new tool is essential for

the course of the research in terms of automation and further developments.

25

4.3 Collecting Metrics Via Auto-Metric Collector

Auto-Metric collector is a tool designed to reduce the manual effort in the metric (de-

scribed in Section 3.4) calculation. Our tool is written in Golang and utilizes the client-go li-

brary to monitor the events happening in the Kubernetes cluster. In this section, we present a

high-level architecture of the tool, explain the role of each of its components and then discuss

the tool’s integration with Kubernetes for monitoring the Kubernetes objects and Filebeat-Elas-

ticsearch-Kibana (FEK) stack for data visualization.

4.3.1 Architecture

Figure 4-1 illustrates the high-level architecture diagram of the Auto-Metric collector

tool. The different components involved in the tool's functioning are shown in the architecture,

and their roles are explained later in this section.

Figure 4-1: High-level architecture of Auto-Metric Collector

26

The roles of each component of the Auto-Metric collector are defined as follows:

• Console based user-interface: It is used to get the user input which determines the

following:

o The Kubernetes tool, i.e., kubeadm or kOps, is used to create a Kubernetes cluster

and sets up the cluster configuration to be used by the Log Parser.

o The Kubernetes object (pod/node) needs to be monitored.

• Custom Controller: The tool monitors the events associated with the user-selected

Kubernetes object. This monitoring is possible via the custom controller. A custom

controller is a controller that acts upon the native Kubernetes resources and is used to

add new features. The custom controller is implemented using the client-go library and

utilizes its features for monitoring the state change of Kubernetes objects. It has an

Informer component which lists and watches different events associated with the object

specified in the customer controller. When the Informer identifies a change in the state

for its selected Kubernetes object, depending on the type of change, the Add/Up-

date/Delete Event functions of the Resource Event Handler are triggered, which further

sends the state change information to the Log Parser component.

 Since a custom controller is dedicated to a specific Kubernetes object, so ac-

cording to the need of our experiments, we have two custom controllers to monitor the

pod and node.

• Log Parser: Since the event timestamps of Kubernetes is in seconds precision, we have

created a Log Parser component that the custom controller triggers, as shown in Figure

4-1, and performs the following functions to collect event timestamps stored in milli-

seconds precision from the components that reports those events:

o The Docker/CRI-O and kubelet logs are collected via a script on each worker

node.

27

o The log is then parsed to capture the reported event’s timestamp, which is written

in the log file, and this information is also forwarded to the Metric Processor

component.

o Apart from collecting the events reported by Kubernetes, the Log Parser is also

responsible for collecting the timestamp of the failure. Since we manually inject

failure via a script, the script stores the timestamp in a file on a worker node

(where failure is injected), which is collected by the Log Parser.

• Metric Processor: The role of the metric processor is to calculate the defined metrics

(as mentioned in Section 3.4) using the event timestamps received from Log Parser. It

finally writes the calculated metrics data into the log file.

4.3.2 Operations

Figure 4-2 shows the integration of our Auto-Metric collector tool with the Kubernetes

cluster and with the FEK stack. These are discussed further in the two sub-sections.

Figure 4-2: Integration of Auto-metric collector with Kubernetes and FEK stack

28

4.3.2.1 Integration with Kubernetes for Event Monitoring and Timestamp Collection

To allow the integration of the Auto-Metric collector with the Kubernetes cluster, we

used the client-go library of Kubernetes which interacts with the REST interface exposed by

the Kubernetes kube-apiserver component, as shown in Figure 4-2, to access the Kubernetes

objects (pods/nodes). In our implementation, we retrieve the configuration of the Kubernetes

cluster and create a client that communicates with the kube-apiserver to monitor the events

related to the Kubernetes object.

4.3.2.2 Integration with FEK Stack for Data Visualization

The log file generated by the tool acts as an input to the FEK stack, as shown in Figure

4-1. The following three components of the FEK stack work together for data visualization in

the form of a Dashboard:

• Filebeat: It is a lightweight shipper and acts as the starting point for the FEK stack. It

monitors the log file generated by the Auto-Metric collector tool for any new content,

aggregates the events and forwards the aggregated data to Elasticsearch for indexing

[20].

• Elasticsearch: It acts as a distributed document store to index the data received from

Filebeat. It provides near real-time search and analytics for all types of data; structured

or unstructured text, numerical data, or geospatial data [21]. This indexed data is for-

warded for data visualization by tools such as Kibana.

• Kibana: It lets you filter relevant data and then use that data to build a dashboard com-

prising logs and graphs.

4.4 Conclusion

The implemented Auto-metric collector tool caters to the need for fine-grain evaluation

required in our research while reducing the human effort. For every 100 scenarios with existing

29

capability, the Auto-Metric Collector tool will save approximately 16-18 hours of human ef-

fort. This automation of the metric collection also avoids discrepancies due to human error.

However, the following points are assumed for the functioning of the tool:

• The tool should have admin rights and access to all the nodes in the Kubernetes cluster.

It requires interaction with the cluster for the collection of event timestamps through

kubelet logs and Docker logs. This operation will not be possible if the tool cannot

access the node.

• Time is a significant factor in the evaluation. All the nodes in the Kubernetes cluster

must follow the same time zone. To achieve a time-synced Kubernetes cluster, NTP

(Network Time Protocol) [22] is configured on each node of the cluster. This is a pop-

ular protocol widely used in the industry by practitioners.

The following are the limitations in terms of the functionality offered by the tool:

• Currently, the tool can only monitor one single user-selected Kubernetes object at-a-

time for calculating metrics. However, it can be further extended to monitor multiple

Kubernetes objects simultaneously.

• Currently, the metrics collected by the tool are specific to our experiments. However,

it can be further extended for customized metrics.

30

Chapter 5

5 Kubernetes Cluster Version Upgrade

In this chapter, we quantitatively evaluate the Kubernetes cluster version upgrade managed by

kOps and kubeadm tools provided by CNCF. In Section 5.1, we explain the current practice of

upgrade of these tools. In Section 5.2, we discuss the research questions we aim to answer

before discussing the results and analysis of the performed experiments and assessing the

achievable service availability during upgrade. In Section 5.3, we provide potential improve-

ments to some of the identified issues and conclude our evaluations in Section 5.4.

5.1 Current Practice of Upgrade

 The Kubernetes cluster version indicates the major, minor, and patch versions [23]. A

minor version of Kubernetes is released every three months and maintained for nine months.

During these nine months, patch versions are released every 1-2 weeks. These different ver-

sions are released to fix bugs, deploy security patches, and/or add new functionality to improve

the overall experience. Thus, deploying these enhancements requires regular Kubernetes clus-

ter version upgrades.

 Various tools like kubeadm and kOps (Kubernetes Operation) are available to the prac-

titioner to deploy a Kubernetes cluster. These tools also help in provisioning the Kubernetes

cluster. In addition, for upgrades, a recommended upgrade flow [24] has been described in the

Kubernetes documentation. We have evaluated and analyzed the upgrade process flow of these

tools and have presented them in Figure 5-1, Figure 5-2 and Figure 5-4. In these figures, the

blue indicates manual operations to be performed by an administrator, while yellow shows the

31

automated procedures triggered in response to the manual operations. Only actions significant

to our work are shown in detail.

5.1.1 Kubeadm

Kubeadm is a tool to create a minimum viable Kubernetes cluster [25]. It can also be

used to upgrade (or downgrade) such a cluster. When a Kubernetes cluster is created using

kubeadm, it constructs a cluster configuration file referred to as kubeadm-config to be used by

other management components. In addition, on one of the master nodes (usually the first cre-

ated), kubeadm also writes a configuration file called admin.conf for administrative purposes.

These files are referred to during the Kubernetes cluster version upgrade process.

The Kubernetes cluster version upgrade process using kubeadm is a manual process

and consists of the following steps.

The upgrade process starts by upgrading the master node bearing the admin.conf file

(usually the master node where the Kubernetes cluster is initialized). As shown in Figure 5-1,

we first upgrade the kubeadm tool on this master node, which is necessary as kubeadm enforces

the version skew policy. The upgrade process continues further with upgrading the master node

components. As part of this step, kubeadm performs a health check of the cluster and then pulls

the updated manifest file (for the desired Kubernetes cluster version) of the master node com-

ponents (running as static pods on the master node). Then, a master node component is selected

for an upgrade, where its new manifest file is moved to the current config folder while the old

manifest file is backed-up. Next, the kubelet component restarts the static pods of the master

node component to reflect the upgraded version. This process is repeated for all master node

components, one at a time. Then the master node is drained of any existing workload, which

also cordons the master node. This step is followed by updating the configuration of the kubectl

client and kubelet agent. Subsequently, the master node is un-cordoned to start accepting the

32

orchestration workload again. Once the master node with the admin.conf file is upgraded suc-

cessfully; it updates the associated kubeadm-config file with the new Kubernetes cluster ver-

sion. The subsequent master nodes, in the case of an HA-master Kubernetes cluster, refer to

the kubeadm-config file and are upgraded to the Kubernetes cluster version mentioned in the

file in a similar manner except for the update of the kubeadm-config file, which does not apply

to them. We have summarized the flow of upgrading the master nodes using kubeadm in Figure

5-1.

Figure 5-1: Master node upgrade process using kubeadm

Once the master node(s) is(are) upgraded, the upgrade of worker node(s) can follow.

Figure 5-2 presents the upgrade process flow of worker nodes. The worker node upgrade also

33

starts by upgrading the version of the kubeadm tool. Next, in the worker node upgrade step,

which is specific to the upgrade of the node, the upgraded kubeadm-config file is fetched so

that the kubelet configuration can be updated with the correct Kubernetes cluster version. Then,

we drain the worker node, which evicts the pods running on that worker node. The step to drain

the worker node prepares the node for its maintenance by gracefully evicting the existing work-

load and cordoning the node to make it non-schedulable. It is a precautionary and optional step

to avoid service disruption when the component monitoring its state, i.e., kubelet, will be up-

graded next. Then, we update the kubectl and kubelet configurations with the updated config-

uration fetched at the upgrade step and restart the kubelet component to reflect the change. If

the step to drain the worker node(optional) is executed, it also cordons it, so as the next step,

we need to un-cordon the worker node so that it starts to receive new workload requests. The

remaining worker node(s) must be manually upgraded, following the same steps.

Figure 5-2: Worker node upgrade process using kubeadm

34

5.1.2 kOps

kOps is a tool that automates the provisioning of a Kubernetes cluster [14]. It provides

full support for Amazon Web Services (AWS) and uses cloud provider features. For example,

in AWS, a group of nodes with a common purpose is bound together as an entity called an

instance group [26]. Each instance group has a role specified by the administrator at the time

of creating the Kubernetes cluster. The master nodes are in the instance group with the role

“Master” while the worker nodes are part of the instance group with the role “Node”. These

roles play an essential part in deciding the order of upgrade when the Kubernetes cluster up-

grade is initiated, where kOps utilize the instance group capability of AWS to upgrade the

Kubernetes cluster in a rolling update fashion.

kOps also allows previewing the changes that a specific operation would result in a

Kubernetes cluster. If a kOps command is used without the --yes option, then kOps display the

preview of the changes for that specific command rather than executing it. It is recommended

to preview the changes made by a particular command before updating the state of the cluster.

In a kOps-managed Kubernetes cluster on AWS (see Figure 5-3), the master nodes and

the worker nodes are encapsulated in their respective instance groups, which may be distributed

across different AWS zones.

Figure 5-3: An example of kOps managed single master Kubernetes cluster on AWS

35

Figure 5-4 shows the Kubernetes version upgrade process flow for a kOps managed

Kubernetes cluster. Before starting the cluster upgrade, it is recommended to update the kOps

tool to ensure compatibility with the intended Kubernetes cluster version and enforce the ver-

sion skew policy properly. To upgrade the Kubernetes cluster version, the local cluster speci-

fication file is first updated with the desired Kubernetes cluster version. This update can either

be performed manually or automatically by kOps. These changes are also propagated to the

cluster specification file on AWS, which instance groups refer to during an upgrade. The con-

figuration changes are applied to the instance groups of the cluster in a rolling update fashion,

i.e., the order in which the instance groups upgrade depends on their roles. As shown in Figure

5-4, the upgrade starts with the master instance groups (instance group with the role of “Mas-

ter”).

During the rolling update of the cluster, first, one of the master instance groups is se-

lected for the upgrade, and its master node is upgraded. By default, kOps keep one master per

master instance group. This upgrade involves the drain and termination of the selected master

node in the current version and then creating a new master node with the desired Kubernetes

version. Then, on this newly created master, all the pods specific to the master node are created,

and once these pods become ready, that master node becomes available. Then, another master

instance group (if any) is selected for an upgrade, and the same upgrade process is repeated to

upgrade its master node.

Once all the master instance groups are upgraded, the upgrade of the worker instance

groups follows. First, a worker instance group is selected, then the node(s) in that instance

group is upgraded. Unlike the master node upgrade process, during the worker node upgrade,

the worker node selected for upgrade is initially detached. Next, a new worker node with the

desired Kubernetes version is created; however, at this time, this worker node will not be host-

ing pods. Then, the worker node selected for an upgrade (running on the current Kubernetes

36

version) is drained and terminated, which leads to the graceful termination of the pods running

on the old worker node and the creation of the pods on the newly created worker node. Once

all the worker nodes in an instance group are upgraded, another worker instance group (if any)

is selected for an upgrade, and its worker nodes are upgraded similarly. Once all the worker

instance groups are upgraded, the rolling update process completes.

In addition, kOps perform cluster validation during the upgrade to ensure that the state

of the cluster is unaffected by the node update.

Figure 5-4: Upgrade process flow in a kOps-created Kubernetes cluster

37

5.2 Evaluation of Kubernetes’ Cluster Version Upgrade

Kubernetes community claims that the services availability of the deployed application

is maintained by Kubernetes through its self-healing functionality. However, upgrading the

Kubernetes cluster version impacts the different nodes in the cluster, through which it may also

impact the cluster orchestration and the service availability of the deployed applications. So,

we state the following hypothesis:

H1: High Availability of the application deployed in a Kubernetes cluster is impacted during

Kubernetes’ cluster version upgrade, especially in the presence of failure.

So, to test H1, we evaluated the impact of upgrading the Kubernetes version of kubeadm

and kOps created Kubernetes cluster, from the perspective of the service availability of appli-

cations deployed in the cluster. We also considered failures during the upgrade; failures of the

pod, worker node and the failure of the upgrade process itself. Finally, we have defined the

following research questions for the evaluation:

RQ1: What is the impact of a Kubernetes cluster version upgrade on the application services?

RQ2: What is the impact of Kubernetes cluster version upgrade in the presence of failure on

the application services and recovery

1. from a pod failure?

2. from a worker node failure?

RQ3: What is the impact of a failure of the Kubernetes cluster version upgrade process, and

what are the recovery measures taken?

 To answer these research questions, we had a cluster setup whose architecture details

are discussed in Section 3.2 and illustrated in Figure 3-1. Since this chapter focuses on evalu-

ating Kubernetes cluster version upgrade, our setup has a Kubernetes cluster, created, and man-

aged by kubeadm and kOps tool, in a single master and HA master Kubernetes cluster. Docker

38

19.06 was integrated with these clusters to spin the containers. We conducted experiments

whose scenarios are discussed in Section 3.3, and metrics are presented in Section 3.4. The

following sub-section presents the results and analysis of the performed experiments when the

Kubernetes was upgraded from version 1.18.0 to version 1.20.0. All our experiments are per-

formed with the default configuration of Kubernetes. The process of collection of metrics was

automated by the Auto-Metric collector tool, which is explained in Chapter 4.

5.2.1 RQ1: Evaluate the Impact on Application Services during Kubernetes’

Cluster Version Upgrade

In this sub-section, we explain the different experiments performed to answer RQ1,

then we discuss the results of these experiments and present our analysis. As discussed earlier,

in a Kubernetes cluster, first, a master node(s) is upgraded followed by the upgrade of worker

node(s), so, for both kubeadm and kOps, we present the results and analysis of the performed

experiment in the same order.

5.2.1.1 Experiments

The experiment aimed to evaluate the service degradation/outage caused by the Kuber-

netes cluster version upgrade. We conducted the experiments on both; the single-master Ku-

bernetes cluster and the HA-master Kubernetes cluster, created and managed by kubeadm and

kOps. The events related to the state changes of the two application pods were monitored dur-

ing an upgrade to calculate the impact on application services availability illustrated in Section

3.4.

For stateful application, we upgrade the worker node bearing the pod with the active

label (the pod actively providing the application service) to measure the maximum impact on

the application service.

39

5.2.1.2 Evaluating the Impact during the Master Node Upgrade

 For both kubeadm and kOps, during the master node upgrade, in a single-master and

the HA-master Kubernetes clusters, we do not observe any change in the state of the application

pods. As pods reside on the worker nodes, their state does not have any impact during the

upgrade of master nodes.

5.2.1.3 Evaluating the Impact during Worker Node Upgrade of Kubeadm Managed

Kubernetes Cluster

 In the case of kubeadm, as mentioned in the worker upgrade flow in Figure 5-2 and

sub-section 5.1.1, in a worker node upgrade step, it fetches the latest configuration from the

kubeadm-config. In this step, we observed no change in the state of the pods, thus no service

outage/degradation. The next step involves draining the worker node, which ensures that the

worker node has no running pods during its maintenance. Though the step to drain causes ser-

vice outage for the stateful application and service degradation for the stateless application,

this step is a node maintenance step. It is optional, so we do not consider the application pod’s

state change in this step.

5.2.1.4 Evaluating the Impact during Worker Node Upgrade of kOps Managed Ku-

bernetes Cluster

 In the case of kOps, during a worker node upgrade for a stateless application, we ob-

served a service degradation of 2.072 seconds. Based on our analysis, this happens because of

the worker node upgrade flow of kOps mentioned in sub-section 5.1.2, where the new worker

node with desired Kubernetes version is created before the old worker node is terminated. Once

the new worker node is created, Kubernetes terminates the pods running on the old worker

node and creates them on the new worker node. Due to the nature of the stateless application,

this does not cause any service outage, as the pod running on other worker continue to provide

40

the application service, but this causes service degradation. The time Kubernetes takes to create

a new pod on the newly created worker node constitutes the duration for which the actual num-

ber of pods is less than the desired number of pods, i.e., service degradation of 2.072 seconds,

shown in Table 5-1.

 For the stateful application, the application experiences a service outage of 0.681 sec-

onds during worker node upgrade (hosting active pod). As analyzed, this happens because of

the mentioned worker node upgrade process of kOps. When the new worker node with desired

Kubernetes version is created, Kubernetes initiates the termination of the old worker node,

during which the pods running on it are gracefully terminated and created on the new worker

node. Since the worker node selected for the upgrade hosts an active pod, the pod termination

causes the VLC application to stop streaming video. Simultaneously, the State controller re-

ceives the information of active pod termination and performs failover to the standby pod run-

ning on another worker node. The observed service outage is the time the State Controller takes

to complete the failover to the standby pod; the measurements are reflected in Table 5-1.

