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Abstract

An Efficient Neural Network Architecture and Training Protocol for 3D Point Cloud

Classification

Sneha Paul

The point cloud is a set of data points in a 3D coordinate system with an irregular data format.

As a result, they are needed to be transformed into a collection of images before being fed into mod-

els. This unnecessarily increases the volume of the data and increases complexities. The existing

literature on point cloud uses a fixed number of points sampled from the whole point cloud as the

input. However, with large point cloud data, it is important to consider more points as input to have

a better understanding of the scene. The computational expense increases if the input number of

points increases for existing networks. Our research contributes to the existing point cloud classi-

fication literature in two directions. First, we develop a training protocol for improved point cloud

training accuracy on top of the existing PointNet [31] architecture over the ModelNet10 dataset. A

few variations of encoder models have been proposed in this regard. Also, an extensive hyperpa-

rameter study and ablation study are done. These experiments achieve a 6.10% improvement over

the baseline model. After that, we propose DualNet, a novel 3D point cloud network that resolves

the trade-off between the number of input points and the computational expense of 3D data. The

DualNet consists of two branches: DensetNet and SparseNet. The SparseNet is a comparatively

large network in terms of number of parameters, that samples a small number of points from the

whole point cloud. Whereas the DenseNet is a lightweight network that takes a large number of

points as input. SparseNet is composed of more number of channels than DenseNet making it more

computationally expensive than DenseNet. While the accuracy of the model shows good improve-

ment when the number of points increases, the overall computational cost of DenseNet does not

increase much in such settings. DualNet shows 0.81% and 0.45% increase in the SOTA results on
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ModelNet40 and ScanObjectNN respectively. In respect of computational complexity, our model

takes about 40% less time compared to SOTA.
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Chapter 1

Introduction

1.1 Background

Point cloud, a set of points in the 3D geometric coordinate system with irregular data structure,

is one of the central research areas of 3D Computer Vision [31]. It is commonly collected by sensors

e.g. camera, LiDAR or radar scan, which perceives the 360-view information of the surrounding

environment. Unlike 2D datasets that are composed of pixels of regular data format, point cloud

data is a set of unordered points P ∈ R
n×3. Each point in a point cloud data contains x, y, and

z coordinates and sometimes some additional information such as surface normal and intensity.

The nature of point cloud data prohibits it from being treated like a regular image to which image

processing techniques, e.g. CNNs, can be applied directly. Furthermore, the analysis of point cloud

data becomes even more difficult due to the sparsity of the dataset and the presence of noise (e.g.

sensor error) [26].

The structure of point cloud data follows 3 unique properties in point sets R
n. These three

properties are summarized as follows:

• Unordered structure: Compared with 2D images or 3D voxels where the data structure is

regular, point cloud is composed of a set of points of irregular data structure. As a result, if

a model takes input N number of 3D point sets, it should be invariant of N ! permutation of

data feeding order.
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• Relation among the points: In point cloud, points are related to the neighbouring points. As

a result, it is necessary to capture the local structure of the nearby points to understand the

underlying information and learn the correct representation of the input point cloud.

• Invariant of transformation: Since point cloud is geometric data, certain transformations

should not change its underlying geometric characteristics. For example, applying rotation

and translation of points should not change its semantic information.

Since point cloud is generated from 3D scans, it contains detailed information about the phys-

ical environment, e.g. surface roughness of an object. It is primarily used for creating 3D mod-

els. Some major application of point cloud data includes self-driving vehicles and self-navigating

robots. Some other industrial-level real-world use of point cloud includes creating 3D models of

manufactured products for quality inspection, generating digital twin for analyzing and simulating

any real-world scenario, meteorological analysis, visualization, rendering and animation of vari-

ous custom application. In recent years, the use of neural networks in 3D point cloud analysis has

shown promising performance and significantly improved different real-world point cloud applica-

tions. Success in point cloud applications is the result of various computer vision tasks, including

3D shape classification [? ], 3D object detection [44] and segmentation [6] tasks, point registration

[28], shape completion and so on.

3D object classification is one of the fundamental and challenging tasks of computer vision

which involves a computer’s understanding of a scene that can be generalized to many other related

tasks, including object detection and segmentation. This makes 3D object classification one of the

benchmark tasks for understanding the learning capabilities of 3D models and training recipes. As a

result, new methods are often tested on some well-known object datasets on the object classification

task.
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Figure 1.1: Example of 3D point cloud .

1.2 Research Motivation

Due to the special properties of point cloud data which make them different from 2D images,

regular image processing techniques cannot be applied to point cloud data. Since convolution net-

works require a pre-defined structured data format, point cloud data or meshes must be transformed

into regular 3D voxel grids or collections of images. This transformation makes the data volumi-

nous and reduces the natural variance of data. Feeding the data directly to the model reduces the

issues arising from data transformation.

PointNet [31] is one of the pioneering works in point cloud data analysis, which directly feeds

point cloud data as input to the network. The encoder of PointNet [31] learns to select the most

informative points from point cloud data and make predictions using them. However, one major

limitation of the PointNet architecture is that it does not consider local structures in the metric

space. This is an essential requirement for implementing convolutional neural network (CNN)

based architectures that have shown tremendous success in image applications. CNNs expect input

data to be defined on regular grid. PointNet++ [33] solves this problem by applying PointNet [31]

recursively on a nested partition of point cloud data. Like CNNs, they capture the local patterns and

finally group them to learn higher-level features.

Some other recent work on point cloud data analysis has also focused on learning local geomet-

ric patterns using local extractors such as Graphs [17] and attention mechanisms [11]. This class

of local extractors has two major limitations. First, the local geometric extractors make models
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computationally expensive, compromising the inference latency of the model.

Second, the performance gain of such models has been saturated for the existing benchmark

datasets [18]. To deal with the aforementioned limitations associated with existing feature extrac-

tors and further improve performance, PointMLP proposed a deep hierarchical residual MLP archi-

tecture [26]. Because of the MLP architecture, PointMLP is invariant to input permutation, which

respects one of the major characteristics of point cloud data. Moreover, using residual MLPs facil-

itates the building of very deep networks. Since this model is free from local geometric extractors,

repeating the feed-forward MLPs several times does not significantly increase the computational

cost.

