# Stationary Distributions for Asymmetrical Autocatalytic Reaction Networks with Discreteness-induced Transitions (DITs) 

Cameron Gallinger

A Thesis
in
The Department
of
Mathematics \& Statistics

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Mathematics) at Concordia University
Montreal, Quebec, Canada

December 2022
(C) Cameron Gallinger, 2022

## Concordia University School of Graduate Studies

This is to certify that the thesis prepared
By: Cameron Gallinger
Entitled: Stationary Distributions for Asymmetrical Autocatalytic Reaction Networks with Discreteness-induced Transitions (DITs)
and submitted in partial Fulfillment of the requirements for the degree of

## Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards with respect to originality and quality.
Signed by the final examining Committee:
$\qquad$

| $\overline{\text { Dr. W. Sun }}$ | Examiner |
| :--- | :--- |
| Dr. X. Zhou | Examiner |

Dr. X. Zhou

Supervisor
Dr. L. Popovic

Approved by:
Dr. Yogendra Chaubey
$\qquad$ 2022
Dean of Arts and Sciences


#### Abstract

Stationary distributions for asymmetrical autocatalytic reaction networks with discreteness-induced transitions (DITs) by

\section*{Cameron Gallinger}


The phenomenon of discreteness-induced transitions is highly stochastic dependent dynamics observed in a family of autocatalytic chemical reaction networks including the acclaimed Togashi Kaneko model. These reaction networks describe the behaviour of several different species interacting with each other, and the counts of species concentrate in different extreme possible values, occasionally switching between them. This phenomenon is only observed under some regimes of rate parameters in the network, where stochastic effects of small counts of species takes effect.

The dynamics for networks in this family is ergodic with a unique stationary distribution. While an analytic expression for the stationary distribution in the special case of symmetric autocatalytic behaviour was derived by Bibbona, Kim, and Wiuf, not much is known about it in the general case. Here we provide a candidate distribution for reaction networks when the autocatalytic rates are different. It was inspired by a model in population genetics, the Moran model with genic selection, which shares many similar reaction dynamics to our autocatalytic networks. We show that this distribution is stationary when autocatalytic rates are equal, and that it is close to stationary when they are not equal.

## Acknowledgements

I am immensely thankful to my supervisor, Dr. Lea Popovic, for her indispensable guidance and support during my studies, this thesis would not be possible without her motivation. Many thanks go to Dr. Xiaowen Zhou and Dr. Wei Sun who generously took time out of their schedules to be a part of my defence committee, their notes and feedback were extremely helpful in the completion of my thesis. Much appreciation to the faculty and administration of the math department, as well as the other students in my cohort.

To all my friends, your encouragement and camaraderie helped me get through my studies. I am extremely grateful to Joshua Marquis, Jen Huang, Geoffery Meugens, Anne-Catherine Lemonde, Jeremy Arnott, Daphnée Gangon, Patrick Holland, Bronwyn Ford, and Andrew Bayne; you have made the past two years more enjoyable and have kept me sane throughout. To my family James, Kathy and Erin; my success would not be possible without your continued support.

## Contents

1 Introduction ..... 1
2 Preliminaries ..... 2
2.1 Continuous time Markov Chains ..... 2
2.1.1 Lumpability ..... 5
2.2 Chemical reaction networks (CRNs) ..... 6
2.2.1 Mass-action kinetics ..... 6
2.2.2 Deterministic Model ..... 7
2.2.3 Stability of ODEs ..... 7
2.2.4 Stochastic Model ..... 9
2.2.5 Scaling of rate constants ..... 11
2.2.6 Positive recurrence and the Foster-Lyapunov criterion ..... 13
3 Models ..... 13
3.1 Togashi-Kaneko Model ..... 13
3.2 Bibbona-Kim-Wiuf Model ..... 15
3.3 Moran Model with genic Selection ..... 17
3.4 Effective Model ..... 19
4 Results ..... 20
4.1 The candidate distribution ..... 20
4.2 Partition Function ..... 21
4.3 Volume scaling ..... 23
4.4 Deterministic model ..... 26
4.5 Corner configuration ..... 27
4.6 Global Balance Equation ..... 28
4.7 Simulation ..... 35
4.7.1 The Gillespie Algorithm ..... 35
4.7.2 Simulations of 2D TK model ..... 37
4.8 Discussion ..... 38
References ..... 43
A Appendix ..... 44
A. 1 Theorems and Lemmas ..... 44
A. 2 Foster-Lyapunov Criterion for Bibbona-Kim-Wiuf model ..... 45
A. 3 Gillespie Algorithm ..... 46

## List of Figures

1 The distribution $\pi(a \mid n)$ in two dimensions is shown for different values of V while D is held constant in (a),(c), and (e) and the corresponding plots of the full distribution is shown in (b), (d) and (f) . In (a) and (b) $\mathrm{DV}_{\mathrm{i}} 1$ and the distribution is bimodal with most of the mass on the boundaries, (c) and (d) shows the critical case when $\mathrm{DV}=1$ and the distribution is uniform, in (e) and (f) $\mathrm{DV}=10$ and the distribution is unimodal with the mass centred when $a_{1}=a_{2}$. The distribution was plotted in one dimension by letting $a_{2}=n-a_{1}$ and the x-axis shows the number of $a_{1}$ molecules, $n$ was taken as the mean of $\nu(n)$, which is 2 V , for the

3 2D plots.

3 Plots of the full distribution $\Pi(a)$ at the critical case $D V=2$, we have $\alpha_{1}=1$ and $\alpha_{2}=1 / \kappa_{2}$. As $\kappa_{2}$ increases, we move from an almost uniform density in (a) to almost all the mass being in $a_{2}$ when $\kappa_{2}=1.1$ in (c)
(a)-(c) shows $\Pi(a)$ for $\kappa_{2}=1.001,1.01,1.1$ with $D=0.01, V=$ 2000 and $\kappa_{1}=1$. The distributions are unimodal and concentrated around the deterministic equilibria which are shown in (d)-(f) as numerical solutions to the system of ODE's in equation (4.15) with equilibrium points $c_{a}=(1801.96,2198.04), c_{b}=$ $(763.93,3236.07)$, and, $c_{c}=(97.5,3902.5)$. Note: range of the plot in (c) had to be changed due to computational issues.
 orange respectively. The functions were plotted for $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=$ $\delta=0.01, V=20$ and $\kappa_{2}=1.001$ as a function of n34

6 Values of B when $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=0.01, \kappa_{1}^{\prime}=1, \kappa_{2}^{\prime}=1.001$ and $V=20$34

7 B plotted with $\kappa_{1}^{\prime}=1, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=0.01, V=20$ and $\kappa_{2}^{\prime}=$ $1.0001,1.005,1.01,1.1$35

8 Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow with $\Pi(a)$ overlaid in blue. Volume scaled rates are $\kappa_{1}^{\prime}=1, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=D=0.01$ with volume $V=20$ for all 4 plots, $\kappa_{2}^{\prime}=1.001,1.01,1.05,1.1$ for (a),(b),(c), and (d) respectively. 38

9 Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow, with $\Pi(a)$ overlaid in blue. Volume and $D$ were varied while keeping $D V=0.2$ Volume scaled rates are $\kappa_{1}^{\prime}=1, \kappa_{2}^{\prime}=1.01, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=D$ with volume $V=10$ and $D=1 / 50$ in (a), $V=40$ and $D=1 / 200 \ldots 39$
10 Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow with $\Pi(a)$ overlaid in blue. $D$ was varied while keeping the volume fixed at $V=20$. Volume scaled rates are $\kappa_{1}^{\prime}=1, \kappa_{2}=1.01 \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=D$ with and $D=2 / 100,5 / 100,7 / 100,9 / 100$ in (a), (b), (c), and (d) respectively. 39
11 Mathematica code for Gillespie Algorithm . . . . . . . . . . . . . 46

## 1 Introduction

Discreteness-induced transitions (DITs) are a phenomenon observed in a family of chemical reactions which appear when the number of molecules reacting is sufficiently small that the dynamics of the system are not governed by deterministic equations. Togashi and Kaneko investigated these DITs in a small system of autocatalytic reactions, now known as the Togashi-Kaneko (TK) network. Togashi and Kaneko showed through simulations of the network that when the total number of molecules was sufficiently small the process ran contrary to the deterministic process, when the total number of molecules is high, which is governed by a system of differential equations. They observed a switching pattern where the system would switch between two states while spending little time in between; the states were at extremes where two species of molecules would hold the vast majority of the total population while the other two species were nearly extinct, there would then be fast switching events where the two species which were nearly extinct would hold the majority of the total population and the other two were nearly extinct. It is also shown that as they increased the total population, by increasing the volume of the container, the process was again governed by the deterministic equations.

To analyze the behaviour of these types of reactions when the total population is low Bibbona, Kim and Wiuf provide a theoretical analysis of a family of autocatalytic reactions which includes the acclaimed TK model. Modeling the system stochastically as continuous time Markov chains, they prove positive recurrence and ergodicity for reactions in the family, which in turn proves the existence of a unique stationary distribution for each system. While it is very difficult to compute a closed form stationary distribution for many of these systems Bibbona et al show that for symmetric autocatalytic rates and equal outflow rates the networks have a Dirichlet-multinomial distribution. They also show that with classical volume scaling under mass-action dynamics, as the volume is increased to infinity the system converges to the classical deterministic system.

In this thesis, we will borrow a distribution from a model in population genetics, the Moran model with genic selection. This distribution is stationary for a system with similar dynamics to the autocatalytic networks, but includes asymmetrical autocatalyic-like reactions. This distribution can be thought of as a weighted Dirichlet-multinomial distribution, and when the rates are symmetric it reduces to the distribution given by Bibbona et al. The candidate distribution also shows the presence of DITs when the parameters are in certain regimes, as the Bibbona-Kim-Wiuf distribution does as well. To determine if this distribution is in fact stationary for the model, we must show it satisfies the global balance condition. Unfortunately the balance equation is not identically zero for this particular distribution, but under certain parameter regimes we can show that the balance equation is very close to zero. Using classical volume scaling, we show that the distribution agrees to the classical deterministic model when the volume is large. We also compare the distribution to exact simulations of the reaction network using the Gillespie algorithm, and it lines up with the
simulation results very nicely.
Before we get to the results, we will first discuss the tools needed to get there. First we will go over continuous time Markov chains, we will use them to describe how the populations of different species of molecules in chemical reaction networks evolve and there are several tools which we can use to describe the long term behaviour of our systems. We then will discuss the field of chemical reaction networks. We will look at both the deterministic model which describes the networks when the total population is very large, and the stochastic model which captures nuances which are washed out in the approximations of the deterministic model. We then draw a connection between the two models by looking into classical volume scaling under mass-action dynamics and show that as the volume gets very large the stochastic model converges to the deterministic model.

## 2 Preliminaries

### 2.1 Continuous time Markov Chains

We will be modelling our chemical reactions as continuous time Markov chains, so there are a number of theorems we must go over to describe the long term behaviour of these processes. We will see that under certain conditions, the stationary or limiting distribution of the process must satisfy certain conditions. The following definitions and theorems have been adapted from Grimmet and Stirzaker's Probability and Random Processes [9] and Norris' Markov Chains [14] to align with our notation.

Let $X=\{X(t): t \geq 0\}$ be a family of Random variables in a countable state space $S$ indexed by $t \in[0, \infty)$

Definition 2.1 (Markov Property). The process $X$ satisfies the Markov property if

$$
\mathbb{P}\left(X\left(t_{n}\right)=j \mid X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n-1}\right)=i_{n-1}\right)=\mathbb{P}\left(X\left(t_{n-1}\right)=i_{n-1}\right)
$$

for all $j, i_{1}, \ldots, i_{n-1} \in I$ and any increasing sequence $t_{1}<t_{2}<\cdots<t_{n}$ of times.

Definition 2.2 (Right-Continuity). Let $X=\{X(t): t \geq 0\}$ be a random process taking values in $S$ a countable set. For a sample path $X(\cdot, \omega)$ corresponding to $\omega \in \Omega$ the sample space, we say $X(\cdot, \omega)$ is right-continuous if for $t \in[0, \infty)$ there exists an $\varepsilon_{t, \omega}>0$ such that

$$
X(t, \omega)=X(t+u, \omega) \quad \text { for } 0 \leq u<\varepsilon_{t, \omega}
$$

that is to say $X(\cdot, \omega)$ is constant on $[t, t+\varepsilon)$. $X$ is called right-continuous if all its sample paths are right continuous.

Definition 2.3. The process $X$ is a continuous time Markov chain (CTMC) if it is right-continuous and satisfies the Markov property.

Definition 2.4. the transition probability $p_{i j}(s, t)$ is defined

$$
\begin{equation*}
p_{i j}(s, t)=\mathbb{P}(X(t)=j \mid X(s)=i), \quad s \leq t \tag{2.1}
\end{equation*}
$$

the CTMC is called homogeneous if $p_{i j}(s, t)=p_{i j}(0, t-s)$ for all $i, j, s \leq t$ and we write $p_{i j}(t-s)$ for $p_{i j}(s, t)$

Definition 2.5. Let $P(t)$ be the $|S| \times|S|$ matrix with entries $p_{i j}(t)$. The family $\{P(t): t \geq 0\}$ is called the transition semigroup of the CTMC $X(t)$

Theorem 2.6. The family $\{P(t): t \geq>0\}$ is a stochastic semigroup, i.e. it satisfies
(i) $P(0)=I$ the $|S| \times|S|$ identity matrix
(ii) $P(t)$ is a stochastic matrix, its entries are non-negative and rows sum to 1
(iii) $P(t+s)=P(t) P(s)$ for $s, t \geq 0$ (Chapman-Kolmogorov equations)

Definition 2.7. the infinitesimal generator of $X(t)$ is defined as the onesided limit

$$
\begin{equation*}
Q=\lim _{h \rightarrow 0^{+}} \frac{P(h)-I}{h} \tag{2.2}
\end{equation*}
$$

and has the following properties:
(i) $\sum_{j} q_{i j}=0$
(ii) $q_{i j} \geq 0$ for $i \neq j$
(iii) $\sum_{\mathrm{J} \neq i} q i j=-q_{i i}$

Definition 2.8. the Kolmogorov forward equation is given by $P^{\prime}(t)=$ $P(t) Q$ or

$$
\begin{equation*}
p_{i j}^{\prime}(t)=\sum_{k} p_{i k}(t) q_{k j}, \quad \forall i, j \in S \tag{2.3}
\end{equation*}
$$

the Kolmogorov backward equation is given by $P^{\prime}(t)=Q P(t)$ or

$$
\begin{equation*}
p_{i j}^{\prime}(t)=\sum_{k} q_{i k} p_{k j}(t), \quad \forall i, j \in S \tag{2.4}
\end{equation*}
$$

Theorem 2.9. Let $S$ be a countable set and $Q$ a generator on $S$. Let $X$ be the Markov chain with generator $Q$.

1. the transition semigroup $\{P(t): t \geq 0\}$ of $X$ is the non-negative solution of the backward equation $\frac{d P}{d t}=Q P(t)$, subject to $P(0)=I$ the identity matrix.
2. the semigroup $\left\{P_{t}\right\}$ is also the non-negative solution of the forward equation $\frac{d P}{d t}=$ $P(t) Q$.

Definition 2.10. $X(t)$ is called irreducible if for any pair of states $i, j$ we have $p_{i j}(t)>0$ for some $t$
Definition 2.11. The state $i \in S$ is called recurrent if

$$
\begin{equation*}
\mathbb{P}(\{t \geq 0: X(t)=i\} \text { is unbounded }\})=1 \tag{2.5}
\end{equation*}
$$

$i$ is called transient if

$$
\begin{equation*}
\mathbb{P}(\{t \geq 0: X(t)=i\} \text { is unbounded }\})=0 \tag{2.6}
\end{equation*}
$$

Theorem 2.12. the following dichotomy holds:
(i) if $\sum_{j \neq i} q_{i j}=0$ or $\mathbb{P}(\inf \{t: X(t)=i\}<\infty \mid X(0)=i)=1$ then $i$ is recurrent and $\int_{0}^{\infty} p_{i i}(t) d t=\infty$
(ii) if $\sum_{j \neq i} q_{i j}=0$ and $\mathbb{P}(\inf \{t: X(t)=i\}<\infty)<1$ then $i$ is transient and $\int_{0}^{\infty} p_{i i}(t) d t<\infty$
Definition 2.13. if $\sum_{j \neq i} q_{i j}=0$ or the mean time to return to state $i$ is finite, i.e. $\mathbb{E}[\inf \{t: X(t)=i\} \mid X(0)=i]<\infty$ the state $i$ is called positive recurrent

Definition 2.14. The CTMC $X(t)$ is called non-explosive if any of the following conditions hold
(i) $S$ is finite
(ii) $\sup _{i} \sum_{j} q_{i j}<\infty$
(iii) $X(0)=i$ where $i$ is a recurrent state

Definition 2.15. Suppose $X$ is irreducible and non-explosive with transition semigroup $\{P(t): t \geq 0\}$. The vector $\pi$ is a stationary measure for $X$ if $\pi=\pi P(t)$ for $t \geq 0$. If $\sum_{i} \pi_{i}=1 \pi$ is called a stationary distribution.
Theorem 2.16. Let $X$ be an irreducible Markov chain with state space $S$.

1. if some $k \in S$ is positive recurrent, there exists a unique stationary distribution $\pi$ which satisfies $\pi Q=0$, and all states are positive recurrent.
2. if $X$ is non-explosive and there exists a distribution $\pi$ satisfying $\pi Q=0$ then: i) all states are positive recurrent, ii) $\pi$ is stationary, and iii) $\pi_{k}=$ $1 /\left(m_{k} q_{k}\right) \forall k \in I$ where $m_{k}$ is the expected return time to $k$
Note: the system of equations $Q \pi=0$ is known as the Global Balance equation

Theorem 2.17 (Markov chain limit theorem). Let $X$ be irreducible and nonexplosive.