 Furthermore, in our experimental setting, since we considered two application pods, so,

for stateful application, we had one pair of the active-standby pod. This means only one pod

actively provides the services while the other is a standby pod, so service degradation is not

applicable for stateful application.

Table 5-1: kOps: service outage and service degradation during worker node upgrade

Scenario
Kind of application

Metrics (unit: seconds)

Service outage Service degradation

Worker node upgrade
Stateless application 0 2.072

Stateful application 0.681 N/A

41

5.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade in

the Presence of Pod Failure, on its Failure Recovery Actions and on Appli-

cation Services

 In this sub-section, we explain the different experiments performed to evaluate the im-

pact of upgrade process of kubeadm and kOps managed Kubernetes cluster. We first present

the results and analysis of the impact during master node upgrade and then the worker node

upgrade.

5.2.2.1 Experiments

The experiment aimed to evaluate the impact of the upgrade of the master/worker node

on the recovery from the pod failure and on the services of hosted applications. In this experi-

ment, pod failure was simulated by killing the pod process running on the OS.

For better comparison and understanding of these impacts, initially, pod failure was

injected in the absence of an upgrade, which gave a clear picture of the time needed to restore

the failed pod. Then, a pod failure was injected during the master/worker node upgrade to

evaluate the impact of the upgrade on the failure recovery.

For the stateful application, the pod with the active label (the pod actively providing

the service) was failed to evaluate the maximum impact of the upgrade on the application ser-

vices.

5.2.2.2 Evaluating Master Node Upgrade of Kubeadm Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 In the case of kubeadm, for both stateless and stateful application, the recovery opera-

tions for pod failure (as mentioned in Section 2.5.1) are impacted for the single-master cluster.

Kubelet, together with the master node, performs the repair operations for the failed unit, and

42

since the master node is being upgraded, recovery from pod failure is not possible. It leads to

an increase in the repair time, causing an increased failed unit outage time of 7.070 seconds for

the stateless application, as shown in Table 5-2, and 12.874 seconds for the stateful application,

as shown in Table 5-3.

For stateless application, the observed failed unit outage time also represents the dura-

tion for which the actual number of pods providing application service is less than the desired

number of pods, i.e., service degradation. Hence, the measurements are the same and repre-

sented in Table 5-2.

Table 5-2: kubeadm: stateless application pod failure during master node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/ Service degradation

Service
outage

Without upgrade
Single Master

0.849 0.403 1.536 2.788 0

With upgrade 0.847 4.613 1.610 7.070 0

Without upgrade
HA Master

0.849 0.403 1.536 2.788 0

With upgrade 0.833 0.449 1.516 2.798 0

Impact on Service Outage

 For a stateless application, we do not observe any service outage because the applica-

tion service remains available, as the pod hosted by another worker node is available to provide

it.

 For stateful application, in the single-master cluster, we observe an increase in the ser-

vice outage time. As the State controller depends on its interaction with the master node to

initiate and completes the failover operation, these communications are not possible during the

master node upgrade, leading to an increased service outage time of 8.497 seconds, as shown

in Table 5-3. Once the master node is upgraded and becomes available, the State controller

43

completes the failover to the available standby pod and application service becomes available

again.

Table 5-3: kubeadm: stateful application pod failure during master node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time Failed unit outage time Service

outage

Without upgrade
Single Master

0.943 2.583 1.593 5.119 1.612

With upgrade 0.683 10.591 1.600 12.874 8.497

Without upgrade
HA Master

0.943 2.583 1.593 5.119 1.612

With upgrade 0.927 2.581 1.592 5.100 1.574

5.2.2.3 Evaluating Master Node Upgrade of Kops Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For the single-master cluster, we see a drastic increase in the failed unit outage time for

stateless and stateful application, as shown in red in Table 5-4 and Table 5-5. This happens

because of the master node upgrade process of kOps, (as mentioned in sub-section 5.1.2),

which involves the termination of the master node in the current Kubernetes version and then

the creation of a new master node in the desired Kubernetes version. So, only once all the

components of the newly created master are ready, the master node becomes available to com-

plete the failure recovery of the pod. The duration for which the master node is unavailable due

to an upgrade causes an increase in the repair time, causing an increased failed unit outage

time.

Also, for stateless application, the time duration for which the failed pod doesn’t provide

the service, the application’s service is said to be degraded, as highlighted in red in Table 5-4.

44

Table 5-4: kOps: stateless application pod failure during master node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time/
Service degradation

Service
outage

Without upgrade
Single Master

0.562 0.642 1.532 2.736 0

With upgrade 0.892 340.005 1.593 342.490 0

Without upgrade
HA Master

0.562 0.642 1.532 2.736 0

With upgrade 0.623 0.710 1.389 2.722 0

Impact on Service Outage

For a stateless application, as at least one pod is available (running on another worker

node) to provide the application service, we do not observe any service outage. However, for

stateful application during the master node upgrade, when an active pod is failed, we see a

drastic increase in the service outage time. As analyzed, this happens because the State con-

troller depends on its interaction with the master node to perform the failover operation. Due

to the unavailability of the master node during its upgrade, these communications are not pos-

sible. Only once the master node is available, the State controller is able to complete the failo-

ver. It causes an increased service outage time of 346.661 seconds, as highlighted in red in

Table 5-5.

Table 5-5: kOps: stateful application pod failure during master node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection time
Repair

time
Assignment

time
Failed unit
outage time

Service
outage

Without Upgrade
Single Master

0.793 2.669 1.596 5.058 1.434

With Upgrade 0.789 351.984 1.708 354.481 346.661

Without Upgrade
HA Master

0.793 2.669 1.596 5.058 1.434

With Upgrade 0.713 2.615 1.605 4.933 1.353

 In HA-master Kubernetes cluster, for kubeadm and kOps, we observe no additional

impact on the failed unit outage time, service degradation, and service outage, as shown in

45

Table 5-2 to Table 5-5. It is due to the redundancy of the master nodes; while one of the master

nodes is upgrading, another master node will be available to perform the recovery operation.

5.2.2.4 Evaluating Worker Node Upgrade of Kubeadm Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For both stateless and stateful application, when we failed a pod running on a worker

node while another worker node is being upgraded, we observed no additional impact on the

failure recovery. It is because the kubelet component of the worker node whose pod is injected

with failure is able to perform the failure recovery operation (as mentioned in sub-section 2.5.1)

along with the master node. The measurement of this analysis is shown in Table 5-6 for state-

less application and Table 5-7 for stateful application. Also, for stateless application, the time

duration for which the failed pod doesn’t provide the service, the application’s service is said

to be degraded, so service degradation equals failed unit outage time. The analysis of this meas-

urement is the same for the HA-master Kubernetes cluster because of the redundancy of master

nodes that does not create any difference during worker node upgrade.

Table 5-6: kubeadm: stateless application pod failure during worker node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/ Service degradation

Service
outage

Without upgrade
Single Master

0.849 0.403 1.536 2.788 0

With upgrade 0.863 0.412 1.524 2.799 0

Without upgrade HA Master
0.849 0.403 1.536 2.788 0

With upgrade 0.741 0.455 1.503 2.699 0

Impact on Service Outage

 For a stateless application, we do not observe any service outage. During the worker

node upgrade step, the pod running on the upgrading worker node is not impacted and keeps

providing the application service. So, at this time, when another pod is injected with failure, at

least one pod remains available (on the worker node being upgraded) to provide application

service.

46

 For stateful application, when an active pod running on a worker node is injected with

the failure while the worker node hosting the standby pod is being upgraded, there is no addi-

tional impact on the service outage, as shown in Table 5-7. Based on our analysis, this happens

because of the worker node upgrade process of kubeadm. As mentioned in sub-section 5.1.1

and Figure 5-2, the worker node upgrades step in kubeadm involves fetching the latest ku-

beadm-config. Since this step is not disruptive, the standby pod running on this worker node

remains available during this upgrade step. So, during the upgrade step, when the active pod is

injected with failure, the State controller performs the failover to the available standby pod.

Thus, we see no additional impact caused by the ongoing upgrade. The results and analysis are

similar for the HA-master Kubernetes cluster.

Table 5-7: kubeadm: stateful application pod failure during worker node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection time Repair
time Assignment time Failed unit

outage time Service outage

Without upgrade
Single Master

0.943 2.583 1.593 5.119 1.612

With upgrade 0.711 2.625 1.604 4.940 1.382

Without upgrade
HA Master

0.943 2.583 1.593 5.119 1.612

With upgrade 0.749 2.599 1.549 4.897 1.420

5.2.2.5 Evaluating Worker Node Upgrade of Kops Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

For both stateless and stateful application in a single and HA-master cluster, there is no

additional impact on the failure recovery, as shown in Table 5-8 and Table 5-9, respectively.

Since the kubelet component responsible for reporting the failure is available on the worker

node whose pod is injected with failure, it communicates with the master node and performs

the recovery operation of the failed pod.

Also, for stateless application, we observed an increased service degradation of 5.141

seconds and 5.089 seconds, for Single and HA-Master cluster respectively, as highlighted in

47

red in Table 5-8. As analyzed, the observed service degradation represents the total time taken

to recover the failed pod and the service degradation caused due to graceful termination of the

pod on the upgrading worker node.

Impact on Service Outage

 For a stateless application, we do not observe any service outage. As analyzed, when

we inject pod failure on one of the worker nodes while another worker node is being upgraded,

the graceful termination of a pod from the worker node that is being upgraded does not overlap

with the failed pod’s failure recovery duration. So, at least one pod is available to provide

application service.

 For stateful application, we observed an increase in the service outage time, as high-

lighted in red in Table 5-9. It happens because of the upgrade process flow of the worker node

of kOps, as shown in Figure 5-4, where a new worker node with an updated Kubernetes version

is created, and the old worker node is terminated. So, in our experiment, when the active pod

is injected with failure while the worker node hosting the standby pod is being upgraded, the

active pod is failed twice, causing the State controller to perform two failovers. The first failo-

ver is triggered due to active pod failure injection, where the State controller makes the standby

pod available on the upgrading worker node as active. The second failover is triggered after

some time when the old worker node is marked for termination as a part of the upgrade process,

evicting the currently active pod on that worker node and making the State controller to per-

form the failover to the current standby pod (that failed earlier). It causes an increased service

outage time of 1.995 seconds in a single-master Kubernetes cluster and 2.011 seconds in the

HA-master Kubernetes cluster, as shown in Table 5-9.

48

Table 5-8: kOps: stateless application pod failure during worker node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit out-
age time

Service
degradation

Service
outage

Without
upgrade

Single Master
0.562 0.642 1.532 2.736 2.736 0

With upgrade 0.609 0.658 1.617 2.884 5.141 0

Without
upgrade HA Master

0.562 0.642 1.532 2.736 2.736 0

With upgrade 0.589 0.661 1.527 2.777 5.089 0

Table 5-9: kOps: stateful application pod failure during worker node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit
outage time Service outage

Without upgrade
Single Master

0.793 2.669 1.596 5.058 1.434

With upgrade 0.713 2.674 1.664 5.051 1.995

Without upgrade
HA Master

0.793 2.669 1.596 5.058 1.434

With upgrade 0.704 2.653 1.610 4.967 2.011

5.2.3 RQ2-2: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade, on

its Worker Node Failure Recovery Actions and on Application Services

 In this sub-section we explain the different experiments performed to evaluate the up-

grade process. For both kubeadm and kOps, we first present the results and analysis of the

impact, during master node upgrade and then the impact during worker node upgrade.

5.2.3.1 Experiments

The experiment aimed to evaluate the impact of the Kubernetes cluster version upgrade

on the recovery from a worker node failure. The worker node failure was simulated by issuing

the Linux’s reboot command on the worker node. For a better comparison and to understand

the impact of the upgrade on the recovery, initially, worker node failure was injected in the

absence of the upgrade, which gave a clear picture of the time needed to restore the pod in the

failed worker node. Then, a worker node failure was injected during the master/worker node

upgrade to evaluate the impact of the upgrade on the recovery of the failed unit.

49

 For stateful application, the worker node bearing the active pod was injected with fail-

ure with an aim to evaluate the maximum impact of the upgrade on the service outage.

5.2.3.2 Evaluating Master Node Upgrade of Kubeadm Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For both stateful and stateless applications, in the event of a worker node failure during

a master node upgrade in a single-master Kubernetes cluster, we observed that there is no ad-

ditional impact on the failure recovery, as shown in Table 5-10 and Table 5-11 for stateless

and stateful applications respectively. As analyzed, by the time the failed worker node reboots,

the upgrade of the master node is completed. The master node reacts to the failure of the worker

node by marking the worker node’s state as NodeNotReady. Once the failed worker node is

rebooted, the kubelet component of the worker node can communicate with the master node

components to fetch the list of the containers associated with that node and completes the re-

covery operations of the pod failed on the worker node that was injected with failure. Also, as

service degradation equals failed unit outage time for stateless application, there is no addi-

tional impact on service degradation, as shown in Table 5-10.

 These measurements are similar for a stateless and stateful application in an HA-master

Kubernetes cluster.

Impact on Service Outage

 For a stateless application, during the master node upgrade step, while one of the worker

node is failed, the pod running on another worker node is not impacted, so, there is at least one

pod available to provide the application service. Thus, the application service remains availa-

ble, and we do not observe any service outage.

50

 For stateful application, when the worker node bearing active pod fails during the mas-

ter node upgrade, we do not observe any additional impact on the service outage when com-

pared to the without upgrade scenario, as shown in Table 5-11. Based on our analysis, the

upgrade of the master node is completed by the time the failed worker node reboots. The master

node reacts to the failure of the worker node by marking the worker node’s state as NodeNo-

tReady, and the State controller initiates the service recovery of the failed pod caused due to

worker node failure, by performing a failover to the available standby pod, running on another

worker node. These measurements are similar for a stateless and stateful application in an HA-

master Kubernetes cluster.

Table 5-10: kubeadm: stateless application – worker node failure during master node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/ Service degradation

Service
outage

Without upgrade
Single Master

34.401 80.731 1.614 116.746 0

With upgrade 35.512 81.021 1.631 118.153 0

Without upgrade
HA Master

34.401 80.731 1.614 116.746 0

With upgrade 36.867 80.284 1.571 118.722 0

Table 5-11: kubeadm: stateful application – worker node failure during master node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit
outage time Service outage

Without upgrade
Single Master

36.085 82.917 1.591 120.593 36.744

With upgrade 37.151 82.141 1.672 120.964 37.802

Without upgrade
HA Master

36.085 82.917 1.591 120.593 36.744

With upgrade 35.819 81.502 1.493 118.884 36.488

5.2.3.3 Evaluating Master Node Upgrade of kOps Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For stateless and stateful applications, for a single master cluster, in the event of a

worker node failure during the master node upgrade, we observed an overall increase in the

failure recovery, as shown in Table 5-12 and Table 5-13. As analyzed, unlike kubeadm, kOps

51

first delete the selected master node in the current Kubernetes version and then creates a new

master node in the desired Kubernetes version. Since, no master node is available for the du-

ration when the old master node is terminated on account of the upgrade, till the newly created

master becomes available (has all the master node components in a ready state), thus the worker

node failure is not detected. It is only when the newly created master becomes available, it

reacts to the worker node failure. So, this additional time taken during the master node upgrade

increases the detection time. It is also observed that the repair time is decreased in comparison

to the failure without an upgrade scenario. The decrease in repair time is because the worker

node has already been rebooted and is ready for repair by the time the master node finishes its

upgrade process and detects the failure. So, once the master node becomes available, the worker

node’s kubelet component communicates with the master node to fetch the list of the pods

running on the node and completes the recovery process.

 Also, the stateless application experiences service degradation for the duration the

failed pod does not provide application service, so failure recovery equals service degradation,

as shown in Table 5-12.

Table 5-12: kOps: stateless application – worker node failure during master node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/ Service degradation Service outage

Without upgrade
Single Master

38.105 72.471 1.598 112.174 0

With upgrade 325.119 58.704 1.640 385.463 0

Without upgrade
HA Master

38.105 72.471 1.598 112.174 0

With upgrade 36.597 71.912 1.607 110.116 0

Impact on Service Outage

 In a single master cluster, for stateless application, when one of the worker node hosting

application pods is injected with failure during the master upgrade, we do not observe any

52

service outage. This is because a pod is available on another worker node, which will continue

to provide application service.

 For stateful application, we observe an increase in the service outage, as shown in Table

5-13. The State controller relies on its interaction with the master node to perform failover.

Since the master node is unavailable during its upgrade, the State controller cannot perform

failover for that duration. Once the new master node becomes available, it reacts to the failure.

At this time, the State controller is informed about the failure, so it performs a failover to the

available standby pod. It causes an increased service outage of 319.782 seconds, as highlighted

in red in Table 5-13.

Table 5-13: kOps- stateful application – worker node failure during master node upgrade

Scenarios Architecture
Metrics (unit: seconds)

Detection
time

Repair time
Assignment

time
Failed unit
outage time Service outage

Without upgrade
Single Master

35.489 80.291 1.635 117.415 36.138

With upgrade 319.087 64.290 1.706 385.083 319.782

Without upgrade
HA Master

35.489 80.291 1.635 117.415 36.138

With upgrade 36.971 79.813 1.669 118.453 37.633

 However, for the HA-master Kubernetes cluster in kOps for stateless and stateful ap-

plication (see Table 5-12 and Table 5-13), no additional impact is observed on the failed unit

outage, service degradation, and service outage time in any of the experiments. This is because

another master node would be available to perform recovery operations.

5.2.3.4 Evaluating Worker Node Upgrade of Kubeadm Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For both stateless and stateful application, it is observed (see Table 5-14 and Table

5-15) that there is no additional impact on the failed unit outage time due to the worker node

upgrade. As the kubelet component remains available on the worker node whose pod is injected

53

with the failure, it can detect the failure and communicate with the master node to perform the

recovery operations. Thus, we do not observe any additional impact.

 For stateless application, the application’s service is observed to be degraded for the

duration it takes to recover the pod failed due to worker node failure.

Table 5-14: kubeadm: Stateless application – worker node failure during worker node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/ Service degradation

Service
outage

Without upgrade
Single Master

34.401 80.731 1.614 116.746 0

With upgrade 35.512 79.520 1.682 116.714 0

Without upgrade
HA Master

34.401 80.731 1.614 116.746 0

With upgrade 35.190 79.419 1.596 116. 205 0

Impact on Service Outage

 For a stateless application, we do not observe any service outage. This happens because,

during the worker node step in kubeadm, the pods running on it are not impacted, so at the

same time if another worker node bearing the application pod is injected with failure, there is

at least one pod available to provide application services. Thus, the application service will be

available.

