
Development of a Trust-enhanced Data Sharing System

Arian Fotouhi

A Thesis

In the Department of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Electrical and Computer Engineering)

at Concordia University

Montréal, Québec, Canada

December 2022

© Arian Fotouhi, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Arian Fotouhi

Entitled: Development of a Trust-enhanced Data Sharing System

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Paula Lago

Examiner
Dr. Yang Wang

Supervisor
Dr. Jun Cai

Approved by
Yousef R. Shayan, Chair
Department of Electrical and Computer Engineering

2023
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Development of a Trust-enhanced Data Sharing System

Arian Fotouhi

Despite importance of data sharing, there are several challenges yet to be tackled, especially

security and privacy in which the users roughly may trust to utilize a platform that is insecure

to protect privacy violation. Recently, blockchain technology as an immutable and decentralized

ledger has emerged to be a promising solution to security and privacy issues. To improve the trust

in data sharing systems, reputation systems are deemed advantageous. In fact, the users receive

reputation based on their collaboration. It is worth noting, the blockchain-based data sharing and

reputation systems impose complexities to the systems as well. This work presents an improved

data sharing scheme in terms of privacy, security and latency. The idea features enhancement in

performance of blockchain technology and reputation system. Besides, we have implemented the

proposed idea as a web application to provide facilitated access for data sharing users. Most of

the challenges of development are originated from the fact that many parts of this implementation is

from scratch, unlike most of research works on data sharing implementations. We opted for this type

of development because there exist common demerits in developments of data sharing frameworks

and we believe the reason is to utilize the external and built-in tools imposing many constraints,

e.g. communication costs. Besides, the development steps and their corresponding challenges are

demonstrated as well. As the final stage, we evaluated the performance and depicted the results to

compare and assess the quality of implemented data sharing framework.

iii

Acknowledgments

I would like to express my sincere gratitude to Dr. Jun Cai for his guidances and supports that

assisted me to overcome hurdles of my graduate studies path.

My appreciation extends to my parents as well who unconditionally supported me through all

my life steps and nurtured my curiosity and ambition to follow my goals.

iv

Contribution of Authors

This dissertation is the research work of Arian Fotouhi and it is submitted under supervision of

Dr. Jun Cai for the degree of Master of Applied Science at Concordia University. The dissertation

is original and unpublished.

v

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 6

1.3 Contribution . 7

1.4 Thesis Structure . 7

2 Literature Review 9

3 Data Sharing System 22

3.1 System architecture . 22

3.2 Incentive mechanism . 26

3.3 Consensus algorithm . 27

3.4 Cloud-based encryption . 31

4 Implementation 32

4.1 Back-end . 32

4.2 Front-end . 37

4.3 Database . 39

vi

5 Performance Assessment 45

5.1 Scalability . 45

5.2 Security . 48

6 Conclusion and Future Work 51

6.1 Conclusion . 51

6.2 Future Work . 52

6.2.1 Data Quality Management . 52

6.2.2 Recommender System . 53

Bibliography 55

Appendix A Implementation Materials (back-end) 59

vii

List of Figures

Figure 1.1 Data sharing and applications . 2

Figure 1.2 Blockchain network structure . 3

Figure 1.3 Data and hash . 4

Figure 1.4 Incentive mechanisms . 5

Figure 1.5 Consensus algorithms analysis . 6

Figure 3.1 System Model . 23

Figure 3.2 Reputation systems drawbacks . 26

Figure 3.3 OTF and RTF rate . 29

Figure 4.1 Implementation scheme . 33

Figure 4.2 User authentication page of the framework 38

Figure 4.3 Reputation of the framework users . 39

Figure 4.4 Request generation page of the framework 40

Figure 4.5 Data contribution page of the framework 41

Figure 4.6 Received requests notification for a data owner 41

Figure 4.7 Received requests for a data owner . 42

Figure 4.8 Database (MongoDB) architecture, data collection 42

Figure 4.9 Database (MongoDB) architecture, blockchain collection 43

Figure 4.10 Database (MongoDB) architecture, trusted collection 43

Figure 4.11 Database (MongoDB) architecture, pool collection 43

Figure 4.12 Database (MongoDB) architecture, access requested pool collection 44

Figure 5.1 Latency of service provider requests . 46

viii

Figure 5.2 Latency of consensus algorithm . 47

Figure 5.3 Summary of improvements by proposed methods 49

Figure A.1 The code in app.py file . 59

Figure A.2 The code in app.py file . 60

Figure A.3 The code in app.py file . 60

Figure A.4 The code in app.py file . 61

Figure A.5 The code in app.py file . 61

Figure A.6 The code in app.py file . 62

Figure A.7 The code in app.py file . 62

Figure A.8 The code in app.py file . 63

Figure A.9 The code in app.py file . 63

Figure A.10 The code in app.py file . 64

Figure A.11 The code in app.py file . 64

Figure A.12 The code in app.py file . 65

Figure A.13 The code in app.py file . 65

Figure A.14 The code in app.py file . 66

Figure A.15 The code in app.py file . 67

Figure A.16 The code in app.py file . 67

Figure A.17 The code in app.py file . 68

Figure A.18 The code in app.py file . 69

Figure A.19 The code in app.py file . 69

Figure A.20 The code in app.py file . 70

Figure A.21 The code in app.py file . 70

Figure A.22 The code in app.py file . 71

Figure A.23 The code in app.py file . 72

Figure A.24 The code in app.py file . 73

Figure A.25 The code in app.py file . 74

Figure A.26 The code in app.py file . 75

Figure A.27 The code in app.py file . 75

ix

Figure A.28 The code in app.py file . 76

Figure A.29 The code in app.py file . 77

Figure A.30 The code in app.py file . 77

Figure A.31 The code in blockchain.py file . 78

Figure A.32 The code in blockchain.py file . 79

Figure A.33 The code in blockchain.py file . 79

x

List of Tables

Table 5.1 Latency of authority 1 . 49

Table 5.2 Latency of authority 2 . 50

Table 5.3 Latency of authority 3 . 50

Table 5.4 Latency of authority 4 . 50

Table 5.5 Latency of authority 5 . 50

xi

Chapter 1

Introduction

This chapter provides the requisite background information to grasp the concept and significance

of data sharing.

1.1 Motivation

As the volume of data in our daily applications is surging, we have to seek new solutions to

manage and distribute our information efficiently. As figure 1.1 shows, interests towards e-health,

Internet of Things (IoT) and wearable devices have motivated researchers to pursue and devel op

data sharing area with aim of producing privacy preserving and secure environment sharing in-

teractions. In spite of prosperous performance in terms of data exchange and management in the

proposed data sharing systems, the new world expects beyond that.

As a matter of fact, nowadays users can trust a system only if they are assured that their infor-

mation is safe, thereby, cyber attackers cannot manipulate and misuse it. To earn users’ trust, the

research works of data sharing have found a recent direction towards security and privacy. How-

ever, meeting these two requirements is quite challenging. The reason is there are diverse types of

cyber threats and preventing them one by one is a complicated solution. Therefore, finding a new

technology that provides a package to improve cyber security has been craved for a long time.

Satoshi Nakamoto [1] brought blockchain technology to attention of public and a solid frame-

work for the concept of cryptocurrencies, more specifically Bitcoin, was introduced. Interests to

1

Figure 1.1: Data sharing and applications

blockchain experienced a large growth while due to deficiencies of Bitcoin, most importantly its

massive power usage, many users could not afford engaging. Following that, Ethereum emerged by

lower power requirements and also it established many regulations like constraints on the used gas,

to encourage the users to apply power efficient programming algorithms [2]. In spite of decrease

in power consumption, still high power dependency existed due to utilizing power-based consensus

algorithm. Following that, blockchain became adopted into different network and cyber security ap-

plications. To come under close scrutiny, blockchain has several advantageous attributes where the

most important ones are tamperproofness, decentralization and third party independence. Tamper-

proofness refers to the fact that data in blockchain are immutable. To find out the reason, firstly we

have to investigate the architecture of blockchain network demonstrated in figure 1.2. Each block of

blockchain is composed of three sections namely, hash, hash of previous block and data. Regarding

the hash, it is a series of digits and letters generated based on the holding data of a block. Also, as

figure 1.3 depicts, it is irreversible and unpredictable. The unpredictability stems from avalanche

effect of hashing function wherein a slight change in input results in huge changes of hash. Be-

sides, hash of previous block in block N of the network expects the same value compared to hash

2

Figure 1.2: Blockchain network structure

of block N-1. If a malicious user manipulates the data of block N-1, that results in change of hash,

the hash of block N-1 and hash of previous block of block N are no longer the same and the net-

work becomes notified. That is the reason why any data tampering and manipulation is detected in

blockchain. Furthermore, decentralization of blockchain yields participants with diverse locations

and also avoiding the types of attack that rely on centralization. The most important one is single

point of failure in which the malicious users attack a point that leads to dysfunctional performance

of the network. An efficient solution for security against single point of failure is relying on decen-

tralized technologies. As for third party, blockchain is an autonomous network in which there is

no need to be governed by a third party organization. As a matter of fact, presence of third party

plummets the trust in a system especially in the ones dealing with sensitive information, e.g. med-

ical data. Hence, blockchain self-governance is deemed valuable to assure security of information.

Despite all aforementioned merits, blockchain brings drawbacks as well. As an illustration, due to

hurdles imposed by consensus algorithm of blockchain, it requires to have powerful processors like

GPU, ASIC, and even mining farm in large scale cases. In consequence of this problem, concerns

over limited applications of blockchain and environmental repercussions rose. Besides, small elec-

tronic devices of IoT and wearable devices applications cannot be integrated into these types of data

sharing networks.

3

Figure 1.3: Data and hash

As a matter of fact, the large power consumption requirement is originated from consensus al-

gorithm of blockchain, that is proof of work (PoW) where the miners have to solve a complicated

mathematical puzzle. To solve power usage, staked-based consensus algorithms were introduced.

At the beginning, proof of stake (PoS) was unveiled that substituted mining of PoW with voting

process [3]. Voting occurs based on stakes of users, the user with more stake has more influence

in voting. Following PoS, delegated proof of stake was introduced [4]. It was able to decrease

the communication costs and latency of PoS due to the fact that, only delegates could engage in

voting while in PoS all users could do so. Despite power consumption reduction, stake-based algo-

rithms accompany an unfair voting process [5] where a selfish user who has plenty of stakes may

threaten the network. Also, rich users will get richer and richer since they always vote in favour of

themselves.

