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Abstract

Brain and plasmatic lactate and glucose metabolism during exercise: Experimental
protocols and data analysis framework

Faezeh Sohrabi

Lactate has long been thought to be a waste product of anaerobic glycolysis that causes muscle

fatigue, pain, or damage. Later studies clarified that lactate is not a waste product but a fuel created

by skeletal muscles and brain astrocyte cells during moderate to intense physical exercises and is

one of the primary fuels of the body and brain for energy production. Overall, it has been shown

that lactate is a mysterious chemical that plays a more important role than previously thought.

Although there have been significant advances in our knowledge of the metabolites involved in

neuronal energy metabolism during recent years, there are still many unknowns about brain energy

metabolism due to its complexity.

This study evaluates the effect of exercise on brain and body energy metabolism, especially the

fate of lactate and glucose in two regions of the brain (including the posterior cingulate cortex and

the supplementary motor area) and plasmatic level.

Previous studies are limited to animal experiments or a result of measuring the difference in

arterial lactate concentration in humans, which do not give us a clear understanding of the fate of

brain lactate and glucose. In this study, non-invasive imaging techniques, including Magnetic Reso-

nance Spectroscopy and Positron Emission Tomography, were used to understand the concentration

of lactate and the rate of cerebral glucose absorption after exercise.

The analyses performed on 29 healthy subjects (between 25 and 45 years of age) indicate an

increase in brain lactate concentration and a decrease in brain glucose absorption due to exercise,

which once again confirms the claim of replacing lactate instead of glucose as fuel for neurons.

In addition, our analysis shows a direct correlation between plasma lactate and brain lactate, from

which it can be concluded that plasma lactate is the primary source of brain lactate.
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Most importantly, based on the original findings, the increase in lactate and decrease in glucose

observed in the brain are considered two independent phenomena occurring in parallel following

intense exercise. Although it should be noted that there is a strong relationship between the changes

of measured quantitative metabolites and the states of rest or exercise, so with the changes in the

concentration of metabolites, we can significantly predict the presence in the state of exercise or

rest.
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Chapter 1

Introduction

This chapter gives a concise summary of the thesis’s fundamental components. A detailed

assessment of the literature on this subject is presented in chapter 2.

1.1 Energy metabolism of the brain

The brain is one of the most sensitive and complicated organs of the body; although it makes up

only 2% of total body weight, it has the highest amount of received energy, and according to studies,

it accounts for roughly 20% of the total energy [1,2]. The brain’s energy metabolism is a continuous

and tightly controlled process regulated mainly by juncture interactions between brain cells that

process information and coordinate body activities [3]. We will notice increased energy expenditure

with increased nerve activity, contributing to improved neuron function [4]. Therefore, neurons

are expected to utilize about 80 percent of the energy created in the brain [5], with a considerable

portion of it being needed to restore neuronal membrane potentials following depolarization [6].

Other neural activities, including neurotransmitter production and vesicle recycling, also donate to

the necessity for neurons to have a high metabolic rate [7–9]. Therefore, energy requirements are not

uniform across the brain, and increased blood flow is required by neurovascular and neurometabolic

coupling mechanisms to compensate for the different energy demands across the brain.

Currently, our knowledge about the regulation of energy metabolism in the brain has dramati-

cally advanced over the past few decades, relying on various approaches from molecular biology to
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in vivo animal and human imaging. This has led to the discovery of a surprisingly important role

for key brain metabolites, including glucose and lactate, which also have more complex effects than

those involved in energy production [10–12].

1.2 Fueling brain work: Glucose and Lactate metabolite

To lead a healthy life, an individual’s daily brain metabolism is supposed to be above a stan-

dard level. This helps us to prevent diseases of the central nervous system, such as depression and

neurodegenerative conditions. To do so, the brain demands energy as fuel. Energy for the brain is

mainly provided by glucose during non-activated states [1, 2]. Glucose is a crucial substrate for the

brain and can supply its metabolic needs. At rest, brain glucose metabolism shows considerable

regional variability and is significantly impacted by local brain activity [13–15], indicating a close

relationship between energy metabolism and brain function. Despite significant metabolic varia-

tions across the white and grey matter, brain glucose content remains constant throughout brain

regions, showing a strong relationship between glucose supply and demand. However, since glu-

cose transport is facilitative, brain glucose concentrations can alter drastically and becomes more

pronounced when metabolism slows down [16].

Although glucose is the primary fuel source for the brain, it has been shown that the brain can

use other substrates than glucose, including lactate, for metabolism in an active state. Lactate is

generated by astrocytes in the brain under aerobic conditions through the activation of glycolysis,

which is initiated by the astrocytic uptake of neuron-released glutamate. The brain can also use

lactate from the blood [17, 18]. Under normal conditions, blood lactate cannot maintain normal

brain function because the blood-brain barrier transfer of lactate is low in adults [19]. However,

studies focusing on post-exercise lactate levels showed that intense exercise gradually increases

lactate uptake as workload and plasma lactate levels increase [20]. It has been shown that glucose

metabolism might be spared during exercise because lactate may be preferred over glucose [21,22].

Therefore, as mentioned, there is a connection between physical activity and the way the brain

works, which is less known due to the complexity of the brain. This study focuses on the effect of

exercise on energy metabolism to find out how brain function is probably related to physical activity
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and exercise.

1.3 Problem statement

The research on the effects of exercise on the brain is extensive, covering both acute and long-

term impacts and examining changes from the cellular to the system/cognitive levels in animals [23,

24]. The capacity of exercise to modify brain function parameters from the physiological [25] and

pathophysiological [26] to the functional, with experiments testing the response to exercise to mood

disorders [27, 28] and cognition, particularly memory [29], is now well established. However, the

mechanisms involved are frequently unknown [30, 31]. We lack even a fundamental grasp of the

sort of effort regimen that may have a demonstrable influence on normal function, let alone different

disorders, due to that lack of information [32].

Although there have been reports of a decrease in brain glucose utilization during exercise as

measured by PET imaging with 18FDG, which has been hypothesized to be secondary to utilization

instead of lactate taken up from the periphery [33], this hypothesis has not been tested in detail. It

is cast into doubt by results showing an increase in lactate generation from glycogen stocks found

in astrocytes involving adrenergic stimulation during exercise [34,35]. Measurements of alterations

in brain lactate after exercise have also been made in several investigations [18, 36, 37]. However,

these studies are restricted to invasive venous blood measurements from the dominant jugular vein,

and technology was only able to assess metabolites present in blood exiting the brain.

To fully understand the changes in brain metabolism, it is crucial to gain a complete picture of

the glucose, especially the fate of peripherally derived lactate, which is generated during exercise.

Therefore, we propose using non-invasive medical imaging techniques to measure regional brain

glucose utilization and brain lactate concentration.

1.4 Objectives of the Thesis

The objectives of this study are twofold:

(i) Data acquisition and analysis framework
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• To investigate imaging technics to quantify cerebral and plasmatic lactate and glucose

in human

• To develop a data analysis framework to investigate brain energy metabolism

(ii) Experimental protocol to investigate the following hypotheses

• Glucose uptake by the brain is reduced during exercise, leading to a decrease in 18FDG

uptake

• Brain lactate concentration increases after exercise compared to its resting value

As a consequence, an experimental approach that allows measuring direct glucose metabolism and

lactate concentration in the brain is required to understand better the mechanisms involved in the

observed changes in the energy metabolism of the brain during exercise, which can lead to better-

defined interventions with exercise or other approaches in patients with various neurological disor-

ders.

Therefore, this thesis proposes measuring brain glucose utilization using positron emission to-

mography (PET) of 18FDG and brain lactate concentration using magnetic resonance spectroscopy

(MRS) under conditions of rest and exercise-induced lactate concentration elevation in the plasma.

For this purpose, data were collected from several healthy volunteers under two conditions of rest

and exercise and in two regions of interest in the brain: the Posterior Cingulate Cortex (PCC) and

the Supplementary Motor Area (SMA). After performing the necessary pre-processing of the data,

the behavior of brain glucose and lactate were analyzed before and after exercise. We also inves-

tigate the association between these brain metabolites and the equivalent parameters in the blood.

We explicitly attempt to uncover a link between the reduction in brain glucose and increased brain

lactate following exercise after directly proving the hypothesis using non-invasive imaging methods.

1.5 Organization of the Thesis

The remaining sections of this thesis are organized as follows: The most pertinent studies are

covered in Chapter 2, together with a critical evaluation of their contribution, and an explanation of

why the resources offered are important for addressing the research problem. then illustrates how
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our work is unique compared to others. Chapter 3 briefly describes the study variables and their

relationships with each other. The last section in Chapter 3 depicts the relationship between vari-

ables with a diagram. Chapter 4 provides our proposed method for directly measuring glucose and

lactate using non-invasive medical imaging techniques. Chapter 5 shows that the hypotheses were

correct, and the glucose uptake in the brain decreases after exercise, while we see an increase in

lactate concentration. We also interpret the association between decreases in glucose and increases

in lactate. Chapter 6 highlights the most important findings of this study and discusses future re-

search prospects. Lastly, Appendix A, B, and C offers detailed explanations of specific concepts

and approaches taken in the data collection protocol.
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Chapter 2

Literature Review

2.1 Introduction

Energy is one of the essential factors for the normal functioning of body organs. Many tissues

can use fat or protein as an energy source, while others, such as the brain, rely on glucose. The

brain is the most energetic organ and the most active part of our body in terms of metabolic ac-

tivity. Neurons use a large portion of this energy, and as brain activity increases, so does energy

consumption [38].

Brain energy metabolism is a complicated process, and according to our current understanding

of the relationship between brain activity and energy metabolism, it is expected that several complex

pathways and mechanisms have yet to be discovered. However, it is well known that in the inac-

tive state, the first vital substance, the brain’s primary fuel, is glucose since it supplies the energy

required for neuron activity. The importance of this sugar for brain functioning is so great that if the

glucose does not reach the brain within 3 minutes, the neurons will be destroyed. Although glucose

is the primary fuel source for the brain, many recent studies have demonstrated that high-energy

metabolites such as lactate are generated during high-intensity exercise, which can be preferentially

used as an energy source for the brain instead of glucose [37].

Much research has been conducted on the effects of exercise on brain metabolism, especially

lactate metabolism, which is limited to invasive methods and focused on jugular vein blood mea-

surement. They were also not able to measure brain lactate independently and directly [18, 33].
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Therefore, to better understand the mechanism of the brain, it is necessary to examine the lactate

metabolism in the brain during physical exercises directly and in a non-invasive way. This allows

us to more thoroughly investigate its interaction with other brain metabolites, such as glucose and

blood parameters.

In this chapter, we start the literature review by discussing the relevance of physical exercise

on overall health, particularly brain and neuron function. The following sections will go through

the essential theories and evidence on the effects of exercise on brain metabolism. Another point of

contention is the fate of lactate produced after intense activity in the muscle and brain. This review

will concentrate on different techniques for detecting brain lactate and glucose. Finally, this study

develops a framework by including the most critical existing ideas and methodologies; it also fills

gaps in previous research and contributes to new knowledge.

2.2 Effect of physical activity on public health

Physical activity is any activity or movement of the body caused by the contraction and expan-

sion of skeletal muscles and leads to energy consumption [39]. Examples of daily life include doing

diligent work at home, playing and traveling, fast walking, light weight-lifting, or even gardening

are examples of them [40]. Therefore, physical activity in terms of intensity can be categorized

into three levels: light, moderate, and intense [41]. A general surgeon in the United States has tra-

ditionally recommended moderate to vigorous physical activity in his report and emphasized that

these activities should be done continuously [39] because certain benefits can only be achieved by

engaging in more intense, structured, and repetitive physical activity. In this way, we call exercise

a particular type of physical activity planned and purposeful to achieve physical fitness or other

therapeutic properties [42]. Exercising at the gym, swimming, biking, running, and other sports

such as golf and tennis are many different types of exercise. Although exercising increases fitness,

it is not only related to the type of exercise but generally depends on its dose. Exercise dose has

different definitions in the literature, but it is usually considered a product of the type of exercise,

the intensity of exercise, and the duration of exercise [43, 44].

Research has shown that sports activity has beneficial effects, can control or delay the onset
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of age-related diseases, and help improve health. For example, exercise has a protective effect on

cardiovascular diseases. Data from several sources have shown that more physical activity can re-

duce the risk of cardiovascular diseases even more [45–49]. Physical activity regularly can also help

lower blood pressure and enhance cholesterol levels [50]. Therefore, there is an inverse relationship

between the level of exercise and cardiovascular diseases.

Another benefit of physical activity is controlling blood glucose and body weight, which is one

of the effective ways to improve and treat type 2 diabetes [51, 52]. Exercise also prevents common

cancers among adults such as colon cancer [53, 54], breast cancer [55], and lung cancer [53, 56].

2.3 Effect of physical activity on brain function

In the preceding section, we showed that many scientific investigations had identified exercise

as an essential health parameter, from avoiding cardiovascular disease to battling obesity and pre-

venting diabetes or other malignancies. But there is one area that is less well understood due to the

intricacy of this human organ, which is the connection between physical exercise and how the brain

operates. However, in recent years, several researchers have underlined how physical activity and

exercise are related to brain health and function.

2.3.1 Depression and Anxiety

Together, these studies show that exercise training affects brain tissue in several ways, one of

which is the reduction of symptoms of depression and anxiety [57–59]. Stress creates a destructive

substance in the blood and brain and naturally destroys brain neurons. Performing various sports

exercises causes more adrenaline (stress hormone) to be burned, increasing relaxation [60]. Also,

a hormone called endorphin - which is referred to as a happy hormone - is released in the body,

which naturally reduces stress and ultimately reduces the rate of brain cell loss [61, 62]. On the

other hand, by relying on the concept of body composition measurements, Zimmermann and her

colleagues have demonstrated a positive correlation between the severity of depression and body fat

mass. In contrast, it has a negative correlation with body muscle mass [59]. Therefore, considering

that doing sports activities reduces body fat and strengthens muscles, it is reasonable to assume that
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exercise is a barrier to depression.

2.3.2 Alzheimer’s

According to researchers, another protective impact of exercise on brain health is the preven-

tion of Alzheimer’s disease, the most frequent form of dementia [63–65]. Alzheimer’s is a type of

neurodegenerative disease that affects problems in memory, thought processes, and behavior [66].

Prevention of Alzheimer’s disease is one of the biggest challenges facing modern science. The

consequences of this disease can be devastating, and health experts worry that the condition will

also appear in younger people. However, one thing that helps prevent Alzheimer’s is exercise [67].

Exercising can avoid factors that increase the risk of dementia. Obesity, diabetes, high blood pres-

sure, and depression are among these risk factors [67, 68]. On the other hand, studies show that

people with Alzheimer’s have much less grey matter in their brains than healthy individuals [69].

Additionally, Lucas and his colleagues demonstrated that active older adults had brains with more

significant amounts of grey matter [70], supporting the idea that exercise can ward off dementia.

2.3.3 Neuroplasticity

Exercise’s enormous impact on cognitive function and the plasticity of the brain is another factor

in the human need for exercise [71–73]. The concept of brain plasticity, commonly referred to as

neuroplasticity, is founded on the notion that the brain has the capacity to be plastic and is ready

to change and expand at any age. Although it is often assumed that brain growth slows down with

age, current research has revealed that the brain releases neurotrophic substances like brain-derived

neurotrophic factor (BDNF) in response to physical exercise [72–74], which plays a vital role in

neuroplasticity [75, 76]. Therefore, by strengthening the power of neural flexibility, exercise shows

that brain growth is not confined to childhood and can be boosted in adulthood.

2.3.4 Cerebral Metabolism

Exercise is also one of the oldest, best, and most important factors in increasing body metabolism,

which few can deny its role [77–79]. Metabolism is a complicated chemical process in the body’s

cells. During this process, the calories in food and beverages combine with oxygen to generate the
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required energy for cell and body function [80]. Unlike other parts of the body that get most of

their energy from fats, carbs, and proteins, the brain absorbs most of the energy required to activate

neurons from carbohydrates. Therefore, cerebral metabolism is defined as the intra-cerebral ex-

change of primary metabolites such as glucose and lactate throughout the arterial and venous blood

circulation in the brain [38].

Extensive studies have been conducted on brain energy metabolism and the quantities involved,

often under resting conditions [81–84]. However, considerable advancement has been made in our

knowledge of regulating energy metabolism in the brain during the last several decades. As a result,

efforts have been made to measure and investigate brain glucose and lactate concentrations under

the influence of intense exercise using various methods, including molecular biology and in vivo

animal and human imaging.

According to the findings of recent studies, different forms of moderate to vigorous exercise

can affect brain metabolism in addition to increase skeletal muscle metabolism. Scheinberg and

his colleagues were the first to measure the cerebral glucose metabolism rate during exercise [85].

According to their studies, no significant changes in the rate of cerebral glucose metabolism were

observed during exercise, which led researchers to focus less on this topic, and not much infor-

mation was available about cerebral glucose metabolism. After five decades, Ide et al., by mea-

suring the difference in arterial and venous glucose concentration, reached contradictory results

with what was observed before. They found that the arterial-venous concentration difference of

glucose decreased during light exercise (30% Vo2max) compared to the resting state, increased dur-

ing moderate-intensity activity (60% Vo2max), and remained unchanged during intense exercise

(Above lactate threshold) [37, 86].

The discovered variations in glucose behavior during exercise drew the attention of other re-

searchers to this subject, and we have seen a plethora of studies investigating the effects of exercise

on brain metabolism. Considering that the dose of exercise may influence the results, most stud-

ies have quantified brain glucose uptake during various intensities of exercise. Figure 2.1 depicts

the average cerebral oxygen, glucose, and lactate consumption extracted from seven studies during

exercise [87–92]. Collectively, these findings reveal a considerable decrease in cerebral glucose

absorption with increasing exercise intensity. Similar investigations have also been conducted to
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compare the quantity of brain glucose in two states—rest and extreme exercise— which are con-

sistent with the presented results and demonstrate that intense exercise reduces global glucose ab-

sorption in the brain [18,33,93,94]. However, few studies provided the opposite conclusion, stating

that glucose levels did not significantly alter during exercise and that glucose absorption remained

steady [95, 96].

However, a dilemma arises: how are neurons supplied with fuel after an increase in the require-

ment for energy due to strenuous activity and a reduction in brain glucose absorption?

AAlthough it is generally established that glucose serves as the sole source of brain fuel at rest,

glucose consumption declines as exercise intensity rises, indicating that other substrates may also

fuel neurons. The first demonstration of lactate’s potential as a source of energy for the human brain

under specific circumstances was made by Gallagher and colleagues [97]. Even though lactate plays

a minor role in cerebral metabolism at rest, it has been demonstrated that following incremental

exercise, the concentration of lactate in the brain multiplies [37, 92, 98–100]. This concentration

increase is generally achieved in two ways, raising blood lactate concentration and increasing lactate

production by astrocytes in the brain during glycolysis [101–103].

Numerous research in this area has attempted to explain the cause of the rise in brain lactate

Figure 2.1: This figure shows the average consumption of cerebral oxygen (Blue), glucose
(Orange), and lactate (Gray) extracted from seven studies during different exercise intensities. The
bar graphs show that with the intensity of exercise (from rest to intense), the average consumption

of brain oxygen and glucose decreases, while the average consumption of lactate increases.
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concentration during exercise by measuring blood lactate and demonstrating the difference between

arterial and venous lactate concentration. Cumulative findings from these studies suggest that in-

tense exercise increases blood lactate produced by muscles [18, 33, 103–105]. On the other hand,

by observing the increase in cerebral arterial-venous lactate difference [33, 91, 92], they were able

to show that the exponential growth in cerebral lactate absorption is related to the increase in its

arterial concentration [38, 98]. Thus, one explanation for the rise in brain lactate concentration is

that blood lactate generated by muscles crosses the blood-brain barrier and enters the brain, which is

utilized as a source of energy for neurons. Another cause of elevated brain lactate is lactate derived

from astrocytes. It has been shown that when energy demand increases, astrocytes break down the

stored glycogen into lactate and provide an energy source for neurons [103, 106]. With all of these

interpretations, the relationship between exercise intensity, reduction in brain glucose absorption,

and increase in brain lactate concentration have become a challenging issue due to their inability to

directly measure brain lactate and the unknown and complex nature of the brain.

In this review, we highlighted the importance of exercise for health and emphasized the relation

between physical activity and exercise and brain health, performance, memory, and metabolism.

