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Abstract

Stationary distributions for asymmetrical autocatalytic
reaction networks with discreteness-induced transitions (DITs)

by
Cameron Gallinger

The phenomenon of discreteness-induced transitions is highly stochas-
tic dependent dynamics observed in a family of autocatalytic chemical
reaction networks including the acclaimed Togashi Kaneko model. These
reaction networks describe the behaviour of several different species inter-
acting with each other, and the counts of species concentrate in different
extreme possible values, occasionally switching between them. This phe-
nomenon is only observed under some regimes of rate parameters in the
network, where stochastic effects of small counts of species takes effect.

The dynamics for networks in this family is ergodic with a unique
stationary distribution. While an analytic expression for the station-
ary distribution in the special case of symmetric autocatalytic behaviour
was derived by Bibbona, Kim, and Wiuf, not much is known about it in
the general case. Here we provide a candidate distribution for reaction
networks when the autocatalytic rates are different. It was inspired by
a model in population genetics, the Moran model with genic selection,
which shares many similar reaction dynamics to our autocatalytic net-
works. We show that this distribution is stationary when autocatalytic
rates are equal, and that it is close to stationary when they are not equal.
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1 Introduction

Discreteness-induced transitions (DITs) are a phenomenon observed in a family
of chemical reactions which appear when the number of molecules reacting is
sufficiently small that the dynamics of the system are not governed by determin-
istic equations. Togashi and Kaneko investigated these DITs in a small system
of autocatalytic reactions, now known as the Togashi-Kaneko (TK) network.
Togashi and Kaneko showed through simulations of the network that when the
total number of molecules was sufficiently small the process ran contrary to the
deterministic process, when the total number of molecules is high, which is gov-
erned by a system of differential equations. They observed a switching pattern
where the system would switch between two states while spending little time
in between; the states were at extremes where two species of molecules would
hold the vast majority of the total population while the other two species were
nearly extinct, there would then be fast switching events where the two species
which were nearly extinct would hold the majority of the total population and
the other two were nearly extinct. It is also shown that as they increased the
total population, by increasing the volume of the container, the process was
again governed by the deterministic equations.

To analyze the behaviour of these types of reactions when the total popu-
lation is low Bibbona, Kim and Wiuf provide a theoretical analysis of a family
of autocatalytic reactions which includes the acclaimed TK model. Modeling
the system stochastically as continuous time Markov chains, they prove posi-
tive recurrence and ergodicity for reactions in the family, which in turn proves
the existence of a unique stationary distribution for each system. While it is
very difficult to compute a closed form stationary distribution for many of these
systems Bibbona et al show that for symmetric autocatalytic rates and equal
outflow rates the networks have a Dirichlet-multinomial distribution. They also
show that with classical volume scaling under mass-action dynamics, as the vol-
ume is increased to infinity the system converges to the classical deterministic
system.

In this thesis, we will borrow a distribution from a model in population ge-
netics, the Moran model with genic selection. This distribution is stationary
for a system with similar dynamics to the autocatalytic networks, but includes
asymmetrical autocatalyic-like reactions. This distribution can be thought of
as a weighted Dirichlet-multinomial distribution, and when the rates are sym-
metric it reduces to the distribution given by Bibbona et al. The candidate
distribution also shows the presence of DITs when the parameters are in certain
regimes, as the Bibbona-Kim-Wiuf distribution does as well. To determine if
this distribution is in fact stationary for the model, we must show it satisfies the
global balance condition. Unfortunately the balance equation is not identically
zero for this particular distribution, but under certain parameter regimes we
can show that the balance equation is very close to zero. Using classical volume
scaling, we show that the distribution agrees to the classical deterministic model
when the volume is large. We also compare the distribution to exact simulations
of the reaction network using the Gillespie algorithm, and it lines up with the
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simulation results very nicely.
Before we get to the results, we will first discuss the tools needed to get

there. First we will go over continuous time Markov chains, we will use them
to describe how the populations of different species of molecules in chemical
reaction networks evolve and there are several tools which we can use to describe
the long term behaviour of our systems. We then will discuss the field of chemical
reaction networks. We will look at both the deterministic model which describes
the networks when the total population is very large, and the stochastic model
which captures nuances which are washed out in the approximations of the
deterministic model. We then draw a connection between the two models by
looking into classical volume scaling under mass-action dynamics and show that
as the volume gets very large the stochastic model converges to the deterministic
model.

2 Preliminaries

2.1 Continuous time Markov Chains

We will be modelling our chemical reactions as continuous time Markov chains,
so there are a number of theorems we must go over to describe the long term
behaviour of these processes. We will see that under certain conditions, the
stationary or limiting distribution of the process must satisfy certain conditions.
The following definitions and theorems have been adapted from Grimmet and
Stirzaker’s Probability and Random Processes [9] and Norris’ Markov Chains
[14] to align with our notation.

Let X =
{
X(t) : t ≥ 0

}
be a family of Random variables in a countable

state space S indexed by t ∈ [0,∞)

Definition 2.1 (Markov Property). The process X satisfies the Markov property
if

P
(
X(tn) = j|X(t1) = i1, . . . , X(tn−1) = in−1

)
= P

(
X(tn−1) = in−1

)
for all j, i1, . . . , in−1 ∈ I and any increasing sequence t1 < t2 < · · · < tn of
times.

Definition 2.2 (Right-Continuity). Let X =
{
X(t) : t ≥ 0

}
be a random pro-

cess taking values in S a countable set. For a sample path X(·, ω) corresponding
to ω ∈ Ω the sample space, we say X(·, ω) is right-continuous if for t ∈ [0,∞)
there exists an εt,ω > 0 such that

X(t, ω) = X(t+ u, ω) for 0 ≤ u < εt,ω

that is to say X(·, ω) is constant on [t, t+ ε). X is called right-continuous if all
its sample paths are right continuous.

Definition 2.3. The process X is a continuous time Markov chain (CTMC) if
it is right-continuous and satisfies the Markov property.
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Definition 2.4. the transition probability pij(s, t) is defined

pij(s, t) = P
(
X(t) = j|X(s) = i

)
, s ≤ t (2.1)

the CTMC is called homogeneous if pij(s, t) = pij(0, t − s) for all i, j, s ≤ t
and we write pij(t− s) for pij(s, t)

Definition 2.5. Let P (t) be the |S|× |S| matrix with entries pij(t). The family
{P (t) : t ≥ 0} is called the transition semigroup of the CTMC X(t)

Theorem 2.6. The family {P (t) : t ≥> 0} is a stochastic semigroup, i.e. it
satisfies

(i) P (0) = I the |S| × |S| identity matrix

(ii) P (t) is a stochastic matrix, its entries are non-negative and rows sum to
1

(iii) P (t+ s) = P (t)P (s) for s, t ≥ 0 (Chapman-Kolmogorov equations)

Definition 2.7. the infinitesimal generator of X(t) is defined as the one-
sided limit

Q = lim
h→0+

P (h)− I

h
(2.2)

and has the following properties:

(i)
∑

j qij = 0

(ii) qij ≥ 0 for i ̸= j

(iii)
∑

ȷ̸=i qij = −qii

Definition 2.8. the Kolmogorov forward equation is given by P ′(t) =
P (t)Q or

p′ij(t) =
∑
k

pik(t)qkj , ∀i, j ∈ S (2.3)

the Kolmogorov backward equation is given by P ′(t) = QP (t) or

p′ij(t) =
∑
k

qikpkj(t), ∀i, j ∈ S (2.4)

Theorem 2.9. Let S be a countable set and Q a generator on S. Let X be the
Markov chain with generator Q.

1. the transition semigroup
{
P (t) : t ≥ 0

}
of X is the non-negative solution

of the backward equation dP
dt = QP (t), subject to P (0) = I the identity

matrix.

2. the semigroup
{
Pt

}
is also the non-negative solution of the forward equationdP

dt =
P (t)Q.

3



Definition 2.10. X(t) is called irreducible if for any pair of states i, j we
have pij(t) > 0 for some t

Definition 2.11. The state i ∈ S is called recurrent if

P
(
{t ≥ 0 : X(t) = i} is unbounded }

)
= 1 (2.5)

i is called transient if

P
(
{t ≥ 0 : X(t) = i} is unbounded }

)
= 0 (2.6)

Theorem 2.12. the following dichotomy holds:

(i) if
∑

j ̸=i qij = 0 or P
(
inf{t : X(t) = i} < ∞|X(0) = i

)
= 1 then i is

recurrent and
∫∞
0

pii(t)dt = ∞

(ii) if
∑

j ̸=i qij = 0 and P
(
inf{t : X(t) = i} < ∞

)
< 1 then i is transient and∫∞

0
pii(t)dt < ∞

Definition 2.13. if
∑

j ̸=i qij = 0 or the mean time to return to state i is finite,

i.e. E
[
inf{t : X(t) = i}|X(0) = i

]
< ∞ the state i is called positive recurrent

Definition 2.14. The CTMC X(t) is called non-explosive if any of the fol-
lowing conditions hold

(i) S is finite

(ii) supi
∑

j qij < ∞

(iii) X(0) = i where i is a recurrent state

Definition 2.15. Suppose X is irreducible and non-explosive with transition

semigroup
{
P (t) : t ≥ 0

}
. The vector π is a stationary measure for X if

π = πP (t) for t ≥ 0. If
∑

i πi = 1 π is called a stationary distribution.

Theorem 2.16. Let X be an irreducible Markov chain with state space S.

1. if some k ∈ S is positive recurrent, there exists a unique stationary distri-
bution π which satisfies πQ = 0, and all states are positive recurrent.

2. if X is non-explosive and there exists a distribution π satisfying πQ = 0
then: i) all states are positive recurrent, ii) π is stationary, and iii) πk =
1/(mkqk)∀k ∈ I where mk is the expected return time to k

Note: the system of equations Qπ = 0 is known as the Global Balance equa-
tion

Theorem 2.17 (Markov chain limit theorem). Let X be irreducible and non-
explosive.

1. if the stationary distribution π exists, then it is unique and

pij(t) → πj as t → ∞ ∀i, j

2. if there is no stationary distribution, then

pij → 0 as t → ∞

4



2.1.1 Lumpability

Since the Markov Chains we will be working with have inflow and outflow reac-
tions, that is the total population is changing in time as well as the individual
populations of the species, we need a tool to help us separate the internal reac-
tions from the inflow and outflow. We turn to the notion of lumpability which
gives criteria for the construction of a new Markov chain on a partition of the
state space, the following definitions and theorems for lumpability for CTMCs
with countable state spaces are taken from [5]. Let X(t) be a CTMC on a count-
able state space S = {e1, e2, . . . } with semigroup P (t) = {pij(t)}i,j∈S , and gen-
erator Q; without loss of generality we will take S = N. Let E = {E1, E2, . . . }
be some partition on N, we define a function

h : N → N
h(i) = j ⇐⇒ i ∈ Ej

(2.7)

we define X̄(t) = h
(
X(t)

)
to be the lumped process with respect to the

partition E

Definition 2.18. let v = (v1, v2, . . . ) be an initial probability vector for the
CTMC X(t), we say

(i) X(t) is lumpable with respect to E and v if X̄(t) is a CTMC given X(t)
has initial probability vector v

(ii) X(t) is strongly lumpable with respect to E if it is lumpable for any
initial probability vector v

(iii) X(t) is weakly lumpable with respect to E if it is lumpable for at least
one initial probability vector v

Suppose X(t) is weakly lumpable with respect to v, let p̂ij be the transition

probabilities for the lumped chain X̄(t) and P̂ (t) = [p̂ij ]) the semigroup. For
all s ≥ 0

p̂ij(t) =Pv(X(t+ s) ∈ Ej |X(s) ∈ Ei)

=

∑
k∈Ei

Pv(X(s) = k)P(X(t+ s) ∈ Ej |X(s) = k)∑
k∈Ei

Pv(X(s) = k)

=

∑
k∈Ei

Pv(X(s) = k)P(X(t) ∈ Ej |X(0) = k)∑
k∈Ei

Pv(X(s) = k)

where in the last line we use the fact that X(t) is time homogeneous. Letting
s → ∞ we have

p̂ij(t) =
∑
k∈Ei

π
(i)
k

∑
l∈Ej

pkl(t) (2.8)

where
π
(i)
k =

πk∑
j∈Ei

πj
1k∈Ei

5



Theorem 2.19. The CTMC X(t) on the state space S = {e1, e2, ...} is strongly
lumpable on the partition E = {E1, E2, . . . } provided

(i) X(t) is irreducible, positive recurrent with stationary distribution π

(ii) every Ei is finite

(iii) ∀Ei, Ej ∈ E and ∀i, i′ ∈ Ei∑
j∈Ej

qij =
∑
j∈Ej

qi′j = q̄EiEj

Where q̄EiEj
are the transition rates of the lumped chain X̄(t).