1. if the stationary distribution $\pi$ exists, then it is unique and

$$
p_{i j}(t) \rightarrow \pi_{j} \text { as } t \rightarrow \infty \quad \forall i, j
$$

2. if there is no stationary distribution, then

$$
p_{i j} \rightarrow 0 \text { as } t \rightarrow \infty
$$

### 2.1.1 Lumpability

Since the Markov Chains we will be working with have inflow and outflow reactions, that is the total population is changing in time as well as the individual populations of the species, we need a tool to help us separate the internal reactions from the inflow and outflow. We turn to the notion of lumpability which gives criteria for the construction of a new Markov chain on a partition of the state space, the following definitions and theorems for lumpability for CTMCs with countable state spaces are taken from [5]. Let $X(t)$ be a CTMC on a countable state space $S=\left\{e_{1}, e_{2}, \ldots\right\}$ with semigroup $P(t)=\left\{p_{i j}(t)\right\}_{i, j \in S}$, and generator $Q$; without loss of generality we will take $S=\mathbb{N}$. Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be some partition on $\mathbb{N}$, we define a function

$$
\begin{align*}
& h: \mathbb{N} \rightarrow \mathbb{N} \\
& h(i)=j \Longleftrightarrow i \in E_{j} \tag{2.7}
\end{align*}
$$

we define $\bar{X}(t)=h(X(t))$ to be the lumped process with respect to the partition $\mathcal{E}$

Definition 2.18. let $v=\left(v_{1}, v_{2}, \ldots\right)$ be an initial probability vector for the CTMC $X(t)$, we say
(i) $X(t)$ is lumpable with respect to $\mathcal{E}$ and $v$ if $\bar{X}(t)$ is a CTMC given $X(t)$ has initial probability vector $v$
(ii) $X(t)$ is strongly lumpable with respect to $\mathcal{E}$ if it is lumpable for any initial probability vector $v$
(iii) $X(t)$ is weakly lumpable with respect to $\mathcal{E}$ if it is lumpable for at least one initial probability vector $v$

Suppose $X(t)$ is weakly lumpable with respect to $v$, let $\hat{p}_{i j}$ be the transition probabilities for the lumped chain $\bar{X}(t)$ and $\left.\hat{P}(t)=\left[\hat{p_{i j}}\right]\right)$ the semigroup. For all $s \geq 0$

$$
\begin{aligned}
\hat{p}_{i j}(t) & =\mathbb{P}_{v}\left(X(t+s) \in E_{j} \mid X(s) \in E_{i}\right) \\
& =\frac{\sum_{k \in E_{i}} \mathbb{P}_{v}(X(s)=k) \mathbb{P}\left(X(t+s) \in E_{j} \mid X(s)=k\right)}{\sum_{k \in E_{i}} \mathbb{P}_{v}(X(s)=k)} \\
& =\frac{\sum_{k \in E_{i}} \mathbb{P}_{v}(X(s)=k) \mathbb{P}\left(X(t) \in E_{j} \mid X(0)=k\right)}{\sum_{k \in E_{i}} \mathbb{P}_{v}(X(s)=k)}
\end{aligned}
$$

where in the last line we use the fact that $X(t)$ is time homogeneous. Letting $s \rightarrow \infty$ we have

$$
\begin{equation*}
\hat{p}_{i j}(t)=\sum_{k \in E_{i}} \pi_{k}^{(i)} \sum_{l \in E_{j}} p_{k l}(t) \tag{2.8}
\end{equation*}
$$

where

$$
\pi_{k}^{(i)}=\frac{\pi_{k}}{\sum_{j \in E_{i}} \pi_{j}} \mathbb{1}_{k \in E_{i}}
$$

Theorem 2.19. The CTMC $X(t)$ on the state space $S=\left\{e_{1}, e_{2}, \ldots\right\}$ is strongly lumpable on the partition $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ provided
(i) $X(t)$ is irreducible, positive recurrent with stationary distribution $\pi$
(ii) every $E_{i}$ is finite
(iii) $\forall E_{i}, E_{j} \in \mathcal{E}$ and $\forall i, i^{\prime} \in E_{i}$

$$
\sum_{j \in E_{j}} q_{i j}=\sum_{j \in E_{j}} q_{i^{\prime} j}=\bar{q}_{E_{i} E_{j}}
$$

Where $\bar{q}_{E_{i} E_{j}}$ are the transition rates of the lumped chain $\bar{X}(t)$.
Since $\bar{X}(s)=E_{i} \Longleftrightarrow X(s) \in E_{i}$

$$
\begin{equation*}
\mathbb{P}\left(\bar{X}(t)=j \mid X(s)=i, \bar{X}(s)=E_{i}\right)=\mathbb{P}\left(\bar{X}(t)=j \mid \bar{X}(s)=E_{i}\right) \tag{2.9}
\end{equation*}
$$

That is, $\bar{X}(t)$ is independent of $X(s)$ given $\bar{X}(s)$. [6]

### 2.2 Chemical reaction networks (CRNs)

The following definitions and theorems on CRNs have been compiled from a survey [2] and textbook [3] by David F. Anderson and Thomas G. Kurtz as well as some unpublished lecture notes [1] by Anderson.

Definition 2.20. A Chemical reaction network is described by the triple $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ where
(i) $\mathcal{S}=\left\{S_{1}, \ldots, S_{d}\right\}$ is the set of species
(ii) $\mathcal{C}$ is the set of complexes, which consist of linear combinations of the species with non-negative integer coefficients
(iii) $\mathcal{R}$ the set of reactions, a binary relation on the complexes $y_{k}$ an example of a CRN is given by the graph

$$
\begin{equation*}
A+B \rightarrow C \quad C+B \rightarrow B \quad \emptyset \rightarrow A \tag{2.10}
\end{equation*}
$$

### 2.2.1 Mass-action kinetics

Consider a system with $\mathcal{S}=\left\{S_{1}, \ldots, S_{d}\right\}$ and kth reaction $y_{k} \rightarrow y_{k}^{\prime} \in \mathcal{R}$. We denote the rate of the reaction $\lambda_{k}(x)$ where $x \in \mathbb{R}_{\geq 0}^{d}$. For two vectors $u, v \in \mathbb{R}_{\geq 0}^{d}$ we define

$$
\begin{equation*}
u^{v}=\prod_{i=1}^{d} u_{i}^{v_{i}} \tag{2.11}
\end{equation*}
$$

with $0^{0} \equiv 1$. The kinetics of the reaction $y_{r} \rightarrow y_{r}^{\prime}$ is called mass-action kinetics if for $x \in \mathbb{R}_{\geq 0}^{d}$

$$
\begin{equation*}
\lambda_{r}(x)=\kappa_{r} x^{y_{r}} \tag{2.12}
\end{equation*}
$$

where $\kappa_{r}>0$ is the rate constant for the rth reaction. Some examples of source complexes and their mass action rates:

$$
\begin{array}{cc}
S_{1} \rightarrow * & \kappa x_{1} \\
S_{1}+S_{2} \rightarrow * & \kappa x_{1} x_{2} \\
\emptyset \rightarrow * & \kappa
\end{array}
$$

### 2.2.2 Deterministic Model

Consider a chemical reaction network $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ where the populations of the species are so high that a deterministic model accurately captures the dynamics of their concentrations. Let $x(t) \in \mathbb{R}_{\geq 0}^{n}$ be the vector where $x_{i}(t)$ models the concentration of species $S_{i}$ at time $t$, then the deterministically modelled system is given by the Ordinary differential equation (ODE)

$$
\begin{equation*}
\dot{x}(t)=\sum_{r} \kappa_{r} x(t)^{y_{r}}\left(y_{r}^{\prime}-y_{r}\right) \tag{2.13}
\end{equation*}
$$

Where $y_{r} \rightarrow y_{r}^{\prime}$ is the rth reaction with $y_{r}, y_{r}^{\prime} \in \mathbb{Z}^{d}$. For example, the network:

$$
\begin{equation*}
S+I \rightarrow 2 I \quad I \rightarrow S \tag{2.14}
\end{equation*}
$$

is governed by the deterministic system of ODEs

$$
\begin{align*}
\dot{x}_{S} & =-\kappa_{1} x_{S} x_{I}+\kappa_{2} x_{I}  \tag{2.15}\\
\dot{x}_{I} & =\kappa_{1} x_{S} x_{I}-\kappa_{2} x_{I}
\end{align*}
$$

We can also represent equation (2.13) in integral form as

$$
\begin{equation*}
x(t)=x(0)+\sum_{r}\left(\int_{0}^{t} \kappa_{r} x(s)^{y_{r}} d s\right)\left(y_{r}^{\prime}-y_{r}\right) \tag{2.16}
\end{equation*}
$$

### 2.2.3 Stability of ODEs

Consider a system of ODEs in some domain $D \subset \mathbb{R}^{d}$

$$
\begin{equation*}
\dot{x}(t)=f\left((x(t)), \quad x(0)=x_{0} \in D\right. \tag{2.17}
\end{equation*}
$$

We call a point $c$ a equilibrium point or fixed point if $f(c)=0$. At $c$ the derivative with respect to time is 0 , so the system is not changing at $c$, moreover if $x(0)=c$ then $x(t)=c$ for all $t$.

Definition 2.21. The equilibrium point $c$ is said to be locally stable if

$$
\begin{equation*}
\exists \varepsilon>0 \ni x(0) \in B_{\varepsilon}(c) \Longrightarrow \lim _{t \rightarrow \infty} x(t)=c \tag{2.18}
\end{equation*}
$$

The equilibrium point $c$ is said to be globally stable if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=c \quad \forall x(0) \in D \tag{2.19}
\end{equation*}
$$

A system may have multiple equilibrium points, unless it is globally stable, in which case there is only one equilibrium point. To prove local or global stability, we will use Linear stability analysis and Lyapunov functions.

Suppose $c$ is a equilibrium point (i.e. $\mathrm{f}(\mathrm{c})=0$ ), let us take a Taylor expansion around $c$ of the right-hand side of (2.17)

$$
\begin{align*}
\dot{x} & =f(c)+\left.\frac{\partial f}{\partial x}\right|_{c}(x-c)+\ldots \\
& =\left.\frac{\partial f}{\partial x}\right|_{c}(x-c)+\ldots \tag{2.20}
\end{align*}
$$

$\frac{\partial f}{\partial x}$ is interpreted as the Jacobian matrix, $J$, given by:

$$
J=\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}  \tag{2.21}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

We now define $\delta x:=x-c$, taking the derivative with respect to $t$ we have $\dot{\delta x}=\dot{x}$ if $\delta x \ll 1$ then only the first term in our Taylor expansion is significant as the other terms involve higher powers of a small displacement from our point of interest $c$. we have

$$
\begin{equation*}
\dot{\delta x}(t)=\left.J\right|_{x=c} \delta x \tag{2.22}
\end{equation*}
$$

$\left.J\right|_{x=c}$ is a constant matrix, so this is just a linear ODE, the solution of which can be written as a superposition of terms $e^{\lambda_{i} t}$, where $\lambda_{i}$ are eigenvalues of the Jacobian. Let $\lambda_{i}=a_{i}+i b_{i}$ then our solution is a superposition of terms with

$$
\begin{equation*}
e^{\lambda_{i} t}=e^{a_{i} t}\left(\cos \left(b_{i} t\right)+i \sin \left(b_{i} t\right)\right) \tag{2.23}
\end{equation*}
$$

The imaginary part of the eigenvalue gives an oscillatory component to the solution, while the real part is part of the exponential term in $t$. If $a_{i}>0$ for some, $i$ then the trajectories will move away from $c$.

Theorem 2.22. A equilibrium point $c$ of a system of ODEs as in (2.17) is called linearly stable if all the eigenvalues of the Jacobian evaluated at $x=c$ have negative real parts. The equilibrium point in unstable if at least one of the eigenvalues has a positive real part.

Linear stability tells us how the system behaves near the equilibrium point, but gives us little information on what happens farther away. For a more global analysis of stability, we turn to the technique of Lyapunov functions. We consider again the system in (2.17) and assume there is a $c$ which satisfies $f(c)=0$. We also assume the existence of a continuous function $V: D \rightarrow \mathbb{R}_{\geq 0}$ which satisfies
(i) $V(x) \geq 0 \quad \forall x \in D$
(ii) $V(c)=0$ and $V(x)>0$ if $x \neq c$
(iii) The sublevel sets of V are bounded. That is, $\forall a$ the set

$$
V_{a}:=\{z \in D: V(z) \leq a\}
$$

is bounded. This implies $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$
Theorem 2.23. If for $a>0$ we have

$$
\begin{equation*}
\nabla V(x) \cdot f(x)<0, \quad \forall x \in V_{a} \quad y \neq c \tag{2.24}
\end{equation*}
$$

then $c$ is locally stable. If

$$
\begin{equation*}
\nabla V(x) \cdot f(x)<0, \quad \forall x \in D \quad x \neq c \tag{2.25}
\end{equation*}
$$

and $V(x) \rightarrow \infty$ so long as $x \rightarrow \partial D$ (The boundary or $\infty$ ), then we have global asymptotic stability.

### 2.2.4 Stochastic Model

When the populations of species in a CRN are not sufficiently large we cannot utilize the deterministic approach, instead we turn to a stochastic approach using continuous time Markov chains. We consider a CRN $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ with $d$ species $S=\left\{S_{1}, \ldots, S_{d}\right\}$, state of the network is given by $X(t) \in \mathbb{Z}_{\geq 0}^{d}$, a vector giving counts of each of the species. $X(t)$ is a CTMC with transitions determined by the reactions. For the reaction, $y_{r} \rightarrow y_{r}^{\prime}$, we assume an intensity function $\lambda_{r}(x)$ and define $\zeta_{r}=\left(y_{r}^{\prime}-y_{r}\right)$. The transition rates are given by:

$$
\begin{equation*}
q_{x, y}=\sum_{r \in \mathcal{R}, \zeta_{r}=y-x} \lambda_{r}(x) \tag{2.26}
\end{equation*}
$$

i.e. the transition rates are the sum of all the reaction rates whose reaction vectors take you from state $x$ to state $y$. The Kolmogorov Forward equation $P^{\prime}(t)=P(t) Q, \quad P(0)=I$ can be written component wise

$$
\begin{gather*}
p_{i j}^{\prime}(t)=\sum_{k} q_{k j} p_{i k}(t), \quad p_{i j}(0)=\delta_{i j}  \tag{2.27}\\
p_{i j}^{\prime}(t)=\sum_{k, k \neq j} q_{k j} p_{i k}(t)-\left(\sum_{i} q_{j i}\right) p_{i j}(t), \quad p_{i j}(0)=\delta_{i j}  \tag{2.28}\\
p_{i j}^{\prime}(t)=\sum_{k, k \neq j} \sum_{r \in \mathcal{R}, \zeta_{r}=j-k} \lambda_{r}(k) p_{i k}(t)-\left(\sum_{r \in \mathcal{R}} \lambda_{r}(j)\right) p_{i j}(t), \quad p_{i j}(0)=\delta_{i j}  \tag{2.29}\\
p_{i j}^{\prime}(t)=\sum_{r \in \mathcal{R}} \lambda_{r}\left(j-\zeta_{r}\right) p_{i,\left(j-\zeta_{r}\right)}(t)-\left(\sum_{r \in \mathcal{R}} \lambda_{r}(j)\right) p_{i j}(t), \quad p_{i j}(0)=\delta_{i j} \tag{2.30}
\end{gather*}
$$

This equation is called the master equation, the first term sums all reactions moving into $j$ and the second term collects all the terms leaving $j$. Here $p_{i j}$ is the transition probability function, defined as $p_{i j}(t):=\mathbb{P}(X(t+s) \mid X(s)=i)$. Recalling that if $X(t)$ is non-explosive and there exists a distribution $\pi$ satisfying $\pi Q=0$ then $\pi$ is stationary, also if $\pi$ exists then $p_{i j}(t) \rightarrow \pi_{j}$ as $t \rightarrow \infty$.

Definition 2.24. the intensity function $\lambda_{r}$ satisfies stochastic mass-action kinetics if there is a rate constant $\kappa_{r}$ such that for $x \in \mathbb{Z}^{d}$

$$
\lambda_{r}(x)=\kappa_{r} \prod_{i=1}^{d} \frac{x_{i}!}{\left(x_{i}-y_{i}\right)!} I_{x_{i} \geq y_{i}}
$$

and the system is said to satisfy mass-action kinetics if each reaction does.
Denote the filtration giving all the information up to time $t$ as $\mathcal{F}_{t}$. we have

$$
\begin{align*}
& P\left(X(t+h)=X(t) \mid \mathcal{F}_{t}\right)=1-\sum_{r} \lambda_{r}(X(t)) h+o(h)  \tag{2.31}\\
& P\left(X(t+h)=X(t)+\zeta_{r} \mid \mathcal{F}_{t}\right)=\sum_{y_{k} \rightarrow y_{k}^{\prime}, \zeta_{k}=\zeta_{r}} \lambda_{r}(X(t)) h+o(h) \tag{2.32}
\end{align*}
$$

in the case where the reaction vectors $\zeta_{r}$ are unique, we have

$$
P\left(X(t+h)=X(t)+\zeta_{r} \mid \mathcal{F}_{t}\right)=\lambda_{r}(X(t)) h+o(h)
$$

We define $N_{r}(t)$ to be the number of times the $r$ th reaction has occurred by time $t$, and can write:

$$
\begin{align*}
X(t) & =X(0)+\sum_{r \in \mathcal{R}} N_{r}(t) \zeta_{r}  \tag{2.34}\\
P\left(N_{r}(t+h)-N_{r}(t) \mid \mathcal{F}_{t}\right) & =1-\lambda_{r}(X(t)) h+o(h)  \tag{2.35}\\
P\left(N_{r}(t+h)-N_{r}(t) \mid \mathcal{F}_{t}\right) & =1-\sum_{y_{k} \rightarrow y_{k}^{\prime}, \zeta_{k}=\zeta_{r}} \lambda_{r}(X(t)) h+o(h) \tag{2.36}
\end{align*}
$$

The counting process $N_{r}(t)$ can be modelled via independent Poisson processes. We define $\left\{Y_{1}, \ldots, Y_{R}\right\}$ as independent unit-rate Poisson processes. If we let $X$ be the solution of the equation:

$$
\begin{equation*}
X(t)=X(0)+\sum_{r} N_{r}(t) \zeta_{r} \tag{2.38}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{r}(t)=Y_{r}\left(\int_{0}^{t} \lambda_{r}(X(s)) d s\right) \tag{2.39}
\end{equation*}
$$

then $X(t)$ satisfies (2.31) and (2.35), that is the solution to the stochastic equation

$$
\begin{equation*}
X(t)=X(0)+\sum_{r} Y_{r}\left(\int_{0}^{t} \lambda_{r}(X(s)) d s\right) \zeta_{r} \tag{2.40}
\end{equation*}
$$

Is a realization of the stochastic CRN. Note also the similarity to equation (2.16) in the deterministic model. This representation was developed by Thomas G. Kurtz in [2, 11].

