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Abstract

On geometrical and analytical aspects of moduli spaces of quadratic
differentials

Roman Klimov, Ph.D.
Concordia University, 2023

In this dissertation, we consider moduli spaces of meromorphic quadratic differentials in
homological coordinates and applications of underlying deformation theory of Ahlfors-Rauch
type.

At first, we derive variational formulas for objects associated with generalized SL(2)
Hitchin’s spectral covers: Prym matrix, Prym bidifferential, Bergman tau-function. The
resulting formulas are antisymmetric versions of Donagi-Markman residue formula. Then
we adapt the framework of topological recursion to the case of double covers to compute
higher-order variations.

Another application of the deformation theory lies within the symplectic geometry of
the monodromy map of the Schrödinger equation on a Riemann surface with a meromor-
phic potential having second order poles. We discuss the conditions for the base projective
connection, which induces its own set of Darboux homological coordinates, to imply the
Goldman Poisson structure on the character variety. Using this result, we perform gener-
alized WKB expansion of the generating function of monodromy symplectomorphism (the
Yang-Yang function) and compute its leading asymptotics.

Finally, we relate these two studies by showing how the variational analysis on Hitchin’s
spectral covers could be applied towards the computation of higher asymptotics of the WKB
expansion.
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Figure 2 Tree graph G within the fundamental polygon of C . . . . . . . . . . . . . . . 21
Figure 3 Critical graph ΓQ and corresponding triangulation ΣQ and dual Σ∗

Q graphs . 52
Figure 4 Sequence of differentials Qt̂i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



Chapter 1

Introduction and results

Meromorphic quadratic differentials on Riemann surfaces and their moduli spaces play the fun-
damental role in algebraic geometry and the theory of integrable systems: from algebro-geometric
construction of solutions of KdV and KP equations [14] to description of the combinatorial model
of moduli spaces of curves [5].

The goal of this dissertation is to derive variational formulas of Ahlfors-Rauch type on mod-
uli spaces of meromorphic quadratic differentials and to apply them to study 1) deformations of
Hitchin’s spectral covers and 2) symplectic geometry of the monodromy map of the Schwarzian
equation.

Moduli spaces Qg,m[k] of quadratic differentials are defined as the set of isomorphism classes of
pairs (C, Q), where C is a compact smooth complex curve of genus g with m distinct marked points
(zj)

m
j=1, and Q is a meromorphic quadratic differential on C with poles at zj . We will also assume

even orders k = (2kj)
m
j=1 of the poles, and that all zeroes of Q, denoted by xi, are simple. While the

latter assumption is generic, the condition of even-order poles is ruled by the applications. Spaces
Qg,m[k] could be embedded into the moduli spaces of meromorphic Abelian differentials and inherit
their coordinate systems together with variational formulas from there. Such approach was adopted
in [35, 8] for holomorphic quadratic differentials and in [32] for differentials with first order poles.
Here we generalize these results to include meromorphic differentials with poles of arbitrary even
orders (Lemma 3.1.1, Proposition 3.1.1).

To define a set of homological coordinates on Qg,m[k] we observe that equation

v2 = Q (1.0.1)

in the cotangent bundle T ∗C defines a two-fold spectral cover π : Ĉ −→ C, branched at zeroes of Q.
Differential v is single valued on Ĉ with double zeroes at the branch points xi and 2m poles at the
preimages {z(1)j , z

(2)
j } of zj with corresponding orders kj . The covering surface Ĉ is equipped with

the natural involution map µ : Ĉ −→ Ĉ that splits the homology group H1(Ĉ\{z(1)j , z
(2)
j }mj=1,Z) into

even and odd subgroups
H1(Ĉ\{z(1)j , z

(2)
j }mj=1,Z) = H+ ⊕H−, (1.0.2)

which are the +1 and −1 eigenspaces of the map, induced by the involution µ. Notice that the
differential v is skew-symmetric with respect to µ : v(µ(x)) = −v(x). Then the local coordinates on
Qg,m[k] are given by the basic cycles of the odd subgroup sk ∈ H− :

Psk =

∫
sk

v. (1.0.3)
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Denote by Ω the period matrix of C computed in some homology basis {aα, bα} on C. The dual
basis of holomorphic differentials uα is normalized via

∮
aα

uβ = δαβ .
Then, for example, variational formulas for the period matrix Ω with respect to homological

coordinates on Qg,m[k] look as follows:

∂Ωαβ

∂Psk

=
1

2

∮
s∗k

uαuβ
v

, (1.0.4)

where s∗k is a cycle dual to sk with respect to the intersection pairing. Since the integration on the
right-hand side is performed on the covering surface Ĉ, we deal with the pullbacks of uα, uβ from
C to Ĉ. These formulas strongly resemble the classical result in Teichmüller theory (Ahlfors-Rauch
formula, see for example [1]) measuring variation of the period matrix under change of conformal
structure of the Riemann surface defined by an arbitrary Beltrami differential.

First application of the deformation theory on Qg,m[k] is related to the theory of Hitchin’s
systems which were introduced in [23] as a dimensional reduction of the self-dual Yang-Mills equa-
tion. These systems together with their meromorphic generalizations [24] provide the widest class
of integrable systems associated to a Riemann surface. Hamiltonians of such systems are given by
meromorphic N -differentials arising in the definition of a spectral cover. We study variations on the
moduli spaces of generalized SL(2) Hitchin’s spectral covers, naturally identified with the vector
spaces of meromorphic quadratic differentials on a fixed Riemann surface C. We denote these spaces
by Msl2

g,m[k].
The involution µ : Ĉ −→ Ĉ of the canonical double cover induces a splitting of first cohomology

group H(1,0)(Ĉ) into even and odd subgroups implying that holomorphic Abelian differentials defined
on the covering surface could be represented as a sum of two differentials – symmetric and skew-
symmetric under the involution. While the symmetric element is a pullback from the base curve,
the skew-symmetric differential is associated exclusively with the covering surface and is called
Prym differential. The similar decomposition also applies to the canonical bidifferential [35] and
meromorphic Abelian differentials. It turns out that only skew-symmetric differentials contribute
to the variations under the assumption that the base curve is kept fixed.

Let {a−α , b−α } ∈ H−(Ĉ,Z) be generators of the odd part of homology group of cycles on Ĉ with
intersection index a−α ◦ b−β = 1

2δαβ . We denote a dual basis of holomorphic Prym differentials
by u−α . The derivatives of the Prym matrix Ω−

αβ =
∮
b−β

u−α with respect to local coordinates on

the space Msl2
g,m[k] reproduce a formula analogous to the Donagi-Markman cubic [13]: denote by

Aα =
∮
a−α

v integrals of the differential v over a−-cycles, remaining coordinates are defined by
coefficients spanning the singular part of v near the poles. Then variation of the Prym matrix Ω−

representing a deformation of complex structure of the covering surface takes the following form:

∂Ω−
αβ

∂Aγ
= −πi

∑
xi

res
xi

(
u−αu

−
β u

−
γ

dξ d(v/dξ)

)
, (1.0.5)

where the sum is over all branch points xi in the base curve C; ξ denotes a local coordinate near a
branch point.

Variations with respect to the moduli representing the singular part of v are obtained by similar
formulas with Prym holomorphic differentials u−γ replaced by Prym second-kind and third-kind
differentials (Theorem 3.4.1). The formula (1.0.5) is a specialization of a more general case of GL(n)
spectral covers (see [4]). Its derivation, however, is different. While the GL(n) case essentially relies
on the generic assumption of simple zeros of v, in our case differential v has double zeroes at the
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branch points xi and the formula (1.0.5) follows from the specific geometry of the double cover
which is governed by its global involution automorphism.

We also derive variations of the objects depending on a point on the covering surface. Intro-
duce the canonical (Bergman) bidifferential B̂(x, y) on Ĉ × Ĉ and define the Prym bidifferential
B−(x, y) := B̂(x, y)− µ∗

yB̂(x, y) [35], where the notation µ∗
y means that we take the pullback with

respect to the involution on the second factor in Ĉ × Ĉ. The variations of B−(x, y) are given in
Theorem 3.4.2. The derivative with respect to Aγ looks as follows:

∂B−(x, y)

∂Aγ
= −1

2

∑
xi

res
xi

(
u−γ (t)B

−(x, t)B−(t, y)

dξ d(v/dξ)

)
. (1.0.6)

The Bergman tau-function τB was originally defined as a higher genus generalization of the
Dedekind eta-function on elliptic surface. It appears in various context - from isomonodromy defor-
mations to spectral geometry, Frobenius manifolds and random matrices, an extensive review was
done in [31]. In the context of moduli spaces of quadratic differentials, it was considered in [35] in
holomorphic case and in [5, 7] in presence of second order poles. We are able to extend its definition
to the full space Qg,m[k] (Theorem 3.2.1) and derive its variational formulas on Msl2

g,m[k] by the
restriction of corresponding differential equations from Qg,m[k] (Theorem 3.4.4).

Denote by (z̃j)
n
j=1 ⊂ (zj)

m
j=1 the set of double poles of Q, then π−1(z̃j) = {z̃(1)j , z̃

(2)
j } are

corresponding simple zeroes of v with residues denoted by r̃j and −r̃j respectively. The variation
with respect to Aγ takes the following form

∂ log τB
∂Aγ

=
5

432

∑
xi

res
xi

(
u−γ∫ x
xi
v

)
−

n∑
j=1

1

48r̃j

∫ z̃
(1)
j

z̃
(2)
j

u−γ . (1.0.7)

We also modify the framework of topological recursion introduced in [16] to address the spaces
of SL(2) covers and use it to derive higher variations of the Prym matrix Ω− (Proposition 3.5.1).
This result particularly shows how the Prym bidifferential B−(x, y) defined on a single spectral
curve generates the geometry of its neighborhood on the space Msl2

g,m[k].
Another application of the variational formulas on Qg,m[k] lies within the symplectic aspects of

the monodromy map of the Schwarzian equation. This study was initiated by S. Kawai [27] who
established a relationship between the canonical symplectic structure on the cotangent bundle T ∗Mg

of the moduli space of curves and Goldman’s bracket for the traces of monodromy matrices. Later
in [8, 32] authors proposed an alternative approach to the symplectic geometry of the monodromy
map involving moduli spaces of quadratic differentials in homological coordinates, in cases when Q
is holomorphic or with first order poles. These works highly relied on the canonical identification
between the moduli spaces of quadratic differentials and T ∗Mg,n. In this dissertation, we will
generalize their results by considering quadratic differentials with second order poles where aforesaid
identification is absent.

Introduce the linear second order equation on a Riemann surface C of genus g with n punctures
in the form

∂2ϕ+ Uϕ = 0, (1.0.8)

where U is a meromorphic potential on C with double poles at the punctures (zj)nj=1. Invariance of
the equation under a coordinate change implies that U transforms as a projective connection, while
the solution ϕ locally transforms as 1

2 -differential [22]. To parametrize the space of all meromorphic
potentials we represent the potential U as

U =
1

2
S −Q, (1.0.9)

3



where S is a fixed projective connection on C with at most simple poles at zj , while the quadratic
differential Q, having double poles at zj , varies. Let the asymptotics of Q near the poles be given
by

Q(x) ∼
(r2j
ξ2j

+O(ξ−1
j )
)
(dξj)

2. (1.0.10)

The space of pairs (C, Q), such that all zeros of Q are simple, is denoted by Qg,n. This space is
foliated into leaves Qg,n{r} which correspond to fixed rj ’s. We choose the cycles {a−α , b−α } ∈ H−(Ĉ,Z)
with intersection index a−α ◦ b−β = 1

2δαβ , so that the integrals

Aα =

∮
a−α

v, Bα =

∮
b−α

v (1.0.11)

become local coordinates on Qg,n{r}. The intersection pairing defines the homological symplectic
form on Qg,n{r}

Ωhom =
∑
α

2 dBα ∧ dAα. (1.0.12)

The ratio f = ϕ1/ϕ2 of two linearly independent solutions of (1.0.8) solves the Schwarzian
equation

{f, ξ} = S(ξ)− 2Q(ξ), (1.0.13)

where ξ is an arbitrary local parameter on C and { · , · } denotes the Schwarzian derivative. An-
alytical continuation of f along the cycles π(C\(zj)nj=1, x0) determines a PSL(2,C) monodromy
representation of the fundamental group with the chosen basepoint x0. The matrix corresponding
to the monodromy around the pole zj has the following diagonal form:

Dj =

(
mj 0

0 m−1
j

)
. (1.0.14)

We denote by CVg,n the PSL(2) character variety corresponding to the monodromy representation.
It is a classical result that the stratum CVg,n{m} for fixed values mj is a symplectic leaf with
a Poisson structure given by the Goldman bracket [21]. Additionally assuming that Q is free
from saddle trajectories (i.e., it is a "Gaiotto-Moore-Nietzke differential” [20]), the symplectic form
on CVg,n{m} that inverts the Goldman bracket could be written in terms of homological shear
coordinates given by linear combinations of the logarithms of classical Thurston’s shear coordinates
[43]:

ΩG =
∑
α

2 dρa−α ∧ dρb−α . (1.0.15)

The monodromy map
F(S) : Qg,n{r} −→ CVg,n{m} (1.0.16)

with selected 2-forms essentially depends on the base projective connection S. Our first main result
in this setting gives a criterion telling which projective connection S is admissible i.e., turning
this map into a symplectomorphism: introduce the Bergman projective connection SB defined in
terms of the canonical bidifferential B(x, y) on C, which is normalized with respect to chosen Torelli
marking in H1(C,Z):

SB(x) =
(
B(x, y)− dξ(x)dξ(y)

(ξ(x)− ξ(y))2

)∣∣∣
y=x

, (1.0.17)

4



where ξ is any local coordinate near point x. Using the canonical identification of the moduli space
of quadratic differentials with simple poles and the cotangent bundle T ∗Mg,n, we can associate the
family of quadratic differentials S − SB with the 1-form Θ(S−SB) on Mg,n. Theorem 4.3.2 asserts
that the map (1.0.16) is a symplectomorphism with F∗

(S)ΩG = −Ωhom if and only if the 1-form
Θ(S−SB) is closed.

Let us take S = SB. Choosing symplectic potentials on Qg,n{r} :

θhom =
∑
α

(
BαdAα −AαdBα

)
(1.0.18)

and on CVg,n{m} :

θG =
∑
α

(
ρb−α dρa−α − ρa−α dρb−α

)
(1.0.19)

we may consider the generating function of this symplectomorphism (the Yang-Yang function from
[41]) given by

dGB = F∗
(SB)θG − θhom. (1.0.20)

Although GB is defined very implicitly, the WKB approximation of the equation (1.0.8) allows
us to compute its asymptotic expansion. Let Q1 be a fixed meromorphic differential on C with
at most simple poles at the punctures (zj)

n
j=1. For a small parameter ℏ we consider second order

equation on a Riemann surface C in the form

∂2ϕ+
(1
2
SB − Q1

ℏ
− Q

ℏ2
)
ϕ = 0 (1.0.21)

and compute the leading asymptotics (terms G−1, G0 and G1) of the WKB expansion of GB as
ℏ → 0+ (Theorem 4.4.1). Interestingly, the term G0 contains Bergman tau-function log τB restricted
to the space Qg,n{r}. Finally, we relate the WKB approximation of (1.0.21) with corresponding
WKB approximation of the equation

∂2ϕ+
(1
2
SB − Q

ℏ2
)
ϕ = 0 (1.0.22)

studied in [7], by performing calculus on the spaces Msl2
g,n{r} of Hitchin’s SL(2) spectral covers

defined by the quadratic differential Q having double poles with fixed biresidues. In particular, we
show how the formula (1.0.7) appears in the term G1 of the expansion. We also employ variational
techniques on Qg,n{r} and Msl2

g,n{r} altogether to compute the next term G2 (Proposition 5.1.3).

5



Outline

• In Chapter 2 we introduce the moduli spaces of meromorphic Abelian differentials on Riemann
surfaces and define a set of homological coordinates consisting of absolute and relative periods
of the meromorphic differential. Then we derive variational formulas of Ahlfors-Rauch type
of the fundamental objects (Period matrix, normalized holomorphic differentials and Bergman
bidifferential) associated to a Riemann surface.

• In Chapter 3 we explain most of the content of [30]. We consider the moduli spaces of
meromorphic quadratic differentials with suitable system of local homological coordinates and
obtain variational formulas of the objects related to the canonical double cover by pulling
back corresponding formulas from the spaces of Abelian differentials. Then using a natural
embedding of the spaces of generalized SL(2) spectral covers into the spaces of quadratic
differentials we derive variational formulas with respect to moduli of the former. We also
accommodate the general theory of topological recursion to the case of SL(2) spectral covers
to derive higher-order variations.

• In Chapter 4 we provide proofs of the results contained in [29], which are devoted to sym-
plectic properties of the spaces of quadratic differentials with second order poles. We consider
a second order linear differential equation with meromorphic potential on a Riemann surface
and prove a criterion which turns the monodromy representation of the equation into a sym-
plectomorphism. Then we employ the WKB approximation to compute leading terms of the
asymptotic expansion of the monodromy generating function (Yang-Yang function).

• Finally, in Chapter 5 we combine the results of Chapters 3 and 4 to derive higher asymptotics
of the WKB expansion by varying the double cover.

6



Chapter 2

Spaces of Abelian differentials

This chapter is arranged as follows: in Section 2.1 we define a set of homological coordinates
on the space of meromorphic Abelian differentials given by the integrals over the elements of the
relative homology group of underlying Riemann surface. In Section 2.2 we introduce canonical
tensor objects associated with a Riemann surface. In Section 2.3 we define variations with respect
to homological coordinates and derive variational formulas of canonical objects.

2.1 Coordinates on spaces Hg[nr,−km] of meromorphic Abelian dif-
ferentials

Consider a compact Riemann surface C of genus g and an arbitrary meromorphic differential v
on C with m poles z1, . . . , zm and r zeros x1, . . . , xr; we fix the multiplicities of poles and zeroes
such that the divisor of v is given by

(v) =

r∑
i=1

nixi −
m∑
j=1

kjzj , ni, kj ≥ 0, (2.1.1)

where
∑r

i=1 ni −
∑m

j=1 kj = 2g − 2 is the degree of the canonical divisor.
The moduli space of pairs (Riemann surface C of genus g, meromorphic differential v with m

poles, and fixed degrees (ni, kj) of divisor (v)) is denoted by Hg[n1, . . . , nr,−k1, . . . ,−km] (briefly
Hg[nr,−km]),

dimHg[nr,−km] = 2g + r +m− 2. (2.1.2)

This space is stratified according to the multiplicities (ni, kj). The corresponding strata may
have several connected components. The classification of these connected components is given by
[40] in holomorphic and by [9] in meromorphic case. In particular, for fixed multiplicities kj of the
poles the stratum of the space Hg[1r,−km] having the highest dimension (on this stratum all the
zeros of v are simple) is connected.

In the traditional framework of the theory of integrable systems the set of coordinates on the
space Hg[nr,−km] consists of moduli Mg,m of the Riemann surface punctured at poles z1, . . . , zm
and coefficients spanning the singular part of v near the poles; assuming that all a-periods of v
vanish, these coordinates determine C and v uniquely. The issue with such coordinate system is
that the coefficients of singular parts of v depend on the choice of local parameters near poles,
that could also deform along with the complex structure of C. In this work we use a system
of homological coordinates, generalizing the one used in the theory of Hurwitz spaces, when the
local coordinates are given by branch points of a covering of complex plane [37]. Such coordinate

7



system is proven to be effective in describing the boundary geometry of moduli spaces of Abelian
differentials on Riemann surfaces [34]. More applications lie within the study of Teichmüller flow
[39] and determinants of flat Laplacians [38] on these spaces.

According to [39], system of homological local coordinates on Hg[nr,−km] is given by the inte-
grals of v along the generators of

H1(C \ {zj}mj=1, {xi}ri=1), (2.1.3)

which is the first homology group of the Riemann surface C punctured at poles z1, . . . , zm, relative
to the set of zeros x1, . . . , xr of v. We briefly denote this group by H1.

Let us introduce a canonical basis of cycles (aα, bα) on C; t2, . . . , tm are small contours around
poles z2, . . . , zm; l2, . . . , lr are paths connecting the “first” zero x1 with other zeros x2, . . . , xr. The
chosen set of curves generate the homology group (2.1.3) and the integrals

Aα :=

∮
aα

v , Bα :=

∮
bα

v , α = 1, . . . , g, (2.1.4)

2πi rj :=

∫
tj

v , ϱi :=

∫
li

v , j = 2, . . . ,m, i = 2, . . . , r . (2.1.5)

serve as local coordinates on the space Hg[nr,−km].

Remark 2.1.1. If the differential v is exact: v = df , where f is a meromorphic function C → CP 1,
it is easy to see that all of its a, b and t–periods (residues) vanish, which particularly implies that
kj ̸= 1. The space of such differentials coincide with Hurwitz space Hurg[nr,−km], which is the
moduli space of all branched coverings of genus g over a Riemann Sphere. The remaining non-
vanishing homological coordinates in this case coincide with the critical values of function f i.e.,
with branch points of corresponding branch covering. Notice that in genus 0, when all a and b
periods are absent, spaces H0[nr,−km] and Hur0[nr,−km] are isomorphic. These are just spaces
of rational functions on CP 1 with fixed multiplicities of zeroes and poles.

2.2 Canonical objects on Riemann surfaces

On a compact Riemann surface C of genus g introduce a canonical basis of cycles (aα, bα) in
H1(C,Z). Denote by uα(P ) the basis of holomorphic 1-forms on C normalized by∮

aα

uβ = δαβ. (2.2.1)

The period matrix of the surface C is given by

Ωαβ :=

∮
bα

uβ. (2.2.2)

The prime form E(x, y) (see [18, 19]) is an antisymmetric −1/2-differential with respect to both
x and y. For a basepoint x0 we define the Abel map Aα(P ) =

∫ x
x0

uα from the Riemann surface
C to its Jacobian. Let Θ[∗](z) be the genus g theta-function corresponding to the period matrix
Ω with some odd half-integer characteristic [∗]. Introduce the holomorphic differential h(x) =∑g

α=1Θ[∗]zα(0)uα(x). All zeros of this differential are double, therefore, we can correctly define
square root of h(x) and corresponding prime form on C by

E(x, y) =
Θ[∗](A(x)−A(y))√

h(x)
√
h(y)

, (2.2.3)
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this expression in fact is independent of the choice of the odd characteristic [∗].
The prime-form has the following properties (see [18], p.4):

• Under analytic continuation of y along the cycle aα the prime-form remains invariant; under
the analytic continuation along bα it gains the factor

exp(−πiΩαα − 2πi

∫ y

x
uα) . (2.2.4)

• On the diagonal y → x the prime-form has first order zero (and no other zeros or poles) with
the following asymptotics:

E(ξ(x), ξ(y))
√

dξ(x)
√
dξ(y) = (2.2.5)

= (ξ(y)− ξ(x))

(
1− 1

12
SB(ξ(x))(ξ(y)− ξ(x))2 +O((ξ(y)− ξ(x))3

)
, (2.2.6)

where the term SB is called Bergman projective connection and ξ(x) is an arbitrary local coordinate.
We recall that an arbitrary projective connection S transforms under change of the local coor-

dinate η → ξ as follows:

S(η) = S(ξ)

(
dξ

dη

)2

+ {ξ, η} (2.2.7)

where {ξ, η} = ξ′′′

ξ′ −
3
2

(
ξ′′

ξ′

)2
is the Schwarzian derivative. One can verify that the term SB in (2.2.6)

indeed transforms as (2.2.7) under change of the local coordinate. Another projective connection
that will be used is associated to the differential v and given by the Schwarzian derivative:

Sv(ξ(x)) :=

{∫ x

x1

v, ξ(x)

}
(dξ(x))2. (2.2.8)

Note that difference of any two projective connections is a quadratic differential on C.
The key object in the theory of Riemann surfaces is fundamental meromorphic (Bergman)

bidifferential B(x, y), defined by

B(x, y) = ∂x∂y logE(x, y). (2.2.9)

It is symmetric B(x, y) = B(x, y) and holomorphic everywhere except for the second order pole
on the diagonal x = y with biresidue 1. While its a-periods with respect to both x and y vanish,
the b-periods of B(x, y) with respect to any of its arguments are given by the basic holomorphic
differentials: ∮

bα

B(x, t) = 2πiuα(x). (2.2.10)

Choosing some local coordinate ξ near the diagonal {x = y} ⊂ C × C, we have the following
local behavior of B(x, y) as y → x:

B(x, y) =

(
1

(ξ(x)− ξ(y))2
+

SB(ξ(x))

6
+O((ξ(x)− ξ(y))2)

)
dξ(x)dξ(y). (2.2.11)

If two canonical bases of cycles on C, {aσα, bσα}
g
α=1 and {aα, bα}gα=1 are related by a matrix

σ =

(
D C
B A

)
∈ Sp(2g,Z) , (2.2.12)
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the corresponding period matrix, fundamental bidifferential and Bergman projective connection
transform as follows ([19], p. 21):

Ωσ = (AΩ+B)(CΩ+D)−1, (2.2.13)

Bσ(x, y) = B(x, y)− πi
∑

1≤α≤β≤g

(uα(x)uβ(y) + uβ(x)uα(y))
∂ ln det(CΩ+D)

∂Ωαβ
, (2.2.14)

Sσ
B = SB − 12πi

∑
1≤α≤β≤g

uαuβ
∂

∂Ωαβ
log det(CΩ+D). (2.2.15)

2.3 Variational formulas on Hg[nr,−km]

Cutting the Riemann surface C along the canonical cycles (aα, bα) which pass through a single
point, chosen to be a "first" zero x1, we get the simply connected fundamental polygon C0. Inside of
C0 we also introduce branch cuts connecting poles of v with non-vanishing residues. These branch
cuts are assumed to start at "first" pole z1 connecting it with z2, . . . , zm; denote them by κ2, . . . , κm.
Let us introduce a local coordinate on C away from zeroes xi and poles zj , given by the integral

z(x) =

∫ x

x1

v. (2.3.1)

While z(x) is a uniquely defined inside the simply connected domain C0\{κj}mj=2, it is not globally
defined on C itself, where it gains monodromies. Let Pk be a coordinate from the list (2.1.4-2.1.5).

We define the derivative of the basic holomorphic differentials with respect to Pk as follows:

∂uα(x)

∂Pk

∣∣∣
z(x)

:= v(x)
∂

∂Pk

∣∣∣
z(x)=const

{
uα(x)

v(x)

}
(2.3.2)

where uα(x)/v(x) is a meromorphic function on C with poles at xi. Outside of the points in divisor
(v) this function can be viewed as a function of z(x) and Pk; the derivative of this function with
respect to Pk in the right-hand side of (2.3.2) is computed assuming that z(x) is independent of Pk.

