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ABSTRACT 

An Investigation on the Nonlinear Vibration Behavior of Mistuned 

Bladed Disk Assemblies  

Hooman Zoka 

One of the critical components of turbomachinery is the bladed disk assembly (BDA). BDAs 

operate in a harsh environment and under dynamic pressure during operation. In aero engines, the 

pressure inhomogeneities in airflow and friction forces due to contact at different locations can 

cause vibrations of the blades and disk. These vibrations result in a range of damages to the 

machine, from damage to the blade and casing, such as wear, to catastrophic engine failure. The 

following two factors may have a critical influence on the vibrations of BDAs: (i) the contact 

between the blade root and disk, (ii) the unavoidable imperfections in manufacturing or mounting 

of the blades, referred to as mistuning. The former leads to friction forces between the blade root 

and disk, while the latter adds a significant amount of uncertainty to the system and may lead to 

the localization of vibration energy to a few blades. The friction forces at the joints and other 

contact areas introduce nonlinear terms into the governing equations. The analysis of nonlinear 

vibrations of BDAs is a time-consuming process. Many studies have focused on the separate 

effects of nonlinearity and mistuning on the vibration characteristics of BDA in turbomachinery. 

The combined effects of these two phenomena, however, are not well understood. This area has 

attracted great interest in recent years, and engineers are working to uncover the correlation 

between mistuning and nonlinearity and their effects on the vibration characteristics of BDAs.  

This study is concerned with the mathematical modeling, numerical analysis, and statistical 

analysis of vibration characteristics of BDAs, including both nonlinear forces and mistuning. The 

governing equations are written for a lumped parameter model replicating the behavior of BDA 

with six blades. The nonlinear forces are due to the dry friction between the roots of the blades and 

the disk. The nonlinear governing equations are then solved for the tuned BDA. The steady-state 

forced response of the mistuned nonlinear system is then computed, with mistuning introduced as 

a small blade-to-blade deviation in the elasticity of the blades with respect to the tuned BDA. The 

effects of changing the mistuning and excitation levels are investigated. Two different mistuning 
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realizations are considered to study the effect of mistuning on the vibrations of a BDA. A 

preliminary statistical analysis is then performed on an ensemble of 150 realizations of mistuned 

BDAs.   
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1. Chapter 1: Introduction 

 

1.1 Bladed Disk Assemblies 

Jet aircraft engines, hydroelectric or thermal turbines in power plants, pumps, and 

turbochargers are examples of turbomachinery. The rotors of these machines are made of disks 

installed on a shaft connected to a stationary housing. The rotating disk of these machines contains 

blades. The rotating components are primarily manufactured in two ways: (i) as an integrated and 

single component, named a blisk, or (ii) as a multi-component structure with several identical 

blades mounted on a disk referred to as a Bladed Disk Assembly (BDA). Blisks are lighter than 

BDAs because they do not require bolts, screws, and dovetail joints. However, a blisk’s lower 

structural damping than a BDA results in a higher amplitude of vibration in blisks [1], [2].  

BDAs receive energy and momentum from the gas flow in a turbomachine and transfer it to 

the shafts in a turbine.  In an airplane's engine, a BDA operates under extreme conditions with high 

temperature levels between 850˚C and 1700˚C. These thermal loads, static fluid pressure, and 

rotation-induced centrifugal loads lead to static stress. In addition, BDAs are subjected to various 

dynamic loads in this harsh operating environment. Some of the loads are described below: 

• Engine Order Excitation: The interaction between the blade and the airflow is called 

Engine Order Excitation [3]. There are pressure inhomogeneities because of the 

aerodynamic interactions of blade row and non-uniform airflow inside the system. The 

non-uniform airflow can be formed by the non-symmetric conditions in the flow path, for 

instance, because of the casing ovality or struts. The operation of the rotating blade inside 

this pressure inhomogeneities causes dynamic forces [4]. Because adjacent blades 

experience the same pressure inhomogeneity with a constant time delay, these forces are 

experienced as a traveling wave by an observer on BDA. This dynamic load contains 

frequencies at integer multiples of the rotational frequency of the engine.  

• Rubbing: In turbines, it is necessary to minimize the clearance between the blade tips and 

casing to increase the aerodynamic efficiency of the turbines. However, reducing the 

clearance increases the risk of destructive contact between blade tips and their casing, 
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called rub. The rub can result in various damage types, ranging from small damage such 

as blade wear to significant damage like blade detachment. On June 23, 2014, the engine 

of an F-35A aircraft fired because of excessive rubbing between the blades and cowling. 

This accident resulted in the grounding of this aircraft throughout the fleet [5]. The rub 

phenomena will be discussed in detail in section 1.3.  

Two factors significantly influence the vibrations of BDAs: (i) mistuning, and (ii) nonlinear 

behavior. Mistuning, a common problem in BDAs, refers to slight structural differences between 

the blades. Mistuning is inevitable because of imperfection in manufacturing, material 

inhomogeneity, and imperfect assembly of rotating systems. In BDAs, mistuning increases the 

levels of blade vibrations compared to their tuned counterparts [3], [5], [6]. Mistuning in BDAs 

can result in the localization of vibration energy to only a few blades in the assembly. Furthermore, 

mistuning leads to premature fatigue failure. The study of the influence of mistuning on the 

vibrations of BDAs dates back to the 1960s.  

There are diverse approaches to mitigate the excessive vibration of BDAs. The excitation of 

the resonant frequencies could be avoided by modifying the natural frequency of the system, for 

instance, by adjusting the number of blades in each row. When avoiding the resonance frequencies 

is not feasible, damping can be used to mitigate vibrations. Material damping is negligible 

compared to the energy loss that occurs at the joints [4]. The most effective damping mechanism 

at the joints is the friction caused by sliding in the contact interfaces. However, frictional damping 

results in wear at the location of contact. 

There are two primary sources for friction in BDAs: (i) intrinsic to BDA, such as the interaction 

between the disk and the dovetail joint of the blade, and (ii) additional external damping, for 

instance, underplatform dampers. Figure 1-1 represents the common friction joints in BDAs: The 

root joints (a), the shrouds installed at the tip of the blades (b), the underplatform dampers (c), wire 

dampers (d), and pins dampers (e).  
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Figure 1-1: Types of friction joints [4] 

The next sections review and synthesize the literature on nonlinear vibrations of mistuned 

BDAs. This thesis is focused entirely on structural vibrations in BDAs. It is assumed that the fluid-

loading effects (fluid-structure interactions) are adequately captured by the engine-order 

excitation. Aeroelastic effects such as flutter are not considered in this work [4]. While there are 

wide ranges of studies on the effects of nonlinear forces and mistuning on the vibration of BDAs, 

the combined effects of these two phenomena are not well understood. Only a few investigations 

are dedicated to studying this topic in recent years.  

1.2 Mistuning in BDAs 

Although a bladed disk is typically designed to have identical blades, there are always 

deviations among the blades caused by manufacturing tolerances, slight material discrepancies, 

wear, and other causes. Such deviations are referred to as mistuning. Even though mistuning is 

typically small (e.g., the natural frequencies of blades differ on the order of a few percent of the 

nominal values), mistuned BDAs can have drastically higher forced response levels than their 

tuned counterparts [7]–[9]. The higher forced response leads to an increase in stresses, which 

results in high cycle fatigue (HCF) of the blades. The ensuing blade failure is a safety issue and 

will affect the reliability of turbo engines and lead to high repair costs. The National Airlines flight 

27 on November 1973 is an example of aviation incidents related to HCF and blade loss. When 

the DC-10 aircraft was flying from Miami to San Francisco at 39000 feet, engine number 3 fell 

apart completely [10]. An annual report from Defense Technical Information Center estimated that 

in 1994, HCF-related maintenances cost over $400 million per year [11]. 

It is essential to identify the existence of mistuning in a manufactured BDA. For a BDA, 

mistuning can be identified by measuring the blade-alone natural frequencies. Measuring each 

blade's natural frequencies is not feasible for a blisk because the natural frequency of each blade 

cannot be measured separately. Hence, mistuning identification techniques are introduced based 
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on experimental measurements of the system response. The identification of mistuning can also 

be used for structural health monitoring of a turbine, for example, to identify cracks on the blades. 

A crack may have a negligible effect on the blade-alone frequencies; however, it could be the 

reason for significant changes in the system mode shapes [3]. Whitehead [12] developed a formula 

to estimate the boundary for the maximum forced response magnification in a mistuned BDA as a 

function of the number of blades. Martel and Corral [13] considered tuned traveling modes near 

the resonance as the active modes. They improved Whitehead’s model by considering the number 

of active modes in a blade mode family instead of the number of blades in Whitehead's formula. 

The spatial confinement of vibrations caused by mistuning is strongly dependent on the 

strength of structural coupling between adjacent blades. It can be explained by considering each 

blade as a single oscillator (a spring-mass system) connected to its adjacent blades by a spring. It 

can be shown that the degree of localization is related to the ratio of the overall mistuning in the 

blade elasticity to the coupling elasticity [3]. The adverse effects of mistuning can therefore be 

mediated by controlling the elastic coupling between the blades. The inter-blade coupling can be 

either structural (through the disk or shrouds) or, to a smaller extent, aerodynamic [3]. Indeed, 

mistuning effects can become negligible when the structural coupling between adjacent blades is 

strong [4]. The localization of mode shapes in a mistuned system is sometimes called Anderson 

localization due to a similar phenomenon observed in condensed matter physics [14]. 

A tuned BDA is a structure with cyclic symmetry built from identical sectors. A sector includes 

one blade and the corresponding segment of the disk. The cyclic symmetry enables a significant 

model reduction when analyzing the structural dynamics of tuned BDAs. However, mistuning 

breaks the cyclic symmetry of BDA. Hence, instead of a single sector model, the whole structure 

needs to be considered to predict the dynamic response. The mistuning amplification (also known 

as mistuning magnification or amplification factor) is defined as the ratio of the maximum 

vibration amplitude of a mistuned system to the maximum vibration amplitude of the 

corresponding tuned BDA. 

A standard method to account for the uncertainty caused by mistuning is the Monte Carlo 

simulations. In this method, different values for uncertain parameters are chosen randomly, and 

multiple runs are required. Monte Carlo simulation has two drawbacks: (i) there is no guideline to 

determine how many samples are needed to describe the mistuning amplification using Monte 
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Carlo simulation [1], (ii) nonlinear simulations are time-consuming; for instance, finding the 

nonlinear frequency response curve for each sample on a PC equipped with an i7 processor can 

take one hour of calculation [1]. Thus, reaching the desirable sampling number considered in a 

linear context is a computational burden for systems involving nonlinearity [1]. 

There are several studies on the best blade arrangement with respect to mistuning [15], [16]. 

Furthermore, there are investigations to find the optimum mistuning pattern in terms of aeroelastic 

stability and forced response amplification. Indeed, the worst-case scenario study is of interest to 

researchers and engine manufacturers [17], [18]. Finding the worst-case scenario is crucial for 

assessing the maximum blade forced response. This offers a metric of the mistuning sensitivity 

and the study of reliability during the design process of BDA [3]. In addition, studying the worst-

case scenario of the mistuning pattern and looking for the best-case mistuning pattern can help 

minimize the blade’s forced response [3]. For linear systems, it is shown that the performance of 

the optimal mistuning pattern is susceptible to small changes in the value of mistuning [19], [20]. 

The variation of the mistuning pattern is inevitable during the operation of the engine. The 

challenge is to find a mistuning pattern that is less sensitive to random mistuning and can be used 

in the nominal design, known as intentional mistuning [3]. Intentional mistuning increases the 

stability of BDA's design when BDA is facing flutter [4], [21]. Also, it can be used to decrease the 

forced response of BDA [2], [22]. However, applying intentional mistuning on BDA to mitigate 

the forced response of the blade is not a standard mitigation strategy.   

1.3 Nonlinear Vibrations in BDAs 

Turbines blades with frictional contact (rub between the blade tip and the casing) and growing 

fatigue crack (variable stiffness because of closing and opening of the crack) are subjected to 

nonlinear forces at the joints and interfaces.  

Analysis based on linearized models is equipped with powerful theoretical and experimental 

tools to predict the dynamic behavior of BDAs. However, in some cases, the influence of nonlinear 

forces is significant enough that a linear model cannot predict the correct dynamic behavior of a 

BDA. For example, to improve aero engine efficiency, it is needed to decrease the weight of the 

design by manufacturing lightweight-thin blades, resulting in more flexible structures prone to 

higher-amplitude motion. Moreover, it could be possible to decrease the clearance between the 



6 

 

blades and the casing (thereby increasing the overall efficiency) if the designer has a proper 

understanding of the nonlinear effects due to contact and friction [23].  

In the following section, the dominant sources of nonlinearity in BDAs are discussed. Two 

categories of simulations used for nonlinear models are mentioned in section 1.3.2. 

1.3.1 Dominant Source of Nonlinearities in BDAs 

Contact Nonlinearity 

Contact nonlinearity refers to friction forces at joints and contact forces due to rubbing between 

blade tips and casing. At the dovetail joints, the contact between the blade root and the disk holds 

the inserted blade in its place. The blade can be pulled due to centripetal acceleration and rubbed 

against the disk at their contact surfaces, as it is shown in Figure 1-2. As a result of rubbing, fretting 

occurs, which initiates fatigue cracks and blade failure. At the tip of the blade, the clearance 

between the blade and casing leads to tip flow leakage and reduced efficiency [5], [18]. Decreasing 

this clearance reduces fuel consumption and, subsequently, both the operating costs and carbon 

emissions [24]. Figure 1-3 shows the blade-casing clearance in a section view of a turbomachine. 

Blade

Disk

Contact Surfaces

 
Figure 1-2: Demonstration of dovetail joint in one sector of BDA  
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Figure 1-3: Radial distance between blade tip and casing or blade tip clearance [5] 

Rubbing between blade tips and the engine casing in aero engines is a common source of 

friction in BDAs. Figure 1-4 demonstrates the typical places where contact between the rotor-

stator or blade-casing occurs [10]. Rubbing usually takes place at the seals and barely between the 

casing and the blades. Because the linear velocity at the blade tip is high (and so is the impact 

energy), contact between the blade and casing is the most hazardous. The high level of energy 

involved in this contact can affect the dynamic behavior of the rotor [5].  

 
Figure 1-4: Probable places of rotor-stator or blade-casing contact [10] 

Using abradable coating material on the inner side of the casing is a way to make the operating 

clearance near zero and prevent the disastrous penetration of the blade into the bare metal casing. 

