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Abstract

Deep Learning Methods for Codecs

Zahra Montajabi

Due to the recent advent of high-resolution mobile and camera devices, it is necessary to de-

velop an efficient solution for saving the new video content instead of traditional compression meth-

ods. Recently, video compression received enormous attention among computer vision problems in

media technologies. Using state-of-the-art video compression methods, videos can be transmitted

in a better quality requiring less bandwidth and memory. The advent of neural network-based video

compression methods remarkably promoted video coding performance.

In this thesis, two different video compression methods are proposed. The details of the models

architectures and evaluation methods are elaborated, and the results are reported numerically and vi-

sually. In the first method, Recurrent Neural Network (RNN) and long short-term memory (LSTM)

units are used to keep the valuable information and eliminate unnecessary ones to iteratively re-

duce the quality loss of reconstructed videos and therefore, encode the videos with less quality

loss. In the second method, an Invertible Neural Network (INN) is utilized to reduce the informa-

tion loss problem. Unlike the classic auto-encoders which lose some information during encoding,

INN can preserve more information and therefore, reconstruct videos with more clear details. The

proposed methods are evaluated using the peak signal-to-noise ratio (PSNR), video multimethod

assessment fusion (VMAF), and structural similarity index measure (SSIM) quality metrics. The

proposed methods are applied to two different public video compression datasets, the Ultra Video

Group (UVG) dataset and the YouTube UGC video compression dataset, and the results show that

our methods outperform existing standard video encoding schemes such as H.264 and H.265.

In the third part of this thesis, a deep learning method is used to find the semantic regions

of interest (SRoI) which is one of the most challenging problems in computer vision and image
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processing. Finding the semantic regions of interest can be used in different image processing tasks

such as image and video compression, enhancement, and reformatting. By knowing the semantic

region of interest within images, we can improve the visual quality of images by compressing the

more important parts with higher quality and the less important parts, such as the background, with

a lower quality. This operation can be achieved without changing the overall compression ratio and

the Peak Signal-to-noise Ratio (PSNR) quality metric. Finding the SRoI can make the processes

of image enhancement and color correction more accurate by focusing only on the important parts.

Moreover, for the image reformatting process, the important parts of the image may be lost. But by

using the SRoI, we can reformat the image in a better way by keeping the most important regions

in the frame. For these purposes, a method is proposed using OpenAI’s CLIP model to find SRoI

by performing a semantic search for objects in the image which are detected by an object detection

model called Generic RoI Extractor (GRoIE). The results of the proposed method are reported.
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Chapter 1

Introduction

1.1 Backgound

Nowadays, many web activities and web-based applications such as real-time communications

and live streaming include a large amount of video content. Video contents contribute to about 80%

of the Internet traffic Networking (2016). The use of camera has increased in the recent decade and

there are more images and videos with a higher resolution and new formats than in previous decades.

So it is necessary to store them efficiently. Image/video compression is a computing technology to

convert image/video into smaller size binary code to make the process of storage and transmission

easier. A good compression method has two features; first, the number of bits required to store the

data should be lower, and second, the loss between original images and reconstructed one should

be lower (higher quality) D. Liu, Li, Lin, Li, and Wu (2021). Many lossy compression methods are

used as a solution, in which instead of storing the raw RGB data, a lossy image that has few visual

changes is stored. Fig. 1.1 shows the basic compression scheme.

There are different types of redundancies within images/videos such as spatial redundancy, vi-

sual redundancy and statistical redundancy which are very important for coding. Traditional coding

methods used entropy coding to decrease statistical redundancies Ma et al. (2019). Huffman coding

Huffman (1952), Golomb coding Golomb (1966), and arithmetic coding Witten, Neal, and Cleary

(1987) are some examples. Also, to decrease spatial frequencies, transform coding was proposed in

1960 such as Fourier transform Andrews and Pratt (1968) and Hadamard transform Pratt, Kane, and
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Figure 1.1: Block diagram of the basic compression scheme. Pu (2006)

Andrews (1969). To reduce spatial redundancy and visual redundancy, the quantization techniques

are proposed Ma et al. (2019).

As high-quality video content such as 4k videos become more prevalent, more sophisticated

video compression methods are required to save the communication bandwidth/storage space while

offering high-quality video encoding with less loss. Moreover, the higher quality of encoded videos

enhances computer vision schemes such as object tracking and action recognition.

Among different recent methods developed for compression, deep learning-based compression

methods gained more interest and attention. As a result, learned autoencoder-based video compres-

sion is developed as a powerful competitor to traditional methods. An autoencoder is an artificial

neural network used for unsupervised learning and its goal is learning a representation (encoding)

of a set of data, and reducing the size of that set Mentzer, Toderici, Tschannen, and Agustsson

(2020). Neural networks, specifically convolution neural networks (CNN) were very successful in

the recent image/video processing tasks. CNN consists of convolutional layers and sometimes may

contain fully connected layers. The parameters of the layers are trained for different tasks like clas-

sification and prediction or feature extraction to transform the image/video into feature space with

compressed representation which is useful for image/video coding. The architecture of a simple

neural network is shown in Fig. 1.2.

Some of the earliest use of neural networks for image/video coding goes back to the 1990s; in

those researches, the networks were very shallow and the compression was not efficient Dony and

Haykin (1995), J. Jiang (1999). Later, the computing platforms were improved and more data was
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Figure 1.2: Architecture of a simple neural network. Gavrilova (2021)

available, so it was possible to design and train deeper models with even more than 1000 layers He,

Zhang, Ren, and Sun (2016).

Deep learning reduces the need of handcrafted representations and can be used especially for

processing natively unstructured data like visual signal D. Liu et al. (2021). In traditional compres-

sion methods, they map the input to latent feature representation linearly. In contrast, deep neural

network-based methods are capable of using highly non-linear transformations and end-to-end train-

ing on a large scale to optimize compression. Some of the recent deep learning-based models are

reviewed comprehensively in D. Liu et al. (2021).

1.1.1 Types of Compression Techniques

There are two types of coding, lossy and lossless. The compression ratios are higher in lossy

methods than the lossless compression techniques Hussain, Al-Fayadh, and Radi (2018). In lossless

compression, the image/video is reconstructed from the bits perfectly without losing data while in

lossy coding some parts of the data cannot be reconstructed and lead to some negligible artifacts in

the reconstructed image/video. JPEG is one example of lossy compression and PNG is an example
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of a lossless compression format. Some of the common methods are elaborated in the following.

Lossy Compression

• Transform Coding:

Transformation of the image from one domain to another, and then encoding the trans-

formed data based on interpixel correlation. Some of the transform coding approaches are

Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) Edwards (1991),

Karhunen–Loeve Transform (KLT) Dony et al. (2001), and K-Means algorithm Krishna, Ra-

makrishnan, and Thathachar (1997).

• Chroma Subsampling:

It uses the fact that human eyes are more sensitive to brightness than colors and can recognize

changes in brightness more than colors. So it is possible to reduce some color information

without significant artifacts. The color information (chroma) can be sampled at a lower rate

than brightness information (luma) Chung, Hsu, and Huang (2017). Some of the chroma

subsampling approaches which are based on a three-component ratio are 4 : 2 : 2 Lin, Chung,

and Fang (2014), 4 : 1 : 1, and 4 : 2 : 0.