Of course, exercise’s influence on brain health is not limited to these few cases, and this medicine

affects many situations both directly and indirectly. The significance and function of glucose and

lactate in brain metabolism after incremental training were briefly discussed here. We go into further

depth on the generation of glucose and lactate as well as their fate in the muscle and brain after

exercise in chapter 3.

2.4 Previous research: methodological approaches

As demonstrated in the previous section, our understanding of how the brain regulates its energy

metabolism has significantly advanced over the past few decades. As a result, extensive research

has been done on the impact of exercise on brain metabolism using various molecular biology

techniques to in-vivo imaging in animals and humans. This has led to discovering a surprisingly

important role for lactate alongside glucose. However, the critical distinction between these studies

is the adopted methodological approaches.
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Because the design of the data collection protocol in these research fields will have a significant

impact on the statistical analysis, interpretation of the extracted data, and, ultimately, the rejection

or confirmation of the hypotheses, a slight change in the framework results in significant changes in

the results. Therefore, in this section, we review some previous works in light of the data collection

framework and its limitations.

What we know about the brain and plasmatic lactate and glucose is largely based on empir-

ical studies investigating how these metabolites contribute to energy metabolism in the body and

brain. Several extensive cross-sectional studies have employed invasive techniques to assess brain

and plasmatic lactate and glucose in animals and humans. Some of these studies attempted to in-

crease blood lactate levels through intravenous lactate injections and intense exercise. Finally, by

measuring the difference in arterial-venous lactate concentration and glucose, they have shown a

decrease or increase in the absorption of these metabolites after exercise [26, 91, 92, 95, 99]. By

adding transcranial Doppler ultrasound of the middle cerebral artery to this protocol, van Hall and

colleagues were able to examine cerebral perfusion more precisely [18].

Researchers have been working on indirect ways to represent the behavior of brain lactate in

the interim. Lactate dehydrogenase (LDH) levels, which are primarily in charge of lactate pro-

cessing for energy in a low oxygen environment and play a role in the conversion of lactate and

pyruvate, were measured in an experiment performed by Kinni et al. on male rats after three weeks

exercise [107]. The results of this study following brain dissection after euthanasia indicate an in-

crease in LDH due to exercise, which indirectly verifies the notion of elevated lactate in the brain

after exercise. In a different research, Matsui and his colleagues used a capillary electrophoresis

mass spectrometry-based approach on endurance-trained rats to assess the level of monocarboxy-

late transporters (MCTs), which are responsible for transporting astrocyte-derived lactate as energy

to neurons [35]. They demonstrate that MCT2 levels rise, indicating that the brain uses astrocyte

glycogen-derived lactate as fuel during intense exercise.

Wyss et al. measured both brain lactate and glucose using voltage-sensitive dye imaging (VSD)

and [18F] fluorodeoxyglucose (FDG) with sensory stimulation in unconscious rats [93]. Several

studies have also used positron emission tomography (PET) of 18FDG to measure brain glucose

uptake [33, 108, 109].
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There are drawbacks to each method suggested for measuring brain lactate and glucose lev-

els. Most investigations need invasive procedures, and in some of them, a radiotracer injection is

required for imaging. The inherent risks of this procedure are numerous and not appealing to every-

one. Furthermore, the techniques mentioned earlier cannot assess brain lactate directly and do not

provide a precise picture of what happens to lactate generated after exercise. Despite the fact that

several studies have been conducted on animals and, in general, cannot be implemented on humans

(since some of them are ex vivo), the rest have been conducted in vivo on humans, but because the

majority of them have only included men, it can be argued that the findings of these tests cannot be

applied to society. Another problem of this study is the small sample size (usually n < 10),which

does not yield statistically significant findings.

Therefore, an experimental strategy that enables direct and non-invasive monitoring of brain

glucose and lactate levels is required to understand brain energy metabolism after exercise better.

In this thesis, we propose the methods of magnetic resonance spectroscopy (MRS) and positron

emission tomography (PET) of 18FDG to evaluate brain lactate and glucose, respectively.

As we mentioned, PET-18FDG is a well-known technique in the field of brain glucose measure-

ment, which has also been used in previous studies. MRS is also a relatively new technique that has

recently attracted the attention of researchers. This technique is used to measure the concentration

of metabolites in the region of interest, which is used here for the first time to record brain lactate

after exercise.

2.5 Conclusion

Everyday tasks that we perform throughout our lives depend on our brains. Whatever we are

doing, it doesn’t matter; what matters is that our brain is constantly at work, even while we are

asleep. Today, regular physical activity is considered an essential component of a healthy lifestyle,

which will benefit not only the physical but also the brain health of an individual.

Scientists have been looking for the effects of daily exercise on the brain for years; although

today this research is still not complete, some recent studies have shown that regular intense or
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moderate exercise activities affect the brain tissue in different ways. More production of brain-

building hormones, fighting stress and depression, and preventing and reducing the symptoms of

dementia, are small sets of effects of exercise on the brain. One of the most recent studies that have

piqued the interest of experts is the shift in brain energy metabolism after exercise.

Numerous studies have demonstrated that lactate, once thought to be a redundant product with

no particular function in the brain, is now recognized as a replacement for glucose in the fuelling of

neurons. It has even been demonstrated to be preferable to glucose during vigorous exercise.

Finding the link between the energy metabolism of the muscles and the brain after exercise is

an issue that currently interests academics. However, because of the brain’s complicated and un-

known structure, they are limited in detecting and understanding the destiny of brain lactate and

glucose. Therefore, they have inevitably used aggressive and indirect methods for this purpose.

Risks associated with invasive procedures are often unpleasant. On the other hand, indirect assess-

ment of metabolites involved in energy metabolism raises the likelihood of mistakes in findings

since there are several unknown pathways in brain metabolism, and our knowledge about them is

restricted. Another gap that prevents statistical analyses from being valid is small sample sizes or

unisex samples.

As a result of these constraints, we propose a data collecting framework to investigate MRS

and PET imaging techniques for the quantification of cerebral and plasmatic lactate and glucose

in humans following moderate-high intensity exercise, as well as a data analysis framework to

develop brain energy metabolism analyses. Chapter 4 deeply discusses the aforementioned imaging

methods, statistical tests, and models for examining brain energy metabolism.
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Chapter 3

Conceptual Framework

This chapter presents a planned arrangement of research components to highlight the strategy

that lends significance to our research. This chapter depicts the expected relationship between the

variables or characteristics we wish to explore. For this purpose, we first examine the most relevant

variables in this study and discuss their central role in different aspects of the research. After

developing a practical understanding of each variable and its applications, we focus on relationships

and how communication breaks, overlaps, and tensions between them based on the literature review

completed on the research in chapter 2, as well as our expertise. Finally, by connecting all the

parts, we provide a scheme that summarizes the details of the research and helps draw a coherent

conclusion.

3.1 Glucose

For metabolic life to continue, every cell in the human body needs the energy to perform

metabolic tasks. Glucose is a cellular fuel that serves as the primary energy source, especially

for the brain, muscles, and several other body organs and tissues [110]. In fact, the term ”blood

sugar,” which we are all familiar with, indicates glucose concentration in our blood. Many body

cells use glucose with compounds such as amino acids and fats, while brain cells or nerve cells

recognize glucose as their primary food source.
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3.1.1 Fate of glucose in muscles

This chemical is one of the essential substances needed by the body [111]. Usually, most of it is

absorbed by the muscles and burns immediately. After the cells of the body consume all the glucose

they require, the remaining glucose is stored in the form of small packages called glycogen in the

liver and muscles of the body [112]. In this way, our body can hold the amount of glucose it needs

to release in the blood to maintain the average blood sugar level when we exercise or sleep [113].

Glycolysis

When the cells have exhausted all their glucose and do not receive more glucose from the body,

they can turn to the cell’s glycogen reserves for the energy they need through glycolysis. Glycolysis

is the process in which glucose is broken down into pyruvate to produce energy. This process is

used by all body cells to produce energy, which has two pathways: aerobic glycolysis and anaerobic

glycolysis.

If glycolysis is done in the presence of oxygen, it is called aerobic glycolysis, and if it is done

in the absence of oxygen, it is called anaerobic glycolysis. Based on figure 3.1, the final product

of aerobic glycolysis is pyruvate, which enters the Krebs cycle to make additional energy, which

produces carbon dioxide and water as side products in addition to Adenosine triphosphate (ATP).

In contrast, anaerobic glycolysis produces lactate [111, 114].

Figure 3.1: This diagram shows the two aerobic and anaerobic glycolysis pathways as well as the
Krebs cycle.
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3.1.2 Fate of glucose in the brain

The brain relies exclusively on glucose to meet its energy needs during the non-active state.

Because the central nervous system, of which the brain is the most important component, cannot

store glucose and has a high energy need, it is extremely dependent on the quantity of glucose found

in circulation. Blood glucose enters the brain as a nutrient passing through the blood-brain barrier

(BBB). The metabolic destiny of glucose in the brain is determined by cell type and the selective

expression of metabolic enzymes. While astrocytes are mostly glycolytic, neurons are primarily

oxidative [115].

Neurons cannot store glucose in the form of glycogen, so according to Figure 3.2a, each glu-

cose molecule undergoes glycolysis to become pyruvate, which then enters the Krebs cycle to pro-

duce carbon dioxide, water, and ATP molecules. In astrocytes, glucose is preferentially stored as

glycogen or processed by glycolysis, where the resulting pyruvate is then transformed into lactate

(Figure 3.2b) [116].

(a)

(b)

Figure 3.2: Glucose metabolism pathways in the brain. (a) Fate of glucose in neurons. Neurons do
not store glucose as glycogen and their metabolic pathway is mainly oxidative. (b) Fate of glucose

in astrocytes. Glucose can be stored as glycogen in astrocytes or participate directly in the
glycolysis process. Unlike neurons, the metabolic pathway in astrocytes is mainly glycolytic. (The

gray paths are not the main and preferred paths of the cells.)
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3.2 Lactate

When the body is engaged in physical exercise, it prefers to receive its energy from aerobic

activity (oxygen). However, when the exercise’s intensity surpasses its capacity to carry oxygen,

and the body is unable to deliver enough oxygen to fulfill its demands, anaerobic glycolysis takes

over as the primary source of ATP and energy generation [116]. Following anaerobic glycolysis

(Figure 3.1), much lactate is released into the body. Lactate has long been thought to be a waste

product of glycolysis that causes fatigue, pain, or muscle damage [117]. Later studies clarified that

the primary reason for muscular soreness following exercise is the accumulation of lactic acid and

the inability to eliminate it instead of lactate. Dr. George Brooks deserves credit for influencing

people’s perceptions about lactate. Brooks and his students demonstrated in the 1970s that lactate is

not a waste product but a fuel created by muscle cells, which are one of the body’s primary fuels for

generating energy. The brain and heart will function better if they receive their energy from lactate

rather than glucose. Additionally, according to Brooks, the body uses lactate for three fundamental

purposes: as one of its major fuel sources, to control blood sugar levels, and as a reliable marker

of stress tolerance [118]. Studies on lactate generally demonstrate that lactate plays a significantly

more prominent role than previously believed. Lactate is a mystery chemical that requires further

investigation to understand its purpose in the body.

3.2.1 Fate of lactate in muscles

Lactate enters the bloodstream after being created by skeletal muscle or other tissues and is

eventually absorbed by the liver. In the liver, lactate is converted to glucose under the Cori cycle.

In Cori’s cycle, lactate is first converted to pyruvate and then back into glucose under the process

of gluconeogenesis [119], which is given to the muscle and can assist in maintaining blood glucose

levels (Figure 3.3). According to another theory known as the lactate shuttle, when lactate leaves

the muscle and enters the blood, it can not only enter the Cori cycle in the liver but can also be used

in other tissues, including inactive skeletal muscle, the heart, and kidneys, to produce glycogen or

be converted into pyruvate, which can then enter aerobic metabolism [118].
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Figure 3.3: Cori Cycle

3.2.2 Fate of lactate in the brain

Brain lactate levels generally increase in two ways: from peripheral skeletal muscle and the

central nervous system.

Specifically for lactate derived from skeletal muscle, we demonstrated that lactate, after produc-

tion, leaves the muscle and enters the bloodstream. Under the action of MCT, a portion of blood

lactate can cross the BBB, enter the brain, and disseminate in the extracellular space. Previously,

the buildup of lactate in the brain was thought to be the source of exercise-induced central tiredness.

However, studies evaluating the role of lactate confirmed that circulating blood lactate is the pri-

mary energy substrate during exercise, as evidenced by increased lactate utilization and decreased

glucose absorption. On the other hand, in Figure 3.2b, we showed that circulating glucose may be

taken by astrocytes and even stored as glycogen. Following the increase in the intensity of sports

activities and a rise in the energy demand by neurons, the glycogen in astrocytes is quickly broken

down into lactate under glycolysis and released into the extracellular space [103, 120]. Pellerin and
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Magistretti described this mechanism as the astrocyte-neuron lactate shuttle (ANLS), in which as-

trocytes produce lactate and neurons take it as a necessary supplement in the substrate of energy

metabolism [121]. Therefore, exercise raises extracellular lactate levels in the brain by increasing

blood lactate and lactate produced by astrocytes (Figure 3.4). According to research by Schurr et

al., lactate can take the place of glucose as the only substrate for neurons’ energy metabolism [122].

Therefore, lactate in the extracellular space is carried by MCTs into neurons, where it is transformed

into pyruvate by the activity of lactate dehydrogenase 1 (LDH1). Finally, pyruvate is converted into

acetyl-CoA, which enters the Krebs cycle and results in the creation of ATP [120], as shown in

figure 3.2a.

Figure 3.4: The hypothesis of astrocyte-neuron lactate shuttle

3.3 Conclusion

Although there has been substantial progress in recent years in our knowledge of lactate’s role

and function as a substrate for neurons’ energy metabolism, there is still a great deal of mystery

surrounding the lactate metabolism system. We addressed the impact of exercise on the body’s and

brain’s energy metabolism from various perspectives in light of the literature review. Although the

effects of exercise on skeletal muscles are practically understood, there are still many unknowns
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about the brain’s energy metabolism due to its complexity. Previous studies have had several lim-

itations in recording and measuring brain glucose and lactate in humans following exercise; hence

most conclusions concerning energy metabolism were either based on animal experiments or as a

result of measuring the difference in arterial lactate concentration in humans. Since it cannot be

confidently claimed that animal results can be extended to humans and that human measurements

are not accurate enough, we still do not have a clear understanding of the astrocyte-neuron lactate

transport system.

Figure 3.5 depicts a conceptual framework of the predicted relationship between the variables

under consideration based on information gained through reviewing the literature and assumptions

established in our minds. In summary, this framework demonstrates that body energy consumption

rises in skeletal muscles and the brain after exercise, which can be linked. Skeletal muscles enter the

anaerobic pathway to provide energy after heavy activity. Lactate is generated and delivered into

the bloodstream via the anaerobic route. Some of the blood lactate reaches the liver and is converted

back into glucose, while the remainder is utilized as fuel for other organs such as the heart and brain.

It is released into the extracellular environment after entering the brain and used as fuel by neurons.

We anticipate that the brain has a second lactate generation mechanism operating in parallel. In this

manner, astrocytes absorb glucose from the circulation, convert it to lactate, and then spread it into

the extracellular space, where it is taken up as neuron fuel.

Therefore, according to the mentioned situations, we expect a decrease in brain glucose ab-

sorption and an increase in brain lactate concentration after exercise compared to rest. It is also

hypothesized that there would be a link between decreased glucose absorption and increased lactate

use in the brain.

In order to evaluate the proposed hypotheses, in this study, we have designed an experiment

in which we investigated imaging techniques to determine the amount of brain and plasmatic lac-

tate and glucose in humans and developed a data analysis framework to investigate brain energy

metabolism.
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Figure 3.5: Schematic diagram of how exercise increases brain lactate concentration in two ways:
skeletal muscle-derived lactate and astrocyte-derived lactate. In the first pathway, the glycolysis
process increases following exercise, which leads to more lactate production in skeletal muscles
and an increase in its concentration in the blood. Then part of the lactate released in the blood is

converted into glucose again in the liver through the Cory cycle. Another part of it passes through
the blood-brain barrier and is released into the extracellular space and becomes available to

neurons. In the second path, according to the Astrocyte-Neuron lactate shuttle theory, the lactate
produced in the extracellular space is released and becomes available to the neurons.
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Chapter 4

Data acquisition and Analysis Method

Following the definition of the research topic in Chapter 1 and the examination of the literature

in Chapter 2, I will address the methodological section of the thesis. This chapter provides a chance

to legitimize the research and highlight the philosophical foundation of the study. We first introduce

the research objectives. Then we share complete details about our data collection methods. Then

we describe how to process and analyze the research data. Finally, and most importantly, we clearly

state the reason for choosing the methods that we have done, and we emphasize the superiority of

the strengths of this approach over other methods.

4.1 Methodological Approach

A growing body of research has documented the many advantages of exercise, including the

function of physical activity in promoting brain health. Now, researchers are looking to make im-

portant discoveries about how exercise fuels the body, especially the brain.

Decades of research in the field of metabolic regulation in sports led to the claim that lactate is

the primary energy source, nicknamed ”lactormone” [123]. Lactate was once assumed to be a waste

product of anaerobic metabolism, which is the leading cause of pain and fatigue after exercise.

Contrary to the initial idea, lactate is known as a preferred substrate over glucose as a fuel for the

brain and other organs [117].
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In the studies conducted on fueling the body, considerable increases in lactate relative to glu-

cose flux are observed in the transition from rest to exercise, which is used as fuel for skeletal

muscles, kidneys, heart, and brain [123, 124]. In the early 1950s, Henry McElwain showed that

lactate is an efficient fuel for the brain [125], hose findings have supported Schurr and others for

decades [126, 127]. In general, it has been well proven that glucose serves as the brain’s primary

fuel source in people at rest, and its absorption is entirely reliant on cerebral blood flow and the

difference in arterial-venous glucose concentration [110]. In most circumstances, glucose trans-

fer to the brain is high compared to the corresponding values of lactate in the resting state, and

lactate has a negligible contribution to supplying the brain with fuel. However, the importance of

lactate in fueling is discussed following exercise. Studies on healthy individuals and animals have

demonstrated that blood lactate levels rise during intense activity and reach the brain across the

BBB, which is preferred over glucose and supplies the energy required by the brain. On the other

hand, according to the ANLS hypothesis, with the increase in exercise intensity and the activity of

neurons, lactate is produced by astrocytes in the brain environment and absorbed and consumed by

neurons [103, 120, 128]. As a result, exercise is involved in brain energy metabolism by increasing

brain lactate concentration and reducing brain glucose absorption.

Research on lactate aimed to elucidate the pathways and controls of lactate formation and elimi-

nation before, during, and after exercise. This work has covered both in vivo and ex vivo research on

humans and animals. Most of the tests were indirect and invasive and used classical measurements

of arterial-venous difference.

Since the brain is a complex organ, an experimental approach that allows direct and non-

invasive measurement of glucose metabolism and lactate concentration in the brain is necessary.

This will help us better understand the mechanisms underlying the observed changes in brain en-

ergy metabolism during exercise, which could lead to better-defined interventions with exercise or

other approaches in patients with various neurological disorders.

In this quantitative experimental study, we aim to generate generalizable knowledge about the

effects of exercise on brain energy metabolism by examining imaging techniques to quantify cere-

bral and plasmatic lactate and glucose in humans. This necessitates a properly planned study under

controlled conditions that other researchers can replicate. Also, developing a framework for data
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processing and analysis is another goal of this study.

4.2 Data Acquisition Framework

After briefly and clearly stating the research hypotheses in Chapter 1, to test whether exercise

alters brain glucose utilization and brain lactate levels, we set out to design a comprehensive ex-

periment with standardized protocols to maximize the reliability and accuracy of our data. In the

first place, based on the literature review and the use of current knowledge, we determined the best

method to evaluate our hypotheses in a way that removes the limitations of the previous methods.

Finally, we considered each approach’s feasibility and participants’ availability to ensure that we

could complete the required data collection. Since this study aims to obtain information that may

be important in designing interventions to help older people prevent the progression of serious dis-

eases (neurodegenerative conditions, among others), the recruitment and withdrawal policies of the

subjects were designed in such a way that their presence leads to scientific advancement and none

of them feel pressured at any point. Appendix A provides comprehensive information on how par-

ticipants were recruited, including the survey, inclusion criteria, and exclusion criteria. In short, the

survey form, which consists of two parts, the adult medical history form and the Get Active ques-

tionnaire, is designed to determine the target population. Based on that, we have selected volunteers

by considering three criteria: body mass index (BMI), history of regular aerobic exercise, and med-

ical records. In addition, although it is possible for the volunteer to withdraw at any stage of the

study, there are also limitations defined by the researchers that prevent some people from entering

the project.