The abradable coating wears due to contact with the blade and leaves a trail, such as the one shown 

in Figure 1-5 [5], [18]. This contact may lead to high-amplitude vibrations, possibly leading to 

blade failure [26]. Accurate modeling of friction, wear, and impact during the contact event is 

challenging [5]. While the effect of adopting different rubbing models to calculate blade response 

and contact forces is negligible at low rotational speeds, it is significant for high rotational speeds 

[5]. 
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The vibrations of systems with dry friction can be complicated because of the nonlinear nature 

of the friction forces, including the local sticking, sliding, and liftoff [4]. In two separate 

computational studies on the compressor impeller of a helicopter engine, Batailly et al. [25], [26] 

showed that higher harmonics might be generated because of the nonlinear nature of the unilateral 

contact force. The generation of harmonics is an inherently nonlinear phenomenon that cannot be 

captured by a linear model.  

 
Figure 1-5: Effect of rubbing on abradable coating mounted on casing [27] 

Geometric Nonlinearity 

Geometric nonlinearity refers to nonlinear forces that become significant due to the high 

amplitude of motion. Thin and elastic structures, such as blades in BDA, are more likely to be 

affected by geometric nonlinearity. Because large deflection during the operation of BDA is not 

confined to a specific region, the geometric nonlinearity is not localized as opposed to the contact 

nonlinearity. 

1.3.2 Simulation Methods for Systems with Nonlinearities 

The numerical analysis of nonlinear equations can be classified into two categories: (i) 

frequency-domain methods and (ii) time-domain methods. 

The Harmonic Balance Method (HBM) is a common frequency-domain method for the 

computation of the steady-state response of nonlinear systems. It requires knowledge of the 

dominant frequency of the response, which can be obtained from experiments or direct integration 

in the time domain [10]. A truncated Fourier series approximates the response. In computing the 

forced response, the frequency of the input is the fundamental frequency of the Fourier series, e.g., 

the frequency of the engine order excitation. The accuracy of the response computed using HBM 

generally increases with the number of terms included in the truncated Fourier series. HBM has 
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become a standard method in turbomachinery [28]. HBM could suffer from issues of convergence 

and accuracy for non-smooth nonlinearities, such as blade-casing contact [17]. HBM is typically 

combined with numerical continuation techniques to obtain the response of nonlinear systems [29], 

[30].  

The time-domain methods are based on numerical integration methods, such as Runge-Kutta, 

Newmark, and time forward integration methods. While the time-domain methods are more time-

consuming than frequency-domain methods, they do not assume any types of solutions. The study 

of transient phenomena, which is critical in the study of contact-initiated interactions, typically 

requires the use of direct integration of the governing equations [1]. The precision of the time 

integration methods is highly affected by contact and separation, as well as the minimum time step 

[10]. The prediction of the exact time interval to reach the periodic steady-state response is another 

disadvantage of the time integration method [30]. 

1.4 Combined Effects of Mistuning and Nonlinearity 

Analyzing the forced response of nonlinear systems is challenging. Unlike the linear system in 

which the response is independent of the amplitude of motion, in systems with nonlinearity, the 

amplitude of motion affects the response. Hence, linear models are unable to predict the response 

of systems involving nonlinearities correctly. The models developed for the tuned system are not 

applicable to the mistuned system. The symmetrical feature of the tuned systems helps to consider 

one sector of BDA instead of the entire system. Mistuning breaks the symmetry of the system and 

can result in keeping all DOFs in the model. There are many studies on the separate effects of 

mistuning and nonlinearity in turbomachinery; however, the combined effects of structural 

mistuning and nonlinearity require more investigations.  

One of the inexpensive models to study different phenomena in BDA, such as uncertainty, is 

the lumped parameter model. Lumped parameter models offer a simple phenomenological 

examination of the vibration behavior of turbomachinery. To investigate the effect of uncertainty 

due to mistuning in nonlinear models and study the worst-case scenario, using statistical analysis 

with many random mistuned patterns is helpful. The lumped parameter models reduce the 

computational burdens of nonlinear systems under variable mistuning patterns and provide well-

estimated results of real-world systems. The lumped parameter model is used in various studies, 
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considering the mistuning effect, using one single degree of freedom model [31]–[33], and 

multiple degrees of freedom model [29], [34]–[39]. While some papers considered the nonlinear 

effect due to the geometric nonlinearity [33], [38], [39], others consider contact between the blade 

root and the disk [36], [37], blade tip and the casing, or between blades at the shrouds [34] as the 

source of nonlinear forces.  

Joannin et al. [35] used a lumped parameter model, Figure 1-6, to study the vibrations of 

mistuned BDAs with dry friction nonlinearities. The friction force is applied to the blade-disk joint 

to model dry friction between the blade's root and the disk. For a tuned system, the pairs of equal 

natural frequencies related to double modes are observed. In the presence of mistuning, each pair 

of double modes is split into two distinct natural frequencies with two different mode shapes, 

which increases the chance of occurrence of resonance in the forced response of the system.  

In Ref. [35], the mode shapes of the system are studied for two reasons. First, to study the 

effective modal damping as a function of the vibration amplitude. Second, to provide a better 

understanding of the shape of the forced vibration response under traveling wave excitations. 

Considering the mode shape and free response time series, the time series for the tuned system is 

in the form of the traveling wave, while for the mistuned system, it is in the form of stationary 

waves. Consequently, the study of forced response in the tuned system, considering all sectors of 

BDA, unveiled that either in the vicinity or far from resonance, the response is in the form of 

traveling waves. In contrast, for the mistuned system, while the forced response far from 

resonances appears as a combination of traveling and stationary waves, it is in the form of 

stationary waves close to the resonances. Moreover, the effect of using an optimum mistuning 

pattern is studied by providing two random mistuning patterns. For a given mistuning pattern, the 

degree of mistuning (its amplitude) changes the effective modal damping.  
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Figure 1-6: Lumped parameter model of BDA including dry friction nonlinearity between the blade root and the disk [35] 

To study the combined effects of mistuning and nonlinearity due to the blade-casing contact, 

Joachim et al. [1] used a 2D model of a BDA (Figure 1-7). They observed that mistuning has a 

more significant effect on the response of nonlinear systems than linear ones. Moreover, they 

found no connection between linear and nonlinear amplification. These findings suggest that 

vibration mitigation methods designed based on linear models, such as new blade designs or 

intentional mistuning patterns, might not necessarily be helpful when nonlinear contact forces are 

taken into account. 

 
Figure 1-7: 2D model of BDA for linear and nonlinear configurations [1] 

Using a finite element (FE) model provides a more accurate simulation of a BDA. However, 

the large number of degrees of freedom (DOF) involved in a full FE model makes such 

computations expensive. Reduced Order Models (ROMs) are therefore developed to condense the 

number of DOFs while retaining the main characteristics of the structure. When both mistuning 

and nonlinear effects are combined in BDA, creating a ROM to both reduce the size of the model 
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and provide reasonably accurate estimation becomes very challenging. In this case, the nonlinear 

DOFs can be large in number, and the cyclic symmetry of the system cannot be retained due to 

mistuning. The geometric nonlinearity adds complications, in which the model reduction 

techniques are unable to condense the model’s DOFs and result in keeping all DOFs [29]. Joannin 

et al. [29] extended the Craig-Bampton Component Mode Synthesis (CMS) method to provide a 

ROM that reduces computational time. To do so, they used the normal modes of the nonlinear 

system [40], [41].  

Both mistuning and nonlinearity introduce uncertainties to the system. For a system including 

mistuning, the level, pattern, and source of mistuning are identified as uncertainties that strongly 

influence the dynamic behavior of the system [42]. Systems with nonlinearity often have 

uncertainties due to the nonlinear interaction law, such as friction contact law and sliding interfaces 

[17], [43]. Statistical analysis approaches are computationally expensive to study uncertainties in 

the presence of nonlinearities. Researchers use two approaches to avoid the computational burden 

of such systems: (i) developing efficient models, such that the analytical analyses become 

applicable, and (ii) working on methods to face uncertainty with fewer numbers of nonlinear 

simulations.  

Most papers working on uncertainties focus on the average of acquired results from different 

samples (the ensemble average). Butlin et al. [44], [45], however, focused on predicting upper and 

lower response bounds, representing worst-case and best-case scenarios of the response, 

respectively. They presented a new approach faster than using the Monte Carlo method alongside 

the HBM. The root of the uncertainty in their paper is the nonlinear frictional couplings, and 

experimental tests validate this approach. Figure 1-8 shows the test setup and friction dampers 

assembly used in Ref. [44], [45]. Because of the highly uncertain nature of nonlinearity, they 

defined nonlinearity as a general constraint instead of a specific law. This approach is practical 

when computing the functional form of nonlinearity is challenging, such as the blade-casing 

contact or at the blade-disk joints. For example, the constraints that can be introduced for blade-

casing contact are (i) the dissipative nature of the frictional contact, (ii) the friction coefficient 

between the blade tip and casing, and (iii) the radial displacement of the blade [18]. Using 

optimization and applying these constraints, the worst-case metric can be sought without 

considering a specific constitutive law for nonlinearity. 
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(a) (b) 

Figure 1-8: Experimental test setup used in [44], [45]: (a) Beam elements including friction dampers, (b) Detailed view of 
friction dampers 

1.5 Current Study and Contributions 

Significant progress has been made in understanding how mistuning and nonlinear forces in 

the joints and blade tips influence the vibration behavior of BDA separately. However, the 

combined effects of mistuning and nonlinearity are not well understood yet, and more studies are 

required to provide a better vision for researchers and engine manufacturers. 

 In the present work, a lumped parameter model of a BDA structure is considered to study the 

combined effects of mistuning and nonlinearity. The source of nonlinearity is the dry friction at 

the contact interfaces of the blade root and the disk. The external force is applied as a traveling 

force excitation (engine-order excitation) on the tips of the blades. Mistuning is modeled as a small 

deviation (with respect to the tuned system) in the stiffness coefficients of the tip and middle 

sectors of blades The effect of mistuning on vibration characteristics of a single mistuned BDA is 

discussed first, followed by a statistical investigation on 150 realizations of mistuned BDAs. 

1.6 Thesis Organizations 

The rest of this thesis is organized in four chapters. Chapter 2 is dedicated to the detailed 

mathematical modeling and various simulation methods to solve the nonlinear governing equations 

of the tuned BDA. Furthermore, the method that is chosen to calculate the forced response of the 

tuned system is verified with the results of the direct integration method and the results reported 

by Joannin et al. [35].  

After introducing mistuning to the blades in chapter 3, the mathematical method developed in 

the previous chapter is established to calculate the steady-state forced response of the mistuned 
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system. To do so, two different mistuning patterns are considered. In two different studies, the 

effects of excitation level and mistuning level on the forced response of the mistuned BDA are 

investigated.  

A statistical analysis with many mistuned patterns is performed in chapter 4 to study the effect 

of uncertainty in the nonlinear model. 150 mistuning realizations are generated, and for each 

pattern, the steady-state forced response is calculated within a specific range of frequencies. In the 

next step, different statistical parameters are studied during the investigation on the effect of 

variable excitation level and mistuning level.  

The major findings and contributions along with some future remarks, are summarized in 

chapter 5. 
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2. Chapter 2: Vibrations of a Tuned BDA 

 

In this chapter, the vibration behavior of a tuned BDA is studied. First, a simplified lumped 

parameter model of a tuned BDA with a nonlinear force between the blade root and the disk is 

presented. The mathematical model and the so-called frictionless and bonded frequencies are 

calculated to be used in the expression of the nonlinearity effect. Second, some of the available 

methods to calculate the forced response of the system, including the time domain method, the 

Harmonic Balance (HB) method, and numerical continuation, are introduced in this chapter. Then, 

the forced response of blade tips is calculated and verified with the available results provided by 

another scholar under a traveling wave excitation. Finally, the effect of changing the excitation 

level in a specific range is investigated to show the activation of the nonlinearity and its effect on 

the forced response curves. Moreover, the effect of changing the excitation level on different 

results, including forced response, backbone curve, compliance, and the time series of the blade 

tips, are studied in this chapter.  

2.1 Mathematical Modeling 

A tuned BDA can be considered a structure with cyclic symmetry built from identical sectors. 

Each sector can be simplified as a lumped parameter model. Several identical sectors are connected 

and make the whole BDA. Figure 2-1 shows a 2D demonstration of a sector of a BDA, including 

one blade and the corresponding segment of the disk. Each sector contains four different DOFs: 

three DOFs to make blade sections, including the tip, middle, and root of the blade. The fourth 

DOF represents the portion of the disk corresponding to the sector. The whole BDA contains six 

sectors, so the entire BDA has 24 DOFs. Various researcher groups have used this lumped 

parameter model to study the vibration characteristics of a BDA [29], [34], [35], [46], [47]. In 

Figure 2-1, m, c, and k refer to the mass, damping, and stiffness coefficients of each DOF, 

respectively. The external force, fex, applies to the tip mass of each sector. fnl is the nonlinear force 

due to the friction force between the root of the blade and the disk. The disk mass is connected to 

the adjacent disk mass on both sides to complete the cyclic pattern of a tuned BDA. Note that the 

DOFs in Figure 2-1 correspond to a modal representation of the bending motion of the blades and 

the tangential motion of the disk. 
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The values of the structural parameters presented in Figure 2-1 are listed in Table 2-1 [35]. The 

values of the mass are chosen to represent the mass distribution in a real BDA [35]. The values of 

the stiffness coefficients are then determined such that the natural frequencies of the system 

represent those of a real BDA. This model is tuned to reproduce the results of the first family of 

bending modes of a real BDA [35]. 

In Figure 2-1, considering only one sector, the governing equations are written as follows: 

𝑚1�̈�1 + 𝑐1�̇�1 − 𝑐1�̇�2 + 𝑘1𝑥1 − 𝑘1𝑥2 = −𝑓𝑒𝑥
1 (𝑡) (2-1) 

𝑚2�̈�2 − 𝑐1�̇�1 + (𝑐1 + 𝑐2)�̇�2 − 𝑐2�̇�3 − 𝑘1𝑥1 + (𝑘1 + 𝑘2)𝑥2 − 𝑘2𝑥3 = 0 (2-2) 

𝑚3�̈�3 − 𝑐2�̇�2 + (𝑐2 + 𝑐3)�̇�3 − 𝑐3�̇�4
1 − 𝑘2𝑥2 + (𝑘2 + 𝑘3)𝑥3 − 𝑘3𝑥4

1 + 𝑓𝑛𝑙(�̇�𝑟𝑒𝑙) = 0 (2-3) 

𝑚4�̈�4
1 − 𝑐3�̇�3 + (𝑐3 + 𝑐4 + 2𝑐𝑐)�̇�4

1 − 𝑐𝑐�̇�4
2 − 𝑐𝑐�̇�4

6 − 𝑘3𝑥3 + (𝑘3 + 𝑘4 + 2𝑘𝑐)𝑥4
1

− 𝑘𝑐𝑥4
2 − 𝑘𝑐𝑥4

6 + 𝑓𝑛𝑙(�̇�𝑟𝑒𝑙) = 0 (2-4) 
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Figure 2-1: Lumped parameter model of each sector of BDA 

Table 2-1: Value of parameters used in the sector of BDA [35] 

Parameters (unit) Tip Middle Root Disk Ground 
m (10-3 kg) 5 5 15 120 -- 
c (N.s/m) 0.1 0.1 0.1 0.1 0.1 

k (105 N/m) 6 10 300 100 25 

In the Eqs. (2-1) - (2-4), subscripts 1, 2, 3, c, and 4 refer respectively to the sector's tip, middle, 

root, disk, and ground sections. Superscripts 1, 2, and 6 correspond to sectors 1, 2, and 6, 
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respectively. The dots refer to the derivatives with respect to the time, t. The parameter ẋrel is the 

relative velocity between the blade root and the disk.  

