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Abstract 

Noise Shaping for Antenna Beamforming 

 

Shahin Sheikh, Ph.D. 

Concordia University, 2022 

 

This thesis is an exhaustive investigation of a well-known signal processing approach called 

noise shaping for beamforming. We adopted the noise-shaping approach for phase-only and 

amplitude-phase synthesis for the first time. To do that, 1-D and 2-D, real- and complex-

coefficient, minimum-phase digital finite impulse response filters are designed based on the 

discrete Hilbert transform method. It is shown for the first time that by pushing the error out of the 

so-called visible region, the decrease of antenna directivity due to the quantization can be 

compensated to some extent, which provides an advantage over the uniform distribution of error. 

In some cases, pushing the error out of the visible region might be impossible. For such cases, we 

proposed using the spaced-notches filter. Moreover, it has been shown that the method is of 

maximum efficacy when both the phase and amplitude of the excitation signal are controllable. 

Thus, complex-valued noise shaping can be exploited for the phase-amplitude synthesis of the 

phased array, showing quite promising performance. Furthermore, the superiority of noise shaping 

over conventional random methods for null restoration is brought to attention with several 

examples for the first time.  

Also, the method is implemented at the sub-array layer. A concept study based on the noise 

shaping approach addressing the quantization error at the sub-array layer is presented for the first 

time. The noise shaping might be used for the last layer since it typically has enough elements. In 

this case, the noise shaping is exploited to push the distortion to where other layers' sub-array 
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factors have enough attenuation, which is supposed to alleviate the quantization lobe level to some 

extent. To do that, a novel approach is proposed in which the sub-array factor, or composite sub-

array factor, should be tiled with the periodicity of the ultimate-layer array factor, and 

subsequently, a contribution of all tiles yields the digital filter layout.  

Moreover, we have investigated the quantization issue incurred by the practical pixel in 

reflectarray. The quantization error has been treated by using signal statistics and the noise shaping 

approach, which is used for space-fed antennas for the first time. For the space-fed antenna, we 

used real-valued noise shaping to address the quantization issue. Nevertheless, it is shown that the 

local periodicity assumption is an important limitation since increasing the depth of the stopband 

filter for noise shaping inserts a considerable portion of noise into the phase arrangement on the 

reflective surface, which is problematic for antenna performance. Also, the filter stopband should 

be designed for all extreme beams, limiting noise-shaping effectiveness for mechanical steering. 

Then, a resonant type element based on the delay line is chosen for better control of phase delay 

arrangement. Two prototypes are fabricated, one based on conventional design and the other based 

on spectrally shaped noise. The performance of the two antennas is compared with each other. It 

is concluded that the noise shaping can somewhat relax the reflectarray sidelobe level.   

Keywords: Noise shaping, dither, digital filter, phased array, reflectarray, multi-focal 

reflectarray, digital phase shifter, digital attenuator, quantization, sub-array, analog beamforming, 

hybrid beamforming, digital beamforming, quantization lobe, visible/invisible region.  
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Chapter 1. Introduction        

1 

 

Chapter 1 

Introduction 

1.1 issue 

Antenna arrays capable of electronic steering are called phased arrays (PA). Typically, PA 

includes several transmit/receive (T/R) modules terminated by radiators. Each T/R module 

includes several devices, such as a high-power and/or low-noise amplifier, 

channelizer/synthesizer, etc. There are several approaches for PA beamforming. One is analog 

beamforming (ABF), in which the complex beamforming weights (CBWs) are implemented in the 

analog domain, usually in radio frequency (RF) or local oscillator (LO) signal path. Due to some 

reasons, e.g., fewer down/up converter mixers, it is more common to implement the 

phase/amplitude control circuit (P/A-CC) in the RF signal path. Besides, the digital control 

mechanism is conventionally preferred for P/A-CC in which the digital attenuator (DA) [1]-[5] 

and digital phase shifter (DPS) [6]-[8] are recruited. However, one should consider that the DPSs 

and DAs are complex, expensive, and power-hungry devices. This problem shows itself in multiple 

simultaneous beam applications, such as massive multiple-input multiple-output (MIMO), since 

several sets of DPSs and DAs are needed. To decrease the costs, there are some solutions, for 

example, the design of an array with large element spacing, contiguous sub-array, and using 

smaller bits number for DPSs and DAs.  

Nevertheless, discretization of the signal domain, sampling, and signal range, quantization, are 

integrated with corresponding distortions. The spatial discretization is implicit with the antenna 

array; thereby, the spatial aliasing depends on the lattice specifications, including the pitch 

(element spacing) and the lattice fashion, such as square or hexagonal lattice. Violating from 

Nyquist design of array leads to wavenumber aliasing. This happens when the visible region radius 
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is larger than the fundamental period of the array factor. Thereby, grating lobe(s) may appear for 

some steered array factors. On the other hand, quantization error typically shows itself as a 

harmonic distortion in the Fourier domain since the error is a deterministic function of the input. 

The CBW quantization due to the limited bits number of DAs and DPSs can cause quantization 

lobes (QLs), gain loss, and beam point deviation. The QLs imitate the main beam shape due to the 

coherency of error. The DA, DPSs, and RF beamforming ICs are introduced in Chapter 2. 

The other possibility of beamforming is after converting intermediate frequency (IF) or 

baseband signals to digital ones, called digital beamforming (DBF). This approach provides a list 

of advantages over ABF. Nevertheless, DBF usually increases hardware complexity and cost by 

dedicating one RF chain per radiator. Moreover, it is much more computationally intensive than 

ABF. That can prohibitively increase by increasing the sample rate, aperture size/element spacing, 

and the number of independent beams. In DBF, the inner product of two vectors amounts to a sum-

of-products, which can be performed in a fully parallel multiply-and-add configuration, which can 

be implemented in the FPGA hardware or sequentially using complex multiply-accumulators 

(CMAC), which should be implemented by the DSP.  Although in many practical cases, designers 

use DSP for beamforming, the FPGA might be more efficient for this purpose in terms of speed, 

chip area, and power consumption.  This is because the FPGA is a hardware circuitry that 

contributes to a faster binary multiplier.  

The number of partial products depends on the number of bits quantifying the multiplicand, the 

multiplier and the scheme used. For sure, the greater the number of partial products, the more time 

delay and more circuit area to compute the multiplication. To show this, 8 by 4 bits and 8 by 8 bits 

booth multipliers are implemented and compared. The schematic of the synthesized gate level and 

waveforms are shown in Fig.1.1.  



Chapter 1. Introduction        

3 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 1. 1 Schematic of synthesized booth algorithm (a) for 8 bits multiplicand and 4 bits multiplier, (b) the associated 

post-synthesis timing simulation. (c) Schematic of synthesized booth algorithm for 8 bits multiplicand and 8 bits 

multiplier, (d) the associated post-synthesis timing simulation. 

The result of Fig. 1.1(a) includes 167 cells,12 I/O ports, and 271 nets, whereas the schematic of 

Fig. 1.1(c) comprises 323 cells, 32 I/O ports, and 551 nets.  Comparing the two wave forms, one 

realizes the latter has about 2 ns more delay. Moreover, one should note that four multiplications 

are required per radiator and beam in DBF. 
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Accordingly, the major difficulty in DBF based on FPGA1 is the gate propagation delay, which 

is more affected by multiplications. It should be noted that the number of independent beams can 

prohibitively increase the number of multiplications. This can be problematic for those 

applications needing multiple beams and high data rates, including radar, massive MIMO, and 

satellite communication (SatCom) implemented based on the DBF. 

An alternate approach is Hybrid beamforming (HBF) [9]-[14], in which the array aperture is 

divided into some sub-arrays. Each output signal from sub-array combining is subsequently 

introduced to the digital platform after going through the RF chains and data converters; thus, the 

DBF is carried out on the array of analog sub-arrays. The lattice of the ultimate layer is usually 

much sparser than the first-layer lattice on which the radiators are located. Hence, the number of 

RF and digital chains becomes dramatically less than that of radiators, so the antenna can become 

cheaper and sizable data can be realized for DSP. However, the problem of multiple beams in the 

digital domain can still be drastically increased by increasing the sample rate, aperture size, and 

the number of beams. 

Another cheap solution is a space-fed antenna such as reflectors and lenses. The discretized 

versions of space-fed antennas, such as transmitarray (TA) and reflectarray (RA), offer some 

further advantages, comprising better control over the aperture phase [15], cheap PCB fabrication, 

and lightweight, which makes them highly deployable. However, the cost is usually some inferior 

radiation characteristics such as narrower bandwidth, higher minor lobe level, and lower maximum 

gain. The RA and TA antennas also suffer from phase quantization. This is because the practical 

pixel provides a specific range of phases which can lead to coarse quantization at high frequency 

and for highly miniaturized pixel and reconfigurable types.  

                                                            
1 Also, the application-specific integrated circuit (ASIC). 
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As stated, the quantization results in a signal-dependent error that manifests itself as a harmonic 

distortion inside the signal spectra. Strictly speaking, this statement, however, is incorrect. The 

quantization error is not a signal-dependent artifact if the input signal complies with some 

statistical specifications. In [16], the statistical condition of the (real) signal for the quantizer is 

provided with white quantization error and uniformly distributed. Although most practical signals 

do not comply with such a condition, it is possible to manipulate the original signal by adding an 

independent signal before the quantization process, satisfying the conditions provided in [16]. 

Such a signal is called dither [17]. It is typically but not necessarily, a random signal with specific 

statistical properties. The dithered quantization method is extensively utilized in many 

applications, such as audio signal processing, communication, control systems, and digital image 

halftoning [18]-[21].  

The antenna community is familiar with the benefits of the dithered quantization. Several 

researchers have addressed the quantization issue in PA antenna [22]-[30]. A majority of such 

efforts are randomization-based methods (dither-based methods). It seems that earlier than all, it 

was Miller, in 1964, who tried to address the issue due to the quantization error periodicity of the 

PA [31]. Miller found the benefits of quadratic phase shift required for compensating the path 

length between the feed and elements in a space-fed antenna. In [24], one of the earliest ones, a 

random phasing approach, is proposed to break up the quantization error coherency in PA antenna, 

which is a dithering approach. There are, nevertheless, some problems with the dithering. Actually, 

the inserted noise deteriorates the antenna gain and is not optimal for QL level suppression. Also, 

the generated beam is not repeatable since, in general, the dither is a random signal. Moreover, for 

those applications, the null is embedded in the antenna pattern to cancel the interfering signal; 

random dither is ineffective since it contributes to a flat noise that simply fills up the nulls.  
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1.2 Motivation  

As stated above, it was long believed that the error across the array aperture should be 

independent of the original signal with a uniform distribution, though there is no solid reason for 

the uniform distribution2. In fact, that might be a sub-optimal solution, which is also proved in 

other applications. For example, the human visual system discriminates between the spatial 

frequencies; therefore, it is more interesting to shape the noise and suppress it in those areas of the 

spectrum where the eye is more sensitive to them. 

It is possible to control and shape the error signal spectra by using a filter in a feedback circuit 

of the quantizer system. This method is called noise shaping, a well-known and widely appreciated 

signal processing method. One of the earliest works back to Spang and Schultheiss [32]. Besides, 

earlier than all, Floyd and Steinberg exploited the benefits of noise shaping in digital image 

processing [33], although the method was used in audio signal processing a long time before that. 

Error diffusion is a popular name for noise shaping in the image processing community [34-36]. 

The method is also famous as  ∆ − Σ modulator/converter [37]. In Fig. 1.2, an image is quantized 

to 3 bits, and the performance of different schemes are compared. One can see the superiority of 

noise shaping over simple quantization and RPDF dithering. Floyd-Steinberg digital filter is used 

in Fig. 1.2(d). Therefore, it might be tempting to investigate whether noise shaping can be used to 

suppress the distortion due to the quantization in antenna design and what would be the challenges 

and possibilities. These are the prime motivations of the current research.  

 

                                                            
2 Actually, there is a reason and that is for uniform distribution of phase error, the beam point deviation is zero. 

However, such a concern can also be addressed by spectrally shaped one. 
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(a) (b) 

 

  
(c) (d) 

Fig. 1. 2 A photo with different quantization schemes. (a) Original picture, (b) 3-bit simple uniform quantization, (c) 

RPDF dithering response, and (d) spectrally shaped noise response. 

1.3. Thesis contributions  

We have proposed that the noise shaping can be recruited in ABF to address the distortion of 

antenna radiation patterns caused due to the limited number of bits of the DAs and DPSs. In 

contrast to dither, the spectrally shaped dither, which is the noise shaping approach, contributes to 

a repeatable solution. Moreover, the null retrieval problem can be conveniently treated with the 

spectrally shaped dither. We proposed for the first time that the jamming nulls (JNs) embedded in 

the radiation pattern should be addressed in the digital filter design; thus, the quantization error 

can be pumped out of those areas, and thereby, the nulls can be restored to some extent. 
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In DBF, as the number of beams increases, it becomes challenging to quantify the CBW with 

enough bits. In this regard, one may use a smaller bit number, e.g., 4 bits, to quantify the CBW 

and instead spectrally shape the excitation error signal to push the distortion out-of-band, which in 

this case might be the beamspace visible region or just an area of interest inside the visible region.  

Moreover, we propose exploiting the noise shaping approach to address the quantization error 

at the sub-array layer. The method might be used for the last layer since it typically has enough 

elements. Nevertheless, in practice, the sub-array might be implemented with more than hundreds 

of elements; thus, it can also be utilized to shape the sub-array factor spectrally. The main 

discrepancy between the approach employed here and in the preceding paragraphs is that the signal 

set on the ultimate layer is typically much sparser than the first one; hence, the corresponding array 

factor fundamental period is smaller than the visible region, which makes it challenging to use the 

trick, pushing the quantization distortion directly to the so-called invisible region. Nevertheless, 

the noise shaping is exploited for the first time to push the distortion to where other layers' sub-

array factors have enough attenuation, which is supposed to alleviate the QL level to some extent. 

To do that, a novel approach is proposed in which the sub-array factor (SAF), or composite sub-

array factor (C-SAF), should be tiled with the periodicity of the ultimate-layer array factor, and 

subsequently, a contribution of all tiles yields the digital filter layout. This approach helps to pump 

the distortion to the area where the sub-array factor has enough attenuation; hence, the distortion 

can be mitigated in the overall array factor (O-AF). 

We have also implemented some novel configurations of multi-layer contagious sub-array 

overlapping for the first time. It has been shown that very complicated sub-array overlapping can 

practically be realized in multi-layer architecture. This method is based on a multi-layer FIR filter, 

which is used to optimally design a contagious sub-array system as a cheap solution for a limited 
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scan range.   

The optimizer engine is a multi-objective brainstorm optimizer (MOBSO) designed to search 

for decision variable space decimated by the orthogonal polynomial method. A multi-focal 

reflectarray (RA) is designed based on multi-objective optimization. In addition, we have 

investigated the quantization issue incurred by the practical pixel. This has been treated by using 

signal statistics and the noise shaping approach, which is used for space-fed antenna for the first 

time. This method can somehow mitigate the quantization issue due to practical pixel response. 

1.4. Outline of the Thesis 

The subsequent chapters in this thesis will be arranged as elaborated in the following 

paragraphs. 

Chapter 2 includes a brief review of the fundamental concept of antenna. Then, a phased array 

antenna, different beamforming methods, and a literature review are presented. After that, space-

fed antennas, including reflectors and RAs, are introduced. Some minor contributions comprising 

sub-wavelength pixel modeling are also presented. 

Chapter 3 is devoted to quantization. In particular, the quantization issue in analog and digital 

beamforming is investigated. Then, the theory background of dithering is presented, and the 

method is theoretically investigated for PA based on ABF. 

Chapter 4 discusses the theoretical background of spectrally shaped dither (noise shaping). In 

particular, Fourier analysis in 1D and 2D, digital filter design, discrete Hilbert transform method, 

sampling and lattice theory, and noise shaping approach are reviewed. 

Chapter 5 is about the noise shaping approach in PA antenna based on ABF. The method is 

adapted for phase-only and amplitude-phase synthesis of PA. First, the method is implemented for 

a square lattice.  Then, a hexagonal lattice is investigated, and the method is applied to pattern 
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synthesis and large element spacing problems.  

Chapter 6 discusses the noise shaping approach at the sub-array layer. First, PA based on sub-

array overlapping is introduced, and some complicated feeding network is implemented based on 

a multi-layer sub-array system. Then, the noise shaping approach is developed for the sub-array in 

which the periodicity of the penultimate layer tiles the sub-array factor. Then, all tiles are 

considered for the filter design used in the noise shaping approach at the sub-array layer. 

Chapter 7 is about optimization. We have used multi-objective optimization for the design of 

the RA antenna. The detail of the optimization engine and the method to decimate the parameter 

space is detailed for the multibeam RA antenna. Then, as a single objective example, the digital 

filter layout is designed for large element spacing.  

Chapter 8 is devoted to the RA antenna. The quantization issue is investigated for RA antenna, 

and several methods are discussed. Moreover, the measurement results for the RA antenna are 

presented and discussed. Finally, a conclusion is described in Chapter 9 with the main 

contributions and the future work of the research.  
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Chapter 2 

Antenna fundamentals  

 

In this chapter, first, fundamental antenna concepts are reviewed. Then, phased array and 

beamforming techniques are introduced. After that, a space-fed antenna including a reflector and 

reflectarray are presented. Finally, the sub-wavelength pixel is studied, and a simple analytical 

model is provided for fast analysis of the reflectarray (RA) antenna. 

2.1. Radiation mechanism 

An electric charge is associated with the electric field with an intensity of  𝑬 = 
1

4𝜋𝜀

𝑞

𝑟2
�̂�, which 

is initiated with  𝑞 as the electric charge in coulomb (C), 휀 as the permittivity of surrounding space 

in Farad per meter (F/m), and 𝑟 as radial distance in meter (m). A moving charge contributes to 

another field vector as well, called the magnetic field, with the intensity of 𝑯 = 
1

4𝜋

𝑞𝒗×�̂�

𝑟2
, which is 

initiated with 𝒗 as the electric charge velocity vector in meters per sec (m/sec). These fields can 

only respond to events at the speed of light. If an electric charge is accelerated, the electric field in 

the vicinity of the charge changes. As the field is required to be continuous, there would be a 

perturbation in field lines.  As a matter of fact, alternating electric and magnetic fields are related 

based on Maxwell (curl) equations. The Maxwell curl equations are written in (2.1). 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
                                                               (2.1𝑎) 

∇ × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
                                                             (2.1𝑏) 
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Fig. 2. 1. A one-dimensional normalized radiation pattern of a directive antenna with an embedded null. 

in which 𝜌𝒗 is the charge density,  𝑱 = 𝜎𝑬 is the conduction current density vector, 𝑫 = 휀𝑬 called 

displacement electric field or electric flux density, 𝑩 = 𝜇𝑯 where B is the magnetic flux density, 

and 𝜇 is the magnetic permeability of space in henry per meter (H/m). According to Maxwell curl 

equations in (2.1), the alternating electric field induces the magnetic one and vice versa. Thus, the 

electromagnetic (EM) perturbation (due to accelerated electric charge) must propagate in space 

with the speed of light, called EM wave. Hence, the antenna is an interface between the EM wave 

propagating in free space and the electric current at the antenna terminal. There are several antenna 

types, including wire antenna (such as dipole antenna), microstrip antenna, slot antenna, and leaky 

wave antenna. Each has its advantages and bottlenecks. In general, to have efficient radiation, the 

field should show up in phase on the "aperture," and the transmission line EM power should be 

acceptably delivered to the antenna.  

2.2. Antenna definitions and concepts  

A one-dimensional radiation pattern is shown in Fig. 2.1. The major lobe of the radiation pattern 

is called the main beam or, simply, beam. Other lobes, typically of smaller magnitudes than the 

main beam, are called minor lobes, including the side and the back lobe. The difference between 

the main lobe and the maximum sidelobes levels is called the sidelobe level (SLL). Occasionally, 

one sharp minimum might be embedded in the radiation pattern of the antenna for the purpose of 

direction-finding or interference cancellation in a specific direction called directional-null or 
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simply null, see Fig. 2.1.  

Definition 2.1: The real power density (in watts per square meter) is defined by (averaged) 

pointing vector [38] as follows 

𝑷 = 
1

2
𝑅𝑒(𝑬 × 𝑯∗)                                                                    

in which  𝑬 and 𝑯 are electric and magnetic vectors, respectively.                                                  ∎ 

Therefore, the total radiated power (TRP) by the antenna can be computed as 

𝑃𝑟𝑎𝑑 = ∫ ∫𝑷𝑟2sin 𝜃 𝑑𝜃𝑑𝜑

𝜋

0

                                              (2.2)

2𝜋

0

 

Let 𝑷 = 𝑝�̂�, then the total power captured by the receiving antenna is 

𝑃𝑡 =  𝑝𝐴𝑒                                                              (2.3) 

where 𝐴𝑒 is called the effective aperture.  

Definition 2.2: Power radiated from an antenna per unit solid angle is defined as radiation 

intensity, 𝑈. Thus, one can write 

𝑃𝑟𝑎𝑑 = ∫ 𝑈𝑑Ω

Ω

= ∫ ∫𝑈 sin 𝜃 𝑑𝜃𝑑𝜑

𝜋

0

2𝜋

0

                                            ∎ 

 𝑈 = 𝑟2𝑝, which means that radiation intensity is independent of radial distance from the radiator. 

This is simply because an outward-traveling wave has to decay by 𝑟−1; hence, the power density 

decays by 𝑟−2. Moreover, it might be evident that the radiation intensity of an isotropic radiator is 

𝑈0 = 
𝑃𝑟𝑎𝑑

4𝜋
. Half-power beamwidth (HPBW) is the angle between the two directions in which the 

radiation intensity becomes half.  

Definition 2.3: The ratio of radiation intensity in a specific direction to the average intensity in all 

directions is called antenna directivity.                                                         
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𝐷(𝜃0, 𝜑0) =  
𝑈(𝜃0,𝜑0)

𝑈𝑎𝑣
                                                       ∎ 

The directivity also can be computed by 𝐷(𝜃0, 𝜑0) =  4𝜋
𝑈(𝜃0,𝜑0)

𝑃𝑟𝑎𝑑
, which means the radiation 

intensity in a specific direction to the radiation intensity of an isotropic radiator fed with the same 

amount of power. 

Definition 2.4: The antenna gain is defined as the ratio of the radiation intensity in a specific 

direction to the radiation intensity that would be produced if the power delivered to the antenna 

were isotopically radiated.                                                                                                                                     ∎ 

The gain and directivity are related  𝐺(𝜃0, 𝜑0) =  𝜂𝐷(𝜃0, 𝜑0) where 𝜂 is the radiation efficiency. 

Definition 2.5: In a specific direction, the antenna gain (𝐺) multiplied by the net power delivered 

to an antenna is called effective isotropic radiated power (EIRP), which can be computed (in dB) 

as follows: 

𝐸𝐼𝑅𝑃 =  𝑃 − 𝐿 + 𝐺                                                                      

where L is the loss in the transmission line and P is the radiated power in a single direction.                 

2.3 Phased array antenna 

2.3.1 Fundamental implications 

Each radiator receives a signal replica in PA, depending on the antenna configuration and the 

element position. The received signals will be coherently combined yielding the "beam sum," as 

such, the whole assembly imitates a highly directive aperture. As stated before, spatial 

discretization is an inherent characteristic of an antenna array, as the name implies. In this regard, 

one may assume the PA is a spatial sampler of electromagnetic plane (EM) waves (more 

accurately, EM wave spatio-temporal sampler). On the other hand, an array of antennas provides 

spatial selectivity; therefore, PA precisely works like a spatial finite-impulse response (FIR) filter, 

finite because the physical aperture is limited to its active elements, which is reciprocal to a finite-
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duration impulse response in digital filter theorem. In phased array terminology, combining 

complex weight multiplication and combining is called beamforming. This procedure might be 

realized in a physical circuitry contributing to ABF or implemented entirely in the digital domain, 

called DBF. Each approach has advantages and disadvantages. For example, ABF is sensitive to 

component tolerances and ambient medium parameters such as temperature and pressure. On the 

other hand, DBF is a much more accurate approach since it is realized in a digital platform; thus, 

the beamforming process is not a function of fabrication error, electromagnetic characteristics of 

materials, temperature, and pressure. 

Moreover, it provides flexibility and superiority in design, including auto/self-calibration, and 

greater number of simulations beam, etc. Furthermore, implementing several blocks in a digital 

platform yields a more compact system than the analog counterpart. Besides, the digital array can 

easily be reconfigured by upgrading the software.  However, DBF needs complete RF chains and 

a data converter per radiator which is expensive and complicated. As mentioned before, the 

compromised design is HBF, in which the array is partially implemented in the analog domain as 

an integration of several sub-arrays.  

2.3.2 Analog Beamforming 

As stated, the PA is an integration of several independent radiating elements connected to 

complicated multiple RF modules and feeding networks. So, each module should be designed and 

fabricated in a compact, multi-functional, low cost, and high-repeatability form. In the active PA, 

radiating elements are usually directly connected to amplifier chips comprising a high-power 

amplifier (HPA) for transmit mode, a low noise amplifier (LNA) for the received one, and some 

switches for signal duplexing. The main requirements of such monolithic microwave integrated 
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circuits (MMICs) are the power handling and low noise feature3. Several approaches control the 

amplitude and phase of the received signal replica. The signal conditioning can be realized in RF 

signal path (RF beamforming), IF path (IF beamforming), or LO signal path (LO beamforming). 

The RF beamforming has the advantage of fewer supporting modules, including up/down 

converter mixers. This means that the beamforming is implemented after the upconversion in 

transmit mode and before the downconversion in receive mode. However, the signal must path 

through expensive, nonlinear, and dissipative components such as phase shifters and attenuators 

working at high frequencies. The MMICs needed for this task include several digital controls for 

the analog programmable phase shifter and attenuator4 blocks. The current dominant technology 

for such ICs is gallium arsenide (GaAs). Compared to Silicon, GaAs provide better RF 

performance, including less noise and loss [39].    

The IF beamforming is implemented after the down conversion for receive mode or before the 

upconversion for the transmitting one. Thus, the complex weight multiplication is realized at a 

lower frequency than RF, which relaxes the phase-amplitude control circuit complications. 

However, such an approach needs one up/down converter mixer per radiator, leading to an increase 

in cost and complexity. 

The LO beamforming has the advantage of the least inserted noise and distortion to the original 

signal among all ABF approaches since the phase shifting is indirectly implemented during the 

frequency conversion. However, it has the same complication as the IF one and needs a high mixer 

dynamic range to stand against strong interferences.  

                                                            
3 Specifically, the saturation power of HPA and noise figure of LNA. 
4 In some cases, variable amplifier might be used.  
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Overall, at the moment, RF beamforming is more common among ABF approaches mainly due 

to the smaller number of elements needed, which makes it a more viable candidate for at least large 

PA cheap solutions. However, as stated, RF beamforming has the difficulty of loss and high cost 

of constituting devices, phase shifters, and amplifiers/attenuators since they must work at high 

frequencies. 

The main challenges of phase shifting in the analog domain includes non-linearity, limited 

bandwidth, insertion loss, and circuit complexity. The phase shifters can be categorized into analog 

phase shifters (APSs) and digital ones (DPSs). The APS provides continuous phase shift; however, 

the insertion loss is typically high and is somehow inaccurate in terms of phase delay and amplitude 

weighing due to massive variation of insertion loss for the phase shift range. Thus, it is not reliable 

to design of accurate PA antenna.   

The DPS generates multi-stage constant phase shifts. Several stages might be cascaded or 

bypassed by the switches to obtain the desired phase. There are several possibilities for the DPS 

architecture, including the switched delay line, switched filter, etc. [7], [40]. Typically, the design 

is optimized to minimize the variation in attenuation for different phase shifts. This approach is 

more reliable than APS in generating a more accurate phase delay. However, the main challenges 

are the discrete phase shift and the significant number of switches and losses. By increasing the 

number of bits, the quantization error can be relaxed, but the device becomes more expensive, has 

a larger die5 size, and is more dissipative. Two examples of DPSs are shown in Figs. 2.2 and 2.3. 

As can be seen, the DPS is a very power-hungry device. Typically, the price hugely increases by 

increasing the number of bits and the frequency of operation. The discrete phase shift is detrimental 

                                                            
2 A small block of semiconductor material on which the main functional part of the device is implemented. 
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to antenna beamforming since it contributes to a periodic error in conventional array design. As 

the name implies, the DA switches in finite attenuation states. The discrete amplitude steps can be 

realized by exploiting semiconductor devices such as PIN diode and MESFET. The DAs supply 

the excitation magnitude control and are used along with the DPSs in the accurate amplitude-phase 

synthesis of PA antenna with uniform element spacing. Usually, the distortion due to discrete states 

of DAs is not severe as the one that DPSs yield but still can be detrimental for beamforming, 

specifically for SLL design and beam shaping. An exemplar broadband DA working up to 13 GHz 

is shown in Fig. 2.4. Indeed, it is more compact, so, preferable to implement both devices, DPS 

and DA, in one MMIC. In [39], the phase/amplitude control circuit is implemented in one MMIC. 

The block diagram and the phase/attenuation results are shown in Fig. 2.5. It comprises a 6-bit 

phase shifter and 6-bit attenuator, and six switches for transmitting, receiving, isolation, and 

calibration modes. To decrease the number of control lines, serial to the parallel interface is used.  

 

 

  

(a) (b) (c) 

Fig. 2. 2. A 5-bit digital phase shifter. (a) Photo of a digital phase shifter, HMC644ALC5, on the evaluation board, 

working at 15-18.5 GHz, (b) functional diagram, and (c) insertion loss for major phase steps [41]. 
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(a) (b) (c) 

Fig. 2. 3. A 4-bit digital phase shifter. (a) Photo of the digital phase shifter, MAPS-010146, on evaluation board, 

working at 8-12 GHz, (b) functional diagram, and (c) insertion loss for all phase steps. [42] 

 

 

 
(a) (b) 

Fig. 2. 4. Example of broadband 6-bit GaAs digital attenuator, HMC424LP3E-AN, with 0.5 dB least significant bit 

and the most significant bit of 31.5 dB. (a) functional diagram and (b) truth table [43]. 

 

 
(b) 

 
(a) (c) 

Fig. 2. 5. An exemplar beamforming IC. (a) Block diagram of the phase/amplitude control IC, the measured (b) 

phase shift, and (c) the attenuation in dB [39]. 
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Fig. 2. 6. Two sides of phased array antenna, comprising 64 radiating elements and 16 commercial quad-core MMICs 

providing independent 5-bit phase and amplitude controls for each radiating element. Back side with ICs is shown on 

the left, and radiating patch side on the right [44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

 

  
(d) (e) 

Fig. 2. 7. Exemplar phased array receiver. (a) A schematic of a phased array receiver based on 64 beamformer chips, 

(b) Block diagram of the dual-polarized quad (2x2-elements) receive beamformer chip with external LNAs. (c) PCB 

cross-section. (d), Back view of the Ku-band phased array receiver shows 64 Rx chips. (e) Front view showing dual-

polarized antennas [45]. 
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(a) (b) 

Fig. 2. 8. Measured radiation pattern of phased array, shown in Fig. 2.7, on (a) E-plane and (b) H-plane [45]. 

Fig. 2.6 illustrates a fabricated electronically scanned PA antenna that uses Anokiwave quad-

core RF beamforming MMIC, providing a 5-bit phase and amplitude-phase shift. Therefore, the 

RF beam forming MMICs generate 11.5° phase resolution and 1 dB for amplitude in the 31dB 

range. Also, the 1:16 Wilkinson power divider network is used for feeding the transceiver working 

at about 27.5 GHz.   

Fig. 2.7 shows a Ku-band dual polarized electronically scanned square lattice PA (16 by 16). 

This PA uses quad-core silicon receive chips with 8 channels, as shown in Fig. 2.7(b). The array 

is designed for ±70° scan range on the E- and H-plane. Each channel provides 0.5 dB gain step 

control over a range of 21 dB and 6-bit phase resolution. The two sides of the fabricated antenna 

are shown in Figs. 2.7 (d) and 2.7(e). All power dividers are Wilkinson.  

The receive QFN6 chips are shown in Fig. 2.7(d) inset. The metallic rectangular patches are heat 

sinks to remove heat from the board. The measured radiation patterns are shown in Fig. 2.8. 

 

 

 

                                                            
6 Quad flat no-lead (QFN) package makes it easy to assemble the chips on a PCB. 
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Fig. 2. 9. Schematic of simplified digital beamforming receiver. 