Furthermore, despite the fact that all the procedures used in this protocol are well established

and safe, it has been approved by the Research Ethics Committee of the Ministry of Health and

Social Services for the safety of the subjects.

4.2.1 Sample Size

One of the initial phases in the design of a study is determining the sample size. The optimal

sample size is an essential component of any research, with the help of which the study’s hypotheses

26



are answered. Since it is impossible to study the whole target population, studies are done on

samples, and finally, the results are generalized to society.

Here, to test whether exercise changes brain glucose consumption and brain lactate levels, we

studied 29 healthy and physically trained people, including 13 females and 16 males aged 25 to

45 years. A summary of the participants’ information is provided in Table 4.1, and more intricate

details of each are included in Appendix B.

Table 4.1: Summary of participant information

Study N Sex Age Height (m) Weight (kg) BMI (kg/m2) Training Hour (min/week)

Brain Energy Metabolism 29
nfemale = 13

M= 33.07 M= 1.73 M= 70.36 M= 23.32 M= 235.76
SD= 5.74 SD= 0.09 SD= 12.61 SD= 2.41 SD= 120.97

nmale= 16
Min= 26.00 Min= 1.54 Min= 53.20 Min= 18.46 Min= 60.00
Max= 45.00 Max= 1.87 Max= 95.00 Max= 28.09 Max= 600.00

4.2.2 Experimental Design

As discussed in detail in previous chapters, glucose and lactate molecules are very important

for energy production in the brain. Previous studies have shown how the brain generates energy to

operate changes during high-level exercise. According to the presented results, glucose, the brain’s

primary fuel at rest, is replaced by lactate with the intensity of sports activity. However, with our

limited knowledge of the complex structure of the brain and the limitations of previous research

in recording data, we need to understand how this happens entirely. If we know the pathways and

how the energy metabolism of the brain follows exercise, we may be able to improve the brain

metabolism of patients with a wide range of brain diseases by providing an exercise program and,

as a result, improving their condition. In this regard, we suggest using specialized PET and MRS

imaging methods to measure specific aspects of how the brain uses glucose and lactate.

This project was carried out in the PERFORM research centre of Concordia University with the

help of skilled technicians of this complex in two stages rest and exercise.

During the first visit, as shown in Figure 4.1a, participants undergo MRS imaging to measure

brain lactate and 18FDG PET to measure brain glucose at rest. The MRS study takes approximately

45 minutes, during which two regions of interest (ROI), the supplementary motor area (SMA) and

the posterior cingulate cortex (PCC), are imaged, and the order of acquisition for the two ROIs is
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also tried to counterbalanced across subjects to avoid systematic order effects. However, a PET

study is possible 90 minutes after 18FDG injection and takes about 20 minutes. On the same day,

the subject also undergoes an exercise study on a stationary bike, which allows us to measure their

exercise anaerobic threshold to determine exercise intensity at the second visit. Also, in order to

check plasma lactate and glucose, several blood samples and saliva samples (between 13 to 15 blood

samples and five saliva samples) are collected at regular intervals. For blood collection, a plastic

catheter is installed in the arm’s vein so that only one venipuncture is needed for blood collection.

The same catheter is also used to inject the radioactive tracer for PET imaging. Sterilized absorbent

swabs are also used for saliva samples, so the subject is asked to keep the swabs on the cheek

until they are completely wet and then return them to the particular container. In addition, before

any injection or PET scan, a rapid strip pregnancy test is performed on female subjects. If the

result is positive, the participant is removed from the project. At different stages of this visit, the

participants also fill out four behavioral questionnaires to evaluate the differences in stress and the

state of physical fitness (see Appendix C). The first visit lasts about 4 hours in total.

The second visit is done at an interval of 2 to a maximum of 14 days after the initial measure-

ments. Subjects are returned to measure the same parameters, but this time in the training condition.

The only significant difference with the previous visit is that before any imaging, the participants

participate in a practice test whose protocols follow the results of the first practice test. The parame-

ters of this exercise are adjusted based on the initial measurement of the subjects’ ischemic threshold

in such a way as to ensure that they reach that threshold relatively quickly (within 10 minutes) and

remain there for 25 minutes. Unlike the first visit, the radioactive tracer (18FDG) is injected when

the subjects reach their ischemic threshold (10 minutes after the start of exercise) while exercising

on a stationary bike (Figure 4.1b). Immediately at the end of the training, other steps related to

MRS imaging, PET scan, blood sampling, and a saliva sample are performed the same way as the

previous step. Including all these steps, the second visit of this project takes about 3 hours.

The study procedure in this project is summarized as follows:

• Exercise test and determination of ventilation threshold

• Measurement of blood lactate and cortisol levels
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(a)

(b)

Figure 4.1: Schematic of the lactate project. (a) Visit 1 is under the rest state and measures the
baseline parameter, duration is 4 hours. (b) Visit 2 is under the exercise state and evaluates the

same parameters, duration is 3 hours.

• 18FDG PET measurement of cerebral glucose utilization

• MRS determination of brain lactate concentration

• Behavioral questionnaires to assess differences in stress and physical fitness states

Posterior Cingulate Cortex (PCC)

The posterior cingulate cortex (PCC) is one of the unknown areas of the cortex, which is

located behind the anterior cingulate cortex and forms part of the posterior middle cortex (Fig-

ure 4.2a) [129]. The PCC is a key node in the default mode network (DMN) and is anatomically
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highly connected, suggesting that it is a major hub in human connectivity [130]. Non-human studies

have documented several structural connections for PCC that are less well documented in humans.

Despite its importance in health and disease, there is considerable uncertainty about PCC function.

However, studies show that the PCC is involved in various roles and has strong connections with

areas involved in learning, emotions and social behavior, and attention [131, 132].

In addition to structural analyses that highlight the PCC’s critical role in the cortical organiza-

tion, imaging studies have shown that the PCC has very high metabolic activity both at rest and

during cognitively challenging tasks that are highly dependent on glycolysis. In the PCC, cerebral

blood flow and metabolic rate are about 40% higher than they are throughout the entire brain. Al-

most all other brain regions have lower blood flow levels than PCC, even when PCC activity is

considerably reduced [129, 133]. In this study, we have chosen the PCC because, unlike the SMA,

it is not involved in the motor cortex to check whether the changes in brain energy metabolism are

only limited to the areas involved in the motor system or are the same in the whole brain. In addi-

tion, since the PCC is a key node and central hub in human connections, it is a suitable choice to

observe changes in energy metabolism compared to other regions in the brain. More information on

the structure and function of the PCC is available in the Handbook of Clinical Neurology [132].

Supplementary motor area (SMA)

The supplementary motor area (SMA), which consists of the caudal and rostral sections, is

situated on the superior and medial sides of the superior frontal gyrus (Figure 4.2b) [134]. Neurons

in the SMA go directly to the spinal cord and are responsible for planning and controlling complex

movements. Although the exact role of the SMA is still not fully clear, human and non-human

studies show that the SMA appears to be critical in the selection, initiation, and control of some

voluntary movements, such as stabilization of body position while walking or standing, coordination

of opposite limbs, and control the temporal sequences of movements [135–137].

In addition, the measurements made on cerebral regional blood flow or cerebral energy metabolism

in humans confirm that SMA is the largest areas of the motor cortex in such a way that performing

complex voluntary movements leads to an increase in blood flow in this area [138–140]. Therefore,

the most straightforward interpretation that supports this phenomenon is that the energy demand
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in the SMA increases following an increase in neuronal activity. Also, considering that SMA cov-

ers a large area, it is a suitable option for data collection compared to other areas involved in the

brain’s motor cortex. More details on the structure and function of SMA are available in the review

provided by Goldberg [141].

(a) (b)

Figure 4.2: (a) Posterior cingulate cortex location: PCC borders the Brodmann’s area 24 (anterior),
the parietal-occipital sulcus (posterior), the marginal ramus of the cingulate sulcus (above), and the
corpus callosum (below). (b) Supplementary motor area location: SMA borders the leg area of the

primary motor cortex (posterior), pre-SMA (anterior), part of the cingulate gyrus (inferior), and
dorsal premotor cortex (lateral).

Magnetic resonance spectroscopy (MRS)

Magnetic resonance spectroscopy (MRS) can be named the twin method of the famous mag-

netic resonance imaging (MRI) (Figure 4.3a). MRS, like MR imaging, is a non-invasive analytical

technique used to quantify metabolites inside the body, especially the brain [142, 143]. While MRI

provides anatomical information, MR spectroscopy provides chemical and quantitative informa-

tion that is useful in clinical research and increases the understanding of the pathology of the brain,

prostate, breast, and other human organs. Meanwhile, most research focuses on the human brain and

identifies tissue alterations in Parkinson’s and Alzheimer’s disease, epilepsy, and stroke [144, 145].

MRS technology is performed on the same MRI scanners capable of single-voxel (SV) and

multi-voxel (MV) spectroscopy and is defined as a series of tests that are added to an MRI scan
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of the brain or spine. Finally, it produces a ”spectrum” of information about the chemicals present

and their relative concentrations [144,146]. This spectrum can be obtained from chemical elements

such as hydrogen ions or protons. However, proton spectroscopy is more commonly used due

to its high natural abundance [147]. The acquired spectrum is typically in the Digital Imaging and

Communications in Medicine (DICOM) format, containing raw (unprocessed) data. In the raw data,

water produces a much larger signal (4.7 ppm) than other metabolites, which makes the spectrum

dominated by water and the rest of the spectra invisible. Therefore, removing the water peak is a part

of any MRS sequence; if not done correctly, the relative height of the peaks will change [148, 149].

Finally, after performing the necessary pre-processing, the spectra are stored in the defined data

format so that they can be processed in the data analysis software to investigate a relevant objective.

(a) (b)

Figure 4.3: (a) Magnetic resonance spectroscopy machine. (b) Positron emission tomography scan
Machine. Both devices are in the Perform Center’s imaging unit.

The number of peaks in the spectrum - each of which represents a metabolite - is determined

based on the echo time (TE) [150], while the unit of measurement of their frequency is parts per

million (ppm) [143] (Figure 4.4). Among the most common peaks in the MR spectrum, we can
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mention lipids (at 1.3 ppm), lactate (at 1.33 ppm), glutamine/glutamate (at 2.2-2.4 ppm), creatine

(at 3.0 ppm), which are drawn in a graph with different heights [151].

Figure 4.4: Magnetic resonance spectroscopy: The spectrum shows peaks for the following
metabolic products: Lactate (Lac), N-acetyl-aspartyl-glutamate (NAAG), glutamate (Glu),

glutamine (Gln), Creatine (Cr), and Glycerylphosphorylcholine (GPC).

In addition to being non-invasive and capable of measuring several metabolites simultaneously,

this valuable method is very safe, and the magnetic field or radio waves used in the device do not

threaten health. However, this imaging technique requires observing some points to guarantee its

safety. Some of the essential issues are as follows:

• No pins, metal plates, or other implants inside the body

• No pacemaker or artificial heart valves

• Remove the hearing aid

• Absence of skin tattoos
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• No history of diabetes or kidney problems

• Absence of an implanted drug injection device (insulin pump) or an intrauterine device

In general, the presence of any metal material in the body reduces the quality of the images

and changes the obtained results. Also, since the basis of the operation of this device is based on a

strong magnetic field, the presence of any metal disrupts the work and harms the patient [152]. The

FDA has published a new guidance document - Testing and Labeling of Medical Devices for Safety

in the Magnetic Resonance (MR) Environment - that provides more information on what is and is

not allowed in the imaging environment.

Positron emission tomography (PET)

Positron emission tomography, which is also called PET scan for short, is a type of modern

imaging study that has research applications in diagnostic sciences in medical physics, especially

nuclear medicine (Figure 4.3b). By examining blood flow and body metabolism, this method pro-

vides information on the metabolic or biochemical function of tissues and organs, which can be

important clues about how diseases occur [153, 154].

Since PET is a type of nuclear medicine method, it requires using small amounts of radioactive

substances known as radiotracers to examine the tissue being studied. Radioactive tracers attach

a radioactive atom to chemicals naturally used by a particular organ or tissue during its metabolic

process [155]. Depending on the purpose of the scan, different tracers are used in imaging, of which

F-18 fluorodeoxyglucose (FDG) is the most common, which is widely used in brain PET scans -

because the brain uses glucose for its metabolism [156].

The tracer is often injected into a vein in the hand or arm through an intravenous (IV) catheter;

then, after about 30 to 60 minutes, it accumulates in areas of the body with higher metabolic activity

levels. The tracers can be recognized by the gamma rays they emit when passing through any part

of the body (Figure 4.5). The movement speed of these compounds and their absorption rate by

different tissues provide valuable information about the physiology and activity level of the tissue,

which is a sign of its metabolism change [157]. The gamma rays produced by the tissues are
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recorded by the scanner and analyzed by special computers. The final result appears as three-

dimensional color images of the tissue on the computer screen.

Therefore, PET is a non-invasive imaging method, except for intravenous injection, which is

usually painless. This technique is effective for diagnosing or treating brain abnormalities, types

of cancer, and heart disease [156]. Also, PET can detect the onset of the disease before it is seen

by other imaging methods such as magnetic resonance imaging (MRI) and computed tomography

(CT) [158]. In newer technologies, PET is combined with other imaging techniques, CT and MRI,

and is known as PET/CT and PET/MRI, respectively. Combining the images allows the doctor to

interpret the results of two tests in a single image containing more accurate information [159].

Figure 4.5: 18F-FDG Positron emission tomography scan of a healthy brain

Although PET scan includes radioactive tracers, due to the small amount of radiation in the

tracer, this method is almost safe and has few risks and side effects. In addition, it is necessary

to refrain from vigorous physical activity, such as exercise 24 to 48 hours before the test, and

refrain from eating and drinking alcoholic beverages for a few hours before the scan; otherwise, the

distribution of the PET tracer in your body may change, resulting in a suboptimal scan [158].

4.2.3 Data acquisition

Before starting any data collection on the first day of the experiment, a short interview will be

conducted in person with the participant (see Appendix C). After the interview and before starting

the primary protocol, the heart rate and blood pressure at rest, as well as the height and weight of

the subjects, are measured. In addition, the subject must fast for at least 4 hours before the test, and
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in order to make sure of this issue, the subject’s blood sugar is also measured at the beginning of

both visits. Also, a rapid pregnancy test helps us to prevent pregnant women from participating in

the project. More information on this is provided in Appendix C.

Exercise test and determination of the ventilatory threshold

As mentioned, this research project consists of two stages: resting and exercise conditions.

Therefore, during the first visit, after recording the required data at rest, a cardiopulmonary

exercise test (CPET) with limited symptoms is performed to identify the ventilation threshold (VT)

and maximal oxygen consumption (VO2max) in order to determine the training intensity of each

subject in the second stage.

VT refers to the point during exercise where carbon dioxide (CO2) extraction occurs at a faster

rate than the consumption of oxygen (O2). An individual’s threshold is said to reflect anaerobic

levels and lactate accumulation. In fact, VT indicates a level of blood lactate accumulation that

accumulates faster than it can be cleared, causing the person to breathe more quickly to expel excess

CO2. This threshold occurs in a percentage of the VO2max of athletes based on their training status,

around 50-60% VO2max in untrained people and approximately 70-80% VO2max in trained people.

During CPET, subjects perform a 3-minute non-resistance warm-up on a stationary bicycle after

3 minutes of rest while connected to a 12-lead electrocardiogram and connected to a respiratory cir-

cuit through a face mask (Figure 4.6). After the warm-up, the resistance is gradually increased up to

the maximum capacity of the participant. Meanwhile, gas exchange parameters (oxygen consump-

tion, carbon dioxide excretion, minute ventilation), heart rate, and blood pressure are measured and

monitored. In addition, every three minutes, the rate of perceived exertion (RPE), which counts

breathlessness, dyspnea, chest pain, and musculoskeletal pain, is evaluated using the Borg scale.

Also, as shown in Figure 4.1a, every two minutes after pedaling, a blood sample is taken from the

subject to check plasmatic lactate and glucose levels.

The protocols of this exercise are adjusted based on the initial measurement of the ischemic

threshold of each participant so that first, they are given 5 minutes to warm up; then, in the second

5 minutes, by increasing the pedaling power (Watts), we guide the subject to reach 80% VO2max.

During the next 25 minutes, the subjects are expected to pedal at the same power. Still, if the
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Figure 4.6: Determination of the ventilatory threshold and VO2max during the first visit at the
PERFORM Cardiopulmonary Suite

participants cannot continue with such intensity, we will reduce that for a few minutes. If the

participant’s physical condition allows, we will increase it again. However, throughout the training,

the participant is encouraged to continue with all the energy, and every 5 minutes, the power of

the bike (watts), intensity and number of pedal revolutions per minute (RPM), and the number of

heartbeats per minute (BPM) are recorded. In addition, to evaluate the plasma lactate level, a total

of 3 blood samples are taken at 10, 20, and 30 minutes from the start of exercise. Also, in order

to maintain the subject’s safety and increase accuracy in the data collection process, an accredited

sports physiologist supervises all CPET stages and sports training competitions.

Blood lactate and cortisol levels measurements

In order to evaluate blood lactate and glucose levels and changes after exercise, it is necessary

to take several blood samples at set time intervals. For this purpose, we use an intravenous (IV)

plastic catheter installed in the hand or arm vein so that only one venipuncture is needed to collect

blood samples. At each time point, only 2 ml of venous blood sample is taken in a vacuum tube.

Samples are centrifuged for 15 minutes, and the collected plasma is immediately stored at -80°C.
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The compounds in the plasma are extracted and analyzed by expert technicians.

In addition, cortisol, a hormone effective in measuring stress levels, is collected from saliva

several times during the experiment using Salivette™. This saliva collection system has a sterile

absorbent swab that participants hold on their cheek until it becomes wet (about 60 seconds) and

return the swab to the tube without touching it. It is necessary for the participants to refrain from

consuming alcohol the day before the test so as not to interfere with the test. The samples are

immediately frozen at -80°C, then thawed at the time of analysis and centrifuged at four °C for 10

minutes. The relevant technicians perform these steps, and the desired parameters are extracted.

18FDG PET measurement of cerebral glucose utilization

Positron emission tomography is used in research to observe the functions of different organs

in 3 dimensions. In this study, we use PET to examine the brain metabolism of the participants in

the two areas of interest, PCC and SMA. A radiotracer called 18F-FDG is administered through a

catheter implanted in a vein in the arm. When used in conjunction with PET, this radiotracer allows

researchers to evaluate how various brain regions utilize glucose. For this purpose, the subject must

fast for at least 4 hours before the test because the distribution of the radiotracer in the body may

change, and the desired results may not be obtained.

For the first visit, the resting part of the study, we inject a dose of 350-400 MBq1 18F-FDG in

order to keep the overall radiation exposure below 20 mSv while the subject is sitting comfortably in

an armchair. Then, for 90 minutes following the injection, the subject is kept in a quiet environment

so that the product has enough time to accumulate in the brain. While in the second visit, the

training part, the same amount of tracer is injected, but this time when the subject achieves the

aerobic threshold (10 minutes after the start of exercise). In both stages, the injection’s exact time

(hours and minutes) is recorded so that the PET scan can be started 90 minutes later.

The subject lies on a bed for PET imaging and is slowly moved into a short tube. The tube is

open at both ends. Also, an intercom system allows the subject to communicate with the technician

if needed. During imaging, it is crucial to remain still; for this purpose, the head is fixed with a
1MBq (megabecquerel) = 10*6 Bq (Becquerel)

Becquerel (Bq) is a unit of radioactivity in the International System of Units representing a minimal amount of ra-
dioactivity. Therefore, megabecquerel (MBq), one of the most common multiples of Bq, is usually used.
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holder’s help to ensure that it does not move. The exact time (hours, minutes) of the start of acquisi-

tion is recorded. First, two short CT scans (less than 2 minutes) are taken to determine the subject’s

position and to weaken and correct the scattering of PET images; then, the main scan is performed

for 20 minutes. Finally, the images are reconstructed using our standard locally implemented itera-

tive procedures (with attenuation, randomness, scattering, decay, and motion corrections). Certified

imaging technicians perform these procedures under appropriate conditions with their professional

instructions.