 For stateful application, there is also no additional impact on the service outage time

(see Table 5-15). As analyzed, the worker node upgrade process, as shown in Figure 5-2, is not

disruptive, so during the worker node upgrade step, the standby pod hosted on it keeps running.

At this time, when the worker node bearing the active pod is failed, the State controller can

perform a failover to the available standby pod. These results are the same for the HA-master

Kubernetes cluster.

54

Table 5-15: kubeadm: Stateful application – worker node failure during worker node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection time Repair
time Assignment time Failed unit outage time Service

outage

Without upgrade
Single Master

36.085 82.917 1.591 120.593 36.744

With upgrade 34.572 82.419 1.623 119.623 35.251

Without upgrade
HA Master

36.085 82.917 1.591 120.593 36.744

With upgrade 35.623 79.865 1.558 119.046 36.284

5.2.3.5 Evaluating Worker Node Upgrade of kOps Managed Kubernetes Cluster

Impact on Failure Recovery and Service Degradation

 For both stateless and stateful application, we do not observe any additional impact on

the failed unit outage time, as the master node is available to detect the worker node failure and

perform necessary recovery operations. So, post failure, when the worker node joins the cluster,

it completes its recovery actions (mentioned in sub-section 2.5.2) by communicating with the

master node. The calculated failed unit outage time is shown in Table 5-16 and Table 5-17 for

stateless and stateful applications, respectively. These results are the same for the HA-master

Kubernetes cluster.

 Also, for stateless application, we observe the service degradation for the duration it

takes to recover the pod failed due to worker node failure, as shown in Table 5-16.

Table 5-16: kOps: stateless application – worker node failure during worker node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit
outage time

Service
degradation

Service
outage

Without upgrade
Single Master

38.105 72.471 1.598 112.174 112.174 0

With upgrade 37.750 71.998 1.627 111.375 111.375 2.071

Without upgrade
HA Master

38.105 72.471 1.598 112.174 112.174 0

With upgrade 36.168 72.043 1.586 110.247 110.247 2.067

55

Impact on Service Outage

 For stateless application, we observe an increased service outage of 2.071 seconds and

2.067 seconds, for Single and HA master Kubernetes cluster, respectively, as highlighted in

red in Table 5-16. As analyzed when we inject failure in one of the worker nodes while another

node is being upgraded, there is no pod available to provide the application service. This hap-

pens because, while the pod failed on account of worker node failure is recovering, the pod

running on another worker node is evicted because of the upgrade, causing a service outage.

When the pod evicted on account of the upgrade is started before the failed pod is recovered,

the application resumes its service.

 For stateful application, we observed an increase in the service outage time of 37.019

seconds and 36.215 seconds for single and HA master Kubernetes clusters, respectively, as

highlighted in red in Table 5-17. It happens because when the worker node bearing the active

pod is failed while the worker node bearing the standby pod is upgrading, the active pod is

failed twice, causing the State controller to perform the failover twice. The first failover is

performed when the State controller is notified of the active pod failure through the master

nodes, i.e., detection time of 35.701seconds for a single master and 34.904 seconds HA master

cluster; it performs failover from the failed active pod to the available standby pod running on

the worker node being upgraded. The second failover is performed due to an ongoing upgrade

when the currently active pod running on the upgrading node is marked for graceful eviction.

As the State controller gets notified about this event, it performs a failover to the current

standby pod. Since the scenario caused the active pod to terminate twice, it caused an increased

service outage time.

56

Table 5-17: kOps: stateful application – worker node failure during worker node upgrade

Scenarios Architecture

Metrics (unit: seconds)

Detection time Repair time
Assignment

time
Failed unit outage time Service

outage

Without upgrade
Single Master

35.489 80.291 1.635 117.415 36.138

With upgrade 35.701 79.826 1.586 117.113 37.019

Without upgrade
HA Master

35.489 80.291 1.635 117.415 36.138

With upgrade 34.904 80.211 1.681 116.796 36.215

5.2.4 RQ3: Evaluate the Impact of a Failure of the Kubernetes’ Cluster Version

Upgrade Process

5.2.4.1 Experiments

The experiment aims to evaluate the impact on the state of the cluster, post upgrade

process failure, and the remediation measures taken by the tools to restore the state of the clus-

ter.

 In kubeadm, the successful completion of the master node updates the kubeadm-config

file, which is later referred to by all other nodes in the cluster during their upgrade. So, failing

the master node upgrade process would result in the upgrade process failure of kubeadm cre-

ated Kubernetes cluster. To simulate the failure, we abruptly reboot the master node while it is

upgrading using the Linux reboot command.

 In the kOps created Kubernetes cluster, cluster validation failure results in upgrade pro-

cess failure of the cluster. As cluster validation happens for each master/worker node upgrade,

so to fail the cluster validation, we inject node failure by continuously rebooting the upgrading

node using the Linux reboot command.

 The evaluation of the impact was divided into two parts. First, we identify if the upgrade

process failure was detected by the tool managing the Kubernetes cluster. Second, if the tool

57

detects the failure, we evaluate the remediation measures taken by the tools to recover the

cluster post the upgrade process failure.

5.2.4.2 Evaluating the Detection of Upgrade Process Failure by the Tools Managing

the Kubernetes Cluster

Kubeadm does not provide any functionality for detecting a failure of the upgrade pro-

cess, so the detection process is manual. However, in kOps, the Kubernetes cluster version

upgrade process involves cluster validation, and if the cluster is not validated within the cluster-

validation-timeout duration, the upgrade process is marked as failed. So, the time to detect the

upgrade process failure is the default cluster-validation-timeout duration of 15 minutes.

5.2.4.3 Evaluating the Remediation Measures Taken by the Tools Managing the Ku-

bernetes Cluster to Restore the Cluster’s State post Kubernetes’ Upgrade Pro-

cess Failure

Kubeadm does not provide any remediation measures to restore the Kubernetes version.

The Kubernetes version must be restored manually.

 However, in the kOps created Kubernetes cluster, if the cluster fails to validate within

the default duration of 15 minutes, kOps fails the cluster version upgrade process. After the

upgrade process failure is identified, the AWS instance group creates a new master/worker

node in the updated Kubernetes version. When the upgrade process fails during an ongoing

upgrade of a node in a Kubernetes cluster, the instance groups in AWS are responsible for

launching a new node by referring to the cluster specification file (that is updated in one of the

very first steps of kOps upgrade process flow) as shown in Figure 5-4 and mentioned in sub-

section 5.1.2. The updated cluster specification becomes the point of reference for the cluster’s

state (in terms of Kubernetes cluster version) in the event of master/worker node failure. How-

ever, the remaining nodes that are not yet upgraded keep running in the old Kubernetes version.

58

5.2.5 Assessing the Achievable Service Availability, during Kubernetes’ Cluster

Version Upgrade, and in Presence of Failure during Upgrade (H1)

In this sub-section, we discuss the results of our evaluation to test our hypothesis H1.

Kubernetes cluster version must be upgraded at-most 56 times in a year, this is deduced from

the frequency of releases by Kubernetes community as mentioned in Section 5.1. So, we use

the measurements of our evaluation to calculate service availability using Equation 2. The cal-

culations represents the service availability achieved when the Kubernetes cluster version is

upgraded (with and without failure) 56 times a year. Furthermore, each service availability

calculation (for every evaluated scenario) considers the upgrade of all the nodes in the entire

cluster and is specific to our experiment setting and the associated measurements.

5.2.5.1 Service Availability During Upgrades

Kubernetes cluster version upgrade involves upgrading the Kubernetes version of all

the master and worker nodes in a cluster. So, to calculate service availability achieved during

the Kubernetes cluster version upgrade, we consider the service outage caused during each

node upgrade of the entire Kubernetes cluster.

For a kOps-created cluster, the measurement presented in Table 5-1 indicates that the

outage is observed only during worker node upgrade, so, we utilized these measurements to

calculate the total service outage. In the case of kubeadm created cluster, we do not observe

any service outage when either master node (see sub-section 5.2.1.2) or worker node (see sub-

section 5.2.1.3) is upgraded. Thus, as presented in Figure 5-5, our calculations conclude that

high availability of 99.999% per year is maintained for the deployed application, during Ku-

bernetes cluster version upgrade, for both kubeadm and kOps-created cluster.

59

5.2.5.2 Service Availability during Upgrade in the Presence of Failure

Next, we evaluated the failure scenarios during upgrade, as presented in sub-section

5.2.2 for pod failure, sub-section 5.2.3 for worker node failure, and sub-section 5.2.4 for up-

grade process failure.

For the Stateless application, in the event of pod/worker node failure during Kubernetes

cluster version upgrade, no service outage is observed (because of the nature of the applica-

tion); this holds true for both kubeadm, and kOps created Kubernetes cluster. So, high availa-

bility of the application is maintained.

However, for the stateful application hosted on a single-master and two-worker node

Kubernetes cluster, pod/worker node failure during the upgrade causes a service outage,

thereby impacting the high availability of the application. In case of pod failure during the

upgrade we use the measurement presented in Table 5-3 and Table 5-7 and calculated that

service availability for the stateful application is 99.998% in kubeadm created Kubernetes clus-

ter; and using the measurement presented in Table 5-5 and Table 5-9, a service availability of

99.937% is offered in kOps created Kubernetes cluster. In case of a worker node failure, the

service availability is 99.987% in kubeadm created Kubernetes cluster (see Table 5-11 and

Table 5-15), and service availability of 99.936% is offered in a kOps-created Kubernetes clus-

ter (see Table 5-13 and Table 5-17). These computations are shown in Figure 5-5 and represent

the percentage of service availability guaranteed in a year if the cluster is upgraded 56 times

with these outages happening in the cluster.

We also calculated service availability achieved with HA-master cluster, with three

master and two-worker nodes. As shown in Figure 5-6 for the HA-master cluster, our calcula-

tions indicate that during upgrades in the presence of pod/worker node failure, the offered ser-

vice availability is improved in a HA-master cluster when compared to single-master cluster.

60

In the event of pod failure during upgrade in a HA-master cluster (see Table 5-5 and Table

5-9), the service outages do not impact the high availability of the application, this is true for

both kOps and kubeadm created cluster. For a kOps managed cluster, in the event of worker

node failure during upgrade, the HA-master cluster offers improved service availability of

99.986% when compared to single-master cluster (see Figure 5-5 and Figure 5-6). For a ku-

beadm managed cluster, since upgrades do not cause additional outage in the event of worker

node failure, the service availability offered remains same for both single-master and HA-

master cluster, as shown in Figure 5-5 and Figure 5-6.

Finally, we also evaluated the upgrade process failure scenario presented in sub-section

5.2.4 and learnt that the high availability of the deployed application is not impacted.

Figure 5-5: Single-master Kubernetes cluster: Service availability achieved when Kubernetes’ cluster version up-
grades for a year, managed by kOps, and kubeadm tool

61

Figure 5-6: HA-master Kubernetes cluster: Service availability achieved when Kubernetes’ cluster version upgrade
for a year, managed by kOps, and kubeadm tool

5.2.5.3 Conclusion

As shown in Figure 5-5, our results suggests that the high availability of application

deployed in a Kubernetes cluster is maintained during Kubernetes cluster version upgrade in

the absence of any failure and during upgrade process failure scenario. This is true for both

single and HA-master cluster, managed by kOps and kubeadm. However, in a single master

cluster, the high availability is impacted when failures happen during the ongoing upgrades.

Furthermore, these impact on service availability can be mitigated in a HA-master Kubernetes

cluster. As shown in Figure 5-6, HA-master cluster offers high availability during upgrade in

the presence of pod failure for both kubeadm and kOps created cluster, and better service avail-

ability during upgrade in the presence of worker node failure for kOps created cluster. Thus,

these results of our assessment partially validate our Hypothesis H1 for the considered cluster

setting and the associated measurements.

62

5.3 Overall Analysis and Potential Improvements

In this section, we provide a summary of the evaluation and issues identified during the

Kubernetes cluster version upgrade. Then, we discuss the issues not handled by Kubernetes

and provide a potential solution.

Through our evaluations, we learned that since the upgrade process of kOps involves

creating a new node with the updated Kubernetes version and terminating the old node in the

current version, it causes a drastic impact on the service outage as compared to upgrade during

a kubeadm created Kubernetes cluster. Also, kOps can identify the upgrade process failure

through cluster validation which is a part of the upgrade process. The upgrade process is

marked as failed if the cluster is not validated within the cluster-validation timeout duration.

However, for the kubeadm managed cluster, the detection of the upgrade process failure and

the restoration measures are manual.

We present potential improvements to solve the problems associated with kubeadm

created Kubernetes cluster, where manual intervention is required to detect and restore the

Kubernetes version when its cluster’s upgrade process fails.

As identified in sub-section 5.2.4.2, when the upgrade process of the master node fails,

kubeadm does not detect the Kubernetes upgrade process failure; this causes inconsistency in

versions of the master node components. Since a successful upgrade of the master node is

essential for upgrades to follow, it also disrupts the upgrade process of the cluster. So, we

propose potential improvements to solve the upgrade process failure of the master node. Next,

we will explain our analysis associated with the upgrade process failure of the master node.

During the master node upgrade process step shown in Figure 5-1, the following steps taken

are performed to upgrade the master node components:

63

1. First, the images of the master node components (existing as static pods) in the desired

Kubernetes version are pulled and kept in the upgrade manifests folder shown in Figure

5-7.

2. Next, for each master node component, kubeadm performs the following steps to up-

grade them:

a. First, the current configuration of the master node component is backed up from

the current config folder to the backup manifest folder, as shown in Figure 5-7.

b. Then, the new configuration is moved from the upgrade manifest folder to the

current config folder. The Kubelet component on that node monitors this change

and restarts the component associated with the new configuration file.

c. Once restarted, the component reflects the updated version, and the upgrade

process completes for that master node component.

3. Once all the master node components are upgraded, the backup manifest folder will

have all the old configuration files, and the upgrade manifest folder will be empty and

eventually removed.

4. Finally, the kubeadm-config is updated with the Kubernetes version, and later this file

will be referred by all other nodes for their upgrade.

So, we observed that when upgrade process failure is injected during the master node

component upgrade (in Step 2), the master node components whose config transfer is success-

fully completed are upgraded to a newer version, while other components remain in the older

version. Figure 5-7 shows when the master node upgrade process fails and highlights the state

of the current-config folder in which master node components exist in different versions.

64

Figure 5-7: Post the master node upgrade process failure, the figure showing the status of the current config folder

 To solve the mentioned problems, we propose the following solution that should be

employed in an upgrade-manager tool (an external tool that manages Kubernetes cluster ver-

sion upgrade):

1. The first step is to deploy a flag whose value is set to false by default when the upgrade

starts and becomes true only when all the master node components are successfully

updated. The upgrade manifest folder can be monitored to see if the upgrade has been

successfully completed. That would lead us to the detection of the upgrade process

failure. Also, a timeout duration must be specified. Once this timeout duration is ex-

ceeded; the upgrade manager tool should investigate the process failure. This timeout

should consider various factors, such as the usual master node upgrade time, the status

of the node, and the master node components running in it.

2. Next, if the value of the flag is not set to true, the upgrade command must be re-initi-

ated. As per the logic of the kubeadm upgrade command, it skips upgrading the com-

ponents that are already upgraded and only upgrades the components left to upgrade.

This step affirms that all the master node components are in the same version. Once all

65

master node components get successfully upgraded, the kubeadm-config file is updated

with the new Kubernetes version.

 Once the two mentioned steps are completed, all the master node components will be

in the same version. So, that is how an upgrade process failure could be automatically detected

and handled for a kubeadm created Kubernetes cluster.

5.4 Conclusion

In this chapter, we evaluated the Kubernetes cluster version upgrade managed by ku-

beadm and the kOps tool available to practitioners. The experiments are performed on a single-

master and HA-master Kubernetes cluster to analyze the impact of the Kubernetes cluster ver-

sion upgrade on failure recovery and application services.

We also assessed the achievable service availability when the Kubernetes cluster ver-

sion is upgraded (with and without failure) during its upgrade cycle in a year. We learnt that,

in a single-master cluster, failure during an upgrade drastically affects the high availability.

However, high availability is maintained during the upgrade (in the absence of failure) and

when the upgrade process fails. As the service availability calculated and presented is specific

to the cluster setting considered in our work, the service availability can vary in a different

cluster setting and on the way the cluster gets upgraded. For example, when upgrades happen

in large clusters, service availability may vary on various factors: the number of nodes up-

graded at once, the distribution and replication of application pods across the worker nodes in

the cluster, and so on. Our assessment aims to present an insight into handling large clusters

with complex applications by understanding the achievable service availability in a small clus-

ter (where the application pods are distributed evenly, and the cluster version of each node is

upgraded one at a time).

66

Through our experiments, we identified shortcomings of tools managing Kubernetes

cluster to recover the cluster’s state if its Kubernetes version upgrade process fails. For exam-

ple, in a kubeadm created Kubernetes cluster, if the master node upgrade process fails, then

only master node components upgraded before the failure are in the upgraded version while

the remaining components yet to upgrade run in the older Kubernetes version. So, the upgrade

process failure causes inconsistency in versions of the master node components, and since a

successful upgrade of the master node is essential for upgrades to follow, it disrupts the upgrade

process of the cluster. So, we propose potential improvements to automate the restorative ac-

tions in the event of upgrade process failure: first, by detecting the failure by analyzing the

state of the master node configuration file; and then handling the failure by re-initiating the

upgrade that (by default) resumes the upgrade of master node components yet to be upgraded.

We acknowledge that there are some threats to the validity of our results. We considered

the default configuration of Kubernetes for our experiments. Changing the default configura-

tion would give different measurements for the calculated outage time. For example, reducing

the status update time from the kubelet to the master node would reduce the overall outage time

experience in the Worker node failure. However, we aimed to identify the maximum impact of

upgrades in the default configurations of Kubernetes to act as a point of reference for the unal-

tered version of the Kubernetes cluster.

Furthermore, all the experiments were performed in two basic architectures, a single

master and two worker nodes Kubernetes cluster, and HA architecture, consisting of three mas-

ters and two worker nodes. Kubernetes may behave differently in larger clusters which may

impact the measurements presented in our experiments. Also, it is crucial to consider different

applications before generalizing a particular criterion. For the experimentation, we considered

67

a simple stateless NGINX webserver application; the results might vary with the larger micro-

service-based application. Still, our experiments indicate the availability and recovery guaran-

teed by Kubernetes for the application deployed during upgrades.