More formally, consider the local universal family

π : X → Hg[nr,−km]. (2.3.3)

Then the set (z :=
∫ x
x1

v,P1, . . . ,P2g+m+r−2) gives a system of local coordinates on X \ (v). A
vicinity of a point {(C, v), x} in the level set Hz(x) := {t ∈ X , z(t) = z(x)} is biholomorphically
mapped onto a vicinity of the point (C, w) of Hg[nr,−km] via the projection π. Then

((π|Hz(P )
)−1)∗

{uα
v

} ∣∣
Hz(P )

(2.3.4)

is a locally holomorphic function on Hg[nr,−km] and we denote

∂

∂Pk

∣∣∣
z(x)=const

{
uα(x)

v(x)

}
:=

∂

∂Pk

[
((π|Hz(x)

)−1)∗
{uα

v

} ∣∣∣
Hz(x)

]
. (2.3.5)

Since the map x → z(x) is not globally defined on C, the 1-forms ∂uα(x)
∂Pk

are local meromorphic
differentials defined within C0\{κj}mj=2. They do not necessarily correspond to global 1-forms on C
itself.
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Similarly, the derivatives of B(x, y) with respect to the moduli are defined as follows:

∂B(x, y)

∂Pk

∣∣∣
z(x),z(y)

:= v(x)v(y)
∂

∂Pk

∣∣∣
z(x),z(y)

{
B(x,Q)

v(x)v(y)

}
. (2.3.6)

Derivatives of other tensor objects, depending on the point in C are defined by obvious analogy.
It is convenient introduce contours si generating the homology group (2.1.3):

{si}2g+r+m−2
i=1 =

{
{aα, bα}gα=1, {tj}

m
j=2, {li}ri=2

}
. (2.3.7)

Then the homological coordinates on Hg[nr,−km] are defined as integrals of v over {si}:

Psi =

∫
si

v , i = 1, . . . , 2g + r +m− 2. (2.3.8)

The homology group dual to (2.1.3) is the homology group of C, punctured at zeros of v, relative
to the set of poles of v:

H1(C \ {xi}ri=1, {zj}mj=1). (2.3.9)

The dual basis {s∗i } is defined by the condition

s∗i ◦ sj = δij (2.3.10)

and is given by
{s∗i }

2g+r+m−2
i=1 =

{
{−bα, aα}gα=1, {κj}

m
j=2, {ci}ri=2

}
, (2.3.11)

where κ2, . . . , κm are contours connecting the “first” pole z1 with other poles z2, . . . , zm, respectively;
c2, . . . , cr are small circles around the zeros x2, . . . , xr.

Now we are in a position to formulate the following theorem, which gives variational formulas
on Hg[nr,−km] with respect to homological coordinates Psi . This theorem was originally stated in
[38] in holomorphic case and then extended in [26] to cover meromorphic Abelian differentials. The
proof of this result is very instructional: techniques developed here will be adapted throughout the
thesis.

Theorem 2.3.1. [38, 26] For a basis {si}2g+r+m−2
i=1 of H1 and its dual basis {s∗i }

2g+r+m−2
i=1 the

following formulas hold on Hg[nr,−km]:

∂Ωαβ

∂Psi

=

∮
si∗

uαuβ
v

, (2.3.12)

∂uα(x)

∂Psi

∣∣∣
z(x)=const

=
1

2πi

∮
si∗

uα(t)B(x, t)

v(t)
, (2.3.13)

∂B(x, y)

∂Psi

∣∣∣
z(x),z(y)=const

=
1

2πi

∮
si∗

B(x, t)B(t, y)

v(t)
, (2.3.14)

∂

∂Psi

(SB(x)− Sv(x))
∣∣∣
z(x)=const

=
3

πi

∮
si∗

B2(x, t)

v(t)
. (2.3.15)

11



Proof. Let us prove first the variational formula (2.3.13) for the normalized holomorphic differential.
We use the Abelian integral z(x) =

∫ x
x1

v as a local coordinate in a neighborhood of any point of C
not coinciding with the zeros xi and poles zj of the differential v. Consider the derivative of uα(x)
with respect to ϱi =

∫
li
v (i ≥ 2) assuming that the coordinate z(x) is independent of ϱi. The

proof of the corresponding variational formula follows the idea of the proof for the standard Rauch
formula on the Hurwitz spaces (see f.e. Section 2.3 of [37]).

Let us at first study the behavior of the differential ∂ϱiuα(x)|z(x) near the poles. Near a first
order pole zj of v the local coordinate could be chosen as

ζj(x) = exp
(z(x)

rj

)
, (2.3.16)

where rj is the residue defined by (2.1.5). Near a pole zj of order kj > 1 the local coordinate is the
solution to transcendental equation

1

ζ
kj−1
j (x)

+ rj ln ζj(x) = z(x). (2.3.17)

In either case, one can observe that ∂ζj
∂ϱi

∣∣
z(x)

= 0, so expressing the differential uα in local coordinate
ζj by

uα(ζj) = (a0 + a1ζj + . . . )dζj (2.3.18)

and differentiating with respect to ϱi, we have

∂ϱiuα(ζj)|z(x) = O(1)dζj , (2.3.19)

meaning that ∂ϱiuα(x)|z(x) is holomorphic at zj .
Let us consider the local behavior of ∂ϱiuα(x)|z(x) near zero xi. We choose the local parameter

near xi to be
ξi(x) = (z(x)− z(xi))

1/(ni+1), (2.3.20)

where ni is the multiplicity of xi. We have

uα(ξi) = (a0 + a1ξi + · · ·+ aniξ
ni
i +O(ξi

(ni+1)))dξi . (2.3.21)

Noticing that z(xi) = ϱi, we differentiate this expansion with respect to ϱi for fixed z(x):

∂

∂ϱi
{uα(x)}|z(x) =

{
a0

(
1− 1

ni + 1

)
1

ξni+1
i

+ a1

(
1− 2

ni + 1

)
1

ξni
i

+ . . . (2.3.22)

+ani−1

(
1− ni

ni + 1

)
1

ξ2i
+O(1)

}
dξi. (2.3.23)

Consider the set of standard meromorphic differentials of second kind with vanishing a-periods:
ws+1
i (x) with the only singularity at the point xi of the form ξi(x)

−s−1dξi(x). The differential
∂ϱiuα(x)|z(x) also has all vanishing a-periods, since the a-periods of uα are constant. Therefore, it
can be expressed in terms of these standard differentials as follows:

∂

∂ϱi
{uα(x)}|z(x) = a0

(
1− 1

ni + 1

)
wni+1
i (x) + a1

(
1− 2

ni + 1

)
wni
i (x) + . . . (2.3.24)
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+ ani−1

(
1− ni

ni + 1

)
w2
i (x). (2.3.25)

Now, the differentials ws
i (x) can be expressed in terms of Bergman bidifferential B(x, y) as:

ws
i (x) =

(−1)s

(s− 1)!

ds−2

dξs−2
i (x)

B(x, y)
∣∣∣
y=xi

. (2.3.26)

Using (2.3.26) we can rewrite (2.3.24-2.3.25) in the following compact form:

∂uα(x)

∂ϱi

∣∣∣
z(x)

=
1

(ni + 1)(ni − 1)!

(
d

dξi(y)

)ni−1{B(x, y)uα(y)

(dξi(y))2

} ∣∣∣
y=xi

(2.3.27)

or, equivalently,
∂uα(x)

∂ϱi

∣∣∣
z(x)

= res
xi

{
uα(y)B(x, y)

v(y)

}
, (2.3.28)

which leads to (2.3.13) for s = l2, . . . , lr.
Let us now prove formulas (2.3.13) for s = (aβ, bβ). For example, consider the derivative of uα

with respect to Bβ =
∫
bβ

v.
Let us introduce the fundamental polygon C0 of C with the branch cuts κ2, . . . , κm between the

poles z1 and zj , j = 2, . . . , .m. The map z(x) is a single-valued holomorphic function on C0\{κj}mj=2

away from poles. Consider an arbitrary point x in C0 which does not coincide with any zero or pole of
v. Denote by Tai , Tbi the deck transformations which correspond to the cycles ai and bi, respectively.
The sides a+β and a−β of the fundamental polygon C0 are identified by Tbβ . The deck transformation
Tbβ (x) of the point x corresponds to the analytic continuation of the function z(x) along the bβ
cycle, such that z(x) is mapped to z(x) + Bβ . Since the holomorphic differential uα is globally
defined on C, it can be lifted to a holomorphic differential on C0 invariant with respect to the deck
transformations. Let us write uα(x) = f(z)dz. As uα is invariant under the deck transformations,
we have

f(z +Bβ) = f(z). (2.3.29)

Differentiating this equality with respect to z, we get

∂f(z +Bβ)

∂z
=

∂f(z)

∂z
. (2.3.30)

Differentiating (2.3.29) again with respect to Bβ , while z is kept constant, we also mind that f
implicitly depends on Bβ :

∂f(z +Bβ)

∂z
+

∂f(z +Bβ)

∂Bβ
=

∂f(z)

∂Bβ
. (2.3.31)

Combining these formulas, we write

∂f(z +Bβ)

∂Bβ
dz − ∂f(z)

∂Bβ
dz = −∂f(z)

∂z
dz. (2.3.32)

Let us denote
Φ(x) :=

∂uα(x)

∂Bβ

∣∣∣
z(x)

. (2.3.33)

Since the coordinate z(x) is single valued on the fundamental polygon C0\{κj}mj=2, the differential
Φ is also single-valued and holomorphic on C0\{κj}mj=2. Consider global function (uα/v)(x) on C
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and corresponding Abelian differential d(uα/v)(x) , which in any local coordinate ξ(x) is given by
df(ξ) if uα(ξ) = f(ξ)dξ. Then we can rewrite (2.3.32) in a coordinate-independent form:

Tbβ [Φ(x)] = Φ(x)− d
(uα

v

)
(x) . (2.3.34)

By analogy, we can show that

Tbγ [Φ(x)] = Φ(x) , γ ̸= β , (2.3.35)

and
Taγ [Φ(x)] = Φ(x) , γ = 1, . . . , g , (2.3.36)

Additionally, differentiating the formulas (2.3.18), (2.3.21) with respect to Bβ we conclude, that
(2.3.33) is holomorphic at zeroes and poles of v. Therefore, the differential Φ can be viewed as
a differential on C, which is holomorphic everywhere except the cycle aβ , where it has the jump
discontinuity given by d

(
uα
v

)
. Moreover, one can observe that all a-periods of Φ(x) vanish, with

agree with the fact that all a-periods of the jump differential are also zero.
To write down an explicit formula for Φ, we recall the Plemelj formula on the complex plane

C. Let γ be a positively oriented simple closed curve in the complex plane, f(x) is a holomorphic
function defined in the tubular neighborhood of γ. The integral

F (y) :=
1

2πi

∮
γ
f(x)(x− y)−2dx (2.3.37)

defines two holomorphic functions F l(y) and F r(y) which are restrictions of F (y) to the interior and
the exterior of γ, respectively. The boundary values of F r and F l on γ are related by the Plemelj
formula F r(y)− F l(y) = −fy(y).

This observation allows to write immediately the formula for the differential Φ with discontinuity
−d
(
uα
v

)
on the cycle aβ and all vanishing a-periods:

Φ(y) =
1

2πi

∮
aβ

uα(x)B(x, y)

v(x)
. (2.3.38)

The required discontinuity on the cycle aβ is implied by singularity structure of B(x, y) on the
diagonal and Plemelj formula; vanishing of all the a-periods follows from vanishing of all the a-
periods of bidifferential B(x, y).

The formula for differentiation with respect to Aβ has the different sign due to the interchange of
the roles of interior and exterior domains (due to the asymmetry of the intersection index between
aβ and bβ ( aβ ◦ bβ = −bβ ◦ aβ = 1).

Derivatives with respect to the residues 2πi rj =
∫
tj
v (j ≥ 2) are proved by analogy: differential

∂2πrjuα(x)|z(x) has an additive jump on the contour κj , given by −d
(
uα
v

)
. Then the Plemelj formula

on the complex plane and its generalization to a Riemann surface provide the formula (2.3.13) for
s = t2, . . . , tm.

Integrating (2.3.13) over b-cycles and changing the order of integration, one gets (2.3.12). For-
mula (2.3.14) can be proved in the same manner as (2.3.13). Formula (2.3.15) follows from the
variational formulas for the bidifferential B(x, y) (2.3.14) by taking the limit y → x and using
the singular structure of B(x, y) on the diagonal in local coordinate z(x) (in this local coordinate
projective connection Sv(z(x)) vanishes).
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Remark 2.3.1. Derived variational formulas could be seen as an analog of classical results of
Ahlfors-Rauch deformation theory. For example, variation of the Period matrix Ωαβ in the direction
of arbitrary Beltrami differential µ is given by

δµΩαβ =

∫∫
C
uαuβµ. (2.3.39)

Then in related formulas (2.3.12) the role of “Beltrami differential” is played by the vector field 1/v
localized on the contour s∗i . The precise correspondence was discussed in Section 2.4 of [38].
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Chapter 3

Spaces of quadratic differentials and
SL(2) Hitchin’s spectral covers

This chapter has the following structure: in Section 3.1 we discuss geometry of the canonical
double cover associated with a quadratic differential and define a set of homological coordinates
on spaces of meromorphic quadratic differentials, given by the integrals over cycles lying in the
odd part of the first homology group of covering surface. We also introduce main objects linked
to the canonical double cover and derive their variations by restricting variational formulas on
spaces of Abelian differentials obtained in Chapter 2. Section 3.2 is devoted to the definition and
main properties of Bergman tau-function. In Section 3.3 we introduce a coordinate system on
spaces of generalized SL(2) spectral covers with fixed base. In Section 3.4 we derive variational
formulas of Prym matrix, Prym bidifferential and Bergman tau-function with respect to coordinates
on spaces of SL(2) spectral covers. We obtain these formulas by the pullback of the variational
formulas on spaces of quadratic differentials. The resulting expressions provide explicit realizations
of Donagi-Markman residue formulas. Finally, in Section 3.5 we adapt the theory of Eynard-
Orantin topological recursion to derive higher order variations.

3.1 Spaces Qg,m[k] of meromorphic quadratic differentials

3.1.1 Geometry of double cover

Denote by Qg,m[k] moduli space of pairs: a Riemann surface C of genus g and a meromor-
phic quadratic differential Q with simple zeroes and poles at {zj}mj=1 of corresponding orders
k = {2kj}mj=1. The degree 4g − 4 of the divisor class (Q) implies a quadratic differential has

r = 4g − 4 + 2
m∑
j=1

kj (3.1.1)

simple zeroes denoted by xi. For all such quadratic differentials the equation

v2 = Q, (3.1.2)

in the cotangent bundle T ∗C defines double covering π : Ĉ −→ C, branched at zeroes of Q. The
covering surface Ĉ possesses a natural holomorphic involution µ : Ĉ −→ Ĉ. Square-root differential
v = ”

√
Q” is a single-valued meromorphic Abelian differential on Ĉ and skew-symmetric under the

involution: v(xµ) = −v(x).
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Differential v has double zeroes at branch points, which will be denoted by same letters xi. That
follows from the following short observation: given ξ is a local coordinate near any zero xi on C such
that Q = ξ(dξ)2, one has locally: v =

√
Q =

√
ξdξ = 2ξ̂2dξ̂, where ξ̂ =

√
ξ is a coordinate near xi

on Ĉ. Then the Riemann-Hurwitz formula implies the genus of the covering surface Ĉ equals

ĝ = 4g − 3 +
m∑
j=1

kj . (3.1.3)

Since the branch points of Ĉ do not coincide with zj we have π−1(zj) = {z(1)j , z
(2)
j } and differential

v has poles of order kj at both z
(1)
j and z

(2)
j on Ĉ.

The dimension of Qg,m[k] = (C, Q) consists of 3g − 3 modular parameters of C, m positions of
singularities, 2

∑m
j=1 kj coefficients of singular parts and 3g−3 parameters that form a holomorphic

part of Q. Thus, the total dimension is

dimQg,m[k] = 6g − 6 +m+ 2
m∑
j=1

kj . (3.1.4)

We decompose the first homology group of H1(Ĉ\{z(1)j , z
(2)
j }mj=1) into

H1(Ĉ\{z(1)j , z
(2)
j }mj=1) = H+ ⊕H−, (3.1.5)

which are the +1 and −1 eigenspaces of the map, induced by the involution µ. dim(H+) = 2g+m−1

and dim(H−) = 6g− 6+2
∑m

j=1 kj +m. The canonical basis of H1(Ĉ\{z(1)j , z
(2)
j }nj=1) can be chosen

as follows:

{ak, aµk , ãl, bk, b
µ
k , b̃l, tj , t

µ
j }, k = 1, ..., g, l = 1, ..., 2g − 3 +

m∑
j=1

kj , j = 1, ...,m. (3.1.6)

zj

zj

x1
x2

bk

ak

ãl

b̃l
tj

x1
x2

bµk

aµk

tµj

Figure 1: Choice of canonical basis of cycles on the canonical double cover Ĉ
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Here {ak, bk, aµk , b
µ
k} is a lift of the canonical basis of cycles {ak, bk} from C to Ĉ such that

µ∗ak = aµk , µ∗bk = bµk , µ∗ãl + ãl = µ∗b̃l + b̃l = 0. (3.1.7)

{tj , tµj } is a lift of a small positively-oriented loop tj around zj on C. On double cover Ĉ, tj denotes

a positively-oriented loop encircling z
(1)
j , while tµj is a small loop around z

(2)
j . In the group (3.1.5)

there is a single relation given by
m∑
j=1

(tj + tµj ) = 0. (3.1.8)

The classes
a+k =

1

2
(ak + aµk), b+k =

1

2
(bk + bµk), t+j =

1

2
(tj + tµj ) (3.1.9)

generate the group H+ with the intersection index

a+i ◦ b+k =
1

2
δik, (3.1.10)

while all other intersections are zero. The following cycles

a−k =
1

2
(ak − aµk), b−k =

1

2
(bk − bµk), (3.1.11)

a−l =
1√
2
ãl, b−l =

1√
2
b̃l, (3.1.12)

t−j =
1

2
(tj − tµj ) (3.1.13)

are the generators of the group H−. Similarly, their intersection index is

a−i ◦ b−k =
1

2
δik (3.1.14)

and all other intersections are zero.
The dimension of H− coincides with the dimension of Qg,m[k]. We introduce the following set

of period (homological) local coordinates on Qg,m[k]:

Ak =

∮
a−k

v, Bk =

∮
b−k

v, 2πirj =

∮
t−j

v, (3.1.15)

here +rj and −rj are residues of v near z
(1)
j and z

(2)
j , respectively.

Lemma 3.1.1. The parameters (3.1.15) provide a system of local coordinates on Qg,m[k].

Proof. The differential v has a double zero at each branch point of the covering Ĉ → C. Additionally,
v has 2m poles which are split into pairs according to their orders. Therefore, the pair (Ĉ, v) belongs
to the stratum Hĝ[2r,−k2m] of the moduli space of Abelian differentials on algebraic curves of
genus ĝ with r = ĝ − 1 +

∑m
j=1 kj zeroes of multiplicity 2, and 2m poles of multiplicities k2m =

(k1, k1, ..., km, km). The dimension of the space Hĝ[2r,−k2m] is 2ĝ − 2 + r + 2m = 12g − 12 +
4
∑m

j=1 kj + 2m and the space Qg,m[k] (of dimension 6g − 6 + 2
∑m

j=1 kj +m) forms a subspace of
codimension 6g − 6 + 2

∑m
j=1 kj +m in Hĝ[2r,−k2n] and can be described in terms of homological

coordinates on Hĝ(2r,−k2n).
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Let (Ĉ, v) represent a point in Hĝ[2r,−k2m]. Following Chapter 2, the set of homological co-
ordinates on Hĝ[2r,−k2m] consists of integrals of v along the cycles representing a basis in the
relative homology group H1(Ĉ\{z(1)j , z

(2)
j }mj=1, {xi}ri=2); such basis consists of the cycles (3.1.6) in

H1(Ĉ\{z(1)j , z
(2)
j }mj=1), and of the relative homology classes of r − 1 = 4g − 5 + 2

∑m
j=1 kj paths

l2, . . . , lr connecting x1 with xi, i = 2, . . . , r, and not intersecting the cycles (3.1.6). As a pair (Ĉ, v)
also belongs to Qg,m[k], surface Ĉ is invariant under a holomorphic involution µ and µ∗v = −v
(in particular, each zero xi of v is invariant under µ). Clearly,

∫
li
v = −

∫
lµi
v, so the combination

li− lµi is a cycle on Ĉ which is skew-symmetric under µ. Therefore, each coordinate
∫
li
v on Qg,m[k]

becomes a linear combination of the periods of v along the cycles (3.1.11− 3.1.12) on Ĉ with half-
integer coefficients. Moreover, we have

∫
aµj

v = −
∫
aj
v,
∫
bµj

v = −
∫
bj
v for each j = 1, . . . , g, and∫

tµi
v = −

∫
ti
v for i = 2, . . . ,m (relation

∫
tµ1
v = −

∫
t1
v would be dependable due (3.1.8)), which

gives 2g +m − 1 more vanishing linear combinations of homological coordinates on Qg,m[k]. The
remaining 6g − 6 + 2

∑m
j=1 kj +m homological coordinates associated with a basis in H− therefore

serve as local coordinates on Qg,m[k].

3.1.2 Standard meromorphic objects

In this section we introduce basic meromorphic objects associated with the canonical double
cover. The involution map µ : Ĉ −→ Ĉ yields a decomposition of the first cohomology group into
even and odd parts

H1,0(Ĉ) = H+(Ĉ)⊕H−(Ĉ). (3.1.16)

We shall denote by
{ûk, ûµk , ŵl}, k = 1, ..., g, l = g + 1, ..., ĝ (3.1.17)

the basis of normalized holomorphic Abelian differentials on Ĉ, dual to the basis of a-cycles of
(3.1.6). The differentials

u+k = ûk + ûµk (3.1.18)

provide a basis in H+(Ĉ). These differentials are invariant under involution and naturally isomorphic
to the space of holomorphic differentials on C. Differentials u+k are normalized over a+- cycles and
vanish over a−- cycles.

dim(H+(Ĉ)) = g. (3.1.19)

The space H−(Ĉ) consists of holomorphic differentials on Ĉ with a skew-symmetric property u(xµ) =
−u(x). Such elements are called Prym holomorphic differentials. The basis for H−(Ĉ) is generated
by

u−l =

{
ûl − ûµl , l = 1, ..., g,√
2ŵl, l = g + 1, ..., ĝ.

(3.1.20)

Notice, that differentials u−l are normalized over a−- cycles and have vanishing a+- periods.

dim(H−(Ĉ)) = 3g − 3 +
m∑
j=1

kj := g−. (3.1.21)

Integrating these differentials over corresponding even and odd parts of b - cycles on Ĉ we obtain
Period and Prym matrices

Ω+
ij =

∮
b+j

u+i , Ω−
ij =

∮
b−j

u−i . (3.1.22)
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Matrix Ω+ is identified with the period matrix Ω of the base surface C. Let us represent the Prym
matrix in a block form as

Ω− =

(
Ω−
1 Ω−

2

Ω−t
2 Ω−

3

)
, (3.1.23)

where Ω−
1 is g × g matrix; Ω−

2 is a g × (g− − g) matrix and Ω−
3 is a (g− − g) × (g− − g) matrix.

Then the period matrix Ω̂ of the double cover Ĉ in the basis {bk, bµk , b̃l} can be expressed in terms
of Ω+ and Ω− as follows:

Ω̂ =


Ω++ Ω−

1
2

Ω+− Ω−
1

2
Ω−

2√
2

Ω+− Ω−
1

2
Ω++ Ω−

1
2 −Ω−

2√
2

Ω−t
2√
2

−Ω−t
2√
2

Ω−
3

 . (3.1.24)

We proceed with bidifferentials and projective connections on double covers. Let B̂(x, y) denote
the canonical (Bergman) bidifferential on Ĉ × Ĉ normalized with respect to the a-cycles of homology
basis (3.1.6). We put

B+(x, y) := B̂(x, y) + µ∗
yB̂(x, y), (3.1.25)

B−(x, y) := B̂(x, y)− µ∗
yB̂(x, y), (3.1.26)

where notation µ∗
y means that we take the pullback with respect to the involution on the second

factor in Ĉ × Ĉ. While bidifferential B+(x, y) is the pullback of the canonical bidifferential B(x, y)
on C ×C (normalized relative to the a-cycles on the base), bidifferential B−(x, y) is called the Prym
bidifferential and was originally intoduced in [35] to study the Picard group of the compactification
of the moduli space of quadratic differentials. It follows from the definitions that bidifferentials B+

and B− are symmetric in both arguments

B±(x, y) = B±(y, x) (3.1.27)

and behave symmetrically and skew-symmetrically, respectively, under involution µ:

µ∗
xB

+(x, y) = µ∗
yB

+(x, y) = B+(x, y), (3.1.28)

µ∗
xB

−(x, y) = µ∗
yB

−(x, y) = −B−(x, y). (3.1.29)

These properties imply that∮
a+k

B+(x, y) =

∮
a−k

B+(x, y) =

∮
b−k

B+(x, y) = 0, (3.1.30)

∮
a+k

B−(x, y) =

∮
a−k

B−(x, y) =

∮
b+k

B−(x, y) = 0. (3.1.31)

Near the diagonal x = y on Ĉ × Ĉ one has

B̂(x, y) =
( 1

(ξ(x)− ξ(y))2
+

1

6
ŜB(ξ(x)) + ...

)
dξ(x)dξ(y), (3.1.32)

as y −→ x for any local coordinate ξ on Ĉ. The term ŜB transforms like a projective connection
under the change of coordinates. It is called the Bergman projective connection. For B±(x, y) near
the diagonal one has

B±(x, y) =
( 1

(ξ(x)− ξ(y))2
+

1

6
S±
B (ξ(x)) + ...

)
dξ(x)dξ(y), (3.1.33)
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with two projective connections S+
B and S−

B that are related by

S±
B (x) = ŜB(x)± 6µ∗

yB̂(x, y)|y−→x. (3.1.34)

We call S−
B the Prym projective connection. Note that ŜB is holomorphic on Ĉ, while S±

B have
double poles at branch points.

3.1.3 Variational formulas on Qg,m[k]

It is convenient to introduce the periods Psi =
∮
si
v for si being an element from the canonical

basis of H− :

{si}2g
−+m

i=1 =
{
{a−k , b

−
k }

g−

k=1, {t
−
j }

m
j=1

}
. (3.1.35)

The dual basis {s∗i } is defined by the condition

s∗i ◦ sj = δij (3.1.36)

and is given by
{s∗i }

2g−+m
i=1 =

{
{−2b−k , 2a

−
k }

g−

k=1, {2κ
−
j }

m
j=1

}
, (3.1.37)

here κ−j is a 1/2 of the contour connecting poles z
(1)
j with z

(2)
j and skew-symmetric under the

involution, not intersecting other contours. Such generator may be chosen as follows: connect z
(1)
j

with a branch point x1 by an arc γj on a first copy of C. Then join x1 with z
(2)
j on second copy of

C by the arc µ(γj).
Choose a fundamental polygon Ĉ0 of Ĉ with vertex at x1 and introduce a system of branch cuts

inside Ĉ0 in the following way: on base curve C connect first zero x1 with a chosen first pole z1 by
a branch cut γ1, then connect z1 with the remaining poles {zj}mj=2 by γj forming a tree graph G.
Then we lift G to Ĉ via π−1 and denote the corresponding lift by Ĝ = π−1(G). Inside the simply
connected domain Ĉ0\Ĝ we define the "flat" coordinate

z(x) =

∫ x

x1

v, (3.1.38)

which can be used as local coordinate on Ĉ outside of zeros and poles of v. We will also assume that
generators κ−j agree with a system of cuts defined by the graph Ĝ. Namely, κ−j ∩Ĝ = {z(1)j , x1, z

(2)
j }.

x1

z1

z2 z3

zn

aj

bj

b−1
j

a−1
j

Figure 2: Tree graph G within the fundamental polygon of C
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Lemma 3.1.1 allows to derive variational formulas on Qg,m[k] by restricting the already known
variational formulas on spaces of Abelian differentials Hĝ[2r,−k2m] obtained in Theorem 2.3.1.
While these formulas appear in [8, 35] for a holomorphic differential v, here we extend this result
to arbitrary poles of v. The derivation of variations with respect to coordinates Ak, Bk follows the
narrative [8, 35], the variations with respect to the residues rj are new.