Even though PointMLP shows great performances, there are still limitations. First, it takes a

fixed pre-defined number of points as input. Hence, PointMLP (as well as other existing methods)

does not enjoy the advantages of more input points. Also, increasing the number of input points lin-

early increases the computational cost, as well as memory requirements, which makes it impossible

to utilize high-density point cloud data.

Therefore the research gap in the existing literature on point cloud data classification can be

divided into two stages:

• Developing an improved training protocol for the existing point cloud classification architec-

tures, e.g. PointNet [31].

• Developing a model that can handle the increased number of points and learn rich features

without a linear increase in complexity and memory demand.

1.3 Research Objective

Though deep learning is showing promising performance in 3D point cloud data analysis, it

lacks a lightweight and computationally friendly network which can take benefit from the large

input point cloud data. Several existing models are lightweight, e.g. PointNet [31], PointMLP [26]

with fewer parameters showing better performance with fewer input points, for example, 1k. This

thesis aims to meet the research gaps in existing point cloud data classification literature stated in

section 1.2. The main objectives of this research can be stated as follows:
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• To investigate the scope of further improvement of the existing SOTA point cloud data clas-

sification models’ performance through empirical analysis of important training parameters

and hyper-parameters.

• To build a lightweight point cloud model with less computational complexity while taking

advantage of large point cloud data input. In other words, the objective is to increase the

performance without increasing the computational cost.

To achieve the above-mentioned objectives, we propose a training protocol for improved point

cloud data classification accuracy. We also propose a novel neural network which is less memory-

demanding and captures the benefit of large input points. To measure the achievement of the objec-

tives, we take the SOTA models as baseline and compare the performance of our proposed methods

with them. Achieving higher accuracy than the SOTA can be stated as fulfilling the objectives.

1.4 Thesis Organization

The thesis is built on 5 chapters. Chapter 1 explains the background of this research work, the

definition and properties of point cloud data, research motivation and research objectives. Chapter 2

describes the existing literature on point cloud data classification. The existing literature is divided

into 3 main categories to highlight each of their contributions and limitations; (1) point cloud data

with transformation techniques, (2) point cloud data without transformation, (3) point cloud data

with local extractors. Also, three point cloud benchmark datasets are described, which are used

for proposed methods in later chapters. To fulfill the research gaps indicated in section 1.2 and

meet the research objectives stated in section 1.3, we propose two methods for point cloud data

classification in chapter 3 and chapter 4. In chapter 3 we propose a training protocol for improving

the classification accuracy of existing PointNet [31] architecture over the ModelNet10 dataset. Here,

an intensive experiment is done on different model variants, augmentation, loss function and so on.

In chapter 4, we propose a novel neural network architecture for point cloud data classification. To

show the effectiveness of the proposed model, a detailed experimental study is done on two point

cloud benchmark datasets; ModelNet40 and ScanObjectNN. Finally, our closing remarks, limitation

and future direction of this research are given in chapter 5.
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Chapter 2

Literature Review

2.1 Introduction

Point Clouds are 3D geometric data with x, y, and z positional information for each point. By

computing the normals of local or global features, more dimensions can be added to this data. In

the past, task-specific features extracted from Point Clouds were mostly handcrafted and encoded

with various statistical properties of the points [31]. They were invariant of certain transformations

and could be classified into two categories; intrinsic [1] and extrinsic [35]. We were also categorize

them into local features and global features. Back then, finding the best feature combination was

not necessary for a specific task.

Due to the unordered data structure of point cloud, general image analysis techniques can not

be applied to them. As a result, transforming the unstructured point cloud into structured dataset

(e.g. 2D image, 3D voxel) has taken a large area of literature in point cloud analysis. But this

approach comes with the limitation of increased volume of data, and computational complexity. To

solve these challenges imposed by point cloud transformation, researchers developed approaches to

feed the point cloud dataset directly, without any transformation to the network. PointNet [31] is

one of the pioneering works in this aspect. Nowadays, various local extractors (e.g. CNNs, GNNs,

attention mechanisms) are showing promising performance in point cloud analysis.

In this chapter, we discuss various existing methods related to Point Cloud classification. The

discussion is divided into three subsections; Point Cloud with transformation techniques (section
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2.2), Point Cloud without transformations (section 2.3), and Point Cloud with sophisticated geo-

metric extractors (section 2.4). The research gap indicated in section 1.2 and the discussion made

on existing point cloud classification techniques has motivated the proposed methods in chapter 3

and chapter 4. Finally, a description of the popular point cloud benchmark datasets are discussed

in section 2.5 which are used in the proposed method for point cloud classification in chapter 3 and

chapter 4.

2.2 Point Cloud with Transformation Techniques

Unlike sequence, image, and volume data, 3D point clouds are an unordered set of vectors. As

a result, common operations for ordered data structures cannot be used on 3D point clouds. To

deal with this problem, an attention mechanism with a read-process-write network was proposed

that consumes the unordered point clouds and outputs an ordered vector [40]. But this approach

could not store the geometric information captured by 3D point clouds. The deep learning methods

used for point cloud transformation and analysis were categorized into 3 ways; Multiview CNNs,

Spectral CNNs and Feature-based DNNs [31]. Each of them is described in the following sections.

2.2.1 Feature-based DNNs

This approach converted the Point Cloud into vectors and applied feature-based DNNs to extract

traditional shape features and classify them [4]. Guo et. al proposed a 3D mesh labelling method to

adapt with different 3D meshes using feature-based DNNs [10]. They non-linearly combined and

hierarchically compressed the low-level features into a compact representation for the 3D mesh.