The governing equations for the whole model in a matrix format can be written in the following 

form: 

𝑴�̈�(𝑡) + 𝑪 �̇�(𝑡) + 𝑲 𝑋(𝑡) + 𝑭𝒏𝒍(�̇�) = 𝑭𝒆𝒙(𝑡) (2-5) 

where M, C, and K are mass, damping, and stiffness matrices, respectively. Fnl and Fex are 

nonlinear force and external force matrices.  

The engine order excitation of the system can be represented as an external force applied to the tip 

mass of the kth sector can be expressed as: 

𝑓𝑒𝑥
𝑘 (𝑡) = 𝐹 cos (Ω𝑡 + 

2𝜋𝑘

𝑁𝑏
) (2-6) 

where Ω, F, and Nb are the excitation frequency, the amplitude of excitation, and the total number 

of sectors, respectively. Considering 𝑇 = 2𝜋 Ω⁄ , the excitation can be computed over one forcing 

period, T. The normalized time series of excitation is demonstrated in Figure 2-2. The amplitude 

of excitation at t/T=0 for each blade is shown in Figure 2-3.  

 
Figure 2-2: Normalized time series of excitation as a time-traveling wave through all sectors 
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Figure 2-3: Amplitude of excitation at t/T=0 applied at each blade tip 

Ignoring the terms corresponding to the nonlinear and external forces in Eq. (2-5), the first 

family of natural frequencies for the tuned linear system is reported in Table 2-2. In this table, two 

different sets of natural frequencies are provided, named frictionless and bonded. The frictionless 

interface assumption means that the nonlinear force (friction force) between the blade root and the 

disk has been ignored. Bonded interface expresses the assumption in which there is no relative 

motion between the blade root and disk, and their masses are summed up together, and croot and 

kroot are ignored. For all results, the bonded frequencies have a higher value than the frictionless 

frequencies. The reason is the stiffer stiffness between the blade root and the disk in the bonded 

model versus the softer stiffness in the contact interface in the frictionless assumption.  

Table 2-2: Natural frequencies of the tuned linear system for the first family of bending mode, considering frictionless 
and bonded assumptions 

Frequency (Hz) f1 f2 f3 f4 f5 f6 

Frictionless 652.6 1189.1 1189.1 1243.8 1243.8 1248.2 
Bonded 653.6 1201.5 1201.5 1256.5 1256.5 1260.8 

Table 2-2 shows that two pairs of natural frequencies (f2, f3, and f4, f5) are equal. The first pair 

corresponds to the double mode with one nodal diameter, and the second pair is the natural 

frequencies of the double mode with two nodal diameters [35]. f1 and f6 are the natural frequencies 

associated with a single mode with zero and three nodal diameters, respectively. In a circular 
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membrane, the nodal diameter or nodal line is defined as the line with zero deflection while the 

rest of the membrane oscillates. 

This study uses Coulomb's dry friction law to model the friction force between the blade root 

and the disk. Coulomb’s law can be modeled using the sign function and relative velocity between 

the root and the disk. A way to approximate the sign function is by using a hyperbolic tangent. The 

non-smooth sign function is replaced with a smooth hyperbolic tangent function, which is 

differentiable at all points. Moreover, we avoid the force discontinuity at ẋrel = 0, which results in 

computational burden [48]. Therefore, the nonlinear force can be formulated as follow: 

𝑓𝑛𝑙(�̇�) = 𝜇0𝑁 tanh
�̇�𝑟𝑒𝑙
𝜀

 (2-7) 

where N and μ0 are the normal load at the contact interface and friction coefficient, respectively. 

Throughout this study, the value for N is equal to the centrifugal force of the blade, which is 

constant and equal to 1000 N [35]. Also, the value for μ0 is constant, equal to 0.3 [35]. In Eq. (2-7), 

ε represents the degree of regularization, which can be varied based on the amplitude of vibrations. 

A comparison between two different values of ε (ε=10-3 and ε=10-5) is provided in Figure 2-4. The 

small value of ε results in a closer approximation to the sign function; however, it takes a longer 

computation time [35]. In this study, the value for ε is constant and equal to 10-3, which provides 

an acceptable agreement between the accuracy of results and the computational burden of 

simulation.  
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Figure 2-4: Comparison between two different values of ε (ε=10-3 and ε=10-5) for the hyperbolic tangent representation of 

Coulomb’s dry friction law 

2.2 Steady-state forced response of the nonlinear system 

Three numerical methods are used for computing the steady-state forced response of the BDA 

in this study. These methods are described in this section.  

2.2.1 Time-Domain Method 

This method uses the direct integration of governing equations of the system. In this study, 

MATLAB is used to carry out the time-domain analysis. The ode command in MATLAB provides 

various solvers to solve differential equations with different orders. The order is defined as the 

highest-order derivative of the time-dependent variable in the equation. In order to use the ode 

command in MATLAB, the order of differential equations should be one. The governing equations 

of the system for the introduced model in this study, Eqs. (2-1)-(2-4) are second order. So, the first 

step is to reduce the order of the differential equations to one. In order to rewrite the Eqs. (2-1)-

(2-4) for one sector of BDA, the state variables (yi and ẏi) are assumed as follows: 

𝑥1 = 𝑦1 

�̇�1 = �̇�1 = 𝑦2     ; 

�̈�1 = �̇�2 

𝑥2 = 𝑦3 

�̇�2 = �̇�3 = 𝑦4     ; 

�̈�2 = �̇�4 

𝑥3 = 𝑦5 

�̇�3 = �̇�5 = 𝑦6     ; 

�̈�3 = �̇�6 

𝑥4
1 = 𝑦7 

�̇�4
1 = �̇�7 = 𝑦8 

�̈�4
1 = �̇�8 

(2-8) 
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This assumption can be made for all six sectors of BDA. By substituting state variables from Eq. 

(2-8) in governing equations (Eqs. (2-1)-(2-4)), we have: 

�̇�1 = 𝑦2 (2-9) 

𝑚1�̇�2 = −𝑐1𝑦2 + 𝑐1𝑦4 − 𝑘1𝑦1 + 𝑘1𝑦3 − 𝑓𝑒𝑥
1 (𝑡) (2-10) 

�̇�3 = 𝑦4 (2-11) 

𝑚2�̇�4 = 𝑐1𝑦2 − (𝑐1 + 𝑐2)𝑦4 + 𝑐2𝑦6 + 𝑘1𝑦1 − (𝑘1 + 𝑘2)𝑦3 + 𝑘2𝑦5 (2-12) 

�̇�5 = 𝑦6 (2-13) 

𝑚3�̇�6 = 𝑐2𝑦4 − (𝑐2 + 𝑐3)𝑦6 + 𝑐3𝑦8 + 𝑘2𝑦3 − (𝑘2 + 𝑘3)𝑦5 + 𝑘3𝑦7 − 𝑓𝑛𝑙(�̇�𝑟𝑒𝑙) (2-14) 

�̇�7 = 𝑦8 (2-15) 

𝑚4�̇�8 = 𝑐3𝑦6 − (𝑐3 + 𝑐4 + 2𝑐𝑐)𝑦8 + 𝑐𝑐𝑦16 + 𝑐𝑐𝑦48 + 𝑘3𝑦5 − (𝑘3 + 𝑘4 + 2𝑘𝑐)𝑦7

+ 𝑘𝑐𝑦15 + 𝑘𝑐𝑦47 − 𝑓𝑛𝑙(�̇�𝑟𝑒𝑙) (2-16) 

Eqs. (2-9)-(2-16) describe the motion of a single sector as a system of first-order equations. There 

are similar equations for the other sectors. Combining the equations for all sectors, the governing 

equations for the assembly in the matrix format can be summarized as: 

𝑨𝑻�̇� = 𝑩𝑻𝑌 + 𝑪𝑻 (2-17) 

where Ẏ is the derivative of state vector Y, and it is defined as: 

�̇� =

{
 
 

 
 
�̇�1
�̇�2
�̇�3
⋮
�̇�2𝑛}
 
 

 
 

     ; 𝑌 =

{
 
 

 
 
𝑦1
𝑦2
𝑦3
⋮
𝑦2𝑛}
 
 

 
 

 

(2-18) 

where n is the number of degrees of freedom of the system. The matrices AT, BT, and CT contain 

the coefficients of the derivatives of the state vector, coefficients of the state vector, and the matrix 

of the internal and external force, respectively. The dimension of AT and BT matrices are 2n×2n, 

and for matrix CT, it is 2n×1. Considering the model used in this study, the dimension of AT and 

BT matrices will be 48×48, and matrix CT has a dimension of 48×1. 

Now that the governing equations are converted to first-order equations, the ode45 command 

in MATLAB can be used to solve this system of equations. In general, this command is the first 

recommended solver to solve differential equations that provide acceptable accuracy [49]. The 
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ode45 command is based on the 4th-order Runge-Kutta method. The details of this method can be 

found in the numerical methods textbooks [50], [51].  

2.2.2 HBM Solution 

Considering a general form of the governing Eq. (2-5) for n DOFs system under harmonic 

periodic excitation, we have: 

 𝑴�̈� + 𝑪�̇� + 𝑲𝑋 + 𝑭𝒏𝒍(𝑋, �̇�) = 𝑭𝒆𝒙(𝜔, 𝑡) (2-19) 

Here, the nonlinear force is a function of displacement and velocity.  

The periodic response and forces, including external forces and nonlinear forces in the form of 

𝑓(𝑥, �̇�, 𝜔, 𝑡) = 𝑭𝒆𝒙(𝜔, 𝑡) − 𝑭𝒏𝒍(𝑋, �̇�) can be approximated by a truncated Fourier series as follow: 

𝑥(𝑡) =  
𝑐0
𝑥

√2
+∑(𝑠𝑘

𝑥 sin (
𝑘𝜔𝑡

𝜈
) + 𝑐𝑘

𝑥 cos (
𝑘𝜔𝑡

𝜈
))

𝑁𝐻

𝑘=1

 (2-20) 

𝑓(𝑡) =  
𝑐0
𝑓

√2
+∑(𝑠𝑘

𝑓
sin (

𝑘𝜔𝑡

𝜈
) + 𝑐𝑘

𝑓
cos (

𝑘𝜔𝑡

𝜈
))

𝑁𝐻

𝑘=1

 (2-21) 

where NH is the harmonic number. The unknown cosine and sine coefficients of the Fourier series 

are ck and sk, respectively. The superscripts x and f represent the Fourier coefficients of 

displacement x(t) and force f(t), respectively. Eq. (2-20) can be simplified to the format below: 

𝑥(𝑡) = (𝑄(𝑡)⨂𝕀𝑛)𝑧 (2-22) 
𝑓(𝑡) = (𝑄(𝑡)⨂𝕀𝑛)𝑏 (2-23) 

where ⨂, 𝕀𝒏 and Q(t) are Kronecker tensor product, the identity matrix with the order of n, and 

the vector including sine and cosine series, respectively. The vector Q is: 

𝑄(𝑡) = [
1

√2
 sin (

𝜔𝑡

𝜈
) cos (

𝜔𝑡

𝜈
) ⋯ sin (

𝑁𝐻𝜔𝑡

𝜈
) cos (

𝑁𝐻𝜔𝑡

𝜈
)] (2-24) 

z and b are the coefficients of displacements and force collected in two vectors with the dimension 

of (2NH+1)n as follow: 
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𝑧 = [(𝑐0
𝑥)𝑇 (𝑠1

𝑥)𝑇 (𝑐1
𝑥)𝑇 ⋯ (𝑠𝑁𝐻

𝑥 )
𝑇
 (𝑐𝑁𝐻

𝑥 )
𝑇
 ]
𝑇

 (2-25) 

𝑏 = [(𝑐0
𝑓
)
𝑇
 (𝑠1

𝑓
)
𝑇
 (𝑐1

𝑓
)
𝑇
 ⋯ (𝑠𝑁𝐻

𝑓
)
𝑇
 (𝑐𝑁𝐻

𝑓
)
𝑇
 ]
𝑇

 (2-26) 

Considering Eq. (2-22), the velocity and acceleration are defined as follow: 

�̇�(𝑡) =  (�̇�(𝑡)⨂𝕀𝑛)𝑧 = ((𝑄(𝑡)∇)⨂𝕀𝑛)𝑧 (2-27) 
�̈�(𝑡) = (�̈�(𝑡)⨂𝕀𝑛)𝑧 = ((𝑄(𝑡)∇

2)⨂𝕀𝑛)𝑧 (2-28) 

where 

∇k= 

[
 
 
 
 
0

⋱
∇𝑘

⋱
∇𝑁𝐻]

 
 
 
 

,          ∇∇= ∇2=

[
 
 
 
 
0

⋱
∇𝑘
2

⋱
∇𝑁𝐻
2
]
 
 
 
 

 (2-29) 

∇ and ∇2 are described as: 

∇𝑘= [
0 −

𝑘𝜔

𝜈
𝑘𝜔

𝜈
0

],          ∇𝑘
2=

[
 
 
 
 − (

𝑘𝜔

𝜈
)
2

0

0 − (
𝑘𝜔

𝜈
)
2

]
 
 
 
 

          (2-30) 

After substituting Eqs. (2-22), (2-23), (2-27), and (2-28) in Eq. (2-19) and considering the mixed-

product property of Kronecker tensor product1, it yields: 

((𝑄(𝑡)∇2)⨂𝑀)𝑧 + ((𝑄(𝑡)∇)⨂𝐶)𝑧 + (𝑄(𝑡)⨂𝐾)𝑧 = (𝑄(𝑡)⨂𝕀𝑛)𝑏 (2-31) 

 Applying the Galerkin procedure on the orthogonal trigonometric basis Q(t) results in finding the 

different Fourier coefficients and removing the time dependency: 