• Fractal Compression:

This approach is based on the fact that each image (usually natural images) has identical

and repetitive parts and patterns Khaitan and Agarwal (2019). Some of the fractal coding

approaches are Fast Sparse Fractal Image Compression (FSFIC), and Optimization-Based

Fractal Compression Techniques Menassel, Nini, and Mekhaznia (2018).

Lossless Compression

The goal of lossless compression is to encode all the data and reconstruct the output the same

as the original. It is usually useful for medical imaging, technical drawing, and satellite images

Elakkiya and Thivya (2021).

• Run-Length Coding:

4



This approach is appropriate for monochrome images that have large areas of the same color.

It works based on searching the image for runs of pixels with the same color value and encod-

ing the length. Some of the run-length coding approaches are Run-length coding (RLC) Apos-

tolico, Landau, and Skiena (1997), Improved Versions of RLC Babu, Eswaran, and Kumar

(2016), and RLC for Data and Speech Compression Arif and Anand (2012), Amin, Qureshi,

Junaid, Habib, and Anjum (2011).

• Entropy Coding:

In this approach, the minimum number of bits is dedicated to representing the quantized data.

Some of the entropy coding methods are Huffman coding and Arithmetic coding. There are

also some other variants of entropy coding proposed which are proposed later such as Kabir

and Mondal (2017), Mentzer, Agustsson, Tschannen, Timofte, and Van Gool (2019).

• Dictionary-Based Compression:

In this type of coding, short codewords and preferably fixed-length replaces the variable-

length codes Sharma and Gupta (2017) and they are kept in a dictionary. They are also

useful for text compression. One of the dictionary-based compression methods is Lempel–Ziv

algorithm which includes LZ77, and LZ78 Jain and Lakhtaria (2016), Guo, Lu, Allebach, and

Bouman (2017).

• Predictive Coding:

This approach is based on the fact that in each image, pixels can be predicted from their

neighbors with good accuracy since they are correlated. Their redundancies can be reduced

and therefore, it is possible to create one dimensional data instead Shukla, Alwani, and Tiwari

(2010). Some of the predictive coding methods are Median Edge Detector (MED) Martucci

(1990), Gradient Adjusted Predictor (GAP) Rahman and Mohamed (2022), Gradient Edge

Detector (GED) Avramović and Reljin (2010), Adaptive Linear Prediction Coding (ALPC)

Motta, Storer, and Carpentieri (2000).

• Chain Codes:
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This approach is useful in monochrome or binary images and for segmentation. Each con-

nected component, (or blob) in the image is separately encoded. Some of the chain codes

methods are Freeman Chain Code of Eight Directions (FCCE) Kothuri, Annapurna, and

Lukka (2013), Vertex Chain Code (VCC) Y. K. Liu, Wei, Jie Wang, and Žalik (2007), Three

Orthogonal Symbol Chain Code (3OT) Sanchez-Cruz and Rodriguez-Dagnino (2005), and

Unsigned Manhattan Chain Code (UMCC) Žalik, Mongus, Liu, and Lukač (2016).

1.2 Related Works

In this section, related works for each of the traditional methods and deep learning-based meth-

ods are elaborated.

1.2.1 Hand-crafted Compression

Existing traditional compression methods like JPEG Wallace (1992), JPEG 2000 Skodras, Christopou-

los, and Ebrahimi (2001), BPG Bellard (2014), WebP An image format for the Web (n.d.), HEVC

Sullivan, Ohm, Han, and Wiegand (2012), and VVC Ohm and Sullivan (2018) are not optimized;

because each module is optimized independently. In these methods, they map the input to latent fea-

ture representation linearly. These modules include intra-prediction, wavelet transform or discrete

cosine transform Ahmed, Natarajan, and Rao (1974), quantization, and entropy coders such as con-

tent adaptive binary arithmetic coder (CABAC) or Huffman coder. In these methods, each module

is designed in a way to have multiple modes and the best mode is determined by rate-distortion op-

timization. In VVC, even more modes, transform types, and larger coding units are designed. Also,

some hybrid methods are designed, such as Z. Cheng, Sun, Takeuchi, and Katto (2018b), that have

the advantage of both conventional compression algorithms and the latest learned super-resolution

approaches.

1.2.2 Learned Compression

Using autoencoder architecture is very widespread in the recent deep learning-based compres-

sion methods Vincent, Larochelle, Bengio, and Manzagol (2008). To make the end-to-end training
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possible, some studies Theis, Shi, Cunningham, and Huszár (2017), Ballé, Laparra, and Simoncelli

(2017), Agustsson et al. (2017) worked on using non-differential quantization and rate estimation.

Later works improved their methods by designing the network layers to obtain more efficient latent

representation. For example in some papers Rippel and Bourdev (2017), Santurkar, Budden, and

Shavit (2018), Agustsson, Tschannen, Mentzer, Timofte, and Gool (2019) to obtain better quality

at a low bit rate, generative models which learn the distribution by adversarial training are used.

Some approaches Toderici et al. (2016), Toderici et al. (2017), Johnston et al. (2018) used recurrent

neural networks to compress the residual information recursively. To improve models, one paper

used deep residual units Z. Cheng, Sun, Takeuchi, and Katto (2019a) and another paper used en-

ergy compaction Z. Cheng, Sun, Takeuchi, and Katto (2019b). Also, some methods used principle

component analysis Abdi and Williams (2010) for de-correlating different channels Z. Cheng, Sun,

Takeuchi, and Katto (2018a). Content weighted strategy is used in another approach M. Li, Zuo,

Gu, Zhao, and Zhang (2018). The recent methods use adaptive context model which can obtain

a tradeoff between reconstruction errors and entropy (required bits) and make the process more

optimized such as Lee, Cho, and Beack (2019), Minnen, Ballé, and Toderici (2018), Ballé, Min-

nen, Singh, Hwang, and Johnston (2018), Mentzer, Agustsson, Tschannen, Timofte, and Van Gool

(2018). These methods generate promising results compared with previous learned compression

methods.

1.3 Thesis Overview

The organization of this thesis is as follows:

• In Chapter 1, the background knowledge regarding compression and deep learning methods

and the related works are introduced.

• In Chapter 2, a video compression method using a Recurrent Neural Network is proposed and

the experimental results are presented.

• In Chapter 3, a video compression method using an Invertible Neural Network is proposed

and the experimental results are presented.

7



• In Chapter 4, a method to find the semantic regions of interest in images using deep learning

methods is proposed and tested for three different image processing applications.

• In Chapter 5, our research works and contributions are provided that generalize the signifi-

cance of the proposed methods in this thesis.
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Chapter 2

Recurrent Neural Network-Based Video

Compression

In this chapter, a video compression method is presented based on Recurrent Neural Network

(RNN). The method includes an encoder, a middle module, and a decoder. Binarizer is utilized in

the middle module to achieve better quantization performance. In encoder and decoder modules,

long short-term memory (LSTM) units are used to keep the valuable information and eliminate

unnecessary ones to iteratively reduce the quality loss of reconstructed video. This method reduces

the complexity of neural network-based compression schemes and encodes the videos with less

quality loss. The proposed method is evaluated using peak signal-to-noise ratio (PSNR), video

multimethod assessment fusion (VMAF), and structural similarity index measure (SSIM) quality

metrics. The proposed method is applied to two different public video compression datasets and the

results show that the method outperforms existing standard video encoding schemes such as H.264

and H.265.