68

Chapter 6

6 Kubernetes Application Upgrade

In this chapter, we quantitatively evaluate the application upgrade strategies as provided by

Kubernetes. In Section 6.1, we have explained the application upgrade strategies natively pro-

vided by Kubernetes for the applications deployed in its cluster. In Section 6.2, we have de-

scribed the evaluation criteria; the research questions we aim to answer before discussing the

results and analysis of the performed experiments and assessing the achievable service availa-

bility during upgrade. In Section 6.3, we provide potential improvements to some of the ana-

lyzed issues and conclude our evaluations in Section 6.4.

6.1 Current Practice of Upgrade

Kubernetes provides different strategies to upgrade an application deployed in a Ku-

bernetes cluster. The strategies differ on the nature of the application, i.e., stateless or stateful,

and can be defined directly in the respective specification file [27], also referred to as spec.

A stateless application is (usually) deployed in a Kubernetes cluster with the object of

kind Deployment, and thus they are managed by the Deployment controller via ReplicaSet

[28]. On the other hand, a stateful application is (usually) deployed with the object of kind

StatefulSet, and thus they are managed by the StatefulSet controller.

6.1.1 Upgrade Strategies for Stateless Application

A Deployment’s upgrade is triggered if the Deployment’s Pod template (also called

Deployment spec) is changed, for example, if the labels or the container images of the template

69

are updated. Other updates, such as scaling the Deployment, do not trigger an upgrade [29]. A

stateless application managed by the Deployment controller can either be upgraded via Recre-

ate or by RollingUpdate strategy and can be defined in the .spec.strategy.type field of the De-

ployment spec. The default application upgrade strategy is RollingUpdate.

In the Deployment spec, when the value of the .spec.strategy.type is set as Recreate,

and the application version is updated in the spec, the Deployment controller first scales down

the old ReplicaSet to zero, which causes all the existing pods running in the old version to be

gracefully terminated. Then, it creates a new ReplicaSet for the desired version and scales up

this ReplicaSet to the desired number of pods, which causes the creation of a desired number

of pods in the new version (as mentioned in the spec). Figure 6-1 illustrates the application

upgrade process of two pods from version v1 to version v2 via Recreate strategy.

Figure 6-1: Illustration of Recreate strategy for stateless application

However, in the Deployment spec, when the value of the .spec.strategy.type is set as

RollingUpdate, and the application version is updated in the spec, the Deployment controller

first creates a new ReplicaSet with the updated version and scales up this ReplicaSet by one

pod (by default) to create a pod in the updated version. Only once this newly created pod tran-

sitions to the Running state, it scales down the old ReplicaSet by one pod, deleting a pod in the

70

old version. This process continues till all the pods are upgraded to the newer version. Figure

6-2 illustrates the application upgrade process of two pods from version v1 to version v2 via

the RollingUpdate strategy.

Figure 6-2: Illustration of RollingUpdate strategy for stateless application

6.1.2 Upgrade Strategies for Stateful Application

A stateful application managed by the StatefulSet controller can be either upgraded via

OnDelete or by the RollingUpdate strategy [30]. These upgrade strategies can be defined in the

.spec.updateStrategy.type field of the StatefulSet spec. The default application upgrade strat-

egy is RollingUpdate.

In the StatefulSet spec, when the value of the .spec.updateStrategy.type is set as

OnDelete, and the application’s image version is updated in the spec, Kubernetes expects the

pods in the old version must be manually deleted, and only then StatefulSet controller re-cre-

ates the pod with the updated version. Figure 6-3 illustrates the process of application upgrade

from version v1 to version v2 using the OnDelete strategy, where both the pods in version v1

are deleted at once to initiate their upgrade in version v2.

71

Figure 6-3: Illustration of OnDelete upgrade strategy for stateful application

In the StatefulSet spec, when the.spec.updateStrategy.type is set as RollingUpdate, and

the application’s image version is updated in the spec, the StatefulSet controller starts upgrad-

ing the pod in the reverse ordinal number. This indicates that the pod with the highest ordinal

number is selected for upgrade and is gracefully terminated; the StatefulSet controller then re-

creates the pod in the updated version and waits for the pod’s transition to the Running state

before it selects the next pod (if any) for the upgrade. This process continues till all the pods

of that spec are updated. Figure 6-4 illustrates the application upgrade process of two pods

from version v1 to version v2 using the RollingUpdate strategy.

Figure 6-4: Illustration of RollingUpdate upgrade strategy for stateful application

72

6.2 Evaluation of Application Upgrade Strategies

In this section, we evaluate the application upgrade strategies provided by Kubernetes

for stateless and stateful applications. Though several other strategies are available to the prac-

titioner to upgrade the application, e.g., Blue-Green release, Canary release, etc., they are not

considered for evaluation, as Kubernetes does not provide direct support for them.

Upgrading an application version may impact the service provided by the application.

Since Kubernetes provides orchestration of the applications hosted in its cluster, we state the

following hypothesis:

H2: High Availability of application deployed in a Kubernetes cluster is impacted when the

application upgrades, especially in the presence of failure.

So, to test H2, we evaluated the upgrade strategy natively provided by Kubernetes, and

defined the following Research Questions (RQ):

RQ1: What is the impact of Kubernetes’ application upgrade on the application services?

RQ2-1: What is the impact of Kubernetes’ application upgrade on recovery from a pod failure

and on application services?

RQ2-2: How does the pod failure during Kubernetes’ application upgrade impacts the failed

pod’s version?

RQ3-1: What is the impact of Kubernetes’ application upgrade process failure on the services

provided by the application?

RQ3-2: What measures are taken by the Kubernetes’ Deployment/StatefulSet controllers to

recover from the Kubernetes’ application upgrade process failure?

73

All the experiments are performed on a kubeadm created single master and two worker

nodes Kubernetes cluster running version 1.18.1, integrated with Docker version 19.06 as its

container runtime. In sub-section 3.2.2, we described the stateless and stateful applications

considered for the evaluation. As mentioned in sub-section 3.2.2 and Figure 3-2, the service

recovery of the stateful VLC application is managed by the State controller [16]. Also, as ob-

served, the time taken to pull the application image during the upgrade is a variable factor and

can vary depending on the size of the image, internet speed etc. So, we avoid this overhead by

pulling the application image on the physical machine prior to performing any experiment. The

Auto-Metric collector tool automated the process of metrics collection, as described in Chapter

4. The results of all the experiments are in seconds with an accuracy of milliseconds.

6.2.1 RQ1: Evaluate the Impact of Kubernetes’ Application Upgrade on the Ap-

plication Services

In this sub-section, we explain the experiments performed, discuss the results, and pre-

sent our analysis.

6.2.1.1 Experiments

The experiment aims to evaluate the impact on the services provided by the application

that is being upgraded. While the application was upgrading, we monitored the pod-related

events in Docker and kubelet logs of the worker nodes. The impact on application service is

calculated as a service outage and service degradation.

6.2.1.2 Evaluating the Upgrade Strategies of Stateless Application

As mentioned in sub-section 6.1.1, Kubernetes provides two upgrade strategies for the stateless

application managed by the Deployment controller: Recreate and RollingUpdate; what follows

is the evaluation and analysis of these upgrade strategies.

74

Impact during Recreate Upgrade Strategy

The stateless NGINX application experiences a service outage of 11.229 seconds. As

mentioned in the upgrade process flow, during Recreate strategy (see sub-section 6.1.1 and

Figure 6-1), Kubernetes first deletes all the pods running in the old version at once by scaling

down the number of replicas in the associated ReplicaSet to zero. Once the old ReplicaSet is

deleted, the deployment controller creates a new ReplicaSet in the updated version and scales

up this ReplicaSet to the desired number of pods, bringing up all the pods in the updated version

at once. Since no pods are available to actively provide application service during the ongoing

upgrade, the application experiences a service outage, and the measurements are shown in Ta-

ble 6-1.

As the application experiences complete downtime for the duration of its upgrade, ser-

vice degradation is not applicable in this scenario.

Impact during RollingUpdate Upgrade Strategy

The stateless NGINX application does not experience any service outage during its up-

grade because of the upgrade flow of the RollingUpdate strategy (as mentioned in sub-section

6.1.1 and shown in Figure 6-2), where a new pod is created before deleting an old pod. Thus

at least one pod is always available during the ongoing upgrade to provide application service.

As mentioned, in the RollingUpdate strategy, a new pod is created with the updated

version, and once its state transitions to the Running state, the pod in the old version is grace-

fully terminated, so the desired number of pod replicas is always maintained. Thus, the appli-

cation service is not degraded during an upgrade.

75

Table 6-1: Stateless application: Impact on the application services during its upgrade

 Metrics (unit: seconds)

Upgrade strategy

Service Outage Service Degradation

Recreate 11.229 N/A

RollingUpdate 0 0

6.2.1.3 Evaluating the Upgrade Strategies of Stateful Application

As mentioned in sub-section 6.1.2, Kubernetes provides two upgrade strategies for the stateful

application: OnDelete and RollingUpdate. Following are the evaluation and analysis of these

upgrade strategies.

Impact during OnDelete Upgrade Strategy

Since this strategy involves manual deletion of the pod for them to get upgraded, we

performed deletion in the following three combinations to understand the maximum impact on

the service outage of the stateful VLC application:

1. When the Upgrade Started with the Standby Pod: In this scenario, we upgrade one pod

at a time, beginning with the upgrade of a standby pod and then upgrading the active pod.

Service Outage: The stateful VLC application experiences a total service outage of 0.643

seconds because of the upgrade process of the OnDelete upgrade strategy, which involves

the manual deletion of the pod that should get upgraded. So, when the standby pod is de-

leted for an upgrade, the application’s service is not impacted because the active pod re-

mains available to stream the video. Once the standby pod gets recreated post upgrade, we

delete the active pod for an upgrade. On deletion of the active pod, the stateful VLC appli-

cation stops streaming the video, and the application experiences a service outage. When

kubelet reports the deletion of the pod, the State controller performs the failover to the

available standby pod. The time it takes for the State controller to perform the service re-

covery constituted a service outage of 0.643 seconds, as shown in Table 6-2.

76

2. When the Upgrade Started with the Active Pod: In this scenario, we upgrade one pod at

a time, beginning with the upgrade of an active pod and then upgrading the standby pod.

Service Outage: As the upgrade process of OnDelete involves manual deletion of the pod

that should be upgraded, the stateful VLC application experiences a service outage of 1.287

seconds. So, when the active pod is deleted for an upgrade, the stateful VLC application

stops streaming the video, and the application experiences a service outage. When kubelet

reports the deletion of the pod, the State controller performs a failover to the available

standby pod. The time it takes for the State controller to perform the service recovery con-

stituted a service outage of 0.647 seconds. After the pod gets recreated, it is assigned a

standby label. Now, when the next pod is deleted for an upgrade, which is the current active

pod, so the application again experiences a service outage. Kubelet reports the deletion of

the pod, and the State controller performs the failover to the available standby pod. The

time taken by the State controller to perform failover constitutes the second service outage

of 0.640 seconds. Since the failover happens twice in this scenario, it causes a total service

outage of 1.287 seconds, as shown in Table 6-2.

3. When both the Pods are Upgraded at Once: In this scenario, we initiate the upgrade of

both pods simultaneously by manually deleting them.

Service Outage: The application experiences complete downtime and observes a service

outage of 7.132 seconds, as shown in Table 6-2. As both the pods are deleted for their

upgrade, no pods will be available to provide application service. The observed service

outage is the time taken by the StatefulSet controller to create a pair of new pods and for

the State controller to assign active and standby roles to these pods. Once these roles are

assigned, the active pod starts the video streaming service.

77

Impact during RollingUpdate Upgrade Strategy

Since the impact of application services depends on the type of pod (active/standby)

chosen as the starting point of upgrade, so, we considered the following two scenarios for eval-

uation:

1. When the Upgrade Started with the Standby Pod: In this scenario, the standby pod is at

the highest ordinal number. So, it gets upgraded first, and then the active pod is selected

for upgrade.

Service Outage: The application experiences a service outage of 0.641 seconds, as pre-

sented in Table 6-2. As per the upgrade process of RollingUpdate mentioned in sub-section

6.1.2, the StatefulSet controller first terminates the pod and then re-creates it in the updated

VLC image version. So, when the standby pod gets terminated, as part of the upgrade pro-

cess, the application’s service is not impacted because the active pod is available to stream

the video. But once the selected standby pod gets upgraded, the next pod selected for the

upgrade is the active pod. Now, when the active pod is removed for an upgrade, it causes a

service outage. The State controller detects the termination of the active pod from the

kubelet events and initiates the failover to the available standby pod. The resulting service

outage is the time the State controller takes to perform the failover to the standby pod.

2. When the Upgrade Starts with the Active Pod: In this scenario, the active pod is at the

highest ordinal number. So, it gets upgraded first, and then the standby pod is selected for

upgrade.

Service Outage: The stateful VLC application experiences a service outage of 1.293 sec-

onds, as shown in Table 6-2. When the upgrade starts with the active pod having the highest

ordinal number, the active pod is removed to be recreated with the updated VLC image

version, and this causes the application to experience a service outage. The State controller

78

detects the termination of the active pod from the kubelet events and performs the failover

to the available standby pod. The time taken by the State controller to perform the service

recovery constitutes a service outage of 0.641 seconds. Once the pod selected for the up-

grade is upgraded successfully, the StatefulSet controller picks the next pod (current active

pod) for an upgrade. When the current active pod is removed for an upgrade, the application

again experiences a service outage. When the State controller detects this, it again initiates

the failover to the available standby pod. The time taken by the State controller to perform

service recovery constitutes a service outage of 0.652 seconds. Since the failover happens

twice, the application experiences a total service outage of 1.293 seconds.

Table 6-2: Stateful application: Impact on the application services during its upgrade

Upgrade strategy Scenarios
Metrics (unit: seconds)

Service
outage

OnDelete
Upgrading one pod at

a time

Upgrade starts with standby pod 0.643

Upgrade starts with active pod 1.287

Both pods upgraded at once 7.132

RollingUpdate
Upgrade started with standby pod 0.641

Upgrade started with active pod 1.293

6.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Application Upgrade on the

Recovery from a Pod Failure and on Application Services

In this sub-section, we explain the different experiments performed, then we discuss

the results of these experiments and present our analysis on the impact of application upgrade

on the recovery from pod failure and on application services.

6.2.2.1 Experiment

The experiment aims to evaluate the impact of application upgrades in the presence of

failure. This impact on failure recovery is measured in terms of failed unit outage time, and the

79

impact on the application service is calculated as service outage and service degradation. We

simulated pod failure by killing the pod process from the OS.

To better compare and understand the upgrade's impact, we injected the pod failure

without the application upgrade, while performing the application upgrade. When pod failure

was injected in the absence of an upgrade, it gave a clear picture of the time it usually takes for

the failed unit to be recovered and the duration of any service outage and service degradation

experienced by the application. Then, we injected pod failure during the application upgrade

to evaluate the impact of the upgrade on the failure recovery and application services.

We follow the same experiments for stateful application, just that the pod failure was

injected in the active pod, i.e., the pod that was actively providing the service, to evaluate the

maximum impact on the application services.

6.2.2.2 Evaluating the Upgrade Strategies of Stateless Application

Impact during Recreate Upgrade Strategy

Impact on Service Outage: The stateless NGINX application experiences a service

outage of 11.263 seconds, so there is no additional impact on the service outage compared to

the without failure scenario in RQ1. Since in Recreate strategy, all the pods running in the old

version are deleted before they are re-created in the updated version, so, when a pod (running

in the old version) is failed at the same time, the failed pod is not re-created (and not recovered

from failure) by the Deployment controller, and the upgrade process continues to create new

pods with the updated version. The results of the measurements are shown in Table 6-3.

Impact on Failure Recovery and Service Degradation: As the application experi-

ences complete downtime for the duration of its upgrade, service degradation is not applicable

in this scenario. Also, since the failed pod is not recovered from failure by the Deployment

80

controller and the upgrade process continues to create the pod in an updated version, the impact

on failure recovery is not applicable in this scenario.

Impact during RollingUpdate Upgrade Strategy

Impact on Service Outage: As the RollingUpdate strategy creates a pod before termi-

nating a pod in the older version, at least one pod is always available to provide the application

service for the stateless NGINX application. So, the application does not experience any ser-

vice outage.

Impact on Failure Recovery and Service Degradation: There is no additional impact

on failure recovery (measured as the failed unit outage time); this happens because the Deploy-

ment controller detects the pod failure through kubelet events and re-creates the failed pod

before upgrading another pod. This way, failure is given priority over upgrades to follow. Also,

the time it takes for the failed pod to recover equals the time in which the actual number of

pods was less than the desired number of pods. So, the observed service degradation equals the

failed unit outage time of 2.841 seconds, as shown in Table 6-3.

Table 6-3: Stateless application pod failure during application upgrade

Upgrade
Strategy

Scenarios

Metrics (unit: seconds)

Detection
time

Repair
time

Assignment
time

Failed unit outage time
/Service degradation

Service
outage

Without upgrade 0.849 0.403 1.536 2.788 0

Recreate During upgrade N/A N/A N/A N/A 11.263

RollingUpdate During upgrade 0.903 0.417 1.521 2.841 0

81

6.2.2.3 Evaluating the Upgrade Strategies for Stateful Application

Impact during OnDelete Upgrade Strategy

 We considered the following scenario to evaluate the maximum impact on the applica-

tion services. The pod failure is injected in the active pod, i.e., the pod that was actively provid-

ing the service, while the standby pod is manually deleted to initiate its upgrade.

Impact on Service Outage: When the standby pod is manually deleted to initiate its

upgrade, at the same time the active pod is injected with failure, the application experiences an

increased service outage of 4.191 seconds, as highlighted in red in Table 6-4. This increased

service outage is because there are no pods to provide application service at that time. Next, as

the standby pod finishes its upgrade before the failed active pod is recovered, the State control-

ler makes the available standby pod as active, and the VLC application begins streaming the

video.

 Impact on Failure Recovery: We observe no additional impact on the failed unit out-

age time, as presented in Table 6-4. The deletion of the standby pod and the failure of the active

pod simultaneously initiate; the failure recovery and upgrade operation by the StatefulSet con-

troller; and the service recovery operation by the State controller. Since the StatefulSet con-

troller is responsible for maintaining the desired replicas, it initiates the re-creation of the

standby pod with the updated VLC image version. Once it is informed through the kubelet

events about the active pod failure, it parallelly initiates the recovery of the failed pod. As the

failed pod gets repaired parallelly while the upgrade process continues, there is no impact on

the recovery of the failed pod.