T1 MRI and MRS acquisitions

Before each PET session, participants undergo an MR study. MR spectroscopy is a crucial re-

search tool that can measure the concentration of specific molecules in specific brain areas. Lactate

is one of these molecules obtained in this study in the two regions of interest, PCC and SMA, during

two MRS measurements.

In addition to measuring resting lactate values, the first visit is also used to obtain a high-

resolution full-volume T1 image that is used for the co-registration of PET scan images. During

both visits, measurements are made in a box measuring 4x4x3 cm3 around the PCC and SMA areas,

which are located using the MNI template. Each measurement consists of 304 averages with TE/TR

= 270/2000 ms for a total scan duration of 10 minutes per region. Also, the order of acquisition for

the two regions of interest is counterbalanced across subjects to avoid systematic order effects.

For this study, no imaging material is injected. Similar to PET scanning, the subject lies on

a specialized bed and slowly slides into a large open MRI tube at both ends. Also, at any time

during the operation, it is possible to talk to the technician through the intercom system. Since the

sound of the MRI is very loud during the process, ear protectors are used to protecting the ears from

acoustic noise for the participant’s comfort. In addition, it is vital to stay still while the MRI is being

performed, so a pillow is placed around the head to help keep the head still.

The technician of the department performs all MR spectroscopy imaging steps. Also, before any

imaging, the technician checks the safety screening form filled out by the participant and issues the

imaging license if there are no problems. Questions have been asked in the MRA safety screening

form to ensure that the participant has no issues during imaging. Some of these concerns are as
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follows:

• Having previous MRI experience

• Being pregnant or breastfeeding

• Being claustrophobic

• Being connected to any supportive medical device

• Having any metal implants in the body and around the eyes

The subject answers each of the questions carefully with yes or no and has enough time to ask

about each of the questions.

4.3 Data Analysis Framework

The primary data collected and compiled from the participants during two visits is insufficient

to confirm the research hypotheses. There is still a need to apply extensive statistical analysis to

the data in order to conclude them. In other words, the analysis process refers to processing a large

amount of data, which leads to finding the logic behind the emergence of the main findings.

Starting any work and operation in the first stage involves preparations and prerequisites. ”Data

Mining” is not exempted from this law and requires preliminary preparation and processing. There-

fore, it is necessary to prepare and adjust all the data used for the intended purpose or so-called

”pre-processing” before starting the processing. Data pre-processing includes all transformations

performed on raw data to make subsequent processing more straightforward and effective. This op-

eration is performed after data extraction and plays an essential role in the data processing process

and its results.

Therefore, we briefly explain the data pre-processing steps and then propose how to analyze the

collected data to support the hypotheses.
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4.3.1 Preprocessing of PET scan measurements

The PET measurements used in this study are Standardized Uptake Values (SUVs) Ratios

(SUVR).

SUVs represent tissue activity within an ROI and remove variability caused by differences in

patient size and the amount of FDG injected. Therefore, SUV is used as a relative measure of FDG

absorption [160], which is summarized in equation 1:

SUV =
cimg

ID/BW
(1)

Where cimg is the radioactivity concentration measured from the image by PET scan, ID is the

injected dose, and BW is the body weight.

SUVR is the ratio of SUV data from two different regions (a target and a reference region) in a

PET image that provides a surrogate measure of the amount of tracer available [161]. In this study,

we have considered Pons as the reference area used to calculate SUVRs, and finally, we figured

SUVR for PCC and SMA interest areas according to equation 2.

SUV R =
SUVtarget

SUVreference
(2)

Another prerequisite for PET image analysis is spatial normalization and image alignment.

For this purpose, we have used each subject’s high-resolution T1 MR study as a reference for co-

registration and spatial normalization in each PET study.

4.3.2 Preprocessing of MRS measurements

As we discussed in detail, MRS enables non-invasive measurement of tissue metabolite levels in

vivo and provides valuable information for clinical diagnosis and research. However, it is necessary

to filter and process all scans before analyzing the data to remove any inaccuracies. Advanced

preprocessing and simulation of MRS data are done using the FID appliance (FID-A) toolkit.
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FID appliance (FID-A) toolkit

FID-A (https://github.com/CIC-methods/FID-A) is an open-source, MATLAB-based toolbox

specifically designed to handle raw MRS datasets. By providing a convenient tool for handling such

raw, multidimensional data, this software tool facilitates the implementation and use of higher-level

processing and analysis routines such as advanced coil combining, frequency and phase shift cor-

rection, and MRS functional time processing. It also removes the degenerate averages of individual

motion before further analysis [162].

Using this tool, in brief, the following sequence of operations is applied to the raw outputs of

MRS:

I. Coil array reconstruction: Each of the receiver elements of the MRI system detects different

signal phases, signal amplitude, and noise depending on the position of the head relative to the

coil element and the location of the voxel. Therefore, it is necessary to combine the diagnostic

signals by different elements of the coil in such a way as to maximize the signal-to-noise ratio

in the resulting spectrum. In the first place, the reconstruction of the weighted coil array was

done using the weight of the receiver and the phases, which are determined by the magnitude

and phase of the first point in the time domain, respectively.

II. Removal of Motion-Corrupted Averages: The identification of motion-corrupted averages

is made by calculating the deviation of each average from the rest of the averages. This

step removes averages corrupted by moving with a threshold of 4 standard deviations. This

process is repeated until there are no more broken moving averages.

III. Spectral Registration: After removing averages corrupted by motion, estimation and correc-

tion of frequency errors and phase drift in in-vivo MRS data are performed. This process

continues in a limited frequency range until the frequency estimation, and phase shift reach

convergence.

After performing all corrections on the uploaded scan that protect the user from potentially

significant errors during data analysis, the final processed spectrum is generated. Finally, FID-A
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converts this spectrum to the MRS analytical software format used in this study, Tarquin, in two

modes ”water-unsuppressed data” and ”water-suppressed data.”

TARQUIN software

TARQUIN is an open-source application developed to quantify metabolite concentrations in

MRS data automatically. In addition to being free, this software is available on computer oper-

ating systems. It uses batch and one-time analyses using both a command line interface and a

graphical user interface (GUI). A quantum mechanics-based metabolite simulator is packaged with

TARQUIN to optimize basis set construction for investigating specific pathology sequence parame-

ters [163].

In this study, after the pre-processing applied by FID-A, a default analysis is always performed

on the data by TARQUIN. This analysis uses the metadata in the files modified by FID-A as input

to specify the details for TARQUIN. Although TARQUIN can automatically simulate and quickly

adapt the basis set used during data analysis, it is not suitable in cases where default options need

to be set. For this reason, we use the advanced analysis option included in TARQUIN to adjust our

input parameters (Figure 4.7). Unlike the quick fit procedure, in this process, we must determine

the main acquisition parameters after selecting the data format and inputting data files. Some of

these parameters are automatically read from the input files, but the rest must be applied manually

according to our purpose.

The set of input parameters that we considered for MRS data analysis is presented in Table 4.2.

One of Tarquin’s most critical steps in data processing is correcting the eddy current. The eddy

current is created following rapid gradient switching and leads to unwanted short-term fluctuations

of the B0 field. This unwanted effect leads to the deterioration of the shape of the spectrum lines

and affects the results obtained from the spectral analysis [164]. Therefore, it is necessary to apply

eddy current correction during the preprocessing of any in-vivo MRS data set. TARQUIN analysis

software estimates any nonlinearity in the phase of unsuppressed data in the time domain and then

performs eddy current correction for unsuppressed and suppressed water data. TARQUIN, having

this capability, eliminates the need to do this step in advance.

Finally, after setting the correct parameters, we extract the analysis graphs from Tarquin and use
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Figure 4.7: The advanced fit window

Table 4.2: The output of logistic regression analysis in PCC with two explanatory variables (FDG,
Lac) and a binary categorical variable (V1, V2).

TARQUIN’s set of input parameters

Input Data
File Format: LCModel RAW

Input Data Files: Water Suppressed Data and Water Unsuppressed Data

Data parameters

Sampling frequency (Hz): 5000
Transmitter frequency (Hz): 127.700000E6

Echo time (s): 0.2700
Data points: 4096

Pre-processing data
Reference offset (ppm): 4.65

Eddy current correction

Fitting data
Start point: 10

End point: 2048
Maximum iteration: 75

them to see the appropriateness of the analysis, concentration values , and standard deviations for

different metabolites. An example of the fitted signal and the concentration of metabolites extracted

from Tarquin is presented in Figure 4.8.

44



Figure 4.8: An example fit to the brain MR spectroscopy.

4.3.3 Analysis of acquired data

After performing the necessary pre-processing on the measured data from the PET and MRS

scans, we checked the dataset for missing data and outliers before starting the primary analysis.

Meanwhile, some plasma measurements (3 blood samples) were missing. Since several blood

samples were taken for each subject at multiple time intervals, we have recovered the missing data

using the averaging method from the samples whose values are known. Also, we checked all the

data using MATLAB’s outlier detection function and found that the FDG value of the first visit of

one of the subjects is an unusual or outlier compared to the rest of the values. In order to reduce the

impact of outlier data on the algorithm’s performance, we have removed all the data related to that

subject from the data set.

In the following, we briefly explain the statistical tests and methods used in this study in order

to extract insight and logical information from the data.
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Paired sample t-test

Paired t-test is a subset of parametric statistical tests. Parametric tests are the most effective tests

used in cases to generalize the results obtained from the sample group to the statistical population.

These tests have high statistical power and the ability to deal with data collected in complex designs.

The use of parametric tests is subject to the following assumptions:

• The description of variables should be based on relative or distance scales.

• Each of the observed items must be independent, which means that the selection of one item

does not depend on the selection of any other item.

• Data distribution in society is normal or close to normal.

If the collected data comply with the three conditions, paired t-test can be used to analyze the

data. Paired t-tests are a subset of student t-tests commonly used in intervention studies. This

test is used in studies that aim to investigate the impact of an intervention on a group of people

at two different times (before the intervention and after the intervention), and its work is based on

evaluating the difference in the averages of two dependent populations (paired with each other). The

paired t-test examines each person twice at two different times [165].

In this study, as mentioned, our goal is to observe and investigate the effect of exercise on brain

glucose absorption and brain lactate concentration. Therefore, we intend to test the values of a

quantitative variable, which we have collected before and after the effect of a factor (exercise) on

the same people and evaluate the significance of the difference.

Here are the assumptions related to the paired t-test as follows:

I. Null hypothesis (H0): There is no statistically significant difference between the two groups’

averages.

II. Alternative hypothesis (H1): There is a significant difference between the average of the two

communities, which is not caused by sampling error or chance.
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⎧⎪⎪⎨⎪⎪⎩
H0 : µA = µB

H1 : µA ̸= µB

(3)

The test statistic for the paired t-test is calculated as follows:

T =
dˆ︁σ/√n

(4)

In this regard, d means the average difference between two variables (before and after the effect).

This statistic has a t distribution with (n-1) degrees of freedom. Also, ˆ︁σ shows the standard deviation

of the differences and n is the sample size. In this case, we have:

di = xiA − xiB , i = 1, 2, ..., n (5)

As a result, the value of d and ˆ︁σ can be calculated as follows.

d =
1

n

n∑︂
i−1

di (6)

ˆ︁σ =

⌜⃓⃓⎷ 1

n− 1

n∑︂
i=1

(di − d)
2

(7)

Finally, we examine the p-value (probability value) for the t-statistic to determine whether the

difference between the two groups is significant. The p-value expresses the likelihood of seeing

the test findings under the null hypothesis. Therefore, a low p-value indicates reduced support

for the null hypothesis. Here, we have considered a cut-off value of 0.05 to determine statistical

significance.

In addition to the listed presuppositions for parametric tests, another additional condition has

been defined for the paired t-test: the normality of the distribution of the measured differences.

Therefore, before entering into the analysis, it is necessary to check the normality of the measure-

ment differences. For this purpose, we have used the Shapiro-Wilk test.
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Shapiro-Wilk Test

The Shapiro-Wilk test is one of the normal distribution fitting tests. With the help of this test

and its statistics, we can determine whether the data follows a normal distribution. Considering

this issue, this test can be regarded as part of the group of non-parametric statistics methods. In

the original form of this test, a method for estimating the distribution parameter is not considered.

Still, the ordinal statistics and their distribution, as well as the main data, are used to calculate the

statistics of this test, which is called a non-parametric method. Similar to other statistical hypothesis

tests, the Shapiro-Wilk test also has two assumptions, Null Hypothesis, and Alternative Hypothesis,

which are summarized as follows:

I. Null Hypothesis: represents the normal distribution of data.

II. Alternative Hypothesis: It represents the non-normality of the data.

If we assume that x1, x2, ..., xn are a sample of a population, then the Shapiro-Wilk Test statistic

is defined as follows:

W =
(
∑︁n

i=1 aix(i))
2∑︁n

i=1 (xi − x)2
(8)

where x(i) represents the i-th ordinal statistic and xi is the random sample value. Also, ai means

a vector defined as below:

(a1, a2, ..., an) =
mTV −1

(mTV −1V −1m)1/2
(9)

In this formula, vector m is the mathematical expectation value of ordinal statistics and V is the

covariance matrix of ordinal statistics. Also, x means the average of observed values from a random

sample. That is, we have:

x = (x1 + x2 + ...+ xn)/n (10)

The Shapiro-Wilk Test is more powerful than similar tests such as the Kolmogorov-Smirnov

test and the Anderson-Darling test and is a more suitable method for small sample sizes (less than
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50 samples) [166].

In this test method, to determine whether or not to reject the null hypothesis, we rely on the

probability value (P-value) produced in most statistical software. We reject the null hypothesis and

conclude that the sample data were not drawn from a normal population if the P-value is less than

0.05.

Generalized Linear Model (GLM)

Generalized linear models, abbreviated as GLM, is an advanced statistical modeling technique

that John Nelder and Robert Wedderburn formulated in 1972 to unify different statistical models.

GLM models, which are straightforward models appropriate for counting data, allow us to build

a linear link between the response and the predictors, even though the underlying relationship is

not linear. This approach provides for regression modeling when the responses are distributed as a

member of the exponential family, in which the variance is a known function of the mean.

Similar to other statistical models, GLM follows some basic assumptions:

• Data should be distributed independently.

• The response variable does not need to follow a normal distribution, but it should have a

distribution of an exponential family.

• The response variable and the explanatory variables do not require a linear connection; nonethe-

less, the transformed response variable (in terms of the link function) is considered to have a

linear dependence on the explanatory variables.

• The error distribution of the response variable does not need to be normally distributed.

In addition, three components are considered for each GLM:

• Random component: The only random component in the model expresses the type of prob-

ability distribution (Poisson distribution, binomial distribution, or normal distribution) of the

response variable.
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• Link function: It is shown as η or g(µ) and determines the type of relationship between

random and systematic components. Link functions show how the predicted response value

relates to the linear combination of explanatory variables.

• Systematic component: It is a quantity that specifies the explanatory variables of the model

and their linear combination.

Generally, generalized linear models are used in parametric and non-parametric ways to estimate

the curve. They include linear, logistic, and Poisson regression models [167, 168].

In the following, we will give a brief explanation of linear regression and logistic regression,

which are used in the analysis of this study.

I. Linear Regression

Linear regression is a more specific model of GLM and the simplest regression model, which

includes two types of simple linear (SLR) and multiple linear (MLR). Linear regression mod-

els are a basic and common type of statistical analysis that usually works on continuous data.

The basis of this method is to model the target value based on independent predictors, which

is used to find the cause-and-effect relationship between variables.

SLR includes only one predictor variable, while MLR seeks to predict changes in more than

one independent variable on a dependent variable. The equation of MLR, which is a more

comprehensive form of SLR, is modeled as follows:

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (11)

where yi is the dependent variable and x represents the independent variables that have p

dimension. Also, the i=1,2,. . . ,n index shows the observation number of the independent

variable. β0 is the width from the origin and represents a fixed value in the model, while βp

is called partial regression coefficients for each independent variable; the calculation of these

coefficients is done using the minimization of ”ordinary least square” and based on the calcu-

lation of ”partial deviation”. Finally, ε is the regression model’s error term, which represents

the difference between the observed and fitted values of the dependent variable [169]:
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ε = yi − ˆ︁yi (12)

As we mentioned, one of the methods of estimating the parameters of this model is to use the

”Ordinary Least Square (OLS)” technique. In this case, if we introduce the sum of squared

error (SSE) function (S(β)) as below, the purpose of estimating the parameters of the linear

regression model is to calculate the β vector according to the value of the observations so that

S(β) is as minimized as possible.

S(β) =
n∑︂

i=1

| yi −
p∑︂

j=1

Xijβj |2=∥ Y −Xβ ∥2 (13)

where X is the matrix of multivariate inputs whose dimensions can be considered as (p+1)×n.

On the other hand, the Y matrix is a set of dependent data variables, which is an n-line vector,

and β represents the parameters vector. It is clear that ∥ Y −Xβ ∥2 means square distance

or Euclidean Norm.

If we denote the estimation of the parameters vector by ˆ︁β, the parameters of the model are

the values that apply in the following equation:

ˆ︁β = argminβS(β) (14)

To get the ˆ︁β, we take the gradient from the S(β) function with respect to vector β and set the

gradient to zero, and finally, with the help of derivation and solving the matrix equations, we

get the estimation of the parameters as follows:

ˆ︁β = (XTX)−1XTY (15)

This estimation is possible when the matrix (XTX)−1 is invertible. This means that its

determinant must be opposite to zero to indicate the absence of linear dependence between

the rows or columns of the matrix [170]. For this reason, the linear regression model has
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conditions that are summarized below:

• Independence of observations: descriptive variables are independent of each other.

• Homogeneity of variance or homoscedasticity: the size of the error does not change

significantly in the values of the independent variable.

• Normality: The data has a normal distribution.

• Linearity: there is a linear relationship between independent and dependent variables [171].

Building on all the concepts described, multiple linear regression calculates four things to

find the best fit for each independent variable:

• Estimate: reports the estimated value of the regression coefficients that lead to the small-

est overall error in the model.

• Standard Error (Std. Error): The standard error of the estimation of the regression

coefficients is reported, which indicates the accuracy of the coefficients. The larger the

standard error, the lower the confidence in the estimate.

• Student’s t-statistic: This statistic is obtained by dividing the estimated coefficients by

the standard error.

• P-value: p-value corresponds to the t-statistic. The smaller the p-value, the greater the

significance of the estimated coefficients (if the p-value is less than 0.05, the assumption

of the equality of the coefficients with zero is rejected, and the desired coefficient is

significant.)

II. Binary Logistic Regression

Binary Logistic Regression (BLR) is a statistical regression model to show the effect of quan-

titative or qualitative variables on the bivariate dependent variable. BLR is a generalized

linear model with a polynomial distribution of its error and the logit function as the link func-

tion. Therefore, this model is one of the classification algorithms used to assign data to a set

of classes.
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Logistic regression analysis is similar to linear regression analysis, but the important differ-

ence between these two models can be seen in two features of logistic regression:

I. The conditional distribution of (y | −→x ) is a Bernoulli distribution instead of a Gaussian

distribution because, unlike linear regression, the dependent variable is a qualitative,

binary variable represented by zero and one codes.

II. Predicted values are probabilities and are limited between zero and one and are obtained

with the help of the logistic distribution function.

In fact, two main goals are desired in a BLR model:

• Studying how the relationship and the impact of independent quantities on the dependent

quantity.

• Predicting the probability of occurrence of dependent quantity by having independent

quantities.

The statistical model of binary logistic regression is as follows:

logit(p) = ln(
p

1− p
) = β0 + β1x1,i + ...+ βkxk,i (16)

where p is the probability of occurrence of the dependent quantity. Therefore, as we men-

tioned, what is predicted in logistic regression is probability. Therefore, we can present the

above relationship as follows:

p = Pr(yi = 1) (17)

p = Pr(yi = 1 | −→x i;
−→
β ) =

eβ0+β1x1,i+...+βkxk,i

1 + eβ0+β1x1,i+...+βkxk,i
=

1

1 + e−(β0+β1x1,i+...+βkxk,i)
(18)

This model can well measure the impact of each x on the probability of occurrence of the

response quantity and evaluate their significant or non-significant impact, where e, Nepper’s
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constant, is the base of the natural logarithm (approximately equal to 2.718281828459047)

and xj is an independent variable and βj are the logistic regression coefficients of the inde-

pendent variable and β0 is the width from the origin.