Proposition 3.1.1. For a basis {si}2g
−+m

i=1 of H− and its dual basis {s∗i }
2g−+m
i=1 the following for-

mulas hold on Qg,m[k]:

∂Ω±
ij

∂Psi

=
1

2

∮
si∗

u±i u
±
j

v
, (3.1.39)

∂u±j (x)

∂Psi

∣∣∣
z(x)=const

=
1

4πi

∮
si∗

u±j (t)B
±(x, t)

v(t)
, (3.1.40)

∂B±(x, y)

∂Psi

∣∣∣
z(x),z(y)=const

=
1

4πi

∮
si∗

B±(x, t)B±(t, y)

v(t)
. (3.1.41)

∂

∂Psi

(S±
B − Sv)(x)

∣∣∣
z(x)=const

=
1

4πi

∮
si∗

(B±(x, t))2

v(t)
. (3.1.42)

Proof. Consider, for example, the derivative of Prym bidifferential B−(x, y) with respect to A1 =∫
a−1

v, where a−1 = 1
2(a1 − aµ1 ) (see (3.1.11)). According to Theorem 2.3.1, variational formulas on

the space Hĝ[2r,−k2m] are given by:

∂B̂(x, y)

∂(
∮
a−1

v)
= − 1

2πi

∮
t∈b−1

B̂(x, t)B̂(t, y)

v(t)
, (3.1.43)

where B̂(x, y) is the canonical bidifferential on Ĉ normalized with respect to the a-cycles of the basis
(3.1.6) on Ĉ (consequently the periods of B̂(x, y) along cycles a+j , a

−
j in (3.1.9), (3.1.11) and (3.1.12)

also vanish). Considering the period of
∮
aµk

v as an independent variable, Theorem 2.3.1 implies

∂B̂(x, y)

∂(
∮
aµ1

v)
= − 1

2πi

∮
t∈bµ1

B̂(x, t)B̂(t, y)

v(t)
. (3.1.44)

Recall that A1 = 1
2(
∫
a1

v −
∫
aµ1

v) and
∫
a1

v = −
∫
aµ1

v = A1. Using the chain rule and taking into
account the symmetry v(tµ) = −v(t), we find

∂B̂(x, y)

∂A1
=

∂B̂(x, y)

∂A1

∣∣∣∣∣(∮
a
µ
1
v

)
=const

+
∂B̂(x, y)

∂(
∮
aµ1

v)

∂(
∮
aµ1

v)

∂A1
= (3.1.45)

= − 1

2πi

∮
t∈b1

(
B̂(x, t)B̂(t, y) + B̂(x, tµ)B̂(tµ, y)

)
v(t)

. (3.1.46)

Along the same lines we also find

∂B̂(xµ, y)

∂A1
= − 1

2πi

∮
t∈b1

(
B̂(xµ, t)B̂(t, y) + B̂(xµ, tµ)B̂(tµ, y)

)
v(t)

. (3.1.47)
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We recall the definition of Prym bidifferential

B−(x, y) = B̂(x, y)− B̂(xµ, y). (3.1.48)

Subtracting (3.1.47) from (3.1.46) and rearranging the terms one obtains

∂B−(x, y)

∂A1
= − 1

2πi

∮
t∈b1

B−(x, t)B−(t, y)

v(t)
. (3.1.49)

The integrand is anti-symmetric and b−1 = 1
2(b1 − bµ1 ), therefore,

∂B−(x, y)

∂A1
= − 1

2πi

∮
t∈b−1

B−(x, t)B−(t, y)

v(t)
(3.1.50)

which implies (3.1.41) when si = a−1 , s∗i = −2b−1 (recall the normalization a−i ◦ b−j = δij/2).
Analogously one can verify (3.1.41) for any cycle from (3.1.11).

The computation of the derivatives with respect to the periods over the cycles (3.1.12) is more
involved. Consider, for example, Ag+1 =

∫
a−g+1

v, where a−g+1 = 1√
2
ã1. Since this cycle is formed as

a double cover of branch cut between two zeroes xi of v, the coordinates {li}r2, given by integrals
over the paths between x1 and {xi}r2 and restricted from Hĝ[2r,−k2m] to Qg,m[k], depend linearly
on
∮
a−g+1

v. Therefore, applying the chain rule, we have that

∂B̂(x, y)

∂Ag+1
=

∂B̂(x, y)

∂Ag+1

∣∣∣∣∣(∮
li
v
)r

i=2
=const

+

r∑
i=2

(
∂

∂Ag+1

∫
li

v

)
∂B̂(x, y)

∂(
∮
li
v)

= (3.1.51)

= − 1

2πi

∮
t∈b−g+1

B̂(x, t)B̂(t, y)

v(t)
+

1

2πi

r∑
i=2

(
∂

∂Ag+1

∫
li

v

)∮
t∈ci

B̂(x, t)B̂(t, y)

v(t)
, (3.1.52)

where ci is a small circle around zero xi.
Similarly, after antisymmetrizing left-hand side, we get

∂B−(x, y)

∂Ag+1
= − 1

2πi

∮
t∈b−g+1

B−(x, t)B−(t, y)

v(t)
+ (3.1.53)

+
1

2πi

r∑
j=2

(
∂

∂Ag+1

∫
lj

v

)∮
t∈cj

B−(x, t)B−(t, y)

v(t)
. (3.1.54)

The first term in the right-hand side of (3.1.53) gives the necessary contribution. To show that the
second term vanishes, we notice that this integral is nothing but the residue of the integrand at
xj . Skew-symmetry of the integrand with respect to involution µ implies that it expands by even
powers in local coordinate ξ̂i near branch point xi and, therefore, has vanishing residue. Hence,∮

t∈cj

B−(x, t)B−(t, y)

v(t)
= 0. (3.1.55)

Similarly, one can prove (3.1.41) for any cycle from (3.1.12).
The dirivation of variations of B−(x, y) with respect to the residues 2πirj =

∮
t−j

v, for t−j =

1
2(tj − tµj ) (3.1.13), follows the exact logic of computation of the derivative with respect to A1.

In the same way (3.1.41) is proved for the canonical bidifferential B+(x, y) by employing the
formula (3.1.25). Variational formulas for the matrices Ω±, holomorphic Abelian differentials u±j (x)
and quadratic differentials (S±−Sv)(x) are derived from the corresponding variational formulas on
Hĝ[2r,−k2m] following the same steps in the proof above.
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3.2 Bergman tau-function

The Bergman tau-function on moduli spaces of differentials was originally defined as a higher
genus generalization of the Dedekind eta function on elliptic surface. Starting from Hurwitz spaces
[37] and moduli spaces of holomorphic Abelian differentials [38], it was extended to the case of
Abelian differential with arbitrary divisor [26]; further generalizations cover moduli spaces of holo-
morphic N-differentials [33] and Hitchin’s spectral covers [36]. In our framework we consider a
moduli space of quadratic meromorphic differentials with simple zeroes. With this space we asso-
ciate a naturally arising Bergman tau-function, also called Hodge tau-function in literature, since
it is a holomorphic section of the determinant line bundle of the Hodge vector bundle. Beginning
with the holomorphic case [35], the definition of the Bergman tau-function was expanded in [5, 7]
to include meromorphic quadratic differentials with second order poles. Here we allow to have poles
of arbitrary even orders.

For the purpose of the explicit definition of the tau-function we introduce a special system of
local coordinates on the double cover called distinguished.

3.2.1 Distinguished local coordinates on C and Ĉ

The quadratic differential Q on the base curve C allows us to define the set of distinguished local
coordinates on both surfaces C and Ĉ. Denote by {z̃j}nk=1 ⊂ {zj}mj=1 a subset of poles of of order 2.
Then the divisor of Q looks as follows:

(Q) =
r+m∑
i=1

diqi ≡
r∑

i=1

xi −
n∑

j=1

2z̃j −
m−n∑
j=1

2kjzj , kj ≥ 2. (3.2.1)

The divisor of Abelian differential v on Ĉ is given by

(v) =

r+2m∑
i=1

d̂iq̂i ≡
r∑

i=1

2xi −
n∑

j=1

(z̃
(1)
j + z̃

(2)
j )−

m−n∑
j=1

kj(z
(1)
j + z

(2)
j ), kj ≥ 2. (3.2.2)

• Near any point x0 ∈ Ĉ such that π(x0) ̸∈ (Q) the local coordinates on C and Ĉ can be chosen as

z(x) =

∫ x

x0

v. (3.2.3)

• Near a branch point xi local parameters ζ̂i on Ĉ and ζi on C are given by

ζ̂i(x) =

(∫ x

xi

v

) 1
3

, ζi(x) = ζ̂2i (x) =

(∫ x

xi

v

) 2
3

. (3.2.4)

• In the neighborhood of a double pole z̃j on C and corresponding simple poles (z̃
(1)
j , z̃

(2)
j ) on Ĉ the

local coordinate is
ζj(x) = exp

( 1

r̃j

∫ x

x1

v
)
, (3.2.5)

where x1 is a chosen first zero of v; r̃j is a residue of v on Ĉ defined in (3.1.15).
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• If kj ≥ 2 one has a pole of order 2kj at zj on C and corresponding poles (z
(1)
j , z

(2)
j ) of order kj on

Ĉ with nontrivial residues ±rj . The local coordinate on both C and Ĉ in this case is defined from
the following transcendental equations:

v =

(
1− kj

ζ
kj
j

+
rj
ζj

)
dζj (3.2.6)

or
1

ζ
kj−1
j

+ rj ln ζj =

∫ x

x1

v. (3.2.7)

Remark 3.2.1. Definition of the tau-function depend on the choice of local coordinates near the
poles zj of Q. To define these coordinates uniquely we consider them inside the simply connected
domain given by the fundamental polygon Ĉ0 with a chosen system of cuts as discussed in Section
3.1.3.

3.2.2 Definition and properties

Denote by E(x, y) the Prime form on C, by Ax the Abel map with x as a base point and by Kx

the vector of Riemann constants. Introduce two vectors r, s ∈ 1
2Zg such that

1

2
Ax((Q)) + 2Kx +Ωr + s = 0 (3.2.8)

and the following notations:

E(x, qi) = lim
y−→qi

E(x, y)
√
dζi(y), (3.2.9)

E(qi, qj) = lim
x−→qi,y−→qj

E(x, y)
√
dζi(x)

√
dζj(y), (3.2.10)

where ζi is the distinguished local parameter on C near a point qi from the list (3.2.1).
Consider the following multi-valued g(1− g)/2 - differential C(x) on C

C(x) =
1

W (x)

(
g∑

i=1

ui(x)
∂

∂wi

)g

θ(w,Ω)
∣∣∣
w=Kx

, W (x) := det

[
dk−1

dxk−1
uj

]
1≤j,k≤g

(3.2.11)

here Ω is the period matrix of the base curve C, {uj}gj=1 are normalized holomorphic differentials
on C and θ is the corresponding theta-function.

Definition 3.2.1. For a given choice of Torelli marking and tree graph G on C the Bergman tau-
function τB is given by the following expression:

τB(C, Q) = C2/3(x)

(
Q(x)∏r+m

i=1 Edi(x, qi)

)(g−1)/6∏
i<j

E(qi, qj)
didj/24 e

−πi
6

<Ωr,s>− 2πi
3

<r,Kx>. (3.2.12)

The following properties of τB generalize the ones in [7] where only double poles of Q were
considered:
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• The expression (3.2.12) for τB does not depend on the point x although it seems that it does [38].

• Let the matrix
(
A B
C D

)
∈ Sp(2g,Z) denote symplectic transformations of the Torelli marking

in H1(C). Then the tau-function transforms as

τB −→ ϵ det(CΩ+D) τB, (3.2.13)

where ϵ48 = 1; Ω is a Period matrix of the base curve [5], [35].
• The expression

τ48B

n∏
k=1

(dζk(z̃k))
4 (3.2.14)

is invariant under the choice of local parameters ζk near z̃k [5].
• The function τB satisfies the following homogeneity property [26], [31]:

τB(C, κQ) = κϵτB(C, Q), ϵ =
1

48

∑
di ̸=−2

di(di + 4)

di + 2
. (3.2.15)

• The expression for τB depends on the choice of the first zero x1 and on the integration paths
between x1 and poles z̃i which are chosen in the complement of the tree graph Ĝ; the change of the
graph Ĝ within the fundamental polygon Ĉ0 affect the coordinates ζi near z̃i by a factor of the form

exp

{
2πi

∑
j,k

njk
r̃j
r̃k

}
, (3.2.16)

where njk is a matrix of integers [26].

3.2.3 Differential equations

Consider the Bergman bidifferential B+(x, y) (3.1.25), which is just a pullback of the bidifferntial
B(x, y) to Ĉ, and its regularization near the diagonal by the differential v(x):

B+
reg(x, x) =

(
B+(x, y)− v(x)v(y)

(
∫ y
x v)2

)∣∣∣∣∣
y=x

. (3.2.17)

The differential equations for τB with respect to the coordinates (3.1.15) on Qg,m[k] are given
by the following theorem:

Theorem 3.2.1. Bergman tau-function τB defined by (3.2.12) satisfies the following system of
equations on Qg,m[k]:

∂ log τB
∂Aj

=
1

4πi

∮
b−j

B+
reg

v
,

∂ log τB
∂Bj

= − 1

4πi

∮
a−j

B+
reg

v
, (3.2.18)

for j = 1, ..., g−

∂ log τB
∂ (2πir̃k)

= − 1

4πi

∮
κ−
k

(
B+

reg

v
+

1

12r̃2k
v

)
, (3.2.19)

for k = 1, ..., n.
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∂ log τB
∂ (2πirk)

= − 1

4πi

∮
κ−
k

B+
reg

v
, (3.2.20)

for k = n+ 1, ...,m. Here r̃k are residues near simple poles, while rk are residues near higher order
poles.

This is a combination of the results outlined in [7] and [26]. While variational formulas (3.2.19)
with respect to residues near simple poles were recently present in [7], the variations with respect
to the periods Aj , Bj and residues near higher order poles could be obtained following the proof of
Proposition 3.1.1, by symmetrizing the variational formulas for τB on moduli spaces of meromorphic
Abelian differentials, studied in [26].

Remark 3.2.2. Local analysis shows that near z̃(1)j and z̃
(2)
j the expression B+

reg

v gain simple poles.
Then the addition appearing in (3.2.19) regularize the integrand at the endpoints of the integration
path. This issue does not emerge in case of higher order poles with kj ≥ 2, where B+

reg

v gain a zero
of order kj − 2 and equations (3.2.20) are valid.

Remark 3.2.3. Quadratic differential B+
reg also admits the following representation in terms of

projective connections:

B+
reg =

S+
B − Sv

6
. (3.2.21)

Here S+
B is the Bergman projective connection appearing in (3.1.33), Sv is Schwarzian projective

connection defined by

Sv =
(v′
v

)′
− 1

2

(v′
v

)2
, (3.2.22)

where v′ = (v/dξ̂)′ for any local coordinate ξ̂ on Ĉ. Then the formulas (3.1.42) manifest compatibility
conditions for differential equations of τB. Namely, if si ̸= sj are two cycles in H− and Psi ,Psj are
corresponding homology coordinates, then formulas (3.1.42) imply

∂2 log τB
∂Psi∂Psj

= − 1

16π2

∮
s∗i

∮
s∗j

B+(x, t)2

v(x)v(t)
, (3.2.23)

which is symmetric under the exchange of derivatives.

3.3 Spaces Msl2
g,m[k] of generalized SL(2) spectral covers

We introduce a Riemann surface C of genus g, with m marked points z1, ..., zm and associated
positive multiplicities k1, ..., km. The Higgs bundle on C is a pair (E,Φ), where E is a holomorphic
vector bundle and Φ (the Higgs field) is holomorphic (or more generally meromorphic) AdE-valued
1-form on C.

Consider a meromorphic SL(2) Higgs field Φ with poles at zj ’s of the corresponding orders
kj , j = 1, ...,m. We also assume a generic form of the singular parts of Φ near these poles. The
generalized spectral cover Ĉ defined as a locus in T ∗C by the equation det(Φ− vId) = 0, which can
be written as

v2 = Q, (3.3.1)

with Q being a quadratic differential with simple zeroes and poles at zj of order 2kj due to the
genericity assumption.
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For a fixed base C and positions of marked points we introduce the moduli space Msl2
g,m[k]

of quadratic differentials with simple zeroes and poles at marked points of associate orders k =
(2k1, ..., 2km). The definition of covering surface Ĉ of genus ĝ = 4g− 3 +

∑m
j=1 kj , projection π and

involution µ are in accordance with the Section 3.1. Differential v has r = 4g−4+2
∑m

j=1 kj double

zeroes at branch points xi and 2m poles at the preimages π−1(zj) = {z(1)j , z
(2)
j } of orders kj . Denote

by χj a local coordinate on C near zj . We can also use χj as local coordinate near both z
(1)
j and

z
(2)
j . Consider the singular parts of v near z

(1)
j :

v(χj(x))
∣∣
x−→z

(1)
j

=

(
C

kj
j

χ
kj
j

+
C

kj−1
j

χ
kj−1
j

+ ...+
C1
j

χj
+O(1)

)
dχj . (3.3.2)

As v is skew-symmetric under the involution and µ(z
(1)
j ) = z

(2)
j , we have that near a point z(2)j using

the same coordinate χj we have the following expansion:

v(χj(x))
∣∣∣
x−→z

(2)
j

=

(
−

C
kj
j

χ
kj
j

−
C

kj−1
j

χ
kj−1
j

− ...−
C1
j

χj
+O(1)

)
dχj . (3.3.3)

The dimension of Msl2
g,m[k] consists of the sums of dimensions of meromorphic and holomorphic

parts of a quadratic differential Q which equals

dimMsl2
g,m[k] = 2

m∑
j=1

kj + (3g − 3). (3.3.4)

We introduce the following set of local coordinates on the moduli space Msl2
g,m[k]:{

{Aα}
3g−3+

∑m
j=1 kj

α=1 , {C l
j}, j = 1, ...,m, l = 1, ..., kj

}
. (3.3.5)

while C l
j are coefficients of singular parts of v near z(1)j (or z(2)j ), Aα are integrals over skew-symmetric

part of the a-cycles on Ĉ (defined explicitly in (3.1.11-3.1.12))

Aα =

∮
a−α

v. (3.3.6)

Remark 3.3.1. Moduli C1
j are coordinate-independent residues which coincide with the coordinates

rj on the space Qg,m[k] defined by (3.1.15). Moduli C l
j , l ≥ 2 clearly depend on the choice of local

coordinates χj . Integrals Aα depend on the choices of Torelli marking on the base surface C and
symplectic basis in H−(Ĉ).

3.4 Variational formulas on Msl2
g,m[k]

The assumption that moduli of the base curve C are kept fixed allows us to well-define the
variations on Msl2

g,m[k] for any Abelian differential associated with spectral curve Ĉ. For any fixed
local chart D and corresponding local coordinate ξ on C, we can lift D to Ĉ via π−1 and use ξ as a
local coordinate on each connected component of π−1(D) outside the branch points. Then if pi is
any coordinate on Msl2

g,m[k] from the list (3.3.5), the variation of an Abelian differential w = f(ξ)dξ
is defined by

dw

dpi
=

df(ξ)

dpi
dξ, (3.4.1)
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assuming that the coordinate ξ does not depend on pi. Such definition is clearly independent of the
choice ξ on D.

In order to compute variations of the differential v with respect to moduli (3.3.5), we introduce
additional (meromorphic) Abelian differentials attributed to the double cover. Let

{
{ŵl

j}
kj
l=2

}m

j=1

denote the second-kind differentials on Ĉ with prescribed singular part at z
(1)
j and normalized over

a-cycles of the homology basis (3.1.6). That is,

ŵl
j(x) =

( 1

χl
j

+O(1)
)
dχj , x −→ z

(1)
j . (3.4.2)

By {η̂j}mj=1 we denote third-kind differentials on Ĉ, normalized over a-cycles, with simple poles at

z
(1)
j and x1 with residues +1 and −1, respectively. Now put

wl−
j := ŵl

j − µ∗ŵl
j , (3.4.3)

η−j := η̂j − µ∗η̂j . (3.4.4)

We will call wl−
j the normalized Prym second-kind differential and η−j the normalized Prym third-

kind differential. The following lemma outlines the properties of defined objects

Lemma 3.4.1. The differentials wl−
j and η−j have the following properties:

(i)
µ∗wl−

j = −wl−
j , (3.4.5)

(ii)
µ∗η−j = −η−j , (3.4.6)

(iii) ∮
a+k

wl−
j =

∮
a−k

wl−
j =

∮
b+k

wl−
j = 0, (3.4.7)

(iv) ∮
a+k

η−j =

∮
a−k

η−j =

∮
b+k

η−j = 0, (3.4.8)

(v) the differential wl−
j has the following singular parts:

wl−
j (x) =

(
1

χl
j

+O(1)

)
dχj , x −→ z

(1)
j , (3.4.9)

wl−
j (x) = −

(
1

χl
j

+O(1)

)
dχj , x −→ z

(2)
j (3.4.10)

and it is holomorphic elsewhere,
(vi) the differential η−j is of third kind with simple poles at z

(1)
j and z

(2)
j with residues +1 and

−1, respectively,
(vii) ∮

b−k

wl−
j = 2πi

u
(l−2)−
k (z

(1)
j )

(l − 1)!
,

∮
b−k

η−j = πi

∫ z
(1)
j

z
(2)
j

u−k , (3.4.11)

where u
(l−2)−
k (z

(1)
j ) stands for dl−2

dχl−2
j

(
u−
k

dχj

)∣∣∣
χj=0

.
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Proof. (i)-(vi) follows from the definitions and the facts that µ(z
(1)
j ) = z

(2)
j , µ(x1) = x1.

To prove (vii) we apply the Riemann Bilinear Identity (later RBI) to wl−
j with u−k (η−j with u−k )

by integrating them over the cycles in H−(Ĉ) in the following way: write

∮
b−k

wl−
j =

g−∑
j=1

[ ∮
b−j

wl−
j

∮
a−j

u−k −
∮
a−j

wl−
j

∮
b−j

u−k

]
. (3.4.12)

We can assume that the boundary of the universal cover Ĉ0 of Ĉ is invariant under the involution µ.
Then we can extend this sum by adding integrals over H+(Ĉ). The integrands are skew-symmetric
with respect to involution, so their integrals over the cycles in H+(Ĉ) give zero contribution. Then
by the Stokes’ theorem (3.4.12) could be represented as the sum over residues near poles inside Ĉ0:

1

2
(2πi) res

(z
(1)
j ,z

(2)
j )

(
wl−
j

∫ x

p0

u−k

)
, (3.4.13)

where the factor 1/2 is due to the intersection index a−i ◦ b−k = 1
2δik; p0 is a reference point. This

expression does not depend on the choice of the point p0 since the difference between two choices
is the sum of the residues of wl−

j which is clearly zero. For convenience, we put p0 = x1. Then

skew-symmetry of both differentials in (3.4.13) implies that the residues at z
(1)
j and z

(2)
j are equal.

Their computation leads to the result. The second formula is proven by analogy, noticing that

2

∫ z
(1)
j

x1

u−k =

∫ z
(1)
j

z
(2)
j

u−k . (3.4.14)

Proposition 3.4.1. The following variational formulas with respect to the coordinates (3.3.5) on
Msl2

g,m[k] hold:
∂v

∂Aα
= u−α , (3.4.15)

∂v

∂C1
j

= η−j , (3.4.16)

∂v

∂C l
j

= wl−
j , l ≥ 2, (3.4.17)

here u−α is a normalized holomorphic Prym differential (3.1.20), η−j and wl−
j are normalized Prym

differentials of second kind (3.4.3) and third kind (3.4.4).

Proof. The proof follows the idea in [4]. Consider an expansion of the Abelian differential v near a
branch point xi on Ĉ. The coordinate could be taken as (ξ − ξi)

1/2. While ξ is moduli-independent,
ξi = ξ(π(xi)) changes when Ĉ varies. Thus, the dependence of ξi on moduli should be taken into
account. v has a double zero at each xi, then locally it can be written as follows:

v(ξ) = (ξ − ξj)(a0 + a1(ξ − ξj)
1/2 + ...)d(ξ − ξj)

1/2 =
1

2
(a0(ξ − ξj)

1/2 + a1(ξ − ξj) + ...)dξ. (3.4.18)

Performing the differentiation by the rule (3.4.1) with respect to any coordinate p from the list
(3.3.5) we obtain
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∂v

∂p
=

1

4

(
−

a0(ξj)
′
p

(ξ − ξj)1/2
+O(1)

)
dξ = −1

2

(
a0(ξj)

′
p +O(1)

)
d(ξ − ξj)

1/2. (3.4.19)

From this formula it is clear that ∂v
∂p is holomorphic at the branch points.

The differential ∂v
∂Aα

also holomorphic at all poles zj since the singular parts of v do not depend
on the moduli Aα. Moreover, all periods of ∂v

∂Aα
vanish except for the period over a−α , which is 1.

Take the difference w := ∂v
∂Aα

− u−α . The differential w is holomorphic, its a− periods vanish by
construction and a+ vanish due to skew-symmetry of v and u−α . Thus, we have that w ≡ 0, and so
(3.4.15) holds.

Consider ∂v
∂Cl

j

. Its singular part coincides with the one of wl−
j . Also its a−-periods vanish since

Ck
j are independent of {Aα}g

−

α=1. Similarly to the previous argument we obtain (3.4.17).
Finally, ∂v

∂C1
j

equals to the Prym third-kind differential η−j again due to the coincidence of singular
parts.

3.4.1 Variations of Prym matrix

In this section we discuss variations of the Prym matrix Ω− on the spaces of SL(2) spectral
covers. While the derivatives with respect to the a−- periods of v reproduce the Prym version of
Donagi-Markman cubic [13], variations with respect to coordinates spanning the singular part of v
extend this result to meromorphic case and involve Prym meromorphic differentials.

Theorem 3.4.1. The variations of Prym matrix Ω− with respect to the coordinates (3.3.5) on
Msl2

g,m[k] take the following form:

∂Ω−
αβ

∂Aγ
= −πi

r∑
i=1

res
xi

(
u−αu

−
β u

−
γ

dξ d(v/dξ)

)
, (3.4.20)

∂Ω−
αβ

∂C1
j

= −πi
r∑

i=1

res
xi

(
u−αu

−
β η

−
j

dξ d(v/dξ)

)
, (3.4.21)

∂Ω−
αβ

∂C l
j

= −πi

r∑
i=1

res
xi

(
u−αu

−
βw

l−
j

dξ d(v/dξ)

)
, (3.4.22)

where r = 4g−4+2
∑m

j=1 kj is a number of branch points (zeroes of v). ξ denotes a local coordinate
on C near a branch point xi. The above formulas do not depend on the choice of ξ.

