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Abstract 

 

Misconceptions in the Transition from Calculus to Real Analysis 

 

Marc-Olivier Ouellet 

 

Misconceptions about limits in introductory Calculus such as the infamous “a function never 

reaches its limit” have been thoroughly studied in previous research. However, their resolution is 

rarely documented. Our objective is to contribute to the understanding of the “vanishing” of 

common misconceptions about limits as students progress from Calculus to Analysis. In addition, 

we investigate the possibility that early Calculus misconceptions may influence the learning of 

Real Analysis in such a way that new, related misconceptions are developed about more advanced 

concepts. To this end, we created a questionnaire devised to uncover seven of the well-documented 

Calculus misconceptions, as well as three conjectured misconceptions related to introductory 

Analysis concepts. The questionnaire was administered to ten students actively enrolled in a first 

or second Real Analysis course. To analyze participants’ answers, we introduced a model of 

misconception classification which includes six levels. Using this model, we identified consistent 

incorrect reasonings indicating the possibility that instruction after elementary Calculus has not 

contributed to the resolution of some misconceptions. We observed that certain students’ answers 

exhibited what we refer to as “transitional behavior” from one level to another and discuss what 

this may mean in terms of overcoming misconceptions. In addition, we identified one instance of 

a student’s learning of Real Analysis potentially being influenced by their Calculus 

misconceptions. Finally, we briefly considered the presence of misconceptions about fundamental 

mathematics, such as logical argumentation and mathematical notation, and new misconceptions 

that students may develop as they learn more advanced mathematics.  
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Chapter 1 Introduction 
 

1.1 Overview of the research 
Most mathematics instructors are familiar with the common misconception that limits are a 

boundary that a function “approaches without crossing1”. As such, it is unsurprising to find an 

abundance of research on the nature, causes, and the extent of this particular misconception. In 

addition, prior research (see Chapter 2) has identified a large array of different concepts that are 

often misunderstood by mathematics students. The natural question that comes to mind is: when 

and how do students who hold these misconceptions develop or assimilate the correct mathematical 

concepts? Research on this question, however, seems to be scarce. This gap in the mathematics 

education literature inspired us to design a study on the vanishing and the evolution of the 

documented post-secondary mathematics misconceptions.  

Our use of the word “misconception” is as an umbrella term which encompasses a wide variety of 

cognitive frameworks. Any conception of a mathematical notion which differs from the formally 

accepted definitions is considered a misconception. In other words, a conception which is lacking 

only a few details to be accurate and one which is fully built on erroneous assumptions will both 

be referred to as a misconception. Considering the potentially misleading nature of such a broad 

definition, we propose a classification system for misconceptions which involves six levels. Taking 

inspiration from the literature and our experience as educators, we precisely define the typical 

behavior that would correspond to each of these six misconception levels, and construct a spectrum 

of understanding ranging from the lack of a conception to the expert conception. As such, we do 

not consider those typical misconceptions to be a one-size-fits-all. Rather, students’ understanding 

of any given concept might lie on different levels of this spectrum. 

The misconceptions that were chosen to be investigated in this study are the following: 

- Limits can never be reached2 

- The implicit monotonicity of convergent functions and sequences 

- 0. 9̇ < 13 

- The limit only as a dynamic process and never as a mathematical object 

- Cluster points are equivalent to limits 

- Infinity as a number 

- EA and AE statements 

These seven misconceptions are well-documented in previous research and provide an important 

theoretical background for the purpose of this study. 

 
1 We will use this very informal language that students and sometimes instructors use to mean that the function does 

not take the value of its limit at any point. In mathematical notation, if lim
𝑥→∞

𝑓(𝑥) = 𝐿, ∀ 𝑥, 𝑓(𝑥) ≠ 𝐿. 

2 In the same sense as mentioned in footnote #1. 
3 The dot refers to an infinite decimal expansion. 
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We hypothesize that in the case where students hold misconceptions beyond their Calculus studies 

and into their learning of Real Analysis, the past elementary misconceptions might influence their 

learning in such a way that they develop related and more advanced misconceptions regarding 

concepts in Analysis. Previous research (Driver & Easley, 1978; Resnik, 1983; Dubinsky & 

Yiparaki, 2000; Przenioslo, 2004) has documented that misconceptions can sometimes persist 

through instruction. Considering that mathematics is a subject that builds on prior knowledge, it is 

logical to believe that misconceptions might influence further learning and foster the development 

of new misconceptions. Hence, our study also involves an inquiry into misconceptions on topics in 

Real Analysis, inspired by our own experience and that may relate, in one way or another, to the 

common Calculus misconceptions that we listed above. We consider three such misconceptions, 

which are: 

- Assuming a link between boundedness and convergence of sequences 

- Infinity as a supremum 

- Supremum is the same as maximum 

Therefore, considering the seven misconceptions that relate to Calculus, and the three that might 

arise in Real Analysis, we set the objectives of this study as follows: 

- Uncover unsolved misconceptions about topics learned in Calculus. 

- Inquire into the vanishing of misconceptions related to Calculus. 

- Investigate the presence of misconceptions related to topics in Real Analysis that may 

replace or evolve from previous Calculus misconceptions. 

As such, we gathered 10 student-participants, on a voluntary basis, who were enrolled in an 

Analysis course. Throughout this thesis, when mentioning concepts of Real Analysis, we are 

referring to concepts which are introduced in the first and second Real Analysis classes (Analysis 

I and Analysis II), in which the student-participants were enrolled.  

Our initial idea for a research tool was to use task-based interviews (Goldin, 2000). However, the 

arrival of the global COVID-19 pandemic prevented us from using any method that involved 

proximity with people, including interviews. We considered using online meetings to go forward 

with our initial plan, but this idea was discarded to avoid overstressing the participants in these 

particularly demanding times (we gathered data in the early times of the pandemic). The reality of 

the pandemic disrupted most people’s personal, academic and professional lives, and we decided 

to devise a research tool that would contribute as little as possible to this disruption. To this end, 

we chose to create a questionnaire comprised of 26 questions to gather data that would allow us to 

address our research objectives. The questionnaire was administered through the online platform 

Moodle, in a dedicated page that could be accessed only by the participating students and by the 

research team. The students were instructed to take the survey at a time of their convenience and 

to respond to it using only their own understanding of the concepts emphasized in the questions. 

Once all the participants had completed the questionnaire, we began sorting through their answers 

and analysing their potential misconceptions. 

The analysis process consists in a careful inspection of the students’ answers to the questionnaire, 

with particular attention to reasonings that correlate to the misconceptions that are considered in 
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this study. The answers that we found to involve faulty reasonings were evaluated using a set of 

criteria specifically selected to help us determine which misconception level corresponds most 

closely to each answer (Table 4.41). Then, we considered each participating student’s questionnaire 

in its entirety to identify reoccurring thought patterns that would support the presence of 

misconceptions, or conflicting reasonings that would indicate otherwise. The entirety of a 

participant’s conceptions was then considered together to determine the presence of 

misconceptions and the effects that these may have on their understanding of concepts in Analysis. 

 

1.2 Summary of the results and conclusions 
The data gathered from the questionnaire demonstrates that Analysis students’ knowledge of 

elementary Calculus can still be lacking. We identified several common misconceptions in the 

participants of this study and evidence of other misconceptions which we initially did not expect. 

In addition, we observed some students who had, sometimes serious, issues with mathematical 

logic and notation.  

For the misconception designated as “a limit cannot be reached,” we identified five students (out 

of the 10 participants) whose answers hinted at them holding this misconception. One such student 

outright claimed they believed functions to never reach their limits.  

Six out of the 10 students who were surveyed provided evidence that they believed that functions 

cannot reach their asymptotes. Certain students explained that they believe the difference between 

limits at infinity and asymptotes to be that limits can be reached while asymptotes cannot. We 

surmise that this misconception is due to students picturing basic examples of functions (such as 
1

𝑥
) that have horizontal asymptotes and generalizing from this image.  

A single student provided answers that imply they hold the misconception “0. 9̇ < 1.” In their 

answer, the student made some peculiar claims about the nature of these two “distinct” numbers 

and the role played by infinity in infinite series. From their answer, it is clear they hold some 

misconception about the nature of numbers and their understanding of infinity. However, the origin 

of this misconception is difficult to identify only from their answer. We surmise that this student’s 

conception of real numbers might be affected by “noise” from their current studies in Real 

Analysis. 

Three students gave answers implying that limits are exclusively dynamical processes, as opposed 

to also being considered as (static) mathematical objects. These students used the Sum Law for 

limits at infinity with functions that diverge. This incorrect use of the Sum Law indicates not only 

that the students do not recall the conditions that need to be met to use this theorem, but also that 

their understanding of limits as static mathematical objects is weak.  

Seven out of the 10 participating students provided answers where they used infinity as a number 

or alluded to infinity being a valid value for a limit. Three of these students claimed that the Sum 

Law could be used for functions that diverge to infinity, therefore performing arithmetic on infinity 

and using it in mathematical equations. Other students provided a variety of different reasonings 

where they suggested to use the symbol for infinity as we would any real number, or simply claimed 
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that a certain limit was equal to infinity. This particular misconception can be revealed in many 

different ways since infinity is a crucial concept to Calculus and Analysis. The potential causes for 

these misconceptions and students’ different uses of infinity are discussed individually for each 

student in Chapter 5. 

In general, we found that the participants in this study understood quite well the meaning of the 

universal and existential quantifiers. Furthermore, most students appeared to properly understand 

mathematical syntax. However, 3 students provided answers to the questionnaire that pointed 

towards their misunderstanding of mathematical notation. Their answers appeared to imply that the 

syntax of mathematical statements caused misunderstandings. 

Although students’ understandings of, and misconceptions around mathematical logic were not 

purposefully investigated, certain argumentation errors were observed. We found several instances 

of students misusing mathematical logic and providing arguments that were either illogical, 

redundant, or simply invalid for other reasons. We claim these errors to be significant – being a 

source of, or strongly contributing to students’ misunderstanding of key concepts or developing 

misconceptions about these key concepts. We identified logical fallacies in the reasonings of 

students of Real Analysis, which, given that it is a proof-based course, makes us question what 

students “really” understand of the theorems and their proofs that are at the heart of the course.  

 

1.3 Structure of the thesis 
The next chapter, Chapter 2, is a review of the literature in the field of didactics and about 

misconceptions. We situate our research around what has already been done and discuss how prior 

research informs our decisions and the design of this study.  

In Chapter 3, we present our theoretical framework. We discuss in depth the assumptions that are 

necessary for this study. We thoroughly define the terms that are often used in this thesis. We also 

expand on the misconceptions that are investigated and discuss their possible causes and effects. 

Moreover, we describe how each misconception may be observed. Lastly, we propose a model of 

a classification system for misconceptions based on the severity of the conceptual 

misunderstandings observed. 

Chapter 4 details the methodology used for this research. As previously mentioned, our research 

tool consists in a questionnaire that the students may complete from home on the online platform 

Moodle. We discuss the recruitment of participants, the administration of the data-gathering tool 

and the implications of having resorted to an online questionnaire on the integrity of the data 

collected. We also explain how each question allows us to identify misconceptions, and therefore 

how the choice of the tool, despite its disadvantages, allowed us to achieve our research objectives. 

We close this chapter with a presentation of the analysis procedure that is used to transform the 

completed questionnaires into usable data.  

The fifth chapter is a presentation of the gathered and processed data. We discuss how certain 

answers provided by the student participants may reveal some of the expected seven 

misconceptions. In addition, we discuss the possibility that further misconceptions may be caused 
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by those misconceptions, especially as they relate to Analysis. We also consider the possibility that 

the students hold certain misconceptions that were not anticipated. Chapter 5 closes with a 

discussion of the advantages and disadvantages of the research tool. 

Chapter 6 consists of a series of discussions around our results. We open this chapter with a detailed 

explanation of a conjecture that relates to our classification table presented in Chapter 4 (Table 

4.41). We then dive into deeper analyses of three students who appear to hold several 

misconceptions. We discuss how each of the apparent misconceptions affect those students’ 

response patterns in the context of this study and how they may influence further learning. Finally, 

we discuss the special case of the effects that misunderstanding mathematical language and logic 

can have on learning. 

In Chapter 7, we present our conclusions to this research. We discuss the findings of the study as 

they relate to our research goals, and we suggest further research that could advance our knowledge 

of mathematical misconceptions. 
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Chapter 2 Literature Review 
This chapter provides context for the purpose of this study. We review the past work that has been 

done in the field of misconceptions research as it relates to mathematics and more specifically to 

some topics learned in elementary Calculus.  

In Section 2.1, we present the findings of past research regarding misconceptions about topics in 

Calculus. We take inspiration from these studies and articles to surmise which misconceptions are 

most likely to still be present in Real Analysis students’ understandings of elementary concepts.  

In Section 2.2, we discuss the concept of cognitive conflict and its role in learning. We believe that 

exposing students to problems that could challenge their misconceptions is an effective way to 

reveal said misconceptions and help students overcome them. Past research regarding conceptual 

conflict informs us on the validity of this method in student learning.  

 

2.1 Examples of misconceptions that have been observed in previous research 
To investigate the vanishing of misconceptions, we must identify misconceptions that have been 

observed in past research and that are likely to be observed in the participants of this study. Issues 

with learning the concept of limits have been considered from many points of view. For instance, 

Tall & Vinner (1981) have discussed the different ways in which students’ concept images can 

include the false idea of a sequence being strictly bounded by its limit at infinity (“the sequence 

never crosses its limit”). They describe how certain informal explanations that occur in class or 

appear in textbooks, can introduce this idea in students’ conceptual framework of sequences and 

limits. The issue of misleading vocabulary is raised by Cornu (1980), Davis & Vinner (1986), 

Sierpińska (1990) and Monaghan (1991), among others. More specifically, these authors discuss 

the role that the dynamic connotation and the non-mathematical meanings of the terms “tends to,” 

“approaches,” “goes to,” and other similar phrases, can have on students’ conceptions of limits. 

Monaghan (1991) found that the phrases “tends to” and “approaches” are usually perceived by 

students as synonymous, most likely due to their similar everyday definitions. The term “limit” can 

cause issues since its non-mathematical meaning is usually synonymous to “boundary.” 

Transposing this interpretation into a mathematical context can introduce a misconception of limits 

which involves only strictly monotone functions or sequences. 

Przenioslo (2004) has observed several different student conceptions regarding limits, some of 

which include the criterion of functions and sequences being strictly monotone. The author 

specifically mentions the misconception where a certain value g is a limit if and only if the sequence 

(or function) approaches monotonically the asymptote 𝑦 = 𝑔. This specific misconception raises a 

question: Can misconceptions about asymptotes interact with a student’s understanding of limits? 

Considering that horizontal asymptotes are defined as the limit at infinity of a function, we 

hypothesize that students who hold some version of the misconception where sequences (or 

functions) are inherently monotone may also assume that asymptotes must be approached without 

being crossed.  
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The concept of infinity is famously difficult to grasp for inexperienced students. A number of 

misconceptions regarding infinity have been observed, discussed and described (e.g., Tall, 2001; 

Sierpińska, 1987; Sierpińska, 1990; Lara-Chavez & Hitt, 1999). For instance, Sierpińska (1987) 

has described epistemological obstacles in the learning of limits, including four attitudes regarding 

infinity. Those attitudes towards mathematical objects were found to be serious obstacles to 

learning crucial concepts such as limits, and Sierpińska asserts that mental conflict might be a 

starting point to overcome those attitudes. Sierpińska (1990) adds to the issues relating to infinity 

by discussing mathematical notation, and the different views that can be created from it. In this 

article, she discusses the case where students assume that a limit at infinity is equivalent to the 

value of a sequence when evaluated at infinity. This misconception can be supported by the 

occasional abuse of notation of using the symbol ∞ in mathematical equations. As a result, students 

might then assume that infinity is a real number, or at least can be viewed and used as such in the 

context of elementary Calculus. In addition, certain textbooks used in Real Analysis courses (e.g., 

D’Angello & Seyfried, 2000) introduce the concept of extended real numbers early in the text 

(Chapter 2) and they allow infinite upper and lower bounds. For students who are not experienced 

with the concept of boundedness, using extended real numbers might contribute to misconceptions 

on infinity. Sequences diverging to infinity might be considered convergent, and the algebraic 

manipulation of diverging sequences might become particularly confusing. These misconceptions 

are bound to have a tremendous impact on student learning and our study investigates these issues 

directly.  

A concrete example of the effect that misconceptions can have on students’ understanding of 

mathematics is the non-mathematical distinction between the numbers 0. 9̇ (this notation represents 

the number 0 followed by infinitely many 9’s after the decimal point) and 1. Students who 

misunderstand the concepts of limits of sequences or limits of partial sums to some extent, perceive 

these notations as representing different numbers. This specific problem has been explored by 

many researchers including Tall & Schwarzenberger (1978), Davis & Vinner (1986), Sierpińska 

(1990) and Lara-Chavez & Hitt (1999). The assumption that there is a distinction between these 

numbers can be caused by several sources. Tall & Schwarzenberger (1978) discuss the link 

between this misconception, the decimal expansion of real numbers, and sequences of real 

numbers. In their article, they discuss how decimal numbers can be expressed as sequences of 

approximations, in which case certain rational numbers and all irrational numbers would constitute 

an infinite sequence. Here lies the link between misconceptions regarding limits of sequences and 

the actual values of decimal numbers: a student who only views limits as an infinite process (and 

never as objects) might not understand the equivalence among the different notations. Calculus 

students must also understand limits as static objects that represent the approach of a function or 

sequence, and not only as the process of the approach itself. Students, however, see the notation 

representing the periodic expansion 0. 9̇ as a sequence that is actively approaching 1, and not as a 

static value that is indistinguishable from 1. Lara-Chavez & Hitt (1999) discuss a similar issue in 

terms of potential and actual infinity. For a student who exclusively understands the concept of 

potential infinity, the number 0. 9̇ might appear to be smaller than 1. This student’s 

conceptualization of those numbers and of limits of sequences cannot be fully accurate unless they 

include the idea of an actual infinity.  
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Hah Roh (2008) observed a specific misconception in their study, which jeopardizes the crucial 

concept of uniqueness of limits. They observed students conceptualizing limits of sequences as a 

value which has infinitely many terms in its neighborhoods. This definition corresponds to a cluster 

point (also called accumulation point), which is distinct from limits for many reasons. The most 

important distinction between these objects is the fact that limits are always unique, while a single 

sequence may have multiple cluster points. We intend to investigate students’ understanding of 

limits and cluster points, especially since the chosen participants are actively enrolled in a Real 

Analysis course, which typically introduces the concept of cluster points. 

The last misconception that inspired this study relates to the distinction between universal and 

existential mathematical statements. Dubinsky & Yiparaki’s (2000) study on the matter has shown 

that students of varied backgrounds and experience with mathematics seem to be unable to use 

mathematical conventions to interpret logical statements. In many cases, the students would 

produce valid answers to statements that are given in common English, but severely misunderstand 

the meanings of quantified mathematical statements. Some students would see no difference 

between two statements where the ∀ and ∃ quantifiers appear in a different order. In this thesis, we 

refer to this type of statements as AE and EA statements. Furthermore, Selden & Selden (1995) 

found that undergraduate students’ ability to “unpack” mathematical statements is extremely low. 

The misconception that interests us relates to the following question: do students know the 

distinction between statements where the universal quantifier comes before the existential one, and 

those where the existential quantifier appears first. In addition, the misconception of equating the 

meaning of these two types of statements and Selden & Selden’s (1995) article raise the more 

general question: can university students accurately understand logical mathematical statements? 

It goes without saying that a proper understanding of mathematical syntax is necessary to learn any 

kind of advanced mathematics, hence our interest in this misconception.  

In the literature referred above, we identified evidence of 7 misconceptions that appear to be 

common and widespread:  

- A limit can never be reached  

- The implicit monotonicity of convergent sequences and functions 

- 0. 9̇ < 1 

- The limit only as a dynamic process and never as a mathematical object 

- Cluster points are equivalent to limits 

- Infinity as a number 

- EA and AE statements 

Each of these misconceptions are defined in detail in Chapter 3. From the literature and our own 

experiences teaching Calculus and Analysis, we assume that students can hold several of these 

misconceptions at the same time. We use these misconceptions as the basis for the creation of a 

questionnaire that will aim at identifying each of them individually.   

Our interest in these misconceptions and their evolution in students as they progress with their 

learning of more advanced mathematics rests on our assumption that if held for a very long time, 

they can seriously impede on students’ ability to learn more advance topics in mathematics. Past 
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studies have shown that even students who successfully pass their classes can hold misconceptions 

and carry them forth (e.g., Driver & Easley, 1978; Resnik, 1983; Przenioslo, 2004). In fact, the 

following quote taken from Przenioslo (2004) precisely motivates our interest in the 

misconceptions held by students of Real Analysis:  

“Often far removed from the accepted concept definitions, these convictions were not sufficiently 

or at all corrected by taking university Analysis courses. In fact, new incorrect associations were 

added to those developed at the university.” (p. 129) 

Therefore, in our study we explore whether students who have successfully passed their Calculus 

classes still hold elementary misconceptions and surmise how and if those misconceptions can 

hinder their learning of Real Analysis. 

In addition, research regarding the actual vanishing of misconceptions is very scarce. Many authors 

discuss the nature of learning and possible explanations for students overcoming their 

misconceptions (e.g., Driver & Easley, 1978; Davis & Vinner, 1986; Smith, diSessa & Roschelle, 

1993). However, very few studies involve actual observations of the mechanisms by which 

misconceptions are overcome. Hence why our main objective with this study is to propose a model 

of classification for the severity of students’ misconceptions and consider the possibility that the 

overcoming of misconceptions results in the acquiring of more accurate knowledge and 

understanding, therefore progressing towards an expert understanding of mathematical concepts.  

 

2.2 On the topic of cognitive conflict 
Tall & Vinner (1981) describe concept images as “the total cognitive structure that is associated 

with the concept.” They observe cognitive conflict as a result of students’ concept images 

disagreeing with formal definitions. Certain authors believe that such a conflict may be a starting 

point for overcoming misconceptions, including Hewson & Hewson (1984) and Sierpińska (1987). 

These researchers argue that controlled conceptual conflict might be a viable strategy to induce a 

change in student’s conceptions. They consider presenting students with different perspectives that 

may be conflicting with their current understanding of mathematical concepts, therefore 

encouraging the students to think critically and reshape their own conceptions. We agree with this 

theory especially since students’ understanding of mathematical concepts is often shaped by routine 

exercises (e.g., Selden, Selden, Hauk & Mason, 1999; Lithner, 2000; Lithner, 2004; Hardy, 2009). 

Cornu (1981) states that exposing students to non-routine exercises can help researchers and 

educators alike uncover these misconceptions, which may slide ‘under the radar’ without those 

conflicts. We chose to use the idea of cognitive conflict to devise our research tool. Misconceptions 

are to be revealed through exposure to exercises that challenge them. 

On the other hand, Smith, diSessa & Roschelle (1993) argue, from the perspective of 

constructivism (which asserts that learning builds onto prior knowledge), that misconceptions do 

not simply vanish and get replaced. The belief that incorrect conceptions are simply discarded and 

replaced has a lot of evidence against it. For instance, Davis & Vinner (1986) have observed 

students who held onto multiple different conceptions simultaneously having to recall the correct 

ones in given circumstances. The basis for our hypothesis relies on this point of view. We claim 
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that students’ conceptual frameworks need to be transformed into concept images (in the sense of 

Tall & Vinner, 1981) that involve more detailed elements, procedural and propositional knowledge, 

and fewer incorrect elements. We do believe that cognitive conflict can serve as a mechanism to 

prompt the acquisition of more accurate conceptions. Our research tool is designed with the intent 

of provoking the first step in this ‘transformation’; causing cognitive conflict in students who hold 

misconceptions in order to reveal misconceptions. 

 

In the next chapter, we introduce our theoretical framework. In the first section we discuss the 

definitions, assumptions and assertions that are necessary for this study. In the second section, we 

describe in depth the misconceptions that are being investigated. In the third and last section of this 

chapter, we propose a model for classifying misconceptions which we use for the results and 

analysis of the data. 
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Chapter 3 Theoretical Framework 
In Section 3.1, we describe the primary assumptions and assertions that are necessary for this study. 

We also define the vocabulary that is used in this thesis. In addition, we explain three possible 

sources for common misconceptions and provide examples for them. 

Section 3.2 describes the choice of specific misconceptions that this research investigates. We 

explore different perspectives on each misconception based on the literature and our own 

experience. We also discuss the possible sources for such misconceptions and the harmful effects 

they might have on a student’s mathematical education. 

Finally, in Section 3.3, we posit a model for classifying misconceptions. We suggest six categories 

to which a student’s understanding of a given concept might correspond. These six categories are 

organized hierarchically according to “how accurate a given (mis)conception is”, with the final 

level being “expert conception,” which can be understood as a lack of a misconception.  

 

3.1 The concept of misconception in mathematics education 
The first supporting theory that we use as a basis for our study is that of constructivism. The main 

claims of this theory are that all learning is dependent on prior knowledge, and the rejection of the 

so-called “blank slate theory.” We consider the misconceptions explored in this study to be a result 

of improper or incomplete learning paired with previous knowledge that is acquired in non-

mathematical settings. As suggested by prior research (e.g., Driver & Easley; Resnik, 1983; Davis 

& Vinner, 1986; Przenioslo, 2004), students start building their understanding of mathematical 

concepts before these are formally introduced. Their previous conceptions often remain and 

perhaps coexists with new ones, even after further instruction. In addition, Przenioslo (2004) asserts 

that continued instruction may add new misconceptions over the pre-existing ones, without 

contributing to their improvement. As discussed in the introduction, our goal is to investigate 

whether students’ typical Calculus misconceptions, as described in the literature, persist through 

their mathematical education, and influence their understanding of concepts in Real Analysis.  

Let us address the meaning of the term “misconception,” which we are constantly using throughout 

this thesis. Countless words have been used to describe a conception which is not fully formed: 

misconception (Davis & Vinner, 1986; Hah Roh, 2008;), preconception (Clement, J. 1982), 

alternative conception (Hewson & Hewson, 1984), alternative framework (Driver & Easley, 1978), 

primitive idea (Lara-Chavez & Hitt, 1999), concept image (Tall & Vinner, 1981; Preznioslo, 2004), 

naïve theories (Resnik, 1983). These terms refer to a similar idea: the entirety of a person’s 

knowledge and understanding of a mathematical concept, which may not be complete or in 

accordance with the accepted mathematical definitions and properties. In this study we choose to 

use the word misconception as an umbrella term which encompasses a number of these phrases. 

We posit that a wrongful understanding of a concept can happen at varying levels and have deeper 

or weaker effects on a student’s ability to conceptualize mathematical objects and use them in an 

academic setting. In Section 3.3 we detail 6 levels of misconceptions. We reuse some of this 

vocabulary, but we attach a carefully chosen definition that will remain consistent in this paper. To 
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correspond to a specific level, a student’s conception should be consistent across their mathematical 

framework. That is, if exposed to different situations that involve the same concept, a given student 

might provide reasonings that are lacking in similar ways. We choose to consider students’ 

conceptions as more than simply “correct” or “incorrect.” Rather, we consider students’ 

misconceptions to lie on a spectrum of understanding. Moreover, we consider that students’ 

conceptions are mutable and changing and may progress or regress on this gradient as they study 

mathematics.  

These misconceptions can originate from three possible sources: epistemological obstacles 

(Bachelard, 1938; Sierpińska, 1987; Cornu, 1991), cognitive conflict (Tall & Vinner, 1981; 

Sierpinska, 1990) and didactic obstacles (Lara-Chavez & Hitt, 1999; Hardy, 2009). 

Epistemological obstacles and cognitive conflict affect the human mind. They are respectively 

related to the concepts themselves and to the stages of cognitive development of individuals. They 

can appear as unjustified beliefs that influence the student’s ideas relating to mathematical 

concepts. Epistemological obstacles can be typically observed through the historical development 

of a concept. For example, the apparent human intuitive representation of the concept of infinity 

and the limitations to visualize the concept. Cognitive conflict refers to inconsistent knowledges 

and that are often constructed because of different experiences. For example, issues with the 

concept of limits can be caused simply by the words used to designate it. In linguistic communities, 

the term “limit” is synonymous to “boundary” in non-mathematical contexts. Students often 

struggle to separate the mathematical and non-mathematical meanings. To be functional and fluent 

in “everyday life” and in mathematics, one needs to be able to hold the two “conflicting” meanings 

and know when each applies. 

Didactic (or institutional) obstacles result from teaching approaches (Hardy, 2009). For example, 

Lithner (2000) shows how the exercises to which students are exposed in Calculus courses result 

in the routinization of knowledge that is non-mathematical in nature, or mathematically incomplete 

(see also Broley, 2020). Furthermore, Lara-Chavez & Hitt (1999) have observed that 

misconceptions held by teachers can be passed down to their students. Didactic misconceptions 

also result from didactic approaches in textbooks (Raman, 2004).  

In addition to these different sources of students’ misconceptions, we also recognize that learning 

is a complex process influenced by a variety of experiences that occur inside and outside the 

classroom and prior, during and after formal instruction. We believe, therefore, that identifying the 

actual source of a misconception, in general or for a particular student, might often be a daunting 

task, if not an impossible one. 

 

3.2 Our choice of concepts 
Different types of misconceptions that occur in the learning of limits are well-documented by 

previous research (see Chapter 2 for details). Based on the literature and our own experience as 

mathematics students and educators, we have selected seven of these well-documented 

misconceptions to use as the underlying structure of this study and as the background to design and 
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analyse students’ responses to the questions we posed to them. In what follows, we describe each 

of these seven misconceptions and some of their possible sources.  

 

3.2.1 A limit can never be reached. 

This common misconception has been observed and described by many authors (Davis & Vinner, 

1986; Tall & Vinner, 1981; Sierpińska, 1990; Lara-Chavez & Hitt, 1999; Mamona-Downs, 2001) 

throughout the years. From the literature and anecdotal personal experience, we believe this 

misconception is most often found when considering limits at infinity, as opposed to considering 

limits at a point. The actual incorrect conception can be described as follows: A function which has 

a limit L when x tends to infinity cannot be equal to its limit at any point. In mathematical terms: 

𝑖𝑓 lim
𝑥→∞

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 

This type of incorrect understanding of the concept of limit can be attributed to many different 

sources.  

Many mathematics students are exposed to the concept of limit before they become comfortable 

with formal mathematical notation. As such, the definition of limit might be lost to some students, 

and they may rely on informal definitions, particular drawings, and examples. Some mathematics 

educators might be familiar with the phrase “a limit is a numerical value which a function 

approaches but never reaches.” This is an example of an informal way of describing limits which 

is inherently flawed and contributes to the perpetuation of this misconception.  

Some may believe that a possible fix for this misconception is learning the analytical definition of 

limits:  

lim
𝑥→∞

𝑓(𝑥) = 𝐿 𝑖𝑓  ∀ 𝜀 > 0, ∃ 𝑀 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓(𝑥) − 𝐿| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑥 > 𝑀 

Although we agree that a deep understanding of this definition would prevent students from holding 

this misconception, in practice, this is difficult to learn. As mentioned above, most students are 

exposed to the concept of limits before they are comfortable with rigorous definitions, the basis of 

Analysis, and analytical notation. Since it is not explicitly mentioned that the case f(x)-L=0 is 

included in this definition, students might unconsciously rule-out this specific case and consider 

functions as ever-approaching and never-reaching of the limit (that is, they interpret that it is always 

the case that 0 < |𝑓(𝑥) − 𝐿|). 

Another possible source of this misconception is what Tall and Vinner (1981) have referred to as 

“concept images.” They defined this idea in the following way: 

“We shall use the term concept image to describe the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated properties and 
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processes. It is built up over the years through experiences of all kinds, changing as the individual 

meets new stimuli and matures.” (p. 152) 

They describe this phenomenon as being independent from formal definitions. As mentioned in 

Section 3.1, for our purpose, we will consider as misconception a concept image which carries any 

kind of erroneous elements (and may carry some correct elements). Among the various examples 

of students holding erroneous concept images of limits, we find those who consider the function 

𝑓(𝑥) =
1

𝑥
 as the template example of a function which has a limit as x goes to infinity. This 

example, as ‘the’ example, often misleads students to develop and further affirm the misconception 

in question. These students retrieve (consciously or unconsciously) this example whenever they 

must respond to a question which involves the concept of limit at infinity. A possible mistake which 

can arise from this comparison is assuming that a function which does equal its limit at some values 

of x does not have a limit. For example, the function 𝑓(𝑥) =  
sin (𝑥)

𝑥
 may cause issues for some 

students whose concept image of limits is heavily influenced by the case of 𝑓(𝑥) =
1

𝑥
. 

Another possible cause of this misconception is that of the colloquial (non-mathematical) use of 

the word limit. A web search yields the following definition for limit: “something that bounds, 

restrains, or confines.”4 It is plausible for a mathematics student to transpose this common use of 

the word limit into a mathematical context and this behavior could contribute to causing such a 

misconception (Tall & Vinner, 1981). 

 

3.2.2 The implicit strict monotonicity of convergent sequences and functions 

This misconception could be considered as a special case of the previous one. As discussed by 

Davis and Vinner (1986), this misconception is characterized by the association of notions of 

convergence and monotone convergence. Although these are distinct concepts, typical examples 

used in the classroom and Calculus mathematical textbooks of converging sequences (and 

functions) are often monotone (see the examples analysed by Lithner, 2000, 2004). Students 

associate the typical examples of monotone convergent sequences and functions with the notion of 

convergence itself thus assuming that converging sequences and functions must be monotone.  

This misconception and the previous one might have a harmful effect on a student’s understanding 

of asymptotes. Students who hold these misconceptions might conceive horizontal asymptotes only 

as the line which a function approaches monotonically, further assuming that an oscillating or 

otherwise non-monotone function cannot have an asymptote. This creates a disparity between the 

concepts of limits (at infinity) and asymptotes and may induce inconsistent response patterns. In 

addition, this arbitrary criterion (an asymptote is a line that is approached monotonically) applies 

for vertical asymptotes. Students may assume that horizontal asymptotes must also obey this rule.  

 

 
4 Definition from Merriam-Webster dictionary: https://www.merriam-webster.com/dictionary/limit 
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3.2.3 0. 9̇ < 1 

Note: The above “dot” notation refers to an infinite number of 9’s following the decimal point.  

This misconception has appeared in the literature (Tall & Schwarzenberger, 1978; Sierpińska, 

1990; Lara-Chavez & Hitt, 1999) with different aspects that all boil down to one idea: the 

equivalence in the representation of  numbers; or in other terms, the confusion between the 

representation of a number and the concept of number. Students who hold this misconception 

associate some representations with unique numbers; a manifestation of this misconception is the 

assumption that a 0 followed by infinitely many 9’s after the decimal point is a different number 

than 1. It can be shown using geometric series that, indeed, 0. 9̇ = 1 but less experienced post-

secondary mathematics students might not see this fact immediately, if at all.  

A possible cause of this misconception relates to infinity. The idea of “infinitely many 9’s” is likely 

to create confusion in anyone who does not have a solid mathematical understanding of the concept 

of infinity. Sierpińska (1987) has described the different possible attitudes taken by students 

regarding infinity in the context of sequences. All four of those attitudes include incorrect 

assumptions and rely on an incorrect understanding of the behavior of sequences. For example, 

some students consider 0. 9̇ as the last term of a sequence and 1 as its limit. We assume that it is 

conceivable that a university student might adopt one of the attitudes described by Sierpińska 

(1987), and thus incorrectly conclude that  0. 9̇ < 1.  

 

3.2.4 The limit only as a dynamic process and never as a mathematical object. 

Students who hold this misconception think of limits only as a process or, similarly, they associate 

the concept of limit only with the algorithmic technique to find its value. Students may get used to 

being presented a function or a sequence and using the methods they have learned to find a 

numerical value for a limit without understanding what that result means. As such, it is rather 

unsurprising to find students whose understanding of limits is that of an ongoing process that halts 

when they find the answer to their question. 

This misconception may get in the way of doing algebra on limits as this requires thinking of them 

as static mathematical objects.  

Tall and Vinner (1981) among other authors have touched upon the role of vocabulary 

misconceptions such as the one described here as well as in 3.2.1 and 3.2.2. Words such as 

“approaches” and “going to” are an integral part of the mathematical vocabulary, so much so that 

we may get desensitized to the dynamic connotation and the non-mathematical meanings that these 

words carry. When less experienced students are exposed to these words in a mathematical context, 

more often than not, without any formal explanation, they apply (as well-documented in the 

literature) alternative, non-mathematical definitions to these words. Although this erroneous 

conception of mathematical words might not interfere with the learning of the methods to find 

limits that are taught in most calculus classes, Tall and Vinner (1981) assert that these 

misconceptions may have harmful effects on a student’s learning of rigorous definitions later in 

their mathematical education.  
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Moreover, mathematics educators sometimes use different words to refer to the same principle. For 

example, the words “approach,” “going to, ” “converges” and “tend to” are used interchangeably 

by mathematicians to refer to the behaviour of a function or a sequence. It is not clear what is the 

effect of this ‘loose’ use of words in students’ understanding or in students’ misconceptions. 

 

3.2.5 Cluster points are equivalent to limits 

These two concepts have a lot in common and students have been observed to confuse them (Hah 

Roh, 2008). As a reminder, the epsilon definition of the limit of a sequence reads as follows: 

lim
𝑛→∞

𝑥𝑛 = 𝐿 𝑖𝑓  ∀ 𝜀 > 0, ∃ 𝑀 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑥𝑛 − 𝐿| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑛 > 𝑀. 

Hah Roh (2008) uses the following definition for cluster points:  

“a point x is called a cluster point of the sequence {xn} if for every ε > 0 there are infinitely many 

values of n with |𝑥𝑛 − 𝑥| < 𝜀.” 

Thus, every limit is a cluster point, but the converse is not necessarily true. A sequence can have 

multiple cluster points but may have at most one limit. Students’ identification of cluster points 

with limits creates conflict with the uniqueness of limits.  

Intertwined with this misconception is students’ difficulties with mathematical logic. Students in 

elementary Calculus courses and introductory Analysis courses have not been exposed or have not 

had the time to internalize the elements of mathematical logic. Considering 𝐴 ⇒ 𝐵 as equivalent 

to 𝐵 ⇒ 𝐴 is a well-documented misconception. While we don’t explore this misconception in this 

study, it is important to realize how it may be, as others, intertwined with the ones we chose. 

 

3.2.6 Infinity as a number 

Infinity is a concept that can be challenging for students to learn. Our choice to investigate this 

concept is motivated by the various reasons why infinity can be misunderstood by students and 

how this type of misconception can negatively affect their understandings of calculus. We 

conjecture that misconceptions about infinity can be carried over from early calculus into more 

advanced mathematics. This misconception focuses on one of the many ways students can 

misunderstand infinity, that is by considering it as a real number.  

Several authors have discussed the challenges that come with using infinity in mathematics, such 

as Sierpińska (1987) who addressed the cognitive and epistemological aspect of this issue, and 

Lara-Chavez and Hitt (1999) who discussed the didactic nature of this misconception. In one way 

or another, most mathematics students have been exposed to the symbol for infinity being used as 

a number, for example: 
∞

∞
.  When learning about indeterminate forms, this expression is often used 

to abbreviate the case of a function expressed as the quotient of two functions in which both the 

numerator and the denominator diverge to infinity. Mathematicians do not confuse formal meaning 

and abuse of notation. However, students who are significantly less versed in formal meaning are 

likely to take those notation abuses as proper mathematical writing and ascribe meaning that seem 
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reasonable to them. In that context, it is difficult to internalize that 
∞

∞
 is not equal to 1 and that this 

notation does not mean the same thing as the quotient of two non-zero real numbers. 

The informalization of notation before formal notation is internalized and understood may have 

several consequences on students’ understanding: for example, hindering students’ understanding 

of algebraic structures, of rules of logic, of limits as mathematical objects. 

This misconception is mainly documented for students who have not been exposed to the concept 

of extended real numbers. For our study, the students are enrolled in Real Analysis classes and 

therefore, may have been introduced to this concept. In certain textbooks (e.g., Dangello & 

Seyfried, 2000), it is explicitly stated that infinity can be considered a bound in the extended real 

numbers. Students should be mindful of the difference between the real numbers and the extended 

real numbers and mention that they are using the latter if they consider infinity as a valid bound. 