2.3.3 Digital Beamforming 

The other possibility of beamforming is after converting IF or baseband signals to digital ones, 

called digital beamforming (DBF). This approach provides a list of advantages over ABF, for 

example, superior interference cancellation, a more significant number of multiple simultaneous 

beams, and auto/self-calibration since the CBW is realized in the digital domain. Accordingly, the 

system can be more accurately implemented. Furthermore, implementing several blocks in a 

digital platform such as a digital signal processor (DSP), field-programmable gate array (FPGA), 

and application-specific integrated circuit (ASIC) usually yields a more compact system in 

comparison with the analog counterpart, which is somehow independent of ambient temperature, 

and pressure. Besides, the digital array can easily be reconfigured by upgrading the software. 

Nevertheless, DBF usually increases hardware complexity and cost by dedicating one RF chain 

per radiator. Moreover, it is much more computationally intensive than ABF. A block diagram of 

a simplified single-beam DBF receiver is shown in Fig. 2.9. 

Evidently, for M independent beams, M sets of CBW vectors (of size N) and final summations are 

required for N radiators. Therefore, the computational burdens can be reduced by increasing the 

sample rate, aperture size/element spacing, the number of independent beams, and the number of 
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bits to quantify the data and complex multipliers.  

2.3.4 Sub-array  

There are verities of sub-array systems. One type of sub-array is just a matter of a feeding 

network. For example, in Fig. 2.7(a), a 2×2 sub-array is fed by a quad-core chip. This sub-array 

scheme which is just a matter of summation sense is out of interest here.  

All sub-arrays are assumed with the same complex weights in one array architecture. 

Traditionally, it is implemented for HBF, but strictly speaking, it can be utilized purely for ABF 

and DBF. As stated, in HBF, the first-layer sub-array outputs are introduced to a digital platform 

or further tiled to a third layer, and so on. On the other hand, in ABF, all layers are implemented 

in physical circuitry, and overall array output will be introduced to a data converter. The underlying 

sub-array architecture partitions the full array aperture into some identical sub-arrays with the same 

complex weighting. In this configuration, the array is implemented like a multi-layer FIR filter. 

Besides, it might be realized in the overlapped sub-array configuration in which, by exploiting the 

spatial FIR filtering, sidelobes due to grating lobes or any other distortions can be considerably 

mitigated over a wide (temporal-) frequency band. Sub-array overlapping helps to increase the size 

of the fundamental period of the array factor at the sub-array layer, with the cost of considerable 

complexity of the feeding network, which facilitates the grating lobe cancelation to some extent. 

The beams can be steered at all layers comprising the element layer and/or sub-array layer(s). 

Steering at all layers is usually used in HBF for generating multiple simultaneous beams. In such 

a configuration, phase shifters might be used at the element layer, phase-steered sub-array, while 

at the sub-array layer, time-steered, for a wideband array, or phase-steered, as a narrowband 

solution, might be implemented digitally. An example is shown in Fig. 2.10 for a hexagonal sub-

array overlapping seven elements. The beam is commanded at [𝜃, 𝜑] = [20°, −90°]. As seen in 
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Fig. 2.10(a), each element on the extreme of the sub-array is overlapped by three sub-arrays. Others 

do not overlap the elements at the center of sub-arrays. The hollow circles subsequently signify 

the sub-array output introduced to the digital platform. The steered sub-array factor (SAF) and 

ultimate layer array factor (UL-AF) are shown in Fig 2.10(b) and 2.10(c), respectively. Red lines 

show the periodicity of UL-AF. As seen in the overall array factor (O-AF), shown in Fig. 2.10(d), 

the grating lobes of UL-AF are suppressed by SAF. Thus, the ultimate layer becomes much sparser 

than the first-layer lattice, which relaxes the computational burdens. In addition, this approach 

generates low side lobe levels, as stated before.  

Since the phase shifters are complex, expensive, and power-hungry devices, the sub-array might 

be designed in a static form which is so-called contiguous [46], without any programmable or 

variable phase-shifter, as an affordable solution for limited scan angle PA.  

As stated before, the last layer might be implemented in the digital or analog domain, though the 

analog one might be more compatible with the problem since it typically offers a cheaper solution. 

However, the method has the disadvantage of limited scan angular range due to the un-steered sub-

array factor. One conventional approach is to use a flat-top beam, which can acceptably solve the 

scan loss issue [47]. The scan range is a function of sub-array architecture, overlap efficiency, and 

sub-array coefficients (beamforming). 
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(a) (b) 

 

  
(c) (d) 

 

Fig. 2. 10 Example of sub-array overlapping. (a) schematic of element and overlapping sub-arrays, (b) sub-array 

factor, (c) ultimate-layer array factor, (d) overall array factor. 
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2.4. Space-fed Antenna 

2.4.1 Reflector Antenna 

The reflector antenna comprises a reflecting surface(s) and a feed system. The reflector may 

have different shapes, such as cylindrical and parabolic. The most common shape is parabolic. A 

center-fed paraboloid is a prime-focused reflector. In Fig. 2.11(a), some cross-section of the 

parabolic reflector is shown with different focal-diameter (F/D) ratios. For F/D = 0.25, the two 

reflector edges and focus are on the same line, meaning that the reflector encompasses its focus. 

For F/D = ∞, the reflector surface becomes flat. In Fig. 2.11(b), the relation between the main 

physical parameter of the reflector is as follows 

𝐷2 = 16𝐹𝐻 

Some options for the reflector feed include a horn, helix, and array antenna. Typically, a horn or 

system of horns, as the feed chain, is used. The physical dimension of the horn is of great 

importance for the performance of the system. The main problem of a prim-focus reflector is the 

feed blockage since, for a typical horn, the horn can block a majority of radiation intensity after 

reflection from the reflecting surface. One method to treat this issue is to use an offset-fed reflector, 

as shown in Fig. 2.11(c). Parameter C, called clearance, shows how much the feed is away from 

the reflecting surface. Sometimes the feed might be inside the aperture plane but farther from the 

maximum direction of radiation. In many applications, a system of feeds is required, such as 

multiple spot beams for satellite systems and contour beams. Such applications require offset fed 

reflectors since the feed chain makes a massive blockage.  This approach increases the cross-

polarization due to field projection on the aperture.  

The power from the feed that is not intercepted by the reflecting surface is called spillover, see 

Fig. 2.11(c). The spillover is a prominent issue in multiple-beam reflectors since feeds are usually 

not optimal due to the small spacing available. 
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(a) (b) (c) 

Fig. 2. 11 Reflector antenna schematic. (a) Cross section of the parabolic reflector with different F/D values, (b) 

Typical prime-focused reflector, and (c) Schema of an offset-fed reflector. 

The spillover decreases as the feed becomes more directive or edge tapering increases. However, 

that increases the field tapering on the aperture, decreasing the reflector beam efficiency. 

Depending on the application, edge tapering might be chosen at about 10-15 dB.  Usually, the 

offset-fed reflector has less noise temperature than the prim-focus one. This is because in receiving 

from satellite, the feed stands upward; hence, it receives a smaller portion of noise from the ground 

through the spill over radiation.   

In some applications, a multi-reflector might be used in which there is typically one primary 

reflector and sub-reflector(s). The most famous architecture is Cassegrain and Gregorian [48], 

which are not treated here for brevity.  

2.4.2. Reflectarray 

One form of discretized reflector antenna is reflectarray (RA). The IEEE definition of RA is as 

follows [49]: 

An antenna consisting of a feed and an array of reflecting elements arranged on a surface and 

adjusted so that the reflected waves from the individual elements combine to produce a prescribed 

secondary radiation pattern. Syn: reflective array antenna, reactive reflector antenna. 
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(a) (b) 

 

Fig. 2. 12. reflectarray configuration. (a) Schema of reflectarray with three feed positions and (b) Visualization of 

reflectarray feed horn and struts system. 

 

Fig. 2. 13. Ka-band reflectarray made of perforated dielectric substrate [71]. 

 

Typically, RA is a planar structure, but it can be implemented on a curved surface such as 

parabolic. Compared to the traditional reflector, the RA offers some further advantages, 

comprising better control over the aperture phase, cheap PCB fabrication, and lightweight, making 

them highly deployable. In addition, RA can manipulate two waves with orthogonal polarizations 

simultaneously. This can be realized by using pixels with different frequency responses for the 

two polarizations, see Fig. 2.12(a). A System of RA and feed is shown in Fig. 2.12(b). However, 

despite all advantages of RA over traditional reflectors, it usually has inferior radiation 

characteristics such as narrower bandwidth, higher minor lobe level, and lower maximum gain 

[50]-[77].  
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(a) (b) 

Fig. 2. 14 An reflectarray based on interdigitated surface. (a) The whole aperture, (b) a closed view of the structure. 

 
 

(a) (b) 

 
 

(c) (d) 

Fig. 2. 15. Schematic view of (a) capacitive pixels, (b) inductive pixels with the meandered line, (c) inductive pixels 

with a straight line, and (d) exact solution results (FDTD). 

 

TABLE 2.1. THE PHYSICAL PIXELS IN FIG. 2.15D. 

 Capacitors Inductor 

 C1 C2 C3 C4 C5 C6  Lm Ls 

Physical_params 

(mm) 

S1 0.16 0.32 0.48 0.48 0.64 1.12 dm 1 0.96 

S2 0.16 0.32 0.32 0.48 0.64 1.12 
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There are at least three types of pixels for a discretized space-fed antenna. One is the resonant 

element, like an array of resonant dipoles [55], microstrip patch [60], and antenna/phase-

shifter/antenna configuration [67]. The second type is realized by manipulating the effective 

permittivity of dielectric material, as an example, by making use of perforation, as shown in Fig. 

2.13. Such an approach requires a relatively thick and/or high permittivity dielectric.  

The third type is the sub-wavelength pixel, which usually shows up in a smaller size than the 

types mentioned above. The sub-wavelength element can be designed based on the circuit concept, 

which is much easier to deal with than the field analysis [74].  Furthermore, it can resolve the 

bandwidth shortcoming of the resonant type pixel, although such an imperfection can be addressed 

by using multi-resonant structures, notably by exploiting the optimization techniques [55] [56]. 

Fig. 2.14 shows an RA based on the interdigitated surface. This configuration is a variant of a sub-

wavelength unit cell. The unit cells are shown in Fig. 2.15. The frequency response of pixel for 

normal incidence is shown in Fig. 2.15(d). The physical parameters of capacitive and inductive 

cells are tabulated in Table 2.1. 

High pixel resolution has some potential advantages for large aperture, tilted beams, and/or 

small focal-to-diameter ratio (F/D). The one with a smaller pixel size is less prone to quantization 

distortion since the quantization noise is, in general, a wideband signal; thus, more portion of noise 

power appears out of the (visible) band. Of far more significance is the violation of the local 

periodicity assumption (LPA) pertaining to the sharp variation of phase delay arrangement (PDA), 

in particular, close to the extreme of the aperture, which can limit the antenna bandwidth. 

Furthermore, miniaturizing the pixel size is, in general, beneficial for sub-wavelength pixel types 

since, typically, some spurious bands appear at some frequencies and/or happen at oblique 

incidences. By miniaturizing the pixel size, those spurious bands happen due to physical resonance 
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can be shifted to higher frequencies which would be out of the antenna bandwidth. The preceding 

statements, nevertheless, can be controversial since using tiny pixels puts lots of pressure on the 

system’s performance. Specifically, miniaturizing the pixel size usually decreases the number of 

available phase states. Indeed, quantization distortion increases, in contrast to what was mentioned 

about the benefits of small pixels for circumventing that nonlinear distortion.  

2.4.3 RA for Space Application 

The Satellite has several applications in communication, so there are a variety of systems and 

custom designs. In this regard, the area of coverage and required channel capacity might be 

considered critical points, leading to different satellite classifications.  Coverage may include wide 

continental contour coverage and/or spot beam.  If the satellite footprint is subdivided into several 

radio cells, then an antenna capable of radiating multiple-beam might be favorable. During the 

past decades, there has been a continuous endeavor in satellite systems development using 

frequency-polarization reuse schemes in which the same bandwidth and/or polarization are 

allocated to some spatially isolated spot beams. The design of multibeam antennas for 

telecommunication satellites in the Ka-band must deal with challenging requirements, such as the 

generation of a large number of high-gain spot beams, the close separation between the beams, 

and the alternation of frequencies and/or polarizations for adjacent beams. A schema of 4-cell 

frequency-polarization reuse is shown in Fig. 2.16.  

The main advantage of using a spot beam is increasing the satellite throughput as a frequency 

band and/or polarization can be reused in a regular pattern of radio cells in the coverage area, 

leading to more system capacity. However, there are some challenges. For example, co-channel 

interference (CCI) arises, and the payload and antenna system becomes complicated.   
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(a) (b) 

Fig. 2. 16. Layout of the radio cells of 11 tiers with a 4-cell reuse scheme, the orbital position of the geostationary 

orbit satellite is considered at 98°W, (a) the layout of the radio cells from the antenna view angle, and (b) the 

projection of the radio cells on the earth.   

Typically, ideal radio cells are defined in a hexagon shape to fill up the satellite footprint without 

overlapping radio cells, as every cell fits tight with the adjacent cells, making the analysis easier. In 

a bit more practical approach, the shape of the radio cells is inspired by the projection of a typical 

directive radiator (pencil beam) on the earth.  Usually, 3- or 4-dB perfect circular spots with the 

same radii are considered the radio cells (see Figs. 1b), which are visualized from the antenna view 

angle (see Figs. 2.16). This means that the antenna is considered to have equal beamwidth for all 

cells. For a practical radiator, neither all spots have an exactly circular shape, nor do antenna gain 

and beamwidth remain constant as the beam is sweeping toward the edge of the coverage (EOC). 

Furthermore, the projection of the circular radio cells on the earth's surface is only circular for the 

cell generally illuminated by the satellite antenna, see Fig. 2.16(b).  

The set of adjacent radio cells containing the total channels (𝐶𝑡), the whole frequency and/or 

polarization assigned are called a cluster which will be repeated in the whole area of coverage. The 

size of the cell cluster, which is the number of beams inside a cluster, is called the reuse factor (𝑘). 

Typically, it depends on the maximum amount of tolerable interference.  Using a higher reuse factor 
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increases the distance between the co-channel spots, thus, improving the CCI. However, it 

simultaneously decreases the bandwidth per beam, leading to fewer users per beam. In other words, 

it decreases the number of channels per cell or capacity per spot (𝐶𝑐 =
𝐶𝑡
𝑘
⁄ ). If clusters are 

replicated N times in a geographic area, then the whole system capacity reads: 

𝑆𝐶 = 𝑁 × 𝐶𝑡 =  𝑁 × 𝑘 × 𝐶𝑐                                                                

Another major factor is the CCI, which is one of the most important parameters in every cellular 

network as there is a tendency to increase the whole system capacity by using higher coverage 

resolution, which decreases the physical distance between the co-channel spots.  

As discussed in the previous section, the capability of RA to discriminate in frequency and/or 

polarization can be of particular interest for designing multibeam antennas in the Ka-band. In [78], 

the classic bifocal concept has been applied to the design of multibeam dual-reflectarray antennas 

in order to obtain better performance for the extreme beams while providing, at the same time, 

closer beams with non-overlapping feeds than those provided by a single-focus antenna. For the 

traditional design of the Multi-focal RA (MF-RA), the PDA might be written as 

𝜑𝒊 = (∑ 𝛼𝑛

𝑀−1

𝑛=0

)

−1

∑ 𝛼𝑛 (𝑘‖�́�𝑑𝑛,𝒊‖2
+ 𝜉𝑑𝑛,𝒊)

𝑀−1

𝑛=0

                              (2.4) 

where 𝛼𝑛 is an arbitrary weighting, the subscript 𝑑𝑛 signifies the nth design element, e.g., assume 

𝒇𝑑𝑛 is the vector of the nth feed position associated with the nth beam direction, 𝒑𝑑𝑛In the single-

focus RA (SF-RA) sense, then �́�𝑑𝑛,𝒊 =  𝛼𝑳𝒊 − 𝒇𝑑𝑛, where L is the lattice matrix, 𝛼 is the weighting 

factor, and 𝒊 is an integer column vector. Besides,  𝜉𝑑𝑛,𝒊 = −𝑘(𝒓𝒊⊙𝒑𝑑𝑛). Accordingly, one may 

write 

Ψ𝒊 = 〈𝜉𝑑𝑛,𝒊〉𝑛 + 𝑘 [〈‖�́�𝑑𝑛,𝒊‖2
〉𝑛 − ‖�́�𝑠,𝒊‖2]                                    

(2.5) 
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                         (a)                                            (b)   (c)                                            

 

 

 

 

 
                         (d)                                            (e)   (f)                                            

Fig. 2. 17. Optimized aperture phases with associated spots. (a) Optimized aperture phases for x-polarization at 18.9 

GHz, (b) 4-dB spot beams for "blue cells," (c) 20-dB spot beams for blue cells, (d) optimized aperture phases for y-

polarization at 18.9 GHz, (e) 4-dB spot beams for red cells, and (f) 20-dB spot beams for red cells. 

where �́�𝑠,𝒊 = 𝒓𝒊 − 𝒇𝑠 and 𝒇𝑠 is an arbitrary feed position.  

However, it can be shown that using the intuitive (2.4) does not contribute to the optimal 

solution. Besides, if one uses (2.4) to design the Multi-focal PDA for specific focuses and 

associated beam directions, the feed positions would not be precisely under control and should be 

specified for each vector 𝜶 chosen. This can be problematic for design, e.g., a feed position might 

not be practical due to the blockage it may cause.  So, typically, an optimization scheme is required 

to be employed. In Figs 2.17, optimized aperture MF-RAs are designed for MEO satellites. The 

results of PDA for two channels and the associated spot beams are shown. The optimization 

algorithm is discussed in Chapter 8. 

2.4.4 Sub-Wavelength Unit Cell 

As stated, a sub-wavelength cell for RA is one type of unit cell. A prominent advantage of this 

type is that its frequency response can be modeled using lumped element, which facilitates the 

analysis. Here, we have modeled the pixel by using surface impedance which relates the surface 
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current to the tangential electric field; therefore, for the impedance boundary condition (IBC), we 

can write: 

ˆ ˆ
s s n n = −  Z J E                                                      (2.6) 

where 
sJ is the vector of surface current, 

sZ is the tensor of the surface impedance, and E is the 

vector of the electric field and n̂ is normal to the surface. We have the following equations on the 

boundary with respect to Fig. 2.18: 

2 10 0
ˆ ( | | ) 0

z z
z − += =

−  − =E E                                                 (2.7.a) 

2 10 0
ˆ ( | | ) sz z
z − += =

−  − =H H J                                               (2.7.b) 

where it is assumed that the impinging and reflected EM waves are in the first medium (E1, H1) 

on the positive side of the z-axis while the transmitted wave is supposed to be in the second medium 

(inside the substrate) on the negative side of the z-axis (E2, H2). Alternating (2.7.b) in (2.6) 

contributes to (2.8).  

2 10 0 0 /0
ˆ ˆ ˆ( | | ) |s z z z
z z z− + + −= = =
   − = − Z H H E                               (2.8) 

Then, we need to translate the coordinate system of the incoming wave from the feed coordinate 

system to the RA's coordinate system. This can be done by using a proper coordinate system 

rotation. Let us assume the incoming electric field in its coordinate system E (see Fig. 2.18a); 

hence, the impinging field E in the coordinate system of the reflective surface can be written as 

(2.9), which is realized by proper rotation of the coordinate system.  

cos .cos sin cos .sin

sin .cos cos sin .sin

sin 0 cos

x i i i i i x

y i i i i y

z i z

E E

E E

E E

    

    

 

− −     
     = −
     

     − −     

                                   (2.9) 
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Evidently, 
i  and 𝜑𝑖 are supposed to be known for each pixel, as the vectors F  (feed position) and 

[ , ]j n m=R R   (the jth pixel position) are supposed to be known. For simplicity, we may consider 

a y-polarized wave. Also, we may assume that the pixel does not contribute to the aperture cross-

polar content. Therefore, the surface impedance reflected and transmitted coefficients can be 

written as: 

0

0

Zxx

s Z yy

 
 =
  

Ζ
                                                            (2.10.a) 

0

0

xx

s
yy

 
 =

  

Γ
                                                            (2.10.b) 

0

0

Txx

s Tyy

 
 =
  

T
                                                            (2.10.c) 

The incident, reflected, and transmitted electric and magnetic fields on the impedance boundary 

(for y-polarized feed) are calculated as written in (2.11) in which 
i

  , 
r

 , and 
t

   are altitude angles 

of incoming and outgoing rays with respect to the positive direction of the z-axis and might be 

correspondingly written as 
i i
   = + , 

t t
   = + , 

r r
  = −  , E0 is the magnitude of the electric field 

  

(a) (b) 

Fig. 2. 18.  Schematic view of the reflective surface. (a) Schematic view of arbitrary pixel and a feed at the focal point 

represented by the feed phase center (FPC) and (b) 2D schematic view of the impedance boundary condition for TE 

incidence. 
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at the surface impedance boundary, k1 and k2 are the propagation constants in Medium 1 and 2, 

respectively.  

ˆ ˆ| ( sin cos ) exp( )
00

i E x y j
i i iz

  =  − + 
+=

E                                               (2.11.a) 

ˆ ˆ| ( sin cos ) exp( )
00

r E x y j
xx r yy r rz

  =  −  +  
+=

E                                          (2.11.b) 

ˆ ˆ| ( sin cos ) exp( )
00

t E T x T y j
xx t yy t tz

  =  −  +  
+=

E                                        (2.11.c) 

( cos sin sin sin )
1

k x y
i i i i i

     = −    +                                                (2.11.d) 

( cos sin sin sin )
1

k x y
r r r r r

     = −    +                                               (2.11.e) 

( cos sin sin sin )
2

k x y
t t t t t

     = −    +                                                 (2.11.f) 

Ignoring diffraction and scattering effects of the metallic layer and utilizing (2.7.a), (2.11), and the 

phase-matching condition [43], which implies that ψ ψ ψ
i r t
= = . The boundary condition (2.8) 

contributes to (2.12):  

cos cos
( 1) (1 )

2 1

Z Zuu t uu iT
uu uu

 

 
+ = −                                        (2.12) 

where u might be alternated by x or y. Besides, the plane wave assumption (
u


= H E ) has been 

used in calculating the magnetic fields. Let us assume 
cos iZ

i
i




=   and 

cos tZ
t

t




=  , then (2.12) 

can be simplified as follows: 

Z Z Z Z Z Zt uu i uu i t
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Fig. 2. 19. Simple equivalent circuit model of the RA pixel. 

 

It can be shown that (2.13) is also correct for the x-polarized wave (TE incidence) by considering 

the cosZ
i i i

 =   and cosZ
t t t

 = . To find the total reflection from the pixel, we need to consider 

the simple equivalent circuit model presented in Fig. 2.19. It is possible to translate the oblique 

incidence of the plane wave to a transmission line model by considering the problem as a transverse 

equivalent network (TEN) [38]; therefore, the 
01

Z   and 
1

Z
r

  in Fig. 2.19 would be respectively 

equal to Z
i

 and Z
t

 for a wave propagating from the Medium 1 to 2. Moreover, the transverse 

propagation constants should be used cosk
i i i

 =   and cosk
t t t

 =   for both TE and TM 

incidences. Finally, by making use of the theory of small reflections [82], the total reflection 

coefficient can be written as: 

2 cos12 21 2 2 2 cos
1 111

2 cos22 2 21

j k t te j k tuu uu s it euu uu j k t
teuu s






−    
   −     

= +   −   
 −   

                           (2.14) 

where 
s

 is the reflection coefficient from the backscatterers. Hence, it might be considered as -1 

for a solid PEC, 11
uu  and 21T uu

 ( 22
uu  and 12T uu

) can be calculated from (2.13) using Z
i

and Z
t

. As 

an example, for the TE incidence of a wave traveling from Medium 2 to Medium 1, the 12T uu
 and 

𝛤𝑢𝑢
22 can be calculated by considering cos

2Zi t
 =  and cos

1Zt i
 = . Note that (2.14) can be 

modified for several layers. The surface impedance can be determined by analytical calculation or 
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simply utilizing the curve fitting of the exact solution only for the normal incidence. If the cell is 

small enough, it acts like a lumped element; hence, the value of electrical parameters of the 

impedance boundary remains almost constant against the angle of incidence in an acceptable 

frequency band. There is necessary to note the prime assumptions made for the above calculations. 

Firstly, the pixel is considered infinitely periodic, which is not an accurate assumption for the 

modulated surface impedances. For a small enough variation of the surface impedance, for example, 

by gently changing the physical properties of the pixel, such as spacing or rotating the pixel, the 

above calculation remains almost accurate. However, there would be higher modes near the borders 

of the pixels due to discontinuities incurred for sharp variations. Reactive lumped elements can 

model the aforesaid evanescent modes as they are localized stored energies; thus, the effective value 

of the surface impedance deviates from the one assumed in the infinite periodic assumption 

introducing further error. Secondly, the pixels are assumed to be lossless and do not contribute to 

cross-polarization. The amount of this kind of error depends on the type of pixel and the material 

used. Finally, it has been assumed that the pixel is small enough. For the larger pixel sizes, the 

assumption of constant current might be undermined, and the higher orders of space harmonics start 

to be unleashed, contributing to the deviation of surface impedance values. 

Fig. 2.20 compares the exact solution results (FDTD) and computed results of two arbitrary 

pixels in Fig. 2.15 for different frequencies and angles of incidence. The surface impedance matrix 

is extracted by curve fitting for the normal incidence. As can be seen, there is a very good agreement 

between the computed and exact solutions. In Fig. 2.21, the variation of transfer characteristics 

against the frequency and angle of incidence are analytically calculated and presented for TE 

incidence.  
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(a) (b) (c) (d) 

Fig. 2. 20. Exact solutions (solid line) and proposed analytical method (dashed line) of (a) C2 (40 fF) in Fig. 2.15 for 

TE incidence, (b) C2 (40 fF) in Fig. 2.15 for TM incidence, (c) C5 (9.2 fF) in Fig. 2.15 for TE incidence, and (d) C5 

(9.2fF) in Fig. 2.15 for TM incidence. 

  

(a) (b) 

  

(c) (d) 

Fig. 2. 21. Variation of the transfer characteristics of the capacitive/inductive interdigitated pixels for TE incidences 

against frequency and angle of incidence, (a) at 17 GHz, (b) at 20 GHz, (c) for normal incidence (θ = 0°), and (d) for θ 

= 35°. 

The solid lines show the exact solutions perfectly compatible with the analytical results. It can 

be seen that for the assumed distance of the port from the pixel (3 mm), the transfer characteristics 

have more significant jumps of phase states near the π for lower frequencies, whereas phase steps 

remain almost constant near -π (compare Figs. 2.21 and 2.21). This also could be realized by noting 

Fig. 2.20. For higher frequency bands, the transfer characteristics seem less sensitive than the lower 
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frequency bands, but still, there are some deviations from the one for the center frequency. Also, it 

can be seen that the transfer characteristics are a nonlinear function of the incidence angle for 

parallel polarization (TE incidence). In particular, note that for a higher angle of incidence, the pixel 

has poorer transfer characteristics, especially at lower frequency bands. This may limit the antenna 

bandwidth.  
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Chapter 3 

Quantization 

3.1 Quantization in analog beamforming 

As an example, for RA, let us assume one aperture-plane component of the reflected field as 

𝐸𝐶[𝒊] =  𝑗𝐴𝒊𝑒
𝑗Φ𝒊 where 𝒊 ∈ ℤ2. For high-precision PDA, let Φ𝒊 = Ψ𝒊  and for the quantized one, 

let Φ𝒊 = Υ𝒊; thereby, 

Ψ𝒊 = 𝜑𝒊 − 𝑘‖�́�𝒊‖2, Υ𝒊 = 𝑄(𝜑𝒊) − 𝑘‖�́�𝒊‖2 

where 𝜑𝒊 = 𝑘‖�́�𝒊‖2 + 𝜉𝒊, �́�𝒊 = 𝒓𝒊 − 𝒇𝒅,  𝜉𝒊 = −𝑘(𝒓𝑖⊙𝒑𝒅), 𝒓𝒊 is the ith pixel position vector, 𝒇𝒅 

and 𝒑𝒅 are the vectors of feed position and beam direction, respectively. Accordingly, one may 

write the quantization error of the excitation signal as follows:  

𝑒𝐸,𝑐[𝒊] =  𝐴𝒊[exp(𝑗Υ𝒊) − exp (𝑗Ψ𝒊)]                                     (3.1) 

by some trivial manipulations, it takes the following form: 

𝑒𝐸,𝐶[𝒊] = −2𝐴𝒊 sin
 𝑒𝜑,𝒊

2
𝑒𝑗(

 𝑒𝜑,𝒊

2
+Ψ𝒊)                                     (3.2) 

where 𝑒𝜑,𝒊 = Υ𝒊 −Ψ𝒊 is the PDA error. One may simplify the equation for small quantization width 

by using the second-order approximation of the Taylor series, which reads (3.3). 

𝑒𝐸,𝐶[𝒊] ≈ −𝐴𝒊 𝑒𝜑,𝒊𝑒
𝑗(
 𝑒𝜑,𝒊
2 +Ψ𝒊) ≈ −𝐴𝒊 𝑒𝜑,𝒊𝑒

𝑗Ψ𝒊                             (3.3). 

For the argument of the complex exponential, half of the PDA error is not in the form of a 

progressive phase shift. Thus, the excitation error corresponds to the weighted PDA error steered 

to the beam point direction. In fact, (3.2) and (3.3) also work for the PA antenna by considering 

the phasor 𝑗𝐴𝒊𝑒
𝑗Φ𝒊, as current excitation. 
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(a) (b) 

  
(c) (d) 

Fig. 3. 1 Computed results of exemplar phased array. (a) Maximum gain loss, (b) the first sidelobe level for linear 

"supersampled" array of length 25.5λ0. Computed array factor on one fundamental period of the beamspace for 

targeted beam point at (c) 4.4°, and (d) 38.6°. 

Consider an equally spaced linear array with a simple cosine tapering as an illustrative example. 

The array length is assumed to be 25.5λ0. For now, we only consider phase quantization. In the 

current study, an ideal 3-bit digital phase shifter is assumed. Fig. 3.1 shows the result of beam 

steering up to 60° for a “supersampled” array, a quasi-continuous excitation. This is considered to 

discriminate between the effects of quantization and sampling errors. As seen in Fig. 3.1(a), the 

maximum gain loss hovers around a convergence level with an exponential envelope shape by 

increasing the steering angle. Also, it can be seen in Fig. 3.1(b) that the QL level drops after about 

8.2°.  

In fact, by increasing the steering angle, the period of quantization error decreases; thereby, the 

QLs shift to higher spatial frequencies, which are not inside the so-called "visible window" of the 

supersampled array. This has been shown in Figs. 3.1(c) and 3.1(d) for two exemplars commanded 

beam directions. Fig. 3.1(c) shows the pattern for a targeted point at 4.4° in one beamspace 
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fundamental period. As seen, the unperturbed radiation pattern is corrupted by at least two QLs 

inside the visible window, but there is no in-band QL for the one with the commanded beam at 

38.6°, illustrated in Fig. 3.1(d). Finally, the harmonics become further separated by increasing the 

beam steering angle, making wider band excitation errors. This is simply because of the periodicity 

decrease of error signal by increasing the steering angle. In this regard, one may note the alias 

artifacts in Fig. 3.1(d).  

Now, let us consider an array of the half-wavelength pitch. In this case, the array behavior 

changes to some extent. The signals illustrated in Figs. 3.2(a) and 3.2(b) are somehow the periodic 

versions of the ones illustrated in Figs. 3.1(a) and 3.1(b), respectively. However, each period shape 

is expanding as it approaches the 60° targeted point due to more severe aliasing. As stated before, 

by increasing the targeted beam point of the supersampled array, the QL harmonics become more 

separated; thereby, the error signal bandwidth gets wider, and the excitation error is more prone to 

spatial frequency aliasing. 

  
(a) (b) 

  
(c) (d) 

Fig. 3. 2. Computed results for exemplar linear array of length 25.5λ0 and λ0/2 element spacing. (a) maximum gain 

loss, (b) the first sidelobe level. Computed array factor for targeted beam point at (c) 0.5°, and (d) 4.4°. 
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Fig. 3. 3. Computed error pattern and point deviation for a linear array of length 25.5λ0 and λ0/2 element spacing. (a) 

Error pattern for beam targeted at 0.1° and 0.5° and (b) Point deviation of linear array described in Fig. 2.2. 

  
(a) (b) 

Fig. 3. 4. Decibel array factors for 4-bit (a) [𝜃, 𝜑] = [20°, 0°] and (b) [𝜃, 𝜑] = [52°, 223°]. 