Proof. Let us proof (3.4.20). On the subspace Msl2
g,m[k] ⊂ Qg,m[k] the coordinates {Bi}g

−

i=1 become
dependent functions of {Ai}g

−

i=1. Thus, we compute the derivative of Prym matrix applying the chain
rule as follows:

dΩ−
αβ

dAγ
=

∂Ω−
αβ

∂Aγ

∣∣∣
{Bi}g

−
i=1=const

+

g−∑
i=1

∂Ω−
αβ

∂Bi

∂Bi

∂Aγ
. (3.4.23)

Using the variational formulas (3.1.39) and (3.4.15) we further rewrite this expression as

1

2

g−∑
i=1

(
−
∮
2b−i

u−αu
−
β

v

∮
a−i

u−γ +

∮
2a−i

u−αu
−
β

v

∮
b−i

u−γ

)
. (3.4.24)
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Similarly to Lemma 3.4.1, this sum could be represented as a sum of residues inside the fundamental
polygon Ĉ0 of Ĉ :

− πi

r∑
i=1

res
xi

(
u−αu

−
β

v

∫ x

p0

u−γ

)
, (3.4.25)

where p0 is a reference point. To simplify the residues at first notice that

res
xi

(
u−αu

−
β

v

∫ x

p0

u−γ

)
= res

xi

(
u−αu

−
β

v

∫ x

xi

u−γ

)
, (3.4.26)

(taking the difference of the above expressions it equals res
xi

(
u−
αu−

β

v

)
up to an explicit constant Ci,

then the skew-symmetry of the differential
u−
αu−

β

v implies it has vanishing residue). We introduce a
local coordinate ξ̂ near a branch point on Ĉ. ξ̂ can be chosen such that ξ̂(xµ) = −ξ̂(x). Then for
u−, v being skew-symmetric it implies that they have expansion by even powers of ξ̂. Moreover, v
has double zeroes at branch points. Then one has:

u−α = ((u0)α +O(ξ̂2))dξ̂, (3.4.27)

v = ξ̂2(v0 +O(ξ̂2))dξ̂. (3.4.28)

And
u−αu

−
β

v
=
((u0)α(u0)β

v0

1

ξ̂2
+O(1)

)
dξ̂, (3.4.29)∫ x

xi

u−γ =
(
(u0)γ ξ̂ +O(ξ̂3)

)
. (3.4.30)

Therefore, the sum (3.4.25) becomes

− πi
r∑

i=1

(u0)α(u0)β(u0)γ
v0

, (3.4.31)

which could be rewritten in invariant form (3.4.20) (there ξ− ξi = ξ̂2, and the expression dξd(v/dξ)
is proportional exactly to v0ξ̂(dξ̂)

2).
The formula (3.4.21) could be proven in a similar way. Applying the chain rule, we write:

dΩ−
αβ

dC1
j

=
∂Ω−

αβ

∂C1
j

∣∣∣
{Ai,Bi}g

−
i=1=const

+

g−∑
i=1

(
∂Ω−

αβ

∂Ai

∂Ai

∂C1
j

+
∂Ω−

αβ

∂Bi

∂Bi

∂C1
j

)
. (3.4.32)

According to (3.3.2) and (3.1.39)

∂Ω−
αβ

∂C1
j

= (2πi)
1

2

∫
2κ−

j

u−αu
−
β

v
= πi

∫ z
(2)
j

z
(1)
j

u−αu
−
β

v
. (3.4.33)

Then using variation formulae (3.1.39) and (3.4.16)

dΩ−
αβ

dC1
j

= πi

∫ z
(2)
j

z
(1)
j

u−αu
−
β

v
+

1

2

g−∑
i=1

(
−
∮
2b−i

u−αu
−
β

v

∮
a−i

η−j +

∮
2a−i

u−αu
−
β

v

∮
b−i

η−j

)
. (3.4.34)
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With the help of the RBI, we obtain the sum over residues at the branch points plus the residues
at {z(1)j , z

(2)
j } which conveniently cancel with the first integral.

Finally, to prove (3.4.22), we use variations (3.1.39) with (3.4.17) to write

dΩ−
αβ

dC l
j

=

g−∑
i=1

(
∂Ω−

αβ

∂Ai

∂Ai

∂C l
j

+
∂Ω−

αβ

∂Bi

∂Bi

∂C l
j

)
= (3.4.35)

=
1

2

g−∑
i=1

(
−
∮
2b−i

u−αu
−
β

v

∮
a−i

wl−
j +

∮
2a−i

u−αu
−
β

v

∮
b−i

wl−
j

)
(3.4.36)

which due to the RBI is equal to the required expression (notice that the residues at the poles
{z(1)j , z

(2)
j } of wl−

j vanish).

Remark 3.4.1. By assumption the base curve C is kept fixed, so variations on Msl2
g,m[k] of its

complex structure coded by Period matrix Ω+ must be zero. Consider, for example
∂Ω+

αβ

∂Aγ
. Then,

similarly to the derivation of (3.4.20), applying variational formulas (3.1.39) it equals to

∂Ω+
αβ

∂Aγ
= −πi

n∑
i=1

res
xi

(
u+αu

+
β

v

∫ x

p0

u−γ

)
. (3.4.37)

The local analysis shows that each differential u+ gains simple zeros at branch points xi when being
lifted from the base curve C. Thus, the residues over xi vanish.

The difference between the dimensions of Qg,m[k] and moduli space of curves Mg,m(C)

dim(Qg,m[k])−dim(Mg,m(C)) = (6g−6+m+2
m∑
j=1

kj)− (3g−3+m) = 3g−3+2
m∑
j=1

kj (3.4.38)

implies the existence of 3g − 3 + 2
∑m

j=1 kj linearly independent fields on Qg,m[k] that preserve a
complex structure of C and positions of poles. It is instructive to find these vector fields.

Proposition 3.4.2. The following linearly independent vector fields defined on Qg,m[k]

VAγ =
∂

∂Aγ
+

g−∑
i=1

Ω−
γi

∂

∂Bi
, γ = 1, ..., g−, (3.4.39)

VC1
j
=

∂

∂(2πrj)
+ πi

g−∑
i=1

(∫ z
(1)
j

z
(2)
j

u−i

)
∂

∂Bi
, j = 1, ...,m, (3.4.40)

VCl
j
= 2πi

g−∑
i=1

(
u
(l−2)−
i (z

(1)
j )

(l − 1)!

)
∂

∂Bi
, j = 1, ...,m, l = 2, ..., kj (3.4.41)

preserve the moduli of C and positions of poles.
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Proof. Consider a perturbation of the original quadratic differential Qϵ = Q + ϵQ̃, where Q̃ is an
arbitrary quadratic differential on C with simple zeroes and poles at zj of even order no greater than
2kj . The differential Qϵ also has simple zeroes for ϵ small enough, is defined on the same Riemann
surface and has the same set of poles as Q. Thus, the vector field d

dϵ does not change the complex
structure of C and positions of poles. Having (vϵ)2 = Qϵ we observe that

vϵ = v + ϵ
Q̃

2v
+O(ϵ2), (3.4.42)

leading to
∂

∂ϵ

(∮
sϵ
vϵ
) ∣∣∣∣∣

ϵ=0

=

∮
s

Q̃

2v
, sϵ ∈ H−, (3.4.43)

since the derivative commutes with the integral over a closed contour. Expressing vector field d
dϵ

via the coordinates (3.1.15) one has:

d

dϵ
=

m∑
j=1

(∮
t−j

Q̃

2v

)
∂

∂(2πirj)
+

g−∑
i=1

[(∮
a−i

Q̃

2v

)
∂

∂Ai
+

(∮
b−i

Q̃

2v

)
∂

∂Bi

]
. (3.4.44)

Then taking Q̃ to be equal either to 2vuγ , 2vη
−
j or 2vwl−

j and applying formulas (3.4.11) we obtain
the result. Notice that (3.4.39-3.4.41) are exactly the expressions that appear in the proof of
Theorem 3.4.1 when performing the chain rule. The fields are independent since on the submanifold
Msl2

g,m[k] they are equal to the derivatives over independent coordinates.

Remark 3.4.2. In the holomorphic case, when m = 0, one has the isomorphism between holomor-
phic quadratic differentials Qg and the cotangent bundle of the moduli space of curves T ∗Mg. It
follows from the proposition that VAγ , γ = 1, ..., 3g − 3 act trivially on the coordinates {qi}3g−3

i=1 ,
represented by the entries of Ω+, of the canonical Darboux coordinate set {pi, qi}3g−3

i=1 on T ∗Mg.
Thus, VAγ span the vertical bundle V∗(T

∗M).

3.4.2 Variations of Prym differentials

Similarly to (3.4.1) we define on Msl2
g,m[k] derivatives for any coordinate pi in the list (3.3.5) as

follows
∂B−(x, y)

∂pi
=

∂

∂pi

(
B−(x, y)

dξ(x)dξ(y)

)
dξ(x)dξ(y), (3.4.45)

where ξ is any fixed coordinate on C lifted to the covering surface via π−1. The derivatives of
differentials depending on the point (points) on Ĉ should be treated in a greater accuracy, since the
latter is deforming. Notice that on the space Qg,m[k] the differentiation is performed according to
the rule (3.1.41), when the flat coordinates z(x) and z(y) are kept constant, while on the subspace
Msl2

g,m[k] they become moduli-dependent. Restricting the variational formulas from Qg,m[k] to
Msl2

g,m[k] we obtain the following:

Theorem 3.4.2. The variations of Prym bidifferential B−(x, y) with respect to the coordinates
(3.3.5) on Msl2

g,m[k] take the following form:

∂B−(x, y)

∂Aγ
= −1

2

r∑
i=1

res
xi

(
u−γ (t)B

−(x, t)B−(t, y)

dξ d(v/dξ)

)
, (3.4.46)
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∂B−(x, y)

∂C1
j

= −1

2

r∑
i=1

res
xi

(
η−j (t)B

−(x, t)B−(t, y)

dξ d(v/dξ)

)
, (3.4.47)

∂B−(x, y)

∂C l
j

= −1

2

r∑
i=1

res
xi

(
wl−
j (t)B−(x, t)B−(t, y)

dξ d(v/dξ)

)
, (3.4.48)

ξ denotes a local coordinate on C near a branch point xi. The above formulas do not depend on the
choice of ξ.

Proof. Let us prove (3.4.46). Denote by b−(x, y) := B−(x,y)
v(x)v(y) . Then one has

∂B−(x, y)

∂Aγ

∣∣∣
ξ(x),ξ(y)

=
∂[b−(x, y)v(x)v(y)]

∂Aγ

∣∣∣
ξ(x),ξ(y)

= (3.4.49)

=
∂b−(x, y)

∂Aγ

∣∣∣
ξ(x),ξ(y)

v(x)v(y) + b−(x, y)v(y)
∂v(x)

∂Aγ

∣∣∣
ξ(x)

+ b−(x, y)v(x)
∂v(y)

∂Aγ

∣∣∣
ξ(y)

= (3.4.50)

(3.4.15)
=

∂b−(x, y)

∂Aγ

∣∣∣
z(x),z(y)

v(x)v(y)+
∂b−(x, y)

∂z(x)

∂z(x)

∂Aγ

∣∣∣
ξ(x),ξ(y)

v(x)v(y)+
∂b−(x, y)

∂z(y)

∂z(y)

∂Aγ

∣∣∣
ξ(x),ξ(y)

v(x)v(y)+

(3.4.51)
+b−(x, y)v(y)u−γ (x) + b−(x, y)v(x)u−γ (y) =

(3.4.15)
=

∂b−(x, y)

∂Aγ

∣∣∣
z(x),z(y)

dz(x)dz(y) +

[(
b−(x, y)

)′
z(x)

∫ x

x1

u−γ +
(
b−(x, y)

)′
y(x)

∫ y

x1

u−γ

]
dz(x)dz(y)+

(3.4.52)
+b−(x, y)u−γ (x)dz(y) + b−(x, y)u−γ (y)dz(x).

To compute the term ∂b−(x,y)
∂Aγ

∣∣∣
z(x),z(y)

we, similarly to (3.4.23), apply the chain rule and then

variational formulas (3.1.41), (3.4.15) along with the RBI to obtain

∂b−(x, y)

∂Aγ

∣∣∣
z(x),z(y)

= −
∑

t∈int(Ĉ)

1

2
res
t

(
b−(x, t)b−(t, y)v(t)

∫ t

p0

u−γ

)
. (3.4.53)

To evaluate the residues, introduce the differentials V (t) = b−(x, t)b−(t, y)v(t) and W (t) = u−γ (t).
W (t) is holomorphic, while V (t), in addition to second order poles at {xi}ri=1 has four second order
poles at t = x, xµ and at t = y, yµ. As in the proof of Lemma 3.4.1, we can put p0 = x1. Then
residues at the pairs (x, xµ) and (y, yµ) are the same due to V (t),W (t) being skew-symmetric under
the involution and, thus, their contribution to the sum double. Using the expansion of the Prym
differential (3.1.33) the residue at t = x equals(

b−(x, y)

∫ x

x1

u−γ

)′
z(x)

. (3.4.54)

The residue at t = y is (
b−(x, y)

∫ y

x1

u−γ

)′
z(y)

. (3.4.55)

Then it it easy to see that these terms, multiplied by dz(x)dz(y), cancel the last four terms of the
sum (3.4.52). The evaluation of residues at xi, similarly to the proof of (3.4.20), leads to the result.
(3.4.47) and (3.4.48) are obtained by analogy.
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Integrating above formulas over the cycles b− an using the simple fact that∮
b−α

B−(x, t) = 2πi u−α (x) (3.4.56)

we derive variational formulas for Prym normalized differentials:

Theorem 3.4.3. The variations of normalized Prym differentials u−α with respect to the coordinates
(3.3.5) on Msl2

g,m[k] take the following form:

∂u−α (x)

∂Aγ
= −1

2

r∑
i=1

res
xi

(
u−γ (t)B

−(x, t)u−α (t)

dξ d(v/dξ)

)
, (3.4.57)

∂u−α (x)

∂C1
j

= −1

2

r∑
i=1

res
xi

(
η−j (t)B

−(x, t)u−α (t)

dξ d(v/dξ)

)
, (3.4.58)

∂u−α (x)

∂C l
j

= −1

2

r∑
i=1

res
xi

(
wl−
j (t)B−(x, t)u−α (t)

dξ d(v/dξ)

)
, (3.4.59)

ξ denotes a local coordinate on C near a branch point xi. The above formulas do not depend on the
choice of ξ.

Remark 3.4.3. Analogously one can derive variations of Prym differentials of second and third
kinds by noticing that ∫ z

(1)
j

z
(2)
j

B−(x, t) = η−j (x), (3.4.60)

− 1

l
res

t=z
(1)
j

(
χj(t)

−lB−(x, t)
)
= wl−

j (x) (3.4.61)

and applying these formulas on both sides of (3.4.46-3.4.48).

Remark 3.4.4. Similarly to Remark 3.4.1, one can show that the variations of B+(x, y) and u+α
on Msl2

g,m[k] are zero. There is no surprise since these objects are the pullbacks from the base curve
C which is assumed not to depend on moduli.

3.4.3 Variations of Bergman tau-function

Initially, Bergman tau-function defined by (3.2.12) solves the system of differential equations on
the space Qg,m[k] with a variable base. Having the base curve C and positions of poles (zj) fixed on
Msl2

g,m[k]. we define tau-functions on this subspace by the restriction of variational formulas from
Theorem 3.2.1.

Let {C̃1
j }nj=1 denote the local coordinates on Msl2

g,m[k] from the list (3.3.5) corresponding to the

residues near simple poles {z̃(1)j , z̃
(2)
j }nj=1 of the differential v, whereas coordinates {C1

j }mj=n+1 are
residues near the higher order poles.

Theorem 3.4.4. Bergman tau-function τB satisfies the following system of differential equations
on the space Msl2

g,m[k]

∂ log τB
∂Aγ

=
5

432

r∑
i=1

res
xi

(
u−γ∫ x
xi
v

)
−

n∑
k=1

1

48r̃k

∫ z̃
(1)
k

z̃
(2)
k

u−γ , (3.4.62)
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∂ log τB

∂C̃1
j

=
5

432

r∑
i=1

res
xi

(
η−j∫ x
xi
v

)
−

n∑
k=1,k ̸=j

1

48r̃k

∫ z̃
(1)
k

z̃
(2)
k

η−j − 1

48r̃j

∫ z̃
(1)
j

z̃
(2)
j

(
v

r̃j
− η−j

)
, (3.4.63)

j = 1, ..., n,

∂ log τB
∂C1

j

=
5

432

r∑
i=1

res
xi

(
η−j∫ x
xi
v

)
−

n∑
k=1

1

48r̃k

∫ z̃
(1)
k

z̃
(2)
k

η−j , (3.4.64)

j = n+ 1, ...,m,

∂ log τB

∂C l
j

=
5

432

r∑
i=1

res
xi

(
wl−
j∫ x

xi
v

)
−

n∑
k=1

1

48r̃k

∫ z̃
(1)
k

z̃
(2)
k

wl−
j , (3.4.65)

j = n+ 1, ...,m, l = 2, ..., kj − 1.

∂ log τB

∂C
kj
j

=
5

432

r∑
i=1

res
xi

(
w

kj−
j∫ x
xi
v

)
−

n∑
k=1

1

48r̃k

∫ z̃
(1)
k

z̃
(2)
k

w
kj−
j +

1

(kj − 1)

2kj − k2j

24C
kj
j

, (3.4.66)

j = n+ 1, ...,m.

Proof. In parallel to (3.4.20), we apply the chain rule to the equations (3.2.18) and use (3.4.15) with
the RBI to have

∂ log τB
∂Aγ

=
1

4

∑
t={xi,z̃

(1)
k ,z̃

(2)
k }

res
t

(
B+

reg

v

∫ x

x1

u−γ

)
. (3.4.67)

Notice that in addition to the residues at branch points (xi)
r
i=1 we have residues at simple poles of

v at (z̃(1)k , z̃
(2)
k )nk=1. To compute the residue near xi we represent B+

reg as the difference of projective
connections:

B+
reg =

S+
B − Sv

6
. (3.4.68)

While S+
B is the Bergman projective connection of (3.1.33), Sv is Schwarzian projective connection

defined by

Sv =
(v′
v

)′
− 1

2

(v′
v

)2
, (3.4.69)

where v′ = (v/dξ̂)′ for any local coordinate ξ̂ on Ĉ. Recall that by (3.1.34) we have S+
B (x) =

ŜB(x)+6µ∗
yB̂(x, y)|x=y. In the neighborhood of xi we chose a local coordinate ξ̂ such that v = ξ̂2dξ̂.

Then near xi we have
Sv

6v
= − 2

3ξ̂4
dξ̂. (3.4.70)

Moreover, we can choose ξ̂ in such a way that ξ̂(µ(x)) = −ξ̂(x). Therefore, near xi we also have

B̂(x, µ(x)) =

[
1

(ξ̂(x)− ξ̂(µ(x)))2
+

1

6
ŜB(ξ̂(x)) +O

(
(ξ̂(x)− ξ̂(µ(x)))2

)]
dξ̂(x)dξ̂(µ(x)) = (3.4.71)

=

[
− 1

4ξ̂2
− 1

6
ŜB(ξ̂) +O(ξ̂2)

]
(dξ̂)2, (3.4.72)
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so that
S+
B

6v
=

[
− 1

4ξ̂4
+O(1)

]
dξ̂ (3.4.73)

and
B+

reg

v
=

[
5

12ξ4
+O(1)

]
dξ̂, (3.4.74)

leading to

res
xi

(
B+

reg

v

∫ x

x1

u−γ

)
= res

xi

(
5dξ̂

12ξ̂4

∫ x

x1

u−γ

)
=

5

12

1

3!

(
u−γ

dξ̂

)′′

(xi) =
5

108
res
xi

(
u−γ∫ x
xi
v

)
. (3.4.75)

To compute residues near simple poles z̃k we use the local coordinate ζ (3.2.5) to write near z̃
(1)
k :

1

6

S+
B − Sv

v
=

1

6

S+
B (ζ)−

1
2ζ2

r̃k
ζ

dζ =

(
− 1

12r̃kζ
+O(1)

)
dζ. (3.4.76)

Thus,

(res
z
(1)
k

+ res
z
(2)
k

)

(
B+

reg

v

∫ x

x1

u−γ

)
= − 1

12r̃k

∫ z̃
(1)
k

z̃
(2)
k

u−γ (3.4.77)

and the formula (3.4.62) results.
To obtain (3.4.63) we apply the chain rule with (3.2.18), (3.2.19) and (3.4.16) to write

d log τB

dC̃1
j

= −1

4

∫ z
(2)
j

z
(1)
j

(
B+

reg

v
+

1

12r̃2j
v

)
+

1

8πi

g−∑
i=1

(∮
2b−i

B+
reg

v

∮
a−i

η−j −
∮
2a−i

B+
reg

v

∮
b−i

η−j

)
. (3.4.78)

Notice that in this case both differentials (B+
reg/v) and η−j have simple poles at (z̃

(1)
j , z̃

(2)
j ). From

(3.4.76) it follows that in order to regularize (B+
reg/v) near these points we need to add 1

12r̃j
η−j .

Then the sum could be rewritten as

1

8πi

g−∑
i=1

[∮
2b−i

(
B+

reg

v
+

1

12r̃j
η−j

)∮
a−i

η−j −
∮
2a−i

(
B+

reg

v
+

1

12r̃j
η−j

)∮
b−i

η−j

]
, (3.4.79)

which is due to the RBI equals

− 1

4

∑
t={xi,z̃

(1)
k ,z̃

(2)
k }

res
t

[
η−j

∫ x

x1

(
B+

reg

v
+

1

12r̃j
η−j

)]
(3.4.80)

and the evaluation of residues provides the formula (3.4.63).
For ∂ log τB

∂C1
j

, j = n+ 1, ...,m we have, using (3.2.18), (3.2.20) and (3.4.16),

d log τB
dC1

j

= −1

4

∫ z
(2)
j

z
(1)
j

(
B+

reg

v

)
+

1

8πi

g−∑
i=1

(∮
2b−i

B+
reg

v

∮
a−i

η−j −
∮
2a−i

B+
reg

v

∮
b−i

η−j

)
. (3.4.81)
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Here differential B+
reg

v is holomorphic at z
(1)
j and z

(2)
j where it gains a zero of order kj − 2. Then no

regularization needed and applying the RBI we obtain (3.4.64).
Similarly to (3.4.64) one derives (3.4.65) and (3.4.66) for ∂ log τB

∂Cl
j

, l ≥ 2. For l = kj extra term

appears due to nontrivial coinciding residues near poles z
(1)
j and z

(1)
j of wkj−

j :

1

(kj − 1)!

(
Sv

6v

)(kj−2)(
z
(1)
j

)
, (3.4.82)

where the derivative is taken in a local coordinate χj . Using the expansion (3.3.2) of v and the
expression (3.4.69) for Sv, one derives

1

(kj − 1)!

(
Sv

6v

)(kj−2)(
z
(1)
j

)
=

1

(kj − 1)

2kj − k2j

12C
kj
j

, (3.4.83)

which finalize the computation.

3.5 Higher order variations on Msl2
g,m[k] and topological recursion

Topological recursion is a recursive procedure, which takes a Riemann surface C with underlying
tensor objects ("spectral data") to produce a collection of meromorphic multidifferentials W

(s)
k =

W
(s)
k (p1, ..., pk) (called Eynard-Orantin invariants), which are defined on Ck and symmetric with

respect to permutation of variables. Introduced originally in [16] for moduli spaces of algebraic
curves, it was later generalized to spaces of holomorphic SL(2) [15] and GL(n) [3] Hitchin’s covers.
In this section, we will adapt the framework of topological recursion of [16] to meromorphic SL(2)
Hitchin’s covers, addressing their specifics governed by the global holomorphic involution of the
canonical double cover. The recursion that will be used here is different from the one studied in
[15] and only applies to multidifferentials W

(0)
k .

• Spectral data (C, y, x,B). It consists of a compact Riemann surface C; differential ydx with
meromorphic functions y, x : C −→ CP 1, such that all branchpoints a (zeroes of dx) are simple with
y′(a) ̸= 0; symmetric bidifferential B defined on C × C. Functions y, x are only needed to be
locally defined in the neighborhoods of zeroes of dx.
• Bidifferential. Choosing a canonical basis of cycles (aα, bα) on C, one defines a unique bilinear
form B(p1, p2) on C × C, which is normalized over a-cycles and has a residueless double pole on
the diagonal p1 = p2, such that in some local coordinate ξ we have the following expansion of
B(p1, p2):

B(p1, p2) =
dξ(p1)dξ(p2)

(ξ(p1)− ξ(p2))2
+O(1). (3.5.1)

• Recursion Kernel. Let p any point on C, while q lies within a small neighborhood of point a.
By assumption the map x : C → CP 1 is simply branched. Thus, for any ramification point a ∈ C,
we can find a neighborhood a ∈ U ⊂ C and a local non-trivial involution σa : U → U such that
x ◦ σa = x. The recursion kernel is defined by the formula

Kq(p) =
1

2

∫ σa(q)
q B( · , p)

(y(q)− y(σa(q))dx(q)
, (3.5.2)

where integration path lies within the neighborhood of the branch point a.
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• Recursion. Base of recursion:

W
(s)
k (p) = 0 if s < 0, (3.5.3)

W
(0)
1 (p) = 0, (3.5.4)

W
(0)
2 (p1, p2) = B(p1, p2). (3.5.5)

Given a set of points p1, . . . , pn on C, if K = {i1, . . . , ik} is any subset of {1, 2, . . . , n}, we let pK
be the k-tuple pK = (pi1 , pi2 , . . . , pik). Then for 2s− 2 + k ≥ 0 we define

W
(s)
k+1(p, pK) =∑
a

res
q=a

Kq(p)

s∑
m=0

∑
J⊆K

W
(m)
|J |+1(q, pJ)W

(s−m)
k−|J |+1(σa(q), pK\J) +W

(s−1)
k+2 (q, σa(q), pK)

 (3.5.6)

where the sum
∑

J⊆K is over all subsets J ⊆ K.

In case of spaces Msl2
g,m[k] of SL(2) covers: C = Ĉ and the map x : C → CP 1 is replaced by the

map π : Ĉ → C, defined by the equation v2 = Q in T ∗C. Having that zeros of quadratic differential
Q are simple, the map π is simply branched and the differential v, written as v = v

dξdξ in terms of
a local coordinate ξ on C, plays the role of 1-form ydx. The base bidifferential B that we will use in
this setting is Prym bidifferential (3.1.26). Namely, we set

B := B−(p1, p2). (3.5.7)

Additionally, the surface Ĉ is equipped with global holomorphic involution µ, which, being restricted
to the neighborhoods of the branch points xi (zeroes of Q), provides local involutions σxi . Then

(y(q)− y(σxi(q))dx(q) = v(q)− v(µ(q)) = 2v(q), (3.5.8)

since differential v is skew-symmetric under µ. The recursion kernel (3.5.2) written in terms of v
and B−(p1, p2) and denoted by K−

q (p) takes the form

K−
q (p) = −1

2

∫ q
xi
B−( · , p)
v(q)

, (3.5.9)

where we used ∫ µ(q)

q
B−( · , p) = −2

∫ q

xi

B−( · , p), (3.5.10)

due to skew-symmetry of B−(p1, p2) under µ. Skew-symmetry of B−(p1, p2) also implies that all the
subsequent multidifferentials of the recursion (3.5.6) for s = 0 are skew-symmetric under involution
µ in all their variables. We denote the corresponding multidifferentials by W

(0)−
k (p, pK) and have

from (3.5.6) that

W
(0)−
1 (p) = 0, (3.5.11)

W
(0)−
2 (p1, p2) = B−(p1, p2), (3.5.12)

W
(0)−
k+1 (p, pK) =

1

2

∑
xi

res
q=xi

∫ q
xi
B−( · , p)
v(q)

∑
J⊆K

W
(0)−
|J |+1(q, pJ)W

(0)−
k−|J |+1(q, pK\J)

 , k ≥ 2. (3.5.13)
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Remark 3.5.1. We do not consider recursion with s ≥ 1 for technical reason: writing down the
first s = 1 differential

W
(1)
1 (p) = −1

2

∑
xi

res
q=xi

(∫ q
xi
B−( · , p)
v(q)

B−(q, µ(q))

)
(3.5.14)

we observe that B−(q, µ(q)) = −B−(q, q) is not correctly defined. This issue could be circumvented
by instead considering the recursion with the base bidifferential

B := B̂(p1, p2), (3.5.15)

which is a standard Bergman bidifferential associated with the canonical cover Ĉ. Such approach
was taken in [15].

Multidifferentials W
(0)−
k = W

(0)−
k (p1, ..., pk) share the following properties: skew-symmetry un-

der involution µ in all variables implies that their only poles, located at the branch points xi, have
vanishing residues. Additionally, W (0)−

k are symmetric with respect to permutation of their variables
(Theorem 4.6, [16]) and have vanishing periods over a+ and a−-cycles.

We are ready to formulate a theorem that relates variations of Eynard-Orantin invariants W (0)−
k

with their recursive definition.

Theorem 3.5.1. The variations of Eynard-Orantin invariants W
(0)−
k on the space Msl2

g,m[k] with
respect to the coordinates (3.3.5) take the following form:

∂

∂Aγ
W

(0)−
k (p1, . . . , pk) = − 1

4πi

∫
p∈b−γ

W
(0)−
k+1 (p, p1, . . . , pk). (3.5.16)

∂

∂C1
j

W
(0)−
k (p1, . . . , pk) = −1

2

∫ z
(1)
j

p∈z(2)j

W
(0)−
k+1 (p, p1, . . . , pk). (3.5.17)

∂

∂C l
j

W
(0)−
k (p1, . . . , pk) = −1

2
res

p=z
(1)
j

(
χj(p)

−lW
(0)−
k+1 (p, p1, . . . , pk)

)
. (3.5.18)

Proof. This is an immediate adaptation of Theorem 5.1 of [16], whose proof is essentially a local
statement only involving variational formulas (3.4.46-3.4.48) and combinatorial representation of
differentials W

(0)−
k .