### 2.2.5 Scaling of rate constants

To connect the stochastic and deterministic models, we look at how they each represent the abundance of each molecule. In the stochastic model each species is represented by the number of its molecules, in the deterministic model the species are represented by their concentrations i.e. number of molecules per litre. To draw a connection we must take into account the volume, we do so by introducing a scaling parameter $V$ which is proportional to the volume of the system. $V$ typically is defined as the volume times Avogadro's number $\left(6.022 \times 10^{2} 3\right)$, in any case we will simply refer to the parameter $V$ as the volume and think of it as having some proportionality to the volume of the system. Let $X(t)$ be our process which gives the counts of the species, we define $\bar{X}(t):=X(t) / V$, which gives the concentration of the different species. The stochastic equation in (2.40) for our scaled process is given as:

$$
\begin{equation*}
\bar{X}(t)=\bar{X}(0)+\sum_{r} \frac{1}{V} Y_{r}\left(\int_{0}^{t} \lambda_{r}(V \bar{X}(s)) d s\right) \zeta_{r} \tag{2.41}
\end{equation*}
$$

under classical scaling the rate constants scale as such

$$
\begin{equation*}
\kappa_{r}=V^{-\left(\sum_{i}\left(y_{r}\right)_{i}-1\right)} \kappa_{r}^{\prime} \tag{2.42}
\end{equation*}
$$

 example reactions: for the reaction

$$
\emptyset \rightarrow *
$$

we have $\kappa_{r}=V \kappa_{r}^{\prime}$ so $\lambda_{r}(V x)=V \kappa_{r}^{\prime}$ if we take $\lambda_{r}(x)=\kappa_{r}^{\prime}$ then $\lambda_{r}(V \bar{X}(s))=$ $V \lambda_{r}(\bar{X}(s))$.

For the reaction

$$
S_{i} \rightarrow *
$$

we have $\kappa_{r}=\kappa_{r}^{\prime}$ and again $\lambda_{r}(V \bar{X}(s))=V \lambda_{r}(\bar{X}(s))$. For the reaction

$$
S_{1}+S_{2} \rightarrow *
$$

We have $\kappa_{r}=\kappa_{r}^{\prime} / V$ and $\lambda_{r}(V x)=\kappa_{r}^{\prime} / V\left(V x_{1}\right)\left(V x_{2}\right)=V \lambda(x)$ again $\lambda_{r}(V \bar{X}(s))=$ $V \lambda_{r}(\bar{X}(s))$. For the reaction

$$
2 S_{1} \rightarrow *
$$

we have $\kappa_{r}=\kappa_{r}^{\prime} / V$ and $\lambda_{r}(V x)=\kappa_{r}^{\prime} / V\left(V x_{1}\right)\left(V x_{1}-1\right)=V \kappa_{r}^{\prime} x_{1}^{2}(1-1 / V)$ this time $\lambda_{r}(V \bar{X}(s)) \neq V \lambda_{r}(\bar{X}(s))$, but as $V \rightarrow \infty \lambda_{r}(V \bar{X}(s)) \approx V \lambda_{r}(\bar{X}(s))$

In general

$$
\begin{equation*}
\lambda_{r}(V \bar{X}(s)) \approx V \lambda_{r}(\bar{X}(s)) \tag{2.43}
\end{equation*}
$$

Theorem 2.25. Let $\bar{X}(t)$ be the volume scaled process as defined above, and $x(t)$ be the solution of the system of $O D E s$ in 2.13. Let $T>0$. If $\bar{X}(0) \xrightarrow{\text { a.s. }} x(0)$ as $V \rightarrow \infty$, then

$$
\begin{equation*}
\sup _{t \leq T}|\bar{X}(t)-x(t)| \xrightarrow{\text { a.s. }} 0 \quad \text { as } V \rightarrow \infty \tag{2.44}
\end{equation*}
$$

Proof. because there is a conserved quantity, there is some $M>0$ such that

$$
\begin{align*}
& \sup _{t} \leq T \mid \lambda_{r}(\bar{X}(t) \mid \leq M \\
& \bar{X}(t)-x(t)= \bar{X}(0)-x(0)+\sum_{r} \frac{1}{V}\left[Y_{r}\left(V \int_{0}^{t} \lambda_{r}(\overline{(X})(s) d s\right)-V \int_{0}^{t} \lambda_{r}(\bar{X}(s)) d s\right] \zeta_{r} \\
&+\sum_{r}\left[\int_{0}^{t} \lambda_{r}\left(\bar{X}(s) d s-\int_{0}^{t} \lambda_{r}(x(s)) d s\right] \zeta_{r}\right. \tag{2.45}
\end{align*}
$$

where $\sum_{r} \int_{0}^{t} \lambda_{r}\left(\bar{X}(s) d s \zeta_{r}\right.$ has been added and subtracted. We have

$$
\begin{equation*}
\int_{0}^{t} \lambda_{r}(\bar{X}(s)) d s \leq M T \quad t \leq T \tag{2.46}
\end{equation*}
$$

by (2.43) and using theorem A. 1 for a unit rate Poisson process Y with probability one we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sup _{u \leq u_{0}}\left|\frac{Y(n u)}{n}-u\right|  \tag{2.47}\\
\lim _{V \rightarrow \infty} \sup _{t \leq}\left|\sum_{r} \frac{1}{V}\left[Y_{r}\left(V \int_{0}^{t} \lambda_{r}(\overline{( } X)(s) d s\right)-V \int_{0}^{t} \lambda_{r}(\bar{X}(s)) d s\right] \zeta_{r}\right|=0 \tag{2.48}
\end{gather*}
$$

using our approximation $\lambda_{r}(\bar{X}(s)) \approx V \lambda_{r}(\bar{X}(s))$ and the fact the $\lambda_{r}$ are Lipschitz there exists a $C>0$ such that for every $u \leq T$

$$
\begin{aligned}
\sup _{t \leq u} \mid \sum_{r}\left[\int_{0}^{t} \lambda_{r}\left(\bar{X}(s) d s-\int_{0}^{t} \lambda_{r}(x(s)) d s\right] \zeta_{r} \mid\right. & \leq C \sup _{t \leq u} \int_{0}^{t}|\bar{X}(s)-x(s)| d s \\
& \leq \int_{0}^{u} \sup _{r \leq s}|\bar{X}(r)-x(r)| d s
\end{aligned}
$$

for $u \in[0, T]$ we define

$$
\begin{equation*}
g(u)=\sup _{r \leq u}|\bar{X}(r)-x(r)| \tag{2.49}
\end{equation*}
$$

applying $g$ to equation (2.45) we have

$$
\begin{equation*}
g(u)=\leq|\bar{X}(0)-x(0)|+C \int_{0}^{t} g(s) d s+\varepsilon^{V} \tag{2.50}
\end{equation*}
$$

Using Gronwall's inequality (see Lemma A. 8 [3]) we have

$$
\begin{equation*}
g(u) \leq \varepsilon^{V} e^{C}+|\bar{X}(0)-x(0)| \tag{2.51}
\end{equation*}
$$

Taking the limit as $V \rightarrow \infty$ completes the proof.
We have connected the stochastic model to the deterministic model by scaling our stochastic process (CTMC) by the volume, and have shown under the limit as $V \rightarrow \infty$ the volume scaled process converges to the solution of the system of ODEs.

### 2.2.6 Positive recurrence and the Foster-Lyapunov criterion

Recall to prove the existence of a stationary distribution we must prove positive recurrence of the CTMC, we turn to the Foster-Lyanpunov criterion to aid us in proving positive recurrence for our chemical reaction networks.

Definition 2.26. the infinitesimal generator for a Markov process is the operator $Q$ acting on functions $f: \mathbb{Z}_{\geq 0}^{d} \rightarrow \mathbb{R}$ defined as:

$$
\begin{equation*}
Q f(x)=\lim _{h \rightarrow 0} \frac{\mathbb{E}_{x}[f(X(h))]-f(x)}{h} \tag{2.52}
\end{equation*}
$$

note that for countable state spaces this operator is the same as definition 2.7
for our models we have

$$
\begin{aligned}
\mathbb{E}_{x}[f(X(h))] & =\left(\sum_{r \in \mathcal{R}} f\left(x+\zeta_{r}\right) P_{x}\left(X(h)=x+\zeta_{r}\right)\right)+f(x) P_{x}(X(h)=x)+o(h) \\
& =\left(\sum_{r \in \mathcal{R}} f\left(x+\zeta_{r}\right) \lambda_{r}(x) h+o(h)\right)+f(x)\left(1-\sum_{r \in \mathcal{R}} \lambda_{r}(x) h+o(h)\right)+o(h) \\
& =\sum_{r \in \mathcal{R}} \lambda_{r}(x)\left(f\left(x+\zeta_{r}\right)-f(x)\right) h+f(x)+o(h)
\end{aligned}
$$

and

$$
\begin{equation*}
Q f(x)=\sum_{r \in \mathcal{R}} \lambda_{r}(x)\left(f\left(x+\zeta_{r}\right)-f(x)\right) \tag{2.53}
\end{equation*}
$$

the following theorem from [12] as been slightly modified for countably infinite state spaces by Bibbona et al in [6].

Theorem 2.27 (Foster-Lyapunov Criterion). let $X(t)$ CTMC on a countable state space $S . X(t)$ is non-explosive, and positive recurrent if there exists a norm-like (Lyapunov) function $V$ on $S$ and positive constants $C, D>0$ such that

$$
\begin{equation*}
Q V(x) \leq-C V(x)+D, \quad \forall x \in S \tag{2.54}
\end{equation*}
$$

Moreover, $X(t)$ admits a unique stationary distribution $\pi$ and $\exists B>0$ and $\beta \in(0,1)$ such that

$$
\begin{equation*}
\sup _{A}\left|P^{t}(x, A)-\pi(A)\right| \leq B V(x) \beta^{t}, \quad \forall x \in S \tag{2.55}
\end{equation*}
$$

## 3 Models

### 3.1 Togashi-Kaneko Model

Togashi and Kaneko observed the appearance of unusual reaction dynamics in a small autocatalytic system when the total number of reacting molecules was made small. The Togashi-Kaneko (TK) model consists of 4 types of molecules
in a well stirred container with a reservoir that allows molecules to diffuse in and out of the container. The network is given graphically as

$$
\begin{gather*}
A_{1}+A_{2} \xrightarrow{\kappa} 2 A_{2} \quad A_{2}+A_{3} \xrightarrow{\kappa} 2 A_{3} \quad A_{3}+A_{4} \xrightarrow{\kappa} 2 A_{4} \quad A_{4}+A_{1} \xrightarrow{\kappa} 2 A_{1} \\
\emptyset \stackrel{\lambda}{\rightleftharpoons} A_{i} \tag{3.1}
\end{gather*}
$$

Where $\kappa$ is the rate of the autocatalytic reactions and, $\lambda$ and $\delta$ are the diffusion into and out of the container. Classical volume scaling is utilized with $A_{i}=N_{i} / V$ where $N_{i}$ is the number of $i$ molecules and $V$ is the volume of the container. The state of the system is given by the tuple $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and the transition rates are

$$
\begin{gathered}
q_{a, a-e_{i}+e_{i+1}}=\kappa a_{i} a_{i+1}, i=1,2,3 \quad q_{a, a-e_{4}+e_{1}}=\kappa a_{4} a_{1} \\
q_{a, a+e_{i}}=\lambda \quad q_{a, a-e_{i}}=\delta a_{i}
\end{gathered}
$$

under classical scaling, the rate constants are given by:

$$
\kappa=\frac{\kappa^{\prime}}{V} \quad \delta=\delta^{\prime} \quad \lambda=\lambda^{\prime} V
$$

In [16] the authors linearly scale time to let $\kappa^{\prime}=1$, and they set $\delta^{\prime}=\lambda^{\prime}=D$. As discussed in section 2.2.2 when the populations of species are large enough the evolution of their concentrations can be described by a system of ODEs

$$
\begin{equation*}
\frac{d a_{i}}{d t}=\kappa a_{i-1} a_{i}-\kappa a_{i} a_{i+1}+D s_{i}-D a_{i} \tag{3.2}
\end{equation*}
$$

where $s_{i}$ is the concentration of each molecule in the reservoir, the authors take $s_{i}=s$ for each species. The above system has a unique attractor at the equilibrium point $a_{i}=s$, and the Jacobian evaluated at the equilibrium point has a complex eigenvalue. The complex eigenvalue leads to oscillations around the equilibrium point with a frequency $\omega_{p}=\frac{\kappa s}{\pi}$. The authors then replace the deterministic reaction model with the Langevin equation by adding a noise term to (3.2), the concentrations again fluctuate around the equilibrium point with the dynamics of $\omega_{p}$. As the strength of the noise term was increased, no decrease in the total number of molecules was observed. Through direct simulation of the reaction model it was observed that when $D$ and $V$ are large enough the results agreed with the Langevin equation with small fluctuations around its equilibrium, However as $V$ was made small enough a behaviour not captured by the ODE approach was observed. As $V$ decreased the authors noted two states, the first where $N_{1}$ and $N_{3}$ were large and $N_{2}, N_{4} \approx 0$ and the second where $N_{2}$ and $N_{4}$ were large and $N_{1}, N_{3} \approx 0$. The system would spend most of its time in these two states with rapid switches between the two, these switches were named discreetness induced transitions (DITs). The authors note that the switching states appear when $D V<1$, but if $V$ gets too small (e.g. $V<4$ ) the system is destabilized by fluctuations. Although they only presented in their paper the case where the inflow rates, autocatalytic rates and diffusion rates were identical for all species, the authors confirm that DITs appear even when these rates are not identical.

### 3.2 Bibbona-Kim-Wiuf Model

Bibbona, Kim and Wiuf offer a theoretical analysis of the TK model as well as other similar autocatalytic reaction networks which exhibit DITs in [6]. The authors describe a general system as a continuous time Markov chain (CTMC) and prove the existence of stationary distribution. Their general d-dimensional network is given as:

$$
\begin{equation*}
A_{i}+A_{j} \xrightarrow{\kappa_{i j}} 2 A_{j} \quad \emptyset \stackrel{\lambda_{i}}{\underset{\delta_{i}}{\rightleftharpoons}} A_{i} \quad i, j=1,2, \ldots, d \tag{3.3}
\end{equation*}
$$

With associated Markov chain $[X(t)]_{n \geq 0}$ on the state space $E=\left\{a=\left(a_{1}, \ldots, a_{d}\right) \in\right.$ $\left.\mathbb{N}^{d}\right\}$. For $\kappa_{i j} \geq 0, \lambda_{i}>0, \delta_{i}>0$ the authors prove that the CTMC associated with the system (3.3) is positive recurrent for any $d$, a unique stationary distribution exists, all moments are finite and convergence to the stationary distribution is exponentially fast (see Theorem 4.1 in [6]). While the existence of a stationary distribution is proven, computation of an analytic expression for the stationary distribution is difficult and an expression for the general system remains unsolved. Using the notion of lumpability (section (2.2) [6]) the state space can be partitioned into subsets $E_{n}=\left\{a \in \mathbb{N}^{d} \mid \sum_{i=1}^{d}=n\right\}$. If we let $\delta_{i}=\delta$ for every $i$ the lumped process $X(t)$ is a CTMC on $E_{n}$ with associated transition rates

$$
\begin{equation*}
q_{n, n+1}=\sum_{i=1}^{d} \lambda_{i} \quad q_{n, n-1}=n \delta \tag{3.4}
\end{equation*}
$$

$\bar{X}(t)$ is a immigration-death process on $\mathbb{N}$ and admits a Poisson stationary distribution given by

$$
\begin{equation*}
\nu(n)=\frac{\mu^{n}}{n!} e^{-\mu}, \quad \mu=\frac{\sum_{i=1}^{d} \lambda_{i}}{\delta} \tag{3.5}
\end{equation*}
$$

we can now condition the stationary distribution $\Pi$ on the probability $\nu(n)$ of $\bar{X}(t)$ being in state $n$ and write the stationary distribution as:

$$
\begin{equation*}
\Pi(a)=\pi(a \mid n) \nu(n) \tag{3.6}
\end{equation*}
$$

Bibbona et al go on to show that under the assumptions $\kappa_{i j}=\kappa>0$, $\delta_{i}=\delta>0$, and $\lambda_{i}>0 \pi(a \mid n)$ is given by a Dirichlet-multinomial distribution and the unique stationary distribution of the network shown in (3.3) is given by

$$
\begin{align*}
& \Pi(a)=\pi(a \mid n) \nu(n) \\
& \text { where } \pi(a \mid n)=\binom{n}{a} \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{d} \alpha_{i}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(a_{i}+\alpha_{i}\right)}{\Gamma\left(\alpha_{i}\right)}  \tag{3.7}\\
& \text { with } \alpha_{i}=\frac{\delta \lambda_{i}}{\kappa \sum_{j=1}^{d} \lambda_{j}}
\end{align*}
$$