In Figs. 3.2(c) and 3.2(d), the phased array computed radiation patterns with a half-wavelength 

pitch are compared with their supersampled counterparts for the commanded beam points at 0.5° 

and 4.4°. It is well-known that the quantization noise is a wideband signal, but its manifestation is 

of harmonic form for a periodic signal. Therefore, several QLs appeared in the conventional array 

radiation pattern are, in fact, alias QLs. 

The reason for point deviation is straightforward and well-understood. For example, for the 

linear array in example Fig. 3.2, the beam targeted at 0.1° collimates to 0.5° due to the phase 

ambiguity caused by the assumed 3-bit uniform quantizer. For 0.1°, the PDA signal has two 

quantized states. In other words, the quantizer simply rounds up all positive phases to a quantized 

  
(a) (b) 
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state, whereas all negative phases are rounded to the inferior quantized phase state; thereby, due 

to the low resolution of the quantizer, the system is unable to discriminate between the two 

commanded beam points which are 0.1° and 0.5°. This phenomenon shows itself in the beamspace 

domain, as the one illustrated in Fig 3. 3(a). In the case of a beam commanded at 0.5°, a broader 

null exists between two lobes of less magnitude than those commanded at 0.1°. Like SLL and gain 

loss, the point deviation shows up in a quasi-periodic fashion, with a seemingly exponential 

envelope, against the targeted beam point for an array with a half-wavelength pitch, as shown in 

Fig. 3. 3(b). 

Finally, just as an example of a planar array, two steered array factors are shown in Fig. 3. 4. 

The array is of circular aperture with square lattice and half-wavelength pitch with a diameter of 

13.5λ. Both phase and amplitude are quantized to 4 bits. As seen, it contributes to the appearance 

of QLs.   

   
(a) (b) (c) 

Fig. 3. 5. Complex beamforming weight with unity amplitude. The IQ plane is quantized to (a) 3, (b) 4, and (c) 6 bits. 

 

   
(a) (b) (c) 

Fig. 3. 6. Complex beamforming weight with amplitude 0.6. The IQ plane is quantized to (a) 3, (b) 4, and (c) 6 bits. 



Chapter 3. Quantization                                                

47 

 

3.2. Quantization in digital beamforming 

In DBF, each antenna receives an RF signal replica which might be simply modeled as 

𝑓(𝑡, 𝒌𝒊) = 𝑥(𝑡 − 𝜏𝒊) cos[𝑤𝑟𝑓(𝑡 − 𝜏𝒊)] ≈ 𝑥(𝑡)cos (𝑤𝑟𝑓𝑡 − 𝜑𝒊) 

where 𝒌𝒊 is element position vector and 𝜑𝒊 = 𝑤𝑟𝑓𝜏𝒊. Note that 𝑓 is a function of  𝒌𝒊 through the 

𝜏𝒊. The received RF signal is amplified, down-converted to IF or baseband (BB), and is 

subsequently digitized. Depending on the scheme used, digital down-conversion and filtering 

procedures would be used. Overall, the two I/Q components might be written  

ℐ𝒊[𝑚] = 𝑥[𝑚] cos𝜑𝒊,  𝒬𝒊[𝑚] = 𝑥[𝑚] sin𝜑𝒊 

where 𝒊 ∈ 𝐴 ⊂ ℤ2 is the index number of the active elements in the spatial domain, and 𝑚 ∈ ℤ 

counts the snapshots of the incident signal at a sampling rate acceptably above the Nyquist rate. 

The digital I/Q components might be multiplied by complex weights and subsequently combined. 

Accordingly, the ultimate sequence might be written as 

𝑠[𝑚] =  
1

|𝐴|
∑ℐ𝒊[𝑚]𝐼𝒊 + 𝒬𝒊[𝑚]𝑄𝒊
𝒊

+
𝑗

|𝐴|
∑𝒬𝒊[𝑚]𝐼𝒊 − ℐ𝒊[𝑚]𝑄𝒊
𝒊

 

with 𝐼𝒊 = 𝑎𝒊cos𝜑𝒊, 𝑄𝒊 = 𝑎𝒊sin𝜑𝒊, 𝑤𝒊
∗ = 𝐼𝒊 − 𝑗𝑄𝒊 = 𝑎𝒊𝑒

−𝑗𝜑𝒊 constituting the CBW matrix 𝑾∗  =

𝑰 − 𝑗𝑸 and |𝐴| is the cardinality of set 𝐴, which is the set of active elements.  

There might be two ways, at least, to quantify the complex exponent. One may consider 𝑁𝜑 and 

𝑁𝑎 bits for each I/Q component of complex exponent and amplitude components, 𝑎𝒊, or just 𝑁𝐼/𝑄 

bits to quantify each 𝐼𝒊 and 𝑄𝒊. Therefore, the problem under study concerns the limited number of 

bits for complex weights in the digital domain.  

Considering 𝑤𝒊
∗ = 𝑎𝒊𝑒

−𝑗𝜑𝒊, as stated, one may use 𝑁𝑎 bits to quantify 𝑎𝒊 and 𝑁𝜑 bits for each 

in-phase and quadrature component of 𝑒−𝑗𝜑𝒊. For now, let us assume a uniform amplitude of unity, 

𝑎𝒊 = 1. Fig. 3.5 shows the I/Q plane for 3-, 4- and 6-bit systems. For the 3-bit system, there are 
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seven quantization steps for each 𝐼 and 𝑄 component; hence, the I/Q plane is resampled to a matrix 

of size 7×7 = 49, whose elements are shown by solid black circles. Each 𝜑𝒊 corresponds to a point 

on the unit circle shown by the dashed line. For such a case, those elements in the vicinity of the 

unit circle should be considered as available quantization steps, which are schematically illustrated 

by the hollow black circles. Clearly, this imposes phase and amplitude errors. Besides, if a specific 

array weighting is of interest, the amplitude coefficients, quantified by 𝑁𝑎 bits should be multiplied 

by the results derived from the I/Q plane to realize the CBW matrix. On the other hand, as the 

second approach, one may quantify each 𝐼𝒊 and  𝑄𝒊 by 𝑁𝐼/𝑄 bits. This approach imposes less 

computational burden; however, it incurs more severe distortion typically. The reason is that the 

amount of error somehow depends on amplitude. The perimeter of the high precision circle 

decreases for small magnitude, and less effective quantization steps would be available. This has 

been shown in Fig. 3.6 for 𝑎𝒊 = 0.6. As seen, there are 16 phase quantization steps available for 

one cycle in Fig. 3.6(a), while there are 24 steps for the unit radii in Fig. 3.5(a); hence, the smaller 

the signal magnitude, the fewer quantization steps be available. The CBW quantization error can 

be written as follows: 

𝑒𝒊 = ℚ(𝑐𝒊) − 𝑐𝒊 = [ℚ(𝐼𝒊) − 𝐼𝒊] − 𝑗[ℚ(𝑄𝒊) − 𝑄𝒊] = 𝑒𝐼,𝒊 − 𝑗𝑒𝑄,𝒊, 

𝜑𝑒,𝒊 = − tan
−1 (

𝑒𝑄,𝒊
𝑒𝐼,𝒊
) = −tan−1 (

ℚ(𝑄𝒊) − 𝑄𝒊
ℚ(𝐼𝒊) − 𝐼𝒊

) 

𝐴𝑒,𝒊 = √𝑒𝐼,𝒊
2 + 𝑒𝑄,𝒊

2   

The above statements provide some degrees of randomness for phase and amplitude errors which 

somehow helps to span the quantization error in the beamspace domain in contrast to harmonized 

error usually realized in ABF due to the direct quantization of phase and amplitude by DPSs, 𝜑𝑒,𝒊 =

 ℚ(𝜑𝒊) − 𝜑𝒊, and DAs, 𝐴𝑒,𝒊 = ℚ(𝐴𝒊) − 𝐴𝒊.  
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Fig. 3. 7. Schematic of an available quantized step, solid circle, for a high precision sample, hollow circle, in IQ plane. 

    
(a) (b) (c) (d) 

Fig. 3. 8. Computed array factor for exemplar digital beamforming. Decibel array factor steered at [𝜃, 𝜑] = [52°, 223°] 

for (a) 𝑁𝜃 = 𝑁𝑎 = 4, (b) 𝑁𝐼/𝑄 = 4. Decibel array factor steered at [𝜃, 𝜑] = [20°, 0°] for (c) 𝑁𝜃 = 𝑁𝑎 = 4, and (d) 

𝑁𝐼/𝑄 = 4. 

Concerning Fig. 3.7, one may write the quantized signals and the associated error for the quantizer 

mentioned above as follows 

ℚ1(𝑐𝒊) = (𝐴𝒊 + 𝑒𝑎,𝑖)(1 + 𝑒𝐴1,𝒊) exp[𝑗(𝜑𝒊 + 𝑒𝜑1,𝒊)]                        (3.4. 𝑎) 

𝑒1,𝒊 ≈ ℚ1(𝑐𝒊) − 𝑐𝒊 = 𝑗2𝐴𝒊 exp(𝑗𝜑𝒊) exp (𝑗
𝑒𝜑1,𝒊

2
) sin (

𝑒𝜑1,𝒊

2
) + (𝑒𝐴1,𝒊 + 𝑒𝑎,𝑖) exp[𝑗(𝜑𝒊 + 𝑒𝜑1,𝒊)]    (3.4. 𝑏) 

ℚ2(𝑐𝒊) = (𝐴𝒊 + 𝑒𝐴2,𝒊) exp[𝑗(𝜑𝒊 + 𝑒𝜑2,𝒊)]                                 (3.5. 𝑎) 

𝑒𝟐,𝒊 = ℚ2(𝑐𝒊) − 𝑐𝒊 = 𝑗2𝐴𝒊 exp(𝑗𝜑𝒊) exp (𝑗
𝑒𝜑2,𝒊

2
) sin (

𝑒𝜑2,𝒊

2
) + 𝑒𝐴2,𝒊 exp[𝑗(𝜑𝒊 + 𝑒𝜑2,𝒊)]         (3.6. 𝑏) 

where the first quantizer, ℚ1, is associated with the first quantizing approach and the second one, 

ℚ2, is defined for the second approach with 𝑁𝐼/𝑄 bits for quantifying the CBW components. The 

above results imply that the error array factor is steered to the commanded beam position in which 

the amplitude error contributes to the second term while the weighted phase error constitutes the 

first one. For enough bits, the 𝑒𝑎,𝑖 can be neglected in (3.4. b); therefore, the two quantizer error 

can be written in a uniform formula, though that would be in form only. Accordingly, the baseband 
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error might be written as follows: 

𝑒𝒊 ≈ 𝑒𝐴,𝒊 + 𝑗2𝐴𝒊 sin (
𝑒𝜑,𝒊

2
) ≈ 𝑒𝐴,𝒊 + 𝑗𝐴𝒊�̂�𝜑,𝒊 

where �̂�𝜑,𝒊 is the Tylor expansion of sine. For the ℚ1, the first term, the real part, may be neglected 

for enough bits; thus, only the phase error would be of significance, showing itself somehow in 

harmonized form. However, for the ℚ2, for an acceptably small amount of 𝐴𝒊, the first term 

becomes considerable. The two methods of minor lobe performance for 𝑁𝜃 = 𝑁𝑎 = 𝑁𝐼/𝑄 = 4 are 

shown in Fig. 3.8 for two different commanded beam directions. As expected, the second method 

generates more severe distortion and minor lobe increase.  

3.3 Random dithered quantization 

3.3.1 Statistics fundamentals  

A stochastic process is a phenomenon evolving randomly. Mathematically, it is an integration 

of random variables. A random variable or vector can be characterized by its distribution and 

density functions.  

Definition 3.1: The probability of event 𝒖 < 𝒖0 is defined as the cumulative distribution function 

(CDF), 

𝐹𝒖(𝒖0) = ℙ[𝒖 ≤ 𝒖0]                                                    ∎ 

 

Definition 3.2: The probability density function (PDF) is defined as the derivative of CDF, 

𝑓𝒖(𝒖0) =
𝜕𝐹𝒖(𝒖)

𝜕𝒖
|𝒖= 𝒖0 

                                                                                          ∎ 

Thus, one can write 
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𝐹𝒖(𝒖0) = ∫ 𝑓𝒖(𝒖)𝑑𝒖

𝒖0

−∞

                                                       (3.7) 

If 𝑢0 and 𝑣0 are two events, then the conditional probability of 𝑢0 given 𝑣0 is as follows: 

 

ℙ(𝑢0|𝑣0) =
ℙ(𝑢0 ∩ 𝑣0)

ℙ(𝑣0)
                                                               . 

Considering ℙ(𝒙) = 𝑓𝒙(𝒙)∆𝒙, one can write 

𝑓(𝑢0|𝑣0) =
𝑓𝑢,𝑣(𝑢0, 𝑣0)

𝑓𝑣(𝑣0)
 

Definition 3.3:  The conditional PDF of 𝑢 given 𝑣 is defined as 

𝑓(𝑢|𝑣) =
𝑓𝑢,𝑣(𝑢, 𝑣)

𝑓𝑣(𝑣)
                                                                ∎ 

If the events 𝑢 and 𝑣 are statistically independent of each other, then 

𝑓𝑢,𝑣(𝑢, 𝑣) = 𝑓𝑢(𝑢)𝑓𝑣(𝑣)                                                         (3.8) 

Also, it is possible to write 

𝐹𝑢,𝑣(𝑢, 𝑣) = 𝐹𝑢(𝑢)𝐹𝑣(𝑣)                                                         (3.9) 

Definition 3.4: Let 𝑢 be a random variable, then the expected value of 𝑔(𝑢) is     

𝛦[𝑔(𝑢)] = ∫ 𝑔(𝑢)𝑓𝑢(𝑢)𝑑𝑢

∞

−∞

                                                        ∎ 

Accordingly, the first moment (or mean) of random variable 𝑢 is  

𝑚𝑢 = 𝛦[𝑢] = ∫ 𝑢𝑓𝑢(𝑢)𝑑𝑢

∞

−∞

                                                (3.10) 

The second moment (or mean) of random variable 𝑢 is  
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𝑟𝑢 = 𝛦[𝑢
2] = ∫ 𝑢2𝑓𝑢(𝑢)𝑑𝑢

∞

−∞

                                             (3.11) 

For a complex random variable, Equation (3.11) turns to 𝑟𝑢 = 𝛦[𝑢𝑢
∗]. Just as a comment, the 

correlation matrix represents the complete set of second moments for a random vector 𝒖, 𝑹𝒖 =

𝛦[𝒖𝒖𝐻] where 𝐻 stands for Hermitian or conjugate transpose.  

Definition 3.5: When 𝛦[|𝑢|𝑛] exists, the nth moment of 𝑢 is 

𝛦[𝑢𝑛] = ∫ 𝑢𝑛𝑓𝑢(𝑢)𝑑𝑢

∞

−∞

                                                       ∎ 

In statistics, the deflection of a random variable from the mean value is measured by variance.  

Definition 3.6: The average of squared differences from the mean is variance, 

𝑣𝑎𝑟(𝑢) = 𝛦{[𝑢 − 𝑚𝑢]
2}                                                       ∎ 

 It can be shown that  

𝑣𝑎𝑟(𝑢) = 𝛦(𝑢2) − 𝛦2(𝑢)                                          (3.12) 

Thus, if the mean of a random process becomes zero, the second moment and variance are equal. 

The square root of the variance is called standard deviation, 𝜎 =  √𝑣𝑎𝑟(𝑢).   

The complete set of moment deviation for a complex random vector 𝒖 is called the covariance 

matrix, 𝑪𝒖 = 𝛦[(𝒖 −𝒎𝒖)(𝒖 −𝒎𝒖)
𝐻]. The covariance and correlation matrices are related by 

𝑪𝒖 +𝒎𝒖𝒎𝒖
𝐻 = 𝑹𝒖                                                     (3.13) 

Definition 3.7: The characteristics function (CF) of a random variable 𝑢 is defined as 

ℂ𝑢(𝑤) = 𝛦(𝑒−𝑗2𝜋𝑤𝑢)                                                             ∎ 

Thus, the CF of a random variable is the Fourier transform of its PDF. Also, two random variables 

𝑢 and 𝑣 are statistically independent if and only if  

ℂ𝑢,𝑣(𝑤𝑢, 𝑤𝑣) = ℂ𝑢(𝑤𝑢)ℂ𝑣(𝑤𝑣)                                           (3.14) 
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3.3.2 Dithered system 

As the previous section shows, the quantization error turns into a harmonic distortion. 

Nevertheless, that is not generally correct. It can be shown that under condition (3.15), the 

quantization error is uniformly distributed [83].  

ℂ𝑥 (
𝑘

∆
) = 0,                           ∀𝑘 ∈ ℤ                             (3.15) 

where ∆ is the least significant bit (LSB). However, there are some important points to note. First, 

Equation (3.15) is defined for an infinite uniform quantizer. Secondly, condition (3.15) ensures 

the error would be uniformly distributed but not independent of the original signal. However, in 

many practical interests, that might be good enough. Overall, Equation (3.15) tells us that if the 

CF of a random variable becomes zero at specific points, there is a possibility that the error obeys 

a specific distribution.  

It is possible to manipulate the original signal by adding an independent signal before the 

quantization process, satisfying the conditions provided in (3.15). Such a signal is called dither, 

typically but not necessarily, a random signal with some statistical properties. To develop the 

theory, consider a third random variable 𝑧 =  𝑥 + 𝑦, then the following relationship exists [84] 

ℂ𝑧(𝑤) = ℂ𝑥(𝑤)ℂ𝑦(𝑤)                                                      (3.16) 

This is reciprocal to 𝑓𝑧(𝑧) = 𝑓𝑥(𝑥) ∗ 𝑓𝑦(𝑦). For an SD system, the quantization error is as follows  

𝑞𝑥
𝑆𝐷 = Q(𝑥 + 𝜅) − 𝜅 − 𝑥 = Q(𝑤) − w                                     (3.17) 
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with w = 𝑥 + 𝜅 . Considering (3.15)-(3.17), the output error of the SD system would be at least 

uniformly distributed if (3.18) is complied. Nevertheless, it is possible to show with longer proof 

that the error becomes totally independent of the input and uniformly distributed [84]. 

ℂ𝜅 (
𝑘

∆
) = 0,                                ∀𝑘 ∈ ℤ                          (3.18) 

Now, one can easily realize that the space-fed antenna is naturally an SD system, 

Υ𝒊 = 𝑄(𝑘‖�́�𝒊‖2 + 𝜉𝒊) − 𝑘‖�́�𝑖‖2                                                        . 

Although the quadratic phase shift 𝑘‖�́�𝒊‖2 does not comply with condition (3.18). 

In an NSD system, it is not possible neither to make the total error independent of the input nor 

uniformly distributed, but making some moments of error, 𝛦(𝑒𝑑
𝑛), independent of the original 

signal by satisfying (3.19). 

𝔻𝜅
(𝑛)
(
𝑘

∆
) = 0,                         ∀𝑘 ∈ ℤ                           (3.19. 𝑎) 

𝔻𝜅(𝑓) ≜ sinc(𝑓)ℂ𝜅(𝑓)                                                       (3.19. 𝑏) 

where sinc(𝑓) ≜ sin 𝜋∆𝑓/𝜋∆𝑓 and 𝔻𝜅
(𝑛)

 signifies the nth derivative of 𝔻𝜅 [85]. For example, 

considering the CF of rectangular probability density function (RPDF), uniform distribution, is a 

Sinc function; then, for NSD-RPDF, the first moment of the error is statistically independent of 

the input, which is precisely zero, but a higher order of error moments are dependent on the original 

signal, contributing to noise modulation. For NSD with triangular probability density function 

(TPDF) of width 2∆, the error's first- and second-moment are independent of the input. Among 

distributions complied with (3.19), the TPDF provides the minimum error variance, while the 

RPDF generates the lowest noise power that its 𝑚𝑒 is zero.  
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(a) (b) 

 
(c) 

Fig. 3. 9. Decibel array-factor, normalized to the maximum of high precision aperture for 3-bit (a) simple uniform 

quantization, (b) non-subtractive dither with uniform distribution, and (c) The computed radiation patterns on 𝜑 =
90° plane for different non-subtractive dither methods. 

A circular aperture PA with a diameter of about 15.5λ0, with classic Nyquist design, 𝜌 = 0.5, 

and Taylor weighting is considered with different dithering approaches, assuming the dither signal 

samples are independent and identically distributed (iid), iid NSD. In Figs. 3.9(a) and 3.9(b), the 

contour lines plotted faintly illustrate dB levels between -45 to -35.  

The beam is assumed at [𝜃, 𝜑] = [5°, 90°], where the z-axis is presumed as the boresight vector 

normal to the array surface. For Fig. 3.9(a), whose associated PDA is quantized to 3 bits by a 

simple uniform quantizer (SUQ), the array factor shows some high peak QLs. Fig. 3.9(b) illustrates 

the one in which the high-precision PDA is quantized by the RPDF-NSD scheme. The dither signal 

can disperse the QLs on the beamspace domain with considerably lower peak levels. Fig. 3.9(c) 

compares PA's radiation pattern designed by some exemplar NSD systems. The GPDF stands for 
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iid NSD with Gaussian density, ~𝒩(0, 
𝜋

8
). As seen, by increasing the dither's power, the antenna 

directivity drops, which is the cost of inserted noise.  
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Chapter 4 

Spectrally Shaped Dither (Noise Shaping)  

4.1 Digital signal processing fundamentals  

4.1.1 One-Dimensional digital signal processing 

One may sample a continuous signal 𝑥(𝑡) by the sampling rate of 𝑓𝑠 = 
1

𝑇𝑠
, generating a sequence 

of sampled values of 𝑥(𝑡) as written in (4.1). 

𝑥[𝑛] =  𝑥(𝑛𝑇𝑠) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇𝑠)

∞

𝑛=−∞

                                       (4.1) 

As a convention, we refer to the discrete-time/space signals as sequences. Also, as stated in (4.1), 

the sequence might be infinitely long. In practice, however, only finite sequences are computable; 

hence, the length of x[n] should be finite. Also, we introduce the 1-D unit sample sequence (or 

discrete time/space impulse or Dirac delta sequence) as 

𝛿[𝑛] = {
0    𝑛 ≠ 0
1    𝑛 = 0

 

In this regard, any sequence can be defined as 

𝑥[𝑛] =  ∑ 𝑥[𝑚]𝛿[𝑛 −𝑚]

∞

𝑚=−∞

 

For example, the unit step sequence u[n] = ∑ 𝛿[𝑚] =∞
𝑚=−∞ ∑ 𝛿[𝑛 − 𝑚]∞

𝑚=0 .  

A linear shift-invariant (LSI) system g has the following property 

𝑦[𝑛] =  𝑔 { ∑ 𝑥[𝑚]𝛿[𝑛 − 𝑚]

∞

𝑚=−∞

} = ∑ 𝑥[𝑚]𝑔{𝛿[𝑛 − 𝑚]}

∞

𝑚=−∞

= ∑ 𝑥[𝑚]ℎ[𝑛 − 𝑚]

∞

𝑚=−∞

  

where ℎ[𝑛] =  𝑔{𝛿[𝑛]} is the system impulse response which means that the output of every LSI 

system can be predicted by its impulse response. Moreover, we recall the convolution operator as  
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𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑚]ℎ[𝑛 −𝑚]

∞

𝑚=−∞

.   

Thus, the LSI system output is the convolution of input and the impulse response.   

Definition 4.1: A system is stable in the BIBO sense if and only if every bounded sequence as 

input produces a bounded sequence as output.  

Corollary: An LSI system is stable if its impulse response is absolutely summable, 

∑ |ℎ[𝑚]|∞
𝑚=−∞ <  ∞. 

Definition 4.2:  The 1-D sequence x[n] is causal if x[n] = 0 for n < 0.  

Many people have contributed to the Sampling theorem, which has many generalizations. The 

most significant point of this theorem is that sampling in time/space/frequency is commensurate 

to replication of the original signal spectrum in the Fourier domain. Shannon's version simply 

states that a sampled version of a signal band-limited to Ω0 can perfectly be reconstructed as long 

as the (angular) sample rate is greater than 2Ω0 which is famous as the Nyquist rate. To show that, 

one may substitute the Fourier series (FS) of the impulse train, 
1

𝑇𝑠
∑ 𝑒

𝑗2𝜋.𝑘.𝑡

𝑇𝑠𝑘 , in (4.1) and take a 

Fourier transform (FT) from both sides, contributing to: 

𝑌(Ω) =  
1

𝑇𝑠
∑ 𝑋(Ω − 𝑘Ω𝑠)

∞

𝑘=−∞

                                          (4.2) 

where Ω𝑠 =
2𝜋

𝑇𝑠
. The equation (4.2) shows that the spectrum of the sampled signal is a periodic 

function of the spectrum of the original signal with period Ω𝑠. Therefore, if the original signal, 

𝑥(𝑡), would be band-limited to  Ω𝑚, the inequality Ω0 < Ω𝑠 − Ω0 is needed to be complied with 

to avoid the shifted copies in the spectral domain overlapping each other, which leads to the 

Nyquist rate, Ω𝑠 > 2Ω0. The main issue with the sampling theorem is that it is based on the concept 
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of band-limited signal, which is not practical (such signal must be infinitely extended in the 

time/spatial domain). Moreover, the condition of ideal sampling is implicit in the theorem, the 

infinite precision of the sample values. In practice, the exact value of samples cannot be held during 

the sampling procedure, introducing quantization noise. Therefore, there is always an amount of 

distortion in the spectral domain of the sampled signal.   

Next, it is necessary to define digital frequency (more accurately, discrete or normalized 

frequency) because the time/space domain is discrete. This can be conveniently carried out by the 

following: 

𝜔 =  Ω𝑇𝑠 = 
Ω

𝑓𝑠
                                                      (4.3) 

where Ω is the continuous angular frequency. Note that the unit of the digital angular frequency, 

𝜔, is radians/sample since the sampling rate unit, 𝑓𝑠, is sample/sec (or sample/m) and the unit of 

the continuous angular frequency is radians/sec (or radians/m). Furthermore, digital frequency is 

a continuous parameter, although its name might be misleading. Thus, we will call it normalized 

frequency hereafter.  

Definition 4.3: The discrete time/space Fourier transform (DTFT/DSFT) of a finite sequence of 

length N is defined as follows: 

𝑋(𝑒𝑗𝜔) =  ∑ 𝑥(𝑛𝑇𝑠)𝑒
−𝑗Ω𝑛𝑇𝑠

𝑁−1

𝑛=0

= ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
𝑁−1

𝑛=0

   ,                                         

and the inverse operator (IDTFT/IDSFT) is: 

𝑥[𝑛] =  
1

2𝜋
∫𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔                                                ∎

𝜋

−𝜋
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Hence, it is impossible to calculate the DSFT since it is a continuous parameter having infinite 

values on a 2𝜋 period. To make it computable, it is necessary to sample the normalized frequency, 

providing finite samples. To this end, one method to approximately calculate the DSFT is to use 

M equally spaced samples on the unit circle (one fundamental period) as follows: 

𝑋(𝑒𝑗𝜔𝑚) =  ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑚𝑛
𝑁−1

𝑛=0

                                              (4.4) 

where 𝜔𝑚 = 
2𝜋𝑘

𝐾
, 𝑘 = 0, 1, 2, … , 𝐾 − 1, simply means K samples of 𝜔 on one fundamental period 

2𝜋. This has been schematically shown on the complex plane in Fig. 4.1. Accordingly, (4.4) can 

be written as the following definition, which is famous as discrete Fourier transform (DFT). The 

DFT and DSFT are defined on an infinite period, as the sequence can be infinitely long. 

Definition 4.4: The DFT of a 1-D sequence x[n] is defined as 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋𝑘
𝐾 𝑛

𝑁−1

𝑛=0

                                                        ∎  

 

Fig. 4. 1. Schematic view of M samples of continuous frequency on the unit circle. 
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According to the Euler formula,  𝑒−𝑗
2𝜋𝑚

𝑀
𝑛 = cos(

2𝜋𝑚

𝑀
𝑛)− 𝑗sin (

2𝜋𝑚

𝑀
𝑛) and the Hermitian 

symmetry of a real signal, one may realize that the DFT (and DSFT) of a real and even (symmetric) 

sequence is real and even (symmetric). Similarly, the DFT (and DSFT) of a real and odd (anti-

symmetric) sequence is purely imaginary and odd (anti-symmetric); thus, the DFT of a real signal 

is conjugate symmetric because it is always possible to decompose every sequence to even 

(symmetric) and odd (anti-symmetric) components. The above statement is equivalent to saying 

the magnitude of the DFT of the real signal is even while its phase is odd. Other important 

properties of DFT are tabulated in Table. 4.1.  

Like the continuous case, the Laplace s-transform is used for analyzing the signal in the complex 

frequency domain, and the z-transform (ZT) can be used for signal processing in the digital 

complex frequency domain following definition 4.5.  

Definition 4.5: The 1-D z-transform is defined as follows 

𝑋[𝑧] = ∑ 𝑥[𝑛]𝑧−𝑛
𝑁−1

𝑛=0

                                                           ∎ 

Where 𝑧 =  𝑒𝑠𝑇𝑠 = 𝑒𝜎+𝑗𝜔. As stated before, the sigma is generally an infinite summation and 

might be defined as a one-sided or two-sided summation. The ZT is related to the DSFT as follows: 

𝑋[𝑧] = ∑ 𝑥[𝑛]𝑒−(𝜎+𝑗𝜔)𝑛
𝑁−1

𝑛=0

= 𝐷𝑆𝐹𝑇{𝑥[𝑛]𝑒−𝜎𝑛}                            (4.5) 
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TABLE 4.1. IMPORTANT PROPERTIES OF DFT. 

DFT 𝐷𝐹𝑇{𝑥[𝑛]} = 𝑋(𝑒𝑗𝜔) 

Linearity 𝐷𝐹𝑇{𝑎𝑥[𝑛] + 𝑏𝑦[𝑛]} = 𝑎𝑋(𝑒𝑗𝜔) + 𝑏𝑌(𝑒𝑗𝜔) 

Spatial reversal 𝐷𝐹𝑇{𝑥[−𝑛]}  =  𝑋(𝑒−𝑗𝜔) 

Spatial shifting 𝐷𝐹𝑇{𝑥[𝑛 − 𝑛0]} =  𝑋(𝑒
𝑗𝜔)𝑒−𝑗𝜔∙𝑛0 

Frequency shifting 𝐷𝐹𝑇{𝑥[𝑛]𝑒𝑗𝜔0∙𝑛} = 𝑋(𝑒𝑗𝜔𝑒−𝑗𝜔0)  

Spatial convolution 𝐷𝐹𝑇{𝑥[𝑛] ∗ 𝑦[𝑛]} = 𝑋(𝑒𝑗𝜔)𝑌(𝑒𝑗𝜔)  

Frequency convolution 𝐷𝐹𝑇{𝑥[𝑛]𝑦[𝑛]} =  𝑋(𝑒𝑗𝜔) ∗ 𝑌(𝑒𝑗𝜔) 

 

Definition 4. 2, for a finite sequence, can be interpreted as a system with the impulse response, 

ℎ[𝑛], of size N, N even, as ℎ[𝑛]  =  0 for  
𝑁

2
< 𝑛 < 𝑁, which comes from the periodicity 

assumption of the signal by the DFT operator, note that ℎ[0]  =  ℎ[𝑁]. 

Definition 4.6: A finite sequence 𝑥[𝑛], of size N, N even, is causal if 𝑥[𝑛]  =  0 for  
𝑁

2
< 𝑛 < 𝑁. 

Definition 4.7:  An LSI system is stable if and only if all poles of its transfer function H(z) are 

located inside the unit circle |z| < 1. 

Thus, the region of convergence (RoC) of the z-transform of the stable sequence includes the unit 

circle.  

Definition 4.8: A minimum-phase system is an LSI system that is causal and stable with a causal 

and stable inverse system. 

Definition 4.8 implies that all poles and zeros of a unidimensional minimum-phase system (MPS) 

are located inside the unit circle |z| < 1. 
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4.1.2 Multi-Dimensional digital signal processing  

In general, Multi-dimensional signal processing is a generalization of the 1-D case. However, 

they differ in the number of samples to be processed and the fact that theorems and background 

math are less developed for Multi-dimensional cases compared to the 1-D counterpart. The other 

discrepancy is the lattice. In a unidimensional case, sampling is just a matter of scalar factor 

(sampling rate), but here, it is characterized by generating matrix; thus, it is not just a matter of 

spacing but also the lattice fashion, e.g., hexagonal, rectangular, square. Also, some fundamental 

concepts, such as causality, stability, etc., are somehow different to define or determine. For 

example, back to Definition 4.7, an LSI system with a 1-D impulse response is stable if all poles 

are located inside the unit circle. It is evident that this cannot be used for the i-D case since there 

would be at least two complex parameters, 𝑧1 and 𝑧2, which contribute to four real and imaginary 

components. Also, for time which is a unidimensional case, the definition of past and future is 

clear; thus, causality can be uniquely characterized, but that is not the case for 2-D one. It depends 

on the direction and reference sample chosen.   