Incentive mechanisms play a key role to encourage participation of the members. As figure 1.4

depicts, there are different solutions to achieve that goal, one popular method is based on monetary

rewards, e.g. Bitcoin [1], wherein the users receive coins after participating in mining process. As to

4

Figure 1.4: Incentive mechanisms

other solutions, reputation mechanism is a beneficial method to reward the collaboration of the users

as well. In this mechanism, the participants who act honestly are received incentive with reputation

and the ones who are dishonest are penalized by reputation reduction. To compare money based

and reputation based mechanisms, as Han et al. discuss in [6], monetary incentives aim to produce

regulations for performance of system entities from an economic view. They grow the utility of

entities when they engage in the system activities by rewarding them monetarily. Moreover, these

sorts of incentive mechanisms target to surge the cost of attack. Compared to money based incentive

mechanisms, reputation based ones peruse the aim of encouraging the nodes to collaborate. They

confer reputation to regulate node behaviors to build an honest and cooperative network. Therefore,

to enhance trust among the network users, reputation mechanism outperforms monetary one.

On the other hand, current reputation systems suffer from deficiencies as well. First and fore-

most, selfish users can manipulate system. They can gain reputation by forging unnecessary trans-

actions where data owner and data requester are showing themselves as active collaboratives of

the framework. As a result, higher possibility of attacks that require the malicious users to obtain

reputation, e.g. sybil attack, appears in the system.

5

Figure 1.5: Consensus algorithms analysis

1.2 Objectives

This work aims to attain several different goals to supply a secure and efficient blockchain based

data sharing network. As a matter of fact, blockchain is adopted into data sharing to enhance this

framework while, as figure 1.5 shows, consensus algorithms of conventional blockchain designs

impose either high power consumption or weighted voting or high communication costs. In terms

of consensus algorithm, the objective is to propose a power and communication costs efficient yet

secure algorithm able to manage the transactions.

Besides, our research work targets to employ a reputation system as the incentive mechanism to

enhance the security and trust, and also reward the honest collaborators. This step firstly requires

to propose a solution to solve the current problems of conventional reputation systems that are

composed of susceptibility against manipulation of selfish users and malicious activities of attackers.

As the last goal, the work seeks a method to decrease the latency of current data sharing frame-

works. Latency reduction is a requisite since the framework can become an efficient choice for

different IoT and low latency applications.

6

1.3 Contribution

This work presents a new proposed data sharing framework that tackles the problems of high

power usage, biased voting and high communication costs, with the introduced new consensus

algorithm. Also, we provide incentive mechanism based suggestions to enhance the trust in the

network of users. Moreover, to decrease latency and communication costs, the framework utilizes a

cloud-centric encryption.

The principal portion of effort in this work is allocated to the implementation of our data shar-

ing framework. In the development steps, we underwent various hurdles that are explained in this

work. As a matter of fact, one essential reason that impacted the complexity of our implementation

is we developed this framework by minimum number of built-in and external tools. In other words,

we implemented a considerable portion of this work from scratch to reduce the necessitated com-

munication costs between external tools, and also to increase the control over entire the network

functions.

It is worth mentioning, this work has resulted in publication of the below research paper:

• Fotouhi et al. ”Trust-enhanced blockchain-enabled framework for secure and privacy-preserving

data sharing systems”. In: IEEE Future Networks World Forum (2022)

1.4 Thesis Structure

The content of thesis is organized as chapter 2 represents the literature review. Followed by

that, chapter 3 demonstrates the system model wherein the network design is elaborated. Besides,

the mathematical expressions introduced in this work, are shown and explained within the chapter.

Moreover, the data sharing framework working steps and also the consensus algorithm are eluci-

dated by the attached algorithms.

Chapter 4 explains the development challenges. In this chapter the codes, utilized tools and

involved programming frameworks are depicted. Chapter 5 represents the evaluation of the per-

formance of proposed idea by the test results that are attached. Also it discusses the outcome of

measurements to illuminate the reasons that the proposed idea confronted either outperformance or

7

underperformance. As the last chapter, chapter 6 concludes this work and its contributions following

that, it discusses the potential future works to enhance the performance of the proposed work.

8

Chapter 2

Literature Review

In [7], Zhang et al. propose a blockchain based framework for personal health information (PHI)

that is reliable in terms of security and privacy. As to the introduced architecture, it is built upon

two sorts of blockchain networks namely consortium blockchain and private blockchain. Private

blockchain, in which higher control over the stored data is provided, protects PHI records. Also,

consortium blockchain, stores the indexes of the PHI records. The system is composed of three

entities: system manager, medical service providers (it is assumed the registered hospitals) and users

(the patients). System manager monitors the interactions and all the doctors and users, are required

to register to the system manager. This work is developed based on cryptographic keys concepts.

Considering the users, each patient receives a token after registration. The user should show the

token to the doctor, who is a client in the medical service provider (hospital). The token works

as the evidence demonstrating the interaction of doctor with the specific patient and authorizes the

doctor to generate a new PHI for the patient in the private blockchain. Regarding the process of

transaction generation, when the doctor encrypts the PHI with patient’s cryptographic keys, a new

transaction is emerged. The new transaction would be sent to the private blockchain of the hospital.

Liang et al. in [8], introduced a blockchain based user-centric health data sharing that mostly

focuses on wearable devices data and features the concept of channel formation. As to implemen-

tation, this work is deployed as a mobile application to depict the performance in practice. The

data sharing framework is implemented on Hyperledger Fabric [9] permissioned blockchain. The

9

proposed architecture is composed of six entities: user, wearable devices, healthcare provider, in-

surance company, cloud database and the blockchain network. To briefly explain each one, the user

generates data by her wearable device then the health data are uploaded to the network by the de-

vice. Following that, the user is considered as the data owner who is responsible for grant, refusal

and revocation of a request.

Respecting wearable device entity, it serves as the tool to produce the health data then it should

transform original health data into a human readable format. Also, it should be connected to the

network to dispatch the acquired information. Healthcare provider entity is comprised of doctors

assigned by the users to render them access for conducting medical test and treatments. Health

insurance company is the entity utilizing the network to make an appropriate health insurance plan

based on user health condition and daily exercises. Cloud database is the storage to protect health

information of users and provides a traceable data access. The last entity is blockchain network

that carries health data of users and also contains data access policies for each piece of information

dedicated by the wearable devices.

Fan et al. in [10] explained the proposed medical data sharing system to solve data management

and sharing policy tasks for electronic medical records (EMRs). As a matter of fact, they indicate the

system architecture relying on Certificate Authority (CA) to handle authority management parts and

act as system administrator to suspend malicious users. Also, cryptographic keys generation is based

on CA as well. Moreover, User layer is the section responsible for user’s data management and also

making the users able to encrypt their data for user privacy. As the last layer, it has Processing

layer containing databases and accountable for reaching consensus and data processing. Finally,

according to the demonstrated evaluation, the cryptographic key based solution for encryption has

imposed considerable delay to provide service.

Xia et al. in [11] portrays a medical data sharing that is built on four layers. The layers are

composed of user layer, data query layer, data structuring and provenance layer and lastly, data

structuring and provenance layer. Besides, each layer includes multiple sub-layers. Xie el al. indi-

cate the user layer holds diverse types of users who all want to access data for research purposes.

The instances of users are healthcare organizations and universities. The second layer, data query

10

layer, manages the data queries that can be the requests to access the data from existing database in-

frastructure. This layer interacts with data structuring and provenance layer to interpret and translate

proposed actions between the third layer and outside entities like a request receiving from outside

of the framework. In fact, the second layer is consisted of querying system and trigger. Querying

system has two main roles firstly, it is tasked to process the requests and change them into a format

understandable by the third layer. Secondly, it responds to the requesters for their requests.

As mentioned in [11], the third layer of the model architecture, manages the data requests and

retrieves data from database layer. The layer controls the actions and sends them to the database

to be indexed and stored. As a matter of fact, results of actions are kept in the blockchain net-

work due to its immutability that provides a reliable future auditing for the data sharing system. As

Xia et al. mention, this layer has more responsibilities as well that are performed by the subsections

namely, authenticator, processing and consensus node, smart contracts, smart contract permissioned

database and blockchain network. In terms of authenticator, it evaluates the integrity of requests that

are sent to data owners. The actions are encrypted using the contract key generated by authentica-

tor. Authenticator encrypts the data requests as well. Processing and consensus node handles data

request form that might be further developed into information in the blockchain, and also it deliv-

ers the requested data and their corresponding smart contract to the requester. In respect of smart

contracts, receiving a new action leads to activation of smart contracts. The smart contracts duty is

to manage the required actions on the dispatched data and also alleviate the storing process of data.

Moreover, smart contracts are able to revoke access to the data in case of identifying policy violation

and this is the part that connects smart contracts to the smart contract permissioned database section.

In fact, this section holds a storage that receives any report regarding rule violations, following that,

it suggests further actions according to the desire of the data owner. The blockchain network of

this work represents an immutable and chronically distributed data respecting actions on the data

package delivery. The other task of blockchain is to hold a side-block for actions of reported data

by the smart contract. As the last component of system model, the database layer hosts the medical

records, therefore, it is only accessible to a certain authorized participants. Also, it retrieves the

valid requested data upon received requests from the third layer.

Shen et al. in [12] introduced a decentralized network based on blockchain network and peer

11

to peer storage network for healthcare data. In fact, the work has two types of nodes namely, super

nodes and edge nodes. Super nodes are servers from large healthcare institutions and hospitals,

and they usually have large storage and computing power. The super nodes are responsible for

main infrastructures of data sharing network. The edge nodes are the servers from smaller health

centers like clinics that are tasked to store the actual data of data owners. As to resources of su-

per peers, they are made up of three parts: blockchain service, directory service and healthcare

database. Blockchain server manages the blockchain network that verifies and audits the data in-

tegrity. The directory server holds the inventory of user for medical data, and manages the sessions

of the data sharing framework. Also, healthcare database protects the actual medical data of pa-

tients. There exist two sorts of events on the blockchain namely: data genration event and session

creation event. Considering data generation event, it is produced when a piece of medical informa-

tion is contributed. It accompanies, patient public key, healthcare provider public key and signature,

data digest and hash of the event on the blockchain network. On the other hand, session creation

event is created once a patient accepts the access requests for her medical data. The event includes

infromation like the start and end time for the data access, public key of patient and the requester as

well as the signature of the patient.