We also consider that this concept might be a source of confusion to students who don’t have a 

solid understanding of infinity and may introduce the misconception “infinity as a number.” 

 

3.2.7 EA and AE statements 

By EA, we denote statements of the type “There exists… such that for all…”, and by AE, 

statements of the type “for all… there exists…”.  It is well-documented in the literature that 

students struggle with the different meaning that results from the order of the quantifiers (Selden, 

Selden, Hauk, and Mason, 1999). This hinders students’ understanding of mathematical definitions 

and theorems that rely heavily on a deep understanding of quantifiers: for example, the formal 

definition of limits. 

Dubinsky and Yiparaki (2000) found that students are likely to interpret statements written in 

common English as AE, no matter how the statements are phrased. 

Misinterpretations of mathematical statements using quantifiers can happen in a multitude of ways. 

One of the possible forms that this misconception can take is a student assuming that AE and EA 

statements are equivalent. 

We include in this misconception any consistent misunderstandings of formal mathematical 

language. Regardless of whether a statement includes rigorous notation, every mathematical 

statement follows a syntax which is logically constructed. It is possible for students to 

misunderstand statements due to their lack of knowledge of the notation involved, but also due to 

their misunderstanding of the logic that serves as the foundation of mathematical syntax. 

 

3.2.8 Further misconceptions related to Analysis 

In this study, we consider three misconceptions that we surmise may arise during one’s 

instruction in Real Analysis. These misconceptions have been chosen based on our experience as 

educators.  
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- Assuming an implication between boundedness and convergence of sequences 

From the Monotone Convergence Theorem, we know that a monotone sequence of real numbers 

has a limit if and only if it is bounded. In other words, in the case of monotone sequences, the 

concepts of convergence and boundedness are equivalent. If a student mistakenly assumes that 

convergent sequences must be monotone, then they might be assuming that boundedness always 

implies convergence for any sequence. We expect this type of misconception from students who 

have trouble understanding convergence or who may rely on monotone examples to inform their 

conception of convergent sequences. This misconception would parallel the one we refer to as 

“implicit monotonicity of convergent functions and sequences,” where a student assumes that a 

function that is convergent at infinity must be monotone. We suspect that this misconception 

might be transferred from Calculus into Analysis with a similar misunderstanding of convergence 

for the case of sequences.  

- Infinity as a supremum 

Much like the “infinity as a number” misconception that was discussed above, this misconception 

may be observed in students who assume that infinity is a valid supremum in the real numbers. 

We would expect this misconception to appear in students who also believe that infinity is a valid 

limit value. This would demonstrate a misunderstanding of the role of infinity in mathematics 

and/or of the definition of supremum. Moreover, certain textbooks (e.g., D’Angello & Seyfried, 

2000) introduce the notion of extended real numbers quite early in the text (Chapter 2), in which 

infinite bounds may be allowed. This notion may compound the misconception of infinity as a 

number and jeopardize the learning of other concepts, such as boundedness and completeness.  

- Supremum is the same as a maximum 

Anecdotal experience shows us that students often consider these two concepts as equivalent. This 

misconception may originate in a misunderstanding of the definition of supremum or in a poor 

understanding of the structure of real numbers and of mathematical implication.  

 

3.3 Model of a classification system for misconceptions 
This section describes the model of a classification system that we have developed to analyse the 

students’ conceptions. The goal of this system is to effectively label student’s answers according 

to the depth of their understanding of the concept. We thus define six levels of misconceptions by 

taking inspiration from the literature and from our own experience. 

 

• Absence of a concept: The student has received no instruction and has no preconceived 

ideas about the concept at hand.  Some attempts can be made at interpreting the words. 

Generally, the student will admit outright that they have no knowledge of the concept at 

hand.  
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For example, an individual who has never studied mathematics, being exposed to the 

concept of combinatorics, may not have a preconception of the topic. The individual might 

not even recognize the words that are being used and hence cannot have, nor build, a 

misconception. 

 

• Preconception: This is a preconceived idea which is formed without formal instruction. 

The learner recognizes their lack of formal understanding and draws meaning from the 

context. Generally, this level of misconception is not very stable or robust. It may be built 

based on the student’s everyday life or on prior mathematical knowledge. The 

misconception they build is somewhat of a guess. In addition, the reasoning may be 

inconsistent from one step to the other as the student has no structure or framework to refer 

to. 

For example, the concept of sets is not completely foreign to someone who has not yet 

studied this mathematical object. An individual who has not been instructed about the 

concept of sets might have a vague idea of what the concept is, such as a “collection of 

objects.” The individual may ascribe meaning to words such as “union” and “intersection” 

from the meaning they have in their everyday life. The individual’s approach to working 

with the mathematical object of sets has no consistency or structure. 

 

• Alternative conceptions: Alternative conceptions differ significantly from the formal 

definition of the concept itself but are stable, consistent, and resistant to change, as opposed 

to preconceptions. Students who hold onto alternative conceptions are aware of the 

existence of the concept and have built a framework for themselves. The student can explain 

their thought process which differs significantly from the formal definitions and accepted 

concepts. The method used may follow a consistent structure, but it has incorrect elements 

to it. The method may be incomplete (lacking details and formalism), but it is consistent 

and used with a certain degree of logic. 

For example, students use functions as an equation 𝑦 = 𝑓(𝑥) from high school mathematics 

and are rarely (if ever) exposed to the formal definition of functions as being subsets of the 

Cartesian product. This is a type of alternative conception which begins in school but is 

internalized and difficult to break down once students start studying Real Analysis. This 

preconception is built by habit (routinization). Introducing a new, abstract definition to a 

basic concept that the students believe they understand well (as they have had success with 

their current conception in the past) can be confusing, and the student might prefer their 

conceptualization of functions over the abstract and formal one. This definition is new to 

them, and they often fail to see the need for it5. 

 

 

 
5 This has didactic sources, in addition to cognitive or epistemological ones. An example from another domain: in 

high school, students are often introduced to algebraic manipulations to solve linear equations with examples that 

don’t require them. Those examples can be so simple that arithmetic reasoning is sufficient to solve them. 
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• Incomplete conception: This is a conjecture arising from incomplete instruction.  The 

student’s concept image (in the sense of Tall & Vinner, 1981) is composed of isolated 

knowledge elements and they have completed their conceptions with conjectured details 

that agree with the student’s experience of the concept at hand. The conjecture can be 

correctly applied to some situations, but it is not generalizable. The student can express 

their understanding of the concept using informal vocabulary, but their explanation is 

incomplete and not rigorous. The solutions provided by the student to most problem-solving 

situations are based on basic definitions, and the steps may lack continuity. The logic may 

be flawed as the student is conjecturing from past knowledge. Some seemingly arbitrary 

rules or guidelines may be used. The solution is often a procedural recreation of a simpler 

kind of problem. Only the basic notions are considered. The basics may be well understood 

but the more complex notions are omitted. 

For example, students may have a graphical understanding of continuity of functions. The 

intuitive6 (and visual) explanation of a continuous function may go as follows: “a function 

which you can draw without lifting your pen from the page.” This explanation fosters 

graphical understanding of the notion, which is not only insufficient, but also misleading. 

Similar to the situation of notation abuse that was discussed above, students do not 

necessarily understand the abuse of language and fail to understand the metaphoric role of 

the pen and the drawing in the thinking of continuity. If a student who only understands 

continuity of functions through this argument were to be exposed to a function that cannot 

be drawn (such as the Dirichlet function), they would not be able to argue in a way that 

feels natural to them and would be forced to conjecture from their experience to complete 

the problem or their understanding of the situation. Such a student may be able to intuitively 

guess that the Dirichlet function is not continuous, but they would find themselves 

incapable of justifying this. This misconception fits into this category as the student may 

have some correct understanding of the concept of continuity but this understanding is 

incomplete and fails to support the student’s work in several situations. Their current 

knowledge could be sufficient for very basic situations or problems, but as soon as the 

student is exposed to more advanced problems, they may get stuck or end up conjecturing 

from their past and insufficient knowledge. 

 

• Unrefined conception: The student’s conception is robust but not rigorous. The students’ 

conception is close to the formal definitions but lacking relevant details which can cause 

mistakes in certain contexts. The student is confident in their understanding of the concept 

and can apply it with consistency.  This is a knowledge system that is consistent but lacking 

some elements to be expert (see the last level below). A student may be able to explain the 

concept using some formal vocabulary and abstract concepts, but the explanation lacks 

rigor and maturity. The method the student may employ to solve problems shows a good 

general understanding of the concept. Some details are omitted which may not affect their 

work in the problems they mostly have to deal with in introductory Analysis. This is not 

the abstract formalism that is expected from an expert. 

 
6 In this thesis, we use the term “intuitive” to refer to reasonings or explanations that are sourced in (possibly non-

mathematical) prior knowledge. We consider an “intuitive” reasoning to be mostly built on surface thoughts and to 

not involve a deep consideration for formal definitions. 
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For example, a student might have a strong conception of continuity and differentiability, 

without drawing a proper connection between the two. Such a student might be able to use 

the two concepts separately but fail to understand that differentiability directly implies 

continuity. This unrefined conception might not prevent this student from succeeding in 

introductory Real Analysis. Since this connection becomes more relevant past the first Real 

Analysis course this student’s misconception might eventually prove to be a hinderance to 

their learning, even though it might not prevent them from succeeding initially.  

 

• Expert conception: This is a near identical conception to the formal accepted notion, used 

properly and showing a deep understanding of mathematical reasoning. The methods used 

are backed by a deep understanding of the formal definitions and consistent use of logic. A 

student who expertly understands a concept shows a mastery of the skills required to apply 

those concepts to specific situations. They can explain the connections and relations 

between the concept at hand and other concepts. 

For example, a student has an expert knowledge of the quadratic formula, if they not only 

remember the formula, but also know how to apply it, how it is derived and how it relates 

to other concepts (e.g., the vertex of a parabola, the number of zeros). We would consider 

such a student to have an expert conception of the quadratic formula. We recognize that 

expert understanding of any mathematical concept can take years to be acquired.  

 

Previous literature has used some of the terms we chose here to refer to misconceptions. We use 

the word “misconception” as an umbrella term which includes the above categories and any 

conception that may describe the transition from one level to another. These six misconception 

levels are constructed hierarchically with the first three being expected to occur in students who 

have received little to no formal instruction about a given concept, and the last three being expected 

to be more common in students who have received formal instruction. 

It is our conjecture that misconceptions do not simply disappear, but progress through these levels 

until a student’s understanding of a concept corresponds closely to the “expert conception” level. 

We also believe that said progress is not linear. We assert that every individual’s experience with 

misconceptions is different and may progress through the spectrum at a different pace. As such, we 

also conjecture that students will, at some point in their mathematical education, exhibit what we 

call “transitional behavior,” where one person’s conception might contain elements or features 

from more than one category simultaneously. We discuss this conjecture in-depth in Section 6.1. 

 

In the next chapter, we explain the methodology of this research. We discuss the ethical 

ramifications of studies that include human participants as well as the process used to find 

volunteers. We break down our data-gathering tool, a questionnaire, and explain the purpose of 

each question in relation to our research goals. We then describe the method used to analyse the 

completed questionnaires. 
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Chapter 4 Methodology 
In this chapter, we present a detailed description of the research design, the research tools, the 

choice of participants and the methods used to gather and analyse data. Initially, we considered 

task-based interviews (Goldin, 2000) as the tool to gather data for this study. However, the COVID-

19 pandemic made person-to-person contact significantly more difficult and forced us to consider 

different approaches. We considered using online tools to conduct face-to-face interviews but 

discarded this idea on account of university students being stressed and overworked due to these 

extraordinary academic, professional, and personal circumstances. After some deliberations, we 

decided that a questionnaire hosted on a secure online platform would be an appropriate way to 

survey our chosen population given the overall constraints imposed by the pandemic. Even though 

this kind of questionnaire has some limitations, we consider it an acceptable compromise given the 

exceptional circumstances.  

In Section 4.1, we describe the design of the research tool. Considering that our goals are to uncover 

unsolved misconceptions about Calculus and Analysis and to observe their evolutions, it is natural 

that the research tool should involve a substantial degree of student participation. The research tool 

was chosen to coincide with this goal, and the decision process that led to the development of a 

questionnaire is described in this section. We also explain how the survey was built and distributed 

to the participating students. 

In Section 4.2, we address the usual concerns that come with studies involving human subjects, 

namely the choice of participants, the recruitment process, and ethical concerns.  

In Section 4.3, we provide a thorough breakdown of the questionnaire itself. We explain the 

purpose of each question, detailing the mathematical topic at hand, the possible misconceptions 

that can be expected from students regarding this topic and the source of inspiration for each of 

these questions.  

Lastly, Section 4.4 describes the crucial step of categorizing and analysing the participants’ 

responses to the questionnaire. Since every question was open-ended, breaking down each answer 

into categorizable data has proven to be a very lengthy and challenging process. However, the 

unique model for classifying misconception levels that was described in Section 3.3 proved to be 

an effective tool. 

 

4.1 Design of the questionnaire 
In this first section, we explain the steps that led to our choice of data-gathering tool. A 

questionnaire has advantages and disadvantages, and this section explains why we chose it, and the 

means we took to mitigate the disadvantages. The main purpose of the questionnaire was to reveal 

students' conceptions about chosen mathematical concepts. Our choice of these mathematical 

concepts aligns with well-known and studied misconceptions. The questions had to reflect this 

purpose, and they were thus built with the intent of “pushing” the student participants to express 

their thought processes and to reflect on their own understanding of mathematical concepts. We 

will also discuss how the questionnaire was administered and which technological tools were used. 

 

 



23 

 

4.1.1 Choosing a questionnaire as a data-gathering tool 

Questionnaires have several advantages, some of which are very in line with our goals for this 

specific research. We wanted a tool that would allow students to express their understanding of 

mathematical concepts while limiting outside factors. The main advantage that a survey has over 

other data-gathering tools is allowing the participants to take their time and thoroughly justify their 

answers to each question without the distractions and stress that may be imposed by an interviewer. 

This is ideal for our purpose since, in some cases, misconceptions can be deeply rooted. A quickly 

answered question might be insufficient for us to detect a misconception or to determine the source 

of the misconception. We thus encouraged the participants to take all the time they needed to 

answer each question to the best of their abilities, and the parameters of our online questionnaire 

also supported that. 

Participating in a study that questions knowledge and understanding of mathematical concepts can 

be quite stressful to students, regardless of the tool that is used. We assume a questionnaire that has 

a very generous time limit can help reduce some of this stress. Not only does reducing stress 

contribute to the accuracy of the students’ answers, but it also aligns with the importance of 

ensuring that our study is ethical.  

There are, however, some issues with this choice of data-gathering tool. The main problem we have 

identified is the risk of disingenuity from the participants. Since there is no one supervising the 

students as they are taking the questionnaire, there is nothing preventing them from “cheating”. To 

discourage dishonesty, we have made very clear to the participants that there is no incentive for 

them to use external sources to answer the questions. Their identities are known only to the research 

team. Their university professors would not even know that they volunteered to participate, even 

less so their answers to the questions. We made sure to thoroughly inform them about the purpose 

of the research, therefore emphasizing the importance of honesty. With this information, we believe 

that the participants had no incentive or reasons to use alternative sources of information while 

completing the questionnaire. 

On the other hand, what would happen if a participant did cheat? It is reasonable to assume that a 

cheating student would answer at least some of the questions with very accurate definitions and 

justifications. Since the interest of this study is to investigate students’ misconceptions, well-

formulated answers are of no interest to us and are therefore disregarded. For more details about 

the analysis method, see Section 4.4. 

 

4.1.2 The choice of medium 

The way that we provide the volunteers with the survey is arguably as important as the survey 

itself. We used the platform Moodle as a medium for the questionnaire. This platform is usually 

used as a virtual classroom that allows professors to share documents, videos, assignments, quizzes, 

and a lot more with their students. We created a course on Moodle that would exclusively be used 

for the purpose of this study. The questionnaire was set up using the Moodle quiz tool.  

Moodle allows us to carefully regulate the parameters of the questionnaire. We made it so students 

could only access one question at a time; if they wanted to proceed to the next question, they had 

to answer the previous one, and they could not go back to modify their answers. This eliminated 

the potential for subsequent questions to hint at the answers of the previous ones. Therefore, the 
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students would answer according to their own understanding of the question and the concept and 

not with the information provided by the questions themselves.  

The Moodle quiz tool requires that we impose a time limit for the completion of the questionnaire. 

Given the number of questions and their content, we made an informed guess7 and set the time 

limit to 3 hours. For a relatively quick student, we estimated that one hour would be sufficient to 

complete the questionnaire. Allowing 3 hours would give a clear signal that there was no need to 

rush through the questions, relieving participants’ stress and hopefully ensure they would take their 

time to answer honestly and thoroughly, perhaps even taking a break.   

 

4.2 Context and participants 
The chosen population for this study was mathematics students who were taking Analysis I or 

Analysis II at a large urban university in North America. These classes are, respectively, the first 

and second real analysis courses that undergraduate students in certain mathematics and statistics 

programs are required to take. We chose this population for a few reasons. We remind the reader 

of our research goals: 

- Uncover unresolved misconceptions about topics learned in Calculus. 

- Study the vanishing of misconceptions related to Calculus. 

- Investigate the presence of misconceptions related to topics in Real Analysis that may 

replace or evolve from previous Calculus misconceptions. 

As such, our interest was to observe which well-known and studied Calculus misconceptions 

(related to limits, functions, and sequences), if any, students still hold after having successfully 

completed their Calculus courses and while taking their analyses courses. Furthermore, we aimed 

at revealing if new misconceptions have arisen in addition to or replacing previous ones. 

We recruited the participants on a voluntary basis. We contacted the professors teaching Analysis 

I and II in the fall semester of 2020 and in the winter semester of 2021, requesting that they send a 

pre-written email (see Appendix A.4) to their students. The email sent to the students explained the 

purpose of the study, the reason for our request and what kind of student involvement was required 

for the study. Interested students were able to directly email us and volunteer to participate. It was 

specified in the initial email that participating or refusal to participate would not affect their grade 

in the course and that their identity would remain confidential. After the willing students contacted 

us, we would then follow up (see Appendix A.5) with more details about their participation and 

with the consent form (see Appendix A.1). 

As with any study involving human participants, there is a very strict protocol to ensure that the 

process of gathering data is ethical. Before the recruitment process began, I, as the primary 

researcher, completed all the required certifications to ensure that I was qualified to conduct this 

kind of research. The entire protocol for the recruitment and distribution of the questionnaire was 

submitted for review by the university’s Human Research Ethics Committee which then granted 

permission to conduct this research with student participants. 

 
7 In a similar way in which professors ‘guess-estimate’ how much time students need to complete a quiz or exam. 
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The study required that the students be made aware of any risks that they may be subjected to and 

that they formally consent by signing an official consent form. This consent form included every 

piece of information that could affect their willingness to participate, such as the purpose of the 

study, the procedures, the risks and benefits, the conditions of participation and the details 

regarding confidentiality. The students were made aware that withdrawal from the study at any 

point was permitted and that any information whose use they were not comfortable with would be 

discarded as per their request. They received the consent form a few days before they were given 

access to the questionnaire. To simplify the process of signing the consent form, a copy of it was 

built into the questionnaire, as the very first question that the participants had to answer. To proceed 

with the questionnaire, they had to sign the consent form as their answer to the first question. 

 

4.3 Breakdown of the questionnaire 
In this section, we provide a detailed breakdown of the questionnaire itself. We first explain the 

misconceptions that were considered for this study and the overall organization of the questionnaire 

as it relates to those misconceptions. Next, we address the questions one-by-one, explaining how 

they are expected to reveal interesting conceptions, both from early calculus concepts, and from 

more advanced analysis concepts.  

Before we began crafting the questionnaire, we identified the topics that we wanted to investigate, 

and categorized them. We then chose in which order the mathematical concepts should be explored 

and the best strategies to compel students to clearly explain their understanding of the topic at hand. 

From the literature, we identified 7 common misconceptions that we could use as the basis for our 

questionnaire (see Chapter 3): 

1. A limit cannot be reached 

2. The implicit monotonicity of convergent sequences and functions 

3. 0. 9̇ < 1 

4. The limit only as an infinite process and never as a mathematical object.   

5. Cluster points are equivalent to limits 

6. Infinity as a number 

7. EA and AE statements 

 

To anyone who has a little bit of experience with mathematics, it is easy to notice that some of 

these misconceptions have significant overlap. For example, misconceptions 1, 3, 4, 5 and 6 all 

relate to the concept of infinity. Therefore, some questions are built with the potential to uncover 

multiple misconceptions. 

Although one would expect that students would overcome these misconceptions by the time they 

complete their calculus courses, we conjecture (see Section 1.2) that some may carry over from 

calculus to analysis. The questionnaire was constructed with a few goals in mind. First, we wanted 

to detect if the misconceptions are indeed still present in the participants. The first 21 questions are 

built with this goal in mind. We strived, however, to propose questions as open-ended as we could, 

to avoid leading students’ answers. Thus, it is possible that participants might provide an answer 
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that subverts our expectations. Second, we are interested in exploring in what sense misconceptions 

affect the students’ answers to mathematical problems. Some questions invite the students to think 

a little bit more deeply about a given concept. We wanted the students to question their own 

understanding of those mathematical objects and methods with which they are expected to be 

competent. Finally, we designed the last 5 questions of the survey with the intent to uncover some 

new, more advanced versions of the previous misconceptions, or, potentially, new misconceptions. 

It is our conjecture that a basic calculus misconception that is not overcome by the student before 

they continue their mathematical journey can cause issues with the learning of the more advanced 

concepts. Based on our teaching experiences, we identified three misconceptions for which we 

have anecdotal evidence of their presence in analysis students: 

1. Assuming an implication between boundedness and convergence of sequences 

2. Infinity as a supremum 

3. Supremum is the same as a maximum 

 

Now that the general organization is explained, here is, question by question, a breakdown of the 

questionnaire that was administered to our participants. The questions are given verbatim and in 

italics. 

Question 1: Consent form 

The details of the consent form have been explained in the previous section (see also Appendix 

A.1). 

 

Question 2: This question is to inform me about what you have been taught in your past calculus 

courses.  Answer "yes" if you have learned about the topics, answer "no" if you haven't.   

a. Limits of functions 

b. Continuity of functions 

c. Limits of sequences 

d. Convergence/Divergence of sequences 

e. Convergence/Divergence of infinite series. 

Some topics can be more or less detailed in a calculus class, depending on many outside factors. 

We want to make sure that the information gathered from each students’ questionnaire accurately 

reflects their understanding of a concept that has been taught to them. If a student were to answer 

“no” to any of these topics, we would disregard their apparent misconceptions related to such topics 

as we are not interested, in this study, in misconceptions that exist in the absence of formal 

instruction. 
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Question 3: Consider the statement: 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

c) If possible, give one or more examples to explain your choice, your thinking and/or why 

you are not sure if this is true or false  

d) Would your answer change if 𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) = 𝐿? Please explain your answer with as much 

detail as you can 

 

This question is expected to reveal the well-documented misconception that a function cannot take 

the value of its limit (“a function does not reach its limit” or “[the graph of] a function cannot 

intersect [the graph of] its limit function”) (Tall & Vinner, 1981; Davis & Vinner, 1986; Sierpińska, 

1987; Monaghan, 1991; Mamona-Downs, 2001; Kidron & Zehavi, 2002; Hah Roh, 2008).  We 

expect that some students may agree with the statement, as the most common concept image (in 

the sense of Tall & Vinner, 1981) that is associated with a limit at infinity is that of a strict 

monotone approach.  

Also, a student could answer “false” while still providing an incorrect justification. We believe that 

such a case is possible if a student has a misconception about infinity and considers that the function 

would reach its limit at infinity. Sierpińska (1987) has classified different conceptions of infinity, 

some of which are prone to be misleading. We believe that it is possible that a student would 

respond with this type of justification.  

The last sub-question’s purpose is to prompt students into questioning the difference between limits 

at infinity and limit at a point. We expected that most students would correctly identify that the 

statement is false as any continuous function is a good counterexample. We consider, however, the 

possibility that a student’s answer to d) contradicts their answer to a). 

 

Question 4: Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then, 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = 1 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

 



28 

 

Question 5: Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then,  𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = −1 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process) 

 

Question 6: Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then, the sequence {an} diverges. 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

 

Questions 4-6 are meant to encourage students to think carefully about their answers as they relate 

to their answers to the previous questions. We expected that most if not all participants would 

answer “false” to questions 4.a) and 5.a) since the sequence is quite simple. 

It is possible for question 6 to reveal the additional misconception that any divergent subsequence 

must be unbounded. Although this is not one of our hypothesized misconceptions, we acknowledge 

that this is a possibility. 

Moreover, if a student were to answer with “true” for both questions 4.a) and 5.a), this could 

indicate that the student applies the definition of accumulation points to the concept of limits.  

 

Question 7: Consider 𝑓(𝑥) =
𝑠𝑖𝑛 (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) converges to 0 as x→∞. 

 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question. 
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Question 8: Consider 𝑓(𝑥) =
𝑠𝑖𝑛 (𝑥)

𝑥
   as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, the limit of f(x) is 0 as x→∞. 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

c) If you answered ''I don't know'' to part a), please explain why the question is confusing 

to you. 

 

Question 9: Consider 𝑓(𝑥) =
𝑠𝑖𝑛 (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) tends to 0 as x→∞. 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

c) If you answered ''I don't know'', please explain what is confusing you in this question. 

Question 10: Consider 𝑓(𝑥) =
𝑠𝑖𝑛 (𝑥)

𝑥
   as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) approaches 0 as x→∞. 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought process)  

c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question 

Question 11: Consider 𝑓(𝑥) =
𝑠𝑖𝑛 (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, y=0 is an asymptote. 

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought process). 
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c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question. 

 

Note: the graph was provided once for each of questions 7-11, we included it only once in this case 

to avoid redundancy.  

 

Questions 7 through 11 are different versions of the same question (different notation or different 

words to represent the same concepts). This block of questions was heavily inspired by John 

Monaghan’s article “Problems with the Language of Limits (1991).” Monaghan (1991) explains 

that mathematics educators tend to use the words approach, tend, limit and converges 

interchangeably. Many other authors (Cornu, 1980; Tall & Vinner, 1981; Davis & Vinner, 1986; 

Sierpińska, 1987; Monaghan, 1991; Mamona-Downs, 2001; Hah Roh, 2008) have discussed this 

and its impact on students’ learning. While it is true that these words mean the same thing in a 

mathematical context, it is also true that they have other, distinct meanings in other contexts and 

particularly, in students’ everyday lives. Students’ difficulties in ascribing mathematical meaning 

to words that have meaning in a context they are already familiar with, and how this leads to 

misconceptions, has been thoroughly studied by mathematics education researchers, especially by 

Cornu (1980), Tall & Vinner (1981), Davis & Vinner (1986), Sierpińska (1990), Monaghan (1991), 

Mamona-Downs (2001) and Hah Roh (2008). 

We posed question 11 to investigate students’ concept of asymptote. Anecdotal evidence suggests 

that students may not understand the relation between asymptotes and limits. In particular, if a 

student mistakenly believes that an asymptote must be a line which is strictly monotonically 

approached, this misconception could affect their understanding of limits as a whole. Students’ 

confusion around the concepts of limits and asymptotes has been discussed by Hah Roh (2008), 

and we wish to explore this idea further. 

Question 12: Consider the following expression:  𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

Then, the sequence converges to 0. 9̇ 
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Note: the 0. 9̇ notation refers to a 0 and infinitely many 9's after the decimal point. 

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought process). 

 

Question 13: Consider the following expression: 𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

Then, the sequence converges to 1. 

 

 

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought process). 

 

With the previous two questions, we aimed at uncovering whether students successfully identify 

that 0. 9̇ and 1 are conceptually the same number. These two questions were also inspired by 

Monaghan (1991). There are a few thought processes that can lead to different answers. A student 

might answer “true” to both questions, which would be correct if it is properly justified. It is 

expected that some students might list the first few terms of the sequence and, as a result, answer 

“true” to question 12 but for the wrong reasons. Their justifications for the following question 

would enlighten us about their understanding of partial sums.  

Tall & Vinner (1981) have described this misconception as an issue between the modes of 

representation of numbers. Students could mistakenly consider 0. 9̇ and 1 as different numbers for 

the simple reason that they are written differently.  

These two questions allow for different correct answers if the students justify them properly. The 

numbers 0. 9̇ and 1 are indistinguishable. Students may find a distinction due to a misconception 

about the limit of sequences being exclusively a dynamic process and not a static mathematical 

object.  

 

 

Question 14: Consider the following expression:  ∑ 𝑎𝑘
∞
𝑘=1 = 𝑙𝑖𝑚

𝑛→∞
∑ 𝑎𝑘

𝑛
𝑘=1  

a) Is the statement true or false (write "I don't know" if you are not sure). 
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b) Clearly explain your choice, and how you are thinking about this (your thought process). 

 

In calculus, the symbol for infinity is often used as a placeholder for a limit (Sierpińska, 1990). 

This can be quite misleading to a less experienced student, as they might assume that the infinity 

symbol can be used in the same way that we use real numbers. In the notation for infinite series, it 

is common to use the symbol for infinity to refer to a lack of an upper bound (such as the left-hand 

side of the equation above). This may lead students to answer “false” to this question, if they are 

unaware of the formal notation or if they assume that infinity refers to the upper bound as opposed 

to a placeholder for the limit of partial sums. 

 

Question 15: Consider the following conversation between two fictitious students, nicknamed A 

and B.  The two students were asked to find the limit of the sequence 𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

A: Alright, I think we should start by computing the first few terms of the sequence to see 

better what the pattern is. 

B: Good idea! 

The students notice that the sequence is as follows: {0.9, 0.99, 0.999, 0.9999, etc.} 

A: Just by looking at the pattern, it feels obvious that the limit is 0. 9̇ I don’t really know 

how to prove it though. 

B: Actually, I think the limit is 1.  When you look at the terms, they get closer and closer to 

1 without ever reaching it, whereas at infinity, the sequence would reach 0.9˙ and the limit 

is supposed to never be reached. 

A: But you can’t reach infinity, you can’t find the value of the “infinity-th” term. 

B: I think we can reach infinity, look at it this way:  ∑ 9(
1

10
)𝑘∞

𝑘=1  This is just an infinite 

series; we just need to figure out what it converges to using the usual tests. 

************************************************************************ 

In the questions below, please, write as much as you can to clearly explain what you are 

thinking.  

a) What do you think about A’s statement: “Just by looking at the pattern, it feels obvious 

that the limit is 0. 9̇”? 
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b) In your opinion, what does B mean when they say: “at infinity, the sequence would reach 

0. 9̇”? 

c) What is 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛? Clearly explain and justify your answer. 

d) If you were to help A and B to solve the problem, what would you tell each of them 

regarding their reasoning? 

 

With question 15, we wanted to provide the participants with different thought processes that they 

may of may not agree with. The fictitious conversation is riddled with common misconceptions 

that we are trying to observe. If the participants agree with the reasoning of the fictitious students, 

their explanation may be quite revealing about their (mis)understanding of these concepts. 

Sub-question a) prompts the participants to share their thoughts about the intuitive solution 

provided by the fictitious students. Agreeing with the statement might solidify any misconceptions 

exposed by question 12 and 13. 

Sub-question b) has a similar role to a), but regarding infinity. Do the participants understand that 

infinity cannot be reached? Do they understand that computing an infinite sum corresponds to 

finding a limit?  

The goal of sub-question c) is to observe if their answer will be any different from questions 12 

and 13. It is the same question, but now that they were provided with different thought processes, 

it is possible that their answers might change. 

Finally, sub-question d) aims at allowing the participants to express their disagreements with the 

fictitious reasonings. If they noticed some issues, they could write their opinions on which train of 

thought should be followed, and which can be misleading in the context of a problem-solving 

exercise. We expected that their opinions about the fictitious conversation could reveal some 

interesting misconceptions. 

 

Question 16: Consider the following conversation between two fictitious students, nicknamed C 

and D.  You may use the graph below if needed. 

The two students were asked to find 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) + 𝑙𝑖𝑚
𝑥→∞

𝑔(𝑥) 

For 𝑓(𝑥) = 4𝑥 (green curve) and 𝑔(𝑥) = 1 − 22𝑥  (blue curve) 
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C:  We should compute the two limits individually first, to see if they converge or not. 

D:  Good idea.  Alright, clearly 𝑙𝑖𝑚
𝑥→∞

4𝑥 must be infinity, right? If x gets bigger and bigger, 

than so does 4𝑥. 

C:  For sure, and I think it’s similar for 𝑙𝑖𝑚
𝑥→∞

1 − 22𝑥.  As x gets bigger, −22𝑥 gets smaller 

and completely dominates the 1, so this would be negative infinity.  But what’s the sum of 

the two, then?  Would it be zero since we add infinity to negative infinity? 

D:  No, we can’t do that.  Infinity isn’t like any number; we can’t do algebra with it. 

C:  But look at the graphs, when we consider any x, f(x) and g(x) always sum to 1, it’s like 

they cancel out.  So, the sum of the limits must be 1 too, doesn’t it? 

D:  I’m not sure.  Maybe if we manipulate the functions a little bit, we could find 

something.  Right, so 𝑔(𝑥) = 1 − 22𝑥, but 22𝑥 = 4𝑥.  So, 𝑔(𝑥) = 1 − 4𝑥 

C: So then, the function f(x) and the −4𝑥 part of g(x) would cancel out, and we’re left 

with just 1. 

 

************************************************************************ 

 

a) Do you agree with D when they say: “Infinity isn’t like any number; we can’t do algebra 

with it.”? 

 

b) What is 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) + 𝑙𝑖𝑚
𝑥→∞

𝑔(𝑥) 

c)  If you were to help C and D to solve the problem, what would you tell each of them 

regarding their reasoning? 
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It is frequent for students to consider limits only, or exclusively, as an ongoing process (Tall & 

Vinner, 1981; Hah Roh, 2008) and not be able to conceive them as static, mathematical objects. 

Thinking of limits only as a process may result in the perception (misconception) that one can 

operate algebraically even when the object (the limit) does not exist. In the question, fictitious 

student C argues that limits are an ongoing process. They argue that at every point, f(x) and g(x) 

cancel out and yield 1, which means that the limit should do the same. 

We expect that most if not all participating students will agree with the statement in sub-question 

a). However, we expect that they might not follow this statement in the following sub-questions.  

To address sub-question b), students need to state that the question is itself wrongly posed – it has 

no answer. Their answer and justifications may uncover their perceptions of limits (as processes 

vs. objects) and help us identify the source of these perceptions.  

Similarly to question 15, the last sub-question allows the students to express their disagreements 

with the logic of the fictitious students, and perhaps provide a different thought process.  

 

Question 17: A student says that it is always true that 𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐).  

a) Is the student right? Clearly explain and justify your answer. 

If you answer no to part a), continue with questions b) and c):  

b) give one or two examples when the statement is not true. Can you give examples where 

the statement is true?  

c) What conditions are necessary for the statement 𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) to be correct? 

 

Sub-question a) aims at separating the students who know about continuity from those who don’t. 

If a student answers that the equality is never correct, then the student might believe that a function 

can never reach its limit. 

If a student answers that the equality is always correct, this would indicate that the student may 

view infinity as a number. The function may diverge to infinity and f(c) may be undefined, making 

the symbol “=” and the expression “f(c)” wrongly used.  

It is also possible that a student agrees that the equality is correct simply by forgetting about the 

continuity condition, in which case their justification might enlighten us about their potential 

misconceptions. 
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Sub-questions b) and c) will help us determine which participants truly understand the concept of 

continuity when it comes to limits, allowing us to focus on the participants who may have a flawed 

understanding. 

 

 

Question 18: Group the following functions according to any criteria of your choosing.  Choose 

criteria that reflect your understanding of limits at infinity 

a) 𝑓(𝑥) =
1

𝑥
 

b) 𝑓(𝑥) = 4 

c) 𝑓(𝑥) =
𝑐𝑜𝑠 (𝑥)

𝑥
 

d) 𝑓(𝑥) = −(𝑒𝑥) 

e) 𝑓(𝑥) = 𝑠𝑖𝑛 (𝑥) 

f) 𝑓(𝑥) = 𝑙𝑛 (𝑥) 

 

Question 19:  

a) Clearly explain your reasoning for why you put specific functions in specific groups. 

b) What conditions must functions satisfy to be put in each group? 

c) Although the question didn't give you the option to put the functions in multiple groups, 

are there functions that can belong in multiple groups? 

 

Questions 18 and 19 are the only two questions that appeared on the same page in the Moodle quiz, 

as they fully depend on one another. These questions aim at identifying what types of 

convergence/divergence are fundamentally different for the participants. Their explanations for 

their choice of groups may give us some insight into their understanding of convergence and 

divergence as x goes to infinity. 

For example, if option e) is grouped with other diverging functions, this could indicate that the 

student does not perceive “unbounded” and “divergent” as fundamentally different concepts, hence 

potentially showing some issues with the concept of infinity. If the student simply made a group 

for every diverging function, this case may not reveal any misconceptions.  

A student who does not believe that a limit can be reached may be tempted to classify b) separately 

from other monotonically convergent functions, thus creating a group only for constant functions. 
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Separating monotone convergent functions from oscillating convergent functions could show that 

the student understands that a function can cross its limit. Of course, each of these examples 

depends heavily on the justifications provided by the students. 

 

 

Question 20: When is the following equality correct? 

𝑙𝑖𝑚
𝑥→𝑐

(𝑓(𝑥) + 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) + 𝑙𝑖𝑚
𝑥→𝑐

𝑔(𝑥) 

Similarly to question 16, this question’s goal is to identify which students know that limits cannot 

be manipulated like a linear transformation. We can expect some students to answer that this 

equality is always true. Such a response could arise due to a misconception about the behaviour of 

limits, or simply due to the student misremembering that the existence of both limits is a necessary 

condition.  

 

Question 21: Consider the following definition. 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = 𝐿 𝑖𝑓 ∀ 𝜀 > 0, ∃ 𝑁 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑥 > 𝑁, |𝑓(𝑥) − 𝐿| < 𝜀 

a) Re-write this statement in common English, and briefly explain its meaning. 

b) Do you recognize what this statement defines? 

 

From question 21 onwards, we aimed at revealing misconceptions that might arise from students’ 

initial exposure to analytical thinking and the methods in analysis. We were also interested in 

misconceptions that might have carried over from the ones that we expected to observe in answers 

to the first twenty questions. Question 21 is especially focused on the understanding of quantifiers 

and the formal definition of limits. We expected that analysis students would be able to “translate” 

this statement to common English, but the actual meaning of it might be lost to them. In such a 

case, we can expect that the students do not recognize the definition of a limit. We are interested 

in students’ understanding of this statement because properly understanding its meaning is at the 

core of overcoming several misconceptions we are studying.  

 

Question 22: Consider the following two statements. 

1. ∀ 𝑎 > 0, ∃ 𝑏 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 > 𝑏 
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2. ∃𝑏 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑎 > 0, 𝑎 > 𝑏 

 

a) Assuming that a and b are taken in the set of real numbers, are the two statements true 

or false? 

b) Are the two statements equivalent? Give an example or a counterexample 

 

This question was inspired by Dubinsky & Yiparaki’s (2000) study titled “On Student 

Understanding of EA and AE Quantification.” 

This question investigates specifically the understanding of the universal and existential 

quantifiers. Our student participants are most likely not familiar with these specific examples and 

therefore need to rely only on their understanding of mathematical notation and real numbers to 

answer the question. We expect that students who hold misconceptions about the existential and 

universal quantifiers might mistakenly assume that these two statements are equivalent. 

 

Question 23: Consider the following statement: 

sup(A)=1 where A⊂R 

Recall the following two definitions: 

• An upper bound b of A is called a supremum of A if, for all upper bounds z of A, 

𝑏 ≤ 𝑧  

• c ∈ A is called the maximum if ∀ a ∈ A, 𝑐 ≥ 𝑎 

a) Explain in your own words what the statement means. 

b) Can you give an example of a set A which satisfies this statement. 

c) Consider the example you gave in b), is 1 the maximum of A?  Clearly explain your 

reasoning. 

 

This question aims at exploring students’ potential misconceptions around the concepts of 

maximum and supremum. We want to question the students’ understanding of these two concepts 

without relying on their memory of the definitions, which is why the definitions are provided. We 

conjectured that despite the definitions being given, students would rely on an incorrect meaning 

they have ascribed to the words maximum and supremum.  
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Sub-questions b) and c) may allow us to precisely identify this misconception, although that 

depends heavily on the choice of example and on the related explanation. 