The 2-D unit sample or impulse can be written as  

𝛿[𝑛1, 𝑛2] = {
1    𝑛1, 𝑛2 = 0
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                 .           

Definition 4.9: The 2-D convolution operator is defined as 

𝑥[𝑛1, 𝑛2] ∗ ℎ[𝑛1, 𝑛2] = ∑ ∑ 𝑥[𝑚1, 𝑚2]

∞

𝑚1=−∞

ℎ[𝑛1 −𝑚1, 𝑛2 −𝑚2 ]               

∞

𝑚2=−∞

, 

In a more compact form 

𝑥[𝒏] ∗ ℎ[𝒏] =∑𝑥[𝒎]ℎ[𝒏 −𝒎]                                                   ∎

𝒎
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Definition 4.10: A 2D discrete space Fourier transform (2D-DSFT) of a 2D sequence of size 

𝑁1 × 𝑁2 might be defined as follows: 

𝑋(𝑒𝑗𝜔1 , 𝑒𝑗𝜔2) = ∑ ∑ 𝑥[𝑛1, 𝑛2]𝑒
−𝑗(𝜔1𝑛1+𝜔2𝑛2)

𝑁2−1

𝑛1=0

𝑁1−1

𝑛2=0

                                 , 

more compact form written as 

𝑋(𝑒𝑗𝝎) =  ∑𝑥[𝑛]𝑒−𝑗𝝎𝒏

𝒏

                                                     ∎ 

The same as the 1-D case, 𝜔1 and 𝜔2 are digital frequencies and are continuous parameters. As 

stated before, the above summation is impossible to be computed (and/or stored) as  𝑋(𝑒𝑗𝜔1 , 𝑒𝑗𝜔2) 

is analog data; therefore, one may sample the digital frequencies making the above summation 

computable, contributing to 2-D discrete Fourier transform (2D-DFT) as written in (4.6). 

𝑋[𝑘1, 𝑘2] = ∑ ∑ 𝑥[𝑛1, 𝑛2]𝑒
−𝑗2𝜋(

𝑘1
𝐾1
𝑛1+

𝑘2
𝐾2
𝑛2)

𝑁2−1

𝑛1=0

𝑁1−1

𝑛2=0

                            (4.6) 

The above summation means that 𝜔1 and 𝜔2 are sampled to 𝐾1 and 𝐾2 equally distant samples, 

respectively. Alternatively, one may say it is sampled on a square lattice. Note that 𝑋[𝑘1, 𝑘2] is 

supposed to be a periodic sequence with a period [𝐾1, 𝐾2], 𝑋[𝑘1, 𝑘2] =  𝑋[𝑘1 + 𝐾1, 𝑘2 + 𝐾1]. 

However, the DFT definition depends on how the discrete points are transformed. 

Consider the span 𝑳ℝ2 on a plane and its sampled version, which contributes to a lattice 𝑳ℤ2 

initiated with 𝑳 ≜  [𝒃𝟏, 𝒃𝟐] as the generating matrix, we call it lattice-matrix, including two basis 

vectors 𝒃𝟏 and 𝒃𝟐, which must not have a collinear relation with each other. Let us call the lattice 

𝑳ℤ2 as the element-location lattice (ELL). The reciprocal lattice of ELL is the periodicity lattice 
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(PL). If one resamples the lattice 𝑳ℤ2 by a resampling or tiling matrix to generate a sparser lattice 

𝑳𝑻ℤ2, which would associate with a reciprocal lattice which would be |𝑻| times denser than PL. 

This reciprocal lattice might be called the steering lattice, defined by �̌�𝑠 = 𝒇𝑻
−1�̌�, which may or 

may not be in the same fashion as PL, 𝒇 is an integer vector.  

The lattice matrix is not unique. But the area of one period is unique, which is simply the 

determinant of the gram of PL matrix, ⊠ = √|𝐆(�̌�)| =  √|�̌�𝒕�̌�| where ⊠ signifies the normalized 

area of the fundamental period with any shape. 

 Definition 4.11: A generalized form of 2D-DFT can be defined as follows: 

𝑋[𝒌] =  ∑𝑥[𝒏]𝑒−𝑗2𝜋(𝒌𝑻
−1𝒏)

𝒏

                                                   ∎ 

In the above definition, T is an arbitrary resampling matrix, and n and k are integer vectors. 

Definition 4.12: A 2D z-transform of a 2D sequence of size 𝑁1 × 𝑁2  is defined as follows: 

𝑋(𝑧1, 𝑧2) = ∑ ∑ 𝑥[𝑛1, 𝑛2]𝑧1
𝑛1𝑧2

𝑛2

𝑁2−1

𝑛1=0

𝑁1−1

𝑛2=0

                                           ∎ 

   
(a) (b) (c) 

Fig. 4. 2. Different 2D systems. (a) First quadrant, (b) symmetric, and (c) asymmetric half-plane system. 
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Definition 4.13: A 2-D LSI system with non-zero impulse response in a particular plane region is 

called a special support system. 

For example, the quadrant, symmetric and anti-symmetric half-plane systems are schematically 

shown in Fig. 4.2. 

Definition 4.14: A 2-D system is casual if it is a one-sided special support system.  

For example, the system of Fig. 4.2(c) is causal in asymmetric half-plane scenes.  

Definition 4.15: A 2-D LSI system is stable if and only if its impulse response is absolutely 

summable. 

In contrast to Definition 4.7 for a one-dimensional case, a similar approach cannot be applied to a 

2-D counterpart. Nevertheless, there are some theorems for the stability tests of quadrant support 

systems. 

Shank's theorem: For a first quadrant support system of form 𝐻(𝑧1, 𝑧2) =
1

𝐴(𝑧1,𝑧2)
 , the system is 

stable if  

∀|𝑧1|, |𝑧2| ≥ 1:  𝐴(𝑧1, 𝑧2) ≠ 0                                                 ∴  

As seen, shank's theorem asks for a search in a 4-D space, which is a challenging task. A method 

with a smaller search space is Huang's theorem. 

Huang's theorem: For a first quadrant support system of form 𝐻(𝑧1, 𝑧2) =
1

𝐴(𝑧1,𝑧2)
 , the stability 

can be ensured if the following condition complies: 

𝐴(𝑧1, 𝑧2) ≠ 0, 𝑓𝑜𝑟 {
|𝑧1| = 1,   |𝑧2| ≥ 1
|𝑧2| = 1,   |𝑧1| ≥ 1

                                        ∴  
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There are other methods for the 2-D system stability test, such as Decarlo and Strintzis's theorem 

[86], which are not discussed here for brevity. If the causality and the system's stability are secured, 

having proved the stability of the inverse system, the causality of that will be automatically insured, 

which means the 2-D system would be minimum-phase. 

4.1.3 Digital filter introduction 

Digital filters have been investigated and used in a variety and extensive applications 

comprising data communication [87]-[88], audio, image, and video processing [89]-[90]. One 

popular and simple type of digital filter is the LSI type, whose output is a linear combination of 

the input samples with constant coefficients (with respect to the position of samples). In general, 

this class of digital filters has two types, including infinite-duration impulse response (IIR) filters 

and finite-duration impulse response (FIR) filters; as their names imply, their impulse responses 

have infinite and finite durations, respectively. The main difference between the FIR and IIR filters 

is that an IIR filter provides the prescribed frequency response with a more compact structure. 

However, it is impossible to design a linear-phase IIR filter. To compromise that, a subsequent all-

pass filter might be applied, complicating the system design. 

On the other hand, the design of a linear-phase FIR filter is possible but at the expense of more 

computational complexity due to the higher number of coefficients required and more delay, which 

can be too large for some applications. Also, the FIR filter is inherently stable. The same is not 

applied to the IIR filter; hence, stability should be considered during the design procedure [91]. 

This might be why the 2-D FIR filters got more popularity in applications such as image 

processing. It should be noted that in the 2-D IIR filters case, the stability of the system (and 

sometimes the inverse system) might not be convenient to test as their 1-D counterparts. However, 
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a system using an FIR filter with a long impulse duration in its feedback circuit is also prone to 

instability. In the FIR filter, there is no feedback, which grants the finite impulse.  

On the other hand, the IIR filters use feedback. However, it does not mean that if there is 

feedback, the impulse response would be infinite. An example is the moving average filter which 

uses feedback, but the output is finite. 

From another perspective, the digital filter family may be categorized into two types: a real-

coefficient digital filter (RCDF) and a complex-coefficient digital filter (CCDF). The CCDF has a 

one-sided frequency response; therefore, the asymmetric case entails a complex-coefficient 

impulse response.  

4.2 Noise shaping fundamental implications 

Noise shaping is a well-known signal processing approach. It is sometimes called “error 

diffusion,” in image processing in particular [92]-[93], and also ∆ − Σ modulator/converter [94]-

[95]. However, in traditional ∆ − Σ noise shaping, the signal is oversampled and then quantized 

with the feedback noise shaper as a unit delay system, and then a decimation procedure is carried 

out, including lowpass filtering and subsequent downsampling. The nomenclature noise shaping 

describes the system performance from the spectral domain perspective, while the error diffusion 

points to the method systematic procedure in the signal domain, input space of Fourier transform. 

The ∆ − Σ refers to the system block diagram. 

The rationale behind the noise shaping is diffusing the current element's error to some 

neighboring elements. Each element error is diffused among the neighboring elements by specific 

weighting factors. Those diffused errors will be addressed later, so the name ''error diffusion.'' It 

is the digital filter that governs the amounts of weighting.  
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(a) (b) 

Fig. 4. 3. Error diffusion for an exemplar system. Two wavefront traversals starting from (a) northeast and (b) 

southwest. 

 
 

(a) (b) 

Fig. 4. 4.  Two possible structures of noise shaper. 

In noise shaping, each element error is diffused among the neighboring elements by some 

specific weighting factors, 𝑎𝑛,𝑚, which is determined by the digital filter. In Fig. 4.3, the error 

redistribution is shown in which the revised system is 

𝐻(𝑧1, 𝑧2) = 𝑎1,0𝑧1
−1 + 𝑎2,0𝑧1

−2 + 𝑎−2,1𝑧1
2𝑧2

−1 + 𝑎−1,1𝑧1
1𝑧2

−1 + 𝑎0,1𝑧2
−1 + 𝑎1,1𝑧1

−1𝑧2
−1

+ 𝑎2,1𝑧1
−2𝑧2

−1 

initiated with ∑ 𝑎𝑛,𝑚 = 1𝑛,𝑚 . During the wavefront traversal, the noise shaper meets up with each 

sample once and diffuses the sample quantization error to the neighboring ones. For example, in 

Fig. 4.3(a), when the noise shaper meets the sample [3, 0], it finds the high precision value 

�̂�[3, 0] =   𝑥[3, 0] − 𝑎1,0𝑒𝑞[2, 0] − 𝑎2,0𝑒𝑞[1, 0], where 𝑥[3, 0] represents the original high-

precision sample value; thereby, the error would become 𝑒𝑞[3, 0] = 𝑄{�̂�[3, 0]} − �̂�[3, 0].  

As such, each time the noise shaper wavefront strikes a sample, several neighboring samples 

will be affected, depending on the size of the impulse response. In this regard, one may choose 

different wavefront traversals. For example, it may start from the southwest, Fig 4.3(a), or the 
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northwest, as shown in Fig. 4.3(b). Of course, the noise shaper wavefront finally strikes the last 

element: its error cannot be diffused to any other. However, that error is assumed to be negligible 

for enough samples and the number of array elements. 

A schematic of a generic noise shaper is illustrated in Fig. 4.4(a), in which x is the input signal, 

𝜅 and �́� are the dither signals, H is the transfer function of the "revised" system, G is called noise 

transfer function (NTF) equal to 1-H, and Q signifies the quantizer. Fig. 4.4(b) illustrates the 

alternative error feedback structure. Let us consider 𝑒𝑡 and 𝑒𝑑, respectively as total error and 

quantization error, and 𝜖𝑡 and 𝜖𝑑 as their z-transforms correspondingly. Indeed, if no dither is 

applied, then 𝑒𝑞 = 𝑒𝑑. Analysis of the Figs. 4.4 yields  

𝑌(𝑧) = 𝑋(𝑧) + 𝜖𝑡(𝑧)                                                        (4.7. 𝑎) 

𝐺(𝑧) = 1 − 𝐻(𝑧) =
𝜖𝑡(𝑧)

𝜖𝑑(𝑧)
                                                   (4.7. 𝑏). 

Equation (4.7. b) states that if the quantization error spectrum is flat, the shape of total error spectra 

corresponds to |𝐺(𝑧)|. The distortion can be spectrally shaped by the transfer function 𝐻(𝑧) in the 

feedback loop. Considering a unit delay system, the inverse NTF works like an integrator, Σ. At 

the same time, the weighted quantization error of the current sample is fed back and subtracted 

from the subsequent sample of the original signal ∆, which clarifies the reason behind the 

nomenclature ∆ − Σ modulator/converter. Note that (4.7) is independent of the quantization 

scheme used, including non-dithered or dithered and uniform or non-uniform schemes.  

Applying dither in a noise shaping system increases the noise power leading to more antenna 

gain drop. Besides, the computation is not reproducible. Therefore, an un-dithered quantizing 

system is used in our noise-shaping approach. However, if the dither is not applied, meaning that 
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𝜅 and �́� are considered zero entries, some signal-dependent artifacts may appear inside the 

spectrum since the quantization error is generally not flat. 

The quantizer is a non-linear system. A traditional approach considers the quantizer output as 

an input signal with additive white noise, see Figs. 4.4. This approximation sounds unorthodox 

because the quantization error is a complicated function of the input signal. Such an assumption, 

in practice, might be one of the reasons that the noise shaper stability and/or performance can be 

undermined. In particular, this happens for a higher-order filter design due to the saturation of the 

quantizer (signal clipping) [96]-[97], which can render the system unstable. 

Of interest is the MPS, which refers to an LSI system that is causal and stable with a causal and 

stable inverse [98]. The MPS has the smallest group delay among all causal and stable 

unidimensional LSI systems, which meet the same magnitude specification. In other words, the 

MPS minimizes the delay of the impulse energy delivery, which means that its first sample has a 

higher magnitude than its other counterparts [99]. 

The amount of noise rejection is related to the position of the zeros of the transfer function. In 

general, the noise shaper decreases the SQNR. The optimum system is the one that effectively 

pushes the in-band noise out-of-band while it preserves the highest SQNR. For a causal and stable 

system of the form 𝐺(𝑧) = 1 − 𝐻(𝑧), where 𝐻(𝑧) does not have a constant term, the following 

inequality can be written [84]: 

∫ log (|1 − 𝐻(𝑒𝑗𝜔)|𝑑𝜔 ≥ 0                                               (4.8)

𝜋

−𝜋

 

In (4.8), equality happens for an MPS. Accordingly, one may make the inference minimum-phase 

filter (MPF) is optimal for noise shaping since the integral has a positive value for other systems 

that are not MPS.  
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4.2.1 Discrete Hilbert transform method 

Definition 4.16: The Hilbert transform (HT) of a 1-D signal 𝑥(𝑡) is defined as the convolution  

𝐻𝑇[𝑥(𝑡)] = 𝑥(𝑡) ∗
−1

𝜋𝑡
                                                         ∎ 

Recall that the Fourier transform (FT) of the signum function, 𝑠𝑔𝑛(𝑡), is equal to  

𝐹𝑇[𝑠𝑔𝑛(𝑡)] = {
2

𝑗𝜔
=

1

𝑗𝜋𝜐
            𝜔 ≠ 0

0                          𝜔 = 0
                                       , 

The HT of function turns to a convolution with the signum spectrum. It is always possible to 

reconstruct a real and causal function 𝑓(𝑡) from its even component as 

𝑓(𝑡) = 𝑓𝑒(𝑡)[1 + 𝑠𝑔𝑛(𝑡)]  

where 𝑓𝑒(𝑡) =  
𝑓(𝑡)+𝑓(−𝑡)

2
. This will be explained more for discrete signals and sequences next. 

Thus, one may write 

𝐹𝑇[𝑓(𝑡)] =  𝐹𝑇[ 𝑓𝑒(𝑡)] + 𝑗. 𝐻𝑇{𝐹𝑇[ 𝑓𝑒(𝑡)]} 

that implies that the real and imaginary parts of FT of a causal function are related by the HT; note 

𝐹𝑇[ 𝑓𝑒(𝑡)] is real. 

A conjugate symmetric sequence is as 𝑥𝑒[𝑛] =  𝑥𝑒
∗[−𝑛]. The same can be written for the 

conjugate anti-symmetric one 𝑥𝑜[𝑛] =  −𝑥𝑜
∗[−𝑛]. Accordingly, any sequence can be expressed by 

conjugate and anti-conjugate components 

{
 
 

 
 

𝑥[𝑛] =  𝑥𝑒[𝑛] + 𝑥𝑜[𝑛] 

𝑥𝑒[𝑛] =
1

2
{𝑥[𝑛] + 𝑥∗[−𝑛]}

𝑥𝑜[𝑛] =
1

2
{𝑥[𝑛] − 𝑥∗[−𝑛]}

                                           (4.9) 

This might be evident that for a real sequence, the conjugate symmetric one is an even sequence, 

and the conjugate anti-symmetric one is the odd one. As a Fourier transform property, 𝑥𝑒[𝑛] has a 
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real DSFT and 𝑥𝑜[𝑛] one is purely imaginary. Thus, one may write 

{
 
 

 
 

𝑋(𝑒𝑗𝜔) =  𝑋𝑅(𝑒
𝑗𝜔) + 𝑗𝑋𝐼(𝑒

𝑗𝜔) 

𝑋𝑅(𝑒
𝑗𝜔) =

1

2
{𝑋(𝑒𝑗𝜔) + 𝑋∗(𝑒𝑗𝜔)}

𝑋𝐼(𝑒
𝑗𝜔)  =

−𝑗

2
{𝑋(𝑒𝑗𝜔) − 𝑋∗(𝑒𝑗𝜔)}

                                         (4.10) 

If x[n] would be a causal sequence, the even and odd components should cancel each other for n 

< 0, and that one may write 

𝑥[𝑛] =  2𝑥𝑒[𝑛]𝑢[𝑛] − 𝑥
∗[0]𝛿[𝑛]. 

The DSFT can be written as 

𝑋(𝑒𝑗𝜔) =
1

𝜋
∫𝑋𝑅(𝑒

𝑗𝜔)

𝜋

−𝜋

𝑈(𝑒𝑗(𝜔−𝜃))𝑑𝜃 − 𝑥∗[0] 

Considering that 

𝑈(𝑒𝑗𝜔) =
1

2
−
𝑗

2
cot

𝜔

2
∑ 𝜋𝛿(𝜔 − 2𝜋𝑘)

∞

𝑘=−∞

 

One can write 

𝑋(𝑒𝑗𝜔) = 𝑋𝑅(𝑒
𝑗𝜔) +

1

2𝜋
∫𝑋𝑅(𝑒

𝑗𝜃)𝑑𝜃

𝜋

−𝜋

−
𝑗

2𝜋
∫𝑋𝑅(𝑒

𝑗𝜃) cot (
𝜔 − 𝜃

2
)𝑑𝜃 − 𝑅𝑒{𝑥∗[0]} − 𝑗ℐ𝓂{𝑥∗[0]}

𝜋

−𝜋

 

And thereby, 

𝑋𝐼(𝑒
𝑗𝜔) = −

1

2𝜋
∫𝑋𝑅(𝑒

𝑗𝜃) cot (
𝜔 − 𝜃

2
)𝑑𝜃 − ℐ𝓂{𝑥∗[0]}               (4.11)

𝜋

−𝜋

 

Equation (4.11) is a Hilbert transform (HT) relationship between real and imaginary parts of 

DTFT of complex causal sequence x[n]. 
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Definition 4.17: The complex cepstrum of x[n] is defined as  

�̂�[𝑛] ≜ 𝐼𝐷𝑆𝐹𝑇{log [𝑋(𝑒𝑗𝜔)]}                                             ∎ 

Note that the complex cepstrum of a minimum-phase sequence is causal [17]. 

Considering that 

𝑙𝑜𝑔{𝑋(𝑒𝑗𝜔)} = 𝑙𝑜𝑔|𝑋(𝑒𝑗𝜔)| + 𝑗∡𝑋(𝑒𝑗𝜔), 

One may insert �̂�[𝑛] in (4.11) and find  

∡𝑋(𝑒𝑗𝜔) =
−1

2𝜋
∫ log|𝑋(𝑒𝑗𝜃)| cot (

𝜔 − 𝜃

2
)𝑑𝜃

𝜋

−𝜋

− ℐ𝓂{�̂�∗[0]}             (4.12) 

where the imaginary part of the reference sample vanishes for the minimum-phase case 

contributing to a uniform relationship between real and complex (causal) sequences. Thus, it is 

proved that HT relates log magnitude and phase of the spectrum of a minimum-phase sequence. 

The same decomposition we did for continuous and infinite sequences can be applied to periodic 

sequence x[n], which has N samples per period   

{
 
 

 
 

𝑥[𝑛] =  𝑥𝑒[𝑛] + 𝑥𝑜[𝑛] 

𝑥𝑒[𝑛] =
1

2
{𝑥[𝑛] + 𝑥∗[𝑁 − 𝑛]}

𝑥𝑜[𝑛] =
1

2
{𝑥[𝑛] − 𝑥∗[𝑁 − 𝑛]}

 ,       𝑓𝑜𝑟 𝑛 = 1, 2, …𝑁 − 1  (4.13) 

Note that 𝑥[0] =  𝑥[𝑁] and N is even. Thus, one may write 𝑥𝑜[𝑛] = 𝑠𝑔𝑛[𝑛]𝑥𝑒[𝑛] for sequence 

x[n], which is causal on a period. In this regard, the 1-D periodic unit sample can be defined in the 

following definition. 
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Definition 4.18: One-dimensional periodic sequence unit sample is defined as 

𝑠𝑔𝑛[𝑛] ≜

{
 
 

 
 1             𝑛 = 1,… ,

𝑁

2
− 1

0                           𝑛 = 0,
𝑁

2

−1     𝑛 =
𝑁

2
+ 1,… ,𝑁 − 1

                                         ∎ 

Thus, the same as the continuous case, the discrete Hilbert transform (DHT) is equivalent to 

convolution with a DFT of 𝑠𝑔𝑛[𝑛].  

Definition 4.19: The DHT of periodic sequence x[n] is defined as 

𝐷𝐻𝑇{𝑋[𝑘]} ≜ −𝑗𝐷𝐹𝑇{𝑠𝑔𝑛[𝑛]𝑥[𝑛]}                                         ∎ 

The above definition might be generalized for the multi-dimensional case as the following 

definition.  

Definition 4.20: The DHT of i-dimension sequence x[n] is defined as 

𝐷𝐻𝑇𝑖{𝑋[𝑲]} = −𝑗𝐷𝐹𝑇𝑖{𝑠𝑔𝑛[𝒏]𝑥[𝒏]}                                       ∎ 

In Definition 4.20, the 𝑠𝑔𝑛[𝒏] might be written as written in Definition 4.21. 

 

Definition 4.21: The 2-D periodic finite sequence unit sample is defined as 

 

𝑠𝑔𝑛[𝑛1, 𝑛2] ≜

{
 
 
 
 

 
 
 
 1                       𝑛2 = 0, 𝑛1 = 1,… ,

𝑁

2
− 1

1                                     𝑛2 = 1,… ,
𝑁

2
− 1

−1           𝑛2 = 0, 𝑛1 =
𝑁

2
+ 1,… ,𝑁 − 1

−1                          𝑛2 =
𝑁

2
+ 1,… , 𝑁 − 1 

0                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                 ∎ 
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Accordingly, the minimum-phase impulse response can be numerically computed using (4.14). 

ℎ[𝑛] = 𝐼𝐷𝐹𝑇𝑖{|𝐻[𝒌]|𝑒
𝑗𝜑𝒌}                                               (4.14𝑎) 

𝜑𝒌 = 𝐷𝐻𝑇𝑖{log|𝐻[𝒌]|}                                                    (4.14𝑏) 

 

4.2.2 Design of minimum-phase digital filter for noise shaping 

The noise shaper design can be accomplished by defining a digital filter  �̂�(𝑧) according to the 

spectrum of interest. Then it should be translated to the revised transfer function 𝐻(𝑧),  used in the 

feedback noise shaper. Hence, �̂�(𝑧) might be normalized to its unit term and subsequently 

excluded from the result, as in (4.15) for a unidimensional filter.  

𝐻(𝑧) = ∑
𝑎𝑛
𝑎0
𝑧−𝑛

𝑁

𝑛=1

                                                      (4.15) 

where 𝑎0 is the unit term, 𝑛 = 0, of �̂�(𝑧). Normalizing the impulse response to its unit sample 

shifts the frequency response magnitude. This is easier to understand why MPF is optimal for noise 

shaping. Since MPF concentrates the impulse energy on the low-delay coefficients; thus, the up-

shift is minimized.  

As much as the filter cut-off frequency increases, the impulse energy-delivery delay increases, 

and the out-off band noise amplification increase so that the noise shaper loses its ability to push 

the in-band quantization noise out-of-band. As a comparative example, in Fig. 4. 5, two 21-tap 

MPFs have been designed with different cut-off frequencies. The root-loci diagrams show that 

both designed filters are MPF. As seen in Figs. 4. 5(e) and 4. 5(f), the amount of out-off band noise 

amplification is more for the filter having a higher cut-off frequency than that of the filter with a 

lower cut-off, which has impulse energy of smaller magnitude. 
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(a) (c) (e) 

   
(b) (d) (f) 

Fig. 4. 5. Two 1D minimum-phase filters with different stopbands. (a) and (b) illustrate the z-plane of the two filters 

transfer functions, �̂�(𝑧), with different cut-off frequencies, (c) and (d) are the revised impulse responses of the targeted 

system, (e) and (f) are the frequency response of the targeted system, H(z), correspondingly. 

 

As a 2-D example, the targeted log-magnitude diagram is presented in Fig. 4.6(a). As seen, the 

assumed log-magnitude is in the form of concentric circles with different steps. As mentioned 

before, the magnitude and phase of the minimum-phase filter are related to each other by the DHT. 

Fig. 4.6(b) illustrates the impulse response. As seen, the signal is a one-sided asymmetric half-

plane. Also, one may notice that as the quantized structure has been used in the spectral domain 

(the concentric circles with different steps), some higher-order harmonics appeared in a spatial 

domain, which are circulating around the peak value of the impulse; this result agrees with our 

theory of quantization. The result for the approximated minimum-phase 2-D impulse response is 

presented in Fig. 4.6(c), and the corresponding magnitude of a transfer function (in dB) is shown 

in Fig. 4.6(d). Almost half of the truncated impulse response in Fig. 4.6(c) has a non-zero entry. 
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Next, we have to prove that the filter designed is minimum-phase. As already has been shown, the 

system is one-sided; thus, the causality condition is insured. Also, the designed digital filter is FIR; 

thus, the filter is stable. Thus, if we prove the inverse system is stable, the system would be 

minimum-phase. To do that, we use Huang's theorem. Note that our system is half-plane. However, 

we can always use a successive right-shear operator to convert a half-plane system to a first-

quadrant system. If the resultant system is stable by Huang's theorem, so would be the original 

system. The root-loci diagrams of the quarter-plane system for |𝑧1| = 1 and |𝑧2| = 1 are illustrated 

in Fig. 4.6(e) and Fig. 4.6(f), respectively. As seen, all the calculated 𝑧2 and 𝑧1 points remain inside 

the unit circle, which shows that the filter designed is minimum-phase by Huang's theorem. 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Fig. 4. 6. An Exemplar 2D minimum-phase filter. (a) and (b) illustrate the z-plane of the two filters transfer functions, 

�̂�(𝑧), with different cut-off frequencies, (c) and (d) are the revised impulse responses of the targeted system, (e) and 

(f) are the frequency response of the targeted system, H(z), correspondingly. 
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Chapter 5 

Noise shaping for PA design 

5.1 Fundamental implications 

We define the normalized spatial frequencies as 𝝑 = [𝜗1, 𝜗2], which is simply the digital 

frequency vector normalized to π. Another vector is the antenna direction cosines 𝑷 =  [𝑈, 𝑉], 

normalized wave number. These two vectors can be related to each other by 𝝑 =  𝛿𝑷. The scalar 

factor of 𝛿 = 𝑑/𝜆, where 𝑑 is a constant (it is not the element spacing), converting the normalized 

lattice to the physical one, and 𝜆 is the wavelength. For the Nyquist design, 𝑑 = 𝜆 and the 

normalized spatial frequency and wave number vectors become equal. Evidently, for a dense array 

𝛿 < 1, while for the sparse one 𝛿 > 1.  

Considering that U = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 and V = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, the visible region is defined as the region 

confined by 𝑈2 + 𝑉2 ≤ 1. This is simply because |𝑠𝑖𝑛𝜃| ≤ 1 and that, out of this region (called 

the invisible or imaginary region), the EM wave decays or says it does not contribute to a coherent 

wavefront, plane wave propagation. Thus, the visible region is of unit radii in 𝑷 (or U-V) plane 

and of 𝛼 radius in 𝝑 plane. One may consider the excitation of the antenna array as a 2-D discrete 

signal; thus, based on the sampling theorem, the array factor is periodic. In this regard, the shape 

of one fundamental period of the array factor is not unique. This is because the lattice matrix is not 

unique.  

If one considers 𝜌 as the normalized array pitch for ‖𝒃𝟏‖2 = ‖𝒃𝟐‖2 = 𝜌, then it should be 

respectively taken as 0.5 and 
1

√3
≈ 0.58 for the Nyquist design of the square and the so-called 

hexagonal lattice.  
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(a) (b) 

  

(c) (d) 

Fig. 5. 1. Element location lattices and reciprocal lattice periods. (a) two equal length basis vectors of Element location 

lattice, (b) two basis vectors of the reciprocal lattice. Schematic of the reciprocal domain period for (c) square lattice 

and (d) hexagonal one. 

  
(a) (b) 

Fig. 5. 2. Example of hexagonal Element location lattice and reciprocal lattices. (a) Element location lattice and 

reciprocal steering lattice and (b) periodicity lattice and steering lattice. 

That comes from algebra. If two base vectors were of equal length, so would the reciprocal 

lattice basis vectors. Besides, the product of the stem lengths is 0.5, ab = 0.5, as shown in Figs. 

5.1(a)-(b). Also, 𝛼 + 𝛽 =180°. The schematic of the fundamental period for square and hexagonal 

lattices is shown in Figs. 5.1 (c)-(d). Dashed circles show the visible region. For example, for a 

hexagonal lattice, to avoid the grating lobe appearance for any steered array factor, the distance 

between the center of two adjacent periods should be at least 2 on the U-V plane. In Fig. 5.1(d), 
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𝛽 = 60° and that, the stem b is √3 and so that a = 
1

2√3
 which contributes to normalized element 

spacing of 𝜌 =  
1

√3
. 

The Nyquist hexagonal lattice generates the densest PL without the appearance of grating lobes 

for any steered array factor or, equivalently, the sparsest ELL among regular lattices constituted 

by regular polyhedral prototile [100]-[101]. In simple words, decreasing element density per unit 

area makes the antenna cheaper, at least from the number of elements used perspective. However, 

the preceding statement is controversial, as pointed out later.  In Fig. 5.2(a), a hexagonal ELL with 

a Nyquist design is shown by blue dots. Its reciprocal lattice is shown with the same color in Fig. 

5.2(b), which is PL. As seen, the distance between the two elements of PL is 2; this lattice is 

orthogonal to the lattice shown in Fig. 5.1(d). The SL in Fig. 5.2(b) and its reciprocal lattice are 

shown in red color. Here, 𝑻 = 5 𝑰; thus, the steering lattice is 25 times denser than PL. That means 

the beam can only be defined in 25 directions. The SL elements are precisely the samples of the 

beamspace domain, and thereby, the reciprocal domain becomes periodic, which explains that the 

lattice in Fig. 5.2(a), shown by the red hollow circles, is, in fact, the SL periodicity lattice in the 

reciprocal domain which is 25 times sparser than ELL. 