To ehance the security in [12], the work widely uses cryptographic keys for different tasks. For

initialization, a patient generates and store her public key and private key. In the first step, the user

sends her public key to the communicating super peer for future message verification. Then the

public key is signed by the certificate authority entity. The patients and the healthcare institutions

exchange the public keys for inventory generation. Also, each time a patient can access an inventory

by decrypting the encrypted inventory using her keys. As another application of the keys in this

work, when a user chooses the data from her inventory for the sharing, the one makes a session

with the data descriptions then encrypts them using her cryptographic keys. Besides, the patient

uses her public and private keys to encrypt the content of the session separately as well. Upon

receiving the data access request, the healthcare provider verifies the session status. If the session is

available, it assesses the request by message signature. Meanwhile the requester can find and access

the session and by her public and private keys, the ones can decrypt the session. If all occurred

validations are positive, the requester can receive access to the sent data. As a result, the requester

12

starts decrypting the data package and using the requested data. To sum up, the cryptographic keys

in this work are employed in data encryption, data decryption and verification processes. Although,

the cryptographic keys-based methods are widely utilized, they increase the latency and complexity

of network.

In [13], a blockchain-based data sharing framework is introduced where it prioritizes the security

of data. The system is built upon a private blockchain and it allows only the invited members to

utilize the framework. The processes of adding new members to the network and making them able

to request to receive data, require verification of their identity. The work is implemented by the

virtue of the concept of cryptographic keys. Membership issuing keys, are produced and dispatched

to the users to permit them joining the data sharing framework. Moreover, Membership private key

is used to generate a data request that further might be developed into a new block. Transaction

private key is employed to digitally sign a request and Transaction public key is for verification of

signatures on the blocks.

As explained in [13], the framework is comprised of three entities, namely the user, system

management and storage. The users are the ones who want to access or contribute data, like hospi-

tals, institutions, etc. Also system management is composed of a multiple interconnected sections,

including issuer, verifier and consensus nodes. As for issuer, it is responsible for authentication

process of new requested users (to become a new member). Verifier has to evaluate the integrity of

user’s public and private keys when the goal is to add new blocks. Considering consensus nodes,

they assess the proposed blocks. Xia et al. indicate when a user wants to join the permissioned

members, the user should send request to the issuer. If the member is authorized, the issuing key

will be sent to the user to commence utilizing this framework. Also, to request a new block, the user

has to use the generated public key and private key that are used to sign the blocks. The consensus

node is required to fetch the unprocessed blocks then assure their authenticity for security purposes.

Lastly, the processed block is broadcast into the blockchain network by the consensus node.

Yu et al. in [14], illuminate a proposed data sharing framework to deal with Industrial IoT data.

The prominent problems that are indicated to be solved are lack of secure storage, access control,

tracing and revocation of adversaries. As a matter of fact, a secure and traceable blockchain based

data sharing framework for Industrial IoT and smart factories is introduced. The system architecture

13

composes domain, blockchain, system manage server, edge sever and cloud sever provider.

In fact, domains are management sections of each smart factory and they are consisted of users,

devices, sensors and domain administrators. This entity produces Industrial IoT data. In this work,

this section is assumed as a trusted role. As to blockchain network of this research work, it conducts

identity authentication to guarantee the integrity of the registered users. Blockchain also stores all

public keys related to system manager, domain manager and users. Besides, system management

sever is responsible to manage smart factory services for the users. It also generates cryptographic

keys for all the sections of the system including the users. As to edge server entity, with aim of

producing policy matching and supply data services for the users, this entity nonpermanently stores

data of factories. Respecting cloud service provider, it stores historical encrypted data of factories.

As explained by Yu et al., in the first phase the blockchain authenticates all the identities and

stores the entire public keys. Followed by that, the system administrator calculates the system pa-

rameters and assigns the users their private keys. Meanwhile, domain administrator handles formu-

lating domain security, privacy protection policies and encryption tasks. In case of meeting access

policies plus having a user who is not found in the revocation list, the user receives intermediate

decryption parameters from either edge server or cloud server to access data [14].

In [15], Li et al. build a blockchain based and privacy preserving data sharing to solve a spe-

cific sharing problem. The scenario is a user who wants to sell her IoT data to medical research

institutions. As declared by Li et al., due to openness of IoT environment, adversaries may harm

the security and privacy of users. To avoid threats, the work defines six criteria that are required

to be met by the data sharing framework namely, anonymity, data authenticity, rewarding, behavior

policy of data user, access control, nonframeability.

As for anonymity, the data of data owner includes health information and divulgence of identity

of users violates user privacy and also yields unwillingness of them to further participations. By

data authenticity, it refers to the fact that forging IoT data by attackers reaches the researchers

to the wrong trained models and conclusions, thereby, data sharing framework requires to assess

authenticity of data. As the next criterion, rewarding is a useful tool to increase collaborations

between users. Also, behavior privacy of data user should be assured since the adversaries can

construct behavior profile of data users based on pattern of user accesses to the information. In

14

terms of access control, users need a trustworthy environment to set sales rules and access policies.

Lastly, nonframeability means in case of malicious framing of data user, it may be a denial procedure

to defend user’s rights and the framed data user can submit a proof to trusted entities in this regard.

As for system model, Li et al. propose five entities: data owner, data user, management center,

cloud server and blockchain [15]. Data owner and data user are the involved individuals on the

both side of a data transaction. In this work, management center is the entity tasked to verify

licence message issued by the data user. Besides, it provides the stealth address and access token

for authenticated data users. Also, the paper explains, when a data user is framed management

center investigates the case. Cloud server has considerable computational power and high storage

level in which data is encrypted using cryptographic keys. Blockchain is the entity that protects

privacy of transactions. Besides, blockchain assists to provide an anonymous area for the involved

data owners and data users. Finally, data owners set sale rules and access policies using blockchain

network.

Kumar et al. in [16], combined blockchain technology with federated learning to reach a deep

learning model that is trained in a distributed manner to detect Covid-19 positive cases using their

CT scans. In fact, Kumar et al. state urgency of quick Covid-19 diagnosis plus privacy preserving

and global share of data among hospitals have led us to propose this approach. Blockchain tech-

nology is tasked to authenticate the contributed data and also federated learning focuses on secure

global model training. To train the model properly, the input data have to be normalized to remove

data heterogeneity. To normalize the image data, there are two stages: spatial normalization and sig-

nal normalization. Spatial normalization handles the dimension and resolution issues while signal

normalization considers intensity of each voxel of CT scanners.

As to data sharing process in [16], due to high costs and infeasibility of storing data on blockchain,

an off-chain method is employed. In other words, the CT scan data of each hospital is kept by them-

selves and blockchain intermediates in case of data retrieval. Besides, when a hospital provides the

information, a transaction in the blockchain is appended to declare the data owner. This method of

data sharing not only reduces blockchain network costs, but also improves data privacy wherein the

actual data is held only by the data owner.

To reach consensus for data sharing and also perform collaborative model training, PoW concept

15

is exploited. To enhance privacy, the whole received data is encrypted and singed by public and

private keys. In this work instead of sharing the CT scan data, hospitals share their learned models

with the requesters. Moreover, the transactions are composed of weights of a local trained model

proposed by a hospital and also these local models are aggregated by the network to create a global

model as well.

In [17], Shayan et al. elucidate a blockchain and federated learning based system for privacy

preserving communication between clients. The main goals followed by this framework are to con-

verge to the optimal global model, prevent manipulation and avoid attacks like poisoning attack. In

this work, stochastic gradient descent (SGD) is the optimization algorithm and within each itera-

tion, clients locally compute SGD also for data privacy reasons the users mask their SGD updates.

It should be noted, the updates are signed by the creator then the system assesses their signatures

using their public key. As the next step, the masked updates are verified by a verification committee

to avoid poisoning attack. All peers who have contributed to the applied updates of global model,

are rewarded with stakes. Also, the aggregated updates form the new block that appends to the

blockchain network.

The consensus algorithm of this work is proof of federation (PoF). As Shayan explains in [17],

PoF is quite similar to PoS. In the introduced PoF algorithm, stake reflects the contribution of a user

to the network. In fact, clients may increase their stake by contributing advantageous model updates

to the system. Respecting poisoning attack prevention, the SGD updates are evaluated. Verifiers

perform Multi-Krum method on the received updates to filter out malicious ones. As a matter of

fact, the verifier assures the newly received update is consistent with previous ones. By this method

unusual updates can be removed.

Lu et al. in [18], propose a data sharing architecture consisting of two modules: permissioned

blockchain and federated learning module. In the blockchain network, there exist two kinds of

transactions namely, retrieval transactions and data sharing transactions. Besides, federated learn-

ing is a distributed version of machine learning algorithms in which a global model is trained and

improved using the local models contributed by each node. One of the main reasons of integrat-

ing federated learning into this data sharing framework is for consensus algorithm efficiency. The

introduced consensus algorithm of this work is proof of training quality (PoQ) wherein the power

16

consumption of consensus algorithm unlike, e.g. Bitcoin [1], is tried to become useful. In other

words, the power usage from each node is employed to train the learning models. Despite steering

the power usage to become beneficial, it is still deemed a power consumption dependent consensus

algorithm. Moreover, the committee node members are tasked to collect the local models from their

nearby users to process the consensus and assist feeding the global model to learn. Also, the trained

models can be accessible to the users in response to their data sharing request.

As Lu et al. mention [18], when a data provider joins the framework, the one is ought to send

her public key and data profile to the nearby super node for verification. As to security tools,

the participants have to encrypt the messages and the encryption is occurred using cryptographic

keys. Subsequently, the encrypted transactions are received by the committee nodes. Each one is

responsible to collect all the received model transactions and evaluate their training quality using

mean absolute error (MAE). The committee node with the lowest MAE will be selected as the

committee leader. The committee leader task is to propose a new block, then the block is either

granted or declined based on the votes of the committee nodes.

To assess the integrity of transactions in the blockchain network, there exist different consensus

algorithms [19]. Azaria et al. in [20] proposed a medical data sharing framework however, it was

based on PoW. In other words, it suffered from power consumption issue as a result, this became an

infeasible option for many network especially low power devices. In addition, the framework uti-

lizes Ethereum blockchain and its smart contracts to manage the permissions and data retrieval from

database. Also, to incentivize the users to render their computational resources for PoW, the system

has set policies. In fact, transactions require Ether to be processed by the network and the solution

to earn Ehter is mining, wherein the users has to solve a mathematical puzzle by expending their

power resources. Moreover, the patients who want to contribute data to the network, are required

to pay the costs. As a result, they have to gain Ether using mining. Regarding the transactions, the

data requesters, e.g. researchers, involved in this work can freely choose which transaction to vali-

date and mine. Azaria et al. believe leveraging PoW mining and a monetary incentive mechanism

yields a data sharing framework in which data economics, supply and matching of data between

data owners and requesters are valued.

