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Abstract 

Metabolic and Blood Flow Properties of Functional Brain Networks Using 
Human Multimodal Neuroimaging 

Seyedeh Fatemeh Razavipour, Ph.D. 

Concordia University, 2022 

The brain has a high energetic cost to support neuronal activity, requiring both oxygen and glucose 

supply from the cerebral vascular system. Additionally, the brain functions through complex 

patterns of interconnectivity between neuronal assemblies giving rise to functional network 

architectures that can be investigated across multiple spatial scales. Different brain regions have 

different roles and importance within these network architectures, with some regions exhibiting 

more global importance by being involved in cross-network communication while other being 

predominantly involved in local connections. There are indications that regions exhibiting a more 

global role in inter networks connectivity are characterized by a higher and more efficient 

metabolic profile, leading to differences in metabolic properties when compared to more locally 

connected regions. Understanding the link between oxygen/glucose metabolism and functional 

features of brain network architectures, across different spatial scales, is of primary importance. 

This thesis consists of three original studies combining human brain resting-state multimodal 

neuroimaging and transcriptional data to investigate the glucose/oxygen metabolic costs of brain 

functional connectivity. We quantified glucose metabolism from positron emission tomography, 

and oxygen metabolism and functional connectivity from magnetic resonance imaging. In the first 

study, we highlight how the oxygen/glucose metabolism of brain regions can non-linearly relate 

to their functional hubness, within the resting-state networks of the brain across a nested hierarchy. 

We found that an increase in oxygen/glucose metabolism is associated with a non-linear increase 

in functional hubness where increase rates are both network- and scale-dependent. In the second 

study, we show specific transcriptional signatures that characterize the oxygen/glucose metabolic 

costs of regions involved in network global versus local centrality. This study highlights the 

different metabolic profiles of local and global regions, with gene expression related to oxidative 

metabolism and synaptic pathways being enriched in association with spatial patterns in common 

with resting blood flow and metabolism (oxygen and glucose) and globally-connected regions. In 

the third study, we demonstrate that there are oxygen/glucose metabolic costs to the functional 

integration and segregation of resting-state networks. We highlight that the metabolic costs of 

functional integration could reflect the hierarchical organization of the brain from unimodal to 

transmodal regions. 
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and Figure 3.13 for further detailed results . (B) Brain mappings of the estimated posterior median 

of scaling exponents within MIST7 and MIST20 for CMRGlc, CMRO2, CBF, and OEF. The same 

set of two parasagittal slices in the left hemisphere (at -18.5, and -10.8 mm) is shown every time 

and highlights the cerebellum, amygdala, caudate, hippocampus, nucleus accumbens, pallidum, 

putamen, and thalamus. The color-bar is global for all figures. 

Figure 3.4 Posterior summaries of scaling exponents within the whole brain, all the networks of 

MIST7 and four networks of MIST20. The colored vertical lines delimit the 89% highest density 

credible intervals of, and the black horizontal lines are the median of the estimated posteriors. The 

number on the left side of each vertical line indicates probability that the scaling exponent is 

between 0 and 1 (i.e., the probability of a concave down increasing power-law) and the 

corresponding text indicates an interpreted evidence ratio. A star symbol at the end of a text (i.e., 

when probabilities are less than 0.5) indicates that the interpreted evidence ratio applies to the 

alternative hypothesis (i.e., non-concave down increasing power-law). Note that the probability 

values reported here as 0.00 or 1.00 are not true zeros or ones. See also Figure 3.14. MIST labels 

are detailed in the text as well as in Table 3.2. 

Figure 3.5 Posterior summaries of scaling differences between the networks of MIST7  for 

CMRGlc, CMRO2, CBF, and OEF. The comparisons ROW ≥ COLUMN  indicate that the 

difference was calculated between the posterior of ROW  and COLUMN . Here we report 

comparisons only for the lower triangular. The color-bars are median estimates of posterior 

differences. The numbers on the upper diagonals give the lower (L) and upper (U) bounds of the 

89% highest density credible intervals of the posterior differences. The size of each circle 

represents probability of direction (i.e., maximum between probability of positive difference and 

probability of negative difference), the horizontal tick marks on the top of each circle delimit 

probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle indicate if the 

probability is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest 

(L) and highest (U) probability of directions found on each row. Note that the probability values 

reported here as 1.00 are not true ones. See also Figure 3.15, Figure 3.16, Figure 3.17, and Figure 

3.18. MIST labels are detailed in Table 3.2. 

Figure 3.6 Posterior summaries of scaling differences between responses within the whole brain, 

all the networks of MIST7 and four networks of MIST20. The colored vertical lines delimit the 

89% highest density credible intervals of, and the black horizontal lines are the median of the 

estimated posteriors. The number on the left side of each vertical line indicates probability of 

positive difference and the corresponding text indicates an interpreted evidence ratio. A star 

symbol at the end of a text (i.e., when probabilities are less than 0.5) indicates that the interpreted 

evidence ratio applies to the hypothesis of negative difference instead of positive. Note that the 

probability values reported here as 0.00 or 1.00 are not true zeros or ones. See also Figure 3.19. 

The labels of MIST20 are detailed in Table 3.2. 
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Figure 3.7 Functional hubness (ℋ) probability maps for each ℋ in 1,6. For each map 𝒫ℋ, a voxel 

codes the relative frequency of ℋ (between 0 and 1) across subjects, and the color-bars indicate 

the smallest non-null and largest relative frequencies. In each panel, the top-left parasagittal slice 

is at -51.4 mm, and the montage (left to right, then top to bottom) was constructed with a step of -

9.1 mm. 

Figure 3.8 Functional hubness (ℋ) frequency distributions within the whole brain, as well as 

within the networks of MIST7 and MIST20. The ordering from left to right, then top to bottom, is 

such that the networks of MIST7 (in bold font) are directly followed by their children (network) 

in MIST20. The frequencies (i.e., y-axes) range between 0 and 1. The indicated number of voxels 

on each tile are the means taken across subjects. The blue circles are the frequencies for each 

subject and only non-null frequencies are shown. The yellow bars and their whiskers are the mean 

and standard deviation respectively of frequencies taken across subjects. The labels of MIST7 and 

MIST20 networks are detailed in Table 3.2. 
Figure 3.9 Average maps taken across subjects for CMRGlc in units of SUVR, CMRO2 in units 

of µmol / (100 g) / min, CBF in units of mL / (100 g) / min, and OEF. In each panel, the top-left 

parasagittal slice is at -51.4 mm, and the montage (left to right, then top to bottom) was constructed 

with a step of -9.1 mm. 
Figure 3.10 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for 

CMRGlc. Vertical lines are sets of four overlayed lines with different thicknesses, and they delimit 

equal-tailed credible intervals at 50%, 80%, 95%, and 99%, from thickest to thinnest in that order. 

Red colors are the original observations, and blue ones are predictions. Blue shaded areas 

correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines are the median 

estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks 

of MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and 

MIST20 are detailed in Table 3.2. These figures suggest well behaved fits and illustrate how partial 

pooling operated. 
Figure 3.11 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for 

CMRO2. Vertical lines are sets of four overlayed lines with different thicknesses, and they delimit 

equal-tailed credible intervals at 50%, 80%, 95%, and 99%, from thickest to thinnest in that order. 

Red colors are the original observations, and blue ones are predictions. Blue shaded areas 

correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines are the median 

estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks 

of MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and 

MIST20 are detailed in Table 3.2. These figures suggest well behaved fits and illustrate how partial 

pooling operated. 
Figure 3.12 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for 

CBF. Vertical lines are sets of four overlayed lines with different thicknesses, and they delimit 

equal-tailed credible intervals at 50%, 80%, 95%, and 99%, from thickest to thinnest in that order. 

Red colors are the original observations, and blue ones are predictions. Blue shaded areas 

correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines are the median 

estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks 

of MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and 

MIST20 are detailed in Table 3.2. These figures suggest well behaved fits and illustrate how partial 

pooling operated. 
Figure 3.13 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for 

OEF. Vertical lines are sets of four overlayed lines with different thicknesses, and they delimit 
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equal-tailed credible intervals at 50%, 80%, 95%, and 99%, from thickest to thinnest in that order. 

Red colors are the original observations, and blue ones are predictions. Blue shaded areas 

correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines are the median 

estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks 

of MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and 

MIST20 are detailed in Table 3.2. These figures suggest well behaved fits and illustrate how partial 

pooling operated. 

Figure 3.14 Posterior summaries of scaling exponents within the networks of MIST20 for 

CMRGlc, CMRO2, CBF, and OEF. The colored vertical lines delimit the 89% highest density 

credible intervals of, and the black horizontal lines are the median of the estimated posteriors. The 

number on the left side of each vertical line indicates probability that the scaling exponent is 

between 0 and 1 (i.e., the probability of a concave down increasing power-law) and the 

corresponding text indicates an interpreted evidence ratio. A star symbol at the end of a text (i.e., 

when probabilities are less than 0.5) indicates that the interpreted evidence ratio applies to the 

alternative hypothesis (i.e., non-concave down increasing power-law model). Note that the 

probability values reported here as 0.00 or 1.00 are not true zeros or ones. The labels of MIST20 

are detailed in Table 3.2. 
Figure 3.15 Posterior summaries of scaling differences between the networks of MIST20 for 

CMRGlc. The comparisons 𝑅𝑂𝑊 ≥ COLUMN  indicate that the difference was calculated 

between the posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here we report comparisons only for the lower 

triangular. The color-bars are median estimates of posterior differences. The numbers on the upper 

diagonals give the lower (L) and upper (U) bounds of the 89% highest density credible intervals 

of the posterior differences. The size of each circle represents probability of direction (i.e., 

maximum between probability of positive difference and probability of negative difference), the 

horizontal tick marks on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star 

symbol on the top-right of a circle indicate if the probability is greater than or equal to 0.89. The 

numbers on the diagonals summarize the lowest (L) and highest (U) probability of directions found 

on each row. Note that the probability values reported here as 1.00 are not true ones. The labels of 

MIST20 are detailed in Table 3.2. This figure provides evidence of the existence of scaling 

differences between networks. 
Figure 3.16 Posterior summaries of scaling differences between the networks of MIST20 for 

CMRO2. The comparisons 𝑅𝑂𝑊 ≥ COLUMN indicate that the difference was calculated between 

the posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here we report comparisons only for the lower triangular. 

The color-bars are median estimates of posterior differences. The numbers on the upper diagonals 

give the lower (L) and upper (U) bounds of the 89% highest density credible intervals of the 

posterior differences. The size of each circle represents probability of direction (i.e., maximum 

between probability of positive difference and probability of negative difference), the horizontal 

tick marks on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on 

the top-right of a circle indicate if the probability is greater than or equal to 0.89. The numbers on 

the diagonals summarize the lowest (L) and highest (U) probability of directions found on each 

row. Note that the probability values reported here as 1.00 are not true ones. The labels of MIST20 

are detailed in Table 3.2. This figure provides evidence of the existence of scaling differences 

between networks. 
Figure 3.17 Posterior summaries of scaling differences between the networks of MIST20 for CBF. 

The comparisons 𝑅𝑂𝑊 ≥ COLUMN  indicate that the difference was calculated between the 

posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here we report comparisons only for the lower triangular. The 
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color-bars are median estimates of posterior differences. The numbers on the upper diagonals give 

the lower (L) and upper (U) bounds of the 89% highest density credible intervals of the posterior 

differences. The size of each circle represents probability of direction (i.e., maximum between 

probability of positive difference and probability of negative difference), the horizontal tick marks 

on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right 

of a circle indicate if the probability is greater than or equal to 0.89. The numbers on the diagonals 

summarize the lowest (L) and highest (U) probability of directions found on each row. Note that 

the probability values reported here as 1.00 are not true ones. The labels of MIST20 are detailed 

in Table 3.2. This figure provides evidence of the existence of scaling differences between 

networks. 
Figure 3.18 Posterior summaries of scaling differences between the networks of MIST20 for OEF. 

The comparisons 𝑅𝑂𝑊 ≥ COLUMN  indicate that the difference was calculated between the 

posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here we report comparisons only for the lower triangular. The 

color-bars are median estimates of posterior differences. The numbers on the upper diagonals 

indicate the lower (L) and upper (U) bounds of the 89% highest density credible intervals of the 

posterior differences. The size of each circle represents probability of direction (i.e., maximum 

between probability of positive difference and probability of negative difference), the horizontal 

tick marks on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on 

the top-right of a circle indicate if the probability is greater than or equal to 0.89. The numbers on 

the diagonals summarize the lowest (L) and highest (U) probability of directions found on each 

row. Note that the probability values reported here as 1.00 are not true ones. The labels of MIST20 

are detailed in Table 3.2. This figure provides evidence of the existence of scaling differences 

between networks. 
Figure 3.19 Posterior summaries of scaling differences between CMRGlc, CMRO2, CBF, and OEF 

within the networks of MIST20. The colored vertical lines delimit the 89% highest density credible 

intervals of, and the black horizontal lines are the median of the estimated posteriors. The number 

on the left side of each vertical line indicates probability of positive difference and the 

corresponding text indicates an interpreted evidence ratio. A star symbol at the end of a text (i.e., 

when probabilities are less than 0.5) indicates that the interpreted evidence ratio applies to the 

hypothesis of negative difference instead of positive. Note that the probability values reported here 

as 0.00 or 1.00 are not true zeros or ones. The labels of MIST20 are detailed in Table 3.2. This 

figure provides evidence of the existence of scaling differences between CMRGlc, CMRO2, CBF, 

and OEF. 
Figure 4.1. Resting-state neuroimaging data derivatives. a. Average physio-metabolic (CMRGlc, 

CMRO2, CBF, and CVR) and network centrality (GE, EC, LE, CC) brain maps estimated from 20 

subjects. Data are shown for the left cerebral cortex only and projected on a semi-inflated (25%) 

mid-surface of the ICBM 2009c asymmetric brain template. Regional values were defined using 

the Schaefer 2018 7 networks atlas with 100 parcels in the left hemisphere. b. Pearson’s linear 

correlation coefficients between neuroimaging brain maps. The * symbol indicates two-tailed 𝑝-

values smaller than 0.05. CMRGlc: cerebral metabolic rate of glucose; CMRO2: cerebral metabolic 

rate of dioxygen; CBF: cerebral blood flow; CVR: cerebrovascular reactivity; GE: global 

efficiency; EC: eigenvector centrality; LE: local efficiency; CC: clustering coefficient. 
Figure 4.2. Relating gene expression to resting-state neuroimaging data. PLS analysis was used to 

identify spatially covarying patterns of gene expression and neuroimaging biomarkers. a. Latent 

variables effect sizes (i.e., percentage of covariance explained between gene expression and 

neuroimaging data). A triangle on the top indicates right-tailed 𝑝-values smaller than 0.05 as 
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obtained from spatial autocorrelation-preserving permutation testing. The box charts are the 

permuted effect sizes and represent median (line inside a box), 0.25 and 0.75 quantiles (bottom 

and top edges of a box, the distance between which is called interquartile range), outliers (defined 

as values away from the bottom or top of the box more than 150% the interquartile range), and 

nonoutlier minimum and maximum (bottom and top whiskers of a box). Note that significance is 

assessed on eigenvalue distributions and not effect size distributions. b. Neuroimaging loadings 

with respect to the pattern of gene scores for a particular latent variable are calculated as the 

Pearson’s linear correlation coefficient between neuroimaging brain maps (indicated on the rows) 

and the PLS-derived pattern of gene scores for that latent variable. Latent variables are indicated 

on the columns by a number and ordered according to their accounted percentage of data 

covariance explained from highest to lowest. A * symbol indicates bootstrap-estimated 95% 

confidence intervals not including zero (i.e., reliable loadings). c. Latent variables gene and 

neuroimaging score distributions for the first three latent variables. 
Figure 4.3. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO biological processes. b. GO pathways. 

Figure 4.4. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO biological processes. b. GO pathways. 

Figure 4.5. Enrichment analysis of the genes of latent variable 3 with highest (50%) negative 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO biological processes. b. GO pathways. 
Figure 4.6. Cell-types deconvolution. The ratio of genes preferentially expressed in seven cell 

types is shown for the genes of latent variable 1 (a.), latent variable 2 (b.), and latent variable 3 

(c.), using their highest (50%) positive (red) or negative (blue) loadings. A triangle on the top 

indicates positive false discovery rates smaller than 0.05 (i.e., significant ratios) as obtained from 

bootstrap resampling. The box charts are the null ratios and represent median (line inside a box), 

0.25 and 0.75 quantiles (bottom and top edges of a box, the distance between which is called 

interquartile range), outliers (defined as values away from the bottom or top of the box more than 

150% the interquartile range), and nonoutlier minimum and maximum (bottom and top whiskers 

of a box). Astro: astrocyte; micro: microglia; oligo-p: oligodendrocyte precursor; oligo: 

oligodendrocyte; endo: endothelial cells; neuron-e: excitatory neurons; neuron-i: inhibitory 

neurons. 

Figure 4.7. Neuroimaging loadings with respect to neuroimaging scores. Neuroimaging loadings 

with respect to the neuroimaging scores of a particular latent variable are calculated as the 

Pearson’s linear correlation coefficient between neuroimaging brain maps (indicated on the rows) 

and the PLS-derived pattern of neuroimaging scores for that latent variable. Latent variables are 

indicated on the columns by a number and ordered according to their accounted percentage of data 

covariance explained from highest to lowest. A * symbol indicates bootstrap-estimated 95% 

confidence intervals not including zero (i.e., reliable loadings). A high loading in absolute 

magnitude indicates that a particular neuroimaging biomarker highly contributes to the PLS-

derived pattern of neuroimaging scores. We can observe how the first latent variable possessed 

(global) features of almost all neuroimaging biomarkers (except EC) whereas the other latent 

variables distinguished between different sets of neuroimaging biomarkers (e.g., the second latent 

variable distinguished between physio-metabolic and global centralities on one side, and local 

centralities on the other side). 
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Figure 4.8. PLS analysis relating gene expression data to neuroimaging-derived physio-metabolic 

data. a. Latent variables effect sizes (i.e., percentage of covariance explained between gene 

expression and neuroimaging data). A triangle on the top indicates right-tailed 𝑝-values smaller 

than 0.05 as obtained from spatial autocorrelation-preserving permutation testing. The box charts 

are the permuted effect sizes and represent median (line inside a box), 0.25 and 0.75 quantiles 

(bottom and top edges of a box, the distance between which is called interquartile range), outliers 

(defined as values away from the bottom or top of the box more than 150% the interquartile range), 

and nonoutlier minimum and maximum (bottom and top whiskers of a box). Note that significance 

is assessed on eigenvalue distributions and not effect size distributions. b. Neuroimaging loadings 

with respect to the pattern of gene scores for a particular latent variable are calculated as the 

Pearson’s linear correlation coefficient between neuroimaging brain maps (indicated on the rows) 

and the PLS-derived pattern of gene scores for that latent variable. Latent variables are indicated 

on the columns by a number and ordered according to their accounted percentage of data 

covariance explained from highest to lowest. A * symbol indicates bootstrap-estimated 95% 

confidence intervals not including zero (i.e., reliable loadings). A high loading in absolute 

magnitude indicates that a particular neuroimaging biomarker highly contributes to the PLS-

derived pattern of gene scores. c. Same as b. but loadings are with respect to patterns of 

neuroimaging scores. d. Latent variables gene and neuroimaging score distributions for the first 

two latent variables. 
Figure 4.9. PLS analysis relating gene expression data to neuroimaging-derived network centrality 

data. a. Latent variables effect sizes. A triangle on the top indicates right-tailed 𝑝-values smaller 

than 0.05 as obtained from spatial autocorrelation-preserving permutation testing. The box charts 

are the permuted effect sizes and represent median (line inside a box), 0.25 and 0.75 quantiles 

(bottom and top edges of a box), outliers (values outside the 150% the interquartile range), and 

nonoutlier minimum and maximum (bottom and top whiskers of a box). Significance is assessed 

on eigenvalue distributions. b. Neuroimaging loadings with respect to the pattern of gene scores 

for a particular latent variable are calculated as the Pearson’s linear correlation coefficient between 

neuroimaging brain maps (indicated on the rows) and the PLS-derived pattern of gene scores for 

that latent variable. Latent variables are indicated on the columns by a number and ordered 

according to their accounted percentage of data covariance explained from highest to lowest. A * 

symbol indicates bootstrap-estimated 95% confidence intervals not including zero (i.e., reliable 

loadings). c. Same as b. but loadings are with respect to patterns of neuroimaging scores. d. Latent 

variables gene and neuroimaging score distributions for the first two latent variables. 
Figure 4.10. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO cellular processes. b. GO molecular processes. 
Figure 4.11. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO cellular processes. b. GO molecular processes. 
Figure 4.12. Enrichment analysis of the genes of latent variable 3 with highest (50%) negative 

loadings. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) enriched 

gene ontologies (GOs) is shown. a. GO cellular processes. b. GO molecular processes. 
Figure 4.13. Influences of gene thresholds on cell-types deconvolution. The legends of the figures 

are the same as for Figure 4.6 which was for a threshold of 50%. Here a., b., and c. are for a 

threshold of 25% while d., e., and f. are for a threshold of 100%. 
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Figure 4.14. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive 

loadings corresponding to the PLS analysis relating the physio-metabolic data (alone) to gene 

expression data. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) 

enriched gene ontologies (GOs) is shown. a. GO biological processes. b. GO cellular processes. c. 

GO molecular processes. d. GO pathways. 
Figure 4.15. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative 

loadings corresponding to the PLS analysis relating the physio-metabolic data (alone) to gene 

expression data. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) 

enriched gene ontologies (GOs) is shown. a. GO biological processes. b. GO cellular processes. c. 

GO molecular processes. d. GO pathways. 
Figure 4.16. Enrichment analysis of the genes of latent variable 2 with highest (50%) positive 

loadings corresponding to the PLS analysis relating the physio-metabolic data (alone) to gene 

expression data. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) 

enriched gene ontologies (GOs) is shown. a. GO biological processes. b. GO cellular processes. c. 

GO molecular processes. d. GO pathways. 

Figure 4.17. Cell-types deconvolution corresponding to the PLS analysis relating the physio-

metabolic data (alone) to gene expression data. The ratio of genes preferentially expressed in seven 

cell types is shown for the genes of latent variable 1 (a.) and latent variable 2 (b.), using their 

highest (50%) positive (red) or negative (blue) loadings. A triangle on the top indicates positive 

false discovery rates smaller than 0.05 (i.e., significant ratios) as obtained from bootstrap 

resampling. The box charts are the null ratios and represent median (line inside a box), 0.25 and 

0.75 quantiles (bottom and top edges of a box), outliers (values outside the 150% the interquartile 

range), and nonoutlier minimum and maximum (bottom and top whiskers of a box). Astro: 

astrocyte; micro: microglia; oligo-p: oligodendrocyte precursor; oligo: oligodendrocyte; endo: 

endothelial cells; neuron-e: excitatory neurons; neuron-i: inhibitory neurons. 

Figure 4.18. Enrichment analysis of the genes of latent variable 1 with highest (50%) negative 

loadings corresponding to the PLS analysis relating the network centrality data (alone) to gene 

expression data. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) 

enriched gene ontologies (GOs) is shown. a. GO biological processes. b. GO cellular processes. c. 

GO molecular processes. d. GO pathways. 

Figure 4.19. Enrichment analysis of the genes of latent variable 2 with highest (50%) positive 

loadings corresponding to the PLS analysis relating the network centrality data (alone) to gene 

expression data. A subset of significantly (i.e., positive false discovery rate smaller than 0.05) 

enriched gene ontologies (GOs) is shown. a. GO biological processes. b. GO cellular processes. c. 

GO molecular processes. d. GO pathways. 
Figure 4.20. Cell-types deconvolution corresponding to the PLS analysis relating the network 

centrality data (alone) to gene expression data. The ratio of genes preferentially expressed in seven 

cell types is shown for the genes of latent variable 1 (a.) and latent variable 2 (b.), using their 

highest (50%) positive (red) or negative (blue) loadings. A triangle on the top indicates positive 

false discovery rates smaller than 0.05 (i.e., significant ratios) as obtained from bootstrap 

resampling. The box charts are the null ratios and represent median (line inside a box), 0.25 and 

0.75 quantiles (bottom and top edges of a box), outliers (values outside the 150% the interquartile 

range), and nonoutlier minimum and maximum (bottom and top whiskers of a box). Astro: 

astrocyte; micro: microglia; oligo-p: oligodendrocyte precursor; oligo: oligodendrocyte; endo: 

endothelial cells; neuron-e: excitatory neurons; neuron-i: inhibitory neurons. 
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Figure 5.1. Group-level (posterior) mean values of hierarchical integration and functional 

clustering ratio (FCR) for the networks of Yeo-7. Each network of Yeo-7 is uniquely identified by 

a color and can be visualized on the brain maps. Three vertical bar graphs are overlaid, and their 

height represents: (i) total-integration (the non-filled bars associated with the left y-axis), (ii) 

within-integration (the fully-filled bars inside the non-filled ones, associated with the left y-axis), 

and (iii) FCR (the semi-filled bars associated with the right y-axis). Between-integration can be 

estimated as the difference between total-integration and within-integration (i.e., the height of the 

white boxes stacked on top of the filled boxes). D-ATT: dorsal attention; V-ATT: ventral attention; 

CONT: control; DEF: default; SOM-MOT: somatomotor; VIS: visual 
Figure 5.2.Metabolic costs of total-integration for the Yeo-7 networks. A: glucose metabolic costs; 

B: oxygen metabolic costs; C: blood supply costs. Each network of Yeo-7 is uniquely identified 

by a color and can be visualized on the corresponding brain maps displayed on the top side of each 

graph. The smallest-sized points in each graph represent individual subjects while the largest-sized 

points represent the group. Note that group-level total-integrations are generally different from the 

arithmetic mean of total-integrations across subjects because they were estimated for a hierarchical 

statistical model involving non-linear operators, and so the largest-sized points of a certain color 

are not always located at the center of the cloud of points with that same color. The dashed lines 

in each graph represent the 95% predicted intervals (PI). The slope and standard error (SE) of the 

line of best fit that are indicated in each graph are also presented in Table 5.2. The signed distance 

of a point to the line of best fit displayed on the right side of each graph is for the group (i.e., the 

largest-sized points). D-ATT: dorsal attention; V-ATT: ventral attention; CONT: control; DEF: 

default; SOM-MOT: somatomotor; VIS: visual 
Figure 5.3. Glucose metabolic costs of within-integration (A), between-integration (B), and the 

reciprocal of FCR (C) for the Yeo-7 networks. Details in this figure are presented as for in Figure 

5.2. D-ATT: dorsal attention; V-ATT: ventral attention; CONT: control; DEF: default; SOM-

MOT: somatomotor; VIS: visual 
Figure 5.4. PCA-score mappings for CMRGlc datasets (i.e., CMRGlc and either total-integration 

or within-integration or between integration or the reciprocal of FCR) for the Yeo-7 networks. 

Maps are based on group prediction scores. Here we can observe that the score patterns of 

component 2 for total-integration and within-integration are qualitatively similar to the score 

patterns of component 1 for between-integration and the reciprocal of FCR. 
Figure 5.5. Oxygen metabolic costs of within-integration (A), between-integration (B), and the 

reciprocal of FCR (C) for the Yeo-7 networks. Details in this figure are presented as for in Figure 

5.2. D-ATT: dorsal attention; V-ATT: ventral attention; CONT: control; DEF: default; SOM-

MOT: somatomotor; VIS: visual 
Figure 5.6. PCA-score mappings for CMRO2 datasets. Maps are based on group prediction scores. 

Figure 5.7. Blood supply costs of within-integration (A), between-integration (B), and the 

reciprocal of FCR (C) for the yeo-7 networks of Yeo-7. Details in this figure are presented as for 

in Figure 5.2. D-ATT: dorsal attention; V-ATT: ventral attention; CONT: control; DEF: default; 

SOM-MOT: somatomotor; VIS: visual 
Figure 5.8. PCA-score mappings for CBF datasets. Maps are based on group prediction scores. 
Figure 5.9 Link between signed distance mapping of a point to a regression line and score mapping 

of a point along a principal component. The graph on the left shows the results of a linear 

regression. The line of best fit is the solid line and the distance of each point to the line of best fit 

is represented in dotted lines. The distance is considered positive when the point lies above the 

line of best fit, and negative otherwise. The graph on the right shows the results of a PCA. The 



xxiv 

 

direction of the first component is indicated by the solid line while the direction of the second 

component is indicated by the dash-dotted line. We understand here that the signed distance 

mapping with respect to the line of best fit can capture the same qualitative information as the 

score mapping along the second principal component. Indeed, in the PCA plane, scores along the 

second principal component are y-coordinates. Similarly, the signed distance mapping with respect 

to a line perpendicular to the line of best fit that passes though the center of the point cloud can 

capture the same qualitative information as the score mapping along the first principal component. 

Figure 6.1. Aerobic glycolysis using glycolytic index (GI). (A) Voxel wise linear regression of 

CMRGlc on CMRO2. GI is defined as the residuals of the linear regression scaled by 1000. (B) 

Distribution of aerobic glycolysis in resting human brain using GI (number of subjects = 33, 

groupwise t-test, |Z|>4.4, P < 0.0001). Figure adapted from (Vaishnavi et al., 2010) 
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Introduction 

The brain is a complex organ exhibiting a multi-scale spatiotemporal functional organization 

shaped by networks of interacting neuronal units. The neuronal synaptic and non-synaptic 

connections at the molecular and micro-scale levels connect together to form polyfunctional 

neuronal circuits, cortical layers and columns at the mesoscale and regional levels. At the 

mesoscopic scale, brain regions composed of locally segregated neuronal populations with similar 

structural and functional properties tend to cluster together, shaping specialized communities or 

modules, that are connected at distance by the so-called hub regions. Hub regions have diverse 

connectional fingerprints and underlie the global integration of functional activity across brain 

regions. They have a crucial role in building integrative networks and systems at the macroscale 

to support perception, cognition, and action.  

Network neuroscience aims at understanding the organizational features of neuronal networks to 

understand cortical functions and the role of functional units at different scales. In graph theory, 

networks are described as nodes, defined for a specific scale of interest (e.g., neurons, regions, 

networks), and edges characterizing functional (or structural) connections. Measuring the 

statistical associations between time courses of nodes reveals the Functional connectivity (FC) 

between distant brain regions or brain networks (Fornito et al., 2016). Functional magnetic 

resonance imaging (fMRI) monitoring slow hemodynamic processes within the whole using the 

blood-oxygenation level-dependent (BOLD) contrast, can be considered to investigate this 

network organization. The BOLD signal is mainly sensitive to local fluctuations of 

deoxyhemoglobin concentrations and changes in cerebral blood flow and volume, elicited by 

changes in neuronal bioelectrical activity through neurovascular coupling processes (Gauthier & 

Fan, 2019; E. M. C. Hillman, 2014) . Therefore, fMRI allows assessing whole brain activity, as an 

indirect but sensitive non-invasive neuroimaging technique, a key methodology to characterize 

brain networks (Glover, 2011; Kim et al., 2021).  

In their seminal study published 1995, Biswal and colleagues used resting state-fMRI (RS-fMRI), 

i.e. fMRI acquisition “at rest” without any explicit task or stimulus, to first describe resting-state 

FC (Biswal et al., 1995), demonstrating for the first time similar spatio-temporal correlation 

structure of BOLD signals in the motor network, during rest and during a motor task. RS-fMRI 

signal captures spontaneous slow fluctuations of the baseline hemodynamic state of the brain. 

About a decade later, several RS-fMRI studies demonstrated the stability of RS networks within a 

healthy control group (Biswal et al., 1995; De Luca et al., 2006; Salvador et al., 2005; M. P. van 

den Heuvel et al., 2008). Brain networks measured using RS-fMRI have been characterized by 

specific alterations in the context of several neurological or psychiatric conditions, such as 

Alzheimer’s disease, epilepsy, and schizophrenia (Cataldi et al., 2013; Garrity et al., 2007; 

Greicius & Menon, 2004; Rombouts et al., 2005; Sorg et al., 2007; Whitfield-Gabrieli, 2009). 

Neuronal activity is also metabolically expensive. While there are no significant local energy 

reserves in the brain, its metabolic expenditure accounts for nearly 20% of whole-body oxygen 

and glucose usage. Hence, neuronal cells require tight interactions with complex network of glial 

cells and the vascular system to receive metabolic substrates and remove waste and metabolic by-

products (Bélanger & Magistretti, 2022; Ioannou et al., 2019; Kugler et al., 2021). 

The topological organization of brain network, featuring underlying functional segregation and 

integration properties, relies on a balance between minimizing the resource cost (ensuring short 
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path length connections) and meanwhile maximizing the flow of information among the different 

networks (through few long-range connections) (Bassett & Bullmore, 2017; M. Lin et al., 2013; 

Meunier et al., 2010; Samu et al., 2014). Tomasi et al (D. Tomasi et al., 2013) were among the 

first to investigate the relationship between the topological features of brain networks and 

metabolism, suggesting a non-linear relationship between glucose metabolism and hubness 

measured using degree centrality graph theoretical metric. Degree centrality reflects the number 

of connections per region and such non-linear relationship with metabolism was reported to follow 

a power law function, suggesting high glucose metabolic efficiency in long-range hub regions (D. 

Tomasi et al., 2013) and indicate a higher metabolic cost for hubs. This finding was also consistent 

with other MRI-based and PET results showing a significant correlation between functional 

connectivity strength and CBF both at the whole brain scale and across networks (Hubbard et al., 

2021; Leontiev et al., 2013; Tak et al., 2015), as well as with CMRGlc (Palombit et al., 2022). In 

another study, (Shokri-Kojori et al., 2019) measured synchrony between energy utilization and 

brain activity, using PET and fMRI data, reporting agreement between energy utilization and brain 

activity within the medial-visual and default-mode networks, while energy utilization exceeded 

brain activity within the frontoparietal network. 

The molecular and biological processes and metabolic pathways that form the basis brain activity 

and network dynamics happen at the cellular level. However, the exact mechanisms that underlie 

the BOLD signal and macroscopic hemodynamic responses captured by fMRI are not also fully 

understood. A new opportunity to explore the link between microscale and macroscale brain 

mechanisms is to use human brain transcriptional data to explore the links between neuroimaging 

and gene expression information at the cellular scale (Colantuoni et al., 2011; Fornito et al., 2019; 

M. J. Hawrylycz et al., 2012; Kang et al., 2011; Keil et al., 2018; M. Li et al., 2018). Since the 

emergence of neuroimaging-genetics, several studies have investigated the transcriptional 

signatures associated with brain functional connectivity properties (Berto et al., 2022; Fulcher & 

Fornito, 2016; M. Hawrylycz et al., 2015; Shen et al., 2022; Vértes et al., 2016; Z. Yang et al., 

2016). Hawrylycz et al (2012) showed that highly connected brain regions are located within the 

areas that have the highest physiological and genetic signatures for learning, cognition, and 

memory tasks (M. J. Hawrylycz et al., 2012). When combining genetic neuroimaging and cell 

types analysis, another study suggested that cell types with genetically similar signatures tend to 

connect to each other, despite physical distance (Arnatkevic̆iūtė et al., 2019). In their study, 

Fulcher & Fornito (2016) reported that hub regions were distinctive in terms of metabolic 

pathways assessed through transcriptional data analysis(Fulcher & Fornito, 2016), paving the way 

for the work presented in this PhD thesis. 

Given the suspected metabolic uniqueness of brain regions or networks depending on their 

functional attributes, the main purpose of this thesis is to investigate the glucose/oxygen metabolic 

costs associated with resting-state brain functional connectivities across different spatial 

resolutions. To do so, we considered two types of neuroimaging modalities: PET and MRI we 

acquired at our centre, the PERFORM centre of Concordia University. We also considered an atlas 

of human brain transcriptional data to characterize the genetic signature or our proposed metabolic 

and network measures. PET data were used to estimate brain maps of glucose consumption 

CMRGlc, while calibrated MRI data, acquired with breathing gas manipulations, were used to 
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estimate brain maps of baseline CMRO2, CBF, OEF and CVR on the one hand, and measures of 

resting-state brain functional connectivity characteristic at the voxel, regional, and network levels 

on the other hand. 

In our first study, we promoted the use of a new sparse decomposition method to reliably estimate 

functional hubness at the voxel level (indicating a discrete number of networks a specific voxel is 

associated with) developed in our laboratory (K. Lee et al., 2016). We characterize the relationship 

between such discrete measures of functional hubness with glucose/oxygen metabolic costs, within 

known large-scale resting-state networks. Such detailed analysis was developed using an original 

hierarchical Bayesian model to carefully take into account all sources of variability in the data. In 

the second project, we proposed an original investigation of regional-based measures of network 

local/global properties (reflecting characteristics of functional integration and segregation) and 

spatial profiles of metabolic/hemodynamic patterns (glucose, oxygen, CBF, CVR) to assess how 

they covary with their underlying genetic, molecular, and cellular determinants, provided by an 

atlas of human brain transcriptional data. In our third project, we compared a promising network-

level hierarchical measure of functional information integration (assessing the amount of shared 

informational content within and between brain networks) (Marrelec et al., 2008) with 

glucose/oxygen costs, assessing the metabolic cost of functional integration within and between 

large-scale resting-state networks. 

This thesis is organized as follows: Chapter 1 to Chapter 2 are state-of-the-art chapters reviewing 

essential background information 

Chapter 1 introduces the basics of the central nervous system, which includes the main cerebral 

cell types involved in shaping brain functional activity. We then describe what are the main 

metabolic substrates used by the brain, as well as some complementary energy substrates and their 

pathways. Finally, we present how neuroimaging techniques can be considered to explore those 

physio-metabolic properties of the normal brain.  

Chapter 2 presents the functional and topological organization of the brain along three spatial 

scales: the microscale (molecular, cells level), the mesoscale (brain region level) and the 

macroscale (brain networks level). In the second part of the chapter, we are reviewing what 

methodologies have been proposed, using graph theory and other complementary methods, to 

characterize resting-state functional networks and notably their connector hubs.  

We are then presenting three manuscripts, Chapters 3, 4 and 5, which are then detailed, 

forming the main original contributions of this thesis. 

Chapter 3 ― Multiresolution Metabolic Profile of Functional Hubness in the Resting Human 

Brain presents our work on the relationship between oxygen and glucose metabolism and 

functional hubness at rest, within the normal brain. We used RS- fMRI to quantify brain maps of 

functional hubness using sparsity-based general linear model analysis, offering a unique way to 

assess in a reliable manner connector hubness at the voxel level (K. Lee et al., 2011, 2016, 2022). 

To measure brain metabolism, we considered calibrated fMRI to provide an absolute estimation 

of baseline oxygen metabolism and FDG-PET to estimate the brain maps of glucose metabolism. 

In this original study, we proposed a multiscale spatial analysis of the oxygen and glucose 
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metabolism profile of functional hubness in the resting healthy human brain, promoting the use of 

a hierarchical Bayesian model to take into account variability in the data. Using our proposed 

Bayesian model, we highlighted the ways functional hubness relates to oxygen and glucose 

metabolism within the known large-scale resting-state networks of the brain across several levels 

of spatial resolutions. Our results further demonstrated that an increase in hubness, measured using 

discrete sparse techniques, was associated with a network-dependent non-linear increase in 

metabolism, suggesting that connector hubs are efficient in terms of oxygen/glucose metabolism. 

Chapter 4 ― Investigating the transcriptional profile of the blood flow and metabolic costs 

of functional global and local network connectivity presents our work on the association 

between neuroimaging metabolic/hemodynamic data and functional network features with micro-

scale human brain gene expression data, extracted from an atlas of human brain transcriptional 

data. Such multivariate comparison of high dimensionality dataset was done using partial least 

squares modelling (Krishnan et al., 2011). In this study, we investigated the transcriptional profile 

underpinning the spatial architectures shared between the spatial profiles of oxygen/glucose 

metabolism, CBF and CVR, and graph-theoretical-based measures of functional local/global 

network centralities. Our results are suggesting that centrally-connected brain regions, associated 

with a high metabolic cost, are associated with greater expression of genes involved in synaptic 

pathways and oxidative metabolism.  

Chapter 5 ― Investigating the metabolic and blood flow costs of functional integration and 

segregation in resting-state networks presents our work investigating the relationship between 

glucose/metabolism of brain networks and a measure of functional information integration. We 

employed a hierarchical integration measure to estimate within- and between-functional 

integration among networks at two spatial resolutions, describing the brain as a combination of 7 

17 consistent resting state networks (Eickhoff et al., 2018; Marrelec et al., 2008). Our results 

suggest that the glucose/oxygen metabolic costs of functional information integration reflect the 

hierarchical organization of the brain from primary sensorimotor (or unimodal) to polysensory 

association (or transmodal) areas. 

Chapter 6 concludes this thesis with a detailed general discussion of the main results, 

contributions, limitations, and perspectives of our proposed studies. 
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Chapter 1: Brain energy metabolism 

This chapter will introduce the basics of the metabolic demands associated with brain neuronal 

activity, starting from the cellular level. We will also introduce the main neuroimaging techniques 

we considered in this thesis to measure neuronal and metabolic features of brain activity. First, we 

are describing the main cell types and neuro-physiological processes that shape brain functional 

activity, from the cellular resolution. Then, we summarize the main metabolic pathways that 

support brain neuronal activity. Finally, after introducing the bio-physical and methodological 

background of the main neuroimaging techniques considered in this thesis, we reviewed the spatial 

variation of the main physio-metabolic features of brain activity at rest in the normal, healthy adult 

brain.  

1.1 Basics of central nervous system 

Our nervous system is composed of the central nervous system (CNS) and the peripheral nervous 

system (PNS). The CNS itself is also composed of the brain, the spinal cord and the cranial nerves 

that are originated from the brain and are responsible for controlling different activities such as 

smell, visual activity, eye movements, or facial sensations. The brain nervous system is made up 

of mainly two types of cells: neurons and glial cells(J. Zhang, 2019).  

1.1.1 Neurons 
Neurons are the primary functional units of the nervous system. They transmit information by 

generating electrical signals called action potentials. The neuron cell body is called the soma, 

where the nucleus of the cell is located and where most protein synthesis is taking place. The body 

of the neurons is composed of various branched appendages: some are short branches known as 

dendrites and the others are long extensions called axons (Figure 1.1). Signal reception and 

integration occur within the dendrites and cell bodies of the neurons. Excitatory signals cause 

neurons to generate an electrical impulse (through depolarization of membrane potential), and 

inhibitory signals repress electrical signal firing (through hyperpolarization of membrane 

potential). The inhibitory and excitatory state of a neuron depends on the summation of thousands 

of input signals received and integrated throughout its dendrites. When this summation leads to 

neuronal firing, the neuron produces an action potential which propagates along the axon (Nicholls 

et al., 2001; Rye et al., 2013). Action potentials are initiated at the axon hillock where the axon 

connects to the cell body. At the end of the axon, the branches end up into many bulbous ridges 

known as axon terminals (or nerve terminals) where neurons connect with target cells (Kandel et 

al., 1995). The detail steps of the action potential process will be discussed below subsections. 

Neurons can be classified according to their shape: Multipolar, Unipolar, bipolar, and Pseudo-

unipolar neurons. However, neurons differ from one another structurally, functionally, and 

genetically, as well as in how they form connections with other cells. It is therefore difficult to 

recognize and categorize every single type of neuron since even in small brain areas multiple types 

of neurons exist (Bentivoglio, 1998). For example, in the cerebellum, we can find Golgi cells, 

Lugaro cells, and Purkinje cells, which have a highly complex dendritic tree that allows them to 

receive – and integrate – an enormous number of synaptic inputs, basket cells, Cerebellum 

candelabrum cells, etc. (Figure 1.2). (Mazzarello, 1999). A single neuron cannot do much in 

isolation, since the functions of the nervous system rely on collections of neurons working 

together. To support these functions, singular neurons connect to others allowing neuronal 

networks to support or inhibit brain activity, to transmit or to process information (A. B. Byrne et 

al., 2016; Davidoff, 1977; Kandel et al., 1995; Matthews, 1976) 
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Figure 1.1 Pictorial representation of structure of a neuron and intercellular communication. Figure adapted from 

(Young et al., 2016). 

 

Figure 1.2 Different types of neurons. A: Purkinje cell; B: granule cell; C: motor neuron; D: tripolar neuron; E: 

pyramidal cell; F: chandelier cell; G: spindle neuron; H: stellate cell. Figure credit: Ferris Jabr; based on 

reconstructions and drawings by Cajal (y Cajal, 1995). 

1.1.2 Glial cells  
Glial cells are more numerous than neurons and are mainly responsible for providing protection 

and support for the neurons’ functions by maintaining cell homeostasis, removing debris, forming 

myelin, providing metabolites etc. There are six main types of glial cells in the nervous system: 

Microglia, Oligodendrocytes, Schwann, Satellite glial, Ependymal cells, and Astrocytes (D. 

Purves et al., 2001). 

Microglia cells are related to the immune system and Oligodendrocytes and Schwann cells produce 

myelin, insulating the axons and allowing faster propagation of neuronal activity. Satellite cells 

cover the surface of nerve cell bodies in some ganglia. Ependymal cells, which cover the ventricles 

of the brain and the central canal of the spinal cord and have hairlike cilia that help the circulation 
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of cerebrospinal fluid. Astrocytes are the most numerous types of glial cells in the brain and play 

an important role in both functionality and maintenance within the nervous system (Bergles et al., 

2010; Hanani, 2005; Simon et al., 2016). Astrocytes often have few branches that are highly 

branched, leading to their being named “star cells”. At the end of their processes, they have special 

structures called end-feet. Astrocytes have several functions, possibly more functions than any 

other cell type in the nervous system. Astrocytes form a scaffold for the entire CNS and occupy a 

large proportion of CNS space, constituting most of the structure that builds up the brain and spinal 

cord. Astrocytes also play a critical role in ensuring energy homeostasis (D. Purves et al., 2001; 

Verkhratsky & Nedergaard, 2018). Astrocytes contribute to providing one of the key metabolic 

substrates, called lactate to neurons. In addition, while neurons have no way to store energy, 

astrocytes are essential to store small amounts of energy in the form of glycogen which can be 

converted to lactate when neurons lack access to oxygen and glucose. Astrocytes also contribute 

to the blood-brain barrier (BBB), which is the barrier that prevents large molecules from the 

bloodstream to enter the CNS, unless these molecules are transported using specific transporters. 

Components of the blood vessel themselves are the main components of the blood-brain barrier, 

but astrocytic end-feet are plastered all over cerebral blood vessels and therefore contribute to the 

BBB. Finally, astrocytes play a role in neuronal communication by clearing out synapses. 

Astrocytes extend their processes and end-feet all over the synapses so that the end-feet plaster the 

synapses to clear out neurotransmitter molecules released by the synapse for communication 

(Eddleston & Mucke, 1993; Heller & Sadava, 2009; Rye et al., 2013). 

1.1.3 Vascular cells 
The vascular system in the brain has particular interaction with both glial and neuronal cells. Blood 

vessels not just deliver essential nutrients, but also remove metabolic waste products from the brain 

parenchyma (Zlokovic, 2011).  

 

Figure 1.3 Anatomy of the cerebrovascular tree of the brain. Left: circle of Willis; Middle: pial arteries carry blood 

across the brain surface and penetrate orthogonally into the parenchyma; Right: cerebral venous system components. 
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Figure adapted from (Anna Chruścik, Kate Kauter, Louisa Windus, 2013; Garcia & Longden, 2020; Thorell et al., 

2015)  

The cerebral circulation of the brain from the neck starts with two branches: the internal carotid 

(ICA) and vertebral arteries. The vertebral arteries branch provides blood to the posterior 

cerebrum, the cerebellum as well as the brain stem, and joins the ICA to form the basilar artery 

(Cipolla, 2009). ICA enters the skull and supplies the anterior cerebrum and merges with branches 

of the vertebral arteries forming an arterial ring known as the circle of Willis at the base of the 

brain. The circle of Willis branches into the posterior, middle, and anterior cerebral arteries, each 

supplying different regions of the cerebral cortex (D. Purves et al., 2001) (Figure 1.3). A large 

artery that branches from the circle of Willis called the middle cerebral artery, makes the heavily 

interconnected network of pial arteries and arterioles on the cortex's surface. The pial arteries are 

highly branched and form a collateral network that is extrinsically innervated by the peripheral 

nervous system (Coulson et al., 2004). From the Pial arteries, parenchymal arterioles penetrate 

orthogonally into the brain. Penetrating arterioles dive toward the white matter, in turn giving rise 

to the capillary bed, a vast surface area where blood is exchanged between brain cells and the 

vascular system (Zlokovic, 2011) (Figure 1.3). The capillaries return blood to the venules which 

further converge to form the brain's surface pial veins. Large cortical veins within the subarachnoid 

space ultimately connect to venous sinuses contained within the dura mater and large cerebral 

venous that return the blood to the heart (Cipolla, 2009; Garcia & Longden, 2020). In summary, 

the venous system includes the cerebral veins, the dural sinuses, the meningeal veins, and the 

posterior fossa veins (Kiliç & Akakin, 2008). The cerebral veins are divided into internal or 

external cerebral veins. The external veins consist of the cortical veins and the sagittal sinuses 

which drain the superficial surfaces of the cerebral hemispheres, and the internal veins include the 

straight sinus, transverse sinus and sigmoid sinus (SS) as well as draining the deeper cortical veins 

(Figure 1.3). 

 

Figure 1.4. Brain vascular cell diversity along the arterial-venous axis. (A) Large arteries (red) and cortical veins 

0(blue) pass through the subarachnoid space (gray mesh) inside the dura mater (gray). (B) Each vessel along the 
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arterial-venous mesh includes of different cell types: endothelial cell (shown in red in artery, gray in capillary, and 

blue in vein), vascular smooth muscle cells (dark gray), pericytes (green), perivascular fibroblasts (yellow), and 

perivascular macrophages (light blue). (C, D, E) Different vessel compartments: artery, capillary, and vein. Figure 

adapted from (Ross et al., 2020)  

Blood vessels are composed of three layers: the tunica intima, tunica media and tunica adventitia, 

and are composed of three types of cells. The first type of cells is Endothelial cells, building the 

innermost tunica intima layer and lining the luminal and inner wall of the vessels. The second type 

of cells is smooth muscle cells (SMCs) that circumferentially envelop the surface of the vascular 

tube to make up the tunica media layer of all vessels except capillaries (Bergers & Song, 2005; 

Iadecola, 2017). More recently two types of cells called perivascular macrophages (PVMs) and 

perivascular fibroblast-like cells (PVFBs), are also defined that reside within the tunica adventitia 

layer (Saunders et al., 2018; Vanlandewijck et al., 2018; Zeisel et al., 2015). Capillaries are not 

lined with SMCs instead have a discontinuous layer of the third type of vessel cells called pericytes 

(Schaeffer & Iadecola, 2021). The outermost and supportive layer of blood vessels, tunica 

adventitia, is primarily composed of fibroblasts, extracellular matrix (ECM) and progenitor cells. 

The SMCs and pericytes are collectively referred to as mural cells and have a crucial role in the 

regulation of blood pressure, control of blood distribution and providing structural support and 

integrity to the vessel wall (A. Lin et al., 2021; Zhuge et al., 2020). In addition to these cell types, 

Astrocyte end-foot twist around the outer layer of vessels and create the Virchow Robin space a 

perivascular space that is important for brain interstitial fluid and cerebrospinal fluid exchange and 

called “glymphatic system” (Wardlaw et al., 2020). 

The Endothelial cells are key constituents of the heavily restricting brain vascular barrier, the BBB. 

BBB tightly regulates brain parenchyma homeostasis, prevents it from the influx of toxins, plasma 

proteins, and pathogens, protects it from inflammation, injury, and disease, and still meets its 

dynamic metabolic needs, permits regulated molecular transport (Daneman & Prat, 2015; Sweeney 

et al., 2019). In general, BBB allows gases, e.g., carbon dioxide and oxygen, lipophilic and other 

molecules that are smaller than 400 Da and prevents other substrates to cross the vessel layers 

without regulated transport systems (Banks, 2009; Sweeney et al., 2019). Across most of the brain 

regions, BBB is continuous without any cessation (Sweeney et al., 2019; Z. Zhao et al., 2015), 

while in some regions like choroid-plexus and subfornical organ it contains intracellular pores and 

has high permeability (Ghersi-Egea et al., 2018). Breakdown of Endothelial cells has been 

implicated in age-related neurodegeneration disorders, cerebral blood flow reduction, toxic factors 

leakage, and disruption of brain hemostasis and neuronal dysfunction (Bell et al., 2012; Iadecola, 

2017; Zlokovic, 2008). 

The mural cells, a term referring to SMCs and PCs, face the most variation among vascular cell 

types across the vasculature compartment and along the arterial-venous axis (Winkler et al., 2011); 

Figure 1.4B–E). While in larger arteries (diameters> 100 μm), the SMCs are continuous and shape 

concentric rings, in smaller arteries and arterioles, they become discontinuous cells with rod-like 

processes ((Iadecola, 2017; Shiraishi et al., 1986); Figure 1.4C–D) and in venules and veins, SMCs 

remain discontinuous with stellate configuration ((Hill et al., 2015; Smyth et al., 2018; 

Vanlandewijck et al., 2018); Figure 1.4E). Within pre-capillary arterioles, SMC cells are 

responsible for regional blood perfusion regulation and coupling with neural activity (Fernández-

Klett et al., 2010; Hill et al., 2015; Kisler et al., 2017). They have receptors for numerous 

vasoactive molecules, such as adenosine, prostaglandins and flow-related stimuli and hence largely 
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contribute regulation and autoregulation of cerebral blood flow (He et al., 2016; Kisler et al., 2017; 

Koller & Toth, 2012) 

As the vessel gets smaller, the SMCs discretely transit to PCs cells or different compositions, 

including ensheathing PCs, pre-capillary PCs, vSMC-PCs hybrids, or precapillary SMCs (Uemura 

et al., 2020). Various morphologic heterogeneity also has been suggested for PCs cells across brain 

regions and different vessel compartments, including ensheathing or transitional PCs, mesh, thin-

strand, or helical and stellate configurations (Arango-Lievano et al., 2018; Hartmann et al., 2015; 

Smyth et al., 2018); Figure 1.4B). However, throughout capillaries and post-capillary venules, PC 

cell has a mesh-like or thin-strand morphology. The functionality of PCs is not completely clear, 

however, their facilitatory role in transport subtracts, modulating capillary diameter in response to 

neuronal or astrocytic signals and blood perfusion regulation has been suggesting for them 

(Hartmann et al., 2015; Smyth et al., 2018). 

Perivascular fibroblasts and macrophages are found in arteries, arterioles, venules, and veins, but 

not capillaries. PVFBs are placed within the Virchow-Robin space and are loosely connected to 

vessel walls. Their functionality has not been fully characterized yet, but it has been suggested that 

they are progenitors of PC cells and stabilize the vasculature for PCs formation (Rajan et al., 2020). 

Like PVFBs, PVMs cells also reside in the Virchow-Robin space around the arterioles and venules 

(Lapenna et al., 2018; T. Yang et al., 2019). They mainly contribute to the phagocytosis of 

pathogens as well as protective immune responses (Kierdorf et al., 2019; Lapenna et al., 2018). 

They also promote BBB properties and tight junction protein expression of Endothelial cells 

(Zenker et al., 2003). 

1.1.4 Action potentials 
In neurons and their surrounding fluid, the most abundant ions are Na+, K+ and Cl-. The 

concentration of K+ and organic anions is higher inside the cells whereas the concentration of Na+ 

and Cl- is higher outside the cell. At rest, ions are moving in and out of the neuron regularly to 

maintain the concentration gradient on each side of the membrane between -40 to -90 mV. Because 

of this baseline potential difference, the membrane is said to be polarized. If this potential becomes 

more positive than the resting state, the cell is said to be depolarized, and if it becomes more 

negative the cell is said to be hyperpolarized. When an electrical trigger is applied to the axon of 

a neuron, which is a signal coming from another cell connected to the neurons, a transient electrical 

current, called Action Potential (AP), is conducted down the axon. AP is an all-or-nothing 

response, which means when the membrane potential reaches resting potential (−70 mV), it causes 

positive ions to flow into the cell body and depolarize the membrane potential. The depolarization 

phase also called the raising phase is rapid (~ 1 s) and is followed by a rapid falling repolarization 

stage. That brings membrane potential back to its resting potential by inhibiting the influx of 

positive ions. The last part of the action potential is the hyperpolarization, which is also called 

undershoot and after that, the membrane potential will return to the resting membrane potential 

(Kandel et al., 1995; Nicholls et al., 2001; Rye et al., 2013). Figure 1.5 depicts how cell membrane 

polarity changes during the action potential. 

The first step before the generation of an action potential is a trigger event, which is a signal 

coming from another cell connected to the neurons, causing positive ions to flow into the cell body 

and depolarizing the membrane potential when bringing it close to 0 mV. If the cell body becomes 

sufficiently depolarized, reaching a specific threshold, then it can trigger the opening of a voltage-

gated sodium channel at the axon hillock and an action potential will be sent down along the axon. 
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The next step of the action potential is the depolarization of the axonal membrane. During this 

step, voltage-gated sodium channels open and Na+ ions flow into the axon and depolarize it. The 

opening of one channel depolarizes the membrane further, leading to the opening of other sodium 

channels and as the potential passes the along the axon the positive charges also move down along 

the axon. The other stage of the action potential is the repolarization. Repolarization brings back 

the cell to its resting potential by closing the sodium channels and thereby inhibiting the influx of 

positive ions. At the same time, the potassium channels open and potassium ions move outwards. 

All this means that the cell loses its positive polarity and returns to its resting potential. The last 

part of the action potential is the hyperpolarization, which means that the neuron becomes more 

negative than its normal resting membrane potential. However, after potassium channels become 

deactivated, the sodium-potassium pump restores the polarity of the cell to its resting potential 

(Kandel et al., 1995; KhanAcademy, 2017; Nicholls et al., 2001; D. Purves et al., 2001; Simon et 

al., 2016). 

 

Figure 1.5 Diagram of cell membrane’s polarity changes over action potential steps. Figure adapted from Wikipedia 

(CC BY-SA 3.0; Chris 73, Diberri, tiZom). 

1.1.5 Postsynaptic potentials  
The firing of an action potential in one neuron (the presynaptic neuron) causes the transmission of 

a signal to another neuron (the postsynaptic neuron) at the level of the synapse. Synapses are 

formed between the axon terminals of the sending neuron and the cell body or dendrites of the 

receiving neuron. In our brain, most of the signal communication in synapses is chemical. 

Chemical transmission requires the release of neurotransmitters from presynaptic to postsynaptic 

cells through a small gap between them called the synaptic cleft. Inside the axon terminal of 

presynaptic neurons, there are membrane-bounded spheres filled with neurotransmitter molecules 

called synaptic vesicles. When an action potential arrives at the axon terminal, voltage-gated 

calcium (Ca2+) channels open and calcium ions, which have a much higher concentration outside 

the cell than inside, rush into the cell. These Ca2+ ions cause the synaptic vesicles to fuse with the 

membrane and release neurotransmitters into the synaptic cleft (Bergles et al., 2010; J. H. Byrne, 

2016; Kennedy, 2016; Simon et al., 2016). Figure 1.6 represents the detailed steps of chemical 

transmission in the synapse. 



12 

 

 The target cell integrates the signals received at different locations (spatial summation), which 

means receiving hundreds of inputs from the cells that synapse with it, or in the same place but at 

slightly different times (temporal summation) to decide whether to fire an action potential or not. 

Such input can cause two types of potential in the neuron’s membrane potentials: Excitatory 

Postsynaptic Potentials (EPSPs) which is indeed a depolarizing event that causes the membrane 

potential to become more positive and closer to the membrane resting threshold; or, Inhibitory 

Postsynaptic Potentials (IPSPs) which is a hyperpolarizing event that causes the membrane 

potential to become more negative and further away from the membrane resting threshold (Heller 

& Sadava, 2009; Hodgkin & Huxley, 1952; KhanAcademy, 2017; Pereda, 2014).  

 

Figure 1.6 Stages of chemical transmission in a synapse. Figure adapted from (Dubey et al., 2018) 

After releasing the neurotransmitters in the synaptic cleft and transferring the signal from the 

presynaptic neurons to the postsynaptic neuron, the remaining neurotransmitters may be broken 

down by an enzyme, may be taken back up into presynaptic neuron, may be washed out by nearby 

astrocytes cells or may diffuse away (Pereda, 2014).  

1.1.6 Neurotransmitters 
The neurotransmitters, chemical messengers, can broadly be categorized into conventional and 

unconventional groups. Conventional neurotransmitters are stored in synaptic vesicles and get 

released when Ca2+ enters the axon terminal in response to an action potential and adhere to 

receptors on the postsynaptic membrane. Some of the most important conventional 
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neurotransmitters include glutamate, γ-aminobutyric acid (GABA), glycine, ATP and adenosine 

(Blaustein et al., 2011; Goldman, 2010). In contrast to the conventional neurotransmitters, the 

unconventional ones are not stored inside the vesicles, and rather than interacting with the 

receptors on the plasma membrane of their target cells, they pass through them and directly act on 

the molecules inside the cell. The two main unconventional neurotransmitters are the 

endocannabinoids, and the gaseous neurotransmitters such as nitric oxide (NO), and carbon 

monoxide (CO) (Squire et al., 2012). Neurotransmitters are either excitatory or inhibitory. For 

example, glutamate and glycine are the two main excitatory neurotransmitters in the brain while 

GABA is the main inhibitory neurotransmitter. However, the inhibitory or excitatory attributes of 

neurotransmitters also depend on the context and the different types of receptor proteins that are 

present on the postsynaptic target cell (Blaustein et al., 2011; Deutch et al., 2014; Kandel et al., 

1995) 

1.2 Basics of brain metabolism 

Metabolic pathways can be broadly divided into two categories based on their effects: a) "building 

up" or anabolic pathway; and b) "breaking down" or catabolic pathway. Anabolic pathways form 

complex molecules from simpler ones and to do so they require an input of energy. For instance, 

building proteins from amino acids. Catabolic pathways involve breaking down complex 

molecules into simpler ones, resulting in an energy release (Berg et al., 2002b). This energy is then 

stored in some complex molecules such as glycogen and lactate. Some chemical reactions in a 

pathway do not occur automatically and require an enzyme to make them occur (Berg et al., 2002b; 

Heller & Sadava, 2009; KhanAcademy, 2017; Reece et al., 2014)  

The three main sources of nutrients for cell metabolism are carbohydrates, proteins, and fats. 

However, as our body cannot directly use their energy, they are required to be broken down into 

usable energy in the form of adenosine triphosphate (ATP) molecules. The main carbohydrate 

molecule used in the body is glucose. It is used in the intercellular form of glucose-6-phosphate(G-

6P) which subsequently can be broken down into pyruvate and later converted to Acetyl-coenzyme 

A (CoA) or it can be stored in the form of glycogen (Alberts et al., 2002). Through a metabolic 

pathway called glycogenesis, astrocytes as well as certain large neurons in the brainstem, store the 

G-6P as glycogen. Later in the glycogenolysis pathway, this reserved glycogen can be re-converted 

to G-6P and enter the ATP production pathway. However, when compared to concentration 

contents in the liver and the muscles, glycogen concentration in the brain is extremely small, about 

100 and 10 times lower, respectively, and can therefore be barely considered as a metabolic storage 

(Albert et al., 2009; Alberts et al., 2002; Simon et al., 2016).  

The second main source of nutrients are the proteins, which are composed of several amino acids. 

They can be broken down into their constituent amino acids and used in various steps of other 

pathways, for instance, glucose catabolism, subsequently converting G-6P into pyruvate or acetyl-

CoA. Amino acids can also be used for the synthesis of enzymes, transporters, cell genetic 

information, neurotransmitters and some peptide hormones like insulin and glucagon (El Bacha et 

al., 2010). 