 
1 (A⨂B)(C⨂D) = (AC)⨂(BD) 
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((
2

𝑇
∫ 𝑄𝑇(𝑡)𝑄(𝑡)𝑑𝑡
𝑇

0

∇2)⨂𝑀)𝑧 + ((
2

𝑇
∫ 𝑄𝑇(𝑡)𝑄(𝑡)𝑑𝑡
𝑇

0

∇)⨂𝐶) 𝑧

+ ((
2

𝑇
∫ 𝑄𝑇(𝑡)𝑄(𝑡)𝑑𝑡
𝑇

0

)⨂𝐾)𝑧 = ((
2

𝑇
∫ 𝑄𝑇(𝑡)𝑄(𝑡)𝑑𝑡
𝑇

0

)⨂𝕀𝑛)𝑏 
(2-32) 

Knowing that 

2

𝑇
∫ 𝑄𝑇(𝑡)𝑄(𝑡)𝑑𝑡
𝑇

0

= 𝕀2𝑁𝐻+1 (2-33) 

T is the period of the external force. The equations of motion in the frequency domain are as 

follows: 

(∇2⨂𝑀)𝑧 + (∇⨂𝐶)𝑧 + (𝕀2𝑁𝐻+1⨂𝐾)𝑧 = (𝕀2𝑁𝐻+1⨂𝕀𝑛)𝑏 (2-34) 

or 

(∇2⨂𝑀) + (∇⨂𝐶) + (𝕀2𝑁𝐻+1⨂𝐾)⏟                      
𝐴(𝜔)

𝑧 = (𝕀2𝑁𝐻+1⨂𝕀𝑛)𝑏 (2-35) 

Eq. (2-35) can be written in the compact form 

𝑨(𝝎)𝑧 − 𝑏(𝑧) = 0 (2-36) 

where 𝑨(𝝎) is a (2NH+1)n × (2NH+1)n matrix defining the linear dynamics of the system as 

follows: 

[
 
 
 
 
 
 
 
 
 
−𝐾
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𝜔

𝜈
)
2

𝑀 −
𝜔

𝜈
𝐶

𝜔

𝜈
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𝜔

𝜈
)
2

𝑀

⋱

𝐾 − (𝑁𝐻
𝜔

𝜈
)
2

𝑀 −𝑁𝐻
𝜔

𝜈
𝐶

𝑁𝐻
𝜔

𝜈
𝐶 𝐾 − (𝑁𝐻

𝜔

𝜈
)
2

𝑀]
 
 
 
 
 
 
 
 
 

 (2-37) 

Substituting the root of Eq. (2-36) in Eq. (2-22) results in the solution of (2-19). 
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Eq. (2-36) contains nonlinear algebraic equations which can be solved using different methods. 

One way is to use iterative methods, such as the Newton-Raphson method, using the FSOLVE 

command in MATLAB software. 

In the HB method, increasing the number of harmonics in the truncated Fourier series is 

necessary to achieve an answer with sufficient accuracy. Increasing the number of harmonics 

increases the size of Eq. (2-37), and results in large systems with multiple degrees of freedom, this 

results in a heavy computational workload [30], [52].  

The HBM method, described above, is often unable to handle complicated nonlinear forces 

such as the Coulomb friction model, because of the hyperbolic tangent function [30], [52]. In the 

current work, the nonlinear forces contain velocity terms inside the hyperbolic tangent function. 

Consequently, it is difficult to extract sine and cosine coefficients in Eqs. (2-20) and (2-21) using 

the HBM formulation. An alternative to the HBM is the Alternating Frequency-Time (AFT) 

formulation. This method uses inverse Fourier transform, for example, inverse fast Fourier 

transform (iFFT), and discrete Fourier transform, such as fast Fourier transform (FFT), to switch 

between the time domain and frequency domain representations of the response. The algorithm of 

AFT is illustrated in Figure 2-5 [30]. An initial estimation of the response in the frequency domain 

can be transferred to the time domain using iFFT. Then, the nonlinear forces can be evaluated by 

the response in the time domain. The nonlinear forces in the time domain are then converted to 

harmonic coefficients (sines and cosines coefficients) using FFT and used to evaluate the response 

for the next iteration. The details of HBM and AFT-HB can be found in nonlinear vibrations 

textbooks [30]. 
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Figure 2-5: Illustration shows the algorithm behind the AFT method [30] 

2.2.3 Numerical Continuation 

The numerical continuation method makes it possible to find successive points of a response 

curve (solution curve). A common technique in numerical continuation is the application of 

predictor and corrector steps. The predictor-corrector method predicts a new point of the response 

curve. Then the predicted point will be corrected to provide the new sequential point for the next 

prediction.  

The main difficulty in using continuation techniques is to find a good approximation of the 

initial point close to the solution curve, especially near turning points and branches [53]. Different 

techniques for numerical continuation can be found in the literature, such as sequential or natural 

parameter continuation, pseudo-arclength continuation, simplicial or piecewise linear 

continuation, and Davidenko-Gauss-Newton continuation [53]. The primary difference between 

these algorithms is in the details of the predictor and corrector steps. 

To showcase the effectiveness of continuation methods, we use the Duffing system as an 

example. The governing equation for this system are: 

�̈� + 𝐶�̇� + 𝛾𝑥 + 𝛽𝑥3 = 𝐹 cos(𝜔𝑡) (2-38) 

where γ and β are the linear and nonlinear stiffness coefficients, respectively. Assuming only one 

term in the Fourier series approximation of the response, NH=1, and ν=1 in Eq. (2-20) and applying 

standard HBM to the above equation, we have: 
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𝑥(𝑡) = 𝑠1
𝑥 sin(𝜔𝑡) + 𝑐1

𝑥 cos(𝜔𝑡) (2-39) 

�̇�(𝑡) = 𝜔𝑠1
𝑥 cos(𝜔𝑡) − 𝜔𝑐1

𝑥 sin(𝜔𝑡)  (2-40) 

�̈�(𝑡) = −𝜔2𝑠1
𝑥 sin(𝜔𝑡) − 𝜔2𝑐1

𝑥 cos(𝜔𝑡) = −𝜔2𝑥(𝑡)  (2-41) 

Note that the cubic stiffness only creates odd harmonics; as a result, the even terms in Eq. 

(2-39) have been dropped [30], [35]. After substituting Eqs. (2-39) - (2-41) in Eq. (2-38) and 

applying a Galerkin projection procedure, we derive the following two nonlinear algebraic 

equations: 

3

4
𝛽𝑐1

𝑥3 + (𝛼 − 𝜔2)𝑐1
𝑥 +

3

4
𝛽𝑐1

𝑥𝑠1
𝑥2 + 𝐶𝜔𝑠1

𝑥 = 𝐹  (2-42) 

3

4
𝛽𝑠1

𝑥3 + (𝛼 − 𝜔2)𝑠1
𝑥 +

3

4
𝛽𝑠1

𝑥𝑐1
𝑥2 + 𝐶𝜔𝑐1

𝑥 = 0  (2-43) 

in which the coefficients of the sine and cosine functions (the amplitudes) are unknown. Assuming 

C = 0.05 Ns/m, α = 1, β = 0.04, and F = 0.5 N, the system of equations in Eqs. (2-42) and (2-43) 

can be solved for different frequencies to find the unknowns. Using the FSOLVE command in 

MATLAB, these algebraic equations can be solved. The response at the frequency far from the 

resonance can be provided and used as the initial values to solve the system of equations and find 

the nonlinear response curve. However, the FSOLVE algorithm has trouble following the turning 

point, and numerical continuation can be used instead for this purpose. 

Here, the sequential continuation and pseudo-arclength continuation methods are explained 

briefly. A detailed explanation in the context of mechanical vibrations can be found in Refs. [30], 

[54].  

Sequential Continuation 

The first method is sequential or natural parameter continuation, in which the prediction starts 

from an initial solution point (α0, x0). Then it continues by increasing α, as α1 = α0 + Δα, to the next 

point by taking small steps, Δα, and assuming that in the following prediction point x is the same 

as the first one, i.e. (α1, x1) = (α1, x0). In the next step, using an iteration method, such as Newton-

Raphson, the prediction corrects by solving f(x2, α1)=0 for x2 to find the next accurate solution 

point (α2, x2) = (α1, x2). New solution points can be found by considering the new solution point, 
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(α2, x2), as the new starting point, (α0, x0), for the next prediction and repeating the same steps. A 

demonstration of sequential continuation is shown in Figure 2-6 (a).  

This method requires taking small steps, Δα, where the solution curve has steep gradients, 

which results in a computational burden. Also, as it is shown in Figure 2-6 (a), this method cannot 

follow the solution curve in the area with a turning point (the last point of Figure 2-6 (a)). Thus, 

other methods, such as the pseudo-arclength continuation, should be used to follow the solution 

curve at turning points.  

 
Figure 2-6: Demonstrations of two numerical continuation methods to find the solution curve. (a) Sequential 

continuation; (b) Pseudo-arclength continuation [53] 

Pseudo-Arclength Continuation 

Pseudo-arclength continuation makes a linear prediction step in the direction of the solution 

curve tangent. This prediction is corrected perpendicular to the curve tangent in the next step. A 

new constraint called Euclidian arclength normalization, also known as the pseudo-arclength 

constraint, is considered in this method to find all unknowns. By moving in the tangent direction 

of a known solution point on the solution curve, it is possible to find the next prediction. After 

considering point 0 in Figure 2-6 (b) as a known solution point, a step of Δs can be taken to find 

the prediction point, point 1. By adopting a small value of Δs, the new prediction point can be close 

to the solution point. As the next step, this prediction corrects perpendicular to the tangent vector 

(utilizing Newton-Raphson iteration) to find the new solution point (point 2). Assuming this new 

solution point, point 2, as a starting point for the next iteration, point 0, the whole procedure can 
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be repeated to find the next solution point. The pseudo-arclength continuation algorithm is 

presented in detail in [53].  

Using numerical continuation to solve the governing equations of the SDOF Duffing oscillator, 

the same equations as Eqs. (2-42) and (2-43) are considered with a difference that ω is also 

considered an unknown. The pseudo-arclength constraint can provide another equation to 

determine all unknowns. 

Solving all the system of equations containing Eqs. (2-42), (2-43) and pseudo-arclength constraint 

will capture the turning curve in the response curve of the SDOF Duffing equation. The norm of 

amplitude, ||X||, and the phase angle are shown in Figure 2-7 and Figure 2-8, respectively. 

Furthermore, in these figures, the response curve without continuation, the red dashed line, is 

included. In Figure 2-7, the response curve cannot demonstrate the turning point and drops to 

stable results before reaching the turning point. 

 
Figure 2-7: Comparison of the norm of amplitude, using HBM by considering NH=1, with and without continuation 
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Figure 2-8: Comparison of phase delay, using HBM by considering NH=1; with and without continuation  

MatCont is an open-source package developed in MATLAB to carry out numerical 

continuation and bifurcation analysis of dynamical systems [55]. The first version of the MatCont 

package was developed in the 1970s. The current version is available in two different types. The 

first type is the graphical user interface version, which usually is called MatCont and has a user-

friendly environment to enter the required equations and set the desired settings. The second type 

is a command-line version, CL_MatCont, in which the parameters and equations should be entered 

in the MATLAB M-file environment.  

In the current study, the CL_MatCont has been used to compute the amplitude response curve 

of the nonlinear BDA system. The forced response calculated using CL_MatCont for the tuned 

system is verified, comparing with two different results: (i) the results provided in Joannin’s study 

[35] and (ii) the results found using the direct integration method. All the results are presented and 

discussed in the next section. 

2.3 Results and Discussion 

Figure 2-9 shows the steady-state forced response of the tip mass of the first sector (X1), 

assuming an amplitude of 2 N for the external force. To verify the results, the calculated frequency 

response curves are compared to those reported by Joannin et al.[35]. Figure 2-9 shows a good 
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agreement between the two sets of results. Moreover, in this figure, the time-series of the response 

at a particular frequency (1199.2 Hz) is shown.  

While the time integration method is reliable for calculating the system's forced response, using 

this method is time-consuming. For example, calculating the response curve presented in Figure 

2-10 took around 17 hours on a computer with an Intel(R) Xeon(R) CPU and 32 GB of RAM.  

 
Figure 2-9: Comparison of the steady-state forced response of the tip mass of the first sector, Considering the direct 

integration method and Joannin’s results [35], F = 2N 

For the current study, multiple runs with varying external forces from small to high values are 

required. Using direct numerical integration for this purpose is a heavy burden and can last several 

weeks. Instead, we use numerical continuation, as implemented in MatCont, for these 

computations. The advantage of this approach is that the transient response is not computed at each 

step. Figure 2-10 compares the forced response for the tip mass of the first blade computed using 

direct numerical integration, numerical continuation, and published results [35]. The simulation 

time for numerical continuation was 16 minutes, which is about 60 times faster than direct 

numerical integration (17 hours).  
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Figure 2-10: Comparison between the results Using the MatCont package, direct integration, and Joannin’s results [35] 

The steady-state forced response of the tip mass of each sector versus the exciting frequency is 

plotted in Figure 2-11. As expected, the steady-state displacement amplitude of the six blades is 

uniform across the BDA.  

The steady-state forced response of the tip of the first blade (X1) with respect to forcing 

frequency for different values of the external force is plotted in Figure 2-12. The tuned system 

shows one peak around the first pair of modes of the linear system when the excitation level is 

low. The exact peak with the same amplitude is observed for the tip mass of other sectors. 

Moreover, the backbone curve can be plotted by tracing the peak of the forced response curve for 

different external forces. The natural frequency of the free response occurs in the vicinity of the 

backbone curve. After increasing the excitation level, the resonance frequency for each curve, and 

consequently the backbone curve, shifts to lower frequencies. 
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Figure 2-11: Comparison between the displacement amplitudes of the blade tips in the tuned system 

In Figure 2-13, the time series for the tip masses of all sectors are plotted before, at, and after 

the peak of the response curve for F = 2 N. The time series confirms a traveling-wave response in 

compliance with the external force in Eq. (2-6). After the peak of the response, i.e., after natural 

frequency, a phase delay of π can be observed between the time series of the response and 

excitation, similar to the linear behavior of the system (at low amplitudes).  