With aim of solving power problem, Tosh et al. [21], proposed a PoS based framework that

17

exploits votes of users to validate the transactions. As explained by the authors, in PoS a user’s

ability to broadcast a new block to the blockchain is proportional to the rate of stakes that the

one holds. In this work, there are several fully connected virtual nodes in the cloud computing

architecture that are called validators to engage in the consensus process. As to the consensus

algorithm procedure, the validators receive raw transactions and they produce their own proposing

block. Then the leader is elected to broadcast a new block to the blockchain network. Following

this stage, the validators verify the authenticity of the proposed block. As to leader selection, the

chance of a validator to become a leader is related to the possessed stake. Besides, the structure of

blockchain in this work has slight differences. Apart from the attributes that a conventional block

has, in this work a block includes the stake of the leader who has proposed the block that is utilized

in block verification process by the validators. To incentivize the users to participate, the staple part

of reward in each round belongs to the leader and the remaining is split among the validators.

To decrease the generated latency of voting of all users, [22] and [23] introduced a system fea-

turing DPoS consensus algorithm. In fact, in [22], a privacy preserving data sharing for healthcare

records is shown. In this work, the medical records are stored in the cloud and the indexes of them

can be found in the tamper-proof consortium blockchain. Also, smart contracts are employed to

control user access policies. This work features DPoS consensus algorithm in which the nodes on

the blockchain network choose 101 delegates. As stated by Lie et al., DPoS in comparison with

PoW and PoS is quicker, more decentralized and more efficient in terms of power consumption. It

is noteworthy, the election solution used in conventional DPoS [24] has modified in this work to

enhance the reliability. In the proposed node election method, the selection is based on the rank of

institutions’ credit score. As elaborated by the authors, the top 30 institutions are designated as the

representative users to generate blocks. Besides, the following 20 institutions are designated as the

audit users to investigate the blocks. Considering rewarding, the nodes that contribute to the data

sharing framework gain reward for their collaboration. If a representative loses signing a block or

the nodes tasked to audit the blocks, falsely audit the information, it leads to lose of credit score

and as the credit score of a node comes below the required rate, it might lose the assigned role, e.g.

representative, and be replaced by another high score node.

In [23], a lightweight medical sharing system is proposed. It utilizes proxy re-encryption to

18

assist the doctors accessing healthcare records of users. Moreover, it improves security due to query

of encrypted version of health data using cryptographic keys. Liu et al. explain, the consensus

algorithm of this work is DPoS. We could chose the conventional DPoS in which there are several

chosen nodes to vote for validation in behalf of network users. In terms of delegates, they all have

equal rights compared to each other and they are tasked to broadcast new blocks to the network.

Also, when a delegate misses to participate and collaborate, the system will choose a substitute for

the delegate and the one will be penalized. Liu et al. continue by mentioning, the conventional

DPoS is not efficient in regards to communication costs of voting. Therefore, this work introduces

an improved version of DPoS where, without voting, every doctor is known as a delegate who is

tasked to generate the new blocks. Besides, the server of hospital is deemed as the verifier. The

system manager section and server of hospital may monitor the performance of doctors to assure

their quality of performance and when they are found to be incompetent, they lose stake. In case

of reaching the stake of a doctor below the threshold, the doctor loses the delegate role. On the

other hand, hospitals are monitored by the system manager and doctors as well and their dishonest

behavior may lead to issue of penalty.

Proof of authority (PoA) was the next proposed solution to remove power consumption and

unfair influence of high stakeholders. As De Angelis et al. explain in [25], PoA is a new branch

developed from byzantine fault tolerance (BFT) consensus algorithms and it is adopted by two

well-known Ethereum clients, Parity [26] and Geth [27]. The main difference of PoA compared to

the popular algorithm of BFT family, practical byzantine fault tolerance (PBFT), is less message

exchanging that leads to enhancement in performance. In fact, PoA initially was introduced to act

as the consensus algorithm of private blockchain in Ethereum. Therefore, PoA appeared as two

versions on Aura and Clique. Principally, PoA requires N trusted nodes called authorities. The

authorities perform a consensus to handle the transactions. Also, there is a mining rotation schema,

that leads to divide the responsibility of block generation among the authorities. PoA algorithms

assume the majority of authorities are honest.

As De Angelis et al. elucidate, in Aura the authorities follow two queues, a queue for transac-

tions and the other for blocks. When the leader is selected, the one should broadcast the pending

transactions to the newly proposed block. Following that, the authorities send the received block to

19

each other, if all the authorities receive the same block, the proposed block is granted by them. In

case of not receiving the same block, the authorities commence voting to expel the leader.

As for Clique, it virtually follows the process of Aura while the most notable difference is,

alongside the leader, some authorities are permitted to propose a new block as well. Similar to

Aura, in case of dishonest activities of either the authorities or leader, they can be voted to be

expelled. At each round, there are at most N − (N/2 + 1) authorities allowed to propose where

N is the number of authorities. Due to higher number of potential block proposers in Clique, the

possibility of forks increases.

Furthermore, user participation is another problem required to be considered where reputation

systems are deemed an intriguing choice to increase participation of users. Xie et al. in both [28]

and [29], proposed a reputation mechanism to alleviate the interaction challenges of requesters and

workers for crowdsourcing systems. As mentioned in the paper, three principal components of

crowdsourcing systems are tasks, workers and requesters. The requesters try to find appropriate

workers to assign them their tasks and benefit them with rewards after task completion. The main

objective of this research work is to find the minimum rate of reward for a certain task. This rate

might be considered too critical to be set since large amount attracts the workers while repels the

requesters and vice versa happens in case of too low reward rate.

The outline of proposed idea is a requester posts a task with its corresponding reward and trans-

action fee. The information should be received by the crowdsourcing system administrator. The

posted task is assumed to be received by n workers. When a task is solved by a worker, the user

should share the solution with the system administrator. As all n solutions are submitted, the task

is considered finished then the requester evaluates their methods and chooses the one with highest

quality. After that the requester notifies the system administrator and the winner will be announced

amongst the workers to be rewarded.

Alswailim et al. in [30] described a method applied in participatory sensing applications [31].

As a matter of fact, in participatory applications the users collaborate by sensing, collecting and

sending the data to an application server. Due to openness of these applications, they may be

fed with inaccurate data and consequently the application performance becomes downgraded. Al-

swailim et al. introduce a method, based on reputation systems, to evaluate the contributions of

20

users. The solution requires the participants to collect and send their data using their sensor de-

vices. Then the system weighs the received data packages and sends the most accurate ones to the

application server.

As to details of aforementioned process, there are two major stages. In the first step, the users

are divided into three groups, following that, the system assesses each group by calculating their

corresponding values using the reputation of each user and the contributions of the group with

highest value are dispatched to the application server. In the second phase, the participants score

is updated based on the accuracy of their data where the group with highest values receive positive

scores and rest of the groups are assigned a score reduction.

[32] is the research work conducted by He et al. that concentrates on ad-hoc networks. In fact,

ad-hoc networks can be dynamically created by the mobile users in various locations. As to network

restriction, ad-hoc networks users transmission range can be limited because of their power usage.

Due to power limits, a selfish user may intend to circumvent the requirements and stop consuming

resources to forward packets. To overcome similar hurdles, He et al. suggest using a reputation

based solution. The authors explain, in the proposed method the neighbor nodes are required to

share the reputation information of other nodes, in this way a node can construct a record of the

reputation of its neighbor nodes. As to reputation rate, reputation of a node is calculated according

to the packet forwarding ratio of the node. In this work, reputation propagation is perceived an

efficient method to detect the selfish users and restrict the incidents occurred by them, and also the

recognized selfish users encounter penalty by the network as well.

Despite all the indicated efforts, there are some identified concerns needed to answered. As [33]

and [34] explain, the current reputation systems suffer from the possibility of being manipulated. As

a matter of fact, selfish users can generate unnecessary transactions to show themselves collaborative

and active in the network and as a result, gaining reputation. Secondly, susceptibility against sybil

attack and lastly, vulnerability against whitewashing attack that can lead to data leakage, privacy

violation and dysfunction of the network.

21

Chapter 3

Data Sharing System

In this chapter, our data sharing system is illustrated and the contributions of proposed idea are

discussed.

3.1 System architecture

As to network design, the proposed data sharing framework inputs can either be contributed data

from data owners or request to access data from data requesters. In case of data request to access

data, the output is the requested data by considering security and privacy constraints.

As Figure 3.1 depicts, there exist two managers that are programmed to be responsible for eval-

uation of transaction integrity, and assessment of users behind the transaction. Plus, they manage

data storage and encryption tasks. To come under close scrutiny, the transaction manager is required

to receive data contributions and data requests and following that, it assesses the honesty of them.

As to detailed explanation, the transaction manager is composed of several subsections namely, the

pool of transactions, the vote handler, the authorities and the leader.

When a requester issues a data request, the transaction manager receives it. In the next stage,

the transaction is sent to the pool of transactions which is a repository to store the transactions and

their corresponding data sender (owner) and data receiver (requester). The pool regularly dispatches

the transactions to the vote handler. As a matter of fact, the vote handler manages the process of

transaction assessment wherein a transaction is distributed among the authorities then they send back

22

Figure 3.1: System Model

23

their vote to the vote handler and based on decision of majority, a transaction might be granted or

annulled. It is noteworthy, the authorities are a group of selected users and their duty is to evaluate

a transaction integrity. Besides, the leader steps in when the number of authorities is even and

they equally vote for accepting and rejecting. In that case, the leader takes the transaction into the

consideration and declares the vote. The granted transaction is sent to the record manager; however,

the rejected one takes no further step. Lastly, in case of data contribution instead of data access

request, the steps are virtually the same except for the transaction wherein the sender is proclaimed

the data owner and the receiver is data sharing framework.