Finally, a label vector was assigned by DNNs indicating their class probabilities. Fang et. al de-

veloped a deep shape descriptor for 3D object classification for various domains, e.g. engineering,

medicine, biology and so on [4]. Despite various applications of this approach, it was constrained

by the representation capability of the extracted features.
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2.2.2 Multiview CNNs

The main concept behind Multiview CNN [37] was to render the 3D point cloud into 2D images

and then apply 2D CNNs on the transformed 2D point cloud [36]. Due to highly improved CNNs,

this method showed promising performance in shape classification and retrieval tasks. Though this

approach had limitations for different 3D tasks, such as point classification and shape completion,

it was advantageous for 3D shape classification tasks. RotationNet [15], a CNN-based approach,

uses multi-view images from an object to predict its class and pose jointly. It extracts view-specific

feature representations, essential for accurate object classification and pose estimation.

2.2.3 Volumetric CNNs

Due to the irregular format of Point Cloud, many researchers transformed them into regular 3D

voxelized shapes and applied 3D convolutional neural networks (CNNs) to get the local information

[32]. Wu et. al proposed 3D ShapeNets that learned complex 3D data distribution and their poses

and found out hierarchical part representation, which showed promising performance for various

tasks, such as shape completion from 2.5D depth maps, object recognition and so on [47]. VoxNet

[27] used a volumetric Occupancy Grid representation with 3D CNN for 3D object recognition.

Qi et. al proposed two 3D CNN-based architectures for Volumetric CNNs and Multi-view CNNs

to improve the performance. For multi-view CNNs, they used 3D multi-resolution filtering [32].

However, this approach was costly due to the high volume of data and suffered from the curse of

data sparsity. With higher dimensions, the number of data appearing in a dimension decreases by

increasing the number of statistical analyses in an exponential order. As a result, many approaches,

such as Vote3D [42], and FPNN [20] were proposed to deal with data sparsity but were not beneficial

due to the high volume of points in Point Cloud.

2.3 Point Cloud without Transformation Techniques

One of the possible solutions to deal with the issues arising from transforming Point Clouds into

3D voxels or 2D images is to input Point Clouds directly into the model without any transformation.

PointNet [31] is a pioneering work in this direction. At the primary stages, the points were processed
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independently and identically to keep the model architecture simple. Maxpool was used to learn a

set of optimization functions for selecting informative points from the point cloud and encoded the

reasons for selecting them. Finally, a fully connected layer was used in the final layer to aggregate

all the information. To improve model performance, a rigid transformation network was applied to

the input data to canonicalize them before feeding them into PointNet. Paul et. al [29] proposed

an improved training setup of the existing PointNet model. Despite being a lightweight model,

PointNet could not capture the hierarchical features at the local level.

PointNet++ [33] improved the PointNet [31] network. It used the K-nearest Neighbours algo-

rithm to extract the overlapping points of the neighbourhoods and applied the PointNet network

recursively to them. This process was continued until all the input points were processed. Here,

the PointNet model was used like convolutional networks. Thus it successfully captured the local

features.

Several works were developed upon PointNet [31] and PointNet++[33]. PointMLP [26] was one

of them. It used the K-nearest Neighbours algorithm of PointNet++ [33] to extract the most useful

points and apply residual MLPs to them. A lightweight geometric affine module was also used

on the extracted points. Using only ResNet blocks kept the model lightweight and increased the

model’s inference speed. Wang et al. [41] proposed an MMI module which maximized the global

and local representation by deploying the Jensen-Shannon mutual information (MI) estimator in

both shallow and deep layers of the network. This novel network was combined with other existing

models (e.g. PointNet, PointNet++, etc. of various tasks (e.g. classification, segmentation, object

detection, etc.) to improve the model’s accuracy.

2.4 Point Cloud with Local Extractors

The recent works on Point Cloud were concentrated on efficiently generating regional point ex-

tractors. For exploring the local feature extractors in a more precise way, we grouped the existing

works into 3 families of approaches; convolution, graphs, and attention-based methods. Point-

Conv [46] was a famous work among convolution-based methods. It used the MLP to approximate
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the continuous weights and density functions of convolutional filters and modified the filters dy-

namically for a new convolutional operation. DenX-Conv [16] used two connectivity techniques,

neighbour connectivity and dense connectivity, to improve point cloud classification accuracy. For

neighbour connectivity, CNNs extracted useful local geometric features by determining geometric

hierarchy-based neighbourhood relationships. Dense connectivity was used to aggregate multiple

layers. DenX-Conv expanded the PointCNN [19] into a deep neural network to reduce its limitation

of vanishing gradient and learned stable feature learning in the deep layers.

Graph-based methods analyze the mutual co-relationship between different points in a graph.

EdgeConv [45] was used for constructing a local graph by generating the relationship between a

point with its neighbours by using the edge features. Wang et al. [43] proposed a graph-based

point cloud classification architecture with spherical coordinate system. Using a spherical coor-

dinate system rather than the traditional Cartesian coordinate system simplified the computation

and representation of the point cloud. A pose-estimating auxiliary network was used to estimate

the pose changes concerning rotation angles. To classify point cloud for the pose variation, Graph

Convolutional Network (GCN) was used.

3D-GCN [22] used 3D Graph Convolution Networks for deriving 3D deformable kernels. The

Attention-based methods were closely related to Graph-based methods and show promising perfor-

mance in local feature extraction. For example, Guo et al. proposed PCT, a Transform network

with farthest point sampling using nearest neighbour for better capturing local features [11]. Point

Transformer [52] used self-attention layers and constructed a self-attention network for Point Cloud.

Zhao et al. [51] proposed LGR-Net, a two-brunch network of MLP-based attention modules which

fused the global topology rotation invariant (RI) features with local geometry RI feature to get the

benefit from the two complementary RI responses.

Despite the success of these local extractors for extracting local features, the model’s perfor-

mance has been saturated and minimal improvement can be done to models by working on them.

Moreover, these local extractors are heavy enough to demand high computational memory. In re-

sponse to this situation, Ma et al. developed a simple and lightweight MLP-based network that used

deep residual MLPs for Point Cloud analysis [26].
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2.5 Datasets Description

ModelNet10

ModelNet [47] is a popular 3D point could classification dataset. It has two versions with 40 and

10 classes respectively. ModelNet10 includes 10 categories of 3991 and 908 samples for training

and testing partitions. The data is sparse coordinates of points, where each point x ∈ R3. Here, the

3 dimensions are the x, y, and z coordinates of a point. Each sample in the dataset contains N points,

so the overall dimension of 3D data is N × 3, where N is different for each sample. However, the

input to the model needs to be the same size for each sample. So, we randomly sample n points

from the set of N . So, the final input to the model is a vector x ∈ Rn×3.