Under classical volume scaling, the parameters are given as

$$
\begin{equation*}
\kappa=\frac{\kappa^{\prime}}{V} \quad \delta=\delta^{\prime} \quad \lambda=\lambda^{\prime} V \quad \alpha_{i}=\frac{\delta^{\prime} \lambda_{i}^{\prime}}{\kappa^{\prime} \sum_{j=1}^{d} \lambda_{j}} V=\alpha_{i}^{\prime} V \tag{3.8}
\end{equation*}
$$

and the distribution $\pi(a \mid n)$ can be written as

$$
\begin{equation*}
\pi(a \mid n)=\binom{n}{a} \frac{\Gamma\left(V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(a_{i}+V \alpha_{i}^{\prime}\right)}{\Gamma\left(V \alpha_{i}\right)} \tag{3.9}
\end{equation*}
$$

As the volume V gets large the mean vector of $\Pi$ converges to $\left(\lambda_{1}^{\prime} / \delta^{\prime}, \ldots, \lambda_{d}^{\prime} / \delta^{\prime}\right)$, which is the equilibrium of the deterministic model, and the covariance matrix converges to the zero matrix. However, when $V \rightarrow 0$ the probability that all the molecules in the system are of one type approaches 1 .

$$
\begin{align*}
\lim _{V \rightarrow 0} \sum_{i=1}^{d} \pi\left(e_{i} \mid n\right) & =\lim _{V \rightarrow 0} \frac{\Gamma\left(V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \sum_{i=1}^{d} \frac{\Gamma\left(a_{i}+V \alpha_{i}^{\prime}\right)}{\Gamma\left(V \alpha_{i}\right)}  \tag{3.10}\\
& =\lim _{V \rightarrow 0} \frac{1}{V \sum_{i=1}^{d} \alpha_{i}} \sum_{i=1}^{d} V \alpha_{i}=1
\end{align*}
$$

This corner configuration alludes to the presence of DITs where only one molecule type is present at a time. When the parameters are chosen as they were in [16] i.e.

$$
\begin{equation*}
\kappa_{i}^{\prime}=1 \quad \delta^{\prime}=\lambda_{i}^{\prime}=D, \quad i=1, \ldots d \tag{3.11}
\end{equation*}
$$

the parameters $\alpha_{i}$ are then given as

$$
\begin{equation*}
\alpha_{i}=\frac{D V}{d} \tag{3.12}
\end{equation*}
$$

When $D V>d$ the density $\pi(a \mid n)$ is unimodal, when $D V=d$ the density is uniform, and when $D V<d$ the density becomes d-modal with the bulk of the mass on the boundaries; figure 1 shows the distribution $\pi(a \mid n)$ and the full distribution $\Pi(a)$ for the 3 regions of DV.

While the authors proved the existence of a unique stationary distribution for general systems, they only provide a closed form expression when the autocatalytic rates are the same. As mentioned previously Togashi and Kaneko noted that DITs occur when these rates are not identical, this coupled with the fact that the stationary distribution exists for systems with asymmetrical rates is the motivation for this thesis. To investigate the effect of asymmetric autocatalytic rates on the system $\left(\kappa_{i j} \neq \kappa \quad \forall i, j \in 1, \ldots, d\right)$, we now move to a well known model from population genetics.


Figure 1: The distribution $\pi(a \mid n)$ in two dimensions is shown for different values of V while D is held constant in (a),(c), and (e) and the corresponding plots of the full distribution is shown in (b), (d) and (f). In (a) and (b) DVi 1 and the distribution is bimodal with most of the mass on the boundaries, (c) and (d) shows the critical case when $\mathrm{DV}=1$ and the distribution is uniform, in (e) and (f) DV=10 and the distribution is unimodal with the mass centred when $a_{1}=a_{2}$. The distribution was plotted in one dimension by letting $a_{2}=n-a_{1}$ and the x-axis shows the number of $a_{1}$ molecules, $n$ was taken as the mean of $\nu(n)$, which is 2 V , for the 32 D plots.

### 3.3 Moran Model with genic Selection

To aid in finding a stationary distribution for asymmetrical autocatalytic rates, we look to the Moran model with genic selection, which has similar reaction dynamics to our family of autocatalytic reactions. Etheridge and Griffiths, in
[7], provide a closed form stationary distribution for the Moran model with genic selection. In this Moran model, the population is equilibrium and consists of $n$ individuals of $d$ different types and $a_{i}(t)$ denotes the number of type $i$ individuals at time $t$. An individual of type $j$ gives birth at the rate $\kappa_{j} \geq 0$, and simultaneously an individual is chosen at random to die. This model also includes mutations where each type $i$ individual changes to type $j$ with a rate of $\nu p_{i j}$, where $p_{i j}$ are the entries of a transition probability matrix $P$ and $\nu \geq 0$. For our purposes, we assume parent-independent mutations, where $p_{i j}=p_{j}>0$. The transition rate from $a$ to $a-e_{i}+e_{j}$ is given as

$$
\begin{equation*}
q\left(a, a-e_{i}+e_{j}\right)=a_{i}\left[\frac{\kappa_{j}}{n} a_{j}+\nu p_{j}\right] \tag{3.13}
\end{equation*}
$$

The system is represented graphically by:

$$
\begin{equation*}
A_{i}+A_{j} \xrightarrow{\kappa_{j}} 2 A_{j} \quad A_{i} \xrightarrow{v p_{j}} A_{j} \tag{3.14}
\end{equation*}
$$

The process $[A(t)]_{t \geq 0}$ has a stationary distribution, $\pi(a)$ which is obtained by solving the balance equation:

$$
\begin{equation*}
\pi(a) q\left(a, a-e_{i}+e_{j}\right)=\pi\left(a-e_{i}+e_{j}\right) q\left(a-e_{i}+e_{j}, a\right) \tag{3.15}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\pi(a) \propto \kappa_{1}^{a_{1}} \cdots \kappa_{d}^{a_{d}}\binom{n}{a} \frac{\alpha_{1\left(a_{1}\right)} \cdots \alpha_{d\left(a_{d}\right)}}{|\alpha|_{(n)}} \tag{3.16}
\end{equation*}
$$

Where

$$
\begin{equation*}
\alpha_{i}=\frac{n \nu p_{i}}{\kappa_{i}} \tag{3.17}
\end{equation*}
$$

and $|\alpha|=\sum_{i=1}^{d} \alpha_{i}$. The normalizing constant for $\pi(a)$ is given as the partition function:

$$
\begin{equation*}
u(\alpha, \kappa, n)=\mathbb{E}\left[\left(\sum_{i=1}^{d} \kappa_{i} \xi_{i}\right)^{n}\right] \tag{3.18}
\end{equation*}
$$

Where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right)$ has a Dirichlet $(\cdot, \alpha)$ distribution. $a_{(n)}=a(a+1) \cdots(a+$ $n-1)$ denotes the rising factorial or Pochhammer function, which can be written in terms of Gamma functions as $a_{(n)}=\Gamma(a+n) / \Gamma(a)$.

$$
\begin{equation*}
\pi(a) \propto \prod_{i=1}^{d} \kappa_{i}^{a_{i}}\binom{n}{a} \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}+n\right)} \prod_{i=1}^{d} \frac{\Gamma\left(\alpha_{i}+a_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{3.19}
\end{equation*}
$$

In the neutral model when $\kappa_{i}=\kappa$ for $i=1, \ldots, d$ the partition function becomes $u(\alpha, \kappa, n)=\kappa^{n} \mathbb{E}\left[\left(\sum_{i=1}^{d} \xi_{i}\right)^{n}\right]=\kappa^{n}$ since $\sum_{i=1}^{d} \xi_{i}=1$. The stationary distribution then reduces to the multinomial Dirichlet distribution.

$$
\begin{equation*}
\pi(a)=\binom{n}{a} \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}+n\right)} \prod_{i=1}^{d} \frac{\Gamma\left(\alpha_{i}+a_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{3.20}
\end{equation*}
$$

The distribution in equation (3.20) is exactly the stationary distribution $\pi(a \mid n)$ derived by Bibbona et al in equation 3.7 with $\alpha_{i}=\frac{\delta \kappa_{i}}{\kappa \sum_{j=1}^{d} \kappa_{j}}$. This observation suggests that the stationary distribution from [7] is a good candidate for $\pi(a \mid n)$ , as in [6], when the values of $\kappa_{i j}$ are not all the same. The proposed distribution is:

$$
\begin{equation*}
\pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)}\left[\prod_{i=1}^{d} \kappa_{i}^{a_{i}}\right]\binom{n}{a} \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}+n\right)} \prod_{i=1}^{d} \frac{\Gamma\left(\alpha_{i}+a_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{3.21}
\end{equation*}
$$

This does not exactly fit in the general case since the model which we are borrowing the distribution from requires parent independent mutations or $\kappa_{i j}=$ $\kappa_{j} \quad \forall i \in 1, \ldots, d$.

### 3.4 Effective Model

The Moran model differs from the TK model in that it has a fixed population and lacks the inflow and outflow reactions. Nen Saito and Kunihiko Kaneko discuss a simplified version of the 2-dimensional TK model in [15], called the effective model. The model consists of autocatalytic reactions between two populations of molecules $A_{1}$ and $A_{2}$, but instead of inflow and outflow reactions, there are mutation reactions between the two types of molecules. The system is given as:

$$
\begin{equation*}
A_{1}+A_{2} \xrightarrow{\kappa_{1}} 2 A_{1} \quad A_{1}+A_{2} \xrightarrow{\kappa_{2}} 2 A_{2} \quad A_{1} \stackrel{v_{2}}{\underset{v_{1}}{\rightleftharpoons}} A 2 \tag{3.22}
\end{equation*}
$$

with transition rates:

$$
\begin{equation*}
q\left(a, a-e_{i}+e_{j}\right)=a_{i} a_{j} \kappa_{j}+a_{i} v_{j} \tag{3.23}
\end{equation*}
$$

We can show that the distribution:

$$
\begin{equation*}
\pi(a)=\frac{1}{u(\alpha, \kappa, n)} \kappa_{1}^{a_{1}} \kappa_{2}^{a_{2}}\binom{n}{a} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}+n\right)} \frac{\Gamma\left(\alpha_{1}+a_{1}\right) \Gamma\left(\alpha_{2}+a_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \tag{3.24}
\end{equation*}
$$

with $\alpha_{i}=\frac{v_{i}}{\kappa_{i}}$, satisfies the global balance equation, and is the unique stationary distribution for this system.

$$
\pi(a) q\left(a, a-e_{1}+e_{2}\right)+\pi(a) q\left(a, a+e_{1}-e_{2}\right)=\pi\left(a-e_{1}+e_{2}\right) q\left(a-e_{1},+e_{2}, a\right)+\pi\left(a+e_{1}-e_{2}\right) q\left(a+e_{1}-e_{2}, a\right)
$$

dividing both sides by $\pi(a)$ and looking at the right-hand side, we get

$$
\begin{aligned}
& \frac{\kappa_{2}}{\kappa_{1}} \frac{a_{1}}{a_{2}+1} \frac{\alpha_{2}+a_{2}}{\alpha_{1}+a_{1}-1}\left[\left(a_{1}-1\right)\left(a_{2}+1\right) \kappa_{1}+\left(a_{2}+1\right) v_{1}\right] \frac{\kappa_{1}}{\kappa_{2}} \frac{a_{2}}{a_{1}+1} \frac{\alpha_{1}+a_{1}}{\alpha_{2}+a_{2}-1}\left[\left(a_{2}-1\right)\left(a_{1}+1\right) \kappa_{2}+\left(a_{1}+1\right) v_{2}\right. \\
= & \kappa_{2} a_{1} \frac{\alpha_{2}+a_{2}}{\alpha_{1}+a_{1}-1}\left[\left(a_{1}-1\right)+\frac{v_{1}}{\kappa_{1}}\right]+\kappa_{1} a_{2} \frac{\alpha_{1}+a_{1}}{\alpha_{2}+a_{2}-1}\left[\left(a_{2}-1\right)+\frac{v_{2}}{\kappa_{2}}\right] \\
= & \kappa_{2} a_{1} \frac{\alpha_{2}+a_{2}}{\alpha_{1}+a_{1}-1}\left[\left(a_{1}-1\right)+\alpha_{1}\right]+\kappa_{1} a_{2} \frac{\alpha_{1}+a_{1}}{\alpha_{2}+a_{2}-1}\left[\left(a_{2}-1\right)+\alpha_{2}\right] \\
= & \kappa_{2} a_{1}\left(\alpha_{2}+a_{2}\right)+\kappa_{1} a_{2}\left(\alpha_{1}+a_{1}\right) \\
= & a_{1} a_{2} \kappa_{2}+a_{1} \kappa_{2} \alpha_{2}+a_{1} a_{2} \kappa_{1}+a_{2} \kappa_{1} \alpha_{1} \\
= & \left(a_{1} a_{2} \kappa_{2}+a_{1} v_{2}\right)+\left(a_{1} a_{2} \kappa_{1}+a_{2} v_{1}\right) \\
= & q\left(a, a-e_{1}+e_{2}\right)+q\left(a, a+e_{1}-e_{2}\right)
\end{aligned}
$$

Which is the left-hand side divided by $\pi(a)$.

## 4 Results

The main goal of this thesis is to investigate the family of networks (3.3) described by Bibbona et al when the autocatalytic rates are asymmetrical. We will now investigate how well the distribution described in 3.19 fits in with our model.

### 4.1 The candidate distribution

The stationary distribution proved by Bibbona et al takes the form

$$
\begin{align*}
& \pi(a \mid n)=\binom{n}{a} \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{d} \alpha_{i}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(a_{i}+\alpha_{i}\right)}{\Gamma\left(\alpha_{i}\right)}  \tag{4.1}\\
& \text { with } \alpha_{i}=\frac{\delta \lambda_{i}}{\kappa \sum_{j=1}^{d} \lambda_{j}}
\end{align*}
$$

the proposed stationary distribution is given as

$$
\begin{equation*}
\pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)}\binom{n}{a}\left[\prod_{i=1}^{d} \kappa_{i}^{a_{i}}\right] \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{d} \alpha_{i}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(a_{i}+\alpha_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{4.2}
\end{equation*}
$$

which suggests that

$$
\begin{equation*}
\alpha_{i}=\frac{\delta \lambda_{i}}{\kappa_{i} \sum_{i=1}^{d} \lambda_{i}} \tag{4.3}
\end{equation*}
$$

Comparing these $\alpha$ parameters to the ones from the effective model would make $v_{1}=\delta \lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$ which would correspond to a birth of $A_{1}$ and simultaneous death of $A_{2}$ similarly $v_{2}=\delta \lambda_{2} /\left(\lambda_{1}+\lambda_{2}\right)$ which corresponds to a birth of $A_{2}$ and
simultaneous death of $A_{1}$. If the system was such that only these simultaneous birth and death events occurred, keeping the total number of molecules fixed, this distribution would be the unique stationary distribution. To move from the fixed $n$ case to the family of autocatalytic reactions described in [6] where $n$ is changing due to the inflow and outflow reactions we must take special care in how this distribution changes for different values of $n$, specifically the partition function which depends on $n$.

### 4.2 Partition Function

The partition function is given as

$$
\begin{equation*}
u(\alpha, \kappa, n)=\mathbb{E}\left[\left(\sum_{i=1}^{d} \kappa_{i} \xi_{i}\right)^{n}\right] \tag{4.4}
\end{equation*}
$$

By the multinomial theorem we can write rewrite the argument as

$$
u(\alpha, \kappa, n)=\mathbb{E}\left[\sum_{|l|=n}\binom{n}{l} \prod_{i=1}^{d}\left(\kappa_{i} \xi_{i}\right)^{l_{i}}\right]
$$

where $l=\left\{\left(l_{1}, \ldots, l_{d}\right) \mid l_{i} \geq 0\right\} l_{i}$ and $|l|=\sum_{i=1}^{d} l_{i}$. by the linearity of expectation, we can write

$$
u(\alpha, \kappa, n)=\sum_{|l|=n}\binom{n}{l}\left[\prod_{i=1}^{d} \kappa_{i}^{l_{i}}\right] \mathbb{E}\left[\prod_{i=1}^{d} \xi_{i}^{l_{i}}\right]
$$

since $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \sim \operatorname{Dir}(\alpha)$ its product moments [4] can be expressed as :

$$
\begin{equation*}
\mathbb{E}\left[\prod_{i=1}^{d} \xi_{i}^{l_{i}}\right]=\frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{d} \alpha_{i}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(\alpha_{i}+l_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{4.5}
\end{equation*}
$$

the partition function can now be written as:

$$
\begin{equation*}
u(\alpha, \kappa, n)=\sum_{|l|=n}\binom{n}{l}\left[\prod_{i=1}^{d} \kappa_{i}^{l_{i}}\right] \frac{\Gamma\left(\sum_{i=1}^{d} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{d} \alpha_{i}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(\alpha_{i}+l_{i}\right)}{\Gamma\left(\alpha_{i}\right)} \tag{4.6}
\end{equation*}
$$