 

Question 24: Recall the following definitions: 

• An upper bound b of A is called a supremum of A if, for all upper bounds z of A, 

𝑏 ≤ 𝑧 

• 𝑐 ∈ 𝐴 is called the maximum if ∀ a ∈ A, 𝑐 ≥ 𝑎 

 

True or false? A is any non-empty subset of the real numbers. 

a) If s is the supremum of A, then s is also the maximum. 

b) If s is the maximum of A, then s is also the supremum, 

c) It is possible for A to have a supremum and to NOT have a maximum. 

d) It is possible for A to have a maximum and to NOT have a supremum. 

 

Question 24 complements the goal of the previous question. A student who misunderstands the 

difference between a maximum and a supremum might answer “true” to the first two statements 

and “false” to the last two. Any other incorrect answer pattern may be hiding a different kind of 

misconception that should be investigated further. 

 

Question 25: Consider any sequence which is bounded. 

a) Does the sequence have a maximum? 

b) Does the sequence have a supremum? 

c) What can you infer about the limits of the subsequences of this sequence? 

d) Is the sequence convergent? 

 

This question tackles a few misconceptions. First, sub-questions a) and b) aim at identifying the 

same misconception as the two previous questions. 
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Sub-question c) leads the students into using the Bolzano-Weierstrass theorem. To properly answer 

this question, students need to understand the concepts of boundedness and subsequences. There 

is a chance that a student is unfamiliar with the theorem, in which case the answer to this question 

may provide information about the student’s understanding of these concepts.  

Sub-question d) has the goal of differentiating between convergence and boundedness. There have 

been a few instances in this questionnaire where students had the opportunity of differentiating 

these two concepts. This question directly inquires about their difference, an answer of “yes” will 

strongly hint at the presence of a misconception of either or both convergence and boundedness. 

 

Question 26: Consider the set {A= ln(n):n=1,2,3, ...} 

Recall the following definition: 

• An upper bound b of A is called a supremum of A if, for all upper bounds z of A, 

𝑏 ≤ 𝑧 

 

True or false? 

a) sup(A)=∞ 

b) This set does not have a supremum, nor an infimum. 

c) The sequence 𝑎𝑛 = 𝑙𝑛 (𝑛) is monotone. 

 

The final question tackles the misconception that infinity can be a supremum. This idea is related 

to the misconception that infinity is “like” a number in Calculus and Analysis. Moreover, a similar 

idea can be observed when students are first introduced to limits. Using the infinity symbol to 

compute a limit (Sierpińska, 1990) or claiming that “the limit is infinity” are misconceptions about 

infinity which can be carried over into Analysis. The notation in sub-question a) is incorrect, and 

the students’ answers may indicate that they see no issue with this use of infinity. In this case, the 

early misconception “the limit is infinity” and the statement “the supremum is infinity” are directly 

analogous and we expect that a student who is comfortable with the former might be more prone 

to agree with the latter.  

In addition, certain introductory Real Analysis textbooks introduce the concept of extended real 

numbers quite early, where infinite bounds are allowed. If students get confused by this concept, 

they may assume that infinity is a valid supremum even if we don’t mention the extended real 

numbers.  
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Sub-question c) inquires about the difference between monotonicity and convergence. We provide 

the students with a divergent monotone sequence, and we expect them to either state the difference 

between those concepts or be inconsistent with their answers throughout the three sub-questions. 

 

4.4 Methods of data analysis 
In this section, we explain how the data gathered was classified and interpreted for analysis. The 

participants’ answers as they were received on Moodle were not in a state in which we could easily 

observe particular thought patterns. We had to organize the data and we had to operationalize our 

system of classification. The details of the data analysis are explained in this section. 

The first step was to create a table including every answer for every question. This table was the 

primary tool that was used to analyse the data. Next, we classified each answer to each question 

one-by-one according to the misconception levels that are detailed in Section 3.4. The question is: 

how do we recognize each misconception level from answers to the questionnaire? To answer this 

question, we devised an operationalization table. There are 6 criteria by which we analysed the 

student’s misconceptions: 

• Vocabulary: A student who has a deep understanding of a concept should be able to explain 

their reasoning using abstract vocabulary and formal justifications. 

• Replicability: The student’s reasoning or conception should be applicable to different 

situations and yield similar results. 

• Validity: The student’s reasoning should yield results which are correct.  

• Conceptual understanding: Mathematical concepts usually rely on conditions and details. 

A student with a good conceptual understanding will include every necessary element of 

the concept in their reasoning and demonstrate a proper understanding of the conditions 

and details. 

• Procedural understanding: If the student’s answer involves problem solving, it should 

include a method that is accepted as mathematically adequate. If the method requires a 

theorem, the student should mention it. If the student sees fit to include an example in their 

reasoning, the example should be properly provided and relevant to the context. 

• Logical progression: The student’s reasoning must be grounded in mathematical logic and 

thoroughly follow its rules. A good reasoning should involve a set of steps that logically 

follow from one another.  
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We evaluated each student’s answer against each of these criteria. We then compared our analysis 

to the entries on this table and decided which level corresponds most accurately to the student’s 

answers. Here is the detailed operationalization table: 

 

 Vocabulary Replicability Validity 
Conceptual 

understanding 

Procedural 

understanding 

Logical 

progression 

Absence 

No abstract 

explanations 

or definitions  

None None None None None 

Preconception 

Incorrect use 

of formal 

vocabulary 

 

No abstract 

explanations 

or definitions  

Very low Very low 

Very weak. 

May include 

interpretations 

which are not 

mathematical 

in nature 

None 

Inaccurate and 

lacking 

continuity. May 

contain 

contradictions. 

Alternate 

conception 

Occasional 

incorrect use 

of the formal 

vocabulary 

 

No abstract 

explanations 

or definitions  

Average or 

high 
Low 

Potentially 

strong 

conception of 

inaccurate 

notions  

Very weak 

Consistent and 

used with a 

certain degree 

of logic 

Incomplete 

conception 

Basic 

vocabulary 

 

Occasional 

abstract 

explanations 

and 

definitions 

Low or 

average 
Average 

Weak 

conceptual 

understanding 

of accurate 

notions 

Strong for the 

more basic 

problems/ 

situations 

 

Weak 

otherwise 

Occasional 

flaws in the 

logic 

 

May follow 

seemingly 

arbitrary rules/ 

guidelines 

Unrefined 

conception 

Instances of 

both formal 

and informal 

vocabulary 

 

Occasional 

abstract 

explanations 

and 

definitions 

High High 

Strong but 

may be 

lacking details 

Strong but 

may be 

lacking details 

Strong logic. 

The method 

follows clear 

and robust 

guidelines 

Expert 

conception 

Formal 

vocabulary 

 

Abstract 

explanations 

and 

definitions 

Very high Very high Very strong Very strong 
Very strong 

logic 

Table 1 : Operationalization of the misconception levels 
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Table 1: Operationalization of the misconception levels 

 

We associated a color to each misconception level and then color-coded phrases, sentences, or 

entire answers using the criteria above (Table 4.41). It is possible that some answers could belong 

in more than one category. In such cases, we made consistent, conscious choices of what we 

believed was the “closest” level.  

We chose to also designate certain answers as corresponding to two levels simultaneously. It is our 

belief that misconceptions are not black or white. Student responses may have traces of different 

misconception levels in a single answer. It is also possible that a student shows hints of different 

misconception levels in their answers to different questions, in which case, it is our conjecture that 

such a student might be in a transitional state from one level to the next. Signs of such a situation 

may be identified using Table 4.41. A student who is actively improving their understanding of a 

mathematical concept might provide answers for which the six criteria above correspond to a 

combination of two (or more) misconception levels.  

 

In the next chapter, we present our results and analysis. We discuss in detail every answer to the 

questionnaire that has indications of misconceptions. We also assign a misconception level to 

students’ conceptions based on Table 4.41. 
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Chapter 5 Results and analysis 
In this chapter, we discuss the results and the analysis of the data collected in the context of this 

study. As mentioned in the introduction and further discussed in Chapter 4, we envisioned and 

planned the data gathering using a task-based interview tool. However, the COVID-19 pandemic 

derailed this plan and imposed limitations in the data collection approach. We transformed the task-

based interview protocol into a survey that students answered on an online platform, in writing. 

Thus, the degree of ‘depth’ of students’ answers varies significantly between students and 

questions. The first step in our analysis, consisted therefore in carefully considering each individual 

answer and identifying which ones offered interesting or meaningful hints that would allow us to 

interpret students’ thinking relevant to this research.  

The first section of this chapter is an overview of the data and the first step of the analysis referred 

to above. We explain the choices we made to analyse and discuss certain answers and not others. 

In Section 5.2, we focus especially on the answers that are of interest to us in one way or another. 

This section discusses the students’ answers that seem to correspond to the misconceptions that 

have been observed in students of their level and that we presented in Section 3.3. We will discuss 

the way in which we identified and labeled those misconceptions – on the basis of Table 4.41 – 

and to what extent each student seems to misunderstand the concepts. This section is separated in 

nine subsections. The first seven subsections focus on each of the seven hypothesized 

misconceptions highlighted in Section 3.3. In Subsection 5.2.8, we analyse the participants’ 

understanding of vocabulary in the context of mathematical statements. The last subsection, 5.2.9, 

addresses misconceptions that could arise further on in a student’s education, especially as it relates 

to analysis.  

The third section of this chapter, 5.3, focuses on unexpected misconceptions. Upon analysing the 

participants’ answers, we determined that certain students made mistakes which can be attributed 

to misconceptions we didn’t anticipate.  

Lastly, we end the chapter with a discussion of some advantages and disadvantages of the data 

collection tool.  

 

5.1 Overview of the data  
In this kind of study, the data gathered depends heavily on students’ level of engagement. Even if 

a student volunteers to participate in the study, it is not guaranteed that their answers to the 

questionnaire will provide information that would allow the researchers to address their research 

questions. While we would have probably gained significant insight into students (mis)conceptions 

if we had had the chance to interact with them face-to-face, the reality of the pandemic prevented 

this8. We conformed ourselves with gathering written responses to open-ended questions and 

reflecting, based on students’ answers, our experiences as students and teachers and our reading of 

previous relevant literature, on what misconceptions could be gleaned from students written work 

 
8 Data was gathered during the early months of the pandemic. While online tools were available and we could have 

conducted face-to-face interviews, we discarded this idea considering how stressed and overworked university 

students were as they navigated extraordinary academic, professional, and personal circumstances. 
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and what their source could be. Several answers, however, were discarded as we considered them 

imprecise, too brief, too vague, or too confusing to allow us to support any serious analysis or 

reflection. Answers were also discarded if we didn’t consider them contributing to our research 

questions, for one or more reasons.  

An example of the type of answers that we discarded are those that we describe as “expert 

conception;” answers that refer to rigorous mathematical logic and proven theorems, close to what 

one could find in a textbook. These answers did not provide us with insights into any 

misconceptions students may hold regarding the concept at hand. Students 2 and 7, for example, 

provided near expert responses to most of the questionnaire. Although some of their answers will 

be discussed for various reasons in the following sections, most of their answers were thorough, 

rigorous and did not show any hint of the expected misconceptions. This does not mean that these 

students do not have any misconceptions, it only means that from the provided answer, we are 

unable to identify any gaps in these students’ knowledge of the concept at hand.  

As mentioned above, some students responded to the questionnaire in a manner that does not 

provide us with enough data to conduct a meaningful analysis. For example, Student 3 provided 

very short and vague answers to most of the questions, and outright skipped some other questions. 

This student’s participation hardly contributed to the goals of this study. We also noticed that for 

some of the participants, the answers to the last few questions were shorter and less detailed than 

the earlier ones. Although we cannot know for sure why that is, it is conceivable that the 

participants grew tired of responding to the questionnaire after some time. In any case, it is a fact 

of the data gathered that the answers to the last few questions provide less relevant data for us.  

In some cases, students might be answering a question about a concept which they are unfamiliar 

with. This can still be interesting to analyse and discuss as the very first levels of our model of 

misconception classification mostly apply to students who have not formally learned the 

mathematical concept. However, it is important that we, as researchers, are aware if a concept is 

especially foreign to each participant. As such, as presented in Chapter 4, we directly asked the 

participants if they have been exposed to some of the more advanced concepts that are included in 

the questionnaire. Thus, we know that Student 4, for example, has not formally learned the concepts 

and processes related to sequences, and infinite series. Students 6 and 8 also mentioned that they 

were unfamiliar with the convergence/divergence of infinite series. These gaps in these students’ 

mathematical education will be considered when discussing their misconceptions. 

Finally, we note that some of the students’ misconceptions (or plain lack of knowledge about 

certain mathematical concepts) became an obstacle to our inquiry. The first of these “obstacles” 

turned out to be the students’ misuse of, or outright disregard for, the rules of mathematical logic. 

For example, students using examples to prove a universal statement. This type of errors may have 

prevented us from noticing conceptual issues in certain questions since any misconceptions 

regarding the concept at hand would be hidden behind logical fallacies. Another “obstacle” we 

encountered in students’ answers relates to their struggles with mathematical language and 

notation. We believe that some of our questions may have been unsuccessful in revealing 

misconceptions because of participants’ unfamiliarity with the formal mathematical notation. 

These students would provide answers that were completely unrelated to the question – we assume 

because they did not properly understand the question itself. In some cases, however, their answers 

were still helpful to us in identifying misconceptions related to notation and quantifiers, but they 
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“failed” at revealing other misconceptions we intended to uncover. These issues are discussed 

further in Section 5.3. 

 

5.2 Observed misconceptions from the hypothesized options 
As mentioned in the introduction to this chapter, we organize the first seven subsections of 5.2 

around the seven misconceptions listed in Section 3.3. The last two subsections, however, refer to 

the participants’ understanding of vocabulary in the context of mathematical statements and 

misconceptions that could arise further on in a student’s mathematical education, especially as it 

relates to analysis. For conciseness, the questions are not restated in this chapter. We recommend 

that the reader keeps the question statements (see Appendix A.2) close as they read this chapter. If 

the reader requires additional information about the questions, they may refer to Section 4.3.  

Finally, using the operationalization table (Table 4.41), we analyse the student’s answer to 

determine which misconception level it corresponds most accurately to. As a reminder, the six 

criteria used in the operationalization table are vocabulary, replicability, validity, conceptual 

understanding, procedural understanding, and logical progression (see Section 4.4, page 42). 

 

5.2.1 A limit can never be reached 

To explore students’ holding of this misconception, we consider questions 3, 15, 17, 18 and 19. 

Other questions have not provided sufficient data regarding this misconception.  

In total, when considering the above questions, we surmise that at least 5 students out of 10 hold 

the misconception “a limit cannot be reached”: Students 1, 6, 8, 9 and 10. The other students have 

not provided any answers which could indicate the presence of this misconception in any 

significant way.  

As mentioned before, some participating students’ poor understanding of mathematical logic and 

notation creates ‘noise’ in their answers as we try to reflect on whether they hold a misconception 

or not. We sift through the noise to isolate the students’ reasonings and reflect on their 

understanding of the concept.  

 

STUDENT 1 – INCOMPLETE/UNREFINED MISCONCEPTION 

In answering question 15, Student 1 relies on comparing the sequence at hand to a basic function 

that has a limit as x goes to infinity. 

Student 1’s answer to question 15.d): “Personally, I like using the example 1/x, since it is pretty 

simple. 1/x when x goes to infinity, it goes to 0, although it never reaches it. Same thing would 

apply here, it gets closer and closer to 1, although it never reaches it.” 

First, note that in their answer to question 15, the student never mentions that functions should 

never reach their limit. They simply use a function that does not reach its limit as a comparison for 



47 

 

a sequence that also respects this criterion. We cannot know for sure if this student believes that 

functions never take the value of their limits. Student 1’s chooses to compare the sequence at hand 

(𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1 ) with a monotone function (
1

𝑥
) which is a very commonly used basic example 

to illustrate limits as x goes to infinity. This strategy is not inherently problematic, but it may not 

yield accurate results in more advanced situations. 

Student 1’s vocabulary through their answers to question 15 is generally quite good. There are a 

few imprecisions, but their reasonings are easy to understand. The strategy to compare a situation 

with a more basic and familiar one has high replicability. The issue with reproducing this reasoning 

is that it may yield accurate results in some situations and not in others. This student’s reasoning is 

valid, but it is incomplete. Student 1 does accurately point the fictitious student towards the correct 

answer, which is 1, but they do not identify that the two choices are equivalent. Their reasoning 

has average validity. Their conceptual understanding of limits seems to be strong, but we do not 

have enough data within question 15 to determine if this student truly understands that functions 

(or sequences) can reach their limits. This student’s procedural understanding appears to be strong 

for the basic cases. Lastly, this student’s logic is strong. Considering a basic case can be a good 

starting step when searching for the solution to a harder problem. However, this student seems to 

rely too heavily on this comparison, and it could eventually become misleading. Student 1’s 

conception of limits in the context of question 15 appears to be transitioning from “incomplete 

conception” to “unrefined conception.” 

 

STUDENT 6 – INCOMPLETE CONCEPTION 

We consider student 6’s groupings in questions 18 and 19. We will focus on two of their groupings 

which provide insight into their interpretation of a function “reaching” its limit. 

The student created one group (group 1) with only function b) 𝑓(𝑥) = 4, and another group (group 

2), in which they put a) 𝑓(𝑥) =
1

𝑥
, c) 𝑓(𝑥) =

cos(𝑥)

𝑥
, and f) 𝑓(𝑥) = ln(𝑥) 

Student 6’s answer to question 19.a): “Group 1 has functions with the limit, as x goes to infinite, 

equal to a real finite number which they reached. Group 2 has functions with limit 0, which [the 

function] never really reaches, only approaches.” 

Student 6 admitted that they did not remember the behavior of the function ln(𝑥). The student 

claims that they believe the limit to be 0 and we assume that they believe that 𝑙𝑛(𝑥) ≠ 0 ∀ 𝑥, 

justifying the erroneous placement of the function in group 2. 

The student chose to create two distinct groups of convergent functions according to whether the 

functions reached their limits. We cannot know for certain why the student chose the criterion of 

“reaching the limit” and what they mean by this phrase. From a mathematical perspective, 

“reaching the limit” would normally mean that there are one or more values of x in the domain for 

which 𝑓(𝑥) = 𝐿. Whether this is for one, infinitely many, or all values is irrelevant from the 

perspective of the definition of limit; in any case, the difference between 𝑓(𝑥) 𝑎𝑛𝑑 𝐿 is less than 

any 𝜀 > 0 if x is large enough. We cannot know if the student understands this and simply put the 
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oscillating function in this group because they don’t know its behaviour (amounting to a mistake 

similar to including ln(x) in this group). Or, alternatively, they might know the behaviour of 𝑓(𝑥) =
cos(𝑥)

𝑥
, but use the phrase “reaching the limit” as meaning something other than its mathematical 

meaning. If in the latter case, we surmise that the student means the function stabilizes at the value 

of the limit. In mathematical terms, we would say: ∃ a for which 𝑓(𝑥) = 𝐿 ∀ 𝑥 > 𝑎. When studying 

limits of functions, this property is not a significant one. Regarding the study of the concept of 

limit, a function that satisfies this is no more or less interesting than a function that has a limit L as 

x goes to infinity. This interpretation is supported by their criterion for group 1, of which the only 

element is a constant function.  

This student’s vocabulary is quite basic. There is some evidence that their interpretation of 

“reach” is incorrect, but they do not provide a definition or an explanation for their use of the word. 

This leaves the criteria governing their groupings vague and subjective. We surmise that this 

student’s classification system has low replicability. The first reason for this assessment is the shear 

imprecision of their criteria. Moreover, the three groups formed by student 6 seem to be tailored 

only to this set of functions and may not apply to other sets. Student 6’s conceptual understanding 

of limits as x goes to infinity seems to be lacking as illustrated by their inconsistent interpretation 

of a function reaching its limit. 

As far as identifying a function’s limit, this student’s procedural understanding is average. Their 

only mistake is with the natural logarithm function, which they admit not remembering. However, 

they incorrectly identify its limit by misusing L’Hôpital’s rule, which points towards a lacking 

procedural understanding of the theorem. Student 6’s conceptual understanding of limits as x goes 

to infinity seems to be weak as illustrated by their inconsistent interpretation of a function reaching 

its limit. The logic employed by student 6 in these two questions, 18 and 19, is difficult to 

understand. They created one group for diverging functions and two groups for convergent 

functions; one for functions converging to 0 and one for functions that converge to other real 

numbers. They also specify that the two groups separate functions that reach their limit from those 

that don’t. Each of these criteria on their own could have been a logical way to group functions, 

but mixed, it creates inconsistencies. For example, the function 𝑓(𝑥) = 0 could belong in both 

groups, and the function 𝑓(𝑥) =
1

𝑥
+ 1 seems to belong in neither. Their logical progression seems 

to be flawed and to follow arbitrary guidelines. Student 6’s conception of limits at infinity seems 

to be at the “incomplete conception” level. 

 

STUDENT 8 – INCOMPLETE CONCEPTION 

Student 8 shows signs of “the limit cannot be reached” misconception in questions 12 and 15.  

Student 8’s answer to question 12.b): “When we say that it converges to a certain number, from 

what I understand, it means the value [to which] the sequence goes towards to. In this case, it will 

never reach 1 because we keep adding 9s in the decimal [expansion], but it will approach to 1 as 

n goes to infinity.” 
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The above quote gives us some insight into Student 8’s understanding of limits and convergence. 

It seems that they use an intuitive version of the definition of limits to drive their arguments. 

Their idea of convergence seems to imply an arbitrarily small distance between the terms of the 

sequence and the value of the limit, which they correctly determine to be 1. However, their 

apparent conception also applies to the number 0. 9̇ itself. Student 8 makes mention of the 

sequence terms never reaching its limit. This comment hints at a potential misconception about 

sequences (or functions) approaching and never reaching their limits. This hint is supported by 

the following quote: 

Student 8’s answer to question 15.c): “Because, like B said, I think the idea of a limit is essentially 

a value that can’t really be reached but it's a value that [the sequence] gets closer and closer to.” 

This quote is exactly what we would expect from someone who holds this misconception. Student 

8 states very clearly that a limit cannot be reached and therefore, in the context of this question, 

they agree with the fictitious student B. Furthermore, in part d) of their answer, Student 8 states 

that they have some doubts in common with the two fictitious students, thus confirming their lack 

of understanding of the limit concept. 

This student’s answers have instances of both formal and informal mathematical vocabulary. They 

can use mathematical words quite well and make their understanding clear, but there are cases 

where Student 8’s answers are vague. This misconception is unfortunately highly replicable. This 

student has a set of guidelines to define what a limit is, and it is possible to use it in many different 

situations and get similar results. The main issue being that these guidelines are incorrect, which 

makes the reasoning’s validity quite low.  

Instead of relying on formal definitions, this student’s conception of limits seems partially built 

from erroneous criteria, indicating that their conceptual understanding may be weak. Student 8’s 

procedural understanding is weak since they were not able to identify the limit in part c) of question 

15. Student 8’s logical progression is strong. They do follow incorrect rules, but their logic is 

consistent. This student’s level of understanding appears to stand at the “incomplete conception” 

level. 

 

STUDENT 9 – INCOMPLETE CONCEPTION 

Student 9 provides a somewhat correct but still imprecise answer to question 17. 

Student 9’s answer to question 17:  

“a) Yes and no, it’s approximately that but it never actually reaches c. So, it shouldn’t be an equal 

sign.  

b) It could be discontinuous, so [to] the left of c it’s one number and [to] the right of c it’s another, 

but it’s not […] f(c).  

c) When it’s both f(c) from right and left.” 
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From their answer to question 17.a), we surmise that Student 9 hold this section’s titular 

misconception. 

One interpretation to their dual answer could be that the negative answer (“no, it never actually 

reaches c”) reflects the student’s understanding of limit. With the positive answer (“yes”), they 

acknowledge that this is what mathematicians (their teacher, the textbook) say about limits: they 

use the equal sign. They recognize the conventional use of the equal sign in this situation, but they 

“disagree” with it. The student does not accept lim
𝑥→𝑐

𝑓(𝑥) as an object that can be identical to 𝑓(𝑐). 

An alternative interpretation could be that their affirmative and negative reply might imply that 

there would be some situations for which the equality holds, and others where it doesn’t. This 

would mean that they don’t understand universal statements. Moreover, the student does provide a 

counterexample in part b) in the form of a discontinuous function, which shows that they somewhat 

have a grasp of the necessary condition for the statement to be true, although they fail to formally 

recall it in part c).  

In either case, it seems the reason they disagree with the equality is that they understand 𝑥 → 𝑐 as 

implying that x is never c and lim
𝑥→𝑐

𝑓(𝑥) as implying that f(x) is never f(c). The fact that the student 

can give an example of a discontinuous function to support their response to 17.a) but cannot recall 

the conditions under which the statement is true is very telling. Continuity is a key topic in Calculus 

and normally given significant emphasis in class and exercises. We take this as a sign that this 

student’s misconception about limits (the limit cannot be reached) is so strong that it overrides the 

well-studied case of continuous functions. 

This student’s vocabulary is very basic. They avoid using formal vocabulary and choose to describe 

the functions using vague terms. The replicability of their conception of limits is quite high. They 

have formed a concept in their mind which holds true for every limit and can be applied to other 

situations – despite that conception having low validity. Their conceptual understanding of limits 

seems weak. Their idea of a limit goes against the formal definition and, in this case, causes this 

student to provide an incorrect answer to a question. We cannot evaluate this student’s procedural 

understanding of limits from their answer to question 17. However, their logical progression is 

flawed. They clearly show that they do not understand how to prove and disprove universal 

statements.  

Based on their answer to question 17, we assess their conception of limits to be at the “incomplete 

conception” level. 

 

STUDENT 10 – INCOMPLETE CONCEPTION  

Student 10’s answer to question 3 resembles a collection of facts about limits which have very little 

to do with the question at hand.  

Student 10’s answer to question 3.b): “For the limit of a function to converge to L when x-> inf, it 

means that as x grows, the limit converges to L. However, the limit at a certain point might be 

something.” 
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Student 10’s answer to question 3.c): “As an example, I'm thinking of: Limit of n/(n+1) as n -> 

inf. As n goes to infinity, the limit converges to 1. However, as n goes to c element of N, it will 

converge to 1/(1+1/c), which could be 2/3 if c=2” 

Their answer to 3.b) appears to rely on a circular argument and it does not justify their answer to 

part a), for which they answered “true.” Their claim that the limit at a point might exist is correct, 

but irrelevant to the question. We deduced from the context that in part c), they consider the 

sequence 𝑎𝑛 =
1

1+
1

𝑛

=
𝑛

𝑛+1
; this example is coherent with their answer to 3.a). In addition, they 

consider examples of sequences as the variable n approaches a finite value c. Their example is 

barely related to the question since it boils down to evaluating a sequence at a point.  

The lack of explanation for their answer to question 3 and the fact that they provide examples that 

are unrelated to the question leads us to believe that this student’s conceptual understanding of 

limits of functions of real numbers is quite weak. Given the absence of any justification to their 

answer, we surmise that the validity and replicability of their reasoning is quite low. The student’s 

procedural understanding of the concepts of limits, however, seems good to the extent of their own 

conception. Their choice of example is irrelevant to the question, but it is consistent with their 

answer to 3.a), and they correctly identified its limit. The student’s vocabulary is basic. Their use 

of logic is quite weak since they failed to justify their response with logical arguments. We consider 

this student’s misconception at the “incomplete conception” level as it stands. The student is clearly 

familiar with limits of functions, but their understanding of the concept does not seem accurate 

from this answer. They seem to have deep gaps in their knowledge of limits, and our only hint that 

they might hold the misconception discussed is the fact that they mistakenly answered “true” to 

part a). 

 

5.2.2 The implicit strict monotonicity of convergent functions and sequences. 

In reflecting on students holding of this misconception, we consider responses to questions 3, 11, 

and 15. Other questions have not provided sufficient data supporting students’ holding of this 

misconception. 

Question 11 was specifically posed to reveal misconceptions about strict monotonicity. While 

questions 3 and 15 were designed to reveal the misconception that a limit cannot be reached (see 

subsection 5.2.1), it is not surprising for students’ answers to shed light on misconceptions about 

strict monotonicity as these two misconceptions share a great deal of similarities (see Section 

3.3). As a reminder, the reader may find the questionnaire in the appendix. 

Based on answers to these questions, we conjecture that at least 6 students (out of the 10 

participants) potentially hold, to some degree, the misconceptions at hand: Students 1, 4, 5, 6, 8, 

and 10. The other students’ answers do not indicate the presence of this misconception in any 

significant way. 

 

STUDENT 5 – UNREFINED CONCEPTION 
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Student 5 answered that the statement in question 3 is false. However, in their answer to question 

3.b), they state: “That may be true for a function [that] has an asymptote equal to L.” 

This sentence reveals that Student 5 believes that a function can never reach / cross / be-equal-to 

an asymptote. This indicates that the student associates asymptotes and monotonicity. However, in 

part b), the student provides the example of the function 𝑓(𝑥)  =  
𝑠𝑖𝑛(𝑥)

𝑥
 to justify responding that 

the statement is false. Evidently, this student has a rather good conceptual understanding of limits, 

but they have developed some misconception around the concept of asymptotes. Moreover, this 

misconception reveals that the student does not understand the relation between the two concepts: 

limits at infinity and asymptotes. Their answer also implies that a function must have a strictly 

monotone approach to its limit for the behavior to qualify as asymptotic.  

In addition, when working on question 11, Student 5 wrote: “The "definition" I have in mind [for 

asymptotes] is more of a picture that is letting me down here.” 

Student 5 mentions in their answer that they recall identifying asymptotes in cases where the 

function was bounded by that asymptote, and that this case where a function is oscillating confuses 

them. Extrapolating from this student’s answer to part b), where they use the function 
1

𝑥
 as an 

example of a function which has an asymptote, it is probable that the aforementioned picture is a 

similar one to this example. In other words, this student relies on an example of a basic case to 

inform their identification (their working definition) of asymptotes. This student is subject to a 

similar phenomenon to the other five students considered in this subsection 5.2.2, all for whom 

their conception of asymptotes is lacking a rigorous definition and thus, they rely on intuition and 

basic examples. However, we may say that Student 5’s misconception is weak – in the sense that 

they have not fully replaced the concept by an incorrect one: they recognize and do so consciously, 

that there is a definition, a concept, that they don’t remember. The misconception level that would 

be appropriate for Student 5 would be the “unrefined conception” level. 

The analysis of our six criteria is near identical for all the other students in this section (1, 4, 6, 8 

and 10). Student 5, however, shows that their misconception can easily be overcome since they are 

fully aware that their response is incomplete. They suggest an intuitive answer, and they admit not 

trusting this intuition as it does not rely on formal definitions. 

The student’s answers have instances of both formal and informal vocabulary. They use accurate 

terminology, and they seem to properly understand the mathematical terms that they use. Evidently, 

their answer has low validity: the statement in question 3 is false even for functions with asymptotic 

behavior. However, their reasoning has high replicability since the student could obtain similar 

results in other situations. Student 5’s conceptual understanding of limits, asymptotes and 

monotonicity is overall quite strong. The exception being that they have mistakenly assumed a 

conceptual difference between limits at infinity and horizontal asymptotes, implying that to have 

an asymptote, the function must be monotone. Although this misconception can cause issues with 

certain types of problems, we would conjecture that it can be easily resolved by simply exposing 

the student to the definition of asymptotes. The student’s answers to parts c) and d) demonstrate a 

strong understanding of the methods and procedures for limits. Lastly, this student’s logical 

progression is strong. Even with a conceptual error, the student clearly follows the rules of 

mathematics they assume to be true and stay consistent with their reasoning. Overall, this student’s 
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misconception regarding monotonicity, limits and asymptotes is rather shallow. Their 

misconception seems to be at the “unrefined conception” level; the student’s answers are lacking 

in some aspects of our criteria, namely the validity, while they are strong in other aspects, namely 

the logical progression and procedural understanding.  

 

STUDENTS 1, 4, 8 AND 10 – INCOMPLETE CONCEPTION 

Students 1, 4, 8 and 10 have all provided very similar answers and reasonings to question 11: 𝑦 =
0 cannot be an asymptote since the function f(x) periodically crosses it. These students consider 

that for a function to have a horizontal asymptote, it must be bounded by it. Here are quotes from 

those four students’ answers to question 11.b): 

Student 1: “However, in our case, y=0 is not an asymptote as f(x) crosses y=0 multiple times.” 

Student 4: “an asymptote is not reached but is approached as x tends to a certain value.” 

Student 8: “an asymptote is a line that the function approaches towards, but it will never be able to 

reach it.” 

Student 10: “Hence, as seen on the graph, it goes down the x-axis and above the x-axis, while the 

function should never touch an asymptote.” 

Student 10 provides further insight into their understanding of asymptotes, in their answer to 

question 15.d): “The output 1 is an asymptote of the sequence. Hence, it converges to it without 

ever actually being this value.” 

The phenomenon that we seem to be observing here is one where the students have incomplete 

conceptions of what an asymptote is, and they conjecture certain completing elements that would 

fill in the gaps in their knowledge. In this case, the students have constructed a working definition 

of asymptote: a line that must be approached strictly monotonically. We notice that this kind of 

reasoning is highly replicable but has low validity. It is expected for these students to repeat this 

exact mistake in different kinds of situations. Their conceptual understanding of asymptotes is 

weak, they clearly do not rely on any rigorous definitions, and they extrapolate criteria from their 

own intuition. Their procedural understanding would be very strong for the most basic problems 

(especially monotone functions), but their methods would quickly collapse when exposed to 

slightly more advanced situations. Lastly, these students’ logical progression is flawed but 

consistent. It is evident that they follow seemingly arbitrary guidelines. Overall, this common 

misconception is at the “incomplete conception” level. These students have clearly been instructed 

about the concept of asymptotes and they have a basic but adequate image of what an asymptote 

is. The main issue in this case is that their conception of asymptotes includes certain false elements 

which might have been caused by an intuitive extrapolation of basic examples.  

STUDENT 6 – INCOMPLETE/UNREFINED CONCEPTION 

Student 6’s response to question 11 has similarities with both previous cases. First, they explicitly 

admit not remembering the definition of asymptote. Moreover, the student provides extensive 

explanations for two possibilities: the first possibility being that asymptotes can be crossed, and 
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the second being that they cannot. Consider the following quote which the student provides at the 

very end of their answer to question 11.c): 

“I think this would not be considered a “normal” asymptote, […] maybe we called it a special kind 

of asymptote or maybe we didn’t (I can’t recall correctly)” 

In their answer to question 15.b), Student 6 provides us with information about their understanding 

of the concept of asymptotes: “But limits can be reached, they don’t have to be an unattainable 

number. (I believe that this might be what [differentiates] limits [from] asymptotes: asymptotes can 

be where a function converges to but cannot reach.” 

Student 6 is very clear on their conception: limits can be reached, but asymptotes cannot. It is 

plausible that this student has constructed this criterion from examples they have been exposed to. 

In their hesitation, the student suggests the possibility that horizontal asymptotes are classified in 

different categories. Student 6 seems to be trying to complete a concept that they have not 

properly understood. This is not unlike the reasoning that we have observed in students 1, 4, 8 

and 10, with the distinction that Student 6 acknowledges forgetting the definition. Student 6 

displays a few different mechanisms that suggest an incomplete conception. For example, their 

conjecture that asymptotes have different classifications might indicate that they are attempting 

to fill in the gaps in their conception with rules which seem logical to them. On the other hand, 

Student 6’s reasoning contains elements that would point towards the “unrefined conception” 

level: they admit forgetting the formal definition, and they provide the correct answer as one of 

their possible scenarios. Therefore, we consider this student’s misconception regarding asymptotes 

at the threshold between the “incomplete” and “unrefined” levels, since their reasoning has 

elements that would correspond to both. 

 

5.2.3 0. 9̇ < 1 

Questions 12 and 13 were expected to reveal this misconception above all others. We noticed that 

most students either avoided the expected conundrum, or simply solved the problem as they would 

in an examination and provided satisfactory answers. We will consider only Student 6 as potentially 

holding this misconception. 

 

STUDENT 6 – PRECONCEPTION/INCOMPLETE CONCEPTION 

Student 6’s answer provided some phrases that hint that they may hold the misconception in 

question. Although their answers do not precisely state that they believe 0. 9̇ to be a number smaller 

than 1, they use the expression 0. 9̇ to represent a number that is fundamentally different than 1. 

Note that Student 6 has specified that they were not formally taught about the 

convergence/divergence of infinite series. 

Student 6’s answer to question 13.b): “Since the 0.9dot notation is an irrational number, the 

sequence cannot converge to a number that isn’t finite” 
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We make a guess about what the student means: numbers with infinite decimal expansion are 

irrational. We investigate this issue further in Subsection 5.2.6. Regardless of what exactly they 

meant in their answer, we consider that in describing 0. 9̇ in a way that is fundamentally different 

than 1, Student 6 shows that they do not understand that these two numbers are indistinguishable. 

Moreover, in question 13.b), the student states that they should have answered false to question 

12.a) and true to question 13.a), reinforcing this idea that they perceive a difference between those 

two numbers. We surmise that this student’s misconception is that any number which has an infinite 

decimal expansion is irrational, which would then imply that 0. 9̇ is a different number than 1, 

which would then lead to this subsection’s titular misconception. 

Student 6’s vocabulary through questions 12 and 13 is quite poor. They often misuse certain 

important mathematical terms in a way that makes it difficult to understand their thought process. 

We judge that the replicability of their reasoning is also very low. The student identified the value 

1 as a potential limit only once it was suggested to them, and even then, they did not draw a 

satisfactory connection between the two representations of the number. Due to the many conceptual 

mistakes, the validity of this response is very low. The student’s conceptual understanding of 

numbers and convergence is also very weak, but we recall that they have admitted not having been 

instructed about infinite series and having forgotten limits of sequences. Hence, they do not have 

the tools to produce a resolution method to support their argument. Lastly, Student 6’s logical 

progression is weak but consistent. Despite the lack of instruction, the student follows (their own) 

logical rules. This student’s misconception about the relationship between the numbers 0. 9̇ and 1 

shares a lot of traits in common with our definition of a “preconception.” Student 6 appears to be 

lacking a significant amount of knowledge to address this question. However, Student 6 still 

appears to be attempting to use their previous knowledge and consistent rules to answer the 

questions. We would consider their approach to be an “incomplete conception,” especially as it 

relates to their conceptual understanding, since the student shows a very weak understanding of the 

concept at hand; that of the limit of a sequence. Student 6’s conception appears to have some 

criteria befitting of a “preconception,” and others of an “incomplete conception.” It is therefore our 

conjecture that Student 6’s understanding of the limits of sequences of partial sums and of the 

equivalence of different modes of representations of numbers is in transition towards the 

“incomplete conception” level but is held back by their poor knowledge of real numbers.  

 

5.2.4 The limit only as a dynamic process and never as a mathematical object 

In our reflection on students holding this misconception, we consider questions 14 and 16. Other 

questions have not provided sufficient data supporting students’ holding of this misconception. 

We conjecture that at least three students may hold this misconception based on their answers to 

these two questions: students 1, 4 and 8. The other students have not provided any answers which 

could indicate the presence of this misconception in any significant way. 

 

STUDENTS 4 AND 8 – INCOMPLETE CONCEPTION 

Consider the following two quotes from students 4 and 8’s answers to question 16.c): 
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Student 4: “I think that manipulating the functions first [gives] a better idea to get a sense of where 

they are actually going.” 

Student 8: “Then, D proceeded with some manipulations, which I think it is also valid because of 

the limits’ properties which allows us to add them together, as both have x approaching infinity. It 

leaves to 1” 

These two students agree that manipulating the functions is a good starting point. This reasoning 

disregards the fact that the limits of f(x) and g(x) are mathematical objects, and that algebraically 

manipulating them together requires both limits to exist, which is not the case. They suggest 

manipulating the functions first, ignoring the meaning that the limit operator gives to the 

expression. While the misconception at hand is not explicitly displayed in the students’ answers, 

we surmise that any student who understands the fact that limits are static mathematical objects 

would not have proposed this kind of solution.  