2.1 Introduction

Many of deep learning-based compression methods used convolutional neural networks (CNN)

and auto-encoders such as Ballé et al. (2018), Ballé et al. (2017), Theis et al. (2017). Some of these

deep learning based models are reviewed comprehensively in D. Liu et al. (2021). There are several
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CNN-based compression methods Murn, Blasi, Smeaton, and Mrak (2021), Murn, Blasi, Smeaton,

O’Connor, and Mrak (2020) which achieved a higher compression ratio with a less quality loss,

however, these methods developed very complex networks with deeper layers which increase the

computational cost. For example, in Chen et al. (2017), a convolutional auto-encoder is used; which

also used Huffman coding to encode the quantized feature maps. Another method Y. Li et al. (2018)

used CNN-based block up-sampling scheme for intra frame coding. Also, in F. Jiang et al. (2018),

CNN is used to learn and preserve the structural information (downsampling) prior to encoding and

then reconstruct the decoded image with high quality (upsampling). Compared to recent CNN meth-

ods which have lots of layers for improving the performance, RNN-based methods are less complex

and they are less common among recent deep learning-based compression approaches. RNNs can

improve the future predictions iteratively. An example of RNN-based compression methods is the

method proposed in Toderici et al. (2017) .

Previous works have shown that using generalized divisive normalization (GDN) is more helpful

to use in compression tasks, instead of other nonlinear activation functions such as ReLU, due

to its higher consistency with human visual perception Ballé et al. (2017). For example, Ballé

(2018) proved that GDN can be applied instead of other nonlinearity transforms to increase the

approximation capacity of the transforms. Also, GDN is used in the autoencoder structures of image

compression Lee et al. (2019) and Klopp, Wang, Chien, and Chen (2018); it helped to decrease

redundancies between channels and apply a different normalization to each channel at the same

spatial location.

Some parts of images contain more important information. Image/video scenes can be grouped

into perceptually significant and perceptually insignificant areas. These visually insignificant pix-

els are compressed more and users cannot notice compression impairments if they don’t compare

details of the picture with the original image pixel by pixel. So, it is possible to use fewer bits.

Therefore, many compression methods have texture analyzer which sort the areas based on signif-

icance; and encode the perceptually significant regions as the main bit stream payload and percep-

tually insignificant areas as the side information. Also, in the inverse process, they have a texture

synthesizer which synthesize texture to restore the pixels Ding et al. (2021). We used this type of

analysis/synthesis method in our video compression model.
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Our method, inspired by Ballé et al. (2018), Toderici et al. (2017), Islam, Dang, Lee, and Moon

(2021), Toderici et al. (2016), incorporates an encoder, a middle module, and a decoder. These

modules benefit from convolution layers, GDN, long short-term memory cells, and recurrent neural

networks. In the method, first, feature extraction and analysis, down sampling, and quantization are

done and then the decoder performs synthesis and up-sampling and the video is iteratively recon-

structed through LSTM units. To the best of our knowledge, this is the first video coding/decoding

method which benefits from a GDN layer to manage different bit rates, offers an enhanced per-

formance by using binarizer Toderici et al. (2017) for quantization in the middle module, and also

using LSTM cells to keep the necessary information and forget useless ones to improve the output

iteratively.

To validate the performance of the proposed method, we tested our method on Ultra Video

Group (UVG) dataset Mercat, Viitanen, and Vanne (2020) and YouTube UGC video compression

dataset Y. Wang, Inguva, and Adsumilli (2019) and reported the results by using PSNR, VMAF and

SSIM quality metrics under the similar setting.

The chapter is organized as follows. The video coding method is described in detail in Section

2.2. Experimental results are presented in Section 2.3, followed by concluding remarks in Section

2.4.

2.2 Approach

The method architecture consists of three parts as illustrated in Fig. 2.1: an encoder block, a

middle layer, and a decoder block. Encoder block performs texture analysis in the beginning, using

a convolution and a GDN layer and then encode the frames. Decoder performs synthesis inversely

using convolution and iGDN layer and then decoding the frames. In the first step, video frames

are sent into the encoder for feature extraction and generating sequences. In the middle module,

the input frames are converted into binary codes that can be stored or transmitted to the decoder.

Middle module uses the binary code generator method Toderici et al. (2017) for quantization and

finally, the video will be reconstructed through decoder.

Let V = {f1, f2, ..., fT } be the video sequences and ft be the video frame at time t and f̂t be
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Figure 2.1: Structure of our video compressor

the reconstructed frame. The residual between the original frame and the decoded one is obtained

by rt = ft − f̂t.

If we have n iterations, the loss at each iteration of the method can be calculated as:

L1 = β
∑
n

||rt,n|| (1)

In the following, the details of the three blocks are introduced.

2.2.1 Encoder Block

The encoder block consists of a convolution layer with the input channel of size 3, output chan-

nel of size 64, kernel size of 3, and stride of 2. The encoder block has a generalized divisive

normalization layer Ballé, Laparra, and Simoncelli (2016) which acts as a nonlinear transformation
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Figure 2.2: Structure of LSTM unit

between convolution layers. After 2D convolution, spatial location (i, j) of kth input channel in the

nth step (iteration) is calculated by:

wn
t,k(i, j) =

∑
m

(hnt,k,m ∗ fn
t,k,m)(i, j) (2)

After convolution, GDN layer works based on 3 in which bias and scale parameters of normal-

ization are βn
t,k and γnt,k.

s
(n)
t,k (i) =

wn
t,k(i)

(βn
t,k +

∑
j γ

n
t,k,j(w

n
t,k(j))

2)0.5
(3)

Next part of the encoder block consists of three long short-term memory (LSTM) Hochreiter

and Schmidhuber (1997) units which are a type of RNN. Feature extraction occurs iteratively in

LSTM units, which remember the states and reconstruct the image in the decoder block. In each

iteration, the estimated output of each LSTM unit is passed to the next unit’s hidden layer. Fig. 2.2

shows the structure of the LSTM unit where xn is the input feature vector of nth iteration. cn−1 is

the memory (cell) state, and hn−1 is the hidden state. Moreover, there are two convolution layers

for the hidden vector and the input vector which are called Conv hi and Conv in respectively. The

kernel size of Conv in is 3 and the stride is 2. The kernel size of Conv hi is 1 and the stride is 1.