5.2 Real-valued noise shaping  

For the real-valued noise shaping (RV-NS), the RCDF should be utilized whose frequency 

response is conjugate symmetric. For now, we use the RV-NS to address the phase-only synthesis 

of the array.  That means that the filter should be designed so that the shifted spectrum of the PDA 

error would be in the visible region.  

As an example, for a 1-D case, let us consider the targeted beam point at 𝑈0, as shown in Fig. 

5.3. The borders of the visible window (or area of interest) are supposed to be off 𝑈𝑣 range. In this 
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case, if one designs a CCDF at the center spatial frequency of -𝑈0 with the band's rejection of 𝑈𝑣, 

the in-band quantization error of excitation would be pushed out from the visible window at the 

center frequency of O with the band rejection of 𝑈𝑣. However, in the case of the real-valued filter, 

the digital filter might be designed for the band rejection of 𝑈𝑣 + 𝑈0, which means that a part of 

the PDA noise would be pushed out excessively, and that might be considered as the limitation of 

the phase-only synthesis since.     

A visual representation of the proposed method for the 2-D case is illustrated in Fig. 5.4 for the 

planar array. Besides, we considered 𝝑 = [𝜗1, 𝜗2] as a 2-D normalized frequency in Fig. 5.4(a), 

the targeted beam point, T, is rotated 180° with respect to the origin, finding the center of the 

shifted stopband (SB). The frequency response magnitude is symmetric with respect to the origin.  

Therefore, every point on one side of the border of symmetry (BOS) has a mirrored copy on the 

other side. That generates an intersection region between the SB and its mirrored copy which is 

truncated in Fig. 5.4(b), yields the truncated shifted stopband (TSSB). In practice, since some QLs 

may appear there, the filter design should consider the intersection region. Overall, the real-valued 

digital filter is realizable with an even stopband (ESB), as depicted in Fig. 5.4(c). Having 

performed the RV-NS, the realized band rejection (RBR) will be like the one schematically shown 

in Fig. 5.4(d). As seen, the same as the 1-D counterpart, a part of the stopband is out of the visible 

region, which is the disadvantage of the RV-NS since it inserts excessive noise. This excessive 

stopband corresponds to the beam pointing angle and the array pitch size.  
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Fig. 5. 3. A schematic view of the digital filter spectrum and the targeted beam point at 𝑈0. 

Fig. 5. 4. Design of filter layout for phase-only synthesis. Schematic view of the (a) shifted stopband, (b) truncated 

shifted stopband, (c) even stopband, and (d) realized band rejection region.   

5. 3. RVNS for square lattice PA beamforming 

Let us reconsider the exemplar PA of Fig. 5.5(a). The constituent element is an aperture-coupled 

patch operating at a 10 GHz center frequency. The patch is designed and matched in a periodic 

boundary condition (PBC). The antenna is backed by a reflector, increasing the antenna's front-to-

back ratio. Other specifications are the same as mentioned in Fig. 3.9. The revised system and the 

resultant PDA are shown in Figs. 5.5(a) and 5.5(b), respectively. The targeted filter frequency 

  
(a) (b) 

  
(c) (d) 
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response includes two major constituents comprising the spots (deep nulls) corresponding to the 

QLs and the circular shape background associated with the visible region. Of course, they are 

shifted according to the beam point direction and subsequently symmetrized. The reason for using 

spots or (notches) is that the error spectrum is not flat. The exact solutions, by FDTD, to radiation 

patterns of antennas are illustrated in Figs. 5.5(d). Both patterns are normalized to the maximum 

gain of the one designed by RV-NS. As seen, near the extreme of the visible window, there is a 

sharp roll-off for full-wave results that can primarily be attributed to the edge diffraction. The 

constituting element is y-polarized. The element factor is considered in Fig. 5.5(d) for the 

computed result, making about 3-4 dB roll-off close to the extreme of the visible window on the 

E-plane. Note that we approximately eliminated the coupling factor in the element factor by using 

the PBC. As seen, the RV-NS method compensates for the gain loss incurred by the quantization 

to some extent. Compared to the one with high precision PDA, the RV-NS cost for antenna gain 

degradation is about 0.1 dB, cf. Fig. 3.9. However, the non-quantized PDA is not realizable; thus, 

the antenna designed based on the noise shaping approach has the highest gain of practical systems. 

Evidently, the amount of gain compensation depends on the filter specifications. Note that the 

excessive stopband region and/or depth of band rejection can increase the gain loss. The above 

example also shows that the noise shaping method outperforms the dithering. The exact solution 

for the PA designed using NSD-RPDF showed 0.27 dB gain loss compared to the RV-NS. 

However, the RV-NS fails to shift the QLs into the invisible region for some commanded beam 

directions. That, in particular, happens for 𝜌 ≥ 0.5. It follows that the RCDF frequency response 

is conjugate symmetric, and the filter is designed based on the shifted error pattern. For an antenna 

with 𝜌 ≥ 0.5, this may prohibitively yield a vast bandstop region for some beam directions 

covering the whole fundamental period of the array factor.  
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(a) (b) (c) 

 

 
(d) (e) 

Fig. 5. 5. Planar phased array based on RV-NS compared with the one compared with simple uniform quantization 

(SUQ). (a) Frequency response of the revised digital filter, (b) the phase delay arrangement, (c) array factor designed 

by RV-NS. (d), compared with analytical results, the 3D exact solution of patterns for an antenna designed based on 

SUQ and RV-NS (e) exact patterns on the plane. 

 

    
(a) (b) (c) (d) 

Fig. 5. 6. Schematics of filter layout background for 𝜌 = 0.5 and [𝜃, 𝜑] = [50°, 10°], (a) disk associated to the visibility 

region, (b) shifted layout to beam point, (c) intersection pattern of symmetric copies, (d) unweighted filter layout 

background. 

 

   
             (a)                                   (b)                     (c) 

Fig. 5. 7. Schematics of filter layout background for 𝜌 = 0.5 and [𝜃, 𝜑] = [45°, 45°], (a) shifted layout, (b) intersection 

pattern of symmetric copies, and (c) unweighted filter layout background. 
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(a) (b) (c) 

  

   
(d) (e) (f) 

Fig. 5. 8. Comparison of random dither and RV-NS based on spaced notches. (a) steered array factor, [𝜃, 𝜑] = [45°, 

41°], computed for (a) simple quantization, (b) RPDF and (c) TPDF systems. (d) filter layout example of RV-NS 

type II, decibel array factor for (e) RV-NS type I, and (f) RV-NS type II. 

TABLE 5.1 

NORMALIZED DIRECTIVITY AND SLL IN DB FOR ARRAY FACTORS OF FIG. 5.8. 

 SUQ RV-NS type I RV-NS type II RPDF TPDF 

SLL -16 -20.9 -25.6 -25.3 -23.6 

𝐷𝑛(𝝑𝟎) 0 -0.02 -0.07 -0.17 -0.27 

 

For Nyquist design, the method can "see" some portion of the invisible region, particularly for 

beam steering along the principal axes or close to them. Besides, the fundamental period becomes 

visible for some critically large array pitches. Fig. 5.6 schematically illustrates how this is so.  

The black circular disk is associated with the visible region, and the gray dashed line illustrates 

the fundamental period boundary. After shifting and symmetrizing, Figs. 5.6(b)-5.6(c), the 

resultant unweighted filter layout background (FLB) would be in the form shown in Fig. 5.6(d); 

actually, one can compute that directly.  
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On the other hand, the method does not "see" the free spectrum for those steering angles along 

𝜑 = ∓45° or close to that. This is simply because the shifted invisible region is covered by the 

mirrored copy of the black disk, which has been shown in Fig. 5.7 for the commanded beam at 

[𝜃, 𝜑] = [45°, 45°]. 

In cases where the invisible region is not reachable, our strategy is to define the RCDF only as 

some spaced notches. Those correspond to the QLs inside the visible region and their mirrored 

copies. In Figs. 5.8(a)-(c), array factors of excitation signals quantized to 3 bits by SUQ, RPDF, 

and TPDF are depicted, respectively. The RV-NS approach also addresses this problem based on 

spaced notches strategy. Two RCDFs are used with different depths of notches. Let us call them 

RV-NS type I and type II. The minimum null depths in their filter layout are correspondingly -10 

dB and -22 dB. For example, the filter layout for type II is shown in Fig. 5.8(d). There are two 

symmetric deep nulls and some seemingly very shallow ones. Indeed, the deep nulls are intended 

for main QLs with higher peaks. However, there are also other QLs have smaller peak amounts, 

cf. Fig. 5.8(a). Without considering the shallow notches associated with those minor QLs, those 

regions would be out-of-band; thus, the noise shaper amplifies those region error magnitudes and 

may become malignant. The results of array factors for two systems are shown in Figs. 5.8 (e) and 

5.8 (f). Also, the SLL and the normalized directivities for all cases are tabulated in Table 5.1.  As 

can be seen, the RPDF and RV-NS type II QL peak level performances are almost the same. 

However, the RV-NS type II incurs less directivity loss. This is ironic since although the RPDF 

inserts the least amount of dither power among all systems that comply (2), Table 5.1 proves that 

RV-NS designed based on the spaced-notches strategy is optimal. The preceding statement is in 

addition to the fact that, generally, the RV-NS is a spectrally inefficient method, imposing 

excessive noise power on the system. 
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5.4 Rationale behind the gain compensation 

In the example of Fig. 5.5, the antenna directivity increased after noise shaping. Here we explain 

the reason. The imaginary region has no physical reality in EM propagating mode but contributes 

to evanescent wave components [102]. Referring to the discrete form of Parseval's equation,  

∑|𝑠[𝒊]|2

𝒊∈ℤ2

= ∫ |𝑆(𝝑)|2𝑑𝝑
⊠

                                                  (5.6) 

where ⊠ is a stenography for any shape of the beamspace fundamental period. The power pumped 

into the terminal of a physical antenna is associated with the equation left side, but the radiated 

power only contributes to the visible region of the beamspace domain. In this regard, if one 

succeeds in pushing the QLs out of the visible region, the antenna directivity may increase. 

However, in such a "thought experiment," the cost of QL suppression should be clarified. Note 

that this compensation is a portion of the gain loss due to the QLs suppression, not the gain loss 

due to the inserted noise. In this regard, one may write the following in a hemispherical sense: 

𝐷(𝝑𝟎) ∝  𝑃(𝝑𝟎) [∫ 𝑃(𝝑)𝑑𝝑
⊗

]

−1

                                              (5.7) 

where ⊗ signifies the visible region of the beamspace domain and 𝑃(𝝑) might be considered as a 

power pattern, then 𝐷(𝝑𝟎) corresponds to the antenna directivity at the specified DOA, 𝝑𝟎. Could 

one only displace the QLs from the visible region to the imaginary one, 𝑃(𝝑𝟎) would almost 

remain constant, referring to (5.6). That contributes to an increase in antenna directivity since, in 

(5.7), the integration inside the bracket decreases. However, in practice, it might not be possible 

to push all the in-band noise out-of-band. Besides, the system imposes some overloads, meaning 

that it inserts some portion of noise; thus, 𝑃(𝝑𝟎) drops, which degrades the antenna directivity, 

corresponding to the inserted noise power. As stated before, MPS can better satisfy such a request 
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among all systems with the same magnitude spectrum.  

5.5 Complex-valued noise shaping 

If the underlying signal is the complex-valued excitation, the phasor 𝑗𝐴𝑖𝑒
𝑗Φ𝑖, no shift for the 

filter response is required, in contrast to the RV-NS approach. We may call that complex-valued 

noise shaping (CV-NS) or simply CV. In this case, both RCDF and CCDF are possibly to be 

utilized. The advantage of CCDF over RCDF is that its frequency response is one-sided; thus, it 

may contribute to more spectrally efficient noise shaping. For the CV method, minor lobe 

performance is examined for 𝜌 equal to 0.5 (709 elements) and 0.4 (1129-element). All filters are 

designed using the DHT method with a truncated impulse response of 20×30 under the Han 

window. Also, the performance of the RV method for the 3-bit system is compared with those of 

the CV one. The excitation amplitude is quantized to 3 bits for the RV-NS approach. The 3-bit 

amplitude quantization does not incur considerable distortion on the radiation pattern.  

The method of minor lobe performance for a 4-bit system can be seen in Fig. 5.9. Comparing 

with the SUQ, and CV-NS has almost eliminated all QLs in the visible region; almost no minor 

lobe with more than -35 dB has appeared in the visible region. As expected, decreasing the number 

of bits to three, QLs of much higher levels show up. 

It can be seen in Fig. 5.10 for a 3-bit system that although both methods can acceptably suppress 

the QLs, the CV method outperforms the RV one. Besides, in Figs. 5.10(b) and 5.10(c), no 

effective portion of the invisible region is reachable by the RV-NS; thus, RCDFs are designed 

based on the spaced-notches strategy. However, even in Fig. 5.10(a), both methods can push the 

QLs to the invisible region, the RV-NS still has inferior performance. The frequency responses of 

revised systems are shown in Figs. 5.11(a) and 5.11(b).  
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Fig. 5. 9. Decibel array-factor for 0.5 normalized pitch, excitation magnitude and phase are quantized to 4 bits and the 

main beam is commanded at (a) [𝜃, 𝜑] = [5°, 90°], (b) [𝜃, 𝜑] = [49.2°,60°], and (c) [𝜃, 𝜑] = [52.6°, -33°]. 
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Fig. 5. 10. Decibel array-factor for 0.5 normalized pitch, excitation magnitude and phase are quantized to 3 bits and 

the main beam is commanded at (a) [𝜃, 𝜑] = [20°, 90°], (b) [𝜃, 𝜑] = [49.2°,60°], and (c) [𝜃, 𝜑] = [52.6°, -33°]. 
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(a) 

 
(b) (c) 

Fig. 5. 11. Design of phased array based on RV- and CV-NS methods for 0.5 normalized array pitch. Computed 

frequency response of revised (a) real-valued, (b) complex-valued digital filter, and (c) the corresponding exact 

solutions of radiation patterns. 
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Fig. 5. 12. Decibel array-factor for 0.4 normalized pitch, excitation magnitude, and phase are quantized to 3 bits. The 

main beam is commanded at (a) [𝜃, 𝜑] = [35°, 90°], (b) [𝜃, 𝜑] = [49.2°,60°], and (c) [𝜃, 𝜑] = [52.6°, -33°]. 
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(a) (b) (c) (d) 

Fig. 5. 13. Design of phased array based on RV- and CV-NS methods for 0.4 normalized array pitch.  (a) Computed 

frequency response of the revised (a)  real-valued, (b) complex-valued digital filter, and corresponding decibel array-

factors on one fundamental period of the beamspace domain in (c)-(d).   

The corresponding full-wave solutions for the radiation patterns are illustrated in Fig. 5.11(c). As 

expected, the antenna designed based on the CV-NS has a negligible amount of more gain and less 

minor lobe level in comparison to the others; the mean excitation power is almost the same for all 

antennas. Thus, the better performance of the one designed by the CV approach is more related to 

more efficient noise shaping. 

Generally speaking, decreasing the antenna pitch can dramatically decrease the quantization 

distortion. The original signal is almost bandlimited, while the power of quantization noise 

distributes in a broader region of the beam space domain, and the maximum QL level drops.  

In addition, some QLs are alias versions of the original ones; as such, antennas with smaller pitches 

received less severe QL levels. Besides, it may lead to more QLs appearing at high spatial 

frequencies inside the so-called invisible region; thus, there would be no need to address them in 

the filter design. In Fig. 5.12, the simulation results of the array example with 𝜌 = 0.4 are 

illustrated using a 3-bit system. In addition to less quantization distortion than the one with 𝜌 =

 0.5, the noise shaper also works more effectively for this case. Furthermore, for the RV method, 

there is enough free spectrum for all beam directions; hence, the error can be conveniently pushed 

to the invisible region. Overall, both RV and CV methods work much more effectively than those 

of Fig. 5.10. Again, note that the system performance is not unique and depends on the filter 

applied. In Fig. 5.13, the performance of both methods is presented on one fundamental period of 



Chapter 5. Noise shaping for PA design                                               

94 

 

steered array-factor, [𝜃, 𝜑] = [52.6°, -33°]. Specifically, Figs 5.13(a) and 5.13(b) show the 

frequency responses of the system used. As seen, though the RV-NS imposes excessive bandstop, 

it "sees" enough portion of the invisible region. The distortion due to the amplitude quantization 

is somehow different from the phase quantization, and it depends more on the tapering approach 

used. Furthermore, the phase quantization error manifests itself by preventing the received signals 

from being combined coherently; hence, phase quantization is more problematic than amplitude 

quantization.  

Quantizing the high precision amplitude to 3-4 bits work acceptably well with almost no 

considerable distortion, although such a judgment depends on the application. However, using 2-

bit amplitude quantization yields an increase of considerable distortion. See the contours faintly 

illustrated for SUQ in Fig. 5.14 that the QLs, due to amplitude quantization, seemingly circulate 

the main beam. Although the amplitude and phase quantization errors are much more severe for 

the 2-bit system than those of the 3-bit ones, e.g., in Fig. 5.14(a), SLL for SUQ is about 9.6 dB; 

still, CV-NS works promising and suppresses the in-band QLs. 

Thus, although a smaller array pitch adds to the costs due to the more control elements needed, 

those costs might be compensated back to some extent since the pattern receives less severe 

distortion and the noise shaper works more efficiently; thereby, the system can be designed with 

cheaper devices. Further of importance is the lattice used.  

Finally, such implementation should be done for wideband systems' upper end of the signal 

temporal-frequency band, ensuring that the error pushed to the invisible region remains safe. Thus, 

the radius of the visible disc should be assumed to be unity for the upper-frequency band. 
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Fig. 5. 14. Decibel array-factor for 0.5 normalized pitch, excitation magnitude, and phase are quantized to 2 bits. The 

main beam is commanded at (a) [𝜃, 𝜑] = [35°, 90°], (b) [𝜃, 𝜑] = [49.2°,60°], and (c) [𝜃, 𝜑] = [52.6°, -33°]. 
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5.6 Hexagonal lattice PA 

5.6.1. Fundamentals 

The suboptimality of classic square lattice is well-known. That requires a denser basic lattice 

comparison to, for example, the hexagonal one. However, one should recognize that the classic 

square lattice, 𝜌 = 0.5, provides a freer spectrum by which the noise shaping process can be carried 

out with greater fidelity, particularly for the RV-NS method.  

Consider an almost circular-aperture hexagonal lattice PA with a diameter of 16λ0. Fig. 5.15(a) 

shows the uniform phase distribution array factor on more than one fundamental period. Fig. 

5.15(b) shows almost one period of the steered array factors in which 3-bit SUQ is assumed. As 

seen, the quantization yields the appearance of QLs. 

Phase quantization hinders the input signals from being combined coherently, which typically 

causes more severe distortion than amplitude quantization. We observed that the QLs show up 

periodically with respect to the azimuth angle. For the square- and the so-called hexagonal lattice 

that is respectively ∆𝜑𝑠 = 90° and ∆𝜑ℎ = 60°. It is because the QLs of a planar array are the 

intersection of those of the linear arrays located on the principle axes of the coordinate system. 

Fig. 5.15(c) illustrates another array factor example with an offset angle of 3×60°. The QL patterns 

are just rotated along the center, respecting the offset azimuth angle. This concept might be 

exploited in designing filter layout spots for different angles. In Fig. 5.16, the wavefront traversal 

is schematically illustrated for a hexagonal lattice array. The filter impulse is of size 20×10. In Fig. 

5.16(a), the axes are in terms of sample number, while Fig. 5.16(b) illustrates the ELL layout and 

the physical positions of active elements normalized to the wavelength. Note that in the case of a 

square lattice, the two figures would show up in the same fashion. 
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This non-linear mapping between the two domains is one of the discrepancies between square 

lattice noise shaping and its hexagonal counterpart. Evidently, the same happens in a reciprocal 

domain for array factor and filter frequency response, which will be discussed later in the particular 

RV-NS approach section.  

 

   

(a) (b) (c) 
Fig. 5. 15. Exemplar hexagonal array with 3-bit digital phase shifter. (a) Array factor of excitation with uniform phase 

distribution and magnitude Taylor weighting of 37 dB SLL. Decibel array-factor of excitation signal quantized by 3-

bit simple quantization system for the beam point direction at 𝜃 = 52° with (b) 𝜑 = 43° and (c) 𝜑 = 223°. 

 

  
(a) (b) 

Fig. 5. 16. Schematic of noise shaper wavefront. (a) Impulse response samples, hollow circles, are schematically 

overlaid on the samples associated with the antenna active elements in which the noise shaper wavefront is assumingly 

striking to the sample [𝑛𝑥, 𝑛𝑦] = [19, 0], and (b) corresponding element location lattice layout. 
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(d) 

Fig. 5. 17. Decibel array factors in which different 3-bit systems quantize the complex beamforming coefficients. The 

normalized array pitches are respectively (a) 0.58, (b) 0.55, (c) 0.5. (d) Normalized array-factors on 𝜑 = 60° plane. 

5.6.2 CV-NS 

In Fig. 5.17, the beam is commanded at [𝜃, 𝜑] = [23°, 60°]. The CBW is quantized into 3 bits 

for both phase and amplitude. The array factors designed based on SUQ and CV-NS systems are 

shown for normalized array pitches of ≈ 0.58, 0.55, and 0.5. Those correspondingly lead to 685, 

769, and 931, constituting elements on array aperture.  
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(a) (b) (c) 

Fig. 5. 18. The revised systems for different pitches. Normalized pitch, 𝜌, equal to (a) 0.58, (b) 0.55, (c) 0.5. 

  

 

   
(a) (b) (c) 

Fig. 5. 19. Array factors for different dithering. (a) RPDF, (b) TPDF, (c) GPDF. 

TABLE 5.2 

DIRECTIVITY LOSS WITH RESPECT TO HIGH PRECISION SYSTEM.  

 SUQ CV-NS RPDF TPDF GPDF 

Loss 0.15 dB 0.18 dB 0.31dB 0.48 dB 0.68 dB 

SLL 16.77 dB 29.6 dB 26 dB 24.7 dB 24.2 dB 

 

As seen in Fig. 5.17(a), the method is feasible in QL suppression. Nevertheless, the filter 

stopband region is quite broad [see Fig 5.18(a)]. Hence, the system imposes a significant portion 

of noise which is detrimental to the antenna gain. The array factors for CV-NS systems on 𝜑 = 60° 

plane are shown in Fig. 5.17(d). Those for SUQ systems are also sketched faintly for comparison. 

All diagrams are normalized to the high-precision system array factor peak. As seen, all array 

factors designed based on the CV method have more gain values than those designed by the SUQ 

system. That is true because effective QL suppression pushes the error into the invisible region. 
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That does not happen in dithering, which typically imposes further gain degradation than the SUQ 

system. Moreover, note the results for 𝜌 = 0.55, in which the beam for SUQ has about 0.4 degrees 

deviation. That has happened due to distortion beneath the main beam; see the notches in Fig. 

5.17(b) associated with the QLs in the array factor. Thus, the results show that noise shaping can 

realign the beam point deviation by digging out the distortion beneath the main beam.   

Sometimes power leaks through the minor lobes, here in terms of QLs in the visible region, 

yields considerable antenna gain loss and rise of interference, but some other times, it manifests 

itself as distortion inside the invisible region, which according to the Parseval equation yields small 

gain loss amount. Indeed, the distortion inside the invisible region does not contribute to the 

interference. As stated, it decreases the antenna directivity to some extent. That explains why the 

results for 𝜌 = 0.58 show lower directivity than the one for 𝜌 = 0.5 (𝛼 ≈ 0.86), which contributes 

to a smaller visible region in one fundamental period of array factor. This is because, as much as 

the filter stopband region becomes smaller, the noise shaper inserts a smaller amount of noise and 

yields smaller antenna gain loss.  

In Figs 5.18(a)-5.18(c), the maximum out-of-band amplifications are 18.1 dB, 12.83 dB, and 

5.91 dB, respectively. We also observed some results for the dithered systems shown in Figs. 5.19 

with rectangular, triangular, and Gaussian (with zero mean and standard deviation of about half of 

the LSB) probability density functions, respectively written as RPDF, TPDF, and GPDF. The 

amount of gain loss and minor lobe level is Tabulated in Table 5.2. 

Let's terminate this section with some full-wave solutions. Like the previous section, an almost 

circular aperture with a 16λ0 diameter is assumed with different normalized array pitches, 

including ≈ 0.58, 0.55, and 0.5. Furthermore, the beam is assumed to point at [𝜃, 𝜑] = [23°, 0°]. 

The constituting array element is assumed to be an aperture-coupled patch. The simulation results 
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are compared in Fig. 5.20 for SUQ [(a), (b), and (c)] and CV-NS [(d), (e), and (f)]. As expected, 

the CV-NS successfully suppresses the in-band quantization distortion. The SUQ results are 

sketched faintly in Fig. 5.20(g), while the black lines show CV-NS system results. The maximum 

antenna gains of those with 𝜌 = 0.5 are more than other systems. That might be attributed to less 

distortion than the array factor with a smaller received pitch, which is expected by the dubious 

white noise assumption. However, that is incorrect for the second case, 𝜌 = 0.55. Its maximum 

gain is less than that belonging to 𝜌 = 0.58 with a considerable point deviation of about 0.4°.  

This might be attributed to a relatively huge impulse-shaped QL that happens beneath the main 

beam. It can be seen for the deep notch considered for the filter design in Fig. 5.18(b). Based on 

what was stated before, the QLs of the SUQ systems of Figs. 5.18 and 5.20 examples are of the 

same shape with different offset rotation angles, ∆𝜑ℎ = 60°. Note that the noise shaper does not 

work the same since the filters used are different. This is a good example of harmonic distortion 

that differs from the classic white noise premise. 

      

 

(a) (b) (c) (d) (e) (f) 

 

 

 
(g) 

Fig. 5. 20. Full-wave simulations of 3D radiation patterns, [𝜃, 𝜑] = [23°, 0°]. Normalized array pitch of (a) 0.58, (b) 

0.55, (c) 0.5 for simple quantization system. Normalized array pitch of (d) 0.58, (e) 0.55, (f) 0.5 for CV-NS. (g) Full-

wave simulations of radiation patterns on H-plane. 
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 (a) (b) (c) 

Fig. 5. 21. Decibel array factor for phased array with different diameters. The phased array diameter of (a) 5λ, (b) 7λ, 

and (c) 33λ. All systems are quantized into 3 bits. 

5.6.3 Array size and number of elements 

Influential factors in noise shaping include lattice type, array pitch, number of bits, maximum 

tolerable SLL, the digital filter used, and array size/number of elements. Generally speaking, noise 

shaping is not an effective approach for very small-scale size PAs. We observed that the system 

performance deviates from the predefined spectral shape for less than a specific number of 

elements. Strictly speaking, the noise shaping performance is a function of the number of elements, 

not the array size.  

In Fig. 5.21, some steered array factors are shown for different aperture diameters, including 5λ 

(61 elements), 7λ (151 elements), and 33λ (3319 elements), respectively, designed for 20 dB, 25 

dB, and 45 dB SLL Taylor weightings. For all of them, the phase and amplitude of CBWs are 

quantized to 3 bits. It is witnessed that the result would not be acceptably compatible with the 
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predefined spectral shape for smaller array sizes, e.g., In Fig. 5.21(a), the noise shaper does not 

work acceptably for the current array pitch and SLL.  

Besides, it might be evident that the antenna gain loss compensation is a function of predefined 

SLL since that determines the depth of the filter stopband, which controls the total power of noise 

inserted. Moreover, we observed that the distortion could be acceptably shaped for relatively small 

array diameters, e.g., 5λ, but with a smaller array pitch of 𝜌 = 0.5, contributing to 91 elements not 

shown here for brevity. That might be because a wider invisible region makes the noise shaper 

pump more effective for such a case, and actually smaller array pitch increases the total number 

of elements. 

5.6.4 RV-NS 

A schema of a circular disk corresponding to the visible region is shown in Fig. 5.22(a). The 

gray dashed parallelogram is an indication of the fundamental period. The design procedure of 

filter layout for the RV method is schematically shown in Fig. 5.22. The same as the square case 

in Fig. 5.6, the area in which the two copies have no intersection is the "reachable" free spectrum; 

the method can "see" those out-of-band areas corresponding to the invisible region. That is 

precisely the white color area in Fig. 5.22(d) and the resultant filter layout shown in Fig. 5.22(e), 

considering the notches associated with the QLs inside the visible region.  

In Fig. 5.23(a), the frequency response of the targeted or revised system is shown. Also, that is 

shifted respecting the beam position to show how the noise shaper works in the beamspace domain 

[see Fig. 5.23(b)]. As seen in Fig. 5.23(c), the array factor for the 3-bit system is spectrally shaped 

with respect to Fig. 5.23(b). 
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(a) (b) (c) (d) (e) 

Fig. 5. 22. Schematics of filter layout constituents for 𝜌 = 0.5 and [𝜃, 𝜑] = [52°, 223°]. (a) circular disk corresponding 

to the visibility region, (b) shifted layout to the image of beam point, (c) intersection pattern of symmetric copies, (d) 

unweighted filter layout background, and (e) filter layout. 

  

   

(a) (b) (c) 

Fig. 5. 23. Design of Hexagonal phased array based on real-valued method and 0.4 normalized pitch. (a) Revised 

transfer function, (b) shifted copy of (a) with respect to the beam position, and (c) decibel array factor of a spectrally 

shaped system by the real-valued method. 

In some cases, there may be non or not enough out-of-band regions that the method can see. 

Two examples are shown in Figs. 5.24 for normalized array pitches of 0.55 and 0.58. The beam 

point is commanded at [𝜃, 𝜑] = [52°, 223°]. A very small portion of the invisible region is 

achievable, almost nothing for the one with 𝜌 ≈ 0.58. Even for the case of 𝜌 = 0.55, the very small 

region achievable does not help very much. That is because a vast stopband yields a huge up-shift 

of digital filter frequency response. Note that the filter impulse response should be normalized to 

its reference sample to be used in noise shaping. The normalization causes an upshift. That means 

the system would not have enough in-band attenuation, and the noise shaper would not effectively 

work.  
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For such situations, one may only use spaced-notches corresponding to the QLs inside the visible 

region.  

Comparing the square and hexagonal lattices for the case at hand might be beneficial. It is 

almost always possible to see enough of the invisible region for the array factor steered along the 

Nyquist square lattice principle axis. However, this is not the case for its Nyquist hexagonal 

counterpart. Such a discrepancy might be realized by looking at the element domain in Fig. 5.16. 

Note that in a square lattice, the lattice matrix is an identity matrix but in the hexagonal one is not. 

Almost the same mapping happens in the reciprocal domain if one uses an N-time identity matrix 

as the tiling matrix. Indeed, it is possible to change the fashion of the steering lattice by changing 

the steering lattice matrix, but that does not help since the intersection of the two copies is related 

to the lattice matrix and the beam point direction. 

Thereby, for Nyquist hexagonal lattice, except for some very narrow steering angles, < 5°, there 

is almost always not enough achievable free spectrum for the RV approach. Nevertheless, that 

might be an unfair comparison between hexagonal and square lattices. Hexagonal lattice provides 

a freer spectrum with the same array pitch size. For the Nyquist square lattice, the method does 

not "see" free spectrum for those steering angles along 𝜑 = ∓45°, while enough free spectrum can 

be seen for all steering angles for the hexagonal lattice with half-wavelength array pitch. These 

remarks are schematically shown for square and hexagonal lattices in Figs. 5.25. 
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(a) (b) (c) (d) 

Fig. 5. 24. The schema of intersection pattern of symmetric copies for an array with different array pitch. (a) 𝜌 = 0.55 

(b) 𝜌 ≈ 0.58 and the resultant unweighted filter layout is shown respectively in (c) and (d). 
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Fig. 5. 25. Unweighted filter layout. For (a) Nyquist square and hexagonal lattices with array pitch of (b) 𝜌 ≈ 0.58, 

and (c) 𝜌 = 0.5. 

5.7 Null restoration 

The interfering signal is unfortunate because it contaminates the original signal typically 

coming through the main beam. If the interference comes from any direction except the main beam, 

it can be addressed by embedding a null in the radiation pattern of receiving antenna to improve 

the overall reception performance. Let us call that jammer null (JN).  

Another superiority of noise shaping over conventional random methods can be realized on this 

account. The randomization-based methods contribute to a flat noise; they fill up the nulls and 

worsen the problem in such cases. On the other hand, the underlying problem can be treated with 

the spectrally shaped dither. The JN(s) in the radiation pattern should be addressed in the digital 
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filter design; thus, the quantization error can be pumped out of those areas, and the nulls can be 

restored to some extent. 