 
Figure 2-12: Steady-state forced response of the tip of the first blade for different external force levels 
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Figure 2-13: Time series of the tip of the second blade for various frequencies at F = 2N 

In Figure 2-13, the peak of the response curve gradually shifts to the left (lower frequencies) 

after increasing the amplitude of the external force. This shift can be observed more clearly when 

the excitation is increased beyond 5 N, up to 15 N, in Figure 2-14. The backbone curve is plotted 

in Figure 2-15 for forcing amplitudes in the range between 0.1 N and 15 N. Unlike the linear 

system in which the natural frequency is independent of the excitation force, the natural frequency 

in a nonlinear system can depend on the amplitude of motion. Considering lower excitation, the 

natural frequency for each excitation is constant and equal to the natural frequency presented in 

Table 2-2 for the linear system with bonded DOF assumption. Observing the natural frequency 

close to the natural frequency of the linear system with bonded assumption can be interpreted as 

the stationary sticking state at the contact interface. The bonded frequency is represented with a 

vertical asymptote in the detailed view of Figure 2-15. At a higher amplitude of excitation, the 

natural frequency shifts to the left (lower frequency) toward the natural frequency of the linear 

system with the frictionless assumption. The same behavior was observed in systems including 

friction nonlinearities [56], [57]. The reason is that the nonlinearity introduced by friction has a 

softening effect on the dynamic behavior of the system. It reduces the natural frequency of the 

system. The start of the slipping between DOFs in the contact interface is the reason for the 

activation of the nonlinearity. The shift continues up to a particular value of excitation and does 

not change when it reaches the vertical asymptote shown in Figure 2-15.  
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Figure 2-14: Forced response of the tip of the first blade for different levels of excitation 

 
Figure 2-15: Backbone curve based on the forced response of vibration between 0.1-15 N 

In Figure 2-16, the resonance shift can be observed after plotting the compliance of the 

response for a range of excitation forces between 0.1 N and 15 N. Additionally, the effect of 

increasing damping due to friction can be seen in Figure 2-16. After increasing the excitation level 

from 0.1 N to 5 N, along with resonance shifting to lower frequencies, the compliance peak 

decreases due to an increase in damping. The maximum damping can be obtained by exciting the 
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system with a force of 5 N, where the peak of compliance is minimum. The maximum damping is 

a result of being in the partial-slip condition [35], [57]. After 5 N, the compliance peak increases 

again for the rest of the excitation range.  

 
Figure 2-16: Compliance for various excitation forces at the tip of the first blade 

2.4 Conclusion 

This chapter introduced the lumped parameter model of a tuned BDA. The forced response of 

blade tips to engine-order excitation is calculated using direct numerical integration and numerical 

continuation. The calculated results were verified, and the effect of changing the excitation level 

was investigated. The results showed the effect of nonlinear forces due to the friction between the 

blade root and the disk on each sector of BDA. The forced response showed only one peak within 

the desired range of exciting frequencies. The response amplitude for all blade tips under the same 

excitation amplitude is the same. Due to the nonlinear effect between the blade root and the disk, 

the resonance frequency shifts from the bonded frequency to the frictionless frequency as a 

function of the forcing amplitude. Also, the time series of the response, considering one excitation 

level, kept its traveling wave feature within the investigated range of exciting frequencies. 

Moreover, the compliance showed that the maximum damping happened when the excitation level 

was about 5 N.  
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3. Chapter 3: Effect of Mistuning 

 

In this chapter, the effect of adding a structural mistuning to the BDA model is investigated. 

Mistuning is introduced to the model by adding a random perturbation with continuous uniform 

distribution to the tip and middle stiffnesses of the blades. Two distinct realizations are provided 

to study the effect of mistuning on the frequency response of BDA. A wide range of excitation 

levels is selected to investigate the effect of the nonlinear force between the blade root and the 

disk. Moreover, the effect of changing the magnitude of the mistuning realizations is analyzed by 

considering a constant excitation level and various quantities as the mistuning levels.  

3.1 Parameters 

Mistuning is modeled as a random parameter in the valued of the middle and tip stiffness of 

each blade. Thus, the stiffness of the middle (k2) and tip (k1) for each blade is represented using 

the following equation: 

𝑘𝑚 = 𝑘𝑡(1 + 𝜉 𝑑𝑚) (3-1) 

where the parameter ξ represents the random deviation from exact cyclic symmetry, which is 

multiplied by the level of mistuning, dm. The value of ξ is taken from a uniform distribution in the 

range of [-10-3, 10-3] [35]. The value of the mistuning level is assumed to be 100, resulting in about 

a 2% difference between the first pair of natural frequencies of the tuned linear system in Table 

2-2 [35]. Other values for the model remain the same as in Chapter 2.  

In this chapter, two different realizations of mistuning are considered to present the effect of 

mistuning on the forced response of the system. Table 3-1 shows the values of the calculated 

stiffnesses for the middle and tip stiffnesses with a random pattern for each blade.  
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Table 3-1: The value of tip and middle stiffnesses based on the two random mistuned realizations 
 Tip stiffness (k1) [N/m] Middle Stiffness (k2) [N/m] 

 First Realization Second Realization First Realization Second Realization 

Blade 1 652287.70 634767.58 1048737.69 1028463.05 

Blade 2 594946.36 568244.01 921184.08 944253.15 

Blade 3 568857.41 593762.37 1036312.09 1067411.29 

Blade 4 631667.75 608322.98 992652.12 1094215.05 

Blade 5 631119.29 547368.17 942432.64 1069274.58 

Blade 6 628877.77 599554.67 919703.75 1001199.89 

The natural frequencies of the linear mistuned system, with two assumptions named frictionless 

and bonded, are listed in Table 3-2 and Table 3-3 for the first and second realizations, respectively.  

Table 3-2: Natural frequencies of the first linear mistuned system for the first family of bending mode, considering 
frictionless and bonded assumptions 

Frequency (Hz) f1 f2 f3 f4 f5 f6 

Frictionless 652.5 1175.6 1191.5 1229.9 1248.1 1252.4 
Bonded 653.5 1187.6 1203.9 1242.2 1260.8 1265.0 

Table 3-3: Natural frequencies of the second linear mistuned system for the first family of bending mode, considering 
frictionless and bonded assumptions 

Frequency (Hz) f1 f2 f3 f4 f5 f6 

Frictionless 652.8 1179.1 1202.3 1235.7 1253.8 1268.2 
Bonded 653.8 1191.0 1215.1 1247.9 1266.7 1281.4 

Considering two mistuned realizations in the model and comparing the natural frequencies of the 

mistuned system with the tuned system, there are no pairs of equal natural frequencies in the 

former. Mistuning results in the splitting of the pairs of repeated natural frequencies into two 

separate natural frequencies. Consequently, two different mode shapes will be observed that will 

be discussed in more detail in section 3.2.  

The next step is the calculation of the forced response of the system using (i) direct numerical 

integration method and (ii) numerical continuation. In the next section, the forced response of the 

system under different excitation levels and mistuning levels will be presented for the two 

realizations of mistuning.  
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3.2 Results and Discussion 

3.2.1 Effect of Changing the Excitation Level 

The forced response of the first blade tip (X1) under an external force of 2 N for the first and 

second realizations is shown in Figure 3-1 and Figure 3-2. The results acquired by numerical 

continuation (MatCont) and direct numerical integration are mostly similar. However, there is a 

significant difference between the computational time for these two methods. Calculating the 

nonlinear forced response of the BDA model using the time integration method for one external 

force (2 N) took about 120 hours (5 days) for the first realization and 100 hours for the second one. 

Performing the same calculation using MatCont took 3 hours for the first realization and 2.5 hours 

for the second one. All the calculations are performed on a computer with an Intel(R) Xeon(R) 

CPU (@3.4GHz) and 32 GB of RAM.  

 
Figure 3-1: Comparison of the steady-state forced response of the tip mass of the first sector, using direct integration 

method and MatCont package, first mistuning realization, F = 2 N 
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Figure 3-2: Comparison of the steady-state forced response of the tip mass of the first sector, using direct integration 

method and MatCont package, second mistuning realization, F = 2 N 

The steady-state forced response of the tip of the first blade (X1) versus forcing frequency for 

a range of external forces between 0.1 N to 5 N and the first mistuned realization are plotted in 

Figure 3-3. In contrast with the response curve for the tuned system (Figure 2-12), two peaks can 

be observed for the mistuned system in the same range of exciting frequencies. The splitting of 

pairs of natural frequencies into two different frequencies, as described in Table 3-2, is the reason 

for having two peaks.  

Figure 3-3, Figure 3-4, and Figure A 1 of Appendix A together show the forced response curves 

for the blade tip of all six blades for the first mistuning realization. Unlike the tuned system, the 

frequency response curves of the six blades are no longer identical in the mistuned system. For 

example, the response curves of blades number one (X1) and four (X13), two (X5) and five (X17), 

and three (X9) and six (X21) are similar to each other, but their amplitudes are different. Moreover, 

for all blade tips, except blade number two and five, the amplitude of the second peak is higher 

than the first peak. The same behavior can be observed for the first and second blade tips by 

considering the second mistuning realization in Figure 3-5 and Figure 3-6. The rest of the forced 

response for the second mistuning realization is presented in Figure A 2 in Appendix A. The gray 

dashed line represents the backbone curve of the response. The backbone curves in all figures are 

plotted by tracing the maximum values of the response curves for each peak.  
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As in the previous chapter, the effect of nonlinearity on the response curve can be observed, 

i.e., the natural frequency of the nonlinear system is dependent on the amplitude of excitation. In 

Figure 3-3 - Figure 3-6, for the low level of excitations, the resonance frequencies remain 

unchanged and equal to the values of bonded frequencies for the linear system in Table 3-2 and 

Table 3-3. At this excitation level, there is a stationary sticking state at the contact interface of the 

blade and disk [58]. After increasing the level of exciting forces and the occurrence of slipping 

between the blade and disk contact interfaces, the peaks of response curves shift to lower 

frequencies. Consequently, the backbone curve for each peak is shifting to lower frequencies. The 

natural frequency for the free response occurs in the vicinity of the backbone curve, so the natural 

frequency changes by changing the external forces. After increasing the amplitude of excitation to 

13 N, the effect of shifting the peaks is clear for the first and second realizations in Figure 3-7 and 

Figure 3-8, respectively. For the sake of brevity, the results for other blades are presented in Figure 

A 3 and Figure A 4 of Appendix A.  

 
Figure 3-3: Steady-state forced response of the tip of the first blade for a range of external forces between 0.1N and 5N, 

first mistuning realization 
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Figure 3-4: Steady-state forced response of the tip of the second blade for a range of external forces between 0.1N and 5N, 

first mistuning realization 

 
Figure 3-5: Steady-state forced response of the tip of the first blade for a range of external forces between 0.1N and 5N, 

second mistuning realization 
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Figure 3-6: Steady-state forced response of the tip of the second blade for a range of external forces between 0.1N and 5N, 

second mistuning realization 

 
Figure 3-7: Steady-state forced response of the tip of the first blade for a various range of excitation between 0.1N and 

13N, first mistuning realization 
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Figure 3-8: Steady-state forced response of the tip of the first blade for a various range of excitation between 0.1N and 

13N, second mistuning realization 

For two realizations, the backbone curves of the first blade tip are plotted in separate figures, 

Figure 3-9 and Figure 3-10. These backbone curves are plotted for excitation forces between 0.1 

N and 13 N. In Figure 3-9, the right vertical asymptotes at 1187.6 Hz and 1203.9 Hz represent the 

peak of the response curves for the lower excitation levels. These frequencies are the natural 

frequencies for the linear model (f2 and f3) with bonded assumption presented in Table 3-2. By 

increasing the excitation level and the activation of the nonlinear force, the backbone curve moves 

to the lower frequencies (left side of the figure). Due to the softening effect introduced by friction, 

the backbone curve approaches the natural frequencies of the linear system with the frictionless 

assumptions, i.e., 1175.6 Hz and 1191.5 Hz, presented in Table 3-2.  
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Figure 3-9: Backbone curve based on the forced response of vibration between 0.1-13N, first blade tip, first mistuning 

realization 

The shift in the resonance frequency can be observed for all blades within the same frequency 

range. Figure 3-10 shows the backbone curve for the first blade tip and the second realization. The 

backbone curves shift from the bonded frequency to the frictionless frequency presented in Table 

3-3. However, due to the change in the stiffness values for the middle and tip springs, frictionless 

and bonded frequencies vary from the first realization. The figures of backbone curves for other 

blade tips, including the first and the second mistuning realizations, are demonstrated in Figure A 

5 and Figure A 6 of Appendix A, respectively. 
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Figure 3-10: Backbone curve based on the forced response of vibration between 0.1-13N, second blade tip, second 

mistuning realization 

In Figure 3-11, it is shown how changing the levels of excitations affects the compliance 

response of the first blade’s tip for the first mistuning realization. Figure 3-12 shows the 

compliance response of the first blade’s tip for the second realization. In both figures, the two 

peaks of the response are transferred to the lower frequencies after changing the excitation level 

from 0.1 N to 13 N. Considering the second peak of the compliance for both realizations, the 

amplitude of compliance decreases when the excitation increases from 0.1 N to 5 N. The reason is 

the increase of damping, the same for the tuned system, which stops when forces higher than 5 N 

are applied to the blade tip. By applying forces above 5 N, the second peak of compliance is 

increased, and the damping is reduced, suggesting that the maximum damping value can be 

acquired when the excitation level is 5 N.  

Considering the first peak of the compliance response for each realization reveals another 

result. For the first realization, the maximum value of damping can be obtained when the external 

force is equal to 5 N. However, observing Figure 3-12 for the second realization, the minimum 

compliance peak is achieved when the external force is 3 N.  

The compliance figures for the rest of the blade’s tip, including both realizations, are presented 

in Figure A 7 and Figure A 8 in Appendix A. The results suggest that unlike the tuned system, 
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where only one excitation level could result in the minimum amplitude of compliance peak (and 

consequently maximum damping), in the mistuned system, minimizing the peak of compliance 

can not be achieved by one excitation level. In the mistuned system, the excitation level to 

minimize the peak of compliance varies based on the targeted peak and the mistuning realization. 

 
Figure 3-11: Compliance of the first blade tip of the mistuned system for different excitation levels, first mistuning 

realization 
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Figure 3-12: Compliance of the first blade tip of the mistuned system for different excitation levels, second mistuning 

realization 

The response of the mistuned system in the time domain shows a combination of traveling and 

stationary waves. In Figure 3-13, considering the external force equal to 2 N, the time series of the 

blade tip masses are added to the forced response of the system with the first mistuning realization. 

These time series show the time response of each blade tip for a period of the response (T) at a 

specific exciting frequency. Far from the first peak of the response and between two peaks, the 

time series demonstrate the diagonal pattern that can be expressed as the traveling wave feature. 