In terms of the record manager, as demonstrated in algorithm 1, the subsections comprise the

permission handler, blockchain network and the encryption/decryption. The main responsibility of

the record manager is to protect data access and also authorizing the users to safely store and retrieve

the data utilizing techniques like data encryption. To investigate closely, the approved transaction

is received by the permission handler that has the responsibility of authorizing the data requester

to access the data. The aim is attained by updating the permission list of requester. As a matter

of fact, each user has a permission list in her profile Pruser that contains the permitted data ids

to that users. As for data id, each data package has a data id in the database and it acts as a tool

to identify the particular required data. The next phase is to send the data id from the permission

handler to the blockchain network. The blockchain keeps data ids and their corresponding encrypted

address of them in the database. The received data id, is inquired by the blockchain network and its

corresponding address will be found. Due to encryption of the acquired address, it is decrypted by

encryption/decryption subsection and finally based on the address, the requested data from database

is retrieved to the requester.

Also, the procedure is approximately similar in case of data contribution in which the permis-

sion handler makes the contributed data accessible to the data owner and after that, the blockchain

would be extended by storing new information regarding the data id and its encrypted address in the

database.

24

Algorithm 1 Data sharing algorithm
Initialization: Selection process of authorities and leader
Input: Pool: pool of transactions; Blockchain: blockchain network; action where

action ∈ {DataRequest,DataContribution}

if action = DataRequest then
Req ← Requested data type
while A data owner is not found do

if A data owner is found then
id← data id
Add the transaction to Pool

end if
end while

else if action = DataContribution then
TempMemory ← the data from owner
id← data id
Add the transaction to Pool

end if
Result← Consensus algorithm
if Result = AcceptTransaction then

if action = DataContribution then
Confer reputation to authorities and leader
Co ← Estimate C for the owner
Confer Co

Add id to permission list of the owner
Address← Empty space address in database
EncAddress← Encrypt Address
Blockchain← id, EncAddress
EncData← Encrypt TempMemory
Upload EncData to database

else
Confer reputation to authorities and leader
Co ← Estimate C for the owner
Confer Co

Cr ← Estimate C for the requester
Confer Cr

Add id to permission list of the requester
Address← Find address by id in Blockchain
DecAddress← Decrypt Address
Data← Retrieve data by DecAddress
DecData← Decrypt Data
return DecData

end if
else

Confer reputation to authorities and leader and delete the transaction from Pool
end if

25

Figure 3.2: Reputation systems drawbacks

3.2 Incentive mechanism

Data sharing framework requires to attract users and increase participation. To encourage the

users to engage, based on the employed network architecture, blockchain inspects different methods

to value their participation [33]. As to solutions, the users can be rewarded by reputation and that

is where reputation mechanisms emerge. As a matter of fact, the higher number of collaborations,

results in the higher reputation for the user. In spite of advantages, as shown in figure 3.2, there

are several unsolved issues in reputation mechanisms that repel the network designers to include

reputation mechanism in their proposed ideas.

One of the most common methods to manipulate reputation mechanism is fake collaborations

26

between a selfish data owner and a selfish data requester where they generate plenty of unneces-

sary transactions within a short time span. As a result, the framework recognizes them as active

and collaborative users who will be rewarded consequently. Besides, in these sort of systems, the

possibility of attacks like sybil attack and whitewashing attack is enhanced as well.

To prevent reputation system manipulations, we propose a new idea to replace the conventional

one. In fact, we adopt conferred reputation given as:

C = ⌈R 1

nc
⌉, (1)

where R is reputation rate and 1
nc

is protection factor (PF). In fact, nc is the number of collabo-

rations between a particular data owner and data requester within critical period Pc. To elucidate PF

concept, firstly the network should be assigned with a rate of Pc. The optimal value can be obtained

via investigation of data traffic of network and its value may vary based on different data sharing

applications. As a matter of fact, IoT devices controlling a factory performance might produce

transactions every millisecond; whereas, a small group of researchers might utilize a data sharing

network to exchange data each using longer time steps.

According to equation 4, when a particular data owner and data requester produce a transaction

within a short period of time (Pc), the conferred reputation equals R, since the number of transac-

tions (nc) is 1. While as the number of transactions commences to grow massively within the Pc,

the framework plummets the conferred reputation due to detected unusual behavior.

3.3 Consensus algorithm

As mentioned in chapter 1, despite merits of blockchain network, for a long time it has been

suffering from deficiencies imposed by its consensus algorithms. The earlier blockchain networks

suggest PoW and requiring the participants to compete for solving a complex mathematical puzzle.

Intolerable energy consumption of PoW led to establishment of the next generation of algorithms,

that were stake-based ones where the users with higher stakes had more power to influence the

decisions. Due to biased voting process and unfair network for users, different algorithms originated

from PoA became popular. Nevertheless, there are two main disadvantages in exploiting PoA.

27

Firstly, the authorities generate high communication costs for the system. The issue is exacerbated

in case of larger networks that are composed of high number of transactions and more number of

authority members. Moreover, as De Angelis et al. describes in [25], the authorities only verify

to receive the same proposed block from the leader or the authority who is allowed to propose

new block. Therefore, more information like the reputation of data owner and data receiver of this

transaction is not scrutinized. Hence, to solve aforementioned problems we propose a new PoA

based algorithm, called smart PoA.

Smart PoA can mitigate communication costs issue and also reputation of users involved in the

transaction impacts the judgment of the authorities. Respecting the authorities and the leader, they

are chosen based on their reputation. In smart PoA, the leader is obliged to monitor the performance

of authorities who are a group of validators to manage transactions. As the authorities receive the

transaction to assess it, they can access records representing the reputation of data owner and data

requester. These records are formulated as trust factors (TFs). As a matter of fact, one prominent

superiority of smart PoA over conventional PoA is TFs. TFs demonstrate the level of security of

a transaction. TFs are consisted of three factors namely, transaction trust factor (TTF), owner trust

factor (OTF) and requester trust factor (RTF). The equations of TTF, OTF and RTF are given as:

OTF =


1 if Notrx = 0

Repown

(RNotrx)
otherwise,

(2)

RTF =


1 if Nrtrx = 0

Repreq
(RNrtrx)

otherwise,
(3)

TTF = OTF +RTF, (4)

where Repown is the reputation of data owner, Repreq is the reputation of data requester, Notrx

is the number of all transactions that data owner has been involved and also Nrtrx is the same for

the data requester. By all transactions it refers to all participated approved/disapproved transactions

plus all validated transactions either served as a leader or authority.

28

Figure 3.3: OTF and RTF rate

In our proposed scheme, as figure 3.3 shows, the common rate for OTF and RTF is estimated to

be 0.5 to 1.5, below this range it warns authorities about low reputation and above 1.5 it shows high

level of trustworthiness of a user. Also, TTF is calculated based on OTF and RTF. The safe rate of

TTF is between 1 to 3. TTF renders the power to the leader to control the performance authorities.

As shown in algorithm 2, the authorities judge a transaction based on TFs and in the case that TTF

of a transaction is below 1 and it is accepted by a certain authority the transaction and vote of the

authority is sent to the leader to evaluate the performance of authority. For instance, a negative vote

to a transaction by TTF of around 1 is more acceptable to a leader compared to TTF of around

0.1. If the authority is deemed dishonest by the leader, the authority will be penalized by losing

reputation. On the other hand, the authority and leader are rewarded by gaining reputation for their

participation.

29

Algorithm 2 Smart PoA algorithm
Initialization: Retrieve a transaction from pool of transactions
Input: Nauth: the number of authorities

RTF ← Estimate RTF
OTF ← Estimate OTF
TTF ← Estimate TTF
TFs← [RTF,OTF, TTF]
while V otesNumber/2 < Nauth do

Vote collection
end while
if ApprV otes = DisapprV otes then

The leader decides
else if TTF < 1 then

List← [Voters who approved]
Send List and TFs to the leader
if AnyPenalty then

Reduce reputation from List members
end if

else if TTF > 3 then
List← [Voters who disapproved]
Send List and TFs to the leader
if AnyPenalty then

Reduce reputation from List members
end if

end if
return Result

30

3.4 Cloud-based encryption

In our proposed framework, we leverage an off-chain blockchain network due to communica-

tion and repository costs. As to transparency of blockchain, on-chain network may also leak some

information while they could be protected in a secure off-chain network. In spite of higher secu-

rity of off-chain, it requires precautionary security measures as well to protect the data stored in

database. Moreover, as Gordon et al. indicate in [35], storing a considerable volume of data in an

on-chain network is impossible in practice.

In spite of common public and private key encryption methods, our encryption solution is not

on local side and user is not involved in encryption and decryption tasks, therefore, the whole

process is straightforward, automated and on-cloud. In fact, to decrease the communication costs

and complexity of the data sharing framework, a cloud-based encryption method outperforms. In

our scheme, the key tools to allow us safely change a local-based method to the cloud-based one,

are permission list and data id concepts that are replaced to cryptographic keys concept.

First acquired merit is about insertion of keys and validations of them where either done by

data owner, requester or entity (e.g. hospital) is considered local-based computation, and usually

local-based computation is less reliable compared to cloud-based one, due to weaker computational

power and more latency. Furthermore, in terms of complexity, as we increase complexities like need

to insert the public or private key or need to validate keys of data requester, less devices would be

able to work in this sort of data sharing system. Due to the fact that they are usually only a simple

electronic device (like a surveillance camera) and are not able to assess the keys or similar tasks.

Equipped IoT devices with a technology to validate, send and receive of keys leads to increase in

costs of production of IoT devices, thereby, it decreases the motivation to join the network. Plus,

users of key based networks, are usually required to save different keys of their counterparts and

involved entities (e.g. health care providers) and we believe this raises storage issues for small

electronic devices in large networks with high number of users.

31

Chapter 4

Implementation

This chapter represents the implementation of our work. We implemented the proposed data

sharing framework to demonstrate its feasibility and quality. As a matter of fact, we schemed the

framework as a web application in which it needs to handle both back-end and front-end duties.

Last but not least, the selected development codes are illustrated in appendix A, and also figure 4.1

summarizes the development tools involved in this implementation.

4.1 Back-end

Considering our development, the back-end is responsible for receiving the requests of users,

e.g. GET and POST. Moreover, it has the duties in regards to receiving the data of data owners,

protect the privacy of users by different techniques, like encryption of data, also back-end is required

to manage the data requests and block dishonest users who aim to access data maliciously.

As to developing tools, the back-end of this web application is written all in Python program-

ming language. Although, recently blockchain developers have shown their interests in program-

ming languages like Solidity that are specifically built to serve blockchain applications, we preferred

Python for several reasons. First and foremost, Python is a general purpose language and many ap-

plications, e.g. Artificial Intelligence (AI) and web ones, can be easily integrated in our blockchain-

based data sharing code without leading to too complex environment. Nonetheless, for a Solidity

based blockchain code, the program is required to be bound to the web or AI application written in

32

Figure 4.1: Implementation scheme

another language. As a result of this action, the appended code imposes latency since the connection

of those codes yields communications cost. As another reason, even though Solidity provides some

built-in libraries and modules to make the programming easier, it has many programming restric-

tions. Conversely, Python is a dynamic programming language and recent interests of programmers

towards dynamic programming languages stems from the flexibility and the wide control that they

provide over diverse aspects of the program [36].