Since the dataset is already split into train and test data, no further splitting is required. The data

needs to be normalized before giving this as input. No other pre-processing is required. The data is

sparse, and no missing data problem exists. The output of the model is the probability distribution

over the number of classes, in this case, 10.

ModelNet40

ModelNet40 [47] is a popular benchmark dataset for point cloud analysis. It is the larger ver-

sion of the ModelNet dataset where 12,311 cad-generated sample objects belong to 40 different

categories (e.g. airplane, car, lamp, etc.). The dataset is divided into 9,843 training samples and

2,468 testing samples. Like ModelNet10, each point in point cloud contains 3 dimensions; x,y and

z. And each sample of point cloud contains N points. So the dimension of the dataset is N × 3.

Here, N varies for each sample. To keep the input size same for each sample, n points are randomly

sampled from the set of N before feeding into the model.

ModelNet40 is a well-constructed dataset with no missing data and clean shapes. As a result,

no further data pre-processing is required except normalization.
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• PointNet [31] is one of the pioneering works for point cloud analysis without any transforma-

tion.

• Nowadays various local extractors (e.g. CNNs, GNNs, attention mechanisms) are used show-

ing promising performance.

• Despite the promising performance of these local extractors, their performance has been sat-

urated leaving minimal room for improvement.

• Also, these local extractors are memory-demanding.

• Developing a simple and lightweight MLP-based network would be beneficial from the com-

putational point of view and its generic network structure [26].
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Chapter 3

Improved Training for 3D point cloud

data Classification

3.1 Introduction

As we have stated before, PointNet is a pioneering work in point cloud data analysis because it

feeds the point cloud data directly into the model without any transformation. As a result, it avoids

the complex and costly data transformation task, which increases the volume of the data. In this

chapter, we have worked on top of the existing PointNet [31] architecture, shown in figure 3.1. This

research aims to explore the possibility of further improvement in the prediction accuracy of the

existing PointNet architecture. Due to its simple and generic network architecture, the PointNet

model is less memory-demanding with generalization capability.

The prediction accuracy of the existing PointNet architecture is 86.1% which we have taken as

the baseline accuracy of this research. Our target is to achieve higher accuracy than the baseline.

We have proposed a few variations of the encoder model and conducted extensive sensitivity and

ablation studies on the model. We use the ModelNet10 dataset in this research. The experiments in

this research achieve a 6.10% improvement over the baseline model. The contributions made in this

research are summarized as follows:

• We propose a variant of 1D CNN and RNN models that improved the original PointNet on
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Experiment Best parameter Accuracy (%)

Dropout 0.3 86.1

Epoch 20 86.67

Weight decay 0.00 86.1

Batch size 32 86.1

Learning rate 0.0001 87.78

Table 3.1: Summary of the hyper-parameter study.

size of 1024 and 2 hidden layers for all three models. Finally, a different number of linear

layers are also explored in this experiment.

Long Short Term Memory (LSTM) is a popular recurrent neural network (RNN) composed of

input gate, output gate and forget gate. It is a well-known network for analyzing very long sequence

data which is suffered from vanishing gradient problem in vanilla RNNs [9, 14]. Like LSTM, Gated

Recurrent Units (GRU) is another type of RNN. It comprises only input and forgets gate and has

fewer parameters than LSTM [2].

3.2.3 Loss Functions

Original PointNet proposed to use negative log-likelihood in combination with a regularization

softmax loss applied on the intermediate output of the Tnet and Transform block.

We experiment with different loss functions to train the model; for example, negative log-

likelihood and categorical cross-entropy functions are used. Negative log-likelihood is used for

multi-class classification tasks. This loss function returns a negative value for the log of each num-

ber in an interval of 0 and 1. As such, an additional negative sign is added to convert it to a positive

number. At 0 the function returns ∞, (log(0) = ∞) and at 1 returns 0 (log(1) = 0). negative

log-likelihood is formulated as follows:

LossNLL = −

c∑

i=1

yi log ˆ(yi) (1)

Like negative log-likelihood, categorical cross entropy is also used for multi-class classification

problems. This loss function distinguishes two discrete probability distributions from each other.
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Experiment Accuracy (%)

PointNet baseline 86.1

Baseline w/o dropout and normalization 85.90

Tnet; 1D Conv (k=3, s=2) 84.14

Tnet; 1D Conv (k=3, s=3) 86.12

Tnet; 1D Conv (k=5, s=3) 86.67

Tnet; Linear 2 layer 84.91

Transform; 1D Conv (k=3, s=2) 87.00

Transform; 1D Conv (k=3, s=3) 84.36

Transform; 1D Conv (k=5, s=3) 83.70

Tnet & Transform; 1D Conv (k=3, s=2) 69.82

Tnet & Transform; 1D Conv (k=3, s=3) 53.96

Tnet & Transform; 1D Conv (k=5, s=3) 49.23

LSTM 83.26

GRU 79.96

RNN 77.43

Table 3.2: Experiments on different model variants.

When the similarity between two probability distributions increases, the minus sign makes the loss

smaller [50].

Loss = −

c∑

i=1

pi log ˆ(pi) (2)

Here, p̂i = i − th probability of the output, pi= probability of the i − th class, c= number of

classes.

The ModelNet10 dataset is not a balanced dataset with an equal amount of samples per class.