Since X̄(s) = Ei ⇐⇒ X(s) ∈ Ei

P(X̄(t) = j|X(s) = i, X̄(s) = Ei) = P(X̄(t) = j|X̄(s) = Ei) (2.9)

That is, X̄(t) is independent of X(s) given X̄(s). [6]

2.2 Chemical reaction networks (CRNs)

The following definitions and theorems on CRNs have been compiled from a
survey [2] and textbook [3] by David F. Anderson and Thomas G. Kurtz as well
as some unpublished lecture notes [1] by Anderson.

Definition 2.20. A Chemical reaction network is described by the triple {S, C,R}
where

(i) S = {S1, . . . , Sd} is the set of species

(ii) C is the set of complexes, which consist of linear combinations of the species
with non-negative integer coefficients

(iii) R the set of reactions, a binary relation on the complexes yk

an example of a CRN is given by the graph

A+B → C C +B → B ∅ → A (2.10)

2.2.1 Mass-action kinetics

Consider a system with S = {S1, . . . , Sd} and kth reaction yk → y′k ∈ R. We
denote the rate of the reaction λk(x) where x ∈ Rd

≥0. For two vectors u, v ∈ Rd
≥0

we define

uv =

d∏
i=1

uvi
i (2.11)

with 00 ≡ 1. The kinetics of the reaction yr → y′r is called mass-action
kinetics if for x ∈ Rd

≥0

λr(x) = κrx
yr (2.12)

where κr > 0 is the rate constant for the rth reaction. Some examples of
source complexes and their mass action rates:

6



S1 → ∗ κx1

S1 + S2 → ∗ κx1x2

∅ → * κ

2.2.2 Deterministic Model

Consider a chemical reaction network {S, C,R} where the populations of the
species are so high that a deterministic model accurately captures the dynamics
of their concentrations. Let x(t) ∈ Rn

≥0 be the vector where xi(t) models the
concentration of species Si at time t, then the deterministically modelled system
is given by the Ordinary differential equation (ODE)

ẋ(t) =
∑
r

κrx(t)
yr (y′r − yr) (2.13)

Where yr → y′r is the rth reaction with yr, y
′
r ∈ Zd. For example, the network:

S + I → 2I I → S (2.14)

is governed by the deterministic system of ODEs

ẋS = −κ1xSxI + κ2xI

ẋI = κ1xSxI − κ2xI

(2.15)

We can also represent equation (2.13) in integral form as

x(t) = x(0) +
∑
r

(∫ t

0

κrx(s)
yrds

)
(y′r − yr) (2.16)

2.2.3 Stability of ODEs

Consider a system of ODEs in some domain D ⊂ Rd

ẋ(t) = f((x(t)), x(0) = x0 ∈ D (2.17)

We call a point c a equilibrium point or fixed point if f(c) = 0. At c the
derivative with respect to time is 0, so the system is not changing at c, moreover
if x(0) = c then x(t) = c for all t.

Definition 2.21. The equilibrium point c is said to be locally stable if

∃ε > 0 ∋ x(0) ∈ Bε(c) =⇒ lim
t→∞

x(t) = c (2.18)

The equilibrium point c is said to be globally stable if

lim
t→∞

x(t) = c ∀x(0) ∈ D (2.19)
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A system may have multiple equilibrium points, unless it is globally stable,
in which case there is only one equilibrium point. To prove local or global
stability, we will use Linear stability analysis and Lyapunov functions.

Suppose c is a equilibrium point (i.e. f(c)=0), let us take a Taylor expansion
around c of the right-hand side of (2.17)

ẋ =f(c) +
∂f

∂x

∣∣∣
c
(x− c) + . . .

=
∂f

∂x

∣∣∣
c
(x− c) + . . .

(2.20)

∂f
∂x is interpreted as the Jacobian matrix, J , given by:

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 (2.21)

We now define δx := x − c, taking the derivative with respect to t we have
˙δx = ẋ if δx << 1 then only the first term in our Taylor expansion is significant
as the other terms involve higher powers of a small displacement from our point
of interest c. we have

˙δx(t) = J |x=cδx (2.22)

J |x=c is a constant matrix, so this is just a linear ODE, the solution of which
can be written as a superposition of terms eλit, where λi are eigenvalues of the
Jacobian. Let λi = ai + ibi then our solution is a superposition of terms with

eλit = eait(cos(bit) + i sin(bit)) (2.23)

The imaginary part of the eigenvalue gives an oscillatory component to the
solution, while the real part is part of the exponential term in t. If ai > 0 for
some, i then the trajectories will move away from c.

Theorem 2.22. A equilibrium point c of a system of ODEs as in (2.17) is
called linearly stable if all the eigenvalues of the Jacobian evaluated at x = c
have negative real parts. The equilibrium point in unstable if at least one of the
eigenvalues has a positive real part.

Linear stability tells us how the system behaves near the equilibrium point,
but gives us little information on what happens farther away. For a more global
analysis of stability, we turn to the technique of Lyapunov functions. We con-
sider again the system in (2.17) and assume there is a c which satisfies f(c) = 0.
We also assume the existence of a continuous function V : D → R≥0 which
satisfies

(i) V (x) ≥ 0 ∀x ∈ D

(ii) V (c) = 0 and V (x) > 0 if x ̸= c
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(iii) The sublevel sets of V are bounded. That is, ∀a the set

Va := {z ∈ D : V (z) ≤ a}

is bounded. This implies V (x) → ∞ as |x| → ∞

Theorem 2.23. If for a > 0 we have

∇V (x) · f(x) < 0, ∀x ∈ Va y ̸= c (2.24)

then c is locally stable.
If

∇V (x) · f(x) < 0, ∀x ∈ D x ̸= c (2.25)

and V (x) → ∞ so long as x → ∂D (The boundary or ∞), then we have global
asymptotic stability.

2.2.4 Stochastic Model

When the populations of species in a CRN are not sufficiently large we cannot
utilize the deterministic approach, instead we turn to a stochastic approach
using continuous time Markov chains. We consider a CRN {S, C,R} with d
species S = {S1, . . . , Sd}, state of the network is given by X(t) ∈ Zd

≥0, a vector
giving counts of each of the species. X(t) is a CTMC with transitions determined
by the reactions. For the reaction, yr → y′r, we assume an intensity function
λr(x) and define ζr = (y′r − yr). The transition rates are given by:

qx,y =
∑

r∈R,ζr=y−x

λr(x) (2.26)

i.e. the transition rates are the sum of all the reaction rates whose reaction
vectors take you from state x to state y. The Kolmogorov Forward equation
P ′(t) = P (t)Q, P (0) = I can be written component wise

p′ij(t) =
∑
k

qkjpik(t), pij(0) = δij (2.27)

p′ij(t) =
∑
k,k ̸=j

qkjpik(t)−
(∑

i

qji
)
pij(t), pij(0) = δij (2.28)

p′ij(t) =
∑
k,k ̸=j

∑
r∈R,ζr=j−k

λr(k)pik(t)−
(∑

r∈R
λr(j)

)
pij(t), pij(0) = δij (2.29)

p′ij(t) =
∑
r∈R

λr(j − ζr)pi,(j−ζr)(t)−
(∑

r∈R
λr(j)

)
pij(t), pij(0) = δij (2.30)

This equation is called the master equation, the first term sums all reactions
moving into j and the second term collects all the terms leaving j. Here pij is
the transition probability function, defined as pij(t) := P(X(t + s)|X(s) = i).
Recalling that ifX(t) is non-explosive and there exists a distribution π satisfying
πQ = 0 then π is stationary, also if π exists then pij(t) → πj as t → ∞.
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Definition 2.24. the intensity function λr satisfies stochastic mass-action ki-
netics if there is a rate constant κr such that for x ∈ Zd

λr(x) = κr

d∏
i=1

xi!

(xi − yi)!
Ixi≥yi

and the system is said to satisfy mass-action kinetics if each reaction does.

Denote the filtration giving all the information up to time t as Ft. we have

P (X(t+ h) =X(t)|Ft) = 1−
∑
r

λr

(
X(t)

)
h+ o(h) (2.31)

P (X(t+ h) =X(t) + ζr|Ft) =
∑

yk→y′
k,ζk=ζr

λr

(
X(t)

)
h+ o(h) (2.32)

(2.33)

in the case where the reaction vectors ζr are unique, we have

P (X(t+ h) = X(t) + ζr|Ft) = λr

(
X(t)

)
h+ o(h)

We define Nr(t) to be the number of times the rth reaction has occurred by
time t, and can write:

X(t) = X(0) +
∑
r∈R

Nr(t)ζr (2.34)

P (Nr(t+ h)−Nr(t)|Ft) = 1− λr

(
X(t)

)
h+ o(h) (2.35)

P (Nr(t+ h)−Nr(t)|Ft) = 1−
∑

yk→y′
k,ζk=ζr

λr

(
X(t)

)
h+ o(h) (2.36)

(2.37)

The counting process Nr(t) can be modelled via independent Poisson processes.
We define {Y1, . . . , YR} as independent unit-rate Poisson processes. If we let X
be the solution of the equation:

X(t) = X(0) +
∑
r

Nr(t)ζr (2.38)

with

Nr(t) = Yr

(∫ t

0

λr(X(s))ds

)
(2.39)

then X(t) satisfies (2.31) and (2.35), that is the solution to the stochastic equa-
tion

X(t) = X(0) +
∑
r

Yr

(∫ t

0

λr(X(s))ds

)
ζr (2.40)

Is a realization of the stochastic CRN. Note also the similarity to equation (2.16)
in the deterministic model. This representation was developed by Thomas G.
Kurtz in [2, 11].
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2.2.5 Scaling of rate constants

To connect the stochastic and deterministic models, we look at how they each
represent the abundance of each molecule. In the stochastic model each species
is represented by the number of its molecules, in the deterministic model the
species are represented by their concentrations i.e. number of molecules per
litre. To draw a connection we must take into account the volume, we do so
by introducing a scaling parameter V which is proportional to the volume of
the system. V typically is defined as the volume times Avogadro’s number
(6.022 × 1023), in any case we will simply refer to the parameter V as the
volume and think of it as having some proportionality to the volume of the
system. Let X(t) be our process which gives the counts of the species, we define
X̄(t) := X(t)/V , which gives the concentration of the different species. The
stochastic equation in (2.40) for our scaled process is given as:

X̄(t) = X̄(0) +
∑
r

1

V
Yr

(∫ t

0

λr(V X̄(s))ds

)
ζr (2.41)

under classical scaling the rate constants scale as such

κr = V −(
∑

i(yr)i−1)κ′
r (2.42)

i.e. κr = V −(# of reactants−1)κ′
r to interpret λr(V X̄(s)) we can look at some

example reactions: for the reaction

∅ → ∗

we have κr = V κ′
r so λr(V x) = V κ′

r if we take λr(x) = κ′
r then λr(V X̄(s)) =

V λr(X̄(s)).
For the reaction

Si → ∗

we have κr = κ′
r and again λr(V X̄(s)) = V λr(X̄(s)). For the reaction

S1 + S2 → ∗

We have κr = κ′
r/V and λr(V x) = κ′

r/V (V x1)(V x2) = V λ(x) again λr(V X̄(s)) =
V λr(X̄(s)). For the reaction

2S1 → ∗

we have κr = κ′
r/V and λr(V x) = κ′

r/V (V x1)(V x1− 1) = V κ′
rx

2
1(1− 1/V ) this

time λr(V X̄(s)) ̸= V λr(X̄(s)), but as V → ∞ λr(V X̄(s)) ≈ V λr(X̄(s))
In general

λr(V X̄(s)) ≈ V λr(X̄(s)) (2.43)

Theorem 2.25. Let X̄(t) be the volume scaled process as defined above, and

x(t) be the solution of the system of ODEs in 2.13. Let T > 0. If X̄(0)
a.s.−−→ x(0)

as V → ∞, then
sup
t≤T

|X̄(t)− x(t)| a.s.−−→ 0 as V → ∞ (2.44)
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Proof. because there is a conserved quantity, there is some M > 0 such that

sup
t

≤ T |λr(X̄(t)| ≤ M

X̄(t)− x(t) =X̄(0)− x(0) +
∑
r

1

V

[
Yr

(
V

∫ t

0

λr((̄X)(s)ds

)
− V

∫ t

0

λr(X̄(s))ds

]
ζr

+
∑
r

[∫ t

0

λr(X̄(s)ds−
∫ t

0

λr(x(s))ds

]
ζr

(2.45)

where
∑

r

∫ t

0
λr(X̄(s)dsζr has been added and subtracted. We have∫ t

0

λr(X̄(s))ds ≤ MT t ≤ T (2.46)

by (2.43) and using theorem A.1 for a unit rate Poisson process Y with proba-
bility one we have

lim
n→∞

sup
u≤u0

∣∣∣∣∣Y (nu)

n
− u

∣∣∣∣∣ (2.47)

lim
V→∞

sup
t≤

∣∣∣∣∣∑
r

1

V

[
Yr

(
V

∫ t

0

λr((̄X)(s)ds

)
− V

∫ t

0

λr(X̄(s))ds

]
ζr

∣∣∣∣∣ = 0 (2.48)

using our approximation λr(X̄(s)) ≈ V λr(X̄(s)) and the fact the λr are Lips-
chitz there exists a C > 0 such that for every u ≤ T

sup
t≤u

∣∣∣∣∣∑
r

[∫ t

0

λr(X̄(s)ds−
∫ t

0

λr(x(s))ds

]
ζr

∣∣∣∣∣ ≤C sup
t≤u

∫ t

0

|X̄(s)− x(s)|ds

≤
∫ u

0

sup
r≤s

|X̄(r)− x(r)|ds

for u ∈ [0, T ] we define
g(u) = sup

r≤u
|X̄(r)− x(r)| (2.49)

applying g to equation (2.45) we have

g(u) =≤ |X̄(0)− x(0)|+ C

∫ t

0

g(s)ds+ εV (2.50)

Using Gronwall’s inequality (see Lemma A.8 [3]) we have

g(u) ≤ εV eC + |X̄(0)− x(0)| (2.51)

Taking the limit as V → ∞ completes the proof.
We have connected the stochastic model to the deterministic model by scal-

ing our stochastic process (CTMC) by the volume, and have shown under the
limit as V → ∞ the volume scaled process converges to the solution of the
system of ODEs.
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2.2.6 Positive recurrence and the Foster-Lyapunov criterion

Recall to prove the existence of a stationary distribution we must prove positive
recurrence of the CTMC, we turn to the Foster-Lyanpunov criterion to aid us
in proving positive recurrence for our chemical reaction networks.

Definition 2.26. the infinitesimal generator for a Markov process is the
operator Q acting on functions f : Zd

≥0 → R defined as:

Qf(x) = lim
h→0

Ex

[
f(X(h))

]
− f(x)

h
(2.52)

note that for countable state spaces this operator is the same as definition 2.7

for our models we have

Ex

[
f(X(h))

]
=

(∑
r∈R

f(x+ ζr)Px(X(h) = x+ ζr)

)
+ f(x)Px(X(h) = x) + o(h)

=

(∑
r∈R

f(x+ ζr)λr(x)h+ o(h)

)
+ f(x)

(
1−

∑
r∈R

λr(x)h+ o(h)

)
+ o(h)

=
∑
r∈R

λr(x)(f(x+ ζr)− f(x))h+ f(x) + o(h)

and
Qf(x) =

∑
r∈R

λr(x)(f(x+ ζr)− f(x)) (2.53)

the following theorem from [12] as been slightly modified for countably infinite
state spaces by Bibbona et al in [6].

Theorem 2.27 (Foster-Lyapunov Criterion). let X(t) CTMC on a countable
state space S. X(t) is non-explosive, and positive recurrent if there exists a
norm-like (Lyapunov) function V on S and positive constants C,D > 0 such
that

QV (x) ≤ −CV (x) +D, ∀x ∈ S (2.54)

Moreover, X(t) admits a unique stationary distribution π and ∃B > 0 and
β ∈ (0, 1) such that

sup
A

|P t(x,A)− π(A)| ≤ BV (x)βt, ∀x ∈ S (2.55)

3 Models

3.1 Togashi-Kaneko Model

Togashi and Kaneko observed the appearance of unusual reaction dynamics in
a small autocatalytic system when the total number of reacting molecules was
made small. The Togashi-Kaneko (TK) model consists of 4 types of molecules
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in a well stirred container with a reservoir that allows molecules to diffuse in
and out of the container. The network is given graphically as

A1 +A2
κ−→ 2A2 A2 +A3

κ−→ 2A3 A3 +A4
κ−→ 2A4 A4 +A1

κ−→ 2A1

∅ λ−⇀↽−
δ
Ai

(3.1)

Where κ is the rate of the autocatalytic reactions and, λ and δ are the dif-
fusion into and out of the container. Classical volume scaling is utilized with
Ai = Ni/V where Ni is the number of i molecules and V is the volume of the
container. The state of the system is given by the tuple a = (a1, a2, a3, a4) and
the transition rates are

qa,a−ei+ei+1
= κaiai+1, i = 1, 2, 3 qa,a−e4+e1 = κa4a1

qa,a+ei = λ qa,a−ei = δai

under classical scaling, the rate constants are given by:

κ =
κ′

V
δ = δ′ λ = λ′V

In [16] the authors linearly scale time to let κ′ = 1, and they set δ′ = λ′ = D.
As discussed in section 2.2.2 when the populations of species are large enough
the evolution of their concentrations can be described by a system of ODEs

dai
dt

= κai−1ai − κaiai+1 +Dsi −Dai (3.2)

where si is the concentration of each molecule in the reservoir, the authors
take si = s for each species. The above system has a unique attractor at the
equilibrium point ai = s , and the Jacobian evaluated at the equilibrium point
has a complex eigenvalue. The complex eigenvalue leads to oscillations around
the equilibrium point with a frequency ωp = κs

π . The authors then replace the
deterministic reaction model with the Langevin equation by adding a noise term
to (3.2), the concentrations again fluctuate around the equilibrium point with
the dynamics of ωp. As the strength of the noise term was increased, no decrease
in the total number of molecules was observed. Through direct simulation of
the reaction model it was observed that when D and V are large enough the
results agreed with the Langevin equation with small fluctuations around its
equilibrium, However as V was made small enough a behaviour not captured
by the ODE approach was observed. As V decreased the authors noted two
states, the first where N1 and N3 were large and N2, N4 ≈ 0 and the second
where N2 and N4 were large and N1, N3 ≈ 0. The system would spend most of
its time in these two states with rapid switches between the two, these switches
were named discreetness induced transitions (DITs). The authors note that the
switching states appear when DV < 1, but if V gets too small (e.g. V < 4) the
system is destabilized by fluctuations. Although they only presented in their
paper the case where the inflow rates, autocatalytic rates and diffusion rates
were identical for all species, the authors confirm that DITs appear even when
these rates are not identical.
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3.2 Bibbona-Kim-Wiuf Model

Bibbona, Kim and Wiuf offer a theoretical analysis of the TK model as well
as other similar autocatalytic reaction networks which exhibit DITs in [6]. The
authors describe a general system as a continuous time Markov chain (CTMC)
and prove the existence of stationary distribution. Their general d-dimensional
network is given as:

Ai +Aj
κij−−→ 2Aj ∅ λi−⇀↽−

δi
Ai i, j = 1, 2, . . . , d (3.3)

With associated Markov chain [X(t)]n≥0 on the state space E = {a = (a1, . . . , ad) ∈
Nd}. For κij ≥ 0, λi > 0, δi > 0 the authors prove that the CTMC associated
with the system (3.3) is positive recurrent for any d, a unique stationary dis-
tribution exists, all moments are finite and convergence to the stationary dis-
tribution is exponentially fast (see Theorem 4.1 in [6]). While the existence of
a stationary distribution is proven, computation of an analytic expression for
the stationary distribution is difficult and an expression for the general system
remains unsolved. Using the notion of lumpability (section (2.2) [6]) the state

space can be partitioned into subsets En = {a ∈ Nd|
∑d

i=1 = n}. If we let
δi = δ for every i the lumped process X̄(t) is a CTMC on En with associated
transition rates

qn,n+1 =

d∑
i=1

λi qn,n−1 = nδ (3.4)

X̄(t) is a immigration-death process on N and admits a Poisson stationary
distribution given by

ν(n) =
µn

n!
e−µ, µ =

∑d
i=1 λi

δ
(3.5)

we can now condition the stationary distribution Π on the probability ν(n) of
X̄(t) being in state n and write the stationary distribution as:

Π(a) = π(a|n)ν(n) (3.6)

Bibbona et al go on to show that under the assumptions κij = κ > 0,
δi = δ > 0, and λi > 0 π(a|n) is given by a Dirichlet-multinomial distribution
and the unique stationary distribution of the network shown in (3.3) is given by

Π(a) = π(a|n)ν(n)

where π(a|n) =
(
n

a

)
Γ
(∑d

i=1 αi

)
Γ
(
n+

∑d
i=1 αi

) d∏
i=1

Γ
(
ai + αi

)
Γ
(
αi

)
with αi =

δλi

κ
∑d

j=1 λj

(3.7)
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Under classical volume scaling, the parameters are given as

κ =
κ′

V
δ = δ′ λ = λ′V αi =

δ′λ′
i

κ′∑d
j=1 λj

V = α′
iV (3.8)

and the distribution π(a|n) can be written as

π(a|n) =
(
n

a

)
Γ
(
V
∑d

i=1 α
′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) d∏
i=1

Γ
(
ai + V α′

i

)
Γ
(
V αi

) (3.9)

As the volume V gets large the mean vector of Π converges to (λ′
1/δ

′, . . . , λ′
d/δ

′),
which is the equilibrium of the deterministic model, and the covariance matrix
converges to the zero matrix. However, when V → 0 the probability that all
the molecules in the system are of one type approaches 1.

lim
V→0

d∑
i=1

π(ei|n) = lim
V→0

Γ
(
V
∑d

i=1 α
′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) d∑
i=1

Γ
(
ai + V α′

i

)
Γ
(
V αi

)
= lim

V→0

1

V
∑d

i=1 αi

d∑
i=1

V αi = 1

(3.10)

This corner configuration alludes to the presence of DITs where only one
molecule type is present at a time. When the parameters are chosen as they
were in [16] i.e.