The blockchain network is built by Python as part of back-end as well. For implementation we

followed the fundamental concepts of blockchain in which a block contains hash, hash of previous

block and data. Additionally, the web application of the data sharing framework is based on Flask

that is a Python web framework. By virtue of Flask, we became able to receive GET requests of

users and in response, we showed the corresponding web page. Also, after receiving POST requests,

the data from user was received and dispatch to a proper address in the database.

Respecting encryption, we utilized Fernet that is a Python library to implement symmetric au-

thenticated cryptography [37]. The reason to use symmetric authenticated cryptography concept is

33

these sorts of cryptographic algorithms employ a unique key for encryption of plaintext and decryp-

tion of ciphertext. As for importance of the key, the encrypted data are impossible to be manipulated

or accessed without having the key. Therefore, to avoid a successful attack by eavesdroppers, we

minimized the number of times that the encryption key is called or transferred between files and

functions. Also, all computational load of our developed solution is on cloud where this web appli-

cation is running and the user does not involve in either encryption or decryption process. It should

be noted, the equations shown in 1-4 are not implemented in this version of the framework.

In terms of the authentication of program, we exploited the concept of token. In fact, each user

should enter the username and password, after that the program assigns the user with a token that

automatically stays with the user as long as the one is logged in. Regarding the structure of the

back-end of application, it is built on two Python files namely app.py and blockchain.py. The staple

responsibilities are managed by app.py while the blockchain network is handled by blockchain.py

file.

As to app.py, it is made up of several peripheral functions, routing functions and python deco-

rators. For initialization of the program, we connected the application to our database and defined

the used database collections. Based on the type of data, the database steers the information to

the corresponding collection for instance, a transaction is dispatched to the pool collection where

it receives the transaction id, transaction sender, transaction receiver and the data. One of the main

challenges of development of this program was to make users able to be serviced simultaneously.

At the beginning, this program was deployed as a desktop application and the initial architecture of

back-end had restrictions consequently, the users could not utilize the system at the same time. The

initial design was based on a global variable tasked to introduce the logged in user to the entire ap-

plication. This solution is efficient and competent in case of a desktop application. To increase the

accessibility of users to the data sharing framework we decided to change the program from a desk-

top application to a web application. Most of the differences made by this change were responded

in a reasonable effort while simultaneous servicing faced a serious challenge due to application

architecture. To explain the challenge in detail, when user A had logged to the web application,

the global variable required the application to show the content relevant to the user A. At the same

time, when user B logged in, the global variable asked the application to present the content related

34

to user B. In this scenario a collusion used to happen in which when user A refreshed the pages,

the content for user B is shown. In other words, the global variable lost user A and only holds the

last person who has logged in. Hence, when a user requested the application to show a content,

the program used to present the content related to the last person who is authenticated. To solve

the problem we employed JSON web tokens (JWT) concept in which the server receives the user

information and stores them along with a digital signature in the format of JSON. Verification of

the signature is the tool of server to avoid any attack or impersonation of identities [38]. In our

implementation, SHA256 algorithm is employed for signature generation. JWT is developed within

token required function. The function verifies the inserted username and password, and the authen-

ticated user receives a token for accessibility to different part of program. A python decorator is

placed before prominent functions that show a personal content to assure the identity of the person.

The reason to use decorators is they can find the assigned token and verify it without needing the

user to insert username and password multiple times. Besides, for security reasons, the lifetime of

token is determined to 15 minutes and after that the user is logged out of the account.

There are many peripheral and short functions helping the processes like data management and

authentication. To briefly indicate some of them, login check function receives the username and

password of the user and using the database assures the integrity of authorization request. The other

important peripheral functions are accept validate trans and decline validate trans. The former one

is called when a transaction is granted by an authority while the other one is responsible for re-

jected ones. The involved procedures of these functions include to firstly find the transaction in

the database then ensure the authority has not already voted for this transaction. Receive of the

authority’s vote yields reward for the voter. Lastly, the functions verify whether more than half of

the votes are on one side (yes or no) or not. If so, the voting is declared finished and the transaction

is sent to the further steps or considered annulled.

Furthermore, add to blockchain function connects app.py to blockchain.py. In case of block

generation, it receives the hash of previous block and also the data to be included in the block, then

the new block becomes generated. It is worth mentioning, the information in the block is encrypted

using encryption function. In fact, encryption function and decryption function are responsible

for implementation of Fernet cryptography algorithm using the encryption key defined in the code

35

initialization. Also, render chain is another prominent function that shows the current blockchain

network. The notable point about this function is it does not present similar information to all users.

In fact, its input is the user identity, then it encrypts all sensitive information except the one that the

user is involved in, in other words, the ones that the person is deemed authorized. As to extract csv

function, it receives the csv file then it detects the type inserted data and their corresponding infor-

mation in each row. Following that, the data is stored in the database and the file no longer is kept.

This method opposes the conventional solution in which the actual csv file is stored not the data in

the file. We believe storing the actual file leads to higher storage requirement. Lastly, user2token

function converts the token of authorized user to her username. In many cases that the program

requires the username of the person, this function is called, e.g. issue of a transaction.

Followed by peripheral functions, routing functions are deployed. In fact, app.route() is our

solution to to bind a URL to a function. At the ending part of each routing function, we aim to

render a web page containing the data and calculation results of its above lines. For this purpose,

we used Jinja template engine. The reason to use Jinja is it simply receives the targeted HTML

page and the corresponding variables then renders the page. The most sophisticated function route

is the /home URL and the reason is home page has a wide range of applications and connections to

other pages. All the routing functions except sign up, login and logout URLs include token required

decorator and it is responsible to send back the token to the token required function at the beginning

of the code, for authorization purposes.

To shortly elucidate the duties of imperative routes, /insert data is tasked to receive the posted

data of users and collect the file information using extract csv peripheral function. In our current

implementation, we only receive csv file. The reason to put the restriction is we need to extract the

information and we cannot apply a single particular extraction method for all formats of file. To

avoid crashing while processing the data, we check the format of file beforehand. Only in case of

csv file the route function goes further, otherwise it asks the user to provide a proper file format.

Moreover, /add transactions is the place where a user can generate a transaction. The user who

is the transaction creator fills out the forms then posts the data, following that, this route function

updates the database correspondingly. The other crucial route is /validation wherein it renders the

list of transactions in the pool and authorities can vote to either refusal or acceptance. After each

36

vote, the route updates pool immediately. For /blk, it receives the user identity and based on that

shows the specifically decrypted blockchain network to the user.

To make data requests, /access request route requires the requester to declare a particular trans-

action then the request is stored in the Access Request Pool that is the relevant database collection

to keep the requests. On the other hand, /received request route is responsible to show the data

owners the received requests. Also, it collects the their responses to data requests as well and finally

updates Access Request Pool in the database. To access the data, the approved requester can use

/view data route. In fact, the requester enters the data address and other corresponding information

to view the data. It should be noted, a malicious user who obtains the data address and other re-

quired information might use route function and access the data. To avoid that attack scenario, we

implemented permission list for the users.

As to blockchain.py, it controls the blockchain network via the class Blockchain. The class is

consisted of several functions. To concisely illuminate the process, when a new block is intended

to be generated in app.py, it calls get previous block of Blockchain class (in blockchain.py). This

function simply returns the last element of the list of blocks. After receiving the last block, the hash

of last block is extracted. This process is not complex since the blocks are defined as a dictionary

where hash value can be easily found by its key.

As the next step, add transactions of the class is activated where it receives parameters of the

proposed transaction comprising sender, receiver and data. When the transaction is transferred from

app.py to blockchain.py, create block function of the class generates a new block based on the

transaction, hash of previous block and hash of the generated block.

4.2 Front-end

Regarding the front-end role, it plays an intermediate role between the user and the back-end. In

fact, it provides a human readable atmosphere for the user to cover all the complexities of back-end

that are machine readable. With that aim, we used Bootstrap 4.1.3 version that is a popular front-end

framework. We worked on this web framework and applied it on our initial web pages that were

designed by HTML and CSS.

37

Figure 4.2: User authentication page of the framework

The most generic and multifarious HTML page of the framework is home.html in which, at

early lines, there exists the navigation bar code that uses Bootstrap. Following that, we included

python code in the HTML file since we wanted to define conditions and more complex loops. The

examples of the applications of python code is it checks whether the person is an authority or not.

If not an authority, it only presents the current blockchain network while if the user is an authority

it shows the pool of transactions and reputation of users as well as the blockchain network.

As another point about our HTML pages, we move through the pages using url for() method

which is a crucial attribute of Flask. For instance, when an authority pushes the validation button for

the transactions, placed on the home page, by url for(’validation’,token=token), it takes the user to

the validation.html page to conduct the validation. The other parameter of the method, token, is the

token of user that should be transferred as the user goes to a new page. Also, as the user confronts

validation.html, the program assesses the integrity of token to show the new page to the user. It is

noteworthy, all the mentioned token authentication process is behind the scene in the back-end, and

the user feels no inconvenience. To demonstrate the front-end code results, the screenshots of the

framework from user experience perspective have been shown in figure 4.2-4.7.

38

Figure 4.3: Reputation of the framework users

4.3 Database

As for the database, we confronted a dilemma in which we could either utilize SQL or NoSQL

sort of database. Due to the fact that NoSQL type outperforms relational databases (SQL), in terms

of quicker data response [39], we selected NoSQL databases. In addition, among diverse NoSQL

databases, we chose MongoDB since it manages the data more efficiently compared to the counter-

parts. Especially as the data size increases, its outperformance will be more comprehensible [40].

Also, the other feature that gave MongoDB the upper hand is the compatibility with Python lan-

guage. Lastly, we exploited MongoDB database by the tier that allows to store data up to 512MB

size.

Respecting the database architecture, it is consisted of multiple collections. Each collection is

similar to a branch protecting particular data types. As shown in 4.8, collection data holds the actual

data of data owners. First parameter is id of this document, secondly we have the identity of the

data owner. Following parameter is password that is a password assigned by the data owner on this

data package. Subsequently, there exists the data that are extracted using extract csv function.