Both students use basic vocabulary to explain their reasoning. Their solution has high replicability 

but quite low validity. Meaning they are likely to reproduce this type of incorrect reasoning in other 

situations. The conceptual understanding of these two students is weak. Student 8 mentions being 

unsure of their answer and Student 4 only suggests a starting point, rather than a complete solution. 

These students’ procedural understanding might be quite good for cases where the limits exist. We 

conjecture that these students’ conceptions are at the “incomplete conception” level. 

 

STUDENT 1 – INCOMPLETE CONCEPTION 

Student 1’s answer to question 16 shares many similarities to the answers provided by students 4 

and 8, discussed above.  

Student 1’s answer to question 16.b): “[…] my first reflex would have been to calculate the limit 

as x goes to infinity of (𝑓(𝑥) + 𝑔(𝑥)) together, which is what C and D [did]. So, with this reasoning 

I would have to say the limit is 1 as well.” 

Indeed, the algebraic manipulation of the functions to simplify the expression to make the 

calculations “easier” is not an acceptable strategy for this specific problem. This student seems to 

disregard the fact that the limits f(x) and g(x) do not exist, and therefore cannot be algebraically 

manipulated.  

In their answer to question 14, Student 1 responds that the equation is false. The student’s 

justification for this answer corresponds very closely to this misconception, as shown by the 

following quote: 

Student 1’s answer to question 14.b): “The second part is the allure of the series as it goes to 

infinity, so we consider how it looks before infinity, rather than just plugging in the values to find 

the value at infinity.” 

In their answer to question 14.b), Student 1 explains that their conception of limits is that of the 

appearance of a function, rather than a fixed value. This student seems to imply that the limit itself 
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is a representation of a function’s behavior, rather than an explicit value that the function 

approaches. Student 1 is correct in claiming that the limit informs us on the behavior of a function 

(or series in this case) at infinity. However, they seem to ignore or not know the meaning of the 

limit operator in the expression. The issue with this type of misconception is that it makes 

manipulating mathematical expressions involving limits very confusing. Manipulating what the 

student seems to perceive as a description of the series is much more abstract than manipulating a 

static mathematical object. In addition to being a serious obstacle in problem solving, it can create 

further issues with more advanced concepts, as is illustrated by Student 1’s incorrect answer to 

question 14.a) (they answered that the equality is false). 

Student 1’s answers to questions 14 and 16 has instances of both formal and informal vocabulary. 

They make their conception of limits and infinite sums clear even though it is incorrect. We claim 

that their interpretation of limits has low replicability since their conception of these mathematical 

objects is quite vague, and it cannot be applied to many mathematical problems efficiently. For 

example, describing the allure of a series is not something that can be used in any problem-solving 

situations, since it is not a properly defined concept. Their conception has low validity since the 

student claims that the two sides of the expression are unequal. This student’s conceptual 

understanding of limits is weak. They explain their thought process quite clearly in their answer to 

question 14 and they do not seem to understand that limits are mathematical objects in themselves. 

These questions do not require any methodical problem-solving, thus we cannot assess this 

student’s procedural understanding of limits. The logic used in their explanation is heavily hindered 

by their misconception of limits. We surmise that this student’s misconception is at the “incomplete 

conception” level. 

 

5.2.5 Cluster points are equivalent to limits 

We look at questions 4, 5 and 6, which involve the concepts of cluster points (also called 

accumulation points) and limit points in the context of sequences. Other questions have not 

provided sufficient data supporting students’ holding of this misconception. Most participants have 

provided very clear and rigorous answers. We will discuss the answers provided by Student 1. 

 

STUDENT 1 – UNREFINED CONCEPTION  

Student 1 accurately determines that the sequence diverges. Although their explanation has several 

vocabulary mistakes and inaccuracies, their logic is sound, and it seems that this student does not 

confuse cluster points and limits. 

Student 1’s answer to 4.b): “I cannot recall which property this follows however, simply that the 

series never reaches or approaches more a number than another, so it is undefined” 

We believe that this quote from Student 1 represents quite well their thought process for questions 

4, 5 and 6, especially since they reiterate similar ideas in questions 5 and 6. The student’s logic 

relies on the sequence approaching one single value, which is the primary difference between a 

cluster point and a limit point. We believe that at this stage in Student 1’s mathematics education, 

they should be able to provide rigorous arguments to justify their answer and explain their 



58 

 

understanding of cluster points and limit points. Instead, they provide a reasoning which is vague 

and intuitive rather than based on proven criteria or definitions.  

This student’s vocabulary is very basic and vague. Their thought process has high validity and 

replicability: they accurately respond that this sequence diverges and if they were to apply this 

reasoning to other situations, they would most likely arrive at an equally valid answer. This 

student’s conceptual understanding is quite weak as their reasoning relies mostly on intuition. 

However, since that intuition is largely correct, the student is still able to arrive at a satisfying 

conclusion, even with many theoretical elements missing. It is difficult to judge the student’s 

procedural understanding since they do not provide any methodical resolutions or examples. Lastly, 

their logical progression is quite strong. They clearly have a set of rules or guidelines that they 

follow, and they avoid contradicting themselves. This student conception of cluster points and limit 

points appears to be at the “unrefined conception” level due to their hesitation and lack of rigor. 

 

5.2.6 Infinity as a number 

We now consider questions 3, 12, 13, 14, 15, 16 and 20. Other questions have not provided 

sufficient data supporting students’ holding of this misconception. 

We are addressing as many as seven questions in this subsection because infinity is a concept that 

is prevalent in mathematics, especially in Calculus. Even though many of these questions do not 

address this misconception directly, it is expected for students who are accustomed to using 

infinity as a number to do so in many different situations. We surmise that 7 of the 10 participants 

potentially hold this misconception: students 1, 4, 5, 6, 7, 8, and 9. Students 2, 3 and 10 have not 

provided any answers which could indicate the presence of this misconception in any significant 

way. 

 

STUDENT 1 – UNREFINED CONCEPTION 

In Subsection 5.2.4, we observed Student 1’s answer to question 14 and determine that they might 

hold a misconception about limits. In this section, we will reflect on the student’s use of infinity. 

Here is the quote that was previously used to illustrate this student’s misconceptions:  

Student 1’s answer to question 14.b): “The second part is the allure of the series as it goes to 

infinity, so we consider how it looks before infinity, rather than just plugging in the values to find 

the value at infinity.” 

It’s difficult to understand precisely what the student meant with the phrase “plugging in the values 

to find the value at infinity” or with the phrase “how it looks before infinity.” We surmise that this 

peculiar use of vocabulary might hide a misconception (or several) about infinity, and about the 

symbol for infinity, which is supported by their incorrect answer to question 14.a) (they answered 

false). In any case, we consider that the fact that they think of infinity as something that has a 

“before” and that they can find the value at infinity hints to the misconception at hand: they 

conceive infinity as something like a real number. 
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When focusing on this student’s conception of infinity, we can notice that their use of vocabulary 

is poor. They misuse the word “infinity,” and some phrases are vague. Unfortunately, we cannot 

evaluate Student 1’s conception against any other of our criteria since their answer is mainly 

focused on limits, as opposed to infinity. However, from their suggested use of the symbol for 

infinity, we conjecture that this student’s conception of infinity is at the “unrefined conception” 

level. 

 

STUDENT 4 – INCOMPLETE CONCEPTION 

Let us reflect on Student 4’s answer to question 3 and why their conception of infinity may be 

flawed. 

Student 4’s answer to question 3.b): “I'm thinking about the fact that when x gets closer to infinity, 

then f(x) gets closer to the limit.” 

Student 4 includes the idea of a variable getting closer to infinity which implies the distance 

between x and infinity getting shorter. Their vocabulary suggest that they don’t understand well-

enough the difference between limits at a point and limits at infinity, and thus, they treat infinity 

as a point (as a number). From this sentence alone, we cannot ascertain whether the student simply 

misused common mathematical vocabulary or if they truly consider infinity as a reachable quantity. 

However, Student 4 then states the following: 

Student 4’s answer to question 3.b): “We extrapolate to think that x is going to reach that limit at 

some point.” 

This kind of attitude towards infinity has been described by Sierpińska (1987) and looking at this 

student’s answer, this seems to be akin to the “intuitive indefinitist” attitude. Sierpińska (1987) 

describes this attitude as assuming that all sequences are finite and that the limit is the last term. 

Sierpińska was referring to sequences, but since we are talking about infinity and considering the 

idea of reaching it, we can apply this notion to functions of real numbers: the limit is the last value 

of the function. This student uses the idea that x will eventually reach infinity, at what point the 

function will have reached its limit and therefore be equal to it. It is worth noting that the student 

goes on to use very rigorous analytical arguments to justify their answer to 3.a). 

Simply based on their analytical answer, it seems that this student has a very good understanding 

of limits and can use rigorous arguments to answer this question. However, they decided to use a 

non-conventional reasoning at first, which might indicate that the student might still hold a 

misconception regarding infinity. First, let’s consider the vocabulary. The student seems to 

properly understand the words that are used in their explanation, the only exception being the 

phrase “gets closer to infinity.” The most problematic parts of this student’s reasoning are the 

validity and the conceptual understanding. Clearly, the thought process highlighted above has low 

validity, namely the idea that a function will reach its limit at infinity. We surmise, although there’s 

no strong evidence from the student’s answers, that their procedural understanding of infinity is 

weak. Their reasoning depends on an interpretation of infinity which is intuitive, and invalid. 

Student 4’s misconception seems to be at the “incomplete conception” levels. 
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STUDENTS 5, 7, 9 – INCOMPLETE CONCEPTION 

Question 16 required the participants to analyse a fictional conversation between two students 

trying to solve a problem. 

Every participant gave a similar answer to 16.a): they agree with student D that we cannot perform 

algebra or arithmetic on infinity in the same way we do it with variables. However, even with this 

correct answer, several students gave contradictory answers to parts b) and c) of question 16.  To 

avoid redundance, we will group some students who provided similar reasonings together for this 

reflection. 

Student 5’s answer to question 16.b): “It is 1. From a theorem learned in calculus / analysis, this is 

equivalent to the limit of the addition.” 

Student 7’s answer to question 16.c): “D can use the fact that the sum of the limits is the limit of 

the sums and since 𝑓(𝑥) + 𝑔(𝑥) = 1, the limit clearly converges to 1.” 

Student 9’s answer to question 16.c): “you can add two functions together, if you find them 

convergent, then each is also convergent.” 

Let us first preface this section by acknowledging that it is likely that none of the participants truly 

believe that infinity can be used as a real number, as is supported by their answers to part a). 

However, even if they mention the fact that infinity is not a number, the students mentioned above 

still used infinity as if it were a real number. The most evident issue in this question is the 

equivalence of the limit of a sum of functions and the sum of the limits of functions. This 

equivalence is only true for functions whose limits exist, which is the point of contention in 

question 16: the limits do not exist. The students have forgotten (or have not learned) the conditions 

under which such equivalence is true. A deeper, or less evident, issue in this question is the correct 

identification that one of the sides of the equality does not exist. All three of these students have 

ignored the fact that both functions diverge to infinity in favor of finding a numerical answer to the 

question. To these students, it seems that the limit of each of these functions is infinity, rather than 

non-existent, and they don’t hesitate in performing algebraic manipulations on them. 

These three students’ vocabulary is decent in their answers to question 16. They all use 

mathematical words properly, but they avoid using more abstract explanations and rely on basic 

terminology. To evaluate the replicability of their reasoning, we ask ourselves “can these students 

apply their incorrect version of the Sum Law in different situations and get similar results?” We 

claim that indeed this reasoning can be applied in most (all) situations. However, its validity is low. 

These students’ conceptual understanding of limits seems quite weak. They all correctly 

remembered the part of the theorem that is algorithmic in nature and forgot the conditions that 

allow the use of this theorem. This shows a lack of understanding of the rules of calculus and 

especially those regarding divergent functions and thus, by extension, infinity. Their procedural 

understanding is strong but incomplete. They all seem comfortable with algebraic manipulations 

in the context of limits, but they are not aware of the conditions under which these are valid. Lastly, 

the logical progression used by these three students differs from one another. Student 5’s logic is 
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weak but not completely inconsistent. Their answers to parts b) and c) agree with each other, but 

somewhat disagree with part a) as they mistakenly used infinity as if it were a real number. Student 

7’s logic is inconsistent. They successfully identified that some operations can be inconclusive but 

failed to apply their knowledge to this situation and immediately suggested a solution that 

contradicts their argument to part a). Student 9’s logic is also quite weak. They used the Sum Law 

backwards, which shows that they attempted to include the conditions of the theorem in their 

solution but failed to do so accurately. Students 5, 7 and 9 have an “incomplete conception” of 

limit laws, which caused them to incorrectly manipulate infinity.  

 

STUDENT 6 – ALTERNATE/INCOMPLETE CONCEPTION 

Student 6’s answer to question 3 has issues that are similar to the ones we discussed above, 

regarding Student 4. We consider some quotes from Student 6’s answer that hint at a misconception 

regarding infinity: 

Student 6’s answer to question 3.c): “For example, the limit of 𝑓(𝑥) = 𝑥 as x goes to infinity is 

infinity” 

The quote above is phrased in a way that suggests that infinity is a valid limit for a diverging 

function. This is an example of a mistake which is difficult to attribute to one specific source. It is 

plausible that these errors are simple misuses of vocabulary, and that this student’s conception of 

infinity is simply unrefined. However, it is also plausible that this student mistakenly uses infinity 

as a real number and those quotes are products of this misconception. We surmise it is the former, 

as shown by the following quote: 

Student 6’s answer to question 3.c): “Furthermore, if the limit is infinite, the f(x) keeps going 

towards infinity but never actually reaches infinity as it isn’t a finite number” 

By this explanation, it seems that the student accurately understands the concept of infinity in the 

context of a limit. 

Before we begin looking at Student 6’s answer to questions 12 and 13, we recall that this student 

claimed not being formally taught about the convergence/divergence of infinite series. Moreover, 

they admit not remembering much regarding limits of sequences. However, even by attributing this 

student’s misconceptions to their lack of formal instruction regarding these topics, Student 6 made 

some interesting comments regarding infinity and real numbers.  

Student 6’s answer to question 12.b): “[…] the fact that it is converging to a non-rational number 

means that this number continues infinitely, and therefore it is not a finite number. Thus, can a 

function or sequence converge to a non-finite number, or does that mean it is diverging?” 

This quote was taken from Student 6’s answer to question 12, but they reiterate some elements of 

it in their answer to question 13 as well. The first glaring issue in their reasoning is the stated 

equivalence between irrational numbers and infinity. The question becomes: does the student 

believe that irrational numbers are infinite, or do they simply misuse the term infinity? We cannot 

find a definitive answer to this question, but Student 6’s answer hints at both. In question 13, the 
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student revisits their answer to the previous question and states that the answer to question 12 is 

false, since a sequence cannot converge towards an infinite number. The student might have 

properly understood that sequences that go to infinity diverge, but mistakenly identifies certain 

finite values as behaving like infinity due to some misconception regarding numbers with infinite 

decimal expansions. On the other hand, it is also plausible that Student 6 uses the word “infinite” 

incorrectly. If the student means “irrational” whenever they use the term “infinite”, then their 

misconception might be related to infinite series and the concept of convergence rather than infinity 

itself. This explanation is also supported by their admitted lack of instruction about infinite series.  

Student 6 shared an interesting conception of infinity in their answer to question 16. They correctly 

answered that the mathematical expression in the question is undefined but justified their answer 

using some imprecise arguments. 

Student 6’s answer to question 16.a): “I agree in the sense that it isn't like any number, but we can 

use infinity in algebra as an idea of a number. 3+infinite if infinite, 3/infinite is 0, etc” 

Student 6’s answer to question 16.b): “If we use l’Hôpital’s rule just to check what would happen, 

the x as an exponent would not come down, therefore this just isn't defined” 

This student seems to understand how limits to infinity can converge and how they can diverge. 

But the notation used to explain their reasoning is flawed as it uses the symbol for infinity in 

arithmetic expressions.  Their general understanding of the role of infinity in the reasoning process 

used to determine limits seems sound. The provided explanation is intuitive and simplified, but 

generally valid. This student seems to properly understand that infinity cannot be used as any real 

number, but the idea that the symbol of infinity is a placeholder that means “unbounded” seems to 

escape them.  

The second quote illustrates how theorems can be misused. The fact that Student 6 attempts to use 

L’Hôpital’s rule to solve this problem tells us that they see an indeterminate form in the 

mathematical expression, when there isn’t one. In this case, it stands to reason that Student 6 

assumes that the expression is the indeterminate form usually referred to as “∞ − ∞.” In question 

16, however, we are faced with a sum of two limits and therefore, L’Hôpital’s rule does not apply. 

Much like the previous three students, Student 6 is substituting the symbol ∞ for the limits of the 

functions. In other words, they are considering that the limit of those functions is infinity, instead 

of non-existent. 

This student’s vocabulary is basic and lacks formal vocabulary. They misuse several mathematical 

terms, and their explanations can be quite vague. The validity of their reasonings is quite low since 

their answers often misuse the concept of infinity and lead them to an incorrect answer. The 

replicability of this conception of infinity is quite high as their use of what they call “an idea of a 

number” is not a significant hinderance to problem solving. However, if their misconception that 

irrational numbers are infinite is any deeper than a misuse of vocabulary, this conception might 

yield results that vary widely. It might also hold the student back from learning concepts using 

either irrational numbers, or infinity. The quotes above appear to show an important lack of 

conceptual understanding of infinity (and of real numbers). The procedural understanding of the 

concept is also very weak, especially since they incorrectly identified an indeterminate form and 

the conclusion they drew from their use of L’Hôpital’s rule is a logical fallacy. For the same reason, 
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Student 6’s logical progression is weak. Although they misuse several concepts through their 

solution, the steps that are taken to arrive at an answer aren’t completely illogical, but they are 

severely affected by the student’s misuses of infinity. For these reasons, we surmise that Student 

6’s conception of infinity is transitioning from “alternate conception” to “incomplete conception.” 

Their admitted lack of instruction on some mathematical concepts which heavily rely on infinity 

might contribute to this student’s apparent misconception, but they also appear to be gradually 

honing their conception of it through their mathematics education.  

 

STUDENT 8 – UNREFINED CONCEPTION 

Let us look at Student 8’s answers to questions 14 and 15.  

Student 8’s answer to question 14.b): “The way I see it is that they are the same because both will 

add up until an infinity value.” 

Student 8’s answer to question 15.c): “So, if we add 9s infinitely, then we can get 0.9 conceptually 

(with infinite 9s) even though we can’t really get that practically” 

A possible explanation for Student 8’s answer to question 14 is that they assume that since there 

are infinitely many terms in the series, it must diverge to infinity. This interpretation would suggest 

that they may be holding a version of this section’s titular misconception in which student assumes 

that infinite sums must diverge because they have infinitely many terms. Alternatively, the student 

might be explaining the equality by stating that both sides have infinitely many terms which are 

identical. This is a naïve but valid way to answer this question.  

In question 15, Student 8 nuances their conception of infinity and the idea of a sequence reaching 

it. In their reasoning, we believe that they are drawing a difference between a sequence’s limit and 

its terms. When the student states that the sequence gets to 0. 9̇ conceptually, we believe that they 

are implying the value of the sequence’s limit. When they state that the sequence cannot get to 0. 9̇ 

practically, we believe that the student means that none of the sequence’s terms will take that value. 

If our interpretation of the student’s answer is correct, their conception of infinity in the context of 

sequences is generally quite good. They are implying that there is no infinity-th term and that we 

cannot use infinity as a real number. The issue with their answer which warrants further 

consideration is the phrasing of their explanation which can be ambiguous. We interpret their 

answer in a certain manner but since this answer is unclear, we cannot determine for certain if 

Student 8’s conception of infinity is as sound as it seems.  

Overall, the only one of our six criteria which this student seems to have significant issues with is 

the vocabulary. Their answers can be ambiguous, but if our interpretations are correct, their 

conception of infinity in the context of sequences is quite good. Therefore, we will place their 

conception at the “unrefined conception” level. 
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5.2.7 EA and AE statements 

Throughout the questionnaire, certain students provided incorrect answers to certain questions not 

only or exclusively because they hold misconceptions about limits (one of the 6 misconceptions 

discussed above), but also because some questions require an understanding of formal 

mathematical notation and/or an understanding of English words and phrases as they represent 

mathematics logic concepts (e.g., “for all”). In many cases, students obviously ascribe incorrect 

meaning to phrases, words, and notation and therefore, misinterpreted the questions.  

We consider questions 3 and 22. Other questions have not provided sufficient data supporting 

students’ holding of this misconception. 

From the students’ answers, we conjecture that three students may hold a misconception about 

mathematical notation or have issues understanding it: students 1 and 6. The other students have 

not provided any answers which could indicate the presence of this misconception in any 

significant way. 

 

STUDENT 1 – INCOMPLETE CONCEPTION 

Question 22 asks the participants to differentiate two formal mathematical statements. Both 

statements involve the same quantifiers, but the way they are phrased makes their meaning 

different. Student 1 provides some insight regarding common issues that students may experience 

when learning to read formal statements involving quantifiers. 

Student 1’s answer to question 22.a): “I do think the equation should be read as superior or equal 

to b, as they are both said to be superior to 0, therefore, there would be a possibility that they would 

take the same smallest value.” 

The student claims that both statements are equivalent and true, which can indicate that Student 1 

has issues with statements using quantifiers. The nature of those issues is unfortunately unclear, 

but there are some plausible explanations. They might incorrectly assume that quantifiers can 

change places in a statement without changing its meaning. They might also lack experience with 

such statements and misunderstand their meaning, regardless of their conception of the rules of 

mathematical syntax. However, their explanation of the first statement being true suggest that they 

understand some formal mathematical statements and that their mistake is specifically with the 

second statement. Next, the above quote suggests changing the statement for it to read “𝑎 ≥ 𝑏.” 

This modification would slightly change both statements: the first one would remain true, but it 

would make it trivial since choosing 𝑎 = 𝑏 would always be correct and the second would remain 

false, and it would not modify its meaning as per the definition of ∀. Therefore, this student’s 

suggestion to change the statements would be mostly inconsequential. Moreover, their argument 

for this change is inconsistent with their own answer earlier in the question. Before this quote, 

Student 1 claimed that it is always possible to find a positive value which is smaller than another, 

and therefore that there is no smallest value. Their argument that both a and b could take “the same 

smallest value” contradicts that claim.   
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Student 1’s vocabulary is quite good. However, the replicability of their conception of quantifiers 

and mathematical statements is very low. If they assume that quantifiers can be moved within a 

statement, they might unknowingly be changing the meaning of the statement. They might also 

simply have issues understanding formal language, which clearly would hinder their ability to 

respond consistently to mathematical questions. The students’ suggestion to modify the statements 

has low validity since it is inconsequential. Moreover, they claim that the statements are equivalent 

which is also invalid. From Student 1’s suggestion to modify the statements and their incorrect 

response that both statements are true, it seems that their conceptual understanding of formal 

mathematical statements is weak. Lastly, this student’s logic is weak as is justified by their 

suggestion of irrelevant changes and their trivial examples at the very end of their answer. This 

student’s conception of quantifiers and formal language seems to be at the “incomplete conception” 

level. 

 

STUDENT 6 – INCOMPLETE CONCEPTION 

In their answer to question 3.b), Student 6 stated the following:  

“But, in any case, for cases which aren't constant functions, the function will vary as x increases 

and therefore, the function cannot be equal to L on its whole domain without being a constant 

function” 

It seems that Student 6 interprets the statement “𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥” as meaning “f(x) is not a 

constant function”. This would explain why they answered that the statement is true for every 

function that isn’t constant. Later in their explanation, this student provides several examples to 

justify their reasoning and reiterates that the statement must be true for any non-constant function 

since they cannot be equal to their limit at every x. The issue that we are highlighting with this 

student’s answer is that formal mathematical notation can be a major obstacle to student learning. 

We believe it is likely that Student 6 has a misconception about the formal language used in 

mathematical statements. Considering our criteria, it seems that the main issues are their 

vocabulary, the replicability of their reasoning, and the conceptual understanding of mathematical 

symbols and phrases. In their explanation, the student uses very basic vocabulary and expresses 

their own personnal understanding of the statement, which happens to be incorrect. This 

misunderstanding cannot yield consistent results since every mathematical statement will use 

similar notation but in different contexts (hence the low replicability), and a weak understanding 

of the conventions will induce severe misunderstandings. From this answer to question 3, we judge 

that Student 6’s misconception of mathematical language at the “incomplete conception” level. 

They seem to understand what each individual symbol and word mean, but not the meaning when 

used together. 

 

5.2.8 Synonymous terms considered distinct 

The terms which may create confusion in students are the following: “tends to”, “goes to”, 

“converges to”, and “the limit is.” They are often used interchangeably by mathematics educators 

and in textbooks without much attention to students’ struggles to understand their mathematical 
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meaning. Therefore, we decided to analyse our data to investigate whether students consider these 

words to be inherently different and whether they attach alternate definitions to them.  

We will consider questions 4 through 10. Other questions have not provided sufficient data 

supporting students’ holding of this misconception. 

We conjecture that students 1 and 6 may hold this misconception, based on their answers to these 

questions. The other students have not provided any answers which could indicate the presence of 

this misconception in any significant way. 

 

STUDENT 1 – ALTERNATE CONCEPTION 

Student 1’s answers to questions 4, 5 and 6 use very basic vocabulary. They use the word “series” 

instead of “sequence” several times, and they seem to misunderstand the meaning of the word 

“approach” as evidenced by the following quote: 

Student 1’s answer to question 5.b): “Therefore, we cannot determine which number the limit 

approaches as it approaches both equally.” 

Student 1’s explanations to these three questions are generally quite good, but we believe it is 

possible that they hold this misconception based on their use of vocabulary. The student’s misuse 

of the word “limit” may simply be a communication mistake instead of a misconception, but the 

recurring misuse of the word “approach” seems to point towards an actual misunderstanding of its 

meaning. In this case, instead of using the word “approaching” as meaning that the sequence has a 

limit over its domain, the student seems to be using it as meaning that the function has accumulation 

points. They imply that the sequence periodically approaches two different values. In using this 

word in such a way, the student shows that they consider the terms “approaching” and “having a 

limit” as conceptually different. The main issue in this case is not the concept of limit or of 

accumulation point, it is the vocabulary which the student uses to describe one or the other. 

Their vocabulary is basic and lacks formal explanations and definitions. On more than one 

occasion, Student 1 incorrectly uses the word “limit”, and as discussed above they seem to 

misunderstand the meaning of the word “approach” in a mathematical context (or ascribe a 

different meaning to it). This student’s conception of this word, although it has low validity, seems 

quite robust. They seem to hold an alternate definition for the word “approach,” but they use it 

consistently and efficiently. It is conceivable that this student could replicate this use of the word 

to different situations and obtain similar results, hence it has a high replicability. Their conceptual 

understanding is weak since they seem to consider the phrases “having a limit” and “approaches” 

as different. Since this vocabulary doesn’t intervene in the student’s problem solving, they seem to 

have a strong procedural understanding of limits and how to identify them in the context of 

sequences. Lastly, this student’s logical progression is strong. They have an intuitive definition for 

those words which they use consistently and without any significant leap in logic. Therefore, this 

student’s conception of common mathematical vocabulary is at the “alternate conception” level. 
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STUDENT 6 – UNREFINED CONCEPTION 

Student 6 correctly answered questions 7, 8, 9 and 10 but at the very end, they realized that these 

questions were more about the vocabulary rather than the problem solving, and they provided some 

insight into their conception. 

Student 6’s answer to question 10.b): “[…] because the definition of limit is stricter than simply 

saying it tends towards or approaches, we can also say that f(x) tends towards 0 or approaches 0 as 

x goes to infinity. The limit equality is the stricter definition of the 3 although we often speak of 

limits as tending towards and approaching. […] Just by looking at the graph, we say that it 

approaches or tends towards 0, but to actually have the limit equal 0, we need to calculate it or use 

theorems to prove it.” 

The quote above summarizes Student 6’s explanation very well. They first argue that the only one 

of these terms which is properly defined is “the limit is.” They seem to believe that terms such as 

“approaches” or “tends to” are a similar but somewhat a weaker version of it. They consider that if 

a function has a limit, it is correct to claim that the function approaches it, but they seem to believe 

that the converse is not necessarily true. This reasoning is interesting because it provides, to a 

certain extent, a critique of the education that this student has received. Terms such as “approaches” 

and “tends to” are used often in informal explanations but we, instructors, may be assuming that 

students understand them in their mathematical meaning without necessarily taking the time to 

formally address this. Considering the whole picture, we believe that it is natural for a student to 

give more importance to the terms that are formally defined as opposed to the ones that are often 

used informally. 

This student’s vocabulary throughout their explanations is good, and their explanations are clear. 

They also explain how they interpret the key words that were the focus of questions 7 through 10, 

which includes some incorrect elements. Indeed, this student believes that these words are not quite 

synonymous. Their interpretation of those words is made clear by the student, which means that 

they would apply the same meaning to these words in different situations. Their reasoning has high 

replicability. Unfortunately, it is also slightly invalid. If this student was exposed to a statement 

phrased such as “a function approaches a value as x goes to infinity”, they might incorrectly assume 

that the phrase does not provide enough information about the limit of the function. Their 

conceptual understanding of the vocabulary seems good, apart from the issues that were discussed 

above. We argue that Student 6’s logical progression is very strong. They have a clear 

understanding of the role of each of those terms and they use them consistently. Their explanations 

as to why they attribute certain meanings to those words makes sense. This student’s conception 

about the meanings of the phrases “the limit is”, “approaches”, “tends to” and “converges to” 

appears to be at the “unrefined conception” level. 

 

5.2.9 Further misconceptions related to Analysis 

The last few questions of the questionnaire are related to more advanced concepts that are usually 

taught in Analysis classes. Since these concepts do not relate closely to the seven misconceptions 

discussed in this chapter, we decided to analyse the answers to questions 23 to 26 in this separate 

subsection. The goal of these questions is to investigate the relationship between misconceptions 
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which may arise earlier in a student’s education and the ones which could appear as students are 

exposed to more advanced mathematics. It is our conjecture that misconceptions related to the 

concepts of limits and infinity can affect how a student learns Real Analysis and give rise to 

different but related misconceptions. 

Each of these questions started with a disclaimer requesting that only students who have completed 

or are actively enrolled in an Analysis course should answer the last part of the questionnaire. While 

many students attempted to answer these questions, only Student 1’s answer to question 23 was 

detailed enough for us to carry out an analysis. 

 

STUDENT 1 – ALTERNATE CONCEPTION 

We reproduce below Student 1’s response to question 23: 

23.a) 

“The maximum upper bound of A is equal to 1. That means that the maximum value in A is 1 and 

all the other values are either equal or inferior to 1.” 

23.b)  

“A={-1,1,-1,1,-1,1}” 

23.c) 

“Yes, it is the ultimate maximum of the function, as we know some functions have a few 

maximums, but the sup gives the highest maximum” 

In their answer to question 23.a), the first mistake that appears is the phrase “maximum upper 

bound.” We assume that the student meant “least upper bound,” given the context of the question. 

The second error is including the value of the supremum in the set A, which is not necessary. Both 

mistakes could be thought to be “typos,” but Student 1’s response to part c) confirms that this 

student’s answers were purposeful, and that they most likely have a misconception regarding the 

supremum of a set. Their explanation implies that they consider the supremum as equivalent to the 

“absolute maximum” of a function (or of a set of real numbers). This would also explain their 

misuse of the terms “maximum upper bound”: they might assume that an upper bound is equivalent 

to a maximum.  

This student’s vocabulary is severely hindered by their apparent misconception. They are misusing 

mathematical terms in a way that seems to be rooted in their incorrect interpretation of supremum 

and upper bounds.  This misconception is highly replicable. They seem to hold an alternate 

definition for the concepts mentioned above and it is conceivable that they may be applied to many 

different situations and yield consistent results. 

From their answer to question 23, Student 1’s conceptual understanding of the supremum seems to 

be weak. From the example they provided in part b), this student’s procedural understanding of the 
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supremum seems decent, although possibly accidentally so. However, if this student does have 

misconceptions about the concepts of supremum and upper bound, they are inevitably an obstacle 

to their problem-solving. Lastly, this student’s logic is decent. Their main issue with those concepts 

seems to lie within their understanding of the definitions. This student has built for themselves 

alternate definitions of these concepts, but they remain consistent and logical with those definitions. 

This student appears to have an “alternate conception” of supremum and upper bounds. 

 

5.3 Unexpected misconceptions 
The questionnaire was constructed with the goal of exposing seven misconceptions well-

documented in previous research. Certainly, neither us nor previous studies claim that these seven 

misconceptions are all that there is. It is therefore unsurprising to have found issues in students’ 

answers that do not directly correspond to any of these seven misconceptions. This section will 

focus on misconceptions which we did not anticipated, but we judged significant enough to be 

discussed in this study. 

 

5.3.1 Graphical resolution methods 

Several questions included graphs to help the students visualize the situation without relying on 

their own recollection of functions. Certain students took this opportunity to illustrate and justify 

their reasoning only using visual representations, which in many cases can be insufficient and/or 

misleading. Among the questions which included a picture, we will consider questions 7 through 

10 and question 16. 

Our usual means of analysis do not apply to this type of incorrect reasoning. Table 4.41 was 

constructed with the intent to reflect on students’ understanding of specific mathematical concepts. 

Since resolution methods cannot be considered “concepts,” we refrain from using Table 4.41. 

We reflect on the answers provided by students 4 and 8. The other students did not seem to rely on 

visual representations to justify their thought processes. 

 

STUDENT 4 

Let us first consider Student 4’s answer to question 7. This question was the first of a block of five 

questions investigating common vocabulary in a situation where certain terms are synonymous. In 

these five questions, the graph of the function 𝑓(𝑥) =
sin (𝑥)

𝑥
 was provided.  

Student 4’s answer to question 7.b): “I can see that the “waves” get closer and closer to the x axis 

as x gets further from 0. This means that I can take any subsequence of this function (pi/2, 5pi/2, 

9pi/2…) and it will be converging to 0.” 

This student’s train of thought seems to begin with the graphical representation, but it quickly 

pivots into an attempt at a more rigorous analytical argument. The phrasing of this answer implies 

that since the graphical representation follows the expected behavior of a convergent function, then 
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the subsequences must also converge. Student 4 is correct in stating that every subsequence of a 

convergent sequence also converges. However, they used this fact as a conclusion which they 

derived from a graphical argument, as opposed to using it to analytically justify the convergence 

of the function.  

 

STUDENT 8 

We will now reflect on Student 8’s use of graphical representations. On four occasions, they have 

relied heavily, if not exclusively on the provided graph to derive their answers. Below are quotes 

from Student 8’s answers to all four of these questions, in order. 

Student 8’s answer to question 7.b): “We can see from the graph that as x goes to infinity, the 

oscillation of the function becomes smaller and smaller, and f(x) is going towards the x-axis, where 

f(x)=0. Therefore, the limit of this function is 0, as x approaches infinity.” 

Student 8’s answer to question 8.b): “From the graph, we can see that the oscillation becomes 

smaller and smaller, as x goes to infinity. It goes towards the x-axis, where f(x)=0. Therefore, the 

limit of this function is 0.” 

Student 8’s answer to question 10.b): “The function does seem to approach 0 as x goes to infinity 

as the f(x) keeps decreasing in its oscillation as x increases. It does not seem that it’s going to 

increase again, therefore it approaches 0.” 

Student 8’s answer to question 16.c): “But I am little bit confused, because when I look at the 

graph, it doesn’t seem as though the limit is 1.” 

Their answers to questions 7, 8 and 10 are extremely similar and they entirely depend on what the 

student can see on the provided graph. In this case, they are correct in their answers that indeed, 

this function converges to 0 as x goes to infinity and since the different terms used in these 

questions are synonymous in this context, their answer is correct for all three of them. However, 

their only justification for this answer is entirely dependent on the visual support.  

In their answer to question 16.b), Student 8 correctly identified that the sum is undefined, but their 

answer to question 16.c) is inconsistent and contradictory. Their answer to question 16.c) is mostly 

a description of the steps taken by the fictitious students to solve the problem, paired with their 

own opinions of those steps. Student 8 failed to identify any mistakes in the fictitious conversation, 

which leads them to agree with the arguments put forward by the fictitious students C and D. 

However, since those arguments contradict their response that the sum is undefined, it seems to 

make Student 8 doubt their answer, and resort to using visual arguments. The quote above seems 

to suggest that their interpretation of the graph agrees with their answer that the sum is undefined 

but disagrees with the reasoning employed by the fictitious students. This opposition appears to 

confuse the student and gets them stuck without a satisfactory justification. 

Student 8 does not provide any evidence that they could correctly justify their answers to questions 

7 through 10 without visual arguments, and their use of graphical representations in question 16 

appears to be a last resort to justify their reasoning. However, since Student 8 elected to use 
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graphical arguments to answer these questions, it stands to reason that they do not understand that 

such arguments are insufficient. 

 

5.3.2 Logical fallacies 

Across this research, we have noticed that an overarching issue with students’ responses to the 

questionnaire is poor understanding of the rules of mathematical logic. In this section, we will 

reflect on certain participants’ answers that include examples of logical fallacies and how it may 

have influenced their answer. There are instances of logical fallacies by the participants of this 

study which are not discussed in this subsection. That is because some student responses were too 

vague for us to attribute their mistakes to incorrect logic, or their seemingly incorrect logic was 

used as illustrative rather than argumentative. 

Our usual means of analysis do not apply to this type of incorrect reasoning. Table 4.41 was 

constructed with the intent to reflect on students’ understanding of specific mathematical concepts. 

We will therefore simply reflect on the specific logical fallacy used by the students without 

attempting a formal analysis of the results. 

 

INCORRECT USE OF IMPLICATION – STUDENT 1  

We have discussed Student 1’s answer to question 3 through the lens of the misconception “limits 

cannot be reached.” In their answer, the student misuses logic in the context of a one-sided 

implication. As a reminder, question 3 is a true or false question with the statement being 

“𝐿𝑒𝑡 lim
𝑥→∞

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥.” Student 1 agreed with the statement, and their 

justification included the following quote: 

Student 1’s answer to question 3.b): “The limit indicates that when x goes to infinity, f(x) goes to 

L. However, that does not imply that 𝑓(𝑥) = 𝐿, but rather that f(x) approaches L when observed 

to infinity.” 

If we set A to be the statement “ lim
𝑥→∞

𝑓(𝑥) = 𝐿,” and B to be “𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥,” we observe 

that Student 1 justifies the statement 𝐴 ⇒ 𝐵 with the assertion 𝐴 ⇏ ¬𝐵. The rest of this student’s 

answer to question 3 does not provide any further insight on their understanding of mathematical 

logic, but it also fails to provide a satisfactory justification to their affirmation, indicating that the 

student possibly believes their answer to be acceptable. This misuse of logic seems to be an 

incorrect version of a contrapositive argument. We speculate that the student was not attempting 

to perform a formal logical proof, but rather argue using their own understanding of limits. The 

result is an argument which does not explain the student’s stance on the statement. 

The source of this incorrect use of mathematical logic cannot be identified with so little 

information. Student 1’s answer to question 3 raises the possibility that they have not been exposed 

to mathematical logic sufficiently to have it internalized and therefore fails to apply such principles 

in situations where that would be appropriate. Alternatively, it is possible that Student 1 has not 
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formally learned the rules of mathematical logic, which would explain their failure to recognize 

the non-equivalence of their justification and the question statement. 

 

MISUNDERSTANDING OF UNIVERSAL STATEMENTS – STUDENTS 6 AND 9 

Both students have employed statements which hints at them not properly using or understanding 

the meaning of universal statements in mathematics. 

Student 6’s answer to questions 3.a): “true (unless f(x) is a constant function)” 

Student 9’s answer to question 17.b): “Yes and no, it’s approximately that, but it never actually 

reaches c. So, it shouldn’t be an equal sign.” 

Statements in mathematics are either true or false. These students demonstrate a certain lack of 

mathematical maturity by answering that the statement can be both true and false depending on the 

situation. In both cases, the students’ answers to the question are incorrect; their answers have been 

explored in Subsection 5.2.1. However, if they were correct in stating that the statement is true only 

in specific conditions, their response should have been “false,” followed by an explanation. It 

would have been acceptable, and perhaps showed a greater deal of understanding of universal 

statements, if the students had denied the statement, and then provided clear conditions for it to be 

true.  