The partition function can be seen here as summing the distribution over every possible $l=\left(l_{1}, l_{2}, \ldots, l_{d}\right)$ such that $\sum_{i=1}^{d} l_{i}=n$. In the two-dimensional case, the partition function becomes

$$
\begin{equation*}
u(\alpha, \kappa, n)=\sum_{|l|=n}\binom{n}{l} \kappa_{1}^{l_{1}} \kappa_{2}^{l_{2}} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{1}+l_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(\alpha_{2}+l_{2}\right)}{\Gamma\left(\alpha_{2}\right)} \tag{4.7}
\end{equation*}
$$

since $l_{1}+l_{2}=n$, if we let $l_{1}=i$ and $l_{2}=n-i$ the partition function can be written as

$$
\begin{aligned}
& u(\alpha, \kappa, n)=\sum_{i=0}^{n}\binom{n}{i} \kappa_{1}^{i} \kappa_{2}^{n-i} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{1}+i\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(\alpha_{2}+n-i\right)}{\Gamma\left(\alpha_{2}\right)} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \sum_{i=0}^{n}\binom{n}{i} \kappa_{1}^{i} \kappa_{2}^{n-i} \frac{\Gamma\left(\alpha_{1}+i\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(\alpha_{2}+n-i\right)}{\Gamma\left(\alpha_{2}\right)} \cdot \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}+n\right)} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}\right)} \kappa_{2}^{n} \sum_{i=0}^{n}\binom{n}{i} \frac{\Gamma\left(\alpha_{1}+i\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(\alpha_{2}+n-i\right)}{\Gamma\left(\alpha_{2}+n\right)}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{i} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}\right)} \kappa_{2}^{n} \sum_{i=0}^{n}\binom{n}{i}\left(\alpha_{1}\right)_{i} \frac{1}{\left(\alpha_{2}+n-1\right)^{(i)}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{i} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}\right)} \kappa_{2}^{n} \sum_{i=0}^{n}\binom{n}{i}\left(\alpha_{1}\right)_{i} \frac{1}{(-1)^{i}\left(1-\alpha_{2}-n\right)_{i}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{i} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}+\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}\right)} \kappa_{2}^{n} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \frac{\left(\alpha_{1}\right)_{i}}{\left(1-\alpha_{2}-n\right)_{i}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{i} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(n+\alpha_{1}\right)} \frac{\Gamma\left(\alpha_{2}+n\right)}{\Gamma\left(\alpha_{2}\right)} \kappa_{2}^{n} F_{1}\left(-n, \alpha_{1} ; 1-\alpha_{2}-n ; \frac{\kappa_{1}}{\kappa_{2}}\right)
\end{aligned}
$$

where $(\cdot)_{i}$, and $(\cdot)^{(i)}$ are the falling and rising factorial functions and ${ }_{2} F_{1}(\cdot, \cdot ; \cdot ; \cdot)$ is the Gauss hypergeometric function.

$$
\begin{gathered}
\pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)} \kappa_{1}^{a_{1}} \kappa_{2}^{a_{2}}\binom{n}{a} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}+n\right)} \frac{\Gamma\left(\alpha_{1}+a_{1}\right) \Gamma\left(\alpha_{2}+a_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \\
\pi(a \mid n)=\frac{1}{{ }_{2} F_{1}\left(-n, \alpha_{1} ; 1-\alpha_{2}-n ; \frac{\kappa_{1}}{\kappa_{2}}\right)} \kappa_{1}^{a_{1}} \kappa_{2}^{a_{2}-n}\binom{n}{a} \frac{\Gamma\left(\alpha_{1}+a_{1}\right) \Gamma\left(\alpha_{2}+a_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}+n\right)}
\end{gathered}
$$

writing $a_{1}=a a_{2}=n-a$ or $a=(a, n-a)$ we can reduce the distribution to 1 dimension

$$
\begin{equation*}
\pi(a \mid n)=\frac{1}{{ }_{2} F_{1}\left(-n, \alpha_{1} ; 1-\alpha_{2}-n ; \frac{\kappa_{1}}{\kappa_{2}}\right)}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{a}\binom{n}{a} \frac{\Gamma\left(\alpha_{1}+a\right) \Gamma\left(\alpha_{2}+n-a\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}+n\right)} \tag{4.8}
\end{equation*}
$$

The Gauss hypergeometric function ${ }_{2} F_{1}(a, b ; c ; z)$ is defined when $c$ is not a non-positive integer, (i.e. $c \neq 0,-1,-2, \ldots$ ) and (1) $|z|<1$ or (2) $|z| \leq$ 1 when $c>a+b$. So in our case, we require $1-\alpha_{2}-n \neq 0,-1,-2 \ldots$ or $\alpha_{2} \neq 1-n, 2-n, 3-n \ldots$. Since $\alpha_{2}=\frac{\delta \lambda_{2}}{\kappa_{2}\left(\lambda_{1}+\lambda_{2}\right)}$ and $\delta, \lambda_{1}, \lambda_{2}, \kappa_{2}>0$ ${ }_{2} F_{1}\left(-n, \alpha_{1} ; 1-\alpha_{2}-n ; \frac{\kappa_{1}}{\kappa_{2}}\right)$ is defined for $\frac{\kappa_{1}}{k_{2}} \leq 1$. For simplicity of notation $F(a, b ; c ; z)$ will refer to ${ }_{2} F_{1}(a, b ; c ; z)$ from now on. Note: to ensure that $\frac{\kappa_{1}}{\kappa_{2}} \leq 1$ we will set the larger of the two rates as $\kappa_{2}$, moreover we can always set $\kappa_{1}=1$ as was done by Togashi and Kaneko in [16].

### 4.3 Volume scaling

As in [6] under classical scaling the parameters are given as

$$
\begin{equation*}
\kappa_{i}=\frac{\kappa_{i}^{\prime}}{V} \quad \lambda_{i}=\lambda_{i}^{\prime} V \quad \delta=\delta^{\prime} \quad \alpha_{i}=V \alpha_{i}^{\prime} \tag{4.9}
\end{equation*}
$$

The volume scaled distribution is given as
$\Pi(a)=\nu(n) \pi(a \mid n)$
where

$$
\begin{align*}
& \pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)}\binom{n}{a}\left[\prod_{i=1}^{d} \kappa_{i}^{\prime a_{i}}\right] \frac{\Gamma\left(V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \prod_{i=1}^{d} \frac{\Gamma\left(a_{i}+V \alpha_{i}^{\prime}\right)}{\Gamma\left(V \alpha_{i}^{\prime}\right)} \\
& u(\alpha, \kappa, n)=\frac{\Gamma\left(\sum_{i=1}^{d} V \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \sum_{|l|=n}\binom{n}{l} \prod_{i=1}^{d} \kappa_{i}^{\prime l_{i}} \frac{\Gamma\left(V \alpha_{i}^{\prime}+l_{i}\right)}{\Gamma\left(V \alpha_{i}^{\prime}\right)}  \tag{4.10}\\
& \nu(n)=\frac{\left(V \mu^{\prime}\right)^{n}}{n!} \exp \left[-V \mu^{\prime}\right], \quad \mu^{\prime}=\frac{\sum_{i=1}^{d} \lambda_{i}^{\prime}}{\delta^{\prime}}
\end{align*}
$$

The $\kappa_{i}^{\prime}$ polynomial terms do not appear with a V since the V's are cancelled out by the partition function

$$
\frac{\prod_{i=1}^{d} \frac{\kappa_{i}^{\prime a_{i}}}{V}}{\mathbb{E}\left[\left(\sum_{i=1}^{d} \frac{\kappa_{i}^{\prime}}{V} \xi_{i}\right)^{n}\right]}=\frac{\frac{1}{V^{n}} \prod_{i=1}^{d} \kappa_{i}^{\prime a_{i}}}{\frac{1}{V^{n}} \mathbb{E}\left[\left(\sum_{i=1}^{d} \kappa_{i}^{\prime} \xi_{i}\right)^{n}\right]}=\frac{\prod_{i=1}^{d} \kappa_{i}^{\prime a_{i}}}{\mathbb{E}\left[\left(\sum_{i=1}^{d} \kappa_{i}^{\prime} \xi_{i}\right)^{n}\right]}
$$

We look now at the two-dimensional model with two species of molecules interacting. Here, the vector $a=\left(a_{1}, a_{2}\right)$ represents the counts of the two species of molecules. The conditional distribution $\pi(a \mid n)$ is

$$
\begin{equation*}
\pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)}\binom{n}{a} \kappa_{1}^{\prime a_{1}} \kappa_{2}^{\prime a_{2}} \frac{\Gamma\left[V\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}\right)\right]}{\Gamma\left[V\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}\right)+n\right]} \frac{\Gamma\left(a_{1}+V \alpha_{1}^{\prime}\right)}{\Gamma\left(V \alpha_{1}^{\prime}\right)} \frac{\Gamma\left(a_{2}+V \alpha_{2}^{\prime}\right)}{\Gamma\left(V \alpha_{2}^{\prime}\right)} \tag{4.11}
\end{equation*}
$$

We can also reduce the dimension to 1 by letting $a_{1}=a, a_{2}=n-a$ and write the distribution as a weighted Beta-binomial

$$
\begin{equation*}
\pi(a \mid n)=\frac{1}{u(\alpha, \kappa, n)} \kappa_{1}^{\prime a} \kappa_{2}^{\prime(n-a)}\binom{n}{a} \frac{B\left(a+V \alpha_{1}^{\prime}, n-a+V \alpha_{2}^{\prime}\right)}{B\left(V \alpha_{1}^{\prime}, V \alpha_{2}^{\prime}\right)} \tag{4.12}
\end{equation*}
$$

We will set our parameters as was done in $[6,16]$ but instead of letting $\kappa_{1}^{\prime}=$ $\kappa_{2}^{\prime}=1$ we will set $\kappa_{1}^{\prime}=1$ and look at how different values of $\kappa_{2}^{\prime}$ influence the system. The rates are given as

$$
\begin{equation*}
\kappa_{1}^{\prime}=1 \quad \delta^{\prime}=\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=D \tag{4.13}
\end{equation*}
$$

and the $\alpha$ parameters are

$$
\begin{equation*}
\alpha_{1}=\frac{D V}{2} \quad \alpha_{2}=\frac{D V}{2 \kappa_{2}^{\prime}} \tag{4.14}
\end{equation*}
$$

Similar to the distribution in [6] the distribution behaves differently under different regimes of $D V$. When $D V<2$ the $\alpha$ parameters are both less than 1 and the distribution is bimodal, however, the peak when $a_{1}=0$ and $a_{2}=n$ is higher than when $a_{2}=0$ and $a_{1}=n$. Small increases in $\kappa_{2}$ give the $a_{2}$ "corner" of the distribution large proportions of the mass, and when $\kappa_{2}=1.1$ almost the entire mass of the distribution is concentrated at $\left(a_{1}, a_{2}\right)=(0,2 V)$. (note here that 2 V is the mean of $\nu(n)$ ) The peaks at the extreme values of $a_{1}$ and $a_{2}$ reflect the DITs in the system where most of the time is spent in the states $(0, n)$ and $(n, 0)$, and the quick switching between these states is shown by the lack of mass for states between these two peaks. As $\kappa_{2}$ is increased, we start to lose these DITs as the autocatalytic reaction $A_{1}+A_{2} \xrightarrow{\kappa_{2}} 2 A_{2}$ overpowers the reaction in the opposite direction.


Figure 2: Plots of the full distribtion $\Pi(a)$ are shown when $D V=0.2$, the density is bimodal as $\alpha_{1}, \alpha_{2}<1 . \kappa_{1}^{\prime}$ is fixed at 1 while $\kappa_{2}^{\prime}$ is increased, $\kappa_{2}=1.001,1.01,1.05$ and 1.1 for (a),(b),(c) and (d) respectively. In (a) the peaks at either extreme are almost equal, however only increasing $\kappa_{2}^{\prime}$ to 1.1 puts almost the entire mass of the distribution around $\left(a_{1}, a_{2}\right)=(0,2 V)$.

At the critical case where $\mathrm{DV}=2$ we have $\alpha_{1}=1$ and $\alpha_{2}=1 / \kappa_{2}$. When $\kappa_{1}=\kappa_{2}=1$ we had a uniform density but as we increase $\kappa_{2}$ slightly, the density becomes skewed towards $a_{2}$ holding more mass, when $\kappa_{2}=1.1$ almost all the mass is at $(0,2 V)$. Figure 3 shows the behaviour of the distribution as we increase $\kappa_{2}$ while setting $D V=2$ and holding $\kappa_{1}$ at 1 .

When $\alpha_{1}, \alpha_{2}>1$, i.e. when $D V>2$ we again have a unimodal distribution


Figure 3: Plots of the full distribution $\Pi(a)$ at the critical case $D V=2$, we have $\alpha_{1}=1$ and $\alpha_{2}=1 / \kappa_{2}$. As $\kappa_{2}$ increases, we move from an almost uniform density in (a) to almost all the mass being in $a_{2}$ when $\kappa_{2}=1.1$ in (c)
concentrated near $\left(a_{1}, a_{2}\right)=(V, V)$, but as we $\kappa_{1}$ is fixed at 1 , and we increase $\kappa_{2}$ the peak moves such that the distribution is concentrated at a higher proportion of $a_{2}$ molecules to $a_{1}$ molecules. As $V \rightarrow \infty$ the system should converge to the solution of the ODE

$$
\begin{align*}
& \dot{a_{1}}(t)=\left(\kappa_{1}-\kappa_{2}\right) a_{1} a_{2}+\lambda_{1}-\delta a_{1} \\
& \dot{a_{2}}(t)=\left(\kappa_{2}-\kappa_{1}\right) a_{1} a_{2}+\lambda_{2}-\delta a_{2} \tag{4.15}
\end{align*}
$$

When $\kappa_{1}=\kappa_{2}$ equation (4.15) is a simple linear first order ODE with solution $A_{1}(t)=C_{1} e^{-\delta t}+\frac{\lambda_{1}}{\delta}$ and $A_{2}(t)=C_{2} e^{-\delta t}+\frac{\lambda_{2}}{\delta}$. When $\kappa_{1} \neq \kappa_{2}$ unfortunately this system of ODEs is nonlinear and the solution is not simple to compute, however we can find a numerical solution for $A_{1}(t)$ and $A_{2}(t)$ which are shown in figure 4.


Figure 4: (a)-(c) shows $\Pi(a)$ for $\kappa_{2}=1.001,1.01,1.1$ with $D=0.01, V=2000$ and $\kappa_{1}=1$. The distributions are unimodal and concentrated around the deterministic equilibria which are shown in (d)-(f) as numerical solutions to the system of ODE's in equation (4.15) with equilibrium points $c_{a}=(1801.96,2198.04), c_{b}=(763.93,3236.07)$, and, $c_{c}=(97.5,3902.5)$. Note: range of the plot in (c) had to be changed due to computational issues.

### 4.4 Deterministic model

In theorem 2.25 we showed that as $V \rightarrow \infty$ the volume scaled process $\bar{X}(t)=$ $X(t) / V$ converges to the deterministic solution of a system of ODEs $x(t)$. The system of ODEs for the 2D TK model is as previously mentioned

$$
\begin{align*}
& \dot{a_{1}}(t)=\left(\kappa_{1}-\kappa_{2}\right) a_{1} a_{2}+\lambda_{1}-\delta a_{1} \\
& \dot{a_{2}}(t)=\left(\kappa_{2}-\kappa_{1}\right) a_{1} a_{2}+\lambda_{2}-\delta a_{2} \tag{4.16}
\end{align*}
$$

In the case where $\kappa_{1}=\kappa_{2}$ this system is linear, and the solution is trivial, but when the autocatalytic rates are not equal we have a non-linear term $a_{1} a_{2}$ and the solution is not easily computed. Even though we cannot directly compute the solution to our system, we can still analyze its equilibrium points and stability. We first check its linear stability. We have

$$
\begin{equation*}
\dot{x}=f(x) \tag{4.17}
\end{equation*}
$$

with $x=\left[a_{1}(t), a_{2}(t)\right]$ and $f=\left[\left(\kappa_{2}-\kappa_{1}\right) a_{1} a_{2}-\delta a_{1}+\lambda_{1},\left(\kappa_{2}-\kappa_{1}\right) a_{1} a_{2}-\delta a_{2}+\lambda_{2}\right]$, we find a equilibrium point $c=\left[c_{1}, c_{2}\right]$ by solving $f(c)=[0,0]$ which gives only one solution with $a_{1}, a_{2} \geq 0$ under the constraints $\lambda_{1}>0, \lambda_{2}>0, \delta>0, \kappa_{2}>$ $\kappa_{1}>0$
$c_{1}=\frac{1}{2 \delta\left(\kappa_{1}-\kappa_{2}\right)}\left[\sqrt{\left(\delta^{2}-\left(\kappa_{1}-\kappa_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)\right)^{2}+4 \delta^{2} \lambda_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\delta^{2}+\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)\right]$
$c_{2}=\frac{1}{2 \delta\left(\kappa_{1}-\kappa_{2}\right)}\left[-\sqrt{\left(\delta^{2}-\left(\kappa_{1}-\kappa_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)\right)^{2}+4 \delta^{2} \lambda_{1}\left(\kappa_{1}-\kappa_{2}\right)}+\delta^{2}+\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)\right]$
the Jacobian is

$$
J=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}}  \tag{4.18}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
a_{2}\left(\kappa_{1}-\kappa_{2}\right)-\delta & a_{1}\left(\kappa_{1}-\kappa_{2}\right) \\
a_{2}\left(\kappa_{2}-\kappa_{1}\right) & a_{1}\left(\kappa_{2}-\kappa_{2}\right)-\delta
\end{array}\right]
$$

evaluating $J$ at $c$ we have

$$
J_{c}=\left[\begin{array}{ll}
\frac{-\delta^{2}+\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)-\gamma}{2 \delta} & \frac{-\delta^{2}+\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)+\gamma}{2 \delta}  \tag{4.19}\\
\frac{-\delta^{2}-\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)+\gamma}{2 \delta} & \frac{-\delta^{2}-\left(\lambda_{1}+\lambda_{2}\right)\left(\kappa_{1}-\kappa_{2}\right)-\gamma}{2 \delta}
\end{array}\right]
$$

where $\gamma=\sqrt{\left(\delta^{2}-\left(\kappa_{1}-\kappa_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)\right)^{2}+4 \delta^{2} \lambda_{1}\left(\kappa_{1}-\kappa_{2}\right)}$. The eigenvalues of $J_{c}$ are

$$
\begin{equation*}
\eta_{1}=-\delta, \quad \eta_{2}=-\frac{\gamma}{\delta} \tag{4.20}
\end{equation*}
$$

note that $\gamma \in \mathbb{R}$ for all $\delta, \lambda_{1}, \lambda_{2}>0$ and $\kappa_{2}>\kappa_{1}>0$. So we have two negative eigenvalues for any of our allowable parameters and by theorem 2.22 we have linear stability in a neighbourhood of $c$.