39

Figure 4.4: Request generation page of the framework

The collection blockchain, as shown in figure 4.9, contains records each one showing a sender,

receiver and data of a transaction held by a certain block. Figure 4.10 depicts the trusted collection

wherein the list of authorities is stored. As a matter of fact, its records track the document id plus

information regarding the identity of the authority. As an authority is expelled or added to the list,

this collection becomes updated via app.py. Pool of transactions is included in pool collection and,

according to figure 4.11, each transaction owns an id, a sender, receiver and data. Finally, figure 4.12

demonstrates the pool of access requests where it contains information regarding the data owner,

data requester identity as well as the targeted transaction.

40

Figure 4.5: Data contribution page of the framework

Figure 4.6: Received requests notification for a data owner

41

Figure 4.7: Received requests for a data owner

Figure 4.8: Database (MongoDB) architecture, data collection

42

Figure 4.9: Database (MongoDB) architecture, blockchain collection

Figure 4.10: Database (MongoDB) architecture, trusted collection

Figure 4.11: Database (MongoDB) architecture, pool collection

43

Figure 4.12: Database (MongoDB) architecture, access requested pool collection

44

Chapter 5

Performance Assessment

This chapter shows the performance and quality of the proposed data sharing framework and

also measures diverse metrics to analyze the functionality.

5.1 Scalability

To measure and compare the scalability of our proposed idea, we analyzed two popular works

of our field namely, Medblock [10] and Medshare[11]. To be consistent with [10] and [11], we

evaluated real-case scenarios in which the latency is assumed as the time span between producing a

package of data to delivering that. It includes all the stages required to process a request by entire

entities, to have a fair comparison with our two counterparts. The results are measured within five

experiments and the presented results are the average rates. We assessed the latency for different

number of users and this is for two reasons. As the first one, to grasp the trend of changes of

latency by increasing the users, and for the later reason, to avoid any accidental results that might

be gained by a certain number of users. As figure 5.1 demonstrates, our proposed scheme generates

fairly lower latency while dealing with data delivery. We believe the reason of our outperformance

traces back to the differences in structure of Medblock and Medshare compared to ours. In terms

of Medblock, as Fan el al. explain, the security of this work is highly dependent on cryptographic

keys. For instance, as the first step, Certificate Authority (CA), an entity of Medblock, generates

public and private keys of a patient, the generated private key of patient might be utilized by CA to

45

Figure 5.1: Latency of service provider requests

decrypt data in several cases as well. Also, when a patient intends to encrypt the data, the one has

to use her public key then sign the data by her private key [10].

Furthermore, Xia et al. indicate that Medshare virtually follows the same path. As a matter of

fact, the requester in Medshare is responsible for generating her public key and private key. Also,

requester has to send her public key to the data owner authenticator with purpose of verification

of the requester identity. Besides, the authenticator utilizes the requester public key to encrypt

the response package to the requester. Considering authenticator contract keys in Medshare, they

ought to be generated by authenticator the corresponding actions of data exchange [11]. All the

aforementioned steps of generation, transfer and validation of public keys, private keys and signature

imposes latency to the systems. In addition, due to local based nature of this sort of encryption,

the performance of user’s device including its computational power and network connectivity may

massively influence the latency of framework.

The second factor that impacts the latency of the data sharing frameworks is use of external

tools. As an illustration, Medblock exploits bread crumbs to improve information retrieval process

[10]. This idea is in opposition to our unified Python code. In fact, involving several tools in the

46

framework foists communication cost and latency on the system.

Besides, we evaluated our proposed consensus algorithm to assure the performance. As a mat-

ter of fact, the consensus latency is the parameter to be assessed and as shown in figure 5.2, it is

calculated in case of 1, 10, 100 and 1000 transactions. We demonstrate the results by two diagrams.

Table 5.1-5.5 show the validation time of each authority where we assigned five authorities to our

framework. In our validation we assumed each authority accepts the transaction, thereby, the la-

tency to reach consensus is the time to receive three out of five votes that considered as the majority.

According to the figure 5.2, as expected the consensus latency vastly increases by growing the num-

ber of users. The notable point is, by having 1000 transactions, the consensus time does not surpass

one minute. It is deemed remarkable since the mentioned latency is quite lower in comparison with

two popular clients of Ethereum blockchain, Parity and Geth, that can process 1000 transactions

within 1.74 and 3.27 minutes, respectively [41].

Figure 5.2: Latency of consensus algorithm

47

5.2 Security

Due to importance of concept of security in data sharing framework, both transaction manager

and record manager protect the security and privacy of users. In transaction manager, the users

require high reputation to be in the list of the potential authorities and leader. Also, the selection

process of the authority members and leader is random. This idea ceases any deterministic plan

for attack by malicious users. Besides, even if a malicious user successfully penetrates through the

group of authorities, still the votes of majority of validators outweigh. Moreover, due to presence of

TFs, any unusual decision of the attacker is reported to the leader and the leader may issue penalty.

These measurements result in decreasing the feasibility of sybil attack wherein a malicious user or

group of users try to influence the validation of transactions.

Additionally, record manager has permission handler subsection by which it can control the

access of users to the data packages. In fact, permission handler appends a particular data id to the

permission list of a valid user. This is an efficient solution to protect data in cases like attack to

the blockchain and access to address of data in database. In this attack scenario the system annuls

retrieval of data to attacker’s profile.

Reputation systems, in spite of their merits, bring undeniable security concerns as well, as

explained in [33] and [34]. Nonetheless, we believe our proposed data sharing framework is able to

manage these concerns. The first problem is the selfish users who try to manipulate the system to

gain reputation. To prevent these users who try to produce many unnecessary transactions within a

short period of time, PF is featured in our proposed method. According to our scheme, PF reduces

the conferred reputation to a certain data owner and data requester who has generated unusual data

traffic.

As to second concern, sybil attack substantially threatens the security of reputation systems.

In our proposed data sharing framework, the attackers have to obtain the control of transactions

validation and also take the leader seat to nullify the effect of TFs. In our framework there are

two major obstacles against taking the majority of authorities by malicious users. Firstly, to be

considered for an authority, the user has to gain high reputation while by PF dishonest behavior will

not result in high reputation. As the second hurdle, we proposed a random selection to avoid any

48

Figure 5.3: Summary of improvements by proposed methods

deterministic attack scheme by malicious users. As to susceptibility against whitewashing attacks,

in this type of attack, the user with low reputation, deletes her account and creates a new account by

which she acquires the chance to become an influential user of the system, e.g. become an authority.

In our proposed scheme, this action only leads to removal of the user account while the user still

requires to gain reputation in an honest way, to be a potential candidate of authority. Finally, figure

5.3 has summarized the incentive mechanism enhancement by our proposed solutions.

Authority 1 latency to vote (sec)
Transaction 1 Transaction 10 Transaction 100 Transaction 1000
0.283 0.496 2.471 48.231

Table 5.1: Latency of authority 1

49

Authority 2 latency to vote (sec)
Transaction 1 Transaction 10 Transaction 100 Transaction 1000
0.412 0.506 2.768 48.973

Table 5.2: Latency of authority 2

Authority 3 latency to vote (sec)
Transaction 1 Transaction 10 Transaction 100 Transaction 1000
0.282 0.481 2.909 46.662

Table 5.3: Latency of authority 3

Authority 4 latency to vote (sec)
Transaction 1 Transaction 10 Transaction 100 Transaction 1000
0.306 0.536 2.416 52.224

Table 5.4: Latency of authority 4

Authority 5 latency to vote (sec)
Transaction 1 Transaction 10 Transaction 100 Transaction 1000
0.286 0.517 2.191 48.410

Table 5.5: Latency of authority 5

50

Chapter 6

Conclusion and Future Work

This chapter concludes the contributions of this work and finally, it presents future works to

further develop the proposed data sharing framework.

6.1 Conclusion

In conclusion, data sharing technology has received plenty of benefits by adoption of blockchain.

A considerable number of security concerns are tackled due to immutability, decentralization and

no need to have a third party; however, all that glitters is not gold. Data sharing has encountered

several challenges brought by blockchain as well like substantial power consumption, biased voting

and high communication costs. We proposed a new system model leveraging a new consensus

algorithm in which the aforementioned problems are solved. In other words, the proposed method

is based on a group of authorities and a leader who validates the transactions.

In addition, the reputation systems are popular sort of incentive mechanism by which the net-

works can reward the honest and collaborative users. Although, reputation systems sound promis-

ing, they add many loopholes to the networks. Regarding the drawbacks, they lead to susceptibility

of data sharing framework against manipulation by selfish users and different attack scenarios. In

our proposed idea, we introduced PF and TFs, these two new concepts can defend the reputation

systems against mentioned issues. In terms of encryption, we proposed a substitute for local based

encryption methods in which cryptographic keys play a crucial role for validation, encryption and

51

decryption tasks. In fact, we adopted a cloud-centric encryption solution by which the latency is

improved.

We implemented our proposed scheme using a different methodology compared to conventional

implementation of data sharing frameworks in similar research works. As a matter of fact, we

developed a web application in which most of the functionalities are programmed from scratch to

avoid unpleasant side effects of built-in and external tools like communication costs. Finally, as

shown in the results, our proposed data sharing framework not only mitigated the security concerns

but also it has reduced the latency and communication costs to a considerable extent.

6.2 Future Work

We have divided the future works into two subsections that are represented in 6.2.1 and 6.2.2.

6.2.1 Data Quality Management

When a researcher utilizes a certain type of data, the one has to assure that the quality of data

is satisfying, since inadequate data quality leads a researcher to an incorrect conclusion or train her

model falsely. Moreover, by evaluation of the quality of data contributed by a data owner, the owner

with higher quality data can be incentivized more by our reputation system. Therefore, a requester

can trust the data owner who has high reputation.

The data quality management problem originates from the fact that data sharing framework is

composed of users each contributing a large volume of data and it is perceived a big data platform

wherein the control of entered data is complicated. Regarding the existing solutions, one popular

and naı̈ve idea is to validate the quality of data by group of validators. However, we have to seek

an automated solution to replace manual assessment of the data quality by validators, and there are

different reasons to urge us finding this solution. First and foremost, an automated solution is done

by a computer program and there is no involved third party, therefore, user privacy is not considered

violated. As the second reason, for large data volumes, manual validation yields substantial rate of

latency.

To solve the problems, the methods are based on statistical and machine learning algorithms.