 

CIRCULAR ARGUMENTS – STUDENTS 4, 6 AND 10 

Circular arguments occur when the argument depends on the truthfulness of the conclusion. This 

type of argumentation is invalid since the justifications are not based on agreed-upon facts. Rather, 

they depend on repetition and on the assumption that the conclusion is correct. Three students have 

used such arguments: Students 4, 6 and 10. We consider those arguments and discuss why they are 

not logically valid. 

Student 4’s answer to question 7.b): “I can see that the “waves” get closer and closer to the x axis 

as x gets further from 0. This means that I can take any subsequence of this function (pi/2, 5pi/2, 

9pi/2…) and it will be converging to 0.” 

We interpret Student 4’s thinking paraphrasing what they mean: “the graph shows a function that 

converges to 0, therefore all subsequences converge to 0, then the function converges to 0.” We 

have discussed the invalidity of graphical arguments earlier in this chapter. Here, we comment on 

the fact that this student’s very first statement depends on the truth of the conclusion, which 

invalidates their entire argumentation. The graphical behavior described by Student 4 is itself a 

result of the convergence of the function. However, the student does not appear to know that visual 

arguments are invalid, and therefore might be using circular logic “accidentally”. This is possibly 

an example of how certain misconceptions can affect multiple concepts. In this case, this student’s 

mistaken assumption that graphical arguments are valid may be leading them to using circular 

logic. 
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Student 10’s answer to question 3.b): “For the limit of a function to converge to L when x-> inf, it 

means that as x grows, the limit converges to L. However, the limit at a certain point might be 

something.” 

Their answer to question 3.a) is “true,” which means that the conclusion for this particular question 

would be “ lim
𝑥→∞

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥,” or, equivalently but in more colloquial 

terms, “the function does not reach (does not take the value of) its limit.” Not only does Student 10 

simply repeat their first statement as an argument, but they immediately oppose it with a statement 

that does not relate to the question. This student simply does not justify their answer to question 

3.a) and their explanation consists in two identical statements which the student appears to have 

drawn a logical connection between. In this case, Student 10 does use circular logic by simply 

reiterating a fact, thus not really explaining anything.  

 

Student 6’s answer to question 3.b): “The limit of f(x) as x goes to infinity means that as x 

approaches infinity, the function tends towards L. It does not necessarily reach L.” 

The rest of Student 6’s answer to this question concerns their misunderstanding of the question 

(see Subsection 5.2.7) and pivots away from the above quote’s focus. Considering their incorrect 

interpretation of the question, it is difficult to identify what the intended conclusion for this 

student’s reasoning was. From context, we believe that the student’s goal was to argue that a 

function with limit L as x goes to infinity does not have to reach its limit. If this was indeed their 

goal, we would find that the primary argument supporting this conclusion is an attempt at 

explaining the concept of a function converging as x goes to infinity. This explanation of the 

concept of convergence is circular and it does not support their conclusion in any way. Their 

conclusion is simply a fact which follows from the definition of limits. 

 

 

5.4 Advantages and limitations of the research tool 
We begin by discussing the advantages of the method. As mentioned in Chapter 4, the data 

gathering process unfortunately began during a global pandemic. Using a questionnaire that could 

be distributed remotely guaranteed that the research team and the participants could avoid physical 

contact and therefore ensure the safety of everyone involved. Moreover, we noticed that the 

participants took significantly more time than expected to complete the questionnaire. On average, 

students took one hour and 58 minutes to complete all 26 questions. Although we expected 

participants to complete the survey in approximately one hour, the students were permitted up to 

three hours to allow them to thoroughly detail their answers, and to lessen any stress that could be 

related to their involvement in this study. Since the participants used almost double the expected 

time, we believe that the format of the questionnaire contributed to their engagement with the 

process.  
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In addition, the way in which we set up the online survey allowed the participants to complete the 

questionnaire at a time of their convenience. Rather than setting a date and time, the participant 

could begin the survey any time within a reasonable margin. 

Finally, this research tool allowed for a quick and efficient distribution and collection of the 

surveys. The students completed the questionnaire without the supervision of the research team 

and since every step of the distribution and collection process was automated, we simply 

downloaded the completed surveys and were able to begin the analysis of the data immediately.  

Regarding some of the limitations of the tool: when recruiting participants, our goal was to have 

approximately 15 of them. From previous experiences both seeking students’ participation and 

analysing answers in similar studies, we thought 15 would be an achievable goal. Unfortunately, 

we were only able to gather 10 participants. In the past, we recruited student participants by meeting 

classes in person and explaining the importance of their participation in research that aims to better 

understand learning processes. As mentioned above, the pandemic prevented the standard approach 

to recruitment, and this may be the cause of not meeting the aimed number. In addition, most 

participants did not answer every question and the answers grew shorter and more imprecise as the 

questionnaire progressed. We can assume that the students got tired after a certain point and elected 

to write quicker answers and to give less thought and less detail into their reasonings. This could 

have been easily prevented in a task-based interview model where the interviewer sits quietly as 

witness to the students’ work but intervenes in accordance with a strict protocol to encourage 

students to solve the problems and to share their thinking in doing so. This approach would have 

likely significantly reduced the brief, vague or imprecise answers. In this sense, we recognize the 

severe limitations of a written online questionnaire but accept the reality of the situation: a 

pandemic and graduate work with a limit to be completed. 

 

In the next chapter, we introduce a conjecture about the severity of student misconceptions and the 

process that leads to the overcoming of misconceptions. Then, we discuss three students’ apparent 

misconceptions in depth. We also reflect on the effects that holding onto the misconceptions 

explored in this study might have on the learning of advanced mathematics, and especially Real 

Analysis. We conclude the next chapter with a discussion on fundamental misconceptions.  
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Chapter 6 Discussions 
In this chapter, we discuss our results and analysis, and reflect on misconceptions and how they 

may affect the participants of the study.  

Section 6.1 is about our conjecture that the severity of a misconception lies on a spectrum. We 

surmise that as students learn mathematics, their understanding and assimilation of concepts 

progresses through the six levels described in Section 3.4. We further surmise that this progression 

is not linear, thus, students are often in a transitional state between two levels. We detail this 

conjecture and provide some examples of transitional behavior between two misconceptions levels, 

taken from the participants’ answers.  

Section 6.2 consists in a deeper look into specific students’ misconceptions. Some participants 

appear to hold one or multiple of the hypothesized misconceptions based on their response to the 

questionnaire; this section is concerned with those students and the reoccurrence of erroneous 

reasonings in their answers. 

In Section 6.3 we reflect on the effects that the misconceptions observed in this study can have on 

the learning of advanced mathematics. Since we conjecture that misconceptions can be carried 

through one’s mathematics education, we believe that they can have a harmful effect on the 

learning of more advanced topics. We discuss the possible effects that holding the seven 

misconceptions explored in this study can have as one progresses through the learning of different, 

more advanced concepts of mathematics.  

The last section of this chapter, 6.4, consists in a discussion about misconceptions that are expected 

to have harmful effects on the learning of most topics and concepts of mathematics. We discuss 

the roles that mathematical notation and mathematical logic have on learning, and especially how 

a lack of understanding of the formalities of language and argumentation can hinder one’s 

education. 

 

6.1 Gradient in misconception levels 
As mentioned previously, we believe that misconceptions are not a one-size-fits-all 

misunderstanding of mathematical concepts, but rather that students hold onto misconceptions at 

different depths. We conjecture that common misconceptions as described in the literature might 

be present in multiple individuals, but it might be experienced in a multitude of ways. Where one 

student might consistently return to their alternate conception of a mathematical concept, another 

one might simply need to see a formal definition to completely dismiss their erroneous beliefs. The 

six levels of misconceptions considered in this study are part of this misconception gradient, which 

implies that students might experience a transitional behaviour between two levels at some point 

in their mathematics education.  

The first subsection states and discusses this conjecture in detail. The second subsection consists 

in an observation of possible transitional behaviour from the students who participated in this study. 
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6.1.1 Conjecture about transitioning through misconception levels 

Our conjecture requires a few assumptions: 

• Students have misconceptions.  

• The depth of a given student’s misconception must eventually corresponds closely to one 

of the first five levels modelled in Section 3.4 (the “expert conception” level consisting of 

the lack of a misconception – the student has assimilated the formal mathematical concept 

at hand). 

• The process of overcoming a misconception is gradual and multi-faceted. 

With these assumptions in mind, our conjecture goes as follows: 

Students eventually express traits corresponding to two or more of the misconception categories 

simultaneously as they are gradually progressing from one level to the next.  

Before considering examples from the participants of this study, let us consider a fictitious student 

as a thought experiment. We consider a student who initially believes that a function’s limit at 

infinity acts as a “boundary” that cannot be crossed or reached. We would expect this student’s 

conception of limits to be incomplete9. We expect students holding this misconception to be 

competent with the basic problems, but their problem-solving skills may fail them once faced with 

more advanced examples. As this student progresses through their mathematics education, we 

expect their conception of limits to eventually improve. We might notice that their conceptual 

understanding of limits develops as they are exposed to more advanced functions with behaviors 

that might challenge their previous conception. They might get rid of the arbitrary rules they used 

to follow, but their conception might still be missing some key elements. For example, while the 

student might demonstrate proficiency with basic examples, they will lack experience to provide 

rigorous answers to more advanced problems. However, their work may no longer include false 

claims. This fictitious example corresponds to a student who is transitioning between the 

“incomplete conception” and the “unrefined conception” levels. Their overall understanding of 

limits might still include some incorrect elements, but their increasing experience puts them in 

transition towards the next level. Using table 4.41 to describe this transition, this student’s 

conception of limits might have the vocabulary and validity of an unrefined conception, but the 

replicability and procedural understanding corresponding more closely to that of an incomplete 

conception. Their conceptual understanding could be getting stronger but still involve minor 

imprecisions. Their logical progression may not follow arbitrary guidelines anymore, but it may 

still have minor flaws. 

 
9 This is a conjecture arising from incomplete instruction.  The student’s concept image (in the sense of Tall & 

Vinner, 1981) is composed of isolated knowledge elements and they have completed their conceptions with 

conjectured details that agree with the student’s experience of the concept at hand. The conjecture can be correctly 

applied to some situations, but it is not generalizable. 
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We expect someone transitioning from the incomplete level to the unrefined level to get rid of the 

arbitrary rules or guidelines that they have so far mistakenly followed but still lack rigour in their 

problem-solving approaches and justifications. Their understanding of the concept might still be 

missing some key elements, but it does not contain (anymore) blatantly false claims. Where 

someone holding an incomplete conception has significant issues with more advanced problems, 

and someone holding an unrefined conception shows relative competence with similar problems, 

a student transitioning between these levels would be able to produce a solution which may contain 

some (minor) errors and lack rigour. 

6.1.2 Examples of participants exhibiting transitional behavior 

This subsection contains concrete examples of student answers which seem to correspond to more 

than one misconception level. We discuss in more detail the reasons that justify the placement of 

the students’ conceptions in a transitional state between two levels. The answers are discussed 

individually, deeper analyses of specific students are presented in the next section of this chapter.  

 

STUDENT 5 – FROM INCOMPLETE CONCEPTION TO UNREFINED CONCEPTION 

In this example, we are considering Student 5’s possible misconception that functions with 

asymptotes must be strictly monotone. In our reflection, we consider their answers to questions 3 

and 11. 

Student 5’s answer to question 3: “a) It is not true.  

b) I first thought about it with examples. That may be true for a function who has an asymptote 

equal to L.” 

Student 5’s answer to question 11: “a) I do not know. I would rather say it is true than not. 

b) I have considered asymptote in the context that the function was bounded by that asymptote. 

For example, 1/x clearly has an asymptote at x = 0 and y = 0. 

c) I am confused by the fact that this particular function goes over and below the “asymptote” (if 

it is one). I do not recall the exact definition of an asymptote, since it goes back to the beginning 

of CEGEP. The “definition” I have in mind is more of a picture that is letting me down here.” 

As previously mentioned in this chapter, an “incomplete conception” is generally characterized by 

a weak understanding of a mathematical notion which includes incorrect elements. Those incorrect 

elements can be a construction of the student made to fill in the gaps of a concept which is not 

understood in its entirety. The misconception observed in Student 5’s answers appear to exhibit 

this characteristic. However, the student admits being unsure of their own conception and relying 

on their mental image of what an asymptotic function can look like when graphed.  

In their answers, Student 5 claims that a function cannot cross its asymptote. In this case, it appears 

that Student 5’s issue with the concept of asymptote is simply their failure to recall the definition. 
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Based on their answer to question 3.a), we believe that had they remembered the definition of an 

asymptote, Student 5 might have provided a very rigorous and accurate answer to question 11.  

For this misconception, we would expect a student with an “incomplete conception” to simply 

claim that the function 𝑓(𝑥) =
sin(𝑥)

𝑥
 used in question 11 does not have a horizontal asymptote, 

with the justification being that this function periodically equals the value of the asymptote. Student 

5 admits to their forgetfulness and even declares that their mental image of an asymptote is 

unsatisfactory to them. It is plausible that this student simply requires the correct definition to 

provide a near perfect answer. For this reason, we surmise that this student’s conception of 

asymptote is more advanced than an “incomplete conception.” Since their forgetting of the 

definition caused an important conceptual mistake and caused Student 5 to respond with incorrect 

claims about the functions at hand, we also surmise that their conception is not complete enough 

to qualify as an “unrefined conception.” Student 5’s conception might be transitioning from one 

level to the other, and perhaps a simple reminder of the definition of asymptote is all that is 

required. 

One criterion from table 4.41 corresponds to an “incomplete conception” for Student 5: the validity. 

The validity is average since this misconception caused them to respond to question 3.b) with an 

incorrect claim. This student’s conception does contain some arbitrary details which appear to be 

based on a graphical argument. However, since they admit not trusting this mental image, we could 

consider their logical progression to be in between the “incomplete” and “unrefined” conception 

levels. We consider this student’s replicability, conceptual understanding, and procedural 

understanding to be at the “unrefined conception” level. The replicability and procedural 

understanding are considered unrefined because Student 5’s forgetfulness prevented them from 

providing an answer to question 11, although they could have followed their (incorrect) instinct 

and answered with “false”. Finally, this student’s vocabulary is very clear, and they use formal 

mathematical terms at a level which we consider “expert.” For these reasons, we conjecture that 

Student 5’s misconception about asymptotes is in transition towards the “unrefined conception” 

level. 

 

STUDENT 6 – FROM PRECONCEPTION TO INCOMPLETE CONCEPTION 

We are considering Student 6’s possible misconception that the numbers 0. 9̇ and 1 are not 

equivalent. We conjecture that Student 6’s misconception is in transition towards the “incomplete 

conception” level but is held back by some preconceptions they might have regarding related 

topics. Student 6 has declared not having received any formal instruction regarding the 

convergence/divergence of infinite series, and they admit to forgetting about limits of sequences. 

A preconception is usually characterized by an uninstructed guess or assumption about a 

mathematical topic. Preconceptions can be caused by a non-mathematical definition of a term 

which also has a formal mathematical definition. As mentioned earlier in this chapter, incomplete 

conceptions are usually based in accurate notions but involve student-constructed conjectures 
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which can be invalid. These two levels are not defined successively: the “alternate conception” 

level separates them. This level is characterized by a more robust conception of an inaccurate 

notion. We surmise that Student 6’s conception has more in common with the “preconception” and 

“incomplete conception” levels even though they are not successive. This example shows that the 

progress that a student makes in their learning is personal and can happen in a non-linear path. It 

is our conjecture that Student 6’s conception is improving in such a way that it might never be 

considered a true “alternate conception.” Let us reflect on this possibility by considering the 

following quotes taken from Student 6’s answers to the questionnaire: 

Student 6, to question 12.b): “[…] we are always ending up adding one extra 9 at the end of the 

decimal series. Which means it would converge to that 0.9dot notation. […] the fact that it is 

converging to a non-rational number means that this number continues infinitely, and therefore it 

is not a finite number. Thus, can a function or sequence converge to a non-finite number, or does 

that mean it is diverging? I think it is still converging because it is getting more precise with every 

additional 9, but it is not 100% clear for me.” 

Student 6, to question 13.b): “Since the 0.9dot notation is an irrational number, the sequence cannot 

converge to a number that isn’t finite. Thus, I think that the question 12, would be false, and this 

would be true because this sequence does amount to 0.9dot which itself is converging towards 1 

(where 1 is a finite number)” 

As we have discussed in Chapter 5, this student’s misconception appears to be caused by multiple 

different sources. The most striking error in this student’s reasoning is their claim that 0. 9̇ is an 

irrational number, and thus that it is infinite. This statement alone appears to demonstrate that 

Student 6 holds misconceptions regarding basic sets of numbers and the meaning of finite/infinite. 

When it comes to the methods used by the student to identify the most accurate answer to questions 

12 and 13, their use of the suggested sequence of partial sums is very unsophisticated and appears 

to be hindered by the previously mentioned misconception.  

We conjecture that this student’s misconception regarding the connection between infinity and 

numbers with infinitely many non-zero decimal numbers does not origin from any formally taught 

notions. Rather, we suspect that this idea is a construction of the student in its entirety. It is clear 

from this answer that the concept of finite values is not appropriately understood by Student 6 

which causes them to attribute the labels of “finite” and “non-finite” according to the mode of 

representation of numbers. This interpretation would correspond to a “preconception” of 

irrational/periodic numbers and infinity. However, the student’s attempted use of sequences 

contains some very basic but correct elements. Notably, the student claims that sequences do not 

converge to infinity. In this case the student assumes that an irrational number is infinite, but we 

believe that this mistake is caused by their misconception on numbers, and not on a 

misunderstanding of convergence. Their arguments which relate to sequences and convergence are 

very basic and intuitive and do not contain any formal or rigorous manipulations. This use of 

sequences reflects a very weak understanding of a notion used in a correct context. We conjecture 

that this student’s misconception that the numbers 0. 9̇ and 1 are not equivalent is in transition 
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towards the “incomplete conception” level, but it is held back by the issues underlined in this 

subsection. 

We identified four of the evaluation criteria that seem to correspond to a preconception: the 

vocabulary, the replicability, the validity, and the logical progression. The vocabulary used by the 

student is not only quite basic, but often employs mathematical terms incorrectly. The very low 

validity of their reasoning has been explained above, but the replicability is also incredibly low 

since their interpretation of the “finiteness” of a value depends on arbitrary factors that cannot yield 

consistent results. The logic employed by this student is also very weak. Their claim in question 

13 that sequences cannot converge to 0. 9̇ contradicts their earlier claim that adding 9’s into the 

decimal expansion makes the value more precise. This student’s procedural understanding of these 

two questions corresponds more closely to the “alternate conception” level since they attempt to 

create a solution, but it is entirely based in intuition and employs very little rigorous mathematical 

methods. Finally, their conceptual understanding of sequences appears to be at the “incomplete 

conception” level. They do understand what it means for a sequence to converge, but their 

understanding of the concept is severely hindered by other misconceptions. For these reasons, we 

conjecture that Student 6’s misconception that the numbers 0. 9̇ and 1 are not equivalent is 

transitioning towards the “incomplete conception” level. 

 

6.2 A more in-depth look at some participants 
In this section, we reflect into the case of certain participants who appeared to hold multiple 

(sometimes contradictory) misconceptions. More importantly, we reflect on how these potential 

misconceptions work together as a deterrent to each of these students’ understanding of 

fundamental mathematical principles and how they may hold back these students from 

appropriately learning more advanced mathematical concepts.  

 

6.2.1 Student 1 

We begin our reflection on Student 1’s misconceptions with the well-studied example of “a 

function never reaches its limit.” If we recall from Chapter 5, we have found some indications that 

Student 1 might hold this misconception to a certain degree. Their answer to question 3.a), which 

directly confronts this misconception, appears to support this possibility. Their justification in 

question 3.b) is an incorrect use of mathematical implications and it does not justify their answer 

logically. This prevents us from getting useful insight into their actual understanding of the 

statement. The example that Student 1 provides in question 3.c) also does not help us in our 

endeavours since they simply provide the example of the function 𝑓(𝑥) =
1

𝑥
. This example is 

strictly monotone, and it is consistent with Student 1’s answer to question 3.a) (true), but it does 

not act to justify their point of view, it simply serves to illustrate their response. As we have 

discussed in Subsection 5.2.1, Student 1’s answer to question 15.d) weakly suggests that they might 

hold this misconception. We claim that their answer includes a weak allusion to this misconception 
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because, once more, they simply use the function 𝑓(𝑥) =
1

𝑥
 as an illustrative example and they 

claim that it does not reach its limit. 

On the other hand, there are some comments made by Student 1 which directly refute this 

misconception, and therefore their answer to question 3.a). An example which directly indicates 

that Student 1 does not believe that functions cannot reach their limits is their answer to question 

8. Student 1 directly states that lim
𝑥→∞

sin(𝑥)

𝑥
= 0. Their reasoning to arrive at this answer is mostly 

intuitive and not rigorous, but it is logical and shares some similarities with the logic behind the 

squeeze theorem. The question included a picture of the graph of this function so the students could 

see that the function periodically crosses its limit at infinity. Student 1’s answers to questions 7, 9 

and 10 are consistent with this conception of limits.  

In this instance, we ask ourselves: if Student 1 can accurately determine the limit to infinity of an 

oscillating function, why did they respond “true” to question 3.a)? We initially suspected that 

Student 1 might have misread or misunderstood the question. However, any alternative 

interpretation of the question would be inconsistent with some of their answers to questions 3.a) 

through 3.d). We therefore surmise that Student 1 correctly read and interpreted the question but 

provided an answer to question 3.b) that does not respect the rules of mathematical logic. Another 

possible explanation for Student 1’s contradictory answer is that earlier in the questionnaire, when 

they had not yet been exposed to any pre-constructed examples of functions, they failed to produce 

an example that would disagree with the statement in question 3. In such a case, Student 1 might 

have chosen to agree with the statement since they could not come up with an example that would 

contradict it. When they began responding to question 7, they were exposed to an example of a 

function directly contradicting the statement of question 3, and successfully identified the limit. If 

this explanation is accurate, this would be an occurrence of a cognitive obstacle caused by a lack 

of experience. This student might understand the concept of limit much better than they were able 

to show in question 3, but due to their insufficient mathematical maturity, they provided an answer 

which is conceptually incorrect. 

Student 1’s answer to question 11 informs us that they do not recall the definition of an asymptote. 

They appear to incorrectly distinguish limits at infinity and horizontal asymptotes since their 

answer to question 11 differs from their answers to questions 7 through 10. Student 1 appears to 

hold the misconception that asymptotes are values which are strictly monotonically approached by 

a function. 

Student 1’s answer to question 3.d) shows an understanding of limits at a point that appears to be 

at the “unrefined conception” level. Their answer is clear and correct: the statement 

“lim
𝑥→𝑐

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥” is false. To disprove this statement, all that is needed 

is a counterexample which the student provides in the form of a continuous function around the 

limit point. Student 1 also provides an example for which the statement is true, which is 

unnecessary to support their answer. We believe that Student 1 suggests continuity as a sufficient 

(but unnecessary) condition to disprove the statement and further examples that justify it not 

because they misunderstand the concept, but rather because they are uncertain of how much 



82 

 

justification is needed. This type a behavior corresponds to a conception which is improving 

towards the “unrefined conception” level. This student’s knowledge of necessary and sufficient 

arguments appears to be lacking, but they successfully provide accurate justifications. 

There is some anecdotal evidence that Student 1 struggles with mathematical notation in their 

answer to question 22, which is all about quantifiers and mathematical language. As we discussed 

in Subsection 5.2.7, we suspect that Student 1 might hold onto an incomplete conception of the 

rules and logic behind formal mathematical notation. The only other question that involves 

quantifiers is question 21, which asks the students to recognize the epsilon definition of limit. 

Student 1 correctly translates the statement in common English, indicating that they know the 

meaning of every symbol, including the universal and existential quantifiers. However, they do not 

identify that the statement defines a limit, and instead respond that it is the definition of a 

neighborhood. This may be caused by the simple lack of recognition of the statement, paired with 

some “noise” from their current studies in Analysis. Alternatively, the student might know the 

words that correspond to each symbol, but they might not understand the meaning through the 

syntax of the mathematical statement, and they might be guessing, from memory, what the 

statement refers to. Their answer to question 22 supports this explanation since they incorrectly 

claimed that both statements are equivalent, and incorrectly set a fixed value for the universal 

quantifier to illustrate their claim. We believe that Student 1 has an accurate knowledge of the 

English equivalent to mathematical quantifiers and statements but has issues with the logic behind 

the syntax which prevents them from accurately understanding statements written using formal 

notation. This conception would correspond to an “incomplete conception,” as stated in Subsection 

5.2.7. 

We now discuss Student 1’s understanding of limits as mathematical objects. We are interested in 

Student 1’s understanding that expressions such as “ lim
𝑥→∞

𝑓(𝑥)” are static objects which can only 

be manipulated if they fulfill strict conditions. Their answer to question 16 suggests that Student 1 

does not understand (or remember) these conditions. They claim not remembering the “trick” to 

solve expressions such as lim
𝑥→∞

𝑓(𝑥) + lim
𝑥→∞

𝑔(𝑥) when both functions diverge. This comment 

informs us that the student is solely focus on finding an answer to the question and does not 

recognize that the summation has no solution due the divergence of the functions. Student 1 

recognizes that this question is asking to perform arithmetic with infinity, yet they still choose to 

agree with the fictitious students and provide “1” as the answer of the sum. We believe that once 

more, this contradiction is caused by Student 1’s lack of experience. Student 1’s answer to question 

20 is consistent with our observations. They simply reply that they do not recall the correct 

conditions for the Sum Law to hold, and they incorrectly guess that continuity must be it. These 

answers strongly suggest that Student 1 does not understand that performing arithmetic with limits 

requires the limits to exist.  Alternatively, it is possible that Student 1 understands that the Sum 

Law holds only for existing limits, but they might view infinity as a possible limit value. This 

possibility is supported by their answers to questions 18 and 19. 

Questions 18 and 19 asks the students to group functions according to their behavior as x goes to 

infinity. Student 1 creates groups in the following way: 
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“Group 1: Limit x goes to infinity equals 0 

Group 2: Limit x goes to infinity equals c (a constant) 

Group 3: Limit x goes to infinity equals minus infinity 

Group 4: Divergent limit 

Group 5: Limit x goes to infinity equals infinity” 

Student 1’s justifications for these groupings reveal that they do not understand that a function 

diverging to infinity implies that the limit does not exist (and therefore cannot be subjected to 

algebraic manipulation). When asked if their groups have intersections, Student 1 answered with 

the following quote: “No, since the answer of the limit can only be one value (we cannot have the 

limit being equal to 0 and minus infinity at the same time.” This claim implies that functions that 

go to infinity are not considered divergent. This is consistent with the previously discussed issues 

from their answer to question 16. 

We now consider Student 1’s answers to the last few questions, which are about concepts related 

to Analysis. We have discussed in Subsection 5.2.9 how Student 1’s answer to question 23 appears 

to suggest that they hold a misconception where the concepts of supremum and absolute maximum 

are confused. In addition to this apparent misconception, their answer to question 26 includes a 

statement that misuses infinity, much as it has been highlighted previously.  

Student 1’s answer to question 26: “[…] I do think the sup exists here and is equal to infinity.” 

This quote appears to be a direct translation of Student 1’s potential misconception that infinity can 

be a limit value. We see a very similar application of the same misconception where Student 1 

claims that infinity is the supremum of the set 𝐴 = {ln 𝑛 |𝑛 = 1, 2, 3, . . . }. We conjecture that their 

earlier misconception regarding infinity as a limit value has directly transferred to their current 

studies in Analysis and changed into a similar yet more advanced version of the same 

misconception. This is a great example of how misconceptions developed in earlier mathematics 

classes (not only calculus, but earlier high school classes as well), if not overcome, can carry over 

and affect how one might learn more advanced concepts. 

Alternatively, this answer might come from their studies in Real Analysis. Certain textbooks (such 

as Dangello & Seyfried, 2000) introduce the concept of extended real numbers in the context of 

discussing bounds. Using the extended real numbers, infinity can be used as a bound, and therefore 

as a supremum. However, the set of extended real numbers was not mentioned neither in the 

question, nor in Student 1’s answer. They simply claimed infinity to be the value of the supremum. 

It is plausible that this student has retained only a fraction of the notions related to extended real 

numbers and assumes that a supremum can take the “value” of infinity, without being mindful of 

the conditions that are required to make this claim. It is possible that Student 1 simply defaults to 

using the extended real numbers, in which case their main issue with this concept would be to 

mention the number system that they use in their answer.  
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We close our deeper dive into the case of Student 1 with some speculations about further concepts 

that could be affected by the misconceptions observed in their answers. The first and possibly most 

impactful misconception is Student 1’s apparent misunderstandings of formal mathematical 

notation. The use of quantifiers and logical syntax only becomes more predominant in university 

mathematics classes after Calculus. It is undeniable that an incorrect understanding of the rules of 

mathematical notation is a significant obstacle to learning advanced and abstract mathematical 

concepts. Furthermore, the seemingly “minor” misconception concerning taking infinity as the 

value of a limit seems to have a significant impact on the student’s learning of the concept of 

supremum; we surmise that if not overcome, it will continue to negatively impact the student’s 

learning of other advanced mathematical concepts that heavily rely on the concept of limits. 

 

6.2.2 Student 6 

We begin our reflection on Student 6’s misconceptions with a discussion on formal mathematical 

language. Observing Student 6’s answers to questions 3 and 22, we notice that they misunderstand 

mathematical notation. We have previously discussed (see Subsection 5.2.7) their answer to 

question 3 and determined that they misinterpreted the conclusion “𝑡ℎ𝑒𝑛, 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥” 

as meaning “then, the function is not constant.” With this interpretation of the statement, Student 

6’s answer is consistent and shows a good understanding of functions and limits. However, the 

misunderstanding of a statement that does not involve many logical operators or quantifiers is a 

testament to a deeper issue with this student’s learning of mathematical notation. This student’s 

apparent issues with formal statements are supported by their short and incorrect answer to question 

22.b): “They are equivalent. An example would be a=3, b=2.” Much like Student 1, this student 

claims that the statements are equivalent regardless of the order in which the existential and 

universal quantifiers appear and provide a trivial example which suggests a misunderstanding of 

the latter. Furthermore, Student 6 failed to identify the epsilon definition of limit in question 21, 

and instead responded that the statement defines “the Lower Upper Bound.” Again, similarly to 

Student 1, this could suggest a lack of experience with such statements, paired with noise from 

their current studies of infima and suprema. It appears that Student 6 has a good knowledge of each 

logical symbol, but incomplete understanding of the syntax behind mathematical statements which 

causes them to incorrectly interpret rather basic questions.  

Student 6 has an interesting conception of the common words explored in questions 7 through 10. 

They initially did not notice that the questions were different until they reached question 10. This 

could indicate that Student 6 considers these terms to be synonymous. They provided acceptable 

answers to each question. However, as they realized that the phrasing slightly varied, they decided 

to address the indirectly asked question “are these four questions equivalent?” In their response, 

they reveal that they conceive the phrases in the question (approaches, goes to, etc.) as different 

from the phrase “the limit is.” Furthermore, they assume that the term “limit” is stronger than the 

alternative vocabulary. In addition, Student 6 states that the terms “approach” and “tend to” can be 

used to refer to a purely visual interpretation of a function. Conversely, using the phrase “the limit 

is” requires the use of formal resolution methods. Although this interpretation is not entirely correct 

since these words can be used interchangeably in the context of these questions, we are interested 
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in the source of such a misconception. We conjecture that this misconception is didactic in nature; 

not in the sense that the student was taught to grant less importance to certain words, but rather in 

the sense that they were not exposed to a formal discussion of what those terms mean and that they 

are interchangeable. In the absence of such formal discussions and explanations, students might 

associate a non-mathematical meaning to those terms. On the other hand, students who mistakenly 

adopt the non-mathematical meaning in the mathematical context, can develop other 

misconceptions, such as the implicit strict monotonicity of limits. The assumption that the word 

“limit” is viewed as stronger than the alternative terms has also been observed by Cornu (1980) 

and Monaghan (1991). For these reasons and the ones provided in Subsection 5.2.8, we surmise 

that Student 6 holds an unrefined conception of this mathematical vocabulary which is didactic in 

nature. 

We now highlight an issue which has been observed in many participants, including Student 6: 

incorrectly claiming that asymptotes are values that the function approaches but never crosses. 

Student 6 provided this exact explanation in their answer to question 11. However, this issue 

appears to be exclusively for asymptotes since Student 6 asserts the following in their answer to 

question 15: “I believe that this might be what [differentiates] limits [from] asymptotes: asymptotes 

can be where a function converges to but cannot reach, whereas a limit can be reached.” Since this 

condition of “unreachability” is incorrect, we conjecture that it is a construction of the student that 

is built through exposure to examples that respect this criterion. In Subsection 5.2.2, we surmised 

that Student 6’s misconception about asymptotes is at the threshold between the “incomplete 

conception” and “unrefined conception” levels. This decision is mainly due to their awareness that 

they forgot the definition of asymptote. This student has a predisposition to actively seek out the 

definition and improve their understanding of the concept, and therefore is transitioning towards 

an “unrefined conception.” 

Although Student 6 appears to properly understand that a function can reach its limit, their answers 

to questions 18 and 19 include peculiar details relating to this concept. As a reminder, question 18 

asked the students to group a set of functions according to criteria of their choice. Student 6 chose 

the following criteria:  

“Group 1 has functions with the limit as x goes to infinity equal to a real finite number which they 

reached. Group 2 has functions with the limit as 0, which [they] never really reach only 

approach. Group 3 has functions which limits don't exist as x goes to infinity.”  

In Subsection 5.2.1, we suggested two alternatives for their inconsistent choice of groups: They 

may not know the behavior of the function 𝑓(𝑥) =
cos(𝑥)

𝑥
 (which they put in group 2), or they may 

hold an alternative definition for the word “reach.” We believe the latter explanation to be more 

likely. As a rebuttal to the former alternative, Student 6 has provided correct reasonings to questions 

7 through 10, which all involved the similar function 𝑓(𝑥) =
sin(𝑥)

𝑥
. Student 6 uses the term “reach” 

several times through the questionnaire, none of which are precise enough to confirm that their 

conception of this term aligns with the accepted mathematical meaning. Hence, we conjecture that 
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Student 6 has an incomplete conception about the word “reach” meaning a stabilization of a 

function onto the value of its limit at infinity. 

In their answer to question 16, Student 6 provides a very intuitive and simplified conception of 

infinity which allowed them to correctly identify that the sum of the limits of two diverging 

functions is undefined. Extrapolating from their explanations, they seem to imply that infinity can 

be simulated into arithmetic equations for the purpose of identifying limits but cannot be used as a 

result or as the value of a limit. If our interpretation of their response is exact, their conception is 

naïve but not particularly harmful. Student 6’s main issues with infinity appear in their answers to 

questions 12 and 13, which have been discussed in Subsection 5.2.6. We discussed the apparent 

misconception held by Student 6 which claims that irrational and periodic numbers behave like 

infinity, and therefore cannot be convergence points for sequences or series. Student 6’s 

misconception appears to lie with the definitions of “finite” and “infinity.” More specifically, there 

seems to be a discrepancy in this student’s conception of “infinity” and “non-finite.” Consider the 

two following quotes: 

Student 6’s answer to question 13.b): “Since the 0.9dot notation is an irrational number, the 

sequence cannot converge to a number that isn't finite.” 

Student 6’s answer to question 15.b): “[…] infinity is not a real number […]” 

These two quotes are directly contradictory. The first quote stipulates that irrational numbers are 

not finite, the second quote asserts that infinity is not a real number. Therefore, for those two quotes 

to agree, Student 6 must believe that irrational numbers are not real numbers. Alternatively, and as 

stated above, perhaps this student’s conception of “infinite” and “non-finite” are different. We 

conjecture that they perceive “infinite” as the concept represented by the symbol ∞, and the term 

“non-finite” as referring to anything that has a never-ending component, such as irrational numbers.   

We also conjecture that this misconception might originate in the basic sets of real numbers, and 

in the different representations of numbers. They might not have internalized the fact that even 

with infinitely many decimal values, irrational (and periodic) numbers are still points on the real 

number line, and therefore ascribe to the same mathematical rules as other real numbers. 

Alternatively, this misconception might be caused by noise from their current studies. Real 

numbers are discussed extensively in Real Analysis, and it may be possible that Student 6’s answers 

were negatively influenced by this discussion, if new information was not properly understood. 

We now discuss the effects that holding such misconceptions can have on Student 6’s learning of 

mathematics. The two most harmful issues observed in Student 6’s answers are their apparent 

lack of understanding of formal mathematical statements and their misconception of irrational 

and periodic numbers being infinite. The former is obviously a hinderance to learning since it 

prevents the student from accurately understanding a multitude of definitions and theorems in 

every area of mathematics. We even speculate that this issue might play a role in other of Student 

6’s misconceptions. The latter is also a severe obstacle to learning because it can cause conflicts 

between this student’s different conceptions. An example can be observed in Student 6’s answer 

to question 13: their idea of irrational numbers being infinite and their understanding that 
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sequences can only converge towards finite values disagree, which creates confusion. Other 

examples of similar situations include lim
𝑛→∞

(1 +
1

𝑛
)𝑛 = 𝑒 or ∑

(−1)𝑛

(2𝑛+1)
=∞

𝑛=0
𝜋

4
. Both previous 

examples include irrational numbers which are respectively the limit of a sequence and the value 

of a power series. When Student 6 eventually gets shown those results or similar ones, their 

understanding might be held back by this misconception which makes them believe that 

sequences cannot converge towards irrational numbers. In addition, this misconception may 

represent a significant obstacle to Student 6’s learning of other concepts related to the set of real 

numbers, such as the density or openness of subsets. Their misconception about the words “goes 

to,” “approaches,” “tends to,” and “reaches” could be an obstacle to learning if these words 

appear often in textbooks, of if their teacher uses them often. Otherwise, it may simply serve as 

an incentive for Student 6 to use rigorous language.  

 

6.2.3 Student 8 

We begin our reflection on Student 8’s potential misconceptions with a discussion on their 

answer to question 15.c): “Because, like B said, I think the idea of a limit is essentially a value 

that can’t really be reached but it's a value that it gets closer and closer to.” At first glance, one 

might claim that Student 8 holds the common misconception “a function never reaches its limit.” 

However, this specific answer from Student 8 is in direct contradiction with an earlier statement 

they made in their answer to question 3.b): “It would seem that the function can equal to its limit 

for some value x. I think it's true that not all x will result in f(x) = L, but I think it is possible that 

f(x) can be the same as its limit, as x approaches infinity.” Through the rest of the questionnaire, 

Student 8 does not mention anything about functions’ ability to reach their limits. However, they 

respond to questions 7 through 10 accurately without being confused or troubled by the function 

periodically crossing its limit (even with the graph provided). Our conjecture for this incoherence 

in Student 8’s conception is more behavioral rather than mathematical. We propose that Student 

8’s understanding is better represented by their answer to question 3, but that their mistake in 

their answer to question 15 was caused by suggestion. Question 15 presents a sequence which 

monotonically approaches its limit. In the text for the question, a fictitious student (named B) 

claims that a sequence should never reach its limit, and this statement is not disputed in the 

question. We surmise that Student 8 was influenced into agreeing with student B by the text in 

the question and by the fact that the sequence at hand respects this arbitrary criterion. Therefore, 

we conjecture that Student 8 does not believe that functions cannot reach their limits and that 

their apparent misconception from their answer to question 15 does not originate from their own 

understanding of the concept. We surmise that their conception of limits is at the “unrefined 

conception,” level since their understanding appears accurate, but their hesitation which caused 

the mistake in question 15 shows that their conception is not robust and can be improved. 

Student 8’s answers to questions 7 through 10 are inconsistent due to their own admitted doubts 

about the synonymity of the words used in those questions. The inconsistency appears in question 

9 where they acknowledge not knowing if “tends to” is equivalent to “the limit is.” Similarly, to 

students 1 and 6, this might be caused by a lack of formal definitions for commonly used words. 
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Perhaps this student has heard the phrase “tends to” more rarely than the other alternatives in the 

same context, which would explain their hesitation specifically with question 9. This 

misconception is very superficial and is unlikely to represent any significant hinderance to Student 

8’s understanding of limits. Therefore, we believe that this misconception is at the “unrefined 

conception” level. 