So, we adopted a popular loss function called Focal Loss [21], which is specialized in handling class

imbalanced datasets. The formula for focal loss is represented as follows:

Lossfocal = −

c∑

i=1

pi (1− p̂i)
γ log(p̂i) (3)

here, p̂i is the output probability from the model, γ ∈ [0, 5] is a hyper-parameter that controls the

penalty. If a prediction with a high probability p̂i is wrong, the loss factor will be very high.
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3.2.4 Implementation details

Augmentations

It is widely known for computer vision applications that applying augmentations can generate

more data for training which in turn can reduce overfitting in the training. For point cloud data,

there are not as many augmentation options as in the image. In this work, we adopted the ‘rotation

along the z-axis’ and ‘random noise’ as the augmentations. Here, rotation along the z-axis changes

the view of the angle for the object, which does not change the semantics of the data. The random

noise augmentation adds some random noise to each of the points in the data point in point clouds.

Transfer learning

Transfer learning is a widely used method for computer vision tasks, where a model pre-trained

on a task is used for another similar task. Using a pre-trained model on a different but similar

task is called fine-tuning. The pretrained model is a starting point for fine-tuning the model on a

different task. This approach prevents the model from the random initialization of weights, and the

knowledge learned by the model in the pretraining stage reduces the overfitting tendency of models.

Thus it increases the accuracy of the model.

Training setups

The model is trained with Adam optimizer with a constant learning rate of 0.001. The model

is trained for 15 epochs by default with a batch size of 32. The training is done on Google Colab,

which takes around 10 hours to run the default 15 epochs training setup.

3.3 Experimental Results

For this thesis, we take PointNet [31] as the baseline model. First, we run the model with the

original PointNet on the MobileNet10 dataset. We get an accuracy of 86.1% on PointNet. Note

that the original PointNet used ModelNet40 only; however, a separate paper [7] implemented the

PoinNet on ModelNet10 and got an accuracy of 77.6%, which is far worse than the baseline results.
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We do one more experiment on the original PointNet by removing the Batch-Normalization and the

dropout components, which gave an accuracy of 85.9%. Considering this implementation of the

PointNet on ModelNet10 as a baseline, the aim of the rest of the experiments in this research is to

improve this accuracy (86.1%).

3.3.1 Hyper-parameter Sensitivity

We first start with the hyper-parameter sensitivity study on the baseline method. The sensitivity

study results are summarized in Table 3.1, which shows the effect of different dropout settings,

the number of epochs, weight decay, batch size, and learning rate. More details of the results are

presented in figure 3.3.

We experiment with the effect of different dropout values on the model accuracy (figure 3.3a).

We experiment with dropout for 0.2, 0.5, 0.75 and 0.9. Among them, the model gives the highest

accuracy, 86.01% for a 0.75 dropout value. A trend can also be seen in the model for different

dropout values. The model accuracy increases by increasing the dropout rate to 0.75. After that, the

model accuracy falls to 67.73% for a 0.9 dropout rate. Because the higher value of dropout means

the higher the number of perceptrons of the model is avoided to reduce over-fitting of the model.

Higher penalization reduces the model’s accuracy.

For the number of epochs (figure 3.3b), the highest accuracy is 86.67%, which is found in

epoch 20. This is higher than the baseline accuracy of the model. The model’s accuracy decreases

for increasing the number of epochs by more than 20. Because training the model for a large number

of epochs increases the overfitting of the model and reduces the model’s generalization ability.

Weight decay is a regularization factor that penalizes by adding a penalty term to the cost func-

tion of a model, which shrinks the weights during back-propagation and thus reduces over-fitting. In

figure 3.3c, we can see an increasing trend in the model’s accuracy for decreasing values of weight

decay. The highest accuracy of the model is 86.1% when no weight decay is imposed. So, for

further experiments, weight decay can be avoided.

For the batch size (figure 3.3d), the highest accuracy of the model is found for 32, which is

86.1%. This is similar to the baseline accuracy. In the beginning, the model’s accuracy increases

as the batch size increases to 32; after that, the model’s accuracy begins to decrease. Finally, the

22





model’s accuracy increases for batch size 256, which is 83.48%.

The learning rate controls the convergence rate of a model. Smaller learning rates tend to smaller

update steps to the model’s convergence, thus requiring a large number of epochs. A larger learning

rate tends to larger update steps to the model’s convergence, thus causing overshooting problems and

delaying the model’s convergence. In figure 3.3e, an increasing trend in the model’s accuracy can be

seen in decreasing the learning rate to 0.0001. The highest accuracy of the model is 87.78% for the

0.0001 learning rate, which is higher than the baseline accuracy. After that, the model’s accuracy

began to decrease as the smaller learning rate made the model’s convergence speed slower.

3.3.2 Results for proposed Model Variants

The results for different model variants are presented in table 3.2. As we can see from the table,

replacing the 1D CNN of kernel size 1 in the original Tnet block of PointNet with higher kernel size

and strides shows mixed results. For instance, k=3 and s=2 hurts the model and get worse results, but

there is a slight improvement for the same k with s=3. And there is a good amount of improvement

for k=5 and s=3 compared to the baseline result. However, the best improvement is achieved when

the 1D CNN of the ‘Transform’ block is changed with k=5 and s=2. It shows a 0.9% improvement

over the baseline. An interesting result is seen when both the Tnet and Transform blocks of the

PointNet are changed to a higher kernel size, in which case the results drop catastrophically. This

indicates that the sparse point structure of the point cloud data needs to be processed with kernel

size 1 (no relation comes into consideration from the neighbouring points) in at least one of the

pre-processing blocks.

As mentioned in the method, we replace the 1D CNNs in the Tnet with RNNs, more specifically,

LSTM, GRU, and vanilla RNN. The results of these variants of the model do not perform as well as

the 1D CNNs. Here the best results are achieved by LSTM of 83.26%.

3.3.3 Results for explored Loss Functions

As mentioned in the method, we explore different variants of loss functions in the research. The

results for different loss functions are summarized in table 3.3. First, we remove the regularization

part of PointNet, leaving the Negative log-likelihood (NLL) only, which shows about a 0.5% drop in
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Experiment Accuracy (%)

PointNet 86.1

Negative log-likelihood 85.68

Categorical cross-entropy 87.11

Focal loss 86.78

Table 3.3: Effect of different loss functions.