Impact during RollingUpdate upgrade strategy

 We considered the following scenario to evaluate the maximum impact on the applica-

tion services. In our experiment setting, we have a standby pod at the highest ordinal number,

82

so it is selected first for the upgrade by the StatefulSet controller that issues termination of the

standby pod to upgrade, and we inject the active pod, i.e., the pod that was actively providing

the service, with failure.

 Impact on Service Outage: When the standby pod is selected for an upgrade and con-

sequently terminated, while the active pod is injected with failure, the application experiences

an increased service outage of 4.147 seconds, as highlighted in red in Table 6-4. This increased

service outage is because there are no pods to provide application service. Next, as the standby

pod finishes its upgrade before the failed active pod recovers, the State controller makes the

available standby pod as active, and the VLC application begins streaming the video.

 Impact on Failure Recovery: While the StatefulSet controller issues termination of

the standby pod to upgrade, we inject the active pod with failure, and we observed no additional

impact on the failed unit outage time, as presented in Table 6-4. The termination of the standby

pod for the upgrade, and the failure of the active pod, simultaneously initiate; the failure re-

covery and upgrade operation by the StatefulSet controller; service recovery operation by the

state controller. Since the StatefulSet controller is responsible for maintaining the desired rep-

licas, it initiates the re-creation of the standby pod with the updated version. And once it is

notified through the kubelet events about the active pod failure, it parallelly starts the recovery

of the failed pod. As in this strategy, the failure is given priority over the subsequent upgrades

to follow, so there is no additional impact on the failed unit outage time.

Table 6-4: Stateful application pod failure during application upgrade

Upgrade Strategy

Scenarios

Metrics (in seconds)

Detection
time

Repair
time

Assignment
time

Failed unit
outage time

Service outage

Without upgrade 0.943 2.583 1.593 5.119 1.612

OnDelete Active pod is failed and
standby pod is upgraded 1.000 2.618 1.580 5.198 4.191

RollingUpdate
Active pod is failed and

upgrade starts with standby
pod

0.921 2.594 1.651 5.166 4.147

83

6.2.3 RQ2-2: Evaluate the Impact on the Pod (Application) Version post Recov-

ery from Failure

6.2.3.1 Experiment

In this evaluation, we present our observation as an extension of the experiment per-

formed in RQ2-1. So, in RQ2-1, when pod failure was injected during the application upgrade,

we observed the application version that the pod attained when it recovered from the failure.

The aim is to identify Kubernetes’ recovery actions in case of failures during upgrades and to

understand whether failures lead to unintentional upgrades.

6.2.3.2 Evaluating the Upgrade Strategies for Stateless Application

For stateless applications, during an ongoing application upgrade using the Recreate

strategy, when one of the pods (in the old version) is injected with failure; the failed pod is not

re-created (and recovered), and the upgrade process continues to create pods in the updated

version.

During an ongoing application upgrade using the RollingUpdate strategy, when a pod

in the old version is injected with failure while another pod is upgrading, we observed that once

the failed pod recovers, it retains its old version when restarted.

6.2.3.3 Evaluating the Upgrade Strategies of Stateful Application

For stateful application, during an ongoing application upgrade, irrespective of the up-

grade strategy, i.e., OnDelete or RollingUpdate, when the pod in the old version is injected

with failure, the failed pod retains the old version when it recovers.

84

6.2.4 RQ3-1: Evaluate the Impact of the Kubernetes’ Application Upgrade Pro-

cess Failure on the Availability of the Application

In this sub-section, we explain the different experiments performed, discuss the results

of these experiments, and present our analysis.

6.2.4.1 Experiment

The experiment aimed to evaluate the impact of the Kubernetes application upgrade

process failure on the application services.

We simulated application upgrade process failure by specifying a non-existent applica-

tion image version in the image field of the spec file. Based on the defined upgrade strategy,

the respective controllers detect the change in the image field in the spec file and initiate the

upgrade. But since the specified application’s image did not exist, the upgrade did not progress,

and we considered that as an upgrade process failure.

Impact during Recreate Upgrade Strategy

For the stateless application, the application experiences complete downtime because

of the upgrade process flow of Recreate strategy. As analyzed, the upgrade starts by deleting

all the pods in the older version; the Deployment controller then tries to create those pods with

the newer version; however, as the image does not exist in the application’s repository, creation

of a new pod is not possible. Since the pods keep trying to pull the image and get stuck in

ErrImagePull or ImagePullBackOff state, none of the application pods is available to provide

service.

Impact during RollingUpdate Upgrade Strategy

In the case of the RollingUpdate strategy, the application service is not impacted. As

analysed, in this strategy, the Deployment controller first creates a pod with the mentioned

image version and only once the new pod transitions to the Running state it terminates the old

85

pod. However, in this scenario the newly created pod never goes into the Running state because

of the non-existent image version; the Deployment controller does not terminate the existing

pods running in the older version. So, the desired number of application replicas is maintained,

and the application’s service is not impacted.

Table 6-5: Stateless Application: Impact on application availability due to upgrade process failure

Scenario Upgrade Strategy Impact on application availability

Upgrade strategy failure
Recreate Complete downtime

RollingUpdate No impact

6.2.4.2 Evaluating the Upgrade Strategies of Stateful application

Impact during OnDelete Upgrade Strategy

For stateful application, if the strategy type specified is OnDelete, and the image field

of the StatefulSet spec is updated with a non-existent VLC application image version, the pod

that has been manually deleted for an upgrade is affected, while other existing pods keep run-

ning. Since this strategy involves manual deletion of the pod for them to get upgraded, we have

performed upgrades in the following three combinations to understand the maximum impact

on the service outage of the stateful VLC application:

1. When the Standby Pod is Upgraded: As the active pod of the application is still available,

the application’s service is not impacted. However, the application becomes failure intol-

erant as there would be no standby pod available for the state controller to perform the

failover in case of further failure.

2. When the Active Pod is Upgraded: The application experiences a service outage of 0.647

seconds, as presented in Table 6-6; as the active pod is deleted for its upgrade, the State

controller detects it via the deleted event reported by kubelet and performs a failover to the

available standby pod. The time taken by the State controller to perform the service recov-

ery by making the standby pod as active, constitutes a service outage of 0.647 seconds.

86

Also, the StatefulSet controller is responsible for maintaining the desired replica of the pod

and tries to create a new pod using the image version mentioned in the spec. But, as the

image version is non-existent, the newly created pod does not transition to Running State,

the application becomes failure intolerant.

3. When all the Pods are Upgraded at Once: The application experiences complete appli-

cation downtime, as presented in Table 6-6. As the image mentioned in the spec is non-

existent, when the StatefulSet tries to create pods, they do not transition to the Running

state but instead change to ErrImagePull or ImagePullBackOff state. Also, as none of the

application pods are available to provide application service, the application experiences

complete downtime.

Evaluating the Impact of RollingUpdate Upgrade Strategy

When the strategy type is set as RollingUpdate, and the image field of the StatefulSet

spec is updated with a non-existent VLC application image version, the experiments are per-

formed in the following two ways to evaluate the impact on the application’s availability:

1. When the Upgrade Started with the Standby Pod: In this scenario, the application’s

availability is maintained since the active pod is available to provide application service.

As analyzed, the StatefulSet controller terminates the standby pod (as it is at highest ordi-

nal) and initiates its re-creation in the updated version. But, as the image specified in the

spec is non-existent, the pod re-creation fails. Since the newly created pod does not transi-

tion to the Running state but instead transitions to ErrImagePull or ImagePullBackOff state,

the upgrade process does not progress further (to select the next pod, i.e., active pod to

upgrade). The application becomes failure intolerant as there would be no standby pod

available to perform failover in case of further failure.

87

2. When the Upgrade Started with the Active Pod: In this scenario, the application expe-

riences a service outage of 0.639 seconds, as presented in Table 6-6. When the pod with

the highest ordinal number is an active pod, it is selected first for the upgrade. The State-

fulSet controller terminates the selected pod and initiates its re-creation in the updated ver-

sion. As the active pod gets terminated, the VLC application stops streaming the video and

the application experiences a service outage. When the State controller detects the termi-

nation of an active pod from the kubelet events, it initiates the failover to the available

standby pod. The time taken by the State controller to complete the failover by making the

standby pod as active, constitutes a service outage. Since the image mentioned in the spec

is non-existent, the newly created pod does not transition to the Running state but instead

transitions to ErrImagePull or ImagePullBackOff state; the upgrade process does not con-

tinue further. The application becomes failure intolerant as there would be no standby pod

available to perform failover in case of further failure.

Table 6-6: Stateful Application: Impact on application availability due to upgrade process failure

Upgrade strategy Scenarios: Upgrade process failure Impact on application availability

OnDelete
Upgrading one
pod at a time

Upgrade starts with standby pod No outage (Failure intolerant)

Upgrade starts with active pod Service outage of 0.647 seconds (Failure intolerant)

Both pods upgraded at once Complete downtime

RollingUpdate
Upgrade started with standby pod No outage (Failure intolerant)

Upgrade started with active pod Service outage of 0.639 seconds (Failure intolerant)

6.2.5 RQ3-2: Evaluate the Remediation Measures Taken by the Respective Con-

troller (Deployment and StatefulSet Controller) when Kubernetes’ Appli-

cation Upgrade Process Fails

 In this sub-section, we explain the different experiments performed, discuss the re-

sults of these experiments, and present our analysis.

88

6.2.5.1 Experiment

 In this evaluation, we present our observation as an extension of the experiment per-

formed in RQ3-1. So, in RQ3-1, when the application upgrade process failed, we observed if

the Deployment / StatefulSet controller identified this failure and if they took any measures to

restore the application's state. The aim was to evaluate the restorative measures offered by the

respective controllers when Kubernetes’ application upgrade process fails.

6.2.5.2 Evaluating the Upgrade Strategies of Stateless Application

For stateless applications managed by the Deployment controller, progressDeadli-

neSeconds is the field (in the deployment spec) that specifies the time the deployment controller

should wait before marking the deployment as failed. The default value of this field is 600

seconds, but it can be configured. When the stateless application is injected with application

upgrade process failure, after the progressDeadlineSeconds is exceeded, the deployment con-

troller marks the deployment’s progressing status as false, with the reason “progressDeadli-

neSeconds exceeded”. At this time, when we check the progressing status of the deployment

with the command kubectl rollout status deployment <deployment-name>, it displays an error

stating “error: <deployment-name> exceeded its progress deadline”, as shown in Figure 6-5.

So, apart from reporting the progressing status as an error, there is no other action taken by the

Deployment controller to stop the pod creation process or to trigger the rollback to a stable

application version. The application’s status must be manually restored to a stable version.

Figure 6-5: Snippet of Progressing status of "myapp-deployment" Deployment when progressing status fails

6.2.5.3 Evaluating the Upgrade Strategies of Stateful Application

For stateful application managed by the StatefulSet controller, unlike the Deployment

controller, there are no measures taken by the StatefulSet controller to mark the progressing

89

status of the upgrade as failed. So, when the application upgrade process fails, the pod(s) con-

tinuously tries to pull the image with the specified non-existent image version. The StatefulSet

controller does not trigger automatic rollback to bring the application to a stable version, and

manually the application status must be restored.

Furthermore, during the manual restoration process, even when the StatefulSet spec is

updated with the valid image version, the stateful pod that is in process of creation as part of

upgrade remains stuck in the ErrImagePull or ImagePullBackOff condition and must be man-

ually deleted. Once deleted, the upgrade process is re-initiated for these pods, and they are re-

created with the correct application version updated in the spec and transitions to the Running

state.

6.2.6 Assessing the Achievable Service Availability during Kubernetes’ Applica-

tion Upgrade, and in Presence of Failure during Upgrade (H2)

In this sub-section, we discuss the results of our evaluation to test our hypothesis H2.

The stateless application considered for our experiment is NGINX webserver application, its

upgrade cycle is approximately once per month in a year [31] [32]. This indicates that a NGINX

webserver application must be upgraded at most 12 times a year. The stateful application con-

sidered for our experiment is VLC video streaming application, and as per the information in

[33] [34], VLC releases between 1 to 8 upgrades each year, indicating VLC application must

be upgraded at most 8 times a year.

We use the measurements of our evaluation to calculate service availability using Equa-

tion 2. The calculations represent the service availability achieved when the stateless NGINX

webserver application is upgraded for 12 times a year, and the stateful VLC video streaming

application is upgraded 8 times a year, in a Kubernetes cluster. Furthermore, each service avail-

ability calculation (for every evaluated scenario) considers the upgrade of all instances of an

90

application deployed in a Kubernetes cluster. Also, these calculations are specific to the exper-

iment settings considered in our work and its associated measurements.

6.2.6.1 Service Availability during Upgrades

We utilized the measurements of our evaluations as presented in Table 6-1 and Table

6-2, to calculate service availability for stateless and stateful application respectively for their

associated upgrade strategies. As shown in Figure 6-6, our calculations indicates that high

availability of the stateless and stateful application is maintained when they are upgraded for a

year.

6.2.6.2 Service Availability during Upgrades in the Presence of Failure

Next, we evaluated the failure scenarios during application upgrade, as presented in

sub-section 6.2.2 for pod failure, and sub-section 6.2.4 for upgrade process failure.

For the stateless application, during application upgrade in the presence of pod failure,

we utilize the measurements of our evaluation in Table 6-3, to calculate service availability.

For the stateful application, we utilize the measurements of our evaluation in Table 6-4 to cal-

culate service availability. As shown in Figure 6-6, our calculations indicate that outages

caused during stateless/stateful application upgrade in the presence of pod failure, do not im-

pact the high availability of the deployed stateless/stateful applications in Kubernetes cluster.

In the event of upgrade process failure, we utilize the measurements presented in Table

6-5 and Table 6-6 for the stateless and stateful application respectively to calculate service

availability in this scenario. For stateless application, when the application fails to upgrade

with upgrade strategy selected as Recreate, it causes complete downtime for the application

until system administrator manually recovers the application. Since application experiences

complete downtime until it is manually handled, calculating service availability is not possible

91

in this case. However, when stateless application fails to upgrade with upgrade strategy se-

lected as RollingUpdate, the calculations shown in Figure 6-6. indicate that high availability of

the application is maintained. For stateful application, when the application upgrade process

fails with the strategy type selected as RollingUpdate, the high availability of the application

is maintained. However, when stateful application fails to upgrade with upgrade strategy used

as OnDelete, it causes complete downtime of the application. Since application experiences

complete downtime until it is manually handled by system administrator, calculating service

availability is not possible in this case.

Figure 6-6: Service availability achieved when application deployed in a Kubernetes cluster upgrades for a year (with
and without failure)

6.2.6.3 Conclusion

As shown in Figure 6-6, our computations for service availability indicate that the high

availability of applications deployed in a Kubernetes cluster is impacted only in case of upgrade

process failure. Thus, these results of our evaluation partially validate our Hypothesis H2 for

the considered cluster setting and associated measurements.

92

6.3 Overall Analysis and Potential Improvements

In this section, we summarize the evaluation and issues identified during the Kuber-

netes application upgrade. Then, we discuss the issues not handled by Kubernetes and provide

a potential solution.

Through our evaluations, we learned that the Recreate upgrade strategy leads to a com-

plete service outage for stateless applications. With the OnDelete upgrade strategy, we can

control the number of pods that can be unavailable during an upgrade, and this is a significant

measure of maintaining high availability for stateful applications. We also discovered that ab-

rupt failure does not lead to unintentional upgrades, i.e., post pod failure; when restarted, the

pod retains its application version. This applies to all upgrade strategies provided by Kuber-

netes except Recreate strategy. For example, during the RollingUpdate, the failed pod is

brought back to the version it was in when it failed. However, this is not true for the Recreate

strategy for stateless application, where the failed pod is not recovered.

Although in the performed experiments in some of the scenarios, we observed an in-

creased service outage due to the ongoing upgrades, Kubernetes eventually handled them. In

case of application upgrade process failure discussed in sub-section 6.2.5.2 and sub-section

6.2.5.3, manual intervention was required to restore the application's state, and Kubernetes

controllers do not take any remediation measures, so we propose potential improvements to

solve the problems that Kubernetes do not handle.

6.3.1 Stateless Application

As mentioned in the results for stateless application, if the application upgrade process

fails due to a non-existent pod image, post the .spec.progressDeadlineSeconds [35] has ex-

ceeded, the Deployment controller marks the deployment’s progressing status as false, with the

93

reason progressDeadlineSeconds exceeded. An example of a deployment with the name “my-

app-deployment” whose progressDeadlineSeconds is exceeded is shown in Figure 6-5.

The main issue is that the Deployment controller takes no measures to stop the process

of pod creation. The pod keeps trying to pull the image with the specified non-existent image

version. Also, the Deployment controller does not trigger automatic rollback to a stable appli-

cation version, and the application’s version must be manually restored.

The first step of the solution is to detect the Kubernetes’ application process failure by

making use of the progressing status updated by the Deployment controller when progress-

DeadlineSeconds is exceeded. Once the progressDeadlineSeconds duration has been exceeded,

the upgrade manager tool can monitor the Deployment status for the condition shown in Figure

6-7. This Deployment’s condition can be seen in the Conditions field of the respective Deploy-

ment by using the command kubectl describe deployment <deployment-name>.

Figure 6-7 : Snippet showing the value of the Conditions field of the Deployment

Next, if the deployment fails with the ProgressDeadlineExceeded condition, as a re-

storative measure, the upgrade manager tool should take the following recovery action (via

rollback). The rollback to a stable revision (decided by the admin) is done using the following

steps:

1. Find the revision to rollback using the following command

kubectl rollout history deployment/<name-of-deployment>

2. Rollback to the stable revision using the following command

94

kubectl rollout undo deployment/<name-of-deployment> --to-revision=<revision num-

ber>

6.3.2 Stateful Application

Unlike a stateless application, for stateful application, the StatefulSet does not have a

field like progressDeadlineSeconds in its spec. An example of the output of the rollout status

of the StatefulSet with the name “vod” is shown as a snippet in Figure 6-8.

Figure 6-8: Snippet showing progressing status of StatefulSet “vod” stuck during the upgrade

It gets stuck in this condition forever. The StatefulSet controller takes no measure; to

stop the upgrade process or mark the progressing status as failed. The pod continuously tries

pulling the image with the specified non-existent image version.

As a solution, the upgrade manager tool can monitor the progressing status of the rollout

by having a user-configurable timeout so that it is not stuck watching forever. Along with the

progressing status, this timeout should consider conditions like ImagePullBackOff,

ErrImagePull, or other Pod/Replica-specific errors. When the timeout duration is exceeded

along with those conditions/errors, it should rollback to the previous version using the follow-

ing rollback steps.