Let us consider the case k = 2. Formula (3.5.16) implies that

∂

∂Aγ
B−(p1, p2) = − 1

4πi

∫
p∈b−γ

W
(0)−
3 (p, p1, p2). (3.5.19)

From (3.5.13) we get

W
(0)−
3 (p, p1, p2) =

∑
xi

res
q=xi

(∫ q
xi
B−( · , p)
v(q)

B−(q, p1)B
−(q, p2)

)
. (3.5.20)

Calculation similar to the proof of the formula (3.4.20) in Theorem 3.4.1 allows us to rewrite it as

W
(0)−
3 (p, p1, p2) =

r∑
i=1

res
xi

(
B−(q, p)B−(q, p1)B

−(q, p2)

dξ d(v/dξ)

)
. (3.5.21)
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Plugging this formula into (3.5.19) and additionally integrating two times with respect to b−α and
b−β , using identities (3.4.56) and (3.1.22), we obtain the formula (3.4.20) for the Donagi-Markman
cubic

∂Ω−
αβ

∂Aγ
= −πi

r∑
i=1

res
xi

(
u−αu

−
β u

−
γ

dξ d(v/dξ)

)
(3.5.22)

that measures a variation of the Prym matrix Ω− with respect to periods Aγ . The formulas (3.5.17-
3.5.18) could be similarly applied to obtain (3.4.21-3.4.22) with the help of identities (3.4.60-3.4.61).

Repeatedly applying variational formulas from Theorem 3.5.1 one may obtain a Taylor expansion
of the Prym matrix Ω−, and, consequently, of the period matrix Ω̂ (3.1.24) of the double cover Ĉ
on the space Msl2

g,m[k]. On the submanifold Msl2
g ⊂ Msl2

g,m[k] for m = 0, consisting of holomorphic
SL(2) covers this formula has a more compact and familiar form.

Proposition 3.5.1. On spaces Msl2
g of holomorphic SL(2) covers, variations of the Prym matrix

Ω− take the form:

∂

∂Ai1

∂

∂Ai2

· · · ∂

∂Aik−2

Ω−
ik−1ik

= −
(

i

4π

)k−1 ∫
p1∈b−i1

· · ·
∫
pk∈b−ik

W
(0)−
k (p1, . . . , pk). (3.5.23)

This formula provides an SL(2) specialization of a more general result for GL(n) spectral covers
previously obtained in [3]. The moral of this proposition is that a single spectral curve (its invariants
are computed on the right-hand side) knows about the geometry of families of spectral curves (on
the left-hand side). While the right-hand side is clearly symmetric in indices ik due to symmetry
of W (0)−

k with respect to permuting its variables, the symmetry of the left-hand side follows from
an observation, that the Prym matrix Ω−

αβ itself is a second partial derivative of a single function
F called the prepotential:

F =
1

2

g−∑
γ=1

AγBγ , (3.5.24)

such that

Ω−
αβ =

∂2F

∂Aα∂Aβ
. (3.5.25)

Remark 3.5.2. Prepotential F is known to be a generating function between homological and
canonical coordinates on symplectic space Qg of holomorphic quadratic differentials with variable
base (see [8]).

We conclude this section with the formula for the second variation of the Prym matrix
∂2Ω−

αβ

∂Aδ∂Aγ
.

Due to (3.5.25) the resulting expression must be symmetric with respect to all 4 indices. It could
be computed either by topological recursion, or by direct differentiation of the formula (3.4.20) and
using variations of Prym differentials (3.4.57). The latter computation could be performed following
the Proposition 5.1 in [4] with a small alteration and results in

Proposition 3.5.2. Second derivative of the Prym matrix Ω−
αβ on Msl2

g,m[k] is given by the following
expression:

42



1

2πi

∂2Ω−
αβ

∂Aδ∂Aγ
=

1

16

∑
xa ̸=xb

{
B−(xa, xb)

u−δ (xa)u
−
γ (xa)u

−
α (xb)u

−
β (xb) + cycl of (α, β, γ)

y′(xa)y′(xb)

}
+

+
1

16

∑
xa

{(
ŜB

y′2
− y′′′

y′3

)
u−αu

−
β u

−
γ u

−
δ (xa) +

1

y′2
((u−α )

′′u−β u
−
γ u

−
δ (xa) + cycl of (α, β, γ, δ))

}
,

(3.5.26)
where Ŝ is Bergman projective connection (3.1.32); y = v

dξ . Values and derivatives at brach points xa
are computed in a local coordinate ξ̂. This formula does not depend on the choice of local coordinates
ξ, ξ̂ on C and Ĉ, respectively, provided ξ̂2 = ξ.

Remark 3.5.3. Corresponding second-order variations with respect to moduli Ck
j are obtained by

replacing Prym holomorphic differentials u−δ , u
−
γ with corresponding Prym differentials of second

(3.4.3) and third (3.4.4) kinds.
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Chapter 4

Symplectic geometry of spaces of
quadratic differentials

This chapter is organized as follows: in Section 4.1 we introduce a linear second order equation
on a Riemann surface and associated monodromy map between the moduli space of quadratic
differentials with second order poles and PSL(2) character variety. We define local coordinates on
the moduli space of curves Mg,n and state the theorem which gives a condition for a monodromy map
to become a symplectomorphism in terms of closeness of the 1-form on Mg,n. In Section 4.2 we
describe the geometry, main objects and variational formulas linked to the moduli space of quadratic
differentials with second order poles, which is a special case of general moduli spaces of meromorphic
quadratic differentials discussed in Chapter 3. Section 4.3 is devoted to the symplectic properties
of the monodromy map. In particular, we prove the theorem stated in Section 4.1. We also introduce
the generating function for the monodromy symplectomorphism (Yang-Yang function). In Section
4.4 we perform generalized WKB expansion of the monodromy generating function and compute
its asymptotics.

4.1 Definition of the monodromy map

Consider the linear second order equation on a Riemann surface C of genus g with n punctures
(the stationary Schrödinger equation) in the form

∂2ϕ+

(
1

2
S −Q

)
ϕ = 0, (4.1.1)

where S is a fixed meromorphic projective connection on C with at most simple poles at the punctures
(zj)

n
j=1 and depending holomorphically on the moduli of Mg,n, Q is a meromorphic quadratic

differential with simple zeroes and double poles at (zj) with the asymptotics:

Q(x) ∼
(r2j
ξ2j

+O(ξ−1
j )
)
(dξj)

2. (4.1.2)

Here and below, we will assume that Q is Gaiotto-Moore-Nietzke (GMN) differential (i.e., none of
horizontal trajectories of Q connect two of its zeros [20]). In particular, this implies that r2j /∈ R−.
Denote by Qg,n the moduli space of pairs (C, Q) and by Qg,n{r} its corresponding stratum for fixed
values of rj ’s. The solution to (4.1.1) is locally a −1

2 differential [22] which could be written as

ϕ = ϕ(ξ)(dξ)−
1
2 . (4.1.3)

44



Take two linearly independent solutions ϕ1, ϕ2 and consider their ratio f = ϕ1/ϕ2. Analytic con-
tinuation of f along the cycles of π(C\{zi}nj=1, x0) determines a PSL(2,C) monodromy represen-
tation of the fundamental group with the chosen basepoint x0. The choice of standard generators
({κ}nj=1, {α, β}

g
j=1) of the fundamental group with single relation

κ1...κn

g∏
i=1

αiβiα
−1
i β−1

i = id (4.1.4)

yield the same relation on the monodromy matrices

Mκ1 ...Mκn

g∏
i=1

MαiMβi
M−1

αi
M−1

βi
= I. (4.1.5)

The matrix Mκj corresponding to the monodromy around the pole zj has the following diagonal
form:

Dj =

(
mj 0

0 m−1
j

)
, (4.1.6)

where
m2

j = e4πiλj . (4.1.7)

Local analysis of the solutions for (4.1.1) implies the following relation between the biresidues (rj)
and eigenvalues (mj)

r2j = λj(λj − 1). (4.1.8)

We denote by CVg,n the PSL(2) character variety corresponding to the representation (4.1.5). It
is well known that the stratum CVg,n{m} for fixed values mj is a symplectic leaf with a Poisson
structure given by the Goldman bracket [21].

The space Qg,n is a special case of spaces Qg,m[k] of meromorphic quadratic differentials dis-
cussed in Chapter 3. It admits a system of local coordinates defined in the following way: for
every pair (C, Q) ∈ Qg,n consider equation v2 = Q in T ∗C. This equation induces a double covering
π : Ĉ −→ C, where v is a globally defined Abelian differential. The map π is branched at (sim-
ple) zeroes of Q denoted by (xj)

4g−4+2n
j=1 . Thus, each double pole zj has two preimages that we call

(z
(1)
j , z

(2)
j ). The enumeration of these points is chosen such that the residue of v at z(1)j equals rj and

the residue of v at z(2)j equals −rj .The genus of Ĉ is ĝ = g+ g−, with g− = 3g− 3+n. The surface
Ĉ is equipped with a natural holomorphic involution µ : Ĉ −→ Ĉ which interchanges the sheets of the
double cover. The involution induces the splitting of the homology group H1(Ĉ\(z(1)j , z

(2)
j )nj=1,Z)

into even H+ and odd H− parts. Local coordinates on Qg,n are defined by integrating the differen-
tial v over a basis of H−. We choose appropriate subset of cycles (a−i , b

−
i )

g−

i=1 ∈ H− with intersection
index a−i ◦ b−j = 1

2δij so that the integrals

Aj =

∮
a−j

v, Bj =

∮
b−j

v (4.1.9)

become local period (or homological) coordinates on the stratum Qg,n{r}. The intersection pairing
defines the natural symplectic form on Qg,n{r}

Ωhom =

g−∑
j=1

2dBj ∧ dAj . (4.1.10)
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The character variety CVg,n{m} is equipped with a symplectic form that inverts a natural
Poisson structure given by the Goldman bracket. It could be written in terms of homological
shear coordinates which are appropriate linear combinations of the logarithms of Thurston’s shear
coordinates [43]:

ΩG =

g−∑
j=1

2dρa−j
∧ dρb−j

. (4.1.11)

Introduce the Bergman projective connection SB defined in terms of the canonical bidifferential
B(x, y) on C, which is normalized with respect to chosen Torelli marking in H1(C,Z):

SB(x) =
(
B(x, y)− dξ(x)dξ(y)

(ξ(x)− ξ(y))2

)∣∣∣
y=x

, (4.1.12)

where ξ is any local coordinate near point x. As long as SB depends holomorphically on the conformal
structure of C, the difference S−SB becomes a family of quadratic differentials with at most simple
poles at the punctures (zj), depending holomorphically on moduli of Mg,n. Using the identification
of the moduli space of quadratic differentials with simple poles and the cotangent bundle T ∗Mg,n,
we can associate S − SB with the 1-form Θ(S−SB), locally defined on Mg,n, in the following way.

At first, introduce the set of holomorphic local coordinates (Ωjk, ql) on Mg,n, g ≥ 2. To deter-
mine locally the conformal structure of C we pick at generic point of Mg,n (outside of hyperelliptic
locus for g ≥ 3) a set D of 3g − 3 entries of the period matrix Ω of C. The quadratic differentials
corresponding to cotangent vectors dΩjk are products ujuk of normalized holomorphic differentials.
An additional set of n coordinates which determine the positions of punctures (zl)nl=1 on C we choose
to be ql = (ui/uj)(zl) where ui and uj form a pair of normalized holomorphic 1-forms on C, such
that uj(zl) ̸= 0. The quadratic differential corresponding to cotangent vector dql is the meromor-
phic quadratic differential Qzl (given by the formula (4.3.59) below) whose only simple pole is at
zl. These coordinates are local: in different coordinate charts on Mg,n one might need to choose
other pairs of normalized holomorphic differentials and/or different Torelli markings. The momenta
pl are then defined to be coefficients of decomposition of the quadratic differential S − SB in the
basis described above. Writing down the quadratic differential S − SB as

S − SB =
∑

(jk)∈D

pjk ujuk +
n∑

l=1

plQ
zl , (4.1.13)

where pjk and pl are holomorphic functions of (Ωjk, ql), the corresponding 1-form Θ(S−SB) on Mg,n

reads as

Θ(S−SB) =
∑

(jk)∈D

pjk dΩjk +
n∑

l=1

pldql. (4.1.14)

Local coordinates on Mg,n for g = 0, 1 have a special description and were covered in [32].
First main result of this chapter imposes a condition on projective connection S of (4.1.1) for

the monodromy map to become a symplectomorphism.

Theorem 4.1.1 (Theorem 4.3.2). The monodromy map

F(S) : Qg,n{r} −→ CVg,n{m} (4.1.15)

is a symplectomorphism with F∗
(S)ΩG = −Ωhom iff the 1-form Θ(S−SB), corresponding to family

of quadratic differentials S − SB (which is locally defined on the moduli space Mg,n), is closed,
dΘ(S−SB) = 0.
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Statement of the theorem generalizes the results proven in [8], [32], where the differential Q
is assumed to be holomorphic or with simple poles, respectively. The proofs were based on the
identification of the homological symplectic form with the canonical form on T ∗Mg,n. which does
not hold in presence of second order poles.

4.2 Spaces Qg,n of quadratic differentials with second order poles

4.2.1 Canonical double cover

Denote by Qg,n the moduli space of meromorphic quadratic differentials on Riemann surface
C of genus g with n double poles (z1, ..., zn) and 4g − 4 + 2n simple zeroes (x1, ..., x4g−4+2n). We
assume that any quadratic differential Q ∈ Qg,n has the following asymptotics near poles:

Q(x) ∼
(r2j
ξ2j

+O(ξ−1
j )
)
(dξj)

2, (4.2.1)

as x −→ zi, here ξj is any local coordinate near pole zj . For all such Q the equation v2 = Q in the
cotangent bundle T ∗C defines double covering π : Ĉ −→ C, branched at zeroes of Q. The covering
surface Ĉ possesses a natural holomorphic involution µ : Ĉ −→ Ĉ. The differential v is single-valued on
Ĉ and skew-symmetric under the involution: v(xµ) = −v(x). It has double zeroes at branch points
(xj)

4g−4+2n
j=1 and simple poles at 2n preimages of (zj)nj=1 denoted by z

(1)
j and z

(2)
j with residues rj

and −rj , respectively. The Riemann-Hurwitz formula implies the genus of the covering surface Ĉ
equals

ĝ = 4g − 3 + n. (4.2.2)

We decompose the first homology group of H1(Ĉ\{z(1)j , z
(2)
j }nj=1,Z) into

H1(Ĉ\{z(1)j , z
(2)
j }nj=1,Z) = H+ ⊕H−, (4.2.3)

which are the +1 and −1 eigenspaces of the map, induced by the involution µ. dim(H+) = 2g+n−1

and dim(H−) = 6g − 6 + 3n := 2g− + n. The canonical basis of H1(Ĉ\{z(1)j , z
(2)
j }nj=1,Z) and

corresponding bases in H± are chosen in accordance with the previous chapter. Recall, that the
classes

{a+k , b
+
k , t

+
j }, k = 1, ..., g, j = 1, ..., n, (4.2.4)

with the single relation
n∑

j=1

t+j = 0. (4.2.5)

generate the group H+ with the intersection index

a+i ◦ b+k =
1

2
δik, (4.2.6)

while t+j ’s have zero intersection with all cycles. The following cycles

{a−k , b
−
k , t

−
j }, k = 1, ..., 3g − 3 + n, j = 1, ..., n. (4.2.7)

are the generators of the group H−. Similarly, their intersection index is

a−i ◦ b−k =
1

2
δik (4.2.8)
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and all other intersections are zero.
The differential v is used to introduce a system of local coordinates on both C and Ĉ. If x is

a point of Ĉ which does not coincide with branch points {xi} and poles {z(1)j , z
(2)
j } then the local

coordinate (also called "flat" coordinate) near x is given by

z(x) =

∫ x

x1

v, (4.2.9)

x1 is a chosen "first" zero of v. Coordinate z(x) could also be used on C outside branch points and
poles. Notice that in this case v = dz. Near a branch point xi on Ĉ the distinguished local coordinate
is given by

ξ̂i(x) =

(∫ x

xi

v

) 1
3

. (4.2.10)

On the curve C the local coordinate near xi is

ξi(x) = ξ̂2i (x) =

(∫ x

xi

v

) 2
3

. (4.2.11)

Near a double pole zj on C and simple poles (z
(1)
j , z

(2)
j ) on Ĉ the local coordinate is

ζj(x) = exp

(
1

rj

∫ x

x1

v

)
. (4.2.12)

To define local coordinates near the poles uniquely we on C connect first zero x1 with a chosen first
double pole z1 by a branch cut, then connect z1 with the remaining poles {zi}nj=2 forming a tree.
Then we lift this tree to Ĉ via π−1.

4.2.2 Period coordinates. Homological symplectic form

The dimension of H− coincides with the dimension of Qg,n. We introduce the following set of
period (homological) local coordinates on Qg,n:

Aj =

∮
a−j

v, Bj =

∮
b−j

v, 2πrk =

∮
t−k

v. (4.2.13)

We fix the values (rk) and denote the corresponding stratum of moduli space by Qg,n{r} (for the
definition of the homological shear coordinates and their WKB expansion it is necessary for Q to
be free from saddle trajectories, so we assume that r2k /∈ R− [7]). Then (Aj , Bj)

g−

j=1 become local
coordinates on Qg,n{r}. There is a natural Poisson structure on Qg,n between periods of v induced
by the intersection index of the corresponding cycles s1, s2 ∈ H−:{∫

s1

v,

∫
s2

v
}
= s1 ◦ s2. (4.2.14)

This Poisson structure is degenerate, with Casimir functions r1, ..., rn. The stratum Qg,n{r} becomes
a symplectic leaf for given bracket. It allows us to introduce the following symplectic form on
Qg,n{r}:

Ωhom =

g−∑
j=1

2dBj ∧ dAj . (4.2.15)
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4.2.3 Variational formulas on Qg,n

In this section we introduce several meromorphic functions associated with surfaces Ĉ and C.
Then we recall their variational formulas with respect to period coordinates on the moduli space
Qg,n. Let us denote by {ak, bk}gk=1 the canonical basis of cycles on C.

• The matrix Ωij =
∮
bj
ui represents the g × g period matrix of the base surface C.

• Meromorphic functions fj : Ĉ −→ CP 1 given by

fj(x) =
uj(x)

v(x)
, j = 1, ..., g. (4.2.16)

These functions are skew-symmetric under the involution and generically (when zeroes of uj(x)
and v(x) differ) have simple poles at the branch points (xj).
• The meromorphic function q : C −→ CP 1

q(x) =
SB − Sv

2v2
, (4.2.17)

where Sv is the Schwarzian projective connection defined by

Sv(ξ(x)) =
{∫ x

p0

v, ξ(x)
}
(dξ(x))2 (4.2.18)

in any local coordinate ξ. Here {f, ξ} =
(
f ′′(ξ)
f ′(ξ)

)′
− 1

2

(
f ′′(ξ)
f ′(ξ)

)2
– Schwarzian derivative. The

pullback of q to Ĉ has residueless 6-order poles at (xj).
• The meromorphic function b : Ĉ × Ĉ −→ CP 1

b(x, y) =
B(x, y)

v(x)v(y)
, (4.2.19)

skew-symmetric in both arguments, with simple poles at (xj) on Ĉ with respect to each argument.
In addition, it has a double pole on the diagonal outside the branch points.
• The meromorphic function h : C × C −→ CP 1,

h(x, y) =
B2(x, y)

Q(x)Q(y)
= b2(x, y). (4.2.20)

Its pullback to Ĉ × Ĉ −→ CP 1 is symmetric, has residueless double poles at (xj) in both arguments,
and a fourth order pole on the diagonal away from branch points.

We introduce the periods Psi =
∮
si
v for si being an element from the canonical basis of H− :

{si}6g−6+3n
i=1 =

{
{a−j , b

−
j }

g−

j=1, {t
−
k }

n
k=1

}
. (4.2.21)

The dual basis {s∗i } is defined by the condition

s∗i ◦ sj = δij (4.2.22)

and is given by
{s∗i }

6g−6+3n
i=1 =

{
{−2b−j , 2a

−
j }

g−

j=1, {2κ
−
k }

n
k=1

}
, (4.2.23)
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here κ−j is a 1/2 of the contour connecting poles z
(1)
j with z

(2)
j and skew-symmetric under the

involution, not intersecting other contours.
Choose a fundamental polygon Ĉ0 with vertex at x1 and dissected along paths represented by the

graph Ĝ (see Section 3.1.3). On the simply connected domain Ĉ0\Ĝ we define the "flat" coordinate

z(x) =

∫ x

x1

v. (4.2.24)

The following variational formulas were derived in Proposition 3.1.1 in Chapter 3. Note that
the period matrix Ω of the base curve C is just Ω+, while the pullbacks of uj(x), B(x, y) and SB(x)
to Ĉ are naturally identified with the corresponding elements u+j (x), B

+(x, y) and S+
B (x).

Proposition 4.2.1. For arbitrary basis {si}6g−6+3n
i=1 of H− and its dual basis {s∗i }

6g−6+3n
i=1 the fol-

lowing formulas hold on Qg,n:
∂Ωij

∂Psi

=
1

2

∮
si∗

fifjv, (4.2.25)

∂fj(x)

∂Psi

∣∣∣
z(x)=const

=
1

4πi

∮
si∗

fj(t)b(x, t)v(t), (4.2.26)

∂b(x, y)

∂Psi

∣∣∣
z(x),z(y)=const

=
1

4πi

∮
si∗

b(x, t)b(t, y)v(t), (4.2.27)

∂q(x)

∂Psi

∣∣∣
z(x)=const

=
3

4πi

∮
si∗

h(x, t)v(t). (4.2.28)

4.2.4 Bergman tau-function

The explicit formula and main properties of Bergman tau-function on moduli spaces of mero-
morphic quadratic differentials with even order poles were outlined in previous chapter. In our
framework we consider a special case of Bergman tau-function τB associated with moduli spaces
Qg,n of quadratic meromorphic differentials with second order poles. In the present context we only
need its defining differential equations and transformation under rescaling of the differential Q by
a constant.

Proposition 4.2.2 (Theorem 3.2.1). Bergman tau-function τB satisfies the following system of
differential equations on Qg,n:

∂ log τB
∂Aj

=
1

12πi

∮
b−j

qv,
∂ log τB
∂Bj

= − 1

12πi

∮
a−j

qv, (4.2.29)

for j = 1, ..., 3g − 3 + n and

∂ log τB
∂ (2πirk)

= − 1

12πi

∫
κ−
k

(
qv +

1

4r2k
v
)
, (4.2.30)

for k = 1, ..., n.

The function τB satisfies the following homogeneity property (see (3.2.15)):

τB(C, κQ) = κ
5(2g−2+n)

72 τB(C, Q). (4.2.31)
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Equivalently, defining the Euler vector field via

E =

g−∑
j=1

(
Aj

∂

∂Aj
+Bj

∂

∂Bj

)
+

n∑
j=1

rj
∂

∂rj
(4.2.32)

we have that
E log τB =

5(2g − 2 + n)

72
. (4.2.33)

We also notice that on the stratum Qg,n{r} the differential d log τB|r is given by

d log τB|r = − 1

12πi

g−∑
j=1

[(∮
a−j

qv

)
dBj −

(∮
b−j

qv

)
dAj

]
. (4.2.34)

4.3 Symplectic properties of the monodromy map

4.3.1 Monodromy symplectomorphism and Goldman bracket

Consider the monodromy map
F(S) : Qg,n −→ CVg,n (4.3.1)

for the equation (4.1.1) defined by (4.1.5). The Goldman bracket on CVg,n{m} is defined as follows
[21]. For two arbitrary loops γ and γ̃

{trMγ , trMγ̃}G =
1

2

∑
p∈γ◦γ̃

ν(p)(trMγpγ̃ − trMγpγ̃−1), (4.3.2)

where the monodromy matrices Mγ ,Mγ̃ ∈ PSL(2,C); γpγ̃ and γpγ̃
−1 are paths obtained by resolving

the intersection point p in two different ways (see [21]); ν(p) = ±1 is the contribution of the point
p to the intersection index of γ and γ̃.

The following theorem was stated in [7] and it is a natural extension of the results proven in [8]
for holomorphic potentials and in [32] for potentials with simple poles.

Theorem 4.3.1 ([7]). For the Bergman projective connection SB (4.1.12) chosen to be the base
projective connection S the monodromy map F(SB) (4.3.1) of equation (4.1.1) is Poisson. Namely,
the homological bracket implies minus the Goldman bracket between traces of monodromy matrices.

The homological shear coordinates that invert the Goldman bracket (4.3.2) are constructed in
the following way (based on appendix of [7], also [6], [11]). Assume that quadratic differential Q
is generic i.e it does not have any saddle connections (as in the definition of the “Gaiotto-Moore-
Nietzke differential” [20]). Then each horizontal trajectory given by Im

∫ x
x1

v = 0, where x1 is
an arbitrary "first" zero, starting at a zero xj of Q ends at one of the poles zk, defining critical
graph ΓQ. Additionally, three horizontal trajectories meet at each zero, determining three vertices
of the triangle at the poles, therefore, defining the triangulation ΣQ of C. The dual graph with
vertices at xj is denoted by Σ∗

Q (see Figure 3). Notice that the number of edges of ΣQ equals to
6g − 6 + 3n = dim(CVg,n). The Thurston shear coordinate is a value ζe ∈ C attached to each edge
e of the graph ΣQ.

Using the graph Σ∗
Q one defines a two-sheeted branch covering ĈΣB

by assuming that all edges
of Σ∗

Q are branch cuts. To each coordinate ζe we assign skew-symmetric cycle le on ĈΣB
, which is

a double cover of the corresponding dual edge e∗ ∈ Σ∗
Q. Lemma A.1 of [7] states that the Goldman
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z1

z2
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z5

ΣQ

Σ∗
Q

ΓQ

Figure 3: Critical graph ΓQ and corresponding triangulation ΣQ and dual Σ∗
Q graphs

Poisson brackets (4.3.2) between the coordinates ζe can be expressed via the intersection indices of
the cycles le as

{ζe, ζe′}G =
1

4
le ◦ le′ . (4.3.3)

An observation (Proposition A.6, [7]) that the double cover ĈΣB
is holomorphically equivalent to

the canonical double cover Ĉ, defined analytically by v2 = Q, allows us to view these brackets in
terms of corresponding cycles on Ĉ. Then one can consider linear combinations with half-integer
coefficients of cycles le, generating the elements {a−j , b

−
j , t

−
k } of the homology group H−. Taking

the same linear combinations of the elements 2ζe one defines the homological shear coordinates
{ρa−j , ρb−j , ρt−k } with the following Poisson brackets:

{ρa−j , ρb−k }G =
δjk
2
, {ρa−j , ρa−k }G = {ρb−j , ρb−k }G = 0, (4.3.4)

while ρt−k
lie in the center of Poisson algebra. The coordinates ρt−k

are related to the monodromy
eigenvalues as follows:

ρt−k
= logmk. (4.3.5)

Thus, on the symplectic leaf CVg,n{m} for fixed values of mk the Goldman symplectic form is
written as

ΩG =

g−∑
j=1

2dρa−j
∧ dρb−j

. (4.3.6)

Corollary 4.3.1. The homological symplectic form Ωhom on Qg,n{r} is minus pullback of the Gold-
man symplectic form ΩG by the map F(SB)

F∗
(SB)ΩG = −Ωhom. (4.3.7)
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4.3.2 Admissible meromorphic projective connections

The map between the space of quadratic differentials Qg,n{r} and the character variety CVg,n{m}
essentially depends on the choice of the base projective connection on a Riemann surface C. To
parametrize space of such connections we consider the holomorphic affine bundle Sg,n of meromor-
phic projective connections with at most simple poles at the punctures over the moduli space of
closed curves Mg,n. The Theorem 4.3.1 states that for the choice S = SB the monodromy map
is symplectic. The naturally arising question is when the monodromy map with a fixed projective
connection S other than SB is also a symplectomorphism.