Experiment Accuracy (%)

Step LR sc. (step size= 4, gamma= 0.1) 88.11

Step LR sc. (step size= 6, gamma= 0.1) 87.33

Step LR sc. (step size= 4, gamma= 0.5) 89.43

Step LR sc. (step size= 6, gamma= 0.5) 88.33

Plateau sc. 87.67

Table 3.4: Summary of learning rate scheduler study.

accuracy. Next, we replace NLL with Categorical Cross-entropy loss, which shows a 1% improve-

ment in the result compared to the original PointNet. The focal loss also shows 0.7% improvement

compared to the baseline.

3.3.4 Explored Training protocol

The learning rate scheduler is used in models to adjust the learning rate between epochs as the

training progresses. Here we have used two different scheduler methods to adjust the learning rate.

One is learning rate scheduler, and another is plateau scheduler. From table 3.4 we can see that the

plateau scheduler gets an accuracy of 87.67%, which is better than the contestant LR used in the

baseline model. However, better results are achieved with Step LR. For the learning rate scheduler,

four different combinations are used for two different parameters. They are step size and gamma.

Step size is the number of epochs after which the learning rate will be updated. Gamma is the

amount by which the learning rate will be changed. We have used the combination of step sizes

4 and 6 with gamma 0.1 and 0.5. The highest accuracy for step size 4 with gamma 0.5, which is

89.43%.
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Experiment Accuracy (%)

Baseline 86.1

Without random noise 86.78

Without z axis rotation 91.52

Without any of them 90.42

Table 3.5: Effect of augmentation.

3.3.5 Effect of augmentations

In this thesis, we adopt two commonly known augmentations and consider them with the base-

line. However, we do some ablation studies by removing them one at a time (table 3.5). Surprisingly,

all the ablation results get better accuracy than the baseline including all. The best result here (and

overall) is achieved by removing the rotation along the z-axis. It gets an accuracy of 91.52%. We

suspect that the use of augmentation may require a bigger model with some other training settings to

get the best out of augmentation. With the current setup, the best accuracy achieved in this research

is 91.52% which is a significant 5.42% improvement over the PointNet baseline.

3.3.6 Transfer Learning

In the transfer learning setting, we first pre-train the model on the ModelNet40 dataset. The

weights learned by the model are used to fine-tune the model on the ModelNet10 dataset. A learn-

ing rate of 0.0001 is used while fine-tuning. The accuracy of the model after fine-tuning is 92.20%

which is the highest accuracy achieved by the proposed model. This is a significant 6.10% improve-

ment over the PointNet baseline.
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the model. We also did an ablation study on different components of the model, including augmen-

tations and loss functions. Overall our proposed training protocol achieved a 6.10% improvement

over the baseline results of PointNet.

28



Chapter 4

DualNet: An Efficient Two-stream

Fusion Network for 3D Point Cloud

Data Classification

4.1 Introduction

In section 1.2, we discussed two major research gaps in the existing point cloud classification

literature, which motivated us to propose a novel neural network architecture in this chapter. Also,

the training protocol that we proposed in chapter 3 for the PointNet [31] model, is used as a default

training protocol for the model we propose in this chapter. We aim to build a lightweight model that

gives higher performance and less memory demand compared with the current local extractors.

We propose DualNet, a lightweight yet efficient residual MLP-based model that can take a larger

amount of points as input without any significant increase in the computational cost. The proposed

DualNet is composed of two parallel networks: DenseNet and SparseNet. Both DenseNet and

SparseNet are composed of residual MLP blocks (inspired from PointMLP [26]). The DenseNet

takes a large number of points as input but is comparatively more efficient than the SparseNet

since the number of channels is low. As input, SparseNet takes a small subset of the input to

the DenseNet. For training the model with fewer input points, SparseNet is composed of more
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channels, making the model computationally more expensive than the DenseNet. Combining more

channels in SparseNet and fewer channels in DenseNet makes the overall DualNet lightweight.

The SparseNet is also slightly less computationally expensive than the original PointMLP. More

specifically, DenseNet contains 8 times fewer parameters than the SparseNet. Thus, DualNet can

enjoy the advantages of more input points keeping the computational cost low simultaneously. To

combine the two intermediate networks; SparseNet and DenseNet into DualNet, different types of

lateral connections is used both in the final layer and the intermediates layers. An intensive ablation

study is done on different lateral connections in the last layer (e.g. concatenation, multiplication,

etc.), showing that the model’s performance on the different lateral connections is data-dependent.

We test DualNet on two benchmark datasets: ModelNet40 [47] and ScanObjectNN [39]. On

both datasets, DualNet achieves better accuracy than the state-of-the-art methods on the point cloud

data classification task.

On the ModelNet40 dataset, DualNet achieves a 0.81% improvement over the state-of-the-art

and on the ScanObjectNN dataset, our model achieves a 0.45% improvement over the state-of-

the-art. Regarding computational complexity, our model takes about 38% less time compared to

PointMLP. For example, on the ScanObjectNN dataset, PointMLP with 1024 points takes 25 hours

to train an NVidia-100 GPU, while the DualNet with 128 points for SparseNet and 2048 points for

DenseNet takes only 18 hours to train.

The main contributions of this research can be summarized as follows:

• We propose a new architecture for 3D point cloud data that can utilize a large number of points

from the point cloud as the input to the model without drastically increasing the computation

overhead.

• The proposed method is faster than the state-of-the-art methods and achieves similar or better

accuracy.

• Extensive experiments on two benchmark datasets show the effectiveness of the proposed

method and set new state-of-the-art accuracy on them

The rest of the chapter is organized as follows: In section 4.2, we present the details of the

DualNet architecture. The experimental results are discussed in section 4.3. Finally, we draw the
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Figure 4.1: Architecture of DualNet. An upper branch of DualNet is a Dense network that takes

a large number of points from point cloud as input, whereas a lower branch is a sparse network

that takes a small number of points as input. Various lateral connection has been used both in the

intermediate layers and output layer to fuse the following brunches into DualNet.

closing remarks and comment on the future direction of this research in section 4.4.

4.2 DualNet Networks

In this section, we describe the details of the proposed DualNet architecture. First, we present

the preliminaries on some of the important concepts related to DualNet followed by a description

of the proposed method.