1. Find the revision to rollback using the following command

 kubectl rollout history statefulset/<name-of-statefulset>

2. Rollback to the desired revision using the following command

 kubectl rollout undo statefulset/<name-of-statefulset> --to-revision=<revision num-

ber>

95

6.4 Conclusion

In this chapter, we presented and evaluated different application upgrade strategies pro-

vided by Kubernetes for stateless and stateful applications. Then, we analyzed the results of

our evaluation for the impact of the application upgrade process on service availability and

failure recovery and discovered shortcomings of Kubernetes to detect and recover from the

application upgrade process failure.

We assessed the achievable service availability when an application deployed in a Ku-

bernetes cluster is upgraded (with and without failure) during its upgrade cycle in a year.

Through our calculation, we learnt that high availability is impacted when the application's

upgrade process fails. Also, upgrade process failure for stateless applications with upgrade

strategy as Recreate would always cause complete application downtime in any cluster setting.

Furthermore, the service availability calculations presented are specific to the applications con-

sidered in our work and may vary depending on factors such as the number of application pods

that are upgraded at once (if the upgrade process is manually controlled), application charac-

teristics: such as the failover mechanism, application size, and so on. Our assessment aims to

give the cluster administrator an overview and intensity of the impact on service availability

for a small cluster running simple applications to allow for better governance of complex ap-

plications with multiple replications.

Through our experiments, we learnt that during upgrade process failure, although the

Deployment controller detects the failure while the StatefulSet controller does not, none of

them takes any restorative actions; as a result, the pod keeps trying to pull the image with the

specified non-existent image version, thereby impacting application services. Also, the respec-

tive controller does not trigger automatic rollback to a stable application version; it requires

96

manual intervention to restore the application to a stable version. So, we provide potential im-

provements in such a scenario. Our solution would identify the application upgrade failure and

trigger automatic rollback to the stable application version, to maintain the application services.

We acknowledge that there are some threats to the validity of our results. For example,

all experiments are conducted in a small cluster consisting of only a master and two worker

nodes. Kubernetes may behave differently in larger clusters which may impact the measure-

ments presented in our experiments. Also, the availability measurements may vary depending

on the application’s complexity and the collocated applications managed by Kubernetes. We

understand that these factors may impact the results of our study. The mapping of the metrics

to the concrete events is the biggest threat and requires more investigation as one can map them

differently, in which case all the measurements could be different. However, we believe that

even with a different mapping, what may change is the split between detection and repair times,

thus resulting in the same failed unit outage time. For example, suppose different events are

considered to mark the detection time. In that case, we may observe a decrease/increase in the

detection time, which adds to the recovery time. Still, the total failed unit outage time would

be the same since it represents the duration in which the failed unit was not providing service.

97

Chapter 7

7 Container Runtime Upgrade

In this chapter, we quantitatively evaluate container runtime upgrade. In Section 7.1, we

discuss the integration of the container runtime tool in Kubernetes and the current practice of

upgrading the container runtime. In Section 7.2, we explain the evaluation of container runtime

upgrade, the research questions we aim to answer, and the results and analysis of the performed

experiments. In this section we also assess the achievable service availability during upgrade.

In Section 7.3, we provide potential improvements to some of the analyzed issues and conclude

the chapter in Section 7.4.

7.1 Current Practice of Upgrade

Container Runtime is a set of scripts and software tools to run and maintain the work of

a container [36]. In a Kubernetes cluster, kubelet manages the container workload on every

worker node and communicates with the container runtime to decide on the lifecycle of a

container. In Kubernetes version 1.6, Container Runtime Interface (CRI) [37] was introduced

to standardize how different container runtimes communicate with the Kubernetes cluster.

Figure 7-1 shows how kubelet uses CRI to communicate with the container runtime running

on that worker node.

98

Figure 7-1: Illustration of the placement of CRI in a Kubernetes cluster

CRI is a gRPC [37] Interface and should not be confused with cri-containerd, CRI-O

etc. Any container runtime that integrates with the Kubernetes cluster must have the imple-

mentation of CRI called CRI shim, shown in the yellow box in Figure 7-2.

Figure 7-2: Interaction of kubelet with the containers running on that node via CRI

In a Kubernetes cluster, the container runtime must be manually installed and upgraded.

For evaluating container runtime upgrade in a Kubernetes cluster, two of the most popular

container runtimes, namely Docker and CRI-O, are considered. Based on our analysis and

evaluation of the upgrade process of Docker and CRI-O, we have come up with their upgrade

process flows, which are presented in Figure 7-4 and Figure 7-7, respectively. In these Fig-

ures, the blue indicates the manual operations to be performed by an administrator, while the

yellow shows the automated procedures triggered in response to the manual operations. Only

actions significant to our work are shown in detail.

99

7.1.1 Docker

Docker has been the oldest and one of the most popular container runtimes used with

Kubernetes. The Docker shim is the CRI layer for facilitating communication with the Docker

container runtime. As shown in Figure 7-3, Docker shim converts all the CRI requests issued

by Kubernetes into a call to Docker daemon, which is forwarded to containerD that communi-

cates with runC to perform the requested operation on the containers.

Figure 7-3: Illustration showing Docker as a container runtime in Kubernetes

Also, when a pod is deployed in a Kubernetes cluster integrated with Docker as the

container runtime, apart from the application container mentioned in the spec, an additional

container for the pod process is created. This pod container acts as a parent for the associated

application container, and failure of the pod container also fails the associated application con-

tainer(s).

Figure 7-4 illustrates the upgrade process flow of the Docker upgrade of a node in a

Kubernetes cluster. The upgrade process starts by installing Docker packages and setting the

Docker repository. These steps enable installing the desired Docker version from the reposi-

tory. Next, we install and apply the desired Docker version; this is the primary step in the

upgrade process flow. In this step, the desired Docker version is applied, during which Docker

terminates all the containers it manages on that node. On a worker node, the containers man-

aged by Docker are the kube-proxy, core-dns component, calico component, pod container,

100

and application containers of the application hosted by that node. So, all these containers are

terminated. The container termination step is skipped if it is a patch version upgrade, and the

live-restore field in the Docker configuration file (daemon.json) is defined as true. Next,

Docker is restarted, and once Docker becomes available, it starts all the containers - if termi-

nated earlier. Then, the Docker configuration is updated, and the Docker service is re-started

to reflect the version on that node.

Figure 7-4: Docker upgrade process flow for nodes in a Kubernetes cluster

7.1.2 CRI-O

CRI-O is an implementation of Kubernetes CRI to enable using OCI (Open Container

Initiative) [38] compliant runtimes. Its scope is tied to CRI. The CRI-O project in CNCF can

provide a typical CRI shim capability that converts the CRI request issued by Kubernetes into

101

a call to OCI-compliant runtime, such as runC that performs those operations on the container.

The combination of these layers is described in Figure 7-5.

Figure 7-5: Illustration showing CRI-O as a container runtime in Kubernetes

Also, in a Kubernetes cluster integrated with CRI-O as the container runtime, each con-

tainer is managed by a process called conmon, as shown in Figure 7-6. Conmon acts as a parent

and is responsible for transmitting information about the container to the CRI-O, which takes

administrative actions accordingly. Furthermore, unlike Docker, it does not create an additional

container for the pod process.

Figure 7-6: Illustration showing the common component of CRI-O

Figure 7-7 illustrates the upgrade process flow of the CRI-O upgrade of a node in a Ku-

bernetes cluster whose container runtime is CRI-O. The upgrade process starts by installing

CRI-O packages and setting its repository. Then, the desired (available) CRI-O version is

pulled from the repository. In the next step, which is the main step in the upgrade process flow,

the desired CRI-O version is applied, and CRI-O is stopped and started (post it loads the CRI-

O configuration successfully). Only once CRI-O becomes available it reconciles the state of

all the conmon processes for each container. This way, CRI-O supports live upgrades for its

102

version. Then the system configuration is updated, and the CRI-O service is re-started to reflect

the updated CRI-O version on that node.

Figure 7-7: CRI-O upgrade process flow for nodes in a Kubernetes cluster

7.2 Evaluation of Container Runtime Upgrade

In this section, we evaluate the upgrade process of Docker and CRI-O as container

runtime integrated in a Kubernetes cluster from the perspective of availability. Upgrading a

container runtime version may directly impact the service provided by the application, as Ku-

bernetes manages the application by communicating with the container runtime tool via

Kubelet (as shown in Figure 7-1). So, we state the following hypothesis:

H3: High Availability of application deployed in a Kubernetes cluster is impacted when the

container runtime upgrades, especially in the presence of failure.

103

So, to test H3 we evaluated the upgrade process of container runtime tool and defined the

the following Research Questions (RQ):

RQ1: What is the impact of container runtime upgrade on the application services?

RQ2: What is the impact of container runtime upgrade on the recovery from application

container failure and on application services?

RQ3-1: What is the impact of container runtime upgrade process failure on the services pro-

vided by the application?

RQ3-2: How is the process of recovery handled from container runtime upgrade process fail-

ure

A. When the failure is external
B. When the failure is internal

To answer these research questions, we performed experiments and evaluated their im-

pact. Also, to assess the maximum impact on the application services, we evaluated the con-

tainer runtime upgrade of the worker node that hosts these application pods. We considered a

single master and two worker node kubeadm created Kubernetes cluster. Unlike Docker, in

CRI-O, an additional container for the pod process is not created. To make the results compa-

rable between Docker and CRI-O, we considered the application container failure scenario for

RQ2. For Docker, we upgraded the minor, major and patch releases. For CRI-O, we evaluated

the upgrade of minor and patch releases (as the major version is not released yet). All the ex-

periments are performed in the default configuration of Kubernetes and the container runtime.

The process of collection of metrics was automated by the Auto-Metric collector tool, which

is explained in Chapter 4.

104

7.2.1 RQ1: Evaluating the Impact of Container Runtime Upgrade on Service

Availability of Hosted Application Instances

7.2.1.1 Experiments

 The experiment aimed to evaluate the impact of container runtime upgrades on the ser-

vice availability of the application hosted on that worker node. While the container runtime of

a worker node was being upgraded, we monitored the pod-related events in the Docker/CRI-O

and kubelet logs. The impact on application services is measured as service outage and service

degradation.

 For stateful application, we upgrade the container runtime of the worker node bearing

the active pod to evaluate the maximum impact on the application service.

7.2.1.2 Evaluating the Impact of Docker Upgrade on Application Services

 During the Docker upgrade, for patch releases, for both stateful and stateless applica-

tions, we do not observe any impact on the application services. As described in sub-section

7.1.1, since we enabled the live-restore functionality of Docker, the pods are not terminated

due to the Docker upgrade, so the application service is not impacted during an upgrade.

 During Docker upgrade for major and minor releases, we present our observations and

analysis as follows:

• For the stateless application, the pods are recreated, but due to the nature of the appli-

cation, there is no service outage observed, as the pods running on other worker nodes

continue to provide the application service. However, there is an observed service deg-

radation of 12.891 seconds, as shown in Table 7-1. As analysed, this happens because

of the upgrade process of Docker in which it terminates all the containers managed by

it, i.e., application pod, Kube-proxy, calico (the networking component), and core-dns

105

pods, before the Docker restarts. Once the Docker is back and running, it restarts all the

containers terminated earlier. Also, only after the networking component (kube-proxy,

Calico, Core-DNS) is restarted and becomes functional, the application pod is assigned

an IP address. So, the service degradation observed and measured is for the total dura-

tion when the Docker service remains unavailable because of its restart due to the up-

grade process and the time it takes to re-create the application container, which was

earlier terminated on account of the upgrade.

• For stateful application, we observe a service outage of 0.681 seconds, as shown in

Table 7-1; this happens because of the Docker upgrade process, which involves termi-

nating and restarting the pod managed by it. In this experiment, since we upgraded the

Docker version of the worker node hosting an active pod, the pod termination causes

the VLC application to stop streaming the video, and the application experiences a ser-

vice outage. When the State controller is informed about this event, it performs the

failover to the available standby pod. The observed service outage is the time the State

controller takes to complete the failover.

Table 7-1: Impact on application services during Docker upgrade

Scenario Kind of Application
Metrics (unit: seconds)

Service outage Service degradation

Docker upgrade
Stateless application 0 12.891

Stateful application 0.681 N/A

7.2.1.3 Evaluating the Impact of CRI-O Upgrade on Application Services

 During the CRI-O upgrade of the worker node, for minor and patch releases, for both

stateless and stateful applications, we observed no impact on the application pods hosted by

106

that worker node. As analyzed, during the upgrade process of CRI-O, the containers managed

by it are not terminated, and thus the application service is not impacted.

7.2.2 RQ2: What is the Impact of Container Runtime Upgrade on Recovery from

Application Container Failure and on Application Services?

7.2.2.1 Experiment

 The experiment aimed to evaluate the impact of container runtime upgrades on the re-

covery from an application container failure that was simulated by killing the application pro-

cess running on the OS. The impact on failure recovery was measured in terms of failed unit

outage time, and the impact on application services was measured in terms of service outage

and service degradation.

For better comparison and to understand the impact, we injected the application con-

tainer failure in the absence of the upgrade and then while performing the container runtime

upgrade. First, application container failure was injected in the absence of an upgrade, which

gave us a clear picture of the time it usually takes to recover the failed unit and the application

services. Then, while the container runtime of a worker node was upgrading, we injected ap-

plication container failure on another worker node; to evaluate the impact of the upgrade on

application services.

 For stateful application, we injected failure in the application container of the active

pod, i.e., the pod actively providing the service, to see the maximum impact on the application

service.

7.2.2.2 Evaluating the Impact of the Docker Upgrade

 During Docker upgrade for major and minor releases, we present our observations and

analysis as follows:

107

Impact on Failure Recovery

 For the stateless and stateful application, when the application container is injected with

failure on one of the worker nodes while another worker node’s Docker version is upgraded,

we do not notice any additional impact on the failure recovery. As analyzed, the kubelet com-

ponent on that worker node (whose application container is failed) detects the failure, and it

reacts according to the defined restart policy (by default set to Always) and restarts the con-

tainer. So, the failure recovery is not impacted due to the ongoing container runtime upgrade

on another worker node. The measurements are presented in Table 7-2 and Table 7-3.

Impact on Service Degradation

 For stateless application, we observed an increased service degradation of 12.738 sec-

onds, as highlighted in red in Table 7-2 and Table 7-3. As analyzed, this happens because when

the Docker is upgraded (on one of the worker nodes), all the available containers managed by

Docker on that worker node are terminated; then, Docker is restarted, followed by the re-crea-

tion of the terminated containers. So, the application service is degraded for the total duration

of the Docker upgrade until the application container is re-created.

Impact on Service Outage

 For stateless applications, we observe a service outage of 1.235 seconds, as highlighted

in red and shown in Table 7-2. As analyzed, when we inject application container failure in

one of the application pods, while the other application container is removed because of the

upgrade, no pods are available to provide application service. As the time taken to recover the

application container terminated as part of the upgrade is more than the recovery of the failed

application container, the failed application container becomes available before the application

container removed due to the upgrade is recreated. So, the observed service outage is the du-

ration it takes to recover the failed application container.

108

 For stateful application, we observe an increased service outage of 2.941 seconds, as

highlighted in red and shown in Table 7-3. Once the application container associated with the

active pod is injected with failure, the state controller is notified. It tries to perform a failover

to the standby pod, but as the standby pod is not available on account of its removal due to the

container runtime upgrade, the failover is not possible. So, the State controller waits for a pod

to become available, and the application continues to experience downtime. Now, since the

failed application container becomes available before the application container removed due

to container runtime upgrade, the State controller assigns its associated pod with the active

label, and the application resumes service. The observed service outage of 2.941 seconds is the

sum of the durations taken for the restart of the failed application container, i.e., 2.300 seconds,

and the time taken by the state controller to assign an active label to its associated pod, i.e.,

0.641 seconds so that application resumes application service.

Table 7-2: Stateless application container failure during Docker upgrade

Scenario

Metrics (unit: seconds)

Detection Time Repair Time Assignment Time Failed unit
outage time

Service
degradation

 Service
outage

Without upgrade 0.804 0.201 0.151 1.156 1.156 0

During upgrade 0.897 0.194 0.144 1.235 12.738 1.235

Table 7-3: Stateful application container failure during Docker upgrade

Scenario

Metrics (unit: seconds)

Detection Time Repair Time Assignment Time Failed unit
outage time

Service
outage

Without upgrade 0.841 1.265 0.140 2.236 1.488

During upgrade 0.866 1.319 0.115 2.300 2.941

7.2.2.3 Evaluating the Impact of the CRI-O Upgrade

During CRI-O upgrade for minor and patch releases, we present our observation and

analysis as follows:

109

Impact on Failure Recovery/Service Degradation

For both stateless and stateful applications, when the application container is failed on

one of the worker nodes, while the CRI-O version of another worker node is upgraded, we do

not observe any additional impact on the failure recovery. As analyzed, the kubelet component

on that worker node (whose application container is failed) detects the failure, where it reacts

according to the defined restart policy and restarts the container. So, the failure recovery is not

impacted due to the ongoing CRI-O upgrade on another worker node.

Also, for stateless application, since the containers managed by CRI-O are not termi-

nated during their upgrade, so the upgrade does not cause any additional service degradation.

The observed service degradation is the time the application container takes to recover from

failure, which is equal to the failed unit outage time. The results of the measurements are pre-

sented in Table 7-4.

Impact on Service Outage

As discussed in sub-section 7.1.2, unlike the Docker upgrade, the containers are not

terminated in the case of the CRI-O upgrade, so the application services provided by those

containers are not impacted.

So, for stateless application, when we inject failure in one of the application containers,

another application container keeps running on another worker node (whose CRI-O is being

upgraded) and remains available to provide application service. Thus, the application does not

experience any service outage.

In the case of stateful application, when the application container associated with the

active pod is injected with failure during an ongoing CRI-O upgrade of the worker node hosting

application container associated with the standby pod, we do not observe any additional impact

on the service outage time. This happens because of the nature of the upgrade of CRI-O, where

110

the containers managed by it are not impacted. So, when the State controller is informed about

the failure of the application container of the active pod, it is able to perform failover to the

available standby pod. Thus, an ongoing upgrade does not cause any additional impact on the

service outage. The measurements of the experiments are presented in Table 7-4 and Table 7-5,

for stateless and stateful application, respectively.

Table 7-4: Stateless application container failure during CRI-O upgrade

Scenario

Metrics (unit: seconds)

Detection Time Repair Time Assignment Time Failed unit outage time
/ Service degradation

Service outage

Without upgrade 0.740 0.226 0.140 1.106 0

During Upgrade 0.859 0.240 0.127 1.226 0

Table 7-5: Stateful application container failure during CRI-O upgrade

Scenario

Metrics (unit: seconds)

Detection Time Repair Time Assignment Time Failed unit outage time Service outage

Without upgrade 0.820 1.305 0.135 2.260 1.467

During Upgrade 0.769 1.279 0.141 2.189 1.423

7.2.3 RQ3-1: Evaluating the Impact of Container Runtime Upgrade Process Fail-

ure on Application Services

7.2.3.1 Experiments

 The experiment aims to analyze the impact of upgrade process failure on the availability

of the application and if the container runtime engine provides any recovery mechanism.