Fig. 4.26 illustrates an example of a hexagonal lattice array in which a JN is assumed at about 

[𝜃𝑛, 𝜑𝑛] = [25°, 180°], and the main beam at [𝜃, 𝜑] = [19°, 0°], the color bar is set for [-60, 0] to 

better reveal the JN in array factor. The Figs. 5.26(a) and 5.26(b) show the array factors of high-

precision (HP) and the 3-bit SUQ systems. It can be seen in Fig. 5.26(b) that the QLs have 

appeared, and the JN is wiped out. Note that the JN is still in its position but is buried beneath the 

distortion incurred by the quantization. Fig. 5.26(c) shows the result for RPDF dither. As expected, 

it just suppresses the QLs with the cost of minor lobe level mean value increase. The array factors 

along the V = 0 are shown in Fig. 5.26(d). 

One should note the discrepancy between QL suppression and null restoration. The problem 

due to QLs in conventional PA is more related to error periodicity, which can trivially be addressed 

by inserting noise with specific statistical properties. However, restoring JNs is much more 

complicated as it cannot simply be treated by interrupting the periodicity of error as the problem 

cannot be solved by dithering.  

The noise shaping might treat the underlying problem. The JN(s) in the radiation pattern should 

be addressed in the digital filter design; thus, the quantization error can be pumped out of those 

areas, and the nulls can be restored to some extent. However, we will show that much more 

attenuation is needed for this case compared to QL suppression and the filter design is more 

challenging and trickier.  
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(a) (b) (c) 

 
(d) 

Fig. 5. 26. Array factor with imbedded null. For (a) high precision (HP), (b) 3-bit simple uniform quantization (SUQ), 

(c) 3-bit RPDF. and (d) Array factors along V = 0. 

Consider the examples of Fig. 5.27. One filter frequency response is shown in Fig. 5.27(a). As 

seen, the background disk is again considered, corresponding to the visible region along with some 

small notches and a big one associated with the QLs and the JN to cancel out the hypothetical 

jamming signal. Let us call the notch(s) embedded in the digital filter associated with the JN as 

restoring notch (RN). The maximum depth of notches for the largest QL and the RN is considered 

almost equal. To better see that, the filter responses along the principle axes are shown in Fig. 

5.27(b). The wide RN has almost the same depth as the notch considered at 𝜗 = 0.9 for addressing 

the associated QL. The result of the array factor is shown in Fig. 5.27(c). It can be seen that the 

QLs are suppressed to some extent, but the JN has not been restored. This is because dealing with 

harmonic distortion and QLs is much easier than digging out 60 dB quantization residue; thus, the 

system failed to restore the JN.  
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(a) (b) (c) 

Fig. 5. 27. Array factor with imbedded null designed based on complex-valued method (a) Frequency response of the 

targeted system with a small restoring notch depth, (b) frequency response along the principal axes, and (c) the 

associated array factor. 

 

   
(a) (b) (c) 

Fig. 5. 28. Array factor with imbedded null designed based on complex-valued method with deep restoring notch. (a) 

Frequency response of the targeted system, (b) frequency response along the principal axes, and (c) the associated 

array factor.  

 

Fig. 5. 29. Array factors along the V = 0 for Fig. 4.26(c) is called CV-NS1, and Fig. 4.27(c) is regarded as CV-NS2. 

In Fig. 5.28(a), the RN depth is increased up to 45 dB; see Fig. 5.28(b) for the 1-D diagram. 

The result of the array factor is shown in Fig. 5.28(c). In this case, the JN is acceptably restored, 

and QLs are also suppressed. One can better compare the two examples of Figs. 5.27 and 5.28 

along the V = 0 in Fig. 5.29. Thus, the filter design for spectrally shaping the array factor error is 



Chapter 5. Noise shaping for PA design                                               

110 

 

more challenging when the null is embedded in the radiation pattern. Note that noise shaping is a 

unique approach to address such a problem; the traditional randomization methods fail to address 

the underlying problem. However, it is worth noting that RNs are "expensive." Since it is required 

to consider very deep attenuation, the number of JNs embedded in the radiation pattern of the 

antenna is a limitation. This is because increasing the number of RNs increases the upshift in the 

frequency response of the filter and that, the attenuation imposed by the circular disk background 

may turn to a very small amount or even an in-band amplification and so that the side lobe level 

increases in the visible region. In such a case, the system should be designed with more bits. 

Overall, the success of noise shaping in such scenarios can be measured by the amount of gain 

degradation, minor lobe suppression, and efficacy of null restoration. 

In Fig. 5.30, the results of 4-bit systems are compared with HP one for two JNs embedded in 

the array factor steered at [𝜃, 𝜑] = [15°, 90°]. The method is potent in restoring 60 dB JNs to some 

extent. To predict the viability of this approach in practice, let's double-check the result with exact 

solutions. The full-wave simulation results are presented in Fig. 5.31. It can be seen that the results 

are somehow compatible with the computed ones in Fig. 5.30. However, the full-wave result shows 

a little inferior performance for null retrieval. There are some artifacts with about -52 dB 

magnitude inside the JNs. That can be attributed to the mutual coupling between the elements. 

Note that the microstrip patches were impedance matched in an infinite periodicity assumption, 

which can explain the minor deviation between the computation and full-wave simulation results. 

Some more computation results are shown in Fig. 5.32 and 5.33 for 4- and 5-bit systems with 

different numbers of JNs. As shown in Fig. 5.32(b), much less distortion is realized compared to 

a 3-bit system, but most of the JNs are still deformed or are filled up by the quantization residue. 

Nevertheless, as seen in Figs. 5.32(c), the CV method can acceptably restore all JNs, 3 to 4 ones 
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with about 60 dB depth, and QLs are also suppressed. Systems with more than five bits are 

typically good enough for general applications. However, the quantization due to even 6 bits DAs 

and DPSs can relatively fill the nulls. In this regard, it is recommended to ameliorate the radiation 

pattern by using noise shaping because it can simply restore such nulls for 5 to 6-bit accuracy. As 

shown in Fig. 5.33 for 5-bit quantization, the CV method acceptably approaches the in-band 

response of the HP system for a relatively high number of JNs. The results along V = 0 are shown 

in Figs. 5.34 proves it is beneficial to use such an approach, even for 5 bits and more. For a 

relatively high number of bits, e.g., 5-6 bits, that the system does not contribute to considerable 

QLs level, it might even be possible to cause some small amplification in the visible region except 

those areas that correspond to JNs, to restore a significant number of JNs, if the minor lobe level 

would comply with the application at hand.  
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(a) (b) (c) 

Fig. 5. 30. Array factor with 2 imbedded nulls. For (a) high-precision, (b) 4-bit simple quantization, and (c) 4-bit CV-NS. 

 
(a) 

 

  
(b) (c) 

Fig. 5. 31. Full-wave simulation results for 4-bit systems. (a) 3D patterns in the angular domain. Orthographic 

projection for (b) simple uniform quantization (SUQ) and (c) CV-NS. 

 

 



Chapter 5. Noise shaping for PA design                                               

113 

 

 

   

   
(a) (b) (c) 

Fig. 5. 32. Decibel array factors with multiple imbedded nulls and 4bit systems. For (a) high precision, (b) simple 

quantization, and (c) CV-NS. 
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 (a) (b) (c) 

Fig. 5. 33. Decibel array factors for 5bit systems. (a) 5, (b) 7, and (c) 8 nulls. 

  

(a) (b) 

Fig. 5. 34. Decibel array factors in Fig 5.33 along V = 0 for (a) 7, (b) 8 nulls. 



Chapter 5. Noise shaping for PA design                                               

114 

 

5.8 Shaped beam 

It has been stated in previous sections that if the error signal would be a complex value, one 

may use the CV method to shape that spectrally, but if the error is a real-valued quantity, one may 

exploit the RV method by assuming the real signal would be the excitation phase. That was 

precisely due to the importance of phase error. The product of such a process is a spectrally shaped 

PDA error. However, we might only be interested in spectrally shaped amplitude error in some 

scenarios. This mainly happens in beam shaping. Consider the example of Fig. 5.35, in which a 

flat-top beam is designed using the Fourier synthesis method. As might be evident, the excitation 

phase can be realized using a 1-bit system with no error. For amplitude, we have used 3-bit SUQ. 

The computed radiation pattern is shown in Fig 5.35(a) for an array of a square lattice. The beam 

is in a broadside direction, which means that RCDF can be used for noise shaping since the array 

factor is symmetric with respect to the origin. As either the error signal or filter impulse sequence 

are real quantities, the noise shaping procedure yields a spectrally shaped amplitude error even if 

one uses the CV approach. Its array factor is shown in Fig. 5.35(b). This is an example of real-

valued noise shaping but for amplitude. Note that it is possible to do the noise shaping for a 

complex signal as two separate real-valued procedures of phase and amplitude. However, as stated 

before, CV-NS is spectrally more efficient and might be more beneficial for steered array factors 

at least.  
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(a) (b) 

Fig. 5. 35. Decibel array factor for shaped beam. (a) simple quantization, (b) spectrally shaped error. 

As another example, consider the special case of a geosynchronous orbit (GEO) satellite since 

the earth's angular size from GEO is relatively small, about 2×8.69°. Here, contoured beam 

coverage is considered and is designed to be compatible with geographical and political boundaries 

(GPB) and population density. The circular-aperture square lattice PA is assumed to have about 

50λ diameter at 11.7 GHz with ρ = 0.9  normalized array pitch, contributing to 2121 radiating 

elements. The GEO satellite is assumed at 0°N latitude and 107°W longitude.  

The whole antenna system is rotated about 7.58° along the x-axis in the satellite coordinate 

system, and its z-axis is aimed at a sub-satellite point on the earth's equator. The antenna is aimed 

at [52.45°N, 107°W] on earth. 

The HP excitation components are shown in Figs. 5.36(a) and 5.36(b). Also, the 20-dB contour 

pattern in the satellite coordinate system is sketched in Fig. 5.36(c), in which the projected GPB is 

plotted in the background. Since the antenna has several radiating elements, as a cheap solution, 

let's use 2-bit DAs and DPSs. The array factor is shown in Fig 5.37(a). As before, the dashed circle 

represents the boundary of the visible region. The solid square shows the fundamental period of 

the array factor, and the circle plotted faintly signifies the earth region, which is visible to the 

satellite. For this example, there is no invisible region to push the distortion there, and element 

spacing is large enough; thus, the square lattice is utilized for simplicity.  
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(a) (b) (c) 

Fig. 5. 36. HP contour beam. Excitation (a) magnitude, (b) phase, (c) 20 dB contour coverage. 

  
(a) (b) 

  
(c) (d) 

Fig. 5. 37. Contour beam with quantized beamforming weights. Array factor for (a) simple quantization, (b) spectrally 

shaped noise, (c) and (d) amplitude and phase of the spectrally shaped noise system. 

 
 

 

(a) (b) 

Fig. 5. 38. 20 dB contour coverage. For (a) simple quantization and (b) CV-NS. 
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Because of 2-bit coarse quantization, an 11 dB QL appeared inside the earth region. It might be 

interesting to note that The QL is less likely to show up in the earth region for a greater number of 

bits. This is simply because decreasing the quantization step decreases the error periodicity, and 

the QL shows up at higher spatial frequencies, which may go beyond the earth region. Also, it can 

be seen that the QL imitates the main beam shape, which is an indication of the coherent error.  

We may only be interested in the earth region. On this account, one may use noise shaping to 

exile the QL from the region of interest, as shown in Fig. 5.37(b). As seen, the QL is dismissed 

from the earth region and spills over to the space region.  The resultant excitation components are 

shown in Figs. 5.37(c) - 5.37(d). Note the discrepancies of amplitude component with the ideal 

case one. If the antenna was designed for a static beam, many elements, about 800, would become 

zero magnitudes; thus, they would turn into dummies to save costs.   

It is not just a matter of QL suppression. The noise shaper can redecorate the beam shape. This 

has been shown in Fig. 5.38, in which it can be seen that the SUQ system contour pattern deviates 

from the ideal case illustrated in Fig. 5.36, but the one with spectrally shaped noise resembles more 

to the ideal pattern. 

It is possible to increase the array pitch further to decrease the number of elements. That 

contributes to a smaller array factor fundamental period; some grating lobes appear inside the 

visible region. Although those are the leakage of RF power, they might still be acceptable as far 

as they do not reach the earth region. Indeed, the noise shaper can exile the QLs from the earth 

region and somehow redecorate the beam shape; however, that leads to more distortion inside the 

visible region since the out-of-band region becomes smaller and more amplification happens to 

lead to more antenna gain loss.  
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Chapter 6 

Noise shaping at sub-array layer  

6.1 Contiguous sub-array view angle 

At least three influential factors limit the antenna view angle for the contiguous sub-array. The 

First is the SAF windowing effect, which incurs directivity loss during beam steering. The second 

is the overlap efficiency, which determines the periodicity of UL-AF and fidelity of grating lobe 

suppression by SAF. The third is the antenna beamwidth, which is determined by the aperture size 

and ultimate layer beamforming coefficients. However, the influential factors are more than the 

three points mentioned above, which will be discussed later. 

Consider a linear array of two-layer sub-array overlapping in which three elements constitute 

the overlapped sub-array. The central element is not overlapped, see Fig. 6.1, while the two other 

ones are shared between the two adjacent sub-arrays located on two opposite sides of the center 

element. This is almost the simplest overlapped sub-array system. In this configuration, the second 

layer is twice sparser than the first. For now, consider the first layer is of Nyquist design (the array 

pitch is half-wavelength); thus, there would be no invisible region for this case. The first layer 

elements are shown by solid black circles in Fig. 6.1, while hollow circles illustrate the second 

layer. For the case at hand, the SAF is associated with two zeros located on the unit radii of the 

root-loci diagram. The array is designed for 25 dB SLL. This should consider both layers. In this 

regard, the SAF should have enough attenuation for the SL-AF grating lobe(s); we may call it an 

image beam hereafter. The required SLL determines the position of the two conjugate symmetric 

zeros shown in Fig. 6.2(a). As seen, the sidelobe at 𝜗 =  ±1 (𝜃 = ±90°) is 25 dB below the 

maximum directivity.  
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Referring to Fig. 6.2(b), If one steers the beam, the image beam, whose spatial angular 

frequency is represented by a solid red circle, goes to a very small level first (at zero position) and 

shows up again at -25 dB normalized value at 𝜗 = 0.212 which for the Nyquist case is associated 

with 𝜃 = 12.218°. The array factors are shown in Fig. 6.2(c). Note that the value of the image 

beam shown in the root-loci diagram is not precisely the sidelobe level in the overall array factor 

(O-AF) since the main beam has a specific beamwidth. In other words, for two antennas with the 

same sub-array configuration, the narrower beam antenna has a wider view angle than the one with 

a broader beam. In the current example, the main beam (represented by a solid black circle) would 

suffer from about 1 dB directivity loss due to the windowing effect, as shown in Fig. 6.2(b). On 

the other hand, the second layer array weighting may also be designed for 25 dB SLL. 

For this example, the second layer array is assumed to have 23 elements; thus, the antenna has 47 

radiating elements with a half-wavelength array pitch. Some computed array factors are shown in 

Fig. 6.2(d). As our convention, we show the SAF by black dot-dashed. Indeed, such an array has 

a narrow view angle due to the contiguous sub-array. One may compromise the design by 

considering another influential factor: the array pitch. Consider the same sub-array arrangement 

and coefficients but with 0.4 normalized array pitch. The root-loci diagram is shown in Fig. 6.3(a) 

for the un-steered array factor. Everything is the same as Fig. 6.2(a) except the shaded region 

associated with the invisible/imaginary region. This means that the SAF would not have sidelobe 

in this case since the conjugate symmetric zeros are located inside the invisible region, which does 

not contribute to a coherent wavefront. 

 
Fig. 6.  1. A schematic of the proposed 2-layer linear array of a 3-element sub-array in which two out of three elements 

overlap. 
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(a) (b) 

 

 
(c) 

 

 
(d) 

Fig. 6.  2. Design of linear array with 3-element sub-array overlapping and 0.5 normalized pitch. The root-loci diagram 

for (a) un-steered, (b) steered array of Nyquist design, (c) array factor for the beam at 12.218°, and (d) array factors 

for different steering angles. 
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(a) (b) 

 

 
(c) 

Fig. 6.  3.  Design of linear array with 3-element sub-array overlapping and 0.4 normalized pitch. The root-loci diagram 

for (a) un-steered, (b) steered array, and (c) the decibel array factors for different steering angles. 

As the positions of zeros are not changed, the array factor is not changed in one fundamental 

period. However, the visible region becomes smaller, which increases the antenna view angle. Let 

again steer the beam at  𝜗 = 0.212, which is associated with 𝜃 =15.36°; the root loci diagram is 

shown in Fig. 6.3(b). Thus, the 1dB antenna directivity loss happens at a larger scan angle. This 

result justifies that the SAF is less directive than the previous case because the element spacing 

has decreased; thus, the sub-array is physically smaller. That should not be surprising since a 

denser array means a greater number of elements on both layers, which means that a greater 

number of phase shifters/data converters on the second layer is needed. Nevertheless, 

understanding the benefits of the dense array provides flexibility in design. Some array factors are 

shown in Fig. 6.3(c) for the underlying example. As expected, the SAF is much less directive than 

the previous example, with no sidelobe. 
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(a) (b) 

 

 
(c) 

Fig. 6.  4. Wide view angle design of linear array with 3-element sub-array overlapping and 0.4 normalized pitch. The 

root-loci diagram for (a) un-steered, (b) steered array factor of 0.4 normalized pitch and wide view angle design, and 

(c) the decibel array factors for different steering angles. 

Depending on tolerable directivity loss and bandwidth, the array can be designed for a wider 

view angle. In the previous case, we considered the sub-array coefficients, or equivalently the 

positions of the zeros, the same as the first example of Nyquist design. However, one may move 

the two conjugate symmetric zeros toward the zero frequency, broadside beam position, which 

means that the SAF becomes more directive, and sidelobe appears when the zeros appear out of 

the visible region. For the underlying design, the SLL may violate the 25-dB norm but not inside 

the visible region; hence, the multiplication of normalized distances of the frequency of invisible 

region boundary, the location that the dashed line cuts the unit radii, from the two zeros should be 

-25 dB. The root-loci diagram is shown in Fig. 6.4(a). As seen, the two zeros are inside the visible 

region. Also, the maximum SLL is about 15 dB inside the invisible region. In this case, the array 
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has about 21 degrees view angle with respect to the 25 dB SLL norm. However, due to the 

windowing effect of directive SAF, it suffers from 2.23 dB directivity loss; note Figs. 6.4(b) and 

6.4(c). If less directivity loss is required, the SAF should be designed less directive.  

As stated, the array is designed denser than the example of Fig. 6.2; thus, more elements are 

needed on both layers, which means that more phase shifters for the analog array should be used 

compared to the Nyquist design. For example, 29 elements for the second layer are considered in 

the current design, which is 6 elements more than the Nyquist design. Also, such a design should 

be carried out for the upper end of the temporal-frequency band for wideband solutions. 

Furthermore, if one assumes the phase shifters would have a flat frequency response, there would 

be beam squint as the visible region size changes by changing the temporal frequency; this point 

is irrelevant to dense or Nyquist design. 

In Fig. 6.5 (a), such an array is realized using an aperture coupled patch as the radiating elements 

at the center frequency of 10 GHz. The element spacing is about 0.4λ, with 19 elements for the 

second layer. The proposed feed network has a peculiar configuration. As seen, the center element 

power is equally divided into two, and each is subsequently combined with half power coming 

from the adjacent elements, which are subsequently combined and introduced to the second layer. 

Two unbalanced power dividers are used for each sub-array to realize the computed sub-array 

coefficients. The array is designed for a 20° steering angle with sidelobes less than the 25-dB norm; 

this is almost the same as the design in Fig. 6.4 but with a smaller number of elements. The 

simulated results of 3-D radiation patterns are shown in Figs. 6.5(b)-(c). Also, the 1-D pattern on 

the azimuth plane, H-plane, is shown in Fig. 6.5(d). The simulated beam on the extreme has 0.23 

dB more directivity than the computed one, which was to have 2 dB gain scan loss; note that these 

values are different for 3D radiation patterns owing to the edge diffraction effect. Also, SLL due 
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to the image beam at 61.5° is about -25.56, a 0.9 dB higher than what is predicted by computation. 

These two observations show that the SAF has realized negligibly less directive than what is 

designed for, which can be attributed to a minor error in power dividers. Also, for the extreme 

beam, the sidelobe level in the passband of SAF is 1.5 dB more than what was to be.  

 
(a) 

 

  
(b) (c) 

 
(d) 

Fig. 6.  5. Feed network realization of linear array with 3-element sub-array overlapping and 0.4 normalized pitch (a) 

the proposed array configuration, 3D radiation pattern at 10 GHz for beam steered at (b) 10°, (c) 30°, (d) full-wave 

simulation results of 1-D patterns shown by solid black lines compared with commutated ones illustrated faintly. 
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This can be attributed to the mutual coupling effect. The sub-array might be realized in a more 

complicated form for superior performance or a smaller number of phase shifters or RF chains and 

ADCs. Of course, it is possible to use larger sub-arrays that lead to more feeding network 

complications. 

Increasing the number of sub-array elements increases the number of transfer function zeros, 

and the SAF can be more conveniently formed. Also, the overlapped efficiency is of great 

importance. As much as more elements overlap, the reciprocal domain period would be sparser; 

hence, one can easier suppress the image beams. Nevertheless, in practice, increasing the number 

of overlapping elements in just one layer terminates in a bulky and complicated network, and in 

some cases, it becomes impractical.  

Another possibility is to use a greater number of sub-array layers, which may facilitate 

generating more zeros for spatial FIR filtering. For example, consider a three-layer array 

schematically shown in Fig. 6.6(a). As seen, each first layer element is overlapped by two sub-

arrays. This simple configuration does not change the density of element spacing but generates a 

real transmission zero. For equal power division, it happens at 𝜗 = ±1. The second layer is also 

tiled to a third layer. Each second-layer sub-array includes four elements that are overlapped by 

two adjacent sub-arrays. The third layer is twice sparser than the second and the first layers. Hence, 

there are two sub-array factors: the first-layer sub-array factor (FL-SAF) and the second-layer sub-

array factor (SL-SAF). The UL-AF, which belongs to the third layer, would be tapered in the 

overall array factor (O-AF) by the envelope composite sub-array factor (C-SAF). 

The array configuration designed based on microstrip technology is shown in Figs. 6.6(b), 

6.6(c) and 6.6(d). As stated, the first layer sub-array is just a simple power division contributing 

to a transmission zero, as shown. The crossover is used based on back-to-back branch-line couplers 
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for the second-layer sub-array. However, this design is based on symmetric sub-array coefficients, 

which means a = d and b = c. The disadvantage of this approach is the gain scan loss seen in Fig. 

6.7(d). 

One method to solve the gain scan loss is to use transmission zero(s) in the proximity of zero 

frequency on the root-loci diagram. As stated, the first layer sub-array is just a matter of equal 

power division contributing to a transmission zero, as shown in Fig. 6.8(a). The same element 

spacing of 0.4λ is considered for this case, either. The rest of the three transmission zeros can be 

realized on the second layer by using the four-element sub-array, as shown in Fig. 6.8(b). Thus, 

the root loci of the C-SAF would have four zeros precisely at the prescribed locations, as shown 

in Fig. 6.8(c). All sub-array factors are illustrated in Fig. 6.8(d). The second layer sub-array 

coefficients are computed about [𝑎, 𝑏, 𝑐, 𝑑] = [-0.4, 0.45, 0.97, 1]. The layout of the array feeding 

network is shown in Fig. 6.8(e). The closed view of the second-layer sub-array is shown in Fig. 

6.8(f), respectively. Note that 𝑎 is a negative coefficient; thus, its associated arm is longer in Fig. 

6.8(f). Fig. 6.8(g) shows some full-wave simulations on H-plane. The computed C-SAF is overlaid 

to show the accuracy of system implementation.  

It may be judged that the array coefficients are acceptably realized since the overall radiation 

patterns follow the C-SAF envelope with minor deviation. The tiny discrepancies can be attributed 

to an error in power dividers and slight mismatches in different components such as radiators, 

crossovers, etc., which incurs minor inaccuracies in realizing array coefficients. This array can 

steer up to 20 degrees with SLL below 25 dB and gain less than 0.4 dB. 
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(a) (b) 

 

 

 
 

 

(c) (d) 

Fig. 6.  6. Three-layer sub-array overlapping feeding network. (a) Schema of the proposed sub-array system, (b) top 

view of the antenna, (c) whole array feeding network, and (d) closed view of multi-layer sub-array. 

 

 

 
(a) (b) 

Fig. 6.  7. Full-wave simulation results of pattern for the three-layer sub-array overlapping. (a) 3D gain pattern, the beam 

steered at about 10 degrees, (b) radiation pattern on H-plane. 
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(a) (b) (c) 

 
 

(d) (e) 

 

  
(f) (g) 

Fig. 6.  8. Wideband design of three-layer sub-array overlapping feeding network based on flat-top beam. The root-

loci diagram for (a) first-layer sub-array factor (FL-SAF), (b) second-layer sub-array factor (SL-SAF), (c) composite 

sub-array factor (C-SAF). (d) sub-array factor versus normalized spatial frequency. (e) the whole array feeding 

network, (f) closed view, and (g) full-wave simulations on H-plane. 

The array can also be realized in a 2D manner. For example, it is designed to scan along the 

azimuth direction with a minor lob level below -25 dB. Three layers are considered in which the 

two first layers are contiguous, which might be implemented in the analog domain. The first layer 

lattice (FL-L) is hexagonal. The first layer sub-array includes seven elements, as shown in Fig. 

6.9(a). The rest of the six surrounding elements overlap except for the center element. The tiling 
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matrix realizes the third layer 𝑻𝑺𝑳𝟐 = [
1 0
0 2

]. This means that three elements in one column of 

SL-L contribute to one element of the third layer in which two out of three overlap with adjacent 

sub-arrays along the y-direction. The lattices are shown in Fig. 6.9. In Fig. 6.9(c), the FL-L 

elements are shown by the black dots, while smaller and larger loops illustrate the second and the 

third layer elements. Regarding the overlap, note that along the y-direction, only elements on the 

apices overlap on the first layer. Also, on the second layer, only the center element, one out of 

three, does not overlap. 

The FL-SAF, SL-SAF, C-SAF, and UL-AF are correspondingly shown in Fig. 6.10. As seen 

for an un-steered UL-AF, there are two copies of the main beam along the 𝑉 = 0, showing up on 

two opposite sides of the hexagonal period boundary. That can easily be understood from how the 

first-layer sub-arrays overlap. The UL-AF and two O-AFs are shown in Fig. 6.11. As can be seen, 

the C-SAF has filtered out all grating lobes of UL-AF. However, as stated before, the contiguous 

sub-array has a narrow range of beam scans. In this case, the grating lobe along the V = 0 starts to 

show up as a sidelobe after 10 degrees steering angle.  

   
 (a) (b) (c) 

Fig. 6.  9. Schematic of multilayer planar phased-array. (a) first layer sub-array, (b) second layer sub-array, and (c) 

all three lattices overlaid. 
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 (a) (b) (c) 

Fig. 6.  10. Sub-array factors of multilayer planar phased array. (a) first-layer sub-array factor, (b) second-layer sub-

array factor, (c) composite sub-array factor. 

   
 (a) (b) (c) 

Fig. 6.  11. Array factors of multilayer planar phased array. (a) ultimate-layer array factor, (b) un-steered overall array 

factor (O-AF), (c) steered O-AF to 10 degrees. 

6.2 Noise shaping at sub-array layer  

The sub-array might be steered instead of the contiguous one in the preceding section. This is 

traditionally more the case for HBF, but in principle, it can also be used for ABF and DBF. The 

same as the previous section, the sub-array configurations are assumed to have two and/or multiple 

layers, here up to three layers; therefore, we may talk about different lattice layers. The first-layer 

lattice, 𝑳1ℤ
2, the lattice that the radiators are positioned on can be regularly tiled in an infinite 

number of fashions; thus, theoretically, there is an uncountable number of ways to realize sub-

array. The sub-array schemes may include several layers in which each can be realized in an analog 

or digital domain, though some might not be practical or convenient to implement in the analog 
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domain at least. For the analog implementation of sub-array, it helps to decrease the number of RF 

chains per radiator (in HBF), but in any beamforming scheme, it is an effective approach for minor 

lobe suppression. One other application of the resampling matrix is to make a sub-array.  

In Figs. 6.12(a) and 6.12(b), the classic hexagonal lattice is tiled by, respectively, sub-array 

tiling matrices of, 𝑻𝒔𝒖𝒃𝟏 = [
1 −2
1 2

] and 𝑻𝒔𝒖𝒃𝟐 = [
2 0
−1 2

], where the solid circles show the first-

layer lattice (FL-L) elements, whereas the hollow ones illustrate the second-layer lattice (SL-L), 

the lattice that the sub-array outputs are positioned on, 𝑳1𝑻𝒔𝒖𝒃ℤ
2 = 𝑳2ℤ

2. Those tiling matrices 

contribute to the nearly square SL-L. Both lattices are the same but 60° rotated with respect to the 

other. Here, 𝑳2 is four times sparser than 𝑳1. One can see four elements of FL-L inside a nearly 

square tile on SL-L, including one center element (which has a hollow circle) and three other 

elements. Then, there are several options for choosing the sub-array type.  Just as a "thought 

experiment" example, let us assume a 3×3 parallelogram-shaped sub-array in which eight out of 

nine elements overlap in two ways. The gray dashed lines in Figs. 6.12(c) and 6.12(d) signify the 

boundaries of the sub-arrays, while the thin black lines visualize the element connections to the 

second layers' inputs. Two adjacent sub-arrays overlap two out of eight sub-array elements. For 

example, the element located at  𝑳 [
−1
1
] = (0,

1

√3
) in Fig. 6.12(c) and  𝑳 [

0
1
] = (

1

2
,

1

2√3
) in Fig. 

6.12(d) are shared between two neighboring sub-arrays. Also, six out of eight are shared among 

three sub-arrays, cf. Figs. 6.12(c) and 6.12(d). As seen, the elements located at 𝑳 [
1
0
] = (

1

2
,
−1

2√3
), 

are connected to two second-layer near-neighboring inputs, 𝜌𝑛 = 
1

√3
, and the far-neighboring ones, 

𝜌𝑓 = 1. 
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(a) (b) 

  
(c) (d) 

Fig. 6.  12. Two sub-array overlapping schema. Sub-array realized by (a) 𝑻𝒔𝒖𝒃𝟏, (b) 𝑻𝒔𝒖𝒃𝟐, and the corresponding 

close view of (c) lattices in (a) and (d) lattices in (b). 

Indeed, the "element sharing" can be physically implemented using power combiners/dividers if 

the sub-array is implemented in the analog domain.  

For now, we assume a hypothetical scenario that all layers of the array are implemented in the 

analog domain, and sub-arrays would be phase-steered. In each layer, the magnitude and phase of 

output signals should be controlled by exploiting the gain control units, such as DAs, and 

time/phase delay units, such as DPSs. Henceforth, let us continue with the one shown in Fig. 

6.12(b). Its decibel SAF and the second-layer array factor (SL-AF), [𝜃, 𝜑] = [43°, 199°], are 

respectively illustrated in Figs 6.13(a) and 6.13(b). The second-layer input signal is quantized to 4 

bits. The error pattern is shown in Fig. 6.13(c).  
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(a) (b) (c) 

  
(d) (e) 

Fig. 6.  13. Computed sub-array factor and array factor for array of Fig. 6.12(b). (a) sub-array factor and (b) the second-

layer array factor, (c) normalized second-layer error pattern, (d) the overall array factor, and (e) the sub-array factor 

tiled by the second-layer array factor periodicity. 
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(a)  (b) 

Fig. 6.  14. Filter layout design for noise shaping at sub-array layer. (a) nine tiles cropped by the visibility window 

and (b) exemplar filter layout background and the shifted & symmetrized copy. 

As mentioned, the SL-L is of a nearly square lattice that contributes to a nearly square reciprocal 

one; such a fundamental period is faintly sketched in Fig. 6.13(b) and 6.13(c). As seen, we can tile 

the whole beamspace domain with such a prototile that is smaller than the visible region. There 
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must be precisely four complete periods of SL-AF in one fundamental period of the SAF, 

|𝑻𝒔𝒖𝒃𝟐| = 4. Indeed, the SAF suppresses all (grating) lobes of the SL-AF except the one 

contributing to the main beam in the overall array factor of Fig. 6.13(d). On this account, QLs of 

the SL-AF, particularly those happening in the vicinity of the main beam, show up inside the 

overall array factor. For example, in Figs. 6.13(b) and 6.13(d), the QL peak levels are about 23 dB 

and 26.5 dB, respectively. Accordingly, the second-layer error pattern might be spectrally shaped, 

corresponding to the SAF. As stated in the study, the quantization distortion is supposed to be 

pushed to the area where other layers' sub-array factors have high attenuation. That proves the 

importance of an MPS because it contributes to less out-of-band noise amplification. In contrast 

to the preceding sections, increasing too much out-of-band noise power is impossible since it 

should correspond to the SAF attenuation. 