Definition 4.3.1. A holomorphic section S of the affine bundle Sg,n is called admissible if the
homological symplectic structure on Qg,n{r} implies Goldman bracket on the character variety
CVg,n{m}.

For any two choices of S0, S1 ∈ Sg,n we write the same equation in two ways

∂2ϕ+

(
1

2
S0 −Q0

)
ϕ = 0 (4.3.8)

and

∂2ϕ+

(
1

2
S1 −Q1

)
ϕ = 0, (4.3.9)

where both Q0 and Q1 belong to Qg,n{r} and are related by

Q1 −Q0 =
1

2
(S0 − S1). (4.3.10)

We have the following diagram of maps

Qg,n{r} Qg,n{r}

CVg,n{m}

Q0
H−→Q1

F(S0)

F(S1)

Assuming that S0 is admissible, the condition for S1 to be also admissible (or equivalent to S0) is
that the map

H : Q0 −→ Q0 +
1

2
(S0 − S1) (4.3.11)

is a symplectomorphism implying the coincidence of homological 2-forms calculated via the periods
of v0 and v1, where v20 = Q0, v

2
1 = Q1 define canonical coverings with different conformal structures.

The following proposition gives a condition for the map (4.3.11) to be a symplectomorphism.

Proposition 4.3.1. 1) Two meromorphic differentials Q0 and Q1 induce the same homological 2-
form on Qn,g{r} iff the 1-form Θ(S0−S1), corresponding to family of quadratic differentials S0 − S1

and locally defined on Mg,n, is closed, dΘ(S0−S1) = 0.

2) The generating function of the symplectomorphism between the periods (A
(0)
k , B

(0)
k ) of v0 and

(A
(1)
k , B

(1)
k ) of v1 for the chosen potentials

θ0 =

g−∑
k=1

(B
(0)
k dA

(0)
k −A

(0)
k dB

(0)
k ), θ1 =

g−∑
k=1

(B
(1)
k dA

(1)
k −A

(1)
k dB

(1)
k ), (4.3.12)
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defined by
dGhom = H∗θ1 − θ0, (4.3.13)

has the following form:

Ghom =

n∑
i=1

πiri

(
reg
∫ z

(1)
i

z
(2)
i

v1 − reg
∫ z

(1)
i

z
(2)
i

v0

)
+

1

2
G(S0−S1), (4.3.14)

where there exists a local holomorphic function G(S0−S1) on Mg,n, such that

dG(S0−S1) = Θ(S0−S1). (4.3.15)

Remark 4.3.1. For any Q ∈ Qg,n{r} the integral
∫ z

(1)
i

z
(2)
i

v is singular at the endpoints. We define

its regularization by removing the divergent part as follows: fix a coordinate ξj near zj , such that

Q(x) ∼
(r2j
ξ2j

+O(ξ−1
j )
)
(dξj)

2. (4.3.16)

ξj can also serve as a local coordinate on Ĉ near the lifts {z(1)j , z
(2)
j } with

v(x) ∼ ±
(rj
ξj

+O(1)
)
dξj . (4.3.17)

Let ztj be an arbitrary sequence of points on C converging to zj , such that in the local coordinate ξj

Re(ξj(z
t
j)) ∼

1

t
, t −→ ∞; Im(ξj(z

t
j)) = 0. (4.3.18)

Then the regularization is defined by

reg
∫ z

(1)
j

z
(2)
j

v := lim
t−→∞

(∫ z
t (1)
j

z
t (2)
j

v − 2rj log t

)
. (4.3.19)

Before proceeding to the proof of Proposition 4.3.1 we will prove the following technical lemma,
which could be viewed as a 1-form version of Riemann Bilinear Identity (the RBI). Introduce the
pairing between any two meromorphic differentials w1, w2 on Ĉ.

〈∮
w1,

∮
w2

〉
:=

g−∑
j=1

[∮
b−j

w1

∮
a−j

w2 −
∮
a−j

w1

∮
b−j

w2

]
(4.3.20)

Lemma 4.3.1. Let w1 and w2 be two meromorphic differentials on Ĉ, skew-symmetric under in-
volution. Assuming both w1 and w2 holomorphically depend on moduli (Ai, Bi)

g−

i=1, the following
identity of 1-forms on Qg,n{r} holds:〈∮

w1, d

∮
w2

〉
= −1

2

∫
∂Ĉ0

(
δw2

∫ x

p0

w1

)
+

〈∮
w1w2

v
, d

∮
v

〉
(4.3.21)

or 〈∮
w1, d

∮
w2

〉
=

1

2

∫
∂Ĉ0

(
w1

∫ x

p0

δw2

)
+

〈∮
w1w2

v
, d

∮
v

〉
. (4.3.22)

Here Ĉ0 is the fundamental polygon of the covering surface Ĉ, p0 is a generic point.
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Remark 4.3.2. Note that by d
∮
w appearing in the pairing we mean differential applied to the

periods of w, while δw is defined by

δw :=

g−∑
i=1

(
∂w

∂Ai

∣∣∣
z(x)

dAi +
∂w

∂Bi

∣∣∣
z(x)

dBi

)
, (4.3.23)

where the differentiation is performed assuming the coordinate z(x) (4.2.9) is independent of the
moduli.

Proof. Expressing the differential in coordinates (Ai, Bi)
g−

i=1 we write the pairing on the left-hand
side of (4.3.21) as follows

g−∑
j=1

(∮
b−j

w1 d

∮
a−j

w2 −
∮
a−j

w1 d

∮
b−j

w2

)
= (4.3.24)

=

g−∑
i=1

[
g−∑
j=1

(∮
b−j

w1
∂

∂Ai

∮
a−j

w2 −
∮
a−j

w1
∂

∂Ai

∮
b−j

w2

)
dAi+ (4.3.25)

+

g−∑
j=1

(∮
b−j

w1
∂

∂Bi

∮
a−j

w2 −
∮
a−j

w1
∂

∂Bi

∮
b−j

w2

)]
dBi. (4.3.26)

Take a reference point p0 and consider a canonical dissection of the covering surface along the
cycles in H1(Ĉ) to obtain the fundamental polygon Ĉ0. The coordinate z(x) =

∫ x
p0
v serves as a local

coordinate on Ĉ0 outside branch points and poles and is kept fixed while differentiating with respect
to the moduli. Consider the expression (4.3.25) near dAi. When we differentiate the integral over
a−i with respect to the variable Ai =

∮
a−i

v an additional term appears:

∂

∂Ai

∮
a−i

w2 =
w2

v
(Ri) +

∮
a−i

∂w2

∂Ai
, (4.3.27)

where Ri is an intersection point of the cycles a−i and 2b−i (recall the intersection index a−i ◦b
−
j =

δij
2 ),

whereas all other integrals commute with the differentiation with respect to coordinate Ai. That
is due to the following fact: in terms of "flat" coordinate z(x), cycle a−i becomes a part of the
boundary of the fundamental polygon Ĉ0. Let us write w2(x) = f(z)dz, for x ∈ Ĉ0. Then the integral∮
a−i

w2 =
∮
a−i

f(z)dz is an integral with variable upper limit: when the coordinate Ai =
∮
a−i

dz gets
an increment this upper limit gets the same increment. Thus, after differentiation of the integral∮
a−i

w2 an extra term appears: the value of the integrand at the end point of the contour a−i (that is
the point Ri ). In our case all cycles deformed to have a common intersection point p0, so Ri = p0.
Therefore, we can rewrite the term near dAi as

g−∑
j=1

(∮
b−j

w1

∮
a−j

∂w2

∂Ai
−
∮
a−j

w1

∮
b−j

∂w2

∂Ai

)
+

w2

v
(p0)

∮
b−j

w1. (4.3.28)

Since w2 is globally defined on Ĉ, it is invariant under analytic continuation along the cycles in
H−(Ĉ). Writing w2(x+ a−i ) = w2(x), we have that in coordinate z(x):

f(z +Ai) = f(z). (4.3.29)
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Differentiating this equality with respect to z, we get

∂f(z +Ai)

∂z
=

∂f(z)

∂z
. (4.3.30)

Differentiating (4.3.29) again with respect to Ai, while z is kept constant, we also mind that f
implicitly depends on Ai:

∂f(z +Ai)

∂z
+

∂f(z +Ai)

∂Ai
=

∂f(z)

∂Ai
. (4.3.31)

Combining these formulas, we write

∂f(z +Ai)

∂Ai
dz − ∂f(z)

∂Ai
dz = −∂f(z)

∂z
dz, (4.3.32)

or in invariant form

∂w2

∂Ai
(x+ a−i )−

∂w2

∂Ai
(x) = −d

(w2

v

)
. (4.3.33)

Hence, the differential ∂
∂Ai

w2 could be seen as meromorphic on Ĉ with a jump discontinuity
−d(w2

v ) on the cycle 2b−i . Denote by F :=
∫ x
p0
w1. We apply a modification of the RBI for differentials

having discontinuities along the homology cycles. Splitting the integral over the boundary of Ĉ0 into
even and odd parts of H1(Ĉ,Z) and recalling that the intersection index is a+i ◦ b+j = a−i ◦ b−j =

δij
2

one has∫
∂Ĉ0

F
∂w2

∂Ai
=

g−∑
j=1

[(∮
2b−j

F
∂w2

∂Ai
+

∮
(2b−j )−1

F
∂w2

∂Ai

)
+

(∮
a−j

F
∂w2

∂Ai
+

∮
(a−j )−1

F
∂w2

∂Ai

)
+ (4.3.34)

+

(∮
2b+j

F
∂w2

∂Ai
+

∮
(2b+j )−1

F
∂w2

∂Ai

)
+

(∮
a+j

F
∂w2

∂Ai
+

∮
(a+j )−1

F
∂w2

∂Ai

)]
. (4.3.35)

Consider the following term of the above sum:∮
2b−i

F
∂w2

∂Ai
+

∮
(2b−i )−1

F
∂w2

∂Ai
. (4.3.36)

It could be rewritten as ∮
2b−i

∂w2

∂Ai
(P )

∫ P

p0

w1 −
∮
2b−i

∂w2

∂Ai
(P ′)

∫ P ′

p0

w1, (4.3.37)

where P, P ′ are identified points on 2b−i and (2b−i )
−1 cycles, respectively. P ′ = P − a−i . That

means that P, P ′ lie on the different sides of a cycle 2b−i , where ∂w2
∂Ai

gains a jump. Then

∂w2

∂Ai
(P ′) =

∂w2

∂Ai
(P )− ”jump” =

∂w2

∂Ai
(P ) + d

(w2

v

)
(P ). (4.3.38)

Plugging it into (4.3.37) we rewrite this expression as∮
2b−i

∂w2

∂Ai

∮
a−i

w1 −
∮
2b−i

d
(w2

v

)
(P )

∫ P

p0

w1. (4.3.39)
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Integrating the second term by parts we get:∮
2b−i

F
∂w2

∂Ai
+

∮
(2b−i )−1

F
∂w2

∂Ai
=

∮
2b−i

∂w2

∂Ai

∮
a−i

w1 −
w2

v
(p0)

∮
2b−i

w1 +

∮
2b−i

w1w2

v
. (4.3.40)

In all the the remaining terms of (4.3.34) the differential ∂w2
∂Ai

does not gain jump discontinuities
and they could be commonly expressed:∮

2b−j

F
∂w2

∂Ai
+

∮
(2b−j )−1

F
∂w2

∂Ai
=

∮
2b−j

∂w2

∂Ai

∮
a−j

w1, j ̸= i, (4.3.41)

∮
a−j

F
∂w2

∂Ai
+

∮
(a−j )−1

F
∂w2

∂Ai
= −

∮
a−j

∂w2

∂Ai

∮
2b−j

w1, ∀j, (4.3.42)

∮
2b+j

F
∂w2

∂Ai
+

∮
(2b+j )−1

F
∂w2

∂Ai
=

∮
2b+j

∂w2

∂Ai

∮
a+j

w1, ∀j, (4.3.43)

∮
a+j

F
∂w2

∂Ai
+

∮
(a+j )−1

F
∂w2

∂Ai
= −

∮
a+j

∂w2

∂Ai

∮
2b+j

w1, ∀j. (4.3.44)

The integrals in (4.3.43-4.3.44) over a+, b+ cycles vanish due to skew symmetry of w1. Thus, (4.3.34)
could be rewritten as

1

2

∫
∂Ĉ0

F
∂w2

∂Ai
= −

g−∑
j=1

(∮
b−j

w1

∮
a−j

∂w2

∂Ai
−
∮
a−j

w1

∮
b−j

∂w2

∂Ai

)
−w2

v
(p0)

∮
b−i

w1+

∮
b−i

w1w2

v
. (4.3.45)

Comparing the expressions (4.3.28) and (4.3.45) we see that[
g−∑
j=1

(∮
b−j

w1
∂

∂Ai

∮
a−j

w2−
∮
a−j

w1
∂

∂Ai

∮
b−j

w2

)]
dAi =

[
−1

2

∫
∂Ĉ0

F
∂w2

∂Ai
+

∮
b−i

w1w2

v

]
dAi (4.3.46)

Similarly, one can show that[
g−∑
j=1

(∮
b−j

w1
∂

∂Bi

∮
a−j

w2 −
∮
a−j

w1
∂

∂Bi

∮
b−j

w2

)]
dBi =

[
− 1

2

∫
∂Ĉ0

F
∂w2

∂Bi
−
∮
a−i

w1w2

v

]
dBi.

(4.3.47)
Plugging these expressions into (4.3.25, 4.3.26) one obtains the formula (4.3.21). (4.3.22) follows
from (4.3.21) by applying the Stokes’ theorem and the fact that in the interior of Ĉ0 away from
poles, when differentiating with respect to any local coordinate ξ, one has:

dξ

(
∂w2

∂P

∫ x

p0

w1

)
=

∂w2

∂P
∧ w1 = −w1 ∧

∂w2

∂P
= −dξ

(
w1

∫ x

p0

∂w2

∂P

)
= 0, (4.3.48)

where P ∈ (Ai, Bi)
g−

i=1

Proof of Proposition 4.3.1. Case of two nearby differentials Q0, Q1 ∈ Qg,n{r}: assume that a
differential Q0 defines double cover Ĉ by equation v20 = Q0. Let U be a simply-connected neigh-
borhood of Q0 and take Q1 ∈ U. For sufficiently small ℏ this differential may be expressed as
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Q1 = Q0+ℏQ̃, where Q̃ is a quadratic differential with at most simple poles at (zj)nj=1. The canon-
ical cover Ĉℏ, defined by (vℏ1)

2 = Q1, becomes ℏ-dependent. Consider Pℏ to be one of the periods
(A

(1)
i , B

(1)
i ) of vℏ1 . Then its k’th derivative with respect to ℏ is given by:

∂k

∂ℏk
Pℏ

∣∣∣
ℏ=0

= (−1)k+1 (2k − 3)!!

2k

∮
s

Q̃k

v2k−1
0

, (4.3.49)

where s is an element of H−(Ĉ,Z).
To justify these formulas consider Pℏ =

∮
s(ℏ) v

ℏ
1 as the integral on the base curve C via the

projection π : Ĉℏ −→ C. If cycle s(ℏ) belongs to the subset of H−(Ĉℏ), that could be represented
in the form (c − cµ)(ℏ), where c, cµ(ℏ) are two lifts of the corresponding cycle c ∈ H1(C), using
skew-symmetry of vℏ1 it projects onto this cycle, which is independent of ℏ. If s(ℏ) is a cycle on a
handle of Ĉℏ obtained by gluing along branch cuts on two copies of C, it projects onto the contour
encircling or passing through the branch cut arranged between pairs of zeroes of Qℏ

1. Despite the
positions of the branch points vary along with ℏ, as the integral depends only on the homotopy
class of the cycle, we may assume that the projection π(s(ℏ)) is kept fixed on C. In either case,
differentiation commutes with the integral and one has

∂

∂ℏ

∮
s(ℏ)

vℏ1 =
∂

∂ℏ

∮
π(s(ℏ))

√
Q0 + ℏQ̃ =

∮
π(s(ℏ))

∂

∂ℏ

√
Q0 + ℏQ̃, (4.3.50)

and the differentiation is followed by pullback to Ĉℏ. Higher derivatives are obtained the same way.
Applying this argument, we can expand period coordinates by powers of ℏ. Write

Pℏ = Pℏ

∣∣∣
ℏ=0

+
∂

∂ℏ
Pℏ

∣∣∣
ℏ=0

ℏ+ ...+
∂k

∂ℏk
Pℏ

∣∣∣
ℏ=0

ℏk

k!
+ ... = (4.3.51)

=

∮
s
v0 +

ℏ
2

∮
s

Q̃

v0
+ ...+ ℏk

(1
2

k

)∮
s

Q̃k

v2k−1
0

+ ... (4.3.52)

Plugging ℏ-expansions of the periods (A(1)
i , B

(1)
i ) into the potential θ1 (4.3.12) and arranging terms

by powers of ℏ, we write with the help of the pairing notation (4.3.20):

θ1 =

〈∮
v1, d

∮
v1

〉
=

〈∮
v0, d

∮
v0

〉
+ ℏ

[
1

2

〈∮
v0, d

∮
Q̃

v0

〉
+

1

2

〈∮
Q̃

v0
, d

∮
v0

〉]
+ (4.3.53)

+

∞∑
k=2

ℏk
[(1

2

k

)(〈∮
v0, d

∮
Q̃k

v2k−1
0

〉
+

〈∮
Q̃k

v2k−1
0

, d

∮
v0

〉)
+ (4.3.54)

+

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)〈∮
Q̃l

v2l−1
0

, d

∮
Q̃k−l

v
2(k−l)−1
0

〉]
. (4.3.55)

We will treat separately the expressions near ℏ1 and ℏk, k ≥ 2.
Coefficient near ℏ1: noticing that

d

〈∮
v0,

∮
Q̃

v0

〉
=

〈
d

∮
v0,

∮
Q̃

v0

〉
+

〈∮
v0, d

∮
Q̃

v0

〉
, (4.3.56)
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the expression near ℏ1 could be rewritten as

1

2
d

〈∮
v0,

∮
Q̃

v0

〉
+

〈∮
Q̃

v0
, d

∮
v0

〉
. (4.3.57)

Applying the RBI, the pairing
〈∮

v0,
∮ Q̃

v0

〉
could be written as the sum over residues inside the

fundamental domain. Differential Q̃, being lifted to Ĉ, gains double zeroes at branch points xi,
which are the zeroes of Q0, and simple poles at preimages of zj . That makes Q̃

v0
holomorphic, while

v0 has poles at {z(1)j , z
(2)
j }nj=1. Therefore using that near z

(1)
j (z(2)j ) in the local coordinate (4.2.12)

v0 = ± rj
ζi
dζi we write

d

[
n∑

j=1

πi res
{z(1)j ,z

(2)
j }

(
v0

∫ x

p0

Q̃

v0

)]
= d

[
n∑

j=1

πi rj

∫ z
(1)
j

z
(2)
j

Q̃

v0

]
. (4.3.58)

We will also express the pairing
〈∮ Q̃

v0
, d
∮
v0

〉
in a different form, introducing the system of local

coordinates on Mg,n. For simplicity here we restrict us to the case g ≥ 2 (low genus cases g =
0, 1 could be covered by analogy following [32]). At generic point of the moduli space Mg,n the
quadratic differential Q̃ could be represented as a linear combination of 3g−3 products of normalized
holomorphic differentials ujuk, where (jk) ∈ D for some subset D of entries of matrix Ω, and
additional n quadratic differentials encoding the meromorphic part could be represented by the
following generically meromorphic differentials Qk whose only pole of order one located at zk :

Qzk(t) =
1

4πi

ui(t)uj(zk)− ui(zk)uj(t)

u2j (zk)
B(t, zk), (4.3.59)

here ui and uj are two arbitrary normalized holomorphic differentials such that uj(zk) ̸= 0.
Using the variational formulas (4.2.26) after lifting the function ui

uj
(x) to Ĉ we get

∂

∂Ps

[
ui
uj

(zk)

]
=

∂

∂Ps

[
ui
uj

(z
(1)
k )

]
=

∮
s∗

Qz
(1)
k

v0
, (4.3.60)

where Qz
(1)
k is a lift of Qzk to Ĉ. The entries Ωjk, (jk) ∈ D of the period matrix can serve as

the moduli of the base curve C, while ui
uj
(zk) := qk code the positions of poles, providing in total

3g − 3 + n local coordinates on Mg,n.

At generic point of Mg,n quadratic differential Q̃ can be expressed as

Q̃ =
∑

(jk)∈D

pjk ujuk +

n∑
l=1

plQ
zl , pjk, pl ∈ C. (4.3.61)

Then applying variational formulas (4.2.25) and (4.3.60) one has〈∮
Q̃

v0
, d

∮
v0

〉
=

g−∑
j=1

[(∮
b−j

Q̃

v0

)
dA

(0)
j −

(∮
a−j

Q̃

v0

)
dB

(0)
j

]
= (4.3.62)
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=
∑

(jk)∈D

pjk

g−∑
j=1

[(∮
b−j

ujuk
v0

)
dA

(0)
j −

(∮
a−j

ujuk
v0

)
dB

(0)
j

]
+ (4.3.63)

+
n∑

l=1

pl

g−∑
j=1

[(∮
b−j

Qz
(1)
l

v0

)
dA

(0)
j −

(∮
a−j

Qz
(1)
l

v0

)
dB

(0)
j

]
= (4.3.64)

=
∑

(jk)∈D

pjk

g−∑
j=1

[
∂Ωij

∂A
(0)
j

dA
(0)
j +

∂Ωij

∂B
(0)
j

dB
(0)
j

]
+

n∑
l=1

pl

g−∑
j=1

[
∂ql

∂A
(0)
j

dA
(0)
j +

∂ql

∂B
(0)
j

dB
(0)
j

]
= (4.3.65)

=
∑

(jk)∈D

pjkdΩjk +
n∑

l=1

pldql. (4.3.66)

Therefore, the term near ℏ1 becomes

d

[
n∑

j=1

πi rj
2

∫ z
(1)
j

z
(2)
j

Q̃

v0

]
+
∑

(jk)∈D

pjkdΩjk +

n∑
l=1

pldql. (4.3.67)

Coefficients near ℏk, k ≥ 2: by Lemma 4.3.1 we can rewrite the pairings appearing in (4.3.54)
as 〈∮

Q̃l

v2l−1
0

, d

∮
Q̃k−l

v
2(k−l)−1
0

〉
=

1

2

∫
∂Ĉ0

(
Q̃l

v2l−1
0

∫ x

p0

δ
Q̃k−l

v
2(k−l)−1
0

)
+

〈∮
Q̃k

v2k−1
0

, d

∮
v0

〉
. (4.3.68)

Also 〈∮
v0, d

∮
Q̃k

v2k−1
0

〉
=

1

2

∫
∂Ĉ0

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
+

〈∮
Q̃k

v2k−1
0

, d

∮
v0

〉
. (4.3.69)

Thus, the expression (4.3.54) near ℏk, k ≥ 2 becomes

(1
2

k

)
1

2

∫
∂Ĉ0

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
−

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)
1

2

∫
∂Ĉ0

(
δ

Q̃k−l

v
2(k−l)−1
0

∫ x

p0

Q̃l

v2l−1
0

)
+ (4.3.70)

+

[
k∑

l=0

(1
2

l

)( 1
2

k − l

)]〈∮
Q̃k

v2k−1
0

, d

∮
v0

〉
. (4.3.71)

Using the identity

1 + t = (
√
1 + t)2 =

( ∞∑
k=0

(1
2

k

)
tk

)2

=

∞∑
k=0

tk

[
k∑

l=0

(1
2

l

)( 1
2

k − l

)]
, |t| ≤ 1. (4.3.72)

and comparing the expressions near same powers of t we conclude that the piece (4.3.71) is zero.
Further, we can represent the expression in (4.3.70) as the sum over residues at the branch points
xi. Notice that the first term also has additional residues near {z(1)j , z

(2)
j }nj=1 due to simple poles of

v0:

n∑
j=1

(1
2

k

)
πi res

{z(1)j ,z
(2)
j }

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
+ (4.3.73)

60



+

4g−4+2n∑
i=1

πi res
xi

[(1
2

k

)
v0

∫ x

p0

δ
Q̃k

v2k−1
0

+

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)(
Q̃l

v2l−1
0

∫ x

p0

δ
Q̃k−l

v
2(k−l)−1
0

)]
. (4.3.74)

Similarly to (4.3.58), the sum (4.3.73) could be rewritten as

d

[
n∑

j=1

(1
2

k

)
πi rj

∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

]
, (4.3.75)

here we used that the derivatives with respect to the coordinates (A
(0)
i , B

(0)
i )g

−

i=1 commute with the
integral.

Consider the expression defined on the double cover π : Ĉ −→ C, given by v20 = Q0 in T ∗C:

res
xi

(√
Q0 + ℏQ̃

∫ x

p0

δ

√
Q0 + ℏQ̃

)
, (4.3.76)

where xi is a zero of Q0 on C.

Formally, the Abelian differential v̂ℏ =

√
Q0 + ℏQ̃ is globally defined on the h-dependent double

cover π̂ : ˆ̂Cℏ −→ Ĉ, given by (v̂ℏ)
2 = Q0 + ℏQ̃ in T ∗Ĉ (note that Ĉ itself is a double cover of C).

Lifted from C to Ĉ, Q0 has a 4th-order zeros at xi and double poles at (z(1)j , z
(2)
j )nj=1, while Q̃ gains a

2nd-order zero at xi and simple poles at (z(1)j , z
(2)
j ). Thus, the map π̂ is brached at 8g−8+4n simple

zeroes x̃ℏj of Q0 + ℏQ̃. The double cover ˆ̂Cℏ is smooth everywhere except for preimages of double
zeroes (xi)

4g−4+2n
i=1 of Q0 + ℏQ̃ , where ˆ̂Cℏ gains nodes. The genus ˆ̂g of ˆ̂Cℏ equals 12g − 11 + 4n.

Letting ℏ −→ 0, the nodes smoothen out and the covering surface ˆ̂Cℏ degenerates to the pair of
smooth surfaces Ĉ(1,2). On the base curve Ĉ that corresponds to the merging of triplets of points:
two simple zeroes x̃ℏi1 , x

ℏ
i2

of Q0 + ℏQ̃ converge to a double zero at xi, increasing its multiplicity to
4.

In the local coordinate z(x) on Ĉ: Q0 = v20 = dz2, Q̃ = Q̃(z)dz2. Differentiating with respect
to the coordinates (A

(0)
i , B

(0)
i )g

−

i=1 according to the rule (4.3.23), when the coordinate z(x) is kept
fixed, one has that the residue could be written as

res
xi

(√
Q0 + ℏQ̃

∫ x

p0

ℏ δQ̃

2

√
Q0 + ℏQ̃

)
= 0. (4.3.77)

The residue vanishes since the expression inside is holomorphic at xi. Then we can expand the
left-hand side by powers of ℏ and observe that the coefficients near the powers of ℏ in the series are
exactly the terms appearing in the sum (4.3.74). It follows that these coefficients must vanish too.
Thus, the coefficient near ℏn, n ≥ 2 reduces to the expression (4.3.75).