The outputs of LSTM cells are calculated according to the structure as follows:
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cn = fn ⊙ cn−1 + in ⊙ c̃n (4)

hn = on ⊙ tanh(cn) (5)

where, the output of forgete gate (fn), input gate (in) and output gate (on) are:

fn = σ(Wf · conv in(xn) + Uf · conv hi(hn−1) + bf ) (6)

in = σ(Wi · conv in(xn) + Ui · conv hi(hn−1) + bi) (7)

c̃n = tanh(Wc · conv in(xn) + Uc · conv hi(hn−1)] + bc) (8)

on = σ(Wo · conv in(xn) + Uo · conv hi(hn−1)] + bo) (9)

2.2.2 Middle Module

According to quantization method which is elaborated in Toderici et al. (2017) and Toderici et

al. (2016), the quantization noise is applied for training at the middle module. The module includes

a linear convolution layer with an activation function. This module produces binary codes between

-1 and 1 and can compress each input frame with dimensions of height × width × 3 to the size of

(height/16) × (width/16) × 32 which means 1/8 reduction for bit per pixel (bpp). In the middle

module, the input channel size is 512, the output channel size is 32 and the kernel size is 1. For

activation function, tanh is used. Using this approach, the compression ratio of the nth iteration will

be n/192 which enhances the performance of method.
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2.2.3 Decoder Block

In order to reconstruct the video, the inverse of the functions incorporated in the encoder, must

be implemented in the decoder. Therefore, the first step in the decoding process is using a CNN

layer with input channel size of 32, output channel size of 512, and kernel size of 1. The next step

is applying the inverse of GDN layer using the following equation:

ŵn
t,k(i) = ŝnt,k(i).(β̂

n
t,k +

∑
j

γ̂nt,k,j(ŝ
n
t,k(j))

2)0.5 (10)

Similar to encoder layers, the kernel size and stride of the other layers is 3 and 1, respectively.

Finally, the video is reconstructed through four LSTM units and the final output is generated after a

deconvolution.

2.3 Experiments

Experiments are performed on a Tesla V100-SXM2-16GB GPU. The network is trained for 12

epochs using a batch size of 16, learning rate of 0.0005, and with Adam optimizer Kingma and Ba

(2015) on Pytorch framework.

2.3.1 Dataset

To train our video compression model, vimeo-90k dataset is used Xue, Chen, Wu, Wei, and

Freeman (2019) which is a large dataset developed for different kinds of video processing tasks.

The dataset includes 89800 clips with different contents in different categories. The resolution of

the videos is 256 x 256 pixels. 5000 video clips from different categories are used to train our

model.

To test the method and report the results, Ultra Video Group (UVG) dataset Mercat et al. (2020)

is used which includes 16 versatile 4K (3840 × 2160) video sequences. Each video is 50 or 120

frames per second available in 4:2:0 YUV format. To test the videos, 1920 x 1080 resolution of the

dataset is used, and they are resized by padding followed by cropping to be dividable by 32.

Another dataset which is used to test and evaluate the method is YouTube UGC Dataset Y. Wang
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et al. (2019). There are 1500 video clips with a length of 20 seconds in different categories such as

gaming, sports, animation, and lecture. Each clip is available in 4:2:0 YUV format and resolutions

of 360P, 480P, 720P, and 1080P. To test the method, we selected 40 videos in different categories

with 720P resolution.

2.3.2 Evaluation Method

To measure the performance of the proposed framework, peak signal-to-noise ratio (PSNR),

video multimethod assessment fusion (VMAF), and structural similarity index measure (SSIM)

quality metrics are used. A higher PSNR value shows a higher image quality Horé and Ziou (2010);

and SSIM Dosselmann and Yang (2005) measures the similarity between two images and is better

correlated with the human perception of distortion. Compared to PSNR and SSIM, VMAF is a sub-

jective measure of the human eye perception and so it is a pivotel measure in real-world applications

Rassool (2017).

2.3.3 Results

Average PSNR, VMAF, and SSIM of the proposed model on UVG dataset are 42.8, 80.15, and

0.98, respectively, which outperforms H.264 Wiegand, Sullivan, Bjontegaard, and Luthra (2003)

and H.265 Sullivan et al. (2012) as can be seen in Table 2.1.

Table 2.1: Performance comparison of the methods applied to UVG dataset. The proposed method
outperforms the others.

Quality Metric PSNR VMAF SSIM
Proposed 42.8 80.15 0.98
H.264 38.8 68.3 0.925
H.265 39.2 67.9 0.94

Fig. 2.3 shows samples of the outputs of our framework and H.264 and H.265. In the first

example of the dog 2.3a, the eye drops is more blur in H.264 and H.265. In the second example

2.3b, the details of the trees (like the green tree in the up-right of the zoomed image) and the sea are

sharper and less quantized using our method than other methods. In the third example 2.3c which is
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woman’s face, the details of the face such as eyebrow and eyelash are more clear and sharper using

our method than H.264 or H.265. The average bit per pixel (BPP) for all test sets is 0.32.

It is shown in Table 2.2 that our method outperforms H.264 and H.265 in terms of PSNR and

SSIM on YouTube UGC video compression dataset. It has a better VMAF than H.265 and approx-

imately similar VMAF with H.264.

Table 2.2: Performance comparison of the methods applied to YouTube UGC dataset. The proposed
method outperforms others in terms of PSNR and SSIM and has a competitive result with H.264 in
terms of VMAF.

Quality Metric PSNR VMAF SSIM
Proposed 29.7 79.13 0.9
H.264 27.8 79.26 0.85
H.265 27.9 78.5 0.86

Some sample outputs of our framework and H.264 and H.265 are demonstrated in Fig. 2.4; in

the first example 2.4a, the lips of woman’s face are more blurry in H.264 and H.265, while using our

mehtod they are less quantized and more clear. Also in the second example 2.4b, the letter (NBR)

on the microphone of reporter is more quantized in H.264 and more blurry in H.265 while it is more

clear and sharper using our method. Therefore, our method outperforms H.264 and H.265 based on

both numerical and visual comparisons.

2.4 Conclusion

A video compression method based on RNN has been introduced. The method takes advan-

tage of CNN, generalized divisive normalization method, and RNN layers and LSTM cells in en-

coder and decoder parts. Unlike the recent CNN-based methods that is very complex since they are

deeper, the proposed RNN-based method has less complexity. The performance of the proposed

architecture has been further improved by using binarizer for quantization and using LSTM cells

in encoder/decoder parts for reducing useless information. The results of the method applied to

standard datasets show a better quality in terms of PSNR, VMAF and SSIM as compared to the

recognized methods such as H.264 and H.265.
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(a)

(b)

(c)

Figure 2.3: Samples of the proposed method, H.264, and H.265 outputs. The data used here are
from the UVG dataset. (a) The eye drops is more blur and more quantized in H.264 and H.265.
(b) The details of the trees (like the green tree in the up-right of the zoomed image) and the sea
are sharper and less quantized using our method. (c) The details of the face such as eyebrow and
eyelash are more clear and sharper using our method.
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(a)

(b)

Figure 2.4: Samples of the proposed method, H.264, and H.265 outputs. The data used here are
from the YouTube UGC video compression dataset. (a) The lips of woman’s face are more blurry
in H.264 and H.265, while using our mehtod they are less quantized and more clear. (b) The letter
(NBR) on the microphone of reporter is more quantized in H.264 and more blurry in H.265 while it
is more clear and sharper using our method.
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Chapter 3

Invertible Neural Network-Based Video

Compression

In this chapter, a video compression method is proposed using Invertible Neural Network (INN)

to reduce the information loss problem. Unlike the classic auto-encoders which lose some infor-

mation during encoding, INN can preserve more information and therefore, reconstruct videos with

more clear details. Moreover, they don’t increase the complexity of the network compared to tra-

ditional auto-encoders. The proposed method is evaluated on a public dataset and the experimental

results show that the proposed method outperforms existing standard video encoding schemes such

as H.264 and H.265 in terms of peak signal-to-noise ratio (PSNR), video multimethod assessment

fusion (VMAF), and structural similarity index measure (SSIM).