4.2.1 Preliminaries

Here we describe the preliminaries on the building blocks of the proposed DualNet. The main

block of DualNet utilizes the concept introduced in PointMLP [26]. PointMLP is developed upon

PointNet++[33], which hierarchically learns local features. PointNet++ [33] extracts a partition of

input data by using the K-nearest Neighbours algorithm and then uses the original PointNet [31]

model on the nested partition of the input data in a recursive fashion. The following three sections

describe the building blocks of PointMLP.
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K-nearest Neighbours

PointNet++ [33] partitions the point cloud data into a set of overlapping points which shares

common geometric structures among two consecutive sets of points. As a result, weights can be

shared between different sets of points like the convolutional networks. PointNet++ [33] captures

the local geometry of small neighbourhoods like CNNs. Due to robustness, the PointNet archi-

tecture is used as a local feature extractor. These local features are combined into larger units for

extracting higher-level features. PointNet++ repeats this process upon the nested partitions of the

input point set until features for the whole point set are obtained.

Pre-extractions and Post-extraction Blocks

As we have mentioned earlier, geometric local extractors are memory-demanding and also in-

crease the model’s computational complexities. To deal with this issue PointMLP [26] architecture

uses simple residual MLPs. The model architecture is composed of two residual MLP blocks,

namely, Pre-extraction and Post-extraction blocks, doing two different jobs (figure 4.2). The pre-

extraction block learns local-regional shared weights while the post-extraction block extracts deep

aggregated local features. FC, normalization layer, activation layers, and max-pooling (for aggre-

gation) are used along with the two residual MLP blocks to build PointMLP architecture. To make

the model deep and capture hierarchical features, this operation is repeated recursively for s stages.

To make the model robust, a Geometric Affine Module (described in the next subsection) is used,

which normalizes the input points. Finally, the K-nearest Neighbours algorithm is used for selecting

the neighbours.

Geometric Affine Module

Due to the irregularity in the data format of point cloud data the geometric structures are also

sparse and irregular in different local regions. This demands diverse local extractors for extracting

different geometric features. Shared residual MLPs can not capture them. Thus decreasing the

accuracy of the model. To deal with this issue, a geometric affine module has been introduced in

PointMLP that normalizes the input points while keeping its original geometric properties intact.
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Figure 4.2: Overview of PointMLP block.

This block is shown to help to solve the aforementioned problem.

4.2.2 DualNet

Figure 4.1 shows the detail architecture of our proposed model, DualNet. DualNet is a further

improvement upon PointMLP [26]. We have used the PointMLP blocks to build our dual network;

SparseNet and DenseNet. By fusing these two networks into our final model, DualNet gives state-

of-the-art accuracy. For better extraction of the local features, the farthest point sampling is used

with K-nearest Neighbour algorithms developed in the PintNet++ [33].

The main idea behind DualNet architecture is a parallel network of two sub-networks: DenseNet

and SparseNet. The intuition of the DenseNet is to be a computationally efficient network and yet

capture the high-level abstraction about the input object from a large number of points. On the other

hand, SparseNet is a deep network that captures detailed features of the object from a small number

of points. This type of model is shown to be useful for video processing [5]. We have introduced a

few key design choices to achieve the desired property of the mentioned network.
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First, to learn the high-level features from a large number of points while being computationally

efficient, we designed the DenseNet to have a reduced number of channels. Second, the SparseNet

is a deep network that captures detailed features. This network contains a similar number of pa-

rameters as PointMLP. To reduce the computational cost we reduce the number of neighbours in

this model. This is also motivated by the fact that the number of inputs to this model is also very

low. Finally, we introduce the intermediate and final lateral connection between the DenseNet and

the SparseNet. The intermediate lateral connection sends the learned intermediate representation

to learn from DenseNet to the SparseNet. That way, SparseNet gets the information from a large

number of points that DenseNet processes.

As the main building block on DualNet is adopted from PointMLP, it gets some of the important

properties of PointMLP. Since the PointMLP blocks are residual MLP blocks, DualNet is simple

yet generic. Also, using residual MLPs allows the model to be less memory-demanding and de-

creases computational complexities. Before feeding the input points to the networks, the points are

normalized by the geometric affine module.

SparseNet

As mentioned above, the SparseNet comprises residual MLP blocks from the PointMLP. The

main distinction of SparseNet from the PointMLP comes from the input number of point Ns and

the number of neighbours ns. Given the total number of sample points in the point cloud data is N ,

the input to the SparseNet is Ns = N/fi, where fi is an efficiency factor that reduced the number of

input points to the SparseNet. For a typical value of f , the input to the SparseNet is Ns ≪ N . Since

the input points are lower, we take this opportunity to reduce the computational cost by reducing

the number of neighbours ns in the nearest neighbour calculation. A typical value of ns = nd/2,

where nd is the number of neighbours in the DenseNet. The number of channels in the SparseNet

Cs is similar to that of the PointMLP. Overall, the computational cost of SparseNet is slightly less

than that of PonitMLP [26] but contains the same number of parameters.
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DenseNet

DenseNet is one of the key elements of the proposed DualNet that process a high number of

points while being computationally efficient. This model also has two important design parameters:

(a) input number of points Nd, and (b) number of channels Cd. Note that, we do not change the

value of the neighbour selecting factor (k) in the K-nearest Neighbours algorithm from the typical

implementation of PointMLP or PointNet++. Here, to reduce the computational cost and learn the

high-level features from a large number of points, we desire to make a lightweight model. The

channel number Cs is reduced to Cd = Cs/fc, where fc is the channel reduction factor. Here,

we use a high number of points as input, with the maximum being Nd = N . The intermediate

representation learned from this DenseNet is passed to SparseNet to help the SparseNet learn from

the high number of input points. Next, we describe the lateral connections that help with this

objective.

Lateral Connections

Finally, we describe the details of the lateral connection of the proposed DualNet. As mentioned

before, there are two types of connection: (a) intermediate connection, and (b) final connection.