Logistic regression can be defined by the logistic function. This function is represented by

σ : R → (0, 1) and is calculated as follows:

σ(t) =
et

et + 1
=

1

1 + e−t
(19)

Including the logistic function, we can rewrite the logistic regression as follows:

Pr(yi = 1 | −→x i;
−→
β ) =

1

1 + e−(β0+β1x1,i+...+βkxk,i)
= σ(β0 + β1x1,i + ...+ βkxk,i)) (20)

As the linear regression function based on the least squares method predicts the dependent

variable with the least error, in the logistic regression, the exponential function based on the

”Maximum Likelihood Estimation (MLE)” method estimates the probability of the event with

the least error. In this case, if we introduce the logarithm of the likelihood function (L(β)) as

below, the goal of estimating the parameters of the logistic regression model is to calculate

the vector β according to the value of the observations to maximize L(β) as much as possible.

L(β) = log(

n∏︂
i=1

Pr(yi = 1 | −→x i;
−→
β )yi × Pr(yi = 0 | −→x i;

−→
β )1−yi)

=

n∑︂
i=1

yilogPr(yi = 1 | −→x i;
−→
β ) + (1− yi)logPr(yi = 0 | −→x i;

−→
β ) (21)

where if yi = 1 for data i, the goal is to increase Pr(yi = 1 | −→x i;
−→
β ), and if yi = 0, the goal

is to increase the value of Pr(yi = 0 | −→x i;
−→
β ).

As we said, the optimal parameter is the parameter that maximizes the value of L(β). For this

purpose, we use the Stochastic Gradient Ascent method. In this method, as the name suggests,
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we randomly select an example from the data samples, then we calculate the gradient of the

exponential and move the parameter a little in the direction of the gradient to reach a new

parameter. The gradient of the local direction shows us the greatest increase in the function,

so we move a little in that direction to reach the greatest local increase of the function. We

repeat this process until the gradient gets close enough to zero:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Initialize
−−→
βold randomly

loop until convergence :

for i = 0 to n;

for j = 0 to m;

−−→
βnew
j =

−−→
βold
j + α(yi − 1

1+e
−
(︃
βold0 +βold1 x1,i+...+βold

k
xk,i

)︃ )−→xi,j

βold = βnew

(22)

Here, α is the value we move in the direction of the gradient each time, and (yi− 1

1+e
−
(︃
βold0 +βold1 x1,i+...+βold

k
xk,i

)︃ )
−→xi,j is the partial derivative of data i in dimension j [172, 173].

In logistic regression, like other regression models, the importance of the final result can be

evaluated with the p-value. Suppose the significance level of the logistic regression coeffi-

cient of one or more independent variables assumed by the researcher is greater than 0.05. In

that case, the researcher’s assumptions about the effectiveness of all independent variables as-

sumed on the dependent variable are not confirmed. In other words, in this case, the assumed

theoretical model of the researcher, which is the same set of independent variables that the

researcher assumed as the effective factors in the dependent variable, is rejected.

Pearson Correlation Coefficient

One of the most famous ways to measure the linear correlation between two quantitative vari-

ables is to calculate the Pearson Correlation Coefficient. This index was introduced by the English

statistician Karl Pearson in 1900. Pearson’s correlation coefficient is a parametric approach for data

with a normal distribution or a large number of observations [174].
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Pearson’s correlation coefficient between two random variables is defined as equal to their co-

variance divided by their standard deviation. This coefficient, when applied to a statistical pop-

ulation, is usually indicated by the Greek letter ρ and is called the correlation coefficient of the

population:

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(23)

where cov is covariance, σX is the standard deviation of X , µX is the mean of X , σY is the

standard deviation of Y , µY is the mean of Y , and E is the expectation.

Also, when the Pearson correlation coefficient is applied to a sample, it is indicated by r and it

is called the sample correlation coefficient:

rX,Y =

∑︁n
i=1(xi − x)(yi − y)√︁∑︁n

i=1(xi − x)2
√︁∑︁n

i=1(yi − y)2
(24)

where n equals to sample size, xi, yi are the individual sample points indexed with i, and x, y

are the average of the sample, which are similar quantities and are defined as follows:

x =
1

n

n∑︂
i=1

xi and y =
1

n

n∑︂
i=1

yi (25)

This coefficient, which ranges from −1 to 1, quantifies the nature, direction, and intensity of

the link between two variables. A direct or positive connection means that if one of the variables

rises (or decreases), the other also increases (or decreases), and r = 1 denotes a complete direct link

between two variables. Additionally, r = −1 demonstrates a fully inverse relationship between two

variables, whereby if one variable rises, the other one falls, and vice versa. Additionally, a correla-

tion value of 0 indicates no link between the two variables that can be described as linear [175].

One more helpful criterion in the correlation coefficient analysis is the significance threshold;

the null hypothesis is refuted, and we conclude that there is a significant connection between the

two variables if the p-value is less than 0.05.
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Partial Correlation

If X and Y are two random variables and Z is a control variable that is dependent on X and

Y variables, then the partial correlation coefficient between X and Y by removing the effect of the

control variable Z is denoted by ρXY.Z and is calculated as follows be:

ρXY.Z =
ρXY − ρXZρY Z

(1− ρ2XZ)
1/2(1− ρ2Y Z)

1/2
(26)

In this regard, ρXY means the simple correlation coefficient between X and Y . The range of

values of this coefficient, like the correlation coefficient, is in the range of −1 to 1. This means that

the closer the partial correlation coefficient is to 1 or −1, the greater the intensity of the relationship

between two variables by controlling and eliminating the effect of other variables, and the closer

this coefficient is to 0, it indicates the lack of dependence between the two [176].

Linear interpolation

The simplest approach for fitting curves with linear polynomials is linear interpolation. Using

this technique, additional data points can be added to the current discrete data range. In other words,

it is feasible to infer an unknown value between two data points by traversing a straight line between

them via linear interpolation. Based on the presumption that the rate of change between known

values is constant and can be estimated from these values using a straightforward slope calculation,

the notion of linear interpolation is used to approximate data. The unknown value between two

known points may then be estimated using one of the points and the rate of change.

The linear interpolation formula is presented as follows:

y =
y0(x1 − x) + y1(x− x0)

x1 − x0
(27)

where (x0, y0) and (x1, y1) are two known points, and the formula of linear interpolation is in

the range of (x0, x1) [177].
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4.4 Evaluation and justification of methodological choices

In this chapter, we describe in detail the steps and techniques used for data collection. We also

discussed in detail how to pre-process the raw data and finally analyze the data in order to extract

the logic behind the data.

In this study, we chose MRS and PET scan imaging techniques to measure brain lactate and

glucose levels, which are much more accurate than other existing methods. In addition to being non-

invasive, the MRS technique provides the possibility of direct measurement of brain metabolites in

the area of interest.

Also, in the sports protocol part, although using a treadmill could lead to better results, we

considered a stationary bike for this experiment due to the safety of the participants. Obviously,

running on a treadmill requires far less energy than pedaling a stationary bike, and the subjects

could stay at 80% of their vo2max for longer. Still, over time and given that the subjects have been

fasting, it was possible that they would suddenly lose their strength and energy and not be able to

continue. In this case, we would not be able to control the situation, and the participant would be

injured.

Another thing that could have helped to improve the goal was collecting data in one day instead

of two visits. But as I mentioned, the subjects had to be fasting; on the other hand, each visit takes

about 4 hours, so it was almost impossible for the subject to have both visits in one day.

In this study, we chose Tarquin software to process the data extracted by MRS, which, besides

being free, automatically determines the number of molecules in the MR spectrum.

In addition to all this, it should be considered that the quantitative data collected was from

human samples and based on the laboratory, and despite controlling the conditions, there is always

the possibility of errors in such samplings. However, we considered the most standard approach in

this study, which has sufficient accuracy and can be repeated by other researchers.

We also used the most reliable techniques to model and analyze the variables in a way that

leads to valid and reliable results. We also took steps to confirm or reject the study’s hypotheses by

extracting logical relationships between the variables. Therefore, we believe that the methodology

design is consistent with the goals of the project and is the best approach to answer the statement of
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the problem and research questions.
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Chapter 5

Research Results and Discussion

This chapter reports the main findings of data collection and analyses conducted to evaluate the

relationships between variables. In this chapter, by presenting a summary of the results objectively

and in a logical order, we answer the research questions and state whether the findings were in the

direction of confirming the hypotheses or rejecting the hypothesis. We also use the obtained results

as a stepping stone for discussion and focus on evaluating the results’ meaning, importance, and

relevance.

In summary, the findings reported in this chapter were collected to investigate the effect of

intense exercise on brain energy metabolism (glucose and lactate) and the behavior of the same

metabolites at the plasma level. The data used in these results were recorded with the help of

two imaging techniques, MRS (to measure the amount of brain lactate) and PET scan (to measure

the concentration of brain glucose) for the two regions of interest, PCC and SMA. Also, we have

collected data related to plasma with blood samples taken in two visits (rest and exercise) from 29

healthy subjects (13 females and 16 males, 25 to 45 years old).

In the following, we present the results obtained from the pre-processing performed on the data

and the statistical analyses used. In addition, we explain and evaluate the importance and meaning

of each of the obtained results and their interpretation.
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5.1 FID-A Pre-processing Results

We used the FID-A toolbox to process the raw data from the MRS imaging technique to cor-

rect potential errors introduced during imaging (coil array reconstruction, individual motion decay

averages, frequency errors, and phase drift) for subsequent analyses. As we can see in Figure 5.1a,

each of the receivers of the MRI system has detected a signal with a different amplitude, noise, and

phase. The strongest receiver signals have the highest weight, and the weakest ones have the lowest.

Therefore, we have taken a step towards optimizing SNR by reconstructing the coil array through

phase adjustment and applying amplitude weighting. Figure 5.1b shows the output after making

corrections.

(a) (b)

Figure 5.1: Coil array reconstruction [sub-17/V2/PCC]: (a) MRS data, prior to coil combination.
(b) MRS data, after coil combination. Each curve corresponds to the signal received by different

coil elements during MRS imaging based on head position as well as voxel location.

Figure 5.2 also shows the steps of pre-processing to correct the MR spectrum’s defects. Each of

the data is firstly corrected in terms of movement to eliminate the effect of small movement values

created by the subject (natural physiological movements) on the quality of the spectrum, which

leads to small changes in frequency and phase. Figure 5.2a shows the spectrum before removing
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motion-corrupted averages, which does not show any difference compared to Figure 5.2b, and it

means that the motion correction function did not find the average corruption to remove. In the

next step, after removing the averages corrupted by the movement, as seen in Figure 5.2c, the

estimation of frequency errors and the phase shift is done on the data. Figure 5.2d shows the data

after frequency correction and phase shift, which shows that compared to Figure 5.2b, after Spectral

Registration, the alignment of the averages has increased significantly. Finally, FID-A generated the

final spectrum after all corrections in two ”water-unsuppressed data” and ”water-suppressed data”

modes.

Figure 5.2: Preprocessing operations to remove/correct spectral defects using FID-A toolbox
[sub-17/V2/PCC]: (a) All averages before the removal of motion-corrupted averages. (b) All

averages After the removal of motion-corrupted averages [Original number of averages: 38.00,
Number of bad Averages removed: 0.00, Number of remaining averages in the processed dataset:
38.00]. (c) Estimated frequency and phase drift [Total frequency drift was: 1.448322, Total phase

drift was: 32.636935]. (d) All averages after frequency correction and phase shift.

5.2 TARQUIN Pre-processing Results

We have used the TARQUIN software to determine the amount of cerebral lactate in the MR

spectrum in two areas of interest, PCC and SMA. As Figure 5.3 shows, we feed Tarquin from

the two files ”water-suppressed” and ”water-unsuppressed” produced by FID-A. According to the

shown outputs, Tarquin fits the best signal according to the input parameters (Sampling frequency:
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5000 Hz, Transmitter frequency: 127.700000E6 Hz, Echo time: 0.2700 s) on the MR spectrum and

extracts the corresponding values of its metabolites.

Before delving deeper into interpreting the effect of exercise on brain lactate, with a cursory

look at the outputs presented in Figure 5.3, the increase in lactate concentration (for subject No.17)

in the second visit (under exercise) is well visible in both PCC and SMA regions.

Figure 5.3: Tarquin’s final results [sub-17]: The presented spectra are related to the first visit
(under rest) and the second visit (under exercise) in two areas of PCC and SMA. The results show

an increase in lactate (1.3 ppm) in both areas after exercise.

5.3 The effect of exercise on brain energy metabolism

Our aim of this study was to observe and investigate the effect of exercise on brain glucose

absorption and brain lactate concentration. In other words, we intended to test the quantitative

variable values of lactate and glucose that we have collected before and after the effect of a factor

(exercise) on the same people and evaluate the importance of the difference. As we have mentioned

before, our main hypothesis is that lactate concentration increases after exercise and cerebral glucose

uptake (from now on we use FDG to represent glucose) decreases. Figure 5.4 shows the visual

results of brain lactate behavior following exercise. The amount of lactate in the PCC area in the

second visit compared to the first visit (for subject 17) increased by 48% and in the SMA area by
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120%. More generally, Figure 5.4e shows the average amount of lactate for all subjects (29 people),

in PCC the average lactate increased by 56% and in SMA by 47% after exercise.

Figure 5.5 also graphically shows the amount of FDG absorption under the influence of intense

exercise. The amount of FDG absorption in the PCC area in the second visit compared to the first

visit (for subject 17) decreased by 49% and in the SMA area by 52%. More generally, Figure 5.5e

shows the average absorption of FDG for all subjects (29 people), in PCC the average FDG de-

creased by 54% and in SMA by 53% after exercise.

Figure 5.4: Lactate behavior following exercise: (a) It shows the output of Tarquin
[Sub17/PCC/V1], in which the amount of lactate is 2.016 mmol. (b) It shows the output of Tarquin
[Sub17/PCC/V2], in which the amount of lactate is 2.974 mmol; this amount has increased by 48%

compared to (a). (c) It shows the output of Tarquin [Sub17/SMA/V1], in which the amount of
lactate is 2.078 mmol. (d) It shows the output of Tarquin [Sub17/SMA/V2], in which the amount

of lactate is 4.58 mmol; this amount has increased by 120% compared to (c). (e) It shows the
average lactate for all subjects (29 people) in both areas before and after exercise, which increased

by 56% and 47% in PCC and SMA, respectively, after exercise.

As the graphical images and bar graphs show us, lactate concentration and FDG uptake in both

ROIs increased and decreased, respectively, following the exercise. However, it is necessary to

check the significance of the obtained results. Therefore, we have used paired sample t-test to

confirm or reject this hypothesis.

As we mentioned in the methodology section, one of the conditions for using this test is the

normality of the measurement differences. Therefore, before examining the paired sample t-test, we
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Figure 5.5: Glucose behavior following exercise: (a) It shows the output of PET scan
[Sub17/PCC/V1], the red color indicates a high rate of FDG metabolism in which the amount of
FDG is 9.5. (b) It shows the output of the PET scan [Sub17/PCC/V2], the blue color indicates a
low rate of FDG metabolism in which the amount of FDG is 4.8; this amount has decreased by
49% compared to (a). (c) It shows the output of the PET scan [Sub17/SMA/V1], in which the

amount of FDG is 9.4. (d) It shows the output of PET scan [Sub17/SMA/V2], in which the amount
of FDG is 4.5; this amount has decreased by 52% compared to (c). (e) It shows the average FDG
for all subjects (29 people) in both areas before and after exercise, which decreased by 54% and

53% in PCC and SMA, respectively, after exercise.

examine the normality of the measurement differences through the Shapiro-Wilk test.

5.3.1 Shapiro-Wilk test results

As we said, we have used the Shapiro-Wilk test to check the normality of data differences.

Figure 5.6 shows the output of the normality test. The inputs of this test are the difference in lactate

measurement in the first and second visit (DiffLacPCC or DiffLacSMA) and the difference in FDG

measurement in the first and second visit (DiffGlcPCC or DiffGlcSMA) in the PCC and SMA areas.

In Figure 5.6, the Statistic is the Shapiro-Wilk test statistic (W), which is a measure to show

the correlation of ordered and standardized sample quantiles with standard normal quantities. This

statistic varies between 0 and 1, where 1 indicates a complete match. Referring to the estimated

statistics for each of the input parameters (0.966, 0.962, 0.968, 0.943 respectively), they represent

high compatibility. Also, the degree of freedom is marked with the label df and the significance
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Figure 5.6: Shapiro-Wilk test using SPSS [Second table]: DiffLacSMA indicates the difference
between SMA lactate value in the first and second visit, DiffGlcSMA indicates the difference
between SMA glucose value in the first and second visit, DiffLacPCC indicates the difference
between PCC lactate value in the first and second visit, DiffGlcPCC indicates the difference

between PCC glucose value in the first and second visit. The sig label in the last column indicates
the normality of the distribution of the measurement difference.

level or p-value is marked with the label Sig. The data distribution is considered normal according

to the Sig value seen in the last column of the second table. As mentioned before, if the p-value

is less than 0.05, the assumption of normality of data distribution is rejected. Therefore, since the

p-value for the input parameters (equal to 0.446, 0.371, 0.511, and 0.117 respectively) are greater

than 0.05, we consider the data distribution to be normal. In addition, to determine the normality

graphically, we can use the output of a normal Q-Q plot provided by SPSS. If the distribution is

normal, the points generally follow the diagonal line. As Figure 5.7 shows, our data are clustered

around the diagonal line - confirming that their distribution is normal.

5.3.2 Paired sample t-test results

After confirming the normality of the measurement difference, we will present the paired sample

t-test results. The output of the test in Figure 5.8 has provided a lot of information, which refers

to the differences between the two visits (before and after exercise). The columns of this table

are labeled ”Mean”, ”Std. Deviation”, ”Std. Error Mean”, and ”95% Confidence Interval of the
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Figure 5.7: Normal Q-Q Plot using SPSS: Following the diagonal line by the points indicates the
normality of their distribution.

Difference”. The last three columns also show the results of the paired t-test, namely the test statistic

(t), degrees of freedom (df), and significance level (Sig. (2-tailed)).

The first pair shows the importance of the lactate difference in the SMA area. In this case t (28)

= 6.582, p < .000, according to their average and the direction of the t value, it can be concluded

that there is a statistically significant increase (0.985 mmol, p < .000) to There is an effect on lactate

levels following exercise. Also, for the second pair, which shows the difference of lactate in PCC,

considering t (28) = 6.962, p < 0.000, it can be confirmed that lactate has a significant increase

(1.29 mmol, p < 0.000) after exercise.

The third pair and the fourth pair arrange the information related to the FDG difference in the

SMA and PCC areas in a similar way. For the third couple, t (28) = -22.967, p < 0.000, according to

the average value, it can be concluded that exercise caused a significant decrease (-5.231, p < 0.000)

in FDG absorption. Similarly, in the PCC region (t (28) = -22.660, p < 0.000) the results show a
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Figure 5.8: Paired Sample Test using SPSS: Pair1and Pair2 indicate the statistical information
related to the difference of lactate in the SMA and PCC, respectively; according to the p-value and
mean, lactate has increased significantly after the exercise in both ROIs. Pair3 and Pair4 indicate
the statistical information related to the difference of FDG in the SMA and PCC, respectively;
according to the p-value and mean, FDG has decreased significantly after the exercise in both

ROIs.

significant decrease (-5.854, p < 0.000) in FDG absorption.

These results are consistent with the initial hypothesis that intense exercise increases brain lac-

tate concentration and decreases brain glucose uptake.

Therefore, according to the presented results and relying on the literature review, it can be said

that after exercise, glucose is no longer the main fuel of the brain and lactate is its suitable substitute.

Currently, this claim is accepted only in PCC and SMA regions and cannot be generalized to all brain

regions. It should also be mentioned that no significant difference was observed between males and

females in the concentration of brain lactate and glucose after exercise, and the results obtained can

be generalized to both populations of society.

5.4 The effect of exercise on plasmatic lactate and glucose

Another of our goals in this study was to investigate the effect of exercise on plasma lactate

and glucose. According to the literature review, we expect to see an increase in both metabolites

following exercise.

As mentioned in the data collection framework, 7 blood samples were taken during the second

visit, the first of which (BD1) was before the start of the exercise test and was considered the

baseline value. The second to fourth samples (BD2, BD3, and BD4) were collected during exercise
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and 10, 20, and 30 minutes after starting pedaling, respectively. The average values of the samples

are shown in Figure 5.9.