 External failure was simulated by upgrading the container runtime to an incorrect ver-

sion. As the upgrade process involves pulling the image from the repository, if the container

runtime version is non-existent, it wouldn’t be available in the container runtime repository,

and as soon as the incorrect version is detected, the upgrade process fails.

111

 Internal failure was simulated by misconfiguring the container runtime configuration

file (daemon.json for Docker, crio.conf for CRI-O). Container runtime refers to this configu-

ration file during its restart and fails to start due to misconfiguration, thus failing the upgrade

process.

7.2.3.2 Evaluating the Impact on Application Services because of Container

Runtime Upgrade Process Failure due to External Failure

 Since the results and the analysis of the performed experiment are same for Docker and

CRI-O, we present them together.

 For Docker and CRI-O, due to external failure, we observe no impact on the applica-

tion, as the version of the container runtime specified is non-existent, its image wouldn’t be

available in the repository to be pulled, the upgrade will fail even before the version are applied

and container runtime is restarted, as shown in Figure 7-4 and Figure 7-7.

7.2.3.3 Evaluating the Impact on Application Services because of Container

Runtime Upgrade Process Failure due to Internal Failure

 As analyzed, on a worker node, if its container runtime upgrade fails due to internal

failure, the Docker/CRI-O service fails. As the kubelet of the worker node creates and sends

lease updates to the master node every 10 seconds (default interval), the lease update fails in

the event of container runtime failure. Next, the kubelet retries it using exponential backoff

that starts at 200 milliseconds and is capped at 7 seconds [39]. Thus, in the case of container

runtime failure, Kubernetes takes around 7 seconds to 17 seconds to mark the impacted node

as NodeNotReady. Once the node is marked as NodeNotReady, Kubernetes waits for the pod-

eviction timeout duration (by default 300 seconds) before the pods running on the worker node

whose container runtime service has failed are marked for deletion. Pods marked for termina-

tion are removed and created on an available healthy worker node. Furthermore, depending on

112

the way Docker and CRI-O handle the application during its upgrade, the application availa-

bility is impacted. So, we present their analysis separately as follows:

Impact on Application Services during Docker Upgrade Process Failure

 During the Docker upgrade process failure, the application services are impacted. As

analyzed, due to the upgrade process flow of Docker (as mentioned in sub-section 7.1.1 and

Figure 7-4), the containers managed by Docker are terminated, then the Docker engine is re-

started. During the restart of the Docker engine, it refers to its Docker configuration, and since

it was misconfigured to simulate an internal failure, the Docker engine fails to start. As a result,

all the containers terminated earlier are not started since the Docker engine responsible for their

start has failed. Although, as analyzed and explained earlier, Kubernetes eventually marks the

node’s status as NodeNotReady because of lease update failure, this causes downtime for any

application instance running as pods hosted on that node. It is only post pod-eviction-timeout

duration that these application pods are recreated on an available healthy worker node; what

follows is the impact on application services measured as service degradation and service out-

age:

Impact on Service Degradation: Stateless application experiences a service degradation of

316.919 seconds, as shown in Table 7-6. This is the total duration Kubernetes takes: to mark

the node’s status as NodeNotReady, to evict the pod running on the impacted node, and to re-

create the pod on an available healthy worker node.

Impact on Service Outage: Stateless application do not experience service outage due to the

nature of the application, as pods running on another worker node continue to provide service.

However, the stateful application experiences a service outage of 15.597 seconds when con-

tainer runtime upgrade failure occurs on a node running an active pod, as presented in Table

7-6. This happens because, as observed in this case, it takes 14.950 seconds for Kubernetes to

113

mark the node’s status as NodeNotReady. When it does, the State controller gets information

about this event and performs the failover to the available standby pod running on another

worker node, and the application resumes its service. So, the application experiences a service

outage for the total duration for which Kubernetes marks the impacted node as NodeNotReady

and the time taken by the State controller to perform failover to the available standby pod.

Table 7-6: Impact on the application services due to Docker upgrade process failure (internal failure)

Scenario Kind of Application
Metrics (unit: seconds)

Service outage Service degradation

Docker upgrade process
failure – Internal failure

Stateless application 0 316.919

Stateful application 15.597 N/A

Impact on Application Services during CRI-O Upgrade Process Failure

 Unlike Docker, in case of CRI-O upgrade process failure on a worker node (due to

internal failure), the application pod running on the worker node does not get impacted. How-

ever, they become failure intolerant as the container runtime is not available (due to its failure)

to recover them in the event of failure. Furthermore, as analyzed and explained earlier, Kuber-

netes eventually marks the node as NodeNotReady, but only post pod-eviction-timeout dura-

tion, any application instance hosted on that node, is recreated on an available healthy worker

node, what follows is the impact on application services measured as service degradation and

service outage:

Impact on Service Degradation: In the case of a stateless application, it experiences service

degradation of 2.014 seconds, as presented in Table 7-7. As analysed, the observed service

degradation is the time duration in which the application pods are created and started on another

worker node after it is evicted from the old node (marked as NodeNotReady) post pod-eviction-

timeout duration.

114

Impact on Service Outage: Stateless application does not experience service outage as the

pod running on another worker node continues to provide service. However, the Stateful ap-

plication experiences a service outage of 0.654 seconds. So, post container runtime failure of

the worker node hosting an active pod, when the lease update fails, Kubernetes marks the

worker node as NodeNotReady. At this time, the State controller gets information about this

event and performs the failover to the available standby pod running on another worker node,

and the application resumes its service. The observed service outage is the time the State con-

troller takes to perform failover.

Table 7-7: Impact on the application services due to CRI-O upgrade process failure (internal failure)

Scenario Kind of Application
Metrics (unit: seconds)

Service outage Service degradation

CRI-O upgrade process failure
– Internal failure

Stateless application 0 2.014

Stateful application 0.654 N/A

7.2.4 RQ3-2: Evaluating the Recovery Actions Taken by Container Runtime

Tools when their Upgrade Process Fails

7.2.4.1 Experiments

In this evaluation, we present our observation as an extension of the experiment per-

formed in RQ3-1. So, in RQ3-1, when the container runtime upgrade process failed, we ob-

served if the container runtime identified this failure and if they took any measures to restore

the application's state. The aim was to evaluate the failover offered by the respective container

runtime when the Kubernetes container runtime upgrade process fails.

115

7.2.4.2 Evaluating the Recovery Actions when the Failure is External

 No recovery operation is required in case of a container runtime upgrade process failure

due to external failure, as the Docker is not restarted, and the container runtime remains avail-

able. We observed and analyzed the same behaviour for a Kubernetes cluster integrated with

CRI-O as the container runtime.

7.2.4.3 Evaluating the Recovery Actions when the Failure is Internal

 In case of a container upgrade process failure due to internal failure, the container

runtime fails, causing the lease update to fail, and due to this Kubernetes changes the status of

that node to NodeNotReady. The recovery process, in this case, must be manually handled.

Once the cause of the error is manually detected and resolved, the Docker / CRI-O should be

restarted to reflect the changes. Docker or CRI-O took no remediation measures.

7.2.5 Assessing the Achievable Service Availability, during Container Runtime

Upgrade, and in Presence of Failure during Upgrade (H3)

In this sub-section, we discuss the results of our evaluation to test our hypothesis H3.

For Docker, its edge version containing improvement and bug-fixes is released every 1-2

month, and stable version is released every quarter [40]. This concludes that a Docker must be

upgraded for at most 16 times (12 edge and 4 stable releases) in a year. While for CRI-O that

is a dedicated container runtime for Kubernetes cluster, it follows the release-cycle of Kuber-

netes minor version (that are released every quarter) but does not follow Kubernetes patch

version cycle (releasing every week in a year). In CRI-O, patch versions are released when

necessary [41]. Since number of patch version upgrades are not mentioned by CRI-O, for our

calculation we consider maximum CRI-O upgrades in sync with Kubernetes version releases

i.e., 56 times a year. Next, we utilize the measurements of our evaluation to calculate service

availability using Equation 2. The calculations represent the service availability achieved when

116

the Docker is upgraded for 16 times a year, and CRI-O is upgraded 56 times a year in a Kuber-

netes cluster. Each service availability calculation (for every evaluated scenario) considers the

container runtime upgrade of every worker node in the cluster. Also, these calculations are

specific to our experiment settings and its associated measurements.

7.2.5.1 Service Availability during Upgrades

We utilized the measurements of our evaluations as presented in Table 7-1, to calculate

the service availability during Docker upgrade. As shown in Figure 7-8, our calculations indi-

cate that the high availability of 99.999% per year is maintained for the deployed application

(stateless and stateful) when Docker is upgraded. In case of CRI-O, as explained in sub-section

7.2.1.3, the deployed application is not impacted during its upgrade. Thus, high availability of

application is maintained when CRI-O upgrades in a Kubernetes cluster.

7.2.5.2 Service Availability during Upgrades in the Presence of Failure

Next, we evaluated the failure scenarios during Docker and CRI-O upgrade, as pre-

sented in sub-section 7.2.2 for application pod failure, and sub-section 7.2.3 for upgrade pro-

cess failure.

As presented in Table 7-2 and Table 7-3, Docker upgrade in the presence of application

pod failure causes service outage for the application. We utilized the results of these measure-

ments to calculate service availability, and as shown in Figure 7-8, our calculation indicate that

the high availability of the application is not impacted. In the case of CRI-O upgrade in pres-

ence of application pod failure, we calculated service availability by using the measurements

presented in Table 7-4 and Table 7-5, and our calculation as shown in Figure 7-8, indicates that

the high availability of the deployed applications is maintained in this scenario.

In the event of upgrade process failure, we utilize the measurements presented in Table

7-6 and Table 7-7 to calculate the service availability achieved in case of Docker and CRI-O

117

respectively. The calculation as shown in Figure 7-8, indicates that the high availability of the

application is maintained even when Docker or CRI-O upgrade process fails.

Figure 7-8: Service availability achieved when container runtime integrated with Kubernetes cluster upgrades for a
year (with and without failure)

7.2.5.3 Conclusion

As shown in Figure 7-8, our results indicates that the high availability of application

deployed in a Kubernetes cluster is not impacted when Docker and CRI-O upgrades (with and

without failure) for their respective upgrade cycle in a year. Thus, these results of our evalua-

tion refute our Hypothesis H3.

7.3 Overall Analysis and Potential Improvements

In this section, we provide a summary of the evaluation and issues identified during the

Container runtime upgrade on a worker node in a Kubernetes cluster. Then, we discuss the

issues not handled by Kubernetes and provide a potential solution.

Through our investigations, we learnt that application container failure during the

Docker upgrade causes an additional impact on the managed application services. However,

such impact can be avoided by using CRI-O as a container runtime. We also discovered that a

Kubernetes cluster integrated with CRI-O offers better service availability when compared

with a Kubernetes cluster integrated with Docker. Furthermore, we analyzed that Kubernetes

118

depends on its interaction with the Container runtime to manage the pod, and in the absence of

this communication, it cannot do so. For example, in the case of container runtime upgrade

process failure due to internal failure, Kubernetes do not discover the actual state of the con-

tainers hosted on the impacted worker node, post its container runtime fails. Although in the

mentioned case, Kubernetes changes the status of the impacted node to NodeNotReady, but the

time it takes to handle the impact caused due to upgrade process failure is more than 300 sec-

onds, which is the total allowed downtime over one year for the systems with high availability

requirements. So, we proposed improvement in this case to reduce this time.

We present potential improvements to solve the issues identified during container

runtime upgrade process failure (due to internal failure): First, the time taken by Kubernetes to

detect the failure and handle the applications impacted is more than 300 seconds; Second, the

affected node must be manually recovered.

 Before proposing the solution, we explain our analysis of the upgrade process failure.

When the container runtime service (of the worker node) fails (as defined in sub-section

7.2.3.3), we see that the application service gets impacted for Docker integrated Kubernetes

cluster, and the application service is maintained in the CRI-O integrated Kubernetes cluster,

what follows is the detailed step to understand this process:

• Due to the unavailability of container runtime service, kubelet is unable to fetch the

status of the containers and send the status to the master node; in the absence of these

updates, the master node marks the node’s status as “NodeNotReady”.

• Then, Kubernetes waits for 300 seconds (by default), after which the pods on the worker

node are marked for deletion and removed from the service endpoint list. It then creates

a new pod on the available healthy worker node.

119

In the case of CRI-O, as the pods become failure intolerant and lose connection with

the master, so in the case of any pod failure, it will neither be communicated to the master

node, nor the failed pod would be recovered. In the case of Docker, application instances hosted

on the impacted node remain unavailable, but Kubernetes is unaware of their current state. For

both Docker and CRI-O, once Kubernetes marks the affected worker node as NodeNotReady,

it is only after 300 seconds that Kubernetes marks these pods for deletion and creates a new

pod in the available worker node.

 The following measure can be taken to reduce the impact of possible disruption due to

the mentioned problems:

1. Backup: The upgrade manager tool should take the backup of the container runtime

config file even before starting the container runtime upgrade.

(Docker – “etc/docker/daemon.json”, CRI-O – “etc/crio/crio.conf”)

2. Identification of Failure: When container runtime fails due to misconfiguration of the

config file, the upgrade manager tool can look out for the occurrences of the below-

mentioned two events occurring simultaneously in this scenario, along with checking

the status of the container runtime service.

• The first event would be “NodeNotReady” and,

• The second event for the same node would be “ContainerGCFailed” or “Im-

ageGCFailed”

3. Restoration: If failure is identified (in step 2), copy the file from the Backup (in step

1) and place it in the container runtime’s respective config file location.

(Docker - “etc/docker/”, CRI-O - “etc/crio/”)

120

4. Reload and Restart the Container Runtime Services: This will stabilize the condi-

tion of the node by regaining communication with the master node, thus avoiding pod

eviction.

 The proposed improvement reduces the time associated with handling the impact on

the deployed pods of the worker node (whose container runtime service fails during the up-

grade). The measured impact, as presented in Table 7-6, will be reduced to only the time taken

by Kubernetes to detect and mark the impacted worker node as NodeNotReady. So, following

the steps mentioned as solution earlier, the impact on application service is reduced to approx-

imately 94%. Furthermore, the proposed improvement also provides a way to recover the

worker node from container runtime upgrade process failure, thus helps to maintain the capac-

ity of the Kubernetes cluster.

7.4 Conclusion

In this chapter, we presented and evaluated container runtime upgrades in a Kubernetes

cluster for stateless and stateful applications. We assessed the service availability achieved

when Docker and CRI-O upgrades (with and without failure) during their respective upgrade

cycle in a year. Through our calculations, we learnt that the high availability of the application

is not impacted when container runtime upgrades. Also, the service availability calculations

presented are specific to the cluster setting, scenarios and container runtime tool considered in

our work, and these calculations may vary in other cases. For example, when upgrades happen

in large clusters, service availability may differ depending on the number of nodes whose con-

tainer runtime is upgraded at once or the distribution of application pods across the nodes in

the cluster, or the additional impact caused by container runtime during its upgrades. With our

calculation, we provide an understanding of achievable service availability in a small cluster,

where the number of application pods is distributed evenly in a cluster, and container runtime

121

on each node is upgraded one at a time. Our evaluation aims to provide insight into handling

such upgrades in a larger cluster with complex applications.

Then, we analyzed the results of our evaluation and discovered shortcomings of the

evaluated container runtime to recover from upgrade process failure (caused due to internal

failure) and limitations of Kubernetes to handle the impact of such failure on application ser-

vices. So, we proposed potential improvements that reduce the impact on application services

by approximately 94%. Furthermore, the proposed improvement also provides a way to recover

the impacted worker node, so it helps to maintain the cluster's capacity.

We acknowledge that there are some threats to the validity of our results. For example,

all our experiments are conducted on a small cluster consisting of only a master and two worker

nodes. Kubernetes may behave differently in larger clusters, that may impact the measurements

presented in our experiments. Also, the extent to which the provided measurements accurately

assess its intent is another threat to validity related to the tools and mechanisms used in our

experiments. We rely on the events and associated timestamps reported in Kubernetes and

Container runtime logs. However, to reduce any intended impact, we consistently use the same

timestamp extraction process throughout all our experiments. The mapping of the metrics to

the concrete events is the biggest threat and requires more investigation as one can map them

differently, in which case all the measurements could be different. However, we believe that

even with a different mapping, what may change is the split between detection and repair times,

thus resulting in the same failed unit outage time. For example, suppose different events are

considered to mark the detection time. In that case, we may observe a decrease/increase in the

detection time that adds to the recovery time, or inversely, but the total failed unit outage time

would be the same since it represents the duration in which the failed unit was not providing

service.

122

Chapter 8

8 Conclusion

In this thesis, we identified various upgrade levels in the context of a Kubernetes cluster,

i.e., Kubernetes cluster version upgrade, Kubernetes application upgrade and Container

runtime upgrade. We performed different experiments to evaluate these levels and defined

metrics to analyze the results of the performed experiments. To automate the metric collection,

we devised and implemented the Auto-Metric collector tool; it monitors the defined events,

collects their timestamps, and calculates the defined metrics automatically. Then, we analyzed

the results from the perspective of service availability, identified the causes of the shortcom-

ings, and proposed potential improvements; to automatically handle the cases not addressed by

Kubernetes.

The main goal of implementing the Auto-Metric collector tool is to lessen manual efforts

and avoid human error. This tool effectively observes the failure events, collects their event

timestamps, and calculates the defined metrics. Finally, we evaluate the calculated metrics to

analyze the impact of the upgrade on application services and failure recovery.

In the Kubernetes cluster version upgrade, we evaluated the Kubernetes version upgrade

of a cluster created and managed by kubeadm and the kOps tool. Through our experiments, we

also learnt that the upgrade process in a kOps managed Kubernetes cluster (on AWS) drasti-

cally impacts the application service and failure recovery compared with the kubeadm created

Kubernetes cluster. We evaluated the results of the performed experiments to calculate the

123

achievable service availability when Kubernetes cluster version is upgraded in a year. The re-

sults state that high availability of application’s service is impacted in the event of failure dur-

ing upgrade. Through our evaluation and analysis, we observed that the kubeadm tool manag-

ing the Kubernetes cluster does not handle its upgrade process failure, so we proposed a poten-

tial improvement for this case. In our improvement, we analyze the state of the master node to

detect if the upgrade process has failed, and if detected, we re-initiate the upgrade process to

complete the Kubernetes version upgrade of the master node. Our improvement ensures that

all master node components are in the intended version and that the configuration file is up-

dated with the correct Kubernetes version so that the remaining nodes can refer to it for their

upgrade.