Full expansion: combining (4.3.67) and (4.3.75) we have that

θ1 − θ0 = d

[
n∑

j=1

πi rj

[ ∞∑
k=1

ℏk
(1

2

k

)∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

]]
+ ℏ
[ ∑
(jk)∈D

pjkdΩjk +
n∑

l=1

pldql

]
. (4.3.78)

We further notice, similarly to the argument in (4.3.49), that the infinite series is formally the
Taylor expansion by powers of ℏ of the expression∫ z

(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 −
∫ z

(1)
j

z
(2)
j

v0. (4.3.79)
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The issue is that the integrands are singular at the endpoints of the integration path, and one
requires a regularization of the integral to have a proper identity. Considering the regularization
proposed in (4.3.19) one can see that

reg
∫ z

(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 = reg
∫ z

(1)
j

z
(2)
j

v0 +

∞∑
k=1

ℏk
(1

2

k

)∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

, (4.3.80)

where the integrals near ℏk are already regular. Using that we rewrite the difference of potentials
as

θ1 − θ0 = d

[
n∑

j=1

πi rj

(
reg
∫ z

(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 − reg
∫ z

(1)
j

z
(2)
j

v0

)]
+ ℏ
[ ∑
(jk)∈D

pjkdΩjk +
n∑

l=1

pldql

]
. (4.3.81)

Case of two arbitrary differentials Q0, Q1 ∈ Qg,n{r}. Theorem 1.3 of [12] asserts that
generically (outside of hyperelliptic locus for g ≥ 3) space Qg,n, and thus Qg,n{r}, is connected. Let
γt = Qt : [0, 1] −→ Qg,n{r} be a path such that γ(0) = Q0, γ(1) = Q1. For each t the function

∮
si
vt

is holomorphic on Qg,n{r} and could be expanded by the Taylor series in some simply-connected
open neighborhood Ut of Qt. Then

⋃
t Ut provides and open cover for γt. Due to compactness of

γt we can choose some finite subcover
⋃

ti
Uti , i ∈ {0, ..., N}. We can assume Q0 = Qt̂0

∈ Ut0 ,
Q1 = Qt̂N+1

∈ UtN and take Qt̂i
∈ γ ∩ Uti ∩ Uti−1 , i ∈ {1, ..., N} (see Figure 4).

Due to (4.3.81)

θt̂i+1
− θt̂i = d

[
n∑

j=1

πirj

(
reg
∫ z

(1)
j

z
(2)
j

vt̂i+1
− reg

∫ z
(1)
j

z
(2)
j

vt̂i

)]
+
[ ∑
(jk)∈D

p
(t̂i+1,t̂i)
jk dΩjk +

n∑
j=1

p
(t̂i+1,t̂i)
l dql

]
,

(4.3.82)
where (p

(t̂i+1,t̂i)
jk , p

(t̂i+1,t̂i)
l ) are coefficients of the linear representation of (Qt̂i+1

− Qt̂i
) in the basis

(ujuk, Q
zl).

Then applying the telescoping series, one has

θ1 − θ0 =

N∑
i=0

(θt̂i+1
− θt̂i) =

= d

[
n∑

j=1

πirj

(
reg
∫ z

(1)
j

z
(2)
j

v1 − reg
∫ z

(1)
j

z
(2)
j

v0

)]
+
[ ∑
(jk)∈D

p
(1,0)
jk dΩjk +

n∑
l=1

p
(1,0)
l dql

]
,

(4.3.83)

where the latter expression, using (4.3.10), is exactly the 1-form 1
2Θ(S0−S1). Applying differential to

both sides of (4.3.83) one obtains the first statement of the proposition. If Θ(S0−S1) is assumed closed,
then by the Poincare lemma it could be locally integrated, leading to the second statement.
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Qt̂0

Qt̂N+1

Qt̂2

Qt̂1

Ui0

Ui2

UiN

Ui1

Figure 4: Sequence of differentials Qt̂i

Remark 4.3.3. In cases when Qi, i = 0, 1 are both holomorphic or with first order poles, following
the lines (4.3.62-4.3.66) we can identify the potentials

g−∑
k=1

(B
(i)
k dA

(i)
k −A

(i)
k dB

(i)
k ) =

∑
(jk)∈D

p
(i)
jkdΩjk +

n∑
l=1

p
(i)
l dql (4.3.84)

and Proposition 4.3.1 immediately follows. Such approach was taken in [8] and [32].

Combining the results of Theorem 4.3.1 and Proposition 4.3.1 we can formulate a condition for
projective connection S to become admissible.

Theorem 4.3.2. The monodromy map

F(S) : Qg,n{r} −→ CVg,n{m} (4.3.85)

is a symplectomorphism with F∗
(S)ΩG = −Ωhom iff the 1-form Θ(S−SB), corresponding to family of

quadratic differentials S − SB and locally defined on Mg,n, is closed, dΘ(S−SB) = 0. Equivalently,
iff there exists a local holomorphic function G(S−SB) on Mg,n, such that

dG(S−SB) = Θ(S−SB). (4.3.86)

The computation similar to (4.3.62-4.3.66) (performed backwards) allows us to characterize the
admissible projective connection in terms of the 1-form defined on Qg,n{r} in period coordinates.

Corollary 4.3.2. The projective connection S ∈ Sg,n is admissible iff the following locally defined
1-form on Qg,n{r}

Θ(S−SB) =

g−∑
j=1

[(∮
b−j

S − SB

v

)
dAj −

(∮
a−j

S − SB

v

)
dBj

]
(4.3.87)

is closed, dΘ(S−SB) = 0.

The following corollary gives an alternative characterization of admissible projective connections
which does not refer to the Bergman projective connection:
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Corollary 4.3.3. The projective connection S ∈ Sg,n is admissible iff the following locally defined
1-form on Qg,n{r}

Θ(S−Sv) =

g−∑
j=1

[(∮
b−j

S − Sv

v

)
dAj −

(∮
a−j

S − Sv

v

)
dBj

]
(4.3.88)

is closed, dΘ(S−Sv) = 0.

Proof. Notice, that from (4.2.34) it follows that 1-forms Θ(S−Sv) and Θ(S−SB) differ by the closed
form (24πi)d log τB|r so, their conditions of closeness are equivalent.

In [8] authors discussed alternative ways of fixing the reference projective connection. It was
showed that if S is chosen to be either Schottky, Wirtinger or Bers projective connection, it is
equivalent to the Bergman projective connection SB in the sense (4.3.86). While explicit formulas
G(S−SB) for Schottky and Wirtinger connections were derived in [8], for Bers connection it was only
conjectured, and recently proven in [17]. Moreover, the definition of Bergman projective connection
itself depends on the choice of Torelli marking on C. Let two Torelli markings ασ and α be related
by Sp(2g,Z) matrix

σ =

(
D C
B A

)
:

(
b
a

)σ

= σ

(
b
a

)
. (4.3.89)

Then two corresponding Bergman projective connections Sσ
B and SB are related by

Sσ
B = SB − 12πi

∑
1≤j≤k≤g

ujuk
∂

∂Ωjk
log det(CΩ+D). (4.3.90)

and also equivalent due (4.3.86) with the generating function G(Sσ
B−SB) given by

G(Sσ
B−SB) = −12πi log det(CΩ+D). (4.3.91)

That allows us to formulate the following corollary of Theorem 4.3.2.

Corollary 4.3.4. If S ∈ Sg,n is chosen to be either Bergman (corresponding to any Torelli marking),
Schottky, Wirtinger or Bers (defined with respect their own data) then the monodromy map

F(S) : Qg,n{r} −→ CVg,n{m} (4.3.92)

is a symplectomorphism with F∗
(S)ΩG = −Ωhom.

4.3.3 Definition of the monodromy generating function

Fixing the Bergman projective connection as the base connection S = SB we may choose a
symplectic potential on the moduli space Qg,n{r} in period coordinates

θhom =

g−∑
j=1

(
BjdAj −AjdBj

)
(4.3.93)

with another symplectic potential on the character variety CVg,n{m} in homological shear coordi-
nates

θG =

g−∑
j=1

(
ρb−j

dρa−j
− ρa−j

dρb−j

)
(4.3.94)
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and consider the generating function of symplectomorphism F(SB) (the Yang-Yang function intro-
duced in [41] ) given by

dGB = F∗
(SB)θG − θhom. (4.3.95)

Assuming that the triangulation of the surface C used to define homological shear coordinates is
specified by the horizontal trajectories of the GMN-differential Q, the remaining parameters that
define the function GB include the choice of the Torelli marking on C and the choice of generators
(a−j , b

−
j ) in H−. It is easy to see, that the symplectic potentials are invariant under symplectic

transformations of the generators in H−. Namely, under the transformation σ ∈ Sp(2g,Z)

σ =

(
C− A−
D− B−

)
:

(
b−
a−

)σ

= σ

(
b−
a−

)
(4.3.96)

the potentials θhom and θG remain the same, leaving the function GB also invariant. The question
how the change of Torelli marking affects the monodromy generating function was posed in [7] and
Proposition 4.3.1 allows us to provide the answer. Under the change (4.3.89) of the canonical basis
of C the Goldman potential θG remains invariant, while the homological potentials θσhom, θhom for
new and old Torelli markings are related by the term (4.3.14)

θσhom = θhom + dGhom (4.3.97)

In our setting, with the help of (4.3.90) and (4.3.91) one has

Q0 = Q, Q1 = Q+ 6πi
∑

1≤j≤k≤g

ujuk
∂

∂Ωjk
log det(CΩ+D) (4.3.98)

and

dGhom = d

[
n∑

i=1

πiri

(
reg
∫ z

(1)
i

z
(2)
i

v1 − reg
∫ z

(1)
i

z
(2)
i

v0

)]
+ 6πid log det(CΩ+D), (4.3.99)

where v20 = Q0, v
2
1 = Q1 define two different canonical coverings. Combining that with the definition

of the generating function (4.3.95) we have

Proposition 4.3.2. Under the change (4.3.89) of the Torelli marking the monodromy generating
function transforms as

Gσ
B = GB +

n∑
i=1

πiri

(
reg
∫ z

(1)
i

z
(2)
i

v1 − reg
∫ z

(1)
i

z
(2)
i

v0

)
+ 6πi log det(CΩ+D), (4.3.100)

where v20 = Q and v21 = Q+ 6πi
∑

1≤j≤k≤g ujuk
∂

∂Ωjk
log det(CΩ+D).

4.4 Generalized WKB expansion of the Monodromy generating
function

The WKB method was originally introduced by Wentzel, Kramers, and Brillouin as a way of
finding approximate solutions of the Schrödinger equation

ℏ2∂2ϕ(x, ℏ) + U(x, ℏ)ϕ(x, ℏ) = 0 (4.4.1)
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in the semiclassical limit ℏ ≪ 1. The asymptotic series that solve (4.4.1) are generically divergent
and one needs to apply Borel resummation to obtain genuine analytic solutions [44]. Here we employ
exact WKB method to study the asymptotic expansion of the Monodromy generating function. We
assume that the potential U(x, ℏ) has the form

U(x, ℏ) = Q(x) + ℏQ1(x) + ℏ2Q2(x). (4.4.2)

While this potential appears in a problem of characterization of Stokes graphs [25] and genus
zero explicit computations of the isomonodromy deformations [10], in present context it serves as a
generalization of the equation previously studied in [7] with regards to the symplectic geometry of
the monodromy map.

In our assumption Q is a quadratic differential varying within Qg,n{r}, Q1 is a holomorphic
section of T ∗Mg,n (i.e., a quadratic differential with at most simple poles at the marked points),
and Q2 =

1
2SB is the Bergman projective connection.

4.4.1 WKB approximation of the Schrödinger equation

To study the asymptotic expansion of the monodromy generating function GB we consider the
second order equation in the form

∂2ϕ+
(1
2
SB − Q1

ℏ
− Q

ℏ2
)
ϕ = 0, (4.4.3)

where Q ∈ Qg,n{r}, while Q1 is a fixed meromorphic quadratic differential assumed to depend
holomorphically on moduli of Mg,n, with at most simple poles at the punctures (zj)

n
j=1. This is a

generalized version of the equation originally studied in [7], where Q1 ≡ 0.
The WKB approximation for this equation is performed in the following way: consider the

canonical double cover Ĉℏ given by the equation

v2ℏ =
Q

ℏ2
. (4.4.4)

Rescaling the differential v = ℏvℏ pass to the cover v2 = Q which is now independent of ℏ. Choose
some base point x0. In terms of local coordinate z(x) =

∫ x
x0

v and the function φ(x) = ϕ
√
v(x)

equation (4.4.3) takes the form

φzz + (q(z)− ℏ−2 − p(z)ℏ−1)φ = 0, (4.4.5)

where
q =

SB − Sv

2v2
p =

Q1

v2
, (4.4.6)

(notice that in local coordinate z(x) the Schwarzian projective connection (4.2.18) vanishes). Intro-
ducing the asymptotic series s =

∑∞
k=−1 ℏksk write the solution for (4.4.5) in the form

fx0 = v−
1
2 exp

∫ x

x0

(ℏ−1s−1 + s0 + ℏs1 + ...)v, (4.4.7)

where sk are meromorphic functions on Ĉ. The asymptotic series s satisfies the Ricatti equation:

ds+ s2v = −qv + ℏ−1pv + ℏ−2v. (4.4.8)
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Then plugging its expansion into (4.4.8) and comparing terms near the same powers of ℏ one gets
the following first terms sk :

s−1 = ±1, s0 =
p

2s−1
, s1 = −dp

4v
− 1

2s−1

(
p2

4
+ q

)
, (4.4.9)

while the consecutive terms satisfy the recurrence relation

sk+1 = − 1

2s−1

(
dsk
v

+
∑

j+l=k
j,l≥0

sjsl

)
, k ≥ 1. (4.4.10)

In particular, when k = 2, we get:

s2 =
1

8v
d

(
dp

s−1v
+

p2

2
+ 2q

)
− pdp

8v
+

1

4s−1

(
qp− p3

4

)
. (4.4.11)

There is an ambiguity in choosing the value of s−1, which corresponds to the choice of the
sign for the square root

√
Q. Further below we shall assume that s−1 = +1. To obtain another

asymptotic series corresponding to s−1 = −1 it is sufficient to apply involution µ to get µ∗v = −v.
We define even and odd part of the asymptotic series s by

sodd =
1

2
(s+ µ∗s), seven =

1

2
(s− µ∗s). (4.4.12)

Notice that µ∗sodd = sodd and µ∗seven = −seven, while

µ∗(soddv) = −soddv, µ∗(sevenv) = sevenv. (4.4.13)

Lemma 4.4.1. The following equation holds:

dsodd = −2sevensoddv. (4.4.14)

Proof. Expressing s = sodd + seven and plugging it into (4.4.8) we have

d(sodd + seven) + (s2odd + s2even + 2soddseven)v = −qv − ℏ−1pv − ℏ−2v. (4.4.15)

This equality contains terms both symmetric and skew-symmetric under involution. Comparing
only symmetric terms one gets

dsodd + 2sevensoddv = 0. (4.4.16)

Using this relation, it is easy to obtain two local WKB-solutions for the equation (4.4.3):

f±
x0

=
1

(soddv)
1
2

exp

[
±
∫ x

x0

soddv

]
. (4.4.17)

Solutions are unique in each triangle face of the graph ΣQ from Figure 3. In the i’th face of ΣQ

the initial point of integration x0 is chosen to coincide with zero xi contained in this face and
called a turning point (see f.e. [28]). The differential soddv is multi-valued on the base curve C and
generically singular at xi. To define the integral correctly we pass to the double cover Ĉ where soddv
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is well-defined. Skew-symmetry of soddv implies it has a vanishing residue at xi. Therefore, we can
define the integral by ∫ x

xi

soddv =
1

2

∫ x(1)

x(2)

soddv, (4.4.18)

where we join preimages x(1) and x(2) of x by an arc passing through the branch cut, which connects
xi with some other branch point.

Introduce the meromorphic differentials

vk = (sodd)kv. (4.4.19)

Analytic continuation of the WKB-solutions (4.4.17) through the edges of graph ΣQ (from Figure
3) gives rise to the relation between the homological shear coordinates and the Voros symbols –
integrals of soddv over the elements of H−. The following proposition generalizes the one stated in
[7] to the case when Q1 ̸= 0 and is proven in complete analogy.

Proposition 4.4.1 ([7]). For each l ∈ H− the homological shear coordinate ρl admits the following
asymptotic expansion (in Poincaré sense)

ρl(ℏ) ∼
∫
l
soddv =

1

ℏ

∫
l
v−1 +

∫
l
v0 + ℏ

∫
l
v1 + ... ℏ −→ 0+, (4.4.20)

where the relation is understood modulo an addition of πik, k ∈ Z.

Remark 4.4.1. The similar result was present in [2] where the meromorphic potential in (4.1.1)
was arranged in a different way, such that the double poles with fixed biresidues were attached to
the reference meromorphic projective connection, while in our case these double poles belong to the
quadratic differential Q.

4.4.2 WKB expansion of the Yang-Yang function

The requirement for the monodromy map of the equation (4.4.3) to be a symplectomorphism
imposes a restriction on the differential Q1. We can regard

S = SB − 2Q1

ℏ
(4.4.21)

as a chosen base projective connection, then the condition for it to be admissible is ruled by Theorem
4.3.2. Namely, the form Θ(Q1), defined locally on Mg,n, must be closed, dΘ(Q1) = 0. The generating
function GB(ℏ) of this symplectomorphism is defined by

dGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ), (4.4.22)

where the symplectic potentials θG and θhom are defined by (4.3.93) and (4.3.94):

θG(ℏ) =
g−∑
j=1

(
ρbjdρaj − ρajdρbj

)
(ℏ), (4.4.23)

here ρl(ℏ) is the homological shear coordinate corresponding to a loop l ∈ H− and

θhom(ℏ) =
1

ℏ2

g−∑
j=1

(
BjdAj −AjdBj

)
, (4.4.24)
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here (Aj =
∮
a−j

v,Bj =
∮
b−j

v) are period coordinates on Qg,n{r}. Using the pairing notation (4.3.20)
the symplectic potential θhom in period coordinates reads as

θhom(ℏ) =
1

ℏ2

〈∮
v, d

∮
v

〉
. (4.4.25)

The potential θG in homological shear coordinates ρl(ℏ) by means of the expansion (4.4.20) of
Proposition 4.4.1 has the following expression

θG(ℏ) =
∞∑

i=−2

ℏi
∑
l+k=i
l,k≥−1

〈∮
vl, d

∮
vk

〉
. (4.4.26)

Meromorphic differentials vk could be obtained by antisymmetrizing the differentials skv, where
functions sk are given by (4.4.9-4.4.10). First four differentials vk take the following form:

v−1 = v, v0 =
Q1

2v
, (4.4.27)

v1 = −Q2
1

8v3
− qv

2
, v2 =

1

4

(
q
Q1

v
− Q3

1

v5

)
. (4.4.28)

By plugging (4.4.26) in (4.4.22) we see that the coefficient in front of ℏ−2 in the expansion of
(4.4.22) vanishes and

dGB(ℏ) =
∞∑

i=−1

ℏi
∑
l+k=i
l,k≥−1

〈∮
vl, d

∮
vk

〉
:=

∞∑
i=−1

ℏidGi, ℏ −→ 0+. (4.4.29)

Equation for dG−1:

dG−1 =

〈∮
v−1, d

∮
v0

〉
+

〈∮
v0, d

∮
v−1

〉
(4.4.30)

using the expressions (4.4.27-4.4.28) for vk could be written as follows

dG−1 =
1

2

〈∮
v,

∮
Q1

v

〉
+

1

2

〈∮
Q1

v
, d

∮
v

〉
. (4.4.31)

Notice that (after relabeling Q̃ −→ Q1, v0 −→ v ) this is exactly the term (4.3.53) near ℏ1 appearing
in the expansion of the potential θ1 in the proof of Proposition 4.3.1. Thus, we immediately get

dG−1 = Θ(Q1) + d

[
n∑

j=1

πi rj
2

∫ z
(1)
j

z
(2)
j

Q1

v

]
, (4.4.32)

where before we assumed that the form Θ(Q1) is closed on Mg,n. Then the integration leads to

Proposition 4.4.2. The term G−1 of the generalized WKB expansion of the monodromy generating
function has the following expression

G−1 = G(Q1) +

n∑
j=1

πi rj
2

∫ z
(1)
j

z
(2)
j

Q1

v
, (4.4.33)

where there exists local holomorphic function G(Q1) on the moduli space Mg,n, such that

dG(Q1) = Θ(Q1). (4.4.34)
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The geometrical meaning of the term G−1 is that the condition of closeness of dG−1 (or equiv-
alently the existence of G(Q1)) is an obstruction for the monodromy map F(SB−Q1/ℏ) to be a sym-
plectomorphism.

Equation for dG0:

dG0 =

〈∮
v−1, d

∮
v1

〉
+

〈∮
v0, d

∮
v0

〉
+

〈∮
v1, d

∮
v−1

〉
(4.4.35)

using the expressions (4.4.27-4.4.28) for vk could be written as follows

dG0 =

[
1

4

〈∮
Q1

v
, d

∮
Q1

v

〉
− 1

8

〈∮
v, d

∮
Q2

1

v3

〉
− 1

8

〈∮
Q2

1

v3
, d

∮
v

〉]
− (4.4.36)

−

[
1

2

〈∮
v, d

∮
qv

〉
+

1

2

〈∮
qv, d

∮
v

〉]
. (4.4.37)

The term in the first bracket is the coefficient (4.3.54) near ℏ2 in the expansion of the potential
θ1 in the proof in Proposition 4.3.1 and it equals

d

[
n∑

j=1

πi rj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3

]
. (4.4.38)

To compute the term in the second bracket we notice that

1

2

〈∮
v, d

∮
qv

〉
+

1

2

〈∮
qv, d

∮
v

〉
=

1

2
d

〈∮
v,

∮
qv

〉
+

〈∮
qv, d

∮
v

〉
. (4.4.39)

It follows from (4.2.34) that
〈∫

qv, d
∫
v
〉

is a differential of the Bergman tau-function, namely〈∮
qv, d

∮
v

〉
= 12πid log τB|r. (4.4.40)

Applying the variational formulas (4.2.29, 4.2.30) and the homogeneity property (4.2.32) of the
function τB on the full space Qg,n the term

〈∮
v,
∮
qv
〉

could be written as〈∮
v,

∮
qv

〉
= −12πi

g−∑
j=1

(
Aj

∂

∂Aj
+Bj

∂

∂Bj

)
log τB =

=− 12πi

[
5(2g − 2 + n)

72
−

n∑
j=1

rj
∂

∂rj
log τB

]
=

(4.4.41)

= −12πi

[
5(2g − 2 + n)

72
−

n∑
j=1

rj
12

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v
)]

. (4.4.42)

Restricting this formula to Qg,n{r} we get

d

〈∮
v,

∮
qv

〉
= d

[
n∑

j=1

πirj

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v
)]

, (4.4.43)

(alternatively, this term could be computed via the resides after applying the RBI to differentials v
and qv). Putting all terms together in (4.4.36) and integrating we obtain
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Proposition 4.4.3. The term G0 of the generalized WKB expansion of the monodromy generating
function has the following expression

G0 = −12πi log τB|r −
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v
)
+

n∑
j=1

πi rj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3
. (4.4.44)

Equation for dG1:

dG1 =

〈∮
v−1, d

∮
v2

〉
+

〈∮
v0, d

∮
v1

〉
+

〈∮
v1, d

∮
v0

〉
+

〈∮
v2, d

∮
v−1

〉
(4.4.45)

using the expressions (4.4.27-4.4.28) for vk could be written as follows

dG1 =

[
− 1

16

〈∮
Q2

1

v3
, d

∮
Q1

v

〉
− 1

16

〈∮
Q1

v
, d

∮
Q2

1

v3

〉
+

1

16

〈∮
v, d

∮
Q3

1

v5

〉
+

1

16

〈∮
Q3

1

v5
, d

∮
v

〉]
+

+

[
− 1

4

〈∮
Q1

v
, d

∮
qv

〉
− 1

4

〈∮
qv, d

∮
Q1

v

〉
+

1

4

〈∮
v, d

∮
q
Q1

v

〉
+

1

4

〈∮
q
Q1

v
, d

∮
v

〉]
.

(4.4.46)
The term in the first brackets is the coefficient (4.3.54) near ℏ3 in the expansion of the potential θ1
in the proof of Proposition 4.3.1 and it equals

d

[
n∑

j=1

πi rj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5

]
. (4.4.47)

To treat the term in the second bracket first notice that it could be rewritten as

− 1

4
d

〈∮
Q1

v
,

∮
qv

〉
− 1

2

〈∮
qv, d

∮
Q1

v

〉
+

1

4
d

〈∮
v,

∮
q
Q1

v

〉
+

1

2

〈∮
q
Q1

v
, d

∮
v

〉
. (4.4.48)

Lemma 4.3.1 in the form (4.3.22) implies that〈∮
qv, d

∮
Q1

v

〉
=

1

2

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
+

〈∮
q
Q1

v
, d

∮
v

〉
, (4.4.49)

so (4.4.48) becomes

− 1

4
d

〈∮
Q1

v
,

∮
qv

〉
+

1

4
d

〈∮
v,

∮
q
Q1

v

〉
− 1

4

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
. (4.4.50)

Let us consider the last integral. While Abelian differential δQ1

v is holomorphic, qv has residueless
4-order poles at the branch points (xi) and simple poles at the punctures {z(1)j , z

(2)
j }nj=1. So, the

integral over the boundary reduces to the computation of residues:

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
=

4g−4+2n∑
i=1

2πi res
xi

[
qv

∫ x

p0

δ
Q1

v

]
+

n∑
j=1

2πi res
{z(1)j ,z

(2)
j }

[
qv

∫ x

p0

δ
Q1

v

]
. (4.4.51)
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To compute residues near simple poles we recall the formulas (4.2.17) for q(x) and Sv and use the
local coordinate ζ (4.2.12) to write near z

(1)
j :

qv =
SB − Sv

2v
=

SB(ζ)− 1
2ζ2

2
rj
ζ

dζ =

(
− 1

4rjζ
+O(1)

)
dζ. (4.4.52)

Due to skew-symmetry of qv the expansion near z
(2)
j is the negation of the above formula. Thus,

(res
z
(1)
j

+ res
z
(2)
j

)

(
qv

∫ x

p0

δ
Q1

v

)
= d

[
− 1

4rj

∫ z
(1)
j

z
(2)
j

Q1

v

]
, (4.4.53)

since the differential d commutes with the line integral. To simplify the residue near a branch
point xi at first notice that the variational formula (4.2.28) implies that the differential δ(qv) is
holomorphic at xi, so

res
xi

[
qv

∫ x

p0

δ
Q1

v

]
= d

(
res
xi

[
qv

∫ x

p0

Q1

v

])
. (4.4.54)

Let’s assume that the Bergman projective connection admits the following expansion near xi on the
base curve C in local coordinate (4.2.11):

SB(ξ) = SB(xi) + SB
′(xi)ξ + ... (4.4.55)

Being lifted to Ĉ, it transforms like

SB(ξ̂)(dξ̂)
2 = SB(ξ)(dξ)

2 + S(ξ, ξ̂), (4.4.56)

where ξ̂ is local coordinate (4.2.10) near xi on Ĉ, S(ξ, ξ̂) is the Schwarzian derivative

S(ξ, ξ̂) =

(
ξ′′

ξ′

)′

− 1

2

(
ξ′′

ξ′

)2

(4.4.57)

where derivatives are taken with respect to ξ̂. Having that ξ = ξ̂2 we write

SB(ξ̂)(dξ̂)
2 = 4(SB(xi) + SB

′(xi)ξ̂
2)ξ̂2(dξ̂)2 − 3

2ξ̂2
(dξ̂)2. (4.4.58)

Also
Sv = − 4

ξ̂2
(dξ̂)2, v = 3ξ̂2dξ̂, (4.4.59)

leading to

qv =

[
5

12ξ̂4
+O(1)

]
dξ̂. (4.4.60)

Then the residue near xi could be expressed as

res
xi

[
qv

∫ x

p0

Q1

v

]
= res

xi

(
5dξ̂

12ξ̂4

∫ x

p0

Q1

v

)
=

5

12

1

3!