However, close to the resonances (either of the first or second peak of the response curve), the 

time series patterns are no longer diagonal. Close to the resonances, the traveling wave features in 

the time series are vanished and are finally replaced with stationary waves when it reaches the 

peak of the response. This behavior was not observed in the tuned system, resulting from the 

presence of mistuning in the system. Furthermore, the stationary waves of the time series close the 

resonances are observed for the second realization, Figure 3-14, and all levels of excitation forces 

for both realizations.   
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Figure 3-13: Time series of the blade tip of all blades for different exciting frequencies at F= 2 N, first mistuning 

realization  

 
Figure 3-14: Time series of the blade tip of all blades for different exciting frequencies at F= 2 N, second mistuning 

realization 

3.2.2 Effect of Changing the Mistuning Level 

The effect of changing the mistuning level, dm, in Eq. (3-1), on BDA’s forced response is 

studied in this section. For this purpose, the mistuning level is changed between 0 to 160, with a 

step of 20. The mistuning level of zero represents the tuned system. The excitation level remains 
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constant through changing the mistuning level, equal to 2 N. Then, for two mistuning realizations, 

the forced response of the BDA is calculated and discussed. Note that, due to the changing of 

mistuning level, the tip and middle stiffnesses vary after changing the mistuning level. Thus, it is 

necessary to check and modify the initial frequency before starting each run. 

Considering two different mistuning realizations and various levels of mistuning, the natural frequencies of the linear 
system with frictionless and bonded boundaries are listed in Table 3-4 and  
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Table 3-5. In the presence of any level of mistuning, the frequency split phenomenon can be 

seen, in which the pairs of equal frequencies of the tuned system are split into two different 

frequencies.  

Table 3-4: Natural frequencies of the first linear mistuned system for the first family of bending mode, considering 
frictionless and bonded assumptions, first mistuning realization 

Mistuning level 
(dm) 

Frequency 
(Hz) f1 f2 f3 f4 f5 f6 

20 Frictionless 652.63 1186.9 1190.6 1241.2 1246.1 1248.3 
Bonded 653.60 1199.34 1203.15 1253.80 1258.83 1260.91 

40 Frictionless 652.61 1184.5 1191.6 1238.5 1247.3 1249.1 
Bonded 653.58 1196.85 1204.18 1251.00 1260.01 1261.85 

60 Frictionless 652.6 1181.8 1192.1 1235.7 1247.7 1250.5 
Bonded 653.57 1194.07 1204.65 1248.13 1260.33 1263.27 

80 Frictionless 652.57 1178.8 1192.1 1232.8 1247.9 1251.7 
Bonded 653.54 1190.99 1204.56 1245.21 1260.55 1264.36 

120 Frictionless 652.52 1172 1190.4 1226.9 1248.4 1252.7 
Bonded 653.49 1183.91 1202.77 1239.20 1261.13 1265.13 

140 Frictionless 652.49 1168.1 1188.8 1223.9 1248.6 1252.7 
Bonded 653.46 1179.91 1201.10 1236.12 1261.45 1264.91 

160 Frictionless 652.45 1164 1186.8 1220.8 1248.9 1252.4 
Bonded 653.43 1175.60 1198.94 1232.98 1261.61 1264.52 
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Table 3-5: Natural frequencies of the first linear mistuned system for the first family of bending mode, considering 
frictionless and bonded assumptions, second mistuning realization 

Mistuning level 
(dm) 

Frequency 
(Hz) f1 f2 f3 f4 f5 f6 

20 Frictionless 652.68 1188.16 1192.20 1242.61 1247.19 1250.88 
Bonded 653.64 1200.55 1204.74 1255.20 1259.91 1263.56 

40 Frictionless 652.71 1186.68 1195.06 1241.09 1249.07 1255.07 
Bonded 653.68 1198.99 1207.68 1253.58 1261.79 1267.91 

60 Frictionless 652.74 1184.66 1197.69 1239.43 1250.62 1259.54 
Bonded 653.70 1196.86 1210.37 1251.81 1263.37 1272.50 

80 Frictionless 652.76 1182.12 1200.09 1237.65 1252.17 1263.94 
Bonded 653.73 1194.18 1212.83 1249.90 1264.98 1277.02 

120 Frictionless 652.80 1175.61 1204.26 1233.67 1255.50 1272.35 
Bonded 653.77 1187.33 1217.07 1245.65 1268.44 1285.58 

140 Frictionless 652.82 1171.73 1206.05 1231.42 1257.31 1276.32 
Bonded 653.79 1183.25 1218.88 1243.25 1270.33 1289.62 

160 Frictionless 652.84 1167.47 1207.67 1228.94 1259.21 1280.14 
Bonded 653.80 1178.79 1220.51 1240.60 1272.33 1293.49 

Figure 3-15 and Figure 3-16 show the effect of changing the mistuning level on the forced 

response of the first and second blade tips, respectively for the first mistuning realization. For the 

low mistuning level, such as 20, the response curve shows only one peak, and it is hard to 

distinguish two different peaks for this level of mistuning. However, after increasing the mistuning 

level, the frequency split phenomenon happens, and two separate resonance frequencies become 

clear. Moreover, increasing the mistuning level increases the distance between two peaks in the 

response curve, and the peaks become more separate compared to the lower mistuning levels.  

The effect of changing the mistuning level on the steady-state forced response varies for each 

blade. Considering each peak in the response curve, the increase in mistuning level results in 

increasing or decreasing the response’s amplitude. In Figure 3-15, considering the first peak, after 

the occurrence of the frequency split phenomenon, the amplitude of the response is decreased by 

increasing the mistuning level. The second peak experiences an increase in its amplitude if the 

mistuning levels are between 0 and 20. However, after dm = 20, the amplitude of the second peak 

reduces. For the whole range of dm, while the first peak of the response transfers to the lower 

frequencies by increasing the mistuning level, the second peak shows a different pattern. For the 

mistuning levels between 0 and 60, the second peak moves to the higher frequencies, and for the 
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mistuning levels between 80 and 160, it moves to lower frequencies, the same behavior as the first 

peak.  

 
Figure 3-15: Steady-state forced response of the tip of the first blade for a range of mistuning levels between 0 and 160, 

first mistuning realization 

In Figure 3-16, two peaks are not clear, considering mistuning levels of 0 and 20. After 

increasing the mistuning level, the amplitude of the first peak is higher than the second peak. The 

amplitude of the first peak fluctuates based on the mistuning level, and it does not increase 

constantly. For example, a mistuning level of 40 and 60 increases the amplitude, and dm = 80 

decreases. Again, the mistuning level of 120 increases the forced response amplitude while dm = 

140 decreases. The amplitude of the second peak fluctuates as well. While the mistuning levels of 

40, 140, and 160 increase amplitude, the mistuning levels of 60 or 140 decrease the displacement 

amplitude.  

The shifting of the resonance frequencies is another interesting point of Figure 3-16—the first 

peak transfers to the lower frequencies after increasing the mistuning level. However, the second 

peaks move to the higher frequencies when 0< dm <80, and it moves to lower frequencies when dm 

is equal to 120 or 160.  



55 

 

 
Figure 3-16: Steady-state forced response of the tip of the second blade for a range of mistuning levels between 0 and 160, 

first mistuning realization 

The steady-state forced response for the other blades is presented in Figure A 9 of Appendix 

A. Considering all the results for the first realization, the first peak of the response curve is lower 

for most of the blades, except blades #2 and #5, in which the second peak has a lower amplitude 

than the second peak. Another observed fact is that by increasing the mistuning level, the peak of 

the response can stay constant. For instance, the first peak of the response curve for the sixth blade, 

part (d) in Figure A 9, shows a decrease from 20 to 80, while it increases with dm = 120 and remains 

constant for the rest of the mistuning levels. 

Figure 3-17 and Figure 3-18 show the forced response of BDA’s blade tips with different 

mistuning levels for the second mistuning realization. The amplitude of the first resonance peak 

of the first blade tip, Figure 3-17, shows the same behavior as the first mistuning realization. By 

increasing the mistuning level, the amplitude first peak decreases. Moreover, the amplitude of the 

second peak increases for lower mistuning levels, such as 20 and 40. For the rest of the range of 

mistuning levels, especially for the higher values of mistuning levels, the amplitude of the second 

resonance peak decreases, and dm = 160 results in a lower amplitude.  

As the mistuning level increases, the first resonance peak shifts to a lower frequency, the same 

behavior for the first mistuning realization and the same blade tip. However, unlike the previous 
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mistuning realization, the second resonance peak shifts constantly to the higher frequencies when 

dm increases.  

 
Figure 3-17: Steady-state forced response of the tip of the first blade for a range of mistuning levels between 0 and 160, 

second mistuning realization 

The amplitude of the first peak of the second blade’s response curve, Figure 3-18, is the 

opposite of the one with the first realization. For example, considering the first realization and 

having a mistuning level of 120 increases the first peak’s amplitude, while for the second mistuning 

realization and the same condition, the amplitude decreases. The second peaks fluctuate by 

increasing the mistuning level; for instance, dm = 60, 80, 140, and 160 decreases the amplitude of 

the second peak, and with dm = 120, the amplitude grows.  

The shifting of the resonance peak is the same as the first blade, in which the first resonance 

peak moves to the lower frequencies, and the second peak constantly moves toward higher 

frequencies when the mistuning level is increased. Furthermore, the forced response of all other 

blade tips is shown in Figure A 10 of Appendix A. Like the first mistuning realization, the first 

peak of the response curves of the second and fifth blade tips have higher amplitude than the 

second peak. For the other blade tips, the second peaks show a higher amplitude than the first. 
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Figure 3-18: Steady-state forced response of the tip of the second blade for a range of mistuning levels between 0 and 160, 

second mistuning realization 

In order to investigate the effect of changing the mistuning level on the forced response of 

BDA, the amplification factor is defined. Using the amplification factor, comparing the forced 

response of the mistuned and tuned system is possible. The amplification factor is defined as the 

ratio of the maximum amplitude of the mistuned system to the maximum amplitude of the tuned 

system, assuming the desired frequency range [35], [59]. The previous mistuning realizations are 

used to calculate the variation of the amplification factor based on the change in the mistuning 

level. The excitation level is constant and equal to 2 N. 

Figure 3-19 shows the amplification factor for all the blade tips of the system versus different 

values of mistuning levels, considering the first mistuning realization. The second and first blades 

reach the highest and lowest amplification factors, respectively, after increasing the mistuning 

level. The third and sixth blades show identical behavior; by increasing the mistuning level to 40, 

the amplification factor reduces and increases for mistuning levels above 40. As opposed to the 

third and sixth blades, after dm = 40, the amplification factor decreases in the fifth blade. The third 

blade tip shows the amplification factor under the unit for all the mistuning levels, which means 

that mistuning leads to the mitigation of the maximum amplitude of the response compared to the 

tuned system. Another interesting point is that having a mistuning level equal to 160 reduces the 

maximum amplitude of the response for four blade tips out of six.  
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Figure 3-19: Amplification factor for all the blade tips versus different mistuning levels, first mistuning realization 

Figure 3-20 demonstrates the amplification factor for all the blade tips, considering the second 

mistuning realization. The mistuning level of 40 increases the amplification factor for most of the 

blade tips. The same observation as the previous mistuning realization can be seen for the second 

realization. The second blade tip and the first one represent the highest and the lowest amplification 

factor after increasing the mistuning level to 160.  

The amplification factor for pairs of the third and sixth blades and the first and the fourth blades 

has the same trend. In contrast with other blades, having a mistuning level above 80 causes an 

increase in the amplification factor for the third and the sixth blades. While dm = 160 increases the 

maximum amplitude of the mistuned system up to 60%, it reduces the maximum amplitude on 

three blade tips by about 20%. Moreover, comparing the mistuned and tuned results, the third blade 

shows a lower maximum amplitude when there is any level of mistuning in the system (the 

amplification factor <1). 
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Figure 3-20: Amplification factor for all the blade tips versus different mistuning levels, second mistuning realization 

3.3 Conclusion 

In this chapter, the effect of mistuning on the BDA model introduced in chapter 2 was studied. 

Mistuning was introduced as deviations in the values of the stiffness of the middle and tip sections 

of the blades from the value of the tuned BDA. Two specific realizations of mistuning were used 

to study the forced response of the blade tips for excitation levels between 0.1 N and 13 N. A 

splitting effect was observed in the response curves, in which the unique resonance peak in the 

tuned system was split into two separate frequencies due to mistuning. The transition of the 

resonance peak and backbone curve from bonded frequency to frictionless frequency was 

observed, similar to the tuned system. 

Unlike the tuned system, the compliance curves showed that one excitation level could not 

result in a lower compliance peak value. Depending on the first or the second peak of the 

compliance, and the mistuning realization, different excitation levels could lead to minimizing the 

compliance and the maximum damping value. For example, considering the first compliance peak 

and the first realization, the excitation level of about 5 N caused the minimum peak. However, for 

the second realization and the same blade tip, the first compliance’s peak was minimized under 

the excitation level of 3 N. Unlike the tuned system, in the time series response of the mistuned 

system, the traveling wave feature was not observed within the whole range of frequencies. The 
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results showed that, far from or between the resonance frequencies of the forced response, the time 

series had a traveling wave pattern. However, the time series showed the stationary wave feature 

close to the resonance frequencies.  

A range of variable mistuning levels, between 0 to 160, was defined to study the effect of changing 

the mistuning level under a constant excitation level of 2 N. The changes in the response curves 

followed a similar pattern for the two realizations. There is no constant trade of increasing or 

decreasing the amplitude of vibration. The amplitude of the peaks oscillated by increasing the 

mistuning level. 

It was observed that by increasing the mistuning level for two different mistuning realizations, 

the first peak shifted to the lower frequencies. However, the second peak was shifted to higher 

frequencies, and in some cases, it moved to the lower frequencies. Increasing the mistuning level 

in all cases resulted in more separation between two peaks, and the frequency split phenomenon 

became clear.  

The amplification factor was defined to compare the effect of various mistuning levels versus 

the tuned BDA. The amplification factor for each mistuning realization fluctuated by changing the 

mistuning level. The results suggested that the amplification factor increased rapidly at low 

mistuning levels for both mistuning realizations. The increase in the mistuning level could result 

in an amplification of up to 75% in some blade tips. Furthermore, some blade tips demonstrated 

amplification factors lower than the unit. 
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4. Chapter 4: Statistical Effect of Mistuning 

 

The statistical effect of mistuning is studied in this chapter. This is achieved by performing a 

preliminary statistical analysis of the vibration response of 150 realizations of mistuned BDAs. 

The effects of changing (a) the amplitude of engine-order excitation and (b) the mistuning level 

are studied. Various statistical parameters, including the mean of the response amplitude, standard 

deviation, compliance, coefficient of variation, and amplification factor, are calculated. The results 

for all blade tips are discussed in the following sections.  