### 4.5 Corner configuration

It can be shown that the candidate distribution exhibits a corner configuration as the volume $V \rightarrow 0$. First we condition on the total population being $n$, or $a_{1}+a_{2}=n$ then we can write the conditional probability that all molecules are type $i$ as

$$
\begin{aligned}
& \pi\left(n \cdot e_{i} \mid n\right)=\frac{1}{u(\alpha, \kappa, n)} \kappa_{i}^{\prime n} \frac{\Gamma\left(V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \frac{\Gamma\left(n+V \alpha_{i}^{\prime}\right)}{\Gamma\left(V \alpha_{i}^{\prime}\right)} \\
& \text { using the fact that } \\
& \lim _{V \rightarrow 0} \pi\left(n \cdot e_{i} \mid n\right)=\lim _{V \rightarrow 0} \frac{1}{u(\alpha, \kappa, n)} \kappa_{i}^{\prime n} \frac{\Gamma\left(n+V \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \frac{V \alpha_{i}^{\prime}}{V \sum_{i=1}^{d} \alpha_{i}^{\prime}} \\
&=\frac{\kappa_{i}^{\prime n} \alpha_{i}^{\prime}}{\sum_{i=1}^{d} \alpha_{i}^{\prime}} \lim _{V \rightarrow 0} \frac{1}{u(\alpha, \kappa, n)}
\end{aligned}
$$

to look at the limit on the partition function, we first write it out as in (4.6)

$$
\begin{aligned}
\lim _{V \rightarrow 0} u(\alpha, \kappa, n) & =\sum_{|l|=n}\binom{n}{l} \frac{\Gamma\left(\sum_{i=1}^{d} V \alpha_{i}^{\prime}\right)}{\Gamma\left(n+V \sum_{i=1}^{d} \alpha_{i}^{\prime}\right)} \prod_{i=1}^{d} \kappa_{i}^{\prime l_{i}} \frac{\Gamma\left(V \alpha_{i}^{\prime}+l_{i}\right)}{\Gamma\left(V \alpha_{i}^{\prime}\right)} \\
& =\lim _{V \rightarrow 0} \frac{1}{\Gamma(n)} \frac{1}{V \sum_{i=1}^{d}} \sum_{|l|=n}\binom{n}{l} \prod_{i=1}^{d} \kappa_{i}^{\prime l_{i}} \frac{\Gamma\left(V \alpha_{i}^{\prime}+l_{i}\right)}{\Gamma\left(V \alpha_{i}^{\prime}\right)}
\end{aligned}
$$

Looking at the terms in the product if $l_{i}=0$ then the term is 1 otherwise the term is $\kappa_{i}^{\prime l_{i}} \Gamma\left(l_{i}\right) V \alpha_{i}^{\prime}$. So for each term in the sum if there is more than one $l_{i}>0$ the term will have $V$ to a power greater than 1 , and as $V \rightarrow 0$ the term will also go to zero. If $l_{i}=n$ and $l_{j}=0$ for $j \neq i$ then the term in the sum is given by $\kappa_{i}^{\prime n} \Gamma(n) V \alpha_{i}^{\prime}$ so we can write

$$
\begin{aligned}
\lim _{V \rightarrow 0} u(\alpha, \kappa, n) & =\lim _{V \rightarrow 0} \frac{1}{\Gamma(n) V \sum_{i=1}^{d} \alpha_{i}^{\prime}} \sum_{i=1}^{d} \kappa_{i}^{\prime n} \Gamma(n) V \alpha_{i}^{\prime} \\
& =\frac{1}{\sum_{i=1}^{d} \alpha_{i}^{\prime}} \sum_{i=1}^{d} \kappa_{i}^{\prime n} \alpha_{i}^{\prime}
\end{aligned}
$$

and as $V \rightarrow 0$ the probability all the molecules are type $i$ is given as

$$
\begin{equation*}
\lim _{V \rightarrow 0} \pi\left(n \cdot e_{i} \mid n\right)=\frac{\kappa_{i}^{\prime n} \alpha_{i}^{\prime}}{\sum_{i=1}^{d} \kappa_{i}^{\prime n} \alpha_{i}^{\prime}} \tag{4.21}
\end{equation*}
$$

and the probability that all the molecules are of the same type and the rest
are extinct is given by

$$
\begin{equation*}
\lim _{V \rightarrow 0} \sum_{i=1}^{d} \pi\left(n \cdot e_{i} \mid n\right)=\sum_{i=1}^{d} \frac{\kappa_{i}^{\prime n} \alpha_{i}^{\prime}}{\sum_{i=1}^{d} \kappa_{i}^{\prime n} \alpha_{i}^{\prime}}=1 \tag{4.22}
\end{equation*}
$$

Thus, as the volume gets very small the probability that the system is in a corner configuration approaches 1 .

### 4.6 Global Balance Equation

To show the distribution $\Pi(a)=\nu(n) \pi(a \mid n)$ is stationary, it must satisfy the global balance equation

$$
\begin{equation*}
\Pi(a) \sum_{a^{\prime} \in S} q\left(a, a^{\prime}\right)=\sum_{a^{\prime} \in S} \Pi\left(a^{\prime}\right) q\left(a^{\prime}, a\right) \tag{4.23}
\end{equation*}
$$

$\Pi(a)$ fulfills the global balance conditions when $\pi(a \mid n)$ satisfies the equation

$$
\begin{equation*}
R_{n}=L_{n-1}+L_{n}+L_{n+1} \tag{4.24}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{n}=\left[\lambda_{1}+\lambda_{2}+n \delta+\left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}\right] \pi(a \mid n)  \tag{4.25}\\
& L_{n-1}=\frac{n \delta \lambda_{1}}{\lambda_{1}+\lambda_{2}} \pi\left(a-e_{1} \mid n-1\right)+\frac{n \delta \lambda_{2}}{\lambda_{1}+\lambda_{2}} \pi\left(a-e_{2} \mid n-1\right)  \tag{4.26}\\
& L_{n}=\kappa_{2}\left(a_{1}+1\right)\left(a_{2}-1\right) \pi\left(a+e_{1}-e_{2} \mid n\right)+\kappa_{1}\left(a_{1}-1\right)\left(a_{2}+1\right) \pi\left(a-e_{1}+e_{2} \mid n\right)  \tag{4.27}\\
& L_{n+1}=\frac{\lambda_{1}+\lambda_{2}}{n+1}\left(a_{1}+1\right) \pi\left(a+e_{1} \mid n+1\right)+\frac{\lambda_{1}+\lambda_{2}}{n+1}\left(a_{2}+1\right) \pi\left(a+e_{2} \mid n+1\right) \tag{4.28}
\end{align*}
$$

we have:

$$
\begin{aligned}
& \frac{\pi\left(a-e_{1} \mid n-1\right)}{\pi(a \mid n)}=\frac{a_{1}}{n} \frac{n-1+\alpha_{2}}{a_{1}-1+\alpha_{1}} \frac{\kappa_{2}}{\kappa_{1}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, \alpha_{1}, 2-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)} \\
& \frac{\pi\left(a-e_{2} \mid n-1\right)}{\pi(a \mid n)}=\frac{a_{2}}{n} \frac{n-1+\alpha_{2}}{a_{2}-1+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, \alpha_{1}, 2-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)} \\
& \frac{\pi\left(a+e_{1}-e_{2} \mid n\right)}{\pi(a \mid n)}=\frac{a_{2}}{a_{1}+1} \frac{a_{1}+\alpha_{1}}{a_{2}-1+\alpha_{2}} \frac{\kappa_{1}}{\kappa_{2}} \\
& \frac{\pi\left(a-e_{1}+e_{2} \mid n\right)}{\pi\left(a+e_{1}-e_{2} \mid n\right)}=\frac{a_{1}}{a_{2}+1} \frac{a_{2}+\alpha_{2}}{a_{1}-1+\alpha_{1}} \frac{\kappa_{2}}{\kappa_{1}} \\
& \frac{\pi\left(a+e_{1} \mid n+1\right)}{\pi(a \mid n)}=\frac{n+1}{a_{1}+1} \frac{a_{1}+\alpha_{1}}{n+\alpha_{2}} \frac{\kappa_{1}}{\kappa_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)} \\
& \frac{\pi(a \mid n+1)}{\pi(a \mid n)}=\frac{n+1}{a_{2}+1} \frac{a_{2}+\alpha_{2}}{n+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}
\end{aligned}
$$

now dividing $L_{n-1}, L_{n}$ and $L_{n+1}$ by $\pi(a \mid n)$ we have:

$$
\begin{aligned}
\frac{L_{n-1}}{\pi(a \mid n)} & =\frac{\left(n-1+\alpha_{2}\right) \delta}{\lambda_{1}+\lambda_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, \alpha_{1}, 2-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[\frac{a_{1} \lambda_{1}}{a_{1}-1+\alpha_{1}} \frac{\kappa_{2}}{\kappa_{1}}+\frac{a_{2} \lambda_{2}}{a_{2}-1+\alpha_{2}}\right] \\
\frac{L_{n}}{\pi(a \mid n)} & =\kappa_{1} \frac{a_{2}-1}{a_{2}-1+\alpha_{2}}\left(a_{1}+\alpha_{1}\right) a_{2}+\kappa_{2} \frac{a_{1}-1}{a_{1}-1+\alpha_{1}}\left(a_{2}+\alpha_{2}\right) a_{1} \\
\frac{L_{n+1}}{\pi(a \mid n)} & =\frac{\lambda_{1}+\lambda_{2}}{\left(n+\alpha_{2}\right)} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[\frac{\kappa_{1}}{\kappa_{2}}\left(a_{1}+\alpha_{1}\right)+\left(a_{2}+\alpha_{2}\right)\right]
\end{aligned}
$$

using the fact that $\alpha_{i}=\frac{\delta}{\lambda_{1}+\lambda_{2}} \frac{\lambda_{i}}{\kappa_{i}}$ we can manipulate the first equation such that

$$
\frac{L_{n-1}}{\pi(a \mid n)}=\left(n-1+\alpha_{2}\right) \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, \alpha_{1}, 2-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)} \kappa_{2}\left[\frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}+\frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}}\right]
$$

$$
\begin{aligned}
\frac{L_{n}}{\pi(a \mid n)}= & \sum_{i=1}^{2} \sum_{j \neq i} \kappa_{i}\left(a_{i}+\alpha_{i}\right) \frac{a_{j}-1}{a_{j}-1+\alpha_{j}} a_{j} \\
= & \sum_{i=1}^{2} \sum_{j \neq i} \kappa_{i}\left(a_{i}+\alpha_{i}\right) \frac{a_{j}-1+\alpha_{j}}{a_{j}-1+\alpha_{j}} a_{j}-\sum_{i=1}^{2} \sum_{j \neq i} \frac{\kappa_{i}\left(a_{i}+\alpha_{i}\right) a_{j} \alpha_{j}}{a_{j}-1+\alpha_{j}} \\
= & \sum_{i=1}^{2} \sum_{j \neq i} \kappa_{i}\left(a_{i}+\alpha_{i}\right) a_{j}-\sum_{i=1}^{2} \sum_{j \neq i} \frac{\kappa_{i}\left(a_{i}+\alpha_{i}\right) a_{j} \alpha_{j}}{a_{j}-1+\alpha_{j}} \\
= & \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+\sum_{i=1}^{2} \sum_{j \neq i} \kappa_{i} \alpha_{i} a_{j}-\sum_{i=1}^{2} \sum_{j \neq i} \frac{\kappa_{i}\left(a_{i}+\alpha_{i}\right) a_{j} \alpha_{j}}{a_{j}-1+\alpha_{j}} \\
= & \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+\sum_{i=1}^{2} \sum_{j=1}^{2} \kappa_{i} \alpha_{i} a_{j}-\sum_{i=1}^{2} \kappa_{i} \alpha_{i} a_{i} \\
& -\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\kappa_{j}\left(a_{j}+\alpha_{j}\right) a_{i} \alpha_{i}}{a_{i}-1+\sum_{i}}+\frac{\kappa_{i}\left(a_{i}+\alpha_{i}\right) a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \\
= & \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+n \delta-\sum_{i=1}^{2} \kappa_{i} \alpha_{i} a_{i} \\
& -\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\kappa_{j}\left(a_{j}+\alpha_{j}\right) a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \sum_{i=1}^{2} \frac{\kappa_{i}\left(a_{i}-1+\alpha_{i}\right) a_{i} \alpha_{i}}{a_{i}-1+\sum_{i}} \frac{2}{i=1} \frac{\kappa_{i} a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \\
= & \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+n \delta-\sum_{i=1}^{2} \kappa_{i} \alpha_{i} a_{i} \\
= & \left.-\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\kappa_{j}\left(a_{j}+\alpha_{j}\right) a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}+\sum_{i=1}^{2} \kappa_{2}\right) a_{1} a_{2}+n \delta-\left(\sum_{j=1}^{2} \kappa_{j}+\sum_{i=1}^{2} \frac{\kappa_{i} a_{i} \alpha_{i}}{a_{i}-1+a_{i}}\right. \\
& \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+n \delta-\sum_{j}^{2} \frac{\kappa_{j}\left(a_{j}+\alpha_{j}\right) a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}^{2}} \frac{\sum_{i=1}^{2}}{\kappa_{i} a_{i} \alpha_{i}} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}+\sum_{i=1}^{2} \frac{\kappa_{i} a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}
\end{aligned}
$$

The first two terms cancel out terms in $R_{n}$ and looking at the remaining terms
we have:

$$
\begin{aligned}
& \sum_{i=1}^{2} \frac{\kappa_{i} a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}-\left(\sum_{j=1}^{2} \kappa_{j}\left(a_{j}+\alpha_{j}\right)\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \\
= & \kappa_{1} \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}+\kappa_{2} \frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}} \\
& -\kappa_{1}\left(a_{1}+\alpha_{1}\right) \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}-\kappa_{2}\left(a_{2}+\alpha_{2}\right) \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}} \\
& -\kappa_{1}\left(a_{1}+\alpha_{1}\right) \frac{a_{2} \alpha_{2}}{a_{2}-2+\alpha_{2}}-\kappa_{2}\left(a_{2}+\alpha_{2}\right) \frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}}
\end{aligned}
$$

under the assumption $\lambda_{1}=\lambda_{2}$ we can use the fact that $\kappa_{1}=\kappa_{2}\left(\alpha_{2} / \alpha_{1}\right)$

$$
\begin{aligned}
= & \kappa_{2} \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\frac{\alpha_{2}}{\alpha_{1}}-\frac{\alpha_{2}}{\alpha_{1}}\left(a_{1}+\alpha_{1}\right)-\left(a_{2}+\alpha_{2}\right)\right]+\kappa_{2} \frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}}\left[1-\frac{\alpha_{2}}{\alpha_{1}}\left(a_{1}+\alpha_{1}\right)-\left(a_{2}+\alpha_{2}\right)\right] \\
= & \kappa_{2} \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\frac{\alpha_{2}}{\alpha_{1}}-\frac{\alpha_{2}}{\alpha_{1}} a_{1}-a_{2}-2 \alpha_{2}\right] \\
& +\kappa_{2} \frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}}\left[1-\frac{\alpha_{2}}{\alpha_{1}} a_{1}-a_{2}-2 \alpha_{2}\right] \\
= & -\kappa_{2}\left(n-1+\alpha_{2}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \\
& +\kappa_{2} \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{2}}\left[\frac{\alpha_{2}}{\alpha_{1}}+a_{1}-\frac{\alpha_{2}}{\alpha_{1}} a_{1}-1-\alpha_{2}\right]+\kappa_{2} \frac{a_{2} \alpha_{2}}{a_{2}-1+\alpha_{2}}\left[a_{1}-\frac{\alpha_{2}}{\alpha_{1}} a_{1}-\alpha_{2}\right] \\
= & -\kappa_{2}\left(n-1+\alpha_{2}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}+\kappa_{2} \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}\left[a_{1}\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right)-\alpha_{2}\right]+\kappa_{2} \frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\frac{\alpha_{2}}{\alpha_{1}}-1\right]
\end{aligned}
$$

again under the assumption that $\lambda_{1}=\lambda_{2}$ we note that $\alpha_{2} / \alpha_{1}=\kappa_{1} / \kappa_{2}$

$$
=-\kappa_{2}\left(n-1+\alpha_{2}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}+\sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}\left[a_{1}\left(\kappa_{2}-\kappa_{1}\right)-\kappa_{2} \alpha_{2}\right]+\frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\kappa_{1}-\kappa_{2}\right]
$$

$L_{n}$ can now be written as

$$
\begin{align*}
\frac{L_{n}}{\pi(a \mid n)}= & \left(\kappa_{1}+\kappa_{2}\right) a_{1} a_{2}+n \delta-\kappa_{2}\left(n-1+\alpha_{2}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}} \\
& +\sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}\left[a_{1}\left(\kappa_{2}-\kappa_{1}\right)-\alpha_{2}\right]+\frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\kappa_{1}-\kappa_{2}\right] \tag{4.29}
\end{align*}
$$

Again the first two terms in (4.29) cancel with terms in $R_{n}$, it is also important to note that the third term is the same as $L_{n-1}$ apart from the ratio of Hypergeometric functions.