One may intuitively wish to push the SL-AF distortion to the "farther area" from where the main 

beam is intended since that is precisely SAF maximum, and pushing the distortion to the "farther 

area" is supposed to alleviate the QL level in the overall array factor. Such a strategy sometimes 

works if the circular symmetric SAF is directive enough. However, the idea needs a minor revision. 

The preceding idea can be easily undermined since the SL-AF is periodic with a smaller period 

size than the SAF. Thus, the adjacent copies' distortion pushed to that "farther area" may become 

visible in the overall array factor if they happen in the region where the SAF does not have enough 

attenuation. This has been elaborated on and addressed in the following paragraphs. 

Consider the decibel SAF tiled by the SL-AF periodicity in Fig. 6.13(e). Each of those tiles 

overlaps with the visible region of the SAF and receives an integer vector tag. There are precisely 

nine tiles of which five of them are repetitive, including two sets of three tiles, one set of two tiles, 

and one set of one tile, e.g., consider the set {[-1, 0], [1, -1], [1, 1]}. The unique tile is the reference 
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one [0, 0] which has no duplication among the nine tiles. Now, if one succeeds in pushing the SL-

AF distortion farther from the main beam located in the tile [-1, 0] with no discrimination in 

direction, that may lead to an increase of QL level in the overall array factor since other adjacent 

copies simultaneously push the distortion toward the passband of the SAF, cf. Figs. 6.13(b) and 

6.13(e). We propose to design the digital filter with respect to all tiles overlapping with the visible 

region. Although some tiles are duplicate copies, their intersections with the visible region become 

unique, as shown in Fig. 6.14(a), where we have cropped each tile's content by the visible region 

boundary. We assume the area out of the visible region as a pure free spectrum. However, the 

overall filter layout background is designed based on all tiles' intersection, which is reversed and 

accompanied by some further trivial manipulations; see the "original copy" in Fig. 6.14(b).  

The original copy can be used if the CV-NS is intended. On the other hand, if only the phase of 

the second-layer excitation signal is controllable, the RV-NS might be utilized. That would be 

specific to an array with all layers implemented in the analog domain. In such a case, both filter 

layout constituents involving the background and the notches should be shifted and symmetrized 

with respect to the reference sample of the SL-AF. However, as in the previous sections, a big 

portion of the precious free spectrum is wasted due to symmetry. Note that the method's success 

in QL suppression is a function of SAF shape and overlap efficiency, in addition to "now-classic" 

influential parameters, including array pitch, etc. 

In Fig. 6.15(a), frequency responses of the (revised) CCDF and RCDF are illustrated. The gray 

dashed lines show the fundamental period. Note that the noise shaping has been done on the array 

of the second layer.  
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Fig. 6.  15. Phased array designed based on RV- and CV- methods. (a) Frequency response of the revised filters, (b) 

error patterns, and (c) decibel overall array factors for the targeted point at [𝜃, 𝜑] = [43°, 199°].    

It might be evident that with the same attenuation considered for the filter layout background 

and notches, RV-NS incurs more out-of-band amplification, as it is spectrally less efficient since 

its stopband is wider. In Fig. 6.15(a), the stopband attenuation of RCDF is considered less than 

that of the CCDF, but it might be evident in Fig. 6.15(b) that the RV method generates more out-

of-band amplification than the CV one does. The overall array factors in Figs. 6.15(c) and 6.15(d) 

show improvement compared to that shown in Fig. 6.13(d).  
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It might be erroneously assumed that the more directive SAF provides a freer spectrum, which 

is not necessarily correct since the larger sub-array makes the SL-AF periodicity smaller. In this 

regard, the overlap efficiency is of great importance, implying a more directive sub-array factor 

with a possible greater array periodicity area. In addition, the sub-array realization would be more 

complicated. 

Now, assume the sub-arrays outputs are introduced to a digital platform that contributes to the 

HBF. The identical sub-arrays are arranged in a hexagonal fashion of seven elements. One 

possibility for a tiling matrix is 𝑻𝑠 = [
1 −1
1 2

], which contributes to an SL-L that is three times 

sparser than the FL-L. The schematic is shown in Fig. 6.16(a). Each pair of adjacent sub-arrays 

precisely overlap two FL-L elements; thus, each element is intersected by three sub-arrays except 

sub-array centers. Also, we assume that the identical analog sub-arrays are phase-steered with high 

precision. In this regard, the weighting coefficients of the seven-element sub-arrays should be 

computed so that the SAF would suppress the six grating lobes. Such an antenna may be utilized 

for a radar system in which the transmit signal is radiated through a wide-shaped beam, whereas 

the radar listens to echoes through the multiple simultaneous beams (beam cluster). The underlying 

design concerns the beam cluster's minor lobe level below -35 dB. Note that the SL-AF might be 

steered with respect to SAF to generate a beam cluster. The overall array factor, 𝐺, can be written 

as 

𝐺(𝒇𝑹−1𝑳−1) =  𝐺1((𝒇 + 𝒇1)𝑹
−1𝑳−1)𝐺2((𝒇 + 𝒇1 + 𝒇2)𝑹

−𝟏𝑳−1𝑻) 

where 𝐺1 and 𝐺2 are respectively SAF and SL-AF, and 𝑻 is the tiling matrix generating the sub-

array, and 𝑹 is another resampling matrix that simply resamples the ELL generating the reciprocal 

lattice �̌�. In the above equations, 𝒇1 steers the beam cluster while 𝒇2 steers the individual beam 
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with respect to the cluster center. 𝐺1 is fixed for all beams while 𝐺2 should be specifically designed 

for each beam. 

The SAF should acceptably suppress all six "grating lobe clusters" up to about -35 dB. The two-

layer array is considered as a circular aperture of about 40λ. The steered SAF is shown in Fig 

6.16(b), [𝜃, 𝜑] = [20°, 80°]. Also, for the current exemplar design, we considered 19 beams 

arranged in a hexagonal fashion to constitute the beam cluster, and thereby, the transmit beam is 

hypothetically shaped in a hexagonal form. Fig. 6.16(b) shows the SAF and Figs. 6.17(a) and 

6.17(d) illustrate the O-AF. The windowing effect of SAF can be easily seen; specifically, the six 

grating lobes are suppressed by SAF.  

Then, the CBW is quantified by 4 bits based on the definition ℚ2 in (3.5). As seen in Fig. 

6.17(b) and 6.17(e), some distortions show up in the overall array factor, and the minor lobe level 

even violates 30 dB. Like the previous case, one may spectrally shape the error to push it toward 

the available regions on the SL-AF that SAF has enough attenuation there and can be acceptably 

suppressed in the overall array factor. The revised system in Fig. 6.18 is designed for SL-L based 

on the tiling approach introduced before. It can be seen in Figs. 6.17(c) and 6.17(f), that the 

distortion is pushed out toward the region where the SAF has more attenuation, and the sidelobe 

level is effectively suppressed.  

The disadvantage of the directive sub-array factor is its realization complexity. On this account, 

the array may be designed more optimally for minor lobe suppression by using more sub-array 

layers. Besides, that can simplify the sub-array complexity with the cost of more layers, as shown 

in the contiguous sub-array section. In Fig. 6.19, a schema of a three-layer sub-array system is 

shown. Seven elements constitute each first-layer sub-array. 
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(a) (b) 

Fig. 6.  16. Planar array with two-layer sub-array overlapping. (a) Schematic of lattices and sub-arrays and (b) sub-

array factor. 

  

  
(a) (d) 

  
(b) (e) 

 
 

(c) (f) 

Fig. 6.  17. Computed array factor plotted against the direction cosines. For (a) high precision, (b) 4-bit, and (c) CV-

NS. Computed array factor along the U = 0 for (d) high precision, (e) 4-bit, and (f) CV-NS. 
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Fig. 6.  18. Revised filter frequency response used for noise shaping in the example of Fig. 6.17. 

 

In this case, there are two layers of sub-arrays, including the first- and the second-layer ones. 

Nevertheless, let us define the tiling matrix as 𝑻𝑠1 = [
2 −1
−1 2

], which contributes to SL-L. Note 

that the generating and tiling matrices are not unique, but the period area is. Each second-layer 

sub-array is assumed to contain 19 elements, shown in Fig. 6.19(a). In Figs. 6.19, the SL-L 

elements are sketched with solid black circles, while the black hollow ones show the third-layer 

lattice (TL-L) elements; hence, as an example, the hollow circle in Fig 6.19(a) are the solid ones 

in Fig. 6.16(a). It might be evident that the TL-L is just an enlarged version of SL-L by a factor of 

two. In other words, 𝑻𝑠2 =  2𝑰 and that the composite tiling matrix 𝑻𝑐 = 𝑻𝑠1𝑻𝑠2 = [
4 −2
−2 4

] . 

Fig. 6.19(a) shows the SL-L elements of one exemplar sub-array; the rest are sketched faintly. 

There are three SL-L element types, including those in sub-array centers, those located on the first 

tier of the sub-array center, and those on the second tier of each sub-array but are not a sub-array 

center. Evidently, the sub-array centers are intersected by six included sub-arrays. As depicted in 

Fig. 6.19(b), the SL-L elements located on the first tier of each sub-array are overlapped by three 

other included sub-arrays.  
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(a) (b) (c) 

Fig. 6.  19. Schema of three-layer sub-array overlapping. (a) second layer lattice, third layer lattice, and the boundary 

of the second-layer sub-array, (b) three included sub-arrays intersect with the first-tier element of the underlying sub-

array, (c) Two included and one non-included sub-arrays intersect with a second-tier element. 

   

   
(a) (b) (c) 

Fig. 6.  20. Computed sub-array and array factors of three-layer sub-array overlapping. (a) first-layer sub-array 

factor, (b) second-layer sub-array factor, (c) composite sub-array factor. 

Furthermore, those SL-L elements on the second tier of each sub-array which are not sub-array 

centers, are overlapped by two other included sub-arrays and a non-included one, as visualized in 

Fig. 6.19(c). Therefore, all SL-L elements are overlapped by four sub-arrays except the sub-array 

centers, which are overlapped by seven sub-arrays. 

The FL-SAF and SL-SAF are shown in Fig. 6.20(a) and 6.20(b). The periodicity of SL-SAF is 

shown with the dashed red line. The C-SAF is illustrated in Fig. 6.20(c). As seen, all beam copies 

of SL-SAF are partially suppressed by the FL-SAF except the one that contributes to the main 

beam in C-SAF. The beam cluster is shown in Fig. 6.21(a) for the HP system. It can be seen in 

Fig. 6.21(a) that C-SAF suppresses all grating lobes to some extent. The array factors along the U 

= 0 are illustrated in Fig. 6.21(d).  
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 6.  21. Computed array factor plotted against the direction cosines. For (a) high precision, (b) 4-bit, and (c) CV-

NS. Computed array factor along the U = 0 for (d) high precision, (e) 4-bit, and (f) CV-NS. 

 

 

 

 

 

(a) (b) (c) 

Fig. 6.  22. Design of digital filter for noise shaping for the phased array of Fig. 6.21. (a) composite sub-array factor 

tilled by the third-layer lattice periodicity, (b) frequency response of the revised system, and (c) error pattern, the 

overlaid overall array factors along U = 0 for 4-bit representation of complex beamforming weights. 
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Strictly speaking, the six near-neighboring beam clusters are more suppressed by the SL-SAF 

and the six far-neighbor ones by the FL-SAF; those are regions in Fig. 6.20(c) where the FL-SAF 

severely suppresses the grating lobes. The six remaining far-neighbor "grating beam clusters" are 

more suppressed by SL-SAF, though the FL-SAF also has considerable attenuation. The current 

configuration can better suppress the sidelobes in comparison to the example of Fig. 6.17 since the 

C-SAF is much more directive than the SAF of Fig. 6.16. However, some distortion can still appear 

in the overall array factor in the vicinity of the main beam. 

The in-band UL-AF distortion should be spectrally shaped to minimize its manifestation in O-

AF. The results of the array factor for the 4-bit system and the spectrally shaped one are shown in 

Fig. 6.21. The filter layout should be designed based on the C-SAF tiled by the periodicity of the 

ultimate layer array factor, which in this case, is the third layer. As seen in Fig. 6.22(a), almost 19 

tiles overlap with the visible region, among which except four ones, {[0, 0], [0, -1], [1, -1], [1, 0]}, 

the rest of them have no significant contributions to the filter layout shape since the C-SAF has 

enough attenuation there. Accordingly, the filter layout is designed, and the filter's frequency 

response based on the DHT approach is computed. The impulse response is normalized to the 

reference sample to find the targeted system with the frequency response shown in Fig. 6.22(b). 

As seen, it has been realized by the four tiles' contributions. The distortion will be pushed to the 

region where the revised (targeted) system has amplification, which is precisely the available 

spectrum where the C-SAF has enough attenuation. The resultant error array factor is shown in 

Fig. 6.22(c), following the filter shape.  
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Chapter 7 

Optimization 

7.1 Fundamentals 

Optimization is a mapping from parameter space (PS) to objective space (OS), ℝ𝑚  ⟶ ℝ𝑘, 

which can be written  

                               min              𝒇(𝐱) = [𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑘(𝐱)]                                      (7.1)  

where 𝐱 ∈ ℝ𝑚 is the decision variable vector inside the PS, subject to m constraints, and 𝒇 is a 

vector of 𝑘 objectives. From the number of objective perspectives, the problem might be single-

objective, k = 1, multi-objective, 1 < 𝑘 ≤  4, or many-objective 𝑘 ≥  4. 

Several search methods include point- and population-based methods, including particle swarm 

optimization (PSO) and genetic algorithm (GA). Brainstorm optimization (BSO) is a simple and 

relatively new swarm intelligence with a random method mimicking the problem-solving of 

human beings in a brainstorming process [104]. There are three main operators in BSO comprising 

clustering, solution generation, and selection. The block diagram of BSO is illustrated in Fig. 7.1. 

In its original version, clustering in PS is used, in which the solution population is separated into 

several clusters. The effectiveness of this implementation is investigated in [105] for several 

antennas. However, the clustering strategy is a time-consuming process. In particular, the 

algorithm can be inefficient and quite time-consuming for PA and RA, with high dimensional 

decision variables. One solution to this problem is clustering in OS (BSO-OS) which typically has 

less dimension than PS.  
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Fig. 7. 1. Block diagram of brain storm optimization. 

When solutions inside PS are clustered, it means solutions are categorized according to their 

similarities (similarity of individuals' ideas in the brainstorming process) but clustering inside OS 

is, in fact, a kind of classification according to the goodness of the feasible solution, so elitism is 

enhanced.   

7.2 Multi-objective optimization 

Multi- and many-objective problems (MOPs) map a tuple of m decision variable from PS to a 

tuple of k objectives in OS. Unlike single-objective optimization, judging which individual is 

excellent in MOP is difficult since objectives are conflicting. In Pareto-based optimization, a 

solution with vector objective 𝑦(1)  ∈  𝐘 ⊂ ℝ𝑘 is said dominates 𝑦(2) ∈ 𝐘, (symbolically written 

as 𝑦(1) ≺ 𝑦(2)), if and only if: 

{

∀𝑖 ∈ {1,2, … , 𝑘} ∶  𝑦𝑖
(1)
≤ 𝑦𝑖

(2)

and

∃𝑗 ∈ {1,2, … , 𝑘} ∶ 𝑦𝑗
(1)
< 𝑦𝑗

(2)
 

                                              (7.2) 

A vector solution x is called non-dominated (Pareto optimal/efficient) if there is no improvement 

in one objective without degrading in value of other objectives.  
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The set of all non-dominated solutions is called the Pareto set, and the set of all Pareto objective 

vectors is called the Pareto front [104]. However, the realization of the Pareto front is not an easy 

task. Since without specific maintenance of solution diversity, the strict search of non-dominated 

regions prematurely excludes some feasible answers, and Pareto curve/surface will not get fully 

expanded. Hence, in MOP, there are two goals, one is to find the Pareto front, and the other is to 

maintain the diversity of solutions.  

There are some efforts in the literature to extend brainstorming algorithms for MOPs. The first 

version of multi-objective brainstorm optimization (MOBSO) is presented in [106], In which the 

population (in OS) is clustered into c clusters based on each objective. Individuals satisfying most 

objectives are survived. The global archive is updated in each iteration according to the best 

solution. In [107], the crowded comparison approach, originally used in non-dominated sorting 

genetic algorithm II (NSGA-II), ensures the diversity of the solution. Crowding distance is a 

method to estimate the intensity of solutions around a specific solution. The less crowded solution 

will survive. Thus, a diversity of solutions can be acceptably exercised during the optimization 

procedure. Also, in [108], the decomposition method is used to realize MOBSO with modified 

search efficiency and a very acceptable distribution of the solution.  

Here, we keep the diversity of solutions by using the virtue of group information. If two 

solutions (new solution and old one) were mutually non-dominating, we choose the one based on 

the "diversity approach," in which the distance between the centroid (mean value) of all clusters is 

considered as a simple norm of the solution expansion in OS. The population is clustered into c 

clusters, and the distances between centroids are calculated and compared to their old counterpart. 

The solution belonged to the one with more value who would survive. Besides, some solutions in 

each iteration are selected randomly to ensure the solutions' diversity further.  
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(a) (b) 

  
(c) (d) 

Fig. 7. 2. The estimated Pareto front for some test functions. (a) Kursawe function, (b) DTLZ1, (c) and (d) DTLZ4. 

Fig. 7.2 shows the results for some test functions, including the Kursawe function, examples of 

the dual-objective problem, DTLZ1, and DTLZ4, which are tri-objective problems. As seen, the 

algorithm can acceptably converge to Pareto fronts. 

7.3 Reflectarray optimization 

Optimizing a sizeable planar antenna with several hundred to thousands of elements is difficult 

as the PS is of high dimensions. It is computationally expensive and time-consuming. Sometimes, 

it becomes impossible for the algorithm to converge. Accordingly, it might be beneficial to decrease 

the number of unknown parameters, though it may somehow localize the algorithm. One method 

introduces a kind of perturbation, defined by a polynomial, to the aperture phase. Zernike 

polynomial can be used for such a purpose [109], which can be defined as even and odd polynomial 

along the azimuth direction, as follows: 

{
𝑍𝑙
𝑛(𝜌, 𝜑) = 𝑅𝑙

𝑛(𝜌) cos(𝑛𝜑)               𝐸𝑣𝑒𝑛

𝑍𝑙
−𝑛(𝜌, 𝜑) = 𝑅𝑙

𝑛(𝜌) sin(𝑛𝜑)             𝑂𝑑𝑑
                                  (7.3) 

where 0 ≤ 𝜌 ≤ 1 is the radial distance and 𝑅𝑙
𝑘(𝜌) is the polynomial radial term is defined  
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𝑅𝑙
𝑘(𝜌) = ∑

(−1)𝑘(𝑙 − 𝑘)!

𝑘! (
𝑙 + 𝑛
2
) ! (

𝑙 − 𝑛
2

− 𝑘) !
𝜌𝑙−2𝑘

𝑙−𝑛
2

𝑘=0

 

For the case of RA with pencil beam, this is the radial term that is more important. Specifically 

for symmetric problems. However, the azimuth term can also be used as it provides more variety 

of solutions.  

  
(a) (b) 

Fig. 7. 3. An exemplar layout of multi-spot medium earth orbit coverage (a) ideal radio cells and (b) associated 4-cell reuse 

scheme with ideal radiating spots. 

 

Fig. 7. 4. Three objective beams are shown by the black loops. 

  
(a) (b) 

Fig. 7. 5. Estimated Pareto fronts. The coordinate of Solution A, B and C are respectively at (a) [x, y, z] = [0, 20, 

0.16], [4.61, 4.21, 4.56] and [15.87,0.47,15.61], (b) [x, y, z] = [0.49, 18.35, 0.06], [5.01, 3.69, 1.86] and [30.71, 0, 

17.81]. 
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Note that there are other options, including the Jacobi polynomial, which belongs to the class of 

orthogonal polynomials, and many other polynomials, such as Chebyshev, Legendre, Zernike, etc. 

are special cases of Jacobi polynomial. For α, β > -1, and x belongs to [-1, 1], the Jacobi polynomial 

of order N at point x (real value) can be defined as: 

𝐽𝑁
(𝛼,𝛽)(𝑥) = ∑(

𝑁 + 𝛼

𝑁 − 𝑘
) (
𝑁 + 𝛽

𝑘
) (
𝑥 − 1

2
)
𝑘

(
𝑥 + 1

2
)
𝑁−𝑘𝑁

𝑘=0

 

In the above equation, the Jacobi term can be used for the radial term in (6).  

The RA aperture phase is optimized as in the following procedure. First, the aperture phase 

distribution for each focus is calculated, and a perturbation according to the aggregation of 

Zernik/Jacobi terms with different coefficients is introduced to each phase distribution. Then, 

perturbed aperture phases corresponding to each focus are added by a weighting factor providing a 

full reflective matrix. The coefficients multiplied by every Jacobi term and the weighting factor are 

considered the decision variables of the MOBSO. The error between the ith mask and the radiation 

pattern corresponding to the ith feed position is considered the ith objective (yi). The vector 

objective Y = [y1, y2, …, yn] is optimized in a multi-objective scheme based on Pareto dominance. 

Let us consider an example of a medium earth orbit (MEO) satellite with multi-spot coverage. 

The satellite is assumed to be 14,065 Km above the equator. The z-axis of the satellite coordinate 

system is aimed at the sub-satellite point (SSP). As common, the ideal radio cells are considered 

hexagonal. Note that the current design is based on the constant beam approach, which is more 

practical; the projected radio cells appear in different sizes and shapes on earth. An example of 

radio cell arrangement is shown in Fig. 7.4. For simplicity, we only consider one set of co-channel 

cells to be covered by one aperture antenna.  
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 Solution A Solution B Solution C 

 

Fig. 7. 6. Three exemplar solutions of estimated Pareto front. (a) 20 dB contour, (b) 4 dB spots. 

 
Fig. 7. 7. Computed patterns along U = 0. 

Fig. 7.4 shows the radio cells of interest with the hexagons plotted by bold lines. Note that we 

could choose an orthogonal radio-cell arrangement. However, the current scheme might be easier 

to realize for an offset-fed RA. The diameter of the antenna is assumed to be 185.5 mm, which at 

30 GHz contributes to 18.55λ. The lattice is assumed to be a square with a pitch, 𝜌, of 3.5 mm, and 

the antenna F/D is about 1.25. The aperture is considered symmetric with respect to the y-axis. We 

used a tri-objective optimization based on the approach explained in the previous section. Three 
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constant feed positions are assumed to correspond with three objective beams. This has been 

illustrated in Fig. 7.4. It is evident that there are other possibilities for the objective beams. We 

found that the current arrangement may yield better results by trial and error. Actually, those three 

beams are more challenging to comply with the requirements; thus, they have been chosen as the 

objectives. We have considered two optimization setups. In one whose estimated Pareto front is 

shown in Fig. 7.5(a), both radial and azimuth polynomial terms are used, while for Fig. 7.5(b) is 

used only radial terms are utilized. As seen, the Pareto front is better expanded for Fig. 7.5(a). Note 

that the number of polynomial terms is also a decisive approach, which controls the amount of 

algorithm localization. Here, nine terms are used. The estimated Pareto fronts shown in Figs. 7.5 

are realized after 500 iterations. Specifically, 150 agents were recruited for each iteration, and the 

external archive size was about 1000, comprising the non-dominating solutions found. The 

optimization yields high-precision PDAs. The associated 20 dB and 4 dB spots are shown in Figs. 

7.6 for Solutions A, B, and C in Fig. 7.5(a). 

For Solution A, the two beams along the V = 0.184 interfere with the radio cell located at [U, 

V] = [0.055, 0.092]; hence, they do not comply with the 20-dB co-channel norm. That is simply 

because Solution A is located at the end of estimated Pareto fronts along the "objective 2" axis; 

see Fig. 7.6(a). Also, Solution C is located on the largest objective 1 and 3 values but is of 

minimum value for objective 2. It can be seen in Fig. 7.6(a) for Solution C that all beams located 

in the vicinity of objective beams 1 and 3 interfere with other radio cells and that Solution C also 

fails to comply with the predefined requirements. Not that objective beam 2 for Solution C is much 

better than Solution A for both results.  

Solution B might be assumed as "balanced solutions," which means that all beams show up in 

an acceptable fashion; see Fig. 7.6(a) for Solution B. Also, Fig. 7.6(b) shows that the 4 dB spots 
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are somehow located in the predefined locations with acceptable spot widths. For the sake of 

further clarification, the beams along the U = 0 are shown in Fig. 7.7. As seen, Solution A shows 

a small misalignment specifically for the beam commanded at about 𝜃 = 26.4°, which is close to 

the objective Beam 2 and shows 0.3 dB gain loss in comparison to the other solutions. This is 

almost applied to the beam located at about 4.4° for Solution C, close to the objective Beam 1. 

Overall, the algorithm is potent for finding a range of solutions based on a predefined feed position. 

Based on the estimated Pareto front, one may choose a balanced solution that is good enough for 

all objectives to pass the system requirements. 

7.4 Optimized filter for noise shaping of sparse element spacing  

In general, when the visible region is not accessible, there might be at least two approaches to 

deal with that. The first one is to use a spaced-notches filter. That is how we dealt with the QLs 

when the RV method did not achieve the invisible region in the preceding chapters. In fact, that 

can also be used when the array pitch violates the Nyquist design. Fig. 7.8(a) illustrates a computed 

array factor. The hexagonal lattice PA aperture is almost circular with a diameter of about 17λ. 

The normalized array pitch is about 𝜌 = 0.635 contributing to 733 radiating elements. Also, the 

antenna is designed for 30 dB SLL Taylor weighting, and the beam is commanded at [𝜃, 𝜑] = 

[30°, 45°]. Both phase and amplitude are quantized to 3 bits. As can be seen in Fig. 7.8, one period 

is smaller than the visible region, although a very tiny invisible region exists. Such an array can 

steer up to about 48° without the grating lobe appearance. The RPDF result is shown in Fig. 7.8(b).  

It has decreased the QL level to about 23 dB, see Table 7.1. However, as stated before, the random 

dither is quite sub-optimal compared to the spectrally shaped dither.  
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(a)  (b)  

  
(c) (d) 

Fig. 7. 8. Steered array factor for array pitch 𝜌 = 0.635. (a) simple quantization, (b) RPDF. (c) Spaced-notches filter, 

(d) array factor realized by CV-NS based on spaced-notches filter. 

TABLE 7.1 

GAIN LOSS WITH RESPECT TO HIGH PRECISION SYSTEM IN FIG. 7.8. 

 SUQ RPDF Spaced-notches  

Gain loss 0.275 dB 0.92 dB 0.38 dB 

SLL 16.72 dB 23.1 dB 25.2 dB 

 

 

In Fig. 7.8(c), the frequency response of a spaced-notches filter is shown, and the result of the 

array factor is in Fig. 7.8(d). This method simply attenuates the QLs and spans their energy on the 

whole fundamental period of the array factor. It is even possible to suppress some of the QLs 

collectively. As seen, its performance is much better than dithering. The QL level in Fig. 7.8(d) is 

decreased to about 25.2 dB. The normalized gain loss is also shown in Table 7.1. 

The second approach only removes the distortion from the field of interest. Consider an example 

of low earth orbit (LEO) satellite located at 550 Km above the equator. As shown in Fig. 7.9(a), 

that yields a maximum satellite view angle of about 𝜃𝑆 = 2×67°, which associates with the 

elevation of 𝜃𝑒 = 0° viewed by the observer on earth. Such satellites typically carry several PAs 

(e.g., four PAs), each generating multiple simultaneous beams, but here for simplicity, only one 
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spot beam is considered. The edge of coverage (EoC) is defined as an elevation of about 𝜃𝐸𝑜𝐶 = 

36°, which is shown in Fig. 7.9(b). That requires the antenna to have a maximum steering angle of 

𝜃 ≈ 48°. In Fig. 7.9(c), the beam is commanded at [𝜃, 𝜑] = [48°, 120°]. The geographical and 

political boundaries are shown in the background. The 3-dB spot radius is about 1.985°. A black 

contour shows its corresponding projection on earth in Fig. 7.9(d). As stated, the in-band is the 

region of interest that might be considered in two ways for the case. One is the region 

circumscribed by the EoC. The other one might be the whole region on earth visible from the 

satellite viewpoint. Anyway, the main goal for this example is to push considerable distortion to 

the region where the antenna radiation would spill over to space or the tiny invisible region. 

That is precisely the area close to the apices of the hexagonal shape period in Fig. 7.9(c). 

However, one should recognize the discrepancy between this case and those in the previous 

chapters when enough invisible region was available as out-of-band. This is because the out-of-

band distortion turns to minor lobes inside the visible region, significantly decreasing antenna 

directivity.  

The main challenge in noise shaping is to choose the most optimal filter. The noise shaping 

solution is unique with respect to the filter used, wavefront traversal, and quantizer specifications. 

However, choosing an optimal filter is challenging since there are typically several options and 

various possible solutions. For example, the amount of attenuation considered for each notch, 

background disc level(s), and the impulse response size. For the current example, we may give 

more priority to the region circumscribed by the EoC; thus, it has been defined as in-band. In Fig. 

7.10, a filter is designed for such a simple scenario. Only the circular disk corresponds to the EoC 

region, and notches associated with the QLs are not considered. 
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(a) 

 

(b) 

  
(c) (d) 

Fig. 7. 9. Exemplar low-earth orbit satellite position, antenna pattern, and projection on earth. (a) a schema of satellite 

position and its field of view. (b) edge of the coverage (EoC), 36°, and other elevations. (c) array factor for 3-bit simple 

uniform quantization, (d) a contour of 3 dB spot on earth. 

         

   
(a)           (b)          (c) 

Fig. 7. 10. CV-NS results based on digital filter with stopband corresponding to EoC. (a) Revised system frequency 

response, computed array factor steered at (b) [𝜃, 𝜑] = [48°, 120°], (c) [𝜃, 𝜑] = [30°, 45°]. 
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TABLE 7.2 

GAIN LOSS AND SLL IN FIG. 7.10. 

 SLL Gain loss  

Fig. 7.10(b) 19.9 dB 0.59 dB  

Fig. 7.10(c) 15 dB 0.46 dB  

 

However, as might be expected, the filter does not work exactly the same for all steering angles 

as the SLL, and gain loss slightly varies; consider Table 7.2. On the other hand, we may prefer the 

distortion only spillover over to space and invisible region. The filter in Fig. 7.11 is designed for 

such a purpose. However, as the stopband is quite broad, it incurs a huge upshift in the frequency 

response of the revised system in Fig. 7.11(a). As a result, some artifacts appear inside EoC with 

about 29 dB magnitude. Besides, the filter imposed more antenna gain loss than Fig. 7.10, See 

Table 7.3. In this regard, we may more optimally control the out-of-band distortion in terms of 

location and level. This is significant for the amount of antenna gain loss. In Fig. 7.12, two levels 

opt for filter layouts instead of one level. This is because we prioritized the region inside the EoC 

but still wished to control the amount of SLL inside the region between the EoC and elevation 

zero. Also, the notches corresponding to the QLs are also considered this time. To optimally design 

the filters, particle swarm optimization (PSO) is recruited. We have considered a vector of five 

elements as the decision variable vector; thus, in PSO, each particle position is characterized by 

five dimensions. Two elements are associated with the two levels of filter background, and three 

corresponding to three possible levels of notches. The optimizations are carried out by using 100 

iterations and 150 swarm populations. The convergence diagrams are shown in Fig. 7.13, in which 

the steering angle 1 and 2 are, respectively, associated to [𝜃, 𝜑] = [48°, 120°] and  [𝜃, 𝜑] = [30°, 

45°]. It can be seen in Table 7.4 that antenna gain loss and SLL are promoted in comparison with 

Fig. 7.11. 
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        (a)                     (b)                     (c) 

Fig. 7. 11. CV-NS results based on digital filter with stopband corresponding to elevation zero. (a) the revised system 

frequency response, computed array factor steered at (b) [𝜃, 𝜑] = [48°, 120°], (c) [𝜃, 𝜑] = [30°, 45°]. 