Finally, the last main source of nutrients is complex fats, which can be broken down into 

triglycerides, and then degraded into glycerol and fatty acids. The glycerol then can be converted 

to pyruvate, and fatty acids and directly be turned into acetyl-CoA through a beta-oxidation 

pathway. The fatty acids can also be converted to ketone bodies or contribute to the biosynthesis 
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of cholesterol, steroids, bioactive molecules such as arachidonic acid and eicosanoids, or steroid 

hormones (Panov et al., 2014; Tracey et al., 2018).  

All these conversions except one are bi-directional. The only uni-directional conversion is 

pyruvate to acetyl-CoA. Furthermore, the predominant way our body generates energy from all 

these sources of nutrients (glucose, fatty acid and amino acids) is through cellular respiration by 

using acetyl-CoA in the tricarboxylic cycle (TCA). The TCA cycle is the main metabolic pathway 

used to produce ATP (Berg et al., 2002c, 2002b; Betts et al., 2013; Mergenthaler et al., 2013)  

Adenosine triphosphate (ATP) constitutes the main energy currency or energy store in biological 

systems (Dunn & Grider, 2022). This complex molecule is composed of adenosine, which includes 

an adenine connected to ribose, and three phosphoryl groups that have high energy bonds (Figure 

1.7). These bonds are providing high energy levels since they have electrons in high energy states. 

When these bonds are broken, the electrons go back to their baseline state at a lower energy level, 

by releasing energy. Through the hydrolysis reaction of ATP, one phosphoryl bond breaks in the 

presence of an ATPase enzyme, which results in the formation of adenosine with two phosphoryl 

groups, or ADP with positive hydrogen, a phosphate, and roughly 30 kJ/mol of energy (Dunn & 

Grider, 2022; Knowles, 1980). 

 ATP + H2O → ADP + Pi + H
+ + energy (1.1) 

 

Figure 1.7 Adenosine triphosphate. 

1.2.1 Glucose: the major metabolic source for our brain  
The mass of the brain accounts for only 2% of the whole body, however, it consumes 20% of 

glucose and 20% of oxygen body utilization at rest, most of which is used to support synaptic 

transmission, including the maintenance of ion gradients. Moreover, the brain cannot store the 

energy it needs by increasing its mass. The brain can only keep small amounts of glucose (1-3 

mM), oxygen (50-100 μM), glycogen (2-4 mM), and creatine (8–10 mM) (Thompson et al., 2016). 

Hence, the brain relies on nutrients supplemented in real-time by the rest of the body in normal 

conditions. Therefore, the brain is dependent on an efficient blood circulation system to be able to 

provide the components it requires and remove the waste produced of its chemical reactions 

(Leithner & Royl, 2014). 

Glucose is the main energy substrate for brain cells. In addition, glucose also contributes as a 

precursor for glycolipids and glycoproteins present in neural cells, and for the synthesis of 

important neurotransmitters like glutamate, GABA, and acetylcholine (Mergenthaler et al., 2013).  
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1.2.1.1 Cellular respiration 
In the presence of oxygen, glucose (C6H12O6) is mainly metabolized through a process called 

cellular respiration, in which six molecules of oxygen and one glucose molecule (C6H12O6) are 

broken down into molecules of carbon dioxide (CO2) and water (H2O). This process produces 

between 30 and 38 ATPs per glucose, depending on the coupling efficiency of oxidative 

phosphorylation (Chaudhry & Varacallo, 2022; Mergenthaler et al., 2013). 

 C6H12O6 + 6O2 → 6H2O + 6CO2 + ⟦30,38⟧ATP (1.2) 

1.2.1.2 Glycolysis 
The first step of cellular respiration is glycolysis, during which the six-carbon glucose molecule is 

split into two three-carbon molecules called pyruvate. Glycolysis occurs within the cytosol of the 

cell in the presence of the phosphofructokinase enzyme. Glycolysis consists of an energy-requiring 

phase and an energy-releasing phase (Chaudhry & Varacallo, 2022). During the energy-requiring 

phase, a phosphate group is transferred from ATP to glucose, converting two ATPs into two ADPs 

while generating a glucose 6-phosphate(G-6P) molecule, which is more reactive than glucose. 

Since glucose with phosphate cannot readily cross the membrane, G-6P remains trapped inside the 

cell. Afterwards, using the catalyzer phosphofructokinase, G-6P is first converted to fructose 6 

phosphate (F-6P) and then into the unstable fructose 1(F-1),6-bisphosphate(6-BP). Then, this new 

unstable sugar molecule (F-6P) gets split in half to form a glyceraldehyde-3-phosphate (Gl-3P), 

which can be used for the energy-releasing phase and dihydroxyacetone phosphate (DHAP). 

DHAP also can be easily re-converted to glyceraldehyde-3-phosphate and used in the energy-

releasing phase of glycolysis (Berg et al., 2002a; Betts et al., 2013; Cooper, 2000). During the 

energy-releasing phase, each three-carbon sugar is converted to pyruvate, also a three-carbon 

molecule (Figure 1.8). In addition, two ADPs are turned into ATPs and one reduced oxidized 

nicotinamide adenine dinucleotide (NAD+) is converted to nicotinamide adenine dinucleotide 

(NADH). Therefore, the net products of this process are two molecules of ATP produced (4 ATPs 

produced versus 2 ATPs used) and two molecules of NADH. NADH is an electron carrier 

coenzyme which generates almost three ATPs for every NADH to NAD+ oxidation event, whereas 

NAD+ functions as a sink for electrons. Phosphofructokinase is the key regulatory enzyme for 

catalyzing the steps of glycolysis: conversion of F-6-P to F-1,6-BP. It is activated by F-1,6-BP and 

inhibited by citrate (Ahmad et al., 2022; Chaudhry & Varacallo, 2022; KhanAcademy, 2017). 

At the next step of cellular respiration, pyruvate oxidation occurs in the mitochondrial matrix in 

the presence of the pyruvate dehydrogenase complex. Pyruvate is split into one carbon dioxide and 

a two-carbon molecule (Berg et al., 2002a; Betts et al., 2013). Then, NAD+ is reduced to NADH 

with the oxidation of two carbons and finally, two oxidized carbon molecules are attached to CoA, 

which is an organic molecule derived from vitamin B5, to form acetyl-CoA. Acetyl-CoA works as 

a fuel for the citric acid cycle in the next stage of cellular respiration (Figure 1.9). 

 Pyruvate + 2NAD+ + 2CoA → 2AcetylCoA + 2NADH + 2H+ + 2CO2 (1.3) 
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Figure 1.8 Glycolysis diagram. Figure adapted from Wikipedia (CC BY-SA 3.0; YassineMrabet). 

 

Figure 1.9 Pyruvate oxidation diagram. Figure adapted from (Rye et al., 2013). 

Therefore, the net products of glycolysis process are two molecules of ATP produced (4 ATPs 

produced versus 2 ATPs used) and two molecules of NADH as below: 

 
Glucose + 2NAD+ + 2ADP + 2Pi

→ 2Pyruvate + 2NADH + 2ATP + 2H+ + 2H2O 
(1.4) 

1.2.1.3 Citric acid cycle (TCA) 
The next step of cellular respiration is named the citric acid or Krebs cycle (Figure 1.10). It occurs 

in the mitochondrial matrix and is a closed loop, whose role is to regenerate the molecules that 

have been used during the previous steps of cellular respiration. During the first step of this cycle, 

acetyl-CoA combines with oxaloacetate, which is a four-carbon acceptor molecule, to form six-

carbon citrate (D. L. Nelson et al., 2008; Reece et al., 2014). After a rearrangement, citrate releases 

two of its carbons as carbon dioxide molecules to build one molecule of NADH per reaction. The 

enzyme isocitrate dehydrogenase which catalyzes these reactions is the key regulator of the citric 

acid cycle, speeding it up or slowing it down based on the energy that is needed by the cell. The 

remaining four-carbon molecule experiences a series of additional reactions. First, an ATP 
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molecule is produced, or in some cells, a similar molecule called Guanosine-5-triphosphate (GTP). 

Then, the electron carrier Flavin adenine dinucleotide (FAD) is reduced to FADH2. Finally, 

another NADH is produced. These reactions reform the starting molecule, oxaloacetate so that in 

the end the cycle can start again with the addition of one acetyl-CoA. Overall, one cycle of the 

citric acid cycle generates two carbon dioxide molecules and produces three NADH, one FADH2 

and one ATP or GTP (Szarka et al., 2014). The citric acid cycle runs twice for each molecule of 

glucose used for cellular respiration since two pyruvates - and thus, two acetyl-CoAs - are 

generated from each glucose (Berg et al., 2002a). 

 
AcetylCoA + 3NAD+ + ADP + FAD + Pi

→ ATP + 3NADH + 3H+ + 2CO2 + FADH2 
(1.5) 

 

Figure 1.10 Citric acid cycle. Figured adapted from Wikipedia (CC BY-SA 3.0; Narayanese, WikiUserPedia, 

YassineMrabet, TotoBaggins). 

1.2.1.4 Oxidative phosphorylation  
Oxygen is required for the last step, oxidative phosphorylation. Oxidative phosphorylation is built 

up from two main parts: a) the electron transport chain, in which the electrons in the inner 

membrane of the mitochondria are transferred from one molecule after the other, releasing energy 

and making an electrochemical gradient (Figure 1.11,(Ahmad et al., 2022; KhanAcademy, 2017)) 

the chemiosmosis, in which the energy stored in the gradient is used to produce ATP. The oxygen 

is used at the end of the electron transport chain, where it combines with the electron and proton 

to form a water molecule (Berg et al., 2002a; Betts et al., 2013). Without enough oxygen, another 

process called lactic acid fermentation or anaerobic respiration takes place, which produces fewer 

ATP molecules. Cells which lack a sufficient number of ATP molecules for a long period of time 

may even die (Reece et al., 2014).  
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Figure 1.11 Oxidative phosphorylation image modified from "oxidative phosphorylation" by OpenStax's college 

Biology (CC BY 3.0). 

1.2.2 Non-oxidative metabolism 
During the first step of cellular respiration, in the glycolysis phase, glucose is broken down into 

two pyruvates and two ATPs. Then, if there is enough oxygen available, the pyruvate enters the 

TCA cycle and electric transport chain to produce more (up to 30-36) ATPs (Robert Bear, 2016). 

However, in the absence of oxygen, the cell enters another chemical reaction called lactic acid 

fermentation which is one of two major forms of fermentation or anaerobic respiration. The goal 

of lactic acid fermentation is not to produce more ATPs, but rather to recycle pyruvate and NADH. 

Indeed, instead of using the pyruvate in the TCA cycle, it uses it to oxidize NADH to NAD+ in the 

presence of lactic acid dehydrogenase as a catalyzer. The produced lactate can later be removed 

through to the bloodstream or reconverted to pyruvate later for use in the TCA cycle and oxidative 

phosphorylation once oxygen is again available (Betts et al., 2013; Reece et al., 2011; Szarka et 

al., 2014). 

 2Pyruvate + 2NADH → 2Lactate + 2NAD+ (1.6) 

1.3 Other Energy Substrates for the Brain 

While some organs like the liver have the capacity to produce energy using different pathways, 

the brain has limited options. Protein metabolism is barely used in the brain, because of the 

production of ammonium (NH4+) which is toxic to brain cells (Betts et al., 2013; Thrane et al., 

2013). The brain normally uses glucose as its main energy substrate. However, under particular 

circumstances (like being on ketogenic diet, fasting, intense exercise, early life, diabetes or in 

neuropathological conditions) creatine (Cr), ketone bodies (KBs), lactate, and fatty acids (FAs) 

can be used as alternative sources of energy (Panov et al., 2014; Tracey et al., 2018). Among them 

lactate is considered as an important metabolite source for the brain. The brain uses lactates under 

many conditions including high intensity exercise, hypoxia, and shock (Riske et al., 2017). 
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1.3.1 Creatine (Cr) 
Creatine (Cr) is used to a small extent through its conversion into its high-energy phosphorylated 

analogue phosphocreatine (PCr). However, the BBB has a very limited permeability for Cr 

(Braissant, 2012), and the brain cells must rely mostly on the endogenous synthesis of Cr in 

astrocytes (Béard & Braissant, 2010; Braissant, 2012; Philip et al., 2020). Cr is synthesized in two 

steps. First, arginine, that is a basic amino acid, and glycine combine to form guanidino acetic acid 

(GAA) in a reaction catalyzed by AGAT, subsequently, creatine is formed by methyl group 

transfer from S-adenosyl-L-methionine to GAA catalyzed by GAMT (Béard & Braissant, 2010; 

Philip et al., 2020). Then through a process in which the ADP converts to ATP, PCr 

dephosphorylation can yield energy for brain cells (mainly astrocytes), by transferring its N-

phosphoryl group from PCr to ADP (Figure 1.12, (Brody, 1999)). 

 

Figure 1.12 Endogenous creatine synthesis. Arginine and glycine combine to form guanidino acetic acid (GAA) and 

ornithine in a reaction catalyzed by arginine: glycine amidino transferase (AGAT). GAA is then methylated to form 

creatine. The enzyme guanidinoacetate methyltransferase (GAMT) catalyzes this reaction and s-adenosyl methionine 

acts as the methyl donor. Figure adapted from (Philip et al., 2020). 

1.3.2 Fatty acids (FAs) 
FA can cross the BBB using the FA transporter, albeit very slowly, and then pass through the beta-

oxidation pathway in mitochondria to be oxidized to acetyl-CoA (Schönfeld & Reiser, 2013). 

During the beta-oxidation pathway, the FA (Cn-acyl-CoA) is first converted to acyl-CoA (2 

carbons shorter version) in the cytosolic compartment by reducing the FAD to FADH. Then its 

acyl group is transferred from CoA to carnitine using the carnitine-acyl-CoA transferase enzyme 

across the inner membrane of the mitochondrion. In the next step, the acyl CoA is oxidized to 

acetyl-CoA, water, 5 ATP, FADH, and NADH. 

The overall reaction formula for one cycle of beta-oxidation is: 

 
C𝑛acylCoA + FAD + NAD

+ + H2O + CoA
→ C𝑛−2acylCoA + FADH2 + NADH + H

+ + AcetylCoA 
(1.7) 

In general, FAs are not an ideal source of energy for the brain. First, ATP production using beta-

oxidation of FA requires more oxygen than glucose oxidation which can pose a risk of hypoxia. 
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Second, this pathway produces superoxide, which enhances the oxidative stress of neurons. And 

third, not only is FA crossing of the BBB very slow, but the beta-oxidation pathway itself is slower 

than using blood glucose as fuel (Eaton, 2002; Schönfeld & Reiser, 2013). Nevertheless, some 

recent studies confirmed the usage of FA in astrocytes and neurons in addition to other substrates. 

Furthermore, brain FAs or their metabolites have important contributions to many anti-

inflammatory and neuroprotective pathways as well as in the ketone body production pathway 

(Ebert et al., 2003; Panov et al., 2014). 

1.3.3 Ketone bodies 
Ketone bodies, aside from glucose, are the main alternative metabolic resource for the brain. 

Ketone bodies are mainly produced in the liver, and to some extent in the kidney (Jensen et al., 

2020). They circulate in the blood stream and can cross the BBB (Jensen et al., 2020; Nehlig, 2004; 

Pierre & Pellerin, 2005), in addition to a low-level contribution from astrocytic production (Jensen 

et al., 2020) mainly using beta-oxidation of FAs. In the presence of a high supply of FA, which 

results in the production of high levels of acetyl-CoA, acetyl-CoAs are used for ketone body 

formation instead of going through the TCA cycle. To do so, acetoacetyl-CoA is produced from 

two acetyl-CoA by the enzyme thiolase. At the next step, another acetyl-CoA group is combined 

with acetoacetyl-CoA via reaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 

(HMGCS2), hence forming 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Then the enzyme 

HMG-CoA lyase removes an acetyl-CoA from HMG-CoA to produce the ketone body 

acetoacetate (AcAc) which either be later degraded to acetone (with minimal energy contribution) 

or using beta-hydroxybutyrate dehydrogenase (BHD) enzyme and hydrogen from NADH, form 

the ketone body beta-hydroxybutyrate (BHB). BHB and AcAc can later reduce to acetyl-CoA and 

enter the TCA cycle in either neurons or astrocytes (Jensen et al., 2020; Nehlig, 2004; Pierre & 

Pellerin, 2005). 

1.3.4 Lactate and pyruvate 
Lactate and pyruvate are two other energy substrates for human brain cells which can be formed 

from glucose within the brain parenchyma or readily imported from the circulation and enter the 

cells through specialized transporters (Brooks, 2009; Riske et al., 2017). They can be metabolized 

in the mitochondria through the TCA cycle and oxidative phosphorylation to produce energy in 

the form of ATP (Figure 1.13). In the case of lactate, recent magnetic resonance spectroscopy 

(MRS) experiments showed that under basal plasma lactate condition (1.0 mM), lactate can be 

taken up by the human brain and when it is fully oxidized, it accounts for up to 8–10 % of its 

energy requirements. Through the mechanism called astrocyte-neuron lactate shuttle (ANLS), the 

glutamate released by neurons in synapse space is co-transported with sodium to astrocytes 

(Kasischke, 2009). The influx of sodium results in the disruption of the sodium gradient inside the 

astrocytes and triggers the activity of the sodium-potassium ATPase (Na+/K+ ATPase) by 

consuming ATP per extrude of three sodium. The absorbed Glutamates are mainly converted to 

glutamine at the expense of another ATP, which a large proportion of that later will be recycled to 

neuronal terminals to refill the glutamate vesicular pool. The energy burden of glutamate uptake 

by astrocyte promotes glucose uptake, which later through the glycolysis pathway yield lactate. 

The produced lactate using the monocarboxylate transporters (MCTs) is released, and is taken up 

by neurons and, after conversion to pyruvate, is processed oxidatively in mitochondria to produce 

14–17 ATPs per lactate molecule (Bak et al., 2009; Magistretti & Allaman, 2015; Morgenthaler et 

al., 2006; Pierre & Pellerin, 2005)  



21 

 

 

Figure 1.13 Pathways involved in synthesis and catabolism of ketone bodies. AcAc, acetoacetate; Acetyl-CoA, acetyl 

coenzyme A; BHB, beta-hydroxybutyrate; BHD, beta-hydroxybutyrate dehydrogenase; FFA, free fatty acids; HMG-

CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGCS2, 3-Hydroxy-3-Methylglutaryl-CoA Synthase 2; MCFA, medium-

chain fatty acids; MCT, monocarboxylate transporter; SCOT, succinyl-CoA:3-ketoacid Coenzyme A transferase; 

TCA, tricarboxylic acid cycle. Figure adapted from (Jensen et al., 2020)  

1.4 Coupling of Neuronal Activity, Blood Flow, and Energy Metabolism 

As previously mentioned, the brain is a very energy-demanding organ. However, the brain also 

has physical space restrictions and lacks any reservoir to store the fuel it needs. This means the 

brain requires a high degree of temporal and spatial coordination with the blood circulation system. 

Any interruption in blood supply for more than a few minutes (for example in the case of blood 

occlusion) will result in ischemic stroke with neurological deficits, tissue damage, and even death. 

Even if the flow is not completely stopped, but just reduced or does not match the metabolic 

demands, it can lead to BBB disruption, intracranial pressure, inflammatory cascades, tissue 

damage, and resulting cognitive impairment (Bélanger et al., 2011; Iadecola, 2017; Venkat et al., 

2016). As such, any neural activity requires a timely and spatially accurate hemodynamic response 

that increases cerebral blood flow (CBF), with tight coupling between neuronal activity, cerebral 

blood flow (CBF), and metabolism. These hemodynamic responses to neural activity including 

changes to CBF and metabolic expenditure can be captured and imaged using neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI) and positron emission 

tomography (PET), which will be introduced and discussed in detail in the next sections.  

The compartments and mechanism that maintain the coupling between the neural activity and CBF 

encompass the anatomical and metabolic interactions between the neurons, vascular components 

(i.e., endothelial cells, pericytes, vascular smooth muscle cells) and glial cells (i.e., astrocytes and, 

microglia, and oligodendrocytes) and are collectively called the neurovascular unit. (Figure 1.14) 

The neurovascular unit is a key player in ensuring a continuous supply of oxygen, glucose, and 
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other nutrients to the brain cells, while keeping the brain homeostasis balanced (i.e., keeping both 

chemical and physical equilibrium within intercellular and extracellular cells). In the aging brain, 

as well as under neurological diseases such as epilepsy, dementia, hypertension, and diabetes, the 

neurovascular unit is often compromised (Iadecola, 2017). In general, two mechanisms have been 

proposed to regulate and control CBF and modulate neurovascular coupling. The first one is called 

the metabolic model and proposes that by-products of neural activity and energy changes in 

neurons and astrocytes and molecules or ions that transiently accumulate in the extracellular space 

regulate vascular vasodilation or vasoconstriction. Some of these by-products include hydrogen 

(H+), Calcium Ca2+, lactate, adenosine, and changes in extracellular pH, which can all induce 

some vasoactive effects (Attwell et al., 2010; Mächler et al., 2016; Morgenthaler et al., 2006; Roy 

& Sherrington, 1890). In the second scenario, which is called the feedforward or signalling model, 

neural activity activates neurovascular signalling pathways which results in the release of specific 

neuropeptide molecules and vasoactive by-products of synaptic activity, such as K+, nitric oxide 

(NO) and prostanoids that mediate vasodilation or vasoconstriction and neurovascular coupling in 

anticipation or at least in parallel with neural activity (Attwell et al., 2010; Cauli & Hamel, 2010; 

Filosa & Iddings, 2013). Among these mediators, NO is an important mediator of neurovascular 

coupling. It can be produced by neurons, glial cells, vascular cells, and endothelial cells lining the 

cerebral vessels (Attwell & Iadecola, 2002; Hosford & Gourine, 2019). Glutamate (the principal 

excitatory neurotransmitter) triggers a receptor-mediated NO formation in both neurons and glia. 

While both mechanisms have experimental support (Attwell et al., 2010; Bouzier-Sore et al., 2003; 

Cauli & Hamel, 2010; Filosa & Iddings, 2013; Kleinfeld et al., 2011; Petzold & Murthy, 2011), 

some evidence such as the delay (seconds) between initiation of neuronal activity and the vascular 

response(Gordon et al., 2016), the disproportionate CBF increase as compared to the tissue oxygen 

need (Leithner & Royl, 2014), and increases in CBF under conditions of excess oxygen and 

glucose (Gladden, 2004; Magistretti & Allaman, 2015) support the predominance of the second 

model (Attwell et al., 2010; Magistretti, 2016). However, considering the time and spatial limits 

of different mediators, both mechanisms are most likely involved in actively and efficiently 

maintaining neurovascular coupling processes (Hosford & Gourine, 2019; Iadecola, 2017; 

Magistretti, 2016).  

It is important to mention that for those two mechanisms for coordinating the coupling between 

neuronal activity, blood flow regulation and metabolism (e.g., oxygen, glucose), astrocytes are 

playing an important role, mainly because of their position and association with both neuronal 

synapses on one hand and local vasculature (microvasculature) on the other hand. For example, 

astrocytes are influencing blood flow regulation by absorbing extracellular K+ released by neural 

activity into the end feet next to the microvasculature (Attwell et al., 2010; Magistretti, 2016). In 

another suggested mechanism, the glutamate released by synaptic activity results in Ca2+ increases 

in astrocytes which can trigger the release of arachidonic acid and a sequence of events leading to 

vascular vasodilation (Iadecola, 2017). 
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Figure 1.14 The neurovascular unit at the level of brain capillary. In the capillary site, where the neurons have closets 

interaction with the vascular system, the NVC is comprised of pericytes and endothelial cells, glia including astrocytes, 

oligodendrocytes, microglia, and neurons. Figure adapted from (A. R. Nelson et al., 2016). 

During the above section, I covered the key mechanisms associated with brain cell metabolism 

and signaling, including the main nutrition and metabolic pathways, as well as the cell types that 

are involved in brain functioning and metabolism. Here after I introduce the major advanced 

neuroimaging techniques used to map these processes. 

1.5 Imaging methods to monitor brain metabolism 

Biomedical imaging techniques provide an important opportunity to study the anatomical and 

physiological properties of the brain. Among several versatile imaging methods, magnetic 

resonance imaging (MRI), and positron emission tomography (PET) share the common 

characteristics of being non-invasive, reproducible, and safe. These methods allow mapping of the 

structures and functions of the human brain at the mm spatial scale (0.5-3.5 mm). However, while 

PET is particularly useful for measuring brain metabolism due to its metabolic specificity, the 

temporal resolution (~minutes) of a PET scanner is such that it reduces its sensitivity to the very 

early and statistically small changes in brain function. On the other hand, MRI and more 

specifically functional MRI offers higher temporal resolution (at the second scale) and provides a 

better ability to identify some dynamic components of functional changes, while characterizing 

the NVC processes (Bassett & Sporns, 2017). None of those techniques can reach the actual time 

scale of neuronal bioelectrical activity (at the millisecond scale), for which only electrophysiology 

techniques such as scalp Electroencephalography (EEG) or Magnetoencephalography (MEG) can 

provide direct access to neuronal activity, at the price of lower spatial resolution (source 

localization methods being required to infer cortical activity from scalp recordings). Therefore, 

PET and fMRI are only offering indirect measures of neuronal activity, through its associated 

metabolism and hemodynamic components.  

In this subsection, I introduce the main Imaging techniques we use in our project to investigate the 

physiological metabolic feature of the human brain. 
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1.5.1 Positron emission tomography (PET) 
PET is an imaging modality from the field of nuclear medicine and molecular imaging. PET 

quantitatively measures biochemical and physiological processes in vivo using radionuclide-

tagged tracer molecules (tracers). Positrons are emitted by the breakdown of the radionuclide. 

Gamma rays called annihilation photons are created when positrons collide with electrons near the 

decay event (Bettinardi et al., 2002). The scanner then detects the annihilation photons, which 

arrive at the detectors in coincidence at 180 degrees apart from one another. The time-coincident 

imaging of high energy (511 keV) gamma rays allows accurate attenuation correction using 

computed tomography (CT). CT scanning is based on the measurement of attenuation of x-rays 

with uniform and specific energies emitted from the source beam inside the scanner. In a hybrid 

PET/CT system the x-ray source and the corresponding CT detector field are rotated around the 

subject inside the machine. Based on the coincidence detection, one can infer that the 

corresponding annihilation was somewhere along the line. Knowing the attenuation coefficient of 

tissue in the body, and tomographic reconstruction techniques, a 3-D dimensional anatomical 

image of the concentration of the radiotracer can be reconstructed (Tong et al., 2010) (Figure 1.15). 

It thereby provides accurate molecular imaging of the regional function of the body at the 

biochemical level. For PET imaging, we are considering positron-emitting isotopes with a short 

half-life, such as C-11, N-13, O-15 or F-18, that can be incorporated into biological substrates such 

as glucose, H2O, NH3, CO2 or O2, to name of few, without disturbing or altering the biological 

activity of cells (Boellaard, 2009; Emre Erdi, 2007). 

Inferring biological metabolic processes from PET data consists in analyzing and mathematically 

modelling the delivery of the labelled tracer as input and tissue responses with a parameter called 

binding potential. The measured tissue response takes into account the sum of radioactivity from 

all radiolabeled species which cross the BBB and potentially bind the receptor in the tissue of 

interest. The contribution of individual species and metabolic rates should be derived using the 

mathematical models of radiotracer kinetics and estimating the binding potential (Kinahan & 

Fletcher, 2010; Shoghi & Gropler, 2015). To estimate the binding potential, which is required for 

PET quantitative analysis, on needs to measure the amount of radiolabeled metabolite in blood 

plasma, i.e., the arterial input function (AIF). The gold standard for determining the AIF consists 

in sampling whole-blood activity including biological metabolites and tracer simultaneously with 

the PET scan for each subject. However, since tracers and metabolites also bind other cells or 

membranes non-specifically, a radiolabeled metabolite-corrected input function is often necessary. 

This is estimated by correcting the plasma concentration to the whole-blood ratio of radioactive 

metabolites though an arterial sampling line. Even though estimating the binding potential using 

the AIF estimation from arterial blood sampling is more accurate, it imposes additional discomfort 

on the subjects and, together with the subsequent analysis of blood samples, is a laborious 

procedure (Shoghi & Gropler, 2015). Another semi-quantitative PET analysis procedure, 

overcoming the disadvantages of using an arterial sampling line, consists in considering a 

reference region model, allowing a useful simplification for non-invasive quantification of the 

AIF(Kinahan & Fletcher, 2010).  

The most common metabolite that can be imaged using PET is glucose and oxygen. The glucose 

and oxygen consumption rate can be estimated using PET with 18F (110 min half-life time) and 
15O (2 min half-life time) labelled isotopes respectively. Among 18F-18 labelled radiotracers, 

fluorodeoxyglucose (FDG) is the most commonly used PET tracer and the only one approved by 

the Food and Drug Administration (FDA) for routine clinical use (ref). 18F-FDG is a gold standard 
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to quantify glucose metabolism in the body and the brain. To measure brain oxygenation processes, 
15O-PET can be considered for CMRO2 measurement, while it needs more specialized equipment 

and a complex setup for quantification due to the short half-life of 2-min of 15O, i.e. the local access 

to a cyclotron able to synthesize such isotope just before injection, making it largely inaccessible 

(Ishii et al., 2004).  

18F-FDG PET allows the determination of glucose consumption based on the qualitative evaluation 

of regional uptake of 18F-FDG tracer. Both 18F-FDG and glucose share a common carrier called 

glucose transporters at the blood-brain barrier to transport from plasma into the brain, where after 

hexokinase enzyme phosphorylates 18F-FDG to 18F-FDG-6-phosphate (18F-FDG-6-P) equivalently 

as it phosphorylates glucose to glucose-6-phosphate. However, due to the presence of 18F in the 

formulation, the 18F-FDG-6-P is trapped inside the cell and can’t be further metabolized as 

glucose-6-phosphate (Murakami et al., 2014).  

In this context, the standardized uptake value (SUV) method is a semi-quantitative 18F-FDG PET 

method used in this thesis for measuring brain glucose metabolism. SUV estimates the relative 

uptake rate of the FDG radiotracer in kBq/(mL), which reflects the relative glucose metabolic rate 

of glucose in brain tissue. By taking a reference ROI in the brain as a reference region (Byrnes et 

al., 2014; Kinahan & Fletcher, 2010), SUV measure can be estimated using the formula: 

 SUV = 𝐶𝑡 (ID 𝑤𝑡⁄ × 𝐷)⁄  (1.8) 

where 𝐶𝑡  is the decay-corrected activity concentration in the tissue (in MBq/cc which can be 

converted to MBq/(kg) by dividing by tissue density 1 g/cc), ID is the injected dose (in MBq), and 

𝑤𝑡 is the subject’s weight (in kg). 𝐷 = 2−Δ𝑡 𝑇1 2⁄⁄  is a decay factor with Δ𝑡 being the time elapsed 

between injection and scanning (approximately 1 hour), and 𝑇1 2⁄  is the half lifetime of the 18F-

FDG radiotracer (6582 s). Then, SUV ratios (i.e., glucose metabolism rate maps) are determined 

by employing a normalization procedure, i.e., a rescaling to the tracer activity value within 

preferential tissue such as the cerebellum and pons. Among them, absolute quantification 18FDG 

PET studies showed that the pons provides more stable estimates than the cerebellum (Nguyen et 

al., 2006; Verger et al., 2021). While it’s been shown that there is a good agreement between the 

PET relative and absolute measure and for example the SUV values shown to have a high 

correlation (r=0.84) with glucose metabolic rate (Boellaard, 2009; Doot et al., 2007; Hyder et al., 

2013); yet in non-normal physiological cases with significant global reductions of brain metabolic 

activity, such as patients with neurodegenerative dementia, the PET absolute measurement is 

favored and more liable (Berti et al., 2014). 



26 

 

 

Figure 1.15 Schema showing the processing steps of PET imaging: decay of radionuclide, positron emission, PET/CT 

scanner gamma ray coincidence detection, 3-dimensional trace concentration reconstruction, physiological map 

modeling. Figure adapted from (Matta et al., 2011). 

1.5.2 Magnetic resonance imaging (MRI)  
Magnetic resonance imaging (MRI) is an imaging technique based on the principles of nuclear 

magnetic resonance (NMR). NMR is a physical phenomenon that results from specific magnetic 

properties of certain atomic nuclei with an odd number of proton and/or neutrons called NMR-

active nuclei. In the presence of a strong static magnetic field (B0), the spin of such nuclei points 

toward the direction of B0 (lower energy sate) and they also precess with the resonance called 

Larmor frequency. The Larmor frequency is determined by the gyromagnetic ratio (γ) of the 

particular magnetic moment. Applying a second perpendicular magnetic field (B1), at the Larmor 

frequency, cause most of the spins to point against (higher energy) the (transverse direction) of the 

B0. After removing 𝐵1, within time T1 and so-called longitudinal relaxation rate R1 (R1=1/T1), 

the nuclei recover their resting energy state and get aligned with B0 and during time T2 and 

transverse relaxation (R2=1/T2)) the transverse magnetization of the nuclei vanishes. Most MRI 

of methods relies on Hydrogen nuclei of water to map different types of tissue based on different 

T1 and T2 relaxation times. MRI scans involve the collection of several images based on spatial 

location as well as on weighting based on T1 or T2. A sample with low T1 appears bright in a T1-

weighted image (Figure 1.16) (Filler, 2009).  
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Figure 1.16 MRI T1 and T2 weighted images comparison. In the T1 image (left brain) the white matter (WM) and fat 

are bright, and cerebrospinal fluid (CSF) and cortex are dark. In T2 (right brain), CSF is bright, fat is light, cortex is 

light gray, and WM is dark gray. Figure adapted from (Fonov et al., 2011). 

Functional MRI (fMRI) is typically performed using the blood-oxygen-level dependent (BOLD) 

signal, which is a water-1H MRI technique sensitive to regional change in the concentration of 

paramagnetic deoxygenated hemoglobin (dHb) and diamagnetic oxygenated hemoglobin (Hb) 

following neural activity. As mentioned in previous sections, any increase in neural activity 

involves oxygen (and other metabolic substates like glucose) consumption and consequently a 

local increase in dHb concentration. This phenomenon is also coupled with the release of 

vasodilators which results in a large CBF increase by arteriole vasodilatation, resulting in a large 

increase in Hb concentration by dilution (Hoge, 2012). Overall, decreasing the concentration of 

paramagnetic dHb, while the diamagnetic Hb increases, results in an increase of the blood-oxygen-

level-dependent (BOLD) signal following neural activity (Rouquet et al., 2015). This means that 

any variation in the BOLD signal reflects regional changes in blood flow, blood volume, and 

energy expenditure of neurons (oxygen consumption. Therefore, oxidative phosphorylation which 

consumes oxygen, causes changes in blood flow, thereby affecting the dHb and Hb concentration 

and hence the BOLD signal (Bélanger et al., 2011). The ratio between the increase in blood flow 

and oxidative metabolism is thought to be about 2:1 in healthy brain tissue (Griffeth & Buxton, 

2011). However, depending on the brain region and task, as well as other conditions such as 

caffeine intake and disease, this ratio may change (Buxton, 2010). During neuronal activity, the 

release of nitric oxide plays an important role in vasodilation, which lead to cerebral blood volume 

change (CBV) changes (Kobari et al., 1994; Krieger et al., 2012). Classic hemodynamic models 

have assumed that the BOLD signal's effective site, among vascular compartments, is within 

venules and capillaries. Therefore, it’s been postulated that the changes in cerebral blood volume 

(CBV) are dominated by the venules side (Mandeville & Marota, 1999). However, more recent 

studies attribute the largest fractional CBV changes to arterioles (J. J. Chen & Pike, 2009; Griffeth 

& Buxton, 2011; C. H. Hillman et al., 2007; Nabavi et al., 2001; F. Zhao et al., 2007). The changes 

in CBV have a power law relationship with CBF: CBV~CBFα, where α is the Grubb constant and 

has been reported to range from 0.38 to 0.50 for total blood volume (Grubb Jr et al., 1974; 

Wesolowski et al., 2019).  

Given the importance of the vascular component of the BOLD signal, combining BOLD with a 

measure of CBF allows a more complete understanding of the physiological changes that occur 

during brain activation. In fact, fMRI approaches dedicated to measure CBF can detect the arterial 

and capillary weighting signal better than BOLD, and are believed to be even closer to the actual 

locations of cerebral activation than the BOLD signal itself (Chini et al., 2021), which is prone to 

bias from veins (Kay et al., 2019). Arterial spin labelling (ASL) methods are the most common 
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fMRI methods to measure either absolute values of CBF or relative changes in CBF. ASL uses 

blood water as an endogenous tracer, where the blood water-1H is magnetically tagged before it 

arrives in the tissue, during the time called the arterial arrival time (AAT). The amount of labelled 

blood delivered to the tissue is measured (Detre et al., 1992) and compared to a control image 

obtained without tagging. The basic principle of this method is based on subtracting two 

consecutively acquired images, the first one called the tag image, acquired after tagging the blood 

water and the second image called the control image, acquired after the magnetized water is 

washed out over time (i.e., a regular BOLD image). The tagging is usually performed at the level 

of the carotids, followed by the so-called post-labelling delay to allow the tag to reach the brain 

and diffuse into brain tissue. This way, the subtraction image provides information about the 

amount of labelled blood present in the imaged area. ASL in a non-invasive technique that provides 

images of local CBF with reasonable spatial and temporal resolution. Furthermore, a dual echo 

implementation of this method can be used to acquire BOLD and ASL signals simultaneously 

(Ances et al., 2008; Detre et al., 1992; Ogawa et al., 1992). However, ASL suffers from a low 

signal-to-noise ratio (SNR) as the signal difference between the tag and control image is only about 

0.5% to 1.5% of the total MR signal. Sufficient SNR is usually achieved by repeating the 

experiment several time to allow averaging or by considering advanced biophysical models to 

quantify absolute perfusion values (Petersen et al., 2006). 

1.5.2.1 BOLD signal modelling 
Considering the complexity of the BOLD signal and its complicated relationship with blood flow, 

volume, and more importantly, oxidative metabolism, accurate modelling of the BOLD signal is 

required. Even though in humans the gold standard for measuring brain oxygen metabolism, CBF 

and also CBV remains PET imaging, such acquisitions are complex, requiring several injections 

of radioactive tracers to the subject, expensive and require the local presence of a cyclotron used 

to produce 15O and H2
15O. A typical PET acquisition dedicated to map CMRO2, CBF and CBV 

would require the sequential administration of C15O, 15O and H2
15O, which exposes the patient to 

a large radiation dose (~8300 MBq). Furthermore, considering the short half-life of 15O, a 

cyclotron is required on-site, increasing the cost of the acquisition (Maaniitty et al., 2020; Muzik 

et al., 2013). An equivalent technique to measure these parameters with MRI would therefore be 

advantageous since it would lower cost and ionizing radiation exposure, and be more accessible 

(Ito et al., 2005; Smielewski et al., 2002). 

BOLD signal calibrated fMRI models are able to quantitatively measure brain activity by 

estimating metabolic changes as an index of neuronal activity variation by exploiting the CMRO2-

CBF and CBV-CBF coupling in the BOLD response. The earliest calibrated fMRI models were 

used in conjunction with task-evoked fMRI to estimate task-based CMRO2 changes and to study 

physiological differences among groups across the lifespan or in disease (Davis et al., 1998; 

Goodwin et al., 2009; Hoge et al., 1999b; Restom et al., 2008). However, recent developments 

have focused on measuring baseline absolute CMRO2 (Bulte et al., 2012; Gauthier et al., 2011; 

Gauthier & Hoge, 2012) due to the importance of baseline oxidative metabolism in understanding 

diseases with altered oxygen extraction fraction (OEF), like stroke, carotid occlusion, ageing, 

dementia and other cerebrovascular diseases (Gauthier & Fan, 2019; Hoge, 2012).  

The first calibrated MRI model (Bulte et al., 2009; Davis et al., 1998; Hoge et al., 1999a), called 

the hypercapnic model, was proposed to exploit changes induced by altering the arterial partial 

pressure of carbon dioxide (PaCO2). This was achieved by breathing a moderate concentration of 

CO2 (5%) to cause vasodilation and a blood flow increase without changing oxidative metabolism, 
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thereby evoking a purely vascular BOLD signal change. Both CBF and the BOLD signal are 

measured using a dual-echo sequence arterial spin labelling sequence to estimate the maximum 

possible BOLD signal change, called M. This is the signal one would measure if all dHb present 

at baseline were removed from brain voxels. The hypercapnia model relates these parameters as 

follows: 

 𝑀 = (
∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷
)/ (

1 − 𝐶𝐵𝐹−(𝛽−𝛼)

𝐶𝐵𝐹0
) (1.9) 

where, 𝛼 shows the CBF-CBV coupling and its value is assumed to be between 0.18 and 0.20 to 

reflect the venous contribution (J. J. Chen & Pike, 2009), and 𝛽 describes the field-dependent 

impact of dHb on transverse relaxation and is assumed to be between 1.3 and 1.5 at 3T. In the 

hypercapnic model, it is also assumed that that arterial blood is completely oxygen saturated. 

Arterial oxygen saturation is typically higher than 97% in healthy adults. Iso-metabolism during 

the CO2 inhalation is another assumption in this model (Hoge et al., 1999b). 

The hypercapnic model describes the relationship between M and CMRO2 during the task-evoked 

experiment as follows: 

 𝐶𝑀𝑅𝑂2
𝐶𝑀𝑅𝑂20

= (
𝐶𝐵𝐹

1−
𝛼
𝛽

𝐶𝐵𝐹0
)(1 −

∆𝐵𝑂𝐿𝐷
𝐵𝑂𝐿𝐷0
𝑀

)

1
𝛽

 (1.10) 

where, CBF is the CBF during the task, and 𝐶𝐵𝐹0 is the resting sate CBF (Gauthier & Fan, 2019).  

The other type of calibrated MRI is the hyperoxia model, based on changes in venous saturation 

from alterations in the arterial partial pressure of oxygen (PaO2) (Chiarelli, Bulte, Wise, et al., 

2007). This model was suggested due to dyspnea and discomfort during the CO2 breathing in a 

hypercapnic challenge (Feihl & Perret, 1994; Gauthier & Fan, 2019; Manning & Schwartzstein, 

1995). In this model, to avoid significant vasoconstriction, a relatively low concentration of O2 is 

provided to estimate the M value using the BOLD signal and dHb of venous blood, estimated using 

the respiratory trace and a physiological model based on the Severinghaus equation (Dash et al., 

2016; Honda et al., 1979). Since CBF is assumed to be largely unchanged during inhaled partial 

hyperoxia, the change in CBF is usually assumed to be 0 in this model. The other assumed constant 

of this model is the baseline OEF, as well as the same 𝛼 and 𝛽 as in the hypercapnia model. 

 
∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷
= 𝑀 × (1 − (

𝐶𝐵𝐹

𝐶𝐵𝐹0
)
𝛼

× (
[𝑑𝐻𝑏]𝑣
[𝑑𝐻𝑏]𝑣0

+
𝐶𝐵𝐹

𝐶𝐵𝐹0
− 1)

𝛽

) (1.11) 

Using this model the flow changes are assumed rather than measured when calculating M, hence 

it was found to display less variation compared to the hypercapnia model, and is more preferential, 

particularly in studying distressed subjects or aging-related cognitive change (Chiarelli, Bulte, 

Piechnik, et al., 2007; Gauthier & Fan, 2019), it is thought that the assumed constant value for 

CBF is responsible for the lower M variation, but ultimately results in an underestimation of M 

and CMRO2, especially during task-evoked challenges (Gauthier & Fan, 2019).  

In the next phase of development of the calibrated fMRI models, resting values were estimated, 

including voxel-wise maps of CMRO2, OEF and other BOLD signal modelling 
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parameters(Englund et al., 2020). OEF is the balance between oxygen extraction and blood flow. 

It is an important hemodynamic measure which reflects the efficiency of oxygen utilization by the 

tissue, and even slight changes in OEF indicate a physiological perturbation and local 

autoregulatory failure. Resting OEF is around 36 percent and has limited variation across brain 

regions between 20 and 55 percent (Thompson et al., 2016) 

In the method proposed by Bulte et al. (Bulte et al., 2012), the hypercapnic challenge was used to 

estimate M, and responses to hyperoxia were used to obtain baseline voxel-wise maps of OEF, 

AAT and CBV. 

The generalized calibration model (GCM) went a step further and combined both hypercapnic and 

hyperoxic models to create a single model that could be used for both. The GCM incorporates CBF 

in the equation linking the arterial content of O2 (𝐶𝑎𝑂2) and venous concentration of O2 (𝐶𝑣𝑂2) 

 𝐶𝑣𝑂2 = 𝐶𝑎𝑂2 − (
𝐶𝑎𝑂2|0 × 𝑂𝐸𝐹0

𝐶𝐵𝐹
𝐶𝐵𝐹0

) (1.12) 

 𝐶𝑎𝑂2 = (𝜑. [𝐻𝑏]. 𝑆𝑎𝑜2) + (𝑃𝑎𝑜2 . 𝜖) (1.13) 

where ϕ is the oxygen-carrying capacity of hemoglobin which is species-dependent and ϵ is the 

solubility coefficient of oxygen in the blood. In humans the following values can be used: ϕ=1.34 

mlO2/g Hb, ϵ=0.0031mlO2/(dl blood⋅mmHg). The fractional arterial oxygen saturation 

𝑆𝑎𝑜2(Honda et al., 1979; Severinghaus, 1979) is related to the partial pressure of O2 (PaO2), which 

reflects the amount of oxygen gas dissolved in the blood, via the Severinghaus equation as below: 

 𝑆𝑎𝑜2 =
1

23400
(𝑃𝑎𝑜2 + 150𝑃𝑎𝑜2)
⁄ + 1

 (1.14) 

The 𝑃𝑎𝑜2 can be estimated from average end-tidal O2 values, which is the concentration of O2 in 

the in exhaled breath and represents the functional reserve capacity.  

This model, by employing any arbitrary combination of changes in O2 and CO2, has been shown 

to be more stable than both the hypercapnia and hyperoxia models (Bulte et al., 2012; Gauthier et 

al., 2011; Gauthier & Hoge, 2012; Hoge, 2012). Resting metabolism can be estimated using this 

model by using two or more breathing manipulations (hypercapnia and hyperoxia), and 

simultaneously measuring the BOLD signal, ASL and end-tidal O2 values. In the model proposed 

by Gauthier and Hoge, the GCM model is defined as a nonlinear equation relating the BOLD, CBF 

and end-tidal O2 signals with two unknown parameters M and OEF. Hence using this framework, 

the resting OEF can be estimated by detecting the intersection point of two M vs OEF curves 

constructed using breathing challenges with two different O2 and CO2 concentrations.  

One advantage of the GCM as a framework for studying brain physiology is that in addition to 

CBF, OEF, and CMRO2, we are also able to estimate Cerebrovascular reactivity (CVR) maps. 

CVR demonstrates the ability of cerebral vessels to dilate or constrict in response to challenges, in 

this case, inhalation of CO2. CVR is a measure of the vascular reserve, which is complementary 

to steady state information captured by CBF and CBV. Aging and diseases such as arterial stenosis, 

stroke, small vessel disease, brain tumors and injuries can affect CVR (Hou et al., 2020) 
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CVR is measured using the equation: 

 𝐶𝑉𝑅 = 𝛥𝑀𝑅𝐼 𝛥𝐸𝑛𝑑𝑡𝑖𝑑𝑎𝑙𝐶𝑂2⁄  (1.15) 

Where the MRI can be the BOLD signal or the CBF from ASL, ΔMRI and 𝛥𝐸𝑛𝑑𝑡𝑖𝑑𝑎𝑙𝐶𝑂2 are 

calculated as the difference between baseline and the hypercapnic challenge. 

The GCM has some limitations linked to its assumptions. Even though the GCM model is found 

to be powerful to estimate OEF and M values, the iso-metabolism under hypercapnia and a small 

and/or non-existence CBF variation during hyperoxia assumptions have been shown to lead to up 

to 33% variations in CMRO2 across days in a recent 7T MRI studies (Gauthier & Fan, 2019).  

In an extended version of these calibrated models, several varying levels of hypercapnia 

interleaved with hyperoxia challenges, as well as combined challenges are applied, to 

simultaneously modulate CBF and arterial oxygen levels(Wise et al., 2013). Furthermore, a 

Bayesian estimation framework was implemented to uncover with greater stability the 

cerebrovascular dependent parameters in the BOLD signal model. In this model, in addition to 

CMRO2 and OEF maps, maps of the α parameter which relates the relative increases in CBF to 

CBV and the β exponent that relates the deoxyhemoglobin concentration to the relaxation rate 2 

(Wise et al., 2013) can be obtained. The estimated range for α and β exponent among healthy adults 

(acquired on a 3T whole-body MRI system) using this model, were 0.33±0.06, and 1.35±0.13 

respectively. 

1.6 Spatial variability of metabolic features within the healthy adult brain 

In this subsection we review the physiological importance and regional variability of physio-

metabolic measures, which we discussed in the previous section, including cerebral glucose and 

oxygen metabolism as well as cerebral blood flow and oxygen extraction fraction. 

1.6.1 Cerebral metabolic rate of Glucose (CMRGlc)  
In the normal state glucose oxidation is the primary energy source for the adult human brain’s 

neuronal activity. The Glucose level in the brain is around 1–3 mM, of which at least 95% 

contribute to oxidative metabolism and nearly 5% to aerobic glycolysis to produce energy (Hyder 

et al., 2013). However, Glucose is not only required to provide ATP to fuel brain energy demands, 

of which a large proportion is consumed for action and postsynaptic potentials generation, 

maintaining the ion gradients and neuronal resting potential (Hall et al., 2012; Ivannikov et al., 

2010), but also is a precursor for neurotransmitter synthesis (Dienel, 2012). Under the 

physiological condition the amount of glucose a resting brain utilizes, per unit mass tissue and per 

unit time, the cerebral metabolic rate of glucose (CMRGlc), is ranging from 4 to 7 nmol/mL 

(Aanerud et al., 2012; Poulsen et al., 1997). 

As mentioned in the imaging subsection, PET is the leading neuroimaging technique that allows 

the determination of CMRGlc consumption based on the qualitative evaluation of regional uptake 

of 18F-FDG tracer.  

The earliest study of 18F-DG PET demonstrated that there is a positive correlation in gray matter 

structures between the brain vascular density and glucose metabolism as well as a negative 

correlation with lactate dehydrogenase (LDH), the enzyme that converts lactate into pyruvate in 

the cytosol of a cell (Borowsky & Collins, 1989). The recent cell type analysis showed that the 

capillary density has around 20% variation across brain regions (Ventura-Antunes et al., 2022). In 

addition to capillary density variation that affects glucose usage, there is also metabolic difference 
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not only in terms of the amount of energy usage but also in the end-product of the glucose pathway 

across the brain’s cell types. Among the most abundant cell types in the brain, such as excitatory 

and inhibitory neurons, oligodendrocyte, astroglia, endothelial cells, and microglia, neurons have 

shown to demand higher energy demands, as well as being enriched with enzymes for oxidative 

metabolism (Mächler et al., 2016). On the other hand, even though glial cells and astrocytes have 

mitochondria, they are mainly using glycolysis, through which they can provide pyruvate and 

lactate for neurons (Yellen, 2018). Despite all the sources of variabilities and heterogeneities, 
18FDG-PET studies have shown that the regional variations of resting CMRGlc across the brain 

were just around ±10% from the mean (Thompson et al., 2016). 

The highest CMRGlc level is within putamen, dorsal posterior and anterior cingulate cortex, 

primary visual cortex, and primary and association auditory cortex, and the lowest within the 

amygdala, hypothalamus, temporal pole area, part of cingulate cortex and anterior entorhinal 

cortex (Thompson et al., 2016). The whole brain resting CMRGlc is about 0.26   μmol/g/min, and 

it has a lower range in the white matter (~0.22   μmol/g/min) and greater values in the gray matter 

(~0.28  μmol/g/min) (Thompson et al., 2016; Vavilala et al., 2002)(Figure 1.17, Figure 1.18). 

Glucose metabolism also is shown to have a correlation with brain regional activation, especially 

within default mode and associated network. These areas are known to have a high number of 

functional connections to other regions of the brain. Such findings would confirm not only the 

metabolic cost of brain functional activity but also their non-homogeneous metabolic demands 

across different brain areas (M. Bernier et al., 2017).  

However, it is important to mention that the kinetic model considered for PET glucose metabolism 

estimation is actually assuming homogeneity of blood flow and transporter rates between plasma 

and cerebral tissue within brain regions, as well as similar phosphorylation rates for glucose and 
18F-FDG (Berti et al., 2014; Sokoloff, 1977). However, the cerebral blood flow (CBF) 

measurements, even at rest, is contradicting such an assumption, since CBF non-homogeneity 

across brain regions has been reported (J. J. Chen & Pike, 2009; Pantano et al., 1984). Hence 

adding perfusion information included in a CBF map would be of great interest to better understand 

the regional brain metabolic feature of CMRGlc. In addition, the cerebral metabolic rate of oxygen 

(CMRO2) provides complementary information that would help reveal the regional variation of 

oxidative versus non-oxidative pathways of glucose. Besides CBF, another important brain 

metabolic measure is the oxygen extraction fraction (OEF), which assesses the fraction of arterial 

oxygen extracted by brain tissue from the brain vasculature. Since this happens mainly within the 

capillary bed, OEF has a tight connection with cerebral capillary density. Characterizing OEF 

would help reveal the role of brain vasculature properties in brain functioning and metabolic 

profiles. Therefore, in the next section, we will review the regional features of these above-

mentioned physiological biomarkers (CBF, OEF), besides the other brain metabolic demand, 

CMRO2, that all help obtain a more complete picture of brain metabolic behaviour and functioning.  

1.6.2 Cerebral blood flow (CBF) 
Cerebral blood flow is defined as the blood volume that flows per unit mass per unit time. It reveals 

several key physiological biomarkers of the brain like microvascular density and reactivity, as well 

as indirectly assessing regional brain metabolism (Barber et al., 1970). Glucose in the brain can be 

stored in the form of glycogen in glial cells (mainly in astrocytes), which amounts up to 3–12 μ 

mol/g and would last for a few minutes, in absence of glucose supply (Brown, 2004). On the other 

hand, the oxygen storage molecules in the brain, Neuroglobin, a protein with oxygen-binding 

capacity, has a very low molecular storage capacity (~ 1 nmol/mL) and can maintain brain oxygen 
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content around 30 nmol/mL, lasting only for a second in absence of oxygen supply (Leithner & 

Royl, 2014; Madsen et al., 1995; Pearigen et al., 1996). CBF increment has a direct influence on 

enhancing the PO2 level, thus, it has been postulated that the main role of CBF is to keep a moderate 

safety margin of the brain oxygen content and a partial pressure of O2 (PO2) around the 25 mm 

Hg, therefore allowing a proportion of oxygen extracted from the capillary’s networks around 30% 

to 50% ratio, which is larger than the amount of glucose extraction (~10%). Indeed, approximately 

six molecules of oxygen are extracted from brain circulation per one molecule of glucose (Aanerud 

et al., 2012; Choi et al., 2004; Madsen et al., 1995). Under normal physiological conditions, the 

average brain tissue PO2, measured using the fibre optic method (Ortiz-Prado et al., 2010), is 

ranging from 20 to 30 mm Hg. However, PO2 exhibits significant microregional variability across 

brain regions, with considerably lower values in regions that are distant from micro-vessels 

(Aanerud et al., 2012; Devor et al., 2011). Indeed, the PO2 level across the brain depends on 

multiple factors, including the geometry of the vascular network, the density of the capillaries, the 

metabolic rate of oxygen and the capillary oxygen content. The average capillary oxygen level 

varies between 40 to 50 mm Hg across brain regions (Vovenko, 1999).  

Blood perfusion allows the circulating of important brain metabolic substrates like glucose, and 

oxygen, but also less demanded metabolites such as ketone bodies and lactate (Bélanger et al., 

2011). Blood perfusion also plays a critical role in removing the metabolic waste products that 

have a substantial contribution to neurovascular couplings (Gjedde, 2007; Leithner & Royl, 2014), 

such as lactate (Ido et al., 2001; Mintun et al., 2004), CO2, or heat (Katz-Brull et al., 2006; 

Yablonskiy et al., 2000).  

In general, the blood flow, even though it does not strictly fulfill all the requirements, can be 

defined as the flow in a tube by Ohm’s law, with the assumption that such flow is steady, laminar, 

and uniform through thinned-walled non-distensible tubes (Coulson et al., 2004). In summary 

Ohm’s law states that flow is proportional to the difference in inflow and outflow pressure (ΔP) 

divided by the resistance to flow (R): flow = ΔP/R. According to this law, brain cerebral blood 

flow is regulated by the pressure difference across vascular segments over its resistance. Where 

the pressure is called cerebral perfusion pressure (CPP) and the total resistance is called 

cerebrovascular resistance (Fantini et al., 2016). 

The CPP drives the oxygen delivery to cerebral tissue. Normal CPP values range between 60 and 

80 mmHg depending on the individual subject’s physiology. CPP is defined as the difference 

between the mean arterial pressure (MAP), which is the weighted average of the systolic and 

diastolic pressure, and the intracranial pressure (ICP). ICP is the pressure of the cerebrospinal fluid 

(CSF) in the subarachnoid space, which its measurement requires the invasive placement of a 

pressure monitoring sensor in the skull (Munakomi & Das, 2022). The normal range for resting 

MAP is from 70 to 100 mmHg while resting ICP values are ranging from 5 to 15 mmHg. Therefore, 

ICP has less impact on CPP when compared to MAP values (Mount & Das, 2021). Indeed, any 

factor that may change the perfusion pressure and the resistance of the system through vessels 

diameters (e.g., vasodilation, vasoconstriction) and the blood viscosity, like hematocrit level, will 

significantly impact the CBF (Henriksen et al., 2018). The index of cerebral vessels' ability to 

dilate or constrict in response to arterial pressure is denoted by a physiological measure called 

cerebrovascular reactivity (CVR), which can provide highly complementary information to CBF 

(W. Li et al., 2020). Since the largest pressure changes actually occur within the arterioles along 

the vascular tree, the site of CVR response to a vaso-active stimulus is thought to be there(Lennox 

& Gibbs, 1932) . In addition to the arterioles, other large vessels, such as the internal carotid artery 
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and middle cerebral artery also contribute to resting CVR response (Coverdale et al., 2014; Verbree 

et al., 2014). The partial pressure of CO2 (PCO2) is another key regulator of both CBF and CVR, 

since even small fluctuations in PCO2 level, will induce cascade reactions in brain vasculature and 

results in large changes in CBF (Henriksen et al., 2013; Hoiland et al., 2011). As a result, the CVR 

can actually be measured by employing a hypercapnic challenge. To do so, subjects will breathe 

air containing a low concentration of CO2, to induce vasodilatation of the vessels. CVR is then 

estimated as the ratio of the change in BOLD (or CBF) signal to the amount of increase in blood 

PCO2 (Poublanc et al., 2015).  

While several signalling molecules, such as nitric oxide, adenosine, reactive oxygen species, 

prostaglandins, and other eicosanoids have been suggested to play a potential role in regulating 

CVR(Hoiland et al., 2019), the most accepted molecular signalling mechanisms is the following: 

the blood transportation of absorbed CO2 from lung alveolus to brain and exchange with 

perivascular space induces a pH decrease within perivascular segments. That causes blockage of 

calcium channels in arteriolar smooth muscle cells and subsequently produces a reduction in local 

calcium concentration, relaxation in arteriolar smooth muscle cells and local vasodilation that all 

induce the CVR contrast measured by bold and CBF signal (Krishnamurthy et al., 2021). 

The gold standard to measure the CBF is using PET with spatial resolution on the order of typically 

~3-5 mm, with intravenous injection of [15O] H2O (Ito et al., 2021; Meyer et al., 1987). As already 

mentioned in more detail in the imaging technique subsection, the other popular MR-based 

technique to measure CBF is arterial spin labelling (ASL). Both PET using 15O-labeled oxygen 

and ASL allow quantifying absolute measures of CBF and dynamics of the arterial tracer delivery 

(magnetized water in MRI and radiotracer in PET) (Fantini et al., 2016).  

 Indeed, considering the complexity and cost of employing labelled O2 (which requires a cyclotron 

on site) as well as the ethical concerns for employing the radioactive tracer in PET acquisition, 

especially for healthy subjects, the completely non-invasive and still less expensive ASL 

technique, despite having low resolution (~4.5×4.5×7.5 cm3 for 3T MRI) and moderate signal-

to-noise (SNR), is more favourable. Zhang et al (K. Zhang et al., 2014) conducted a study to 

compare CBF estimations using both techniques in resting healthy human brain and showed a 

significant correlation (p<0.05) between 15O-PET and pCASL, while reporting a higher regional 

range of CBF values using ASL across cortical areas. The whole brain resting CBF was estimated 

about 50 ml/ (100 g min), with lower values in the white matter [∼20 ml/(100  g min)] and larger 

values in the gray matter [∼80  ml/(100  g min)] (Vavilala et al., 2002). The largest CBF values 

were reported within the putamen, the thalamus, dorsal posterior and anterior cingulate cortex, 

primary and association auditory cortex, and primary visual cortex. The lowest CBF values were 

reported within the temporal pole area, hypothalamus, and primary somatosensory cortex 

(Thompson et al., 2016) (Figure 1.17, Figure 1.18). The regional variation of CBF has been also 

shown to have a meaningful correlation with CMRGlc, which suggests using CBF as a potential 

surrogate for CMRGlc measure. A study investigated the dependency between blood perfusion, 

measured by ASL and CMRGlc, acquired by FDG-PET, showed that the regional correlation 

between the two modalities was the highest within the striatum (R=0.8), moderate within the 

temporal (R=0.59) and frontal lobes (R=0.52) and poor in all other structures (R=0.3), particularly 

in mesial structures such as the hippocampus (R= 0.0026), amygdala (R= 0.18), and insula 

(R=0.14) (Cha et al., 2013). Blood perfusion also is tightly coupled with brain functional 

connectivity features, specifically within regions with higher number of connections, so-called 

hubs regions, which confirm the physiological basis of functionally important brain regions 
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(Lahijanian et al., 2016; Liang et al., 2013; Palombit et al., 2022; D. Tomasi & Volkow, 2010) 

(Figure 1.17, Figure 1.18).  

1.6.3 Oxygen extraction fraction (OEF) 
The brain circulation carries oxygen to the capillary bed, where the oxygen is then diffused to brain 

tissue. The proportion of oxygen that is extracted from vasculature is called the oxygen extraction 

fraction (OEF). OEF is measured as the difference between arterial and venous oxygen content 

over arterial oxygen content. Under normal physiological conditions, the arterial oxygen content 

is relatively uniform throughout the brain and therefore the OEF is mainly proportional to venous 

oxygenation (Jiang & Lu, 2022). OEF measure depends on the interplay between several 

physiological and anatomical factors, such as the kinetics of O2 offloading from hemoglobin (Hb) 

as well as dynamics of Hb and the mean transit time, which is determined by the blood flow, and 

the capillary density (Skattebo et al., 2020; Wagner, 2008). Indeed, by measuring OEF levels 

across different brain cortical layers using photon imaging of resting-state microvascular PO2, 

Baoqiang Li et al. (B. Li et al., 2020) reported that the oxygenation heterogeneity and intracapillary 

resistance to oxygen delivery decrease with a depth of the cortical layers. On the other hand, they 

found that the oxygen demands were increasing with cortical layer depth, where layer IV was 

exhibiting a homogenous capillary network with the largest OEF values. It is also worth 

mentioning that the non-neuronal cell types, like glial and endothelial cells, are relatively constant 

across the cortical layers, and the largest density of neurons was reported between layers IV and 

VI, suggesting that neurons require a higher metabolic and especially oxygen demand (B. Li et al., 

2019). 