52

For example, one of the potential solutions is to use k-means clustering algorithm in which each

piece of data is grouped into diverse categories based on its features and correlation compared to its

counterparts. For instance, in a medical application for data sharing framework, when height data

of people is listed and it varies between approximately 1.5 m to 2 m, insertion of 4 m as the height is

deemed outlier and low quality data. These sorts of systems usually are used in fraud detection and

financial applications, therefore, use of them in data sharing applications is a novel research field.

There are several challenges and unsolved problems to train an AI model as described above.

Firstly, a data sharing framework should become specified for a particular application before training

the model. The reason is the framework has to be prepared and trained for the received type of data,

e.g. only trained for medical data, and training a general purpose model for all types of data seems

infeasible.

As the second challenge, training the models by data of users is not a reliable solution. In

fact, the users might contribute low quality data. The system is not able to distinguish low quality

data before being trained by high quality one. In other words, regarding the aforementioned height

example, a user may contribute height data that is ranged between 5m to 6m. Therefore, the model

is trained falsely and expects this range from further data owners. As a result, we have to provide

high quality data to train the model in the first place. Undeniably, supplying high quality data is

not always easy especially in industrial IoT applications and health care where the data might be

confidential.

6.2.2 Recommender System

To clarify the idea, the recommender system of this framework is responsible to receive the

requested data type by the data requester then recommends the relevant data owners. As an illus-

tration, if a data requester asks for ”fat” data, the recommender system expects to find data owners’

data type like ”fat”, ”Cholesterol”, ”HDL”, ”LDL”, etc.

Our solution for this problem is based on deep learning. As a matter of fact, Natural Language

Processing (NLP) is a branch of deep learning to process speech and text information. We believe

NLP alongside an unsupervised learning algorithm of machine learning can manage the task. NLP

53

is a requisite to organize and vectorize the text and make it ready to be processed. Also, the unsuper-

vised learning should receive a vector for each word. The vectors that are close can be placed within

one cluster. There are plenty of methods to calculate the closeness of vectors, a popular example is

Cosine similarity method.

54

Bibliography

[1] Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Business Re-

view (2008), p. 21260.

[2] Wood. “Ethereum: A secure decentralised generalised transaction ledger”. In: Ethereum project

yellow paper 151 (2014), pp. 1–32.

[3] Nguyen et al. “Proof-of-stake consensus mechanisms for future blockchain networks: funda-

mentals, applications and opportunities”. In: IEEE Access 7 (2019), pp. 85727–85745.

[4] Yang et al. “Delegated proof of stake with downgrade: A secure and efficient blockchain

consensus algorithm with downgrade mechanism”. In: IEEE Access 7 (2019), pp. 118541–

118555.

[5] Cao et al. “When Internet of Things meets blockchain: Challenges in distributed consensus”.

In: IEEE Network 33 (2019), pp. 133–139.

[6] Han et al. “How can incentive mechanisms and blockchain benefit with each other? a survey”.

In: ACM Computing Surveys (CSUR) (2022).

[7] Zhang et al. “Towards secure and privacy-preserving data sharing in e-health systems via

consortium blockchain”. In: Journal of medical systems 42 (2018), pp. 1–8.

[8] Liang et al. “Integrating blockchain for data sharing and collaboration in mobile healthcare

applications”. In: 2017 IEEE 28th annual international symposium on personal, indoor, and

mobile radio communications (PIMRC) (2017), pp. 1–5.

[9] Cachin. “Architecture of the hyperledger blockchain fabric”. In: Workshop on distributed

cryptocurrencies and consensus ledgers 310 (2016), pp. 1–4.

55

[10] Fan et al. “Medblock: Efficient and secure medical data sharing via blockchain”. In: Journal

of medical systems 42 (2018), pp. 1–11.

[11] Xia et al. “MeDShare: Trust-less medical data sharing among cloud service providers via

blockchain”. In: IEEE access (2017), pp. 14757–14767.

[12] Shen et al. “MedChain: Efficient healthcare data sharing via blockchain”. In: Applied sciences

(2019), p. 1207.

[13] Xia et al. “BBDS: Blockchain-based data sharing for electronic medical records in cloud

environments”. In: Information 8 (2017), p. 44.

[14] Yu et al. “Blockchain-enhanced data sharing with traceable and direct revocation in IIoT”.

In: IEEE transactions on industrial informatics 17 (2021), pp. 7669–7678.

[15] Li et al. “Blockchain-based privacy-preserving and rewarding private data sharing for IoT”.

In: IEEE Internet of Things Journal 9 (2022), pp. 15138–15149.

[16] Kumar et al. “Blockchain-federated-learning and deep learning models for covid-19 detection

using ct imaging”. In: IEEE Sensors Journal 21 (2021), pp. 16301–16314.

[17] Shayan et al. “Biscotti: A blockchain system for private and secure federated learning”. In:

IEEE Transactions on Parallel and Distributed Systems 32 (2020), pp. 1513–1525.

[18] Lu et al. “Blockchain and federated learning for privacy-preserved data sharing in industrial

IoT”. In: IEEE Transactions on Industrial Informatics 16 (2019), pp. 4177–4186.

[19] Nguyen et al. “A survey about consensus algorithms used in blockchain”. In: Journal of

Information processing systems 14 (2018), pp. 101–128.

[20] Azaria et al. “Medrec: Using blockchain for medical data access and permission manage-

ment”. In: 2016 2nd international conference on open and big data (OBD) (2016), pp. 25–

30.

[21] Tosh et al. “CloudPoS: A proof-of-stake consensus design for blockchain integrated cloud”.

In: 2018 IEEE 11th international conference on cloud computing (CLOUD) (2018), pp. 302–

309.

56

[22] Liu et al. “BPDS: A blockchain based privacy-preserving data sharing for electronic medical

records”. In: 2018 IEEE Global Communications Conference (GLOBECOM) (2018), pp. 1–

6.

[23] Liu et al. “A blockchain-based medical data sharing and protection scheme”. In: IEEE Access

7 (2019), pp. 118943–118953.

[24] Bentov et al. “Proof of activity: Extending bitcoin’s proof of work via proof of stake [ex-

tended abstract] y”. In: ACM SIGMETRICS Performance Evaluation Review 42 (2014), pp. 34–

37.

[25] De Angelis et al. “PBFT vs proof-of-authority: Applying the CAP theorem to permissioned

blockchain”. In: ITASEC (2018), pp. 1–11.

[26] https://www.parity.io.

[27] https://geth.ethereum.org.

[28] Xie et al. “Design and analysis of incentive and reputation mechanisms for online crowd-

sourcing systems”. In: ACM Transactions on Modeling and Performance Evaluation of Com-

puting Systems 1 (2016), pp. 1–27.

[29] Xie et al. “Incentive and Reputation Mechanisms for Online Crowdsourcing Systems”. In:

IEEE/ACM International Symposium on Quality and Service (2015), pp. 207–212.

[30] Alswailim et al. “A reputation system to evaluate participants for participatory sensing”. In:

2016 IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.

[31] Burke et al. “Participatory sensing”. In: World Sensor Web Workshop ACM Sensys (2006),

pp. 117–134.

[32] He et al. “SORI: A secure and objective reputation-based incentive scheme for ad-hoc net-

works”. In: 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat.

No. 04TH8733) (2004), pp. 825–830.

[33] He et al. “A blockchain based truthful incentive mechanism for distributed P2P applications”.

In: IEEE Access 6 (2018), pp. 27324–27335.

57

[34] Wang et al. “A blockchain based privacy-preserving incentive mechanism in crowdsensing

applications”. In: IEEE Access 6 (2018), pp. 17545–17556.

[35] Gordon et al. “Blockchain technology for healthcare: facilitating the transition to patient-

driven interoperability”. In: Computational and structural biotechnology journal 16 (2018),

pp. 224–230.

[36] Pang et al. “What programming languages do developers use? a theory of static vs dynamic

language choice”. In: 2018 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC) (2018), pp. 239–247.

[37] https://cryptography.io/en/latest/fernet/.

[38] Alkhulaifi et al. “Exploring lattice-based post-quantum signature for JWT authentication:

review and case study”. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-

Spring) (2020), pp. 1–5.

[39] Sharma et al. “SQL and NoSQL Databases”. In: International Journal of Advanced Research

in Computer Science and Software Engineering 2 (2012), pp. 20–27.

[40] Khan et al. “SQL and NoSQL Databases Software architectures performance analysis and

assessments–A Systematic Literature review”. In: arXiv preprint arXiv:2209.06977 (2022).

[41] Rouhani et al. “Performance analysis of Ethereum transactions in private blockchain”. In:

2017 8th IEEE International Conference on Software Engineering and Service Science (IC-

SESS) (2017), pp. 70–74.

58

Appendix A

Implementation Materials (back-end)

The appendix contains back-end development codes of the data sharing framework.

Figure A.1: The code in app.py file

59

Figure A.2: The code in app.py file

Figure A.3: The code in app.py file

60

Figure A.4: The code in app.py file

Figure A.5: The code in app.py file

61

Figure A.6: The code in app.py file

Figure A.7: The code in app.py file

62

Figure A.8: The code in app.py file

Figure A.9: The code in app.py file

63

Figure A.10: The code in app.py file

Figure A.11: The code in app.py file

64

Figure A.12: The code in app.py file

Figure A.13: The code in app.py file

65

Figure A.14: The code in app.py file

66

Figure A.15: The code in app.py file

Figure A.16: The code in app.py file

67

Figure A.17: The code in app.py file

68

Figure A.18: The code in app.py file

Figure A.19: The code in app.py file

69

Figure A.20: The code in app.py file

Figure A.21: The code in app.py file

70

Figure A.22: The code in app.py file

71

Figure A.23: The code in app.py file

72

Figure A.24: The code in app.py file

73

Figure A.25: The code in app.py file

74

Figure A.26: The code in app.py file

Figure A.27: The code in app.py file

75

Figure A.28: The code in app.py file

76

Figure A.29: The code in app.py file

Figure A.30: The code in app.py file

77

Figure A.31: The code in blockchain.py file

78

Figure A.32: The code in blockchain.py file

Figure A.33: The code in blockchain.py file

79

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contribution
	Thesis Structure

	Literature Review
	Data Sharing System
	System architecture
	Incentive mechanism
	Consensus algorithm
	Cloud-based encryption

	Implementation
	Back-end
	Front-end
	Database

	Performance Assessment
	Scalability
	Security

	Conclusion and Future Work
	Conclusion
	Future Work
	Data Quality Management
	Recommender System

	Bibliography
	Appendix Implementation Materials (back-end)