  
        (a)        (b) 

  
(c) (d) 

Fig. 7. 12. CV-NS results based on digital filter with filter layout designed by particle swarm optimization. (a) the 

revised system frequency response, computed array factor steered at (b) [𝜃, 𝜑] = [48°, 120°], (c) [𝜃, 𝜑] = [30°, 45°]. 

 

TABLE 7.3 

GAIN LOSS AND SLL IN FIG. 7.11. 

 SLL Gain loss  

Fig. 6.10(b) 9.7 dB 1.73 dB  

Fig. 6.10(c) 16.1 dB 1.05 dB  

 

TABLE 7.4 

GAIN LOSS AND SLL IN FIG. 7.12. 

 SLL Gain loss  

Fig. 6.11(b) 18.6 dB 1.081 dB  

Fig. 6.11(c) 16.13 dB 0.837 dB  
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Fig. 7. 13. Fitness versus iteration number. 
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Chapter 8 

Noise shaping for Reflectarray 

  
8.1. Quantization error and signal statistics 

The PDA quantization due to pixel frequency response downgrades the RA radiation 

performance. As the quantization error is generally a function of the original signal, it may yield a 

harmonic error that behaves differently than a spectrally flat one. Nevertheless, as stated before, 

the quantization error can theoretically be an independent signal from the original one.  

Fig. 8.1(a) shows the PA active elements. The black dots may also be assumed as the center of 

each RA pixel. The lattice is assumed triangular, the so-called hexagonal, with normalized pitch, 

𝜌, of about 
1

√3
 ≈ 0.58. For these preliminary models, we assumed 3bit SUQ. For a fair comparison, 

the magnitude of the field on the RA aperture is also assumed for the PA. The RA is prime-focused 

with an F/D of 1.4, which yields about 11-12 dB edge-tapering for the case at hand. The decibel 

array factor and the field spectra for respectively PA and RA are illustrated in Figs. 8.1(b) and 

8.1(c). As seen, the SD nature of RA helps to dissolve the QLs in beamspace, while they appear 

in harmonized form with a considerable peak level, about 19 dB, in the PA array factor.  

In contrast to the simple mathematical model assumed in the preceding paragraph, the pixel 

frequency response is a function of EM wave incidence angle; thereby, the PTC is a function of 

incidence angle. Besides, the quantization is usually non-uniform for linearly polarized (LP) ones, 

whereas at least in a specific frequency range, it shows up in an acceptably uniform fashion for 

circularly polarized ones designed based on variable rotation technique (VRT) [110].  
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The aperture-coupled patch is schematically illustrated in Fig. 8.2(a). The frequency responses are 

for hexagonal infinite-periodicity; seven elements on the hexagonal lattice are depicted in Fig. 

8.2(b). The full-wave simulation results of phase delay are shown in Fig. 8.2(c) for normal 

incidence. Pixel1 to Pixel8 implies the frequency responses of a pixel due to different delay lines, 

which are not explicitly shown here for brevity. Such an arrangement of frequency responses leads 

to PDA non-uniform quantization, specifically at lower and higher extremes of the frequency band 

of interest, which incurs distortion and limits the antenna bandwidth. This has been shown in the 

example Fig. 8.3, where the beam is aimed at [𝜃, 𝜑] = [20°, 60°] for an offset-fed aperture in 

which the feed is rotated 20 degrees along the x-axis in RA coordinate system. As seen, the 

weighted PDA error spectrum is shifted to the beam position in the error pattern and subsequently 

shows up in the overall pattern. Note that some quantization distortions happen out of the visible 

band, which is an advantage of the relatively small pixel used, 𝜌 = 0.42. The distortion 

manifestation in beamspace is related to the PDA, field magnitude on aperture (feed pattern and 

position), and the pixel response. In a "soft" PDA, the phase varies gently on aperture and is usually 

more favorable since it contributes to more antenna bandwidth. One may intuitively expect the 

distortion shows up at lower (spatial-frequency) bands for acceptably soft PDA; thus, it is more 

likely to appear inside the visible region. However, that is not precisely correct. 

 
 

   
(a) (b) (c) 

Fig. 8. 1. Comparison of quantization lobe for phased array and reflectarray. (a) Active elements in lattice assumed, 

decibel (b) phased array factor, and (c) reflectarray field spectra. 
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(a) (b) (c) 

Fig. 8. 2. Aperture coupled patch unit cell. (a) Exploded visual representation of pixel with periodic boundary 

condition, (b) seven elements on a hexagonal lattice, and (c) eight pixels frequency responses phase. 

   

   
     (a)       (b)        (c) 

 

   
(d) (e) (f) 

Fig. 8. 3. Exemplar reflectarray with unit cell shown in Fig. 8.2. (a) phase delay arrangement, (b) weighted phase delay 

arrangement error, (c) phase delay arrangement error spectra, (d) error pattern, (e) field spectra on one fundamental 

period, (f) field spectra on visibility region. 

A practical pixel frequency response contributes to non-uniform quantization, at least for LP 

antenna, and thereby, even in the case of sharp phase variation, a considerable portion of distortion 

may happen in-band. Besides, it does not directly obey the PDA; instead, the complex exponent 

of PDA error is weighted by field intensity on the aperture. In this regard, an acceptable and 

optimal design might be acquired using signal statistics. We define the "weighted histogram," in 

which the intensity of the electric field weights the replication of the phase. 
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Therefore, that becomes the task of assigning the optimal reference phase, the reference distance 

between the defined port and pixel, according to the high phase priority region for maximum 

fidelity. The PDAs and weighted histograms, with five degrees resolution, at 29 GHz, 30 GHz, 

and 31GHz are illustrated in Fig. 8.4. Sweeping the frequency, the high priority phase state region 

travels from about -3.14 radians to -2 radians at 29 GHz to about 1 radian to 2 radians at 31 GHz. 

Therefore, each frequency point has its phase priority region. Fig. 8.5 shows the PDA error, TC 

diagram, and field spectra at 30 GHz for two different pixel reference phases. As seen, the TC is a 

function of the incidence angle; for example, each specific delay line of the pixel yields some close 

quantization steps associated with different incidence angles. More importantly, the antenna 

pattern of Case I is much more distorted than that of Case II. That is because the high-priority 

phase range of 2 to 3 radians, see Fig. 8.4(b), is covered by almost one quantization step for Case 

I.  

The underlying phase range is highly prioritized since it happens in the region beneath the FPC 

on the aperture surface, where the phase varies gently, see Figs. 8.5(a). Thus, it contributes to low-

frequency harmonics, and consequently, some corresponding distortions happen at low spatial 

frequencies of PDA spectra and subsequently shift to the beam position in the antenna pattern, see 

Fig. 8.5(c) for Case I. Nevertheless, though signal statistics is a useful method, it might not always 

be possible to use it conveniently. Besides, it just helps to minimize the damage to the resulting 

antenna pattern, which in some cases might be considerable. 
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Fig. 8. 4. High-precision phase delay arrangement (PDA) and weighted histogram. (a) 29 GHz, (b) 30 GHz (c) 31 

GHz. 
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 (a) (b) (c) 

Fig. 8. 5. Two phase delay arrangements errors with different phase references. (a) weighted phase delay arrangements 

error, (b) transfer characteristics diagram, (c) field spectra at 30 GHz, and the main beam are intended at [𝜃, 𝜑] = [90°, 
20°]. 

8.2. Noise shaping 

Although the space-fed antenna is a naturally SD system, it might still be tempting to check 

whether dithering can address the distortion in the radiation pattern of the space-fed antenna or 

not. 

For the case at hand, the feed imposes the aperture field. Hence, the design is a phase-only 
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synthesis, and we use RV-NS to address the quantization error. As stated before, to spectrally 

shape the PDA error, one should note that the PDA error is steered to the point direction in the 

reflected field error spectrum; thus, we should shift the targeted frequency band of the filter in 

reverse with respect to the beam direction. However, as the RCDF is of (conjugate) symmetric 

frequency response, we could shift it to the beam direction.  

Generally speaking, noise shaping is independent of antenna polarization type since it is carried 

out on the field spectra, the same as array-factor in PA antenna. However, the final distortion 

pattern is a function of polarization that might be considered in the filter layout in the designer's 

favor. Besides, the field projection on the aperture is a function of polarization also. In other words, 

following the radiation from the aperture, one can realize that some multiplying trigonometric 

functions taper the resultant radiation pattern. As an example, for the x-polarized incident field, 

the co-polar component of the E-field is in relation 

𝐸𝑐𝑜  ∝  𝔼𝑥𝑥 (𝑠𝑖𝑛
2 𝜑 + 𝑐𝑜𝑠2 𝜑 𝑐𝑜𝑠 𝜃) 

where 𝔼xx indicates the spectra of the x-polarized reflected field due to x-polarized impinging one. 

The term inside the parenthesis generates a sharper roll-off along the V direction, which resembles 

the effect of element and coupling factors in the PA antenna.  

The noise shaping approach can theoretically alleviate the distortion due to the large 

quantization width. However, that might be too good to be true. By way of further explanation, it 

is irrelevant to and can do nothing for the local periodicity assumption (LPA) issue and may further 

add to problems by inserting the noise into the PDA. This comes from the approximate nature of 

discretized space-fed antenna design, which is based on LPA. If the individual pixel values vary 

sharply, there would be higher-order modes of field close to the boundaries of the pixels due to the 

discontinuity. If one models the pixel by surface impedance, such evanescent modes can be altered 
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by reactive lumped elements as they are localized stored energies; that means that the effective 

value of the surface impedance can severely deviate from the one assumed in an infinite periodicity 

assumption.  

A part of each pixel information exists in, or better to say, depending on, the neighboring pixels, 

and that is precisely a significant discrepancy between an antenna and, for example, an image from 

noise shaping perspective. That is to say, ideally, the quantizer should take a look around the 

current underlying element and attributes a realizable complex value to that, then diffuses the 

quantization error to the neighboring elements; thereby, during the subsequent wavefront traversal 

of those neighboring elements, the quantizer assigns realizable values to them as well, which also 

have mutual impacts on the current underlying sample complex values and that, the amount of 

initial diffused error would be inaccurate or wrong. We may call this a "wavefront interruption 

problem" (WIP). Such an issue more or less happens for all antenna types but is not always that 

malignant. For example, for those space-fed antennas designed by manipulating the surface 

impedance and those having highly miniaturized elements, WIP might be more problematic.  

Regarding the dubious white noise premise, the noise shaper may work less effective or less 

predictable for coarse quantization. That is more the case with reconfigurable antennas and highly 

miniaturized pixels with limited phase states. For the traditional design of the MF-RA, the PDA 

might be intuitively written as 

𝜑𝒊 = (∑ 𝛼𝑛

𝑀−1

𝑛=0

)

−1

∑ 𝛼𝑛 (𝑘‖�́�𝑑𝑛,𝒊‖2
+ 𝜉𝑑𝑛,𝒊)

𝑀−1

𝑛=0

                               (8.1) 

where 𝛼𝑛 is an arbitrary weighting, the subscript 𝑑𝑛 signifies the nth design element, e.g., assume 

𝒇𝑑𝑛 is the vector of the nth feed position associated with the nth beam direction, 𝒑𝑑𝑛In the SF-RA 

sense, then �́�𝑑𝑛,𝒊 =  𝛼𝑳𝒊 − 𝒇𝑑𝑛, where L is the lattice matrix, 𝛼 is the weighting factor, and 𝒊 is an 
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integer column vector. Besides,  𝜉𝑑𝑛,𝒊 = −𝑘(𝒓𝒊⊙𝒑𝑑𝑛). Accordingly, one may write 

Ψ𝒊 = 〈𝜉𝑑𝑛,𝒊〉𝑛 + 𝑘 [〈‖�́�𝑑𝑛,𝒊‖2
〉𝑛 − ‖�́�𝑠,𝒊‖2]                                     

(8.2) 

where �́�𝑠,𝒊 = 𝒓𝒊 − 𝒇𝑠 and 𝒇𝑠 is an arbitrary feed position. Thus, the PDA error spectrum steers 

based on in the beamspace domain for an MF-RA. Ideally, in mechanical steering, the PDA is 

frizzed, but the feed displacement manipulates the spatial frequencies; thus, care should be devoted 

to that in the design of the filter layout. For example, if one designs the filter corresponding to the 

central beam position, the feed assigned to the extreme beam transfers some "out-of-band" 

artifacts, amplified by the RV-NS process, to the visible region of the beamspace domain.  

This is a challenge for mechanical steering since it asks for a filter with a wide stopband that 

weakens the noise shaper "pump." Also, as a correction to the point mentioned above, the PDA is 

not exactly frizzed in mechanical steering since the pixel frequency response is a function of the 

angle of incidence.  

  
(a) (b) 

  
(c) (d) 

Fig. 8. 6. Results of simple quantization for different steering angles. (a) phase delay arrangement, computed pattern 

for beam steered at (b) [𝜃, 𝜑] = [3.37°, −13°], (c) [𝜃, 𝜑] = [21.24°, 72.62°], (d) [𝜃, 𝜑] = [15.42°, 36.26°]. 
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It might be beneficial to note that if one uses (8.1) to design the Multi-focal PDA for specific 

focuses and associated beam directions, the feed positions would not precisely be under control 

and should be specified for each vector 𝜶 chosen. This can be problematic for design, e.g., a feed 

position might not be practical due to the blockage it may cause. The optimization approach 

introduced in Chapter 7 provides results for predefined feeds' positions and associated beam 

directions, clarifying its superiority.  

In Fig. 8.6(a), the PDA for Solution B in Fig. 7.6 is shown, which is here quantized to 8 "prime 

steps" generated by a practical pixel, the "prime steps" because the pixel frequency response is a 

function of angle of incidence. Furthermore, the pixel arrangement has been carried out with 

respect to the median feed position, rotated 13 degrees along the x-axis. The results of computed 

radiation patterns for three objective beams are illustrated in Figs. 8.6(b)-8.6(d). The quantization 

incurs in-band distortion, which means an increase in sidelobe level in the visible region.  

In Fig. 8.7(a), a revised RCDF is shown designed with respect to the beam at  [𝜃, 𝜑] =

[3.37°, −13°]. The associated spectrally shaped PDA is plotted in Fig. 8.7(b) and the radiation 

pattern in Fig. 8.7(c). Compared with Fig. 8.6(b), one can see that the in-band distortion is 

acceptably pushed out of the visible region.  

There is an excessive stopband inherent with the RV-NS method. The effect of this excessive 

stopband can be seen in Fig. 8.7(c), a small area on the right outside of the visible region. Then, 

the feed is rotated to steer the beam at [𝜃, 𝜑] = [21.24°, 72.62°], the computed radiation pattern 

is shown in Fig. 8.7(d). As seen, the distortion is entered into the visible region; since the filter 

was not designed for this direction. 



Chapter 8. Noise shaping for reflectarray                                               

168 

 

  
(a)  (b) 

  
(c) (d) 

Fig. 8. 7. Results of noise shaping for different steering angles. The filter is designed with respect to one steering 

angle. (a) The revised digital filter design with respect to one beam only, (b) phase delay arrangement, computed 

pattern for beam steered at (c) [𝜃, 𝜑] = [3.37°, −13°], (d) [𝜃, 𝜑] = [21.24°, 72.62°]. 

Besides, the distortion is almost not exactly shifted version of Fig. 8.7(c) due to the different 

pixel responses with respect to the angle of incidence. Thus, as stated before, the filter should be 

designed with respect to the extreme beams. Moreover, the visible region size is a function of 

temporal frequency; hence, the bandstop filter should be designed for the highest frequency of 

antenna bandwidth. Finally, the filter in Fig. 8.7(a) inserts considerable noise into the PDA.  

Specifically, it would be worsened if the design considers all extreme beams and the visible 

boundary is considered for the upper end of the frequency band; since both contribute to a wider 

bandstop region; in fact, these are the limitations of the approach narrowing the antenna view angle 

for mechanical steering. As stated before, such a design may lead to a catastrophe in practice since 

it would be against the LPA design. Thus, one may compromise the bandstop filter depth; to ensure 

that the inserted noise would be small enough.  
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(a) (b) 

  
(c) (d) 

Fig. 8. 8. Results of noise shaping for different steering angles. The filter is designed with respect to extreme beams. 

(a)  Revised digital filter designed with respect to extreme beams, (b) phase delay arrangement, computed pattern for 

beam steered at (c) [𝜃, 𝜑] = [3.37°, −13°], (d) [𝜃, 𝜑] = [21.24°, 72.62°]. 

In some cases, the distortion may only move from the area of interest inside the visible region; 

thus, the filter can be designed with a smaller stopband.   

In Fig. 8.8(a), the filter is designed for extreme beams (and their image ones with respect to the 

y-axis). As seen, the filter stopband became wider than that shown in Fig. 8.7(a). Also, the filter 

layout background has been considered with 5 dB less attenuation. The results of spectrally shaped 

PDA and two exemplar beams are shown in Figs. 8.8(c)-8.8(d). Note that we could design the 

filter with more attenuation, leading to a cleaner in-band response, but the design is compromised 

for LPA. Overall, comparing the results of Fig. 8.6, one can see that still, the method is 

theoretically capable of cleaning the in-band distortion to some extent. 

A smaller pixel size would lead to less in-band distortion since the quantization is wideband, 

and a smaller portion of the fundamental period becomes visible. Secondly, the noise shaper works 

more efficiently, and the results would be even better. The other possibility is the lattice used.  
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(a) (c) 

  
(b) (d) 

Fig. 8. 9. Computed patterns for noise shaping system. (a) -0.075 (b) +0.075 F/D misalignment error. Computed 

patterns for simple quantization system and (c) -0.075 (d) +0.075 F/D misalignment error. 

  
(a) (b) 

Fig. 8. 10. Computed 20 dB roll-off for four beams. The 20-dB roll-off for (a) noise shaping, (b) simple quantization. 

As a general rule, the hexagonal lattice provides a freer spectrum for the same element spacing; 

thus, noise shaping would be more successful.  

8.3. Practical considerations 

In practice, there are several types of errors, including PCB material and fabrication errors and 

feed misalignments in terms of angle and focal distance. Also, the feed horn behavior changes in 

front of the reflector in terms of feed phase center, impedance matching, and radiation pattern. 
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Nevertheless, the computation results demonstrate some level of immunities for the spectrally 

shaped PDA (NS system) in comparison to the conventional design (SQ system). Fig. 8.9 

illustrates the beam performance for 1.175 and 1.325 F/D (±0.075 misalignment error). It can be 

seen that the misalignment errors fill up the nulls and increase the sidelobe more for the 

conventional design than the spectrally shaped one. Also, the spectrally shaped PDA 20 dB roll-

of performance in Fig. 8.10 shows slight superiority for the extreme beams of NS. 

8.4. Experimental verification 

For experimental verification, two RAs are fabricated. The configuration of prototypes is shown 

in Fig .8.11(a). The prepregs used to laminate the layers are not shown in this figure. The two 

prototypes are precisely the same except in their delay line layer. An exemplar array of slot and 

patch layers are shown in Figs. 8.11(b) and 8.11(c), respectively. One prototype is designed based 

on simple quantization (SQ), whose PDA is shown in Fig. 8.6(a), while the other is based on noise 

shaping (NS) design in Fig. 8.8(b). The photographs of the two fabricated delay line layers are 

shown in Fig. 8.11(d) and 8.11(e). In Fig. 8.11(a), the dielectric substrates (1)-(3) are RO5880NS 

with 1.575 mm, 0.252 mm, and 0.252 mm thick, respectively. All copper cladding is 0.18 microns. 

Also, all layers are laminated together using prepreg which is RO4450f bondply with a permittivity 

of 3.52. The pixels frequency responses are simulated for 0-55 degrees of angle of incidences for 

eight quantization steps realized by manipulating the delay lines. Accordingly, the PDA is 

quantized with respect to the feed rotation vector of [𝑅𝑥, 𝑅𝑦, 𝑅𝑧] = [13°, 0°, 0°] and pixels 

frequency responses at 30 GHz. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 8. 11. Reflectarray different layers and pictures of fabricated layers. (a) Schematic of reflectarray configuration. 

Photo of fabricated (b) slot layer, (c) patch layer, (d) delay-line layer for simple quantization, and (e) delay-line layer 

for noise shaping. 

The RA diameter is 18.55 cm (18.55λ at 30 GHz). A standard WR-34 pyramidal horn (SAR-

1725-34KF-E2) available in our lab is used, which operates in the 22-33 GHz band. 

The RA F/D is about 1.25, ensuring the edge tapering of 10-11 dB. A photograph of the feed horn 

in front of the RA is shown in Fig. 8.12(a). The horn aperture is 24mm × 32.9mm and has about 

17.8 dBi gain at 30 GHz. The measured radiation pattern of the horn at 30 GHz is shown in Fig. 

8.12(b).  
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Fig. 8. 12. Pictures of feed horn and measured radiation pattern. Fabricated reflectarray and measurement setup. (a) 

Feed horn in front of the reflectarray. (b) Feed horn measured radiation pattern at 30 GHz, and (c) near-field 

measurement setup. 

The experiment is carried out in an anechoic chamber. The antenna system, including the RA, 

feed, and struts, are placed in front of the NSI planar near-field scanner, see Fig. 8.12(c). The near-

field radiation of the antenna was sampled with an open-ended WR28 waveguide probe. The 

extracted data was subsequently transformed into far-field radiation patterns using Fourier 

transform to obtain experimental results. 
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Fig. 8. 13. Measured radiation pattern for feed rotation vectors of [13°, 0°, 0°] at 30 GHz. (a) noise shaping, (b) simple 

quantization. Measured radiation pattern for feed rotation vectors of [24.75°, 0°, 0°] at 30 GHz for (c) noise shaping, 

(d) simple quantization.   

The measured patterns at 30 GHz are shown in Fig. 8. 13 for two feed positions. The results 

represent slightly superior side lobe performance for the NS system. The co- and cross-

polarizations of radiation patterns on the E-plane are shown in Fig. 8. 14 for a better comparison 

at different frequencies. 

The co-polar contents are plotted with solid lines, whereas dashed lines show the cross-

polarizations. For each antenna, all patterns are normalized with respect to the one shown in Fig. 

8.14(a) with a feed rotation vector of [13°, 0°, 0°]. This shows the approach's feasibility in side 

lobe suppression, specifically in the presence of error discussed in Fig. 8.10. It can be seen that the 

one designed based on noise shaping shows less side lobe level. 
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(c) 

Fig. 8. 14. E-plane measured radiation patterns for feed rotation vectors of [13°, 0°, 0°] and [24.75°, 0°, 0°]. At (a) 30 

GHz, (b) 30.5 GHz, and (c) 29.5 GHz. (Solid lines are co-polar and dashed lines for cross-polarizations).  

 

 
Fig. 8. 15. Measured gain versus frequency. 

The cross-polarization level is a function of the field projection on aperture, pixel cross-

polarization content, and feed cross-polar content. In the case of offset feeding, the field projection 

dominates others. The cross-polar contents remain close to 21-24 dB in the direction of the main 

beams for all cases. The antenna gain (for NS) is measured at about 32.9 dBi at 30 GHz for the 

feed rotation angle of [13°, 0°, 0°], corresponding to 57.72% aperture efficiency. For the feed 
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rotation angle of 24.75° the aperture efficiency is about 49.1% (0.7 dB gain scan loss). The 

measured antenna gains over the frequency are shown in Fig. 8.15. The two antenna works almost 

the same over the frequency range of 28-32 GHz. The negligible more gain realized by NS might 

be attributed to its smaller sidelobe level. However, this characteristic does not remain correct for 

all frequencies. This might be attributed to an increase in phase error due to frequency-dependent 

pixel response (and feed horn pattern). Note that the noise shaping design is carried out at 30 GHz, 

and the quantization is with respect to the feed rotation vector of [13°, 0°, 0°]. Thus, although the 

antenna is designed for different feed positions, the quantization is carried out with respect to one 

feed position associated with one steering angle. In other words, the pixel is sensitive to the 

incident angle, which changes by changing the feed rotation, and the antenna has superior behavior 

at one angle. This is somehow an issue for MF-RA design since the PDA quantization is associated 

with one feed position; thus, the pixel arrangement on the reflective surface needs to be revised by 

rotating the feed, which is impossible.  

The NS prototype beam roll-off performance for some 2D scan angles is shown in Fig. 8.16. 

The antenna fails to comply with the 20 dB CCI norm for some of the beams measured. In 

particular, the beams along the V = 0 remain acceptably the same as the one predicted by theory, 

but the other's performance is downgraded. This can be attributed to the practical pixel sensitivity 

to the incident angle and misalignment errors. The beam at [U, V] = [0.1, 0.18] has about 1.2 dB 

and 1.4 gain scan loss with respect to that at the center for NS and SQ, respectively. Such a gain 

scan loss might be acceptable for many applications; however, the roll-off for the extreme beams 

does not comply with the CCI norms. Nevertheless, as predicted by theory, the NS performance is 

slightly superior to SQ, specifically for extreme beams. It should also be pointed out that we have 

used a resonant type element, which has a narrow bandwidth and is sensitive to the incident angle, 
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which clarifies the narrowband behavior of the antenna in Fig. 8.15 and the inferior efficiency for 

extreme beams in Fig. 8.16. If a larger F/D is used, extreme beams can be ameliorated since the 

quadratic phase shift approaches the linear progressive phase, as stated in Section II, and the EM 

incident angle decreases, promoting pixel performance. Also, pixels whose frequency response is 

less sensitive to the angle of incidence can promote that. 
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 (a) (b) 

Fig. 8. 16. Measured four different beams. (a) 4 dB spot, (b) 20 dB roll-off. 
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Chapter 9  

Conclusions and future works 

9.1. Conclusions 

There are two methods to deal with the quantized beamforming weights. The former method 

directly synthesizes the pattern based on available quantized weights. In principle, it requires a 

discrete search engine. In this regard, the metaheuristic techniques do not offer an exact solution; 

thus, if they converge, an acceptable solution might be provided. Thus, they are computationally 

expensive and time-consuming, with no repeatable solutions. Moreover, for large 2D/3D arrays, 

because of high dimensional parameter space, the algorithm may fail to converge.  

The latter approach synthesizes the pattern for a high-precision system and subsequently 

addresses the quantization issue as a post-synthesis procedure. One post-synthesis approach is 

deliberately inserting a portion of noise before the quantization process to break up the error 

coherency. Such a method is called dithering. The dithering can make the error benign, ideally 

independent of the original signal. However, it has been shown in this thesis that the random dither 

is a sub-optimal solution in terms of antenna gain loss and quantization lobe suppression. 

Furthermore, it does not generally provide a repeatable beam. On this account, the second type of 

dither, the spectrally shaped one, is more attractive as it sounds more optimal from many 

perspectives. The method is called noise shaping. The advantage of noise shaping as a post-

synthesis method lets the designer choose any desired method for syntheses, such as fast analytical 

ones (like the Fourier synthesis method), point search, or population-based algorithms. Also, noise 

shaping is a non-iterative method; thus, it is computationally cheap, and its response is unique and 

repeatable since only one solution is associated with a specific filter design. Those exceptional 
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properties make the approach more attractive than dithering, in which its solution is not repeatable 

and suboptimal in terms of quantization lobe suppression and gain loss. 

 In this thesis, noise shaping is used to address the distortion due to the quantization in analog, 

digital and hybrid beamforming of square and hexagonal lattices. The effectiveness of the 

approach seems quite promising. It is observed that successfulness is a function of several 

subjective factors, in which the key points are the number of available quantization states, the 

minimum-phase system, filter layout design related to the region of interest in the beamspace 

domain, and of course, the array pitch. The method can compensate for some portions of antenna 

gain loss due to the quantization, in contrast to the white noise process that further decreases the 

antenna gain. 

In particular, the noise shaping approach and design of filters for several different examples and 

scenarios have been exhaustively investigated. It has been shown that although the classic 

hexagonal lattice provides a very small invisible region in comparison to the classic square, the 

method can still push the distortion to the invisible region. However, it has been witnessed that the 

antenna has received relatively more gain degradation than a classic square lattice, which is 

particularly challenging for phase-only synthesis as the invisible region is not reachable for most 

steering angles. However, the method used in phase-only synthesis can “see” a freer spectrum for 

the hexagonal one than its square counterpart for the same array pitch size. Also, it has been shown 

that noise shaping is superior to the randomization-based (dithering) method in null steering. At 

the same time, the dithering approaches are ineffective for null restoration. The noise shaper was 

exploited to excavate the distortion in those regions of beamspace where nulls are embedded. 

Therefore, the array factor nulls can be preserved. Moreover, the noise shaper has been used with 

two strategies for those cases with large element spacing. One was based on spaced notches filter 
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design which spans the quantization lobes on the beamspace domain and yields negligible antenna 

gain loss. The second was based on removing the distortion from the region of interest. A brute-

force search has been used to minimize the side lobe level and gain loss for the optimal filter 

design. Also, it has been shown that the noise shaper can revise the distorted shaped-beam.  

Contiguous sub-array overlapping is investigated for linear and planar array optimal design 

with respect to antenna view angle. It is shown that an optimal design of a spatially oversampled 

array yields a wide view angle with a smaller number of elements. The structures are implemented 

in two and three layers with different array pitches. The Full-wave simulations are acceptably 

compatible with design computations. 

A novel method is proposed for spectrally shaping the beamforming weights quantization error 

at the sub-array layer in which the in-band distortion is intended to move into the position where 

the sub-array factor has high attenuation. To do that, the sub-array factor or the composite sub-

array factor is tiled by the periodicity of the ultimate-layer array factor. Then the digital filter layout 

is designed based on the superposition of all tiles overlapping with the visible region of the sub-

array factor, and the ultimate layer array factor is spectrally shaped to minimize the number of bits 

quantifying the beamforming weights. The method is investigated for analog, digital, and hybrid 

array beamforming with multi-layer overlapped sub-array systems of different sizes and shapes. 

In all cases, its performance is promising and potent in alleviating the overall array factor 

distortion. 

Moreover, Reflectarray was designed using the sequential approach, where the radiation pattern 

was synthesized for a high-precision system. The noise-shaping approach has addressed the phase 

quantization arrangement of the practical pixel response. It is found that although the element 

spacing can be significantly reduced in a space-fed antenna in comparison to the phased array, the 
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local periodicity assumption and feed rotation angle limit the method's performance. In particular, 

the local periodicity assumption limits the depth of the digital filter stopband, and the beam 

steering, by feed rotation, increases the in-band region. Both of which downgrade the noise shaper 

performance. Besides, it is shown that a space-fed antenna is naturally a subtractive dither system 

that somehow mitigates the quantization lobe level by itself. Nevertheless, the method is still 

feasible for accurate design and fabrication, specifically at higher frequencies when the 

quantization noise increases due to the limited number of phase steps. The measurements showed 

slight promotion in side lobe level and beam roll-off. A resonant type element based on a delay 

line has been used, which might be more suitable for the case at hand since inserting noise might 

be more detrimental for sub-wavelength unit cells. However, the pixel used downgraded the 

antenna view angle due to the pixel's sensitivity to the incident angle, which might be promoted 

by a larger F/D or a pixel less sensitive to the incidence angle.      

9. 2. Future works 

Hybrid beamforming based on multi-layer sub-array overlapping can be further investigated for 

the planar array. Thus, there would be three objectives: i) to study and design analog beamforming, 

(ii) to develop a digital beamforming, and (iii) to integrate both analog and digital sections to come 

up with a novel hybrid beamforming.  

Regarding the analog section, the optimal design and shape of a sub-array with enough elements 

should be chosen, and the associated feeding network should be realized. The shape of the sub-

array determines the fashion of the array factor's fundamental period, and the overlapping is 

important for grating lobe cancellation. The greater the number of sub-array elements, the more 

transmission zeros for sub-array beamforming, which facilitates the beam steering at the sub-array 

layer since the sub-array factor can be better shaped. However, a sizeable physical sub-array 
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decreases the period of the reciprocal domain7, which increases the number of grating lobes. To 

facilitate the cancelation of grating lobes, a more significant number of elements should be 

overlapped, complicating the feeding network. Most articles published in the literature 

theoretically investigated this array configuration's features without clarifying the feeding network 

implementation. Therefore, the method used in this thesis might be expanded to 2D planar array 

to realize the large and complicated sub-array overlapping system8. 

In regard to the digital section, the method based on noise shaping can decrease the gate delay, 

as it is the main issue of digital beamforming. It is specifically important for high data rates and 

multiple beams. Also, the choice of digital platforms and configurations significantly decreases 

the delay and power consumption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
7 The period of sub-array factor in comparison to fundamental period of the overall array factor.  
8 Also, one should note that the complicated feeding network incurs other problems such as noise figure deterioration 

which should be addressed for a practical system by using suitable LNAs.  
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