Whereas the 15O-PET is considered the gold standard to estimate the voxel-wise map of OEF (Fan 

et al., 2020) the distinctive magnetic property of blood oxyhemoglobin within the arteries and 

deoxyhemoglobin in venous provided a non-invasive and less expensive opportunity for both 

global and regional OEF measurements using fMRI techniques (Rodgers et al., n.d.). In general, 

there are two approaches for OEF estimation using MRI technique: voxel-wise and whole-brain 

OEF methods. The Jugular venous blood which primarily drains the cerebral hemispheres and 

accounts for more than 90% of intracranial circulation, is the most favourable sampling resource 

in whole-brain OEF estimation methods (M. J. Purves, 1972; Qin et al., 2011). Even though the 

whole-brain OEF estimation techniques do not provide OEF regional information across the brain, 

they are more stable when compared to OEF estimations at voxel level (Barhoum et al., 2015). 

The MRI techniques allow estimating of OEF at the voxel level either consist of T2-based methods, 

such as quantitative susceptibility mapping (QSM) (Kudo et al., 2016) and quantitative BOLD 

(qBOLD) (Yablonskiy et al., 2000), or calibrated fMRI techniques (Fan et al., 2020; Hoge, 2012; 

Jiang & Lu, 2022). The T2-based methods are assuming, under a fixed hematocrit level, a one-to-

one correspondence between the blood oxygenation and blood T2 relaxation signal. Therefore, 

those techniques are able to estimate venous oxygenation which is quite close to OEF values (Bolar 

et al., 2011; H. Lu & Ge, 2008; Thulborn et al., 1982). QSM methods are based on the 

paramagnetic property of deoxyhemoglobin that produces a susceptibility difference between 

blood and tissue, which has a linear relationship with blood oxygenation (Haacke et al., 2010; J. 

Zhang & Liu, 2015). Quantitative BOLD methods are based on the local field inhomogeneities, 

and transverse signal decay induced by the paramagnetic deoxyhemoglobin in the “extravascular” 

space (Gordji-Nejad et al., 2014; Zhu & Chen, 2017). On the other hand, in the second family of 

approaches to map OEF, the calibrated fMRI methods consist of dual acquisitions of BOLD and 

perfusion signals (using arterial spin labelling technique) and modelling the BOLD and ASL signal 
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changes in response to assumed iso-metabolic (i.e., does not change CMRO2) hypercapnic and 

hyperoxic gas challenge as a function of deoxyhemoglobin (Gauthier & Hoge, 2012; Germuska & 

Wise, 2019). However, all OEF estimation methods suffer from low SNR, and a moderate 

correlation (R~0.4) has been reported between voxel-wise OEF map estimation methods (Cho et 

al., 2021; Gauthier & Fan, 2019). Also Cho et al conducted a study to investigate OEF estimations 

using PET and MRI approaches, considering QSM-qBOLD and separate 15O-PET acquisition and 

they did not find a significant correlation between the two methods (Cho et al., 2021). Overall, 

calibrated fMRI, which has been already covered in more detail in the imaging techniques section, 

provided higher OEF values when compared to the other two techniques. This technique despite 

controversial findings exists regarding their iso-metabolic assumption as well as the need for 

employing gas challenges, by providing a non-invasively combination of important physiological 

maps including CBF, CVR, and cerebral metabolic rate of oxygen (CMRO2) in one acquisition 

session, is more favourable and less expensive.  

Moreover, inter-subject variability level is also very challenging for OEF estimation methods. 

Some studies have reported higher inter-subject variability among the healthy population using 

calibrated MRI OEF estimation methods (up to ~16%) (Liu P 2016) compared to 15O-PET (~13%, 

Ito H 2004). However, others reported contradictory results, suggesting lower inter-subject 

variability for MRI techniques, when compared to PET approaches (20.5% for PET and 7.6% for 

QSM-qBOLD technique (Ma et al., 2020). OEF inter-subject variability has also been shown to 

be positively associated with age, systolic blood pressure, and an individual’s end-tidal PCO2 

(R~50%). When taking into account these three factors in the analysis, inter-subject variability of 

OEF maps was reduced by R~73% (Hou et al., 2020). 

Overall, both PET and MRI-based methods provide similar levels of regional variability across 

brain regions for resting state OEF, around 10%. For the whole brain, reported baseline OEF values 

were respectively 30.8 ± 4.0% using PET and 32.9 ± 4.4% using MRI-based modalities, whereas 

34.4 ± 7.0% and 32.5 ± 2.4% for grey matter, and 32.2 ± 6.8 and 35.7 ± 3.0% for white matter 

were respectively reported. The largest OEF values were found in the occipital lobe, precuneus, 

putamen and temporopolar area, and the lowest within entorhinal, insular cortex, and anterior 

cingulate cortex (Ma et al., 2020; Thompson et al., 2016) (Figure 1.17, Figure 1.18).  

1.6.4 Cerebral metabolic rate of oxygen (CMRO2) 
The brain consumption of oxygen accounts for 20% of whole-body usage and still brain does not 

have significant oxygen storage. Instead, it substantially relies on blood circulation and receives 

almost 15% of cardiac output to fulfill its blood perfusion demands which are around 15-20% of 

the body's blood supply (Rolfe & Brown, 1997). To answer its high oxygen costs, the brain relies 

on tight coordination with a dense network of blood circulation, extracting the oxygen from 

capillaries to the brain tissue and mitochondrion through diffusion and precisely regulating the 

oxygen gradient (Leithner & Royl, 2014). The cerebral metabolic rate of oxygen consumption 

(CMRO2) is defined as the amount of oxygen consumed per unit mass tissue and per unit time and 

is proportional to the product of OEF and CBF (CMRO2 ≈ OEF × CBF) The physiologic level of 

CMRO2 is around 30 nmol/(mL/second), while the oxygen content of the brain tissue is around 30 

nmol/mL. Therefore, if the blood supply stops, it would sustain the physiological CMRO2 level 

only for one second (Aanerud et al., 2012; Leithner & Royl, 2014). The minimum PO2 gradient 

from the capillary to the tissue for maintaining the brain physiologic CMRO2 level is around 10 to 

20 mm Hg (Aanerud et al., 2012; Devor et al., 2011; Ito et al., 2005). While CBF level has been 

suggested as a key factor to balance the physiological CMRO2 level, several studies reported high 
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correlations between CBF and CMRO2 maps (Henriksen et al., 2018; Liang et al., 2013; Thompson 

et al., 2016), however, both baseline and task brain metabolism experiments confirmed that the 

CBF variation is not tightly accompanied by CMRO2 (Gjedde et al., 2005; Griffeth & Buxton, 

2011; Leontiev & Buxton, 2007). Even at rest, CBF values are larger than the level that would be 

required to support physiological CMRO2. Indeed, oxidative metabolism can increase within a 

limit (~15%) without a concomitant CBF increase (Leithner & Royl, 2014). In some studies, a 

nonlinear relationship model has been proposed between CBF and CMRO2 dynamics (Hyder et 

al., 1998; A.-L. Lin et al., 2012). There are also other parameters regulating CMRO2 mechanisms, 

including changes in ADP availability, mitochondrial PO2, dynamics of the respiratory cascade for 

oxygen, inhibitory effects of ATP and NO on cytochrome c oxidase and changes in intracellular 

Ca2+ concentrations (Leithner & Royl, 2014).  

Broadly, the main neuroimaging techniques consider for estimating the CMRO2 can be grouped 

into PET and MRI-based methodologies. The PET technique that is considered as a gold standard 

to measure the CMRO2, requires the injection of a 15O-H2O tracer (Ohta et al., 1992), which can 

be combined with a separate PET scan with a 15O inhalation tracer to include the CBF and OEF 

estimation as well (Kudomi et al., 2013). However, the issue of applying ionizing radiation, 

particularly for healthy control groups, as well as the cost and complexity of PET techniques, make 

the non-invasive MRI techniques more desirable alternatives. The MRI methods to estimate the 

CMRO2, are based on quantitative modeling of either MRI magnitude or phase data. The 

magnitude modeling methods include T2-based, qBOLD, and calibrated fMRI methods, while the 

phase modeling consist of QSM (Fan et al., 2020; Gauthier & Hoge, 2013; Jiang & Lu, 2022).  

The inter-subject variability was reported around 12.8% ± 1.1% for 15O-PET (Coles et al., 2006). 

Similar inter-subject variability values were found when estimating CMRO2 using calibrated fMRI 

(12.3 ± 10%, (Merola et al., 2018). The variability of mean cortical CMRO2 using different MRI 

techniques is actually relatively high (Merola et al., 2018) and ranges from 127±7 μmol/100 g/min 

(T2-based, (Jain et al., 2010)) to 184 ± 45 μmol/100 g/min (calibrated fMRI, (Betts et al., 2013; 

Wise et al., 2013). The mean cortical CMRO2 using PET studies is around 3.3 ± 0.5 ml/100 g/min 

(Fan et al., 2020; Ibaraki et al., 2004).  

Using PET methods, the largest CMRO2 values were reported within the posterior cingulate, the 

occipital lobe, the putamen, and the fusiform gyrus, whereas the smallest CMRO2 values were 

reported within the hypothalamus and the Entorhinal Cortex (Ibaraki et al., 2019; Thompson et al., 

2016). The regional CMRO2 values estimated using MRI techniques provided similar ranges of 

variability with slightly larger values within the occipital lobe (Henriksen et al., 2021; Ma, 2020) 

(Figure 1.17, Figure 1.18).  

The brain oxygen metabolism measured by the CMRO2 metric has been shown to have a 

meaningful correlation with other physiological and functional features of the brain. For example, 

using PET quantitative techniques to measure absolute baseline values of CMRGlc, CBF and 

CMRO2, Hyder et al. (Thompson et al., 2016) reported overall whole-brain global coupling 

between these three measures, while the largest spatial correlation was found between CMRO2 

and CMRGlc (R = 0.82) and slightly lower between CMRO2 and CBF (R~0.80). However, another 

study (Liang et al., 2013) assessing CMRO2 and CBF using the calibrated fMRI technique, and 

CMRGlc using FDG-PET, reported a higher spatial correlation between CBF with CMRGlc (R= 

0.54, P < 0.0001) and lower correlation between CMRO2 and CBF (R= 0.31, P = 0.005). The 

CMRO2 regional variability has also been shown to have meaningful coupling with brain regional 
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activity, especially within brain hubs regions that are predominantly located in the posterior 

cingulate cortex/precuneus, medial prefrontal cortex, and lateral temporal and parietal cortices 

(Liang et al., 2013). These regions are mostly part of default mode networks that is responsible for 

the higher cognitive activity and brain integration and exhibits a higher level of both oxygen and 

glucose metabolism and CBF at rest (Raichle et al., 2001). However, as suggested before, the CBF 

level is larger than the amount that is required to maintain a physiological CMRO2 level at rest but 

even more during tasks. The fMRI studies have demonstrated degrees of uncoupling between the 

CBF and CMRO2, showed a larger CBF increase when compared to CMRO2 (P. T. Fox & Raichle, 

1986; Frahm et al., 1996). The voxel-wise connectivity analysis of CMRO2 data also found spatial 

patterns consistent with four resting-state subnetworks: frontoparietal and default mode that are 

part of association networks and auditory and occipital-visual, which belong to primary networks 

(Hubbard et al., 2021).  

Glucose oxidation is the main pathway bringing energy to the brain. Most glucose molecules will 

be used to produce ATP to maintain the equilibrium state of ion concentration, especially in 

support of membrane depolarization through ATPase channel activity (Thompson et al., 2016). 

The amount of oxygen consumed for complete oxidation of different glucose derivations varies 

with their number of carbon atoms. Hence full oxidation of one molecule of glucose (a 6-carbon 

molecule) requires six molecules of oxygen during the tricarboxylic acid (TCA) cycle, which can 

produce up to 32-38 ATP (as well as 6 molecules of carbon dioxide and water). This is almost 16-

17 times higher than the amount of ATP generated through the glycolysis or non-oxidative 

pathway (Hyder et al., 2013). However, the end products of glycolysis, i.e., lactate and pyruvate, 

provided mainly by the astrocytes, can also enter the TCA cycle and be fully oxidized. The 

oxidative and non-oxidative pathways of glucose usually are characterized by the so-called oxygen 

to glucose index (OGI). OGI is defined as the ratio of arteriovenous deficits in oxygen vs. glucose 

and is measured by dividing the absolute CMRO2 by CMRGlc (Thompson et al., 2016). Non-

oxidative or aerobic glycolysis pathways are characterized by an OGI value lower than 6, reflecting 

the production of lactate or other metabolites like ketone bodies that remain in the tissue without 

yielding carbon dioxide and water through metabolism. One can also consider other 

complementary measures such as the oxygen-carbohydrate index and the oxygen-carbohydrate 

ketone index, which, as opposed to OGI that only consider glucose, are taking into account the 

oxidation of lactate and lactate plus ketones. Lactate and lactate plus ketones can be taken up from 

the blood supply and then oxidized, particularly during physical exercise and starvation 

(Benveniste et al., 2018). The absolute OGI mean ± SD values (excluding the cerebellum) using 

PET acquisition were reported as 5.17 ± 0.95 for the whole brain, 5.26 ± 0.99 for the gray matter, 

and 4.83 ± 0.60 for the white matter. PET absolute measurements already showed that there is a 

remarkably spatial agreement not only between regional OGI and OEF variation but also within 

nearly 90% of all brain voxels (with PET spatial resolution of 2.5 mm3) (Thompson et al., 2016). 

This study also showed that both OGI and OEF values were significantly higher (P<.001) within 

grey matter than in white matter, and that both OEF and OGI have are exhibiting small regional 

differences (<10%) throughout the gray matter. Therefore, Hyder et al. (Thompson et al., 2016) 

suggested that no particular brain region was exhibiting a higher level of aerobic glycolysis and 

subsequently low oxidative phosphorylation rates. These results were in contradiction with the one 

reported by Vaishnavi et al. (Vaishnavi et al., 2010), another PET study proposing a relative and 

dimensionless glycolytic measure called glycolytic index (GI), estimated by taking the scaled 

residuals above and below the voxel-wise linear regressions of normalized CMRGlc on normalized 

CMRO2. Vaishnavi et al. (Vaishnavi et al., 2010) suggested non-uniform GI distribution across 
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the brain and proposed a predominant aerobic glycolysis metabolic profile for medial and lateral 

parietal and prefrontal cortices areas. More recently Blazey et al. (Blazey et al., 2018) from the 

same lab as Vaishnavi et al. (2010), considered the PET data set allowing absolute quantification 

provided by Hyder et al. (Thompson et al., 2016). By carefully taking into account inter-subjects’ 

variability, they indeed reported regional differences in aerobic glycolysis within the gray matter, 

therefore showing consistent results with Vaishnavi et al. results, using the data set provided by 

Hyder et al. 

 

Figure 1.17 Healthy subject dynamic maps of CBF, CMRO2, and OEF from [15O]-oxygen PET in the same healthy 

subject acquired a 3d scanner without scatter correction (NO) and with hybrid dual-energy (HDE) scatter correction. 

Figure adapted from (Fan et al., 2020). 
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Figure 1.18 Group average maps of resting-state parameters obtained from dual gas (hyperoxia and hypercapnia) 

calibrated bold. Figure adapted from (Gauthier & Hoge, 2012). 

In summary, even if glucose is the main energy substrate, which through an oxidative pathway and 

metabolizing oxygen, provides major brain ATP demands, it is also important to consider other 

brain physiological biomarkers, such as CBF, OEF, CMRO2 and CVR, providing complementary 

information about brain vasculature system and metabolic regional heterogeneity. In terms of 

acquisition options, even if PET and especially PET absolute measurements are still considered as 

the gold standard for these metrics, acquisition cost, complexity of implementation and 

complication of employing short-life radioactive tracer, non-invasive MRI techniques provide 

more desirable alternatives with comparable precision (Fan et al., 2020; Gauthier & Fan, 2019; 

Wise et al., 2013). The brain metabolic demands are non-homogeneous and there is regional 

variability not only in terms of the metabolic level but also metabolic pathway, and both rest-state 

and task fMRI studies showed such variability has tight coupling with brain functional activity. 

Over recent decades such coupling has been firmly confirmed by literature and more recent studies 

now are trying to model the relationship between brain metabolic and functioning profile, in which 

considering all these measures together, would provide a more complete figure for analysis the 

brain complicated organization. And finally, in this thesis, such a relationship, using key metabolic 

physiological markers, including CMRGlc, CMRO2, CBF, OEF and CVR will be carefully 

investigated.  

1.7 Summary  

In this chapter, we introduced the main principles of brain neuronal and metabolic background 

forming and supporting brain functional activity. We started by explaining the physiological 

details of cell types involved in neuronal signaling. We reviewed the main brain metabolic 

pathways, including oxidative and non-oxidative pathways of glucose metabolism, as well as the 

metabolic pathways using other metabolites such as Cr, FAs, and Ketone bodies. We then 

summarized the brain vascular system, and neurovascular coupling processes. We also reviewed 

the cell types, and chemicals contributing to the coupling between brain signaling, blood 

circulation and metabolism at the cellular and molecular level, underpinning what are the 

mechanisms one can investigate at the meso and macro spatial scales using neuroimaging 

techniques. Then, we introduced the underlying physics principles considered for detecting neuro-

metabolic features using major neuroimaging techniques including PET, resting state fMRI, ASL, 
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and quantitative fMRI. We further explained the semi-quantitative SUV method considered to 

estimate CMRGlc, GCM model to estimate CMRO2, CBF, OEF and CVR maps. These measures 

of metabolic/hemodynamic properties of brain activity using FDG-PET and calibrated fMRI will 

be considered in our original contributions, in our three studies described in Chapter 3, 4 and 5. 

Finally, we proposed a literature review of the spatial variation and physiological details of four 

major brain physio-metabolic features that we considered in this thesis, namely baseline measures 

of CMRGlc, CMRO2, CBF, and OEF. 
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Chapter 2: Brain Functional Connectivity 

In this chapter, we will discuss the main methods dedicated to analyzing brain functions at different 

spatial scales. We will first introduce brain functional organization at the cellular, at the 

voxel/region and at the network/system scales (Figure 2.1). Then we will discuss the concept of 

brain network organization and resting state networks. Finally, we will review the main methods 

dedicated to assessing functional connectivity patterns, assessing resting-state brain functional 

networks and topological organization. 

 

Figure 2.1 Microscale to the Macroscale Level of Human Brain Anatomy and Function. Figure adapted from (Traag 

et al., 2019). 

2.1 Brain functional organization at multi-resolution 

Brain structural and functional organization can be characterized at different spatial scales ranging 

from individual neurons and cell types at molecular microscales, circuits of neuronal cortical 

layers, columns and cortical regions at intermediate mesoscale and brain networks and systems at 

the larger macroscale (Figure 2.2) (Dumoulin et al., 2018; Rah et al., 2015). Moreover, brain 

organization at every level does not work independently, instead, there is a bidirectional interaction 

between brain scales. For instance, molecular processes involving synaptic and non-synaptic 

connections at the microscale affect the meso and macro scale connections and activities, while 

simultaneously, dynamics of brain networks constraint molecular components of the neurons and 

synaptic formation (Bassett & Sporns, 2017; Haken, 1983). 
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Figure 2.2 Brain organization on multiple spatial and temporal scales. adapted from (Bassett & Sporns, 2017) 

2.1.1 Brain function at the molecular resolution  
At the molecular resolution, also called microscale resolution, the brain can be described as a 

mosaic structure composed of neurons and their dendritic and axonal projections, as well as other 

cell types using specific genetic, cellular, molecular, and developmental processes.  

The first attempts to understand this microscopic organization of interconnected neuronal 

compartments were done by Hubel and Wiesel measurements at the single neuron level using non-

human invasive electrophysiology (Hubel & Wiesel, 2005), in parallel with seminal works by 

Ramon y Cajal, Golgi, and others (1853-1934), proposing very detailed, high-quality drawings of 

neurons and their microscopic circuit. The early experiments by Nobel-winner neuroscientists like 

Camillo Golgi proposed a neuronal unit that was including the neurons’ soma, axons and dendrites 

with continuous synaptic connections between cell bodies of the nervous system. The compartment 

model introduced by Cajal contradicted such a proposal and for the first time claimed that the 

neurons are discrete cells, that are connected with each other by synaptic junctions (Figure 2.3), 

the model that is now proven to be true (Wernicke, 1970; y Cajal, 1995). 

 

Figure 2.3. The pioneering work of Ramón y Cajal. (a) Santiago Ramón y Cajal first microscopic slide preparations 

of nervous tissue, a sketch of typical neurons (retinal cone), dendrites, soma and synaptic connection between the 

cells bodies of the nervous system (Garcia-Lopez et al., 2010; y Cajal, 1995). 
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From these first microscopic models of the nervous system, it was postulated that brain 

communication organization and anatomical structure of synaptic connections are driven by two 

important features: (i) minimization of axonal wiring cost, maintaining cellular material and space 

and hence metabolic charge, and (ii) minimization of information transmission between neurons, 

optimizing temporal aspects of neuronal communication (de Robertis et al., 1962; y Cajal, 1995), 

a concept that is now commonly accepted among scientific communities (Niven & Laughlin, 2008) 

Several microanatomy studies around the beginning of 20th century revealed that the common cell 

types in the human brain are the neurons, the glial cells, monocytes, macrophages and 

microvascular endothelial cells. Among them, the neurons are the main sources of bioelectrical 

signalling activity via voltage-gated ion channels and synaptic potentials via neurotransmitter-

activated ion channels. Among brain cell types, the most predominant ones are the neurons and 

glia cells, which communicate with each other mainly through synaptic connections. Synaptic cleft 

where neurotransmitter exchange is taking place consists, ensuring the connection between white 

matter fibre tracts, therefore defining the underlying structural framework of brain networks (Rah 

et al., 2015). Different types of neuronal cells have been mentioned in the previous chapter (1.1.1 

Neurons). In this section, we further characterize their contribution to bioelectrical potentials. 

Pyramidal cells consist of excitatory lengthy cells with distinct dendritic, soma, and axonal zones, 

which because of their geometrical organization (dendrites being parallel to each other and 

perpendicular to the cortical surface) are the main contributors to bioelectrical signalling one can 

record at distance using scalp ElectroEncephaloGraphy (EEG). On the other hand, interneurons 

are often organized along a spherical shape, with a close field configuration, therefore contributing 

less to the EEG signal. Figure 2.4 shows the main cell types in the brain and the degree to which 

each contributes to the field potential and therefore EEG signals (Jessen et al., 2017). 

 

Figure 2.4. Predominant cell types in the brain and their contribution to field potentials. Adapted from (Mathiesen et 

al., 2014) 

In recent years, using advanced technologies such as microarray and/or Ribonucleic acid (RNA)-

sequencing techniques from post-mortem brain tissue allowed measuring expression of genes in 

thousands of brain regions, allowing the introduction of several brain transcriptomic schemes of 

the brain. The gene ontology (GO) and pathway analysis of genetic expression data from multiple 

brain regions, provides a great opportunity in exploring the detailed biological basis underpinning 

of the brain microstructure. The pathway analysis of the genes models the interactions of gene-

gene products, while the GO describes three main classes of biological information: (i) the 

molecular function, which reveals the molecular-level activities performed by an individual or 
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multiple gene products (i.e. a protein or RNA), (ii) the cellular component, providing information 

on the anatomy and the locations relative to cellular structures where a gene product performs a 

function, and (iii) the biological process, that is accomplished by multiple molecular activities 

(Tzourio-Mazoyer et al., 2002). The most significant human transcriptome datasets currently 

available are presented in Figure 2.5. Among them, the Allen Human Brain Atlas (AHBA) is the 

most popular one, providing a high spatial resolution dataset covering all cortical and subcortical 

regions (Colantuoni et al., 2011; Diez & Sepulcre, 2021; Habib et al., 2017; M. J. Hawrylycz et 

al., 2012; Kang et al., 2011; Miller et al., 2014). This atlas consists of microarray expression of 

20,737 genes, measured by 58,692 probes from 3702 spatially distinct tissue samples obtained 

from six healthy post-mortem brains. 

In addition, more recently, the single-cell RNA sequencing methodology allows for assessing 

genome-wide expression profiles of brain cells, which represent exquisite information of brain-

specific cellular topological data. In studies combining cell type-specific gene markers and 

genomic atlases, the mixture of seven major neural cell types, including pyramidal neurons, 

interneurons, astrocytes, microglia, oligodendrocytes, ependymal cells, endothelial cells, and 

mural cells, have been successfully differentiated (Figure 2.4). Using such unique data, it becomes 

possible to extract the cell type profile for several human genes from available brain genomic 

atlases (Darmanis et al., 2015; Diez & Sepulcre, 2021; Habib et al., 2017; Lake et al., 2018; M. Li 

et al., 2018; Y. Zhang et al., 2016). 
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Figure 2.5. The details of key publicly available single-cell and transcriptome databases. Figure adapted from (Diez 

& Sepulcre, 2021). 

2.1.2 Voxel and regional resolutions  
The intermediate and mesoscale analysis of brain structure refers to functional subdivisions of the 

nervous system, in so-called “local processing units”. The mesoscale is the intermediate scale 

between the molecular/microscale describing ion channels, individual neurons and cells variations, 

and the larger macroscale which aims at describing maps of the brain systems and networks, that 

capturing whole brain dynamics associated with scalp recording of bioelectrical signals, measured 

using EEG or MagnetoEncephaloGraphy (MEG), as well as cerebral blood flow and metabolism, 

measured by several neuroimaging techniques, including mainly fMRI and PET.  

Typically, analysis of brain anatomical and functional at the mesoscale consists of tracing axonal 

projections and short-distance multi-synaptic connections using optical imaging and histological 

tract-tracing approaches (Bota et al., 2015; Oh et al., 2014; Shih et al., 2015; Stephan et al., 2001). 

Moreover, recent advances in MR diffusion imaging and tractography methodology (Thomas et 

al., 2014) allow extracting the trajectory and strength of long-distance white matter projections 

across the circuit architecture of the whole brain, therefore allowing the identification of brain sub-

network units (Assaf et al., 2013; Donahue et al., 2016; Khambhati et al., 2017). Such techniques 
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that derived support from neuroanatomical research in brain atlases with named brain regions 

(Brodmann & Garey, 2006; Geyer et al., 2011), and are combined with histological methods (tissue 

processing, dissection) as well as more recently non-invasive imaging of neuroanatomical 

structure, provide informative representations of both local activity, long-distance connectome of 

neural circuit and neuroanatomical structure as well as introducing brain-wide high-resolution 

structural connectome (Figure 2.6). 

 

Figure 2.6. An example atlas of the structural connectome. (A) The underlying structural characteristics of axonal 

fibre bundles in a colour-coded surface (red–blue–green indicates the orientation at the x–y–z axis, respectively) were 

revealed by diffusion magnetic resonance image. (B) The atlas was then used to build the connectome graph showing 

the connections between brain regions using an anatomical parcellation. Figure adapted from (Wu et al., 2022). 

It is worth mentioning that the notion of mesoscopic scale is quite variable in the literature. In 

practice, the mesoscale level is a complementary level that describes neuronal circuit architecture 

typically on the spatial scale of a few millimetres to centimetres (Bohland et al., 2009), therefore 

as an intermediate resolution between the “microscale” and the “macroscale” levels (Hans 

Liljenström, 2012). The main focus is therefore on scales that are larger than single or a few 

neuronal units, and smaller than the entire brain networks, therefore mainly referring to layers or 

columns within brain cortical areas, characterized by their summed activity of a large number of 

interconnected neuronal elements exhibiting synchronous oscillatory neuronal activity resulting in 

spatial homogeneity. Such spatial mesoscale arrangements result in multiple closely interacting 

regions, sharing local characteristics and/or function or connectivity fingerprints, resulting in a so-

called parcellation of the whole brain (Eickhoff et al., 2018). In general, the concept of brain 

parcellation refers to the definition of a “detailed to simplified” partition of the brain into 

homogeneous regions. The definition of these parcels, reporting closely interacting areas or 

networks that help understand the brain organization and function, depends on research objectives 

(Craddock et al., 2013). In this sense, the very first parcellation of the brain was the one proposed 

by Brodman, characterizing brain regions based on their cytoarchitecture properties (Brodmann, 

1909,(Zilles, 2018)) where later an English translation of his monography was introduced by 

Laurence Garey in 1994 (Garey, 1999). Several parcellation atlases have then been proposed based 

on either anatomical and/or functional neuroimaging data (Lawrence et al., 2021). For instance, 

Aubert-Broche et al. (Aubert-Broche et al., 2009) demonstrated that hierarchical clustering of brain 

regions based on their T1/T2/PD MR properties was providing a partition of brain regions very 

similar to the seminal work of Brodmann. Such parcels/networks integrate the information from 

hundreds of thousands of voxels and compress them into manageable sets of partitions and distinct 

entities, usually of a few hundred regions (Eickhoff, Yeo, and Genon 2018). The defined brain 

partitions need to fulfill three main criteria: (i) parcels should be either functionally and/or 
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anatomically homogeneous, (ii) meanwhile reflecting the functional and/or anatomical 

heterogeneity across brains, (iii) as well as accounting for spatial relationships between defined 

parcels (Fornito et al., 2013). In Figure 2.7 we are presenting a few examples of 

parcellations/atlases of the whole brain or of the cortex, that have been derived from either 

anatomical or functional neuroimaging data. The illustrated atlases that have been derived from 

anatomical imaging, include the automated anatomical labelling atlas AAL (Tzourio-Mazoyer et 

al., 2002), featuring 82 parcels and covering the whole brain, the Eickhoff-Zilles atlas EZ, (Ball et 

al., 2007), featuring 116 parcels covering the whole brain, the Harvard-Oxford atlas HO (Nunez 

& Williamson, 1996) featuring 111 parcels covering the cortical surface, and Talaraich and 

Tournoux (TT,(Talairach, 1988) atlas with whole brain coverage and 97 parcels(Figure 2.7.A). 

The illustrated atlases that have been derived from functional imaging, mainly resting state fMRI, 

(first row) include the Yeo atlas (Thomas Yeo et al., 2011) featuring 7 and 17 networks with 

cortical coverage (Figure 2.7.B), and Multiresolution Intrinsic Segmentation Template atlas MIST 

(Urchs et al., 2019) atlases. Figure 2.7.B second row shows the 400-area cerebral cortex 

parcellation using muti resolutional Shaefer atlas (Schaefer et al., 2018) where the color of each 

parcel was assigned based on its spatial overlap with the original 7-network and 17-network 

parcellations. Schaefer atlas is functional atlas includes cortical parcels ranging from 100 to 1000 

parcels that is derived from resting state fMRI data from 1489 subjects. Figure 2.7.C shows the 

MIST atlas (Urchs et al., 2019), offering whole brain coverage, within hierarchical/nested structure 

composed of 7, 12, 20, 36, 64, 122, 197, 325 and 444 parcels respectively. 

 

Figure 2.7 Some examples of brain parcellations. There are plenty of schemes to divide the brain into discrete areas 

based on anatomical and functional criteria. This figure includes six exemplar brain parcellation atlas. A) Anatomical 

parcellations: AAL (automated anatomical labeling) and Harvard Oxford (HO) are derived from anatomical 

landmarks (sulci and gyral) while EZ (Eickhoff - Zilles) and TT (Talariach Daemon) atlases are derived from post-
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mortem cyto- and myelo-architectonic segmentations; B) Functional parcellations: the first row shows Yeo-7 and 

Yeo-17 network parcellations, while the second row shows Schaefer 400-area parcellations where each parcel is 

assigned a network color based on spatial overlap with networks from Yeo-7 or Yeo-17. C) Functional parcellations: 

Multiresolution Intrinsic Segmentation Template (MIST) atlas providing a hierarchical decomposition of functional 

brain networks across nine resolutions (7 to 444 functional parcels). Reproduced from (Craddock et al., 2013; 

Schaefer et al., 2018; Thomas Yeo et al., 2011; Urchs et al., 2019). 

2.1.3 Network resolution 
At the macroscale level, we are considering brain regions and the large-scale communication 

organizations between them. A current hypothesis of brain activity, supported by theoretical and 

empirical studies, is that brain functional connectivity is driven and shaped by structural 

connectivity between brain regions, although these regions may be functionally specialized (Messé 

et al., 2014; Suárez et al., 2020). Hence, there is a fundamental coupling between brain structure 

and function (Messé et al., 2014; Suárez et al., 2020). Here we at first introduce the anatomical 

structure of brain organization, and then in a specific section below the large-scale brain functional 

networks. 

The brain as a whole entity can be anatomically described/divided in different ways. The human 

brain is usually described as the association of three major units: (i) the forebrain (or 

prosencephalon), (ii) the midbrain (mesencephalon), and (iii) the hindbrain (rhombencephalon) 

(Nieuwenhuys, 1998). 

The hindbrain includes two main subregions the upper region called metencephalon and lower one 

called myelencephalon, in which most of the cranial nerves as well as the fourth cerebral ventricle 

are placed in this brain region. In general, the hindbrain regions are involved in involuntary and 

unconscious functions. The lower region consists of the medulla oblongata which assists in the 

regulation of autonomic functions, such as breathing and heart rate, whereas the upper part, the 

metencephalon contains the pons and cerebellum regions. The pons region is mainly responsible 

for controlling autonomic functions like sleep and arousal states. The cerebellum is involved in 

motor control and relates the information between muscles and regions of the forebrain controlling 

the body motion.  

The next division is the midbrain, which together with the hindbrain composes the brainstem. The 

midbrain also contains the channels connecting the fourth and third ventricles, and also some 

cranial nerves like the ones that are responsible for eye movement. In general, the midbrain is 

involved in an involuntary role such as regulating movement, and processing auditory and visual 

information (Regina Bailey, n.d.; White, 1989).  

The forebrain is the third brain division, and it is also the largest one. It contains almost two-thirds 

of the brain mass. In contrast to the brainstem, the forebrain is responsible for controlling both 

voluntary and involuntary functions. The forebrain includes two subdivisions: the telencephalon 

and the diencephalon. 

 The diencephalon includes the thalamus, the hypothalamus, and the pineal gland. In general, the 

diencephalon division contributes to regulate some autonomic functions like respiration, blood 

pressure, and body temperature. It also secretes some hormones that affect the pituitary gland, 

through which it can adjust some biological processes such as metabolism, growth, reproductive 

organs development, as well as emotional responses that affect the autonomic nervous and skeletal 

muscular systems. The thalamus and the hypothalamus are part of limbic system, the system that 

governs and adjusts many of our survival behaviour like fear and anger and the 
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emotions/motivations that control them. The thalamus is also involved in sensory perception and 

movement, as well as in controlling sleep cycles. The last subregion, the pineal gland, is a 

pinecone-shaped gland of the endocrine system, that by secreting melatonin is able to regulate 

sleep-wake cycles and influence sexual development.  

The last component of the forebrain is the telencephalon, or cerebrum, which forms the main and 

largest portion of the brain. By a deep groove called the longitudinal fissure, the telencephalon is 

divided into two major parts: the right and left cerebral hemispheres. These two parts are connected 

to each other, at the bottom through the corpus callosum. The surface of the cerebrum has a 

grayish-brown color and is called gray matter. It contains 14 and 16 billion neurons and glial cells 

that together form the cerebral cortex. Beneath the cerebral cortex, connecting fibers between 

neurons form a white-coloured area, called the white matter. The cerebral cortex has folded 

structure with small groove sulci, large groove fissures and bulges between the grooves called gyri. 

In each hemisphere, the cerebrum is divided into four main lobes: the frontal, parietal, occipital, 

and temporal lobes. Each lobe is then further segregated into areas associated with particular 

functions (White, 1989).  

The frontal lobe is the largest lobe among the four lobes. As suggested by its name, it is located in 

in the front of the brain. The frontal lobe is separated from adjacent lobes parietal and temporal 

lobes with two boundaries: the central sulcus that separates the frontal and parietal and the lateral 

sulcus, also called the Sylvian fissure, which separates the frontal and temporal lobes. The frontal 

lobe function can be broadly divided into two categories: mental or executive action and physical 

action, in which five specific cortical sub-areas of frontal lobe are responsible for accomplishing 

them. These five regions starting from central sulcus toward the front of the brain include the 

primary motor cortex, the motor association cortex, the frontal eye field, the prefrontal cortex and 

Broca’s areas, which are respectively responsible for: voluntarily muscle movement; planning and 

coordination of movement; planning, control, and execution of eye movements; executive 

function, behavior, and personality; stimulating the muscle movement and speech production 

(Salazar, 2017).  

The second lobe is parietal lobe, which is mainly involved in sensory functions, rather than motor 

functions. It features three boundaries separating it from its adjacent lobes: the central sulcus 

forming the boundary with the frontal lobe, the lateral sulcus forming the boundary with the 

temporal lobe and the parieto-occipital sulcus forming the boundary with the occipital lobe. The 

parietal lobe includes three subregions to fulfill the somatosensory functions. Starting from the 

central sulcus towards the occipital lobe, the first one is called primary somatosensory cortex, 

which is responsible for awareness of somatic sensation, as well as touch, pain, and sensation. The 

next subregion is somatosensory association cortex, which is involved in processing and analyzing 

the somatic sensation, memory and recognition of sensation, and predictive/spatial awareness. The 

last one, which is called the posterior association area, also contributes to predictive and spatial 

awareness. It is also responsible for processing the somatosensory information received from 

parietal lobe, the visual information from the occipital lobe, and the auditory information from the 

temporal lobe, therefore allowing multimodal integration (Moore et al., 2019; Patestas & Gartner, 

2016). 

The third lobe is the temporal lobe: it is mainly accountable for processing the auditory-related 

stimuli. In addition to its main lateral sulcus (Sylvian fissure) boundary, it is also segregated from 

occipital lobe using an imaginary boundary called the pre-occipital notch. The temporal lobe 
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contains five major sub-regions, in which starting from lateral sulcus boundary, including primary 

auditory cortex, auditory association cortex, primary olfactory cortex, and the Wernicke’s areas, 

which are placed adjacent to parietal lobe boundary on the dominant hemisphere. Broadly speaking 

the functionality of these four sub-regions can be denoted respectively as awareness of auditory 

stimuli; processing, analyzing, and distinguishing the memory and especially from sounds and 

visions; awareness and processing the smells stimuli; and understanding of the language (Moore 

et al., 2019; Patestas & Gartner, 2016).  

The fourth lobe is the occipital lobe, which is located in the posterior part of the brain. It is 

separated from the parietal lobe with the parieto-occipital sulcus, and from the temporal lobe with 

the pre-occipital notch. The occipital lobe includes two main cortical areas: the primary visual 

cortex, which is responsible for conscious awareness of visual stimuli coming from the eyes, and 

second subregions associated visual cortex that process and analyzes the visual information, 

understanding, recognizing, and memorizing such information (Moore et al., 2019; Patestas & 

Gartner, 2016). 

Primary sensations are being handled specifically in every lobe: touch (parietal lobe), vision 

(occipital lobe), auditory (temporal lobe), and smell (temporal lobe). There is also an area located 

in the depth of the lateral sulcus, called the insular cortex, where taste sensation is processed (Adair 

& Meador, 2003; Larner, 2018). The insular cortex also contributes to process of visceral 

sensations, autonomic control, and vestibular control/equilibrium. 

The other separate regions, which are not attributed to the previous mentioned lobes, are defined 

as limbic areas, belonging to the limbic system that has been briefly mentioned above. The main 

components of the limbic system are the cingulate gyrus, which surrounds the corpus callosum, 

and the para-hippocampal gyrus. In addition to the forenamed thalamus and hypothalamus, it also 

includes two other sub-regions called the amygdala, and the hippocampal formation. Overall, these 

limbic areas are playing a key role in learning, memory, emotions, behavior, and smell function of 

the brain (Catani & Thiebaut de Schotten, 2012). 

Even though each of the mentioned lobes and areas is involved in specific roles and functions, it 

is now accepted that they do not function alone, independently of other structures(Javed et al., 

2022). Indeed, when accomplishing a specific task or responding to a stimulus, brain regions are 

interacting through large-scale networks, communicating through complex relationships and 

signalling routes (or messaging pathways). Neuronal connections through synapses are ranging 

from local connections (region of 5 - 8mm in diameter) to more distant connections, from one 

gyrus to the other, from one lobe to the other, from one hemisphere to the other, from one lobe of 

deep brain structures, or from deep brain structures to cortical regions. Indeed, the brain is 

organized as networks of specialized components spanning different spatial resolutions (e.g., 

cortical area, sub-area, neuronal population or neuron) that are involved in dynamic connections, 

which mediate continuous processing, transporting, and sharing of relevant information. This 

means that even though the brain works in functionally segregated regions at multiple levels of 

organization, its functional specialization and integration characteristics are not exclusive, but 

rather complementary.  

2.2 Brain functional connectivity analysis 

Neuroimaging techniques, and among them specifically fMRI data using the whole brain BOLD 

signal time series, measures the temporal dependency of slow functional hemodynamic activity 
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elicited by neuronal activity, within different brain regions (M. P. Van Den Heuvel et al., 2010; 

Lurito et al., 2000). Even if it measures brain activity indirectly through hemodynamic processes, 

resting state fMRI allows monitoring the continuous flow of the information processing and 

information transfer within and between different brain regions, which are linked functionally and 

form complex integrative brain networks. The statistical analysis of such processes of information 

synchronization within brain networks is denoted by functional connectivity analysis. Whereas the 

functional connectivity reveals the statistical relationships (e.g., covariance or cross-correlation) 

between local hemodynamic processes (BOLD signal), actual physical synaptic connections can 

be estimated non-invasively at the macroscale level with diffusion MRI (or invasively at the 

microscale/mesoscale levels with neuronal tracers), thus introducing the notion of structural 

connectivity, derived from anatomical features (Basser & Roth, 2000; Deco et al., 2009; Turner et 

al., 1990). Functional connectivity assessed using fMRI is dependent but does not directly 

correspond to structural connectivity and physical synaptic connections. However, it has been 

shown that there is a significant statistical relationship between the structural and functional 

connectivity patterns (Adachi et al., 2012; Hutchison et al., 2013).  

Specifically, the analysis of functional connectivity of BOLD signals acquires during rest, in which 

the participants are instructed to stay still and without particular thinking, keeping their eyes closed 

or open, is called resting state fMRI (RS-fMRI). RS-fMRI can reveal the level of the spontaneous 

and low-frequency oscillations (∼ 0.01–0.1 Hz) functional co-activation and communication 

among the brain regions that are anatomically segregated, resulting in the identification of the so-

called resting state fMRI (RS-fMRI) brain networks (Biswal et al., 1995; Cordes et al., 2001), that 

have been found to be highly reliable and reproducible from subject to subject (M. D. Fox & 

Raichle, 2007). 

The underlying neuronal basis of RS-fMRI has been confirmed by multiple studies, showing high 

functional and anatomical overlap between the resting-state patterns and anatomical connections 

(Cordes et al., 2000, 2001). However, the link between indirect slow hemodynamic fluctuations 

measured using fMRI and underlying bioelectrical neuronal signals measured through 

electrophysiology techniques still remains unclear, despite several studies suggesting different 

mechanisms linking hemodynamic signals measured using fMRI and underlying neuronal 

bioelectrical signals (Brookes et al., 2011; Hipp et al., 2012)  

It also does not mean that the RS-fMRI recording is not contaminated with non-neural sources, 

featuring notably cardiac, respiratory oscillations (> 0.3 Hz) and other physiological signals of 

non-neuronal origins. Indeed, to access the spontaneous low frequency signal of neural sources, 

recorded BOLD RS-FMRI signal needs to be cleaned. Several strategies have been proposed to 

remove the influence of those non-neuronal physiological or artifactual fluctuations, for instance 

monitoring external physiological signals during the scan and/or regressing the non-gray matter 

signals out of the fMRI signal (Dipasquale et al., 2017; Weissenbacher et al., 2009). Using high 

sampling rate to avoid aliasing of these physiological fluctuations followed by filtering could also 

be considered (Cordes et al., 2000, 2001; M. P. van den Heuvel et al., 2008). 

2.2.1 Resting-state brain networks 
Investigating the patterns of functional connectivity between different brain regions, especially 

using neuroimaging techniques, is an active field of research, and several methodologies to 

measure them have been proposed. Overall, several resting-state fMRI data analysis approaches 

suggested similar patterns of functional connectivity, defining the so-called resting state functional 
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network (RSN), which also are strongly correlated with underlying structural connectivity (Deco 

et al., 2014; Meier et al., 2016; Robinson, 2012; Robinson et al., 2014; Suárez et al., 2020). The 

most consistent resting-state networks reported across these studies include the primary 

sensorimotor network, the primary visual and extra-striate visual network, a network consisting of 

bilateral temporal/insular and anterior cingulate cortex regions, left and right-lateralized networks 

consisting of superior parietal and superior frontal regions and the so-called default mode network 

consisting of precuneus, medial frontal, inferior parietal cortical regions and medial temporal lobe 

(Biswal et al., 1995; De Luca et al., 2006; Salvador et al., 2005; M. P. van den Heuvel et al., 2008). 

It is also worth mentioning that each of these brain networks could be associated with white matter 

pathway backbone pathways (Greicius et al., 2009; M. P. Van Den Heuvel et al., 2010; Toosy et 

al., 2004) that support the stability of their spatiotemporal organization and functional roles (Figure 

2.8 ) (Damoiseaux et al. 2006; Smith et al. 2009; van den Heuvel and Hulshoff Pol 2010; Doucet 

et al. 2011). 

 

Figure 2.8. Color coded surface-based presentation of the most recent and consistent resting state networks. Figure 

adapted from (Seitzman et al., 2019) 

Interestingly, the RSNs identified using Rs-fMRI were largely consistent using other 

measurements design (Bellec et al., 2009) such as with task-evoked activations (Kitzbichler et al., 

2009; Toro et al., 2008), diffusion imaging (Damoiseaux et al., 2006), maps of anatomical 

connectivity (Andrews-Hanna et al., 2007; Shehzad et al., 2009) and electrophysiology either on 

the scalp (Laufs et al., 2003) or on the cortex (Brookes et al., 2011; Hipp et al., 2012; Shmuel & 

Leopold, 2008). The reorganization of these RSN architectures has been associated with several 

neurological diseases, for instance, epilepsy (Centeno & Carmichael, 2014)(review from 

Constable), Alzheimer disease (Badhwar et al., 2017) or schizophrenia (S. Li et al., 2019). These 
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findings are suggesting that RSN estimated from RS-fMRI could potentially be considered to 

define biomarkers of several neurological conditions.  

2.2.2 Graph theorical strategy 
Our brain is inherently a system featuring spatially embedded networks defining graphs of 

comprehensive connections occurring at multiple scales, including the molecular interactions, the 

synaptic connections and neuronal wiring, and distant brain areas communicating using structural 

connections through long-range bundles of fibers, allowing to characterize whole-brain dynamics 

at rest, during tasks, or during specific behaviors (Bassett & Siebenhühner, 2013; Doucet et al., 

2011; Mišić & Sporns, 2016). 

Graph theory is a branch of mathematics that can represent the connectomic and topological 

features of brain as sets of nodes and edges that represent system elements and their interrelations 

(Fornito et al., 2016). In graph theory, the neuronal elements of the brain defining the nodes depend 

on the scale of interest and can be defined as neurons, regions or networks. The edges are then 

characterizing the type of connections between those nodes. Using such definitions, graph theory 

allows defining a mathematical model of brain that can be summarized as an N×N adjacency 

matrix (also called a connection matrix), where zero or non-zero entities denote respectively the 

absence or presence of a connection between two nodes. Such representation can be either 

directional, in case of having access to reciprocal connections using anatomical networks 

constructed from tract tracing studies (Liao et al., 2017) or undirected. The links can also be either 

binary, therefore confirming the existence of a connection between the nodes or weighted, 

featuring information about connection strengths (Fornito et al., 2013; C. Zhong et al., 2015). 

When underlying anatomical information is available, the weights of the edges can also represent 

the size, density, or coherence of the anatomical tracts, whereas, in functional networks, the weight 

of the edges are representing magnitudes of connection strengths (Rubinov & Sporns, 2010). 

Even though statistical analysis of binary graph networks is easier, weighted non-binary graphs 

provide additional complementary information on the structure of the network, while allowing 

discarding of eventual spurious connections featuring non-significant weight values (Saramäki et 

al., 2007). 

The very first applications of graph theory when studying brain networks were proposed in the 

context of fMRI functional connectivity analyses. fMRI connectivity matrices are usually 

estimated by reporting Pearson correlation between time series of the BOLD signal from different 

brain regions (nodes), estimated for every possible pair of nodes. These connectivity matrices can 

then be arbitrarily thresholded to binarize the edges, resulting in estimating a graph of large-scale 

functional networks (Achard et al., 2006; Ortiz et al., 2005; Salvador et al., 2005; Sporns et al., 

2005; Stam, 2004). However, the turning point of these studies was the connection matrix of the 

human brain introduced by Sporns in 2005 denoted the “human connectome” model (Sporns et al., 

2005). The proposed “human connectome” model was including three main steps: (i) estimating 

the structural connectivity matrix from diffusion-weighted MR imaging data, (ii) performing 

voxel-wise all-to-all functional connectivity analyses of fMRI and/or magnetoencephalography 

(MEG) functional data, and (iii) employing a cluster analysis of correspondences between the 

structural and functional connectivity matrices to identify regions exhibiting consistent structure-

function relationships in the human brain (Sporns et al., 2005). Figure 2.9 represents the common 

scheme for graph theory analysis, starting from acquisition of brain signal (e.g. fMRI ), 

preprocessing including the regression of the non-neuronal signals (like physiological systemic 
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fluctuations, head motion), brain parcellation for regional data analysis and dimensionality 

reduction, estimation of a corrected BOLD time course per region (brain parcel), estimation of a 

connectivity matrix featuring the correlation between the time courses of every parcel, binarization 

of connectivity matrix by thresholding (optional), estimation of brain networks from the 

connectivity matrices and finally topological analysis of the whole brain network properties using 

graph theory metrics. 

 

Figure 2.9. Schematic representation of brain network construction and graph theoretical analysis using fMRI data. 

Figure adapted from (Farahani et al., 2019) 

Representing the brain connectivity information using graph theory, revealed three key concepts 

of brain topological organization: small-worldness, degree distribution, and modularity, that were 

repeatedly reported across both anatomical and functional data using different analysis techniques 

(Cole et al., 2016; Downes et al., 2012; Schroeter et al., 2015). The notion of “small-world” 

architecture, first introduced by (Milgram, 1967) for social network, consists in a network which 

behaves nearly regularly, favoring local connections, and occasionally random, featuring few long-

distance connections, therefore maximizing communication efficiency between regions (Watts & 

Strogatz, 1998) (Figure 2.10). Such network model includes short characteristic path length, which 

favours integrated processing of information over the whole networks, as well as a high clustering 

coefficient, that favours segregated processing within functionally specialized sub-population of 

nodes (Sporns & Kötter, 2004). The characteristic path length is defined as the average of the 

minimum number of edges that are required to link two nodes to each other. The clustering 

coefficient of a node is defined as the fraction of its neighbours that are also connected to each 

other. These two topological characteristics are important to characterize the functional 

segregation and integration of the networks, important characteristics of most physiological 

systems. The small-world architecture allows a balance between minimizing the resource cost and 

meanwhile maximizing the flow of information among the system’s networks (Bassett & 
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Bullmore, 2006; Bullmore & Sporns, 2012; M. Lin et al., 2013; Meunier et al., 2010; Samu et al., 

2014). 

 

Figure 2.10. Schematics of Small-world networks by Watts and Strogatz (Watts & Strogatz, 1998). pWS: randomness 

probability. Small-world networks are not completely regular nor random, instead, they are characterized by both 

local clustering and short paths. Reproduced from (Fornito et al., 2016) 

In graph theory, the concept of node degree is defined as the mean number of edges attached to 

each node (also called the mean degree of the graph). When considering undirected graphs models, 

edges connect nodes symmetrically and there is no distinction between the source and the target 

of a connection. In a binary graph, the edge weight is either zero or one. Centrality measures 

quantify the importance of a node relative to other nodes in the network, whereas nodes featuring 

high centrality are also called hubs (M. P. van den Heuvel & Sporns, 2013). Using resting state 

fMRI analysis, the brain functional hubs have been mainly reported in the precuneus, posterior 

cingulate, lateral temporal, superior and inferior parietal, and medial and lateral prefrontal cortices 

(Achard et al., 2006; Buckner et al., 2009; K. Lee et al., 2016). While the Degree centrality is a 

most simplistic centrality measure, there are other centrality metrics that consider more advanced 

communication properties of nodes. For example, eigenvector centrality also accounts for the 

quantity and quality of the connections associated with a node. Such a metric assigns a high 

centrality to a low-degree node when it is connected to high-degree nodes, through the summation 

of the centrality of its neighbours. This measure requires estimating the eigenvectors and 

eigenvalues of the adjacency matrix. An eigenvector of  𝐴  is a nonzero vector 𝑥  that, when 

multiplied by 𝐴, satisfies the condition 𝐴𝑥 =  𝜆𝑥. The scalar 𝜆 is the corresponding eigenvalue of 

𝐴  and represents the factor which, when multiplied with 𝑥 , is equal to  𝐴𝑥  . The eigenvector 

centrality of a node 𝑖 is defined as the 𝑖𝑡ℎ  entry of the eigenvector belonging to the largest 

eigenvalue of A. Alternatively, the eigenvector metric for each node can also be defined as to the 

summed centrality of its neighbors (see Table 2.1 for definition). The Closeness centrality 

measures the average length of the shortest paths between a particular node and the rest of the 

network. Betweenness centrality expresses the fraction of all shortest paths in the network that 

contain that specific node (See Table 2.1 for the full definitions).  

In addition to nodes’ characteristics, analyzing the graph theorical metrics also reveals interesting 

information about network organization. As an example, the distribution of degrees values comes 

from the theorem introduced by Barabási and Albert (Baraba, 1999): within a complex graph 

structure, he proposed that a new edge will be more likely connected to the nodes featuring higher 

degree, or hubs regions. Using such a model, there is a high probability that the resulting graph 

will contain at least a few highly connected hub nodes, resulting in a decreasing power-law 
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distribution of degree values within the graph. Actually, the work of Barabási (among others) 

confirmed the existence of a decreasing power-law, i.e. heavy-tailed, distribution of degrees 

values, not only in brain functional/structural networks, but also in several empirically observed 

nervous systems, from cultured cellular networks to whole brain electrophysiological and 

hemodynamic recordings (Baraba, 1999; Beggs & Plenz, 2003; Kitzbichler et al., 2009; 

Linkenkaer-Hansen et al., 2001). 

Another key topological concept of brain organization is its modularity, which means that the brain 

can be decomposed into clusters (modules) of nodes that are more densely connected with each 

other, than to the nodes in any other modules (Figure 2.11 Simon, 1962). The modularity of the 

brain implicates functional specialization and local segregation within the integrated network 

while allowing communication between modules through connector hubs. Such a structure 

supports the robustness and adaptability of brain connectivity networks (Bullmore & Sporns, 

2009). 

 

Figure 2.11 Some illustrative measurement that quantifies the topology of brain networks. (a) The graph 

representation of node, edge and degree (b) The modularity of the brain networks. Reproduced from (Sporns & Betzel, 

2016). 

Assessing modularity using graph theory measures can be broadly divided into agglomerative and 

divisive methods. For agglomerative methods, the edges are added to an empty graph that includes 

just the nodes, until obtaining an optimized cluster. For divisive methods, we start from a complete 

graph and edges are then removed, until an optimized subset of nodes is obtained. In the context 

of divisive approaches, the community detection algorithm is the most popular one. These methods 

search for optimal partition within the brain connectivity matrix by maximizing intra-cluster edge 

density against a random edge rewiring null model (Blondel et al., 2008). In other versions, 

(Blondel et al., 2008) a heuristic method is used with an aggregation algorithm iteratively 

maximizing the difference between the actual and expected number of edges in initial defined 

modules by moving the nodes, until no extra change in the network is obtained. Walktrap is another 

approach for modularity detection in graph theory that includes random walks approach. It consists 

in merging separate detected modules in a bottom-up manner, in which each module is obtained 

by random walks in the network until getting trapped into densely connected parts corresponding 

to a module (Pons & Latapy, 2005; Traag et al., 2019). 

2.2.2.1 Brain functional hub regions 
Within functional brain networks, some nodes are playing important role in neural communication 

and interactivity of the brain function, they are called hubs. Whereas hubs have been commonly 
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estimated as regions exhibiting high degree centrality metrics, other hub detection approaches 

consist of aggregating sets of measures that examine global aspect of hub topology, presenting 

advantages and more accuracy in hubs detection. The analysis proposed by Sporns and colleagues 

(Bassett & Sporns, 2017) revealed that indeed hubs in brain networks have specific topological 

characteristics. They are central and exhibit high number of connections to several other nodes. 

They also have the ability to communicate with many other nodes through a small number of 

connections. They also play an important role in brain integration, clustering, or modulation, as 

well as whole network stability. In 2010, van den Heuvel developed a consensus-based definition 

of hubs from structural connectivity networks and suggested four main characteristics graph 

metrics to score a region as a hub: high degree centrality, high betweenness, low clustering 

coefficient and low shortest path (Figure 2.12 (M. P. Van Den Heuvel et al., 2010)). 

 

Figure 2.12. Node-specific hub scores. Adapted from (M. P. Van Den Heuvel et al., 2010)  

In addition, the hubs’ edge distribution, and their topological position in modules of brain network 

play an important role in between and within module communication (Guimerà et al., 2005). 

Accordingly, Guimera suggested in 2005, that the hubs regions can be grouped into connector and 

provincial hubs, where provincial hubs are mostly connected to nodes within their own module, 

while intermodular communications are mediated by a few connector hubs that are distributed 

across multiple different modules (Figure 2.11) (Díaz Parra, 2018; Guimerà et al., 2005; M. P. Van 

Den Heuvel et al., 2010). Connector hubs are often placed in sub-regions of the association 

cortices: the precuneus, medial and superior frontal, orbitofrontal, superior and inferior parietal, 

cingulate, middle and superior temporal, temporal pole, supramarginal, angular, and fusiform gyri, 

as well as sub-regions of subcortical and primary sensory areas (Bullmore & Sporns, 2012; Gratton 

et al., 2012). These areas are indeed mainly served as interconnected cores, allowing integration 

across different networks as well as playing important role in maintaining a balance between 

network segregation and integration. (Bertolero et al., 2017). These regions also are associated 

with higher metabolic demands than other brain regions (Liang et al., 2013; D. Tomasi et al., 2013; 

Vaishnavi et al., 2010), which makes them more vulnerable to many neurological disorders 

(Buckner et al., 2009; Crossley et al., 2014). 
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Table 2.1. Mathematical definitions of selected graph theorical measures. Table adapted from (Rubinov & Sporns, 

2010). 

Measure Binary and undirected definition Weighted and directed definition 

Basic concepts and measures 
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𝑁 is the set of all nodes in the network, 

and 𝑛 is the number of nodes. 

𝐿 is the set of all links in the network, 

and l is number of links. 

(𝑖, 𝑗) is a link between nodes 𝑖  and 𝑗 , 
(𝑖, 𝑗 ∈ 𝑁). 
𝑎𝑖𝑗  is the connection status between 𝑖 

and  𝑗 : 𝑎𝑖𝑗 = 1  when link (𝑖, 𝑗) exists 

(when 𝑖  and 𝑗  are neighbors); 𝑎𝑖𝑗 = 0 

otherwise (𝑎𝑖𝑖 = 0 for all 𝑖). 
We compute the number of links as 𝑙 =
∑ 𝑎𝑖𝑗𝑖,𝑗∈𝑁  (to avoid ambiguity with 

directed links we count each undirected 

link twice, as 𝑎𝑖𝑗 and as 𝑎𝑗𝑖). 

Links (𝑖, 𝑗)  are associated with 

connection weights 𝑤𝑖𝑗. 
Henceforth, we assume that weights are 

normalized, such that 0 ≤ 𝑤𝑖𝑗 ≤ 1 for 

all 𝑖 and 𝑗. 
𝑙𝑤  is the sum of all weights in the 

network, computed as 𝑙𝑤 = ∑ 𝑤𝑖𝑗𝑖,𝑗∈𝑁 .  

Directed links (𝑖, 𝑗) are ordered from 𝑖 
to  𝑗 . Consequently, in directed 

networks 𝑎𝑖𝑗 does not necessarily equal 

𝑎𝑗𝑖. 
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Degree of a node 𝑖, 

𝑘𝑖 =∑𝑎𝑖𝑗
𝑗∈𝑁

. 

 

Weighted degree of 𝑖, 𝑘𝑖
w = ∑ 𝑤𝑖𝑗𝑗∈𝑁 . 

(Directed) out-degree of 𝑖 , 𝑘𝑖
out =

∑ 𝑎𝑖𝑗𝑗∈𝑁 . 

(Directed) in-degree of 𝑖 , 𝑘𝑖
in =

∑ 𝑎𝑗𝑖𝑗∈𝑁 . 
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Shortest path length (distance), 

between nodes 𝑖 and 𝑗, 

𝑑𝑖,𝑗 = ∑ 𝑎𝑢𝑣
𝑎𝑢𝑣∈𝑔𝑖↔𝑗

, 

where 𝑔𝑖↔𝑗  is the shortest path 

(geodesic) between  𝑖  and 𝑗 . Note that 

𝑑𝑖,𝑗 = ∞ for all disconnected pairs 𝑖, 𝑗. 

Shortest weighted path length between 

𝑖 and 𝑗, 𝑑𝑖𝑗
w = ∑ 𝑓(𝑤𝑢𝑣)𝑎𝑢𝑣∈𝑔

𝑖
w
↔ 𝑗

 where 

𝑓  is a map (e.g., an inverse) from 

weight to length and 𝑔
𝑖
w
↔𝑗

 is the 

shortest weighted path between 𝑖 and 𝑗. 
Shortest directed path length between 𝑖 
to 𝑗 , 𝑑𝑖𝑗

→ = ∑ 𝑎𝑖𝑗𝑎𝑖𝑗∈𝑔𝑖→𝑗
 where 𝑔𝑖→𝑗  is 

the directed shortest path from 𝑖 to 𝑗. 
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 Number of triangles around a node 𝑖, 

𝑡𝑖 =
1

2
∑ 𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ
𝑗,ℎ∈𝑁

. 

(Weighted) geometric mean of 

triangles around 𝑖 , 𝑡𝑖
w =

1

2
∑ (𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ)

1 3⁄

𝑗,ℎ∈𝑁 . 

Number of directed triangles around 

𝑖 , 𝑡𝑖
→ =

1

2
∑ (𝑎𝑖𝑗 + 𝑎𝑗𝑖)(𝑎𝑖ℎ +𝑗,ℎ∈𝑁

𝑎ℎ𝑖)(𝑎𝑗ℎ + 𝑎ℎ𝑗). 
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Measure Binary and undirected definition Weighted and directed definition 

Measures of integration 
G
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Global efficiency of the network 

(Latora & Marchiori, 2001), 

𝐸 =
1

𝑛
∑𝐸𝑖
𝑖∈𝑁

=
1

𝑛
∑
∑ 𝑑𝑖𝑗

−1
𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

, 

where 𝐸𝑖 is the efficiency of node 𝑖. 

Weighted global efficiency, 𝐸w =

1

𝑛
∑

∑ (𝑑𝑖𝑗
w)

−1

𝑗∈𝑁,𝑗≠𝑖

𝑛−1𝑖∈𝑁 . 

Directed global efficiency, 𝐸→ =

1

𝑛
∑

∑ (𝑑𝑖𝑗
→)
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛−1𝑖∈𝑁  
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Eigenvector centrality (Bonacich, 

2007) of a node 𝑖 is proportional to the 

sum of the centralities of the vertices to 

which it is linked, 

𝜆𝐶𝑖 =∑𝑎𝑖𝑗𝐶𝑗
𝑗∈𝑁

, 

where 𝜆 is the largest eigenvalue of the 

adjacency matrix (𝑎𝑖𝑗)𝑖𝑗 (and {𝐶𝑖}𝑖 the 

coefficients of the corresponding 

(leading) eigenvector). 

Weighted eigenvector centrality of 𝑖 , 
𝜆𝐶𝑖 = ∑ 𝑤𝑖𝑗𝐶𝑗𝑗∈𝑁 . 

In directed networks (M. Newman, 

2010), left and right eigenvectors are 

defined separately by considering 

respectively outgoing connections, 

𝜆𝐶𝑖 = ∑ 𝑎𝑖𝑗𝐶𝑗𝑗∈𝑁 , and incoming 

connections, 𝜆𝐶𝑖 = ∑ 𝑎𝑗𝑖𝐶𝑗𝑗∈𝑁 . 