κ′
i = 1 δ′ = λ′

i = D, i = 1, ...d (3.11)

the parameters αi are then given as

αi =
DV

d
(3.12)

When DV > d the density π(a|n) is unimodal, when DV = d the density is
uniform, and when DV < d the density becomes d-modal with the bulk of
the mass on the boundaries; figure 1 shows the distribution π(a|n) and the full
distribution Π(a) for the 3 regions of DV.

While the authors proved the existence of a unique stationary distribution
for general systems, they only provide a closed form expression when the au-
tocatalytic rates are the same. As mentioned previously Togashi and Kaneko
noted that DITs occur when these rates are not identical, this coupled with
the fact that the stationary distribution exists for systems with asymmetrical
rates is the motivation for this thesis. To investigate the effect of asymmetric
autocatalytic rates on the system (κij ̸= κ ∀i, j ∈ 1, ..., d), we now move to a
well known model from population genetics.
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Figure 1: The distribution π(a|n) in two dimensions is shown for different values of V while D is
held constant in (a),(c), and (e) and the corresponding plots of the full distribution is shown in
(b),(d) and (f) . In (a) and (b) DV¡1 and the distribution is bimodal with most of the mass on
the boundaries, (c) and (d) shows the critical case when DV=1 and the distribution is uniform, in
(e) and (f) DV=10 and the distribution is unimodal with the mass centred when a1 = a2. The
distribution was plotted in one dimension by letting a2 = n − a1 and the x-axis shows the number
of a1 molecules, n was taken as the mean of ν(n), which is 2V, for the 3 2D plots.

3.3 Moran Model with genic Selection

To aid in finding a stationary distribution for asymmetrical autocatalytic rates,
we look to the Moran model with genic selection, which has similar reaction
dynamics to our family of autocatalytic reactions. Etheridge and Griffiths, in
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[7], provide a closed form stationary distribution for the Moran model with
genic selection. In this Moran model, the population is equilibrium and consists
of n individuals of d different types and ai(t) denotes the number of type i
individuals at time t. An individual of type j gives birth at the rate κj ≥ 0,
and simultaneously an individual is chosen at random to die. This model also
includes mutations where each type i individual changes to type j with a rate
of νpij , where pij are the entries of a transition probability matrix P and ν ≥ 0.
For our purposes, we assume parent-independent mutations, where pij = pj > 0.
The transition rate from a to a− ei + ej is given as

q(a, a− ei + ej) = ai

[
κj

n
aj + νpj

]
(3.13)

The system is represented graphically by:

Ai +Aj
κj−→ 2Aj Ai

vpj−−→ Aj (3.14)

The process
[
A(t)

]
t≥0

has a stationary distribution, π(a) which is obtained by

solving the balance equation:

π(a)q(a, a− ei + ej) = π(a− ei + ej)q(a− ei + ej , a) (3.15)

which gives

π(a) ∝ κa1
1 · · ·κad

d

(
n

a

)
α1(a1) · · ·αd(ad)

|α|(n)
(3.16)

Where
αi =

nνpi
κi

(3.17)

and |α| =
∑d

i=1 αi. The normalizing constant for π(a) is given as the partition
function:

u(α, κ, n) = E
[( d∑

i=1

κiξi

)n]
(3.18)

Where ξ = (ξ1, ξ2, ..., ξd) has a Dirichlet(·, α) distribution. a(n) = a(a+1) · · · (a+
n−1) denotes the rising factorial or Pochhammer function, which can be written
in terms of Gamma functions as a(n) = Γ(a+ n)/Γ(a).

π(a) ∝
d∏

i=1

κai
i

(
n

a

)
Γ(
∑d

i=1 αi)

Γ(
∑d

i=1 αi + n)

d∏
i=1

Γ(αi + ai)

Γ(αi)
(3.19)

In the neutral model when κi = κ for i = 1, . . . , d the partition function be-

comes u(α, κ, n) = κnE
[(∑d

i=1 ξi

)n]
= κn since

∑d
i=1 ξi = 1. The stationary

distribution then reduces to the multinomial Dirichlet distribution.
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π(a) =

(
n

a

)
Γ(
∑d

i=1 αi)

Γ(
∑d

i=1 αi + n)

d∏
i=1

Γ(αi + ai)

Γ(αi)
(3.20)

The distribution in equation (3.20) is exactly the stationary distribution π(a|n)
derived by Bibbona et al in equation 3.7 with αi =

δκi

κ
∑d

j=1 κj
. This observation

suggests that the stationary distribution from [7] is a good candidate for π(a|n)
, as in [6], when the values of κij are not all the same. The proposed distribution
is:

π(a|n) = 1

u(α, κ, n)

[ d∏
i=1

κai
i

](
n

a

)
Γ(
∑d

i=1 αi)

Γ(
∑d

i=1 αi + n)

d∏
i=1

Γ(αi + ai)

Γ(αi)
(3.21)

This does not exactly fit in the general case since the model which we are
borrowing the distribution from requires parent independent mutations or κij =
κj ∀i ∈ 1, . . . , d.

3.4 Effective Model

The Moran model differs from the TKmodel in that it has a fixed population and
lacks the inflow and outflow reactions. Nen Saito and Kunihiko Kaneko discuss
a simplified version of the 2-dimensional TK model in [15], called the effective
model. The model consists of autocatalytic reactions between two populations
of molecules A1 and A2, but instead of inflow and outflow reactions, there are
mutation reactions between the two types of molecules. The system is given as:

A1 +A2
κ1−→ 2A1 A1 +A2

κ2−→ 2A2 A1
v2−⇀↽−
v1

A2 (3.22)

with transition rates:

q(a, a− ei + ej) = aiajκj + aivj (3.23)

We can show that the distribution:

π(a) =
1

u(α, κ, n)
κa1
1 κa2

2

(
n

a

)
Γ(α1 + α2)

Γ(α1 + α2 + n)

Γ(α1 + a1)Γ(α2 + a2)

Γ(α1)Γ(α2)
(3.24)

with αi = vi
κi
, satisfies the global balance equation, and is the unique sta-

tionary distribution for this system.

π(a)q(a, a−e1+e2)+π(a)q(a, a+e1−e2) = π(a−e1+e2)q(a−e1,+e2, a)+π(a+e1−e2)q(a+e1−e2, a)
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dividing both sides by π(a) and looking at the right-hand side, we get

κ2

κ1

a1
a2 + 1

α2 + a2
α1 + a1 − 1

[
(a1 − 1)(a2 + 1)κ1 + (a2 + 1)v1

]κ1

κ2

a2
a1 + 1

α1 + a1
α2 + a2 − 1

[
(a2 − 1)(a1 + 1)κ2 + (a1 + 1)v2

]
=κ2a1

α2 + a2
α1 + a1 − 1

[
(a1 − 1) +

v1
κ1

]
+ κ1a2

α1 + a1
α2 + a2 − 1

[
(a2 − 1) +

v2
κ2

]
=κ2a1

α2 + a2
α1 + a1 − 1

[
(a1 − 1) + α1

]
+ κ1a2

α1 + a1
α2 + a2 − 1

[
(a2 − 1) + α2

]
=κ2a1(α2 + a2) + κ1a2(α1 + a1)

=a1a2κ2 + a1κ2α2 + a1a2κ1 + a2κ1α1

=(a1a2κ2 + a1v2) + (a1a2κ1 + a2v1)

=q(a, a− e1 + e2) + q(a, a+ e1 − e2)

Which is the left-hand side divided by π(a).

4 Results

The main goal of this thesis is to investigate the family of networks (3.3) de-
scribed by Bibbona et al when the autocatalytic rates are asymmetrical. We
will now investigate how well the distribution described in 3.19 fits in with our
model.

4.1 The candidate distribution

The stationary distribution proved by Bibbona et al takes the form

π(a|n) =
(
n

a

)
Γ
(∑d

i=1 αi

)
Γ
(
n+

∑d
i=1 αi

) d∏
i=1

Γ
(
ai + αi

)
Γ
(
αi

)
with αi =

δλi

κ
∑d

j=1 λj

(4.1)

the proposed stationary distribution is given as

π(a|n) = 1

u(α, κ, n)

(
n

a

)[ d∏
i=1

κai
i

]
Γ
(∑d

i=1 αi

)
Γ
(
n+

∑d
i=1 αi

) d∏
i=1

Γ
(
ai + αi

)
Γ
(
αi

) (4.2)

which suggests that

αi =
δλi

κi

∑d
i=1 λi

(4.3)

Comparing these α parameters to the ones from the effective model would make
v1 = δλ1/(λ1 + λ2) which would correspond to a birth of A1 and simultaneous
death of A2 similarly v2 = δλ2/(λ1+λ2) which corresponds to a birth of A2 and
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simultaneous death of A1. If the system was such that only these simultaneous
birth and death events occurred, keeping the total number of molecules fixed,
this distribution would be the unique stationary distribution. To move from the
fixed n case to the family of autocatalytic reactions described in [6] where n is
changing due to the inflow and outflow reactions we must take special care in
how this distribution changes for different values of n, specifically the partition
function which depends on n.

4.2 Partition Function

The partition function is given as

u(α, κ, n) = E
[( d∑

i=1

κiξi

)n]
(4.4)

By the multinomial theorem we can write rewrite the argument as

u(α, κ, n) = E
[ ∑
|l|=n

(
n

l

) d∏
i=1

(κiξi)
li

]

where l =
{
(l1, . . . , ld)

∣∣li ≥ 0
}
li and |l| =

∑d
i=1 li. by the linearity of expecta-

tion, we can write

u(α, κ, n) =
∑
|l|=n

(
n

l

)[ d∏
i=1

κli
i

]
E
[ d∏
i=1

ξlii

]
since ξ = (ξ1, . . . , ξd) ∼ Dir(α) its product moments [4] can be expressed as :

E
[ d∏
i=1

ξlii

]
=

Γ(
∑d

i=1 αi)

Γ(n+
∑d

i=1 αi)

d∏
i=1

Γ(αi + li)

Γ(αi)
(4.5)

the partition function can now be written as:

u(α, κ, n) =
∑
|l|=n

(
n

l

)[ d∏
i=1

κli
i

]
Γ(
∑d

i=1 αi)

Γ(n+
∑d

i=1 αi)

d∏
i=1

Γ(αi + li)

Γ(αi)
(4.6)

The partition function can be seen here as summing the distribution over every
possible l = (l1, l2, . . . , ld) such that

∑d
i=1 li = n. In the two-dimensional case,

the partition function becomes

u(α, κ, n) =
∑
|l|=n

(
n

l

)
κl1
1 κ

l2
2

Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α1 + l1)

Γ(α1)

Γ(α2 + l2)

Γ(α2)
(4.7)

since l1 + l2 = n, if we let l1 = i and l2 = n − i the partition function can be
written as
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u(α, κ, n) =

n∑
i=0

(
n

i

)
κi
1κ

n−i
2

Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α1 + i)

Γ(α1)

Γ(α2 + n− i)

Γ(α2)

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

n∑
i=0

(
n

i

)
κi
1κ

n−i
2

Γ(α1 + i)

Γ(α1)

Γ(α2 + n− i)

Γ(α2)
· Γ(α2 + n)

Γ(α2 + n)

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α2 + n)

Γ(α2)
κn
2

n∑
i=0

(
n

i

)
Γ(α1 + i)

Γ(α1)

Γ(α2 + n− i)

Γ(α2 + n)

(
κ1

κ2

)i

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α2 + n)

Γ(α2)
κn
2

n∑
i=0

(
n

i

)
(α1)i

1

(α2 + n− 1)(i)

(
κ1

κ2

)i

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α2 + n)

Γ(α2)
κn
2

n∑
i=0

(
n

i

)
(α1)i

1

(−1)i(1− α2 − n)i

(
κ1

κ2

)i

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α2 + n)

Γ(α2)
κn
2

n∑
i=0

(
n

i

)
(−1)i

(α1)i
(1− α2 − n)i

(
κ1

κ2

)i

u(α, κ, n) =
Γ(α1 + α2)

Γ(n+ α1 + α2)

Γ(α2 + n)

Γ(α2)
κn
2 2F1

(
− n, α1; 1− α2 − n;

κ1

κ2

)

where (·)i, and (·)(i) are the falling and rising factorial functions and 2F1(·, ·; ·; ·)
is the Gauss hypergeometric function.