3.1 Introduction

Among different recent methods developed for compression, deep learning-based compression

methods gained more interest and attention. There are several traditional compression methods

like JPEG Wallace (1992) and JPEG 2000 Skodras et al. (2001), which are not optimized; because

each module is optimized independently. In these methods, they map the input to latent feature

representation linearly. In contrast, deep neural network-based methods are capable of using highly

non-linear transformations and end-to-end training on a large scale to optimize compression. Some
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of the recent deep learning-based models are reviewed comprehensively in D. Liu et al. (2021).

Recently, INNs got more popular than previous auto-encoder frameworks and they concentrate

on learning the forward process, using additional latent output variables to capture the information

that would otherwise be lost, in contrast to classical neural networks that attempt to solve the am-

biguous inverse problem directly Kingma and Dhariwal (2018), Dinh, Sohl-Dickstein, and Bengio

(2016), Ardizzone et al. (2018). Although autoencoders are very capable of choosing the significant

information for reconstruction, some amount of information is completely lost; while using INN

for encoding and decoding helps to preserve the information. Specific features of INN are: it has

a bijective mapping between input and output and its inverse exists; it is possible to compute both

forward and inverse mapping efficiently; and there is a tractable Jacobian of both mappings that

makes it possible to calculate posterior probabilities explicitly. The work in Ardizzone et al. (2018)

demonstrated theoretically and practically that INNs are an effective analysis tool by using both syn-

thetic data and real-world issues from astronomy and medicine categories. Another work on image

generation Ardizzone, Lüth, Kruse, Rother, and Köthe (2019) used conditional INN architecture

which performs better than variational autoencoders (VAEs) and generative adversarial networks

(GANs). In Lugmayr, Danelljan, Gool, and Timofte (2020), INN is employed to more effectively

address the ill-posed issue of super-resolution compared to GAN-based frameworks. Similarly, for

image rescaling in Xiao et al. (2020), an invertible bijective transformation is used to reduce the

ill-posed nature of image upscaling.

In each image or frame of a video, there are some parts that are less important, and by compress-

ing them more than other parts and using fewer bits for them, it is not easy to notice the difference

with the original one unless by pixel by pixel comparison. Therefore, each image/video frame can

be grouped into perceptually significant and perceptually insignificant areas. Sorting the areas based

on significance is called texture analyzer which is used in many compression methods, and the in-

verse process is called texture synthesizer, which restores the pixels Ding et al. (2021). This type of

analysis/synthesis method is used in our video compression model. The proposed method, inspired

by Minnen et al. (2018), Kingma and Dhariwal (2018), Xie, Cheng, and Chen (2021), Shi et al.

(2016), Z. Cheng, Sun, Takeuchi, and Katto (2020) incorporates four different modules: feature

enhancement which is used to improve the nonlinear representation, INN which helps to reduce
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Figure 3.1: Structure of our video compressor

information loss, attention squeeze which is used to stabilize the training process instead of using

unstable sampling technique Y. Wang, Xiao, Liu, Zheng, and Liu (2020), and hyperprior which

performs analysis/synthesis and entropy coding.

To validate the performance of our method, we tested the model on the YouTube UGC video

compression dataset Y. Wang et al. (2019) and reported the results by using PSNR, VMAF, and

SSIM quality metrics under a similar setting. The results are reported and compared numerically

and visually. The visual results demonstrate that under the same BPP, reconstructed video frames

using our method has more clear details.

The paper is organized as follows. The video coding method is described in detail in Section

3.2. Experimental results are presented in Section 3.3, followed by concluding remarks in Section

3.4.
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3.2 Approach

The proposed method consists of four modules: feature enhancement, INN, squeeze module,

and main module. The architecture is shown in Fig. 3.1. Let V = {f1, f2, ..., fT } be the video

sequences and ft be the video frame f at time t. The input frame f has dimensions of (3, H, W).

The first step, feature enhancement, adds non-linearity to each input frame and turns it to j with the

same dimension of (3, H, W). The second step, INN, turns j to q with dimensions of (3×44,
H

24
,
W

24
)

in the forward pass. Third step, attention-squeeze module, leads q to turn into y with dimensions

of (
3× 44

α
,
H

24
,
W

24
) in which α is the compression ratio. For the rest of the model, the hyperprior

of Minnen et al. (2018) paper is used in which Minnen presented an autoregressive context model

with a mean and scale hyperprior; In the hyperprior, using a mean and scale gaussian distribution,

the quantized latent features ŷ is parameterized with an analysis transform hyper encoder and a

synthesis transform hyper decoder. The hyper encoder consists of three convolution layers with

Leaky Relu activation between them. Analysis hyper encoder takes y to generate side information

z and synthesis hyper decoder takes quantized side information ẑ. Asymmetric numeral system

(ANS) Duda (2009) is used for entropy coding. Each frame loss is calculated based on the following

equation Minnen et al. (2018):

L = R(ŷt) +R(ẑt) + λ ·D(ft, f̂t) =

E[− log2 pŷ(ŷt)] + E[− log2 pẑ(ẑt)] + λ ·D(ft, f̂t)

(11)

In which rate R is the entropy of quantized latent features, λ is the Lagrange multiplier and

its different values correspond to different bit rates, D is the distortion term which can represent

mean squared error (MSE) for MSE optimization, or 1 −MS-SSIM for MS-SSIM optimization

Z. Wang, Simoncelli, and Bovik (2003), and here it represents mean squared error.

The inverse for the decoding process is as follows: squeeze module copies ŷ for alpha times

and reshapes it to q̂. Then q̂ is passed to the INN inversely and turned to ĵ and finally, after the

inverse of feature enhancement, the reconstructed video with frames f̂ is generated. The detail of

each module is elaborated in this section:
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3.2.1 Feature Enhancement

Feature enhancement module is used to improve the nonlinear representation of the network

because INNS are not often capable of nonlinear representation Dinh, Krueger, and Bengio (2015).

This module includes a Dense block Huang, Liu, and Weinberger (2017) with input channel size

of 3 and output channel size of 64, three convolution layers, and another Dense block with input

channel size of 64 and output channel size of 3. Convolution layers have input channel size of 64,

output channel size of 64, stride 1, and kernel sizes of 1, 3, and 1.

3.2.2 INN

There are two invertible layers in the INN module which are the down-sampling layer and the

coupling layer. A down-sampling layer includes a pixel shuffling layer Shi et al. (2016) and an

invertible 1x1 convolution layer Kingma and Dhariwal (2018). Four invertible blocks are utilized

for down-sampling and up-sampling similar to the method proposed in Minnen et al. (2018). Each

of them consists of one down-sampling layer and three coupling layers. Using these four blocks,

the input is down-sampled by 16 times (the down-sampling factor in each pixel shuffling layer is 2).