4.1 Effect of Changing the Excitation Level 

In this section, the effect of changing the excitation level on the forced response for different 

realizations is investigated. In this study, 150 various realizations are chosen based on the 

mistuning parameter, ξ, in equation (3-1). The value of ξ is in the range of [-10-3, 10-3], and the 

value of the mistuning level, dm, is constant and equal to 100. This corresponds to an average 10% 

deviation in natural frequencies of the blades across different realizations of the mistuned BDAs.  

Statistical analysis is necessary to study the mistuning effect of all mistuning realizations on 

the forced response of the BDA blade tips. The mean of the amplitude response, the standard 

deviation, compliance, and the coefficient of variation are calculated for this purpose. The 

amplitudes of external forces applied on the tips of the blades change between 0.1 N and 10 N to 

include both linear and nonlinear response regimes. All the results are provided in the same range 

of frequencies, between 1150 – 1230 Hz. 

4.1.1 Mean 

The forced response of each realization is calculated to find the mean, μ, of all the realizations, 

for each external force. Using the “mean” command in MATLAB, the average response of the 

blade tips displacement amplitude is then calculated considering all 150 realizations. Figure 4-1 

and Figure 4-2, respectively, show the mean of the response for the first and second blade tips, X1 

and X5, for different values of excitation amplitude. The amplitude of the mean of displacement 

increases with the external force. In the previous chapter, the frequency split phenomenon was 

observed in the presence of the single mistuned realization. The same phenomenon is observed 
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considering 150 realizations. As a result of the frequency split, two peaks appear in the mean 

response; one is more evident than the other. 

 
Figure 4-1: Mean of displacement amplitude for the first blade tip, X1, considering 150 mistuning realizations 

 
Figure 4-2: Mean of displacement amplitude for the second blade tip, X5, considering 150 mistuning realizations 

Furthermore, the same behavior of shifting resonance frequencies in the single mistuning 

realization happens when 150 realizations are considered. Looking at Figure 4-1 and Figure 4-2, 



63 

 

the peaks of the response for the lower external forces occur around 1185Hz and 1200 Hz. After 

increasing the excitation level, and the activation of the nonlinearity due to friction between the 

blade root and disk, the peaks shift to lower frequencies. This shifting is shown with two black 

arrows in Figure 4-1 and Figure 4-2. For example, for the excitation level equal to 10 N, the two 

resonance frequencies are located around 1178 Hz and 1189 Hz. For the sake of brevity, the mean 

results for other blades are demonstrated in Figure B 1 of Appendix B. All other blade tips show 

the same behaviors as the tips of the first and second blades. Figure 4-3 shows a detailed view of 

the mean response of the first blade tip, X1, in which the external excitation level is low and is 

equal to 0.1 N or 0.2 N. Comparing Figure 4-3 with Figure 4-1 demonstrates that for lower 

excitation level, i.e., 0.1 N and 0.2 N, and the highest excitation level, 10 N, the peaks in the mean 

response are spread across a wide range of frequencies and are not as unique as the peaks in the 

mean response between 0.5 N-5 N.  

 
Figure 4-3: Detailed view of the mean displacement response for the first blade, X1, with an external force equal to 0.1 N 

and 0.2 N, considering 150 mistuning realizations 

4.1.2 Standard Deviation 

Standard deviation, σ, is the other statistical term studied in the current work. Standard 

deviation presents the variation of a set of values. The lower and higher values of standard 

deviation mean that the values are close to the mean or scattered over a wide range. The value of 
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the standard deviation for a continuous uniform distribution can be calculated using the following 

equation: 

𝜎 = (𝑏 − 𝑎)
1

√12
 (4-1) 

where a and b are the beginning and the end of the desired interval for the continuous uniform 

distribution. For a uniform distribution, about 58% of the population lies in the interval [μ-σ, μ+σ]. 

To better compare the results, the displacement response within one standard deviation from 

the mean, μ±σ, is calculated in this section. Only four excitation levels, i.e., 0.1, 1, 4, and 10 N, are 

chosen to give a clear vision during the comparison. Figure 4-4 and Figure 4-5 show the space 

between μ±σ as the colored clouds for different excitation levels and the first and second blade 

tips, respectively. The amplitude covered by the range between μ±σ increases when the excitation 

level increases. For the lower excitation level, such as 0.1 N, there is no intersection between its 

cloud and the cloud of other excitation levels. After increasing the external force to higher values, 

some intersections between the range of μ±σ of different clouds can be observed.  

 
Figure 4-4: Space between μ±σ for the first blade tip, X1, and different excitation levels considering 150 realizations 
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Figure 4-5: Space between μ±σ for the second blade tip, X5, and different excitation levels considering 150 realizations 

The cloud for the excitation level of 10 N almost covers the cloud of the excitation equal to 4 

N in most of the frequency range. Moreover, this coverage can be observed for the other blade 

tips, presented in Figure B 2 in Appendix B. This coverage can help predict the range of the forced 

response of the blade tip when BDA is under external excitation within a specific excitation level. 

For example, the coverage between the clouds of 4 N and 10 N means that for the external forces 

between 4 N to 10 N, the steady-state forced response of one realization can occur within the range 

of gray cloud (10 N).  

It is hard to recognize a peak for μ±σ response, especially when the excitation force is 10 N. 

However, the frequency shifting phenomenon due to the activation of nonlinearity can be observed 

with increasing the excitation level.  

4.1.3 Compliance 

The mean compliance is the third parameter that has been studied in this research considering 

all 150 mistuning realizations. It can be calculated by dividing each forced response of each 

mistuning realization by its excitation force or simply by dividing the average forced response of 

each blade tip by its excitation force, F, as follows: 
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𝑀𝑒𝑎𝑛 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 =  
𝜇

𝐹
 (4-2) 

Considering 150 mistuning realizations and the excitation level between 0.1 N and 10 N, the 

mean compliance for the first and second blade tips are presented in Figure 4-6 and Figure 4-7, 

respectively. Only one peak can be recognized, especially for the excitation level between 1 N and 

5 N. The same behavior observed in the previous chapter for only one realization can also be seen 

for 150 realizations. By increasing the excitation level from 0.1 N to 5 N, the amplitude of the 

mean compliance decreases, and the peak of the response curves shift to a lower frequency. After 

increasing the excitation level to 10 N, the amplitude of the mean compliance increases, and the 

peak of the amplitude continues to shift to the lower frequency, the same as observed in the tuned 

system and the mistuned system with only one mistuning realization.  

 
Figure 4-6: Mean compliance of the first blade tip, X1, for different excitation levels, considering 150 mistuning 

realizations 

Considering the mean compliance for a single excitation level, an external force of 5 N can 

result in the minimum amplitude. However, the excitation level of 5 N does not cause the minimum 

amplitude of mean compliance for all ranges of frequencies or all blade tips. For example, in Figure 

4-7, at some frequencies, the excitation level of 5 N can result in the minimum amplitude of 

average compliance, and for some frequencies range, the excitation level of 4 N provides the 

minimum amplitude. Because the results presented in this chapter combined 150 different 
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mistuning realizations, there is a possibility that a mistuning realization shows a minimum peak in 

compliance response with F = 4 N and another mistuning realization shows the minimum peak 

while F = 5 N.  Thus, depending on the mistuning realization, the maximum damping can be 

acquired by exciting the mistuning system with either 4 N or 5 N of external forces. Because mean 

compliance shows only one prominent peak for all blade tips, the discussed results can be extended 

to either the first or second peak of the mistuned compliance response for a single realization. The 

mean compliance for other blade tips is shown in Figure B 3 of Appendix B.  

 
Figure 4-7: Mean compliance of the second blade tip, X5, for different excitation levels, considering 150 mistuning 

realizations 

4.1.4 Coefficient of Variation 

A standardized dimensionless definition that can be used is the coefficient of variation or the 

relative standard deviation to express the probability distribution of data. The coefficient of 

variation is defined as follows: 

𝐶𝑜𝑉 =  
𝜎

𝜇
 (4-3) 

While the coefficient of variation and standard deviation are different in the definition, both 

present a measurement of the dispersion of data from the mean. However, because the coefficient 

of variation is dimensionless, it is useful when different datasets with different units are available 
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for comparison. For this study, using the coefficient of variation eliminates the increase in standard 

deviation as a function of the excitation amplitude. Considering 150 realizations, Figure 4-8 and 

Figure 4-9 show the coefficient of variation for various excitation levels on the first and the second 

blade tips, respectively. For the excitation levels between 0.1 N and 2 N and all frequency ranges, 

the coefficient of variation decreases by increasing the excitation level. After changing the 

excitation level between 3 N to 5 N, the coefficient of variation can be reduced in some frequency 

ranges while it increases in other frequencies. For example, in Figure 4-8, although around 1210 

Hz, the coefficient of variation under 5 N of excitation is lower than the one for the force equal to 

2 N, for another frequency, such as 1170 Hz, it is higher for 5 N than 2 N. Thus, increasing of the 

excitation level does not result in reducing the coefficient of variation in all frequency ranges.  

Many oscillations can be observed in the curves for the excitations of 0.1 N, 0.2 N, and 10 N. 

However, the response curves under the excitations in the range of 0.5 N to 5 N seem more stable 

within the desired frequency range with fewer oscillations.  

 
Figure 4-8: The coefficient of variation of the first blade tip, X1, for different excitation levels, considering 150 mistuning 

realizations 

The results for other blade tips, including blade numbers 3, 4, 5, and 6, are presented in Figure 

B 4 of Appendix B. By comparing the results for all blade tips; generally, the minimum coefficient 
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of variation happens in the middle range of the demonstrated frequency, i.e., between 1175 Hz and 

1210 Hz.  

The bigger the coefficient of variation is, the farther dataset is located from the average number. 

For the curves of 0.1 N and 0.2 N, the coefficient of variation oscillates within the desired 

frequency range (1150-1230 Hz). This oscillation can be interpreted as the peaks of the 

displacement response for various mistuning realizations spread on a wide range of frequencies. 

In Fig 4-9, the peaks in the curves of the coefficient of variation for forces of 0.1, 0.2, and 0.5 N, 

around 1170 Hz and 1220 Hz explain that the variation in data sets from average values is higher 

for these frequencies. The high coefficient variation is because outlier data is produced by the peak 

of the response of some realizations in these frequencies. In contrast, for the excitation levels 

between 0.5 N and 5 N, the amplitude of the coefficient of variation is low, which means most of 

the responses from different realizations are close to the average of the response.  

 
Figure 4-9: The coefficient of variation of the second blade tip, X5, for different excitation levels, considering 150 

mistuning realizations 

 

4.2 Effect of Changing the Mistuning Level 

In this section, the effect of changing the mistuning level, dm, considering 150 mistuning 

realizations, is investigated. The same investigation, including two mistuning realizations, was 
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presented in Section 3.2.2. In this part, a constant excitation level equal to 2 N is applied to each 

blade tip, and a range of mistuning levels, between 0 and 160, are studied. This roughly 

corresponds to an average variation (with respect to the tuned system) in the natural frequencies 

of the blades between 0 and 16%. The mistuning level equal to zero represents the tuned system, 

and dm = 100 is the same mistuning level used in the previous section, Section 4.1. The different 

statistical results are studied, considering 150 mistuning realizations, including the mean of the 

steady-state forced response, coefficient of variation, and the amplification factor. 

4.2.1 Mean 

The mean displacement amplitude for the first and the second blade tips are shown in Figure 

4-10 and Figure 4-11. Only one dominant peak can be seen in the mean of the response, 

considering all 150 mistuning realizations and different mistuning levels. Unlike what was 

observed in Chapter 3 for two realizations and various mistuning levels, the mean of the response 

for 150 realizations shows a constant trend in reducing the amplitude and shifting the response 

peak. For example, after increasing the mistuning level, for one realization, it was observed that 

the peak amplitude of the response fluctuated or it moved to the higher or lower frequencies based 

on the blade tip’s number and mistuning level. However, including more realizations show a better 

vision of the general behavior of the system under a random mistuning realization. For instance, 

in both blade tips in Figure 4-10 and Figure 4-11, the amplitude of the peak of the mean response 

reduces by increasing the mistuning level.  
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Figure 4-10: Mean of displacement amplitude for the first blade tip, X1, for a range of mistuning levels, considering 150 

mistuning realizations 

Moreover, the peak of the mean response shifts to a lower frequency after increasing the 

mistuning level. However, for single mistuned realization, based on the blade tip number, the 

number of the response peak, or the mistuning realization, the response peak could move to either 

lower or higher frequencies.  

The mean of the displacement amplitude for the rest of the blade tips, Figure B 5 in Appendix 

B, shows the same behavior as the first and the second blade tips. Looking at the response of all 

blade tips, the amplitude of the mean response peak is not equal among the blades. As seen in 

Section 3.2.2, having lower mistuning levels, such as 20, it was hard to distinguish between the 

two peaks produced by the frequency split phenomenon. The mean of the response shows a clear 

peak, considering 150 mistuning realizations, while the result of each mistuning realization in 

Section 3.2.2 showed either one or two peaks based on the blade number. As the mistuning level 

increases, the response for each realization produces two peaks. Consequently, the unique peak of 

the mean response at lower mistuning levels vanishes, and the peak becomes flat for higher 

mistuning levels. 
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Figure 4-11: Mean of displacement amplitude for the second blade tip, X5, for a range of mistuning levels, considering 150 

mistuning realizations 

4.2.2 Coefficient of Variation 

The coefficient of variation for blade tips number one and two are presented in Figure 4-12 and 

Figure 4-13, respectively. Figure B 7 of Appendix B shows the results for other blade tips. 

Although the amplitude of the coefficient of variation for each blade tip varies, all figures show 

the same trend in terms of fluctuating within the shown frequency range. The amplitude of the 

coefficient of variation increases by increasing the mistuning level. The lower values of the 

mistuning level result in a coefficient of variation close to zero. Also, for lower mistuning levels, 

the coefficient of variation oscillates less compared with high values of dm, meaning that data sets 

for higher values of dm spread in a wide range of frequencies.  
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Figure 4-12: Coefficient of variation of the first blade tip, X1, for a range of mistuning levels, considering 150 mistuning 

realizations 

The higher values for the coefficient of variation appear around lower frequencies. This high 

value means that there are some outlier data, i.e., the forced response for some realizations spread 

at lower frequencies and far from the mean of the response. Furthermore, as the mistuning level 

increases, the peak of the coefficient of variation, or the outlier data, shifts to the lower frequencies. 

Tracking the peak from lower mistuning levels, it seems that for low mistuning levels, two peaks 

can be observed. After increasing the mistuning level, one peak transfers to the lower frequencies, 

while the other moves to the higher frequencies, and finally, it vanishes after reaching dm = 120.  