π(a|n) = 1

u(α, κ, n)
κa1
1 κa2

2

(
n

a

)
Γ(α1 + α2)

Γ(α1 + α2 + n)

Γ(α1 + a1)Γ(α2 + a2)

Γ(α1)Γ(α2)

π(a|n) = 1

2F1

(
− n, α1; 1− α2 − n; κ1

κ2

)κa1
1 κa2−n

2

(
n

a

)
Γ(α1 + a1)Γ(α2 + a2)

Γ(α1)Γ(α2 + n)

writing a1 = a a2 = n− a or a = (a, n− a) we can reduce the distribution to 1
dimension

π(a|n) = 1

2F1

(
− n, α1; 1− α2 − n; κ1

κ2

)(κ1

κ2

)a(
n

a

)
Γ(α1 + a)Γ(α2 + n− a)

Γ(α1)Γ(α2 + n)

(4.8)
The Gauss hypergeometric function 2F1(a, b; c; z) is defined when c is not

a non-positive integer, (i.e. c ̸= 0,−1,−2, . . . ) and (1) |z| < 1 or (2) |z| ≤
1 when c > a + b. So in our case, we require 1 − α2 − n ̸= 0,−1,−2 . . .
or α2 ̸= 1 − n, 2 − n, 3 − n . . . . Since α2 = δλ2

κ2(λ1+λ2)
and δ, λ1, λ2, κ2 > 0

2F1

(
− n, α1; 1 − α2 − n; κ1

κ2

)
is defined for κ1

κ2
≤ 1. For simplicity of notation

F (a, b; c; z) will refer to 2F1(a, b; c; z) from now on. Note: to ensure that κ1

κ2
≤ 1

we will set the larger of the two rates as κ2, moreover we can always set κ1 = 1
as was done by Togashi and Kaneko in [16].
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4.3 Volume scaling

As in [6] under classical scaling the parameters are given as

κi =
κ′
i

V
λi = λ′

iV δ = δ′ αi = V α′
i (4.9)

The volume scaled distribution is given as

Π(a) = ν(n)π(a|n)
where

π(a|n) = 1

u(α, κ, n)

(
n

a

)[ d∏
i=1

κ′ai
i

]
Γ
(
V
∑d

i=1 α
′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) d∏
i=1

Γ
(
ai + V α′

i

)
Γ
(
V α′

i

) ,

u(α, κ, n) =
Γ
(∑d

i=1 V α′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) ∑
|l|=n

(
n

l

) d∏
i=1

κ′li
i

Γ(V α′
i + li)

Γ(V α′
i)

,

ν(n) =
(V µ′)n

n!
exp[−V µ′], µ′ =

∑d
i=1 λ

′
i

δ′

(4.10)

The κ′
i polynomial terms do not appear with a V since the V’s are cancelled out

by the partition function∏d
i=1

κ
′ai
i

V

E
[(∑d

i=1
κ′
i

V ξi

)n] =
1

V n

∏d
i=1 κ

′ai
i

1
V nE

[(∑d
i=1 κ

′
iξi

)n] =

∏d
i=1 κ

′ai
i

E
[(∑d

i=1 κ
′
iξi

)n]
We look now at the two-dimensional model with two species of molecules inter-
acting. Here, the vector a = (a1, a2) represents the counts of the two species of
molecules. The conditional distribution π(a|n) is

π(a|n) = 1

u(α, κ, n)

(
n

a

)
κ′a1
1 κ′a2

2

Γ[V (α′
1 + α′

2)]

Γ[V (α′
1 + α′

2) + n]

Γ(a1 + V α′
1)

Γ(V α′
1)

Γ(a2 + V α′
2)

Γ(V α′
2)
(4.11)

We can also reduce the dimension to 1 by letting a1 = a, a2 = n− a and write
the distribution as a weighted Beta-binomial

π(a|n) = 1

u(α, κ, n)
κ′a
1 κ

′(n−a)
2

(
n

a

)
B(a+ V α′

1, n− a+ V α′
2)

B(V α′
1, V α′

2)
(4.12)

We will set our parameters as was done in [6, 16] but instead of letting κ′
1 =

κ′
2 = 1 we will set κ′

1 = 1 and look at how different values of κ′
2 influence the

system. The rates are given as

κ′
1 = 1 δ′ = λ′

1 = λ′
2 = D (4.13)

and the α parameters are

α1 =
DV

2
α2 =

DV

2κ′
2

(4.14)
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Similar to the distribution in [6] the distribution behaves differently under dif-
ferent regimes of DV . When DV < 2 the α parameters are both less than 1
and the distribution is bimodal, however, the peak when a1 = 0 and a2 = n is
higher than when a2 = 0 and a1 = n. Small increases in κ2 give the a2 ”corner”
of the distribution large proportions of the mass, and when κ2 = 1.1 almost
the entire mass of the distribution is concentrated at (a1, a2) = (0, 2V ). (note
here that 2V is the mean of ν(n)) The peaks at the extreme values of a1 and
a2 reflect the DITs in the system where most of the time is spent in the states
(0, n) and (n, 0), and the quick switching between these states is shown by the
lack of mass for states between these two peaks. As κ2 is increased, we start to
lose these DITs as the autocatalytic reaction A1 + A2

κ2−→ 2A2 overpowers the
reaction in the opposite direction.

(a)
(b)

(c) (d)

Figure 2: Plots of the full distribtion Π(a) are shown when DV=0.2, the density is bimodal as
α1, α2 < 1. κ′

1 is fixed at 1 while κ′
2 is increased, κ2 = 1.001, 1.01, 1.05 and 1.1 for (a),(b),(c) and

(d) respectively. In (a) the peaks at either extreme are almost equal, however only increasing κ′
2 to

1.1 puts almost the entire mass of the distribution around (a1, a2) = (0, 2V ).

At the critical case where DV=2 we have α1 = 1 and α2 = 1/κ2. When
κ1 = κ2 = 1 we had a uniform density but as we increase κ2 slightly, the
density becomes skewed towards a2 holding more mass, when κ2 = 1.1 almost
all the mass is at (0, 2V ). Figure 3 shows the behaviour of the distribution as
we increase κ2 while setting DV = 2 and holding κ1 at 1.

When α1, α2 > 1, i.e. when DV > 2 we again have a unimodal distribution
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(a) (b) (c)

Figure 3: Plots of the full distribution Π(a) at the critical case DV = 2, we have α1 = 1 and
α2 = 1/κ2. As κ2 increases, we move from an almost uniform density in (a) to almost all the mass
being in a2 when κ2 = 1.1 in (c)

concentrated near (a1, a2) = (V, V ), but as we κ1 is fixed at 1, and we increase κ2

the peak moves such that the distribution is concentrated at a higher proportion
of a2 molecules to a1 molecules. As V → ∞ the system should converge to the
solution of the ODE

ȧ1(t) = (κ1 − κ2)a1a2 + λ1 − δa1

ȧ2(t) = (κ2 − κ1)a1a2 + λ2 − δa2
(4.15)

When κ1 = κ2 equation (4.15) is a simple linear first order ODE with solution
A1(t) = C1e

−δt + λ1

δ and A2(t) = C2e
−δt + λ2

δ . When κ1 ̸= κ2 unfortunately
this system of ODEs is nonlinear and the solution is not simple to compute,
however we can find a numerical solution for A1(t) and A2(t) which are shown
in figure 4.

(a)
(b)

(c)

(d) (e) (f)

Figure 4: (a)-(c) shows Π(a) for κ2 = 1.001, 1.01, 1.1 with D = 0.01, V = 2000 and κ1 = 1. The
distributions are unimodal and concentrated around the deterministic equilibria which are shown
in (d)-(f) as numerical solutions to the system of ODE’s in equation (4.15) with equilibrium points
ca = (1801.96, 2198.04), cb = (763.93, 3236.07), and, cc = (97.5, 3902.5). Note: range of the plot in
(c) had to be changed due to computational issues.
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4.4 Deterministic model

In theorem 2.25 we showed that as V → ∞ the volume scaled process X̄(t) =
X(t)/V converges to the deterministic solution of a system of ODEs x(t). The
system of ODEs for the 2D TK model is as previously mentioned

ȧ1(t) = (κ1 − κ2)a1a2 + λ1 − δa1

ȧ2(t) = (κ2 − κ1)a1a2 + λ2 − δa2
(4.16)

In the case where κ1 = κ2 this system is linear, and the solution is trivial,
but when the autocatalytic rates are not equal we have a non-linear term a1a2
and the solution is not easily computed. Even though we cannot directly com-
pute the solution to our system, we can still analyze its equilibrium points and
stability. We first check its linear stability. We have

ẋ = f(x) (4.17)

with x = [a1(t), a2(t)] and f = [(κ2−κ1)a1a2−δa1+λ1, (κ2−κ1)a1a2−δa2+λ2],
we find a equilibrium point c = [c1, c2] by solving f(c) = [0, 0] which gives only
one solution with a1, a2 ≥ 0 under the constraints λ1 > 0, λ2 > 0, δ > 0, κ2 >
κ1 > 0

c1 =
1

2δ(κ1 − κ2)

[√
(δ2 − (κ1 − κ2)(λ1 + λ2))2 + 4δ2λ1(κ1 − κ2)− δ2 + (λ1 + λ2)(κ1 − κ2)

]
c2 =

1

2δ(κ1 − κ2)

[
−
√
(δ2 − (κ1 − κ2)(λ1 + λ2))2 + 4δ2λ1(κ1 − κ2) + δ2 + (λ1 + λ2)(κ1 − κ2)

]
the Jacobian is

J =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

[
a2(κ1 − κ2)− δ a1(κ1 − κ2)

a2(κ2 − κ1) a1(κ2 − κ2)− δ

]
(4.18)

evaluating J at c we have

Jc =

−δ2+(λ1+λ2)(κ1−κ2)−γ
2δ

−δ2+(λ1+λ2)(κ1−κ2)+γ
2δ

−δ2−(λ1+λ2)(κ1−κ2)+γ
2δ

−δ2−(λ1+λ2)(κ1−κ2)−γ
2δ

 (4.19)

where γ =
√
(δ2 − (κ1 − κ2)(λ1 + λ2))2 + 4δ2λ1(κ1 − κ2). The eigenvalues of

Jc are

η1 = −δ, η2 = −γ

δ
(4.20)

note that γ ∈ R for all δ, λ1, λ2 > 0 and κ2 > κ1 > 0. So we have two negative
eigenvalues for any of our allowable parameters and by theorem 2.22 we have
linear stability in a neighbourhood of c.
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4.5 Corner configuration

It can be shown that the candidate distribution exhibits a corner configuration
as the volume V → 0. First we condition on the total population being n, or
a1+a2 = n then we can write the conditional probability that all molecules are
type i as

π(n · ei|n) =
1

u(α, κ, n)
κ′n
i

Γ
(
V
∑d

i=1 α
′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) Γ(n+ V α′
i)

Γ(V α′
i)

using the fact that Γ(z) ≈ 1/z as z → 0 taking the limit as V → 0

lim
V→0

π(n · ei|n) = lim
V→0

1

u(α, κ, n)
κ′n
i

Γ(n+ V α′
i)

Γ
(
n+ V

∑d
i=1 α

′
i

) V α′
i

V
∑d

i=1 α
′
i

=
κ′n
i α′

i∑d
i=1 α

′
i

lim
V→0

1

u(α, κ, n)

to look at the limit on the partition function, we first write it

out as in (4.6)

lim
V→0

u(α, κ, n) =
∑
|l|=n

(
n

l

) Γ
(∑d

i=1 V α′
i

)
Γ
(
n+ V

∑d
i=1 α

′
i

) d∏
i=1

κ′li
i

Γ(V α′
i + li)

Γ(V α′
i)

= lim
V→0

1

Γ(n)

1

V
∑d

i=1

∑
|l|=n

(
n

l

) d∏
i=1

κ′li
i

Γ(V α′
i + li)

Γ(V α′
i)

Looking at the terms in the product if li = 0 then the term is 1 otherwise the
term is κ′li

i Γ(li)V α′
i. So for each term in the sum if there is more than one

li > 0 the term will have V to a power greater than 1, and as V → 0 the term
will also go to zero. If li = n and lj = 0 for j ̸= i then the term in the sum is
given by κ′n

i Γ(n)V α′
i so we can write

lim
V→0

u(α, κ, n) = lim
V→0

1

Γ(n)V
∑d

i=1 α
′
i

d∑
i=1

κ′n
i Γ(n)V α′

i

=
1∑d

i=1 α
′
i

d∑
i=1

κ′n
i α′

i

and as V → 0 the probability all the molecules are type i is given as

lim
V→0

π(n · ei|n) =
κ′n
i α′

i∑d
i=1 κ

′n
i α′

i

(4.21)

and the probability that all the molecules are of the same type and the rest
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are extinct is given by

lim
V→0

d∑
i=1

π(n · ei|n) =
d∑

i=1

κ′n
i α′

i∑d
i=1 κ

′n
i α′

i

= 1 (4.22)

Thus, as the volume gets very small the probability that the system is in a
corner configuration approaches 1.