Affine coupling layer Dinh et al. (2016) is defined as following equations:

ji+1
t,1:d = jit,1:d ⊙ exp(σc(g2(j

i
t,d+1:D))) + h2(j

i
t,d+1:D) (12)

ji+1
t,d+1:D = jit,d+1:D ⊙ exp(σc(g1(j

i+1
t,1:d))) + h1(j

i+1
t,1:d) (13)

In the above equations, jit,1:D is the D dimensional input at time frame t to the ith coupling

layer which is divided into two parts with dimensions d and D-d. The functions h1, h2, g1, g1

are Convolutions with stride one with activation functions. Each of them consists of a convolution

with kernel size 3, leaky relu, convolution with kernel size 1, leaky relu, and another convolution

layer with kernel size 3. Also, ⊙, exp, and σc show the Hadamard product, exponential, and center

sigmoid functions respectively.
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The inverse process is similar;

ĵit,d+1:D = (ĵi+1
t,d+1:D − h1(ĵ

i+1
t,1:d)⊙ exp(−σc(g1(ĵ

i+1
t,1:d))) (14)

ĵit,1:d = (ĵi+1
t,1:d − h2(ĵ

i
t,d+1:D))⊙ exp(−σc(g2(ĵ

i
t,d+1:D))) (15)

3.2.3 Attention-Squeeze Module

INN does not change the size of input while many of the pixels are useless for compression. So,

the channel dimension of the INN’s output is reduced through the Squeeze layer. If the output tensor

of INN has the size of (D, H, W), it is reshaped into (r,
D

r
, H, W) in which r is the compression ratio.

Then, it takes the average on the first dimension to turn the tensor into size (
D

r
, H, W) and passes it

to the attention module; Attention module helps the model to pay more attention to challenging parts

and reduce the bits of simple parts Z. Cheng et al. (2020). The inverse module in the decompression

phase has an attention module and then it copies the quantized tensor r times and reshapes it to the

size of (D, H, W).

3.3 Experiments

Experiments are performed on a Tesla V100-SXM2-16GB GPU. The network is trained for 550

epochs using a batch size of 16, learning rates of 0.0001 for the first 450 epochs and 0.00001 for the

rest, with Adam optimizer Kingma and Ba (2015) on Pytorch framework.

3.3.1 Dataset

To train our video compression model, the Vimeo-90k dataset is used Xue et al. (2019) which is

a large dataset developed for different kinds of video processing tasks. The dataset includes 89800

clips with different contents in different categories. 5000 video clips from different categories are

used to train our model. The resolution of the videos is cropped to 256 x 256 pixels.

To test the method and report the results, YouTube UGC Dataset Y. Wang et al. (2019) is used.
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There are 1500 video clips with the length of 20 seconds in different categories such as gaming,

sports, animation, and lecture. Each clip is available in 4:2:0 YUV format and resolutions of 360P,

480P, 720P, and 1080P. To test the method, we selected 40 videos in different categories with 720P

resolution. Also, another public dataset of Ultra Video Group (UVG) Mercat et al. (2020) is used

which includes 16 versatile 4K (3840 × 2160) video sequences. Each video is 50 or 120 frames per

second available in 4:2:0 YUV format. To test the videos, the 1920 x 1080 resolution of the dataset

is used.

3.3.2 Evaluation Method

To measure the performance of the proposed framework, peak-signal-to-noise ratio (PSNR),

video multimethod assessment fusion (VMAF), and structural similarity index measure (SSIM)

quality metrics are used. A higher PSNR value shows a higher image quality Horé and Ziou (2010),

and SSIM Dosselmann and Yang (2005) measures the similarity between two images and is better

correlated with the human perception of distortion. Compared to PSNR and SSIM, VMAF is a sub-

jective measure of the human eye perception and so it is a pivotal measure in real-world applications

Rassool (2017).

3.3.3 Results

The average PSNR, VMAF, and SSIM of the proposed model on the UGC dataset are 45.5,

98.9, and 0.982, respectively, which outperforms H.264 Wiegand et al. (2003) and H.265 Sullivan

et al. (2012) as can be seen in Table 3.1. The average bit per pixel (BPP) for all test sets in the UGC

dataset is 0.6.

Fig. 3.2 shows samples of the outputs of our framework and H.264 and H.265 on the UGC

dataset. In the first example of the lecturer 3.2a, the text on the laptop is sharper and more clear

using our method. In the second example 3.2b, the edge of the shapes is more quantized in H.264

and more blurry in H.265. Also, in the third example of a television clip 3.2c, the face of the person

is less quantized, sharper, and more clear using our method.

The average PSNR, VMAF, and SSIM of the proposed model on the UVG dataset are 43.9,97.4,

and 0.971, respectively, which outperforms H.264 and H.265 as can be seen in Table 3.2. The
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(a)

(b)

(c)

Figure 3.2: Samples of the proposed method, H.264, and H.265 outputs. The data used here are
from the UGC dataset. (a) The text on the laptop is sharper and more clear using our method. (b)
The edge of the shapes is more quantized in H.264 and more blurry in H.265. (c) The face of the
person is less quantized, sharper, and more clear using our method.
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(a)

(b)

Figure 3.3: Samples of the proposed method, H.264, and H.265 outputs. The data used here are
from the UVG dataset. (a) The output is sharper and more clear using our method than H.264
and H.265. (b) The numbers are more quantized and more blurry in H.264 and H.265 than in our
method.
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Table 3.1: Performance comparison of the methods applied to the YouTube UGC dataset. The
proposed method outperforms others in terms of PSNR, VMAF, and SSIM.

Quality Metric PSNR VMAF SSIM
Proposed 45.5 98.9 0.982
H.264 43.9 97.5 0.975
H.265 40.6 93.4 0.96

Table 3.2: Performance comparison of the methods applied to the UVG dataset. The proposed
method outperforms others in terms of PSNR, VMAF, and SSIM.

Quality Metric PSNR VMAF SSIM
Proposed 43.9 97.4 0.971
H.264 43.1 94.5 0.96
H.265 41.5 91.5 0.955

average bit per pixel (BPP) for all test samples in the UVG dataset is 0.4.

Fig. 3.3 shows samples of the outputs of our framework and H.264 and H.265 on the UVG

dataset. In the first example of the honey bee among flowers 3.3a, the output of H.264 is more

quantized and the honey bee in the output of H.265 is more blurry while using our method it is more

clear and sharper. In the second example 3.3b, the numbers are more quantized and more blurry in

H.264 and H.265 than in our method.

3.4 Conclusion

A video compression method based on INN has been introduced. First, a feature enhancement

method is used for enhancing the nonlinear representation. Then, INN is used to decrease the

information loss problem. Compared with traditional auto-encoders which lose information in the

encoding process, INN can persevere the information and leads to reconstructed videos with more

clear details without making the network more complex. To solve the problem of unstable training

in INNs, attention-squeeze module is used which makes the feature dimension adjustment stable

and tractable.
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The results of the method are reported and compared numerically and visually. Evaluations of

the proposed method on two standard public datasets show better quality in terms of PSNR, VMAF,

and SSIM as compared to the recognized methods such as H.264 and H.265. The visual comparison

of the output of the proposed method shows that it has more clear details than the outputs of H.264

and H.265.
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Chapter 4

Using ML to Find the Semantic Region

of Interest

One of the most challenging problems in computer vision and image processing is the detec-

tion of the semantic regions of interest (SRoI). In this chapter, we propose a method using OpenAI’s