In the Kubernetes application upgrade, we presented and evaluated different application

upgrade strategies provided by Kubernetes for stateless and stateful applications. Through our

experiments, we discovered that application upgrade using the Recreate upgrade strategy

causes the maximum service outage. For both stateless and stateful applications, during the

RollingUpdate strategy, we investigated that Kubernetes gives priority to failure recovery over

upgrades to follow, due to which the failure recovery time does not get impacted during an

upgrade. However, in Recreate strategy for stateless application, the failed pod is not recov-

ered, and the upgrade process continues. We considered the results of the performed experi-

ments to calculate the achievable service availability when application is upgraded in a year.

The results state that high availability of application’s service is impacted only during upgrade

process failure scenario. Through our experiments, we also analyzed that during upgrade pro-

cess failure (simulated using a non-existent image version in the specification file), the De-

ployment/StatefulSet controller neither detects the failure nor takes any actions to stop the pro-

cess of pod creation; as a result, the pod keeps trying to pull the non-existent image version,

124

thereby impacting application services. Also, the respective controller does not trigger auto-

matic rollback to a stable application version; it requires manual intervention for such restora-

tion. So, we provide potential improvements to solve these problems to reduce the impact on

application services in the event of the upgrade process failure.

In the Container runtime upgrade, we presented and evaluated the upgrade process of

Docker and CRI-O as container runtime tools integrated in a Kubernetes cluster. Through the

different experiments performed, we learnt that application container failure during the Docker

upgrade induces an additional impact on application services; however, CRI-O supports live

upgrades, thereby causing zero downtime for the managed application services when it up-

grades. We also discovered that a Kubernetes cluster integrated with CRI-O as a container

runtime tool offers better service availability than Docker. We assessed the results of the per-

formed experiments to calculate the achievable service availability when container runtime is

upgraded during their upgrade cycle in a year, which states that application’s high service

availability is not impacted during container runtime upgrade. We learnt that the time taken by

Kubernetes to handle the impact caused due to Docker upgrade process failure is 300 seconds,

which is the total allowed downtime over one year for the systems with high availability re-

quirements. So, we proposed improvements that reduce the time to handle the upgrade process

failure by approximately 94%. Furthermore, the proposed improvement also recovers the im-

pacted worker node, so it helps to maintain the cluster's capacity.

This thesis investigated three different levels of upgrade in a Kubernetes cluster, reported

on experiments performed to evaluate these upgrades, provided analysis, assessed the service

availability achieved during upgrades, and proposed potential improvements from some of the

identified shortcomings. The next logical step is to devise and implement an upgrade manager

125

tool to manage upgrades in a Kubernetes cluster while reducing the impact on service availa-

bility.

126

Bibliography

[1] M. Toeroe and F. Tam, Service Availabilty: Principles and practice, John Wiley &

Sons, 2012.

[2] M. Nabi, M. Toeroe, and F. Khendek, "Availability in the cloud: State of the art,"

Journal of Network and Computer Applications, vol. 60, no. 2016, pp. 54-67.

[3] Kubernetes 2022, "Overview," [Online]. Available:

https://kubernetes.io/docs/concepts/overview/. [Accessed 10 September 2022].

[4] M. Nabi, "Automating the Upgrade of IaaS Cloud Systems," 2019, pp. 11-12.

[5] S. Fu, J. Liu, X. Chu, and Y. Hu, "Toward a Standard Interface for Cloud Providers:

The Container as the Narrow Waist," IEEE Internet Computing, vol. 20, no. 2, pp. 66-

71.

[6] "Deploy on Kubernetes," Inc, Docker, [Online]. Available:

https://docs.docker.com/desktop/kubernetes/. [Accessed 17 August 2022].

[7] D. Bernstein, "Containers and cloud: From lxc to docker to kubernetes," IEEE Cloud

Computing, vol. 1, no. 3, pp. 81-84, 2014.

[8] Cloud Native Computing Foundation, "Foundation, Kubernetes | Cloud Native

Computing," The Linux Foundation, [Online]. Available:

https://www.cncf.io/projects/kubernetes/. [Accessed 2022 September].

127

[9] etcd-io, "etcd/README.md at main · etcd-io/etcd," [Online]. Available:

https://github.com/etcd-io/etcd/blob/main/raft/README.md. [Accessed 23 July 2022].

[10] "cri-o," Cloud Native Computing Foundation, [Online]. Available: https://cri-o.io/.

[Accessed 12 August 2022].

[11] "GitHub - containernetworking/cni: Container Network Interface - networking for

Linux containers," containernetworking, [Online]. Available:

https://github.com/containernetworking/cni . [Accessed 08 August 2022].

[12] The Kubernetes Authors, "Nodes Conditions," 05 April 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/architecture/nodes/#condition. [Accessed 05 July

2022].

[13] The Kubernetes Authors, "Kubeadm," [Online]. Available:

https://kubernetes.io/docs/reference/setup-tools/kubeadm/. [Accessed July 2022].

[14] "Welcome - kOps - Kubernetes Operations," [Online]. Available:

https://kops.sigs.k8s.io/. [Accessed 14 July 2022].

[15] "GKE overview | Google Kubernetes Engine (GKE) | Google Cloud," [Online].

Available: https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-

engine-overview. [Accessed 13 July 2022].

[16] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, "A kubernetes controller for

managing the availability of elastic microservice based stateful applications," Journal

of Systems and Software, vol. 175, no. 0164-1212, p. 110, 2021.

128

[17] P. A. 2014-2022, "Prometheus - Monitoring system & time series database," [Online].

Available: https://prometheus.io/. [Accessed August 2022].

[18] T. K. Authors, "Deploy and Access the Kubernetes Dashboard," [Online]. Available:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/.

[Accessed 18 August 2022].

[19] "Analyzes resource usage and performance characteristics of running containers,"

GitHub - google/cadvisor, [Online]. Available: https://github.com/google/cadvisor .

[Accessed 22 July 2022].

[20] E. B.V, "Filebeat overview | Filebeat Reference [8.4] | Elastic," [Online]. Available:

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html.

[Accessed 14 August 2022].

[21] "What is Elasticsearch?," Elasticsearch, [Online]. Available:

https://www.elastic.co/what-is/elasticsearch. [Accessed 14 August 2022].

[22] "ntp.org: Home of the Network Time Protocol," [Online]. Available:

http://www.ntp.org/. [Accessed 15 August 2022].

[23] "Version Skew Policy," Kubernetes, [Online]. Available:

https://kubernetes.io/releases/version-skew-policy/#supported-versions. [Accessed 12

August 2022].

[24] The Kubernetes Authors, "Upgrade A Cluster," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/tasks/administer-cluster/cluster-upgrade/. [Accessed 16 July

2022].

129

[25] The Kubernetes Authors, "Creating a cluster with kubeadm," [Online]. Available:

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-

kubeadm/. [Accessed 22 September].

[26] "Working with Instance Groups - kOps - Kubernetes Operations | Sigs.k8s.io,"

[Online]. Available: https://kops.sigs.k8s.io/tutorial/working-with-instancegroups/.

[Accessed 3 September 2022].

[27] The Kubernetes Authors, "Understanding Kubernetes Objects, Kubernetes," [Online].

Available: https://kubernetes.io/docs/concepts/overview/working-with-

objects/kubernetes-objects/#object-spec-and-status. [Accessed 12 June 2022].

[28] The Kubernetes Authors, "ReplicaSet," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/. [Accessed 16

June 2022].

[29] The Kubernetes Authors, "Deployments," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-

deployment. [Accessed 24 June 2022].

[30] The Kubernetes Authors, "StatefulSets," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies.

[Accessed 4 July 2022].

[31] NGINX, "“How often are NGINX and NGINX Plus released?"," NGINX, 25 Sep.

2020. [Online]. Available: https://www.nginx.com/faq/how-often-is-nginx-and-nginx-

plus-released/. [Accessed 28 Nov 2022].

130

[32] NGINX, "Nginx.org," NGINX, 19 Oct 2022. [Online]. Available:

http://nginx.org/en/CHANGES. [Accessed 1 Dec 2022].

[33] Videolan, "VLC Releases - VideoLAN," Videolan.org, 2022. [Online]. Available:

https://www.videolan.org/vlc/releases/. [Accessed 30 Nov. 2022].

[34] W. Contributors, "VLC media player," 27 Nov. 2022. [Online]. Available:

https://en.wikipedia.org/wiki/VLC_media_player. [Accessed 1 Dec 2022].

[35] The Kubernetes Authors, "Deployment-Status," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#progress-

deadline-seconds. [Accessed 29 August 2022].

[36] Kubernetes, "Container Runtimes," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/setup/production-environment/container-runtimes/.

[Accessed 17 July 2022].

[37] The Kubernetes Authors, "Introducing Container Runtime Interface (CRI),"

Kubernetes, [Online]. Available: https://kubernetes.io/blog/2016/12/container-runtime-

interface-cri-in-kubernetes/. [Accessed 17 July 2022].

[38] "Open Container Initiative - Open Container Initiative," Opencontainers.org, [Online].

Available: https://opencontainers.org/. [Accessed 31 August 2022].

[39] The Kubernetes Authors, "Nodes," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/architecture/nodes/#heartbeats. [Accessed 17

August 2022].

131

[40] "GitHub - cri-o/cri-o: Open Container Initiative-based implementation of Kubernetes

Container Runtime Interface," 23 Nov. 2022. [Online]. Available:

https://github.com/cri-o/cri-o. [Accessed 25 November 2022].

[41] D. Inc, "About Docker CE," 04 June 2020. [Online]. Available: https://docker-

docs.netlify.app/install/. [Accessed 21 Nov. 2022].

	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Thesis Motivations
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 Background
	2.1 Service Availability
	2.1.1 Service Availability during Upgrades
	2.2 Containers
	2.3 Introduction to Kubernetes
	2.4 Kubernetes Cluster Architecture
	2.5 Failure Handling with Kubernetes
	2.5.1 Pod Failure
	2.5.2 Node Failure

	2.6 Upgrades in Kubernetes Clusters
	2.6.1 Kubernetes’ Cluster Version Upgrade
	2.6.2 Kubernetes’ Application Upgrade
	2.6.3 Container Runtime Upgrade

	3 Evaluation Method and Setup
	3.1 Evaluation Method
	3.2 Evaluation Cluster Setup
	3.2.1 Cluster Architecture
	3.2.2 Application Deployment

	3.3 Evaluation Scenarios
	3.3.1 Upgrade Scenario
	3.3.2 Failure Scenarios

	3.4 Metrics for Evaluation

	4 Auto-Metric Collector – a Tool to Automate the Process of Metric Collection
	4.1 Problem Statement
	4.2 Evaluation of Existing Tools
	4.3 Collecting Metrics Via Auto-Metric Collector
	4.3.1 Architecture
	4.3.2 Operations
	4.3.2.1 Integration with Kubernetes for Event Monitoring and Timestamp Collection
	4.3.2.2 Integration with FEK Stack for Data Visualization

	4.4 Conclusion

	5 Kubernetes Cluster Version Upgrade
	5.1 Current Practice of Upgrade
	5.1.1 Kubeadm
	5.1.2 kOps

	5.2 Evaluation of Kubernetes’ Cluster Version Upgrade
	5.2.1 RQ1: Evaluate the Impact on Application Services during Kubernetes’ Cluster Version Upgrade
	5.2.1.1 Experiments
	5.2.1.2 Evaluating the Impact during the Master Node Upgrade
	5.2.1.3 Evaluating the Impact during Worker Node Upgrade of Kubeadm Managed Kubernetes Cluster
	5.2.1.4 Evaluating the Impact during Worker Node Upgrade of kOps Managed Kubernetes Cluster

	5.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade in the Presence of Pod Failure, on its Failure Recovery Actions and on Application Services
	5.2.2.1 Experiments
	5.2.2.2 Evaluating Master Node Upgrade of Kubeadm Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.2.3 Evaluating Master Node Upgrade of Kops Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.2.4 Evaluating Worker Node Upgrade of Kubeadm Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.2.5 Evaluating Worker Node Upgrade of Kops Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.3 RQ2-2: Evaluate the Impact of Kubernetes’ Cluster Version Upgrade, on its Worker Node Failure Recovery Actions and on Application Services
	5.2.3.1 Experiments
	5.2.3.2 Evaluating Master Node Upgrade of Kubeadm Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.3.3 Evaluating Master Node Upgrade of kOps Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.3.4 Evaluating Worker Node Upgrade of Kubeadm Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.3.5 Evaluating Worker Node Upgrade of kOps Managed Kubernetes Cluster
	Impact on Failure Recovery and Service Degradation
	Impact on Service Outage

	5.2.4 RQ3: Evaluate the Impact of a Failure of the Kubernetes’ Cluster Version Upgrade Process
	5.2.4.1 Experiments
	5.2.4.2 Evaluating the Detection of Upgrade Process Failure by the Tools Managing the Kubernetes Cluster
	5.2.4.3 Evaluating the Remediation Measures Taken by the Tools Managing the Kubernetes Cluster to Restore the Cluster’s State post Kubernetes’ Upgrade Process Failure

	5.2.5 Assessing the Achievable Service Availability, during Kubernetes’ Cluster Version Upgrade, and in Presence of Failure during Upgrade (H1)
	5.2.5.1 Service Availability During Upgrades
	5.2.5.2 Service Availability during Upgrade in the Presence of Failure
	5.2.5.3 Conclusion

	5.3 Overall Analysis and Potential Improvements
	5.4 Conclusion

	6 Kubernetes Application Upgrade
	6.1 Current Practice of Upgrade
	6.1.1 Upgrade Strategies for Stateless Application
	6.1.2 Upgrade Strategies for Stateful Application

	6.2 Evaluation of Application Upgrade Strategies
	6.2.1 RQ1: Evaluate the Impact of Kubernetes’ Application Upgrade on the Application Services
	6.2.1.1 Experiments
	6.2.1.2 Evaluating the Upgrade Strategies of Stateless Application
	Impact during Recreate Upgrade Strategy
	Impact during RollingUpdate Upgrade Strategy

	6.2.1.3 Evaluating the Upgrade Strategies of Stateful Application
	Impact during OnDelete Upgrade Strategy
	Impact during RollingUpdate Upgrade Strategy

	6.2.2 RQ2-1: Evaluate the Impact of Kubernetes’ Application Upgrade on the Recovery from a Pod Failure and on Application Services
	6.2.2.1 Experiment
	6.2.2.2 Evaluating the Upgrade Strategies of Stateless Application
	Impact during Recreate Upgrade Strategy
	Impact during RollingUpdate Upgrade Strategy

	6.2.2.3 Evaluating the Upgrade Strategies for Stateful Application
	Impact during OnDelete Upgrade Strategy
	Impact during RollingUpdate upgrade strategy

	6.2.3 RQ2-2: Evaluate the Impact on the Pod (Application) Version post Recovery from Failure
	6.2.3.1 Experiment
	6.2.3.2 Evaluating the Upgrade Strategies for Stateless Application
	6.2.3.3 Evaluating the Upgrade Strategies of Stateful Application

	6.2.4 RQ3-1: Evaluate the Impact of the Kubernetes’ Application Upgrade Process Failure on the Availability of the Application
	6.2.4.1 Experiment
	Impact during Recreate Upgrade Strategy
	Impact during RollingUpdate Upgrade Strategy

	6.2.4.2 Evaluating the Upgrade Strategies of Stateful application
	Impact during OnDelete Upgrade Strategy
	Evaluating the Impact of RollingUpdate Upgrade Strategy

	6.2.5 RQ3-2: Evaluate the Remediation Measures Taken by the Respective Controller (Deployment and StatefulSet Controller) when Kubernetes’ Application Upgrade Process Fails
	6.2.5.1 Experiment
	6.2.5.2 Evaluating the Upgrade Strategies of Stateless Application
	6.2.5.3 Evaluating the Upgrade Strategies of Stateful Application

	6.2.6 Assessing the Achievable Service Availability during Kubernetes’ Application Upgrade, and in Presence of Failure during Upgrade (H2)
	6.2.6.1 Service Availability during Upgrades
	6.2.6.2 Service Availability during Upgrades in the Presence of Failure
	6.2.6.3 Conclusion

	6.3 Overall Analysis and Potential Improvements
	6.3.1 Stateless Application
	6.3.2 Stateful Application

	6.4 Conclusion

	7 Container Runtime Upgrade
	7.1 Current Practice of Upgrade
	7.1.1 Docker
	7.1.2 CRI-O

	7.2 Evaluation of Container Runtime Upgrade
	7.2.1 RQ1: Evaluating the Impact of Container Runtime Upgrade on Service Availability of Hosted Application Instances
	7.2.1.1 Experiments
	7.2.1.2 Evaluating the Impact of Docker Upgrade on Application Services
	7.2.1.3 Evaluating the Impact of CRI-O Upgrade on Application Services

	7.2.2 RQ2: What is the Impact of Container Runtime Upgrade on Recovery from Application Container Failure and on Application Services?
	7.2.2.1 Experiment
	7.2.2.2 Evaluating the Impact of the Docker Upgrade
	Impact on Failure Recovery
	Impact on Service Degradation
	Impact on Service Outage

	7.2.2.3 Evaluating the Impact of the CRI-O Upgrade
	Impact on Failure Recovery/Service Degradation
	Impact on Service Outage

	7.2.3 RQ3-1: Evaluating the Impact of Container Runtime Upgrade Process Failure on Application Services
	7.2.3.1 Experiments
	7.2.3.2 Evaluating the Impact on Application Services because of Container Runtime Upgrade Process Failure due to External Failure
	7.2.3.3 Evaluating the Impact on Application Services because of Container Runtime Upgrade Process Failure due to Internal Failure
	Impact on Application Services during Docker Upgrade Process Failure
	Impact on Application Services during CRI-O Upgrade Process Failure

	7.2.4 RQ3-2: Evaluating the Recovery Actions Taken by Container Runtime Tools when their Upgrade Process Fails
	7.2.4.1 Experiments
	7.2.4.2 Evaluating the Recovery Actions when the Failure is External
	7.2.4.3 Evaluating the Recovery Actions when the Failure is Internal

	7.2.5 Assessing the Achievable Service Availability, during Container Runtime Upgrade, and in Presence of Failure during Upgrade (H3)
	7.2.5.1 Service Availability during Upgrades
	7.2.5.2 Service Availability during Upgrades in the Presence of Failure
	7.2.5.3 Conclusion

	7.3 Overall Analysis and Potential Improvements
	7.4 Conclusion

	8 Conclusion
	Bibliography