4.6 Global Balance Equation

To show the distribution Π(a) = ν(n)π(a|n) is stationary, it must satisfy the
global balance equation

Π(a)
∑
a′∈S

q(a, a′) =
∑
a′∈S

Π(a′)q(a′, a) (4.23)

Π(a) fulfills the global balance conditions when π(a|n) satisfies the equation

Rn = Ln−1 + Ln + Ln+1 (4.24)

where

Rn = [λ1 + λ2 + nδ + (κ1 + κ2)a1a2]π(a|n) (4.25)

Ln−1 =
nδλ1

λ1 + λ2
π(a− e1|n− 1) +

nδλ2

λ1 + λ2
π(a− e2|n− 1) (4.26)

Ln = κ2(a1 + 1)(a2 − 1)π(a+ e1 − e2|n) + κ1(a1 − 1)(a2 + 1)π(a− e1 + e2|n)
(4.27)

Ln+1 =
λ1 + λ2

n+ 1
(a1 + 1)π(a+ e1|n+ 1) +

λ1 + λ2

n+ 1
(a2 + 1)π(a+ e2|n+ 1)

(4.28)

we have:

π(a− e1|n− 1)

π(a|n)
=

a1
n

n− 1 + α2

a1 − 1 + α1

κ2

κ1

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (1− n, α1, 2− α2 − n, κ1

κ2
)

π(a− e2|n− 1)

π(a|n)
=

a2
n

n− 1 + α2

a2 − 1 + α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (1− n, α1, 2− α2 − n, κ1

κ2
)

π(a+ e1 − e2|n)
π(a|n)

=
a2

a1 + 1

a1 + α1

a2 − 1 + α2

κ1

κ2

π(a− e1 + e2|n)
π(a+ e1 − e2|n)

=
a1

a2 + 1

a2 + α2

a1 − 1 + α1

κ2

κ1

π(a+ e1|n+ 1)

π(a|n)
=

n+ 1

a1 + 1

a1 + α1

n+ α2

κ1

κ2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

π(a|n+ 1)

π(a|n)
=

n+ 1

a2 + 1

a2 + α2

n+ α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)
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now dividing Ln−1, Ln and Ln+1 by π(a|n) we have:

Ln−1

π(a|n)
=

(n− 1 + α2)δ

λ1 + λ2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (1− n, α1, 2− α2 − n, κ1

κ2
)

[ a1λ1

a1 − 1 + α1

κ2

κ1
+

a2λ2

a2 − 1 + α2

]
Ln

π(a|n)
= κ1

a2 − 1

a2 − 1 + α2
(a1 + α1)a2 + κ2

a1 − 1

a1 − 1 + α1
(a2 + α2)a1

Ln+1

π(a|n)
=

λ1 + λ2

(n+ α2)

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

[κ1

κ2
(a1 + α1) + (a2 + α2)

]

using the fact that αi =
δ

λ1+λ2

λi

κi
we can manipulate the first equation such that

Ln−1

π(a|n)
= (n−1+α2)

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (1− n, α1, 2− α2 − n, κ1

κ2
)
κ2

[ a1α1

a1 − 1 + α1
+

a2α2

a2 − 1 + α2

]
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Ln

π(a|n)
=

2∑
i=1

∑
j ̸=i

κi(ai + αi)
aj − 1

aj − 1 + αj
aj

=

2∑
i=1

∑
j ̸=i

κi(ai + αi)
aj − 1 + αj

aj − 1 + αj
aj −

2∑
i=1

∑
j ̸=i

κi(ai + αi)ajαj

aj − 1 + αj

=

2∑
i=1

∑
j ̸=i

κi(ai + αi)aj −
2∑

i=1

∑
j ̸=i

κi(ai + αi)ajαj

aj − 1 + αj

=(κ1 + κ2)a1a2 +

2∑
i=1

∑
j ̸=i

κiαiaj −
2∑

i=1

∑
j ̸=i

κi(ai + αi)ajαj

aj − 1 + αj

=(κ1 + κ2)a1a2 +

2∑
i=1

2∑
j=1

κiαiaj −
2∑

i=1

κiαiai

−
2∑

i=1

2∑
j=1

κj(aj + αj)aiαi

ai − 1 + αi
+

2∑
i=1

κi(ai + αi)aiαi

ai − 1 + αi

=(κ1 + κ2)a1a2 + nδ −
2∑

i=1

κiαiai

−
2∑

i=1

2∑
j=1

κj(aj + αj)aiαi

ai − 1 + αi
+

2∑
i=1

κi(ai − 1 + αi)aiαi

ai − 1 + αi
+

2∑
i=1

κiaiαi

ai − 1 + αi

=(κ1 + κ2)a1a2 + nδ −
2∑

i=1

κiαiai

−
2∑

i=1

2∑
j=1

κj(aj + αj)aiαi

ai − 1 + αi
+

2∑
i=1

κiaiαi +

2∑
i=1

κiaiαi

ai − 1 + αi

=(κ1 + κ2)a1a2 + nδ −
2∑

i=1

2∑
j=1

κj(aj + αj)aiαi

ai − 1 + αi
+

2∑
i=1

κiaiαi

ai − 1 + αi

=(κ1 + κ2)a1a2 + nδ −
( 2∑

j=1

κj(aj + αj)
) 2∑

i=1

aiαi

ai − 1 + αi
+

2∑
i=1

κiaiαi

ai − 1 + αi

The first two terms cancel out terms in Rn and looking at the remaining terms
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we have:

2∑
i=1

κiaiαi

ai − 1 + αi
−
( 2∑

j=1

κj(aj + αj)
) 2∑

i=1

aiαi

ai − 1 + αi

=κ1
a1α1

a1 − 1 + α1
+ κ2

a2α2

a2 − 1 + α2

− κ1(a1 + α1)
a1α1

a1 − 1 + α1
− κ2(a2 + α2)

a1α1

a1 − 1 + α1

− κ1(a1 + α1)
a2α2

a2 − 2 + α2
− κ2(a2 + α2)

a2α2

a2 − 1 + α2

under the assumption λ1 = λ2 we can use the fact that κ1 = κ2(α2/α1)

=κ2
a1α1

a1 − 1 + α1

[α2

α1
− α2

α1
(a1 + α1)− (a2 + α2)

]
+ κ2

a2α2

a2 − 1 + α2

[
1− α2

α1
(a1 + α1)− (a2 + α2)

]
=κ2

a1α1

a1 − 1 + α1

[α2

α1
− α2

α1
a1 − a2 − 2α2

]
+ κ2

a2α2

a2 − 1 + α2

[
1− α2

α1
a1 − a2 − 2α2

]
=− κ2(n− 1 + α2)

2∑
i=1

aiαi

ai − 1 + αi

+ κ2
a1α1

a1 − 1 + α2

[α2

α1
+ a1 −

α2

α1
a1 − 1− α2

]
+ κ2

a2α2

a2 − 1 + α2

[
a1 −

α2

α1
a1 − α2

]
=− κ2(n− 1 + α2)

2∑
i=1

aiαi

ai − 1 + αi
+ κ2

2∑
i=1

aiαi

ai − 1 + αi

[
a1
(
1− α2

α1

)
− α2

]
+ κ2

a1α1

a1 − 1 + α1

[α2

α1
− 1
]

again under the assumption that λ1 = λ2 we note that α2/α1 = κ1/κ2

=− κ2(n− 1 + α2)

2∑
i=1

aiαi

ai − 1 + αi
+

2∑
i=1

aiαi

ai − 1 + αi

[
a1
(
κ2 − κ1)− κ2α2

]
+

a1α1

a1 − 1 + α1

[
κ1 − κ2

]
Ln can now be written as

Ln

π(a|n)
=(κ1 + κ2)a1a2 + nδ − κ2(n− 1 + α2)

2∑
i=1

aiαi

ai − 1 + αi

+

2∑
i=1

aiαi

ai − 1 + αi

[
a1
(
κ2 − κ1)− α2

]
+

a1α1

a1 − 1 + α1

[
κ1 − κ2

]
(4.29)

Again the first two terms in (4.29) cancel with terms in Rn, it is also impor-
tant to note that the third term is the same as Ln−1 apart from the ratio of
Hypergeometric functions.

Looking at the equation for, Ln+1 we can rewrite it as such:
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Ln+1

π(a|n)
=

λ1 + λ2

n+ α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

[κ1

κ2
(a1 + α1) + (a2 + α2)

]
we can write a2 = n− a1 and rearrange the terms in the square brackets

=
λ1 + λ2

n+ α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

[
(n+ α2) +

κ1

κ2
(a1 + α1)− a1

]
= (λ1 + λ2)

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

+
λ1 + λ2

n+ α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

[
a1
(κ1

κ2
− 1
)
+ α2

]
Writing out the balance equation as, B = 1

π(a|n)
[
Rn − (Ln−1 +Ln +Ln+1)

]
we

can see how ”in balance” the system is by seeing how close B is to zero.