Figure 5.9: (a) Plasmatic lactate behavior following exercise [Average of all subjects]. (b)
Plasmatic glucose behavior following exercise [Average of all subjects]. BD1 was collected before

the start of exercise and is considered as the base, BD2, BD3, and BD4 were collected during
exercise at 10, 20, and 30 minutes after the start of exercise, respectively. BD5, BD6, and BD7

were also collected after finishing the exercise, which correspond respectively to: after completing
the MRS imaging, before starting the PET scan, and after completing the PET scan.

In Figure 5.9a, as mentioned, BD4 corresponds to 30 minutes after the start of the exercise and 5

minutes before its completion. As the graph shows, it can be well observed that the amount of plas-

matic lactate increases significantly during exercise (BD1=1.05 mmol/L, BD4=10.76 mmol/L). The

peak of the graph was in BD4, and after that, with time, the amount of plasmatic lactate decreased to

1.8 mmol/L in BD7. Also, based on Figure 5.9b, we find that the amount of plasmatic glucose also

increased during exercise (BD1=4.95 mmol/L, BD4=5.61 mmol/L). Similarly to lactate, plasma

glucose decreased after exercise and reached 5.14 mmol/L in BD7.

As we explained in detail in the data collection protocol section, the subjects were not able to

complete the exercise test with the same intensity (80% of Vo2max) and performed the exercise test

with different intensities for 25 minutes. Therefore, we calculated an ”exercise intensity” value for

each subject by calculating the area under the curve (AUC). Then, we divided the subjects into two

groups, moderate intensity, and high intensity, based on the cut-off value of 63 ml/kg/min to observe

the effect of exercise intensity on the behavior of metabolites.
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Figure 5.10 shows the difference between the two groups ”moderate-intensity” and ”high-

intensity” at the plasmatic level, which are displayed with blue and orange colors, respectively.

As expected, the high-intensity group (14 subjects with an average intensity of 69.92 ml/kg/min)

showed a greater increase in plasmatic lactate and glucose during exercise than the moderate-

intensity group (15 subjects with an average intensity of 55.77 ml/kg/min). Relying on these re-

sults, we can once again confirm the many theories presented that the intensity of exercise affects

the production of metabolites, although this difference in groups can affect our desired results!

Figure 5.10: The effect of the difference in exercise intensity on plasmatic lactate (a) and
glucose(b). The ”medium-intensity” group includes 15 subjects with an average intensity of 55.77

ml/kg/min, which are marked with blue color. The ”high-intensity” group includes 14 subjects
with an average intensity of 69.92 ml/kg/min, which is displayed in orange color.

In general, based on the graphs in Figures 5.9 and 5.10, we conclude that although the amount

of changes in plasmatic glucose was not as impressive as that of plasmatic lactate during and after

exercise, the presented results can confirm our hypothesis. The graphs above show us the fact that

although the plasma lactate and glucose values increase due to exercise, when the exercise stops,

these values are not stable and quickly decrease and return to their normal value.

This principle can also apply to the amounts of these metabolites in the brain! Because we were

not able to measure brain lactate and glucose during exercise. Although it has been tried to start

recording the lactate amount through MRS immediately after exercise, it should be considered that

there were two areas for imaging, each took about 10 minutes. In other words, the imaging of the

second region was between 10 and 20 minutes after finishing the exercise (the effect of the order of
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data acquisition in MRS is evaluated in the next sections).

5.5 Is there a relationship between brain Lac and FDG?

In section 5.3, we obtained valuable information about the behavior of brain lactate and glu-

cose after exercise, which shows us that after moderate to intense exercise, lactate is considered the

main fuel in the two regions of interest, PCC and SMA. Because the amount of FDG metabolism

has decreased sharply, while the concentration of lactate has been increasing. For this reason, af-

ter our primary hypothesis was confirmed, a secondary hypothesis was formed whether there is a

relationship between lactate increase and glucose decrease or not.

5.5.1 Simple Linear Regression results

We have used simple linear regression (SLR) to find a relationship between lactate and brain

glucose. Figure 5.11 shows the results of SLR between FDG and lactate in two areas of PCC and

SMA.

We have performed linear regression in two cases in each of the areas: by normalizing the data

of the second visit using the values of the first visit (Figure 5.11a, 5.11c), without normalizing the

data of the second visit (Figure 5.11b, 5.11d). In the first case, our goal was to investigate the

relationship between the differences of metabolites with their base values to analyze what link was

formed between them due to the effect of exercise. While in the second case, we are interested in

checking whether there is a relationship between lactate and FDG in the second visit, regardless of

the increase or decrease of the metabolites compared to the baseline value.

As the scatterplots in Figure 5.11 show, it can be visually concluded that there is no strong linear

relationship between any of the states. Although the partial negative slope in both ROIs can be seen

during the second visit (Figure 5.11b and Figure 5.11d), which indicates the opposite behavior of

FDG and lactate; That is, as one increases, the other decreases, and vice versa. Although the graphs

sufficiently show the absence of an SLR between metabolites, it is necessary to check and prove it

from a statistical point of view.
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Figure 5.12 presents the statistical results of linear regression for PCC in two states of normal-

ization with baseline (Figure 5.12a) and without normalization (Figure 5.12b). The results related

to SMA are shown in Figures 5.12c and 5.12d, respectively.

Figure 5.11: Linear regression model fitted to lactate and FDG values: (a) FDG vs. Lac in the PCC
with normalization [V2-V1]. (b) FDG vs. Lac in PCC without normalization [V2]. (c) FDG vs.
Lac in the SMA with normalization [V2-V1]. (d) FDG vs. Lac in SMA without normalization
[V2]. The horizontal axis represents lactate values and the vertical axis represents FDG values.

Each point represents the amount of FDG and lactate of each participant.

Each time linear regression analysis is applied, three tables labeled ”Model Summary”, ”ANOVA”,

and ”Coefficients” are produced, which contain important information. The Model Summary table

shows the features and statistics related to the fit of the regression model. The value of Pearson’s

correlation coefficient is indicated by the label (R), the closer it is to 1 (or -1), the more suitable the

regression model is. The coefficient of determination is also shown with the label (R Square), which
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is the square of the correlation coefficient. Values close to one indicate a better fit. The ANOVA

table is the analysis of variance and its most important output is the p-value which is labeled with

(Sig.). A value smaller than 0.05 for Sig indicates a suitable regression model. The last table also

estimates the regression coefficients or the estimation of the parameters.

Figure 5.12: Simple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.11.a. (b) It presents the statistical results related to the

present graph in Figure 5.11.b. (c) It presents the statistical results related to the present graph in
Figure 5.11.c. (d) It presents the statistical results related to the present graph in Figure 5.11.d.

Therefore, according to the graph in Figure 5.11a and the statistical information presented in

Figure 5.12a, it can be concluded that no significant linear relationship (R= 0.05, R2= 0.003, F (28)

= 0.068, p= 0.797) was found between FDG and lactate normalized with baseline in PCC. Similarly,

with the reference from Figures 5.11b and 5.12b, we found that without normalizing the data, we
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were not able to find a significant linear relationship (R= 0.285, R2= 0.08, F (28) = 2.380, p= 0.135)

between the parameters. In addition to PCC in the SMA area, there is also a significant linear

relationship in the normalized state (R= 0.08, R2= 0.006, F (28) = 0.172, p= 0.682) and without

normalization (R = 0.151, R2= 0.023, F (28) = 0.632, p= 0.433) is not seen.

5.5.2 Multiple Linear Regression results

As we mentioned earlier, the intensity of the subjects’ exercise during the exercise test conducted

on the second visit was not stable and it is subject to change due to the reasons, the most important

of which is that the participants were fasting.

In the previous part, no significant linear relationship was found between lactate and FDG vari-

ables. Therefore, since the change in the concentration of these metabolites followed exercise, we

decided to repeat the linear regression tests by adding the third variable (exercise intensity corre-

sponding to each of the subjects).

At this stage, the model we considered has two independent variables (FDG and exercise in-

tensity) and one dependent variable (lactate). We know that exercise increases the concentration of

lactate, so changes in lactate depend on the intensity of exercise. On the other hand, according to

the literature review, we have found that one of the lactate production pathways is the ANLS hy-

pothesis, according to which glucose is converted into lactate. For these reasons, in MLR (multiple

linear regression), we have considered lactate as a dependent variable with intensity and FDG.

Figure 5.13 presents a representation of the MLR model in three-dimensional space for PCC

with normalization, PCC without normalization, SMA with normalization, and SMA without nor-

malization with baseline, respectively with the labels ”a”, ”b”, ”c”, and ”d”. For a more detailed

analysis of these models, we refer to the statistical information provided in Figure 5.14.

The statistical outputs of the tables in Figure 5.14 are labeled with the same labels as in Fig-

ure 5.13 and indicate their compatibility. Therefore, relying on the results of Figure 5.13a and 5.14a,

we find that the regression model with two variables is significant (R=0.499, R2=0.249, F (28) =4.

311, p=0.024). By going deeper into the Coefficients table, the regression model is summarized as

follows:
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Y = −0.086FDG+ 0.009Intensity − 0.739

This model indicates a positive relationship between exercise intensity and lactate and a negative

effect of FDG on lactate. But more carefully, we notice that according to the t-test, the FDG variable

in the model does not have a significant effect on Y, because the sig value for this variable is equal to

0.491, which is greater than 0.05. Therefore, the significance of the model depends on the intensity

of the exercise (p=0.007).

Figure 5.13: Linear regression model fitted to lactate, FDG, and intensity values: (a) Lac= FGD
+Intensity in the PCC with normalization [V2-V1]. (b) Lac= FGD +Intensity in PCC without

normalization [V2]. (c) Lac= FGD +Intensity in the SMA with normalization [V2-V1]. (d) Lac=
FGD +Intensity in SMA without normalization [V2].
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By performing the same analysis, the rest of the situations are summarized as follows:

• MRL on PCC without normalization:

The regression model with two variables is significant (R=0.473, R2=0.224, F (28) =3.749,

p=0.037), the regression model is:

Y = −0.191FDG+ 0.008Intensity + 3.223

There is a positive relationship between exercise intensity and lactate and a negative effect of

FDG on lactate.

P (FDG)= 0.417, P(Intensity)= 0.038. So, FDG variable in the model does not have a signifi-

cant effect on Y.

• MRL on SMA with normalization:

The regression model with two variables is not significant (R=0.187, R2=0.035, F (28) =0.469,

p=0.631), the regression model is:

Y = 0.041FDG+ 0.002Intensity + 0.782

There is a positive relationship between exercise intensity and FDG with lactate. P (FDG)=

0.751, P(Intensity)= 0.389. So, FDG and Intensity variables in the model do not have a

significant effect on Y.

• MRL on SMA without normalization:

The regression model with two variables is not significant (R=0.368, R2=0.135, F (28) =2.034,

p=0.151), the regression model is:

Y = −0.056FDG+ 0.006Intensity + 2.310

There is a positive relationship between exercise intensity and lactate and a negative effect of

FDG on lactate. P (FDG)= 0.788, P(Intensity)= 0.077. So, FDG and Intensity variables in the
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model do not have a significant effect on Y.

Figure 5.14: Multiple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.13.a. (b) It presents the statistical results related to the

present graph in Figure 5.13.b. (c) It presents the statistical results related to the present graph in
Figure 5.13.c. (d) It presents the statistical results related to the present graph in Figure 5.13.d.

Although the MLR model is significant in the PCC region, as we have shown, the load of this

significance was the responsibility of the intensity variable, and in this case, where we were looking

for a relationship between lactate and FDG, it is not important. Therefore, with the presented results,

it can be concluded that lactate and FDG were not related even considering the intensity variable.

But it can be claimed that in all cases except MLR in SMA with normalization, there is an inverse

relationship between those two brain metabolites.
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5.5.3 Partial Correlation results

As we observed in sections 5.5.1 and 5.5.2, SLR and MLR were not able to prove the existence

of a linear relationship between brain metabolites (lactate and FDG). Also, since we have almost

found that lactate changes are related to exercise intensity (we have discussed this more in the next

sections), there is a possibility that if we remove the effect of exercise intensity, we can see the

desired relationship between the variables. For this reason, we decided to evaluate the relationship

between these variables once again while controlling the effect of the third parameter (exercise

intensity). Therefore, we have used partial correlation to analyze the linear relationship between

brain lactate and FDG beyond the intensity variable.

Figure 5.15: Partial Correlation in SPSS: (a) It indicates the correlation between Lac and FDG,
whilst controlling for ”AUC (intensity)” in the PCC with normalization [V2-V1]. (b) It indicates
the correlation between Lac and FDG, whilst controlling for ”AUC (intensity)” in PCC without
normalization [V2]. (c) It indicates the correlation between Lac and FDG, whilst controlling for

”AUC (intensity)” in the SMA with normalization [V2-V1]. (d) It indicates the correlation between
Lac and FDG, whilst controlling for ”AUC (intensity)” in SMA without normalization [V2].

Figure 5.15 shows the report of the execution of partial correlation command of lactate and brain

FDG variables with control of exercise intensity. The partial correlation of the two mentioned vari-

ables in PCC in normalized (Figure 5.15a) and non-normalized (Figure 5.15b) states is -0.136 and
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-0.160, respectively, which means that by removing the effect of exercise intensity, the correlation

of these two variables is equal to the values mentioned. These values show that there is a negative

correlation between the dependent variable and the independent variable, which is not statistically

significant (p=0.491, p=0.417). Also, similarly, for SMA in the normalization state (Figure 5.15c),

there is a partial positive correlation (0.063) which is not statistically significant (p=0.751). In

addition, no significant partial correlation (p=0.788) was observed in SMA without normalization

(Figure 5.15d), although it represents a negative relationship between the two variables (R=-0.053).

Therefore, by performing this test, we realize that by controlling and removing the effects related

to the intensity of exercise, we still do not see a significant relationship between brain metabolites.

The results obtained from all three tests of SLR, MLR, and partial correlation lead us to conclude

that there is at least no linear relationship between brain lactate and FDG, although a strong non-

linear relationship between the two may exist. which requires modeling and estimation of optimal

parameters. In addition, to model the non-linear relationship, it is necessary to have more informa-

tion about the independent and dependent parameters, which are not included in this study.

5.5.4 Logit Regression results

Before drawing general conclusions about the relationship between the metabolites involved

in brain energy metabolism (lactate and FDG), we are interested in evaluating whether we can

predict the probability of resting or exercising by relying on lactate and FDG values as independent

quantities.

In fact, by conducting this study, we intend to interpret the difference between the first and

second visits by classifying the measured quantitative values. As the results showed, there may not

be a linear relationship between lactate and FDG in the brain, but we have seen a significant increase

and decrease in lactate concentration and FDG uptake in the brain, respectively, which we believe

is due to events that happened during the first and second visits. Therefore, we have used logistic

regression to find a relationship between independent quantities (lactate and FDG) and dependent

quantity that has a binary form (first and second visits).

Table 5.1 shows the output of binary logistic regression analysis for PCC.

Based on the statistical information, the output shows that FDG reduction and lactate increase
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are significantly (p=0.0000e−27, p=0.0000e−27 respectively) related to the probability of being

in the second visit (exercise mode). Therefore, the model is suitable and the probability that the

changes of the independent variables can show the presence of the subject in the second visit (prac-

tice conditions) is calculated according to the following function:

p(x) = 1/(1 + e−(−174.3462+62.1914FDG−98.0835Lac))

Table 5.1: The output of logistic regression analysis in PCC with two explanatory variables (FDG,
Lac) and a binary categorical variable (V1, V2).

Coefficient Std. Error t-value p-value

Intercept (β0) -174.3462 15.728 11.085 0.1483 e−27

FDG-PCC (β1) 62.1914 2.252 27.615 0.0000 e−27

Lac-PCC (β2) -98.0835 3.750 -26.149 0.0000 e−27

Although metabolites are well able to classify data and predict the dependent variable in PCC,

to better understand and visualize, the behavior of each metabolite (FDG and lactate) in predicting

the dependent variable is shown as a single variable in Figure 5.16a and 5.16b for FDG and PCC

lactate, respectively.

According to Figure 5.16a, we can see that FDG has been able to completely categorize the

attendance of the subjects into two groups, rest and exercise. It also shows that the reduction of

FDG increases the probability of being in the condition of exercise. But based on Figure 5.16b, we

find that the lactate measured in PCC is not able to recognize and classify the subjects as well as the

FDG value, although it has an effective and significant behavior in the model. As we can see, the

measured values of lactate in the two groups of rest and exercise overlap and it is probably due to

the difference in the order of data acquisition from the subjects.

Similar to the analysis we did about the binary logistic regression output in PCC, Table 5.2 also

shows the regression output for SMA metabolites. According to the statistical values, both FDG and

lactate metabolites have been able to be significantly (p=0.0000e−62, p=0. 7927e−27 respectively)

included in the model and predict the probability of the dependent variable. As the last column of

this table shows, even though both metabolites are significant, FDG, with its decrease, has shown a
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Figure 5.16: Graph of a logistic regression curve fitted to the brain data. (a) The curve shows the
probability of being in the exercise condition versus the amount of the FDG-PCC. (b) The curve

shows the probability of being in the exercise condition versus the amount of the Lac-PCC. (c) The
curve shows the probability of being in the exercise condition versus the amount of the FDG-SMA.

(d) The curve shows the probability of being in the exercise condition versus the amount of the
Lac-SMA.

greater ability to classify subjects than lactate. The probability of predicting the dependent variable

is calculated according to the following function:

p(x) = 1/(1 + e−(−432.0509+88.9647FDG−66.1667Lac))

Figures 5.16c and 5.16d show the behavior of each variable of FDG and lactate, respectively, in
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Table 5.2: The output of logistic regression analysis in SMA with two explanatory variables (FDG,
Lac) and a binary categorical variable (V1, V2).

Coefficient Std. Error t-value p-value

Intercept (β0) -432.0509 20.528 -21.046 0.0000 e−62

FDG-PCC (β1) 88.9647 2.443 36.404 0.0000 e−62

Lac-PCC (β2) -66.1667 3.954 -16.729 0.7927 e−62

the prediction of being in the second visit (exercise mode). As we mentioned for PCC, in SMA, the

lactate values overlapped in the first and second visits, which makes lactate unable to differentiate

the groups as well as FDG.

5.6 Is there a relationship between plasmatic Lac and Glc?

In section 5.4, we obtained valuable information about the plasmatic behavior of lactate and

glucose after exercise, which confirmed the initial hypothesis that plasma lactate and glucose levels

increase after moderate to intense exercise. This increase was very significant for plasma lactate,

which indicates an increase in lactate production in the muscle and release in the blood. Although

the amount of plasma glucose has also faced a slight increase, it should be considered that during

intense exercise, glucose is always being converted into lactate in the skeletal muscles. However, our

initial hypothesis regarding the increase of both parameters was confirmed, and after that, similar

to the hypothesis that was formed at the brain level, a secondary hypothesis was also proposed

regarding these parameters, in which we seek to investigate the relationship between plasmatic

lactate and glucose. The following analyzes are all similar to the operations in steps 5.5.1, 5.5.2,

5.5.3, and 5.5.4. Therefore, we refrain from additional explanations and present the results and their

interpretation.

5.6.1 Simple Linear Regression results

We have used simple linear regression (SLR) to find the relationship between plasmatic lactate

and glucose. As shown in Figure 5.9, the highest increase in the amount of lactate and glucose in the

plasma was observed in BD3 and BD4, which was in 20 and 30 minutes after the start of exercise.
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Therefore, if there is a relationship between plasma lactate and glucose, it is definitely in these two

time zones. Therefore, in the following analysis, we have considered the average values in these two

blood samples (Average BD3, BD4). Also, similar to the analysis done in the brain, we have used

two modes of normalization with baseline (Average (BD3, BD4) - BD1) and without normalization

with baseline.

The scatter diagrams of Figure 5.17 show the existence of a linear relationship between lac-

tate and glucose in each case of normalizing with baseline (Figure 5.17a) and without normalizing

with baseline (Figure 5.17b). In order to statistically check and evaluate the importance of this

relationship, we refer to the results presented in Figure 5.18.

Figure 5.17: Linear regression model fitted to plasmatic lactate and glucose values: (a) Plasma-Glc
vs. Plasma-Lac with normalization [Average (BD3, BD4)-BD1]. (b) Plasma-Glc vs. Plasma-Lac

without normalization [Average (BD3, BD4)]. The horizontal axis represents lactate values and the
vertical axis represents glucose values.