Measures of segregation 

C
lu

st
er
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ef
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t Clustering coefficient of the network 

(Watts & Strogatz, 1998), 

𝐶 =
1

𝑛
∑𝐶𝑖
𝑖∈𝑁

=
1

𝑛
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑁

, 

where 𝐶𝑖 is the clustering coefficient of 

node i (𝐶𝑖 = 0 for 𝑘𝑖 < 2). 

Weighted clustering coefficient 

(Saramäki et al., 2007), 𝐶w =
1

𝑛
∑

2𝑡𝑖
w

𝑘𝑖(𝑘𝑖−1)
𝑖∈𝑁 . 

Directed clustering coefficient 

(Fagiolo, 2007), 𝐶→ =
1

𝑛
∑

𝑡𝑖
→

𝜔𝑖
𝑖∈𝑁 , 

where 𝜔𝑖 = (𝑘𝑖
out + 𝑘𝑖

in)(𝑘𝑖
out +

𝑘𝑖
in − 1) − 2∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑗∈𝑁 . 
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Local efficiency of the network (Latora 

& Marchiori, 2001), 

𝐸loc =
1

𝑛
∑𝐸loc,𝑖
𝑖∈𝑁

=
1

𝑛
∑
∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]

−1
𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

, 

where 𝐸loc,𝑖  is the local efficiency of 

node 𝑖, and 𝑑𝑗ℎ(𝑁𝑖) is the length of the 

shortest path between 𝑗  and ℎ , that 

contains only neighbors of 𝑖. 

Weighted local efficiency, 𝐸loc
w =

1

2
∑

∑ (𝑤𝑖𝑗𝑤𝑖ℎ[𝑑𝑗ℎ
w (𝑁𝑖)]

−1
)
1 3⁄

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖−1)
𝑖∈𝑁  

Directed local efficiency, 𝐸loc
→ =

1

2𝑛
∑

∑ (𝑎𝑖𝑗+𝑎𝑗𝑖)(𝑎𝑖ℎ+𝑎ℎ𝑖)𝑗,ℎ∈𝑁,𝑗≠𝑖 𝐷𝑖𝑗ℎ

𝜔𝑖
𝑖∈𝑁 , 

where 𝐷𝑖𝑗ℎ = [𝑑𝑗ℎ
→(𝑁𝑖)]

−1
+

[𝑑ℎ𝑗
→ (𝑁𝑖)]

−1
 and 𝜔𝑖 = (𝑘𝑖

out +

𝑘𝑖
in)(𝑘𝑖

out + 𝑘𝑖
in − 1) − 2∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑗∈𝑁 . 
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Measure Binary and undirected definition Weighted and directed definition 

M
o
d

u
la

ri
ty

 

Modularity of the network (M. E. J. 

Newman, 2006), 

𝑄 =
1

𝑙
∑ (𝑎𝑖𝑗 −

𝑘𝑖𝑘𝑗

𝑙
) 𝛿𝑚𝑖,𝑚𝑗

𝑖,𝑗∈𝑁

, 

Where 𝑚𝑖  is the module containing 

node 𝑖, and 𝛿𝑚𝑖,𝑚𝑗 = 1 if 𝑚𝑖 = 𝑚𝑗  and 

0 otherwise. 

Weighted modularity (M. E. J. 

Newman, 2004), 𝑄w =
1

𝑙w
∑ [𝑤𝑖𝑗 −

𝑘𝑖
w𝑘𝑗

w

𝑙w
] 𝛿𝑚𝑖,𝑚𝑗𝑖,𝑗∈𝑁 . 

Directed modularity (Leicht & 

Newman, 2008), 𝑄→ =
1

𝑙
∑ [𝑎𝑖𝑗 −𝑖,𝑗∈𝑁

𝑘𝑗
out𝑘𝑖

in

𝑙
] 𝛿𝑚𝑖,𝑚𝑗 . 

 

Measures of centrality 

C
lo

se
n

es
s 

ce
n

tr
a
li

ty
 Closeness centrality of node 𝑖  (e.g., 

(Freeman, 1978)), 

𝐿𝑖
−1 =

𝑛 − 1

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑗≠𝑖
. 

 

Weighted closeness centrality, 

(𝐿𝑖
w)−1 =

𝑛−1

∑ 𝑑𝑖𝑗
w

𝑗∈𝑁,𝑗≠𝑖
. 

Directed closeness centrality, 

(𝐿𝑖
→)−1 =

𝑛−1

∑ 𝑑𝑖𝑗
→

𝑗∈𝑁,𝑗≠𝑖
. 

B
et

w
ee

n
n

es
s 

c
en

tr
a
li

ty
 Betweenness centrality of node 𝑖 (e.g., 

(Freeman, 1978)), 

𝑏𝑖

=
1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗ℎ,𝑗∈𝑁
ℎ≠𝑗,ℎ≠𝑖,𝑗≠𝑖

, 

where 𝜌ℎ𝑗  is the number of shortest 

paths between ℎ  and 𝑗 , and 𝜌ℎ𝑗(𝑖)  is 

the number of shortest paths between ℎ 

and 𝑗 that pass through 𝑖. 

Betweenness centrality is computed 

equivalently on weighted and directed 

networks, if path lengths are computed 

on respective weighted or directed 

paths. 

P
a
rt

ic
ip

a
ti

o
n

 c
o
ef

fi
ci

en
t Participation coefficient of node  𝑖 

(Guimerà & Amaral, 2005), 

𝑦𝑖 = 1 − ∑ (
𝑘𝑖(𝑚)

𝑘𝑖
)

2

𝑚∈𝑀

, 

where 𝑀  is the set of modules (see 

modularity), and 𝑘𝑖(𝑚) is the number 

of links between 𝑖  and all nodes in 

module 𝑚. 

Weighted participation coefficient, 

𝑦𝑖
w = 1 − ∑ (

𝑘𝑖
w(𝑚)

𝑘𝑖
w )

2

𝑚∈𝑀 . 

Out-degree participation coefficient, 

𝑦𝑖
out = 1 − ∑ (

𝑘𝑖
out(𝑚)

𝑘𝑖
out )

2

𝑚∈𝑀 . 

In-degree participation coefficient, 

𝑦𝑖
in = 1 − ∑ (

𝑘𝑖
in(𝑚)

𝑘𝑖
in )

2

𝑚∈𝑀 . 

Measures of resilience 

A
v
er

a
g
e 

n
ei

g
h

b
o
r 

d
eg

re
e
 

Average degree of neighbors of node 

𝑖 (Pastor-Satorras & Vespignani, 

2001), 

𝑘nn,𝑖 =
∑ 𝑎𝑖𝑗𝑘𝑗𝑗∈𝑁

𝑘𝑖
. 

Average weighted neighbor degree 

(modified from (Barrat et al., 2004)), 

𝑘nn,𝑖
w =

∑ 𝑤𝑖𝑗𝑘𝑗
w

𝑗∈𝑁

𝑘𝑖
w . 

Average directed neighbor degree, 

𝑘nn,𝑖
→ =

∑ (𝑎𝑖𝑗+𝑎𝑗𝑖)(𝑘𝑗
out+𝑘𝑗

in)𝑗∈𝑁

2(𝑘𝑖
out+𝑘𝑖

in)
. 
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The connector hubs are commonly estimated using participation coefficient graph metric (Power 

et al., 2013), that extracts the connector hubs by measuring the extent to which a network node (or 

a parcel) connects to multiple modules (brain networks). Our group also proposed complementary 

methods to estimate connector hubs from resting state fMRI data, using sparse decomposition to 

explicitly assess spatial overlap between brain networks (see (K. Lee et al., 2016), more details 

later in this chapter). Connector hubs can also be further classified into three category sets: control-

default, cross-control, and control-processing hubs regions (Figure 2.13). These hubs are placed 

in different positions within the brain’s network structure, where they affect networks differently 

while integrating the information between them. The control-default connector hubs have strong 

connectivity with frontoparietal (FPN), default mode (DMN), and contextual association (CAN) 

networks. They are localized in the dorsal angular gyrus, the superior and inferior frontal gyrus, 

the retrosplenial cortex, the precuneus, and the ventromedial prefrontal cortex. The cross-control 

connector hubs are exhibiting strong connectivity within the cingulo-opercular network (CON), 

the dorsal attention network (DAN) and the FPN. They are localized in the inferior parietal lobule, 

the supramarginal gyrus, the middle and superior frontal gyrus, and the posterior precuneus. 

Finally, the control-processing connector hubs are exhibiting strong connectivity within sensory 

and motor processing systems (lateral visual (lVis), auditory (Aud), premotor (PMot), and the 

somatomotor networks hand somatomotor (hSM), face somatomotor (fSM), and leg somatomotor 

(lSM)) as well as CON and DAN. They are localized in the pre- and postcentral gyrus, the lateral 

occipital cortex, the dorsomedial prefrontal cortex, and the posterior insula (Gordon et al., 2018; 

Y. Zhang et al., 2016). 

 

Figure 2.13. Hubs Cluster into Distinct Sets. A) Network identities of cortical parcels in a single subject (top) and a 

spring embedding plot (bottom), illustrating relationships between these parcels. Hubs are highlighted on the cortex 

and enlarged in the spring embedding plot (B) The same parcels and plot, with parcels colored based on the hub set. 

Figure adapted from (Gordon et al., 2018) 
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2.2.3 Model-based and model-free functional connectivity approaches 
Functional connectivity methods in fMRI studies can broadly be defined using model-based and 

model-free groups. The model-based methods basically examine the existence of a linear 

relationship between particular regions called seed regions, from which fMRI BOLD signal is 

compared with the signal from all other brain regions. The model-free approaches do not require 

the definition of such a predefined seed region, usually consisting of multivariate data analysis 

strategies (Farahani et al., 2019; M. P. Van Den Heuvel et al., 2010).  

2.2.3.1 Model-based methods 
Model-based methods consist in estimating the cross-correlation between the BOLD signal time 

series of specific seed regions and all other brain voxels/regions, resulting in the estimation of a 

functional connectivity map exhibiting how all regions linearly covary with the BOLD signal from 

the seed region (Andrews-Hanna et al., 2007; Biswal et al., 1995; Cao & Worsley, 1999; Cordes 

et al., 2000; Fransson, 2005; Larson-Prior et al., 2009; M. Song et al., 2008).  

Once functional connectivity maps are estimated, second-level statistical can be done within the 

general linear model (GLM) framework combined with statistical multiple comparisons methods 

(Farahani et al., 2019), i.e. statistical parametric mapping (SPM) investigations, allowing to asses 

of the effect of a specific condition or a specific population on connectivity patterns associated 

with a specific hypothesis, defined by the seed region. The GLM is a statistical method that model 

the time course of observed RS-fMRI data as a linear mixture of the predictors (regressors), making 

design matrix (matrix of regressors) (Figure 2.14f), based on the linearity, homoscedastic (constant 

variance) and normality assumption of predictors (Gelman & Hill, 2007; Nelder & Wedderburn, 

1972). GLM approaches assess the contribution of every voxel independently (Huberty et al., 

1997). Hence, in neuroimaging data in other to address the multiple comparisons problem when 

making statistical inferences over a volume of the brain, combined with GLM a multivariate 

normal density modeling, is employed to detect regional-specific brain activation patterns 

(Farahani et al., 2019; Jones et al., 1991; Rencher, 1995). 

 

Figure 2.14. Comparison of GLM and spatial ICA for fMRI data: the GLM requires the specification of the temporal 

model in the design matrix, whereas ICA estimates the time courses from the data by maximizing independences 

between the component images, Adapted from (Calhoun et al., 2009) 
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2.2.3.2 Model-free multivariate approaches 
While the seed-based approaches require prior information (predefined reference region), the 

complementary model-free methods, are driven by the intrinsic structure of the data and are able 

to detect linear and also non-linear neuronal interactions between regions, resulting in whole brain 

connectivity patterns that can reveal the resting state networks (M. P. Van Den Heuvel et al., 2010; 

Y. Zhong et al., 2009). 

2.2.3.2.1 Signal decomposition-based methods 
The most common multivariate decomposition-based techniques to investigate high dimensional 

spatio-temporal data are principal component analysis (PCA) (Friston et al., 1993) and 

independent component analysis(ICA) (Calhoun et al., 2001; De Luca et al., 2006; van de Ven et 

al., 2004). The objective of these methods is to decompose the spatiotemporal structure contained 

within the measured RS-fMRI signals, as a mixture of hidden spatial sources or maps, each 

associated with a specific time course. The main underlying assumption driving these 

decompositions is that spatial sources or maps should be decorrelated for PCA and statistically 

independent for ICA, which is a blind source separation problem. Additionally, resulting spatial 

components will also be decorrelated/independent from other signal sources of non-neuronal 

origins, such as brain motion, and physiological fluctuations associated with respiration and 

heartbeat (Y. Zhong et al., 2009). PCA and ICA are also statistical transformation techniques, that 

aim to transform original data into lower-dimensional space while preserving the main structure. 

PCA dealing with decorrelation benefits from second-order statistics (Gaussian approximation), 

while ICA dealing with statistical independence takes advantage of higher-order statistics (non-

Gaussian). In the standard ICA model, mixtures are linear, and the source maps are assumed to be 

statistically mutually independent, while at least one of them should be non-Gaussian (Bordier et 

al., 2011).  

In more detail, let us assume that we are applying PCA or ICA on fMRI signals represented by a 

Spatio-temporal matrix of measurements 𝑋𝑗,𝑡  , where index (𝑗) accounts for 𝐽 spatial elements 

(voxels, regions), and index (𝑡) accounts for the 𝑇 time points of the signal. The objective of PCA 

and ICA is to characterize the data within a sub-space of lower dimensionality (K<< J, T). First, 

PCA decomposes the data within such lower dimensionality sub-space using the singular value 

decomposition (SVD) method: 

 𝑋𝑗𝑡 =∑𝑈𝑗𝑘Λ𝑘𝑘𝑉𝑡𝑘

𝐾

𝑘=1

 (2.1) 

where U and V are orthogonal matrices that span the spatial and temporal patterns and Λ is a 

diagonal matrix consisting of singular values. The columns of U and V are called eigenvectors of 

covariance matrices, respectively reflecting the inter-relationship between the voxels/regions 

(∑ X𝑗𝑡X𝑘𝑡
𝑇
𝑡 𝑇⁄ ) and between the voxels/regions across the time series of the signal (∑ X𝑗𝑠X𝑗𝑡

𝐽
𝑗 𝐽⁄ ) 

(McKeown et al., 2003). 

However, in order to consider the output of decomposition used in ICA and PCA as decent 

components in which their linear matrix correctly represents the matrix 𝑋, both number of sources, 

𝐾, compares to 𝐽 and 𝑇 and the variance of noise exists in the model needs to be small. In such 
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cases, the major signal variances will be covered by spatial or temporal subspaces spanned by the 

first vectors of either U or V as identified by SVD(L. K. Hansen, 2000; McKeown et al., 1998).  

ICA assumes that the data matrix 𝑋 can be modeled as a linear mixture of 𝐾 (k=3 for fMRI data) 

spatial component maps that are statistically independent together with the corresponding time 

course associated with each component: 

 𝑋𝑗𝑡 =∑𝐴𝑗𝑘𝑆𝑘𝑡

𝐾

𝑘=1

+𝐸𝑗𝑡 (2.2) 

Where the 𝐴 and 𝑆 are composed of 𝐾 independent components and 𝐸 is a spatial and temporally 

white noise. The ICA model can be employed in either spatial or temporal versions. For spatial 

ICA, the method assumes that each column of matrix 𝐴  (⌊𝐴𝑗𝑘⌋) are statistically independent 

(usually preferred for fMRI data), whereas for temporal ICA, each row of 𝐴 (⌊𝑆𝑗𝑘⌋) are assumed 

to be statistically independent. The second row of Figure 2.14, illustrates the application of ICA 

technique to estimate the time courses from the data by maximizing independence between the 

component images.  

Despite mentioned advantages, interpreting the output of model-free multivariate analyses is more 

challenging when compared to seed-based functional connectivity studies. These decomposition 

methods are usually exhibiting complex spatial patterns that include interesting components of 

brain activity together with remaining noisy/artefactual components (effects of motion, non-

neuronal physiology fluctuations of non-neuronal origin, scanner artifacts and other nuisance 

sources). However, having access to the analysis of neuroimaging data set with thousands of 

subjects provides the possibility to use statistical/machine learning approaches to guide the 

automatic detection of noisy/artefactual components (K. Lee et al., 2019; Perlbarg et al., 2007). 

One can also take advantage of several functional brain atlases (Glasser et al., 2016; J. L. Ji et al., 

2019; Landau et al., 2011; Shirer et al., 2012; Thomas Yeo et al., 2011) to correctly assign the 

spatial component of ICA/PCA to the closest RS networks in which they belong to (Du et al., 

2020; J. Lu et al., 2017; Pruim et al., 2015). 

2.2.3.2.2 Clustering-based methods 
Another family of model-free approaches consists in clustering-based methods, which aim at 

searching for similarity between BOLD signals time series of several voxels or brain regions, and 

to group them into homogeneous clusters (Cordes et al., 2002; Salvador et al., 2005; Thirion et al., 

2006; M. van den Heuvel et al., 2008). The most popular clustering techniques to analyze resting 

state fMRI data are k-means clustering (and its fuzzy version), hierarchical clustering, self-

organizing maps, and bootstrapping approaches (Bellec et al., 2009; Cordes et al., 2002; Farahani 

et al., 2019; K. Lee et al., 2016; Ngan & Hu, 1999; M. van den Heuvel et al., 2008). The k-means 

clustering method consists in assigning each voxel (or region) to a few predefined or random 

cluster centers and then updating the clusters memberships as well as cluster centers according to 

fulfillment of optimization criteria. In this context, k-means fuzzy clustering will not consider a 

binary value to define clustering membership but rather a probability (Lahijanian et al., 2016). In 

k-means algorithm, the initial centers of the clusters and the total number of clusters (k) need to 

be set a priori. As an alternative, hierarchical clustering methods consist of aggregating 

voxels/regions by their closest element, resulting in the estimation of a binary cluster tree, called 

dendrogram, offering a multi-level hierarchy. In hierarchical models, clusters at one specific level 
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are fused base on a similarity metric to build new clusters at the next levels. Data are therefore 

stratified into a hierarchical organization using the agglomerative or divisive models (Cordes et 

al., 2002; Rokach & Maimon, 2005). The important feature of hierarchical clustering is that the 

total number of cluster should not be defined a priori.  

The self-organizing maps methods start from a few random noise time courses and then iteratively 

update them by reducing the distance of each time course with time course of the closest brain 

voxels/regions (as for k-Means clustering) (Ngan & Hu, 1999; Peltier et al., 2003). 

2.2.3.2.3 Bootstrapping approach 
The question of reliability of functional connectivity analyses is a very important topic (Noble et 

al., 2019). To handle this issue it might be useful to compute a specific functional connectivity 

data analysis method (e.g. ICA, clustering) not only once but several to assess test/retest reliability 

of the proposed methods (Damoiseaux et al., 2006; Smith & Dubes, 1980). In this context, Bellec 

et al. (Bellec et al., 2009) proposed to assess the stability of resting-state components in fMRI data 

by applying k-means clustering algorithm on several data sets that have been resampled using a 

bootstrap approach. In statistics, resampling a data set using bootstrap consists of sampling a data 

set of the same size “with replacement”, resulting in several surrogate datasets following the same 

statistical distribution as the original one (Efron & Tibshirani, 1994). In his methods entitled multi-

level bootstrap analysis of stable clusters (BASC) the k-means algorithm of RS- fMRI data set is 

resulting in a binary adjacency matrix Φ(y) where the Φi,j(y) equals 1 if the regions i and j belong 

to the same cluster in the partition and equals 0 otherwise. The main idea consists in repeating the 

same clustering several times on “bootstrap resampled” dataset, resulting in B = 200 binary 

adjacency matrices. Averaging those binary matrices results in the estimation of a probability 

matrix S, and called the stability matrix, assessing the stability/reliability of features estimated by 

the clustering process. For the case of individual-level analysis, the stability matrix, is produced 

by bootstrapping the dataset y, which is a time × space array of size T × R, where T is the number 

of time points and R is the number of regions (Figure 2.15). The standard bootstrap resampling 

strategy consists in generating in a non parametric manner new samples of same size, by drawing 

with replacement from the original datasets (Divenyi & Efron, 1979). Such an approach ensures 

that the resample datasets are following the same distribution as the original one, only when 

samples are independent. However, in the context of resting state fMRI, we have to handle 

statistical dependencies in space and time (Bullmore et al., 2000). In this context, the circular block 

bootstrap (CBB) approach has been proposed to generate bootstrap samples of resting state fMRI 

data (Bellec et al., 2009; Politis & Romano, 1992). Whereas the original spatial organization of 

the data is kept, data are divided into block along time, and bootstrap resampling with replacement 

is then performed among those blocks. The block should be sufficiently long so that the inherent 

autocorrelation of the fMRI data is embedded within each block so that every block could then be 

considered as independent sample (Bellec et al., 2009). In the BASC method, a second-level 

bootstrap analysis approach is then performed by applying standard bootstrap resampling (with 

replacement) to binarized stability matrices S estimated from all subjects, resulting in a functional 

connectivity stability matrix estimated at the population level. 
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Figure 2.15. Stability matrix of k-means clustering using Bootstrap estimation of fMRI time series (Bellec et al., 2009) 

2.2.3.2.1 A Mutual information-based analysis of brain functional networks 
Another model-free approach to assess characteristics of brain networks is to quantify the flow of 

information within and between resting state networks, as a key methodology to assess the level 

of integration/segregation of information within a specified hierarchical network architecture. In 

this context, mutual information (MI) can be considered as an information-theoretic metric to 

assess the amount of shared information among BOLD regional activities (Grassberger et al., 1991; 

Kraskov et al., 2004). In statistics, mutual information (MI) quantifies the amount of information 

one random variable contains about another one. MI-based methods can be applied to both linear 

and non-linear dependency problems and have been shown to capture physiologically relevant 

features of the brain regional connectivity, more accurately than correlation-based similarity 

measures techniques (Garrido et al., 2012; W. Zhang et al., 2018).  

Given a specific hierarchical network structure, MI measures can quantify and characterize 

interaction between and within brain networks, therefore allowing for carefully assess functional 

integration and segregation (Marrelec et al., 2008; Tononi et al., 1998; Zeki & Shipp, 1988). 

Segregation implies functional/anatomical specializations of specific brain regions characterized 

by local flow of information. On the other hand, the concept of integration principle acknowledges 

the merging of information flows across networks and systems distributed in the whole brain, using 

reciprocal and long-range interactions (Figure 2.16) (Mesulam, 1990; Varela et al., 2001). There 

is actually a hierarchical balance between these two main properties of brain activity, which deeply 

influence the brain topological design and structure at muti-scales (Haimovici et al., 2013; 

Marrelec et al., 2008). 
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Figure 2.16. Schematic representation of brain short- and long-range transient of information implying the brain 

segregation and integration. Figure adapted from (Varela et al., 2001) 

MI is actually a special case of a more general quantity called relative entropy or Kullback–Leibler 

divergence, which is a kind of measure of the “distance” between two probability mass functions 

𝑝(𝑥), 𝑞(𝑥) , as below (Cover & Thomas, 1991): 

 𝐷(𝑝 ∥ 𝑞) = ∑ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑥∈𝒳

 (2.3) 

 = 𝐸𝑝 [log
𝑝(𝑋)

𝑞(𝑋)
] (2.4) 

Where 𝒳 is the alphabet (i.e., the set of all possible outcomes) of 𝑋. The second line in the formula 

shows the entropy, which expresses the self-information of a random variable 𝑋 and can also be 

interpreted as expected value of the random variable log
1

𝑝(𝑋)
, where 𝑋  is drawn according to 

probability mass function 𝑝(𝑥) and defined as 

 𝐻(𝑋) = 𝐸𝑝 [log
1

𝑝(𝑋)
] (2.5) 

The mutual information between two variables 𝑋 with alphabet 𝒳 and probability mass function 

𝑝(𝑥) and 𝑌  with alphabet 𝒴  and probability mass function 𝑝(𝑦), then is the relative entropy 

between the joint probability mass function 𝑝(𝑥, 𝑦) and the product distribution 𝑝(𝑥)𝑝(𝑦), which 

would be the joint distribution in the case of statistical independence, defined as follows 

 𝐼(𝑋; 𝑌) = ∑∑𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦∈𝒴𝑥∈𝒳

 (2.6) 

 = 𝐷(𝑝(𝑥, 𝑦) ∥ 𝑝(𝑥)𝑝(𝑦)) (2.7) 

 = 𝐸𝑝(𝑥,𝑦) [log
𝑝(𝑋, 𝑌)

𝑝(𝑋)𝑝(𝑌)
] (2.8) 



69 

 

Rearranging formula, the mutual information can be defined as below (Gierlichs et al., 2008): 

 𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (2.9) 

Where the 𝐻(𝑋, 𝑌) is the joint entropy of (𝑋, 𝑌). 

Marrelec et al. (Marrelec et al., 2008) proposed a MI-based model-free approach to assess 

integration within a hierarchical structure spanning from the mesoscale level (regions) to the 

macro-scale level (networks and systems). In their model, the total integration (𝐼𝑡) was introduced 

as a summation of mutual information between the systems or networks (𝐼𝑏) and the grand sum of 

the mutual information within each system or network (𝐼𝑤). To do so, MI, was estimated in bottom-

up manner, from the mesoscale to the macroscale level. At the meso-scale level, we extracted from 

original fMRI data, 𝑌 = (𝑦1, … , 𝑦𝑁), the mean signal time course associated with each region, 𝑁 

being the total number of regions, and each region was defined as belonging to one of 𝐾 brain 

(non-overlapping) systems/networks of the macroscale level 𝑆 = {𝑆1, … , 𝑆𝐾}.  

The (between) integration, or mutual information between the 𝐾 partitions, is defined as follows: 

 𝐼𝑏 = 𝐼(𝑌𝑆1 , … , 𝑌𝑆𝐾) = [∑𝐻(𝑝(𝑌𝑆𝑘))

𝐾

𝑘=1

] − 𝐻 (𝑝(𝑌𝑆1 , … , 𝑌𝑆𝐾)) (2.10) 

While the within integration is defined as: 

 𝐼𝑤 =∑𝐼(𝑌𝑆𝑘)

𝐾

𝑘=1

 (2.11) 

Since the fMRI data are shown to follow a multivariate normal distribution with mean 𝜇 and 

covariance matrix 𝚺 = (Σ𝑛,𝑛), the entropy formulation can then be simplified as follows: 

 𝐻 (𝑝(𝑌𝑆𝑘)) =
1

2
ln[(2𝜋𝑒)𝑁𝑘|𝚺𝑆𝑘,𝑆𝑘|] (2.12) 

where 𝑁𝑘 is the number of regions comprising system or network 𝑆𝑘 and 𝚺𝑆𝑘,𝑆𝑘 = (Σ𝑙,𝑚)𝑙,𝑚∈𝑆𝑘
 is 

the covariance submatrix associated with 𝑌𝑆𝑘 . 

Then the total integration is defined as: 

 𝐼𝑡 = 𝐼𝑏 + 𝐼𝑤 (2.13) 

Using such framework, hierarchical measures of integration (i.e., 𝐼𝑡, 𝐼𝑏, and 𝐼𝑤) can be calculated 

at different nested spatial scales, where elements (for example regions, or networks) at the finest 

level are combined to form larger elements. Additionally, a measure of functional clustering ratio 

(or functional segregation) can be defined (Boly et al., 2012) as: 
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 FCR(𝑌𝑆𝑘) =
𝐼𝑤(𝑌𝑆𝑘)

𝐼𝑏(𝑌𝑆𝑘)
 (2.14) 

Here, 𝐼𝑤(𝑌𝑆𝑘) and 𝐼𝑏(𝑌𝑆𝑘) are calculated based on a sub-partition of 𝑆𝑘 . FCR is a measure of 

clustering inside a given system because an increase in FCR indicates that subsystems become 

functionally more independent of each other. In Figure 2.17 (Boly et al., 2012), the hierarchical 

integration and segregation model is applied at two nested levels: at the whole-brain level (with 

respect to a partition of the brain into 6 networks), and in each and every brain network (with 

respect to a partition of each network into assemblies).  

 

Figure 2.17. (A) The brain was decomposed into six networks. (B) Brain connectivity was considered at three nested 

levels: brain, networks, and assemblies of areas. (C) Functional clustering ratios both at the whole-brain level and in 

each and every brain network. Networks: dATT, dorsal attentional; DM, default mode; EC, executive control; MOT, 

sensorimotor; SAL, salience; VIS, visual. Figure is adapted from (Boly et al., 2012). 

2.2.3.3 Estimation of hubs of brain network using free model approaches 
In section 2.2.2.1 we introduced functional hubs regions and graph theorical techniques to measure 

them. Even though the estimation of connector hubs using graph theory-based approaches is 

relatively easy to apply; however, they are rapidly becoming computationally demanding when 

applied at the voxel-level resolution, while other approaches will consider different parcellations 
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of the brain. As an example, Bagarinao et al. (Bagarinao et al., 2020) proposed a method entitled 

functional connectivity overlap ratio (FCOR) to estimate connector hubs at the voxel level. To do 

so, a template of all RSN is identified using independent component analysis and used as the 

reference to identify the RSNs associated with seed-based functional connectivity maps of every 

voxel (using Pearson correlation). For each voxel, to assess how much overlap a specific seed-

based functional connectivity is exhibiting with a specific template RSN, a functional connectivity 

overlap ratio (FCOR) could be estimated as the number of voxels in the overlap divided by the 

total number of voxels for this specific RSN. The FCOR estimation process is repeated for all 

voxels within the brain to generate the final FCOR map associated with the given RSN template 

(Bagarinao et al., 2020) (Figure 2.18). 

 

Figure 2.18. Outline of the approach to construct the FCOR map of a given RSN template. Figure adapted from 

(Bagarinao et al., 2020) 

2.2.3.3.1 Sparsity-based analysis of brain functional network 
Our group proposed and carefully validated another variant of model-free method, taking 

advantage of sparse GLM decomposition (K. Lee et al., 2011) together with that took advantage 

of both GLM and bootstrapping approaches suggested by Bellec et al. (Bellec et al., 2010). The 

method is entitled SPARK: Sparsity-based Analysis of Reliable k-hubness (K. Lee et al., 2016). 

SPARK is able to reliably detect the data-driven spatiotemporally pattern of resting-state fMRI 

with a focus on influential regions of the brain called connector hub regions.  

As opposed to graph theory metrics, likely biased by the use of binary connectome matrix analysis, 

the main originality of SPARK is its ability to carefully handle spatial overlap between brain 

networks, an important characteristic to estimate of hubs of brain networks. SPARK core 

decomposition consists of a data-driven sparse variant of GLM, able to extract overlapping 

network structure in individual resting-state fMRI (Figure 2.19) (K. Lee et al., 2011). When 

applied to an fMRI data set 𝑌 ∈ 𝑇 × 𝑉 (with T the time-points and V the voxels in grey matter), 
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sparse GLM, using the concept of k-SVD decomposes fMRI data on a data driven RSN dictionary 

𝛺 ∈T×N composed of N time-course atoms. The method allows estimating a sparse coefficient 

matrix X ∈N×V, carefully assessing the sparse contribution of the time course of a few atoms 

among N, with the corresponding remaining noise matrix E ∈T×V as below: 

 𝑦𝑖 = 𝛺𝑥𝑖 + 𝑒𝑖, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖: ‖𝑥𝑖‖0 ≤ 𝑘𝑖 , (2.15) 

where 𝑦𝑖 is a time course measured in a voxel i and each column of 𝛺 is an atom (time course) 𝜔𝑗. 

An atom is therefore a network-characteristic temporal feature that is shared by a subset of voxels 

[4]. ‖𝑥𝑖‖0 denotes the L0 norm of the vector 𝑥𝑖, i.e., limiting the number of non-zero elements to 

maximum 𝑘𝑖. Each column of X (𝑥𝑖) is a sparse code for the voxel i, where the number of non-

zeros in 𝑥𝑖 defines the sparsity level and the coefficients indicate the signal amplitudes of the atoms 

in each voxel, defining the concept of k-hubness estimation. 

To estimate the global dictionary 𝛺 and the sparse representation of each voxel in X the following 

optimization problem needs to be solved: 

 𝑚𝑖𝑛𝛺𝑥 ‖Y − 𝛺𝑋‖𝐹
2  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖‖𝑥𝑖‖0 ≤ 𝑘𝑜𝑝𝑡𝑖 (2.16) 

where ‖. ‖𝐹
2  denotes the Frobenius norm, and 𝑘𝑜𝑝𝑡𝑖  denotes the optimal estimation of sparsity for 

the voxel i. 

At the next step, a sparse dictionary learning algorithm called K-SVD (Aharon et al., 2006; 

Daubechies et al., 2009) is used to solve the problem and to estimate (X) decomposed in N 

temporal and spatial patterns of resting state networks. Where in this context the SVD stands for 

Singular Value Decomposition and K indicates a sparsity assumption (k) applied for the algorithm. 

The sparsity assumption means that the inter-network connection is sparse and at most a small 

number of RSNs (k < 𝑘𝑜𝑝𝑡𝑖) can be identified for each voxel, suggesting the presence of a hub on 

which a few RSNs overlap, whereas a larger number of RSNs (N >> k) is considered to describe 

the whole brain activity. In the sparse GLM, k or 𝑘𝑜𝑝𝑡𝑖is the same for all voxels and its values are 

determined using a method called minimum description length (MDL), that provides the best 

trade-off between goodness-of-fit and model complexity (Saito, 1994). 

 

Figure 2.19. The sparse GLM model. The spars information is given by the sparse coefficient matrix (e.g., sparse 

design matrix), in which each column of the matrix represents a local code for each voxel. Each color in the figure 
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represents an exemplar RSN. The number of overlapping networks can be measured by counting the non-zeros in each 

column. Figure adapted from (K. Lee et al., 2016) 

Inspired by the work of Bellec et al., our group then proposed a stable/reliable version of k-SVD 

by adding CBB resampling of fMRI dataset, generating B reproducible replicated datasets from Y 

(RS-fMRI) data, leading to SPARK methods ensuring stable and reliable detection of connector 

hubs. K-SVD is therefore applied sequentially on each B resampled date. Pooling results from 

each replica, i.e., N×B (N=50, B=100) spatial maps, a k-means clustering algorithm (K = 20) is 

applied to obtain a stable sparse matrix (XS), by averaging the corresponding sparse codes in each 

cluster. The resulting matrix XS was not spared anymore (because of local averaging), and 

background noise was removed using thresholding. The resulting atom maps (spatial topography 

of the networks) are obtained by taking and mapping each row in thresholded XS. Finally, using a 

sparse GLM model, the BOLD signal in each voxel is modelled as a voxel-specific linear 

combination of k atoms, selected among N atoms from this stable data-driven dictionary. The 

“hubness” of each voxel was estimated by counting the number k of nonzero spatiotemporally 

overlapped resting state network describing the signal time course of each specific voxel (Figure 

2.20). In practice, hubness values are between 1 and 4–6. Our group has shown that SPARK is 

able to extract similar RSNs as other ICA and clustering approaches with hubness maps that are 

consistent with the literature (Figure 2.20). 

 

Figure 2.20. Summary description of SPARK framework. Figure adapted from (K. Lee et al., 2016) 

2.3 Summary  

In this chapter, we introduced the concept of brain functional organization spanning different 

spatial scales from molecular, voxel and regions, and network resolutions. At the micro-scale or 

molecular level, we summarized the main brain cell types and their contribution to signalling and 

generation of electrical potentials. In the following, we introduced the conventional human brain 

transcriptional atlas that provides opportunities for investigating the brain molecular process. Then 

we discussed the brain functional structures at the neuronal population scale and introduced the 
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major brain parcellation atlases. The anatomical and modular organization of the brain was 

discussed next, where we introduced its anatomical position and functions. We introduced the 

notion of brain functional connectivity described the most consistent resting-state brain networks 

reported in the literature. We reviewed graph theoretical approaches to characterize the brain 

network organization and topology, while describing the role of few functionally important brain 

regions, and notably hub regions. Finally, we reviewed several methodologies that have been 

proposed to study functional connectivity, including SPARK to measure brain functional hubness 

and MI-based hierarchical integration framework to measure brain functional integration. SPARK 

was used to estimate functional hubness in Manuscript 1 when assessing brain functional hubness. 

In manuscript 2, we considered four metrics from graph theory including eigenvector centrality 

and global efficiency, clustering coefficient and local efficiency, to estimate brain functional 

global and local centralities. In manuscript 3, we considered MI-based measures to quantify brain 

functional integration and segregation at network level. 
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Chapter 3: Manuscript 1 ― Multiresolution Metabolic Profile of 
Functional Hubness in the Resting Human Brain 

3.1 Context 

Whereas in Chapter 1 we discussed the main brain metabolic substrates, including glucose and 

oxygen metabolisms and the main neuroimaging techniques to probe them (PET and MRI), we 

then described in Chapter 2 the brain functional network organization, emphasizing the importance 

of functional hubs, which are highly connected regions that play an important role in brain 

functional integration.  

Few key studies addressing these important questions as well as linking brain metabolism and 

brain network structures have been described in our first state-of-the-art chapters I (Barabási, 2009; 

Baronchelli et al., 2013; Leontiev et al., 2013; Liang et al., 2013; Shokri-Kojori et al., 2019; D. 

Tomasi et al., 2013; Vaishnavi et al., 2010). Most of those studies were suggesting that highly 

functionally connected regions are associated with high metabolic and vascular costs and that these 

associations are network-dependent. In particular, Tomasi et al (D. Tomasi et al., 2013) proposed 

a power-law model to link functional hubness and glucose metabolism, based on biophysical 

arguments. They quantified cerebral metabolic rate of glucose (CMRGlc) from 

fluorodeoxyglucose (FDG) positron emission tomography (PET) data using an extension of 

Sokoloff’s model (Sokoloff et al., 1977). To measure functional hubness, they quantified global 

and local degree of functional connectivity from blood oxygen level-dependent (BOLD) functional 

magnetic resonance imaging (fMRI) data using graph theory. Liang et al (Liang et al., 2013) 

considered a linear regression model to relate the functional hubness of brain regions with cerebral 

blood flow. Cerebral Blood Flow (CBF) was quantified using arterial spin labelling (ASL) data 

and a one-compartment model. Using graph theory metrics applied to resting state BOLD fMRI 

data, they quantified functional connectivity strength, efficiency and betweenness centrality. They 

showed that CBF was an adequate surrogate for cerebral metabolism by correlating their CBF 

results to CMRGlc and cerebral metabolic rate of oxygen (CMRO2) map estimated using PET in 

a different cohort (Vaishnavi et al., 2010). Both these studies were carried out at the voxel-scale 

of the brain. 

In this chapter, we are presenting the first original contribution of this PhD thesis, where we 

examined the metabolic and vascular properties of functional hubness using multimodal data 

combining FDG PET, and BOLD and calibrated fMRI data. We quantified glucose metabolism 

(CMRGlc) from FDG PET, oxygen metabolism (CMRO2) as well as other 

physiological/hemodynamic components of interest, namely CBF, and oxygen extraction fraction 

(OEF), from calibrated fMRI data. We quantified functional hubness from BOLD fMRI data. We 

tested the hypothesis that there exists a concave down increasing power-law model that relates 

metabolic, vascular (CMRGlc, CMRO2, CBF, and OEF) and functional hubness properties. The 

semi-quantitative SUVR model was used to estimate normalized voxel-maps of glucose 

metabolism (CMRGlc), the generalized calibration model (GCM) proposed by Gauthier et al. 

(Gauthier & Hoge, 2012) was used to estimate voxel-wise maps of oxygen metabolism (CMRO2), 

CBF and OEF. The SPARK method (K. Lee et al., 2016), an original methodology to estimate 

functional hubness in a reliable manner at the voxel level, while carefully modeling spatial overlap 

between brain networks, was used to estimate voxel-wise maps of functional hubness. We 

examined our hypothesis across large-scale networks nested over two spatial resolutions from the 
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Multiresolution Intrinsic Segmentation Template (MIST) atlas using a multi-level Bayesian model 

(Gelman et al., 2020). 

3.2 Abstract 

Brain regions exhibit heterogeneous metabolic properties and varying functional connectivity 

levels within and between networks. Understanding the links between functional hubness (ℋ) and 

oxygen/glucose metabolism is of primary importance. 

We investigated whether increase in ℋ  is associated with a non-linear increase in cerebral 

metabolic rate of glucose/oxygen (CMRGlc/CMRO2), within large-scale resting-state networks 

(RSNs). 

We recruited 19 healthy adults who underwent RS BOLD and gas-inhalation based calibrated 

fMRI, and Fluoro-Deoxy-Glucose (FDG) PET acquisitions. Whole-brain maps of ℋ  were 

estimated from BOLD data (K. Lee et al., 2016). CMRGlc maps were obtained from FDG-PET 

data. CMRO2 maps were obtained from calibrated fMRI data (Gauthier & Hoge, 2012). A 

multiresolution atlas was used to define nested RSNs at two spatial resolutions (7 and 20 

networks), and a Bayesian multilevel power-law model was fitted to infer increase trends. 

Evidence ratios were estimated to assess quantitatively the hypothesis of a power-law model 

increase. At the whole-brain-scale, we found extreme (respectively very strong) evidence in favour 

of the hypothesis for CMRGlc (respectively CMRO2). At the 7-networks-scale, we reported 

moderate-to-extreme evidence. At the 20-networks-scale, we found anecdotal-to-extreme 

evidence in favour of the hypothesis within 20/20 networks for CMRGlc and within 17/20 

networks for CMRO2. CMRO2 and cerebral blood flow maps were exhibiting similar non-linear 

trends, whereas the oxygen extraction fraction map was not varying much as a function of ℋ.  

In conclusion, we demonstrated that increase in functional hubness was associated with non-linear 

increase in glucose/oxygen metabolism, suggesting hubs efficiency regarding metabolism. 

3.3 Significance Statement 

We proposed novel perspectives of macroscale/mesoscale brain function-metabolism relationships 

by linking the hubness of brain regions to their glucose/oxygen metabolism across different spatial 

scales using multimodal neuroimaging data. We adopted a sparse time-series decomposition 

strategy to estimate hubness as a count number of overlapping networks a brain region relates to, 

thereby complementing traditional graph-theory-based approaches. We used a general calibrated 

model of quantitative MRI data to derive oxygen metabolism, thereby complementing traditional 

PET studies. We formulated a Bayesian workflow on high-dimensional voxel data, thereby 

complementing traditional region-based or frequentist approaches. We reported specific 

differences and similarities linking PET-glucose and MRI-oxygen metabolism to sparsity-based 

measures of hubness, suggesting hubs are overall efficient when dealing with both glucose/oxygen 

metabolism, while exhibiting regional variabilities. 

3.4 Introduction 

The human brain is a complex dynamical system exhibiting functional activity patterns at multiple 

spatiotemporal scales (Bassett & Sporns, 2017) with energy demands accounting for at least 20% 

of body energy consumption (Magistretti & Allaman, 2015). Linking the structure of brain 

functional activity and the associated metabolism of key molecules, as oxygen and glucose, is of 

primary importance since these are the main sources of energy sustaining neuronal activity. In 
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humans, these studies are preferentially done during resting-state (RS) conditions thanks to non-

invasive neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) or 

Positron Emission Tomography (PET). Together, these techniques allow to probe at a macroscale 

of typically 2-mm isotropic voxel resolution, or within brain parcels (around 10 mm radius), 

whole-brain network dynamics, through slow hemodynamic fluctuations measured using fMRI, as 

well as glucose and oxygen cerebral metabolism (Bassett & Sporns, 2017; Magistretti & Allaman, 

2015). At such macroscales, coherent neuronal assemblies (brain regions) parsimoniously 

interconnect, forming large-scale networks that support several functions of the brain such as 

motion control, cognition, and perception (Bassett & Sporns, 2017; Magistretti & Allaman, 2015). 

Within those brain networks, functional hubs are defined as specific brain regions exhibiting dense 

connections to other regions. Whereas provincial hubs are ensuring dense connections within a 

specific resting state network, connector hubs are promoting global and hierarchical 

communications between distant functionally specialized resting state networks (Pessoa, 2014). 

Indices of functional hubness (ℋ) can be used to quantitively assess the relative importance of a 

brain region within such underlying hierarchical network architecture. These indices indicate 

connectivity levels of brain regions to the rest of the brain on a continuous or discrete scale (K. 

Lee et al., 2016, 2018; J. Xu et al., 2016). In addition, multiresolution brain parcellations could be 

useful to summarize the higher-order organization principles that link together brain regions across 

multiple spatial scales (Arslan et al., 2018; Messé, 2020; Urchs et al., 2019). The recent literature 

highlights that the interplay between glucose and oxygen cerebral metabolism, and their 

interrelations with ℋ across different spatial scales remain poorly understood (Fulcher & Fornito, 

2016; Hahn et al., 2020; Nugent et al., 2015; Shokri-Kojori et al., 2019; D. Tomasi et al., 2013; 

Vaishnavi et al., 2010; Voigt et al., 2022).  

In this study, we investigated how the resting cerebral metabolic rate of glucose (CMRGlc) and 

the resting cerebral metabolic rate of oxygen (CMRO2) of specific brain regions may relate to their 

functional hubness ℋ , and how these relationships differ across the known large-scale RS 

networks at multiple spatial scales. We used standardized uptake value ratios (SUVR) of 2-

[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) PET data to quantify CMRGlc maps. We 

used a generalized calibration model (GCM; (Gauthier & Hoge, 2012)) with gas-manipulation 

applied during dual Arterial Spin Labeling (ASL) / Blood Oxygen Level-Dependent (BOLD) data 

acquisition to quantify absolute baseline CMRO2 maps. To quantify ℋ, we used SPARK, Sparsity-

based Analysis of Reliable k-hubness, a method developed and validated by our team (K. Lee et 

al., 2016, 2019) and successfully applied in few clinical applications (K. Lee et al., 2018, 2022). 

Complementing traditional graph-theory-based approaches, SPARK method provides voxel maps 

of ℋ from RS BOLD fMRI data through sparse linear decomposition, carefully modeling spatial 

overlap between brain networks, and advanced bootstrapping strategies to ensure reliability of ℋ 

maps. In SPARK, ℋ values are small discrete numbers (e.g., typically 1 to 10) indicating the 

number of networks a brain region or a specific voxel connects to. Our central hypothesis is that 

we expect a concave down increasing power-law model (i.e., 𝑦 = Α𝑥Β , 0 < Β < 1) between 

CMRGlc or CMRO2 and ℋ at the whole-brain level and across brain networks at multiple spatial 

resolutions. This hypothesis was based on results suggested by Tomasi et al. (D. Tomasi et al., 

2013), who showed this type of power-law relationship using PET-CMRGlc and graph-theoretic-

based indices of fMRI-ℋ. Here, we take a more comprehensive approach, using calibrated MRI 

to fill in this picture by investigating the relationship between ℋ and CMRO2, cerebral blood flow 

(CBF) and oxygen extraction fraction (OEF) resulting from CMRO2 mappings to investigate the 

power-law scaling, in addition to CMRGlc. We used a multi-resolution group-level parcellation 
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template of RS BOLD fMRI networks, the MIST atlas (Urchs et al., 2019), covering the cortical, 

subcortical, and cerebellar gray matter to describe power-law scaling across two resolutions with 

7 and 20 (fully nested) networks (MIST7 and MIST20 respectively). To quantitatively test our 

hypotheses, we developed a Bayesian workflow (Gelman et al., 2020) which provides principled 

ways to make flexible inferences from all available data while accounting for their structure and 

different sources of variability. 

3.5 Results 

In this study, we reported the results for 19 healthy subjects who each completed RS MRI and PET 

acquisitions. Our analyses were restricted to grey-matter voxels in the cortex, cerebellum, 

amygdala, caudate, hippocampus, nucleus accumbens, pallidum, putamen, and thalamus, and 

unless otherwise specified, these voxels will constitute the “whole brain” here. 

3.5.1 Functional hubness 
A voxel-based measure of functional hubness (ℋ) was estimated for each subject from their fMRI 

data, using SPARK method (K. Lee et al., 2016). This method provided voxel maps of discrete 

numbers indicating the number of brain networks explaining the BOLD signal within a specific 

voxel. The total number of networks estimated by SPARK was 20 for all participants. After 

removing components exhibiting remaining artefacts of physiological fluctuations of non-neuronal 

origins (around 12 to 15 components on average), SPARK was able to identify, from the data and 

at the single subject level, consistent RSN similar to the ones usually reported in the literature. 

Figure 3.1A shows the spatial distribution of most frequently identified ℋ values across subjects. 

Voxels with ℋ = 1 were most frequent in cerebellum, superior frontal, and central regions, while 

those with ℋ = 2 were most frequent in occipital and cingulate isthmus regions, , and those with 

ℋ = 3 in cuneus, precuneus, and superior frontal regions. Voxels with the largest ℋ, 6 ≥ ℋ ≥
4, were prominent in the precuneus. When taken altogether, voxels with ℋ ≥ 2 were highly 

probable in the cuneus, inferior parietal, and lingual regions (see also Figure 3.7). We further 

determined that although there was variability between subjects, all ℋ  between 1 and 6 were 

consistently found within all the networks of MIST after pulling the data of all subjects together, 

as shown in Figure 3.2 (see also Figure 3.8). We also noted that there was a peak distribution for 

the whole-brain at ℋ = 2 and for the networks of MIST at either ℋ = 2 (mainly for the default-

mode, frontoparietal, and visual networks), whereas the peak of hubness distribution was found 

for ℋ = 1 for the other networks. In addition, all frequency distributions decayed non-linearly 

when considering only ℋ ≥ 2 values. 

3.5.2 CMRGlc, CMRO2, CBF and OEF 
PET data were used to estimate CMRGlc using pons-referenced SUVR, and quantitative MRI data 

were used to obtain CMRO2, CBF, and OEF using the GCM (Gauthier & Hoge, 2012). Figure 

3.1B shows average maps for CMRGlc, CMRO2, CBF, and OEF. We found that whole-brain 

values were 1.8 ± 0.5 for CMRGlc (SUVR), 150 ± 40 µmol / (100 g) / min for CMRO2, 51 ± 10 

mL / (100 g) / min for CBF, and 0.38 ± 0.05 for OEF (mean ± SD calculated on the average 

volumes; see also Table 3.4 for regional estimates). We also determined that for all four maps, the 

highest regional cortical values were found in the pericalcarine, and the subcortical regional peaks 

were found in the putamen (see also Figure 3.9). Spatial correlation analyses between CMRGlc, 

CMRO2, CBF, and OEF average maps, as shown in Table 3.1, further revealed significant positive 

correlations between all maps. In particular, the highest correlation was between CMRO2 and CBF 

(0.935), and the lowest between CMRGlc and OEF (0.254). 
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3.5.3 Bayesian multilevel power-law model fits 
To analyze relationships between ℋ  and CMRGlc, CMRO2, CBF, or OEF, we formulated a 

Bayesian multilevel regression model for the power-law model given by 𝑦 = Α𝑥Β  where 𝑥 

(represents ℋ; predictor variable) and 𝑦 (represents CMRGlc, CMRO2, CBF, or OEF; response 

variables) are observed, and Α and Β are estimated. We formulated an inference scheme based on 

Hamiltonian Monte Carlo methods, allowing us to incorporate our prior knowledge that our 

subjects belong to a homogeneous population and also that functional networks are interdependent 

and organized across multiple functionally meaningful spatial resolutions. In this way, we derived, 

a posteriori, global estimates for Α and Β corresponding to the whole brain of a hypothetical 

“mean” subject, as well as entity estimates indicating how different subjects (i.e., their whole brain) 

or different brain networks (i.e., the networks of MIST7 or MIST20) deviate from the whole brain 

of the mean subject. Note that in this context, “whole brain” and “subject” are actually synonyms. 

Also note that in the Bayesian literature, global estimates commonly refer to population-level 

effects, while entity estimates refer to group-level effects (in our case subjects and networks being 

the grouping variables). See also Materials and Methods and Supplementary Information for 

further details. In this study, only the scaling exponent Β was a parameter of interest, and we 

analyzed the exponents obtained for the whole brain of the mean subject as well as the exponents 

for the different networks of the mean subject. 

If a model is a good fit, then we should be able to use it to generate data very similar to the observed 

data (posterior predictive checks). Figure 3.3A shows summaries of posterior predictive 

distributions overlayed on the observed data within the whole brain for each response variable. We 

observed that the models could reasonably well fit the bulk of their corresponding data (e.g., mean 

or median) and the largest errors actually occurred at the tails (mainly for extreme quantiles; see 

also Supplementary Information and Table 3.7, Table 3.8, and Table 3.9 for model summary and 

detailed numerical diagnostics). Mispredictions (i.e., here negative y-axis values) were found for 

CMRO2 only and they were negligible in number (only appearing in the 𝑞-quantiles with 𝑞 >
0.95). We also noted that after ℋ = 3, there were decreasing and constant trends both from the 

observed and predicted data (see also Figure 3.10, Figure 3.11, Figure 3.12, and Figure 3.13) which 

were driven by the fact that ℋ ≥ 4 are less commonly detected in most subjects and networks (as 

seen before, e.g., Figure 3.8). 

3.5.4 Multilevel power-law scaling  
Brain mappings of posterior median of scaling coefficients, i.e., Β, within the networks of MIST7 

and MIST20 are represented in Figure 3.3B, suggesting highest effect sizes for CMRGlc, 

comparable effect sizes for CMRO2 and CBF, and smallest effect sizes for OEF. A median estimate 

is convenient being, by definition, the 50th-percentile of a distribution. Hence, at the scale of 

MIST7, the hypothesis of a concave down increasing power-law model was the most likely within 

all networks and all maps (i.e., CMRGlc, CMRO2, CBF, and OEF), whereas at the scale of 

MIST20, few networks were more likely to adhere to a decreasing power law model for CMRO2, 

CBF, and especially OEF. Regions within posteromedial and perigenual anterior cingulate, and 

ventromedial prefrontal cortices were mainly the one exhibiting the largest Β values for CMRGlc, 

CMRO2, and CBF.  

Figure 3.4 shows the results for our central hypothesis of a concave down increasing power-law 

model, i.e., 0 < Β < 1  for each response variable. The hypothesis was tested by estimating 

evidence ratios (𝐹; i.e., the posterior probability under the hypothesis against its alternative) and 
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the ratios were reported according to the following scale. No evidence when 𝐹 = 1, anecdotal 

when 1 < 𝐹 ≤ 3 , moderate when 3 < 𝐹 ≤ 10 , strong when 10 < 𝐹 ≤ 30 , very strong when 

30 < 𝐹 ≤ 100, and extreme when 𝐹 > 100. For 𝐹 < 1, the same scale was applied to �̅� = 1 𝐹⁄  

instead to evaluate the evidence of the alternative hypothesis, i.e., (𝐵 < 0) ∪ (𝐵 > 1). See also 

Materials and Methods. 

Within the whole brain (tile 1 in Figure 3.4), we determined that the evidence for each response 

variable was in favor of our hypothesis of a concave down increasing power-law model. The 

evidence was evaluated as extreme for CMRGlc and CBF, very strong for CMRO2, and anecdotal 

for OEF. When analyzing the posterior summaries with medians (𝑀) and 89% highest density 

credible intervals (89𝐶𝐼), we further determined that the scaling exponents were overall very small 

(between 0 and 0.02) suggesting that on average maximum relative increases in CMRGlc, CMRO2, 

CBF, or OEF (i.e., max(𝑦) min(𝑦)⁄ − 1) within the whole brain during RS conditions as a 

function of ℋ was small (e.g., about 3.6% when exponent = 0.02). Here, we found 𝑀 = 0.021 

and 89𝐶𝐼 = [0.012, 0.029]  for CMRGlc, 𝑀 = 0.012  and 89𝐶𝐼 = [0.003, 0.022]  for CMRO2, 

𝑀 = 0.011  and 89𝐶𝐼 = [0.005, 0.018]  for CBF, and quite smaller 𝑀 = 0.002  and 89𝐶𝐼 =
[−0.005, 0.009] for OEF. 

Within the networks of MIST7 (tiles 2–8 in Figure 3.4), evidence remained all in favor of the 

hypothesis of a concave down increasing power-law model for all response variables, but at 

different levels. For CMRGlc, evidence was extreme within all networks except the cerebellum 

(CER_1) where it was moderate. For CMRO2, evidence was strong-to-extreme within all networks 

except for the somatomotor network (MOTnet_3) where it was moderate. For CBF, evidence was 

strong-to-extreme within all networks. For OEF, evidence was anecdotal within all networks 

except for the default mode network (DMnet_5) where it was moderate. When comparing posterior 

median estimates, the greatest exponents were found within default mode network (DMnet_5) for 

all response variables. 

Within the networks of MIST20, results were exhibiting more variability. For CMRGlc, our results 

are confirming our hypothesis of a concave down increasing power-law model for all networks, 

whereas the alternative hypothesis was found for few networks when considering CMRO2 and 

OEF maps. Figure 3.4 illustrates such detailed results for four networks (tiles 9–12; see also Figure 

3.14 for full results). For example, for OEF, within the basal ganglia and thalamus (BG_THAL_1), 

evidence was extreme in favor of the hypothesis a concave down increasing power-law model. For 

CMRO2 (respectively OEF), within the frontoparietal task control network (FPTCnet_7), evidence 

was strong (respectively extreme) in favor of the alternative hypothesis (here more specifically the 

hypothesis of a decreasing power-law model). For CMRGlc, within the motor cerebellum 

(MOCER_17), evidence was anecdotal in favor of the hypothesis. For each response variable, 

within the perigenual anterior cingulate and ventromedial prefrontal cortices (PGACcor_V#_5), 

the evidence was extreme in favor of the hypothesis for each response variable.  

3.5.5 Power-law scaling differences 
Figure 3.5 provides evidence of scaling differences between the networks of MIST7 for each 

response variable (see also Figure 3.15, Figure 3.16, Figure 3.17, and Figure 3.18 for MIST20). 

Analyzing the median of the posterior differences (i.e., the color of the circles; 𝑀) together with 

the 89% highest density credible intervals (i.e., the numbers on the upper diagonals; 89𝐶𝐼 ) 

suggested the following. For CMRGlc, the extent of power-law scaling within the default mode 

network (DMnet_5) was the highest, while within the cerebellum (CER_1) it was the lowest. 
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Analyzing the maximum between probability of positive difference and probability of negative 

difference (i.e., the numbers on the diagonals or the size of the circles) for each pairwise difference 

further provided evidence of scaling differences. Specifically, for CMRGlc, the maximum between 

probability of positive difference and probability of negative difference ranged 0.54–1.00 (i.e., 

evidence ratios 𝐹 ≥ 0.54 0.46⁄ ≈ 1.17 ), indicating anecdotal-to-extreme evidence , and in 

particular, evidence was extreme in favor of a positive difference between DMnet_5 and CER_1 

(coordinates [2, 1] or [1, 2] in the matrix; 𝑀 = 0.024, 89𝐶𝐼 = [0.014,0.033]). Likewise, for 

CMRO2, the maximum between probability of positive difference and probability of negative 

difference ranged 0.50–0.79 (i.e., 3.76 ≳ 𝐹 ≥ 1), indicating no-to-moderate evidence, and in 

particular, evidence was moderate in favor of a negative difference between the somatomotor 

network (MOTnet_3) and DMnet_5 (coordinates [5, 2] or [2, 5] in the matrix; 𝑀 = −0.004, 

89𝐶𝐼 = [−0.020,0.004]). For CBF, those probabilities ranged 0.52–0.86 (i.e., 6.14 ≳ 𝐹 ≳ 1.08), 

indicating anecdotal-to-moderate evidence, and in particular, evidence was moderate in favor of a 

negative difference between MOTnet_3 and DMnet_5 (coordinates [5, 2] or [2, 5] in the matrix; 

𝑀 = −0.005 , 89𝐶𝐼 = [−0.015,0.002] ). For OEF, the probabilities ranged 0.50–0.78 (i.e., 

3.55 ≳ 𝐹 ≥ 1 ), indicating anecdotal-to-moderate evidence, and in particular, evidence was 

moderate in favor of a negative difference between the frontoparietal network and visual 

downstream (FPnet_VIS#_6) and DMnet_5 (coordinates [3, 2] or [2, 3] in the matrix; 𝑀 =
−0.002, 89𝐶𝐼 = [−0.012,0.003]). 

Figure 3.6 (formatted as Figure 3.4) provides evidence of scaling differences between response 

variables within the whole brain, all the networks of MIST7, and four networks of MIST20 (see 

Figure 3.19 for complementary results). Within the whole brain, the evidence for the hypothesis 

of (a positive) scaling difference between CMRO2 and CBF was anecdotal, indicating a similarity 

between CMRO2 and CBF. The evidence of scaling differences was moderate between CMRGlc 

and CMRO2, and strong between CMRGlc and CBF, whereas the evidence was strong-to-extreme 

for all differences involving OEF suggesting overall smaller scaling coefficients for OEF. When 

analyzing the networks of MIST7, we found overall similar patterns than those reported for the 

whole brain, with some variabilities. For instance, the evidence of positive scaling differences 

between CMRGlc and CMRO2 was very strong within the frontoparietal and visual downstream 

networks (FPnet_VIS#_6), strong within default mode (DMnet_5) and mesolimbic (LIM_net2) 

networks, suggesting highest increase rates for CMRGlc, whereas it was mostly anecdotal or 

moderate within the other networks. However, it is worth mentioning that within the cerebellum 

(CER_1), we reported very different patterns when compared to other networks, since the evidence 

of all scaling differences were mostly anecdotal or moderate. Besides, within CER_1 only, the 

scaling exponent for CMRGlc was smaller than the one found for CMRO2 or CBF. Results were 

more variable within the networks of MIST20. For example, we found very strong and extreme 

evidence for the scaling differences between CMRO2 and CBF within BG_THAL_1 (positive 

difference) and FPTCnet_7 (negative difference), and mostly anecdotal evidence for the scaling 

differences within MOCER_17. 

3.6 Discussion 

In this study, we analyzed BOLD fMRI, gas-inhalation based ASL/BOLD, and FDG PET data for 

19 healthy subjects during resting-state conditions. We derived voxel maps of functional hubness 

from BOLD fMRI data. We estimated quantitative baseline measures of CMRO2, CBF and OEF 

from calibrated fMRI data, and computed relative maps CMRGlc from FDG PET data, using 

SUVR normalization. Hubness maps were derived using a multivariate time-series sparse 
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decomposition strategy, SPARK (K. Lee et al., 2016), rather than graph theory, therefore allowing 

to estimate specifically the number of RS networks (from 1 to 6) associated with each voxel. We 

are proposing a unique investigation involving not only several maps characterizing the 

metabolism and hemodynamic properties of the healthy brain (CMRGlc, CMRO2, CBF and OEF), 

allowing a detailed comprehensive overview of these important mechanisms, together with a new 

method to estimate functional hubness as a discrete/sparse number of networks involved in each 

voxel. Finally using an advanced multilevel Bayesian model implemented using Hamiltonian 

Monte Carlo simulations, we were able to carefully assess our hypothesis of a concave down 

increasing power-law model linking metabolism/hemodynamic maps with functional hubness, at 

the whole brain level and across two nested spatial scales: (i) within a parcellation composed of 7 

consistent RSN (MIST7) and (ii) within a parcellation composed of 20 consistent RSN (MIST20).  

First of all, we determined that our results were overall consistent with those from previously 

published studies. At the whole-brain-level, our results using SPARK showed that more than 70% 

of voxels were associated with two or more RS networks. At the network-level, two classes of 

networks could qualitatively be defined based on the peak of their hubness frequency distribution. 