CLIP model to find SRoI by performing semantic search for objects in the image which are detected

by an object detection model called Generic RoI Extractor (GRoIE). Finding the semantic regions

of interest can be used in different image processing tasks such as image and video compression,

enhancement, and reformatting. By knowing the semantic region of interest within images, we can

improve the visual quality of images by compressing the more important parts with higher quality

and the less important parts, such as the background, with a lower quality. This operation can be

achieved without changing the overall compression ratio and the Peak Signal-to-noise Ratio (PSNR)

quality metric. Finding the SRoI can make the processes of image enhancement and color correc-

tion more accurate by focusing only on the important parts. Moreover, for the image reformatting

process, the important parts of the image may be lost. But by using the SRoI, we can reformat the

image in a better way by keeping the most important regions in the frame.
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Figure 4.1: Overview of Using Semantic RoI for Image Processing

4.1 Introduction

A recent technique in image processing is finding the Semantic Regions of Interest (SRoI) to

help improve the apparent quality of images and videos for various operations. The SRoI contain the

objects in the image that are the most important to the overall scene. It can be a person, an object, or

a part of a nature scene. Tactics using computer vision techniques to locate regions of interest have

existed, such as services provided by Microsoft Azure to generate smart cropped thumbnails Farley,

Buck, Sharkey, Christiani, and Kennedy (2022). In computer vision academic publications, saliency

maps have been generated using bottom-up visual attention based computational models to identify

regions of interest in images to extract thumbnails Amrutha, Shylaja, Natarajan, and Murthy (2009).

A novel method to find semantically interesting regions of images is proposed in this paper

using OpenAI’s CLIP Radford et al. (2021) model, which is explained in the following section.

An overview of the system is depicted in Fig. 4.1. As shown in Fig. 4.1, the input is passed to

an object detection module; then CLIP is applied to find the SRoI by running a semantic search

among objects and generate a saliency map; finally, the output is generated based on the saliency

map and image processing application. To the best of our knowledge, there is no prior work on

using OpenAI’s CLIP model to perform semantic search just on images, instead of image and text

pairs, and generate a saliency map.

The advantages of this method are as follows:
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• The CLIP model is trained for different categories of concepts, so the importance map is not

biased toward specific objects (e.g., people).

• No additional training is needed.

The second section of this chapter is dedicated to the applications of our method to:

• Image/video compression,

• Image/video enhancement, and

• Image/video reformatting

There are several papers on methods for finding RoI. One work proposed a convolutional neural

network (CNN) to find RoI and compress the images according to the found regions Prakash, Moran,

Garber, DiLillo, and Storer (2017). In that method, a feature map is generated by summing the top

features learned separately for each set of object categories. However, this model does not work

well for all types of images and is biased to the classes which were learned. There are many

object detection models like Fast R-CNN Girshick (2015), Mask R-CNN He, Gkioxari, Dollár, and

Girshick (2020), and Cascade R-CNN Cai and Vasconcelos (2021), which can detect a great variety

of objects very well, but they cannot provide the semantic region of interest.

The images of this chapter which are used to show the results are gathered from public internet.

4.2 Approach

In Fig. 4.2, the architecture of our method is shown in detail. In the first module dedicated to

object detection, GRoIE Rossi, Karimi, and Prati (2021) model is used. The next module is the

CLIP model, which provides object embeddings and image embedding using an image encoder.

Then it applies cosine similarity Salton and Buckley (1988) to compare the similarity of the objects

to the whole image and to generate an importance map. In the last step, this saliency map can be

used for different image processing applications such as image/video compression, enhancement,

and reformatting.
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Figure 4.2: Component Diagram of the proposed method for finding the semantic region of interest

4.2.1 Object detection using GRoIE

The first step of our method is to find all the known and unknown objects in the image using

an object detection model and create object masks. For this task, we selected GRoIE Rossi et al.

(2021) which performs better than other object detection models. The advantage of this model is

that it performs well, compared to older models like Mask R-CNN, in detection of unknown objects

like abstract sculptures. Fig. 4.3 shows an example of an abstract sculpture which was successfully

detected by GRoIE.

As can be observed in Fig. 4.3, although this kind of sculpture is unseen in all data sets categories

used for training, GRoIE completely detects it as an object.

4.2.2 Image embedding using OpenAI CLIP

The Contrastive Language-Image Pre-training (CLIP) model was developed in 2021 to perform

semantic search on texts and images. It has a text encoder and image encoder to encode images

and texts into a 512-dimensional vector embedding. The model was trained on 400 million (image,

text) pairs including different categories and concepts. The pretrained model is also available. To
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(a) (b)

Figure 4.3: An example of detecting unknown abstract object by GRoIE.

Figure 4.4: Image embedding using Clip model diagram

compare the similarity between image and text embeddings, the cosine similarity is applied, and the

highest cosine similarity represents the most related match.

The second step of our method is generating an importance map by comparing each object

mask to the whole image and calculating the weighted score of each mask using OpenAI CLIP

model. Fig. 4.4 shows this process. Each object mask embedding is generated through CLIP image

encoder and is compared to the image embedding. The cosine similarities which are probabilities

between 0 and 1 are generated and the object masks are sorted by greyscale color (white is the most

important) to produce the saliency maps. If we want to summarize the image in a few words, the

similarities show which of the objects are more similar to the concept of image. Because of its

ability to semantic search, CLIP can find the similarity and best match within the image. As an
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(a) (b)

(c) (d)

Figure 4.5: Example of Semantic Region of Interest

example, in Fig. 4.5, as the concept of image is about giving a talk, the main speaker (Joe Biden)

is more important, however, both Justin Trudeau and Joe Biden are equally famous. Fig. 4.5 and

Fig. 4.6 demonstrate some sample images in which GRoIE finds their objects and CLIP generates

their semantic saliency maps.

As can be seen in Fig. 4.5, Joe Biden is giving a talk and he is the most interesting person in the

whole image as indicated by a white mask in the saliency map. In the same image, Justin Trudeau

and the other person are important but less than the main speaker, so they have a grey color in the

generated saliency map. In Fig. 4.6, there are some motorcycles that are more important than the

background and trees as shown in the saliency map. Two motorcyclists are closer to the camera and

so they are brighter on the map.

4.3 Applications and Results

In this section, some image processing applications of our method are elaborated.
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(a) (b)

(c) (d)

Figure 4.6: Example of Semantic Region of Interest

4.3.1 Image and video compression

One way to improve the visual quality of compression methods without changing the compres-

sion ratio and PSNR is to encode the SRoI parts with a higher bitrate and the rest of the image with

a lower bitrate. First, we apply our method to the images to find SRoI. Then we apply the improved

JPEG compression Wallace (1992), Prakash et al. (2017) method. First, the number of quality levels

is defined as K. The lowest quality level is Qlow and the highest quality level is Qhigh which can

be in the range of (1, 100). In our experiment, we defined 9 quality levels from 10 to 90, which are

achieved according to the following equation:

qi = Qlow + i ∗
(Qhigh −Qlow)

k
(16)

Therefore, the average quality is 50. The generated saliency map based on GRoIE-CLIP model

is a greyscale image having pixel values in the range of (0, 255). We normalize the saliency map to

the range of (0, 1) and then the level of quality (ql) which should be used for each part of the image

is obtained by:

Comparing an image compressed by standard JPEG with a quality value of 50 with the same

image compressed using improved JPEG with average quality of 50 reveals that the visual quality
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Algorithm 1
1: for l = 0 → K do
2: if l

K ≤ saliencyvalue ≤ l+1
K then

3: level = l
4: end if
5: end for
6: ql = quality[level]

(a) Original image (b) Our method (c) Standard JPEG

Figure 4.7: A sample image and detail (a) which is compressed using our method (b) and standard
JPEG (c)

is enhanced. At the same time, the compression ratio and PSNR remain roughly the same. Fig. 4.7

shows a compressed sample image using our proposed method and the standard JPEG.