Looking at the equation for, $L_{n+1}$ we can rewrite it as such:

$$
\frac{L_{n+1}}{\pi(a \mid n)}=\frac{\lambda_{1}+\lambda_{2}}{n+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[\frac{\kappa_{1}}{\kappa_{2}}\left(a_{1}+\alpha_{1}\right)+\left(a_{2}+\alpha_{2}\right)\right]
$$

we can write $a_{2}=n-a_{1}$ and rearrange the terms in the square brackets

$$
\begin{aligned}
& =\frac{\lambda_{1}+\lambda_{2}}{n+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[\left(n+\alpha_{2}\right)+\frac{\kappa_{1}}{\kappa_{2}}\left(a_{1}+\alpha_{1}\right)-a_{1}\right] \\
& =\left(\lambda_{1}+\lambda_{2}\right) \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)} \\
& +\frac{\lambda_{1}+\lambda_{2}}{n+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[a_{1}\left(\frac{\kappa_{1}}{\kappa_{2}}-1\right)+\alpha_{2}\right]
\end{aligned}
$$

Writing out the balance equation as, $B=\frac{1}{\pi(a \mid n)}\left[R_{n}-\left(L_{n-1}+L_{n}+L_{n+1}\right)\right]$ we can see how "in balance" the system is by seeing how close $B$ is to zero.

$$
\begin{align*}
B= & \left(\lambda_{1}+\lambda_{2}\right)\left[1-\frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\right] \\
& -\kappa_{2}\left(n-1+\alpha_{2}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}\left[\frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, \alpha_{1}, 2-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}-1\right] \\
& -\sum_{i=1}^{2} \frac{a_{i} \alpha_{i}}{a_{i}-1+\alpha_{i}}\left[a_{1}\left(\kappa_{2}-\kappa_{1}\right)-\kappa_{2} \alpha_{2}\right]-\frac{a_{1} \alpha_{1}}{a_{1}-1+\alpha_{1}}\left[\kappa_{1}-\kappa_{2}\right] \\
& -\frac{\lambda_{1}+\lambda_{2}}{n+\alpha_{2}} \frac{F\left(-n, \alpha_{1}, 1-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, \alpha_{1},-\alpha_{2}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[a_{1}\left(\frac{\kappa_{1}}{\kappa_{2}}-1\right)+\alpha_{2}\right] \tag{4.30}
\end{align*}
$$

writing $B$ in terms of our volume scaled parameters

$$
\kappa_{i}=\frac{\kappa_{i}^{\prime}}{V} \quad \lambda_{i}=\lambda_{i}^{\prime} V=D V \quad \delta=\delta^{\prime}=D
$$

we have:

$$
\begin{aligned}
& B=2 D V\left[1-\frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\frac{k_{1}}{V_{2}}}{V_{2}}\right.}{F\left(-1-n, V \alpha_{1}^{\prime},-V \alpha_{2}^{\prime}-n, \frac{\frac{\kappa_{1}}{V_{2}}}{\frac{V_{2}}{V}}\right.}\right] \\
& -\frac{\kappa_{2}}{V}\left(n-1+V \alpha_{2}^{\prime}\right) \sum_{i=1}^{2} \frac{a_{i} V \alpha_{i}^{\prime}}{a_{i}-1+V \alpha_{i}^{\prime}}\left[\frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\frac{k_{1}}{N_{2}}}{\frac{N_{1}}{2}}\right.}{F\left(1-n, V \alpha_{1}^{\prime}, 2-V \alpha_{2}^{\prime}-n, \frac{\frac{k_{1}}{N_{2}}}{\frac{N_{2}}{V}}\right)}-1\right] \\
& -\sum_{i=1}^{2} \frac{a_{i} V \alpha_{i}^{\prime}}{a_{i}-1+V V \alpha_{i}^{\prime \prime}}\left[a_{1}\left(\frac{\kappa_{2}}{V}-\frac{\kappa_{1}}{V}\right)-\frac{\kappa_{2}}{V} V \alpha_{2}^{\prime}\right]-\frac{a_{1} V \alpha_{1}^{\prime}}{a_{1}-1+V \alpha_{1}^{\prime}}\left[\frac{\kappa_{1}}{V}-\frac{\kappa_{2}}{V}\right] \\
& -\frac{\lambda_{1}+\lambda_{2}}{n+V \alpha_{2}^{\prime}} \frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\frac{k_{1}}{V_{2}}}{\frac{V_{2}}{V}}\right.}{F\left(-1-n, V \alpha_{1}^{\prime},-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\frac{K_{2}}{V}}\right)}\left[a_{1}\left(\frac{\frac{k_{1}}{V}}{\frac{\kappa_{2}}{V}}-1\right)+V \alpha_{2}^{\prime}\right] \\
& =2 D V\left[1-\frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, V \alpha_{1}^{\prime},-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\right] \\
& -\kappa_{2}\left(n-1+V \alpha_{2}^{\prime}\right) \sum_{i=1}^{2} \frac{a_{i} \alpha_{i}^{\prime}}{a_{i}-1+V \alpha_{i}^{\prime}}\left[\frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{k_{2}}\right)}{F\left(1-n, V \alpha_{1}^{\prime}, 2-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}-1\right] \\
& -\sum_{i=1}^{2} \frac{a_{i} \alpha_{i}^{\prime}}{a_{i}-1+V \alpha_{i}^{\prime}}\left[a_{1}\left(\kappa_{2}-\kappa_{1}\right)-\kappa_{2} \alpha_{2}^{\prime}\right]-\frac{a_{1} \alpha_{1}^{\prime}}{a_{1}-1+V \alpha_{1}^{\prime}}\left[\kappa_{1}-\kappa_{2}\right] \\
& -\frac{2 D V}{n+V \alpha_{2}^{\prime}} \frac{F\left(-n, V \alpha_{1}^{\prime}, 1-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, V \alpha_{1}^{\prime},-V \alpha_{2}^{\prime}-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[a_{1}\left(\frac{\kappa_{1}}{\kappa_{2}}-1\right)+V \alpha_{2}^{\prime}\right] \\
& =2 D V\left\{\left[1-\frac{F\left(-n, D V / 2,1-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, D V / 2,-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\right]\right. \\
& \left.-\frac{1}{n+D V /\left(2 \kappa_{2}\right)} \frac{F\left(-n, D V / 2,1-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(-1-n, D V / 2,-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}\left[a_{1}\left(\frac{\kappa_{1}}{\kappa_{2}}-1\right)+D V /\left(2 \kappa_{2}\right)\right]\right\} \\
& -\kappa_{2}\left(n-1+D V /\left(2 \kappa_{2}\right)\right)\left[\frac{F\left(-n, D V / 2,1-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}{F\left(1-n, D V / 2,2-D V /\left(2 \kappa_{2}\right)-n, \frac{\kappa_{1}}{\kappa_{2}}\right)}-1\right] \sum_{i=1}^{2} \frac{a_{i} D V /\left(2 \kappa_{i}\right)}{a_{i}-1+D V /\left(2 \kappa_{i}\right)} \\
& -\left[a_{1}\left(\kappa_{2}-\kappa_{1}\right)-D / 2\right] \sum_{i=1}^{2} \frac{a_{i} D /\left(2 \kappa_{i}\right)}{a_{i}-1+D V /\left(2 \kappa_{i}\right)}-\frac{a_{1} D / 2}{a_{1}-1+D V / 2}\left[\kappa_{1}-\kappa_{2}\right]
\end{aligned}
$$

The ratios of hypergeometric functions are both close to 1 as seen in figure 5 so the two terms in the large square brackets are fairly small. Figure 6 shows values of B for different states $a=(a, n-a)$. B is fairly close to zero except when $n \approx 2 V$, which is the mean of $\nu(n)$. B is the most non-zero when $a \approx$ $(0,2 V),(1,2 V),(2 V, 0)$ and $(2 V, 1)$. Figure 7 shows $B$ for different values of $\kappa_{2}^{\prime}$, as $\kappa_{2}^{\prime}$ gets closer to 1 the peaks get smaller.
 tively. The functions were plotted for $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta=0.01, V=20$ and $\kappa_{2}=1.001$ as a function of n


Figure 6: Values of B when $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=0.01,, \kappa_{1}^{\prime}=1, \kappa_{2}^{\prime}=1.001$ and $V=20$


Figure 7: B plotted with $\kappa_{1}^{\prime}=1, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=0.01, V=20$ and $\kappa_{2}^{\prime}=1.0001,1.005,1.01,1.1$

### 4.7 Simulation

Simulation of the two-dimensional TK model was carried out using the Gillespie algorithm. The algorithm, formulated circa 1945 by Joseph L. Doob, and popularized by Dan Gillespie in a paper written in 1977 [8]. The Gillespie algorithm is a stochastic simulation algorithm based on the dynamic Monte Carlo method, it is used widely to simulate chemical and biological systems with great accuracy and efficiency. The algorithm is especially useful in our case since it can simulate a system with small numbers of reactants as every reaction is exactly simulated, the trajectory of a Gillespie simulation corresponds to an explicit sample from a distribution which satisfies the master equation of the system.

### 4.7.1 The Gillespie Algorithm

The following version of the Gillespie algorithm has been adapted from lecture notes by Paolo Milazzo [13]. Let $\mathcal{R}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be a set of reactions. We assume a reaction constant $\kappa_{\mu}$ for each reaction $R_{\mu} \in \mathcal{R}$ such that $c_{\mu} d t$ is the probability that the combination of reactants of $R_{\mu}$ react in an infinitesimal time step $d t$. The propensity of $R_{\mu}, a_{\mu}$, is computed as

$$
\begin{equation*}
a_{\mu}=h_{\mu} \kappa_{\mu} \tag{4.31}
\end{equation*}
$$

where $h_{\mu}$ is the number of distinct reactant combinations for $R_{\mu}$. i.e. if $R_{\mu}$ is given by:

$$
\begin{equation*}
k_{1} S_{1}+\cdots+k_{n} S_{n} \xrightarrow{\kappa} k_{1}^{\prime} P_{1}+\cdots+k_{m}^{\prime} P_{m} \tag{4.32}
\end{equation*}
$$

if the reaction is in a solution with $A_{i}$ molecules of each reactant, $S_{i}$ then $h_{\mu}$ is given as

$$
\begin{equation*}
h_{\mu}=\prod_{i=1}^{n}\binom{A_{i}}{k_{i}} \tag{4.33}
\end{equation*}
$$

The time between occurrences of the reaction $R_{\mu}$ is a random variable with $\operatorname{Exp}\left(a_{\mu}\right)$ distribution. We let

- $\left\{S_{1}, \ldots, S_{n}\right\}$ be a set of molecules
- $\left\{A_{1}, \ldots, A_{n}\right\}$ be the initial numbers of each molecule
- $\left\{R_{1}, \ldots, R_{m}\right\}$ a set of reactions of the molecules
the algorithm then proceeds as such:

1. set $t=0$ and then initialize $A=\left[A_{1}, \ldots, A_{2}\right]$
2. the time $t+\tau$ at which the next reaction occurs is randomly chosen with $\tau \sim \operatorname{Exp}\left[\sum_{i=1}^{m} a_{i}\right]^{1}$
3. the reaction which occurs at time $t+\tau$ is randomly chosen, with the probability of choosing $R_{\mu}$ given by $\frac{a_{\mu}}{\sum_{i=1}^{m} a_{i}}{ }^{2}$
4. $A=\left[A_{1} \ldots, A_{2}\right]$ is updated by adding the products and subtracting the reactants of $R_{\mu}$
5. steps 2 and 3 are repeated until $t$ has reached a chosen value

For our particular model, we provide an example of the algorithm:

$$
\begin{align*}
& R_{1}: A_{1}+A_{2} \xrightarrow{1 / 20} 2 A_{1} \quad R_{2}: A_{1}+A_{2} \xrightarrow{1.01 / 20} 2 A_{2} \\
& R_{3}: \emptyset \xrightarrow{.2} A_{1} \quad R_{4}: \emptyset \xrightarrow{0.2} A_{2}  \tag{4.34}\\
& R_{5}: A_{1} \xrightarrow{0.01} \emptyset \quad R_{6}: A_{2} \xrightarrow{0.01} \emptyset
\end{align*}
$$

We choose an initial state $A=[30,10]$, and propensities are computed:
$a_{1}=30 \cdot 10 \cdot 1 / 20 \quad a_{2}=30 \cdot 10 \cdot 1.01 / 20 \quad a_{3}=0.2 \quad a_{4}=0.2 \quad a_{5}=30 \cdot 0.01 \quad a_{6}=10 \cdot 0.01$
$a_{0}=\sum_{i} a_{i}=15+15.15+0.2+0.2+0.3+0.1=30.95$. We then draw $\tau$ from $\operatorname{Exp}[30.95]$ lets say $\tau=0.032$ and choose a reaction with probability $a_{i} / a_{0}$. We choose $R_{2}: R_{2}: A_{1}+A_{2} \xrightarrow{1.01 / 20} 2 A_{2}$ so subtract an $A_{1}$ and $A_{2}$ and add $2 A_{2}$ 's and the state of the system is now $A=[29,11]$ at time $t=\tau$. We continue to update the state of the system as such, keeping track of each state visited, until a predetermined time. After the simulation we can plot a histogram of the states visited, this histogram should coincide with our distribution $\Pi(a)$

[^0]
### 4.7.2 Simulations of 2D TK model

Let $A(t)=\left[A_{1}(t), A_{2}(t)\right]$ be the state of our simulation in the Gillespie algorithm. Let's assume at time $t$ there are $n A_{1}$ molecules and $m A_{2}$ molecules or $A_{1}(t)=n$ and $A_{2}(t)=m$. Let $p_{n, m}(t)$ be the probability that there are $A(t)=[n, m]$, if we consider an infinitesimal time step $d t$ chosen such that only one event occurs there are only seven possible ways that $A(t+d t)=[n, m]$ either $A(t)=[n, m]$ and no reaction occurs in $[t, d t), A(t)=[n-1, m]$ and an $A_{1}$ is added with rate $\lambda_{1}, A(t)=[n, m-1]$ and an $A_{2}$ is added with rate $\lambda_{2}$, $A(t)=[n+1, m]$ with an $A_{1}$ dying with rate $\delta, A(t)=[n, m+1]$ with an $A_{2}$ dying at rate $\delta, A(t)=[n+1, m-1]$ and we have an auto catalytic reaction at rate $\kappa_{2}$ or $A(t)=[n-1, m+1]$ and we have an autocatalytic reaction with rate $\kappa_{2}$. So,

$$
\begin{align*}
p_{n, m}(t+d t)= & p_{n-1, m}(t) \lambda_{1} d t+p_{n, m-1}(t) \lambda_{2} d t \\
& +p_{n+1, m}(t) \delta(n+1) d t+p_{n, m+1}(t) \delta(m+1) d t \\
& +p_{n+1, m-1}(t) \kappa_{2}(n+1)(m-1) d t+p_{n-1, m+1}(t) \kappa_{1}(n-1)(m+1) d t \\
& +p_{n, m}(t)\left(1-\left(\lambda_{1} d t+\lambda_{2} d t+\delta n d t+\delta m d t+\kappa_{1} n m d t+\kappa_{2} n m d t\right)\right) \tag{4.35}
\end{align*}
$$

manipulating the equation, we can write

$$
\begin{align*}
\frac{p_{n, m}(t+d t)-p_{n, m}(t)}{d t}= & p_{n-1, m}(t) \lambda_{1}+p_{n, m-1}(t) \lambda_{2} \\
& +p_{n+1, m}(t) \delta(n+1)+p_{n, m+1}(t) \delta(m+1) \\
& +p_{n+1, m-1}(t) \kappa_{2}(n+1)(m-1)+p_{n-1, m+1}(t) \kappa_{1}(n-1)(m+1) \\
& -p_{n, m}(t)\left(\lambda_{1}+\lambda_{2}+\delta n+\delta m+\kappa_{1} n m+\kappa_{2} n m\right) \tag{4.36}
\end{align*}
$$

taking the limit as $d t \rightarrow 0$ we get

$$
\begin{align*}
\frac{d p_{n, m}}{d t}= & p_{n-1, m}(t) \lambda_{1}+p_{n, m-1}(t) \lambda_{2} \\
& +p_{n+1, m}(t) \delta(n+1)+p_{n, m+1}(t) \delta(m+1) \\
& +p_{n+1, m-1}(t) \kappa_{2}(n+1)(m-1)+p_{n-1, m+1}(t) \kappa_{1}(n-1)(m+1) \\
& -p_{n, m}(t)\left(\lambda_{1}+\lambda_{2}+\delta n+\delta m+\kappa_{1} n m+\kappa_{2} n m\right) \tag{4.37}
\end{align*}
$$

Which is the Master equation for our chemical reaction network. The Gillespie algorithm provides an unbiased and convergent estimate of the solution of the chemical master equation [10], so if the algorithm is run for a sufficiently long time, we should be able to extract this solution to the master equation by looking at the proportions of time spent in each statec. Since the existence of a unique stationary distribution was proved for the general model by Bibbona et al in [6], it is a solution to the master equation and moreover the Gillespie algorithm is sampling from it. To compare the proposed distribution to the
true stationary distribution the Gillespie algorithm was run for a long period of time and the proportion of time spent in each state was plotted on a histogram, figure 8 shows some of these plots for $D V=0.2$ when DITs are active in the system. The histograms agree with the plots of the proposed distribution, $\Pi(a)$ including the behaviour as $\kappa_{2}$ is increased and $\kappa_{1}$ is held at 1 . In figure 9 we keep $D V=0.2$ but for a volume of 10 and 40 , both plots agree with the simulated data. In figure 10 volume is fixed at 20 and $D$ is increased, as $D$ increases the inflow and outflow reactions increase in frequency, so the system spends less time on the boundaries. Autocatalytic reactions are still at play, so there are still peaks at the boundaries, but they are less pronounced.


Figure 8: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow with $\Pi(a)$ overlaid in blue. Volume scaled rates are $\kappa_{1}^{\prime}=1, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\delta^{\prime}=$ $D=0.01$ with volume $V=20$ for all 4 plots, $\kappa_{2}^{\prime}=1.001,1.01,1.05,1.1$ for (a),(b),(c), and (d) respectively.