Also, the results show that the best range of frequencies providing a lower coefficient of 

variations is between 1190 Hz and 1210 Hz, considering all the range of mistuning levels. It points 

out that within this range of frequencies, the dispersion of data sets from the mean value is lower 

compared with other frequencies.  
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Figure 4-13: Coefficient of variation of the second blade tip, X5, for a range of mistuning levels, considering 150 mistuning 

realizations 

4.2.3 Amplification Factor 

The amplification factor for the first and second blade tips are shown in Figure 4-14 and Figure 

4-15. Each point in the figures represents the amplification factor for each mistuned realization 

based on various mistuning levels, highlighted with different colors. The big red dot in each plot 

demonstrates the average amplification factor of 150 mistuning realizations for each mistuning 

level. The black line shows the trend of changing the mean amplification factor on each column 

of the mistuning level. Figure B 8 of Appendix B presents the results of other blade tips.  
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Figure 4-14: Amplification factor of the first blade tip, X1, for a range of mistuning levels, considering 150 mistuning 

realizations 

 
Figure 4-15: Amplification factor of the second blade tip, X5, for a range of mistuning levels, considering 150 mistuning 

realizations 

Results show that the patterns of the points distributions for each column (mistuning level) 

become more significant as the mistuning level increases. For example, for the first blade tip, 

considering dm = 20, the amplification factor spreads between 0.7 and 1.6, while for dm = 160, it 

spreads between a broader range of 0.2 and 1.8. Also, the mistuning level of 40 leads to the 
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maximum mean amplification factor for all blade tips. While the mistuning level between 20 and 

40 increases the amplification factor, it shows a reducing trend for dm bigger than 40. In some 

blades, such as the first and fourth ones, the mean amplification factor experiences a minor increase 

after dm = 40. For instance, the mean amplification factor for the first blade tip is increased by 

about 0.74% between dm = 80 and dm = 100.  

For all blade tips, except the first blade, the lowest value of amplification factor can be reached 

by adopting dm = 160. For the first blade, dm = 20 provides the lowest amplification factor, 1.057. 

For the same blade tip, the mistuning level equal to 160 results in an amplification factor of 1.06, 

representing a slight difference between dm = 160 and 20.  

At dm = 160, the amplification factor for the third blade tip, shown in part (a) of Figure B 7 

(Appendix B), is slightly above the unit, with a value of 1.0066. However, it is under the unit for 

the tips of the second, fifth, and sixth blades. The value under the unit means that, for the average 

response under the mistuning level of 160, the maximum amplitude of the forced response, within 

the desired frequency range, decreases compared with the maximum response amplitude of the 

tuned system.  

4.3 Conclusion 

In this chapter, a statistical analysis was performed on the nonlinear mistuned BDA, over 150 

realizations. For this purpose, the random mistuning pattern applied to each blade's tip and middle 

stiffness coefficients and two different studies with several statistical parameters were 

investigated. For the first study, under a fixed mistuning level of 100, the effect of changing the 

excitation level between a range of 0.1 N and 10 N was analyzed. This wide range of excitation 

brought the effect of nonlinearity into consideration on the forced response of the system. The 

mean of the response, standard deviation, the mean compliance of the response, and the coefficient 

of variation were investigated in the first part of the study as the statistical parameters. The results 

suggested the mean of response increased with the excitation level, and also, the shifting 

phenomenon due to activation of the nonlinear effect of friction was observed. Moreover, the 

results of standard deviation showed that the response cloud of 10 N mostly covered the response 

cloud of 4 N. This coverage showed that the forced response of the tips of the blades, with an 

excitation between 4 N – 10 N, could fall in the area highlighted with 10 N cloud. The results of 
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mean compliance demonstrated that only one excitation level could not be suggested to minimize 

the peak of mean compliance. However, the excitation level that minimized the peak of compliance 

in most realizations could be limited to two levels of excitation, 4 N and 5 N. The results suggested 

that the coefficient of variation can be reached to its minimum value within a specific range of 

frequencies, 1175 Hz and 1210 Hz. It offered that within this range, the majority of forced 

responses, considering various mistuning realizations, were close to the mean of the response. 

However, outside this range, the presence of outlier data due to the peaks of response increased 

the coefficient of variation’s amplitude. For the second part of the study, a constant excitation level 

of 2 N was assumed, and the mistuning level, dm, was changed between a range of 0 to 160. This 

assumption provided information about changing the mistuning level from the tuned blade, dm = 

0, to the higher levels of mistuning amplitude. The effects of changing the mistuning level on 

different statistical parameters were studied, such as the mean of forced response, standard 

deviation, coefficient of variation, and amplification factor. The mean of the response showed that 

by increasing the mistuning level, the peak amplitude of the mean response decreased and shifted 

to the lower frequencies. The results were suggestive of an ideal frequency range between 1190 

Hz and 1210 Hz, which means that within this frequency range, the variation of data sets is lower 

than the rest of the frequencies. The patterns of distribution of amplification factor’s points offered 

that the data points distributed on a broader range by increasing the mistuning level. The trend of 

the amplification factor’s variation suggested that dm = 40 caused the highest mean amplification 

factor compared with the rest of the range. Generally, after dm = 40, the mean amplification factor 

was decreased. For half of the tips of the blades, dm = 160 provided the mean amplification factor 

less than the unit, meaning that the maximum amplitude of the forced response of mistuned 

nonlinear BDA, for most of the mistuning realizations, was less than the maximum response 

amplitude of the nonlinear tuned system.  

  



78 

 

5. Chapter 5: Conclusion 

 

5.1 Main Contributions 

The focus of this work was to study the nonlinear vibration characteristics of mistuned bladed 

disk assemblies (BDAs). Nonlinearity was due to friction forces at the contact interfaces of the 

blade root and disk. Mistuning was due to deviations in the elasticity of the blades from the tuned 

blade caused by manufacturing tolerances. Although there are many research studies on the 

separate effects of mistuning and nonlinearity in BDA, few studies consider the effect of both 

phenomena on the vibration characteristics of BDA. The main contributions of this study are 

summarized as follows: 

i. A mathematical model was implemented in MATLAB for a BDA, including the nonlinear 

friction forces at the blade root and the mistuning of blade elasticity.  

ii. The steady-state vibration response of the BDA subject to engine-order excitation was 

computed and validated for various configurations.  

iii. A preliminary statistical analysis of the vibration response of the mistuned BDA was 

performed based on 150 realizations of mistuning. The effects of excitation amplitude and 

mistuning level were studied.  

5.2 Summary of Findings  

The main conclusions drawn from this study can be summarized below: 

i. The steady-state forced response curves of the tuned system, under different excitation 

levels, showed only one resonance peak. The amplitudes of the displacement for different 

blade tips are equal in response to engine-order excitation, as expected.  

ii. The natural frequencies of the first bending mode family for the tuned linear BDA 

demonstrated two pairs of equal frequencies corresponding to the double mode and two 

frequencies associated with the single mode. Mistuning results in splitting the pairs of equal 

frequencies in the tuned system were split into two separate frequencies.  

iii. The comparison between the natural frequencies of the linear tuned system and the steady-

state forced response curves revealed that after increasing the excitation level, the 



79 

 

resonance frequency shifted from the bonded frequencies to the frictionless frequencies. 

The backbone curves, which trace the locus of maximum displacement amplitude, showed 

the same behavior in both the tuned and mistuned systems.  

iv. The contact nonlinearity in this study has a softening effect, i.e., the resonance frequency 

shifts gradually to lower frequencies as the amplitude of excitation increases.  

v. Analyzing the time-series of the blade tip’s response for the tuned system suggested a 

traveling wave feature before, at, and after resonance frequency. Unlike tuned BDA, the 

time-series of the mistuned system demonstrated a traveling wave feature far from or 

between resonance frequencies. Close to the resonance peaks of the mistuned BDA, the 

time-series of the blades’ tips together showed the stationary wave feature. 

vi. The compliance curve for the tuned BDA revealed that the maximum damping due to the 

dry friction occurred under the excitation level of 5N. This was determined by considering 

the response curve with the smallest peak value. Considering the two individual mistuning 

realizations of Chapter 3, the compliance curve for the mistuned BDA showed that an 

individual excitation level cannot ensure the smallest compliance peak for different 

realizations. Therefore, the maximum damping depends on the mistuning realization and 

the targeted response peak. This is corroborated by the trends observed for 150 realizations 

in Chapter 4. However, the excitation level that minimized the peak of compliance in most 

realizations was limited to two excitation levels, 4 N and 5 N.   

vii. The analysis of the amplification factor for the mistuned system with two different 

mistuning realizations confirmed the expectation that the maximum response amplitude 

depends on the mistuning level. For the 150 realizations of mistuning considered here, the 

values of the amplification factor had a larger distribution when the mistuning level 

increased. Interestingly, the average amplification factor did not change significantly. This 

suggests that the average value of the amplification factor may not be a suitable design 

parameter. 

viii. The amplification factor for individual blades can sometimes be smaller than 1. This means 

that in some blade tips a specific range of mistuning levels may decrease the amplitude of 

steady-state response compared with the tuned BDA. Analyzing the data set provided from 

150 mistuning realizations revealed that for half of the blade tips, dm = 160 provided the 

mean amplification factor less than 1, meaning that the maximum amplitude of the steady-
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state response of mistuned BDA, for most of the mistuning realizations, was less than the 

maximum response amplitude of the nonlinear tuned system.  

ix. The results of analyzing the effect of changing the excitation level suggested that the 

coefficient of variation reached its minimum value in the frequency range of 1175 Hz and 

1210 Hz. It offered that within this range, most blade tips’ steady-state forced response 

under each mistuning realization is close to the mean of the response. However, outside 

this range, outlier data (due to the response’s peaks) increased the coefficient of variation’s 

amplitude. The coefficient of variation for the study of changing the mistuning level was 

suggestive of an ideal frequency range between 1190 Hz and 1210 Hz, which means that 

within this frequency range, the variation of data sets with respect to the mean value is 

lower than the rest of the frequencies.  

5.3 Suggestions for future work 

The current work has provided a study of the effect of nonlinearity and mistuning on the 

dynamic behavior of BDA. However, there are many aspects that require further development in 

the future. These are listed below: 

i) To better predict the dynamic behavior of BDA under a random mistuning realization, a 

larger dataset with many samples is required. Thus, more random mistuning realizations 

are needed to make the population more representative of the typical behavior of BDAs. A 

larger population makes it possible to calculate the distribution of the response amplitude 

more accurately. This is important in understanding how uncertainty propagates from blade 

elasticity to blade displacement amplitude. 

ii) In the current study, the effect of the mistuning level was considered only under a constant 

excitation level of 2 N. The variation of mistuning level may be analyzed under different 

excitation levels, covering both linear and nonlinear ranges of the steady-state forced 

response to study any connection between linear and nonlinear amplification factors.  

iii) The current study considers only nonlinear forces due to the friction between the blade’s 

root and disk at dovetail joints. The blade-casing contact can play a significant role in the 

vibration behavior of BDA because of the high linear velocity of the blade tip. The 

implication of nonlinear forces on the blade tip due to the blade-casing rubbing needs to be 
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considered. The blade-casing rubbing requires studying different contact models that can 

be applied to the contact event. Considering both nonlinear forces at the blade-casing 

interface and blade-disk, along with the statistical analysis of varying mistuning patterns, 

is another idea that may be worth pursuing. 

iv) Other uncertain parameters should be analyzed considering mistuning and nonlinear forces. 

For example, in a mistuned system, the pattern in which mistuning is distributed in the 

system, between different parts of the blades, or the friction coefficient at the contact 

interface can be studied as other uncertain parameters which affect the behavior of the 

BDA.   

v) The study of worst-case scenarios based on different target metrics, such as maximum 

stress at the blade root, root mean square blade displacement, or the maximum blade tip 

displacement, is another important information for the industry, which we did not explore 

in this work.   
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Appendix A 

  
(a) (b) 

  
(c) (d) 

Figure A 1: Steady-state forced response of the tip of (a) third, (b) fourth, (c) fifth, and (d) sixth blades for a range of 
external forces between 0.1N and 5N, first mistuning realization  
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(a) (b) 

  
(c) (d) 

Figure A 2: Steady-state forced response for the blades #3, #4, #5, and #6, for a range of external forces between 0.1 N and 
5 N, second mistuning realization 

 

 



91 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 3: Steady-state forced response for the blades #2, #3, #4, #5, and #6, for a range of external forces between 0.1 N 
and 13 N, first mistuning realization 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 4: Steady-state forced response for the blades #2, #3, #4, #5, and #6, for a range of external forces between 0.1 N 
and 13 N, second mistuning realization 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 5: Backbone curve based on the forced response of vibration between 0.1-13N, blade tips #2, #3, #4, #5, and #6, 
first mistuning realization 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 6: Backbone curve based on the forced response of vibration between 0.1-13N, blade tips #2, #3, #4, #5, and #6, 
second mistuning realization 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 7: Compliance of the blade tips #2, #3, #4, #5, and #6 for different excitation level, first mistuning realization 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A 8: Compliance of the blade tips #2, #3, #4, #5, and #6 for different excitation level, second mistuning realization 
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(a) (b) 

  
(c) (d) 

Figure A 9: Steady-state forced response of the tips of blades #3, #4, #5, and #6 for a range of mistuning levels between 0 
and 160, first mistuning realization 
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(a) (b) 

  
(c) (d) 

Figure A 10: Steady-state forced response of the tips of blades #3, #4, #5, and #6 for a range of mistuning levels between 0 
and 160, second mistuning realization 
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Appendix B 

  
(a) (b) 

  
(c) (d) 

Figure B 1: Mean of displacement amplitude for the blade tips #3 to #6, considering the 150 mistuning realizations 
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(a) (b) 

  
(c) (d) 

Figure B 2: Space between μ±σ for blade tips #3, #4, #5, and #6, and different excitation levels, considering 150 
realizations 
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(a) (b) 

  
(c) (d) 

Figure B 3: Mean compliance of the blade tips #3, #4, #5, and #6 for different excitation levels, considering 150 mistuning 
realizations 
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(a) (b) 

  
(c) (d) 

Figure B 4: Coefficient of variation of blade tips #3, #4, #5, and #6, for different excitation levels, considering 150 
mistuning realizations 
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(a) (b) 

  
(c) (d) 

Figure B 5: Mean of displacement amplitude for the blade tips #3, #4, #5, and #6, for a range of mistuning levels, 
considering 150 mistuning realizations 
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(a) (b) 

  
(c) (d) 

Figure B 6: Coefficient of variation of the blade tips #3, #4, #5, and #6, for a range of mistuning levels, considering 150 
mistuning realizations 
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(a) (b) 

  
(c) (d) 

Figure B 7: Amplification factor of blade tips #3, #4, #5, and #6, for a range of mistuning levels, considering 150 mistuning 
realizations 

 

 