According to the information in the tables in Figure 5.18a and 5.18b, we find that there is a

positive and significant average correlation between plasma lactate and glucose in both cases: nor-

malization through BD1 (R= 0.377, R2= 0.142, F (28) = 4.472, p= 0.04) and without normalization

(R= 0.395, R2= 0.156, F (28) = 4.984, p= 0.034).

Based on the results shown, as expected, there is a positive linear relationship between lactate

and glucose at the plasma level, in the sense that increasing one increases the other and vice versa.
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Figure 5.18: Simple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.17.a. (b) It presents the statistical results related to the

present graph in Figure 5.17.b.

5.6.2 Multiple Linear Regression results

Although in the previous part we observed a significant linear relationship between the metabo-

lites in plasma (lactate and glucose), according to the difference in the two groups ”moderate-

intensity” and ”high-intensity” in the graphs of Figure 5.10 Re-examining the linear regression by

adding the exercise intensity variable can lead to a more accurate interpretation of the results and

the statistical model.

For this purpose, we have implemented MLR with two independent variables (glucose and

exercise intensity) and one dependent variable (lactate). We have considered the lactate variable to

be dependent on the fact that based on the literature review, following intense exercise, glucose is

converted into lactate in the muscles.

Figure 5.19 shows a representation of the MLR model in three-dimensional space in each of the

two cases we consider with normalization and without normalization with the labels ”a” and ”b”

respectively. For a more detailed analysis of these models, we refer to the statistical information

presented in Figure 5.20.

The statistical outputs of the tables in Figure 5.20 are labeled with the same labels as Figure 5.19

and show their compatibility. Therefore, relying on the results of Figure 5.19a and 5.20a, we realize
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Figure 5.19: Linear regression model fitted to lactate, Glc, and intensity values: (a) Lac= Glc
+Intensity in the plasma with normalization [Average (BD3, BD4)-BD1]. (b) Lac= Glc +Intensity

in plasma without normalization [Average (BD3, BD4)].

that the regression model with two variables is significant (R=0.593, R2=0.351, F (28) =7.040,

p=0.004). By deepening the table of coefficients, the regression model is summarized as follows:

Y = 1.183Glc+ 0.032Intensity + 3.3

This model indicates a positive relationship between exercise intensity versus lactate and glu-

cose versus lactate. But more carefully, we notice that according to the t-test, the Glc variable in

the model does not have a significant effect on Y, because the sig value for this variable is equal to

0.257, which is greater than 0.05. Therefore, the significance of the model depends on the intensity

of the exercise (p=0.008).

By performing the same analysis, the results related to Figures 5.19b and 5.20b are summarized

as follows:

• MRL on plasmatic metabolites without normalization:

The regression model with two variables is significant (R=0.579, R2=0.335, F (28) =6.551,

p=0.005), the regression model is:

Y = 0.933Glc+ 0.031Intensity − 0.024
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There is a positive relationship between exercise intensity versus lactate and glucose versus

lactate.

P (Glc)= 0.392, P(Intensity)= 0.014. So, the Glc variable in the model does not have a signif-

icant effect on Y.

Figure 5.20: Multiple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.19.a. (b) It presents the statistical results related to the

present graph in Figure 5.19.b.

Although MLR shows us a significant model at the plasma level, as we have shown, the burden

of this significance was on the intensity variable, and in this case, it did not matter where we looked

for the relationship between lactate and glucose. Therefore, with the presented results, it can be

concluded that by entering the third variable (exercise intensity) into the linear regression, and

considering that the plasma lactate changes are significantly dependent on the exercise intensity, the

significant linear relationship that was observed in the previous part has disappeared. But still, the

results insist on the existence of a positive correlation (lactate increase as well as glucose increase).

5.6.3 Partial Correlation results

By using partial correlation, we intend to investigate the relationship between lactate and glu-

cose at the plasma level without the influence of the difference in the intensity of the subjects’

exercise. Figure 5.21 shows the partial correlation between lactate and glucose plasma variables by
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controlling exercise intensity. The partial correlation of these two variables in normalization with

BD1 (Figure 5.21a) and without normalization (Figure 5.21b) is equal to 0.222 and 0.168, respec-

tively, which indicates a positive partial correlation. It is lactate and glucose in plasma. But this

positive correlation is not statistically significant in any of the situations (p=0.257, p=0.392).

Therefore, by performing this test, we realize that by controlling and removing the effects related

to exercise intensity, the significant linear relationship that we observed in part 5.6.1 disappears.

Figure 5.21: Partial Correlation in SPSS: (a) It indicates the correlation between Lac and Glc,
whilst controlling for ”AUC (intensity: 10’-30’)” in the plasma with normalization [Average (BD3,

BD4)-BD1]. (b) It indicates the correlation between Lac and Glc, whilst controlling for ”AUC
(intensity: 10’-30’)” in plasma without normalization [Average (BD3, BD4)].

So far, the results obtained from all three parts SLR, MLR, and partial correlation can be inter-

preted as follows:

The results obtained from SLR, in which only two parameters lactate and glucose are involved,

indicate the existence of a significant linear relationship. The partial correlation showed that this

relationship disappears by removing the effect of intensity on the metabolites, which can prove that

lactate and glucose are related to each other under intensity values. On the other hand, we know that

there is a strong relationship between plasma lactate and the intensity of each subject, so entering the

intensity values as the third variable in the linear regression causes the linear relationship observed

in SLR to disappear because the intensity of exercise is sufficiently related to plasma lactate and this

level of its significance makes the MLR model ignore the relationship between glucose and lactate.
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5.6.4 Logit Regression results

Similar to the goal we had in the implementation of logistic regression in part 5.5.4, we are also

interested in examining at the plasmatic level the ability of lactate and glucose values as independent

values to predict the presence of the subject in the second visit.

Table 5.3 shows the output of binary logistic regression analysis at the plasmatic level.

Relying on the statistical information, the output shows that the increase in plasmatic lactate

is significantly (p=0) related to the probability of being in the second visit (exercise mode), which

proves the effect of exercise on plasma lactate production. While this is not true for plasmatic

glucose (p=0.1860).

Table 5.3: The output of logistic regression analysis at the plasmatic level with two explanatory
variables (Glc, Lac) and a binary categorical variable (V1, V2).

Coefficient Std. Error t-value p-value

Intercept (β0) 94.4673 16.798 5.623 0.0000
FDG-PCC (β1) 5.0732 3.836 1.322 0.1860
Lac-PCC (β2) -48.7474 0.972 -50.105 0

Based on the results, the plasmatic glucose variable is not able to predict the dependent variable.

As shown in Figure 5.9b, although plasmatic glucose increased during exercise, its changes were

minor and did not have significant changes in plasmatic lactate size. This is the reason why in

figure 5.22a, lactate was completely able to distinguish the groups from each other, while glucose

in figure 5.22b was not able to classify the groups due to the slight difference in the values of the

first visit and the second visit and was not significantly added to the model.

Among the reasons for the slight increase in plasma glucose during exercise, we can mention

the Cory cycle, in which glucose is converted into lactate during intense exercise in the skeletal

muscles, and part of the lactate is converted back into glucose in the liver. Therefore, the production

rate of lactate is higher than the production rate of glucose at the plasmatic level.
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Figure 5.22: Binary Logistic Regression Analysis: (a) Plasmatic glucose during both visit1 and
visit2. (b) Plasmatic lactate during both visit1 and visit2.

5.7 MRS-Lac and Plasma-Lac

After investigating the relationship between brain metabolites with each other and also evaluat-

ing the behavior of metabolites at the plasma level under the influence of exercise, our other goal is

to investigate the relationship between brain metabolites and similar metabolites in plasma. Here,

we investigated the behavior of brain lactate and plasma lactate after exercise.

As discussed in detail in the literature review, one of the important sources of lactate measured

in the brain by MRS is blood lactate. According to the existing theories, lactate is produced in the

muscles after intense exercise and through the bloodstream enters the brain as fuel. Therefore, it is

expected that there is a strong correlation between brain lactate (MRA Lac) and plasma lactate.

The graphs presented in Figure 5.23 show the relationship between PCC-Lac and plasma-Lac

(Figure 5.23a) and lactate measured in SMA versus plasma-Lac (Figure 5.23b).

Imaging of the PCC and SMA was done approximately 45 and 55 minutes after the start of the

exercise (exact times were recorded for each subject). Also, as we mentioned in the framework of

data collection, we have tried to observe the order of data acquisition from PCC and SMA regions

between subjects. In addition, the collected values of plasma lactate are related before the subject

enters the MR imaging suite (BD4) and after the completion of imaging (BD5). In other words,

we have not been able to take blood samples during imaging from PCC and SMA. Therefore, in
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order to investigate the relationship between MRS-Lac and plasm-Lac, it is necessary to report both

values at the same time.

For this purpose, we have used linear interpolation to find accurate plasma-Lac values that

correspond to the time of brain data acquisition.

As expected, Figure 5.23 shows a strong linear relationship between lactate measured in the

brain and plasma. Also, the positive correlation between them indicates an increase in one after the

other. More detailed statistical analyzes are reported in the tables in Figure 5.24.

Figure 5.23: Linear regression model fitted to MRS-Lac and Plasma-Lac: (a) PCC-Lac vs.
Plasma-Lac during the second visit. (b) SMA-Lac vs. Plasma-Lac during the second visit.

Based on the statistical information in Figure 5.24a, we find that the lactate measured in the

PCC has a strong and significant linear correlation (R=0.624, R2=0.389, F (28) =17.210, p=0.000)

with the lactate measured in the plasma. According to the value of Sig in the ANOVA table, it can

be said that the regression model has been able to describe the variance of the dependent variable

well. Therefore, according to the regression coefficients or the estimation of the parameters in the

Coefficients table, its linear equation is as follows:

PCCLac = 0.258PlasmaLac+ 1.763

SMA is no exception to this rule. Figure 5.24b shows that similar to the PCC, the SMA re-

gion has a significant positive correlation with plasma lactate values (R=0.693, R2=0.480, F (28)
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=24.890, p=0.000). The linear equation of this model is as follows:

SMALac = 0.226PlasmaLac+ 1.457

The results shown meet our expectations of the relationship between lactate measured in the

brain and plasma. Also, these results confirm the review of the literature and prove that increased

lactate in the blood following exercise is one of the primary sources of lactate measured in the brain

and they are dependent on each other.

Figure 5.24: Simple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.23.a. (b) It presents the statistical results related to the

present graph in Figure 5.23.b.

5.8 Brain-FDG and Astrocyte-derived Lac

As we explained in the literature review, lactate observed by MRS has a secondary source in

addition to plasmatic lactate. The secondary source is lactate derived from astrocytes under the

ANLS theory.

After observing the strong correlation between MRS-Lac and plasmatic-Lac (in section 5.7),

and considering that it is likely that a large part of the lactate observed by MRS is related to this

source, a hypothesis formed in our minds. According to this hypothesis, it is possible that FDG is

not related to the whole MRS-Lac, but only to a part of it that is produced in the brain!

91



In other words, there may be an inverse relationship between FDG and lactate derived from

astrocytes.

For this purpose, first, in order to make sure that FDG has no relationship with that part of

MRS-Lac that enters the blood, we evaluated the correlation between the two. Figure 5.25 shows

FDG versus plasmatic-Lac.

As the scatterplots show, there is no significant linear relationship between PCC-FDG and

plasmatic-Lac (Figure 5.25a) as well as between SMA-FDG and plasmatic-Lac (Figure 5.25b). The

statistical information is presented in Figure 5.26a and 5.26b respectively for PCC-FDG vs. plasma-

Lac (R=0.032, R2=0.001, F (28) =0.028, p=0.866) and SMA-FDG vs. plasma-Lac (R=0.253,

R2=0.064, F (28) =1.855, p=0.184) also supports this claim.

Figure 5.25: Linear regression model fitted to FDG and plasmatic lactate: (a) PCC-FDG vs.
Plasma-Lac. (b) SMA-FDG vs. Plasma-Lac. The horizontal axis represents plasmatic lactate and

the vertical axis represents FDG.

Therefore, in order to investigate the proposed hypothesis, we first calculated the remaining

values of the line equations of part 5.7 and by removing the part related to plasmatic lactate, we

considered it as lactate derived from astrocytes.

Figure 5.27 shows the correlation between FDG and Astrocyte-derived Lac, where the values

related to PCC and SMA are labeled ”a” and ”b”, respectively.

As the statistical tables in Figure 5.28 confirm, contrary to our opinion, there is no significant

relationship between FDG and Astrocyte-derived Lac either in PCC (R=0.375, R2=0.128, F (28)
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Figure 5.26: Simple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.25.a. (b) It presents the statistical results related to the

present graph in Figure 5.25.b.

Figure 5.27: Linear regression model fitted to FDG and Astrocyte-derived Lac: (a) PCC-FDG vs.
Astrocyte-Lac. (b) SMA-FDG vs. Astrocyte-Lac. The horizontal axis represents Astrocyte lactate

and the vertical axis represents FDG.

=3.952, p=0.057) or in SMA (R=0.034, R2=0.001, F (28) =0.031, p=0.862). Although the value

of Sig in the ANOVA table (Figure 5.28a) shows that the relationship between FDD and Astrocyte-

derived Lac is close to significance for PCC, by being more precise in the scatter diagram presented

in Figure 5.27a, we find the burden of this significance is due to the amount of Astrocyte-derived

Lac of subject 29, which, by removing it, the p-value of the regression model increases to 0.12.

Therefore, based on the results shown, the FDG values measured in the brain in each region
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Figure 5.28: Simple Linear Regression analysis in SPSS: (a) It presents the statistical results
related to the present graph in Figure 5.27.a. (b) It presents the statistical results related to the

present graph in Figure 5.27.b.

of interest of PCC and SMA are not related not only to the total lactate (MRS-Lac) observed but

also to the lactate produced in the brain (astrocyte-derived lactate). The obtained results reject our

hypothesis on the existence of a significant linear relationship between brain glucose and brain

lactate and it was contrary to our expectations.

5.9 Order of data acquisition in MRS

As we explained in the methodology section, in order to avoid the effects of systematic order,

the order of data acquisition using MRS for the two ROIs, PCC and SMA, was balanced among the

subjects.

The imaging of the first area was on average 45 minutes after the start of the exercise, and the

imaging of the second area started with an interval of about 10 minutes. In other words, the imaging

of the first area was between 45 and 55 minutes after the start of exercise and the imaging of the

second area was between 55 and 65 minutes after the start of exercise.

Based on the presented results, we found that lactate increased after exercise in both ROIs (PCC

and SMA). But we do not know about its stability. Therefore, it is possible that the increase in

lactate will stop with the cessation of the exercise and the process of decrease will proceed.
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On the other hand, in Figure 5.9, which shows the changes in plasmatic lactate and glucose

during the second visit, we have shown that after exercise, the significant increase observed in

plasma lactate quickly takes a downward trend and returns to its normal value. Therefore, it is

highly likely that this process is also true for brain lactate because Figure 5.23 shows a strong

correlation between MRS lactate and plasmatic lactate.

To investigate this issue more closely, we divided the subjects into two groups according to

the order of data collection: PCC1st- SMA2nd (which includes 15 subjects) and SMA1st- PCC2nd

(which includes 14 subjects)

According to the box plots in Figure 5.29, we find that the average lactate measured in PCC

is almost the same in both groups (PCC1st and PCC2nd), although there is a decrease in group

2nd compared to group 1st. Unlike PCC, in SMA there is a significant difference between the two

groups (SMA1st and SMA2nd) and it is well known that over time the average lactate measured in

group 2nd decreased.

Figure 5.29: Order of acquisition for the two regions of interest PCC and SMA
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Based on the presented results, it can be concluded that the increased lactate in the brain after

exercise, at least in SMA, is not stable, and actually decreases after 20 minutes from the end of the

exercise. Lactate not being stable in the brain, especially in SMA, can be one of the reasons for not

observing a significant linear relationship between FDG and MRS lactate. In addition, the obtained

information can be a document proving the existence of behavioral differences in PCC and SMA in

the way of energy metabolism.

Although several analyzes were performed on the data, in this chapter we attempted to summa-

rize the main findings of the data collection and analysis that were directly related to answering the

research questions because it is not possible to present all the results due to the limitation of the

length of the thesis.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remark

By analyzing lactate and glucose changes in the brain and plasma after exercise, this thesis has

shown how moderate to intense exercise can directly affect the energy metabolism of the brain and

body.

Based on the quantitative analysis of the measured parameters, it can be concluded that the fu-

eling of neurons under exercise conditions differs from the normal state. The results show that brain

lactate concentration in the ROIs increases significantly after exercise while a significant decrease

in FDG absorption occurs. These results, confirming the initial hypothesis, indicate the preference

of neurons to use lactate as fuel over glucose during exercise.

In addition, with the measurements performed at the plasmatic level and the analysis of the

relationship between the lactate produced in the plasma and the lactate recorded in the brain, we

conclude that one of the primary sources of brain lactate is the lactate produced in the skeletal

muscles, which is provided to neurons by crossing the blood-brain barrier.

Although this research clearly shows a significant decrease in FDG uptake following exercise

and an increase in lactate, it rejects the hypothesis of a linear relationship between these two metabo-

lites involved in brain energy metabolism. There may be a strong non-linear relationship between

FDG and lactate. Still, this study was limited to recording these two quantities, and more vari-

ables are needed to estimate the non-linear model. Therefore, despite the limitations in recording
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additional variables and based on the analyzes performed, it can be concluded that the observed

changes in cerebral lactate and glucose due to exercise are two completely independent phenomena

that occur in parallel in the brain; And it cannot be claimed that the increase of lactate follows the

reduction of brain glucose.

This study also showed that the amount of changes in plasmatic lactate and brain lactate strongly

correlates positively with the intensity of each subject’s exercise. In comparison, glucose changes

are an exception to this rule and do not show significant changes by manipulating exercise intensity.

However, the logistic regression analysis showed that brain energy metabolism metabolites effec-

tively predict the probability of the subject’s presence during the visits (rest or exercise). These

results support a strong relationship between the increase in lactate concentration and the decrease

in FDG absorption with the possibility of the subject being present in two different positions (rest

or exercise).

One of this study’s most critical findings is that lactate’s behavior in SMA is different from that

of lactate in PCC. The analyzes carried out on the order of data acquisition by the MRS technique

from the PCC and SMA confirmed that the behavior of lactate does not change much after 20

minutes after the end of the exercise in the PCC, but the trend in the SMA takes the reduction.

Overall, these results reinforce the idea that the supplementary motor area needs to receive and

metabolize energy faster than the posterior cingulate cortex. On the other hand, it has been well

established that the rate of glucose metabolism is significantly faster than that of lactate. Therefore,

it can be concluded that SMA relies more on glucose absorption due to its immediate need for

energy, while PCC has a greater tendency to absorb lactate as fuel.

In general, the findings of this study make several contributions to the current literature and

complement the findings of previous studies. Before this study, the prediction of how exercise

affects brain energy metabolism had been limited to invasive and indirect measurement techniques

(via arterial difference concentration measurements). Therefore, this is the first report examining

brain lactate and glucose changes from a group of 29 healthy individuals following exercise, using

a non-invasive imaging technique to record data. In addition, the findings reported here can be

generalized to society due to the high sample size and fairness in the gender of the participants.

Also, the insight gained from this study could lead to better-defined interventions with exercise or

98



other approaches in patients with various neurological disorders.

6.2 Future Work

Although this project has provided valuable information on brain function, further research

using controlled experiments is needed to provide more definitive evidence of the exact mechanism

of energy metabolism in the brain. In addition, if the discussion is to be pushed forward, it is

necessary to overcome the limitations of the data collection protocol to lead to reliable findings.

Below are some suggestions that can be relied on to expand the project:

• This study can be limited to recording lactate data from only one region of interest to eliminate

the effect of the order of data acquisition. In this case, the data recorded from the subjects at

the same time will be the same in time and lead to better conclusions about the behavior of

lactate.

• By training the subjects through a training program for several weeks before the start of the

test, it can be expected to a large extent that the participants will be able to withstand the

conditions of the exercise test for 25 minutes with high exercise intensity (80% of VO2 max).

In this case, the test can be implemented under better-controlled conditions, and the effect of

exercise intensity on the results is reduced.