As can be observed in Fig. 4.7, in our method, the quality of the image is better in the more

interesting area and is lower in the background while the compression ratio, 70:1, is the same in

both images. The PSNR metrics for using our method and standard JPEG compression are 33.325

and 34.122, respectively. As these measures show, the goal is not to use traditional compression

ratio and quality measured over the whole image to judge the quality, but to perceptually enhance

the quality in regions where our natural attention will be, at the cost of quality in other visually less

important regions.
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4.3.2 Image and video enhancement

The contrast amplitude of an image can be shown using a Bezier histogram which indicates

the distribution of luma values. We can enhance the contrast of the image or video by modifying

its Bezier curve. There are several known methods for contrast enhancement by modification of

the Bezier curve F.-C. Cheng and Huang (2013), Subramani, Bhandari, and Veluchamy (2021).

More traditional image processing tactics for image and video enhancements utilize histogram-

based techniques such as the global Histogram Equalization Umbaugh (1997), or the more locally

adaptive histogram equalization techniques such as CLAHE Pizer et al. (1987).

In this chapter, we focus on the SRoI to enhance the contrast of the image. In this method,

the average luminance value of the SRoI is calculated and the lookup table is changed accordingly.

Therefore, the image contrast is adjusted to clearly show the SRoI. Fig. 4.8 shows a sample of

an enhanced image using the contrast correction scheme focused on the SRoI. In this sample, the

woman who plays violin is the SRoI and her hair color and dress color are improved (Fig. 4.8b)

with respect to the original (Fig. 4.8a) image. Fig. 4.9 shows the lookup table which is generated

according to the SRoI and used to enhance the image in Fig. 4.8. Techniques such as this will be

familiar to those in the video and film color correction and visual effects world, where processing

masks are used apply filters and localized color corrections.

4.3.3 Image and video reformatting

When we try to use an image or video in landscape format in some social media which only

accept portrait format, some parts of the image/video are cropped. Usually, the center remains

but we need to keep the other parts of the image inside the frame. Using the SRoI provides this

advantage of focusing on interesting parts. To reformat the image using the SRoI, we check it to

see which frame has the most semantically important part and keep that frame in the portrait mode.

To keep the video smooth over time and remove the abrupt changes of the scene, we use an average

sliding window offset of 61 video frames for each frame (30 frames before and 30 frames after the

specific frame).

Fig. 4.10 shows the difference of selected offsets according to the SRoI before smoothing and
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(a)

(b)

Figure 4.8: A sample of an enhanced image using a Bezier curve modification scheme focused on
the SRoI

Figure 4.9: Lookup-table used for SRoI image enhancement
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(a)

(b)

Figure 4.10: Reformatting offsets before (a) and after smoothing (b).
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Figure 4.11: The most interesting object in the extracted saliency map for reformatting frames

after smoothing; you can see that the pulses turned into a nice smooth curve. Fig. 4.11 shows the

extracted saliency map which indicates the most interesting object for reformatting frame and (the

person playing frisbee). Some samples of video frames which are reformatted using our method

and regular centering method are shown in Fig. 4.12.

As can be seen in Fig. 4.12, in the regular centering method the person who plays frisbee (SRoI)

is out of the frame in some sections of the video while using our method, he remains inside the

frame in all frames of the video.

4.4 Conclusion

We have presented a method for extracting the SRoI within images/videos. The method employs

GRoIE object detection to extract objects, Open AI’s CLIP model to encode objects to embeddings,

perform semantic search by comparing the objects’ similarity to the whole image using cosine

similarity, and find the most important objects within the context of the image. The proposed method

does not need any training, and pretrained models are available.
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Figure 4.12: Samples of video frames which are reformatted using our method (bottom) and regular
centering method (top)

We have also presented three applications that use the new method with example results. Know-

ing the SRoI, we can compress the image/video with a better visual quality while the compression

ratio remains the same. This is done by compressing important parts with higher quality and the less

important parts with lower quality. As another application of the proposed method, we can focus

on the SRoI in image color correction and reformatting processes. In reformatting the images from

landscape to portrait, using the SRoI always keeps the interesting part of the image in the cropped

image.
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Chapter 5

Conclusion

The research in this thesis concentrated on video compression and finding semantic regions of

interest in images/videos using deep learning methods.

Initially, a video compression method based on RNN has been introduced which includes CNN,

generalized divisive normalization method, and RNN layers and LSTM cells in encoder and decoder

parts. The proposed RNN-based method has less complexity compared to the recent CNN-based

methods which are very deeper. Using binarizer for quantization and using LSTM cells in en-

coder/decoder parts for reducing useless information improved the performance of the proposed

model. Our experiments show that the proposed method outperforms the recognized methods such

as H.264 and H.265 in terms of PSNR, VMAF, and SSIM.

In another work, a video compression method based on INN has been introduced which uses

a feature enhancement method for enhancing the nonlinear representation, INN to decrease the

information loss problem, and attention-squeeze module to stabilize feature dimension adjustment

in the training process. INN can persevere the information and helps to have reconstructed videos

with more clear details without making the network more complex compared to traditional auto-

encoders. Experimental results of the proposed method on two standard public datasets show better

quality in terms of PSNR, VMAF, and SSIM as compared to the recognized methods such as H.264

and H.265.

In the last research work, a method for extracting the SRoI within images/videos is proposed and

three applications of it are presented. GroIE object detection model is used to extract the objects
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and Open AI’s CLIP model is used to find the most important objects within the context of the

image by encoding objects to embeddings and performing semantic search by calculating cosine

similarity between objects and the whole image. The pre-trained models are available and so the

proposed method does not need any training. By finding SRoI, image/video can be compressed with

better visual quality with the same compression ratio. Also, we can perform better color correction

by focusing on the SRoI in the image. Furthermore, to reformat images/videos from landscape to

portrait, we can use the SRoI to keep the interesting part of the image in the cropped frame. Another

image processing application that can be considered as future work is selective blurring to keep the

SRoI objects sharp but blurring the less important objects and the background imagery.
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Appendix A

List of publications

• Z. Montajabi, V. K. Ghassab and N. Bouguila, ”Invertible Neural Network-Based Video Com-

pression”, Submitted for 2023 International Conference on Pattern Recognition Applications

and Methods (ICPRAM).

• Z. Montajabi, V. K. Ghassab and N. Bouguila, ”Recurrent Neural Network-Based Video Com-

pression”, Accepted in 2022 IEEE International Conference on Machine Learning and Appli-

cations (ICMLA).

• Z. Montajabi, R. Gonsalves and N. Bouguila, ”Using ML to Find the Semantic Region of

Interest”, Accepted in 2022 SMPTE Media Technology Summit.
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Ballé, J., Laparra, V., & Simoncelli, E. P. (2017). End-to-end optimized image compression. ArXiv,

abs/1611.01704.
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