Question 11 reveals the same misconception that has been observed in students 1, 6 and many 

others, which is the incorrect assumption that asymptotes are horizontal lines which a function 

approaches without ever reaching. This shows the lack of understanding of the definition of 

horizontal asymptotes, and perhaps an effect of overexposure to examples that share common 

arbitrary traits, such as monotonicity. Student 8 appears to firmly believe this misconception, as 

opposed to Student 6 who admitted being unsure.  

An overarching issue observed in their answers to questions 7 through 11 is Student 8’s exclusively 

visual arguments. In Subsection 5.3.1, we discussed how the presence of graphs in the questions 

may have influenced their decision to solely rely on graphical arguments, which are generally 

considered invalid, especially in the context of limits at infinity. Since Student 8 did not provide 

any other reasonings for their answer, we cannot confidently claim that they would have been able 

to provide a satisfactory solution for these questions without the graph. In this instance, we believe 

that the image of the graph might have influenced Student 8 into providing a visual argument over 

a more formal or rigorous solution, regardless of their mathematical skills. 

Student 8’s answer to question 16 includes a few mistakes, including an inconsistency regarding 

the answer to the fictitious students’ problem. In question 16.b), Student 8 accurately determines 

that the sum is undefined. However, in their answer to 16.c), their answer pivots into agreeing with 

the fictitious students’ logic without providing any additional reasoning. Student 8 concludes that 

the answer must be 1, in accordance with the fictitious conversation, but in contradiction to their 

earlier response. Moreover, Student 8 states that the problem involves an indeterminate form, 

which is incorrect. Similarly to our conjecture regarding their answer to question 15.c) discussed 

earlier, we believe that this inconsistency in Student 8’s answers in caused by the influence that the 

fictitious conversation has on their thought patterns. The student begins with the correct answer 

but appears to get confused by statements which they are incapable of refuting and abandon their 

initial instincts. We conjecture that Student 8’s issue with mathematical concepts here is 

exclusively with indeterminate forms since they misidentified a situation. Their doubts and 

hesitations do not appear to be caused by a weak conception, but rather by the suggestion of other 

incorrect reasonings. Their misidentification of an indeterminate form is telling on their conception 

of limits. In this situation, Student 8 was considering the sum of two limits that did not exist. 

Student 8 most likely thought that they were in the presence of the “∞ − ∞” indeterminate form. 

This informs us that they might instinctively view diverging limits as “equal” to infinity, even if 

they conceptually understand that the limit does not exist. This misconception appears to be quite 

weak considering the correct answer that was provided in question 15.b). We surmise that their 

understanding of the concepts explored in question 15 lie at the “unrefined conception” level. 
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Overall, Student 8’s misconceptions appear to be quite weak. Their mistakes seem to be caused by 

superficial misunderstandings that most likely will have little to no effect on their learning of new 

mathematical concepts. For example, their hesitation on the meaning of the phrase “tends to” or 

their misconception about asymptotes can cause unwanted mistakes in certain specific situations, 

but they will most likely not prevent Student 8 from learning to use new mathematical objects or 

theorems. Their use of visual arguments might be an obstacle for problem-solving. We have no 

evidence that Student 8 believes graphical arguments to be valid, but if that is the case, Student 8 

might have significant issues with problem-solving that can only be resolved if they understand the 

need for rigor.  

 

6.3 Expected misconceptions and their effect on mathematics learning 
It is undeniable that misconceptions can have a significant effect on one’s learning experience. It 

is our and other researchers’ (Sierpińska, 1987, 1990) conjecture that misconceptions are inevitable 

and a natural part of the learning process. Students must begin their education from a point where 

their ideas of mathematical concepts are undeveloped and feeble. Through formal teaching or other 

means of instruction, students must slowly build their knowledge and understanding of abstract 

mathematical objects. Misconceptions may arise at any point in one’s education and they may 

originate prior to instruction, but it is the eventual dismissal of erroneous views that truly 

characterizes the learning process and the acquiring of expert conceptions. In this study, we 

illustrate the possibility that misconceptions can remain even after the students acquire the 

necessary qualifications to continue their mathematics education past the basic Calculus class. In 

the case where those misconceptions remain, what obstacle could they represent to the learning of 

more advanced mathematics? 

We believe that pre-existing misconceptions can hinder one’s learning in multiple ways. The first 

way, we will refer to as concept-to-concept. If one concept serves as a building block for further 

mathematical concepts, holding a misconception related to the first one will most likely influence 

the learning of the next. For example, horizontal asymptotes are typically defined as a horizontal 

line 𝑦 = 𝐿 such that lim
𝑥→∞

𝑓(𝑥) = 𝐿 (or, equivalently, the limit to −∞). Since the definition of a 

horizontal asymptote depends on the understanding of limits, a student who has a misconception 

regarding limits at infinity might transpose this misconception into their conceptualization of 

asymptotes. For instance, if a student initially believes that a function may never cross or reach its 

limit, this misconception might follow into the student’s learning of asymptotes. If the student then 

learns that limits can be crossed, perhaps their misconception about asymptotes will be improved 

simultaneously, or perhaps it won’t. Several of the participants to this study claimed that 

asymptotes and limits at infinity are different because the former cannot be crossed while the latter 

can. We conjecture that those students might have, at some point, held the misconception “a limit 

cannot be reached,” which was eventually overcome, while leaving a misconception about 

asymptotes as a by-product.  

We can speculate about further issues that can arise due to concept-to-concept influence of 

misconceptions; mathematics is learned incrementally with more advanced knowledge depending 
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on elementary knowledge. An example that carries immense importance in the study of functions 

is the progression limits → continuity → differentiability. Each of these concepts depend on the 

previous one and each of them is developed into a more detailed array of concepts that have 

potential to cause misconceptions.  

Another possible way that a misconception can affect further learning relates to the cause of the 

misconception. Misconceptions can arise due to some learning behavior or strategy. An example 

is the learning strategy of associating “basic” images into one’s conception, which holds the student 

back from accurately understanding the concept in its entirety. Very basic examples are necessary 

to understand the meaning of the concept itself, but they rarely, if ever, show the whole picture. A 

student who is used to visualizing mathematical concepts might be influenced by this behavior and 

lose some important information or oversimplify the concept. For example, we have observed 

students who associate a function which has a limit at infinity to the basic case of the function 

𝑓(𝑥) =
1

𝑥
. This function is monotone, and it is likely to introduce the misconception that functions 

or sequences need to be strictly monotone to have a limit, if the student exclusively relies on this 

image. Holding reference images in one’s conception is not necessarily purely misleading. In fact, 

Alcock & Simpson (2004, 2005) have observed that visualization can be beneficial, on the 

condition that students draw links between their visual representations and the algebraic 

definitions. Therefore, we believe that purely relying on images of elementary cases to inform 

one’s understanding of a concept is likely to cause a multitude of different misconceptions, since 

those elementary cases are insufficient to complement the algebraic definitions. This behavior can 

be reconciled if the student is inclined to develop their conception to include algebraic 

representations of the concept. Tall & Vinner (1981) suggest another example that illustrates how 

certain strategies can cause issues further in one’s education: issues with limits and continuity can 

bring up conflicts when learning about differentiability. The concept image that accurately served 

them previously is now a hinderance since, for example, it is quite challenging to visualize a 

function that is continuous everywhere but differentiable nowhere (Tall & Vinner, 1981). 

We observed several instances of students using incorrect definitions of mathematical concepts. 

One could think that simply recalling the correct definition or informing the students of their 

mistakes to be sufficient to accelerate their learning. Davis & Vinner (1986) described the 

possibility that students hold multiple conceptualizations simultaneously, and simply fail to recall 

the correct ones every single time.  

 

6.4 The special case of fundamental misconceptions 
In Chapter 5, we analyse students’ responses that did not necessarily relate to the seven 

misconceptions we set out to uncover. In particular, we discussed students’ misunderstandings, 

misconceptions, and lack of knowledge around mathematical logic and mathematical notation. We 

classify the related misconceptions as “fundamental misconceptions.” We use this term due the 

importance that a proper understanding of these concepts has over every field of mathematics. It is 

expected from students who are enrolled in a Real Analysis class to be able to read, write and 

reason around logical connectors and quantifiers, not only to learn new concepts but also to be able 

to construct proofs that respect the mathematical conventions, and that are logically valid. 
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Logical fallacies include any kind of argument which is invalid due to misuse of mathematical 

logic.  At the level of the students who participated in this study, the most prevalent type of logic 

is deductive. Most importantly is the understanding of truth tables and the notions of implication 

and equivalence. Student 1 has provided one instance of incorrect use of implication, where they 

assumed the equivalence of two statements whereas one statement was simply implied by the other. 

This is a typical naïve mistake that is usually observed in students who lack experience with 

mathematical statements. The reason for Student 1’s incorrect use of mathematical logic is up to 

speculation. Regardless, at the education level in question, we would expect students to know the 

basic rules of logical implication. The results of our study show that several of the participants 

struggle with this. Furthermore, many students used circular arguments to explain their answers to 

different questions. 

Also, we have observed students who appear to misunderstand the meaning of universal statements. 

And the concept of a mathematical statement itself. Certain students’ answers suggest that they 

don’t understand, or don’t know, that statements are either true of false. This implies a general lack 

of understanding for the rules that dictate mathematics in general, and makes us wonder: what do 

these students understand of the theorems they are exposed to in their university courses? 

The next fundamental issue that has been observed is that of clear misunderstandings of notation. 

Not only have we observed several misunderstandings of statements which involve quantifiers, but 

also students misinterpreting statements that did not involve any abstract notation. The standing 

conjecture from our observations is that some students of Analysis appear to know what each 

symbol mean individually, but they appear to have issues understanding the syntax and the logic 

that is used to construct those statements, thus failing to understand their meaning. Considering 

that any definition, theorem, and proof in mathematics makes use of rigorous notation, a proper 

understanding of the syntax is a crucial part of the knowledge that is required to learn and succeed 

in higher mathematics. 

Lastly, we discuss the students’ apparent misconception that graphical arguments are valid or 

sufficient. Visual representations of mathematical situations can be a useful tool to students. Alcock 

& Simpson (2004) specifically discuss the validity of graphical arguments and how they can be 

used efficiently. However, they also explain how certain students use graphs to solve mathematical 

problems due to their incapacity or unwillingness to provide definition-based arguments. Alcock 

& Simpson (2004) explain the ongoing debate about the importance of graphical arguments in 

mathematics. The observations that were made regarding this topic in this study were of students 

relying purely on graphical representations to infer answers, thus providing little to no valid 

arguments for their answer. 

Our observations about the fundamental nature of mathematical argumentation and notation have 

raised the following question: should these issues be emphasized in a classroom setting? We 

acknowledge that many universities have classes dedicated to mathematical logic. In some cases, 

the basics of truth tables and some crucial rules of logic are taught in Analysis courses, along with 

definitions for quantifiers and instruction on the mathematical language. However, these lectures’ 

purpose is to provide students with the tools to understand the content of the course, instead of 

fostering a deep understanding of the fundamental pillars of mathematics. The validity of certain 
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types of arguments, and the details behind mathematical syntax are rarely addressed in formal 

learning situations. Directly addressing these issues in a prerequisite course might be a solution to 

strengthen university students’ understanding of concepts that they will be using in every single 

mathematics class. 

 

In the next chapter, we discuss the conclusions of this study. We review the research and reflect on 

our achievement of our research goals. We also discuss the extent of students’ misconceptions of 

real numbers, even as they are learning Real Analysis. We close the last chapter of this thesis with 

a suggestion for further research. 
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Chapter 7 Conclusions 
The first section of this chapter, 7.1, is a brief review of our research. We reiterate the research 

goals and address to what extent we succeeded in achieving them. We also discuss the limitations 

of our research tool. 

Section 7.2 is a discussion on further considerations, especially as they relate to our assumptions 

regarding Real Analysis students’ knowledge of real numbers. 

We finish this chapter and this thesis by suggesting an idea for supplementary research. 

 

7.1 Review of the research 
Our objectives are three-fold. First, we want to uncover unresolved misconceptions of elementary 

Calculus in students of Real Analysis. Second, we inquire the evolution of these misconceptions 

and their potential improvement. Finally, we investigate the possibility that past unresolved 

misconceptions might affect one’s learning and produce analogous, new misconceptions about 

Real Analysis concepts. To achieve these goals, we devised a questionnaire with the intent of 

assessing the participating students’ conceptions of elementary Calculus and Real Analysis.  

This choice of tool allowed us to reflect on students’ understanding of seven common 

misconceptions of elementary Calculus, three misconceptions of Real Analysis, and even 

unexpected misunderstandings of mathematical logic and notation. However, the extent to which 

this research tool allowed us to perceive the student’s conceptions is quite limited since cognitive 

frameworks can be much deeper than what is discernable with a questionnaire. Moreover, since 

our research design has a high dependency on student involvement and honesty, we cannot naively 

assume that what they wrote accurately represents their understanding nor that our interpretation 

of their writings is in itself accurate. To circumvent these limitations, we avoid making concrete 

claims, and instead of considering certitude, we remain in the realm of conjecture. 

The answers provided by the students included several instances of conceptual mistakes, 

procedural mistakes, logical inconsistencies, and overall lack of a robust conception for many 

elementary concepts of Calculus. These observations contribute to our first and second research 

goals. We have uncovered indications that some of the participating students may hold 

misconceptions of Calculus, even after successfully completing10 a Calculus course. Their answers 

correlated with the expected thought processes of students who hold these misconceptions, 

potentially indicating their presence in some participants of this study. This speaks to our first goal. 

Furthermore, using table 4.41, we were able to locate sufficiently detailed answers on a gradient of 

misconception and identify phrases in the answers that we take as hints that certain conceptions are 

possibly in transition from one level to the next in the gradient. This addresses our second research 

goal, and we conclude that the vanishing or improvement of misconceptions may correspond to a 

 
10 In the sense of passing the course 
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gradual change of one’s understanding of mathematical concepts in such a way that the 

corresponding misconception level grows closer to the “expert conception” level.  

For our third objective, we have identified hints of previous misconceptions influencing the 

learning of concepts in Real Analysis only in Student 1’s answers to questions 23 and 26. Student 

1 seems to hold two of our hypothesized misconceptions of Real Analysis, namely confusing 

supremum and maximum and claiming infinity to be a valid supremum. The latter is an example 

of a misconception we investigated: using infinity as a real number. We surmise that this is a 

misconception that Student 1 developed as a student of Calculus, that they have not yet overcome 

it, and that it gets in the way of learning new conceptions (supremum). This could represent an 

example of earlier misconceptions contributing to the development of others in more advanced 

fields of mathematics. However, other explanations are possible. For instance, a textbook that is 

commonly used in Real Analysis courses (D’Angello & Seyfried, 2000) introduces the concept of 

the extended real numbers very early on (in Chapter 2), which allows infinity and negative infinity 

to be upper and lower bounds. This may cause confusion in students and could be a possible 

explanation for Student 1’s mistake. 

In addition to our findings specifically related to our research goals, we found hints in students’ 

answers that point to them holding misconceptions about fundamental mathematics, particularly 

around notation and logic. Several instances of students misunderstanding formal mathematical 

notation were identified. We surmise that these students have a fairly good understanding of the 

meaning of each symbol, including existential and universal quantifiers, but a poor understanding 

of the syntax and semantics in the use of such symbols. We claim, however, that fluency in the 

syntax and semantics of mathematical language is key in the learning of fundamental Real Analysis 

concepts. Most definitions, theorems and proofs rely on a deep understanding of mathematical 

formalism, and logical deduction is the very basis of mathematical proofs. Our observations are a 

warning for instructors and curriculum developers who may take for granted that students in Real 

Analysis understand the meaning in mathematical sentences – a call to reflect on how to improve 

students’ fluency in mathematical language. 

This research is our contribution to knowledge about post-secondary mathematical misconceptions. 

We hope to bring awareness to university educators that students come into their mathematics class 

with pre-built (mis)conceptions that can affect their learning of new concepts. Furthermore, our 

study illustrates that even after instruction, it is possible for elementary misconceptions to remain. 

We hope that this thesis feeds the discussion about the challenges of learning and teaching 

mathematics in a way that is beneficial for students and instructors.   
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7.2 Further considerations – real numbers 
It is assumed that prior to enrolling in a Real Analysis course, students have received sufficient 

instruction regarding real numbers to be able to understand the material and concepts taught in the 

course. Our results reveal that this might not always be the case. We have discovered that certain 

students’ knowledge of real numbers is quite poor. Misunderstanding the value of numbers based 

on their representation constitutes the basis of one of the misconceptions we investigated: “0. 9̇ <

1.” Our results revealed that certain students’ misconception of number representation can go much 

further. More specifically, the distinction between numbers that have an infinite decimal expansion, 

and irrational numbers seems to be a source of misunderstandings for certain students. One 

student’s apparent misconception went as far as confusing “infinite decimal expansion” with 

“infinite,” which then confused them further into assuming sequences (or series) cannot converge 

to irrational numbers. Of course, this is one instance of a particularly flagrant misconception of real 

numbers, but the student in question was enrolled in a Real Analysis class during their participation 

to this study. It is therefore plausible that multiple students holding such misconceptions may 

eventually go through Real Analysis classes. 

We judge it is important for instructors to be aware that their assumptions regarding student 

knowledge of real numbers might be incorrect. This study has revealed that Real Analysis students 

may have misconceptions of real numbers, and we surmise that they might be severely hindered in 

their ability to learn more advanced concepts as a result. Further research should investigate Real 

Analysis students’ conceptions of real numbers and the effects that a poor knowledge of them may 

have on their learning of advanced mathematical concepts.  

 

7.3 Further research into mathematical misconceptions 
Out of our many observations, the most unexpected were students misunderstanding basic notation 

and using logical fallacies to justify their reasonings. At the university level, we consider this 

knowledge to be crucial for learning. Some institutions offer specialized courses in this topic and 

others offer mathematics courses that are built around the learning of proof methods and thus 

contribute to the development of accurate conceptions of logic. However, no such course is 

required to enroll in the Real Analysis course in the university we considered in this study, and this 

is frequent across North American universities. 

While it is usual for Real Analysis courses and textbooks to include a brief overview of truth tables 

and the basics of mathematical proofs, we surmise based on personal experience, the observations 

of our study, and previous research (e.g., Broley, 2020) that undergraduate students do not receive 

sufficient instruction on mathematical logic, and therefore are hindered in their ability to properly 

understand the topics introduced in their Analysis classes. 

We believe it is key to further investigate students’ misconceptions around elementary 

mathematical logic as they progress in their university studies. Furthermore, we believe it is 

important to develop, and test, teaching designs that can foster an earlier exposure to the syntax 
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and semantics of mathematical language and study the impact this may have on students’ 

understanding of advanced mathematical concepts. 

Such a study could rely, for example, on the work of researchers such as Selden and Selden, who 

have made extensive research on the topic of mathematical statements (1995) and on undergraduate 

students’ abilities to solve non-routine problems (1994, 1999).  
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Appendix 
 

A.1 Consent form 
 

 

 

NOTE: This will appear in the first page of the questionnaire in Moodle. The participant will not 

be able to continue with the questionnaire until they check the “I agree” box. All information in 

this consent form will be sent to the participant in advance (at least 24 hours), via email, so they 

can read and ask questions (also via email).  

 

 

To: participant 

 

Subject line: Research study: INFORMATION AND CONSENT  

 

Dear student,  

 

Thank you for contacting me about the research study I am carrying out as part of my master’s 

program.  

 

Below you will find information regarding this study and your consent to participate. If you have 

any questions about your participation, please, contact me by replying to this email.  

 

As explained below, the questionnaire I hope you can answer is in a Moodle site. To give you 

access to it, I will need your full name, netname and student ID. As explained below, all information 

that can serve to identify you will NOT be linked to the answers you provide to the questionnaire 

and I will not share with your instructors whether you have chosen to participate or not.  
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Many thanks for offering to participate. I would not be able to complete my studies if it weren’t 

for students willing to help with the research! 

 

Best regards, 

Marc-Olivier Ouellet 

Master’s student 

Mathematics & Statistics 

Concordia University 

 

Research Study Title: The Vanishing of Misconceptions About Limits and Their 

Possible Replacements in Advanced Mathematics 

 

Researcher: Marc-Olivier Ouellet 

Researcher’s Contact Information:  

Email address: MA_UELL@live.concordia.ca 

 

Faculty Supervisor: Nadia Hardy, Galia Dafni 

Faculty Supervisor’s Contact Information: 

Email address: nadia.hardy@concordia.ca, galia.dafni@concordia.ca 

 

You are being invited to participate in the research study mentioned above. The text below 

provides information about what participating would mean. Please read it carefully before deciding 

if you want to participate or not. If there is anything you do not understand, or if you want more 

information, please ask the researcher.  

 

A. PURPOSE 

 

mailto:MA_UELL@live.concordia.ca
mailto:nadia.hardy@concordia.ca
mailto:galia.dafni@concordia.ca
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The purpose of the research is to identify some well-known common misconceptions about limits 

and to investigate how and when they are overcome.  A secondary purpose is to find out if basic 

misconceptions might be replaced by new, similar misconceptions about more advanced topics. 

 

B. PROCEDURES 

 

If you participate, you will be asked to complete a questionnaire.  You will be allowed 3 hours to 

complete the questionnaire, it is more than enough time to do so and to take some breaks if you 

feel like you need them (without breaks, it would take you approximately 45 minutes to answer 

all questions). The 3 hours timer will begin when you start the questionnaire at a time of your 

convenience. 

 

The questionnaire has similar structure to a traditional exam, but significantly shorter. The 

questionnaire will test your knowledge and understanding of certain key concepts involving limits 

and is expected to require around 45 minutes to complete. 

 

In total, participating in this study will take at most two sessions of 3 hours – but likely a lot less 

as answering the questionnaire without breaks would not take more than 45 minutes. 

 

C. RISKS AND BENEFITS 

 

You might face certain risks by participating in this research. These risks include: Mild stress when 

completing the questionnaire because of its similarity to exams.  

 

Potential benefits include: Contributing valuable knowledge to the scientific community.  

Improving the quality of post-secondary mathematics education.  This research is not intended to 

benefit you personally.  

 

D. CONFIDENTIALITY 
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The researcher will gather the following information as part of this research: Your name, email 

address, netname and student ID. 

 

The researcher will not allow anyone to access the information, except people directly involved 

in conducting the research. The researcher will only use the information for the purposes of the 

research described in this form. 

 

The information gathered will be coded. That means that the information will be identified by a 

code. The researcher will have a list that links the code to your name. 

 

The researcher will protect the information by keeping the codes confidential and keeping the 

data in a locked computer. 

 

The researcher intends to publish the results of the research. However, it will not be possible to 

identify you in the published results as the data will be encoded to protect your identity, and 

individual-level data with identifiers will not be published. 

 

The researcher will destroy the information five years after the end of the study. 

 

Your instructors will not have access to the questionnaire, and they will not know who is 

participating.  Hence, your grades cannot be impacted by your participation in any way.  Research 

supervisor Dr. Hardy and the researcher are the only ones who have access to the Moodle site, 

and the researcher will be the only one who will be managing the data provided by your answers 

to the questionnaire. 

 

F. CONDITIONS OF PARTICIPATION 

 

You do not have to participate in this research. It is purely your decision. If you do participate, 

you can stop at any time. You can also ask that the information you provided not be used, and 

your choice will be respected.  If you decide that you don’t want us to use your information, you 

must tell the researcher before January 15th 2021.  Contact the researcher via email if you choose 
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that you do not want your information to be used, or if you want to request your information to 

be destroyed. 

 

There are no negative consequences for not participating, stopping in the middle, or asking the 

researcher not to use your answers to the questionnaire.  

 

G. PARTICIPANT’S DECLARATION 

 

The text above and the consent below will appear as you enter the questionnaire. You will not 

be able to continue with the questionnaire until you check the “I agree” box which indicates your 

consent to participate.  

 

I have read and understood the conditions of my participation in this research study. I have had 

the chance to ask questions and any questions I had have been answered. I agree to participate in 

this research under the conditions described. 

 

I agree [CHECK BOX] 

 

If you don’t agree, exit the questionnaire and let the researcher know via email that you will not 

participate.  

 

If you have questions about the scientific or scholarly aspects of this research, please contact the 

researcher. Their contact information is on page 1. You may also contact their faculty supervisors.  

 

If you have concerns about ethical issues in this research, please contact the Manager, Research 

Ethics, Concordia University, 514.848.2424 ex. 7481 or oor.ethics@concordia.ca. 
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A.2 Questionnaire 
 

1- Consent form (see appendix A.1) 

 

2- This question is to inform me about what you have been taught in your past calculus 

courses.  Answer "yes" if you have learned about the topics, answer "no" if you haven't.   

f. Limits of functions 

g. Continuity of functions 

h. Limits of sequences 

i. Convergence/Divergence of sequences 

j. Convergence/Divergence of infinite series. 

 

3- Consider the statement : lim
𝑥→∞

𝑓(𝑥) = 𝐿, 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≠ 𝐿 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

c) If possible, give one or more examples to explain your choice, your thinking and/or 

why you are not sure if this is true or false  

d) Would your answer change if lim
𝑥→𝑐

𝑓(𝑥) = 𝐿? Please explain your answer with as much 

detail as you can 

 

4- Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then, lim
𝑛→∞

𝑎𝑛 = 1 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

 

5- Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then,  lim
𝑛→∞

𝑎𝑛 = −1 

a) Is the statement true or false (write "I don't know" if you are not sure) 
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b) Clearly explain your choice, and how you are thinking about this (your thought 

process) 

 

6- Consider the sequence 𝑎𝑛 = (−1)𝑛 

Then, the sequence {an} diverges. 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

 

7- Consider 𝑓(𝑥) =
sin (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) converges to 0 as x→∞. 

 

 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question. 
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8- Consider 𝑓(𝑥) =
sin (𝑥)

𝑥
   as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, the limit of f(x) is 0 as x→∞. 

 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

c) If you answered ''I don't know'' to part a), please explain why the question is confusing 

to you. 

 

9- Consider 𝑓(𝑥) =
sin (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) tends to 0 as x→∞. 

 

a) Is the statement true or false (write "I don't know" if you are not sure) 
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b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

c) If you answered ''I don't know'', please explain what is confusing you in this question. 

 

10- Consider 𝑓(𝑥) =
sin (𝑥)

𝑥
   as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, f(x) approaches 0 as x→∞. 

 

a) Is the statement true or false (write "I don't know" if you are not sure) 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process)  

c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question 

 

11- Consider 𝑓(𝑥) =
sin (𝑥)

𝑥
  as x goes to infinity.  You may refer to the graph below if 

needed. 

Then, 𝑦 = 0 is an asymptote. 
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a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process). 

c) If you answered ''I don't know'' to part a), please explain what is confusing you in this 

question. 

 

12- Consider the following expression:  𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

Then, the sequence converges to 0. 9̇ 

Note: the 0. 9̇ notation refers to a 0 and infinitely many 9's after the decimal point. 

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process). 

Note: For students 1-5, this question was miswritten. The version those students received read : 

“𝑎𝑛 = ∑ (
9

10
)𝑘𝑛

𝑘=1 ” 

13- Consider the following expression: 𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

Then, the sequence converges to 1. 

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process). 

Note: For students 1-5, this question was miswritten. The version those students received read : 

“𝑎𝑛 = ∑ (
9

10
)𝑘𝑛

𝑘=1 ” 
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14- Consider the following expression:  ∑ 𝑎𝑘
∞
𝑘=1 = lim

𝑛→∞
∑ 𝑎𝑘

𝑛
𝑘=1  

a) Is the statement true or false (write "I don't know" if you are not sure). 

b) Clearly explain your choice, and how you are thinking about this (your thought 

process). 

 

15- Consider the following conversation between two fictitious students, nicknamed A and 

B.  The two students were asked to find the limit of the sequence 𝑎𝑛 = ∑ 9(
1

10
)𝑘𝑛

𝑘=1  

A: Alright, I think we should start by computing the first few terms of the sequence to see 

better what the pattern is. 

B: Good idea! 

The students notice that the sequence is as follows: {0.9, 0.99, 0.999, 0.9999, etc.} 

A: Just by looking at the pattern, it feels obvious that the limit is 0. 9̇. I don’t really know 

how to prove it though. 

B: Actually, I think the limit is 1.  When you look at the terms, they get closer and closer 

to 1 without ever reaching it, whereas at infinity, the sequence would reach 0. 9̇ and the 

limit is supposed to never be reached. 

A: But you can’t reach infinity, you can’t find the value of the “infinity-th” term. 

B: I think we can reach infinity, look at it this way:  ∑ 9(
1

10
)𝑘∞

𝑘=1  This is just an infinite 

series; we just need to figure out what it converges to using the usual tests. 

************************************************************************ 

In the questions below, please, write as much as you can to clearly explain what you are 

thinking.  

a) What do you think about A’s statement: “Just by looking at the pattern, it feels obvious 

that the limit is 0. 9̇”? 

b) In your opinion, what does B mean when they say: “at infinity, the sequence would 

reach 0. 9̇”? 

c) What is lim
𝑛→∞

𝑎𝑛? Clearly explain and justify your answer. 
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d) If you were to help A and B to solve the problem, what would you tell each of them 

regarding their reasoning? 

Note: For students 1-5, this question was miswritten. The version those students received read : 

“𝑎𝑛 = ∑ (
9

10
)𝑘𝑛

𝑘=1 ” 

 

16- Consider the following conversation between two fictitious students, nicknamed C and 

D.  You may use the graph below if needed. 

The two students were asked to find lim
𝑥→∞

𝑓(𝑥) + lim
𝑥→∞

𝑔(𝑥) 

For 𝑓(𝑥) = 4𝑥 (green curve) and 𝑔(𝑥) = 1 − 22𝑥 (blue curve) 

 

 

C:  We should compute the two limits individually first, to see if they converge or not. 

D:  Good idea.  Alright, clearly lim
𝑥→∞

4𝑥 must be infinity, right? If x gets bigger and bigger, 

than so does 4𝑥. 

C:  For sure, and I think it’s similar for lim
𝑥→∞

1 − 22𝑥.  As x gets bigger, −22𝑥 gets smaller 

and completely dominates the 1, so this would be negative infinity.  But what’s the sum of 

the two, then?  Would it be zero since we add infinity to negative infinity? 

D:  No, we can’t do that.  Infinity isn’t like any number; we can’t do algebra with it. 

C:  But look at the graphs, when we consider any x, f(x) and g(x) always sum to 1, it’s 

like they cancel out.  So, the sum of the limits must be 1 too, doesn’t it? 

D:  I’m not sure.  Maybe if we manipulate the functions a little bit, we could find 

something.  Right, so 𝑔(𝑥) = 1 − 22𝑥, but 22𝑥 = 4𝑥.  So, 𝑔(𝑥) = 1 − 4𝑥 
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C: So then, the function f(x) and the −4𝑥 part of g(x) would cancel out, and we’re left 

with just 1. 

 

************************************************************************ 

 

a) Do you agree with D when they say: “Infinity isn’t like any number; we can’t do 

algebra with it.”? 

 

b) What is lim
𝑥→∞

𝑓(𝑥) + lim
𝑥→∞

𝑔(𝑥) 

c)  If you were to help C and D to solve the problem, what would you tell each of them 

regarding their reasoning? 

 

17- A student says that it is always true that lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐).  

a) Is the student right? Clearly explain and justify your answer. 

If you answer no to part a), continue with questions b) and c):  

b) give one or two examples when the statement is not true. Can you give examples where 

the statement is true?  

c) What conditions are necessary for the statement lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) to be correct? 

 

18- Group the following functions according to any criteria of your choosing.  Choose criteria 

that reflect your understanding of limits at infinity 

g) 𝑓(𝑥) =
1

𝑥
 

h) 𝑓(𝑥) = 4 

i) 𝑓(𝑥) =
cos (𝑥)

𝑥
 

j) 𝑓(𝑥) = −(𝑒𝑥) 

k) 𝑓(𝑥) = sin (𝑥) 

l) 𝑓(𝑥) = ln (𝑥) 

 

19- a) Clearly explain your reasoning for why you put specific functions in specific groups. 

b) What conditions must functions satisfy to be put in each group? 

c) Although the question didn't give you the option to put the functions in multiple groups, 

are there functions that can belong in multiple groups? 
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20- When is the following equality correct? 

lim
𝑥→𝑐

(𝑓(𝑥) + 𝑔(𝑥)) = lim
𝑥→𝑐

𝑓(𝑥) + lim
𝑥→𝑐

𝑔(𝑥) 

 

21- Consider the following definition. 

lim
𝑥→∞

𝑓(𝑥) = 𝐿 𝑖𝑓 ∀ 𝜀 > 0, ∃ 𝑁 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑥 > 𝑁, |𝑓(𝑥) − 𝐿| < 𝜀 

a) Re-write this statement in common english, and briefly explain its meaning. 

b) Do you recognize what this statement defines? 

 

22- Consider the following two statements. 

1. ∀ 𝑎 > 0, ∃ 𝑏 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 > 𝑏 

2. ∃𝑏 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑎 > 0, 𝑎 > 𝑏 

 

a) Assuming that a and b are taken in the set of real numbers, are the two statements true 

or false? 

b) Are the two statements equivalent? Give an example or a counterexample 

 

23- Consider the following statement: 

𝑠𝑢𝑝(𝐴) = 1 where 𝐴 ⊂ 𝑅 

Recall the following two definitions: 

• An upper bound b of A is called a supremum of A if, for all upper bounds z of 

A, 𝑏 ≤ 𝑧  

• 𝑐 𝜖 𝐴 is called the maximum if ∀ 𝑎 𝜖 𝐴, 𝑐 ≥ 𝑎 

a) Explain in your own words what the statement means. 

b) Can you give an example of a set A which satisfies this statement. 

c) Consider the example you gave in b), is 1 the maximum of A?  Clearly explain your 

reasoning. 

24- Recall the following definitions: 
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• An upper bound b of A is called a supremum of A if, for all upper bounds z of 

A, 𝑏 ≤ 𝑧 

• 𝑐 𝜖 𝐴 is called the maximum if ∀ 𝑎 𝜖 𝐴, 𝑐 ≥ 𝑎 

 

 

True or false? A is any non-empty subset of the real numbers. 

a) If s is the supremum of A, then s is also the maximum. 

b) If s is the maximum of A, then s is also the supremum, 

c) It is possible for A to have a supremum and to NOT have a maximum. 

d) It is possible for A to have a maximum and to NOT have a supremum. 

 

25- Consider any sequence which is bounded. 

a) Does the sequence have a maximum? 

b) Does the sequence have a supremum? 

c) What can you infer about the limits of the subsequences of this sequence? 

d) Is the sequence convergent? 

 

26- Consider the set 𝐴 = {ln(𝑛) : 𝑛 = 1, 2, 3, . . . } 

Recall the following definition: 

• An upper bound b of A is called a supremum of A if, for all upper bounds z of 

A, 𝑏 ≤ 𝑧 

 

True or false? 

a) 𝑠𝑢𝑝(𝐴) = ∞ 

b) This set does not have a supremum, nor an infimum. 

c) The sequence 𝑎𝑛 = ln (𝑛) is monotone. 
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A.3 Student answers 
 

Note: If a student’s answer includes text of the form “FileXXX,” this indicates that the student 

included an image to support their answer. You may find the corresponding files in appendix A.4. 

Similarly, if an answer is exclusively the text “Blank,” this indicates that the question was left 

unanswered. 
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 Student 1* Student 2* Student 3* Student 4* Student 5* Student 6 Student 7 Student 8 Student 9 Student 10 

Q2 Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergenc
e/Divergenc
e of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 

yes 

Limits of 
functions 
Yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
No 
Convergence/
Divergence of 
sequences 
No 
Convergence/
Divergence of 
infinite series. 
No 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
No 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
no 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Limits of 
functions 
yes 
Continuity of 
functions 
yes 
Limits of 
sequences 
yes 
Convergence/
Divergence of 
sequences 
yes 
Convergence/
Divergence of 
infinite series. 
yes 

Q 3 a) True 

b) Here, we 
are observing 
the function 
f(x) for x goes 
to infinity. The 
limit indicates 
that when x 
goes to infinity, 
f(x) goes to L. 
However, that 
does not imply 
that f(x)=L, but 
rather that f(x) 
approaches L 
when 
observed to 
infinity.  

c) For 
example, if 
f(x)=1/x, then 
the limit of f(x) 

a) False. 

b) I thought of 
the constant 
function as a 
counter 
example right 
away so there 
is at least one 
function where 
f(x) can equal 
its limit. 

c) If f(x) = 5 
(i.e. a constant 
function) then 
lim f(x) = 5 and 
f(x) = 5 for 
every x. So the 
statement 
should be 
false. 

a) True 

b) For 
example, let 
f(x)=1/x. 
Therefore, 
lim f(x) = 0, 
but 1/x 
cannot be 
zero for 
every x 

d) No. For 
example let 
f(x)=1/x and 
c=0, 
therefore, lim 
f(x) = infinity, 
but 1/x can 
be inifinity 

a) False 

b) I'm thinking 
about the fact 
that when x 
gets closer to 
infinity, then 
f(x) gets closer 
to the limit. We 
extrapolate to 
think that x is 
going to reach 
that limit at 
some point. 
Also, when 
learning about 
limits of 
sequences, we 
know that a 
monotone 
convergent 
sequence will 
converge to its 

a) It is not true. 

b) I first 
thought about 
it with 
examples. 
That may be 
true for a 
function who 
has an 
assymptote 
equal to L. But 
it is not for a 
constant 
function. 

c) A constant 
function (f(x) = 
L). Also, 
(1/x)sinx (L = 
0). 

d) No, the 
constant 

a) true (unless 
f(x) is a 
constant 
function) 

b) The limit of 
f(x) as x goes 
to infinite 
means that as 
x approaches 
infinite, the 
function tends 
towards L. It 
does not 
necessarily 
reach L. But, 
in any case, 
for cases 
which aren't 
constant 
functions, the 
function will 
vary as x 

a) False 

b) & c) We can 
easily refute 
the statement 
with a simple 
counter-
example, take 
a function F: R 
to R where f(x) 
= L for all x 
element of R, 
then f(x) = L 
for every x and 
the limit of f(x) 
as x 
approaches 
infinity is also 
L. 
Furthermore, 
by keeping the 
definition of 
the limit in 

a) False 

b) I'm not sure, 
but I would 
think it 
depends on 
the function. It 
would seem 
that the 
function can 
equal to its 
limit for some 
value x. I think 
it's true that 
not all x will 
result in f(x) = 
L, but I think it 
is possible that 
f(x) can be the 
same as its 
limit, as x 
approaches 
infinity.  

a)  False  

b) In my mind, 
as x goes to 
infinity, the 
function goes 
to L. But, it 
doesn't mean 
that for every x 
the function 
gives back L. 
Unless the 
function is a 
constant one.  

c) A positive 
linear function 
explains it. At 
f(x) =o but as x 
goes to infinity, 
it goes to L  

a) True 

 

b) For the limit 
of a function to 
converge to L 
when x-> inf, it 
means that as 
x grows, the 
limit converges 
to L. However, 
the limit at a 
certain point 
might be 
something. 

 

c) As an 
example, I'm 
think of : 



117 

 

where x goes 
to infinity, the 
limit 
approaches 0 
(L), but never 
reaches it, 
therefore, f(x) 
does not equal 
L for any x. 

d)Yes, in the 
case this limit 
could be 
f(x)=L. Here 
we consider 
the limit of f(x) 
where x goes 
to c, a value. 
This means 
that we 
consider the 
limit around a 
point, so if the 
function is 
continuous, 
f(x)=L. For 
example, if 
f(x)=x and c=0, 
then the limit 
of f(x) as x 
goes to 0 is 
equal to 0 (L), 
which is equal 
to the value of 
f(x), so f(x)=L. 
However, if the 
function is not 
continuous, 
say  

f(x)= {x  for ]-
inf,0[ U ]0,inf[  

5 for {0} 

Then the limit 
of f(x) as x 

d) A constant 
function (f(x) = 
L) has the 
same value of 
L for every x 
so the 
statement 
can't be true 

supremum and 
that the 
supremum can 
be inside the 
set (if the set 
is closed) 
therefore I 
think f(x) can 
be the limit. 

c) Let f(x)=c 
where c is 
constant, then 
Lim(f(x)) as x 
tends to infinity 
is c. So f(x)=L. 

d) My answer 
would not 
change 
because of the 
idea that 
monotone 
convergent 
sequences will 
converge to 
the supremum 
of the set they 
are in. 