• Our information about the rate of return of increased lactate to its regular rate after exercise

needs to be completed. Therefore, it is better to design the data collection protocol so that

MRS records brain lactate data during the increase of lactate production in the body. Since

it is impossible to use the MR imaging system when the subject exercises, I recommend that

other methods, such as lactate injection, do lactate production in the body. In this case, the

injection can be done only a few seconds before the data collection, and the data recording is

done without time loss.

• Pyruvate is another essential metabolite involved in energy metabolism. As we explained in

the literature review, in the process of glycolysis, glucose first turns into pyruvate and then

into lactate. Therefore, measuring other involved variables, such as pyruvate, is suggested to
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understand the relationship between lactate better and brain glucose and model it. It should be

kept in mind that the measurement of pyruvate by MRS requires the injection of 13C-enriched

substrates.

100



Appendix A

Recruiting participants procedure

We invited volunteers to participate in this research project using promotional email. The email

included the topic, a brief description of the project steps, and some criteria necessary to participate

in the study, which determined the target community. Some of these criteria are as follows:

• Participants must be between the ages of 25 and 45

• They must engage in regular, moderate-intensity physical activity (at least three times per

week)

• They must not have any non-removable metallic piercings, metal fragments, or other non-

removable metallic objects on their bodies.

• They must not be pregnant or breastfeeding.

• They must not have claustrophobia.

• They must not have a history of neurological disorders.

• They must not be smokers.

Further, the volunteers interested in participating were separately informed about the purpose of the

study and the procedures governing it. They were invited to complete the online survey form to

register and obtain more information.
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Survey

One of the essential steps before collecting the desired data is determining the target community.

The nature of our project is designed in such a way that subjects cannot be selected randomly.

Therefore, the survey form has a significant role in providing more comprehensive information

from the volunteers to evaluate their eligibility to participate in the study. This strategy causes the

participants in this type of research project to be selected by sampling based on the established

community, which leads to easy and targeted sampling.

The survey consists of two parts: an adult medical history form and a Get Active Questionnaire.

In the adult medical history part, we examine each volunteer’s personal and family medical

history, as well as the surgeries and medications they have taken. In the Get Active Questionnaire

part, in addition to being informed about the hours of physical activity of the volunteer, several

questions about the health and physical condition of the subjects in order to check the factors that

may affect their ability to do physical activity (such as chest pressure or dizziness during physical

activity, shortness of breath at rest, avoidance of specific physical activities due to medical reasons)

are planned.

The primary purpose of designing the survey form is to evaluate the cardiovascular risk to obtain

permission for the VO2max test and the exercise part of the protocol. In order to save the valuable

time of the researcher as well as the participant, this form has been provided to the volunteers in the

form of a web form.

Inclusion criteria

Subjects are selected based on three basic criteria to participate in the study:

I. Body Mass Index (BMI): It is a way to know the approximate level of body fat and fitness

based on a person’s weight-to-height ratio, which applies to the body of every adult man and

woman. We use equation 28 to calculate body mass index. This scale is almost accurate and

depends only on two variables: the weight and height of the candidate.

BMI =
mass(kg)

height(m)2
(28)
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Eligible people to participate in the study should be in the normal range (18.5 – 24.9), accord-

ing to Table A.1. But since BMI cannot distinguish between muscle and fat, an athlete’s BMI

may be in the range of an overweight person, while these people are perfectly fit and ideal.

Therefore, by evaluating the sports history of the participants, we make an exception for ath-

letes with high BMI (25.0 – 29.9). Otherwise, the candidate’s request to cooperate in this

research will be rejected at this stage because they do not have an excellent cardiopulmonary

condition.

Table A.1: BMI, basic categories

Category BMI (kg/m2)

Underweight (Severe thinness) < 16.0
Underweight (Moderate thinness) 16.0 – 16.9

Underweight (Mild thinness) 17.0 – 18.4
Normal range 18.5 – 24.9

Overweight (Pre-obese) 25.0 – 29.9
Obese (Class I) 30.0 – 34.9
Obese (Class II) 35.0 – 39.9
Obese (Class III) ≥ 40.0

II. History of regular aerobic exercises: based on the protocol designed for this test, the partic-

ipants should be able to handle the part related to the VO2max test and exercise. Therefore,

according to Canada’s physical activity guidelines, adults should have moderate-to-vigorous

physical activity at least three times per week. Otherwise, the subject will not be able to com-

plete the exercise part of the protocol, leading to recording inappropriate results. Therefore,

the presence of people who do not have a history of regular aerobic exercises is prevented.

III. Medical background evaluation: If the candidate passes the first two stages, for a more ac-

curate assessment of the possibility of cardiovascular risk and to ensure the physical ability

of the participant in all stages of the test, the medical history of the candidate and immediate

family members will be evaluated by the cardiopulmonary suite supervisor. Finally, if the

candidate’s information is confirmed, they will be selected to cooperate with this project.
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Exclusion criteria

All people receiving medication for high blood pressure, blood cholesterol, diabetes, or neu-

roactive drugs, as well as people with a history of smoking, or cardiopulmonary diseases of any

kind, are prohibited from participating in this project. Also, subjects with orthopedic restrictions

or other restrictions preventing exercise testing on a stationary bike were excluded. According to

the latest guidelines of the American College of Sports Medicine, people who are prohibited from

any exercise test or exercise are also excluded from participating in the project. Furthermore, we

ensured that any individual who had engaged in another study protocol involving radiation doses

during the previous 12 months did not receive a total radiation dose of more than 20 mSv1 by en-

gaging in the current investigation. Otherwise, the volunteer is prohibited from participating in the

experiment in order to comply with safety.

In addition to all the mentioned cases, the possibility of withdrawing from the cooperation has

been available for any participant who wished to do so at any time without needing to explain. Also,

the researchers could exclude any subject from the study if they noticed medical contraindications

or other mentioned cases or if the subject did not follow the instructions. Then, the subjects were

compensated according to the project participation percentage.

1The scientific unit for measuring whole-body radiation dose, called ”effective dose,” is the millisievert (mSv).
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Appendix B

Sample Size

The sample size is determined based on the type of study. The larger the sample size, the lower

the number of errors in the conclusion because it will better represent the community and provide

more accurate results. However, in extensive samples, the increase in accuracy will be slight, and

the additional time and expense of recruiting more participants are unnecessary. On the other hand,

a smaller selection will need more statistical power to answer the primary research question and

will lead to non-scientific results. In a clinical trial, a well-executed study may fail to determine

significant effects and associations between variables simply because of insufficient sample size

and will have no future benefit.

In this study, in a certain period, 61 people registered their request to participate in the exper-

iment by filling out an online survey. But not all of them had the necessary criteria to enter the

research project. Due to this, 34 qualified people were included in the analysis, and to respect

the fairness and generalization of the results, it has been tried that women and men have an equal

share in participating in the project. Meanwhile, 3 of the participants during the data collection,

respectively, due to fear of the imaging environment, allergic reaction, and drop in blood pressure

after sampling, refused to continue participating in the project or were excluded as determined by

the researchers. As a result, data collection continued with 31 subjects. After completing the data

collection, we found out that the brain glucose measurements of two of the subjects had an error,

which led to the deletion of all the data recorded from them in the test process.

Finally, the sample size of this study is 29 healthy people, including 13 women and 16 men aged
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25 to 45, and the population of each of the male and female groups is large enough to measure their

differences. We believe that this sample size is good enough for this study because, as I mentioned,

a smaller number leads to non-scientific and insignificant results. On the other hand, increasing

accuracy in wide samples is not significant due to additional time and cost. Table B.1 provides

complete information of each of the subjects.

Table B.1: Participant information

Participants Gender Age Height (m) Weight (kg) BMI (kg/m2 Training Hour (min/week)

Subject 01 Female 33 1.6 53.8 21.02 540
Subject 02 Female 29 1.73 59.1 19.75 240
Subject 03 Male 31 1.78 77 24.30 337
Subject 04 Female 30 1.7 68 23.53 180
Subject 05 Male 43 1.83 80 23.89 120
Subject 06 Male 29 1.86 95 27.46 600
Subject 07 Male 29 1.66 71 25.77 105
Subject 08 Male 30 1.73 67.7 22.62 280
Subject 09 Female 45 1.68 54.5 19.31 160
Subject 10 Female 29 1.54 57.7 24.33 180
Subject 11 Female 30 1.62 54 20.58 60
Subject 12 Male 29 1.75 84 27.43 315
Subject 13 Female 28 1.63 57.7 21.72 180
Subject 14 Male 34 1.83 79 23.59 180
Subject 15 Male 29 1.83 84 25.08 360
Subject 16 Male 36 1.8 82 25.31 240
Subject 17 Female 45 1.7 63.6 22.01 180
Subject 18 Female 32 1.63 62 23.34 240
Subject 19 Male 35 1.87 88 25.17 180
Subject 20 Male 27 1.77 88 28.09 240
Subject 21 Male 34 1.85 84.1 24.57 150
Subject 22 Female 28 1.63 53.2 20.02 180
Subject 23 Female 26 1.68 66.8 23.67 120
Subject 24 Female 30 1.7 68.2 23.60 300
Subject 25 Male 33 1.72 54.6 18.46 120
Subject 26 Female 39 1.6 55.5 21.68 210
Subject 27 Male 44 1.78 76 23.99 360
Subject 28 Male 42 1.85 80.9 23.64 300
Subject 29 Male 30 1.83 75 22.40 180

106



Appendix C

Data acquisition protocol details

Interview

Before starting any data collection on the first day of the experiment, a short interview (15 to

20 minutes) will be conducted in person with the participant. During this interview, once again,

the purpose of the project and all the steps are carefully explained to the subject, and the questions

and concerns formed in the subject’s mind about the project are answered. Then they are asked to

fill out and sign the consent form. All the questions asked during the interview are only related to

the research, and the participant has the right to remain completely anonymous or disclose personal

information if necessary.

Pregnancy Test

Participating in this research project and undergoing a PET scan may have known or unknown

risks to pregnant women, unborn children, or breastfed infants. Therefore, female participants

cannot participate in this plan if they are pregnant or likely to be pregnant. In this regard, before any

PET scan, female subjects are asked to perform a rapid pregnancy test strip (FaStep® hCG Rapid

Test Strip (HCG-U11)), and only if the result of the pregnancy test is negative are they allowed to

participate in the project.
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Questionnaires

In the first visit of the experiment, four valid behavioral questionnaires designed to control

interpersonal changes in the way of experiencing experimental sessions are implemented. This

includes:

I. Sallis Self-Efficacy Questionnaire (SSE) (Figure C.1):

This questionnaire is a shorter version of the Sallis exercise effectiveness questionnaire. This

questionnaire is used to control changes in regular physical activity. In fact, in this way, we

check how confident the subject is to do things continuously (at least for six months) to take

advantage of the opportunity to exercise. SSE consists of 12 questions, and the participants

fill out the questionnaire based on the Likert scale. This scale includes five options from ”I

know I can’t” to ”I know I can.” SSE is filled in the interval between MRI and PET scan

where the subject spends the waiting time.

II. Amsterdam Resting-State Questionnaire (ARSQ) (Figure C.2):

The ARSQ quickly provides information about the participants’ state of thoughts and con-

sciousness during the scanning session. This questionnaire is used to control the active state

of mind or wakefulness. Participants fill out this 18-question questionnaire immediately after

the MRA session. ARSQ is also composed on a Likert scale and includes five options from

”Completely Disagree” to ”Completely Agree.”

III. Positive and Negative Affect Questionnaire (PANAS) (Figure C.3):

The PANAS consists of several words describing different feelings and emotions that the

subject may have felt during the data collection process. This questionnaire contains 20 words

on a 5-point Likert scale, where the participant chooses the appropriate answer from ”very

little or not at all” to ”extremely.” This questionnaire is also filled out while waiting for the

PET scan.

IV. STAI Y-6 Questionnaire (Figure C.4):

This questionnaire is a 6-question version of the Spielberger State-Trait Anxiety Inventory

(STAI). At the end of the exercise test to determine the ventilation threshold, the participants

108



rate these statements on a Likert scale of 1-4: I feel calm, upset, and content. I am relaxed,

tense, and worried. We ask participants to spend only a little time on each comment and

consider the answer that best describes their feelings.
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Figure C.1: Sallis Self-Efficacy Questionnaire (SSE)

110



Figure C.2: Amsterdam Resting-State Questionnaire (ARSQ)
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Figure C.3: Positive and Negative Affect Questionnaire (PANAS)
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Figure C.4: STAI Y-6 Questionnaire
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[72] M. Audiffren and N. André, “The exercise–cognition relationship: A virtuous circle,” Journal

of Sport and Health Science, vol. 8, no. 4, pp. 339–347, 2019.

[73] N. J. Stimpson, G. Davison, and A.-H. Javadi, “Joggin’the noggin: towards a physiolog-

ical understanding of exercise-induced cognitive benefits,” Neuroscience & Biobehavioral

Reviews, vol. 88, pp. 177–186, 2018.

[74] J. C. Basso and W. A. Suzuki, “The effects of acute exercise on mood, cognition, neurophys-

iology, and neurochemical pathways: A review,” Brain Plasticity, vol. 2, no. 2, pp. 127–152,

2017.

[75] T. Brigadski and V. Leßmann, “Bdnf: a regulator of learning and memory processes with

clinical potential,” e-Neuroforum, vol. 20, no. 1, pp. 1–11, 2014.

[76] K. I. Erickson, M. W. Voss, R. S. Prakash, C. Basak, A. Szabo, L. Chaddock, J. S. Kim,

S. Heo, H. Alves, S. M. White et al., “Exercise training increases size of hippocampus and

improves memory,” Proceedings of the national academy of sciences, vol. 108, no. 7, pp.

3017–3022, 2011.

[77] M. Hargreaves and L. L. Spriet, “Skeletal muscle energy metabolism during exercise,” Nature

Metabolism, vol. 2, no. 9, pp. 817–828, 2020.

[78] I. Heinonen, J. Kemppainen, K. Kaskinoro, H. Langberg, J. Knuuti, R. Boushel, M. Kjaer,

and K. K. Kalliokoski, “Bone blood flow and metabolism in humans: effect of muscular ex-

ercise and other physiological perturbations,” Journal of bone and mineral research, vol. 28,

no. 5, pp. 1068–1074, 2013.

122



[79] J. P. Thyfault and A. Bergouignan, “Exercise and metabolic health: beyond skeletal muscle,”

Diabetologia, vol. 63, no. 8, pp. 1464–1474, 2020.

[80] M. Dashty, “A quick look at biochemistry: carbohydrate metabolism,” Clinical biochemistry,

vol. 46, no. 15, pp. 1339–1352, 2013.

[81] M. Fukuda, M. Mentis, Y. Ma, V. Dhawan, A. Antonini, A. Lang, A. Lozano, J. Hammerstad,

K. Lyons, W. Koller et al., “Networks mediating the clinical effects of pallidal brain stimu-

lation for parkinson’s disease: a pet study of resting-state glucose metabolism,” Brain, vol.

124, no. 8, pp. 1601–1609, 2001.

[82] E. J. Bartlett, J. D. Brodie, A. P. Wolf, D. R. Christman, E. Laska, and M. Meissner, “Repro-

ducibility of cerebral glucose metabolic measurements in resting human subjects,” Journal

of Cerebral Blood Flow & Metabolism, vol. 8, no. 4, pp. 502–512, 1988.

[83] R. Rodriguez-Rojas, J. A. Pineda-Pardo, R. Martinez-Fernandez, R. V. Kogan, C. A.

Sanchez-Catasus, M. Del Alamo, F. Hernández, L. Garcı́a-Cañamaque, K. L. Leenders, and
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“Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maxi-

mal exercise in trained humans,” The Journal of physiology, vol. 592, no. 14, pp. 3143–3160,

2014.

[93] M. T. Wyss, R. Jolivet, A. Buck, P. J. Magistretti, and B. Weber, “In vivo evidence for lactate

as a neuronal energy source,” Journal of Neuroscience, vol. 31, no. 20, pp. 7477–7485, 2011.

[94] G. A. Dienel, “Brain lactate metabolism: the discoveries and the controversies,” Journal of

Cerebral Blood Flow & Metabolism, vol. 32, no. 7, pp. 1107–1138, 2012.

[95] T. Hashimoto, H. Tsukamoto, S. Takenaka, N. D. Olesen, L. G. Petersen, H. Sørensen, H. B.

Nielsen, N. H. Secher, and S. Ogoh, “Maintained exercise-enhanced brain executive function

124



related to cerebral lactate metabolism in men,” The FASEB Journal, vol. 32, no. 3, pp. 1417–

1427, 2018.

[96] C. Siebenmann, H. Sørensen, T. C. Bonne, M. Zaar, N. J. Aachmann-Andersen, N. B. Nords-

borg, H. B. Nielsen, N. H. Secher, C. Lundby, and P. Rasmussen, “Cerebral lactate uptake

during exercise is driven by the increased arterial lactate concentration,” Journal of Applied

Physiology, 2021.

[97] C. N. Gallagher, K. L. Carpenter, P. Grice, D. J. Howe, A. Mason, I. Timofeev, D. K. Menon,

P. J. Kirkpatrick, J. D. Pickard, G. R. Sutherland et al., “The human brain utilizes lactate

via the tricarboxylic acid cycle: a 13c-labelled microdialysis and high-resolution nuclear

magnetic resonance study,” Brain, vol. 132, no. 10, pp. 2839–2849, 2009.

[98] N. H. Secher, T. Seifert, and J. J. Van Lieshout, “Cerebral blood flow and metabolism during

exercise: implications for fatigue,” Journal of applied physiology, 2008.

[99] K. Smith, D. MacLeod, C. Willie, N. Lewis, R. Hoiland, K. Ikeda, M. Tymko, J. Donnelly,

T. Day, N. MacLeod et al., “Influence of high altitude on cerebral blood flow and fuel uti-

lization during exercise and recovery,” The Journal of physiology, vol. 592, no. 24, pp. 5507–

5527, 2014.

[100] T. Hashimoto, H. Tsukamoto, S. Ando, and S. Ogoh, “Effect of exercise on brain health: The

potential role of lactate as a myokine,” Metabolites, vol. 11, no. 12, p. 813, 2021.

[101] L. A. Newman, D. L. Korol, and P. E. Gold, “Lactate produced by glycogenolysis in astro-

cytes regulates memory processing,” PloS one, vol. 6, no. 12, p. e28427, 2011.

[102] P. J. Magistretti and I. Allaman, “A cellular perspective on brain energy metabolism and

functional imaging,” Neuron, vol. 86, no. 4, pp. 883–901, 2015.

[103] Z. Huang, Y. Zhang, R. Zhou, L. Yang, and H. Pan, “Lactate as potential mediators for

exercise-induced positive effects on neuroplasticity and cerebrovascular plasticity,” Frontiers

in Physiology, p. 1006, 2021.

125



[104] G. Ipekoglu, K. Baynaz, A. Mor, K. Acar, C. Arslanoglu, and E. Arslanoglu, “Examining

lactate changes during high intensity spinning® training.” Universal Journal of Educational

Research, vol. 6, no. 6, pp. 1260–1263, 2018.

[105] S. R. Weaver, B. D. Skinner, R. Furlong, R. A. Lucas, N. T. Cable, C. Rendeiro, H. M.

McGettrick, and S. J. Lucas, “Cerebral hemodynamic and neurotrophic factor responses are

dependent on the type of exercise,” Frontiers in physiology, vol. 11, p. 609935, 2021.

[106] A. M. Brown, S. B. Tekkök, and B. R. Ransom, “Energy transfer from astrocytes to axons:

the role of cns glycogen,” Neurochemistry international, vol. 45, no. 4, pp. 529–536, 2004.

[107] H. Kinni, M. Guo, J. Y. Ding, S. Konakondla, D. Dornbos III, R. Tran, M. Guthikonda, and

Y. Ding, “Cerebral metabolism after forced or voluntary physical exercise,” Brain research,

vol. 1388, pp. 48–55, 2011.

[108] J. M. Gaitán, E. A. Boots, R. J. Dougherty, J. M. Oh, Y. Ma, D. F. Edwards, B. T. Christian,

D. B. Cook, and O. C. Okonkwo, “Brain glucose metabolism, cognition, and cardiorespi-

ratory fitness following exercise training in adults at risk for alzheimer’s disease,” Brain

Plasticity, vol. 5, no. 1, pp. 83–95, 2019.

[109] S. M. Honkala, J. Johansson, K. K. Motiani, J.-J. Eskelinen, K. A. Virtanen, E. Löyttyniemi,
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