### 4.8 Discussion

In this thesis we have studied a family of autocatalytic reactions

$$
\begin{equation*}
A_{i}+A_{j} \xrightarrow{\kappa_{i j}} 2 A_{j} \quad A_{i} \underset{\lambda_{i}}{\stackrel{\delta_{i}}{\rightleftharpoons}} \emptyset \tag{4.38}
\end{equation*}
$$

Modelling the counts of each species as a continuous time Markov chain Bibbona et al proved the existence of a stationary distribution for a general system in this family, they also show a under the condition where all catalytic reaction


Figure 9: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow, with $\Pi(a)$ overlaid in blue. Volume and $D$ were varied while keeping $D V=0.2$ Volume scaled rates are $\kappa_{1}^{\prime}=1, \kappa_{2}^{\prime}=1.01, \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=D$ with volume $V=10$ and $D=1 / 50$ in (a), $V=40$ and $D=1 / 200$


Figure 10: Histograms for simulations of 2D TK network with asymmetric autocatalytic rates are shown in yellow with $\Pi(a)$ overlaid in blue. $D$ was varied while keeping the volume fixed at $V=20$. Volume scaled rates are $\kappa_{1}^{\prime}=1, \kappa_{2}=1.01 \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=D$ with and $D=2 / 100,5 / 100,7 / 100,9 / 100$ in (a), (b), (c), and (d) respectively.
rates $\kappa_{i j}=\kappa$ that the stationary distribution conditional on the total population being n takes the form of a Dirichlet-multinomial distribution. To investigate the case when the autocatalytic rates are not identical, we have tested a distribution which is stationary for a model which similar dynamics. The distribution is a

Dirichlet-multinomial distribution but weighted on the autocatalytic rates, it should also be noted that it does not hold for general autocatalytic rates $\kappa_{i j}$ but only when $\kappa_{i j}=\kappa_{j}$ for all $i$. When the outflow rates $\delta_{i}$ are identical the lumped process $\bar{X}(t)$, which is the count of the total population of the system at time $t$, is a CTMC with stationary distribution

$$
\begin{equation*}
\nu(n)=\frac{\mu^{n}}{n!} \exp (-\mu), \quad \mu=\frac{\sum_{i} \lambda_{i}}{\delta} \tag{4.39}
\end{equation*}
$$

Conditioning on the stationary probability, $\nu(n)$, of $\bar{X}(t)$ being in the state $n=\sum_{i} a_{i}$ the stationary distribution of $X(t)$ can be factorized as $\Pi(a)=$ $\nu(n) \pi(a \mid n)$. We looked at the two-dimensional model

$$
\begin{equation*}
A_{1}+A_{2} \xrightarrow{\kappa_{1}} 2 A_{1} \quad A_{1}+A_{2} \xrightarrow{\kappa_{2}} 2 A_{2} \quad A_{i} \underset{\lambda_{i}}{\stackrel{\delta_{i}}{\rightleftharpoons}} \emptyset \tag{4.40}
\end{equation*}
$$

and analyzed the distribution

$$
\begin{equation*}
\pi\left(a_{1}, a_{1} \mid n\right)=\frac{1}{u(\alpha, \kappa, n)}\binom{n}{a_{1}, a_{2}} \kappa_{1}^{a_{1}} \kappa_{2}^{a_{2}} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}+n\right)} \frac{\Gamma\left(a_{1}+\alpha_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(a_{2}+\alpha_{2}\right)}{\Gamma\left(\alpha_{2}\right)} \tag{4.41}
\end{equation*}
$$

Under classical volume scaling of the rate parameters we showed that $\pi(a \mid n)$ exhibits DITs in the low volume regime, and when the volume is large the distribution was unimodal and centred around the equilibrium point of the deterministic system of ODEs:

$$
\begin{align*}
& \dot{a_{1}}(t)=\left(\kappa_{1}-\kappa_{2}\right) a_{1} a_{2}+\lambda_{1}-\delta a_{1} \\
& \dot{a_{2}}(t)=\left(\kappa_{2}-\kappa_{1}\right) a_{1} a_{2}+\lambda_{2}-\delta a_{2} \tag{4.42}
\end{align*}
$$

We also used the Gillespie algorithm to simulate the process and compared the simulations to our distribution $\Pi(a)=\nu(n) \pi(a \mid n)$. The histograms of our simulations resembled our distribution; particularly, both the simulation results and the candidate distribution show that when $\kappa_{1}$ is held at 1 and $\kappa_{2}$ is increased, most of the mass of the distribution is moved towards the states where the population of the system is entirely in $A_{1}$ and $A_{2}$ is extinct. When $\kappa_{2}=1.1$ almost all the mass of the distribution is in the states where $A_{2}$ holds the entire population.

To determine if the distribution $\Pi(a)$ is indeed stationary, we analyzed the global balance condition $\Pi Q=0$. Unfortunately, for our distribution the global balance condition was not satisfied, although it was shown to be very close to zero. The global balance equates, at equilibrium, the probability flux leaving each state $i$ and the probability flux entering each state $i$. The probability flux in this case means the expected number of transitions per unit time. Since our distribution does not satisfy global balance, it means there is extra probability flux not accounted for by our distribution, which would not be there if it were the unique stationary distribution. Since it seems like the distribution is more "out of balance" near the boundaries when $n \approx 2 V$, the mean of $\nu(n)$, (i.e.
when $a \approx(0,2 V),(2 V, 0),(1,2 V)$, and $(2 V, 1))$. It is not clear why the balance equation is farthest from zero at these points, it could be due to computational error since these are the points at which the distribution has its largest values and is very small elsewhere. Why this was not an issue when $\kappa_{1}=\kappa_{2}$ is mysterious, especially since this distribution reduces to the exact stationary distribution when $\kappa$ 's are equal. What exactly this means as to how "close" our candidate distribution is to the true stationary distribution quantitatively is not clear however; qualitatively, from the simulations it does appear to be very similar to the true distribution.

## References

[1] D. F. Anderson. "lecture notes for summer school University of Turin" (unpublished, private copy), July 2022.
[2] D. F. Anderson and T. G. Kurtz. Continuous time markov chain models for chemical reaction networks. Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, pages 3-42, 2011.
[3] D. F. Anderson and T. G. Kurtz. Stochastic Analysis of Biochemical Systems. Springer Publishing Company, Incorporated, 2015.
[4] N. Balakrishnan and V.B. Nevzorov. A Primer on Statistical Distributions, chapter 27, pages 269-276. John Wiley Sons, Ltd, 2003.
[5] F. Ball and G. F. Yeo. Lumpability and marginalisability for continuoustime markov chains. Journal of Applied Probability, 30(3):518-528, 1993.
[6] J. Kim E. Bibbona and C. Wiuf. Stationary distributions of systems with discreteness-induced transitions. J. R. Soc. Interface, 17, 2020.
[7] A. M. Etheridge and R.C. Griffiths. A coalescent dual process in a moran model with genic selection. Theoretical Population Biology, 75(4):320-330, 2009.
[8] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81:2340-2361, 1977.
[9] G. R. Grimmet and D. R. Stirzaker. Probability and Random Processes. Oxford University Press Inc., New York, 3 edition, 2001.
[10] Martin Hemberg and Mauricio Barahona. Perfect sampling of the master equation for gene regulatory networks. Biophysical Journal, 93(2):401-410, 2007.
[11] T. G. Kurtz. Representations of Markov Processes as Multiparameter Time Changes. The Annals of Probability, 8(4):682-715, 1980.
[12] S. P. Meyn and R. L. Tweedie. Stability of markovian processes iii: Fosterlyapunov criteria for continuous-time processes. Advances in Applied Probability, 25(3):518-548, 1993.
[13] P. Milazzo. Stochastic simulation of chemical reactions. https: //pages.di.unipi.it/milazzo/teaching/AA1819-CMCS/slides/ 05-StochasticSimulationChemicalReactions.pdf, 2018/2019.
[14] J. R. Norris. Markov Chains. Cambridge University Press, 1997.
[15] N. Saito and K. Kaneko. Theoretical analysis of discreteness-induced transition in autocatalytic reaction dynamics. Physical Review E, 91(2), feb 2015.
[16] Y. Togashi and K. Kaneko. Transitions induced by the discreteness of molecules in a small autocatalytic system. Phys. Rev. Lett., 86:2459-2462, Mar 2001.
[17] I. Zachar. Gillespie stochastic simulation algorithm. https:// mathematica.stackexchange.com/q/119786.

## A Appendix

## A. 1 Theorems and Lemmas

The following is theorem 1.2 in [2]
Theorem A.1. If $Y$ is a Poisson process, then for each $u_{0}>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{u \leq u_{0}}\left|\frac{Y(n u)}{n}-u\right|=0 \quad \text { a.s. } \tag{A.1}
\end{equation*}
$$

proof. Let $\varepsilon>0$ and let $\left\{u_{i}\right\}$ be a discretization of $\left[0, u_{0}\right]$ so that

$$
\left|u_{i+1}-u_{i}\right| \leq \varepsilon / 2
$$

Let $N$ be large enough such that for $n \geq N$ we have

$$
\begin{equation*}
\left|\frac{Y\left(n u_{i}\right)}{n}-u_{i}\right| \leq \varepsilon / 2 \tag{A.2}
\end{equation*}
$$

for each $i$. Let $u \in\left[0, u_{0}\right]$ and $j$ be such that $u_{j} \leq u \leq u_{j+1}$. For $n \geq N$ we have

$$
\frac{Y(n u)}{n}-u \leq \frac{Y\left(n u_{j+1}\right)}{n}-u_{j+1}+\left(u_{j+1}-u\right) \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
$$

and

$$
\frac{Y(n u)}{n}-u \geq \frac{Y\left(n u_{j}\right)}{n}-u_{j}+\left(u_{j}-u\right) \geq-\varepsilon / 2-\varepsilon / 2=-\varepsilon
$$

so

$$
\sup _{u \leq u_{0}}\left|\frac{Y(n u)}{n}-u\right| \leq \varepsilon
$$

the following is Gronwall's inequality, the proof is taken from [3].
Lemma A.1.1. Suppose that $A$ is non-negative, cadlag, and non-decreasing. Furthe supposed $X$ is cadlag, and

$$
0 \leq X(t) \leq \varepsilon+\int_{0}^{t} X(s-) d A(s)
$$

then

$$
X(t) \leq \varepsilon e^{A(t)}
$$

proof.

$$
\begin{aligned}
X(t) & \leq \varepsilon+\int_{0}^{t} X(s-) d A(s) \\
& \leq \varepsilon+\varepsilon A(t)+\int_{0}^{t} \int_{0}^{s-} X(u-) d A(u) d A(s) \\
& \leq \varepsilon+\varepsilon A(t)+\varepsilon \int_{0}^{t} A(s-) d A(s)+\int_{0}^{t} \int_{0}^{s-} \int_{0}^{u-} X(r-) d A(r) d A(u) d A(s)
\end{aligned}
$$

Since $A$ is finite variation, making $[A]_{t}^{c} \equiv 0$. Ito's formula yields

$$
\begin{aligned}
e^{A(t)} & =1+\int_{0}^{t} e^{A(s-)} d A(s)+\sum_{s \leq t}\left(e^{A(s)-e^{A(s-)}-e^{A(s-)} \Delta A(s)}\right. \\
& \geq 1+\int_{0}^{t} e^{A(s-)} d A(s) \\
& \geq 1+A(t)+\int_{0}^{t} \int_{0}^{s-} e^{A(u-)} d A(u) d A(s) \\
& \geq 1+A(t)+\int_{0}^{t} A(s-) d A(s)+\int_{0}^{t} \int_{0}^{s-} \int_{0}^{u-} e^{A(r-)} d A(r) d A(u) d A(s)
\end{aligned}
$$

continuing the iteration we get $X(t) \leq \varepsilon e^{A(t)}$

## A. 2 Foster-Lyapunov Criterion for Bibbona-Kim-Wiuf model

Let $X(t)$ be the associated Markov Chain for a general network described by (3.3). Let $V(x)=e^{\|x\|_{1}}$, where $\|x\|_{1}=\sum_{i=1}^{d}\left|x_{i}\right|$. We will show that theorem 2.27 holds for some $C$ and $D$.

$$
\begin{aligned}
Q V(x)= & \sum_{i, j} \kappa_{i j} x_{i} x_{j}\left(V\left(x-e_{i}+e_{j}\right)-V(x)\right) \\
& +\sum_{i=1}^{d} \delta_{i} x_{i}\left(V\left(x-e_{i}\right)-V(x)\right)+\sum_{i=1}^{d} \lambda_{i}\left(V\left(x+e_{i}\right)-V(x)\right) \\
= & \sum_{i=1}^{d} \delta_{i} x_{i}\left(V\left(x-e_{i}\right)-V(x)\right)+\sum_{i=1}^{d} \lambda_{i}\left(V\left(x+e_{i}\right)-V(x)\right.
\end{aligned}
$$

let $K_{n}=\left\{x \in \mathbb{N}^{d}: x_{i} \geq n, \quad \forall i\right\}$. For $x \in K_{n}$

$$
\begin{aligned}
Q V(x)= & V(x)\left(\sum_{i=1}^{d} \delta_{i} x_{i}\left(e^{-1}-1\right)+\sum_{i=1}^{d} \lambda_{i}\left(e_{i}-1\right)\right) \\
& \leq\left(\left(\min _{i} \delta_{i}\right)\left(e^{-1}-1\right) d n+\sum_{i=1}^{d} \lambda_{i}(e-1)\right) V(x)
\end{aligned}
$$

we choose N such that

$$
C=-\left(\left(\min _{i} \delta_{i}\right)\left(e^{-1}-1\right) d N+\sum_{i=1}^{d} \lambda_{i}(e-1)\right)>0
$$

then theorem 2.27 holds with $D=2 C \max _{x \in K_{N}} V(x)$, which implies $X(t)$ is non-explosive, positive recurrent and exponentially ergodic, moreover it implies the existence of a unique stationary distribution $\pi$.

## A. 3 Gillespie Algorithm

Mathematica code was modified, from a Mathematica stack exchange post by Istvan Zachar [17], to work with our chemical reaction network. The code used is shown in figure 11.

```
GillespieSSA[res : {__Rule}, in_Association,
    rateconst_?VectorQ, influx_Association: <|>,
    (mint_?NumberQ, maxt_?NumberQ, dstep_Integer: 1}] := Module[
    vars, reactant, product, balance, propensities, initialValues,
    fluxRates, symRates, rep, stepList, iterations = 10^7, step,
        compiled, times, rest},
    Pre-generating a list is much faster than iteratively calling one-by-one
    stepList = N@RandomVariate[ExponentialDistributione1, iterations + 1];
    {vars, initialValues} = {Keys@in, Values@in};
    {reactant, product } =
    Outer[Coefficient[#1, #2] &, #, vars, 1] & /@
        Transposee(List @ee res);
    balance = product - reactant;
    propensities =
    Inner[Binomial[#2, #1] &, reactant, vars, Times]*
        PadRight[rateconst, Lengtheres, 1];
    luxRates = If[influx === <|>>, 0&/@ vars, vars /. influx];
    Block[{count},
    rep = Thread[vars }->\mathrm{ Table[Indexed[count, i], {i, Lengthevars}]];
    symRates = propensities /. rep;
    compiled = ReleaseHold
        ldeCompile[{
            {init, _Integer, 1}, {flux, _Integer, 1}, {bal, _Integer, 2},
            {dtList, _Real, 1}, {min, _Real}, {max, _Real},
            {iter, _Integer}, {resol, _Integer}},
            Module[{
            count = init, rates, i = 1, c=1, t = min, dt, ff, f, range,
            r, fReal = 0. & /@ flux, rateSum, data = Internal` Bag[]},
            rates = "SymbolicRates";
            rateSum = NeTotalerates;
            range = RangeeLengtherates;
            Internal`StuffBag[data, Internal`Bag[Join[{t}, Necount]]];
                While[Totalecount > 0.&& rateSum > 0.&& }t\leq\mathrm{ max && i s iter,
            i++;
            dt = dtList\llbracketi\rrbracket/rateSum;
            = t + dt;
            = RandomChoice[rates }->\mathrm{ range];
            (* Fractional part is carried over to minimize undersampling error *
            ff = (flux*dt) + fReal;
            f = IntegerPart@ff;
            fReal = ff - f;
            ount = is maintained as an integer not to loose precision. *)
            M, (count + bal\llbracketr\mathbb{ + f);}
            f[Mod[i, resol] == 0, c++;
            Internal`\SuffBag[data, Internal`Bag[Join[{t}, Necount]]];];
            rates = "SymbolicRates";
            rateSum = NeTotalerates;
            ];
            Iflt < max && i < iter, c++;
            Internal`StuffBag[data, Internal`Bag[Join[{max}, Necount]]]];
            Table[Internal`BagPart[Internal`BagPart[data, j], All], {j, c}]
            ],
            Parallelization }->\mathrm{ True,
            RuntimeOptions }->\mathrm{ "Speed",
            CompilationOptions -> {"InlineExternalDefinitions" }->\mathrm{ True,
            "InlineCompiledFunctions" -> True}
            ] /. "SymbolicRates" -> symRates];
            {times, rest} = {Firste#, Reste#} &@Transposeecompiled[
            RoundeinitialValues, NefluxRates, Roundebalance,
            N@stepList, Nemint, Nemaxt, Roundeiterations, dstep];
        Interpolation[Transposee{Join[times,{times\llbracketLength[times]\ +10^-4}],Join[{#\llbracket1|},#]},InterpolationOrder }->0]\mathrm{ & /@ rest
    1];
```

Figure 11: Mathematica code for Gillespie Algorithm


[^0]:    ${ }^{1} \tau$ is chosen by generating a random number $r_{1} \in[0,1]$ and computing $\tau=\frac{1}{\sum_{i=1}^{m} a_{i}} \ln \left(\frac{1}{r_{1}}\right)$
    ${ }^{2}$ to choose a reaction $R_{\mu}$ we generate a random number $r_{2} \sim \operatorname{Unif}[0,1)$ and choose $\mu$ as the smallest integer satisfying $\sum_{i=1}^{k} a_{i}>r_{2} \sum_{i=1}^{m} a_{i}$