 

function 
example is still 
valid. For 
continuous 
functions, we 
also have that 
the limit when 
x goes to c is 
f(c). 

increases and 
therefore, the 
function 
cannot be 
equal to L on 
its whole 
domain 
without being 
a constant 
function.  

c) For 
example, the 
limit of f(x)=x 
as x goes to 
infinite is 
infinite, but, if 
we take for 
example x=3, 
than, f(x)=3 
and not equal 
to infinite, 
therefore f(x) 
is not equal to 
L on every x. 
Furthermore, if 
the limit is 
infinite, then 
f(x) keeps 
going towards 
infinite but 
never actually 
reaches 
infinite as it 
isn't a finite 
number. But, 
on the other 
hand, if we 
look at a 
constant 
function, for 
example 
f(x)=3, then 
limit as f(x) 
goes to infinite 

mind, it is easy 
to see why the 
proposed 
statement is 
not generally 
true. 

d) No, a 
constant 
function would 
still be a great 
counter 
example 

 

c) For 
example, a 
function that 
oscillates, but 
decreases as 
x goes to 
infinity can 
have a limit of 
0, and actually 
have f(x)=0 at 
some point for 
some x. In that 
case, that 
statement 
would be false. 

d) If instead of 
approaching 
infinity, it 
approaches a 
value c, then I 
think that the 
statement 
would still be 
false. Because 
when it 
approaches to 
a specific 
value of a 
function, then 
as long as 
there is no 
discontinuity, 
then it should 
be able to 
reach the limit 
for some x. 

 

d) no, because 
the same logic 
as b)  

 

Limit of 
/(n+1) as n -> 
inf. As n goes 
to infinity, the 
limit converges 
to 1. However, 
as n goes to c 
element of N, 
it will converge 
to 1/(1+1/c), 
which could be 
2/3 if c=2.  

 

d) As 
answered 
above, while c 
varies, the limit 
is dependent 
of the value 
that c will 
take.  
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goes to zero 
would be 0, 
and so f(x) 
does not equal 
L (f(x)=5 does 
not equal 
L=0). 

 

is 3 and f(x) = 
3 on every 
single x, 
therefore this 
is a special 
case that 
shows that the 
statement is 
false for 
constant 
function. Yet, 
the statement 
remains true 
for other cases 
even in the 
function does 
not tend 
towards infinite 
but rather 
tends towards 
a finite 
number, since 
by the fact that 
they aren't 
constant 
function they 
must vary, and 
by such, they 
cannot be 
equal to the 
limit at every x. 
(I've been 
trying to find 
an example for 
a function with 
a finite number 
as a limit and I 
know there are 
common ones, 
but I can't 
think of one at 
the moment.) 

d) My answer 
would not 
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change. Again, 
it would be 
true for the 
same reasons 
as a function 
varies 
therefore it 
cannot be 
equal to its 
limit at every x 
(again, except 
for constant 
functions).  

 

Q 4 a)False 

b)This limit is 
divergent. If 
we expand the 
series starting 
from 1, we get 
an= {-1,1,-1,1,-
1,1,-1,1,-1,1,-
1, ...}. 
Therefore, we 
cannot define 
the limit, as we 
keep going 
from -1 to 1 
and vice 
versa. I cannot 
recall which 
property this 
follows 
however, 
simply that the 
series never 
reaches or 
approaches 
more a 
number than 
another, so it 
is undefined 

a) False. 

b) {An} = (-
1,1,-1,1,-
1,1,...) 

Graphically, 
this sequence 
is jumping 
between -1 
and 1 so 
intuitively, the 
sequence 
cannot 
converge to 1. 

More 
analytically, 
the sequence 
can be 
decomposed 
into 2 constant 
subsequences
. Where the 
odd valued 
subsequence 
converges to -
1 and the even 
valued 
subsequence 
converges to 

a)false. The 
sequence is 
divergence. 

n) (an) = {1,-
1,1,-1,1,-
1,...} 

 

a) False 

b) The 
sequence can 
take 2 distinct 
constant 
values, 1 and -
1. Therefore I 
can create two 
constant 
subsequences 
where  

an = 1 when n 
is even 

an = -1 when n 
is odd 

Knowing that 
for a sequence 
to converge to 
a single limit 
(accumulation 
point) we need 
all the 
subsequences 
to converge to 
that same 
limit, I think 
that it is wrong 

a) It is not true. 

b) We can 
break the 
sequence into 
two 
subsequences
. The odd 
numbers and 
the even 
numbers. One 
subsequence 
converges to -
1. The other 
one converges 
to 1. Since 
there are two 
subsequential 
limits, the 
sequence can 
not converge 

a) false  

b) As can be 
seen from the 
uploaded pdf, 
the sequence 
(drawing 1) 
oscillates 
between -1 
and 1, which I 
believe was 
called an 
oscillating limit 
(but very very 
unsure). Since 
it isn't 
oscillating and 
decreasing its 
range of 
oscillation at 
the same time 
like in drawing 
2, there isn't a 
1 limit that it 
reaches. By 
comparison, in 
drawing 1 
(which would 
be the limit 
involved in the 

a) False 

b) The series 
is divergent, 
the limit does 
not exist. 
Although, you 
could have a 
subsequence 
with limit 1, as 
well as a 
subsequence 
with limit -1 

 

a) False 

b) I believe 
that is false, 
because n can 
be an even or 
odd number. 
An even 
number yields 
to a value of 1, 
and an odd 
number yields 
a value of -1. 
The sequence 
will then be 
composed of 
values that 
alternate 
between 1 and 
-1, as n goes 
to infinity. 
There is no 
defined limit. 

 

a) False  

 

b) the 
sequence is : -
1, 1, -1, 1, 
hence the limit 
doesn't exist 
because it's 
not convergent 
to 1 

 

a) False 

 

b) The limit is 
divergent 
since a_n is 
the sequence 
(-1,1,-1,1,-
1,1...) which 
means there 
are two 
subsequences 
: 

 

1) (-1,-1,-1,-
1,...) 

 

2) 
(1,1,1,1,1,1...) 

 

Hence the 
sequence has 
two 
convergent 
subsequences
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1. For a 
sequence to 
converge, all 
of its 
subsequences 
must converge 
to the same 
limit as the 
sequence. 
Therefore, An 
cannot 
converge 
since you can 
find 
subsequences 
of An that 
have different 
limits 

to say that the 
limit of this 
sequence can 
be stated like 
this 

true or false), 
the sequence 
will always 
oscillate 
between -1 
and 1 without 
having that 
"distance 
between -1 
and 1" 
decrease, 
versus 
drawing 2, 
where that 
"distance" 
decreases and 
where a limit 
would be able 
to be found. 
Therefore, the 
limit for this 
particular 
sequence 
(an=(-1)^n) 
would not 
have a limit 
(DNE). 

See FileS6-1 

, making it 
divergent. 

 

Q 5 a)False 

b) As 
previously 
mentioned, 
when 
expanding the 
an series, we 
notice that it is 
a constant 
shift between -
1 and 1. 
Therefore, we 
cannot 
determine on 
which number 

a) False 

b) By same 
reasoning as 
Q4. 

(For a limit to 
converge, all 
of its 
subsequences 
must also 
converge to 
the same limit 
as the 
sequence 
itself.) 

a) false. The 
sequence is 
a divergence 
b) (an) = {1,-
1,1,-1,1,-
1,...} 

 

a) False 

b) Again, this 
sequence has 
two constant 
subsequences 
that converge 
to different 
points whether 
n is odd or 
even. We 
cannot say 
that the limit of 
this sequence 
is -1 since 
when n is 

a) False 

b) Again, we 
can break the 
sequence into 
two 
subsequences 
(odd and 
even). This 
gives us two 
different 
subsequential 
limits. 
Therefore, it 

a) false 

b) See 
reasoning for 
question 4. 
This is the 
same 
sequence as 
question 4 
and, following 
the same 
reasoning, the 
sequence 
does not have 
a limit 

a) False 

b) For the 
same reason 
as the 
previous 
question, 
although to be 
more precise, 
there is exist 
no 'n0' 
element of the 
naturals where 
for all 
Episilon>0,  |a
n-L|<Episilon 

a) False 

b) As the 
question 
before, 
because n can 
be odd or 
even, making 
the sequence 
alternate 
between 1 and 
-1, the limit is 
not defined, 
it's not 1 or -1. 
However, I 
think that 

a) False 

 

b) same logic, 
the sequence 
is as follow : -
1,1,-1,1 .. 
hence it 
doesn't 
converge to -1. 
The limit DNE 

a)False 

 

b) As 
explained on 
question 4, the 
sequence has 
two 
convergent 
subsequences
, hence it 
diverges. 

The limit might 
as well be 
equal to 1 or -



121 

 

the limits 
approaches as 
it approaches 
both equally. It 
is undefined 

 even, the 
subsequence 
converges to 
1. (Same 
thought 
process as 
before). 

 

cannot 
converge. 

In simpler 
words, we can 
see that as n 
grows, the 
sequence still 
alternates 
between -1 
and 1. It does 
not depend on 
the size of the 
number but 
the category 
(odd or even, 
infinity is 
neither). 

 

 when 
n>n0   That is, 
for L=1 or L=-
1, no matter 
how large n0 
may be, 
Episilon would 
have to be 
greater than 2 
for the 
inequality to 
always hold... 

 

would be true 
if we restricted 
the n to only 
odd values. 

 

1, hence 
proving its 
divergence. 

 

Q 6 a) True 

b)Since an 
goes 
constantly 
from -1 to 1, 
we cannot 
determine on 
which number 
the series 
approaches, 
as it goes 
equally to 
both. Since we 
cannot set a 
number to 
which the 
series 
approaches, 
then it 
diverges 

a) True 

b) {An} only 
takes on 
values of -1 or 
1. By same 
logic as 
before, you 
can find 2 
subsequences 
with different 
limits so the 
sequence itself 
doesn't 
converge and 
so it diverges.  

I suppose if 
one is not 
convinced by 
that argument, 
you could 
argue that 
graphically, 
the sequence 
does not 

a) True. 

b) (an)={1,-
1,1,-1,1,-1} 

 

a) True 

b) The 
definition of a 
divergent 
sequence from 
this call is of a 
sequence that 
does not 
converge to a 
unique limit. 
Therefore this 
sequence 
diverges. 

(However, the 
word 
divergence 
does intuitively 
give the idea 
that thigs need 
to get "further" 
from each 
other, like the 
function 
xsin(x) which 

a) That is true. 

b) There are 
two 
subsequential 
limits. 
Therefore it 
must diverge 

a) true 

b) See 
reasoning for 
question 4 and 
5, since the 
limit does not 
exist, it must 
diverge.  

 

a) True 

b) The 
subsequence 
a2n has limit 1 
and the 
subsequence 
a(2n+1) has 
limit -1, hence 
the sequence 
is not 
convergent 
and thus must 
be divergent. 

 

a) True 

b) The 
sequence 
never reaches 
a limit, as it 
alternates 
between the 
values 1 and -
1. As n goes to 
infinity, it will 
never 
converge to 
the same 
point. 

 

a) True  

b) it diverges 
because the 
sequence is as 
follow : -1,1,-
1,1, as n goes 
to infinity. 
Hence, it 
doesn't 
converge to a 
specific 
number, but 2. 
Hence, it 
diverges 

 

a) True 

 

b) Since a_n = 
(-1,1,-1,1,-
1,1,...), then it 
has two 
convergent 
subsequences
  

 

1) (-1,-1,-1,-1,-
1,...) 

2) 
(1,1,1,1,1,...) 

 

Hence 
diverging. 

 



122 

 

approach a 
particular 
value since it 
just jumps 
between 1 and 
-1 

seems to be 
expanding. But 
that's just a 
thought.) 

 

Q 7 a) I am more 
inclined to say 
True, although 
I am not 100 
percent sure of 
this answer. 

b) I would say 
the limit goes 
to zero, since 
the limit of 1/x 
as x goes to 
infinity is zero, 
and since 
sin(x) is 
divided by x, 
then f(x) would 
also approach 
zero. The 
confusing part 
about this 
function is the 
top part, as 
sin(x) on its 
own is a cyclic 
function, 
therefore 
would be 
divergent. But 
since it is 
divided by x 
that goes to 
zero, then the 
entire function 
would go to 
zero. When 
thinking about 
it for longer, it 
makes sense 

a) True 

b) Let g(x) = 
1/x. I know 
that lim g(x) as 
x approaches 
infinity is equal 
to 0. (Dividing 
1 by an 
infinitely large 
number is 
approximately 
0). The range 
of f is 
contained in 
the interval (-
1,1) so as x 
approaches 
infinity, the f's 
denominator 
will 
"overpower" its 
numerator 
resulting in the 
limit being 0 

a) True. 

b) According 
to graph, 
when x 
increase or 
decrease 
infinitely, f(x) 
tends to be 
zero 

a) True 

b) I can see 
that the 
"waves" get 
closer and 
closer to the x 
axis as x gets 
further from 0. 
This means 
that I can take 
any 
subsequence 
of this function 
(pi/2, 5pi/2, 
9pi/2...) and it 
will be 
converging to 
0. 

a) It is true. 

b) We see two 
main functions 
in the function 
that are 
multiplied. 
Sinx is always 
between -1 
and 1. And 1/x 
obviously 
grows smaller 
as x increases. 
If we multiply 
something that 
gets smaller 
and smaller by 
something that 
almost stays 
constant 
(between -1 
and 1), then it 
gets smaller 
and smaller. 

Also, we could 
use the 
Squeeze 
theorem to 
show that (but 
the idea would 
be similar to 
the 
explanation) 

a) true 

b) This is a 
great example 
of the kind of 
sequence I 
was trying to 
explain in my 
drawing in 
number 4's 
pdf. Obviously, 
this is a 
function and 
not a 
sequence, but 
the same idea 
applies. Since 
the function is 
oscillating 
around 0, but 
that the 
distance 
between each 
"wave peak" is 
decreasing as 
x increases 
after x=0 (and 
symmetrically 
on the 
negative side 
as well). As x 
goes to 
infinite, the 
function tends 
towards zero 
since the 
oscillations 
become closer 
and closer to 0 

a) True 

b) -1/x < 
sin(x)/x < 1/x, 
note -1/x & 1/x 
goes to 0 as x 
approaches 
infinity, then by 
squeeze them. 
sin(x)/x also 
goes to 0 as x 
approaches 
infinity. 

 

a) True 

b) We can see 
from the graph 
that as x goes 
to infinity, the 
oscillation of 
the function 
becomes 
smaller and 
smaller, and 
f(x) is going 
towards the x-
axis, where 
f(x)=0. 
Therefore, the 
limit of this 
function is 0, 
as x 
approaches 
infinity. 

 

a) True  

 

b) By 
squeezing 
theorem  -1 < 
sin(x)< 1 then 
-1/x < sinx/x< 
1/x as x goes 
to infinity, it 
gives zero . 
Hence, the 
function goes 
to zero 

 

a)True 

 

b) as sin(x) 
grows to 
infinity, the 
function sin(x) 
is bounded by 
(-1,1). Given 
epsilon > 0, 
we know that 
|sin(x)-0| < 
epsilon. Since 
sin(x) is 
bounded by -1 
or 1, we can 
establish that 

                        
  |sin(x)-0|/|x| = 
|1-0|/|x|=|-1-
0|/|x| 
=1/x<epsilon  

Establishing 
the function 
sin(x)/x < 1/x < 
1/x, the we 
know that 1/x 
converges to 0 
has n goes to 
infinity, which 
means that 
sin(x)/x also 
goes to infinity. 
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that it 
approaches 0 
when x goes 
to infinity, 
since the 
denominator 
gets bigger 
and the 
nominator 
varies 
constantly 
between the 
same values, 
so f(x) would 
become 
smaller and 
smaller as x 
goes to infinity 
and would 
tend to 0 

on both sides 
(squeezing it 
symmetrically 
from the 
positive and 
negative y 
directions). 

 

Q 8 a) False 

b) We need to 
specify which 
limit here we 
are talking 
about. If we 
are talking 
about the limit 
of x going to -
infinity or 
infinity, then 
yes the limit of 
f(x) is equal to 
0 (as 
explained on 
the previous 
page, we have 
to consider the 
1/x part that 
goes to zero 
as x goes to -
infinity or 
infinity). 

a) True 

b) I'm not sure 
if I misread the 
last question, 
but I thought it 
was asking the 
same as this 
question. I was 
under the 
impression "f 
converges to 
0" and the 
"limit of f is 0" 
were 
synonymous in 
this context 

 

a) True. 

b) 0 is 
accumulatio
n point 

a) I don't know 

b) The 
statement 
does not 
clearly state 
that we are 
talking about 
the limit to 
infinity. For 
example, as x 
goes to 0, 
there seems to 
be a limit 
which is equal 
to 1.  

c) I would think 
that there are 
more than one 
limit 
depending on 
the point we 
are 
approaching. 

a) This is true 
if we consider 
the limit as x 
goes to infinity. 

b) There is no 
difference with 
number 7, if 
we are talking 
about the limit 
as x goes to 
infinity. Saying 
that f(x) 
converges to 0 
as x goes to 
infinity or that 
the limit of f(x) 
as x goes to 
infinity is 0 is 
the same thing 
to the best of 
my knowledge. 
Is is not that 
the limit is the 
notation to 

See FileS6-2 a) True 

b) The wording 
of the question 
may have 
changed 
slightly, but 
appears to 
essentially 
state the same 
thing as 
before, so my 
reasoning is 
unchanged. 

 

a) True 

b) From the 
graph, we can 
see that the 
oscillation 
becomes 
smaller and 
smaller, as x 
goes to infinity. 
It goes 
towards the x-
axis, where 
f(x)=0. 
Therefore, the 
limit of this 
function is 0. 

 

a) True  

 

b) Squeeze 
theorem as 
explained in 7  

 

a) True 

 

b)We can say 
that given 
epsilon > 0, 

 

|sin(x)-0|/|x| < 
1/x where 1/x 
converges to 
0.  

 

Hence, the 
limit of f(x) 
goes to 0. 
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However, if 
were talking 
about a 
specific value, 
so x goes to c, 
then the limit 
would be a 
number. For 
example, for x 
goes to 0, the 
limit of f(x)=1. 

 

refer to the 
convergence? 

However, if it 
is not what we 
meant, then 
saying "the 
limit" does not 
necessarily 
mean we are 
considering 
the case when 
x goes to 
infinity. 

Q 9 a)True 

b)(***I may 
have read 
wrong 
previous 
question 7, as 
I answered 
exactly what I 
am about to 
answer for this 
question, it 
might have 
been written - 
infinity on 
question 7 and 
I misread, I am 
sorry. It is the 
same answer 
though, if x 
goes to minus 
infinity or to 
infinity, the 
limit of f(x) 
goes to zero, 
and it is the 
same logic 
(following the 
limit of 1/x)) 

a) True 

b) My logic is 
that as x goes 
to infinity, "f 
tends to 0" if 
and only if "the 
limit of f is 0" if 
and only if "f 
converges to 
0."  

So again, I 
was under the 
impression the 
terms are 
synonymous in 
this context 

 

a) True. 

b) The graph 
shows as x 
goes to 
infinity, f(x) 
tends to be 
zero 

a) False 

b) Again, I 
would say that 
f(x) tends to 0 
as x tends to 
infinity. But 
there are also 
other limits like 
the limit as x 
tends to 0 or 
as x tends to 
any other 
point. Because 
this is a 
continuous 
well defined 
function, it 
might seem 
trivial to talk 
about these 
limits but I 
believe they 
still exist. 

 

a) This is true 
if we mean 
that it tends to 
0 as x goes to 
infinity. 

b) These were 
used 
alternatively in 
my math 
classes if I 
recall well. 
"Convergence"
, "tend to", 
"goes to" 
means the 
same thing to 
me. 

a) true 

b) This is the 
same question 
as 7 and 8, 
therefore I 
have the same 
reasoning. 
Hopefully I am 
not missing a 
different word 
on meaning, if 
so, I'm sorry!  

 

a) True 

b) Again the 
wording 
seems to have 
changed but 
appears to 
state the same 
as before. My 
reasoning is 
left 
unchanged. 

 

a) I don't know 

b) I believe 
that its limit is 
0 for the 
reasons that 
I've said 
previously. I'm 
guessing by 
"tends to", we 
are referring 
that the 
function is 
going towards 
a specific 
value, no 
matter the 
value of x that 
is in question, 
then I think 
that yes, it 
tends to 0. 

c) I'm not sure 
if "tends to" is 
the same as 
saying the 
limit. 

 

a) True  

 

b)same thing 
as previous 
questions / 
squeeze 
theorem .. 

 

a) True 

 

b) Given 
epsilon > 0, 

We can 
establish that 
|sin(x)-
0|/|x|<1/x and 
1/x converges 
to 0. Hence 
the limit 
converges. 
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The top part of 
the function is 
cyclic, so that 
part only 
would give a 
divergent limit. 
But the 
denominator, 
as x goes to 
infinity, 1/x 
goes to 0. 
Therefore, 
when put 
together, f(x) 
goes to zero 
as x goes to 
infinity 

Q 
10 

a)True 

b)This is the 
exact same 
question as 9, 
I will briefly re-
explain: Since 
sin(x) is cyclic, 
it is a 
divergent limit, 
but 1/x goes to 
zero when x 
goes to infinity, 
so when put 
together, f(x) 
goes to zero 
when x goes 
to infinity 

a) True 

b) same 
reasoning as 
previous 3 
questions. 
Synonymous 
terms 

a) True. 

b) The graph 
shows that 
f(x) tends to 
be zero, 
while x 
approach 
infinity. 

 

 

a) False 

b) Same 
thought 
process, f(x) 
approaches 0 
as x 
approaches 
infinity 

a) I am not 
sure about this 
one, but would 
most likely say 
it is true. 

b) Approaches 
means that it 
gets closer to. 
Thus it must 
mean the 
same thing as 
converging to 
or going to. 

c) It has rarely 
been used in 
my math 
classes to talk 
about the 
converge of 
f(x) (I do not 
remember 
hearing it in 
this context). 
However, I 
recall it being 
used to say 

a) True 

b) Just 
realized that 
the last 
question 
asked if it 
tends towards 
and now if it 
approaches 0. 
I still think that 
they are both 
true. And that 
the limit also is 
equal to 0. (all 
questions still 
true) and 
again with the 
same 
oscillating 
reasoning. 
But, as for if 
these 
questions are 
the same, 
Since the limit 
is equal to 0, 
then because 

a) True 

b) The wording 
is changed but 
appears to 
state the same 
as before. My 
reasoning is 
unchanged. 

 

a) True 

b) The function 
does seem to 
approach 0 as 
x goes to 
infinity as the 
f(x) keeps 
decreasing in 
its oscillation 
as x increases. 
It does not 
seem that it's 
going increase 
again, 
therefore it 
approaches 0. 

 

Blank a) True 

 

b)As the 
function sin(x) 
goes to infinity, 
it is bounded 
by -1 and 1. 
Hence, the 
output value 
will always be 
in the range [-
1,1]. 
Therefore, 
given epsilon 
>0, we can 
say 

 

                    |si
n(x)-0|/|x| = |1-
0|/|x|= |-1-
0|/|x|= 1/x < 
epsilon 
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"as x goes to 
c" --> "as x 
approaches 
c".  

 

the definition 
of limit is more 
strict than 
simply saying 
it tends 
towards or 
approaches, 
we can also 
say that f(x) 
tends towards 
0 or 
approaches 0 
as x goes to 
infinite. The 
limit equality is 
the stricter 
definition of 
the 3 although 
we often 
speak of limits 
as tending 
towards and 
approaching. 
Therefore if 
the limit as x 
goes to infinite 
is EQUAL to 0, 
then we can 
say that it 
approaches or 
tends towards 
0. But, 
someone is 
telling me that 
function f(z) 
approaches to 
0 or tends 
towards 0 as x 
goes to 
infinite, I 
wouldn't say 
that the limit is 
equal to 0, 
without 
properly 

Since it is 
know that 1/x 
converges to 
0, we can 
establish that 
the limit of f(x) 
as the limit 
goes to infinity 
will also 
converge to 0. 
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calculating the 
limit using 
calculus and 
theorems. 
Therefore, if I 
can re-explain 
the question 
where we are 
asked the limit 
with the equal 
sign, I would 
also add that 
using calculus 
and theorems, 
the limit of f(x) 
as x goes to 
infinite is = to 
0. Just by 
looking at the 
graph, we say 
that it 
approaches or 
tends towards 
0, but to 
actually have 
the limit equal 
0, we need to 
calculate it or 
use theorems 
to prove it.  

 

Q 
11 

a) False 

b) I am not 
sure of the 
exact definition 
of an 
asymptote, but 
to my 
knowledge, its 
a linear 

function 
 that f(x) would 

a) True 

b) f(x) 
oscillates 
around the x-
axis. Every 
time f(x) 
reaches a 
local min it 
increases until 
it reaches the 
next local max 
and then 

a) True. 

c) The graph 
seems 
asymptote at 
y=0 

 

a) False 

b) If I 
remember well 
from Calculus, 
an asymptote 
is not reached 
but is 
approached as 
x tends to a 
certain value 
(not 
necessarily 

a) I do not 
know. I would 
rather say it is 
true than not. 

b) I have 
considered 
asymptote in 
the context 
that the 
function was 
bounded by 
that 

a) I don't know 

b) I don't quite 
know the 
definition of an 
asymptote by 
heart, so I 
don't know if it 
qualifies as an 
asymptote or 
only acts as 
one. From 
what I can 

a) True 

b) As x 
approaches 
infinity, the 
function will go 
to zero  

 

a) False 

b) Because 
from what I 
remember, an 
asymptote is a 
line that the 
function 
approaches 
towards but it 
will never be 
able to reach 
it. In this case, 

Blank a) False 

 

b) Since sin(x) 
is bounded by 
-1 and 1, it has 
both a 
negative and 
positive ouput 
when taking 
the function 
alone (without 
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approach but 
never reach 
(so f(x) would 
never equal y). 
A good 
example for an 
asymptote if 
for f(x)=1/x as 
x goes to 
infinity, then 
y=0 is an 
asymptote as 
1/x 
approaches 0 
when going to 
infinity, but 
never reaches 
zero.  

However, in 
our case, y=0 
is not an 
asymptote as 
f(x) crosses 
y=0 multiple 
times 

decreases 
until it reaches 
the next local 
min. The 
absolute value 
of each local 
min/max is 
always smaller 
than the 
previous one. 

So as x 
approaches 
infinity the 
local min/max 
will become 
increasingly 
smaller, 
becoming 
approximately 
zero. Thus y=0 
serves as an 
asymptote 
since f(x) 
approaches it 
as x 
approaches 
infinity. 

*I forget the 
exact definition 
of asymptote. 

 

infinity). For 
example for 
the function  

f(x)=-x/(x-1), 
there is an 
asymptote at -
1 when x 
tends to infinity 
or - infinity 

asymptote. For 
example, 1/x 
clearly has an 
asymptote at x 
= 0 and y = 0. 

c) I am 
confused by 
the fact that 
this particular 
function goes 
over and 
below the 
"asymptote" (if 
it is one). I do 
not recall the 
exact definition 
of an 
asymptote, 
since it goes 
back to the 
beginning of 
CEGEP. The 
"definition" I 
have in mind is 
more of a 
picture that is 
letting me 
down here 

recall, an 
asymptote is 
an "invisible" 
line which a 
function 
approaches 
but never 
really touches. 
Thus, by this 
definition, y=0 
would not be 
an asymptote, 
because the 
function 
crosses y=0 
constantly. 
Yet, if the 
definition is 
only that it 
approaches 
this line, then, 
it would be 
called an 
asymptote 
because the 
function does 
end up 
approaching 
the line y=0. 

c) I answered I 
don't know 
because I 
can't recall the 
exact definition 
of an 
asymptote, but 
if I were to go 
with my 
reasoning and 
what I think I 
recall, I think 
this would not 
be considered 
a "normal" 

this function 
does approach 
towards 0. 
However, I 
think at some 
point x, it will 
also reach the 
value f(x)=0. 
Because it can 
be reached, 
then y=0 is not 
considered to 
be an 
asymptote. 

 

the 
denominator of 
x). Hence, as 
seen on the 
graph, it goes 
down the x-
axis and 
above the x-
axis, while the 
function 
should never 
touch an 
symptote. 
Hence, we can 
say that it is 
not an 
asymptote.  

 



129 

 

asymptote, but 
I recall hearing 
about it in 
math 364 and 
maybe we 
called it a 
special kind of 
asymptote or 
maybe we 
didn't (I can't 
recall 
correctly). Yet, 
by the 
definition that 
the function 
does not touch 
an asymptote, 
obviously this 
couldn't be 
considered an 
asymptote 

 

Q 
12 

a)False  

b)I first 
expanded the 
series to 
obtain a 
simplification. 
From that 
simplification, I 
did the limit as 
n goes to 
infinity, which 
gave me 9. So 
the sequence 
converges to 
9. (Please 
refer to the 
calculations I 
have put in 
attachment 
FileS1 

a) I don't know 

b) Just a 
disclaimer, I 
learned 
convergence/d
ivergence of 
series in cal 2 
in cegep but I 
don't quite 
remember 
anything of it 
and I haven't 
taken MATH 
365 yet so I'm 
not too familiar 
with the topic. 

However, I am 
comfortable 
with computing 
sums, so 

a) false 

b)a1=0.9, 
a2=1.71, 
a3=2.439... 
not even 
close to 
0.9999999 

 

a) False 

b) an = 9/10 = 
0.9 when n=1 

    an = 9/10 + 
81/100 = 1.71 
when n = 2 

therefore it 
cannot 
converge to 
0.9 dot 

a) It is false. 

b) This is a 
geometric 
series. From 
the formula to 
solve 
geometric 
series, a_n = 
(1-
(9/10)^n)/(1-
(9/10)) = 10(1-
(9/10)^n). As n 
goes to infinity, 
we multiply 
(9/10) infinitely 
many times, 
this part goes 
to zero. We 
are left with 1 
that goes to 0. 

a) True 

b) See pdf 
FileS6-3, but it 
seems like the 
more we add 
on, we are 
always ending 
up adding one 
extra 9 at the 
end of the 
decimal series. 
Which means 
it would 
converges to 
that 0.9dot 
notation. I am 
unsure about 
this one, 
because first 
of all I don't 
remember 

a) False 

b) The 
geometric 
sum, (1/10)^k 
from 1 to n, 
converges to 
1/(1-
1/10)=1.11111
111...  and 9 
times that is 
10 

 

a) I don't know 

b) I feel like it 
would make 
more sense to 
say that it 
converges to 1 
instead of 
saying it 
converges to 
0.9 (with 
infinitely many 
9s), although I 
can see where 
this statement 
would come 
from. When 
we say that it 
converges to a 
certain 
number, from 
what I 

a)  I don't 
know  

 

b) if n is finite 
number, then 
yes it would 
converge but I 
am not sure  

 

a) True 

 

b) By the 
properties of a 
summation, 
we can write : 

 

∑ 9(1/10)^k = 
9 
*∑ (1/10)^k      

 

If we expand 
the 
summation, 
we can see 
the terms are  

1/10 + 1/10^2 
+ 1/10^3 + 
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based on my 
knowledge of 
computing 
sums, my 
answer to a) 
would 
be False beca
use if 
n=infinty, then 
the sum is 
equal to  1/(1-
0.9) - 1 = 9. 

And if one of 
the values of 
the sequence 
at infinity is 
approximately 
9, then it does 
not seem 
logical that the 
sequence 
converges to a 
much smaller 
number of 
0.999999. 

 

Thus, we get 
10*1 = 10. 

However, I am 
not sure if 
there was a 
mistake in the 
question: 
maybe the 
intent was to 
get the sum of 
9(1/10)^n. 
Then, this 
would create 
more 
confusion to 
me. I believe 
the answer 
would be that 
0.9999999 
(infinitely many 
9) = 1 from the 
geometric 
series formula, 
so these could 
be used 
alternatively 

much about 
sequence 
limits, and 
secondly, I am 
unfamiliar with 
the notation, 
and even if 
there is a 
notation to it, 
the fact that it 
is converging 
to a non-
rational 
number means 
that this 
number 
continues 
infinitely, and 
therefore it is 
not a finite 
number. Thus, 
can a function 
or sequence 
converge to a 
non-finite 
number, or 
does that 
mean it is 
diverging? I 
think it is still 
converging 
because it is 
getting more 
precise with 
every 
additional 9, 
but it is not 
100% clear for 
me. 

 

understand, it 
means the 
value where 
the sequence 
goes towards 
to. In this 
case, it will 
never reach 1 
because we 
keep adding 
9s in the 
decimal, but it 
will approach 
to 1 as n goes 
to infinity. 

 

1/10^4 + ... + 
1/10^n .  

which means 
the summation 
(without the 
coefficient of 
9) is 
0.11111111...1
11 

Thus if we 
multiply the 
coefficient of 9 
the the output 
of the 
summation, 
the result will 
be  

9 
* 0.11111111..
.111 = 
0.9999999...99
9 

 

Q 
13 

a)False 

b)This is the 
same 

a) I don't know 

b) same 
answer as 

a) false 
b) same to 
Q12 answer  

a) False a) Again, this 
is false. It 

a) True 

b) From this 
question, I 

a) False 

b) As 
explained 

a) True 

b) I would say 
that it does 

a)  I don't 
know  

a) False 
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calculations 
and train of 
thoughts as 
the previous 
question, since 
it is the exact 
same serie. I 
have attached 
the 
calculations, 
which gives 
that the series 
converges to 
9, not 1. 
FileS1 

before. I would 
say false 
because the 
sequence 
evaluated at 
infinity would 
have a value 
that is 
approximately 
9 

 b) Same 
argument 

an = 0.9 when 
n =1 

an = 1.71 
when n = 2 

an = 2.439 
when n = 3 

and this is an 
increasing 
sequence 

converges to 
10. 

b) The intent 
was probably 
to have 
9(1/10)^k so I 
will answer 
that question 
instead. This 
would then be 
true. From the 
formula of 
geometric 
series, having 
infinitely many 
9 or writing 1 
would be 
equivalent (so 
I believe). 
Using the 
epsilon 
definition of a 
limit, we could 
always find a 
n_0 that would 
satisfy the 
epsilon interval 
(or 
neighborhood)
. 

 

think I will go 
with my 
reasoning from 
the last few 
sentences of 
question 12's 
explanation. 
Since the 
0.9dot notation 
is an irrational 
number, the 
sequence 
cannot 
converge to a 
number that 
isn't finite. 
Thus, I think 
that the 
question 12, 
would be false, 
and this would 
be true 
because this 
sequence 
does amount 
to 0.9dot 
which itself is 
converging 
towards 1 
(where 1 is a 
finite number).  

 

before, the 
sequence 
converges to 
10 

 

converges to 1 
based on my 
previous 
answer. I think 
it's more 
accurate to 
say that it 
converges to 
1, because as 
n increases, 
we will keep 
adding a 9 
after the 
decimal. We 
don't know 
when we will 
stop. 
Therefore, 
even though it 
does approach 
0.9 with 
infinitely many 
9s, the limit of 
this sequence 
is 1, therefore 
it converges to 
1. 

 

b) it would give 
n(n+1)/2, it 
depends on 
what n is ?  

 

b) We can 
develop a_n to 
be 

a_n = (0.9 , 
0.99, 0.999, ... 
, 0.9999...99) 

If we consider 
the 
neighborhood 
of points U = 
(x-E, x+E) for 
E>0, the 
sequence 
must be in the 
range of points 
centered at x 
(where x 
would be 1) for 
every epsilon 
given. Hence 
as n grows to 
infinity, the 
decimal 
number 
0.9999...99 will 
also grow 
closer to 1. 
Hence I would 
say that the 
limit converges 
to 1 because 
a_n is in the 
neighborhood 
U for every 
E>0 given. 

Q 
14 

a)False 

b)First part is 
the infinite 
sum of ak. The 
second part is 
the allure of 
the series as it 

a) I don't know 

 

a) True. 

b) if ∑ ak is 
convergent, 
then a limit 
with a 
constant is 

a) True 

b) Since 
infinity is not 
an integer, 
writing the 
sum the first 
way implies 

a) This is true. 

b) The way 
this was taught 
to me, anytime 
we write 
infinity without 
the limit, it is 

a) True 
b) I think that 
this is a similar 
method as 
having an 
improper 
integral and 
instead, taking 

a) False 

b) It is possible 
that the limit 
simply does 
not exist 

 

a) True 

b) The left 
hand side is 
adding up the 
values of a 
sequence from 
k=1 to infinity. 

a) True  

 

b) because it 
equates  

 

a) True 

 

b) on the RHS 
of the 
equation, we 
let the n be a 
variable. 
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goes to infinity, 
so we consider 
how it looks 
before infinity, 
rather than just 
plugging in the 
values to find 
the value at 
infinity 

still the 
constant 

directly the 
second 
notation. (I 
think.) 

 

solely to 
shorten it. To 
make the idea 
of a sum to 
infinity, we 
need to 
consider the 
limit. I believe 
the limit is the 
"definition" of 
the sum to 
infinity. 

the limit as t 
goes to the 
improper 
boundary and 
having a 
change of 
variables such 
that the 
integral can 
become 
proper, and 
thus easier to 
calculate. 
Therefore, I 
think it is true, 
but sequences 
is definitely not 
my forte.  

(pdf for a 
better 
explanation of 
the method for 
improper 
integrals in 
case it isn't 
clearer 
explained in 
words) 

FileS6-4 

The right hand 
side would be 
finding the limit 
of the 
sequence from 
k=1 to n, 
where n goes 
to infinity. The 
way I see it is 
that they are 
the same 
because both 
will add up 
until an infinity 
value.  

 

Hence the 
summation 
depends of the 
value n. 
Because of the 
limit, the 
variable n is 
denoted to be 
infinity, hence 
making n -> 
infinity.  

Therefore, on 
LHS, we 
establish that 
the summation 
is an infinite 
summation 
and on the 
RHS, we let 
the summation 
be finite with a 
variable n, 
however this 
variable tends 
to infinity, 
making the 
summation be 
an infinite one, 
which means 
the equality 
remains.  

 

Q 
15 

a) I realize 
now that I was 
not looking at 
the series 
properly in 
questions 12 
and 13, the ak 
goes to 1. 

Since the first 
terms give 0.9, 
0.99, 0.999, ..., 

a) That's 
usually a good 
starting point 
when trying to 
prove 
something. 
Perhaps an 
induction proof 
could help 
demonstrate 
A's suspicion. 

Blank I will answer 
as though the 
sequence was 
"sum  of k 
from 0 to n of 
9/(10)^k" 

a) The pattern 
does seem 
obvious that 
we are adding 
a 9 to the next 

a) Patterns 
can be 
deceiving. 
What feels 
obvious to me 
is that 0.9 
(with infinite 9) 
is the same 
concept as 1. 

b) He means 
that as n goes 

a) I am 
sceptical of A's 
statement 
because to 
actually find 
the limit of a 
sequence or a 
function, one 
should not go 
with one's 
feeling, but 
rather find 

a) The 
conclusion is 
reasonable for 
a finite n 
number of 
terms, where 
there would be 
n trailing nines 
after zero. 

b) I believe he 
means that 'at 

a) I think by 
looking at the 
pattern is a 
good start, 
that's what I 
do too. But, I 
think just 
looking at the 
pattern isn't 
sufficient 
enough to say 
that the limit is 

a) that it's 
intuitive  

b)  that it's not 
true because 
as you 
increase k, it 
started at 0,9 
but it's 
increasing 
towards 1  

a) The 
summation 
is 0.9 (with the 
dot) but the 
limit is not, 
since we need 
to take in 
consideration 
the 
neighborhood 
of points. The 
sequence will 
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there is always 
another nine, 
which is why it 
is obvious to 
think that the 
series when to 
infinity is 0.9 to 
infinity.  

b) When you 
compute the 
infinite series 
at infinity, the 
value you 
obtain is 0.9 to 
infinity.  

c) It is the limit 
of an as n 
approaches 
infinity, which 
is equal to 1. I 
do not know 
how to prove 
this, I just 
know that that 
is the answer. 

d)I would look 
at this situation 
differently than 
student A. 
Personally, I 
like using the 
example 1/x, 
since it is 
pretty simple. 
1/x when x 
goes to infinity, 
it goes to 0, 
although it 
never reaches 
it. Same thing 
would apply 
here, it gets 
closer and 

b) I think B 
means that if 
you were to 
evaluate the 
sum by adding 
up every 
single term 
until you reach 
the "infinity'th" 
term you 
would get a 
value of 
0.9999999999
99. 