(
(Q1/v)

dξ̂

)′′

(xi) =
5

36
res
xi

(
Q1/v∫ x
xi
v

)
. (4.4.61)
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Therefore, integral (4.4.51) takes the following form∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
= d

[
4g−4+2n∑

i=1

5πi

18
res
xi

(
Q1/v∫ x
xi
v

)
−

n∑
j=1

πi

2rj

∫ z
(1)
j

z
(2)
j

Q1

v

]
. (4.4.62)

The differential of the first pairing d
〈∮ Q1

v ,
∮
qv
〉

in (4.4.50) is computed by analogy. Applying the
RBI, one has 〈∮

Q1

v
,

∮
qv

〉
= −1

2

∫
∂Ĉ0

(
qv

∫ x

p0

Q1

v

)
, (4.4.63)

resulting in

d

〈∮
Q1

v
,

∮
qv

〉
= d

[
−

4g−4+2n∑
i=1

5πi

36
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πi

4rj

∫ z
(1)
j

z
(2)
j

Q1

v

]
. (4.4.64)

Finally, applying the RBI to the pairing
〈∮

v,
∮
qQ1

v

〉
we have

〈∮
v,

∮
q
Q1

v

〉
= −

4g−4+2n∑
i=1

πi res
xi

[
q
Q1

v

∫ x

p0

v

]
+

n∑
j=1

πi res
{z(1)j ,z

(2)
j }

[
v

∫ x

p0

q
Q1

v

]
. (4.4.65)

While

res
{z(1)j ,z

(2)
j }

[
v

∫ x

p0

q
Q1

v

]
= rj

∫ z
(1)
j

z
(2)
j

q
Q1

v
, (4.4.66)

the residue near xi is computed noticing that

q
Q1

v
=

(
5

36ξ̂6
+O

(
1

ξ̂2

))
Q1

v
,

∫ x

p0

v = C(p0) + ξ̂3. (4.4.67)

Differential Q!
v is antisymmetric, and, thus, expands by even powers of ξ̂ near a branch point. That

leads to

res
xi

[
q
Q1

v

∫ x

p0

v

]
=

5

36
res
xi

[
Q1/v

ξ̂3

]
=

5

36
res
xi

(
Q1/v∫ x
xi
v

)
. (4.4.68)

Overall,

d

〈∮
v,

∮
q
Q1

v

〉
= d

[
−

4g−4+2n∑
i=1

5πi

36
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj

∫ z
(1)
j

z
(2)
j

q
Q1

v

]
. (4.4.69)

Plugging derived expressions (4.4.62), (4.4.64) and (4.4.69) into (4.4.50) and integrating we
obtain

Proposition 4.4.4. The term G1 of the generalized WKB expansion of the monodromy generating
function has the following expression

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v
+

+

n∑
j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πi rj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
.

(4.4.70)
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To sum up, we can formulate the following theorem.

Theorem 4.4.1. Consider the differential equation

∂2ϕ+
(1
2
SB − Q1

ℏ
− Q

ℏ2
)
ϕ = 0, (4.4.71)

on a Riemann surface C. Let Q be a quadratic differential on C with simple zeroes and n second
order poles at z1, ..., zn and biresidues r21, ..., r

2
n. Q1 is a meromorphic quadratic differential which

depends holomorphically on moduli of Mg,n, with at most simple poles at zj . SB is the Bergman
projective connection (4.1.12) defined with respect to some Torelli marking on C. For the chosen
base projective connection SB − 2Q1

ℏ denote by F(SB−2Q1/ℏ) the monodromy map between the moduli
space Qg,n{r/ℏ} of pairs (C, Q/ℏ2) and the symplectic leaf CVg,n{m(ℏ)} of the PSL(2,C) character
variety, where each mj(ℏ) is related to rj via (4.1.7− 4.1.8) as

rj
ℏ

= ±
[
logmj

2πi

(
logmj

2πi
− 1

)]1/2
. (4.4.72)

• The map F(SB−2Q1/ℏ) is a symplectomorphism, provided that the 1-form Θ(Q1), locally defined
on Mg,n, is closed, dΘ(Q1) = 0.

• Introduce the symplectic potential θhom (4.4.24) of the homological symplectic form on Qg,n{r/ℏ}
and symplecic potential θG (4.4.23) for the Goldman form on CVg,n{m(ℏ)} The generating function
GB of the monodromy symplectomorphism between Qg,n{r/ℏ} and CVg,n{m(ℏ)} is defined by

dGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ) (4.4.73)

and has the following asymptotics as ℏ −→ 0+ :

GB(ℏ) =
G−1

ℏ
+G0 +G1ℏ+O(ℏ2). (4.4.74)

Here

G−1 = G(Q1) +
n∑

j=1

πi rj
2

∫ z
(1)
j

z
(2)
j

Q1

v
, (4.4.75)

where the function G(Q1) is defined by (4.4.34). Its explicit form depends on the concrete choice of
Q1;

G0 = −12πi log τB|r −
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v
)
+

n∑
j=1

πi rj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3
, (4.4.76)

here log τB|r is the Bergman tau-function defined by (3.2.12) on stratum of the moduli space of
quadratic differentials with second order poles, q(x) is a meromorphic function on C given by

q(x) =
SB − Sv

2v2
, (4.4.77)

where Sv is the Schwarzian projective connection (4.2.17);

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v
+

+

n∑
j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πi rj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
,

(4.4.78)

here the first sum runs over the branch points of the double cover.
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Chapter 5

Higher WKB asymptotics and
deformation of Hitchin’s covers

We begin this chapter by formulating a proposition that allows us to derive generalized WKB
expansion of the Yang-Yang function from the regular expansion by deforming the spectral cover.
With that we adapt variational techniques from Chapters 3 and 4 to propose an alternative deriva-
tion of the term G1. We also take one step further and derive the term G2 of the expansion.

5.1 Regular and generalized WKB expansions

We can propose an alternative way of computing the expansion of Yang-Yang function GB(ℏ),
assuming we obtained the "regular" expansion of the related generating function G◦

B(ℏ) for Q1 ≡ 0.
Rewrite the equation (4.4.71) in the form

∂2ϕ+
(1
2
SB − Q+ ℏQ1

ℏ2
)
ϕ = 0, (5.1.1)

corresponding to detachment of differential Q1

ℏ from projective connection SB and joining it with
Q!

ℏ2 , so that Q+ℏQ1

ℏ2 ∈ Qg,n{r/ℏ}. This operation induces the following diagram of maps, where
symplectomorphism F(SB−2Q1/ℏ) factors through the composition F(SB)◦H of symplectomorphisms:

Qg,n{r/ℏ} Qg,n{r/ℏ}

CVg,n{m(ℏ)}

Q
H−→Q+ℏQ1

F(SB−2Q1/ℏ)
F(SB)

Denote by θ1hom(ℏ) the symplectic potential computed via the periods of the Abelian differential
vℏ, which defines canonical double cover Ĉℏ by (vℏ)2 = Q+ ℏQ1. Then the monodromy generating
function (4.4.73) admits the following representation

dGB(ℏ) = H∗(F∗
(SB)θG(ℏ)− θ1hom(ℏ)

)
+
(
H∗θ1hom(ℏ)− θhom(ℏ)

)
. (5.1.2)

The ℏ-expansion of the generating function for map H was computed in (4.3.78) along with the
proof of Proposition 4.3.1:

H∗θ1hom(ℏ)− θhom(ℏ) = d

[
n∑

j=1

πi rj

[ ∞∑
k=1

ℏk−2

(1
2

k

)∫ z
(1)
j

z
(2)
j

Qk
1

v2k−1

]]
+ ℏ−1dG(Q1). (5.1.3)
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Homological coordinates on Qg,n{r/ℏ}, defined by the periods of vℏ, holomorphically depend on ℏ.
That allows us to perform the ℏ-expansion of the pullback

H∗(F∗
(SB)θG(ℏ)− θ1hom(ℏ)

)
(5.1.4)

in two steps. At first, obtain the WKB-expansion of the generating function

F∗
(SB)θG(ℏ)− θ1hom(ℏ), (5.1.5)

assuming that ℏ of vℏ is fixed. This is equivalent to setting Q1 ≡ 0 and performing the computations
as in Section 4.4.1. One can notice that in this case only the differentials with odd indices defined
by (4.4.19) are non-zero. We denote these differentials by v◦2k+1. Corresponding regular ℏ-expansion
of G◦

B(ℏ) contains only even non-vanishing terms:

dG◦
B(ℏ) =

∞∑
i=−1

ℏ2i+2
∑
l+k=i
l,k≥−1

〈∮
v◦2l+1, d

∮
v◦2k+1

〉
:=

∞∑
i=0

ℏ2idG◦
2i, ℏ −→ 0+, (5.1.6)

and after integration reads as

G◦
B(ℏ) =

∞∑
i=0

ℏ2iG◦
2i, ℏ −→ 0+, (5.1.7)

where each term G◦
2i depends on the differential Q via period coordinates. On the second step, vary

Q by the differential ℏQ1 and expand the terms G◦
2i by Taylor series to obtain the full ℏ-expansion

for (5.1.4). The following proposition holds

Proposition 5.1.1. Let

G◦
B(ℏ) =

∞∑
i=0

ℏ2iG◦
2i, ℏ −→ 0+ (5.1.8)

be a WKB expansion of the monodromy generating function dG◦
B(ℏ) = F∗

(SB)θG(ℏ)− θhom(ℏ) of the
equation

∂2ϕ+
(1
2
SB − Q

ℏ2
)
ϕ = 0. (5.1.9)

Then the generalized WKB expansion

GB(ℏ) =
∞∑

i=−1

ℏiGi, ℏ −→ 0+ (5.1.10)

of the monodromy generating function dGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ) of the equation

∂2ϕ+
(1
2
SB − Q1

ℏ
− Q

ℏ2
)
ϕ = 0 (5.1.11)

is related to (5.1.8) by

G−1 = G(Q1) +
n∑

j=1

πi rj
2

∫ z
(1)
j

z
(2)
j

Q1

v
, (5.1.12)

G2k =

k∑
i=0

δ
(2i)
Q1

G◦
2k−2i

(2i)!
+

n∑
j=1

( 1
2

2k + 2

)
πi rj

∫ z
(1)
j

z
(2)
j

Q2k+2
1

v4k+3
, k = 0, ...∞ (5.1.13)
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G2k+1 =

k∑
i=0

δ
(2i+1)
Q1

G◦
2k−2i

(2i+ 1)!
+

n∑
j=1

( 1
2

2k + 3

)
πi rj

∫ z
(1)
j

z
(2)
j

Q2k+3
1

v4k+5
, k = 0, ...∞, (5.1.14)

where δ
(k)
Q1

f denotes a k’th variation of a moduli-dependent function f by differential Q1: δ
(k)
Q1

f =
∂k

∂ℏk f [Q+ ℏQ1]
∣∣
ℏ=0

.

Let us provide an alternative computation of the term G1 of the generalized expansion by
applying Proposition 5.1.1. Formula (5.1.14) implies

G1 = δQ1G
◦
0 ++

n∑
j=1

(1
2

3

)
πi rj

∫ z
(1)
j

z
(2)
j

Q3
1

v5
. (5.1.15)

The variation δQ1 on the space Qg,n{r} of pairs (C, Q) only affects quadratic differential Q, while
the Riemann surface C and positions of poles are kept fixed. Thus, δQ1 could be instead viewed on
the subspace Msl2

g,n{r} ⊂ Qg,n{r} of SL(2) spectral covers, defined by the quadratic differential Q
having simple zeroes and n double poles with fixed biresidues,

dimMsl2
g,n{r} = g− = 3g − 3 + n. (5.1.16)

The local coordinates on Msl2
g,n{r} are given by the subset of elements (3.3.5), consisting of the

periods of v over a−-cycles:

Aγ =

∮
a−γ

v. (5.1.17)

Having that

δQ1v =
∂

∂ℏ
[v]
∣∣∣
ℏ=0

=
Q1

2v
(5.1.18)

we represent the variation δQ1 on Msl2
g,n{r} in local coordinates Aγ as

δQ1 =

g−∑
γ=1

(∮
a−γ

Q1

2v

)
∂

∂Aγ
, (5.1.19)

implying the computation of the variation δQ1 basically boils down to varying with respect to Aγ .
It follows from Proposition 4.4.3 by letting Q1 = 0, that

G◦
0 = −12πi log τB|r −

n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v
)
. (5.1.20)

The variation of the tau-function τB is essentially the formula (3.4.62) of Theorem 3.4.4. Namely,

∂ log τB|r
∂Aγ

=
5

432

r∑
i=1

res
xi

(
u−γ∫ x
xi
v

)
−

n∑
j=1

1

48rj

∫ z
(1)
j

z
(2)
j

u−γ , (5.1.21)

where u−γ is a Prym holomorphic differential.
To compute variation of the integral involving function q(x), we first prove the following lemma:
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Lemma 5.1.1. The variations of function q(x) (4.4.6) on Msl2
g,n{r} with respect to the coordinates

Aγ take the following form:
∂q(x)

∂Aγ
= −1

2

(u−γ
v

)′′
zz

− 2
qu−γ
v

, (5.1.22)

where the second derivative of the right-hand side is computed in local coordinate z(x) =
∫ x
x1

v.

Proof. The computation follows the logic of the proof of formula (3.4.46) in Theorem 3.4.2. Recall
that on the space Msl2

g,n{r} with fixed base curve the derivative with respect to the coordinate Aγ is
defined by taking any local coordinate ξ on C away from branch points and lifting it to the spectral
curve Ĉ. In this case the deformation of the coordinate z(x) should be kept in mind. One has

∂q(x)

∂Aγ

∣∣∣
ξ(x)

=
∂q(x)

∂Aγ

∣∣∣
z(x)

+
∂q(x)

∂z(x)

∂z(x)

∂Aγ
=

∂q(x)

∂Aγ

∣∣∣
z(x)

+
[
qz

∫ x

x1

u−γ

]
, (5.1.23)

where we used that
∂v

∂Aγ
= u−γ , (5.1.24)

(see Proposition 3.4.1).
To compute the term ∂q(x)

∂Aγ

∣∣∣
z(x)

we, similarly to (3.4.46), apply the chain rule with variational

formulas (4.2.28), (5.1.24) along with Riemann Bilinear Identity to obtain

∂q(x)

∂Aγ

∣∣∣
z(x)

= −
∑

t∈int(Ĉ0)

3

4πi
res
t

(
h(x, t)v(t)

∫ t

x1

u−γ

)
, (5.1.25)

where

h(x, t) =
B2(x, t)

Q(x)Q(t)
. (5.1.26)

The integrand has poles of order four on Ĉ at t = x and t = xµ. Residues at x and xµ coincide due
to µ-symmetry of the expression under the residue. The residue at t = x is computed using the
asymptotics of h(x, t) as t → x.

Recall that if the points x, y belong to the same chart of any local coordinate ξ, then B(x, y)
has the following expansion near the diagonal

B(x, t) =
dξ(x)dξ(t)

(ξ(x)− ξ(t))2
+

1

6
SB

(
ξ(x) + ξ(t)

2

)
+O((ξ(x)− ξ(t))2). (5.1.27)

Therefore, asymptotics of the function b(x, t) = B(x,t)
v(x)v(t) in local coordinate z(x) take the form:

b(x, t) =
1

(z(x)− z(t))2
+

1

3
q(x) +

1

6
qz(x)(z(t)− z(x)) +O((z(x)− z(t))2) t → x . (5.1.28)

Hence, the function h(x, t) = b2(x, t) expands as follows near the diagonal:

h(x, t) =
1

(z(t)− z(x))4
+

2

3

q(x)

(z(t)− z(x))2
+

qz(x)

3(z(t)− z(x))
+O(1) t → x . (5.1.29)

The result of the residue computation, multiplied by 2 to take into account contributions of both x
and xµ, reads as
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∂q(x)

∂Aγ

∣∣∣
z(x)

= −1

2

(u−γ
v

)′′
zz

− 2
qu−γ
v

− qz

∫ x

x1

u−γ . (5.1.30)

Plugging it into (5.1.23) we finish the computation.

Applying Lemma 5.1.1 with the product rule we have

∂

∂Aγ

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v

)
=

1

2

(u−γ
v

)′
z
(z

(2)
j )− 1

2

(u−γ
v

)′
z
(z

(1)
j )−

∫ z
(1)
j

z
(2)
j

qu−γ +
1

4r2k

∫ z
(1)
j

z
(2)
j

u−γ . (5.1.31)

To evaluate derivatives at z
(1)
j we use distinguished local coordinate ζ(x) (4.2.12):

ζ(x) = exp
(z(x)

rj

)
. (5.1.32)

Since v has first order pole at z
(1)
j , while Prym differential u−γ is holomorphic, the function u−

γ

v has

a simple zero at z
(1)
j . Writing the expansion of u−

γ

v in local coordinate ζ

u−γ
v
(ζ) = ζ(a0 + a1ζ + . . . ), (5.1.33)

and having that

ζz(x) =
ζ(x)

rj
, (5.1.34)

we obtain (u−γ
v

)′
z
(ζ) =

ζ

rj
(a0 +O(ζ)). (5.1.35)

Thus, the derivative vanishes at z
(1)
j and, similarly, at z

(2)
j .

Combining the variations (5.1.21) and (5.1.31) together with (5.1.20) we have

∂G◦
0

∂Aγ
= −

4g−4+2n∑
i=1

5πi

36
res
xi

(
u−γ∫ x
xi
v

)
+

n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

qu−γ +

n∑
j=1

πi

8rj

∫ z
(1)
j

z
(2)
j

u−γ . (5.1.36)

We apply differential operator (5.1.19) to G◦
0 using the above result and employ a simple fact

Q1

2v
=

g−∑
γ=1

(∮
a−γ

Q1

2v

)
u−γ , (5.1.37)

to obtain

δQ1G
◦
0 = −

4g−4+2n∑
i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v
+

n∑
j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
. (5.1.38)

79



Plugging the result into (5.1.15) we finally get

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v
+

+

n∑
j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πi rj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
,

(5.1.39)

which coincides with the formula of Proposition 4.4.4.
Let us use the Proposition 5.1.1 to compute the next term of the generalized expansion. By the

formula (5.1.13) one has:

G2 = δ
(2)
Q1

G◦
0

2
+G◦

2 +
n∑

j=1

(1
2

4

)
πi rj

∫ z
(1)
j

z
(2)
j

Q4
1

v7
. (5.1.40)

While the second derivative with respect to ℏ might be obtained by differentiation (5.1.38), the
term G◦

2 should be computed independently.

Proposition 5.1.2. The term G◦
2 of the regular WKB expansion of the monodromy generating

function has the following expression

G◦
2 =

5πi

144

∑
i

res
xi

(
qv∫ x
xi
v

)
− πi

16

n∑
j=1

1

rj

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v
)
+

〈∮
v◦−1,

∮
v◦3

〉
. (5.1.41)

Proof. Equation for dG◦
2 has the following form:

dG◦
2 =

〈∮
v◦−1, d

∮
v◦3

〉
+

〈∮
v◦1, d

∮
v◦1

〉
+

〈∮
v◦3, d

∮
v◦−1

〉
. (5.1.42)

Using the formulas from Section 4.4.1 we compute first three non-zero differentials

v◦−1 = v, v◦1 = −qv

2
, v◦3 = −q2v

8
, (5.1.43)

so that the term dG◦
2 reads as

dG◦
2 = −1

8

〈∮
v, d

∮
q2v

〉
+

1

4

〈∮
qv, d

∮
qv

〉
− 1

8

〈∮
q2v, d

∮
v

〉
. (5.1.44)

Notice that this sum could be represented as

− 1

8
d

〈∮
v,

∮
q2v

〉
+

1

4

〈∮
qv, d

∮
qv

〉
− 1

4

〈∮
q2v, d

∮
v

〉
. (5.1.45)

Lemma 4.3.1 in the form (4.3.22) implies that〈∮
qv, d

∮
qv

〉
=

1

2

∫
∂Ĉ0

(
qv

∫ x

p0

δ qv

)
+

〈∮
q2v, d

∮
v

〉
, (5.1.46)

so (5.1.44) becomes
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dG◦
2 = −1

8
d

〈∮
v,

∮
q2v

〉
+

1

8

∫
∂Ĉ0

(
qv

∫ x

p0

δ qv

)
. (5.1.47)

Let us analyze the last integral. While qv has residueless 4-order poles at the branch points (xi)
and simple poles at the punctures {z(1)j , z

(2)
j }nj=1, the variational formula (4.2.28) implies that the

differential δqv is holomorphic, So, the integral over the boundary reduces to the computation of
residues:

∫
∂Ĉ0

(
qv

∫ x

p0

δ qv

)
=

4g−4+2n∑
i=1

2πi res
xi

[
qv

∫ x

p0

δqv

]
+

n∑
i=1

2πi res
{z(1)j ,z

(2)
j }

[
qv

∫ x

p0

δqv

]
. (5.1.48)

Consider

res
xi

[
qv

∫ x

p0

δqv

]
. (5.1.49)

To integrate this term with respect to moduli we use expansions (4.4.60) for qv and v near a branch
point xi computed in the distinguished coordinate ξ̂ :

qv =

[
5

12ξ̂4
+O(1)

]
dξ̂, (5.1.50)

v = dξ̂3. (5.1.51)

Then the residue at the branch point xi could be rewritten as

res
xi

(
qv

∫ x

p0

δqv
)
=

5

12

1

3!

(
δq

v

dη̂

)′′
=

5

36
res
xi

(
δqv∫ x
xi
v

)
. (5.1.52)

Write down the following identity

d

[
res
xi

(
qv∫ x
xi
v

)]
= res

xi

(
δqv∫ x
xi
v

)
+ res

xi

(
qv δ

[
1∫ x
xi
v

])
(5.1.53)

and consider differential
d

[∫ x

xi

v

]
= d [z(x)− z(xi)] . (5.1.54)

While z(x) is kept fixed under the differentiation, z(xi), which is an integral of v between branch
points, according to Lemma 3.1.1 could be represented by linear combination of the homological
coordinates Ak, Bk with half-integer coefficients. If Pk ∈ (Ak, Bk), then

∂

∂Pk

∣∣∣
z(x)

[∫ x

xi

v

]
= ak, ak = const, (5.1.55)

and

res
xi

(
qv δ

[
1∫ x
xi
v

])
= −

∑
k

res
xi

(
ak

qv(∫ x
xi
v
)2
)
dPk = 0, (5.1.56)

since the term in the residue is skew-symmetric under involution µ and, therefore, has a vanishing
residue at the branch point. Therefore, we have
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res
xi

[
qv

∫ x

p0

δqv

]
= d

[
5

36
res
xi

(
qv∫ x
xi
v

)]
. (5.1.57)

Now consider

res
{z(1)j ,z

(2)
j }

[
qv

∫ x

p0

δqv

]
. (5.1.58)

To compute residue near the pole z
(1)
j we recall the expansion (4.4.52) of qv in distinguished local

coordinate ζ:

qv =
SB − Sv

2v
=

SB(ζ)− 1
2ζ2

2
rj
ζ

dζ =

(
− 1

4rjζ
+O(1)

)
dζ. (5.1.59)

Expansion near z
(2)
j is just the negation of this formula. Having that δqv is holomorphic at poles

of v, we write

(res
z
(1)
j

+ res
z
(2)
j

)

(
qv

∫ x

p0

δqv

)
= − 1

4rj

∫ z
(1)
j

z
(2)
j

δqv. (5.1.60)

We cannot simply pullout the differential δ, since qv is singular at the endpoints of the integral. To
circumvent this issue notice that in local coordinate z(x) one has:

δ[qv] = δ

[
qv +

1

4r2j
v

]
, (5.1.61)

where the expression on right-hand side is regular. Hence,

(res
z
(1)
j

+ res
z
(2)
j

)

(
qv

∫ x

p0

δqv

)
= d

[
− 1

4rj

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v

)]
. (5.1.62)

Plugging (5.1.57) and (5.1.62) into (5.1.47) and integrating we obtain the desired formula.

Let us compute δ
(2)
Q1

G◦
0. As before, first we vary the formula (5.1.38) for δQ1G

◦
0 with respect to

Aγ on the space Msl2
g,n{r}. While the variations of differential v and function q are known and given

by (5.1.24) and (5.1.22), we also need to vary quadratic differential Q1 and the integral
∫ x
xi
v which

involves a moving branch point.
Since the differential Q1 is assumed to depend only on moduli of Mg,n, which are kept fixed

while varying with respect to Aγ , we immediately get

∂Q1

∂Aγ
= 0. (5.1.63)

The variation of
∫ x
xi
v is slightly more involved. Let xi ∈ Ĉ be a ramification point of Ĉ and

ξi = ξ(π(xi)) ∈ C be the corresponding critical value in some local coordinate ξ on C which remains
fixed under deformation of Ĉ; let ξ − ξi be a coordinate on C vanishing at π(xi) (this coordinate
deforms when Ĉ varies). A suitable local coordinate on Ĉ near xi can then be chosen to be

√
ξ − ξi.

Then by the Leibniz integral rule the differentiation with respect to Aα of the lower endpoint
also gives a contribution to the derivative and we get

∂(
∫ x
xi
v)

∂Aγ
=

∫ x

xi

u−γ +
∂ξi
∂Aγ

v

dξ
(xi). (5.1.64)
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Since on Ĉ differential v vanishes at xi of order 2, the function v
dξ has simple zero at xi and, thus,

∂(
∫ x
xi
v)

∂Aγ
=

∫ x

xi

u−γ . (5.1.65)

We apply ∂
∂Aγ

to (5.1.38) along with variational formulas (5.1.22), (5.1.24), (5.1.63) and (5.1.65) to
obtain

∂

∂Aγ
[δQ1G

◦
0] =

4g−4+2n∑
i=1

5πi

72
res
xi

 Q1u
−
γ

v2

(∫ x
xi
v
)
+ Q1

v

(∫ x
xi
u−γ

)
(∫ x

xi
v
)2

− (5.1.66)

−
n∑

j=1

πirj
4

∫ z
(1)
j

z
(2)
j

[
1

2

(u−γ
v

)′′
zz

Q1

v
+ 3q

Q1u
−
γ

v2

]
−

n∑
j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1u
−
γ

v2
. (5.1.67)

Applying differential operator (5.1.19) to δQ1G
◦
0 along with the formula (5.1.37), we get

δ
(2)
Q1

G◦
0 =

4g−4+2n∑
i=1

5πi

144
res
xi

 Q2
1

v3

(∫ x
xi
v
)
+ Q1

v

(∫ x
xi

Q1

v

)
(∫ x

xi
v
)2

− (5.1.68)

−
n∑

j=1

πirj
8

∫ z
(1)
j

z
(2)
j

[
1

2

(Q1

v2

)′′
zz

Q1

v
+ 3q

Q2
1

v3

]
−

n∑
j=1

πi

32rj

∫ z
(1)
j

z
(2)
j

Q2
1

v3
. (5.1.69)

On the final step, we plug this expression into (5.1.40) to obtain

Proposition 5.1.3. The term G2 of the generalized WKB expansion of the monodromy generating
function has the following expression

G2 =

4g−4+2n∑
i=1

5πi

288
res
xi


(
2qv +

Q2
1

v3

)(∫ x
xi
v
)
+ Q1

v

(∫ x
xi

Q1

v

)
(∫ x

xi
v
)2

−
n∑

j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v
)
−

−
n∑

j=1

πirj
16

∫ z
(1)
j

z
(2)
j

[
1

2

(Q1

v2

)′′
zz

Q1

v
+ 3q

Q2
1

v3

]
−

n∑
j=1

πi

64rj

∫ z
(1)
j

z
(2)
j

Q2
1

v3
+

+
n∑

j=1

(1
2

4

)
πi rj

∫ z
(1)
j

z
(2)
j

Q4
1

v7
+

〈∮
v◦−1,

∮
v◦3

〉
.

(5.1.70)
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