Namely, on one hand, the default mode, frontoparietal, and visual networks, within which most 

voxels (peak of frequency distribution) were associated with the activity of two networks, and on 

the other hand, the cerebellum, mesolimbic, somatomotor, ventral attention, salience, basal 

ganglia, and thalamus networks within which most voxels were linked to the activity of a single 

network. Besides, a broad distribution of hubness values (here, ranging from 1 to 6) could 

consistently be found within all considered functional brain divisions. At the same time, brain 

regions with the highest hubness were the fewest in number and further adhered to a short-tailed 

or heavy-tailed frequency distribution. These distributions of hubness measures within the normal 

brain have been reported before using various methods (Bagarinao et al., 2020; K. Lee et al., 2016; 

Najafi et al., 2016; Power et al., 2014; Yeo et al., 2014; Zucca et al., 2019) , while providing us 

the opportunity to reproduce our previously published SPARK results (K. Lee et al., 2016) on new 

data. It is worth mentioning that SPARK analysis applied on the present dataset, was not only able 

to extract from the data typical RSN maps reported in the literature (N = 20 networks identified by 

SPARK here, results not shown), but also provided reliable hubness voxel maps by counting how 

many of those networks were involved in each voxel (see between subject’s probability maps 

represented in Figure 3.1A). The fact that many methodologies support such findings reinforce the 

hypothesis that these features of brain network organization are not merely artifacts of the methods 

used to estimate them. Together these results provide evidence that RS networks could be 

characterized by their hubness profiles, making hubness measures of fMRI data interesting 

correlates of brain network integrity. For most previous published studies assessing the 

correspondence between functional connectivity/hubness and glucose metabolism (M. Bernier et 

al., 2017; Nugent et al., 2015; Palombit et al., 2022; Shokri-Kojori et al., 2019; Thompson et al., 

2016; D. Tomasi et al., 2013) or with cerebral blood flow (Leontiev et al., 2013; Tak et al., 2015), 

conventional functional connectivity metrics were considered, including amplitude of low 

frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity strength, or 

metric derived from graph theory (e.g. degree centrality, node strength). Most of those metrics are 

derived from Pearson correlation between the BOLD time series of different voxels/regions. In 

their basic format, graph theory metrics suffer from requiring the influence analysis of connectome 

density threshold or the specification of binary versus weighted graph models. Therefore 

overlap/intersection between brain networks is not carefully handled using primitive graph 

theoretical pipelines. Moreover, when standard Pearson correlation is considered as a measure of 



83 

 

similarity to define the edges, graph theory approaches are most of the times also biased by the 

size of the different networks (impacting the number of correlations between voxels). Participation 

coefficient (Power et al., 2013) has been proposed to address these issues and was considered in 

Palombit et al (Palombit et al., 2022). By counting a sparse/discrete number of networks involved 

in each voxel, SPARK has been designed to carefully model spatial overlaps between networks, 

while handling network size issues. Bagarinao et al (Bagarinao et al., 2020) recently proposed an 

original approach similar to SPARK, counting for every voxel-based seed functional connectivity, 

the amount with spatial overlap with a template of RSN. SPARK is a complete data-driven 

approach, and it is not relying on a template definition of RSN. It is worth mentioning that SPARK 

has been successfully applied to study reorganization of brain networks and hubness in epilepsy 

(K. Lee et al., 2018) and changes in hubness associated with arousal fluctuation (K. Lee et al., 

2022) .  

Combining FDG PET and calibrated fMRI, our results showing linear associations between 

(relative) PET CMRGlc map and (quantitative) MRI CMRO2, CBF, and OEF maps corroborated 

earlier studies based on PET-ASL or PET-only data with different mapping methods (Cha et al., 

2013; Hyder et al., 2013; Liang et al., 2013; Shokri-Kojori et al., 2019; Vaishnavi et al., 2010). In 

particular, our results suggested the existence of spatial covariations between CMRGlc, CMRO2, 

CBF, and OEF voxel maps while the relative regional differences of OEF values across the brain 

were rather small. Our results also supported the potential role of CBF, as a proxy for oxygen 

metabolism, since the two maps were exhibiting very high spatial correlations, a direct 

consequence of the underlying multiplication factor linking the two quantity within the GCM 

model (Gauthier & Hoge, 2012). CMRGlc and CBF maps were also exhibiting moderate spatial 

correlations, results that are in agreement with previous studies suggesting that CMRGlc PET 

findings could be predicted from ReHo functional measures estimated from resting state fMRI (M. 

Bernier et al., 2017). It is important to note, that comparatively to other published studies, our 

cohort was composed of healthy young adults (mean ± SD age = 24.0 ± 4.3 y; 9 females). Although 

we only reported here global features of our dataset, it could be desirable to further characterize 

detailed features of CMRGlc mappings from SUVR, and CMRO2, CBF, OEF mappings from the 

GCM, and their interrelations, given that such data are rarely acquired together on a population of 

healthy young adults. These further detailed investigations were falling outside the scope of our 

present study comparing hubness and metabolism. In general, our non-invasive multimodal dataset 

offers promising opportunities to guide future theoretical and experimental designs to study 

function-metabolism macroscale relationships in normal aging as well as in populations affected 

with disease conditions.  

Our main goal in this study was to relate functional hubness to CMRGlc CMRO2, CBF, and OEF 

within the known RS networks of healthy human brains. We chose to model the relationship thanks 

to a multilevel power-law model with parameters that can vary by networks across nested spatial 

scales, starting from the whole brain as the top-most parent network. Our central hypothesis was a 

concave down increasing power-law model following a previous study by (D. Tomasi et al., 2013) 

and further confirmed in Shokri-Kojori et al (Shokri-Kojori et al., 2019). The power-law model is 

interesting as it reflects a natural belief that as brain regions establish more functional connections, 

their local increase rate (in CMRGlc, CMRO2, CBF, or OEF) get smaller when compared to linear 

increase, therefore indicating increased efficiency of hubs when dealing with glucose/oxygen 

metabolism and blood flow. Previous studies investigating such relationship between network 

properties and metabolism/hemodynamic features, mainly considered CMRGlc measured using 
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FDG PET (Palombit et al., 2022; Shokri-Kojori et al., 2019; Thompson et al., 2016; D. Tomasi et 

al., 2013) or with cerebral blood flow using ASL (Leontiev et al., 2013; Tak et al., 2015) with 

network properties, whereas we are proposing a complete picture involving CMRGlc, CMRO2, 

CBF, and OEF to be compared with an advanced reliable method to measure hubness (SPARK). 

Recent studies have also benefitted from simultaneous PET/MRI recordings to study this important 

mechanism characterizing the healthy brain (Palombit et al., 2022; Thompson et al., 2016), 

whereas our study like several others studied baseline features from PET and MRI data recorded 

in different sessions. However since we used calibrated MRI to measure CMRO2 and CBF 

(Gauthier & Hoge, 2012) and not PET (Vaishnavi et al., 2010), our baseline CMRO2 measures 

were indeed (almost) simultaneously acquired with our fMRI functional hubness maps. Despite 

the fact that hubness values ℋ were difficult to model as discrete values covering a limited range 

(typically from 1 to 6), our proposed multilevel Bayesian model was able to characterize accurately 

the intrinsic variability of our data at several levels, allowing us to make statistical inferences to 

assess the relevance of our hypothesis, while allowing to compare how power law increase rates 

𝐵 were impacted by a specific network structures (from MIST7 or MIST20 atlases) or by a specific 

modality of interest (CMRGlc, CMRO2, CBF or OEF). Overall, our results suggested that a power-

law model was plausible and there were indeed trends of increases at the level of the whole brain 

as well as at the levels of networks, suggesting that increased connectivity could be associated 

with efficient a metabolic, and blood circulation and supply cost. At the whole-brain-level, our 

results provided non-ambiguous evidence of power-law increases for CMRGlc, CMRO2, and CBF. 

For OEF, we also found evidence in favor of the hypothesis of a power-law increase, but it was 

very small when compared to other explored modalities. Our results are therefore confirming 

previous findings for glucose metabolism (Shokri-Kojori et al., 2019; D. Tomasi et al., 2013), 

while showing for the first time that such power law model could also be applied to characterize 

oxygen metabolism and CBF. Shokri-Kojori et al (Shokri-Kojori et al., 2019) proposed the 

promising concepts of relative power and relative cost to further investigate relationship between 

glucose metabolism and the logarithm of local functional connectivity density. Applying such a 

quantification approach on our multimodal data could have been of great interest but was falling 

outside the scope of present study.  

Further detailed analyses at the network level provided some refinements to the power-law 

relationships, and in particular our results revealed that power-law scaling operated differently 

within distinct functional brain divisions. For all measures including OEF, we found definite 

evidence of power-law increases within the default mode network, and most precisely within the 

perigenual anterior cingulate, ventromedial prefrontal, and middle temporal cortices (see results 

for MIST7 networks for DMnet_5, FPnet_VIS#_6, LIMnet_2 in Figure 3.4). When comparing 

network-level estimates of power-law scaling exponents to that of the whole brain, we determined 

that for both CMRGlc and CBF, network-level exponents for the default mode, frontoparietal and 

mesolimbic networks were greater than the whole-brain-level exponent. These results for CMRGlc 

and CBF are in agreement with the findings in previous studies that investigated the overlap 

between indices of functional connectivity strengths and quantitative PET CMRGlc or CBF (Liang 

et al., 2013; Shokri-Kojori et al., 2019; Tak et al., 2015; D. Tomasi et al., 2013). For CMRO2, the 

network-level exponents within the default mode, mesolimbic, and visual networks were greater 

than the whole-brain-level exponent while for OEF, the network-level exponents within the default 

mode, ventral attention, salience, basal ganglia and thalamus networks were greater than the 

whole-brain-level exponent, even if power law increase coefficients were clearly smaller for OEF 

when compared to other modalities (see Figure 3.6). In general, such differences of power-law 
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scaling between networks could also be expected, owing to the fact that different RS networks 

possess characteristically different molecular and cellular makeup (Magistretti & Allaman, 2015). 

Overall our results for CMRGlc, CMRO2 and CBF are suggesting that the largest power law 

increase rates 𝐵, were found within the so called intrinsic networks involved (default mode, fronto-

parietal, mesolimbic networks) as opposed to extrinsic network dealing mainly with primary 

sensation (visual, auditory) and motor (Doucet et al., 2011; Mesmoudi et al., 2013). Our results 

are showing that more connector hubs are involved within those intrinsic networks (cf. probability 

of maps of ℋ in Figure 3.1) and that those hubs are efficient in term of glucose and oxygen 

metabolism as well as blood flow supply. Specific properties of extrinsic versus intrinsic networks 

are commonly found within the network literature, suggesting larger SUVR glucose metabolism 

results within the intrinsic networks (Palombit et al., 2022), or specific involvement of aerobic 

glycolysis (Vaishnavi et al., 2010). Using simultaneous FDG-PET/fMRI data acquisitions and 

graph theory metrics of functional hubness (degree centrality, nodes strength, betweenness 

centrality and participation coefficient), Palombit et al (Palombit et al., 2022) reported rather a 

moderate linear relationship between strength of functional connectivity and glucose metabolism, 

whereas such linear correlation was found stronger for connector hubs when compared to 

provincial hubs. It is important to mention that their proposed measure of hubness from graph 

theory were obtained by significantly thresholding the distribution of degree centrality values 

within the connectome matrix. Therefore, their analysis suggesting moderate linear relationship is 

taking into consideration only the tail of the distribution of hubness measures, which could 

typically correspond to ℋ ≥ 3 voxels in our study. It is also important to mention that since 

SPARK is estimating the amount of discrete spatial overlap between consistent resting state 

network, SPARK hubness values are mainly sensitive to connector hubness, suggesting long-

distance connection between brain networks. When considering the complete distribution of 

hubness values (ℋ ranging from 1 to 6) we found clear evidence of nonlinear a concave down 

increasing power-law model linking hubness and metabolism or blood flow. Restricting our 

analysis to the few voxels exhibiting the largest hubness values ℋ ≥ 3, could have suggested a 

similar moderate linear relationship as the one reported by Palombit et al (Palombit et al., 2022).  

Whereas our CMRGlc PET results could reliably be interpreted for all networks of MIST7 and 

MIST20 atlases, it is worth mentioning that our results for CMRO2, CBF, and OEF within 

networks that included portions of the precentral and postcentral gyri could be questionable due to 

ASL signal loss in those regions. Indeed, our results within frontoparietal task control, dorsal 

somatomotor, and lateral ventral attention networks indicated that trends of decreases (rather than 

increases) were likely to occur for CMRO2. These networks have in common the fact they include 

a significant portion of the slab masks used to exclude voxels due to low SNR of ASL data. They 

were also the only ones associated with evidence in favor of power-law decreases. Our analyses 

further revealed that within the networks that included the slab masks, CMRO2 results critically 

depended on OEF results more than CBF. This is understandable based on two factors: (i) first, 

given the fact that OEF maps are more error prone than CBF maps, being derived from a more 

sensitive numerical strategy (Bulte et al., 2012; Gauthier & Hoge, 2012), (ii) second, because 

CMRO2 was determined by a multiplicative model of CBF and OEF. Therefore, those results 

should be interpreted with caution and improvement of the ASL sequence might be considered to 

solve this issue in our future investigations.  

In this study, we also explicitly compared the power-law scaling exponents of the different 

measures within different functional brain divisions. Overall, largest power law increases rates 𝐵 
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lc were the greatest for CMRG within most RS networks, while the increase rates slightly smaller 

and similar for CMRO2 and CBF, and the smallest for OEF. Although all the comparisons were 

done objectively based on the analyses of posterior distributions, here we note that our 

comparisons including CMRGlc could benefit from further investigations. Indeed, any mismatch 

between CMRGlc and CMRO2 could be due to network-level differences in aerobic glycolysis, 

which is the production of lactate in the presence of oxygen (Vaishnavi et al., 2010). However, we 

could only make limited inferences here since our comparisons are made between relative PET 

CMRGlc, estimated using SUVR normalization, and quantitative MRI CMRO2 or CBF, even if 

comparisons were based on indices making abstraction of data units. As such, the observed 

differences might very well be explained by the specific physiological processes characterizing 

each modality. PET captures signal emanating intracellularly at the temporal scale of 30 minutes 

to an hour as phosphorylated FDG becomes trapped after being taken up by cells. On the other 

hand, ASL measures mostly signal from extracellular space elicited by water molecules that transit 

through the arterioles, capillaries, and into the brain tissue at the temporal scale of seconds to 

minutes (Thompson et al., 2016). Moreover, regarding the quantification of relative CMRGlc 

based on SUVR, it is important to underline that the computation of SUVR is time-dependent and 

it is non-trivially affected by different plasma clearance rates between subjects and study 

conditions, although it may improve the precision of PET (Thompson et al., 2016). All above 

factors may contribute to the observed power-law scaling differences between CMRGlc and 

CMRO2 or CBF. Future studies could account for these factors and investigate whether 

mismatches in network-level scaling exponents between CMRGlc and CMRO2 could be explained 

by correlates of lactate metabolism.  

We are also acknowledging several limitations in our proposed study. We are mentioning here 

three examples. First, concerning the choice of a non-linear model to relate hubness with CMRGlc, 

CMRO2, CBF, or OEF, power-law models, especially those with small scaling exponents are 

difficult to characterize when their domain is very restricted (here, between 1 and 6). Here, an 

exponential or a rational function such as the Michaelis-Menten model which both include a 

horizontal asymptote, could more likely equally well fit the data and potentially provide more 

biological insight by coding, for instance, biological saturation. Second, as most network-based 

study reported in the literature, our results critically depend on the choice of a brain parcellation 

atlas. Here we chose the MIST atlas as it enabled us to define fully nested networks across a broad 

range of resolutions while covering the cortex, the subcortical structures, and the cerebellum. 

Future studies could aim to investigate the influence of parcellations (Arslan et al., 2018; Messé, 

2020) as well as the influence of including subcortical and cerebellum signals for which signal-to-

noise ratios are usually lower than for the cortical ones. Third, our modular Bayesian modeling 

was designed to take advantage of the similarities between individuals and between brain networks 

to derive better estimates. For the sake of simplicity, critical covariates such as the age or sex of 

the subjects, or network neuronal densities were not included. Future studies involving larger 

samples could consider more complete models including such covariates of interest to better 

explain the observed relationships. 

3.7 Materials and Methods 

A summary of our analysis methods is provided here, with additional details provided in 

Supplementary Information. 
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3.7.1 Subjects and multimodal data acquisitions 
Nineteen right-handed healthy young subjects (mean ± SD age = 24.0 ± 4.3 y; 9 females; see 

demographics in Table 3.3) were recruited from the student community of Concordia and McGill 

universities and underwent imaging acquisitions including anatomical MRI, RS BOLD fMRI, and 

gas-inhalation-based calibrated fMRI, all with a GE Discovery MR750 3.0T, and RS FDG-PET 

with a GE Discovery PET/CT 690. Regarding participant selection, exclusion criteria included any 

history of chronic mental or physical illness, MRI or PET contradictions, possible pregnancy, and 

respiratory problems. Ethics approval was given by le Comité Central d'Éthique de la Recherche. 

Written informed consent was provided by all subjects and both MRI and PET acquisitions were 

completed within the imaging suite of PERFORM Centre. Detailed acquisition procedures are 

provided in Supplementary Information. 

3.7.2 Functional hubness quantification and analysis 
Conventional preprocessing of RS BOLD fMRI data was done using NIAK (Bellec et al., 2011) 

with a target template space provided by the ICBM 2009a nonlinear symmetric template (Fonov 

et al., 2011) at a 4-mm isotropic voxel resolution (see details in Supplementary Information). A 

voxel-based measure of functional hubness, ℋ ∈ ℕ, was then estimated for each subject from their 

preprocessed fMRI data, using the SPARK method (K. Lee et al., 2016). The method is detailed 

in Supplementary Information, and in brief, it attempts to reliably explain the BOLD time series 

of each voxel as a linear combination of few latent network time series through sparse linear 

modeling and advanced bootstrapping strategies. In the end, reliable estimates of network time 

series are obtained along with a sparse mixing weight matrix from which a count-number of RS 

networks can be assigned to each voxel, i.e., the so-called hubness maps. For our analyses, only 

voxels with 1 ≤ ℋ ≤ 6  were considered, given that voxels exhibiting ℋ ≥ 7 values were 

anecdotal. For each discrete hubness value (or interval), a probability map 𝒫(ℋ) was estimated 

by calculating for each voxel the relative frequency of occurrence of that ℋ value (or interval) 

across subjects. Hubness frequency distributions, within specific networks were also estimated. 

3.7.3 CMRGlc, CMRO2, CBF and OEF quantification and analysis 
FDG-PET data underwent conventional reconstructions using an iterative 3D ordered subset 

expectation maximization algorithm (Kinahan et al., 1998) and were used to derive CMRGlc maps 

using standardized uptake value ratios (SUVR) referenced by the pons (Byrnes et al., 2014). Dual 

BOLD-ASL data were preprocessed with FSL (Jenkinson et al., 2012). Preprocessed BOLD-ASL 

data and together with respiratory data were used to determine CMRO2, CBF, and OEF maps with 

a GCM as in (Gauthier & Hoge, 2012). In brief, the method proposed in (Gauthier & Hoge, 2012) 

formulates a generalised BOLD signal model within a numerical modeling framework to first yield 

estimates of OEF and absolute CBF maps, and subsequently estimates of absolute CMRO2 maps 

through a multiplicative model. ASL data were further analyzed to define a slab mask for each 

subject indicating the brain slices where temporal signal-to-noise-ratio drops were greater than 

50%, resulting in discarding some slices located at the very top of the head, since they were 

exhibiting poor SNR ASL data to be included in our analyses. At the end, CMRGlc, CMRO2, CBF, 

and OEF maps, together with the slab masks were all resampled to the target MRI template space 

used for hubness quantification at a 4-mm isometric voxel resolution. See Supplementary 

Information for additional details. 

3.7.4 Brain masking and parcellation 
All analyses were performed in the ICBM 2009a symmetric template space at a 4-mm isometric 

voxel resolution. The brain voxels were labeled according to both the Mindboggle (Manera et al., 
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2020) and the MIST atlases (Urchs et al., 2019). The Mindboggle atlas was used to discard voxels 

that are not grey-matter voxels in the cortex, cerebellum, amygdala, caudate, hippocampus, 

nucleus accumbens, pallidum, putamen, or thalamus. The MIST atlas was used to define fully 

nested brain networks at two levels of spatial resolutions involving respectively 7 (MIST7) and 20 

(MIST20) networks. For CMRO2, CBF and OEF maps only, the intersection between slab masks 

were used to exclude additional grey-matter voxels. In the end, only labeled voxels with valid ℋ 

values (i.e., ranging between 1 and 6), and valid CMRGlc, CMRO2, CBF, and OEF values (i.e., 

positive) were kept for further analyses. See Supplementary Information for additional details. 

3.7.5 Surface mapping and brain visualization 
For visualization purposes the ICBM 2009c symmetric template (Fonov et al., 2011) was used. 

We used the Human Connectome Project pipelines (Marcus et al., 2011) to reconstruct a surface 

for the template. Volume-to-surface mappings as well as brain volume and surface visualizations 

were all performed using the Connectome Workbench software (Marcus et al., 2011). 

3.7.6 Bayesian multilevel power-law analysis 
Let 𝑦𝑖,𝑗,𝑘,𝑙 > 0 be an observation of a response variable (i.e., CMRGlc, CMRO2, CBF, or OEF) at 

the 𝑖-th voxel of the 𝑗-th subject, within the 𝑘-th network of MIST20, within the 𝑙-th network of 

MIST7, and let 𝑥𝑖,𝑗,𝑘,𝑙 ∈ ℕ
∗ be the corresponding observation of the main predictor variable (i.e., 

ℋ). Here, 𝑖 ∈ ⟦1, 𝑁𝑗⟧, 𝑗 ∈ ⟦1,19⟧, 𝑘 ∈ ⟦1,20⟧, 𝑙 ∈ ⟦1,7⟧, 𝑁𝑗 is the number of voxels for the 𝑗-th 

subject (see Table 3.5 for an overview of sample sizes). Let us also note that since MIST20 

networks are fully nested within MIST7 networks, there exists a surjective function 𝑓20
7  that maps 

a network of MIST20  to MIST7  so that in fact 𝑙 = 𝑓20
7 (𝑘). We assumed the model given by 

𝑦𝑖,𝑗,𝑘,𝑙 ~ Skew𝒩 (𝜇𝑗,𝑘,𝑙 = Α𝑗,𝑘,𝑙𝑥𝑖,𝑗,𝑘,𝑙
Β𝑗,𝑘,𝑙 , 𝜎𝑗 , 𝛼𝑗)  where Skew𝒩  is the skew-normal density (a 

generalization of the normal density) with mean 𝜇, standard deviation 𝜎, and shape 𝛼. The skew-

normal density was chosen to reflect our assumption that the conditional responses are most likely 

skewed. While the parameters Α  and Β  were specified to vary by subjects and by networks, 

parameters 𝜎 and 𝛼 varied by subjects only. Denoting by 𝒩(. , . ) the normal density parametrized 

with mean (first argument) and standard deviation, we specified Β𝑗,𝑘,𝑙 ~ 𝒩(Β̅ + Β𝑗
sub + Β𝑘

MIST20 +

Β𝑙
MIST7, 𝜎𝑗,𝑘,𝑙

Β ). Doing so provided us with Β̅ as an estimate for the whole brain of the “mean” 

subject (𝒲ℬ̅̅ ̅̅ ̅), Β𝑗
sub as an estimate for the whole brain of the 𝑗-th subject coding deviation of the 𝑗-

th subject from 𝒲ℬ̅̅ ̅̅ ̅, Β𝑘
MIST20 as an estimate for the 𝑘-th network within MIST20 of the “mean” 

subject coding deviation from the 𝑙-th network within MIST7, and Β𝑙
MIST7 as an estimate for the 𝑙-

th network within MIST7 of the “mean” subject coding deviation from 𝒲ℬ̅̅ ̅̅ ̅. In this study, only 

the multilevel scaling exponents Β̅, (Β𝑘
MIST20)

𝑘
, and (Β𝑙

MIST7)
𝑙
 were considered of interest. See 

Supplementary Information for full modeling details. The model was implemented in Stan and 

inferences were made using the No-U-Turn sampler variant Hamiltonian Monte Carlo (Carpenter 

et al., 2017). Model fits and analyses were done primarily with brms ((Bürkner, 2017) (see Table 

3.6 for sampling specification). Model diagnostic was done graphically by analyzing plots of 

simulated datasets from the posterior predictive distributions overlayed on the observed datasets 

as well as numerically (see Supplementary Information for details). 

Posterior distributions were summarized by their median (𝑀), and their 89% highest density 

credible interval (89𝐶𝐼). Assessing the extent of power-law scaling for each response variable (i.e., 

CMRGlc, CMRO2, CBF, or OEF) within the whole brain or a network 𝑛 of MIST7 or MIST20, 
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was done by characterizing the posterior distribution of Β̅, Β̅ + Β𝑛
MIST7 or Β̅ + Β𝑓207 (𝑛)

MIST7 + Β𝑛
MIST20 

respectively. In addition, if 𝑑 denotes one of such posterior distributions, assessing the existence 

of a concave down increasing power-law model, i.e., 0 < Β < 1, was done by estimating an 

evidence ratio (𝐹) as the ratio of the posterior probability of 0 < 𝑑 < 1 to the posterior probability 

of (𝑑 < 0) ∪ (𝑑 > 1)  (i.e., the alternative hypothesis). Such ratios were further reported 

according to the following scale (see also (Jeffreys, 1998)). No evidence when 𝐹 = 1, anecdotal 

when 1 < 𝐹 ≤ 3 , moderate when 3 < 𝐹 ≤ 10 , strong when 10 < 𝐹 ≤ 30 , very strong when 

30 < 𝐹 ≤ 100, and extreme when 𝐹 > 100. For 𝐹 < 1, the same scale is applied to �̅� = 1 𝐹⁄  

instead to characterize the evidence of rather choosing the alternative hypothesis, i.e., (𝑑 < 0) ∪
(𝑑 > 1). When calculating 𝐹, the entire posterior distribution rather than a percentage of it was 

used. Assessing the pairwise differences of power-law scaling between two distinct networks 𝑛1 
and 𝑛2  of MIST7 or MIST20 for each response, was then done by characterizing the posterior 

distribution of Β𝑛1
MIST7 − Β𝑛2

MIST7  or Β𝑓207 (𝑛1)
MIST7 − Β𝑓207 (𝑛2)

MIST7 + Β𝑛1
MIST20 − Β𝑛2

MIST20 . Likewise, assessing 

the pairwise differences of power-law scaling between two distinct response variables 𝑟1 and 𝑟2 
(e.g. CMRGlc versus CMRO2) within the whole brain or within a network 𝑛  of MIST7  or 

MIST20, was done by characterizing the posterior distribution of Βr1
̅̅ ̅̅ − Βr2

̅̅ ̅̅  or Β𝑛,𝑟1
MIST7 − Β𝑛,𝑟2

MIST7 or 

Β𝑓207 (𝑛),𝑟1
MIST7 − Β𝑓207 (𝑛),𝑟2

MIST7 + Β𝑛,𝑟1
MIST20 − Β𝑛,𝑟2

MIST20. 

3.8 Figures and Tables 

 

Figure 3.1 (A) Functional hubness (ℋ) probability (𝒫) maps for ℋ = 1, ℋ = 2, ℋ = 3, and ℋ ≥ 4. For each map 

𝒫(ℋ), a voxel codes the relative frequency (0–1) of ℋ across subjects, and the color-bars indicate the smallest non-
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null and largest relative frequencies. (B) Average maps taken across subjects for CMRGlc in SUVR, CMRO2 in units 

of µmol / (100 g) / min, CBF in units of mL / (100 g) / min, and OEF. (A) and (B) The same set of three parasagittal 

slices in the left hemisphere (at -3.8, -31.1, and -58.4 mm) is shown every time. See also Figure 3.7 and Figure 3.9 for 

additional slices. 

 

Figure 3.2 Functional hubness (ℋ) frequency distributions within the whole brain and within two selected networks 

of MIST7 and of MIST20. The selected networks from MIST7 and MIST20 are those exhibiting the lowest (top row) 

and highest (bottom row) average proportion of voxels with ℋ = 6. The frequencies (i.e., y-axes) range between 0 

and 1. The indicated number of voxels on each tile are the means taken across subjects. The blue circles are the 

frequencies for each subject and only non-null frequencies are shown (e.g., though very small, there are a few voxels 

with ℋ = 6  within BG_THAL_1). The yellow bars and their whiskers are the mean and standard deviation 

respectively of frequencies taken across subjects. See also Figure 3.8 LIMnet_2: mesolimbic network; DMnet_5: 

default mode network; BG_THAL_1: basal ganglia and thalamus; FPTCnet_7: frontoparietal task control network. 

 

Figure 3.3 (A) Graphical posterior predictive checks. Red colors are the original observations (in the entire dataset), 

and blue ones are the predictions. To summarize the distribution of the data for every ℋ, we overlaid for each 

distribution four vertical lines with different thicknesses, to represent equal-tailed credible intervals at 50%, 80%, 
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95%, and 99%, from thickest to thinnest respectively. Blue shaded areas correspond to the credible intervals at 50%, 

80% and 95%. Horizontal black lines are the median estimates. See also Figure 3.10, Figure 3.11, Figure 3.12, and 

Figure 3.13 for further detailed results . (B) Brain mappings of the estimated posterior median of scaling exponents 

within MIST7 and MIST20 for CMRGlc, CMRO2, CBF, and OEF. The same set of two parasagittal slices in the left 

hemisphere (at -18.5, and -10.8 mm) is shown every time and highlights the cerebellum, amygdala, caudate, 

hippocampus, nucleus accumbens, pallidum, putamen, and thalamus. The color-bar is global for all figures. 

 

Figure 3.4 Posterior summaries of scaling exponents within the whole brain, all the networks of MIST7 and four 

networks of MIST20. The colored vertical lines delimit the 89% highest density credible intervals of, and the black 

horizontal lines are the median of the estimated posteriors. The number on the left side of each vertical line indicates 

probability that the scaling exponent is between 0 and 1 (i.e., the probability of a concave down increasing power-

law) and the corresponding text indicates an interpreted evidence ratio. A star symbol at the end of a text (i.e., when 

probabilities are less than 0.5) indicates that the interpreted evidence ratio applies to the alternative hypothesis (i.e., 

non-concave down increasing power-law). Note that the probability values reported here as 0.00 or 1.00 are not true 

zeros or ones. See also Figure 3.14. MIST labels are detailed in the text as well as in Table 3.2. 



92 

 

 

Figure 3.5 Posterior summaries of scaling differences between the networks of MIST7 for CMRGlc, CMRO2, CBF, 

and OEF. The comparisons ROW ≥ COLUMN indicate that the difference was calculated between the posterior of 

ROW and COLUMN. Here we report comparisons only for the lower triangular. The color-bars are median estimates 

of posterior differences. The numbers on the upper diagonals give the lower (L) and upper (U) bounds of the 89% 

highest density credible intervals of the posterior differences. The size of each circle represents probability of direction 

(i.e., maximum between probability of positive difference and probability of negative difference), the horizontal tick 

marks on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle 

indicate if the probability is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest (L) 

and highest (U) probability of directions found on each row. Note that the probability values reported here as 1.00 

are not true ones. See also Figure 3.15, Figure 3.16, Figure 3.17, and Figure 3.18. MIST labels are detailed in Table 

3.2. 
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Figure 3.6 Posterior summaries of scaling differences between responses within the whole brain, all the networks of 

MIST7 and four networks of MIST20. The colored vertical lines delimit the 89% highest density credible intervals of, 

and the black horizontal lines are the median of the estimated posteriors. The number on the left side of each vertical 

line indicates probability of positive difference and the corresponding text indicates an interpreted evidence ratio. A 

star symbol at the end of a text (i.e., when probabilities are less than 0.5) indicates that the interpreted evidence ratio 

applies to the hypothesis of negative difference instead of positive. Note that the probability values reported here as 

0.00 or 1.00 are not true zeros or ones. See also Figure 3.19. The labels of MIST20 are detailed in Table 3.2. 

Table 3.1 Spatial Pearson’s linear correlation (𝜌) analyses between the average maps shown in Figure 3.1.B. The * 

symbol indicates two-tailed p-values smaller than 0.05. P-values for Pearson's correlation was computed using a 

Student's t distribution for a transformation of the correlation (MATLAB’s corr function). 

Variables 𝝆 

CMRO2 CBF 0.935* 

CMRO2 OEF 0.831* 

CBF OEF 0.702* 

CMRGlc CBF 0.570* 

CMRGlc CMRO2 0.429* 

CMRGlc OEF 0.254* 
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3.9 Supporting Information 

3.9.1 Materials and Methods 

3.9.1.1 Multimodal data acquisitions 
Participants were asked to avoid sugary, alcoholic, or caffeinated drinks for at least two hours, and 

to not have eaten any food for at least 4 hours before data acquisitions. All data acquisitions took 

place in the imaging suite of PERFORM Centre (Concordia University). Data acquisitions 

included an anatomical MRI, followed by a 10-minute eyes-opened resting-state (RS) blood 

oxygen level-dependent (BOLD) fMRI, followed by an 18-minute gas-inhalation-based calibrated 

fMRI, and followed by a 45-minute eyes-closed static RS 2-[fluorine-18]-fluoro-2-deoxy-D-

glucose (18F-FDG) PET. There was a 60-minute gap between the calibrated fMRI and PET 

acquisitions (post-radiotracer-injection period) during which participants stayed in a RS condition 

in a calm environment. 

3.9.1.1.1 Anatomical MRI  
High-resolution structural images were acquired using a 3D sagittal T1-weighted (T1w) MPRAGE 

sequence with the following parameters: TE = 3.18 ms; TR = 4,500 ms; TI = 8,160 ms; flip angle 

= 12°; 256 × 256 acquisition matrix, 192 slices; 1 mm isotropic voxel. 

3.9.1.1.2 BOLD fMRI 
RS BOLD fMRI data were acquired with the following sequence parameters: length = 10 min; 

field of view (FOV) = (2,400 mm) × (240 mm); TR = 2,300 ms; TE = 30 ms; 3.5 mm isotropic 

voxel. 

3.9.1.1.3 Gas-inhalation-based calibrated fMRI 
Calibrated fMRI data were acquired using a dual-echo pseudo-continuous arterial spin labeling 

(pCASL) sequence with the following parameters: TR = 4,150 ms; TE1 = 8.4 ms; TE2 = 30 ms; 

alpha = 90°; 4 mm × 4 mm in-plane resolution and 16 slices of 7 mm (1 mm slice gap) on a 64 × 

64 matrix; post-labeling delay = 1,650 ms; flip angle of labeling pulse = 25°; tagging duration = 

1.6 s. In addition, four ℳ0 images were acquired with the same parameters except TR = 10,000 

ms; TE = 8.4 ms. 

Gas challenges were applied to make iso-metabolism changes in blood flow and BOLD signal, 

and to estimate ℳ the calibration parameter corresponding to the maximum possible increase in 

BOLD signal from baseline (Hoge, 2012). A low concentration of CO2 (5%), i.e., a hypercapnic 

challenge, was applied to stimulate iso-metabolism vasodilation and CBF increase to achieve a 

controlled, partial washout of venous deoxyhemoglobin (dHb) and the maximal BOLD response 

ℳ. A high concentration of O2 (80%), i.e., a hyperoxic challenge, was applied to model the dHb 

concentration by taking the arterial O2 content before and after hyperoxic manipulation from end-

tidal respiratory data. 

A computer-controlled gas system was used to control mixing concentration of the gases and their 

delivery to the MRI room. The respiratory and breathing data of each subject were monitored and 

sampled using a physiological monitoring system MP160 BIOPAC unit (BIOPAC Systems Inc., 

Goleta, California, USA). Throughout the experiment, the BIOPAC AcqKnowledge software was 

used on the console of the scanner to constantly monitor participants’ partial pressure of CO2 

(PCO2), partial pressure of O2 (PO2), as well as heart and respiration rates. An oximeter was also 

connected to the output of the system to control the flow rate and the oxygen content of the 

outgoing gases. At the beginning of the experiment, subjects were fitted with a non-rebreathing 
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face mask (Hudson RCI, #1059, Temecula, California, USA) connected to the gas controller 

machine with the CO2100C and O2100C modules of BIOPAC through soft circuits. These modules 

were used to sample the output of participants’ O2 and CO2 respiratory content and were also 

calibrated in advance to the partial pressure of water (47 mmHg). Subjects were asked to breathe 

through their nose to ensure only expired gas was sampled in BIOPAC modules, using an 

indwelling nasal cannula (15 mm, AirlifeTM Nasal Oxygen Cannula #001321, Cardinal Health, 

McGraw Park, Illinois, USA). 

The first 4 minutes of acquisitions with medical air inhalation was considered as RS data. The 

acquisition continued with three functional runs, each including different gas manipulations. 

During each gas manipulation run, a single two-minute block of gas was preceded by a block of 

three minutes of medical air. The three gas manipulations used were: 80% O2 (hyperoxia), 21% 

O2 + 5% CO2 + 74% N2 (hypercapnia), and 50% O2 + 5% CO2 + 45% N2 (simultaneous 

hyperoxia/hypercapnia). End-tidal O2 and CO2 values were then selected manually from measured 

continuous PO2 and PCO2 respiratory traces with 200 Hz sampling rate. The first middle 10 breaths 

of the four-minute baseline period and the last 10 breaths of each two-minute gas-inhalation block 

was averaged as baseline and gas manipulation end-tidal values, respectively. 

3.9.1.1.4 18F-FDG PET 
Prior to PET acquisition, a catheter was placed in the vein of the subjects’ arms by a PET 

technician, to inject 4 MBq/kg of the 18F-FDG radiotracer. Afterwards, subjects remained in a RS 

condition in a calm environment. The PET/CT imaging started approximately 1-hour post-

injection using a hybrid PET/CT system (axial FOV = 157 mm). The CT portion of the imaging 

was performed right before the PET portion. Subjects were instructed to remain still during the 

acquisition, and a padded head holder was used to ensure no motion during the 60 minutes scan. 

3.9.1.2 Multimodal data preprocessing 

3.9.1.2.1 Anatomical MRI 
The anatomical T1w images were preprocessed using CIVET version 2.1.0 (Ad-Dab’bagh et al., 

2006) and included: T1 non-uniformity correction, transformation to stereotaxic space (target = 

ICBM 2009a symmetric template), brain mask extraction, segmentation, and tissue classification 

in stereotaxic space. 

3.9.1.2.2 BOLD fMRI 
The preprocessing of RS fMRI data was done using NIAK version niak-boss-0.13.0 (Bellec et al., 

2011) and included: slice timing correction, motion correction with rigid-body motion estimation 

and co-registration to T1w-space, high-pass temporal filtering with a cut-off of 0.01 Hz, regression 

of confounds of no interest (including the average white matter signal, the average ventricles 

signals, motion parameters, PCA-based estimation of the global signal and scrubbing of time 

frames with excessive motion (Power et al., 2014)), spatial smoothing (FWHM = 8 mm). The 

fMRI volumes were resampled to the ICBM 2009a symmetric template (Fonov et al., 2011) at a 

4-mm isotropic voxel resolution with trilinear interpolations by combining a linear transformation 

from fMRI to T1w spaces and a non-linear transformation from T1w to ICBM template space. A 

mask was applied to restrict further analyses to grey-matter voxels. 

3.9.1.2.3 Gas-inhalation-based calibrated fMRI 
The calibrated fMRI data were preprocessed with FSL version 5 (Jenkinson et al., 2012), including 

motion-correction, spatial smoothing (gaussian kernel FWHM = 8 mm) and high-pass filtering 
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with cut-off frequency 0.01Hz. Analyses were restricted to intra-cerebral voxels after applying a 

brain mask extracted from averaged BOLD signals using FSL. A spatial mask was applied to 

remove large veins by identifying voxel exhibiting relative BOLD increases greater than 10% in 

the unsmoothed data corresponding to CO2 inhalation. The large arteries exhibiting decreases in 

pre-T1-correction absolute CBF that were greater than 50 mL / (100 g) / min during O2 inhalation 

were also masked out from the analyses. An additional slab mask for each subject was defined by 

analyzing the temporal SNR of ASL signals and for each subject, the last slices towards to the top 

of the brain with SNR drops greater than 50% were therefore discarded from further analyses. 

3.9.1.2.4 FDG-PET 
PET images were reconstructed using an iterative 3D ordered subset expectation maximization 

algorithm (Kinahan et al., 1998) involving corrections for scatter, random, dead time, attenuation, 

and normalization. A (scanner specific) 3D point spread function (GEMS name = Sharp-IR) based 

on experimental measurements of point sources acquired in different positions within the 3D-PET 

FOV, was modeled and coded in a system matrix and projection space to improve the 

reconstruction scheme. The reconstructions were done on a 192 × 192 × 47 grid from 30 minutes 

of static images and on a 256 × 256 × 47 grid from six 5-minute frames, with a voxel size of 1.6 

mm × 1.6 mm × 3.25 mm, and with 3D trans axial filter = ramp, FOV = 20 cm, centered at x = 5 

cm and y = 5 cm, matrix size = 256 × 256. Reconstructed PET images together with T1w images 

were smoothed with a 3D Gaussian kernel where FWHM = 2 mm isotropic using minc-toolkit 

(Toolkit, 2019) (mincblur command) before being co-registered based on a multi-resolution 

strategy with 6 transformation parameters, maximizing mutual information as a similarity measure 

(minctracc command). In the end, the PET images were realigned to the ICBM 2009a symmetric 

template space at a 4-mm isotropic voxel resolution following the same procedure described for 

RS fMRI (i.e., combining linear and non-linear transforms). 

3.9.1.3 Multimodal data postprocessing 

3.9.1.3.1 Estimation of functional hubness 
Whole-brain voxel maps of functional hubness (ℋ) were estimated from RS BOLD fMRI data 

using SPARK method, as detailed in (K. Lee et al., 2016). The SPARK method attempts to reliably 

explain the BOLD time series of each voxel as a linear combination of few latent network time 

series through sparse linear modeling and advanced bootstrapping strategies. Here, a circular block 

bootstrap was used to generate 𝐵 = 100 replicates of the original RS fMRI data with a random 

block size ranging between 10 and 30 timeframes. This resampling strategy was done to preserve 

temporal structures in the fMRI data. Then, a sparse dictionary learning algorithm, based on a 

variant of K-SVD, was applied on each replica to obtain sparse representations of the data with 𝑁 

spatiotemporal patterns of RS networks. 𝑁 was estimated from the data using the methodology 

proposed in Lee et al (K. Lee et al., 2018) , and resulting in a total of N temporal atoms, or N RS 

networks. Doing so, SPARK allows modeling explicitly sparse spatial overlap between RS 

networks, while bootstrap resampling allows reliability and reproducibility of the results. Pooling 

results from each replica, the resulting 𝑁 × 𝐵  spatial maps were clustered using k-means 

clustering to obtain a stable set of 𝑁  spatial maps 𝑋 . Assuming a gaussian density on the 

distributions of the elements of 𝑋, a threshold was estimated (significance level = 5%) and applied 

on 𝑋  providing 𝑁  background-noise-free spatial maps �̃� , resulting in a reliable sparse coding 

matrix. A manual screening of the 𝑁  maps in �̃�  further ensured that maps contaminated by 

physiological artefacts would not be included in further analyses. In the end, functional hubness 
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voxel maps were obtained by counting the number of non-zeros elements in �̃�, resulting in a 

discrete number ranging from 0 to 𝑁. 

Given that hubness maps were obtained at the subject level, we restricted our analyses to the voxels 

where 1 ≤ ℋ ≤ 6 as this range was consistently found both in the whole brain of at least 80% of 

all subjects, and in all the networks of MIST20 parcellation after pulling the data of all subjects 

together. 

3.9.1.3.2 CMRO2, CBF, and OEF quantification 
CMRO2, CBF, and OEF maps were estimated from gas-inhalation-based calibrated fMRI data as 

follows. The perfusion and BOLD signals were isolated respectively from the series of first and 

second echoes acquired in the ASL data, using linear surround subtraction and addition methods 

respectively (Aguirre et al., 2002). Absolute CBF maps in units of mL / (100 g) / min were 

determined from the perfusion signals using the procedure described in (J. Wang et al., 2003). The 

fractional changes in BOLD and CBF signals were computed for each gas manipulation by fitting 

a linear model to the respective signals with normalized regressors obtained from end-tidal 

respiratory data. Regarding the regressors, they were convolved with a single-gamma 

hemodynamic response function with parameters described in (Glover, 1999), and they were then 

corrected by a time delay estimated from average signal across the grey matter to account for the 

delay between the respiratory and neuronal signal. From the CBF maps, absolute CMRO2 maps in 

units of µmol / (100 g) / min were estimated as CMRO2 = CaO2 × CBF × OEF where CaO2 is the 

total arterial O2 content determined as the sum of O2 bound to hemoglobin and O2 dissolved in 

plasma. CaO2 was determined from PO2 from the averaged end tidal O2 taken from the respiratory 

data (Chiarelli, Bulte, Piechnik, et al., 2007). OEF was estimated using the GCM described in 

(Gauthier & Hoge, 2012). In the end, CMRO2, CBF, and OEF maps, as well as the slab masks 

obtained during preprocessing, were all resampled to the ICBM 2009a symmetric template space 

at a 4-mm isometric voxel resolution. The resampling was done with cubic B-spline interpolations 

using ANTs (Avants et al., 2011) by combining a transformation from subjects’ native to subjects’ 

T1w spaces with a transformation from subjects’ T1w space to the T1w space of the ICBM 

template. Once in the analysis template space, for each CMRO2, CBF, and OEF map, voxels still 

exhibiting negative or null values were flagged to be discarded from further analyses. A global 

slab mask calculated as the intersection between all slab masks was used to further flag voxels to 

be discarded from all analyses. 

3.9.1.3.3 CMRGlc quantification 
CMRGlc maps were estimated from PET data using standardized uptake value ratios (SUVR) 

referenced by the pons (Byrnes et al., 2014). First, SUVR maps were estimated as SUVR =
𝐶𝑡 (ID 𝑤𝑡⁄ × 𝐷)⁄  where 𝐶𝑡 is the decay-corrected activity concentration in the tissue (in MBq/cc 

which can be converted to MBq/kg by dividing by tissue density 1 g/cc), ID is the injected dose 

(in MBq), and 𝑤𝑡 is the subject’s weight (in kg). 𝐷 = 2−Δ𝑡 𝑇1 2⁄⁄  is a decay factor with Δ𝑡 being the 

time elapsed between injection and scanning (approximately 1 hour), and 𝑇1 2⁄  is the half lifetime 

of the 18F-FDG radiotracer (6582 s). Then, SUVR maps, i.e., CMRGlc maps were determined by 

normalizing SUVR maps with mean uptakes in the pons. The pons was readily delineated in T1w 

space during anatomical preprocessing. 

3.9.1.4 Brain masking and parcellation 
The common analysis space for all brain volumes of interest, i.e., ℋ, CMRGlc, CMRO2, CBF, 

and OEF, was provided by the ICBM 2009a symmetric template (Fonov et al., 2011) at a 4-mm 
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isovoxel resolution. All grey-matter voxels of the analysis space were labeled according to both 

the Mindboggle (Manera et al., 2020) and the MIST (Urchs et al., 2019) atlases. The Mindboggle 

atlas was originally defined in the ICBM 2009c symmetric template space at a 1-mm isometric 

voxel resolution. It was resliced to the analysis space with nearest interpolations using FreeSurfer 

(Fischl, 2012; mri_convert command). A modal dilation of zero voxels was performed using FSL 

(fslmaths command) to ensure that all grey-matter voxels would be labeled. Any subcortical voxel 

with a label different from the amygdala, caudate, hippocampus, nucleus accumbens, pallidum, 

putamen, and thalamus, was flagged to be discarded from further analyses. The MIST atlas was 

originally defined in the ICBM 2009b symmetric template space at a 3-mm isometric voxel 

resolution. The volume corresponding to the finest resolution of the atlas (MIST_ATOM) was 

resliced to the analysis space and dilated in the same way as Mindboggle. From there, two other 

resolutions of the atlas involving respectively 7 (MIST7) and 20 (MIST20) networks were derived 

by using the provided parcellation file (MIST_PARCEL_ORDER_ROI.csv). This procedure 

ensured the full nesting of networks across resolutions. In the end, only labeled voxels with valid 

ℋ, CMRGlc, CMRO2, CBF, and OEF were retained for further analyses. 

3.9.1.5 Bayesian multilevel power-law analysis 
Our goal was to formulate a multilevel regression model for the power-law model given by 𝑦 =
Α𝑥Β  where 𝑥  (representing ℋ ) and 𝑦  (representing CMRGlc, CMRO2, CBF, or OEF) are 

observed, and Α and Β are estimated. Considering that observations (i.e., voxel values) can be 

consistently grouped by subjects and into networks, we specified a fully crossed design where all 

subjects had the same set of networks together with a fully nested design where networks were 

further aggregated according to a hierarchical tree (i.e., the MIST atlas) with the whole brain as 

the top-most parent network. We did so in a way to obtain global estimates for Α  and Β 

corresponding to the whole brain (i.e., the union of all child networks) of a hypothetical “mean” 

subject, denoted 𝒲ℬ̅̅ ̅̅ ̅ (noting that in this context, “whole brain” and “subject” represent the same 

entity and are synonyms), as well as estimates indicating how the different subjects (i.e., their 

whole brain) or the different child networks deviate from 𝒲ℬ̅̅ ̅̅ ̅.  

3.9.1.5.1 Data 

Before fitting the model, the main predictor variable was non-linearly transformed with 𝑥 ↦ 𝑥𝛿  

where 𝛿 = ln(1 + 0.05) ln (max
𝑖
(𝑥𝑖) min

𝑖
(𝑥𝑖)⁄ )⁄ . Such transformation was done so to bring on a 

unit scale the increase rate parameter, i.e., Β, and it is exactly equivalent to directly scaling Β. The 

assumption behind the value of 𝛿 was that on average, maximum relative increases in resting 

CMRGlc, CMRO2, CBF, or OEF, i.e., (max
𝑖
(𝑥𝑖) min

𝑖
(𝑥𝑖)⁄ )

Β

− 1, are most likely ranging between 

0 and 10% (so centered at 5%). This assumption was based on the analysis of our datasets and a 

review of previously published studies with similar data (see Discussion). Given that min
𝑖
(𝑥𝑖) =

1 and max
𝑖
(𝑥𝑖) = 6 in the present study, 𝛿 ≈ 0.027. 

In addition, all response variables were brought to a unit scale as well through the linear mapping 

𝑦 ↦ (𝑦 −min
𝑖
(𝑦𝑖)) 𝜇𝑦⁄ + 1 where 𝜇𝑦 = 2 SUVR for CMRGlc, 𝜇𝑦 = 170 µmol / (100 g) / min 

for CMRO2, 𝜇𝑦 = 55 mL / (100 g) / min for CBF, and 𝜇𝑦 = 0.4 for OEF. The values 𝜇𝑦 roughly 

represented whole brain mean values, and they were chosen based on both the analysis of our 

datasets and a review of previously published studies with similar data (see Discussion). Such 
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mapping was done so to bring on a unit scale the baseline value with respect to the lowest ℋ value, 

i.e., Α. In this case, Α should on average be approximately equal to 2. Besides, the smallest 

observation of the response variables will be exactly equal to 1, and most observations should fall 

into the interval [1,3]. Adding an offset of 1 conveniently excluded null values. 

3.9.1.5.2 Model specification 
Let 𝑦𝑖,𝑗,𝑘,𝑙 > 0 be an observation of a response variable (i.e., CMRGlc, CMRO2, CBF, or OEF) at 

the 𝑖-th voxel of the 𝑗-th subject, within the 𝑘-th network of MIST20, within the 𝑙-th network of 

MIST7, and let 𝑥𝑖,𝑗,𝑘,𝑙 ∈ ℕ
∗ be the corresponding observation of the main predictor variable (i.e., 

ℋ). Here, 𝑖 ∈ ⟦1, 𝑁𝑗⟧, 𝑗 ∈ ⟦1,19⟧, 𝑘 ∈ ⟦1,20⟧, 𝑙 ∈ ⟦1,7⟧, 𝑁𝑗 is the number of voxels for the 𝑗-th 

subject (see also Table 3.5 for an overview of sample sizes), and we note that since the networks 

of MIST20 are fully nested within the networks of MIST7, there exists a surjective function 𝑓20
7  

that maps a network of MIST20 to MIST7 so that in fact 𝑙 = 𝑓20
7 (𝑘). 

We assumed the skew-normal model (being a generalization of the normal model able to handle 

skewness) given by 

𝑝(𝑦𝑖,𝑗,𝑘,𝑙|𝜉𝑖,𝑗,𝑘,𝑙, 𝜔𝑗 , 𝛼𝑗)

=
1

𝜔𝑗√2𝜋
exp(−

1

2
(
𝑦𝑖,𝑗,𝑘,𝑙 − 𝜉𝑖,𝑗,𝑘,𝑙

𝜔𝑗
)

2

)(1 + erf (𝛼𝑗 (
𝑦𝑖,𝑗,𝑘,𝑙 − 𝜉𝑖,𝑗,𝑘,𝑙

𝜔𝑗√2
))) 

𝜉𝑖,𝑗,𝑘,𝑙 = 𝜇𝑖,𝑗,𝑘,𝑙 − 𝛿𝑗𝜔𝑗; 𝜇𝑖,𝑗,𝑘,𝑙 = Α𝑗,𝑘,𝑙𝑥𝑖,𝑗,𝑘,𝑙
Β𝑗,𝑘,𝑙

 

𝛿𝑗 = √2 𝜋⁄ 𝛼𝑗 √1 + 𝛼𝑗
2⁄ ;𝜔𝑗 = 𝜎𝑗 √1 − 𝛿𝑗

2⁄  

Α𝑗,𝑘,𝑙 = 2 + 𝛾(Α̅ + Α𝑗
sub + Α𝑘

MIST20 + Α𝑙
MIST7) 

Β𝑗,𝑘,𝑙 = 1 + Β̅ + Β𝑗
sub + Β𝑘

MIST20 + Β𝑙
MIST7 

𝜎𝑗 = 𝜎 + 𝜎𝑗
sub 

𝛼𝑗 = �̅� + 𝛼𝑗
sub 

𝜉 is the location, 𝜔 is the scale, 𝛼 is the shape (or skewness), 𝜇 is the mean, and 𝜎 is the standard 

deviation of the skew-normal density. Α̅ and Β̅ are estimates for the whole brain of the “mean” 

subject, i.e., 𝒲ℬ̅̅ ̅̅ ̅. Α𝑗
sub and Β𝑗

sub are estimates for the whole brain of the 𝑗-th subject and they code 

the deviations of the 𝑗 -th subject from 𝒲ℬ̅̅ ̅̅ ̅ . Α𝑘
MIST20  and Β𝑘

MIST20  are estimates for the 𝑘 -th 

network within MIST20 of the “mean” subject and they code the deviations from the 𝑙-th network 

within MIST7, while Α𝑙
MIST7 and Β𝑙

MIST7 are estimates for the 𝑙-th network within MIST7 of the 

“mean” subject and they code the deviations from 𝒲ℬ̅̅ ̅̅ ̅. �̅� and 𝜎 are estimates for 𝒲ℬ̅̅ ̅̅ ̅, while 𝛼𝑗
sub 

and 𝜎𝑗
sub are estimates for the whole brain of the of the 𝑗-th subject and they code the deviations 

of the 𝑗-th subject from 𝒲ℬ̅̅ ̅̅ ̅. 

The skew-normal density which is a generalization of the normal density to handle data with 

skewness was chosen to reflect our assumption that the conditional responses are most likely 
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skewed. For instance, values in the subcortical structures or in the cerebellum are more likely to 

substantially contribute to the tails of the data distributions rather than to their bulks which are 

mainly ruled by cortical values. Therefore, the location 𝜉 and the scale 𝜔 were parametrized with 

the shape 𝛼 , the mean 𝜇 , and the standard deviation 𝜎  to allow the incorporation of prior 

knowledge more easily. Subject and network deviations with respect to the whole brain of a 

“mean” subject were modeled to reflect our assumption that subjects most likely belong to a 

homogeneous population although each subject is unique, and there exists a homogeneous 

structure shared between brain networks across multiple spatial scales although each network and 

each spatial scale are unique too. For the sake of simplicity, we assumed independence between 

the different levels of any grouping factor, as well as between the group-level parameters 

associated with the different levels of the same grouping factor. 

We specified the priors 

Α̅ ~ 𝑁(0,1); Α.
g ~𝑖.𝑖.𝑑 𝒩(0, 𝜏Α

g
); 𝜏Α

g
 ~ 𝒩+(0,0.5) 

Β̅ ~ 𝒩(0,1); Β.
g ~𝑖.𝑖.𝑑 𝒩(0, 𝜏Β

g
); 𝜏Β

g
 ~ 𝒩+(0,0.5) 

𝜎 ~ 𝒩+(𝛾, 𝛾); 𝜎.
sub ~𝑖.𝑖.𝑑 𝒩(0, 𝜏σ

sub); 𝜏σ
sub ~ 𝒩+(0, 𝛾) 

�̅� ~ 𝒩(0,2); 𝛼.
sub ~𝑖.𝑖.𝑑 𝒩(0, 𝜏𝛼

sub); 𝜏𝛼
sub ~ 𝒩+(0,0.5) 

where erf  is the error function, 𝑔 ∈ {sub,MIST20,MIST7} , 𝒩  is the normal distribution 

parametrized with mean (first argument) and standard deviation, 𝒩+  is the half-normal 

distribution parametrized with mean (first argument) and standard deviation, and 𝛾 = 0.25. For 

OEF only, we supplied Β̅ ~ 𝒩(−1,1) rather than Β̅ ~ 𝒩(0,1). The hyperparameters 𝜏 capture 

variability between group means. 

When specifying priors, we assumed that on a unit scale, dispersion about mean response values 

are, on average, unlikely to be larger than 0.5, so much so that Α and 𝜎 could be scaled by 𝛾 =
0.5 2⁄ = 0.25  (the division factor 2 accounts for two standard deviations where 95% of the 

observations would lie within, if normally distributed). For OEF, the specification of 

Β̅ ~ 𝒩(−1,1) reflected our assumption that the increase rate is most likely close to zero (recall the 

offset of 1 when specifying Β above). Overall, we deemed that our priors were all reasonably 

weakly informative. Although we acknowledge that the priors on 𝜏  are particularly wide. 

Nonetheless, our priors provided sufficient regularization so that the sampler would not encounter 

difficult geometries all the while exploring parameter space with decent efficiency. In addition, 

given the very large sample size, the priors were most likely to be dominated by the data. 

3.9.1.5.3 Model fit 
The model was implemented in Stan and included within-chain parallelization via threading. 

Model fit was run on the computer clusters of Compute Canada. Model fit and analyses were done 

primarily with brms version 2.15.0 ((Bürkner, 2017); see sampling specification in Table 3.6) and 

with rstan version 2.28.1. 

3.9.1.5.4 Model diagnostic and performance 
A combination of graphical and numerical checks was employed to confirm that the samples 

obtained during the parameter estimation step adequately described the posteriors and that the 

observed data were plausible under the model (see (Gelman et al., 2020), for workflow details). 
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For the sake of conciseness, we only reported here one visual check including plots of simulated 

datasets from the posterior predictive distributions overlayed on the observed datasets, and 

numerical checks including �̂� statistic which is based on comparing the variation between the 

Markov chains to the variation within the chains (values close to 1 and less than 1.01 being 

desirable), effective sample sizes for the central tendency and the tail quantiles (values at least 

equal to 100 times the number of chains being desirable). We also indicated whether any warning 

occurred during the parameter estimation steps regarding the number of divergent transitions (no 

divergence is desirable), the number of prematurely terminated evaluations due to excessively long 

execution time (zero is desirable), and the Bayesian fraction of missing information (higher than 

0.2 being desirable). 

3.9.2 Figures and Tables 

 

Figure 3.7 Functional hubness (ℋ) probability maps for each ℋ in ⟦1,6⟧. For each map 𝒫(ℋ), a voxel codes the 

relative frequency of ℋ (between 0 and 1) across subjects, and the color-bars indicate the smallest non-null and 
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largest relative frequencies. In each panel, the top-left parasagittal slice is at -51.4 mm, and the montage (left to right, 

then top to bottom) was constructed with a step of -9.1 mm. 

 

Figure 3.8 Functional hubness (ℋ) frequency distributions within the whole brain, as well as within the networks of 

MIST7 and MIST20. The ordering from left to right, then top to bottom, is such that the networks of MIST7 (in bold 

font) are directly followed by their children (network) in MIST20. The frequencies (i.e., y-axes) range between 0 and 

1. The indicated number of voxels on each tile are the means taken across subjects. The blue circles are the frequencies 

for each subject and only non-null frequencies are shown. The yellow bars and their whiskers are the mean and 

standard deviation respectively of frequencies taken across subjects. The labels of MIST7 and MIST20 networks are 

detailed in Table 3.2. 
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Figure 3.9 Average maps taken across subjects for CMRGlc in units of SUVR, CMRO2 in units of µmol / (100 g) / 

min, CBF in units of mL / (100 g) / min, and OEF. In each panel, the top-left parasagittal slice is at -51.4 mm, and the 

montage (left to right, then top to bottom) was constructed with a step of -9.1 mm. 
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Figure 3.10 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for CMRGlc. Vertical 

lines are sets of four overlayed lines with different thicknesses, and they delimit equal-tailed credible intervals at 50%, 

80%, 95%, and 99%, from thickest to thinnest in that order. Red colors are the original observations, and blue ones 

are predictions. Blue shaded areas correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines 
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are the median estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks of 

MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and MIST20 are detailed in 

Table 3.2. These figures suggest well behaved fits and illustrate how partial pooling operated. 
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Figure 3.11 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for CMRO2. Vertical 

lines are sets of four overlayed lines with different thicknesses, and they delimit equal-tailed credible intervals at 50%, 

80%, 95%, and 99%, from thickest to thinnest in that order. Red colors are the original observations, and blue ones 

are predictions. Blue shaded areas correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines 



107 

 

are the median estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks of 

MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and MIST20 are detailed in 

Table 3.2. These figures suggest well behaved fits and illustrate how partial pooling operated. 
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Figure 3.12 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for CBF. Vertical lines 

are sets of four overlayed lines with different thicknesses, and they delimit equal-tailed credible intervals at 50%, 

80%, 95%, and 99%, from thickest to thinnest in that order. Red colors are the original observations, and blue ones 

are predictions. Blue shaded areas correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines 
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are the median estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks of 

MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and MIST20 are detailed in 

Table 3.2. These figures suggest well behaved fits and illustrate how partial pooling operated. 
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Figure 3.13 Graphical posterior predictive checks for Bayesian multilevel power-law analysis for OEF. Vertical lines 

are sets of four overlayed lines with different thicknesses, and they delimit equal-tailed credible intervals at 50%, 

80%, 95%, and 99%, from thickest to thinnest in that order. Red colors are the original observations, and blue ones 

are predictions. Blue shaded areas correspond to the credible intervals at 50%, 80% and 95%. Horizontal black lines 
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are the median estimates. The ordering of the tiles from left to right, then top to bottom, is such that the networks of 

MIST7 are directly followed by their (network) children in MIST20. The labels of MIST7 and MIST20 are detailed in 

Table 3.2. These figures suggest well behaved fits and illustrate how partial pooling operated. 