B =(λ1 + λ2)

[
1−

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

]

− κ2(n− 1 + α2)

2∑
i=1

aiαi

ai − 1 + αi

[
F (−n, α1, 1− α2 − n, κ1

κ2
)

F (1− n, α1, 2− α2 − n, κ1

κ2
)
− 1

]

−
2∑

i=1

aiαi

ai − 1 + αi

[
a1
(
κ2 − κ1)− κ2α2

]
− a1α1

a1 − 1 + α1

[
κ1 − κ2

]
− λ1 + λ2

n+ α2

F (−n, α1, 1− α2 − n, κ1

κ2
)

F (−1− n, α1,−α2 − n, κ1

κ2
)

[
a1
(κ1

κ2
− 1
)
+ α2

]
(4.30)

writing B in terms of our volume scaled parameters

κi =
κ′
i

V
λi = λ′

iV = DV δ = δ′ = D

we have:
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B =2DV

[
1−

F (−n, V α′
1, 1− V α′

2 − n,
κ1
V
κ2
V

)

F (−1− n, V α′
1,−V α′

2 − n,
κ1
V
κ2
V

)

]

− κ2

V
(n− 1 + V α′

2)

2∑
i=1

aiV α′
i

ai − 1 + V α′
i

[
F (−n, V α′

1, 1− V α′
2 − n,

κ1
V
κ2
V

)

F (1− n, V α′
1, 2− V α′

2 − n,
κ1
V
κ2
V

)
− 1

]

−
2∑

i=1

aiV α′
i

ai − 1 + V V α′′
i

[
a1
(κ2

V
− κ1

V
)− κ2

V
V α′

2

]
− a1V α′

1

a1 − 1 + V α′
1

[κ1

V
− κ2

V

]

− λ1 + λ2

n+ V α′
2

F (−n, V α′
1, 1− V α′

2 − n,
κ1
V
κ2
V

)

F (−1− n, V α′
1,−V α′

2 − n,
κ1
V
κ2
V

)

[
a1
( κ1

V
κ2

V

− 1
)
+ V α′

2

]

=2DV

[
1−

F (−n, V α′
1, 1− V α′

2 − n, κ1

κ2
)

F (−1− n, V α′
1,−V α′

2 − n, κ1

κ2
)

]

− κ2(n− 1 + V α′
2)

2∑
i=1

aiα
′
i

ai − 1 + V α′
i

[
F (−n, V α′

1, 1− V α′
2 − n, κ1

κ2
)

F (1− n, V α′
1, 2− V α′

2 − n, κ1

κ2
)
− 1

]

−
2∑

i=1

aiα
′
i

ai − 1 + V α′
i

[
a1
(
κ2 − κ1)− κ2α

′
2

]
− a1α

′
1

a1 − 1 + V α′
1

[
κ1 − κ2

]
− 2DV

n+ V α′
2

F (−n, V α′
1, 1− V α′

2 − n, κ1

κ2
)

F (−1− n, V α′
1,−V α′

2 − n, κ1

κ2
)

[
a1
(κ1

κ2
− 1
)
+ V α′

2

]

=2DV

{[
1−

F (−n,DV/2, 1−DV/(2κ2)− n, κ1

κ2
)

F (−1− n,DV/2,−DV/(2κ2)− n, κ1

κ2
)

]

− 1

n+DV/(2κ2)

F (−n,DV/2, 1−DV/(2κ2)− n, κ1

κ2
)

F (−1− n,DV/2,−DV/(2κ2)− n, κ1

κ2
)

[
a1
(κ1

κ2
− 1
)
+DV/(2κ2)

]}

− κ2(n− 1 +DV/(2κ2))

[
F (−n,DV/2, 1−DV/(2κ2)− n, κ1

κ2
)

F (1− n,DV/2, 2−DV/(2κ2)− n, κ1

κ2
)
− 1

]
2∑

i=1

aiDV/(2κi)

ai − 1 +DV/(2κi)

−
[
a1
(
κ2 − κ1)−D/2

] 2∑
i=1

aiD/(2κi)

ai − 1 +DV/(2κi)
− a1D/2

a1 − 1 +DV/2

[
κ1 − κ2

]
The ratios of hypergeometric functions are both close to 1 as seen in figure 5
so the two terms in the large square brackets are fairly small. Figure 6 shows
values of B for different states a = (a, n − a). B is fairly close to zero except
when n ≈ 2V , which is the mean of ν(n). B is the most non-zero when a ≈
(0, 2V ), (1, 2V ), (2V, 0) and (2V, 1). Figure 7 shows B for different values of κ′

2,
as κ′

2 gets closer to 1 the peaks get smaller.

33



Figure 5:

F (−n,V α′
1,1−V α′

2−n,

κ1
V
κ2
V

)

F (1−n,V α′
1,2−V α′

2−n,

κ1
V
κ2
V

)

and

F (−n,V α′
1,1−V α′

2−n,

κ1
V
κ2
V

)

F (−1−n,V α′
1,−V α′

2−n,

κ1
V
κ2
V

)

in blue and orange respec-

tively. The functions were plotted for λ′
1 = λ′

2 = δ = 0.01, V = 20 and κ2 = 1.001 as a function of
n

Figure 6: Values of B when λ′
1 = λ′

2 = δ′ = 0.01, , κ′
1 = 1, κ′

2 = 1.001 and V = 20
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(a)
(b)

(c)
(d)

Figure 7: B plotted with κ′
1 = 1, λ′

1 = λ′
2 = δ′ = 0.01, V = 20 and κ′

2 = 1.0001, 1.005, 1.01, 1.1

4.7 Simulation

Simulation of the two-dimensional TK model was carried out using the Gillespie
algorithm. The algorithm, formulated circa 1945 by Joseph L. Doob, and popu-
larized by Dan Gillespie in a paper written in 1977 [8]. The Gillespie algorithm
is a stochastic simulation algorithm based on the dynamic Monte Carlo method,
it is used widely to simulate chemical and biological systems with great accu-
racy and efficiency. The algorithm is especially useful in our case since it can
simulate a system with small numbers of reactants as every reaction is exactly
simulated, the trajectory of a Gillespie simulation corresponds to an explicit
sample from a distribution which satisfies the master equation of the system.

4.7.1 The Gillespie Algorithm

The following version of the Gillespie algorithm has been adapted from lecture
notes by Paolo Milazzo [13]. Let R = {R1, R2, . . . , Rn} be a set of reactions.
We assume a reaction constant κµ for each reaction Rµ ∈ R such that cµdt is
the probability that the combination of reactants of Rµ react in an infinitesimal
time step dt. The propensity of Rµ, aµ, is computed as

aµ = hµκµ (4.31)

where hµ is the number of distinct reactant combinations for Rµ. i.e. if Rµ is
given by:

k1S1 + · · ·+ knSn
κ−→ k′1P1 + · · ·+ k′mPm (4.32)

if the reaction is in a solution with Ai molecules of each reactant, Si then hµ is
given as

hµ =

n∏
i=1

(
Ai

ki

)
(4.33)
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The time between occurrences of the reaction Rµ is a random variable with
Exp(aµ) distribution. We let

• {S1, . . . , Sn} be a set of molecules

• {A1, . . . , An} be the initial numbers of each molecule

• {R1, . . . , Rm} a set of reactions of the molecules

the algorithm then proceeds as such:

1. set t = 0 and then initialize A = [A1, . . . , A2]

2. the time t+ τ at which the next reaction occurs is randomly chosen with
τ ∼ Exp

[∑m
i=1 ai

]
1

3. the reaction which occurs at time t + τ is randomly chosen, with the
probability of choosing Rµ given by

aµ∑m
i=1 ai

2

4. A = [A1 . . . , A2] is updated by adding the products and subtracting the
reactants of Rµ

5. steps 2 and 3 are repeated until t has reached a chosen value

For our particular model, we provide an example of the algorithm:

R1 : A1 +A2
1/20−−−→ 2A1 R2 : A1 +A2

1.01/20−−−−−→ 2A2

R3 : ∅ .2−→ A1 R4 : ∅ 0.2−−→ A2

R5 : A1
0.01−−→ ∅ R6 : A2

0.01−−→ ∅

(4.34)

We choose an initial state A = [30, 10], and propensities are computed:

a1 = 30·10·1/20 a2 = 30·10·1.01/20 a3 = 0.2 a4 = 0.2 a5 = 30·0.01 a6 = 10·0.01

a0 =
∑

i ai = 15 + 15.15 + 0.2 + 0.2 + 0.3 + 0.1 = 30.95. We then draw τ from
Exp[30.95] lets say τ = 0.032 and choose a reaction with probability ai/a0. We

choose R2 : R2 : A1 +A2
1.01/20−−−−−→ 2A2 so subtract an A1 and A2 and add 2A2’s

and the state of the system is now A = [29, 11] at time t = τ . We continue
to update the state of the system as such, keeping track of each state visited,
until a predetermined time. After the simulation we can plot a histogram of the
states visited, this histogram should coincide with our distribution Π(a)

1τ is chosen by generating a random number r1 ∈ [0, 1] and computing τ = 1∑m
i=1 ai

ln
(

1
r1

)
2to choose a reaction Rµ we generate a random number r2 ∼ Unif [0, 1) and choose µ as

the smallest integer satisfying
∑k

i=1 ai > r2
∑m

i=1 ai
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4.7.2 Simulations of 2D TK model

Let A(t) = [A1(t), A2(t)] be the state of our simulation in the Gillespie algo-
rithm. Let’s assume at time t there are n A1 molecules and m A2 molecules
or A1(t) = n and A2(t) = m. Let pn,m(t) be the probability that there are
A(t) = [n,m], if we consider an infinitesimal time step dt chosen such that only
one event occurs there are only seven possible ways that A(t + dt) = [n,m]
either A(t) = [n,m] and no reaction occurs in [t, dt), A(t) = [n − 1,m] and an
A1 is added with rate λ1, A(t) = [n,m − 1] and an A2 is added with rate λ2,
A(t) = [n + 1,m] with an A1 dying with rate δ, A(t) = [n,m + 1] with an A2

dying at rate δ, A(t) = [n+ 1,m− 1] and we have an auto catalytic reaction at
rate κ2 or A(t) = [n− 1,m+1] and we have an autocatalytic reaction with rate
κ2. So,

pn,m(t+ dt) =pn−1,m(t)λ1dt+ pn,m−1(t)λ2dt

+ pn+1,m(t)δ(n+ 1)dt+ pn,m+1(t)δ(m+ 1)dt

+ pn+1,m−1(t)κ2(n+ 1)(m− 1)dt+ pn−1,m+1(t)κ1(n− 1)(m+ 1)dt

+ pn,m(t)
(
1− (λ1dt+ λ2dt+ δndt+ δmdt+ κ1nmdt+ κ2nmdt)

)
(4.35)

manipulating the equation, we can write

pn,m(t+ dt)− pn,m(t)

dt
=pn−1,m(t)λ1 + pn,m−1(t)λ2

+ pn+1,m(t)δ(n+ 1) + pn,m+1(t)δ(m+ 1)

+ pn+1,m−1(t)κ2(n+ 1)(m− 1) + pn−1,m+1(t)κ1(n− 1)(m+ 1)

− pn,m(t)
(
λ1 + λ2 + δn+ δm+ κ1nm+ κ2nm

)
(4.36)

taking the limit as dt → 0 we get

dpn,m
dt

=pn−1,m(t)λ1 + pn,m−1(t)λ2

+ pn+1,m(t)δ(n+ 1) + pn,m+1(t)δ(m+ 1)

+ pn+1,m−1(t)κ2(n+ 1)(m− 1) + pn−1,m+1(t)κ1(n− 1)(m+ 1)

− pn,m(t)
(
λ1 + λ2 + δn+ δm+ κ1nm+ κ2nm

)
(4.37)

Which is the Master equation for our chemical reaction network. The Gillespie
algorithm provides an unbiased and convergent estimate of the solution of the
chemical master equation [10], so if the algorithm is run for a sufficiently long
time, we should be able to extract this solution to the master equation by
looking at the proportions of time spent in each statec. Since the existence of
a unique stationary distribution was proved for the general model by Bibbona
et al in [6], it is a solution to the master equation and moreover the Gillespie
algorithm is sampling from it. To compare the proposed distribution to the
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true stationary distribution the Gillespie algorithm was run for a long period of
time and the proportion of time spent in each state was plotted on a histogram,
figure 8 shows some of these plots for DV = 0.2 when DITs are active in the
system. The histograms agree with the plots of the proposed distribution, Π(a)
including the behaviour as κ2 is increased and κ1 is held at 1. In figure 9 we keep
DV = 0.2 but for a volume of 10 and 40, both plots agree with the simulated
data. In figure 10 volume is fixed at 20 and D is increased, as D increases the
inflow and outflow reactions increase in frequency, so the system spends less
time on the boundaries. Autocatalytic reactions are still at play, so there are
still peaks at the boundaries, but they are less pronounced.

(a) (b)

(c) (d)

Figure 8: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are
shown in yellow with Π(a) overlaid in blue. Volume scaled rates are κ′

1 = 1, λ′
1 = λ′

2 = δ′ =
D = 0.01 with volume V = 20 for all 4 plots, κ′

2 = 1.001, 1.01, 1.05, 1.1 for (a),(b),(c), and (d)
respectively.