 

c) (see photo 
FileS2-1) I 
would say the 
limit is 1, but 
I'm not too 
sure how this 
would work 
because I 
simplified the 
sum using an 
approximation 
so I have 
doubts on how 
correct that 
would be 

term of the 
decimal 
expansion.  

b) I think B 
means that if 
we add an 
infinity of 9's to 
the end of the 
decimal 
expansion, 
that means 
that at infinity, 
the limit is 
0."infinity 9's" 

c) I think that 
the limit is 1 
because there 
is no number 
between 
0.9dot and 1. 
The way to 
write 0.9dot as 
a fraction is 
actually 1/1. 
As opposed to 
the number 
0.3 periodic 
where there 
could be a 
0.333...33334, 
0.33333....333
5,...,0.33333...
33339. 

d) I would ask 
them if 0.9dot 
is a rational 
number, and if 
so to write it as 
a ratio of two 
integers. If not, 
I would ask 
them to prove 
that 0.9dot is 

to infinity, it 
gets closer to 
0.9 (with 
infinite 9) = 1. I 
do not think 
infinity can be 
reached. 
Infinity seems 
like a concept 
representing 
numbers 
growing bigger 
and bigger. 

c) I would say 
it is 1 (and 0.9 
with infinite 9). 
I think both 
mean the 
same thing. 

d) That they 
are both 
saying the 
same thing. 
One is looking 
at the pattern 
to find the 
limit, the other 
is using a 
formula. B has 
a better 
reasonning 
because the 
formula is 
based on a 
proof that this 
is how we 
obtain the limit 
while A goes 
with his gut 
feeling of the 
pattern. I 
would tell them 
to use the 
neighborhood 

theorems or 
use calculus or 
series 
definitions to 
figure out the 
limit.  

b) I think he 
means to say 
that this 
function would 
reach an "finite 
point" and thus 
that it can't be 
a limit. But 
limits can be 
reached, they 
don't have to 
be an 
unattainable 
number. (I 
believe that 
this might be 
what distincts 
limits to 
asymptotes: 
asymptotes 
can be where 
a function 
converges to 
but cannot 
reach, 
whereas a limit 
can be 
reached, or 
cannot be 
reached but 
the 
reachability of 
a limit is not 
important, but 
rather the 
function's 
behavior is. 

infinity', even if 
you add an 
extra 9, would 
still have an 
infinite amount 
of trailing 9s 
after zero? 

c) Previously, I 
neglected that 
since k starts 
at 1, the first 
term is 1/10 
rather than 1. 
so the limit 
should be 
calculated as 
follows (1/(1-
(1/10))-1 = 1/9, 
the geometric 
sum minus the 
first missing 
term, and then 
9*(1/9) = 1. 

d) For all 
Epsilon 
greater than 0, 
|.9999... - 
1|<episilon 
holds for n 
sufficiently 
large, hence 
0.9999... is 1 

 

0.9 (with 
infinite many 
9s). 

b) What B 
means, from 
what I am 
getting, is if we 
keep adding 
9s, then at 
some point, 
infinitely many 
9s will be 
reached even 
though it's not 
necessarily 
countable. 

c) I believe 
that the limit of 
this sequence 
is 1. Because, 
like B said, I 
think the idea 
of limit is 
essentially a 
value that 
can't really be 
reached but 
it's a value that 
it gets closer 
and closer to. 
So, if we add 
9s infinitely, 
then we can 
get 0.9 
conceptually 
(with infinite 
9s) even 
though we 
can't really get 
that practically. 
It makes more 
sense to me to 

 

c)  as the 
sequence 
tends to 
infinity, where 
does it 
converges to  

 

d) I would tell 
B that what he 
said at the end 
is not true 
because 
(9/10)^k isn't 
the same as 
9(1/10)^k 
specially in 
series.  And to 
A, to think of 
infinity as a 
concept and 
not a rational 
number 

 

end up being 
in the 
neighborhood 
U = (x-E,x+E) 
for E>0 for all 
E where x=1.  

 
 

b) That the 
infinith term is 
0.9 (with the 
dot). If we 
keep the 
sequence, we 
see that it 
does {0.9, .99, 
0.999, ... } 
hence 
reaching the 
0.9 (with the 
dot). 

 
 

c) I think it is 1, 
since it will be 
in the 
neighborhood 
of points of 
x=1 for every 
E>0. 

 
 

d) The output 
1 is an 
asymptote of 
the sequence. 
Hence, it 
converges to it 
without ever 
actually being 
this value, 



134 

 

closer to 1, 
although it 
never reaches 
it 

irrational. 
From high 
school, we 
learned that 
numbers with 
periodic 
decimals are 
rational, but I 
would imagine 
they could find 
a better 
reasoning. 

Also, I don't 
believe the 
limit is 
supposed to 
never be 
reached is a 
valid argument 
because 
0.9dot is 1. 
Not because 
we won't reach 
1, but because 
there is 
nothing 
between 
0.9dot and 1. 

 

definition and 
see if they can 
prove each 
their limit. 

I think B is 
wrong when 
saying you can 
"reach" infinity 
(A is right to 
tell him that 
does not make 
sense) and 
also that you 
can not reach 
the limit. It is 
possible to 
reach a limit, 
the important 
is that the 
sequence gets 
closer to the 
limit as n 
grows. 

c) The limit of 
the sequence 
as n goes to 
infinite is 1. I 
am sure there 
is a method or 
a theorem or a 
known series 
for which I 
should explain 
this, but I don't 
remember it.  

d) I would tell 
A not to focus 
on his feeling, 
but rather to 
focus on 
finding a real 
method of 
proving his 
theory. I think 
that the most 
important thing 
for him to 
realize at the 
moment is that 
he needs to 
view limits and 
such as things 
to prove 
methodically, 
not just 
because it 
feels like 
something. I 
would also find 
a different 
function where 
the limit feels 
like something, 
but it actually 
something 
else and show 
him how to 

say that 1 is its 
limit. 

d) They said 
the doubts that 
I had in mind 
too when 
thinking about 
a limit. But I 
guess I would 
just ask them 
other 
questions like 
what is defined 
as infinity, is 
this countably 
finite, and 
maybe that will 
provide them 
more ways to 
think about 
this.  

 

meaning that it 
is where the 
sequence 
converges to. 
We can see it 
as an 
accumulation 
point (I just 
learned about 
this topic, I'm 
not 100% sure 
it actually is) 
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prove that one 
so he has a 
clear example 
of what I 
mean. As for 
B, I would tell 
her that it is a 
good idea to 
focus on 
methodology 
to find the 
actual limit, but 
I would also 
tell her to re-
read her 
definition of 
limit, because 
a limit can be 
reached. I 
would also 
give her as 
example, limit 
as x goes to 
infinite of a 
constant 
function is 
equal to that 
constant and 
the actual 
finite number 
of that function 
is constantly 
reached. 

 

Q 
16 

a)Yes, it is not 
a number that 
I can plug in to 
my calculator 
and obtain an 
answer. 

b) I am not 
sure of the 
answer of this 

a) yes I agree 

b) Does not 
exist 

c) the question 
is asking for 
the sum of 2 
limits. Not the 
limit of the 

a) agree a) I do agree 
that we can 
not use infinity 
the same way 
as numbers 
because two 
functions 
might reach 
infinity " at a 
different rate ". 

a) Yes, infinity 
is a concept. It 
is not a real 
number. 

b) It is 1. From 
a theorem 
learned in 
calculus / 
analysis, this 

a) I agree in 
the sense that 
it isn't like any 
number, but 
we can use 
infinity in 
algebra as an 
idea of a 
number. 
3+infinite if 

a) Infinity isn't 
a number on 
its own and 
there are 
some 
operations that 
are 
inconclusive 
when dealing 
with infinity, 

a) Yes I agree. 

b) I think it's 
undefined.  

c) I think that 
the initial 
reasoning of C 
was good. So 
to check 

a) he is kinda 
right  

 

b) it's 1  

 

c) you can add 
two function 

a) Yes, I 
agree. It is a 
concept, not a 
number. 

 

b) I would say 
indeterminate 
value (inf - inf), 
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limit, as my 
first reflex 
would have 
been to 
calculate the 
limit as x goes 
to infinity of 
(f(x)+g(x)) 
together, 
which is what 
C and D have 
come to. So 
with this 
reasoning I 
would have to 
say the limit is 
1 as well. 

c) The issue 
here is that we 
are adding 
infinity and 
minus infinity. I 
do not 
remember 
what the trick 
is when there 
is addition of 
two infinities, 
because I 
know that you 
cannot cancel 
them out. So I 
guess I would 
stick to my 
previous 
answer and 
say that their 
reasoning is 
correct and 
that the 
answer is 1 

 

sum of two 
functions. 
These two 
things are not 
necessarily the 
same. 

Lim(f(x)+g(x)) 
= Lim(4^x + 
(1-2^(2x))) = 
Lim(1) = 1 

Lim f + Lim g 
does not equal 
Lim(f+g) = 1 
because f and 
g both don't 
converge to an 
explicit x in R 

We can 
therefore not 
"cancel out" 
their limits. 

b) The limit as 
x tends to 
infinity is 1. 

c) I think that 
manipulating 
the functions 
first is a better 
idea to get a 
sense of 
where they are 
actually going. 
Infinity is not a 
number. 

 

is equivalent to 
the limit of the 
addition. 
Adding them 
together gives 
1. The limit of 
1 as x goes to 
infinity is 1. 

c) They are 
wrong at the 
start. But they 
end up using a 
theorem that 
was proven, 
which works. 
The end of 
their 
reasonning is 
good. The first 
part however, 
is flawed when 
they talk about 
infinity 
cancelling out, 
since these 
are not real 
numbers. 

 

infinite, 
3/infinite is 0, 
etc.  

b) It isn't 
defined since 
when you 
subtract 
infinite from 
infinite (again 
"algebra" like 
in a) you don't 
get a defined 
answer 
because 
infinite is not a 
real number 
therefore we 
cannot 
subtract them. 
If we use 
l'hopital's rule 
just to check 
what would 
happen, the x 
as an 
exponent 
would not 
come down, 
therefore this 
just isn't 
defined.  

c) I would tell 
them to go 
through the 
problem 
methodically 
without trying 
to cancel 
things out 
visually (C) 
and to look at 
infinite like a 
number for 
algebraic 

such as infinity 
- infinity = 0, 
which is not 
generally true. 
So I have to 
agree with the 
idea he is 
pushing 
forward, but 
not the 
wording. 

b) 1 

c) C has to 
use more 
rigorous 
reasoning, 
although his 
intuition is on 
the right track. 
D can use the 
fact that the 
sum of the 
limits is the 
limit of the 
sums and 
since 
f(x)+g(x)=1, 
the limit clearly 
converges to 1 

 

individually if 
they converge 
or not first 
seems like a 
good idea. 
Then, they 
checked that 
f(x) and g(x) 
goes to infinity 
and minus 
infinity 
respectively. 
which is an 
indeterminate 
form. Then, D 
proceeded 
with some 
manipulations, 
which I think it 
is also valid 
because of the 
limits' 
properties 
which allows 
us to add them 
together, as 
both have x 
approaching 
infinity. It 
leaves to 1. 
But I am little 
bit confused, 
because when 
I look at the 
graph, it 
doesn't seem 
as though the 
limit is 1. 

 

together, if you 
find them 
convergent, 
then each is 
also 
convergent so 
yes,  since f(x) 
+ g(x) = 
4^x+1-4^x = 1 
then as x goes 
to infinity it's 1  

 

because I 
don't think you 
can actually do 
algebra 
between the 
limits before 
evaluation 
them 
separately.  

 

c) Since we 
are evaluating 
the limits to 
tend to infinity, 
we cannot say 
that the limits 
sum up to 1 . 
Since they 
both equate inf 
and -inf, the 
value is 
indetermiante. 
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purposes 
without 
treating it like 
a number but 
more of an 
idea of a 
number. You 
can't subtract 
many from 
many and get 
a real idea of 
how much 
there is but if 
you subtract 3 
from many, 
you still have 
many because 
it is a 
measurement 
of a quality. 
(D) 

 

Q 
17 

a)No, because 
if f(x) is no 
continuous at 
c, then limit of 
f(x) will not 
equal f(c) 

b)For 
example, if 
f(x)= x  for  ]-
inf,0[ U ]0,inf[ 

 5  for  {0} 

Then for c=0, 
the limit of 
f(x)= 0  and 
f(0)=5, so limit 
of f(x) does not 
always equal 
f(c) 

a) The student 
is wrong, there 
could be a 
discontinuity at 
c. f could have 
a jump 
discontinuity at 
c. 

b) see photo 
FileS2-2. In 
the first 
example if c = 
0 then the limit 
from the right 
and the limit 
from the left 
are not both 
equal to f(c). 
Same idea for 

a) correct a) No. For 
discontinuous 
functions, it is 
obvious that a 
limit to a point 
does not mean 
that the 
function is 
defined at that 
point.  

b) Let f(x) = 
x^2 when x is 
not 0 f(x)   = 1 
when x is 0 

An example 
when the 
statement is 
true is 
f(x)=(x^2) 

a) No. 

b) It is only 
true when f is 
continuous at 
c. For 
example, 1/x 
as x goes to 0, 
f(0) is not 
defined (1/0 is 
undefined). 
Another 
example would 
be f(x) = x^2 
for x not 1 and 
f(x) = 0 for x = 
1. Then the 
limit would be 
1, from both 
sides, but f(1) 
= 0. 

a) No, the limit 
of a function is 
not necessarily 
reached by 
that function, 
therefore you 
must look at 
the behavior of 
a function, not 
just at it's 
formula and 
plug and play.  

b) 1- f(x)=1/x : 
limit as x goes 
to 0 of 1/x is 
still 0, but f(x)= 
1/x is not 
defined at x=0 

the statement 
is true for 

a) No, not 
necessarily 

b) f(x)=1 for all 
x element of 
R, except for 
x=1, f(x)=0 for 
x=1, then the 
limit of f(x) as 
x approaches 
1 is 1, but 
f(1)=0 

c) The function 
must be 
continuous 

 

a) I don't think 
the student is 
right, because 
f(c) might not 
be defined on 
the function. 

b) For 
example, if we 
have a step 
function with a 
discontinuity at 
x=0, with 
f(x)=1 for the 
interval 0 to 2, 
then the limit 
as x 
approaches to 
0 for f(x) is 1. 
However, the 
limit is not 
equal to f(c) 

a) Yes and no, 
it's 
approximately 
that, but it 
never actually 
reaches c. So 
it shouldn't be 
an equal sign  

 

b). it could be 
discontinuous, 
so be the left 
of c it's one 
number and 
the right of c 
it's another, 
but it's not 
directly f(c).  

 

a) No, I would 
not say 
"always" true 

 

b) not true : let 

f  = (-1)^n 
-> the limit 
diverges but 
evaluating at 
f(c) will give 
either 1 or -1 

true : let f(x)=x 
(always be 
true) 

 

c) The 
conditions 
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c)The 
statement is 
correct for f(x) 
continuous 

 

c=1 in 
example 2. 

c) the limit 
from the right 
needs to be 
equal to the 
limit from the 
left. And the 
limit at c needs 
to be equal to 
f(c) 

c) I think the 
function needs 
to be 
continuous at 
every point.  

 

Any other 
discontinuity 
would yield the 
same result. 

c) f must be 
continuous. 

constant 
functions: 
f(x)=3, then 
limit as f(x) 
goes to 7 is 
equal to 
f(7)=3  

c) The function 
needs to be 
bounded or 
constant and it 
needs to be 
continuous.  

 

because there 
is a hole there. 

But I think this 
is true if there 
are no such 
discontinuities. 

c) I think for 
this statement 
to be correct, 
we must have 
the condition 
that the 
function is 
continuous. 

 

c) when it's 
both f(c) from 
right and left 

 

would be that 
the function 
does not 
"oscillate" 
between value 
(I can't think of 
a way of 
formulating it 
more 
scientifically) 

 

Q 
18 

a)F(x)=1/x 
Group 1 
 
b)F(x)=4  
Group 2 
 
c)F(x)=cos(x)/
xGroup 1 
 
d)F(x)= -(e^x) 
Group3 
 
e)F(x)=sin(x)   
Group 4 
 
f)F(x)=ln(x) 
Group 5 
 

a)F(x)=1/x 
Group 2 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 2 
 
d)F(x)= -(e^x) 
Group4 
 
e)F(x)=sin(x) 
Group3 
 
f)F(x)=ln(x) 
Group 4 
 

a)F(x)=1/x 
Group1 
 
b)F(x)=4 
Group2 
 
c)F(x)=cos(x
)/x Group2 
 
d)F(x)= -
(e^x) Group3 
 
e)F(x)=sin(x) 
Group4 
 
f)F(x)=ln(x) 
Group1 
 

a)F(x)=1/x 
Group 2 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 2 
 
d)F(x)= -(e^x) 
Group3 
 
e)F(x)=sin(x) 
Group5 
 
f)F(x)=ln(x) 
Group 4 
 

a)F(x)=1/x 
Group 1 
 
b)F(x)=4   
Group 2 
 
c)F(x)=cos(x)/
x Group 1 
 
d)F(x)= -(e^x) 
Group 3 
 
e)F(x)=sin(x) 
Group 4 
 
f)F(x)=ln(x) 
Group 3 
 

a)F(x)=1/x  
 Group 2 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 2 
 
d)F(x)= -(e^x) 
Group 3 
 
e)F(x)=sin(x) 
Group 3 
 
f)F(x)=ln(x) 
Group 2 
 

a)F(x)=1/x 
Group 2 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 3 
 
d)F(x)= -(e^x) 
Group 4 
 
e)F(x)=sin(x) 
Group 5 
 
f)F(x)=ln(x) 
Group 4 
 

a)F(x)=1/x 
Group 3 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 4 
 
d)F(x)= -(e^x) 
Group 2 
 
e)F(x)=sin(x) 
Group 5 
 
f)F(x)=ln(x) 
Group 2 
 

a)F(x)=1/x 
Group 3 
 
b)F(x)=4   
Group 1 
 
c)F(x)=cos(x)/
x Group 3 
 
d)F(x)= -(e^x) 
Group 4 
 
e)F(x)=sin(x) 
Group 2 
 
f)F(x)=ln(x) 
Group 2 
 

a)F(x)=1/x 
Group 1 
 
b)F(x)=4   
Group 2 
 
c)F(x)=cos(x)/
x Group 1 
 
d)F(x)= -(e^x) 
Group 3 
 
e)F(x)=sin(x) 
Group 2 
 
f)F(x)=ln(x) 
Group 3 
 

Q 
19 

Group 1: Limit 
x goes to 
infinity equals 
0 

Group 2: Limit 
x goes to 
infinity equals 
c (a constant) 

a) and b) 
Group 1) has 
only the 
constant 
function, so 
functions in 
group one are 
pretty easy to 
visualize at 

Blank a) I put the 
functions 
according to 
their limit at 
infinity. 

b) Group 1: lim 
to infinity = 4 

a) Group 1 
was functions 
that go to 0 
because they 
get smaller 
and smaller 
(can not be 
constant). 
Group 2 was 

Group 1 has 
functions with 
the limit as x 
goes to infinite 
equal to a real 
finite number 
which they 
reached.  

a & b) Group 
1: constant 
functions, the 
limit of the 
function as x 
approaches 
any point c 
from the 
domain is 

a)  

Group 1: 
constants 

Group 2: 
functions 
related to log 
functions 

a) /b)   

 Group 3 : 
goes to zero. 

Group1 : goes 
to a number 
that isn't zero 

Group 1 : 
converges to 
y=0 or/and 
asymptotic to 
y=0  

 

Group 2 : 
Real-valued 
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Group 3: Limit 
x goes to 
infinity equals 
minus infinity 

Group 4: 
Divergent limit 

Group 5: Limit 
x goes to 
infinity equals 
infinity 

a) I set the 
groups 
according to 
their limit to 
infinity, so the 
options are 0, -
Infinity, Infinity, 
c, divergent 

b)See the 
groups 
description 
above 

c)No, since the 
answer of the 
limit can only 
be one value 
(we cannot 
have the limit 
being equal to 
0 and minus 
infinity at the 
same time 

 

infinity since it 
has the same 
value every in 
its domain. 

Group 2) has 
only functions 
that have x as 
their 
denominators. 
The numerator 
value of these 
2 functions 
have a very 
small absolute 
value so, 
intuitively, 
dividing 
something 
infinitely many 
times will 
result in 
nothing/zero.  

Group 3) Sin 
(x) clearly 
doesn't have a 
limit since it 
oscillates 
about the x-
axis without 
ever losing 
amplitude, so 
its limit cannot 
exist. 

Group 4) 
These 
functions 
approach 
positive/negati
ve infinity as x 
approaches 
infinity. 

 

Group 2: lim to 
infinity = 0 

Group 3: lim to 
infinity = - 
infinity 

Group 4: lim to 
infinity = 
infinity 

Group 5: lim to 
infinity = DNE 

c) No, but I 
might have put 
all functions 
with a positive 
limit to infinity 
that is not 0 
nor infinity in 
Group 1 and 
had another 
group for 
functions for 
negative limit 
at infinity that 
are not 0 nor - 
infinity. 

for the 
constant 
function (equal 
to its limit). 
Group 3 was 
for functions 
that go to 
infinity as x 
goes to infinity. 
Group 4 was 
for divergent 
functions (that 
alternate 
between 
values and do 
not get closer 
to any value). 

b) They must 
have the 
characteristic 
written above. 

c) No, I have 
tried to create 
disjoint 
groups. 
However, if we 
considered 
their value as 
x when to -
infinity, then -
e^x could go in 
the first group 
because it 
goes to 0. Lnx 
would need its 
own new 
group, 
because it is 
not defined in 
negative 
values. 

 

Group 2 has 
functions with 
the limit as 0, 
which is limit it 
never really 
reaches only 
approaches.  

Group 3 has 
functions 
which limits 
don't exist as x 
goes to 
infinite.  

 

function f(x) is 
the function I 
was hesitating 
between group 
1 and 2 for 
placing 
because I 
don't know 
what the limit 
is and I don't 
remembers 
what the graph 
looks like 
either,  but 
using 
l'hopital's rule, 
it tends to 0, 
so maybe it 
should actually 
be in group 2. 
(I changed it 
because I 
think it should 
actually be 
group 2, but it 
was originally 
in group 1) 

 

always the 
same 
Group 2: By 
using the 
standard 
definition of 
the limit, the 
limit of the 
function as x 
approaches 
infinity can be 
easily found 

Group 3: By 
using 
squeeze's 
theorem, the 
limit can be 
easily found 

Group 4: The 
function is 
divergent as it 
goes to infinity 
as x 
approaches 
infinity 

Group 5:  The 
function is 
divergent, as 
the limit does 
not exist 

c)  Yes, my 
categorization 
is somewhat 
subjective and 
not very 
rigorous...  

 

Group 3: other 
functions that 
are not log or 
trigonometric 
functions 

Group 4: 
related to 
trigonometric 
functions 

Group 5: raw 
trigonometric 
functions 

 

b) If the 
functions are 
not directly 
related to each 
other, then I 
tried to 
separate them 
into different 
groups. 
Otherwise, if 
they have a 
link, usually I 
put them in the 
same group. 

c) Yes, some 
of them could 
be put into the 
same group. 
For example c 
and e. 

 

Group 2 : goes 
to infinity  

Group 4: goes 
to - infinity  

 

c)  

group 2 and 4 
could be in the 
same group : 
DNE  

 

Group 1 and 3 
could be in the 
same group : 
to c 

 

limit (with a 
limited choice 
of answers) 
like f(x)=4 will 
be always 4, 
sin(x) is 
bounded by -1 
and 1 

 

Group 3: 
Diverges to 
infinity or - 
infinity 
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c) Perhaps 
you could put 
group 2 
functions in 
group 1 since 
they also have 
an explicit limit 
in R. 

You could also 
argue that 
sin(x)/x can be 
put in group 3 
since it also 
oscillates, but I 
do not think it 
is appropriate 
since group 3 
functions do 
not converge. 

Q 
20 

I do not know 
the correct 
answer for this 
question, but 
my guess is 
for continuous 
functions f(x) 
and g(x) 

both f and g 
need to 
converge to x 
element of R 
union {-
inf,+inf}. 
In addition, f + 
g cannot have 
an 
indeterminate 
form such as 
inf-inf for 
example. 

 

Incorrect 

 

Yes, I think 
this is correct if 
the limit exists 
and the 
function is 
continuous. 
But it might 
also work if the 
function is not 
continuous, I 
am not sure 
because I 
can't find a 
counterexampl
e.  

 

When both 
limit exist 

When both 
functions are 
continuous 
and bounded 
at c 

when the limit 
of f(x) and g(x) 
both exist 

When c is the 
same value 
everywhere. 

if both the limit 
of f(x) and g(x) 
exist 

I think the 
following 
equality is 
correct when c 
is a real-value 
(c is element 
of R) 

Q 
21 

a)The limit of 
f(x) when x 
goes to infinity 
is equal to L if 
for all epsilon 
superior 0, 
there exists N 

a) the limit of f 
as x 
approaches 
infinitity equals 
L if for every 
epsilon greater 
than 0, there 

a) for all e 
>0, there is a 
N >0 such 
that for all x 
> N, the 
absolute 

a) The limit as 
x tends to 
infinity of a 
function of x is 
defined if as 
close as the 
function gets 

a) We say that 
the limit of f(x) 
as x goes to 
infinity is L if 
for any open 
interval 
centered at L, 

a) The limit as 
x goes to 
infinite of 
function f(x) is 
equal to L if on 
all of epsilon 
larger than 0, 

a) the limit of 
f(x) as x 
approaches 
infinity is equal 
to L if for all 
epsilon greater 
than 0, there 

a) The limit as 
n approaches 
infinity of f(x) is 
equal to L if for 
any small 
positive value 
E, there exists 

a) if the limit 
exist, then 
there is an 
epsilone 
containing the 
interval of f(x)-
L  

Blank 
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superior to 0 
such that, for 
all x superior 
to N, the 
absolute value 
of the f(x) 
minus L (the 
answer of the 
limit) is inferior 
to epsilon. 

This means 
that for the 
limit, there 
exists a 
neighborhood 
(x-epsilon, 
x+epsilon) to 
which the limit 
exists 

b)This 
statement 
defines 
neighborhoods 

 

exists N 
greater than 0 
such that for 
every x greater 
than N the 
function f 
evaluated at x 
minus L is in 
the interval 
(f(x)-L-
epsilon,f(x)-L + 
epsilon). 

It means that 
for any x you 
can pick any 
positive 
epsilon to 
create a 
neighbourhoo
d of f(x) where 
abs(f(x)-L) will 
fall in this 
neighbourhoo
d. As x 
approaches 
infinity, f 
evaluated at x 
will approach 
L. So for any 
epsilon you 
can find an N 
smaller than x 
such that f(x) 
will be closer 
to L than f(N).  

b) The 
definition of 
the limit of a 
function. 

 

value of f(x) - 
L less than e 

b) Limit of a 
function. 
(But, x is to 
c) 

 

to that limit, 
there is always 
a point closer. 

b) This is the 
definition of 
the limit of a 
function. 

 

there is an 
element on the 
domain such 
that every 
subsequent 
element is in 
said interval. 

b) A limit. 

 

there exists an 
N larger than 0 
such that on 
all of x larger 
than N, the 
absolute value 
of f(x) minus L 
is smaller than 
epsilon.  

b) This 
statement 
defines the 
Lower Upper 
Bound. 

 

exists an N 
greater than 0 
such that, for 
all x greater 
than N, the 
absolute 
difference 
between f(x) 
and L is less 
than epsilon. 
Essentially, no 
matter how 
small epsilon 
is, the 
difference 
between f(x) 
and its limit is 
smaller than 
epsilon, for n 
sufficiently 
large.  

a a positive 
value of N 
such that for 
any x that is 
greater than N, 
the absolute 
value of the 
difference of 
f(x) and L is 
less than that 
small positive 
value E. 

It means that 
for a limit to 
exist, the 
difference 
between the 
function at that 
x value and 
the L has to be 
very small. 

b) existence of 
a limit 

 

 

b) yes   
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Q 
22 

a)I believe the 
statements are 
true, because 
there can 
always be 
found a 
number that is 
inferior to 
another, so it 
is possible for 
b to be inferior 
to a. However, 
I do think the 
equation 
should be read 
a superior or 
equal to b, as 
they are both 
said to be 
superior to 0, 
therefore, 
there would be 
a possibility 
that they 
would take the 
same smallest 
value. 

b) Yes, set a 
=2 and b=1, 
satisfies 1., 
since a 
superior to 0 
and b superior 
to 0, and 2 is 
superior to 1 
so a superior 
to b holds 

 Satisfies 2 as 
well,  since b 
is superior to 
0, there is a 
superior to 

1. True 

2. False 

Blank a) 1. The first 
one is true 

2. The second 
one is false 

b) No. 

1. If I chose 
any a bigger 
than 0, (let's 
chose 
something 
very very small 
so that it 
matters) for 
example 
a=0.00000000
001 

then there is 
always a b 
smaller than 
that but bigger 
than 0, let's 
say 
b=0.00000000
00000001. 

2. There is no 
number in the 
positive reals 
that is smaller 
than all 
numbers. 
Even if I chose 
b= 
0.0000000000
000000000000
000000000000
000001 

there exists a 
smaller, say 
a=0.00000000
000000000000
000000000000

a) 1 is true. 2 
is false. 

b) They are 
not equivalent. 
For 1, we 
mean that for 
any real 
number, I can 
find a bigger 
number: for 
example, if I 
give you 2, 
you can find 3, 
which is bigger 
than 2. For 2, 
we mean that 
there would be 
a number that 
is bigger than 
all the other 
real numbers. 
That does not 
exist to the 
best of my 
knowledge. 

a) true 

b) They are 
equivalent. An 
example would 
be a=3, b=2.  

 

a) Both are 
true 

b) 1. for all 
a>0, there 
exist a b=a/2 
such that a>b 

    2. there 
exist b=a/2>0 
such that for 
all a>0, a>b 

 

a) True 

b) They are 
not equivalent. 

 

blank Blank 
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zero and a 
superior to b 

000000000000
000000000000
000000000000
000000000000
000000000001 

 

Q 
23 

a) The 
maximum 
upper bound 
of A is equal to 
1. That means 
that the 
maximum 
value in A is 1 
and all the 
other values 
are either 
equal or 
inferior to 1. 

b)A={-1,1,-
1,1,-1,1} 

c)Yes it is the 
ultimate 
maximum of 
the function, 
as we know 
some 
functions have 
a few 
maximums, 
but the sup 
gives the 
highest 
maximum 

a) The lowest 
upper bound 
of A is 1. So 
the smallest 
value in R that 
has all values 
of A smaller 
than it. 

b) A =[0,1] 

c) Yes it is. 
1>=a for every 
x in A making 
it the maxim of 
A. 

[1,inf) are all 
upper bounds 
for A and 
clearly 1<=z 
where z 
element of 
[1,inf). 

a) The 
supremum of 
set A is 1, 
where A is a 
subset of R 

b) A = {0,1} 

c) Yes 

a) All elements 
of A are 
smaller or 
equal to 1 

b) (0,1) 

c) No, 
because 1 is 
not element of 
A. 

If I found the 
square 
brackets on on 
my keyboard I 
could write a 
set where 1 is 
the supremum 
and the 
maximum of A. 

 

a) The 
smallest upper 
bound 
(meaning that 
it is bigger 
than all the 
numbers 
contained in A) 
of A is 1. 

b) The set 
containing only 
1. 

c) Yes. Since it 
is the only 
number, it is 
the smallest 
upper bound, 
but also the 
maximum 
(biggest 
number). A 
better example 
could be the 
set of all the 
numbers of the 
form 1-(1/n). 
Then the 
maximum 
would be 
impossible to 
find (not 
exist?). But the 
supremum 
would be 1. 

 

a) the 
supremum of 
A is equal to 1 
where A is 
contained in R 
means that 1 
is the lowest 
upper bound 
possible 
contained in A. 

b) f(x) = 1, 
[0,1] 

c) Yes 1 is 
also the 
maximum of A 

 

a)    

the supremum 
is the lowest 
upper bound 
of A, meaning 
any number 
smaller than 
the supremum 
is not an upper 
bound of A 

The maximum 
of A is its 
greatest point 

b) A=[0,1], 
sup(A)=1 and 
the maximum 
of A is also 1 
as 1 is in A 
c) Yes, 
because 1 is in 
A and no other 
element of A 
can be greater 
or else that 
would 
contradict 
sup(A)=1  

 

a) The upper 
bound is a 
supremum if 
among the 
upper bounds 
of the set A, 
it's the 
smallest one 

a) that the the 
highest upper 
bound is 1  

b) A= ( 
1,1,1,1,1,1,1) 

 

Blank 
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Q 
24 

a)True 

b)True 

c)True 

d)False 

 

a) False 

b)True 

c) True 

d) False 

a) True 

b) True 

c) False 

d) False 

a) No, not for 
an open 
subset. 

b) Yes, the 
definition of 
supremum is 
contained in 
the definition 
of maximum. 

c) Yes, if A is 
open. 

b) No, the 
definition of 
supremum is 
contained in 
the definition 
of maximum. 

 

a) False. I 
gave an 
example 
previously for 
which this is 
the case. 

b) True in the 
real numbers. 
That implies 
that we can 
find the 
maximum. 
Then it will 
automatically 
be the 
smallest upper 
bound. 

c) Yes, 
number of the 
form 1-(1/n) for 
n in the natural 
numbers, has 
no maximum, 
but supremum 
is 1. 

d) Yes, but not 
in the real 
numbers 
(because the 
reals are 
complete). 

a) true 

b) false 

c) false 

d) true 

 

a) False, s 
also has to be 
an element of 
A 

b) True, there 
can be no 
lower bound 
than the 
maximum if it 
exists 

c) True 

d) False 

 

a) False 

b) True 

c) Yes 

d) False 

 

Blank Blank 
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Q 
25 

a) Not 
necessarily, 
take a set of a 
constant term 

b) If the 
sequence is 
bounder it 
means it 
automatically 
has a sup 

c) The 
subsequences 
will also be 
bounded, 
since the 
sequence is 
bounded. And 
since the limit 
is bounded, I 
believe the 
subsequences 
will converge 

d)Yes since it 
is bounded 

a) No 

b) Yes 

c) The limits of 
the 
subsequence 
must be the 
same as the 
limits of the 
sequence. 

d) Yes 

a) Yes 

b) Yes 

 

a) No, not if 
the 
accumulation 
point of the 
sequence is 
outside the 
sequence 
bound 

b) Yes 

c) If the 
sequence is 
monotone 
increasing, it 
converges to 
the supremum 
so the limit as 
n goes to 
infinity of Xn is 
the supremum. 
Therefore all 
the 
subsequences 
converge to 
that same 
limit. 

d) If the 
sequence is 
monotone 
increasing and 
has an upper 
bound, 
definitely. If 
the sequence 
is monotone 
decreasing 
and has a 
lower bound, 
definitely. If 
not, all the 
subsequences 
need to 
converge to 
the same point 

a) Yes, the 
elements of a 
sequence are 
countable, we 
can take the 
biggest 
element. 

b) Yes, it is its 
maximum.  

c) They must 
be between 
the bounds. At 
least one 
exists. 

d) Maybe. (-
1)^n is not. 

 

a) Yes 

b) not 
necessarily 

c) they will be 
contained in 
the limit of the 
sequence 

d) yes 

 

a) Not 
necessarily, is 
the sequence 
also closed? 

b) Yes, as it is 
bounded 

c) Some 
subsequence(
s) of this 
sequence 
must have a 
limit  

d) No you 
could have 
an=(-1)^n, that 
is a bounded 
sequence that 
does not 
converge 

 

a) Yes 

b) Yes 

 

Blank Blank 
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for the 
sequence to 
be convergent. 

 

Q 
26 

a) True 

b) False, since 
it is bounded 
from below it 
has 
necessarily at 
least one of 
sup or inf (I 
cannot recall 
what were the 
rules anymore, 
but my guess 
would be since 
bounded from 
below, would 
have an inf, 
although I do 
think the sup 
exists here 
and is equal to 
infinity) 

c) True, 
because it is 
continuously 
and constantly 
increasing 

a) False 

b) False 

c) True 

 

a) false 

b) false 

c) True 

 

a) False 

b) False, it has 
a supremum 

c) True, 
ln(n+1) is 
greater than 
ln(?) for every 
n greater than 
0. 

 

a) True 

b) False 

c) True 

 

a) true 

b) false 

c) yes it is 
monotone 
increasing 

 

a) False 

b) True 

c) True 

 

Blank Blank Blank 
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Table 3
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A.4 Student files 
 

FileS1 

 

 

 

 

 

 

FileS2-1  

 

 

 

 

 

 

FileS2-2  
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FileS6-1  

 

 

 

 

 

 

 

FileS6-2  

 

 

 

 

 

 

FileS6-3  
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FileS6-4  

 

 

 

 

 

A.5 Recruitment Email 
THE FIRST EMAIL:  

 

Dear student, 

 

My name is Marc-Olivier Ouellet, and I am a Mathematics master’s student at Concordia.   

 

I am contacting you because you are taking MATH 364 with Dr. [redacted] this semester.  I am 

wondering if you would be willing to participate in my research, which aims to better understand 

the challenges students face when taking undergraduate calculus and analysis courses.  

 

Participation would require the completion of two questionnaires11: one in the next few weeks, and 

a second similar one later in the semester.  There will not be a time window for you to complete 

the questionnaires, you can do them at a time of your convenience.  However, you will have three 

hours to do it once you have started.  It should take around 45 minutes to complete each 

questionnaire if completed in one sitting. 

  

There is nothing to prepare! Your participation would be limited to the two questionnaires at the 

beginning and end of the semester and would help me out so much in completing my degree. I 

won’t be able to do it without participation from students like you!  Please note that participating 

(or refusing to participate) will not affect your grades and that your instructors will not know who 

is participating or have access to your questionnaires.   

 

Please feel free to contact me with any questions.  

 

To reach me, send an email to MA_UELL@live.concordia.ca  

 

Hope to hear from you soon! 

 

 

THE SECOND EMAIL:  

 
11 We initially considered having two questionnaires, but the method was later changed to only include one. 
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Dear student, 

 

My name is Marc-Olivier Ouellet, and I am a Mathematics master’s student at Concordia.   

 

First, I would like to thank the students who have volunteered to take part in my research.  This 

follow-up email is to invite any student willing to help me to participate in my study.  I also take 

this opportunity to inform you that the participants’ involvement in this research has been modified 

since my previous email. 

 

Participation would require the completion of only one questionnaire, in a few weeks, near the end 

of the semester.  There will not be a time window for you to complete the questionnaire, you can 

do them at a time of your convenience.  However, you will have three hours to do it once you have 

started.  Please note that if done without breaks, I expect the questionnaire to take no more than 40 

minutes to complete.  We will not judge or grade your performance in those questions and 

participating (or not participating) will not affect your grade in this course. 

  

I won’t be able to do it without participation from students like you!   

 

Please feel free to contact me with any questions.  

 

To reach me, send an email to MA_UELL@live.concordia.ca  

 

Hope to hear from you soon! 

 

 

 

A.6 Follow-up recruitment Email 

THE EMAIL: 

 

Hello students,  

 

If you receive this email, it is because you have volunteered to participate in my study.  This is to 

inform you that it is finally time to take the questionnaire.  Like it was stated in my previous emails, 

the questionnaire should take between 45 minutes and one hour if you complete it in one sitting 

and is hosted on Moodle.  You will have three hours from the time that you begin the questionnaire 

to allow you to take some breaks, if you decide that it is necessary.   

  

I would like to request your honesty and integrity; it is very important for the study that you answer 

the questionnaire without any outside help.  That includes the internet, old textbooks or help from 

friends.    
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Joined to this email is the consent form for participating in the study.  This form will also be the 

very first question of the questionnaire, and you will be asked to type “I agree” to confirm your 

consent.  Joining the form to this email is so that you can read it thoroughly and ask me any 

questions before beginning the questionnaire.  

 

Finally, in order to give you access to the Moodle site, I will need your full name, your Netname, 

and you student ID.  

 

I want to personally thank you for your help, it is because of the participation of students like you 

that I will be able to complete my degree.  

Best regards,  

  

Marc-Olivier Ouellet 

 

 

 