 

Figure 3.14 Posterior summaries of scaling exponents within the networks of MIST20 for CMRGlc, CMRO2, CBF, 

and OEF. The colored vertical lines delimit the 89% highest density credible intervals of, and the black horizontal 

lines are the median of the estimated posteriors. The number on the left side of each vertical line indicates probability 

that the scaling exponent is between 0 and 1 (i.e., the probability of a concave down increasing power-law) and the 

corresponding text indicates an interpreted evidence ratio. A star symbol at the end of a text (i.e., when probabilities 

are less than 0.5) indicates that the interpreted evidence ratio applies to the alternative hypothesis (i.e., non-concave 

down increasing power-law model). Note that the probability values reported here as 0.00 or 1.00 are not true zeros 

or ones. The labels of MIST20 are detailed in Table 3.2. 
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Figure 3.15 Posterior summaries of scaling differences between the networks of MIST20 for CMRGlc. The 

comparisons 𝑅𝑂𝑊 ≥ COLUMN  indicate that the difference was calculated between the posterior of 𝑅𝑂𝑊  and 

𝐶𝑂𝐿𝑈𝑀𝑁 . Here we report comparisons only for the lower triangular. The color-bars are median estimates of 

posterior differences. The numbers on the upper diagonals give the lower (L) and upper (U) bounds of the 89% highest 

density credible intervals of the posterior differences. The size of each circle represents probability of direction (i.e., 

maximum between probability of positive difference and probability of negative difference), the horizontal tick marks 

on the top of each circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle indicate 

if the probability is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest (L) and highest 

(U) probability of directions found on each row. Note that the probability values reported here as 1.00 are not true 

ones. The labels of MIST20 are detailed in Table 3.2. This figure provides evidence of the existence of scaling 

differences between networks. 
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Figure 3.16 Posterior summaries of scaling differences between the networks of MIST20 for CMRO2. The comparisons 

𝑅𝑂𝑊 ≥ COLUMN indicate that the difference was calculated between the posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here 

we report comparisons only for the lower triangular. The color-bars are median estimates of posterior differences. 

The numbers on the upper diagonals give the lower (L) and upper (U) bounds of the 89% highest density credible 

intervals of the posterior differences. The size of each circle represents probability of direction (i.e., maximum between 

probability of positive difference and probability of negative difference), the horizontal tick marks on the top of each 

circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle indicate if the probability 

is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest (L) and highest (U) probability 

of directions found on each row. Note that the probability values reported here as 1.00 are not true ones. The labels 

of MIST20 are detailed in Table 3.2. This figure provides evidence of the existence of scaling differences between 

networks. 
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Figure 3.17 Posterior summaries of scaling differences between the networks of MIST20 for CBF. The comparisons 

𝑅𝑂𝑊 ≥ COLUMN indicate that the difference was calculated between the posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here 

we report comparisons only for the lower triangular. The color-bars are median estimates of posterior differences. 

The numbers on the upper diagonals give the lower (L) and upper (U) bounds of the 89% highest density credible 

intervals of the posterior differences. The size of each circle represents probability of direction (i.e., maximum between 

probability of positive difference and probability of negative difference), the horizontal tick marks on the top of each 

circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle indicate if the probability 

is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest (L) and highest (U) probability 

of directions found on each row. Note that the probability values reported here as 1.00 are not true ones. The labels 

of MIST20 are detailed in Table 3.2. This figure provides evidence of the existence of scaling differences between 

networks. 
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Figure 3.18 Posterior summaries of scaling differences between the networks of MIST20 for OEF. The comparisons 

𝑅𝑂𝑊 ≥ COLUMN indicate that the difference was calculated between the posterior of 𝑅𝑂𝑊 and 𝐶𝑂𝐿𝑈𝑀𝑁. Here 

we report comparisons only for the lower triangular. The color-bars are median estimates of posterior differences. 

The numbers on the upper diagonals indicate the lower (L) and upper (U) bounds of the 89% highest density credible 

intervals of the posterior differences. The size of each circle represents probability of direction (i.e., maximum between 

probability of positive difference and probability of negative difference), the horizontal tick marks on the top of each 

circle delimit probabilities of 0.5, 0.75, and 1, and a star symbol on the top-right of a circle indicate if the probability 

is greater than or equal to 0.89. The numbers on the diagonals summarize the lowest (L) and highest (U) probability 

of directions found on each row. Note that the probability values reported here as 1.00 are not true ones. The labels 

of MIST20 are detailed in Table 3.2. This figure provides evidence of the existence of scaling differences between 

networks. 
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Figure 3.19 Posterior summaries of scaling differences between CMRGlc, CMRO2, CBF, and OEF within the 

networks of MIST20. The colored vertical lines delimit the 89% highest density credible intervals of, and the black 

horizontal lines are the median of the estimated posteriors. The number on the left side of each vertical line indicates 

probability of positive difference and the corresponding text indicates an interpreted evidence ratio. A star symbol at 

the end of a text (i.e., when probabilities are less than 0.5) indicates that the interpreted evidence ratio applies to the 

hypothesis of negative difference instead of positive. Note that the probability values reported here as 0.00 or 1.00 

are not true zeros or ones. The labels of MIST20 are detailed in Table 3.2. This figure provides evidence of the 

existence of scaling differences between CMRGlc, CMRO2, CBF, and OEF. 
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Table 3.2 Labels of the MIST atlas for two resolutions (7 and 20 networks).  

 

  

Scale Label Name 
M

IS
T

7
 

CER_1 CEREBELLUM 

DMnet_5 DEFAULT_MODE_NETWORK 

FPnet_VIS#_6 FRONTO_PARIETAL_NETWORK_and_VISUAL_DOWNST

REAM 

LIMnet_2 MESOLIMBIC_NETWORK 

MOTnet_3 SOMATOMOTOR_NETWORK 

VATTnet_S#_7 VENTRAL_ATTENTION_NETWORK_and_ 

SALIENCE_NETWORK_and_BASAL_GANGLIA_and_THAL

AMUS 

VISnet_4 VISUAL_NETWORK 

M
IS

T
2
0

 

AMY_HIPP#_1

0 

AMYGDALA_and_HIPPOCAMPUS_and_Peri_Insular_Sulcus 

ASCER_4 ASSOCIATIVE_CEREBELLUM 

AUDnet_P#_8 AUDITORY_NETWORK_and_POSTERIOR_INSULA 

BG_THAL_1 BASAL_GANGLIA_and_THALAMUS 

DMnet_l_13 DEFAULT_MODE_NETWORK_lateral 

DMnet_l_18 DEFAULT_MODE_NETWORK_lateral 

DMnet_pm_14 DEFAULT_MODE_NETWORK_posteromedial 

FPTCnet_7 FRONTO_PARIETAL_TASK_CONTROL_NETWORK 

FPnet_20 FRONTO_PARIETAL_NETWORK 

ITgyr_Tpol_6 INFERIOR_TEMPORAL_GYRUS_and_TEMPORAL_POLE 

LVISnet_15 LATERAL_VISUAL_NETWORK 

MOCER_17 MOTOR_CEREBELLUM 

MOTnet_d_11 SOMATOMOTOR_NETWORK_dorsal 

MOTnet_v_2 SOMATOMOTOR_NETWORK_ventral 

MVISnet_9 MEDIAL_VISUAL_NETWORK 

ORBcor_NA#_3 ORBITOFRONTAL_CORTEX_and_NUCLEUS_ACCUMBEN

S 

PGACcor_V#_5 PERIGENUAL_ANTERIOR_CINGULATE_CORTEX_and_ 

VENTROMEDIAL_PREFRONTAL_CORTEX 

VATTnet_l_19 VENTRAL_ATTENTION_NETWORK_lateral 

VATTnet_m_12 VENTRAL_ATTENTION_NETWORK_medial 

VVIS_DVIS_16 VENTRAL_VISUAL_STREAM_and_DORSAL_VISUAL_STR

EAM 
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Table 3.3 Demographics data. 

Height [cm] Weight [lb] Gender Age 

166 157 Female 19 

171 153 Male 19 

176 148 Male 19 

181 193 Male 19 

159 119 Female 20 

178 210 Male 20 

170 117 Female 21 

157 134 Female 22 

176 144 Male 22 

162 131 Female 23 

167 261 Female 23 

180 189 Male 23 

188 228 Male 23 

165 113 Female 24 

180 148 Male 24 

173 128 Male 25 

176 150 Male 25 

159 115 Female 32 

170 128 Female 33 
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Table 3.4 Regional values (mean ± SD) for CMRGlc [SUVR], CMRO2 [µmol / (100 g) / min], CBF [mL / (100 g) / 

min], and OEF [1]. Values were calculated directly on the average maps. The labels are those of the Mindboggle 

atlas. 

Label CMRGlc CMRO2 CBF OEF 

Accumbens-Area 1.7 ± 0.2 120 ± 20 43 ± 5 0.35 ± 0.02 

Amygdala 1.2 ± 0.2 120 ± 20 38 ± 5 0.38 ± 0.04 

Caudal-Anterior-Cingulate 1.4 ± 0.4 160 ± 20 50 ± 6 0.40 ± 0.03 

Caudal-Middle-Frontal 2.2 ± 0.4 150 ± 40 54 ± 9 0.37 ± 0.07 

Caudate 1.8 ± 0.7 100 ± 30 38 ± 9 0.35 ± 0.04 

Cerebellum-Gray-Matter 1.5 ± 0.3 140 ± 30 44 ± 6 0.37 ± 0.04 

Cuneus 2.0 ± 0.4 190 ± 40 61 ± 8 0.40 ± 0.04 

Entorhinal 1.2 ± 0.3 80 ± 10 32 ± 4 0.33 ± 0.04 

Fusiform 1.7 ± 0.3 130 ± 30 44 ± 7 0.38 ± 0.04 

Hippocampus 1.3 ± 0.2 110 ± 10 38 ± 4 0.36 ± 0.03 

Inferior-Parietal 2.0 ± 0.4 170 ± 50 58 ± 10 0.39 ± 0.07 

Inferior-Temporal 1.6 ± 0.4 120 ± 30 45 ± 8 0.35 ± 0.05 

Insula 1.6 ± 0.4 160 ± 20 50 ± 6 0.40 ± 0.03 

Isthmus-Cingulate 2.1 ± 0.5 160 ± 40 50 ± 11 0.40 ± 0.04 

Lateral-Occipital 1.9 ± 0.5 160 ± 40 55 ± 8 0.39 ± 0.05 

Lateral-Orbitofrontal 1.9 ± 0.4 120 ± 30 45 ± 8 0.35 ± 0.04 

Lingual 2.0 ± 0.3 170 ± 20 53 ± 5 0.41 ± 0.03 

Medial-Orbitofrontal 1.8 ± 0.4 130 ± 40 47 ± 11 0.35 ± 0.05 

Middle-Temporal 1.8 ± 0.4 160 ± 50 54 ± 10 0.39 ± 0.06 

Pallidum 1.1 ± 0.1 90 ± 20 33 ± 4 0.35 ± 0.03 

Paracentral 1.8 ± 0.3 140 ± 30 46 ± 8 0.38 ± 0.03 

Parahippocampal 1.4 ± 0.2 120 ± 20 41 ± 4 0.39 ± 0.02 

Pars-Opercularis 2.1 ± 0.3 180 ± 30 58 ± 7 0.40 ± 0.04 

Pars-Orbitalis 1.9 ± 0.5 160 ± 40 55 ± 8 0.39 ± 0.04 

Pars-Triangularis 2.2 ± 0.4 160 ± 50 57 ± 10 0.39 ± 0.06 

Pericalcarine 2.4 ± 0.3 200 ± 20 62 ± 5 0.43 ± 0.03 

Postcentral 1.8 ± 0.4 150 ± 40 52 ± 9 0.38 ± 0.07 

Posterior-Cingulate 2.0 ± 0.5 170 ± 40 54 ± 10 0.41 ± 0.03 

Precentral 2.0 ± 0.4 160 ± 40 54 ± 9 0.39 ± 0.06 

Precuneus 2.1 ± 0.4 180 ± 40 55 ± 9 0.40 ± 0.04 

Putamen 2.1 ± 0.6 140 ± 20 45 ± 5 0.39 ± 0.03 

Rostral-Anterior-Cingulate 1.4 ± 0.4 140 ± 30 48 ± 8 0.37 ± 0.04 

Rostral-Middle-Frontal 2.2 ± 0.5 160 ± 50 56 ± 11 0.37 ± 0.08 

Superior-Frontal 2.0 ± 0.4 160 ± 40 54 ± 8 0.38 ± 0.06 

Superior-Parietal 1.9 ± 0.4 150 ± 40 52 ± 8 0.38 ± 0.06 

Superior-Temporal 1.5 ± 0.4 150 ± 50 50 ± 10 0.37 ± 0.06 

Supramarginal 1.9 ± 0.3 160 ± 50 53 ± 10 0.38 ± 0.07 

Thalamus 1.8 ± 0.4 120 ± 10 42 ± 4 0.36 ± 0.03 

Transverse-Temporal 2.3 ± 0.3 180 ± 10 58 ± 3 0.40 ± 0.03 
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Table 3.5 Number of observations (i.e., voxels) in total and for different grouping variables. The ranges minimum–

maximum indicate the minimum and maximum number of observations within a group element. 

Group CMRGlc CMRO2 CBF OEF 

𝐬𝐮𝐛 6480–10701 6110–10021 6110–10021 6103–10021 

𝐌𝐈𝐒𝐓𝟕 8754–41907 7712–39726 7715–39736 7707–39673 

𝐌𝐈𝐒𝐓𝟐𝟎 2702–15515 2683–15272 2682–15276 2683–15246 

global 170322 159654 159698 159534 

 

Table 3.6 Sampling specification for Bayesian multilevel power-law analysis with brms. 

 

  

Argument Value Description 

init manual Initial values for parameters were randomly generated by drawing 

from the prior predictive distributions. 

chains 4 Four Markov chains were used. 

iter 2000 Number of iterations for each chain (including warmup). 

warmup 1000 Number of warmup (or burnin) iterations per chain. 

algorithm NUTS Use the No-U-Turn sampler variant of Hamiltonian Monte Carlo 

(Hoffman and Gelman 2011, Betancourt 2017) for inference. 

seed random Seed for random number generation. 

adapt_delta 0.99 Target average proposal acceptance probability during the 

adaptation period of Stan. 

max_treedepth 15 Cap on the depth of the trees to evaluate during each iteration. 

backend rstan Package to use as the backend for fitting the Stan model. 
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Table 3.7 Convergence diagnostics for Bayesian multilevel power-law analysis. “Resp.” stands for response variable, 

“Par.” stands for parameter, and ESS stands for effective sample size. Here, all convergence diagnostics were 

reasonable. There was no warning for all fits, all �̂� values were equal to 1.00, and all ESSs were greater than 879. 

 

  

Resp. Par. �̂� Bulk ESS Tail ESS Resp. Par. �̂� Bulk ESS Tail ESS 

C
M

R
G

lc
 

Α̅ 1.00 2534 2762 

C
M

R
O

2
 

Α̅ 1.00 1608 3056 

Β̅ 1.00 2653 2864 Β̅ 1.00 2149 2573 

𝜎 1.00 1052 1708 𝜎 1.00 981 1663 

�̅� 1.00 1175 1756 �̅� 1.00 1539 2115 

𝜏σ
sub 1.00 1660 2361 𝜏σ

sub 1.00 1381 2151 

𝜏𝛼
sub 1.00 1579 2249 𝜏𝛼

sub 1.00 2290 2641 

𝜏Α
MIST7 1.00 1506 1689 𝜏Α

MIST7 1.00 1996 1765 

𝜏Α
MIST20 1.00 1795 2536 𝜏Α

MIST20 1.00 1998 2379 

𝜏Α
sub 1.00 1523 2227 𝜏Α

sub 1.00 1518 2498 

𝜏Β
MIST7 1.00 2288 2194 𝜏Β

MIST7 1.00 1393 2265 

𝜏Β
MIST20 1.00 1442 2279 𝜏Β

MIST20 1.00 2003 2647 

𝜏Β
sub 1.00 1663 2291 𝜏Β

sub 1.00 2012 2116 

C
B

F
 

Α̅ 1.00 1487 1910 

O
E

F
 

Α̅ 1.00 1086 1775 

Β̅ 1.00 1976 2574 Β̅ 1.00 1996 2452 

𝜎 1.00 998 1730 𝜎 1.00 879 1334 

�̅� 1.00 1473 2185 �̅� 1.00 975 1658 

𝜏σ
sub 1.00 1444 2237 𝜏σ

sub 1.00 1390 2604 

𝜏𝛼
sub 1.00 1953 2573 𝜏𝛼

sub 1.00 1741 2249 

𝜏Α
MIST7 1.00 1759 2050 𝜏Α

MIST7 1.00 1318 975 

𝜏Α
MIST20 1.00 1573 2317 𝜏Α

MIST20 1.00 1290 2038 

𝜏Α
sub 1.00 2052 2551 𝜏Α

sub 1.00 1525 1859 

𝜏Β
MIST7 1.00 1353 2441 𝜏Β

MIST7 1.00 1290 1667 

𝜏Β
MIST20 1.00 1799 2422 𝜏Β

MIST20 1.00 2173 2504 

𝜏Β
sub 1.00 1585 2019 𝜏Β

sub 1.00 1755 2470 
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Table 3.8 Model summary for Bayesian multilevel power-law analysis. “Resp.” stands for response variable, “Par.” 

stands for parameter, 𝑀 indicates median values, and 89𝐶𝐼 indicates 89% highest density credible intervals.  

 

  

Resp. Par. 𝑴 𝟖𝟗𝑪𝑰 Resp. Par. 𝑴 𝟖𝟗𝑪𝑰 

C
M

R
G

lc
 

Α̅ -0.4297 [-0.7437, -0.1919] 

C
M

R
O

2
 

Α̅ -0.3902 [-0.6910, -0.0652] 

Β̅ -0.2362 [-0.5554, 0.0730] Β̅ -0.5444 [-0.8942, -0.1963] 

𝜎 0.2486 [0.2343, 0.2624] 𝜎 0.3397 [0.3237, 0.3564] 

�̅� -1.2768 [-1.5137, -1.0113] �̅� 0.3481 [-0.0328, 0.7299] 

𝜏σ
sub 0.0371 [0.0279, 0.0480] 𝜏σ

sub 0.0427 [0.0316, 0.0555] 

𝜏𝛼
sub 0.6338 [0.4450, 0.8375] 𝜏𝛼

sub 1.024 [0.7865, 1.2462] 

𝜏Α
MIST7 0.3094 [0.0854, 0.5663] 𝜏Α

MIST7 0.3528 [0.1747, 0.6014] 

𝜏Α
MIST20 0.3177 [0.2190, 0.4316] 𝜏Α

MIST20 0.261 [0.1773, 0.3604] 

𝜏Α
sub 0.3816 [0.2849, 0.4872] 𝜏Α

sub 0.5304 [0.3961, 0.6762] 

𝜏Β
MIST7 0.365 [0.1883, 0.6078] 𝜏Β

MIST7 0.1664 [0.0000, 0.3771] 

𝜏Β
MIST20 0.2036 [0.1183, 0.3090] 𝜏Β

MIST20 0.4802 [0.3416, 0.6337] 

𝜏Β
sub 0.4906 [0.3693, 0.6324] 𝜏Β

sub 0.7076 [0.5360, 0.8973] 

C
B

F
 

Α̅ -0.2877 [-0.5994, 0.0404] 
O

E
F

 
Α̅ -0.1617 [-0.3493, 0.0219] 

Β̅ -0.5858 [-0.8130, -0.3340] Β̅ -0.9198 [-1.1674, -0.6514] 

𝜎 0.2452 [0.2314, 0.2598] 𝜎 0.2991 [0.2825, 0.3150] 

�̅� -1.2485 [-1.4496, -1.0276] �̅� -1.1124 [-1.4063, -0.8177] 

𝜏σ
sub 0.0372 [0.0278, 0.0480] 𝜏σ

sub 0.0413 [0.0310, 0.0541] 

𝜏𝛼
sub 0.579 [0.4281, 0.7388] 𝜏𝛼

sub 0.8085 [0.6114, 1.0117] 

𝜏Α
MIST7 0.3203 [0.1415, 0.5432] 𝜏Α

MIST7 0.1264 [0.0183, 0.2309] 

𝜏Α
MIST20 0.2296 [0.1550, 0.3092] 𝜏Α

MIST20 0.1092 [0.0735, 0.1546] 

𝜏Α
sub 0.5926 [0.4528, 0.7631] 𝜏Α

sub 0.4219 [0.3206, 0.5452] 

𝜏Β
MIST7 0.1302 [0.0002, 0.2841] 𝜏Β

MIST7 0.1077 [0.0002, 0.2581] 

𝜏Β
MIST20 0.267 [0.1791, 0.3696] 𝜏Β

MIST20 0.3256 [0.2262, 0.4477] 

𝜏Β
sub 0.4856 [0.3531, 0.6198] 𝜏Β

sub 0.5587 [0.4193, 0.7233] 



123 

 

Table 3.9 Observed (Obs.) and predicted (Pred.) statistics for the different response variables (Resp.). The predictions 

were obtained from 100 draws and all statistics were applied on the normalized datasets. Overall, predictions were 

reasonable. Means and standard deviations were all in agreement. Medians were in agreement for CMRO2 and CBF, 

and they were slightly overestimated for CMRGlc and underestimated for OEF. The quantiles suggested that 

reasonable errors occurred at the distribution tails. 

 

  

Resp. Statistic Obs. Pred. (mean 

± 2×SD) 

Resp. Statistic Obs. Pred. (mean 

± 2×SD) 

C
M

R
G

lc
 

mean 1.933 1.932 ± 0.002 

C
M

R
O

2
 

mean 1.933 1.933 ± 0.002 

standard 

deviation 

0.292 0.293 ± 0.002 standard 

deviation 

0.377 0.377 ± 0.002 

median 1.918 1.932 ± 0.002 median 1.922 1.925 ± 0.003 

1% quantile 1.264 1.233 ± 0.008 1% quantile 1.138 1.089 ± 0.007 

5% quantile 1.478 1.453 ± 0.005 5% quantile 1.332 1.329 ± 0.004 

25% quantile 1.737 1.742 ± 0.002 25% quantile 1.664 1.676 ± 0.003 

75% quantile 2.116 2.121 ± 0.002 75% quantile 2.190 2.181 ± 0.003 

95% quantile 2.434 2.413 ± 0.003 95% quantile 2.571 2.564 ± 0.005 

99% quantile 2.680 2.644 ± 0.007 99% quantile 2.842 2.849 ± 0.009 

C
B

F
 

mean 1.960 1.960 ± 0.002 
O

E
F

 
mean 1.967 1.967 ± 0.002 

standard 

deviation 

0.302 0.303 ± 0.001 standard 

deviation 

0.317 0.316 ± 0.002 

median 1.948 1.950 ± 0.002 median 1.981 1.976 ± 0.002 

1% quantile 1.313 1.277 ± 0.007 1% quantile 1.182 1.189 ± 0.008 

5% quantile 1.495 1.481 ± 0.004 5% quantile 1.418 1.434 ± 0.004 

25% quantile 1.750 1.759 ± 0.002 25% quantile 1.760 1.759 ± 0.003 

75% quantile 2.150 2.148 ± 0.002 75% quantile 2.185 2.185 ± 0.003 

95% quantile 2.480 2.478 ± 0.004 95% quantile 2.463 2.470 ± 0.004 

99% quantile 2.745 2.746 ± 0.009 99% quantile 2.661 2.665 ± 0.007 
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Chapter 4: Manuscript 2 ― Investigating the transcriptional 
profile of the blood flow and metabolic costs of functional 
global and local network connectivity 

4.1 Context 

In Chapter 2, we described the structural and functional organization of the brain across different 

spatial scales (Dumoulin et al., 2018; Mišić & Sporns, 2016; Rah et al., 2015). Molecular processes 

involved in synaptic and non-synaptic connections at the cellular scale of the brain are actually 

shaping macroscale connections and network organizations. Neuroimaging methods can be used 

to indirectly probe brain activity at its macroscale level whereas neuroimaging-genetics is a 

nascent neuroimaging discipline which helps uncover some of the molecular mechanisms 

underpinning neuroimaging data. Genetic neuroimaging approaches could also provide greater 

insights into the cellular processes that are associated with brain metabolic, vascular, and 

hemodynamic responses.  

Due to the substantial resolution gap between transcriptional genetic data and neuroimaging data, 

analyzing genetic neuroimaging data requires a dedicated approach involving either dimension 

reduction of such high-dimensional data or employing multivariate statistical methods that can 

handle interdependent high-dimensional datasets. The primary approach for integrating 

neuroimaging and transcriptional data uses Pearson or Spearman correlations, or Euclidean 

distances as an index of similarity to find the overall correspondence between the entire cerebral 

distribution of neuroimaging data and averaged gene expression data. Using such an approach, the 

genes exhibiting the most similar patterns with neuroimaging data are kept for further analysis 

(Diez & Sepulcre, 2021; Ortiz-Terán et al., 2017). Even though these methods are simple to use, 

they may discard inherent regional associations between transcriptional and neuroimaging data. 

To address this problem, co-expression approaches have been proposed, which seek to detect the 

genes that are jointly expressed within the same regions. The most popular gene co-expression 

approach is the weighted gene co-expression network analysis (B. Zhang & Horvath, 2005). This 

method operates by estimating a gene × gene correlation matrix that contains a pairwise correlation 

between gene expression levels. Graph modularity detection algorithms or principal component 

analysis are then applied to such a correlation matrix to find the genes exhibiting the largest inter-

connection profiles. However, though these methods can find clusters of highly correlated genes, 

the so-called “eigen”-genes, they just capture the characteristics of gene expression data, with no 

importance on how such information is related to the neuroimaging data. Hence, additional genetic 

neuroimaging-genetics analyses, using PCA for instance, have been considered to rank the genes 

according to their relationship with neuroimaging data. But, because this is usually performed as 

a separate step, it does not consider the regional variability in the neuroimaging data while initially 

deriving eigen genes. Two other multivariate techniques have been proposed to address these 

limitations: canonical correlation analysis (CCA (Hotelling, 1936)) and partial least squares (PLS 

(Wold et al., 1984)). Both methods attempt to find two linear projections, one for each set of 

observations in a paired dataset, such that the projected data points are exhibiting either maximal 

correlation in the case of CCA or maximal covariance in the case of PLS. In general, when the 

input data matrices are featuring low within-correlation and high between-correlation, both CCA 

and PLS provide comparable results, with equivalent sensitivity and false-positive rate (McIntosh, 

2022). However, when there is a high within-correlation among each block of the data, as is the 

case, especially for the gene expression data matrix, the reliability of CCA becomes questionable 
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(McIntosh, 2022) and PLS should be preferred. In this second study, we, therefore, decided to 

consider PLS framework to assess the relationship between transcriptional and neuroimaging data 

(metabolic/hemodynamic mapping and functional connectivity properties). 

As introduced in Chapter 2, the graph theoretical analysis of brain functional networks provides 

informative metrics to measure different features of brain functional network topologies, including 

global and local centralities, that reflect aspects of functional integration and segregation. In the 

present chapter, we present the second original contribution of this PhD thesis, where we examined 

the molecular and cellular processes associated with spatial patterns of metabolic and vascular 

properties, and functional global and local network connectivity. We considered the dataset 

acquired for our first project for this second analysis. Our hypothesis was that vascular, metabolic 

and functional connectivity patterns share spatial architectures that are shaped by underlying 

molecular and cellular processes that can be accessed using transcriptional data atlases. The Allen 

human brain atlas was used to estimate gene expression data. The vascular and metabolic 

neuroimaging data consisted of CMRGlc, CMRO2, and CBF maps estimated as in the first 

manuscript. We also added Cerebrovascular reactivity (CVR) map measuring the ability of 

cerebral vessels to dilate or constrict in response to vasodilator and vasoconstrictor challenges, in 

this case, inhalation of CO2. These four maps will be referred to as physio-metabolic data in the 

present manuscript. Regarding functional connectivity neuroimaging data, we considered graph 

theory to estimate four maps, two dedicated to measure network integration using global centrality 

indices, eigenvector centrality and global efficiency, and two dedicated to measure network 

segregation using local centrality indices, clustering coefficient and local efficiency. To propose 

an analysis at the regional, mesoscale level, while reducing dimensionality, all data were first 

constrained by a functional parcellation of the cortex, the Schaefer atlas (Schaefer et al., 2018) 

(see 2.1.2). Finally, we considered PLS methodology to relate transcriptomic and neuroimaging 

data, while gene ontology enrichment and cell-types deconvolution analyses were used to 

determine the molecular and cellular processes underlying the PLS-derived relations. 

4.2 Abstract 

Resting-state functional brain connectivity is metabolically costly and can be disrupted in diseases. 

While imaging can be used to assess both, imaging markers can only be sampled in mixed tissue 

due to their low spatial resolution and typically suffer from physiological ambiguity. 

Understanding the molecular basis of neuroimaging signals of connectivity and metabolism would 

enable a better understanding of the meaning of neuroimaging signals in health and disease. 

Transcription-neuroimaging association studies can be used to probe some of these molecular 

mechanisms. Here, we used an open-access transcriptomic dataset of the Allen Human Brain Atlas 

combined with a neuroimaging dataset from 19 healthy young adults including magnetic resonance 

imaging (MRI) measures of calibrated functional MRI (fMRI) and resting state connectivity, and 

a fluorodeoxyglucose positron emission tomography (FDG-PET) acquisition. The neuroimaging 

data were used to estimate markers of brain functional connectivity including both global and local 

network centralities, as well as biomarkers of brain metabolism including the cerebral metabolic 

rates of oxygen and glucose, cerebral blood flow, and cerebrovascular reactivity. Using partial 

least squares regression, we determined that 85% of the shared covariance between transcriptional 

data and neuroimaging-based network centrality and physio-metabolic data could be explained by 

two latent components. In addition, distinct sets of neuroimaging biomarkers contributed to the 

transcriptional patterns of each latent component, mostly distinguishing between different 

combinations of global centrality and physio-metabolic data on the one hand, and local centrality 
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and physio-metabolic data on the other hand. Using gene ontology enrichment analysis, we found 

that the highest enriched gene ontologies were associated with several signaling and metabolic 

processes, indicating a high metabolic cost and reliance on oxidative metabolism for global 

network centrality. Using a cell-types deconvolution analysis, we further found that neurons were 

the most enriched wherever global centrality together with physio-metabolic data contributed 

significantly to defining transcriptional patterns, whereas oligodendrocytes were the most enriched 

wherever local centrality together with cerebrovascular reactivity were the main contributors. 

These findings highlight that distinct molecular processes shape the metabolic costs associated 

with functional global and local connectivity observed at the scale of neuroimaging data. 

4.3 Introduction 

The human brain is a highly interconnected complex system with a high energy cost, accounting 

for nearly 20% of human basal metabolism. Because it lacks a reservoir to store fuel, the brain is 

dependent on a consistent and responsive vascular supply to bring required substrates and remove 

waste. The brain typically uses glucose and oxygen, though it can also use fatty acids (FAs) and 

ketone bodies in both glia and neurons in some circumstances (Bruce et al., 2017; Romano et al., 

2017). In the cerebral cortex, a large fraction of this metabolic cost is used to sustain the resting 

membrane potential in neurons and glia and postsynaptic receptors activity (Attwell & Laughlin, 

2001; Sengupta et al., 2010). 

The brain is an avid user of oxygen since it requires oxidative phosphorylation to generate the full 

complement of adenosine tri-phosphate (ATP) from glucose to meet its high energy needs (Tiwari 

et al., 2013). The main pathway for glucose usage is therefore glycolysis, followed by the citric 

acid cycle and oxidative phosphorylation in the mitochondrial electron transport chain to generate 

ATP. Despite the preponderance of oxidative phosphorylation across most brain regions, some 

studies have suggested an important role for aerobic glycolysis within some part of the brain such 

as the default mode networks (Hyder et al., 2006; Vaishnavi et al., 2010). In contrast, the pentose 

phosphate pathway (PPP) has been shown to be used in the thalamus, which is enriched in 

oligodendrocytes, and may contribute in the motor cortex, which is enriched in neurons and has 

an intermediate levels of oligodendrocytes and astrocytes (Kleinridders et al., 2018). Energy 

pathway dominance is thought to be cell-type dependent, with neurons mainly relying on oxidation 

of glucose and pyruvate, while glycolysis and lactate production may play a larger role in 

astrocytes (Magistretti & Allaman, 2015). In addition, astrocytes can store glycogen to be used to 

export lactate to neurons to complement energy from other sources (Hyder et al., 2006; Iadecola, 

2017; Lyons et al., 2016; Magistretti & Allaman, 2015).  

Neurovascular organization and therefore neurovascular coupling (NVC), the amplitude of the 

vascular response that accompanies neuronal activity, also differ across brain regions (Bloch et al., 

2015; Kaplan et al., 2020; Phillips et al., 2014; H. Zhang et al., 2022). Neurovascular coupling is 

associated with a local increase cerebral blood flow (CBF) occurring following neuronal demand 

(X. Ji et al., 2021), though CBF amplitude does not completely match the regional activation and 

is spatially heterogeneous (Chaigneau et al., 2003; Harrison et al., 2002; Iadecola, 2002; Iadecola 

et al., 1997; O’Herron et al., 2016). The amplitude of NVC also depends on cell type with studies 

using magnetic resonance spectroscopy (MRS) for example showing higher CBF increase and 

lower oxygen consumption following inhibitory neurons activity compared to excitatory neurons 

(Vazquez et al., 2018). In addition, heterogeneity in transit time and density of capillaries across 

brain layers (Huber et al., 2019; Uludağ & Blinder, 2018), differential expression of metabolic 
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transporter across brain regions and cell type dependent metabolic signature may also influence 

regional metabolism and NVC (Szablewski, 2021). Therefore, the metabolic and NVC pathways 

that support brain function vary regionally depending on the cell type composition, vascular 

properties and type of function that characterizes different regions. These regional differences are 

reflected in the heterogeneity of gene expression across the brain (L. P. Bernier et al., 2021; Kaplan 

et al., 2020; Vanlandewijck et al., 2018), but our understanding of how these are linked is limited. 

There are currently some important gaps in our understanding of how gene expression across the 

brain differs and reflects the physiological properties of different regions.  

Functional magnetic resonance imaging (fMRI) using the Blood-oxygen-level dependent (BOLD) 

signal can capture the spontaneous slow fluctuation of the baseline hemodynamic state of the brain 

called the resting state. The BOLD signal is proportional to the oxy- and deoxyhemoglobin ratio 

arising from the NVC response. Therefore, the BOLD signal is intrinsically ambiguous, reflecting 

a mixture of oxidative metabolism, and the blood flow and blood volume response. All of which 

can differ between regions, stimuli and individuals (Ances et al., 2008; Leontiev et al., 2013). 

However, calibrated fMRI can be used to disentangle several of these components, most 

importantly the cerebral metabolic rate of O2 (CMRO2), CBF and cerebrovascular reactivity 

(CVR) (J. J. Chen et al., 2008; J. J. Chen & Gauthier, 2021; Davis et al., 1998; Gauthier & Fan, 

2019; Gauthier & Hoge, 2013). CVR is the hemodynamic response amplitude to a vasodilatory 

challenge, in this case hypercapnia. CO2 is a potent vasodilator and the ability of blood vessels to 

dilate in response to it is an indication of vascular reserve (J. J. Chen & Gauthier, 2021; Liu et al., 

2019; Mächler et al., 2016). Furthermore, as the vasodilatory response to CO2 is mediated by nitric 

oxide (NO), which is also thought to be an important mediator of NVC (Hosford & Gourine, 2019; 

Iadecola, 2017; Magistretti & Allaman, 2015), CVR is an important physiological component of 

the BOLD response. By isolating these components, calibrated fMRI thereby provides many of 

the elements needed to investigate how regional gene expression from genetic atlases 

(Arnatkevic̆iūtė et al., 2019; M. J. Hawrylycz et al., 2012) reflects differences in energy pathway 

usage and NVC, especially when complemented by glucose metabolism maps from positron 

emission tomography (PET).  

In addition, the network organization of the brain and the role different regions play within these 

networks may also be an important contributor to energy pathway profile. The BOLD signal can 

also be used to investigate these properties since temporal correlations between the signals in 

different regions is thought to be an indication of functional connectivity (Biswal et al., 1995; 

Boellaard et al., 2004; Cordes et al., 2001; Toro et al., 2008) and there is a large body of work 

using BOLD and graph theory to infer the role of regions within network architecture and hierarchy 

(Kitzbichler et al., 2009; Power et al., 2011; M. P. van den Heuvel & Sporns, 2013). The 

mathematical representation of brain networks in graph theory consists of nodes (which are neural 

elements, brain regions) and edges (which are connected neural units), whose connection matrix 

summarizes the organization of the coupling between these network units (Fornito et al., 2016; 

Muldoon et al., 2016; M. E. J. Newman & Barkema, n.d.). Using this type of representation allows 

the identification of central and important ROIs with strong influence on communication, 

integration, segregation, and global functioning of brain networks (M. P. Van Den Heuvel et al., 

2010; Latora & Marchiori, 2001).  

The spatial scale of human neuroimaging (0.5-2mm), as well as the physiological ambiguity of 

most imaging techniques (Tardif et al., 2015) makes linking imaging results to underlying 

molecular pathways challenging. However, transcriptional data is becoming more widely 
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available, allowing us to probe some of these underlying pathways. The Allen human brain atlas 

(AHBA) provides gene expression levels for around 20,000 genes at approximately 500 locations, 

mapped to the same anatomical space as human neuroimaging data. This enables the investigation 

of the link between neuroimaging markers of vascular and metabolic properties and the underlying 

transcriptomics to better understand the mechanisms at play. (M. J. Hawrylycz et al., 2012) 

The primary goal of this project is to identify the distinctive gene expression profiles that 

characterize the spatial heterogeneity in vascular and metabolic properties at rest, and their link to 

brain regions with global and local centrality attributes. To do so, we used a partial least squares 

(PLS) multivariate statistical technique (Krishnan et al., 2011) to analyze the association between 

quantitative neuroimaging data and brain gene expression patterns in the Allen human atlas. 

Neuroimaging data includes PET measures of cerebral metabolic rate of glucose (CMRGlc) and 

calibrated fMRI measures of CMRO2, CBF and CVR, all important determinants of the BOLD 

signal and brain physiology. The centrality measures were estimated from the resting state fMRI 

signal using graph theory metrics (M. P. Van Den Heuvel & Sporns, 2011). Gene enrichment and 

pathway analysis were used to investigate the biological and molecular processes associated with 

PLS components.  

4.4 Materials and Methods 

4.4.1 Subjects and multimodal data acquisitions  
Nineteen right-handed healthy young subjects (mean ± SD age = 24.0 ± 4.3 y; 9 females) were 

recruited from the student community of local universities and underwent imaging acquisitions 

including anatomical MRI, RS BOLD fMRI, and gas-inhalation-based calibrated fMRI, all with a 

3.0T GE Discovery MR750, and a RS FDG-PET with a GE Discovery PET/CT 690. Exclusion 

criteria included any history of chronic mental or physical illness, MRI or PET contraindications, 

possible pregnancy, and chronic respiratory disease. Ethics approval was obtained from the Comité 

Central d'Éthique de la Recherche. Written informed consent was provided by all subjects and both 

MRI and PET acquisitions were completed at the imaging suite of the PERFORM Centre. The 

participants were asked to avoid sugary, alcoholic, or caffeinated drinks for at least two hours prior 

to imaging, and to not have eaten any food for at least 4 hours before the acquisitions. Data 

acquisitions started by an anatomical MRI, followed by a 10-minute eyes-opened resting-state 

(RS) blood oxygen level-dependent (BOLD) fMRI, followed by an 18-minute gas-inhalation-

based calibrated fMRI, and a 45-minute eyes-closed static RS 2-[fluorine-18]-fluoro-2-deoxy-D-

glucose (18F-FDG) PET. There was a 60-minute gap between the calibrated fMRI and PET 

acquisitions (post-radiotracer-injection period) during which participants stayed in a RS condition 

in a calm environment. 

Anatomical MRI data was acquired using a 3D sagittal T1-weighted (T1w) MPRAGE sequence 

with the following parameters: TE = 3.18 ms; TR = 4,500 ms; TI = 8,160 ms; flip angle = 12°; 256 

× 256 acquisition matrix, 192 slices; 1 mm isovoxel. RS BOLD fMRI data were acquired with the 

following sequence parameters: length = 10 min; field of view (FOV) = (2,400 mm) × (240 mm); 

TR = 2,300 ms; TE = 30 ms; slice thickness = 3.5 mm. 

4.4.2 Gas-inhalation-based calibrated fMRI  
Calibrated fMRI data were acquired using a dual-echo pseudo-continuous arterial spin labeling 

(pCASL) sequence with the following parameters: TR = 4,150 ms; TE1 = 8.4 ms; TE2 = 30 ms; 

alpha = 90°; 4 mm × 4 mm in-plane resolution and 16 slices of 7 mm (1 mm slice gap) on a 64 × 

64 matrix; post-labeling delay = 950 ms; flip angle of labeling pulse = 25°; tagging duration = 1.6 
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s. In addition, four M0 images were acquired with the same parameters except TR = 10,000 ms; 

TE = 8.4 ms. 

Gas challenges were applied to evoke iso-metabolic changes in blood flow and BOLD signal, to 

estimate the calibration parameter M, corresponding to the maximum possible increase in BOLD 

signal from baseline (Hoge, 2012). A computer-controlled gas system was used to control gas 

concentration mixing and delivery to the subject in the MRI room. The respiratory and breathing 

data of each subject were sampled to constantly monitor participants’ partial pressures of CO2 

(PCO2), O2 (PO2), as well as their heart and respiration rates. Subjects were asked to breathe 

through their nose to ensure only expired gas was sampled in an indwelling nasal cannula. The 

first 4 minutes of acquisitions with medical air inhalation were considered as RS data. The 

acquisition continued with three functional runs, each including a different gas manipulation. 

During each gas manipulation run, a single two-minute block of gas was preceded and followed 

by a block of three minutes of medical air. The three gas manipulations used were: 80% O2 

(hyperoxia), 21% O2 + 5% CO2 + 74% N2 (hypercapnia), and 50% O2 + 5% CO2 + 45% N2 

(simultaneous hyperoxia/hypercapnia). End-tidal O2 and CO2 values were then selected manually 

from continuous partial O2 and CO2 respiratory traces acquired at 200 Hz. The first middle 10 

breaths of the four-minute baseline period and the last 10 breaths of each two-minute gas-

inhalation block was averaged as baseline and gas manipulation end-tidal values, respectively. 

4.4.3 Anatomical MRI data preprocessing 
For each subject, the T1w image was corrected for intensity non-uniformity with 

N4BiasFieldCorrection (Tustison et al., 2010) , distributed with ANTs 2.3.3 (Avants et al., 2008) 

RRID:SCR_004757, and used as T1w-reference throughout the workflow. The T1w-reference was 

then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823,(Y. Zhang et al., 2001) ). Volume-based spatial 

normalization to standard space (MNI152NLin6Asym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the T1w 

reference and the T1w template. The following template was selected for spatial normalization: 

FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic 

Registration Model (Evans et al., 2012),RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym). 

4.4.4 Resting-state BOLD fMRI data preprocessing 
For each subject, the following preprocessing was performed. First, a reference volume and its 

skull-stripped version were generated using fMRIPrep 21.0.1 ((Esteban, Markiewicz, et al., 2018); 

RRID:SCR_016216). Head-motion parameters were extracted using mcflirt (FSL 

6.0.5.1:57b01774 (Jenkinson et al., 2002)). BOLD runs were slice-time corrected to 1.12s using 

3dTshift from AFNI ((Cox & Hyde, 1997), RRID:SCR_005927). The BOLD time-series were 

resampled onto their original native space by applying the transforms to correct for head-motion. 

These resampled BOLD time-series will be referred to as preprocessed BOLD. The BOLD 

reference was then co-registered with 6 degrees of freedom to the T1w reference using mri_coreg 

(FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774 (Jenkinson et al., 2002)) with the boundary-

based registration (Greve & Fischl, 2009) cost-function. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD) via absolute sum of 

relative motions (Power et al., 2014), relative root mean square displacement between affines, 
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(Jenkinson et al., 2002), DVARS and three region-wise global signals using Nipype. The three 

global signals are extracted within the CSF, the WM, and the whole-brain masks. Head-motion 

estimates were also placed within the confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives and 

quadratic terms (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. The BOLD time-series were resampled 

into standard space, correspondingly generating the spatially-normalized, preprocessed BOLD 

runs. Resampling was performed with a single interpolation step by composing all the pertinent 

transformations (i.e., head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resampling 

were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos et al., 1964). Non-gridded (surface) 

resampling was performed using mri_vol2surf (FreeSurfer). 

4.4.5 ASL data preprocessing 
The first ASL run with medical air inhalation was considered as RS data and it was used to estimate 

resting cerebral blood flow (CBF) maps, while the other three included specific gas challenges 

used for cerebrovascular reactivity and calibrated fMRI. For each subject and runs, the middle 

volume of the ASL timeseries was selected as the reference volume and the brain extracted using 

Nipype’s custom brain extraction workflow. Head-motion parameters were estimated using FSL’s 

mcflirt (Jenkinson et al., 2002). Next, ASLPrep 0.2.8 was used to write head-motion parameters 

to the ASL run’s confound file. ASLPrep co-registered the ASL reference to the T1w reference 

using FSL’s flirt (Jenkinson & Smith, 2001), which implemented the boundary-based registration 

cost-function (Greve & Fischl, 2009). Co-registration used 6 degrees of freedom. The quality of 

co-registration and normalization to template was quantified using the Dice and Jaccard indices, 

the cross-correlation with the reference image, and the overlap between the ASL and reference 

images (e.g., image coverage). FD and DVARS are calculated using Nipype (Power et al., 2014) 

for each ASL run. ASLPrep summarizes in-scanner motion as the mean framewise displacement 

and relative root-mean square displacement. ASLPrep was configured to calculate CBF with 

Bayesian Inference for Arterial Spin Labeling (BASIL) (Woolrich et al., 2009), as implemented 

in FSL 6.0.3. All resampling in ASLPrep use a single interpolation step that concatenates all 

transformations. Gridded (volumetric) resampling was performed using antsApplyTransforms, 

configured with Lanczos interpolation (Lanczos et al., 1964). 

A spatial mask was applied on preprocessed calibrated fMRI to remove large veins by identifying 

voxel with relative BOLD increases greater than 10% in the unsmoothed hypercapnia data. The 

large arteries exhibiting decreases in pre-T1-correction absolute CBF that were greater than 50 mL 

/ (100 g) / min during O2 inhalation were also masked out. A slab mask for each subject was 

defined by analyzing the temporal SNR of ASL signals and for each subject, and the uppermost 

with SNR drops greater than 50% were discarded from further analyses. 

4.4.6 PET data preprocessing 
PET images were reconstructed using an iterative 3D ordered subset expectation maximization 

(Kinahan et al., 1998) algorithm with all the corrections (scatter, random, dead time, attenuation, 

and normalization). A 3D point spread function (GEMS name = Sharp-IR) based on experimental 

measurements of point sources acquired in different positions within the 3D-PET FOV, was 

modeled and coded in a system matrix and projection space for the reconstruction scheme. The 

reconstructions were done on a 192 × 192 × 47 grid from 30 minutes of static images and on a 256 
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× 256 × 47 grid from six 5-minute frames, with a voxel size of 1.6 mm × 1.6 mm × 3.25 mm, and 

with 3D trans axial filter = ramp, FOV = 20 cm, centered at x = 5 cm and y = 5 cm, matrix size = 

256 × 256. Reconstructed PET images together with T1w images were smoothed with a 3D 

gaussian kernel where FWHM = 2 mm isotropic using minc-toolkit ((Vincent et al., 2016); 

mincblur command) before being co-registered based on a multi-resolution strategy with 6 

transformation parameters and the mutual information as a similarity measure (minctracc 

command). In the end, the PET images were brought to the MNI152NLin6Asym standard space 

using the same non-linear resampling strategy as for the BOLD images. 

4.4.7 CMRGlc, CMRO2, CBF, and CVR quantification and analysis  
CMRGlc maps were estimated from FDG-PET data using standardized uptake value (SUV) ratios 

referenced to the pons (Minoshima et al., 1995). First, SUV  maps were estimated as SUV =
𝐶𝑡 (ID 𝑤𝑡⁄ × 𝐷)⁄  where 𝐶𝑡 is the decay-corrected activity concentration in the tissue (in MBq/cc 

which can be converted to MBq/kg by dividing by tissue density 1 g/cc), ID is the injected dose 

(in MBq), and 𝑤𝑡 is the subject’s weight (in kg). 𝐷 = 2−Δ𝑡 𝑇1 2⁄⁄  is a decay factor with Δ𝑡 being the 

time elapsed between injection and scanning (approximately 1 hour), and 𝑇1 2⁄  is the half lifetime 

of the 18F-FDG radiotracer (6582 s). Then, SUV ratios (i.e., CMRGlc maps) were determined by 

normalizing SUV maps with mean uptakes in pons. 

CMRO2, and CBF, maps were estimated from gas-inhalation-based calibrated fMRI data. The 

perfusion and BOLD signals were isolated respectively from the series of first and second echoes 

in the ASL data using linear surround subtraction and addition methods (Aguirre et al., 2002). 

Absolute CBF maps in units of mL / (100 g) / min were determined from the perfusion signals 

using the procedure described in (J. Wang et al., 2003). The fractional changes in BOLD and CBF 

were computed for each gas manipulation by fitting a linear model to the respective signals with 

normalized regressors obtained from end-tidal respiratory data. Regressors were convolved with a 

single-gamma hemodynamic response function with parameters described in (Glover, 1999), and 

corrected by a time delay estimated from the average GM signal to account for the delay between 

the respiratory and neuronal signals. From the CBF maps, CMRO2 maps were estimated as 

CMRO2 = CaO2 × CBF × OEF, where CaO2 is the total arterial O2 content estimated as the sum 

of O2 bound to hemoglobin, and O2 dissolved in plasma. CaO2 was determined from PaO2 from 

the averaged end tidal O2 taken from the respiratory data (Piechnik et al., 2008). OEF was 

calculated using the GCM described in (Gauthier & Hoge, 2013) using in-house MATLAB scripts. 

CMRO2, CBF, and OEF maps as well as the slab masks obtained during preprocessing were all 

resampled to the ICBM 2009a symmetric template space at a 4-mm isovoxel resolution. The 

resampling was done with cubic B-spline interpolations using ANTs (Avants et al., 2011) by 

composing a transform from subjects’ native to subjects’ T1w spaces with a transform from 

subjects’ T1w space to the T1w space of the template. Once in the analysis template space, for 

each CMRO2, CBF and OEF map, voxels with negative or null values were flagged to be discarded 

from all analyses. A global slab mask calculated as the intersection between all slab masks. 

CVR maps were calculated as a ratio of the difference between the baseline BOLD signal and the 

BOLD signal during the hypercapnic challenge, divided by the change in expired PCO2. ASL data 

were further analyzed to define a slab mask for each subject indicating the brain slices where 

temporal signal-to-noise-ratio drops were greater than 50%. In the end, CMRGlc, CMRO2, CBF, 

and CVR maps, together with the slab masks were all resampled to the MNI152NLin6Asym 

standard spaces.  
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4.4.8 Brain masking and parcellation 
All analyses were performed in the MNI152NLin6Asym standard in each method’s native 

resolution. The Schaefer atlas with 200 regions was used to define cortical brain parcels. For 

CMRO2, CBF and CVR maps only, slab masks were used to exclude voxels prior to applying the 

mean operator.  

4.4.9 Functional connectivity analysis 
The graph theory representation of brain networks provides a matrix of centrality metrics. We 

estimated Pearson correlation coefficients between pairs of regional timeseries from post-

processed BOLD fMRI data for each subject. The post-processing strategy was applied using 

Nilearn version 0.9.0 and included a one-step linear regression of the following standardized 

confounds: full head motion estimates (i.e., translation/rotation + derivatives + quadratic terms + 

power2d derivatives; so, 24 parameters), full white matter and cerebrospinal fluid signals (i.e., 

averages + derivatives + quadratic terms + power2d derivatives; so, 8 parameters), global signal, 

discrete cosines transformation basis regressors to handle low-frequency signal drifts (i.e., for 

high-pass filtering), and full scrubbing regressors (with framewise displacement threshold of 0.2 

mm, standardized DVARS of 3, and removal of segments shorter than 5 frames after accounting 

for time frames with excessive motion). During signal regression, regional BOLD signals were 

extracted by specifying a spatial filter with a 7 mm Gaussian kernel and a low pass filter with a 

cutoff of 0.09 Hz. A group-level Pearson correlation functional connectome was obtained by first 

applying the Fisher z-transformation to each correlation connectome, then taking the mean of the 

connectomes across subjects in the z-domain and applying the inverse Fisher z-transformation to 

the mean connectome. Network centralities were estimated from the thresholded group-level 

functional connectome, where ~22.5% of the strongest weights in absolute value were retained. 

To establish the matrix of network centralities, we considered four continuous graph metrics. On 

the one hand, two global centrality indices (reflecting network information integration): 

eigenvector centrality and global efficiency. On the other hand, two local centrality indices 

(reflecting network information segregation): clustering coefficient and local efficiency. 

Eigenvector centrality is a self-referential measure of centrality. Nodes have high eigenvector 

centrality if they connect to other nodes that have high eigenvector centrality (Golbeck, 2013). 

Global efficiency is the average inverse shortest path length in the network and is inversely related 

to the characteristic path length (Latora & Marchiori, 2001; Rubinov & Sporns, 2010; Strang et 

al., 2018). Local efficiency is the global efficiency computed on the neighborhood of the node and 

is related to the clustering coefficient (Rubinov & Sporns, 2010). The clustering coefficient is the 

fraction of triangles around a node and is equivalent to the fraction of the node’s neighbors that 

are neighbors of each other (Latora & Marchiori, 2001; Rubinov & Sporns, 2010; Strang et al., 

2018). These metrics were estimated using the Brain Connectivity Toolbox version 2019-03-03. 

The matrix of network centralities was constructed by the column-wise concatenation of 

vectorized centrality metrics for multivariate statistical analysis. 

4.4.10 Microarray data and pre-processing 
We used the regional microarray expression data of Allen Human Brain Atlas (AHBA, 

http://human.brain-map.org/) which consists of microarray expression of 20,737 genes, measured 

by 58,692 probes from 3702 spatially distinct tissue samples obtained from six healthy post-

mortem brain (1 female, ages 24.0–57.0, 42.50 ± 13.38). Since only two of the six brains included 

samples from the right hemisphere and because of the inconsistent gene expression levels between 

cortical and subcortical regions, all the analyses were conducted on the cortical left hemisphere 
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grey matter nodes according to the Schaefer functional atlas. The micro array data were processed 

using the AHBA processing toolbox (https://github.com/BMHLab/AHBAprocessing). The 

summary of the pre-processing procedures applied to the data is outlined below and details can be 

found in (Arnatkevic̆iūtė et al., 2019). The microarray probes were first reannotated using data 

provided by (Arnatkevic̆iūtė et al., 2019) and probes not matched to a valid Entrez ID were 

discarded. The tissue samples annotated to the brainstem and cerebellum were removed from 

further analysis. The probes were filtered based on their expression intensity relative to 

background noise (Quackenbush, 2002), such that probes with intensity less than the background 

in >=50.00% of samples across donors were discarded. When multiple probes indexed the 

expression of the same gene, we selected the probe with the most consistent pattern of regional 

variation across donors (i.e., differential stability; (Richiardi et al., 2015)). The samples assigned 

to the hemisphere (left/right) and structural designations (cortex/subcortex) were provided in the 

ontology from the AHBA. The MNI coordinates of tissue samples were updated to those generated 

via non-linear registration using the ANTs (https://github.com/chrisfilo/alleninf). Samples were 

assigned to brain regions by minimizing the Euclidean distance between the MNI coordinates of 

each sample and the nearest surface vertex. Samples where the Euclidean distance to the nearest 

vertex was more than 2 standard deviations above the mean distance for all samples belonging to 

that donor were excluded (Arnatkevic̆iūtė et al., 2019). All tissue samples not assigned to a brain 

region in the atlas and those that were assigned to subcortical regions or the right hemisphere were 

discarded. Inter-subject variation was addressed by normalizing tissue sample expression values 

across genes using a robust sigmoid function (Fulcher et al., 2013) and rescaling the expression 

values to the unit interval. Expression values were then normalized across tissue samples using an 

identical procedure. Samples assigned to the same brain region were averaged separately for each 

donor and then across donors, yielding a regional expression matrix. Gene expression values were 

normalized across tissue samples using the same procedure. Scaled regional expression profiles 

were averaged across donors, resulting in a single matrix X with r rows corresponding to brain 

regions and g columns corresponding to 45,821 probes corresponding to the total of 15,634 genes.  

4.4.11 PLS analysis 
To identify the spatial transcriptional profiles across the whole genome associated with regional 

variation of metabolic and centrality biomarkers derived from neuroimaging data, partial least 

squares (PLS) regressions was used to rank the genes according to the degree of spatial alignment 

of their expression with the neuroimaging biomarkers, following (J. Y. Hansen et al., 2021). PLS 

is commonly used to find orthogonal singular vectors that explain the maximum covariance 

between a highly collinear input matrix, as in the brain transcriptome, and output matrix, like 

neuroimaging biomarkers. The method works by decomposing the centered and normalized cross-

correlation matrices of input data and extracting left and right singular vectors (latent variable), as 

well as a diagonal matrix of ranked singular values that are proportional to covariances between 

the saliences. The strength of such correlation between input measures and effect size in this 

analysis was estimated using the ratio of the squared singular value to the sum of all squared 

singular values. The major latent variables used in subsequent analyses were chosen by employing 

a spatial autocorrelation-preserving permutation model called spin test. The null model for the spin 

test was constructed such that it disrupts the relationship between two topographic maps while 

maintaining their spatial autocorrelation (Markello & Misic, 2021). Using the spin test generated 

coordinates, the rows (brain regions) of neuroimaging data matrix were permuted 10,000 times. 

Then a null distribution of latent variables was obtained by applying the PLS analysis on the 

original gene expression matrix and the new permuted neuroimaging data matrix. The first singular 
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vectors related to latent variables with lowest p-values (< 0.05) were kept for further analysis. Left 

latent variables represent the extent to which each genes characterizes the correlation with the 

output matrix (neuroimage data) and are called gene weights, while the right saliences signify the 

degree to which each neuroimage biomarker contributes to the correlation with the gene matrix 

and are called the neuroimaging biomarker weights. By projecting the original data matrices on 

the left and right (significant) singular vectors, the relation between original gene expression level 

and biomarkers activity within each brain ROI were estimated and expressed as gene scores and 

brain scores respectively. The brain regions with positive scores show the amount of covariance 

between the gene with positive weights and neuroimaging biomarker with positive weights and 

vice versa for negative regions.  

For the gene ranking analysis, we estimated the loading of each gene by measuring the Pearson’s 

correlation between their original expression level and their gene scores. The square of these 

loadings represents the percentage of the variance shared between the original data and the PLS-

derived score. The reliability of gene and neuroimaging data loadings was measured using 

bootstrapping. To do so the rows (brain regions) of the gene expression matrix (neuroimaging 

data) were randomly selected with replacement 10,000 times, and the PLS analysis was performed 

using the new bootstrapped gene expression matrix and the original neuroimaging data matrix. We 

note that the bootstrap ratios are highly correlated with gene (neuroimaging data) loadings. The 

robustness and the prediction strength of the PLS model were assessed by examining the 

correlation between gene scores and neuroimaging data scores using cross-validation. The PLS 

model was applied on a randomly selected training set of 75% of brain regions. The Pearson 

correlation between gene and neuroimaging data scores were estimated using left and right singular 

vector PLS results of the training set. For the remaining 25% randomly selected test set, the 

correlation between the gene and neuroimaging scores were measured using the training set PLS-

derived singular vectors. This process was repeated 10,000 times and the significance of the results 

was assessed against the null model constructed by the spatial autocorrelation-preserving 

permutation of the neuroimaging data matrix for the same number of repetitions. 

4.4.12 Gene enrichment analysis 
In our analysis we scored the genes using the PLS-derived loadings, which reflect the 

correspondence between their spatial expression level and the parcel-wise variation of our 

independently measured neuroimaging data. To reduce the interpretation burden of inferencing on 

a long list of individual genes, we performed functional enrichment analysis, including cellular 

component (CC), molecular function (MF), biological process (BP), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis, on strongly contributing positive and negative 

genes with 50% most positive and negative loadings separately. We employed the open-access 

platform Metascape (https://metascape.org) for the enrichment analysis that integrates 

membership search, gene annotation, interactome analysis, and functional enrichment premised 

on over 40 separate knowledge bases via an integrated interface (Zhou et al., 2019) . Metascape 

utilizes the hypergeometric test and Benjamini-Hochberg false discovery rates (FDR) and multiple 

comparisons correction algorithm to identify significant terms. To address the issue of term 

redundancies pairwise similarities between any two enriched terms are computed based on a 

Kappa-test score (Cohen, 1960). The similarity matrix is then hierarchically clustered, and a 0.3 

similarity threshold is applied to trim the resultant tree into separate clusters. Metascape chooses 

the most significant (lowest p-value) term within each cluster (Supplementary Data 4) to represent 

the cluster. We run Metascape with Min Overlap=3, P-value Cutoff=0.05, Min Enrichment=1.5 
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and further refines the results with FDR Cutoff 0.05 and represented the gene ontology (GO) and 

KEGG term with highest enrichment level. 

In addition to gene enrichment analysis, a cell type analysis of the genes was performed using cell-

specific aggregate gene sets across five human adult postmortem single-cell and single-nucleus 

RNA sequencing studies (Habib et al., 2017; Lake et al., 2018; M. Li et al., 2018; McKenzie et al., 

2018; Y. Zhang et al., 2016). To do so, the ratio of genes in each of the seven cell types: astrocytes, 

microglia, oligodendrocyte precursors, oligodendrocytes, endothelial cells, excitatory neurons, 

and inhibitory neurons was calculated. The statistical significance of this analysis was assessed 

against a null distribution of ratios constructed by repeating the process 10,000 times on a set of 

random genes. 

4.5 Results 

4.5.1 Human resting-state neuroimaging-derived physio-metabolic and network 
centrality data 
Figure 4.1 shows the average brain maps derived from resting-state neuroimaging data as well as 

their spatial intercorrelations. For the sake of concise discussion, we qualitatively distinguished 

between three types of maps as follows: (i) physio-metabolic maps including CMRGlc, CMRO2, 

CBF, and CVR, (ii) network global centrality maps reflecting network integration and including 

global efficiency (GE) and eigenvector centrality (EC), and (iii) network local centrality maps 

reflecting network segregation and including local efficiency (LE) and clustering coefficient (CC). 

When focusing on the physio-metabolic maps, we determined that overall, with only two 

exceptions, all spatial intercorrelations were significant, low and positive (magnitudes of about 

0.4). The two exceptions were the very high correlation (R = 0.98) between CMRO2 and CBF, and 

a lack of correlation (R = 0.05) between CMRGlc and CVR. In addition, we observed that all 

physio-metabolic maps showed maximum regional values within or in the vicinity of the 

precuneus. We also observed higher physio-metabolic values within regions of the default-mode 

and attentional networks, and the cuneus.  

We observed significant high positive correlations (R of about 0.9) between the two global 

centralities (i.e., GE and EC), as well as between the two local centralities (i.e., LE and CC). 

Correlations between global and local centralities were non-significant (R of about -0.1 with GE, 

and R of about 0.02 with EC). High values of global centralities could be observed within the 

precuneus and regions of the default-mode network, whereas values of local centralities were 

highest within medial regions of the visual cortex and within paracentral regions. 

All physio-metabolic maps, except for CVR, were significantly positively spatially correlated with 

network global centrality (R of about 0.4 with GE, and about 0.3 with EC). All physio-metabolic 

maps were not significantly correlated with network local centrality except for CMRGlc and CC 

which showed an R = -0.22.  

4.5.2 Partial least squares analysis relating gene expression and neuroimaging 
data 
Figure 4.2 summarizes the results of PLS analyses relating gene expression (AHBA) data to 

physio-metabolic and network centrality neuroimaging data. We determined (Figure 4.2.a.) that 

two latent variables were significant and together they accounted for about 85% of the shared 

covariance between neuroimaging and gene expression data. We further uncovered (Figure 4.2.b.) 

that distinct sets of neuroimaging biomarkers contributed to the gene score patterns of each latent 
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variable. We found that all physio-metabolic maps except CVR, together with both local centrality 

maps (but not the global centrality maps) equally contributed (i.e., their loadings were of 

comparable magnitudes) significantly to the pattern of gene scores of the first latent variable. 