4.8 Discussion

In this thesis we have studied a family of autocatalytic reactions

Ai +Aj
κij−−→ 2Aj Ai

δi−⇀↽−
λi

∅ (4.38)

Modelling the counts of each species as a continuous time Markov chain Bibbona
et al proved the existence of a stationary distribution for a general system in
this family, they also show a under the condition where all catalytic reaction
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(a)

(b)

Figure 9: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are
shown in yellow, with Π(a) overlaid in blue. Volume and D were varied while keeping DV = 0.2
Volume scaled rates are κ′

1 = 1, κ′
2 = 1.01, λ′

1 = λ′
2 = D with volume V = 10 and D = 1/50 in (a),

V = 40 and D = 1/200

(a) (b)

(c)

(d)

Figure 10: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are
shown in yellow with Π(a) overlaid in blue. D was varied while keeping the volume fixed at V = 20.
Volume scaled rates are κ′

1 = 1, κ2 = 1.01λ′
1 = λ′

2 = D with and D = 2/100, 5/100, 7/100, 9/100 in
(a), (b), (c), and (d) respectively.

rates κij = κ that the stationary distribution conditional on the total population
being n takes the form of a Dirichlet-multinomial distribution. To investigate the
case when the autocatalytic rates are not identical, we have tested a distribution
which is stationary for a model which similar dynamics. The distribution is a
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Dirichlet-multinomial distribution but weighted on the autocatalytic rates, it
should also be noted that it does not hold for general autocatalytic rates κij

but only when κij = κj for all i. When the outflow rates δi are identical the
lumped process X̄(t), which is the count of the total population of the system
at time t, is a CTMC with stationary distribution

ν(n) =
µn

n!
exp (−µ), µ =

∑
i λi

δ
(4.39)

Conditioning on the stationary probability, ν(n), of X̄(t) being in the state
n =

∑
i ai the stationary distribution of X(t) can be factorized as Π(a) =

ν(n)π(a|n). We looked at the two-dimensional model

A1 +A2
κ1−→ 2A1 A1 +A2

κ2−→ 2A2 Ai
δi−⇀↽−
λi

∅ (4.40)

and analyzed the distribution

π(a1, a1|n) =
1

u(α, κ, n)

(
n

a1, a2

)
κa1
1 κa2

2

Γ(α1 + α2)

Γ(α1 + α2 + n)

Γ(a1 + α1)

Γ(α1)

Γ(a2 + α2)

Γ(α2)
(4.41)

Under classical volume scaling of the rate parameters we showed that π(a|n)
exhibits DITs in the low volume regime, and when the volume is large the
distribution was unimodal and centred around the equilibrium point of the
deterministic system of ODEs:

ȧ1(t) = (κ1 − κ2)a1a2 + λ1 − δa1

ȧ2(t) = (κ2 − κ1)a1a2 + λ2 − δa2
(4.42)

We also used the Gillespie algorithm to simulate the process and compared
the simulations to our distribution Π(a) = ν(n)π(a|n). The histograms of our
simulations resembled our distribution; particularly, both the simulation results
and the candidate distribution show that when κ1 is held at 1 and κ2 is increased,
most of the mass of the distribution is moved towards the states where the
population of the system is entirely in A1 and A2 is extinct. When κ2 = 1.1
almost all the mass of the distribution is in the states where A2 holds the entire
population.

To determine if the distribution Π(a) is indeed stationary, we analyzed the
global balance condition ΠQ = 0. Unfortunately, for our distribution the global
balance condition was not satisfied, although it was shown to be very close to
zero. The global balance equates, at equilibrium, the probability flux leaving
each state i and the probability flux entering each state i. The probability flux
in this case means the expected number of transitions per unit time. Since our
distribution does not satisfy global balance, it means there is extra probability
flux not accounted for by our distribution, which would not be there if it were
the unique stationary distribution. Since it seems like the distribution is more
”out of balance” near the boundaries when n ≈ 2V , the mean of ν(n), (i.e.
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when a ≈ (0, 2V ), (2V, 0), (1, 2V ), and (2V, 1)). It is not clear why the balance
equation is farthest from zero at these points, it could be due to computational
error since these are the points at which the distribution has its largest values
and is very small elsewhere. Why this was not an issue when κ1 = κ2 is
mysterious, especially since this distribution reduces to the exact stationary
distribution when κ’s are equal. What exactly this means as to how ”close”
our candidate distribution is to the true stationary distribution quantitatively
is not clear however; qualitatively, from the simulations it does appear to be
very similar to the true distribution.
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A Appendix

A.1 Theorems and Lemmas

The following is theorem 1.2 in [2]

Theorem A.1. If Y is a Poisson process, then for each u0 > 0,

lim
n→∞

sup
u≤u0

∣∣∣Y (nu)

n
− u
∣∣∣ = 0 a.s. (A.1)

proof. Let ε > 0 and let {ui} be a discretization of [0, u0] so that

|ui+1 − ui| ≤ ε/2

Let N be large enough such that for n ≥ N we have∣∣∣Y (nui)

n
− ui

∣∣∣ ≤ ε/2 (A.2)

for each i. Let u ∈ [0, u0] and j be such that uj ≤ u ≤ uj+1. For n ≥ N we
have

Y (nu)

n
− u ≤ Y (nuj+1)

n
− uj+1 + (uj+1 − u) ≤ ε/2 + ε/2 = ε

and
Y (nu)

n
− u ≥ Y (nuj)

n
− uj + (uj − u) ≥ −ε/2− ε/2 = −ε

so

sup
u≤u0

∣∣∣Y (nu)

n
− u
∣∣∣ ≤ ε

□

the following is Gronwall’s inequality, the proof is taken from [3].

Lemma A.1.1. Suppose that A is non-negative, cadlag, and non-decreasing.
Furthe supposed X is cadlag, and

0 ≤ X(t) ≤ ε+

∫ t

0

X(s−)dA(s)

then
X(t) ≤ εeA(t)

proof.

X(t) ≤ ε+

∫ t

0

X(s−)dA(s)

≤ ε+ εA(t) +

∫ t

0

∫ s−

0

X(u−)dA(u)dA(s)

≤ ε+ εA(t) + ε

∫ t

0

A(s−)dA(s) +

∫ t

0

∫ s−

0

∫ u−

0

X(r−)dA(r)dA(u)dA(s)
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Since A is finite variation, making [A]ct ≡ 0. Ito’s formula yields

eA(t) = 1 +

∫ t

0

eA(s−)dA(s) +
∑
s≤t

(eA(s)−eA(s−)−eA(s−)∆A(s)

≥ 1 +

∫ t

0

eA(s−)dA(s)

≥ 1 +A(t) +

∫ t

0

∫ s−

0

eA(u−)dA(u)dA(s)

≥ 1 +A(t) +

∫ t

0

A(s−)dA(s) +

∫ t

0

∫ s−

0

∫ u−

0

eA(r−)dA(r)dA(u)dA(s)

continuing the iteration we get X(t) ≤ εeA(t)

□

A.2 Foster-Lyapunov Criterion for Bibbona-Kim-Wiuf model

Let X(t) be the associated Markov Chain for a general network described by

(3.3). Let V (x) = e∥x∥1 , where ∥x∥1 =
∑d

i=1 |xi|. We will show that theorem
2.27 holds for some C and D.

QV (x) =
∑
i,j

κijxixj(V (x− ei + ej)− V (x))

+

d∑
i=1

δixi(V (x− ei)− V (x)) +

d∑
i=1

λi(V (x+ ei)− V (x))

=

d∑
i=1

δixi(V (x− ei)− V (x)) +

d∑
i=1

λi(V (x+ ei)− V (x)

let Kn = {x ∈ Nd : xi ≥ n, ∀i}. For x ∈ Kn

QV (x) =V (x)

( d∑
i=1

δixi(e
−1 − 1) +

d∑
i=1

λi(ei − 1)

)

≤
(
(min

i
δi)(e

−1 − 1)dn+

d∑
i=1

λi(e− 1)

)
V (x)

we choose N such that

C = −
(
(min

i
δi)(e

−1 − 1)dN +

d∑
i=1

λi(e− 1)

)
> 0

then theorem 2.27 holds with D = 2Cmaxx∈KN
V (x), which implies X(t) is

non-explosive, positive recurrent and exponentially ergodic, moreover it implies
the existence of a unique stationary distribution π.
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A.3 Gillespie Algorithm

Mathematica code was modified, from a Mathematica stack exchange post by
Istvan Zachar [17], to work with our chemical reaction network. The code used
is shown in figure 11.

GillespieSSA[res : {__Rule}, in_Association,

rateconst_?VectorQ, influx_Association: ,

{mint_?NumberQ, maxt_?NumberQ, dstep_Integer: 1}] := Module[

{vars, reactant, product, balance, propensities, initialValues,

fluxRates, symRates, rep, stepList, iterations = 10^7, step,

compiled, times, rest},

(* Pre-generating a list is much faster than iteratively calling one-by-one. *)

stepList = N@RandomVariate[ExponentialDistribution@1, iterations + 1];

{vars, initialValues} = {Keys@in, Values@in};

{reactant, product} =

Outer[Coefficient[#1, #2] &, #, vars, 1] & /@

Transpose@(List @@@ res);

balance = product - reactant;

propensities =

Inner[Binomial[#2, #1] &, reactant, vars, Times]*

PadRight[rateconst, Length@res, 1];

fluxRates = If[influx === , 0 & /@ vars, vars /. influx];

Block[{count},

rep = Thread[vars  Table[Indexed[count, i], {i, Length@vars}]];

symRates = propensities /. rep;

compiled = ReleaseHold[

Hold@Compile[{

{init, _Integer, 1}, {flux, _Integer, 1}, {bal, _Integer, 2},

{dtList, _Real, 1}, {min, _Real}, {max, _Real},

{iter, _Integer}, {resol, _Integer}},

Module[{

count = init, rates, i = 1, c = 1, t = min, dt, ff, f, range,

r, fReal = 0. & /@ flux, rateSum, data = Internal`Bag[]},

rates = "SymbolicRates";

rateSum = N@Total@rates;

range = Range@Length@rates;

Internal`StuffBag[data, Internal`Bag[Join[{t}, N@count]]];

While[Total@count > 0. && rateSum > 0. && t ≤ max && i ≤ iter,

i++;

dt = dtList〚i〛/rateSum;

t = t + dt;

r = RandomChoice[rates  range];

(* Fractional part is carried over to minimize undersampling error *)

ff = (flux*dt) + fReal;

f = IntegerPart@ff;

fReal = ff - f;

(* `count` is maintained as an integer not to loose precision. *)

count = Max[0, #] & /@ (count + bal〚r〛 + f);

If[Mod[i, resol]  0, c++;

Internal`StuffBag[data, Internal`Bag[Join[{t}, N@count]]];];

rates = "SymbolicRates";

rateSum = N@Total@rates;

];

If[t < max && i < iter, c++;

Internal`StuffBag[data, Internal`Bag[Join[{max}, N@count]]]];

Table[Internal`BagPart[Internal`BagPart[data, j], All], {j, c}]

],

Parallelization  True , RuntimeAttributes  Listable,

RuntimeOptions  "Speed",

CompilationOptions  {"InlineExternalDefinitions"  True,

"InlineCompiledFunctions"  True}

] /. "SymbolicRates"  symRates];

{times, rest} = {First@#, Rest@#} &@Transpose@compiled[

Round@initialValues, N@fluxRates, Round@balance,

N@stepList, N@mint, N@maxt, Round@iterations, dstep];

Interpolation[Transpose@{Join[times,{times〚Length[times]〛+10^-4}],Join[{#〚1〛},#]},InterpolationOrder0] & /@ rest

]];

Figure 11: Mathematica code for Gillespie Algorithm
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