Concerning the second latent variable, CMRGlc, CBF, and GE showed significant negative 

loadings, while LE and CC were both significantly positive. Interestingly, although the third latent 

variable (accounting for about 7.5% of the shared covariance) was not significant, it was the first 

one with EC and CVR as significant components, in addition to a significant contribution of the 

other global network variable GE.  

Figure 4.2c also shows the spatial pattern of gene and neuroimaging scores for the three latent 

variables. We observed that the first latent variable captured all global features of both the resting 

physio-metabolic and network centrality maps. In this latent variable, regions of the occipital lobe 

showed both highly positive gene scores and neuroimaging scores. For the second latent variable, 

positively scored regions (from both gene and neuroimaging score patterns) were mostly present 

in visual, somatosensory and auditory regions (i.e., within sensory networks), whereas negatively 

scored regions were mostly in parietal, temporal, and frontal regions (i.e., within higher order 

cognitive networks). For the third latent variable, we observed a concordance of negative loadings 

for gene scores and global centrality measures in somato-motor regions, whereas positively scored 

regions throughout the rest of the brain mainly reflected regions with high CVR values (see also 

supplementary Figure 4.7). 

To confirm the patterns identified in the combined physio-metabolic and network centrality 

analyses, complementary analyses were performed on physio-metabolic and network properties in 

isolation. Supplementary Figure 4.8 details the results of a PLS analysis relating the physio-

metabolic data in isolation to gene expression data, while Supplementary Figure 4.9 relates 

network centrality data to gene expression data. There we show how two distinct latent variables 

are used to discriminate between CMRGlc, CMRO2, CBF on one side and CVR on the other, while 

global centralities and local centralities are also represented in distinct latent variables. These two 

additional analyses and the similar spatial patterns observed therefore confirm our findings 

detailed in Figure 4.2. 

4.5.3 Gene enrichment analyses 
Gene enrichment analyses were performed to determine the gene ontology (GO) of biological, 

cellular, molecular processes and pathways associated with genes with the highest positive and 

negative loadings (absolute-magnitude-top-50% genes). Figures 3, 4 and 5 detail the gene 

enrichment biological and pathways results for latent variables 1, 2 and 3 respectively.  

For the first latent variable (Figure 4.3), significantly enriched GO biological processes (Figure 

4.3.a.) included localization, metabolic and signaling. Localization processes included 

transmembrane transport of potassium, calcium and carboxylic acid, while significant metabolic 

processes included histone H3-K9 demethylation, macromolecule deacylation and 

phosphatidylinositol metabolism. Enrichment of genes associated with intracellular receptor 

signaling was also identified. Enriched pathways (Figure 4.3.b.) included phosphatidylinositol 

signaling, ABC transporters, as well as several important signaling pathways that together 

contribute in various cellular functions such as cell proliferation, differentiation and vascular 

regulation (Harper & Lograsso, 2001; Sassone-Corsi, 2012), including calcium, cGMP-PKG 

(cyclic guanosine monophosphate dependent protein kinase G) ,cAMP (cyclic adenosine 

monophosphate) and MAPK (mitogen-activated protein kinase) pathways. 
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For the second latent variable (Figure 4.4), we focused on the results for the negative genes, 

reflecting both resting physio-metabolic and global network centrality data (CMRGlc, CBF, and 

GE). Results for the positive component are consistent with results from the centrality-only 

analyses detailed in Supplementary Figure 4.18 and Supplementary Figure 4.19. We found that 

enriched biological processes (Figure 4.4.a.) included phosphatase regulation and the electron 

transport chain (metabolic GO), detoxification of inorganic compound and L-glutamate import 

(localization GO), regulation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 

receptor activity, calcium channel regulation, regulation of excitatory postsynaptic potential, and 

the gamma-aminobutyric acid (GABA) signaling pathway (signaling GO). Enriched pathways 

(Figure 4.4.b) included synaptic pathways (glutamatergic, GABAergic, dopaminergic, and 

serotonergic), signaling pathways (cAMP, neurotrophin, PPAR and endocannabinoid), as well as 

gap junction and long-term potentiation pathways. 

For the third latent variable (Figure 4.5), we summarize the results for the negative reflecting the 

contribution of both global network centralities. Results for the contribution of CVR, reflected in 

the positive components are consistent with the results of the latent variable 2 in the physio-

metabolic only analysis detailed in Supplementary Figure 4.16. We found that the most enriched 

biological processes (Figure 4.5.a.) belonging to the metabolic GO included oxidative 

phosphorylation, electron transport chain, as well as fatty acid beta-oxidation and carboxyl group 

binding. We also found cellular homeostasis, transcription related and major histocompatibility 

complex (MHC) protein complex GO processes. Finally, enriched pathways (Figure 4.5.b) 

included multiple metabolic pathways such as propanoate (carbohydrate metabolism), valine, 

leucine, and isoleucine degradation, amino acids metabolism, oxidative phosphorylation, pentose 

phosphate and glycolysis/gluconeogenesis (glucose metabolism). 

Figure 4.6 summarizes the results of cell-type enrichment analysis in the gene sets previously 

analyzed for the first three latent variables. We determined (Figure 4.6.a.) that the positive genes 

of the first latent variable (associated with CMRGlc, CMRO2, CBF, LE, and CC) were 

preferentially expressed in excitatory and inhibitory neurons, astrocytes, and oligodendrocyte 

precursors (ordered from highest to lowest ratio). We also found (Figure 4.6.b.) that the negative 

genes of the second latent variable (associated with CMRGlc, CBF, and GE) were significantly 

expressed in all cell types, with the order of preferential expression going from excitatory and 

inhibitory neurons, endothelial cells, microglia, astrocytes, oligodendrocytes to oligodendrocyte 

precursors. Finally, we found (Figure 4.6.c.) that the negative genes of the third latent variable 

(associated with GE and EC) were preferentially expressed in oligodendrocytes, astrocytes, 

endothelial cells, microglia, excitatory and inhibitory interneurons (i.e., all cell types but 

oligodendrocyte precursors). It is interesting to highlight the dichotomy between the gene sets 

associated with CMRGlc, CMRO2 and CBF, which were primarily preferentially expressed in 

neurons, while cell-type patterns were more complex for centralities. For example, while global 

centralities were preferentially expressed in cells involved in supporting neurons in the negative 

component of the third latent variable (i.e. Figure 4.6.c.), the negative component of the second 

latent variable, also associated with GE, was preferentially expressed in neurons. This is also 

consistent with the connectivity alone analysis showing that the global centrality metrics were 

more associated with a neuronal pattern of gene expression. Finally, local centralities were 

associated with oligodendrocytes in the positive component of latent variable 2. This is also 

consistent with the centrality alone cell-type analysis (Supplementary Figure 20). (Figure XXX). 

Finally, we note that our observations remained mostly unchanged when performing cell-type 
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enrichment with different gene thresholds between 25%, 50%, or 100% of genes making up a gene 

set (see supplementary Figure 4.13). 

For completeness, full machine-readable tables are provided in appendices for all previous gene 

enrichment analyses. We also provide the results of gene and cell-type enrichments corresponding 

to the PLS analysis relating the physio-metabolic data (alone) to gene expression data 

(supplementary Figure 4.14, Figure 4.15, Figure 4.16, and Figure 4.17) as well as to the PLS 

analysis relating the network centrality data (alone) to gene expression data (supplementary Figure 

4.18, Figure 4.19, and Figure 4.20), which are consistent with the combined approach detailed 

here. 

4.6 Discussion  

In this paper, we employed multivariate statistical PLS technique and rich microarray data from 

the AHBA, to investigate the gene expression profiles underlying spatial patterns in cortical 

physio-metabolic measures and both local and global centrality metrics. Exploration of the spatial 

relationships between these measurements demonstrated relationships between all calibrated fMRI 

variables, as well as between all baseline variables (CBF, CMRO2 and CMRGlc). However, CVR 

was not related to CMRGlc, reflecting the fact that CVR represents a measure of vascular reserve 

unrelated to baseline glucose consumption. Network centrality metrics (GE and EC) were 

correlated with baseline vascular and metabolic properties, while local centrality metrics were not 

related to any physio-metabolic variables. PLS analysis of the relationship between regional 

transcriptional information and neuroimaging metrics yielded two significant latent variables. The 

first reflected global relationships with a positive component associated with resting physio-

metabolic features and local centrality measures. This latent variable was predominantly 

associated with important signalling components of cellular function. The second latent variable 

had a negative component reflecting resting physio-metabolic properties and global centrality, as 

measured by global efficiency. This latent variable was associated with synaptic and 

neurotransmitter pathways, as well as the electron transport chain. Spatial patterns are consistent 

with a differential relationship between gene expression and neuroimaging markers in primary 

sensory and motor regions versus in higher function areas. Finally, we explored the significant 

metrics associated with the negative component of the third latent variable and show that this 

component, which reflects the contribution of both global centrality metrics is associated with 

genes involved in the oxidative metabolism of glucose, demonstrating the high metabolic cost of 

integration in highly connected regions. Cell type analysis demonstrated a pattern whereby 

components associated with resting physio-metabolic data were associated with more neuronal 

expression, whereas centrality measures had a more mixed pattern, with some latent variables 

reflecting neuronal and some glial contributions. 

4.6.1 Spatial relationships between physio-metabolic and network features 
Our parcel-wise correlation analysis between physio-metabolic data showed that all calibrated 

fMRI metrics were spatially correlated, likely due to the fact that CVR and CBF are part of the 

model used to determine CMRO2 (Gauthier & Hoge, 2013). CMRGlc showed the highest spatial 

correlation with CBF and least spatial correlation with CVR. The relationship between CMRGlc 

and CBF reflects the fact that CBF is also a baseline variable and is highly regulated to meet the 

energy needs of neurons (M. Li et al., 2018), while CVR is a dynamic variable that depends on 

vascular reserve and vasodilation rather than the baseline state of the brain (J. J. Chen & Gauthier, 

2021).  
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Correlation analysis of the centrality measures confirmed the dichotomy of brain parcels based on 

global and local centrality features. Collectively, these patterns delineate a ventromedial–

dorsolateral axis, separating brain regions into segregated networks with short path connections 

linking pairs of more peripheral nodes as well as long range intra module connections that support 

functional integration (de Reus & van den Heuvel, 2013; M. P. van den Heuvel & Sporns, 2013). 

Our results are consistent with the resting state functional connectivity literature showing that 

regions identified as the most central nodes using global efficiency and eigenvector centrality 

measures have strong spatial correspondence mainly with longer-range and functional connector 

hubs regions (M. P. Van Den Heuvel et al., 2009; Zuo et al., 2012). Hub regions are distributed 

throughout the brain, are involved in integrating diverse specialized functional modules and play 

a critical role in information processing and communications (Fulcher & Fornito, 2016). Brain hub 

regions also have been shown to have low clustering coefficient, as well as high centrality levels 

(“Centrality and Hubs,” 2016; M. P. Van Den Heuvel et al., 2010).  

The spatial correlation between centrality metrics and physio-metabolic information showed that 

higher regional physio-metabolic values overlapped with hubs regions characterized by high 

global centrality metrices. Among physio-metabolic data, CVR had the least spatial correlation 

with both global and local centrality metrics, reflecting its dependence on dynamic features of the 

vasculature rather than baseline properties. The fact that CVR was poorly correlated with all 

centrality metrics also indicates that these metrics are likely to be robust to biases related to blood 

volume and vascular reserve, at least in this young and healthy population. The other baseline 

physio-metabolic data had a higher positive correlation with global efficiency, which particularly 

accounts for network integration, and a slightly lower correlation with eigenvector centrality, 

which reflects network connectomics. These spatial relationships support the higher metabolic 

demand of hubs, consistent with other combined functional connectivity and metabolism studies 

(Liang et al., 2013; Palombit et al., 2022; D. Tomasi et al., 2013).  

4.6.2 Link between gene expression and neuroimaging 
PLS analysis using all neuroimaging data demonstrated two significant latent variables. The 

positive components of the first identified genes associated with resting physio-metabolic values 

and local centrality metrics. This is interesting given the higher spatial correlation of these 

physiological metrics with global centrality indicators. These genes may however reflect the 

common vascular and metabolic features of locally connected areas. In contrast, the negative 

component of the second latent variable reflects the genes associated with the physiological 

properties of global centrality, with a strong influence of CMRGlc and global efficiency, and a 

lesser influence of CBF. This component likely reflects the unique costs associated with high 

global centrality, especially in terms of processes with high metabolic costs. While not significant 

overall, some components of the third latent variables were thought worthy of note as they 

highlight these relationships in novel ways. This component reflects the differential gene 

expression information between the centrality metrics and physio-metabolic data. This is reflected 

by the sign of the loading elements, with significant contribution of negatively loaded global 

centrality metrics and positively loaded CVR data. These results imply that despite high spatial 

correlation between global centrality and physio-metabolic data, two distinctive set of gene control 

aspects of what is measured using centrality measures and physio-metabolic features. It also 

indicates that these aspects may be related more to dynamic signal features given the opposing 

relationship with CVR. 
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The results of the overall analysis are consistent with the results of the PLS analyses for physio-

metabolic and centralities measures separately, presented in supplementary materials. Features 

such as the separation between global and local centrality components, as well as baseline variables 

versus CVR over separate latent variables are borne out by these separate analyses.  

We used pathway and gene enrichment analysis to understand the biological functions that underlie 

the transcriptional components extracted by our PLS analysis. These results using the positive 

component of the first PLS latent variable, showed higher enrichment of genes attributed to cation 

and ion transmembrane transport, amino acid transport and several signalling pathways for the 

combined physio-metabolic and local centrality metrics data. This is likely linked to the crucial 

role of active transport in maintaining brain function and its high metabolic cost, as well as the 

central role of several signalling pathways in the existence of local networks. For example, 

calcium, cAMP and MAPK are all involved in many functions, including housekeeping (Brini et 

al., 2014; Iroegbu et al., 2021; L. Yang, 2018) and mitochondrial function (Cheng et al., 2010), 

two crucial aspects of brain function. Furthermore, these functions are linked to underlying aspects 

of metabolism, oxidative especially, and therefore also resting CBF. The genes that are enriched 

in this component show important overlap with the positive component of the first latent variable 

of the physio-metabolic alone PLS analysis, which is mostly related to the resting data (CBF, 

CMRGlc, CMRO2). This component was also enriched in similar signalling pathways, as well as 

synaptic pathways such as long-term potentiation, GABAergic and dopaminergic synapses, 

similarly to the negatively loaded genes of the second PLS component of the combined analysis. 

These results are also concordant with results from Rachel et al. (Goyal et al., 2014) using a similar 

set of physio-metabolic data (CMRGlc, CMRO2, CBF and OEF) showing higher enrichment genes 

related to synapse and signalling activities in regions with high baseline metabolism and CBF. 

The negatively loaded genes from the second PLS component that were significantly related to 

both global centrality metrics and baseline physio-metabolic data were found to be involved in 

detoxification, signaling and synaptic function. We also found significant enrichment of different 

metabolic processes, including the electron transport chain and fatty acid metabolism. The 

enrichment of electron transport chain related genes is in line with the high metabolism of more 

centrally connected regions (Vértes et al., 2016), and the efficiency of oxidative metabolism. The 

enrichment of these genes also makes sense since this component is significantly related to CBF 

and CMRGlc, which also partly depend on oxidative phosphorylation of glucose metabolites and 

neurovascular coupling. The fatty acid metabolism genes on the other hand are likely related to 

phagocytosis, which has been shown to be involved in synaptic plasticity and homeostasis, as well 

as detoxification and potentially ketone body metabolism (Achanta & Rae, 2017; Galloway et al., 

2019; Garcia Corrales et al., 2021). The presence of this alternate metabolic pathway could reflect 

the fact that participants were asked to fast for at least 4 hours, but some had not yet broken their 

overnight fast at the time of data acquisition. Finally, several synaptic and neurotransmitter 

pathways are represented in this PLS component, highlighting the high degree of neuronal activity 

and its tight regulation required for effective global centrality (Howarth et al., 2012; Ivannikov et 

al., 2010).  

The negative component of the third PLS latent variable was predominantly related to the global 

centrality metrics. This latent variable was similar to the negative component of the second latent 

variable in the PLS analysis on the centrality metrics alone, with meaningful overlap in the genes 

enriched. Focusing on the combined physio-metabolic and centrality PLS analysis component, we 

identified enriched genes related to several metabolic pathways including the TCA cycle, the 
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pentose phosphate pathway, amino acid metabolism and the electron transport chain. This 

component highlights most strongly the metabolic cost of centrally connected regions (Fornito et 

al., 2019).  

Synaptic activity requires coordinated gene expression which directs the synthesis of 

neurotransmitters, receptors and ion channels in the pre- and post-synaptic cell (Polleux et al., 

2007; Ressler et al., 2002). In agreement with our findings, work by Richiardi et al. comparing 

brain imaging and gene expression data showed significant correlations between functional 

connectivity and the genes coding for ion channels and other synaptic functions such as 

neurotransmitters (Richiardi et al., 2015). However functional connectivity patterns are not 

distributed evenly. Instead, some regions contain highly connected neural elements and act as 

network hubs. have identified with higher cytoarchitectonic similarity and correlation with 

transcriptional data (Arnatkeviciute, Fulcher, Bellgrove, et al., 2021; G. Z. Wang et al., 2015). 

Other studies also identified higher expression of genes related to specific metabolic pathways in 

hubs, including purine metabolism, ATP biosynthesis and oxidative metabolism, in agreement 

with our own findings showing the costliness of long-range and densely connected brain networks 

and an important role of oxidative metabolism (Arnatkeviciute, Fulcher, Oldham, et al., 2021; 

Vértes et al., 2016).  

Previous work using anatomical data and the Allen mouse gene expression data found distinctive 

gene expression signatures in neurons and oligodendrocytes. This cell type analysis suggested that 

regions expressing the neuron-enriched pattern have more incoming and outgoing connections 

with other regions, while the oligodendrocyte pattern was present in less connected regions 

(French et al., 2011; Voigt et al., 2022). Our cell type analysis is in partial agreement with this 

observation. In our combined analysis, PLS components related to resting physio-metabolic data 

were associated with an enrichment of neuronal-related genes. The relationship with centrality was 

however more complex with some latent variables associated with neuronal and some with glial, 

and especially oligodendrocyte, gene expression. For example, the positive component of latent 

variable 1 and the negative component of latent variable 2 were both associated with a more 

neuronal pattern, though one reflects local (latent variable 1) and the other global centrality (latent 

variable 2). The dominance of neuronal expression was higher for the negative component of latent 

variable 2, in accordance with the data from French et al., though the negative component of latent 

variable 3, reflecting both global centrality metrics was associated with a pattern consistent with 

oligodendrocyte gene enrichment. However, this may simply reflect the presence of different 

spatial patterns associated with global centrality with one reflecting a glial and another a neuronal 

component, which also corresponds to the metabolic cost of hub connectivity. This would be 

consistent with the centrality alone PLS analysis, which identified a local centrality component 

associated with oligodendrocyte expression and a global centrality component reflective of 

neuronal contributions (Supplementary Figure 4.20). Finally, the finding that CVR is more related 

to an oligodendrocyte pattern (positive component of latent variable 3, Supplementary figure 13c) 

is novel and somewhat surprising given that endothelial and neuronal signaling are thought to be 

most important in determining the amplitude of CVR (Fathi et al., 2011; Horvath et al., 1994). 

More studies are needed to understand this result.  

4.6.3 Limitation 
There are several limitations and considerations related to the present work that warrant further 

investigation. First, our results were obtained using only the AHBA atlas. However, the BrainSpan 

open-database (Miller et al., 2014) could also be used for cross-validation, sensitivity testing and 
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robustness analysis. Second, the AHBA atlas is based on six post-mortem human brains, aged 

between 24 and 57 years (mean age = 43 years), and sampled at approximately 500 locations in 

each hemisphere. In contrast, our neuroimaging data was acquired on 19 healthy young adults 

between 19 and 33 years (mean age = 23 years) and was sampled across 200 cortical parcels of a 

functional atlas covering the entire cortex. Hence, there were mismatches between gene expression 

and neuroimaging data related to the spatial resolution, sample size, and age range of the subjects. 

This is important when considering for instance that increasing risk of neurovascular dysfunction 

has been found to be associated with normal aging due in part to compromised cerebral energy 

metabolism, or structural/functional cerebral network integrity (Akiyama et al., 1997; Buckner et 

al., 2004; Morrison & Hof, 1997; Salat et al., 2004). Therefore, future studies should seek to use 

better matching and additional data for a more comprehensive analysis. Third, we only focused on 

the left hemisphere of the cerebral cortex when relating gene expression and neuroimaging data. 

We did so because only two brains out of six in the AHBA atlas included samples from the right 

hemisphere, and because of significant differences in the transcriptional signatures of the cortex, 

subcortex and cerebellum (Patania et al., 2019). Future studies could aim at providing a more 

complete picture of the association between gene expression and neuroimaging data by 

investigating the whole brain (both hemispheres, neo-cortex, cerebellum, and subcortical areas). 

4.6.4 Conclusion 
In conclusion, we found significant contribution of resting physio-metabolic feature in neuronal 

pre and post synaptic activity as well as signaling pathways. The global and local centrality metrics 

spatially segregated into two clusters of regions driven by two distinctive transcriptional profile. 

One densely connected with long-range linkage and another sparser with shorter connections. Our 

results support a reliance on oxidative phosphorylation to support the higher cost of synaptic 

functions in highly connected regions involved in integrating signals from long-range connections. 

Our cell-type analyses demonstrated the enrichment of neuronal transcriptional signatures related 

to resting physio-metabolic features and to some extent long-range connections. In contrast, 

locally-connected regions and, as a novel finding CVR, were found to be associated with a more 

oligodendrocyte enriched pattern. Overall, our analysis highlighted the link between central 

connectivity and high physio-metabolic cost, met predominantly through oxidative metabolism of 

glucose. 
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4.7 Figures 

 

Figure 4.1. Resting-state neuroimaging data derivatives. a. Average physio-metabolic (CMRGlc, CMRO2, CBF, and 

CVR) and network centrality (GE, EC, LE, CC) brain maps estimated from 20 subjects. Data are shown for the left 

cerebral cortex only and projected on a semi-inflated (25%) mid-surface of the ICBM 2009c asymmetric brain 

template. Regional values were defined using the Schaefer 2018 7 networks atlas with 100 parcels in the left 

hemisphere. b. Pearson’s linear correlation coefficients between neuroimaging brain maps. The * symbol indicates 

two-tailed 𝑝-values smaller than 0.05. CMRGlc: cerebral metabolic rate of glucose; CMRO2: cerebral metabolic rate 

of dioxygen; CBF: cerebral blood flow; CVR: cerebrovascular reactivity; GE: global efficiency; EC: eigenvector 

centrality; LE: local efficiency; CC: clustering coefficient. 
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Figure 4.2. Relating gene expression to resting-state neuroimaging data. PLS analysis was used to identify spatially 

covarying patterns of gene expression and neuroimaging biomarkers. a. Latent variables effect sizes (i.e., percentage 

of covariance explained between gene expression and neuroimaging data). A triangle on the top indicates right-tailed 

𝑝-values smaller than 0.05 as obtained from spatial autocorrelation-preserving permutation testing. The box charts 

are the permuted effect sizes and represent median (line inside a box), 0.25 and 0.75 quantiles (bottom and top edges 

of a box, the distance between which is called interquartile range), outliers (defined as values away from the bottom 

or top of the box more than 150% the interquartile range), and nonoutlier minimum and maximum (bottom and top 

whiskers of a box). Note that significance is assessed on eigenvalue distributions and not effect size distributions. b. 

Neuroimaging loadings with respect to the pattern of gene scores for a particular latent variable are calculated as 

the Pearson’s linear correlation coefficient between neuroimaging brain maps (indicated on the rows) and the PLS-

derived pattern of gene scores for that latent variable. Latent variables are indicated on the columns by a number and 

ordered according to their accounted percentage of data covariance explained from highest to lowest. A * symbol 

indicates bootstrap-estimated 95% confidence intervals not including zero (i.e., reliable loadings). c. Latent variables 

gene and neuroimaging score distributions for the first three latent variables. 
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Figure 4.3. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

biological processes. b. GO pathways. 
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Figure 4.4. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

biological processes. b. GO pathways.  
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Figure 4.5. Enrichment analysis of the genes of latent variable 3 with highest (50%) negative loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

biological processes. b. GO pathways. 
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Figure 4.6. Cell-types deconvolution. The ratio of genes preferentially expressed in seven cell types is shown for the 

genes of latent variable 1 (a.), latent variable 2 (b.), and latent variable 3 (c.), using their highest (50%) positive (red) 

or negative (blue) loadings. A triangle on the top indicates positive false discovery rates smaller than 0.05 (i.e., 

significant ratios) as obtained from bootstrap resampling. The box charts are the null ratios and represent median 

(line inside a box), 0.25 and 0.75 quantiles (bottom and top edges of a box, the distance between which is called 

interquartile range), outliers (defined as values away from the bottom or top of the box more than 150% the 

interquartile range), and nonoutlier minimum and maximum (bottom and top whiskers of a box). Astro: astrocyte; 

micro: microglia; oligo-p: oligodendrocyte precursor; oligo: oligodendrocyte; endo: endothelial cells; neuron-e: 

excitatory neurons; neuron-i: inhibitory neurons.  

4.8 Supporting Information 

 

Figure 4.7. Neuroimaging loadings with respect to neuroimaging scores. Neuroimaging loadings with respect to the 

neuroimaging scores of a particular latent variable are calculated as the Pearson’s linear correlation coefficient 

between neuroimaging brain maps (indicated on the rows) and the PLS-derived pattern of neuroimaging scores for 

that latent variable. Latent variables are indicated on the columns by a number and ordered according to their 

accounted percentage of data covariance explained from highest to lowest. A * symbol indicates bootstrap-estimated 

95% confidence intervals not including zero (i.e., reliable loadings). A high loading in absolute magnitude indicates 

that a particular neuroimaging biomarker highly contributes to the PLS-derived pattern of neuroimaging scores. We 

can observe how the first latent variable possessed (global) features of almost all neuroimaging biomarkers (except 

EC) whereas the other latent variables distinguished between different sets of neuroimaging biomarkers (e.g., the 

second latent variable distinguished between physio-metabolic and global centralities on one side, and local 

centralities on the other side). 
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Figure 4.8. PLS analysis relating gene expression data to neuroimaging-derived physio-metabolic data. a. Latent 

variables effect sizes (i.e., percentage of covariance explained between gene expression and neuroimaging data). A 

triangle on the top indicates right-tailed 𝑝 -values smaller than 0.05 as obtained from spatial autocorrelation-

preserving permutation testing. The box charts are the permuted effect sizes and represent median (line inside a box), 

0.25 and 0.75 quantiles (bottom and top edges of a box, the distance between which is called interquartile range), 

outliers (defined as values away from the bottom or top of the box more than 150% the interquartile range), and 

nonoutlier minimum and maximum (bottom and top whiskers of a box). Note that significance is assessed on 

eigenvalue distributions and not effect size distributions. b. Neuroimaging loadings with respect to the pattern of gene 

scores for a particular latent variable are calculated as the Pearson’s linear correlation coefficient between 

neuroimaging brain maps (indicated on the rows) and the PLS-derived pattern of gene scores for that latent variable. 

Latent variables are indicated on the columns by a number and ordered according to their accounted percentage of 

data covariance explained from highest to lowest. A * symbol indicates bootstrap-estimated 95% confidence intervals 

not including zero (i.e., reliable loadings). A high loading in absolute magnitude indicates that a particular 

neuroimaging biomarker highly contributes to the PLS-derived pattern of gene scores. c. Same as b. but loadings are 

with respect to patterns of neuroimaging scores. d. Latent variables gene and neuroimaging score distributions for 

the first two latent variables. 
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Figure 4.9. PLS analysis relating gene expression data to neuroimaging-derived network centrality data. a. Latent 

variables effect sizes. A triangle on the top indicates right-tailed 𝑝-values smaller than 0.05 as obtained from spatial 

autocorrelation-preserving permutation testing. The box charts are the permuted effect sizes and represent median 

(line inside a box), 0.25 and 0.75 quantiles (bottom and top edges of a box), outliers (values outside the 150% the 

interquartile range), and nonoutlier minimum and maximum (bottom and top whiskers of a box). Significance is 

assessed on eigenvalue distributions. b. Neuroimaging loadings with respect to the pattern of gene scores for a 

particular latent variable are calculated as the Pearson’s linear correlation coefficient between neuroimaging brain 

maps (indicated on the rows) and the PLS-derived pattern of gene scores for that latent variable. Latent variables are 

indicated on the columns by a number and ordered according to their accounted percentage of data covariance 

explained from highest to lowest. A * symbol indicates bootstrap-estimated 95% confidence intervals not including 

zero (i.e., reliable loadings). c. Same as b. but loadings are with respect to patterns of neuroimaging scores. d. Latent 

variables gene and neuroimaging score distributions for the first two latent variables. 
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Figure 4.10. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

cellular processes. b. GO molecular processes. 
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Figure 4.11. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

cellular processes. b. GO molecular processes. 
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Figure 4.12. Enrichment analysis of the genes of latent variable 3 with highest (50%) negative loadings. A subset of 

significantly (i.e., positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO 

cellular processes. b. GO molecular processes. 
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Figure 4.13. Influences of gene thresholds on cell-types deconvolution. The legends of the figures are the same as for 

Figure 4.6 which was for a threshold of 50%. Here a., b., and c. are for a threshold of 25% while d., e., and f. are for 

a threshold of 100%. 
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Figure 4.14. Enrichment analysis of the genes of latent variable 1 with highest (50%) positive loadings corresponding 

to the PLS analysis relating the physio-metabolic data (alone) to gene expression data. A subset of significantly (i.e., 

positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO biological processes. 

b. GO cellular processes. c. GO molecular processes. d. GO pathways. 
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Figure 4.15. Enrichment analysis of the genes of latent variable 2 with highest (50%) negative loadings corresponding 

to the PLS analysis relating the physio-metabolic data (alone) to gene expression data. A subset of significantly (i.e., 

positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO biological processes. 

b. GO cellular processes. c. GO molecular processes. d. GO pathways. 



157 

 

 

Figure 4.16. Enrichment analysis of the genes of latent variable 2 with highest (50%) positive loadings corresponding 

to the PLS analysis relating the physio-metabolic data (alone) to gene expression data. A subset of significantly (i.e., 

positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO biological processes. 

b. GO cellular processes. c. GO molecular processes. d. GO pathways. 
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Figure 4.17. Cell-types deconvolution corresponding to the PLS analysis relating the physio-metabolic data (alone) 

to gene expression data. The ratio of genes preferentially expressed in seven cell types is shown for the genes of latent 

variable 1 (a.) and latent variable 2 (b.), using their highest (50%) positive (red) or negative (blue) loadings. A triangle 

on the top indicates positive false discovery rates smaller than 0.05 (i.e., significant ratios) as obtained from bootstrap 

resampling. The box charts are the null ratios and represent median (line inside a box), 0.25 and 0.75 quantiles 

(bottom and top edges of a box), outliers (values outside the 150% the interquartile range), and nonoutlier minimum 

and maximum (bottom and top whiskers of a box). Astro: astrocyte; micro: microglia; oligo-p: oligodendrocyte 

precursor; oligo: oligodendrocyte; endo: endothelial cells; neuron-e: excitatory neurons; neuron-i: inhibitory 

neurons. 
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Figure 4.18. Enrichment analysis of the genes of latent variable 1 with highest (50%) negative loadings corresponding 

to the PLS analysis relating the network centrality data (alone) to gene expression data. A subset of significantly (i.e., 

positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO biological processes. 

b. GO cellular processes. c. GO molecular processes. d. GO pathways. 
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Figure 4.19. Enrichment analysis of the genes of latent variable 2 with highest (50%) positive loadings corresponding 

to the PLS analysis relating the network centrality data (alone) to gene expression data. A subset of significantly (i.e., 

positive false discovery rate smaller than 0.05) enriched gene ontologies (GOs) is shown. a. GO biological processes. 

b. GO cellular processes. c. GO molecular processes. d. GO pathways. 



161 

 

 

Figure 4.20. Cell-types deconvolution corresponding to the PLS analysis relating the network centrality data (alone) 

to gene expression data. The ratio of genes preferentially expressed in seven cell types is shown for the genes of latent 

variable 1 (a.) and latent variable 2 (b.), using their highest (50%) positive (red) or negative (blue) loadings. A triangle 

on the top indicates positive false discovery rates smaller than 0.05 (i.e., significant ratios) as obtained from bootstrap 

resampling. The box charts are the null ratios and represent median (line inside a box), 0.25 and 0.75 quantiles 

(bottom and top edges of a box), outliers (values outside the 150% the interquartile range), and nonoutlier minimum 

and maximum (bottom and top whiskers of a box). Astro: astrocyte; micro: microglia; oligo-p: oligodendrocyte 

precursor; oligo: oligodendrocyte; endo: endothelial cells; neuron-e: excitatory neurons; neuron-i: inhibitory 

neurons. 
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Chapter 5: Manuscript 3 ― Investigating the metabolic and 
blood flow costs of functional integration and segregation in 
resting-state networks 

5.1 Context 

In Chapter 2, we discussed how the brain is organized as a network of specialized segregated 

components at different spatial resolutions ranging from cells to circuits to systems (Bassett & 

Sporns, 2017). We highlighted the fact that segregated components of the brain spread and 

integrate information to form networks that support important functions such as motion, cognition, 

and perception. In the two first manuscripts of this thesis, we used different approaches to 

characterize functional connectivity patterns either at the voxel-scale using a time-series 

decomposition strategy (SPARK methodology (K. Lee et al., 2016)) or at the region scale using 

graph theory, applied on Schaefer brain parcellation (Schaefer et al., 2018), to further investigate 

how metabolic and vascular properties are shaping these functional connectivity patterns. In these 

two studies, our proposed functional connectivity metrics could also be interpreted within the 

perspective of functional information integration and segregation within brain networks. For 

instance, voxels exhibiting high functional hubness values using SPARK are most likely 

integrating a large quantity of information, since their time course is characterized by a linear 

combination of the activity of several networks (typically 3 to 5 networks) (see Manuscript 1 

presented in Chapter 3). Additionally, brain regions exhibiting high global or local centralities, as 

quantified using graph theory in our Manuscript 2 (Chapter 4) are commonly interpreted as 

representing either highly integrated or segregated brain regions. However, these interpretations 

are implicit and remain speculative because they capture sequences of statistical associations 

which may not correspond to the notion of information flow within and between networks. In 

Chapter 2, we introduced an information theoretical model that can provide a better 

characterization of the notions of information exchange within and between brain networks, as 

well as dedicated measures of functional integration and segregation, that are defined at the 

network macroscale level (Boly et al., 2012; Marrelec et al., 2008) . 

In the present chapter, we present the third original contribution of this PhD thesis, where we 

examined the metabolic and vascular properties associated with the global measures of functional 

integration and segregation within and between large-scale resting-state fMRI networks. These 

networks reside at the system scale of the brain, which is an intermediate scale between the 

regional level (mesoscale) and the whole brain. Our hypothesis was that the functional integration 

and functional segregation of large-scale resting-state fMRI networks are associated with specific 

glucose or oxygen metabolic costs, as well as blood supply costs. The same data acquired for 

manuscript 1 were considered for this third complementary analysis of our data. The metabolic 

and vascular data consisted of CMRGlc, CMRO2, and CBF maps estimated as in previous 

manuscripts. We considered the information-theoretic framework proposed by Marrelec et al 

(Marrelec et al., 2008), to quantify functional integration and segregation measures of resting-state 

networks. For this last analysis, we considered an atlas of cortical brain networks defined at two 

spatial scales, typically the Yeo-7 and the Yeo-17 cortical atlases (Thomas Yeo et al., 2011). 

Robust linear regressions as well as principal component analysis were considered to investigate 

the linear relationships between metabolic, vascular, and functional connectivity data. 
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5.2 Abstract 

A growing number of studies are supporting the hypothesis that the intrinsic functional 

organization of brain networks is tightly coupled to metabolic demands. Additionally, the 

organization of brain activity has been shown to balance between two competing tendencies: (i) 

functional integration, referring to the tendency of various brain networks to behave as one and 

(ii) functional segregation, referring to the tendency of various brain networks to behave 

independently. In this study, we assessed whether functional integration and segregation between 

and within intrinsic brain networks could covary with measures of glucose and oxygen metabolism 

and cerebral blood flow, indicating a cost for these functional processes. To do so, we acquired 

resting-state neuroimaging data from 19 healthy young adults including functional magnetic 

resonance imaging (fMRI) and fluorodeoxyglucose (FDG) positron emission tomography (PET) 

scans to estimate functional connectivity, cerebral metabolic rates of glucose and oxygen 

(CMRGlc/CMRO2), and cerebral blood flow (CBF). Using information theory measures to assess 

flow of information within and between brain networks, we characterized the levels of 

integration/segregation within hierarchical intrinsic network architecture to assess how those 

measure covary with measures of glucose and oxygen metabolic costs, or blood supply cost of 

these networks. We consistently found strong linear associations between integration, segregation, 

metabolism and CBF, further confirming with the hypothesis that functional interactions of 

intrinsic brain networks are metabolically costly. We also found that the intrinsic networks of the 

brain could be segmented, with respect to their functional connectivity and physio-metabolic linear 

relationships, into the extrinsic networks composed of primary sensory and motor family that 

includes visual, somatic, and auditory areas on the one hand, and the intrinsic networks involving 

parietal, temporal, and frontal regions on the other hand. Our study suggests distinct physio-

metabolic needs for performing fast real-time multimodal integration of sensory and motor 

information on the one hand, and for performing broad multi-temporal integration on the other 

hand. 

5.3 Introduction 

The structural and functional architecture of the brain consists in a set of networks of specialized 

segregated components, that can be defined in a hierarchical manner at different resolutions 

spanning from cells microstructure to circuits and systems macrostructure (Bassett & Sporns, 

2017). At each resolution, segregated components cluster are characterized by short-distance 

connections, whereas few components are ensuring connections at a long range scale, ensuring 

efficient communication pathways within and between clusters or modules (Bassett & Sporns, 

2017). Such a multiscale wiring diagram is known to be cost-efficient to minimize the total number 

of connections while maximizing information transfer (Bullmore & Sporns, 2009). Such an overall 

network organization results in a flexible dynamic system characterized by the co-called small-

world topology (Barabási, 2009; Baronchelli et al., 2013), which supports efficient integration and 

spread of the information between brain regions, within and between systems. The functional 

segregation of brain components is only meaningful in the context of their functional integration. 

The brain’s specialized segregated components spread and integrate information to form networks 

that support movement, cognition, and perception (Mišić & Sporns, 2016; Pessoa, 2014; Sporns, 

2014) . As such, the concepts of functional segregation and integration of brain networks are not 

exclusive, but rather complementary (Sporns, 2014). The concepts of brain functional segregation 

and integration have been investigated in many areas of functional neuroimaging (see (Sporns & 

Kötter, 2004) for a detailed review). 
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Moreover, several studies are supporting the hypothesis that such a brain network organization is 

tightly coupled to metabolic demands (Bassett & Bullmore, 2017; M. Lin et al., 2013; Meunier et 

al., 2010; Palombit et al., 2022; Samu et al., 2014; Shokri-Kojori et al., 2019; D. Tomasi et al., 

2013). More specifically, three studies considered graph theory metric applied on blood oxygen 

level-dependent (BOLD) fMRI data combined with glucose consumption measured using 

fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging or cerebral blood flow 

(CBF) measured using MRI (Liang et al., 2013; Palombit et al., 2022; D. Tomasi et al., 2013). 

Overall, these studies suggested brain regions involved in long-range functional connections 

between networks, ensuring integration between networks, are more metabolically demanding 

than other regions, and this relationship is network-dependent (Liang et al., 2013; Palombit et al., 

2022; D. Tomasi et al., 2013). Such network/metabolism relationship was found to follow a 

nonlinear concave down power law (Shokri-Kojori et al., 2019; D. Tomasi et al., 2013), an 

important results we further confirmed for glucose/oxygen metabolism and CBF while showing 

interesting network specificities (Razavipour et al., in preparation, Manuscript 1 ― 

Multiresolution Metabolic Profile of Functional Hubness in the Resting Human Brain). These 

previous published studies were considering two common features: (i) the use of temporal cross-

correlations to reconstruct functional networks from resting-state (RS) Blood Oxygen Level-

Dependent (BOLD) fMRI data, and (ii) the use of the well-established graph theory to characterize 

one or several aspects of global and local brain connectivity (mostly at the voxel or regional levels), 

focusing essentially on measures of centrality, functional integration, or segregation. In the studies 

proposed by Tomasi and colleagues (D. Tomasi et al., 2013) and later Palombit and colleagues 

(Palombit et al., 2022), one objective was to characterize the glucose metabolic cost of functional 

connectivity where cerebral metabolic rate of glucose (CMRGlc) was quantified thanks to FDG-

PET data (although Palombit and colleagues used a simultaneously acquired FDG-PET and fMRI 

dataset rather than a separately dataset as Tomasi and colleagues); while in the study proposed by 

Liang and colleagues (Liang et al., 2013) one objective was to characterize the blood flow cost of 

functional connectivity where CBF was quantified thanks to arterial spin labeling (ASL) data. 

Although, the study of Liang and colleagues (Liang et al., 2013) provided evidences that CBF can 

be considered as a surrogate for cerebral metabolism by correlating their CBF data to the CMRGlc 

and CMRO2 data of a previously acquired PET dataset in a different cohort (Vaishnavi et al., 

2010). However, some important questions remained unanswered, including the role of oxidative 

metabolism, and the hierarchical spatial organization of brain networks. 

In this study, we propose to investigate the relationship between glucose (CMRGlc) and oxidative 

(CMRO2) metabolism, CBF and measures of functional integration in resting state networks. To 

do so, we considered BOLD fMRI to derive functional connectivity measures, we used 

standardized uptake value ratios (SUVR) of FDG- PET data to quantify CMRGlc maps. We used 

a generalized calibration model (GCM; (Gauthier & Hoge, 2012)) with gas-manipulation applied 

during dual ASL / BOLD data acquisition to quantify absolute baseline CMRO2 and CBF maps. 

Our functional connectivity measures were based on an information theory model that quantifies 

integration versus segregation of the flow of information within and between brain networks in a 

hierarchical manner (Boly et al., 2012; Cross et al., 2021; Marrelec et al., 2008) . The hierarchy 

explicitly accounts for the fact that the brain can be divided into functionally meaningful networks 

(here the Yeo-7 networks (Thomas Yeo et al., 2011)), whereas each network can then be further 

decomposed into several functionally meaningful sub-networks in a hierarchical nested manner 

(here the Yeo-17 networks (Thomas Yeo et al., 2011)). Four interrelated information theory 

metrics that originally proposed in Marrelec et al. (Marrelec et al., 2008) have been considered in 
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this study: (i) the total-integration metric of a specific Yeo-7 network was used to quantify the sum 

of information exchanged between its corresponding sub-networks in Yeo-17, as a measure of 

between networks integration, (ii) the within-integration metric estimating the sum of information 

exchanged within each sub-network of each Yeo-7 network, (iii) the functional clustering ratio 

(FCR) for a specific network in Yeo-7, was used assesses the proportion of interactions within 

each sub-network (in Yeo-17) relative to integration between them, as a measure of network 

segregation (Boly et al., 2012). Interestingly, these functional measures are obtained directly at the 

system-level of the brain which is an intermediate scale between brain regions and whole brain 

results (Marrelec et al., 2008), while allowing capturing nonlinear functional interactions. In 

addition, these information theory measures of network integration /segregation can be applied to 

increasingly fine-grain sub-networks, they also are interrelated and complementary to standard 

graph theoretical indices of functional connectivity (Toussaint et al., 2014). 

5.4 Materials and Methods 

5.4.1 Subjects and multimodal data acquisitions  
Nineteen right-handed healthy young subjects (mean ± SD age = 24.0 ± 4.3 y; 9 females) were 

recruited from the student community of local universities and underwent imaging acquisitions 

including anatomical MRI, RS BOLD fMRI, and gas-inhalation-based calibrated fMRI, all 

acquired using a 3.0T GE Discovery MR750 MRI. RS FDG-PET have been acquired using a GE 

Discovery PET/CT 69. Exclusion criteria included any history of chronic mental or physical 

illness, MRI or PET contraindications, possible pregnancy, and chronic respiratory disease. Ethics 

approval was obtained from the Comité Central d'Éthique de la Recherche. Written informed 

consent was provided by all subjects and both MRI and PET acquisitions were completed within 

the imaging suite of Concordia PERFORM Centre. The participants were asked to avoid sugary, 

alcoholic, or caffeinated drinks for at least two hours prior to imaging, and to not have eaten any 

food for at least 4 hours before the acquisitions. Data acquisitions started by an anatomical MRI, 

followed by a 10-minute eyes-opened resting-state (RS) blood oxygen level-dependent (BOLD) 

fMRI, followed by an 18-minute gas-inhalation-based calibrated fMRI, and followed by a 45-

minute eyes-closed static RS 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) PET. There 

was a 60-minute gap between the calibrated fMRI and PET acquisitions (post-radiotracer-injection 

period) during which participants stayed in a RS condition in a calm environment. 

Anatomical MRI data was acquired using a 3D sagittal T1-weighted (T1w) MPRAGE sequence 

with the following parameters: TE = 3.18 ms; TR = 4,500 ms; TI = 8,160 ms; flip angle = 12°; 256 

× 256 acquisition matrix, 192 slices; 1 mm isovoxel. RS BOLD fMRI data were acquired with the 

following sequence parameters: length = 10 min; field of view (FOV) = (2,400 mm) × (240 mm); 

TR = 2,300 ms; TE = 30 ms; isotropic voxel size = 3.5 mm. 

5.4.2 Gas-inhalation-based calibrated fMRI  
Calibrated fMRI data were acquired using a dual-echo pseudo-continuous arterial spin labeling 

(pCASL) sequence with the following parameters: TR = 4,150 ms; TE1 = 8.4 ms; TE2 = 30 ms; 

alpha = 90°; 4 mm × 4 mm in-plane resolution and 16 slices of 7 mm (1 mm slice gap) on a 64 × 

64 matrix; post-labeling delay = 950 ms; flip angle of labeling pulse = 25°; tagging duration = 1.6 

s. In addition, four M0 images were acquired with the same parameters except TR = 10,000 ms; 

TE = 8.4 ms. 

Gas challenges were applied to evoke iso-metabolic changes in blood flow and BOLD signal, to 

estimate M the calibration parameter, corresponding to the maximum possible increase in BOLD 
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signal from baseline (Hoge, 2012). A computer-controlled gas system was used to control mixing 

concentration of the gases and their delivery to the MRI room. The respiratory and breathing data 

of each subject were sampled to constantly monitor participants’ partial pressure of CO2 (PCO2), 

partial pressure of O2 (PO2), as well as their heart and respiration rates. Subjects were asked to 

breathe through their nose to ensure only expired gas in an indwelling nasal cannula was sampled. 

The first 4 minutes of acquisitions with medical air inhalation were considered as RS data. The 

acquisition continued with three functional runs, each including a different gas manipulation. 

During each gas manipulation run, a single two-minute block of gas was preceded and followed 

by a block of three minutes of medical air. The three gas manipulations used were: 80% O2 

(hyperoxia), 21% O2 + 5% CO2 + 74% N2 (hypercapnia), and 50% O2 + 5% CO2 + 45% N2 

(simultaneous hyperoxia/hypercapnia). End-tidal O2 and CO2 values were then selected manually 

from continuous partial O2 and CO2 respiratory traces with acquired at 200 Hz. The first middle 

10 breaths of the four-minute baseline period and the last 10 breaths of each two-minute gas-

inhalation block was averaged as baseline and gas manipulation end-tidal values, respectively. 

5.4.3 Anatomical MRI data preprocessing 
For each subject, the T1w image was corrected for intensity non-uniformity with 

N4BiasFieldCorrection (Tustison et al., 2010) , distributed with ANTs 2.3.3 (Avants et al., 2008) 

RRID:SCR_004757, and used as T1w-reference throughout the workflow. The T1w-reference was 

then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, (Y. Zhang et al., 2001)). Volume-based spatial 

normalization to standard space (MNI152NLin6Asym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the T1w 

reference and the T1w template. The following template was selected for spatial normalization: 

FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic 

Registration Model (Evans et al., 2012), RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym). 

5.4.4 Resting-state BOLD fMRI data processing 
For each subject, the following preprocessing was performed using fMRIPrep 21.0.1 (Esteban, 

Blair, et al., 2018; Esteban, Markiewicz, et al., 2018), which is based on Nipype 1.6.1 (Esteban, 

Markiewicz, et al., 2018); RRID:SCR_002502). First, a reference volume and its skull-stripped 

version were generated. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) were 

estimated before any spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774, (Jenkinson et 

al., 2002)). The BOLD time-series were resampled onto their original, native space by applying 

the transforms to correct head motion. These resampled BOLD time series will be referred to as 

preprocessed BOLD. The BOLD reference was then co-registered with 6 degrees of freedom to 

the T1w reference using mri_coreg (FreeSurfer) followed by flirt (FSL 

6.0.5.1:57b01774,(Jenkinson et al., 2002)) with the boundary-based registration (Greve & Fischl, 

2009) cost-function. Several confounding time-series were calculated based on the preprocessed 

BOLD: framewise displacement (FD), root-mean-square of voxelwise differentiated signal 

(DVARS) and three region-wise global signals. FD was computed using two formulations 

following Power (absolute sum of relative motions, (Power et al., 2014)) and Jenkinson (relative 

root mean square displacement between affines, (Jenkinson et al., 2002)). FD and DVARS are 
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calculated for each functional run, both using their implementations in Nipype (following the 

definitions by (Power et al., 2014)). The three global signals are extracted within the CSF, the 

WM, and the whole-brain masks. The head-motion estimates calculated in the correction step were 

also placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives and 

quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm 

FD or 1.5 standardised DVARS were annotated as motion outliers. The BOLD time-series were 

resampled into the MNI152NLin6Asym standard space, correspondingly generating a spatially 

normalized, preprocessed BOLD run. Automatic removal of motion artifacts using independent 

component analysis (ICA-AROMA, (Pruim et al., 2015)) was performed on the preprocessed 

BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing 

with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding 

“non-aggressively” denoised runs were produced after such smoothing. Additionally, the 

“aggressive” noise-regressors were collected and placed in the corresponding confounds file. 

Resampling was performed with a single interpolation step by composing all the pertinent 

transformations (i.e., head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resampling 

were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos et al., 1964) . Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 

The post-processing strategy was applied on the ICA-AROMA runs using Nilearn version 0.9.0 

and included a one-step linear regression of the following standardized confounds: basic white 

matter and cerebrospinal fluid signals (i.e., the averages in each mask; so, 2 parameters), global 

signal, discrete cosines transformation basis regressors to handle low-frequency signal drifts (i.e., 

for high-pass filtering). During signal regression, regional BOLD signals were extracted by further 

specifying a spatial filter with a Gaussian kernel of 7 mm, and a low pass filter with a cutoff of 

0.09 Hz. 

5.4.5 ASL data preprocessing 
The first ASL run with medical air inhalation was considered as RS data and it was used to estimate 

resting cerebral blood flow (CBF) maps, while the other three included specific gas challenges 

used for cerebrovascular reactivity and calibrated fMRI. For each subject and runs, the middle 

volume of the ASL timeseries was selected as the reference volume and the brain extracted using 

Nipype’s custom brain extraction workflow. Head-motion parameters were estimated using FSL’s 

mcflirt (Jenkinson et al., 2002). Next, ASLPrep 0.2.8 was used to write head-motion parameters 

to the ASL run’s confound file. ASLPrep co-registered the ASL reference to the T1w reference 

using FSL’s flirt (Jenkinson & Smith, 2001), which implemented the boundary-based registration 

cost-function (Greve & Fischl, 2009). Co-registration used 6 degrees of freedom. The quality of 

co-registration and normalization to template was quantified using the Dice and Jaccard indices, 

the cross-correlation with the reference image, and the overlap between the ASL and reference 

images (e.g., image coverage). FD and DVARS are calculated using Nipype (Power et al., 2014) 

for each ASL run. ASLPrep summarizes in-scanner motion as the mean framewise displacement 

and relative root-mean square displacement. ASLPrep was configured to calculate CBF with 

Bayesian Inference for Arterial Spin Labeling (BASIL) (Woolrich et al., 2009), as implemented 

in FSL 6.0.3. All resampling in ASLPrep use a single interpolation step that concatenates all 
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transformations. Gridded (volumetric) resampling was performed using antsApplyTransforms, 

configured with Lanczos interpolation (Lanczos et al., 1964). 

A spatial mask was applied on preprocessed calibrated fMRI to remove large veins by identifying 

voxel with relative BOLD increases greater than 10% in the unsmoothed hypercapnia data. The 

large arteries exhibiting decreases in pre-T1-correction absolute CBF that were greater than 50 mL 

/ (100 g) / min during O2 inhalation were also masked out. A slab mask for each subject was 

defined by analyzing the temporal SNR of ASL signals and for each subject, and the uppermost 

with SNR drops greater than 50% were discarded from further analyses. 

5.4.6 PET data preprocessing 
PET images were reconstructed using an iterative 3D ordered subset expectation maximization 

(Kinahan et al., 1998) algorithm including all the usual corrections (scatter, random, dead time, 

attenuation, and normalization). A 3D point spread function (GEMS name = Sharp-IR) based on 

experimental measurements of point sources acquired in different positions within the 3D-PET 

FOV, was modeled and coded in a system matrix and projection space for the reconstruction 

scheme. The reconstructions were done on a 192 × 192 × 47 grid from 30 minutes of static images 

and on a 256 × 256 × 47 grid from six 5-minute frames, with a voxel size of 1.6 mm × 1.6 mm × 

3.25 mm, and with 3D trans axial filter = ramp, FOV = 20 cm, centered at x = 5 cm and y = 5 cm, 

matrix size = 256 × 256. Reconstructed PET images together with T1w images were smoothed 

with a 3D gaussian kernel where FWHM = 2 mm isotropic using minc-toolkit ((Vincent et al., 

2016); mincblur command). PET data were finally co-registered with T1w images using a multi-

resolution strategy estimating 6 transformation parameters (rigid transformation) by maximizing 

the mutual information as a similarity measure (minctracc command). At the end, the PET images 

were brought to the MNI152NLin6Asym standard space using the same non-linear resampling 

strategy previously applied on BOLD images. 

5.4.7 CMRGlc, CMRO2, and CBF quantification and analysis  
CMRGlc maps were estimated from FDG-PET data using standardized uptake value ratios 

(SUVR) referenced to the pons (Minoshima et al., 1995). First, SUV maps were estimated as 

SUV = 𝐶𝑡 (ID 𝑤𝑡⁄ × 𝐷)⁄  where 𝐶𝑡 is the decay-corrected activity concentration in the tissue (in 

MBq/cc which can be converted to MBq/kg by dividing by tissue density 1 g/cc), ID is the injected 

dose (in MBq), and 𝑤𝑡 is the subject’s weight (in kg). 𝐷 = 2−Δ𝑡 𝑇1 2⁄⁄  is a decay factor with Δ𝑡 
being the time elapsed between injection and scanning (approximately 1 hour), and 𝑇1 2⁄  is the half 

lifetime of the 18F-FDG radiotracer (6582 s). Then, SUV ratios, i.e., our estimates of CMRGlc 

maps, were finally determined by normalizing SUV maps with mean uptakes in pons. 

CMRO2, and CBF, maps were estimated from gas-inhalation-based calibrated fMRI data. The 

perfusion and BOLD signals were isolated respectively from the series of first and second echoes 

in the ASL data using linear surround subtraction and addition methods (Aguirre et al., 2002). 

Absolute CBF maps in units of mL / (100 g) / min were determined from the perfusion signals 

using the procedure described in (J. Wang et al., 2003). The fractional changes in BOLD and CBF 

were computed for each gas manipulation by fitting a linear model to the respective signals with 

normalized regressors obtained from end-tidal respiratory data. Regressors were convolved with a 

single-gamma hemodynamic response function with parameters described in (Glover, 1999), and 

corrected by a time delay estimated from the average grey matter (GM) signal to account for the 

delay between the respiratory and neuronal signals. From the CBF maps, CMRO2 maps were 

estimated as CMRO2 = CaO2 × CBF × OEF where CaO2 is the total arterial O2 content determined 
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as the sum of O2 bound to hemoglobin, and O2 dissolved in plasma. CaO2 was determined from 

PO2 from the averaged end tidal O2 taken from the respiratory data (Piechnik et al., 2008). OEF 

was finally estimated using the GCM described in (Gauthier & Hoge, 2013) using in-house 

MATLAB scripts. CMRO2, CBF, and OEF maps as well as the slab masks obtained during 

preprocessing, were all resampled to the ICBM 2009a symmetric template space at a 4-mm 

isometric voxel resolution. The resampling was done with cubic B-spline interpolations using 

ANTs (Avants et al., 2011) by combining a transform from subjects’ native to subjects’ T1w 

spaces with a transform from subjects’ T1w space to the T1w space of the template. Once in the 

analysis template space, for each CMRO2, CBF, and OEF map, voxels with negative or null values 

were flagged to be discarded from all analyses, as these were the results of noisy measurements in 

some voxels. A global slab mask calculated as the intersection between all slab masks of all 

participants.  

5.4.8 Brain masking and parcellations 
All analyses were performed in the MNI152NLin6Asym standard template space, considering the 

native resolution of every modality. To infer measurements at the brain networks level, we first 

considered the Schaefer atlas as a parcellation of the cortical regions in 200 parcels (Schaefer et 

al., 2018). All regions from the limbic networks, i.e., involving the temporal pole, some inferior-

temporal regions, and some orbitofrontal regions, for a total of 14 parcels, were excluded from 

further analyses since they were exhibiting low signal-to-noise ratio. For CMRO2 and CBF maps 

only, slab masks were also used to exclude voxels from the uppermost slices exhibiting low SNR 

in ASL data.  

A functional network parcellations of the cerebral cortex into 7 and 17 networks introduced by 

Yeo et al. (Thomas Yeo et al., 2011), excluding limbic networks, were considered in this analysis. 

Each region of the Schaefer atlas was then natively assigned to a network in Yeo-17 (excluding 

the two limbic networks), based on their name. Then, each network of Yeo-17 was uniquely 

assigned to a network in Yeo-7 qualitatively as reported in Table 5.1.  

Table 5.1. Assignment of Yeo-17 networks to Yeo-7 networks. 

5.4.9 Estimation of functional network integration and segregation 
To characterize levels of brain network integration or segregation, where networks are defined in 

a hierarchical nested manner from Yeo atlases (Thomas Yeo et al., 2011), we considered measures 

of hierarchical integration and functional clustering ratio (FCR) as introduced and described in 

(Boly et al., 2012; Marrelec et al., 2008). 

First, we defined standardized mean BOLD fMRI time courses in each of the 𝑅 regions defined 

by an atlas: 𝑦 = (𝑦1, … , 𝑦𝑅). Second, we combined the different 𝑅 regions into �̃� non-overlapping 

networks {�̃�1, … , �̃��̃�} , and computed the following hierarchical measures of integration: 

Yeo-17 networks Yeo-7 networks 

control A; control B; control C control 

default A; default B; default C; temporal parietal default 

dorsal attention A; dorsal attention B dorsal attention 

somatomotor A; somatomotor B somatomotor 

central visual; peripheral visual visual 

ventral attention A; ventral attention B ventral attention 
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𝐼[𝑦1, … , 𝑦𝑅] = 𝐼𝑏 + 𝐼𝑠, where 𝐼𝑏 = 𝐼[𝑦�̃�1 , … , 𝑦�̃��̃�] is referred to as between(-network)-integration, 

𝐼𝑤 = ∑ 𝐼((𝑦𝑟)𝑟∈�̃�𝑘)
�̃�
𝑘=1  is referred to as within(-network)-integration, and their sum is referred to 

as total-integration. Assuming that 𝑦 follows a multivariate normal distribution with mean 𝜇 and 

covariance matrix Σ , integration is defined as: 𝐼[(𝑦𝑟)𝑟∈𝑁] = [∑ 𝐻(𝑝(𝑦𝑟))𝑟∈𝑁 ] − 𝐻(𝑝(𝑦𝑟)𝑟∈𝑁) 

where 𝑁  is any set of regions and where 𝐻(⋅)  denotes the entropy measure computed as 

𝐻(𝑝(𝑦)) = ln|Σ𝑁,𝑁| 2⁄ . Third, we combined the different �̃� networks into another set of 𝐾 non-

overlapping networks {𝑁1, … , 𝑁𝐾} (thereby providing a nested tree of networks), and computed 

FCR for each network 𝑁𝑘 ∈ {𝑁1, … , 𝑁𝐾}  as FCR(𝑁𝑘) = 𝐼𝑤(𝑁𝑘) 𝐼𝑏(𝑁𝑘)⁄  where 𝐼𝑏(𝑁𝑘) =

𝐼[(𝑦�̃�)�̃�∈𝑁𝑘] and 𝐼𝑤(𝑁𝑘) = ∑ 𝐼((𝑦𝑟)𝑟∈�̃�)�̃�∈𝑁𝑘
. 

In our case, 𝑅 = 186 regions of the Schaefer-200 atlas were used since the limbic networks were 

excluded. Hierarchical integration measures and FCR were estimated for each network of Yeo-7. 

For calculating FCR, the sub-networks of each Yeo-7 network were obtained from Yeo-17 as in 

Table 5.1. 

Covariance matrices (sized 𝑅 × 𝑅) for each subject were numerically inferred from the data using 

a Gibbs sampler of the hierarchical Bayesian model detailed in (Marrelec et al., 2008) with 1000 

samples (after discarding 1000 other samples at the beginning to allow for burn-in effect) and 

using the identity matrix for initial conditions. The hierarchical Bayesian model also provided a 

group-level covariance matrix. At the end, probable values of hierarchical integration measures 

and FCR were calculated using the previous equations from the posterior distribution of the 

different covariance matrices. The hierarchical Bayesian model ensured that the covariance 

matrices were positive definite. 

5.4.10 Linear regression and principal component analyses 
To assess the correspondence between hierarchical integration or FCR measures assessing network 

properties, to physio-metabolic data (CMRGlc, CMRO2 and CBF) across the Yeo-7 networks, we 

considered a robust linear regression model (MATLAB default robust linear regression model 

robustfit). While standard linear regression models are very sensitive to outliers or unusual values 

(e.g., a single atypical value may have a large effect on the their parameter estimations), robust 

regression models can better handle these issues (Yu & Yao, 2014). For each network, network-

level values of CMRGlc, CMRO2 and CBF were calculated by taking the grand sum of regional 

values. The sum operator was used to represent “total demands” (of glucose, oxygen, or blood 

flow) for a given network. This parallels the various functional measures that capture “overall 

interactions” rather than average ones. An F-test was used to assess whether the linear regression 

model would fit significantly better than a degenerate model consisting of only a constant term. A 

t-test was used to assess the null hypothesis that the slope was zero against the alternative 

hypothesis that it was different from zero. Prior to regression analyses, all variables were Z-scored 

across networks for each subject independently. 

Principal component analysis (PCA) was used to better understand the different types of 

relationships between hierarchical integration, FCR and physio-metabolic data across networks. 

MATLAB’s default principal component analysis routine (pca) was considered for such analysis. 

For both regression and principal component analyses, model parameter estimations were done 

based on all 19 subjects, while a prediction was done for the “average” subject. The hierarchical 

integration or FCR data for the “average” subject was obtained from the group-level covariance 
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matrix provided by the hierarchical Bayesian model described earlier. The physio-metabolic data 

for the “average” subject was obtained from the arithmetic mean of CMRGlc, CMRO2, and CBF 

subject maps. 

5.5 Results 

5.5.1 Hierarchical functional integration measures and functional clustering 
ratio 
Figure 5.1 shows the group-level mean values of total-integration, within-integration, and FCR for 

each Yeo-7 network. Total-integration was the largest within the somatomotor network, followed 

in decreasing order by the default mode, visual, control, ventral attention and dorsal attention 

networks. Within-integration was strongly positively correlated with total integration (Spearman-

correlation = 0.94; two-tailed p-value = 0.02) thus providing a similar ordering of networks. The 

only difference in network ordering was between the default mode and visual networks, where we 

found a slightly higher within network integration for the visual network. Between network 

integration (which is the difference between total-integration and within-integration) was the 

largest within the default mode network, then followed in decreasing order by the control, visual, 

ventral attention, somatomotor and dorsal attention networks. FCR, as a measure of network 

segregation estimated as the ratio between within-integration and between-integration, was the 

lowest within the default mode network, suggesting more integration between corresponding 

subnetworks, followed in ascending order by the control, ventral attention, dorsal attention, visual 

and somatomotor networks, suggesting more segregation between corresponding somatomotor 

subnetworks. It is interesting to note that FCR was found to be perfectly anti-correlated with both 

within-integration and total-integration, only when considering the so-called higher-order function 

or intrinsic networks (i.e., control, default, and attention networks). 

5.5.2 Metabolic costs of functional network integration and clustering 
Figure 5.2.A. presents the results of robust linear regression for the glucose metabolic cost of total-

integration. We found that higher total-integration was strongly associated with higher CMRGlc 

(slope ± SE = 0.92 ± 0.04; see also Table 5.2). Interestingly, we also observed that the line of best 

fit was able to subdivide the different networks into three groups: (i) default and control networks 

exhibiting higher than expected glucose consumption from the linear fit, (ii) somatomotor and 

visual networks exhibiting lower than expected glucose consumption from the linear fit, and (iii) 

attention networks showing close agreement with the linear prediction. We highlighted these 

results in Figure 5.2 by mapping the signed distance of the group point to the line of best fit. Such 

brain mapping showed how parieto-temporo-frontal regions on the one hand (red-colored), and 

visuo-somato-auditory regions on the other hand (blue-colored) were at the two extremes of the 

linear relationship linking total-integration to CMRGlc measures. The mapping also shows how 

the attention networks (white-colored) could anatomically outline regions that border the two 

previously described sets, consistent with these regions being at the overlap between the red and 

blue sets in terms of physiological properties. We also found overall similar results when 

investigating the oxygen metabolic costs of total-integration (see Figure 5.2.B; slope ± SE = 0.87 

± 0.05; see also Table 5.2), as well as the blood supply costs of total-integration (see Figure 5.2.C; 

slope ± SE = 0.89 ± 0.05; see also Table 5.2).  

Figure 5.3 illustrates the relationship between CMRGlc and other measures of integration, within-

integration, between-integration and the inverse of FCR. In Figure 5.3.A, our results are showing 

that the slope for the glucose metabolic cost of within-integration was smaller than the one found 
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for total-integration, but resulting overall in similar network subdivisions (slope ± SE = 0.61 ± 

0.08; see also Table 5.2). In fact, upon closer inspections, we noted two regimes of linear 

relationships where the control, default mode, and ventral attention networks defined the first 

regime associated with the highest slope, and the somatomotor, visual, and dorsal attention 

networks defined the second regime associated with the smallest slope. This last observation was 

further confirmed when investigating glucose metabolic cost of between-integration in Figure 

5.3.B and of the reciprocal of FCR in Figure 5.3.C (see also summary in Table 5.2). There, 

although we found that higher between-integration and lower FCR were both strongly associated 

with higher CMRGlc (slope ± SE = 0.93 ± 0.04 and slope ± SE = 0.93 ± 0.06, respectively), 

different combinations of network emerged in relation to the best line of fit across all networks: 

primary sensory and motor networks (i.e., the somatomotor and visual networks) on the one hand, 

the dorsal attention network and other higher-order function networks (default mode, control) on 

the other hand. 

Because some of the networks were indeed exhibiting large deviations from the linear fit, we also 

investigated the presence of different patterns of the relationship between network integration and 

physio-metabolic measures using PCA. Our PCA analysis presented in Figure 5.4 revealed that 

the score mappings found for the second component for total-integration and within-integration, 

or for the first component for between-integration and the reciprocal of FCR were qualitatively 

similar, mainly distinguishing between parieto-temporo-frontal regions on the one hand, and 

visuo-somato-auditory regions on the other hand. It is interesting to note that these patterns are 

overall quite similar to the ones we reported in Figure 5.2.A when investigating the glucose 

metabolic cost of total-integration, or in Figure 5.3.A when investigating the glucose metabolic 

cost of within-integration. 

Similar analyses were also performed for CMRO2 and CBF. The patterns observed for CMRGlc 

were similar to those observed for CMRO2 (see Table 5.2, Figure 5.5 and Figure 5.6) and CBF 

(see Table 5.2, Figure 5.7 and Figure 5.8), with slopes in agreement within standard error ranges. 

5.6 Discussion 

This original study assesses the relationship between functional integration and functional 

clustering ratio as a measure f segregation, within and between resting-state fMRI networks with 

glucose (CMRGlc) and oxygen (CMRO2) metabolism, and CBF. We consistently found strong 

linear associations between measures of integration and segregation, and measures of metabolism 

and blood flow. This indicates that information processing within and across brain networks is 

indeed metabolically costly. We also found that some networks showed similar fingerprints and 

could be clustered into families of networks exhibiting similar relationships between integration 

and physio-metabolic properties. This included a primary sensory and motor family that includes 

visual, somatic, primary motor and auditory areas on the one hand, and a higher order family that 

was composed of parietal, temporal, and frontal regions on the other hand. This suggests distinct 

metabolic needs when performing fast real-time multimodal integration of primary sensory 

information on the one hand, and when for performing broad multitemporal integration on the 

other hand (Fuster & Bressler, 2012; Mesmoudi et al., 2013), corresponding respectively to the 

concepts of extrinsic and intrinsic networks proposed by Doucet et al (Doucet et al., 2011; 

Mesmoudi et al., 2013)  

In agreement with previous studies (Boly et al., 2012; Cross et al., 2021), we found that among the 

higher-order function networks (i.e., control, default mode, and attention networks) within-
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integration and FCR were anti-correlated. In addition, total-integration was actually high because 

of a balance between higher within-integration and higher between-integration. The default 

network showed a distinctive pattern, exhibiting the largest total-integration, within-integration, 

between integration (meaning that its sub-networks exchange significant amount information), and 

resulting in the lowest FCR value. FCR being an index of segregation and integration balance 

between subnetworks (Boly et al., 2012), our results are indeed suggesting a large amount of 

information integration between the subnetworks of the default mode network. On the other hand, 

we found that among the primary sensory and motor networks (i.e., somatomotor and visual 

networks) between-integration was very low, so much so that they exhibited both high within-

integration and high FCR, while total-integration was almost equal to within-integration. Our 

results are therefore suggesting more segregation between the subnetworks of these so-called 

primary sensory and motor networks. Overall, both primary sensory motor networks were as 

highly integrated as the default network (total integration), but their clustering levels defined the 

two extremes of variations for all networks. This was largely expected since increased clustering 

of brain activity or segregation (a hallmark of functional specialization) goes hand in hand with 

lower ability to integrate information (Boly et al., 2012). Furthermore, information integration is 

expected to decrease for heterogeneous compared with more homogeneously interconnected 

systems because integrated information is predicted to be maximal for systems that are both highly 

connected and not decomposable in individual subsystems (Boly et al., 2012). In a similar manner, 

using similar methodology defined on Yeo-7 and Yeo-17 networks, we found that brain networks 

were exhibiting more segregation during sleep and also after whole night sleep deprivation, 

whereas increase in integration after a recovery nap was associated with improved cognitive 

performance (Cross et al., 2021).  

Among the higher-order function networks, we consistently observed that the most functionally 

integrated and therefore least functionally segregated networks, one prime example of which is the 

default mode network, were exhibiting the highest glucose metabolism, oxygen metabolism and 

CBF. This important finding is in agreement with previous studies (Liang et al., 2013; Palombit et 

al., 2022; Shokri-Kojori et al., 2019; D. Tomasi et al., 2013) using different methods and datasets, 

while the originality of our study was to proposed a comprehensive investigation of oxygen and 

glucose metabolism, CBF and network properties in the young healthy brain. These partly reflects 

the presence of functional hub regions in these networks, which consist of energy-demanding long-

range connections that mediate functional integration among segregated brain areas. Indeed, in our 

previous study on the same data set (Razavipour et al in prep, Chapter 3), we showed that connector 

hubs were indeed largely distributed within these higher-order function networks and were 

associated with the largest increase rate, when modeling the metabolism/hubness function using a 

concave down power law model. These hub regions are also known to have an intricate vascular 

network and proximal mesh of glial cells to provide glucose, oxygen and other metabolites to 

maintain their crucial function (Attwell & Laughlin, 2001; Iadecola, 2017; Magistretti & Allaman, 

2015).  

When considering both the primary sensory and motor and higher-order function networks, we 

observed that they could be distinguished in their linear relationship linking integration and physio-

metabolic properties. In particular, the default mode and control networks exhibited higher glucose 

and oxygen metabolism, and higher blood flow in relation to total-integration or within-integration 

than the one predicted by the linear relationship across all networks. In contrast, the somatomotor 

and visual networks required were associated with lower metabolism and CBF, when compared to 
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the ones linearly predicted. Finally, the attention networks were in good agreement with the 

prediction from all networks. As a result of such network partitions, we found that parieto-

temporo-frontal regions on the one hand, and visuo-somato-auditory regions on the other hand, 

defined the two extremes’ patterns of those linear relationships. Indeed, comparisons of these 

linear relationships between physio-metabolic properties and integration can be used to capture 

the relative cost of functional connectivity for different networks (Shokri-Kojori et al., 2019). Our 

results suggest that such measure of relative cost, can identify the unique physiological features of 

primary sensory and motor and higher-order function networks. 

Interestingly, the linear mappings allowed us to identify spatial patterns between either between-

integration or FCR and physio-metabolic that were indeed similar to the one obtained after PCA 

decomposition, suggesting that some patterns were indeed orthogonal to the one defined by the 

linear mapping. The orthogonal space captures the extent of concurrent physio-metabolic and 

functional connectivity activities, resulting in a so-called measure of relative power (Shokri-Kojori 

et al., 2019). These important spatial properties are illustrated in Figure 5.4, Figure 5.6, and Figure 

5.8 using PCA. The reason that distance mappings (from linear regressions) and score mappings 

(from PCA) were actually (qualitatively) similar is because, with singular-value-decomposition-

based PCA, error squares are minimized perpendicular to a straight line (by definition). In addition, 

unless data variables are weakly correlated, a line of best fit as given by a linear regression is 

almost collinear to the first component of PCA. This means that distance mappings (from linear 

regressions) captured the same qualitative information as the projection of data points to the second 

component of PCA, i.e., score mappings along the second component (see Figure 5.9 for 

illustrations). Similarly, distance mappings from a line orthogonal to the line of best fit (from linear 

regressions) capture the same qualitative information as the score mappings along the first 

principal component. 

Altogether, our results are agreement with previous studies investigating the relationships between 

functional connectivity and physio-metabolic data (Liang et al., 2013; Palombit et al., 2022; 

Shokri-Kojori et al., 2019; D. Tomasi et al., 2013). In addition, the distinctive spatial patterns we 

identified are showing differential relationship between connectivity and physio-metabolic. These 

spatial patterns are actually very similar to those identified by Mesmoudi and colleagues and Cioli 

and colleagues (Cioli et al., 2014; Mesmoudi et al., 2013) using combined resting-state fMRI, 

diffusion MRI, behavioral and cognitive, and human gene expression data. These authors 

suggested that brain networks are organized in a “dual intertwined rings architecture”. The first 

ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with 

interspersed bimodal cortices (auditory-visual, visualsomatic and auditory-somatic) (Mesmoudi et 

al., 2015). The second ring integrates distant parietal, temporal and frontal regions through a 

network of association fiber tracts which closes the ring anatomically and ensures a functional 

continuity within the ring (Mesmoudi et al., 2015) and relates association cortices specialized in 

attention, language and working memory, to the networks involved in motivation and biological 

regulation and rhythms (Mesmoudi et al., 2015). A similar decomposition intro extrinsic versus 

intrinsic network was proposed by Doucet et al (Doucet et al., 2011). Cioli et al (Cioli et al., 2014) 

also showed that each ring possesses distinct gene expression patterns that show different 

metabolic properties. In this way, our results are consistent with distinct metabolic needs for 

performing fast real-time multimodal integration of sensorimotor information on the one hand, and 

for performing broad multi-temporal integration on the other hand (Fuster & Bressler, 2012; 

Mesmoudi et al., 2013). Similarly, our results exhibiting a higher integration and glucose metabolic 
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profile for the networks of the parieto-temporo-frontal ring when compared to the networks of the 

visuo-somato-auditory ring are in agreement with earlier studies combining graph theorical indices 

of fMRI connectomes and FDG-PET data (Hyder et al., 2015; Leontiev et al., 2013; Palombit et 

al., 2022; Shokri-Kojori et al., 2019; D. Tomasi et al., 2013) and our proposed analysis linking 

hubness and metabolism (Razavipour et al in prep, Chap 3). Results reported in this study also 

reflect recent findings showing significant overlap between the topological network structures of 

CMRO2 and BOLD fluctuations. For instance, a recent study using calibrated fMRI and the low-

frequency fluctuations in CMRO2, showed that CMRO2 connectivity can also exhibit spatial 

patterns consistent with the following canonical resting-state networks: frontoparietal and default 

(association networks), and auditory and occipital-visual (perceptual networks) (Hubbard et al., 

2021). Altogether, our results together with the existant literature offer strong evidence for a 

physio-metabolic cost of functional network interaction.  

Although consistent within standard error ranges, we found that the strengths of linear associations 

between functional connectivity and physio-metabolic data were generally highest for CMRGlc, 

followed by CBF and CMRO2. This may be due to higher inter-subject variability for CMRO2 and 

CBF when compared to for CMRGlc. In general, calibrated-fMRI-based approaches to estimate 

CMRO2 and CBF are associated with higher inter-subject variability (more so for CMRO2 than 

CBF) when compared to PET-based approaches (Fan et al., 2020; Ibaraki et al., 2004). For 

instance, it has been shown how inter-subject variability could be induced by the choice of a fixed 

post-labeling delay parameter across subjects (Mezue et al., 2014), or other physiological factors 

such as variability in vascular reactivity or hematocrit across subjects (D’Esposito et al., 2003; 

Gustard et al., 2003; Handwerker et al., 2007). However, assessing whether these systematic slight 

differences in linear association strengths between functional connectivity and glucose or oxygen 

metabolism is of biological significance is a question that would deserve further investigations. 

For instance, network-level differences in aerobic glycolysis would results in some degree of 

mismatch between the ways functional connectivity couples to glucose and oxygen metabolism 

(Magistretti & Allaman, 2015; Vaishnavi et al., 2010). Future studies using complementary 

techniques could help determine the presence of these effects.  

5.6.1 Limitation 
This study suffers from some limitations. Inter-subject variability in physio-metabolic data has 

already been mentioned, as well as the limitations inherent to having a single post labelling delay 

in ASL sequence. In addition, inter-subject variability may lead to the overestimation of deviation 

from the linear trend. The hierarchical Bayesian model that we employed to estimate covariance 

matrices explicitly accounted for the fact that subjects belong to a homogeneous population that 

possesses its own (group-level) covariance matrix (Marrelec et al., 2008). Afterwards, the posterior 

distributions of the subject-level and group-level covariance matrices were used to derive, 

respectively, subject-level and group-level hierarchical integration measures or FCR (Boly et al., 

2012; Marrelec et al., 2008). Since such computations consist mainly of logarithm and matrix-

determinant operations, any original signed (i.e., positive and negative) deviations of subject-level 

covariances from the group-level covariance may not be preserved, and the derived deviations in 

turn may appear substantial when graphed on a linear scale (Marrelec et al., 2008). 

Overall, the choice of an appropriate statistical model is an important component for handling data 

variability. For instance, some models can cohesively account for various sources of variability 

(such as a mixed-effect models) and could have provided us with a clearer idea of where the 

observed differences in linear association strengths may be coming from. Moreover, regarding 
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linear modeling, we do not claim that variations in functional integration or functional clustering 

arise only from metabolic properties. However, our results are consistent with a dependence 

between functional connectivity and metabolic properties. Future studies should aim at 

investigating more biologically grounded models of the relationships between functional 

connectivity and physio-metabolic data. 

Finally, our results and interpretations critically depended on the choice of region-based and 

network-based parcellations. Indeed, the calculation of hierarchical integration measures as well 

as functional clustering ratio requires to first define regions of interest and then identifying for 

each region the network it belongs to (across different nested scales as necessary). Here we used 

two linked group-level functional atlases, namely Yeo-atlases (Thomas Yeo et al., 2011) and 

Schaefer-atlases (Schaefer et al., 2018) to constrain both our physio-metabolic and functional 

resting-state data. However, we must note that many other different state-of-the-art atlases and 

procedures to define regions and networks are commonly used across neuroimaging studies 

(Arslan et al., 2018). Indeed, most brain parcellations are designed to capture different facets of 

brain function and anatomy. Hence, it is of interest to understand what complementary information 

and new insights different atlases (e.g., multimodal versus functional versus structural, or cortical 

vs whole-brain, or group-level versus subject-level) may provide when investigating metabolism-

function relationships. 

5.6.2 Conclusion 
In summary, our results are demonstrating strong linear associations between functional 

integration and segregation, glucose and oxygen metabolism, and blood flow, consistent with the 

hypothesis that functional interactions of intrinsic brain networks are metabolically costly. Our 

results also demonstrated that the intrinsic networks of the brain could be segmented, with respect 

to their functional connectivity and physio-metabolic linear relationships, into a primary sensory 

and motor family that includes visual, somatic, and auditory areas on the one hand, and a large 

association family that comprises parietal, temporal, and frontal regions on the other hand. This is 

consistent with the literature and suggests distinct physio-metabolic needs for performing fast real-

time multimodal integration of sensory and motor information on the one hand, and for performing 

broad multi-temporal integration on the other hand. All our analyses were carried out at the system-

scale of the brain which is an intermediate scale between regions and the whole brain. We postulate 

that the fact that many different datasets and methodologies from voxel-based to region-based (and 

to network-based with our study) converge to such results, suggests that the biological principles 

underlying function-metabolism coupling may be scale free. 
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5.7 Figures and Tables 

 

Figure 5.1. Group-level (posterior) mean values of hierarchical integration and functional clustering ratio (FCR) for 

the networks of Yeo-7. Each network of Yeo-7 is uniquely identified by a color and can be visualized on the brain 

maps. Three vertical bar graphs are overlaid, and their height represents: (i) total-integration (the non-filled bars 

associated with the left y-axis), (ii) within-integration (the fully-filled bars inside the non-filled ones, associated with 

the left y-axis), and (iii) FCR (the semi-filled bars associated with the right y-axis). Between-integration can be 

estimated as the difference between total-integration and within-integration (i.e., the height of the white boxes stacked 

on top of the filled boxes). D-ATT: dorsal attention; V-ATT: ventral attention; CONT: control; DEF: default; SOM-

MOT: somatomotor; VIS: visual 

Table 5.2. Robust linear fit summary of the metabolic costs of total-integration, within-integration, between-

integration, and the reciprocal of FCR for the Yeo-7 networks. The numbers represent slope and standard error. The 

letter (a) indicates whether the linear regression model fits significantly better than a degenerate model consisting of 

only a constant term at a 5% significance level with respect to an F-test. The letter (b) indicates if the p-value of two-

tailed hypothesis t-test that “the slope is zero” against the alternative that “the slope is different from zero” was less 

than 5%. 

 Total-integration Within-integration Between-integration (FCR)-1 

CMRGlc 0.92 ± 0.04 (ab) 0.61 ± 0.08 (ab) 0.93 ± 0.04 (ab) 0.93 ± 0.06 (ab) 

CMRO2 0.87 ± 0.05 (ab) 0.55 ± 0.09 (ab) 0.92 ± 0.04 (ab) 0.82 ± 0.06 (ab) 

CBF 0.89 ± 0.05 (ab) 0.56 ± 0.08 (ab) 0.95 ± 0.03 (ab) 0.86 ± 0.06 (ab) 
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Figure 5.2.Metabolic costs of total-integration for the Yeo-7 networks. A: glucose metabolic costs; B: oxygen 

metabolic costs; C: blood supply costs. Each network of Yeo-7 is uniquely identified by a color and can be visualized 

on the corresponding brain maps displayed on the top side of each graph. The smallest-sized points in each graph 

represent individual subjects while the largest-sized points represent the group. Note that group-level total-

integrations are generally different from the arithmetic mean of total-integrations across subjects because they were 

estimated for a hierarchical statistical model involving non-linear operators, and so the largest-sized points of a 

certain color are not always located at the center of the cloud of points with that same color. The dashed lines in each 

graph represent the 95% predicted intervals (PI). The slope and standard error (SE) of the line of best fit that are 

indicated in each graph are also presented in Table 5.2. The signed distance of a point to the line of best fit displayed 

on the right side of each graph is for the group (i.e., the largest-sized points). D-ATT: dorsal attention; V-ATT: ventral 

attention; CONT: control; DEF: default; SOM-MOT: somatomotor; VIS: visual 
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Figure 5.3. Glucose metabolic costs of within-integration (A), between-integration (B), and the reciprocal of FCR (C) 

for the Yeo-7 networks. Details in this figure are presented as for in Figure 5.2. D-ATT: dorsal attention; V-ATT: 

ventral attention; CONT: control; DEF: default; SOM-MOT: somatomotor; VIS: visual 
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Figure 5.4. PCA-score mappings for CMRGlc datasets (i.e., CMRGlc and either total-integration or within-

integration or between integration or the reciprocal of FCR) for the Yeo-7 networks. Maps are based on group 

prediction scores. Here we can observe that the score patterns of component 2 for total-integration and within-

integration are qualitatively similar to the score patterns of component 1 for between-integration and the reciprocal 

of FCR. 
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5.8 Supporting Information 

 

Figure 5.5. Oxygen metabolic costs of within-integration (A), between-integration (B), and the reciprocal of FCR (C) 

for the Yeo-7 networks. Details in this figure are presented as for in Figure 5.2. D-ATT: dorsal attention; V-ATT: 

ventral attention; CONT: control; DEF: default; SOM-MOT: somatomotor; VIS: visual  
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Figure 5.6. PCA-score mappings for CMRO2 datasets. Maps are based on group prediction scores.  
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Figure 5.7. Blood supply costs of within-integration (A), between-integration (B), and the reciprocal of FCR (C) for 

the yeo-7 networks of Yeo-7. Details in this figure are presented as for in Figure 5.2. D-ATT: dorsal attention; V-

ATT: ventral attention; CONT: control; DEF: default; SOM-MOT: somatomotor; VIS: visual 
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Figure 5.8. PCA-score mappings for CBF datasets. Maps are based on group prediction scores. 
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Figure 5.9 Link between signed distance mapping of a point to a regression line and score mapping of a point along 

a principal component. The graph on the left shows the results of a linear regression. The line of best fit is the solid 

line and the distance of each point to the line of best fit is represented in dotted lines. The distance is considered 

positive when the point lies above the line of best fit, and negative otherwise. The graph on the right shows the results 

of a PCA. The direction of the first component is indicated by the solid line while the direction of the second component 

is indicated by the dash-dotted line. We understand here that the signed distance mapping with respect to the line of 

best fit can capture the same qualitative information as the score mapping along the second principal component. 

Indeed, in the PCA plane, scores along the second principal component are y-coordinates. Similarly, the signed 

distance mapping with respect to a line perpendicular to the line of best fit that passes though the center of the point 

cloud can capture the same qualitative information as the score mapping along the first principal component. 
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Chapter 6: General Discussion 

6.1 Summary of main contributions and limitations 

The main objective of this thesis was to investigate the vascular and metabolic properties 

underlying hemodynamic-based resting-state functional connectivity from the healthy human 

brain. We quantified glucose metabolism (CMRGlc) from FDG PET, oxygen metabolism 

(CMRO2) as well as other physiological components of cerebral metabolism (CBF, OEF, and 

CVR) from calibrated fMRI, and functional connectivity from resting state fMRI data. We also 

used the AHBA, a multimodal atlas of the human brain integrating anatomic and genomic 

information, to investigate the transcriptional signature of the spatial association between vascular, 

metabolic, and functional connectivity properties. The following sections detail the main 

contributions and limitations of each study included in this thesis. 

6.1.1 Manuscript 1 ― Multiresolution Metabolic Profile of Functional Hubness in 
the Resting Human Brain 
In the first study, we investigated the vascular and metabolic properties of functional hubness. We 

tested the hypothesis that there exists a concave down increasing power-law model that relates 

vascular, metabolic (CMRGlc, CMRO2, CBF, and OEF) and functional hubness properties. The 

semi-quantitative SUVR model (see 1.2.2, (Keyes, 1995)) was used to estimate normalized voxel-

maps of glucose metabolism (CMRGlc). The GCM (see 1.11, (Gauthier & Hoge, 2013)) was used 

to estimate quantitative voxel wise maps of baseline oxygen metabolism (CMRO2), CBF and OEF. 

SPARK pipeline (see 2.2.3.3.1, (K. Lee et al., 2016)) was used to estimate voxel wise maps of 

functional hubness. We examined our hypothesis across large-scale networks nested over two 

spatial resolutions from the MIST atlas (see 2.1.2, (Urchs et al., 2019)) using a multi-level 

Bayesian model (Gelman et al., 2020). In summary, we generally found strong statistical evidence 

that an increase in functional hubness is associated with a non-linear (i.e., power-law) increase in 

CMRGlc, CMRO2, and CBF where increase rates are both network-dependent and resolution-

dependent. We also found different increase rates for CMRGlc and CMRO2 suggesting different 

underlying mechanisms dealing on how different classes of functional hubs are handling glucose 

versus oxygen consumption. Whereas CMRO2 and CBF results were quite similar, we also found 

weaker evidence or even no evidence of changes in OEF as a function of hubness. 

This study includes several novel contributions. It is the most comprehensive investigation of the 

vascular and metabolic properties of functional hubs, since it includes both oxygen and glucose 

metabolism, as well as CBF and the balance between CMRO2 and CBF. Furthermore, our model 

allows us to probe these relationships across two spatial scales, allowing us to understand whether 

these properties are dependent on the network scales probed. Investigating both CMRGlc and 

CMRO2 data not only can provide a comprehensive coverage of the principal substrates of brain 

metabolism, but can also indirectly reflect the potential contributions of glucose in the oxidative 

and non-oxidative metabolic pathways (Magistretti & Allaman, 2015). When adding CBF and 

OEF data, we are also able to reconcile our knowledge of neurovascular coupling in hemodynamic 

functional connectivity (Magistretti & Allaman, 2015). By employing the GCM on gas-inhalation-

based calibrated fMRI data to estimate voxel-maps of CMRO2 and OEF (Gauthier & Hoge, 2013), 

we are able to offer an alternative to the traditional PET-based studies. Although PET measures of 

these parameters are accurate, they suffer from the requirement of an injection of exogenous agent 

with potential exposure to radiation and the need of arterial/venous lines, the need of an on-site 

cyclotron due to the short half-life of 15O, as well as the relatively long duration of the procedure, 
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which includes preparation, multiple injections, agent clearance. The cost of these neuroimaging 

approaches is also relatively high due to the need for special equipment (e.g., cyclotron) or a 

special agent (F. Xu et al., 2009). In this study we demonstrated that calibrated fMRI combined 

with GCM proposed by Gauthier et al (Gauthier & Hoge, 2012) offers a promising alternative 

when studying oxygen metabolism, together with other components monitoring neurovascular 

coupling processes (CBF, OEF, CVR). Our comparison of MR-based measure of oxygen 

metabolism with PET glucose metabolism are in agreement with previous PET literature (Hyder 

et al., 2015), while allowing absolute quantification of baseline metabolism, whereas absolute 

quantification using PET is a more complex procedure. In addition, we considered our proposed 

and validated SPARK pipeline (K. Lee et al., 2016) to estimate voxel wise maps of functional 

hubness. SPARK is offering an interesting alternative to conventional graph-theory-based analyses 

that have been reported in previous studies (Palombit et al., 2022; D. Tomasi et al., 2013). In their 

basic format, graph theory metrics suffer from requiring the influence analysis of connectome 

density threshold or the specification of binary versus weighted graph models. Moreover graph 

theory metrics, and especially degree centrality considered in Tomasi et al. (D. Tomasi et al., 2013) 

are also metric known to be biased by the underlying size of the network, whether estimated at the 

voxel level or on a specific parcellation of the brain. SPARK uses sparse multivariate linear 

modeling and advanced bootstrapping strategies to build reliable voxel-maps of functional 

hubness, where the functional hubness of a voxel captures a small and discrete number of 

“networks” (typically between 1 and 6) the voxel is linearly associated with. The spatial overlap 

between networks is specifically modelled using sparse GLM, whereas the total number of 

networks (typically around 20) is estimated from the data. We previously carefully demonstrated 

that SPARK was able to estimate typical RSN similar to the ones usually reported in the literature, 

while exhibiting excellent test/ retest reliability (K. Lee et al., 2016). SPARK allows estimating 

hubness for each voxel, as a discrete number of connected networks (sparse discrete number), as 

opposed to a large number of connected voxels or regions when using graph theory. It is worth 

mentioning that SPARK has been successfully applied to study reorganization of brain networks 

and hubness in epilepsy (K. Lee et al., 2018) (Lee et al NIMG Clin 2018), but also as a function 

of the level of arousal (K. Lee et al., 2022) and sleep (MSc Thesis of Y. Wang (Y. Wang, 2022)). 

In our first study, not only we reproduced main results of SPARK reported in Lee et al (NIMG 

2016) on another population of healthy controls data, but we also demonstrated very interesting 

patterns on how vascular and metabolic properties of the healthy brain are varying as a function of 

functional hubness in a nonlinear manner. However, modeling an effect when considering discrete 

hubness values ranging only from 1 to 6 is quite challenging from a statistical point of view. We 

proposed an advance multilevel Bayesian model to carefully model all the sources of variability 

in our high-dimensional data. By formulating a Bayesian workflow on high-dimensional voxel 

data, we offer an alternative to traditional frequentist-based approaches which suffer from multiple 

testing issue, or p-value hacking, or the non-specificity of the null hypothesis significant testing 

on false positive rate (G. Chen et al., 2019). Finally, the Bayesian workflow we used in this work 

(Gelman et al., 2020) formulates a flexible inference scheme that incorporates our prior knowledge 

that our subjects belong to a homogeneous population and also that functional networks are 

interdependent and organized across multiple functionally meaningful spatial resolutions (Urchs 

et al., 2019). In this way, it not only handles various sources of variability in our data, but it also 

increases the biological interpretability by indicating areas where metabolism-function 

relationships may be homogeneous or heterogeneous. Such an approach allowed us to promote 

very interesting and unique findings on how glucose and oxygen metabolism are supplying 
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functional hubs in a nonlinear manner, showing inverse power law rates of increase that are 

modality specific and network specific.  

However, our study also suffers from some limitations. First, our acquisition protocol did not allow 

us to quantitatively estimate PET-CMRGlc (contrasting with quantitative MRI-CMRO2) as we did 

not have arterial cannulation that is required for modeling absolute CMRGlc estimations or a long 

enough scanning durations (Heurling et al., 2017). The ability to estimate absolute quantitative 

CMRGlc maps together with quantitative CMRO2 maps would have been very useful to derive the 

oxygen-glucose index (OGI; see 1.6.4 ) which reflects the extent to which glucose is consumed 

via oxidative pathways, as previously proposed considering PET data only (Hyder et al., 2015; 

Vaishnavi et al., 2010). Characterizing the spatial distribution of OGI would have been of great 

interest to further determine the role of aerobic glycolysis in hub regions.  

Second, our calibrated fMRI methodology is based on dual fMRI/ASL acquisition. It is worth 

mentioning that our ASL sequence included a single post labelling delay (PLD), which is shorter 

than that recommended in the white paper (Alsop et al., 2015). This PLD was optimized by our 

group in young participants and represents a balance between SNR during rest and during 

hypercapnia. The choice of such a parameter may be more problematic in older subjects who are 

known to exhibit longer arterial transit times (Hu et al., 2020; Kochonowicz et al., 2009). In 

agreement with these findings, we noted during our analyses that the SNR of ASL data was indeed 

lower for the two oldest subjects in our cohort (aged 32 and 33). However, it also worth mentioning 

that our overall cohort was mainly composed of healthy “relatively” young adults (mean ± SD age 

= 24.0 ± 4.3; 9 females). In addition, two of our 19 subjects fainted during FDG injection prior to 

their respective PET scans. Consequently, we observed that their corresponding CBF data were 

noticeably lower when compared to the median of CBF ranges measured across the group. 

However, considering our limited sample size, we decided to include data from these subjects in 

our analyses. Therefore, inclusion of these lower SNR ASL data could have impacted our results 

and future studies should aim to consider a larger sample size and to use a multi-PLD ASL 

implementation.  

Third, it is important to mention that SPARK was developed to be reliable at the individual level, 

it does not include any mathematical constraint for potential group-level analyses. As such, 

functional hubness maps across subjects can have different ranges and spatial distributions. This 

implies that the same hubness value between two subjects may not have the same biological 

significance. This is particularly important for the largest hubness values, which, because they are 

the fewest in number, they are also the least likely to be found within the same functional brain 

division across subjects. Although, our Bayesian model took the latter factor into account, it 

remains unclear how such variability which is expressed voxel-wise on a small range of discrete 

values affect our analyses. Despite these inherent limitations, test/retest reliability of SPARK was 

demonstrated in Lee et al (K. Lee et al., 2016), and the group level probability distribution found 

for hubness ℋ = 1, 2, 3 and ≥ 4 are showing some degree of reproducibility at the group level 

even if no constraints were considered (see Fig. 3.1.A). However it is worth mentioning that some 

initiatives have been proposed to promote the development of k-SVD sparse modeling and 

dictionary learning at the group level (Y. B. Lee et al., 2016). It worth mentioning that a new 

implementation of SPARK featuring group level dictionary learning will be considered in our 

group in future investigations.  
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Fourth, our modular Bayesian modeling was designed to take advantage of the similarities between 

individuals and between brain networks to derive better estimates. For the sake of simplicity, 

critical covariates such as the age or sex of our participants were not included. In addition, power-

law models, especially those with small scaling exponents cannot be properly characterized when 

their domain is very restricted (here, our functional hubness values are only ranging between 1 and 

6). Preliminary results indicated that an exponential or a rational function such as the Michaelis-

Menten model which includes both a horizontal asymptote could fit the data equally well and 

potentially provide more biological insights by coding, for instance, biological saturations. Future 

studies should explore these effects to gain additional insight into these relationships and their 

underlying mechanisms, while considering a larger population to model the effect of other 

covariates (age, biological sex). 

Finally, as for most functional connectivity studies reported in the literature, our results critically 

depended on the choice of a specific brain parcellation. Here, we chose the MIST atlas (Urchs et 

al., 2019) because it enabled us to define, in a consistent way across subjects, fully nested networks 

across a broad range of resolutions, while covering the cortex, the subcortical regions, and the 

cerebellum. However, it is unclear what the effect of choosing a specific parcellation scheme 

would have on our data analysis (Arslan et al., 2018; Messé, 2020). This is indeed a fundamental 

problem faced by many neuroscientific studies. For example, Arslan and colleagues (Arslan et al., 

2018) performed an extensive evaluation of different state-of-the-art parcellations generated at the 

subject and group levels, investigating parcellation accuracy from four different aspects: (i) 

reproducibility across different acquisitions and groups, (ii) fidelity to the underlying connectivity 

data, (iii) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (iv) 

network analysis. In the end, the authors suggested that there is no optimal method able to 

simultaneously address all the challenges faced in this endeavor. Similarly, Messé (Messé, 2020) 

performed an extensive evaluation of the influence of a set of state-of-the-art group-wise atlases 

(including various spatial resolutions) on the connectivity-based structure-function relationship in 

the human brain. The author observed significant effect of the choice of brain parcellations. In our 

study, there could be an impact from the inclusion subcortical and cerebellum signals for which 

signal-to-noise ratios are usually lower than cortical ones. In addition, SPARK provides for each 

subject data-driven spatial maps of the different “networks” each voxel is associated with. It is 

unclear how the analysis carried out from such data-driven “networks”, or the predefined networks 

of an atlas may differ or coincide. Future studies should investigate the effects of choosing a 

specific atlas when investigating the relationship between functional hubness and brain 

metabolism.  

6.1.2 Manuscript 2 ― Investigating the transcriptional profile of the blood flow 
and metabolic cost of functional global and local network connectivity 
In the second study, we investigated the cellular and molecular processes associated with spatial 

patterns of f patterns (M. J. Hawrylycz et al., 2012). Our hypothesis was that vascular, metabolic 

and functional connectivity patterns share spatial architectures that are shaped by underlying 

cellular and molecular processes that can be accessed by studying transcriptional data atlases. In 

this study, we used the Allen Human Brain Atlas (AHBA) to estimate gene expression data. Our 

vascular and metabolic neuroimaging data consisted of CMRGlc, CMRO2, and CBF maps 

estimated as in the first study. We also added Cerebrovascular reactivity (CVR) map measuring 

the ability of cerebral vessels to dilate or constrict in response to vasodilator and vasoconstrictor 

challenges, in this case, inhalation of CO2. These four maps (CMRGlc, CMRO2, CBF and CVR) 
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have been referred to as physio-metabolic data in this manuscript. The functional connectivity 

neuroimaging data consisted of four maps estimated using graph theory, including two measures 

of global centrality, reflecting integration within networks (eigenvector centrality and global 

efficiency) and two measures of local centrality, reflecting segregation within networks): 

(clustering coefficient and local efficiency, see 2.2.2.). We conducted this second analysis at the 

mesoscale level using Schaefer. Brain parcellation atlas composed of 200 Regions (Schaefer et al., 

2018). Using partial least squares (PLS) decomposition of high-dimensionality data (Krishnan et 

al., 2011), we found two distinct transcriptional patterns characterizing different combinations of 

global centrality and physio-metabolic data versus local centrality and physio-metabolic data. 

Using gene ontology (GO) enrichment analysis, we found that the most enriched GOs associated 

with these two patterns included several signaling and metabolic processes, indicating a high 

metabolic cost and reliance on oxidative metabolism for global network centrality. Using cell-

types deconvolution analysis, we also found that neurons were the most enriched when global 

centrality together with physio-metabolic data contributed significantly to defining transcriptional 

patterns. On the other hand, oligodendrocytes were the most enriched when local centrality 

together with cerebrovascular reactivity were the main contributors. 

This original contribution has several novel aspects. We conducted a regional transcription-

neuroimaging association study with the most comprehensive set to date of (i) biomarkers of brain 

metabolic and vascular properties including CMRGlc, CMRO2, CBF, and CVR, as well as (ii) 

biomarkers of hemodynamic functional connectivity patterns including metrics assessing global 

and local network centralities. We then applied state-of-the-art procedures (Arnatkevic̆iūtė et al., 

2019) to analyze our gene expression data, including filtering gene expression level, brain samples 

assignment, data normalization and gene filtering (Arnatkevic̆iūtė et al., 2019). Finally, a PLS 

correlation model was considered to describe the relationship between vascular and metabolic 

properties, and functional global and local network connectivity patterns and transcriptional data. 

When compared to other multivariate techniques that scale to very large datasets, such as weighted 

gene co-expression network analysis (B. Zhang & Horvath, 2005), principal component analysis 

(Bair et al., 2006), or canonical correlation analysis (Hotelling, 1936), PLS methods have been 

shown to not only optimally and reliably capture the information shared between two data tables, 

while remaining stable to inter-correlation among data variables (Maitra & Yan, 2008). Our 

analysis also took advantage of recent strategies to ensure reliability and robustness of our results 

by using bootstrap and spatial autocorrelation-preserving permutation models (Markello & Misic, 

2021). We also sought to obtain a comprehensive understanding of the enriched genes using the 

functional gene enrichment method (Zhou et al., 2019), to analyze the four following GOs: 

biological processes, cellular processes, molecular processes, and pathways. Finally, we 

performed a cell-types deconvolution analysis to determine whether relevant genes are 

preferentially expressed in specific cell types thereby increasing results interpretability. We found 

that the most enriched gene ontologies were associated with several signaling and metabolic 

processes, indicating a high metabolic cost and reliance on oxidative metabolism for global 

network centrality. We further found that neurons were the most enriched wherever global 

centrality together with physio-metabolic data contributed significantly to defining transcriptional 

patterns, whereas oligodendrocytes were the most enriched wherever local centrality together with 

cerebrovascular reactivity were the main contributors. 

Our proposed study nevertheless suffers from some limitations. First, we found that our results 

depended on the choice of brain parcellation. Although, for the sake of conciseness, we did not 
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report those results, we briefly investigated the effect of using an anatomical atlas (e.g., the 

Lausanne atlas (Cammoun et al., 2012)) rather than a functional one (e.g., the Schaefer atlas, 

(Schaefer et al., 2018)). We also investigated the effect of several of atlas resolutions: 57 versus 

111 regions for the Lausanne atlas, and 50 versus 100 regions for the Schaefer atlas (results not 

shown). We determined that the extraction of latent variables and the estimation of gene scores 

were clearly impacted by such choices. However, we decided to report results obtained using the 

Schaefer atlas composed of 200 regions to remain consistent with our other studies that were 

constrained by functional atlases. Future studies should investigate the effects of brain 

parcellations by taking the use-case of multimodal datasets with markedly different resolutions 

and SNR (Arslan et al., 2018; Messé, 2020).  

Second, the estimation of measures of global and local network centrality relies on thresholded 

and sometimes binarized weighted functional connectomes. In our study, we investigated the 

effects of connectome density thresholds ranging 20% to 32.5% and found that overall, our main 

results remained unchanged. We then also investigated the effects of binarizing functional 

connectomes and found meaningful differences between extracted latent variables as well as gene 

scores, therefore suggesting that connectivity weights should be kept when estimating graph theory 

metrics. In addition, we also investigated the effects of deriving group-level graph metrics directly 

from a group-level functional connectome versus indirectly from the graph metrics obtained at the 

subject-level. We observed meaningful differences here as well when extracting latent variables 

or when scoring genes. These detailed explorations indicate that the choice of a graph-theoretical 

pipeline for identifying connectivity patterns is important (Farahani et al., 2019) and therefore care 

must be taken when interpreting the results.  

Third, different approaches for gene enrichment and pathway analysis have been proposed. The 

two predominant enrichment methods are: (i) over-representation analysis (ORA), which 

iteratively tests one GO or pathway term at a time against a list of interesting genes for enrichment 

(Boyle et al., 2004); and (ii) functional class scoring (FCS), which is similar to ORA methods, but 

considers the distribution of the GO/pathway terms in the entire list of genes (Subramanian et al., 

2005). The effect of employing different approaches for gene enrichment analysis has been largely 

discussed in the literature (Abatangelo et al., 2009; Fabris et al., 2020; Mathur et al., 2018; Tarca 

et al., 2013). In our study, we employed multiple frameworks of gene and pathway analysis and 

observed meaningful differences between results. Although we reported here the results for a 

single reliable framework (Zhou et al., 2019), more thorough comparisons would be warranted. 

Fourth, during the preprocessing of gene data, (Arnatkevic̆iūtė et al., 2019) suggested to apply 

threshold of 0.1 to the differential stability of gene sets to preferentially retain genes whose 

expression is consistent across brains, therefore improving overall stability of the results. 

Increasing gene selection threshold would also improve specificity by filtering out genes that are 

known to be related to disease or drug targets GO terms (M. Hawrylycz et al., 2015). However, 

our preliminary analysis showed that employing such a strict threshold not only significantly 

affected the FDR of resulting GO and pathway terms, but also removed many biologically relevant 

genes from our analysis. It is possible that this is due to a parcellation-dependent effect of 

threshold. Future studies are needed to further understand the impact of filtering out genes in high-

resolution versus low-resolution or unimodal versus multimodal neuroimaging data. 

Finally, we only focused on the left hemisphere of the cerebral cortex when relating gene 

expression and neuroimaging data. We did so because only two brains out of six in the AHBA 
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atlas included samples from the right hemisphere, and because of significant differences in the 

transcriptional signatures of the cortex, subcortex and cerebellum (Patania et al., 2019). By adding 

between hemispheres projections that are mainly involved long-distance connection, we would 

expect to see more oxidative metabolic pathway in our results (Vértes et al., 2016). However, 

future studies could aim at providing a more complete picture of the association between gene 

expression and neuroimaging data by investigating the whole brain (both hemispheres, neo-cortex, 

cerebellum, and subcortical areas). 

6.1.3 Manuscript 3 ― Investigating the metabolic and blood flow costs of 
functional integration and segregation in resting-state networks 
In this third study, we investigated whether patterns of functional integration and functional 

segregation estimated at the level large-scale resting-state fMRI networks were associated with 

higher CBF, glucose or oxygen metabolism. The CMRGlc, CMRO2, and CBF data considered for 

this project were the same as the one considered in our previous projects. In this study we are 

proposing an analysis at the macroscale network level. To do so, we considered an information 

theoretic model (see 2.2.3.2.1) to quantify hierarchical measures of resting-state network 

integration and segregation proposed by Marrelec et al (Marrelec et al., 2008) and further applied 

in several important studies assessing brain networks integration/segregation patterns in different 

conditions such as sleep, sleep deprivation or anesthesia (Boly et al., 2012; Marrelec et al., 2008) 

. Using a robust linear regression model, we consistently found strong linear associations between 

vascular, metabolic and between integration, segregation data consistent with the hypothesis that 

functional interactions of intrinsic brain networks are metabolically costly. Importantly, when 

further analysing the slope of the linear relationship between functional connectivity integration 

and segregation and physiological properties of brain baseline activity, our results are suggesting 

resting-state networks of the brain could be further classified into a primary sensory and motor 

network that include visual, somatic, and auditory areas, versus large association networks 

involving parietal, temporal, and frontal regions.  

In this study, we provided a novel perspective of metabolism-function coupling at the system-scale 

level of the brain (i.e., the macroscale level) by linking the functional integration and segregation 

of brain networks to their glucose and oxygen metabolism and blood flow spatial patterns. By 

employing Shannon information theory to derive functional connectivity measures over a nested 

hierarchical description of brain networks, the original method proposed by (Marrelec et al., 2008) 

allows measuring flow of information between and within brain networks, resulting in a 

complementary approach when compared to SPARK estimating functional hubness at the voxel 

level and conventional graph-theory-based analyses usually providing results at the regional level 

of a specific brain parcellation. For instance, the metric f of functional connectivity investigated 

in this study are directly obtained at the systems level of the brain, which is an intermediate scale 

between regions (mesoscale) and the whole brain level (Marrelec et al., 2008). Importantly, using 

measures derived from information theory, the proposed methodology allows capturing nonlinear 

functional interactions. These functional connectivity metrics can be intuitively interpreted as 

shared informational content between brain regions within networks and across networks. They 

are also explicitly embedded as prior assumption that the brain activity can be divided into 

networks and that each network can in turn be made up of several sub-networks, within a 

hierarchical architecture. Finally, by combining measures of CMRGlc, CMRO2, and CBF, our 

analysis is providing a comprehensive coverage of the main markers of brain metabolic and 

vascular properties in response to neural activity (Magistretti & Allaman, 2015). This suggests 
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distinct physio-metabolic needs for performing fast real-time multimodal integration of sensory 

and motor information on the one hand, and for performing broad multi-temporal integration on 

the other hand. However, we would like to discuss some limitations and future directions for this 

study. First, the link between connectivity measures, CBF and metabolism was found to be 

dependent on the choice on the parcellation and underlying hierarchical network structure. We 

identified this dependency in preliminary analyses using two functional brain parcellations 

(Schaefer-100 and Schaefer-200) as well as different procedures to assign regions to networks 

(where networks were defined from Yeo atlases (Thomas Yeo et al., 2011)). This effect was 

identified in previous studies and would deserve careful investigations in future studies (Arslan et 

al., 2018; Boly et al., 2012; Messé, 2020).  

Second, the MI model proposed by Marrelec et al. (2008) assumes stationarity and Gaussianity of 

BOLD fMRI data. Although this assumption is commonly used (Liégeois et al., 2017; Marrelec et 

al., 2008), we note that it is a limited model given the dynamic nature of brain activity (Liégeois 

et al., 2017). Future studies could adopt an autoregressive model allowing to account for some 

temporal coherence in the data (Liégeois et al., 2017).  

Finally, although we employed a hierarchical Bayesian model to estimate functional connectivity 

measures (Marrelec et al., 2008), we did not cohesively account for inter-subject variability effects 

when linking vascular, metabolic and functional connectivity. Therefore, we are limited in our 

ability to pinpoint where the source of differences in vascular and metabolic profiles of functional 

connectivity. We are planning to propose to Bayesian multi-level models or mixed effect models 

as an immediate step to remedy such a limitation in our future studies.  

It is worth mentioning that during the MSc thesis of Wang in our laboratory (Y. Wang, 2022), we 

reconciled the concept of measuring segregation/integration between brain networks using two 

complementary approaches: (i) using the Functional Clustering Ratio based on MI methodology 

considered in our present study, (ii) proposing a Hierarchical Segregation Index (HSI), reflects the 

network segregation at the voxel level derived from SPARK methodology. When applying these 

two approaches on sleep EEG/fMRI data published in Cross et al (Cross et al., 2021), Y. Wang 

found a moderate correlation between the HSI and FCR in somatomotor (R2=0.34), dorsal 

attention (R2= 0.42) and default (R2=0.35) networks during sleep with recovery of cognitive 

performance following a nap after whole night sleep deprivation (Lee, Wang et al in preparation). 

In our future investigations, we are planning to extend the present analysis on the relationship 

between network integration/segregation and patterns of brain blood flow and metabolism to such 

a complementary metric. 

6.2 Future directions 

One well-known but nonetheless major bias in our neuroimaging studies originates from the use 

of non-simultaneously acquired datasets to study the brain, while not accounting for the natural 

temporal changes associated with different physiological, arousal or behavioral states. Recent 

technology is now allowing acquiring simultaneous PET-MRI or PET-MRI-EEG data, which 

would help alleviate this limitation (Aiello et al., 2015; Del Guerra et al., 2018; Ding et al., 2014; 

Palombit et al., 2022; Shah et al., 2017). For instance, Palombit and colleagues considered 

simultaneously acquiring PET-fMRI data (Palombit et al., 2022). Using these data, they were able 

to further confirm previous findings on the relationship between functional hubness and glucose 

metabolism reported by Tomasi et al (D. Tomasi et al., 2013) and -non-simultaneously acquired 

data. Collectively, they suggested that brain regions involved in long-range functional connections 
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are also exhibiting higher glucose metabolism than other regions and that such dependence is 

network dependent. It would be of great importance to further confirm published findings on the 

relationship between brain network properties and brain metabolism using simultaneous 

recordings. Other studies using this type of simultaneous acquisition are necessary to confirm or 

provide a deeper understanding of the existing metabolism-function literature. MR-compatible 

PET systems are very costly, difficult to install and only available in a few imaging centres for the 

moment. On that account, as the first step towards using simultaneously acquired datasets, we 

could envision collaborations between laboratories where datasets and analysis pipelines could be 

shared. This is a potential extension of the work done in this thesis, where we could apply our 

proposed methodologies to simultaneously acquired datasets from other groups and assess 

statistically to which degree results may remain concordant or differ, or potentially derive 

confounds that can correct for biases introduced by non-simultaneous acquisitions. 

Another well-known bias in our neuroimaging studies originates from using static measures to 

characterize brain activity (e.g., metabolic activity, vascular activity, or functional activity). 

However, brain activity is notoriously dynamic and spans multiple spatiotemporal scales. Along 

these lines, two current trends in metabolism-function coupling studies have been considered: (i) 

to apply to metabolic data such as CMRGlc or CMRO2 the same connectomic methodologies 

proposed to analyze BOLD fMRI data (Hubbard et al., 2021; D. G. Tomasi et al., 2017; Voigt et 

al., 2022); as well as (ii) to start by characterizing dynamic measures of functional connectivity 

using BOLD fMRI, before assessing the corresponding metabolic and vascular components 

(Thompson, 2018). Together, these studies suggest that metabolic activity and functional activity 

share similar network topologies. However, other studies are needed to assess whether dynamic 

models are able to provide further concordance beyond static models while having to handle 

underlying mechanisms which are likely to fluctuate at different temporal scales (e.g., glucose 

versus oxygen metabolism.) 

Including simultaneous PET-MRI acquisitions and dynamic functional connectivity analyses of 

fMRI data to study the metabolic and vascular costs of brain functional integration and segregation 

is suggested as possible promising perspectives of the work proposed in this thesis. In what 

follows, we present two other lines of research that can benefit more directly from the 

neuroimaging data acquisitions and analysis pipelines used in this thesis. 

6.2.1 Including a measure of aerobic glycolysis 
Aerobic glycolysis (AG) represents the non-oxidative metabolism of glucose that is converted to 

pyruvate and lactate and produce ATP, despite presence of abundant oxygen (Rogatzki et al., 

2015). Glycolysis occurs in the cytoplasm of the cell and the first step of its reaction is: 

 
Glucose + 2NAD+ + 2ADP + 2Pi

→ 2Pyruvate + 2NADH + 2ATP + 2H+ + 2H2O 
(6.1) 

where the resultant pyruvates are staying in the cytoplasm and being converted to lactate by the 

enzyme lactate dehydrogenase (Chaudhry & Varacallo, 2022). 

 2Pyruvate + 2NADH → 2Lactate + 2NAD+ (6.2) 

AG is mainly determined by the molar ratio of oxygen to glucose consumption and is most 

commonly quantified using the oxygen-glucose index (OGI) (Blazey et al., 2018). As mentioned 
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in section 1.2 and 1.6.4, in the case of full oxidation of a molecule of glucose, OGI should be 6, 

while a lower value would indicate that AG is present. 

Since PET data acquired for this thesis were only providing semi-quantitative measurements of 

glucose metabolisms, we were not able to estimate OGI. Moreover, even when quantitative 

measurements of oxygen and glucose metabolisms are available, the estimation of OGI requires 

computing a ratio at the voxel level, which may be problematic and sensitive to some numerical 

instabilities in brain areas with low metabolism (Goyal et al., 2017; Vaishnavi et al., 2010). To 

overcome this latter issue, Vaishnavi and colleagues (Vaishnavi et al., 2010) suggested an 

alternative measure, called the glycolytic index (GI), which is estimated from the scaled residuals 

of a linear regressing CMRGlc as a function of CMRO2 between CMRGlc and CMRO2 Figure 6.1. 

In this case, positive versus negative GI values away from the predicted regression line would 

correspond to brain regions exhibiting more and less AG. GI has been shown to exhibit a high 

spatial anti-correlation with quantitative OGI (Vaishnavi et al., 2010). The cortical regions 

exhibiting the highest GI value have been found to be within prefrontal cortex, lateral parietal 

cortex, posterior cingulate/precuneus, lateral temporal gyrus, gyrus rectus, and caudate nuclei. 

These brain regions are also characterized by elevated functional connectivity profiles and include 

long-range hub regions. In contrast, the lowest GI was found in the inferior temporal gyrus and 

throughout the cerebellum. Although quantifying glycolysis using GI provides reasonable results, 

it does not yield interpretable quantitative values. As an alternative option, Goyal and colleagues 

(Goyal et al., 2017) suggested defining AG by subtracting the oxidative fraction from CMRGlc as 

AG = CMRGlc– CMRO2 6⁄ . This new alternative measure has been shown to be in agreement with 

both GI and OGI. 

 

Figure 6.1. Aerobic glycolysis using glycolytic index (GI). (A) Voxel wise linear regression of CMRGlc on CMRO2. 

GI is defined as the residuals of the linear regression scaled by 1000. (B) Distribution of aerobic glycolysis in resting 

human brain using GI (number of subjects = 33, groupwise t-test, |Z|>4.4, P < 0.0001). Figure adapted from 

(Vaishnavi et al., 2010) 

As an extension of the work presented in this thesis, it would have been of great interest to include 

measures of GI and AG measure, which can significantly increase the way we could interpret the 

relationship between metabolic and vascular properties of functional connectivity patterns by 

disentangling between glucose, oxygen and lactate contributions (Magistretti & Allaman, 2015). 
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This can be considered by investigating the GI and specifying the regions in the brain where the 

GI is lower than 6, which can be interpreted as utilization of lactate and glycolysis pathway.  

While quantifying GI using semi-quantitative CMRGlc and quantitative CMRO2 is plausible; 

however, considering the scaling difference between the CMRGlc and CMRO2 data, quantifying 

AG = CMRGlc– CMRO2 6⁄  required defining an appropriate region of interest with respect to 

which CMRO2 data could be normalized. Hence, in order to be able to include an accurate measure 

of GI and AG into our analyses, we need to either revisited the CMRGlc data acquisition protocol 

(to provide quantitative maps) or attempt to build an appropriate model of CMRO2 normalizations, 

to be used alongside semi-quantitative CMRGlc. Such an approach will be considered in our future 

investigations but was falling outside the scope of this thesis. 

6.2.2 Characterizing metabolic and vascular profiles of functional hubs in focal 
epilepsy 
Brain neurological disorders compromise not only the quality of life of a large population, but also 

impose a physical, social, and economic burden on individuals and the health and social systems 

(Gaskin et al., 2017; Gooch et al., 2017; Raggi & Leonardi, 2015). Epilepsy, primarily 

characterized by recurrent epileptic seizures affects close to 1% of the global population, making 

it one of the most prevalent neurological condition (De Boer et al., 2008; Tellez‐Zenteno et al., 

2004). Focal epilepsy is a sub-type of epilepsy in which seizures affect a small part of the brain 

and can further be classified by the anatomical location of epileptic seizure: temporal, frontal, 

parietal and occipital lobe epilepsies. Temporal lobe epilepsy (TLE) is the most common form of 

focal epilepsy and is associated with recurrent seizures involving paroxysmic bioelectrical 

neuronal discharges in mesial or lateral/neocortical temporal lobes (Wiebe, 2000). 

Several neuroimaging studies have suggested abnormalities and reorganization of brain functional 

networks in distributed brain regions associated with epilepsy (Maccotta et al., 2013; J. Song et 

al., 2015; van Diessen et al., 2013; J. Wang et al., 2014). In particular, in TLE, we have reported 

decreased functional connectivity between the pathological mesial temporal region with 

contralateral mesial temporal region, as well as regions from the default mode network and 

mesolimbic regions, i.e. particularly within brain areas containing connector hub regions (Pittau 

et al., 2012). A review by Stam has shown that in TLE, hub regions tend to become non-hubs, with 

acute network disruptions where long-range connection hub regions are normally located (van 

Diessen et al., 2013) . Other resting-state fMRI studies have reported similar disruptions in hub 

regions (Ridley et al., 2015; Vaughan et al., 2016). Using SPARK, our group proposed some 

methodology to quantify the disruption and emergence of connector hubs in TLE patients and 

found specific reorganization of asymmetrical connector hubs, disruption of hubs’ distant 

connections, and the emergence of local connections (K. Lee et al., 2018). A commonly accepted 

hypothesis is that an epileptic network that is getting regularized, i.e. only locally connected and 

isolated from the rest of the brain, would correspond to good prediction of postsurgical outcome 

after resection of the epileptic focus (Y. Wang et al., 2022). On the other hand, resecting an 

epileptic focus associated with a widespread network, involving the emergence of several long-

distance connections, would be more likely to bad postsurgical outcomes. Our preliminary results 

applying functional connectivity analysis on resting-state MEG data are confirming these 

hypotheses (Aydin et al., 2020)  

FDG-PET is also frequently used to identify brain regions exhibiting abnormal glucose 

metabolism in epilepsy patients (Chugani et al., 1990, 1993; Chugani & Conti, 1996). Epilepsy 
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patients with very frequent or continuous seizures have disrupted metabolic profiles, usually 

resulting in glucose hypermetabolism within epileptic foci (Alkonyi et al., 2011; Bansal et al., 

2016; Ding et al., 2014). Furthermore, epileptic seizures not only disrupt glucose metabolism but 

also regional cerebral blood flow, oxygen extraction fraction and oxygen consumption. Epilepsy 

patients show an imbalance between blood flow, glucose utilization, and oxygen consumption 

within most regions affected by epileptic seizures (Bruehl et al., 1998; Franck et al., 1989). 

As a direct extension of the developments proposed in this thesis, our next objective will be a 

neuroimaging-based study of the link between metabolism and function in epileptic patients, when 

compared to healthy subjects. We expect to find a degree of deviation in the relationship between 

the vascular-metabolic and brain functional connectivity features. Hence, we hypothesize that 

epilepsy is associated not only with differences in the vascular and metabolic costs of functional 

hubness but also with differences in the vascular and metabolic costs of large-scale network 

integration and segregation. To assess these effects, an imaging framework such as the one 

developed in this thesis could be of great interest. Since our analyses cohesively bridge various 

“macroscales” that ultimately link to large-scale brain networks, we expect to provide a more 

comprehensive understanding of disease network phenotypes. Ultimately, this may translate into 

better-targeted treatments, from drugs to surgeries. We further suggest that estimating a glycolytic 

index to quantify which brain regions exhibit excess aerobic glycolysis in the healthy brain and in 

epilepsy, would be more likely to result in developing new promising biomarkers to predict 

epilepsy postsurgical outcomes. Epileptic hubs are hypothesized to be more metabolically 

demanding than healthy hubs, so they are expected to express greater anaerobic glycolysis as a 

means to synthesize ATP more rapidly. 

6.3 Conclusion 

This PhD thesis focused on the relationships between resting-state brain vascular and metabolic 

patterns and functional hemodynamic connectivity patterns in healthy humans. We proposed an 

innovative multimodal neuroimaging acquisition protocol based on PET and MRI to non-

invasively capture different facets of brain metabolic and vascular activities. Our vascular and 

metabolic maps included: glucose metabolism (CMRGlc), oxygen metabolism (CMRO2), blood 

flow (CBF), the fraction of oxygen extracted (OEF), and vessels’ ability to dilate or constrict 

following a dilatory stimulus (CVR). We also quantified different facets of brain functional 

connectivity at different spatial scales spanning from voxels to regions to large-scale networks, 

providing brain maps of functional hubness, functional global and local network centralities and 

functional network's capacity to integrate and segregate information. A multimodal atlas of the 

human brain integrating anatomic and genomic information, the AHBA, was additionally used to 

non-invasively bridge between molecular content and neuroimaging findings. 

In our first project, we showed that a non-linear monotonic increasing model can be used to 

describe how CMRGlc, CMRO2 and CBF vary with respect to functional hubness at the voxel 

level, whereas we found almost no dependence of OEF with functional hubness. We also provided 

evidence that there is a significant dependence between these relationships and the nature or size 

of the functional brain parcellation used, our findings are network-dependent and spatial 

resolution/scale-dependent). Hence, our results suggest that higher hubness implies higher 

vascular and metabolic costs, especially within higher-order function networks. In our second 

project, we showed that vascular, metabolic and functional global and local network centrality 

patterns share spatial architectures that are shaped by distinctive molecular processes. In particular, 



198 

 

the spatial architectures consisted of different combinations of functional global network 

centralities and vascular and metabolic data on one hand, and functional local network centralities 

and vascular and metabolic data on the other hand. In addition, we showed that the most enriched 

gene ontologies associated with the different spatial architectures were distinct and included 

several signalling and metabolic processes, suggesting a high metabolic cost and reliance on 

oxidative metabolism for functional global network centralities. Meanwhile, neurons were the 

most enriched for spatial architectures including functional global network centralities, whereas 

oligodendrocytes were the most enriched for spatial architectures including functional local 

network centralities. In our third project, we demonstrated that higher integration or lower 

segregation levels are associated with higher vascular and metabolic costs. We also demonstrated 

that the resting-state networks of the brain can be classified according to their relationship with 

vascular and metabolic properties into a primary sensory and motor cluster that includes visual, 

somatic, and auditory areas, and a large association cluster that comprises parietal, temporal, and 

frontal regions. Our results are therefore suggesting distinct vascular and metabolic needs for 

performing fast real-time multimodal integration of sensory and motor information on the one 

hand, and for performing higher-order multi-temporal integration on the other hand. 
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