The intermediate connection ensures the information learned from a high number of points in

the DenseNet is passed to the SparseNet. However, the size of the intermediate representations is

different as these two networks are not the same. More specifically, the representation generated

by DenseNet has fewer channels but a higher embedding dimension. To deal with this issue, we

propose a simple transformation to adjust the output size. First, we apply a maxpool layer with

kernel size fi, which reduces the embedding size to that of SparseNet at that particular layer. Then

to adjust the channel dimension, we repeat this at the channel dimension fc times. This operation

makes the intermediate representation of the DenseNet same as that of SparseNet. Next, we multiply

the output of that layer from the SparseNet with the transformed output of DenseNet. This lateral

connection is repeated in the s stages of the network.

The final connection is a more straightforward implementation. This connection is added on the

final embedding from the DenseNet to SparseNet. At this layer, the output dimension is the same
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for both networks making it an easy connection. Here we explore concatenation, multiplication, and

addition as the lateral connection. As we will discuss in the result section, this lateral connection

has a crucial role in the performance of the proposed DualNet model.

Instantiating

The proposed DualNet introduces a few model parameter choices that are crucial to the design

of this network. We show a detailed study on the effect of some of the parameters in the results

(e.g. input size to the SparseNet and DenseNet). Here, we describe the default values for all the

model-specific parameters mentioned in the methods.

The input to the DenseNet, Nd, by default is 2048, and the efficiency factor fi is tested for values

ranging from 2 to 16. The number of channels is cs = 32, and cd = 16 has been used respectively

for the SparseNet and DenseNet. For selecting neighbours, the K-nearest Neighbours algorithm has

been used with nd = 24 for DenseNet and ns = 12 for SparseNet. For the intermediate lateral

connection, DualNet uses s = 4 intermediate connections and a final connection.

4.2.3 Implementation Details

We have trained the model for 300 epochs with batch size 32 and an initial learning rate of

0.01. To adjust the learning rate, cosine annealing scheduler has been used. We have trained our

model with synchronous SGD [8], 0.9 of Nestorov Momentum, and 0.0002 of weight decay. The

number of input points is randomly initialized for every experiment we have performed for both the

SparseNet and DenseNet. For the augmentation strategy for the input points, we have followed the

recipe in [31]. We ran experiments for 300 epochs with the Standard SGD optimizer and reported

the overall accuracy (OA) of our model compared with the state-of-the-art.

4.3 Experiment and Results

In this section, we present intensive experiments on two popular datasets, namely, ModelNet40

and ScanObjectNN. First, we present the experimental setups, followed by results on ModelNet40

and ScanObjectNN. Finally, we show a sensitivity study on various important training parameters
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Table 4.1: Classification result on ModelNet40 dataset

Method Parameter Input Accuracy

PointNet [31] - 1K 89.2

PointNet++ [33] 1.4M 1K 90.7

Improved PNet [29] - 1K 92.2

PointCNN [19] - 1K 92.5

PointConv [46] 18.6M 1K 92.5

KPConv [38] 15.2M 7K 92.9

DGCNN [30] - 1K 92.9

RS-CNN [24] - 1K 92.9

DensePoint [23] - 1K 93.2

PointASNL [49] - 1K 92.9

PosPool [25] - 5K 93.2

MLMSPT [13] - 1K 92.9

LGR-Net [51] - - 91.1

Cartesian GCN [43] - - 73.0

PointMLP[26] 13.2M 1K 92.9

DualNet (ours) 14.3M 0.5k/1k 93.7

for our proposed DualNet model.

4.3.1 Experiment setups

ModelNet40 [47] is a point cloud dataset containing 9,843 training data samples and 2,468 test

samples of 3D CAD objects classified into 40 categories. As a synthetic dataset, there is no noise

and missing data. So, no pre-processing is required. The ScanObjectNN [39] is a recently published

benchmark dataset that contains 15,000 objects belonging to 15 categories and 2,902 unique real-

world object instances. As a real-world dataset, there exists background, missing data, and noise,

which makes the dataset challenging for 3D point cloud data classification. Since ModelNet40 is

a synthetic dataset, point cloud data analysis might be comparatively easy and may not pose the

challenges that a real-world dataset does. To this end, we present the results for both ModelNet40

and ScanObjectNN datasets to fully evaluate the effectiveness of the proposed model.
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4.3.2 Results on ModelNet40

In this section, we present the results for DualNet on the ModelNet40 dataset. First, we show the

comparative study with the state-of-the-art methods on this dataset. Then we show the performance

on different input points and ablation study on the proposed lateral connection.

Comparison to SOTA methods

In table 4.1, we present the final results of DualNet and its comparison with previous methods

on ModelNet40 datasets. As we see from this table, DualNet achieves state-of-the-art results with

93.7% accuracy on this dataset. This is a 0.81% improvement over the current state-of-the-art

PointMLP method. Note that, the PointMLP achieves 92.91% accuracy on the ModelNet40 dataset

in our experiments from the available code of the original paper. DualNet achieves this accuracy

for only 512 point inputs in the SparseNet and 1,024 points on DenseNet. Here, the DenseNet with

1024 model has a very low computational cost compared to the SparseNet. From the perspective of

model parameters, PointMLP had a total parameter of 13.2 million, and DualNet slightly increased

it to 14.3 million.

To further understand the performance of DualNet and its robustness in a low number of points,

we present a direct comparison with PointMLP in table 4.2. Here, ’points’ shows the input point to

the SparseNet. Since DenseNet comes with negligible extra cost with more points, we do not report

the input to DenseNet in this study. From an overview of this table, we see that DualNet shows

significant improvement compared to PointMLP for any number of input points. The maximum

improvement of 2.15% is achieved for 64 points. For 128 and 256 points, the improvements are

1.53% and 1.17%, respectively. The overall highest accuracy 93.72% is achieved from 512 points

as the input. In this setting, the comparative improvement is 1.05%. For a higher number of input

points (e.g. 1024), DualNet gets a 0.53% improvement over PointMLP. This concludes that the

proposed DualNet is more effective with fewer points. However, it still shows improvements with a

larger number of points too.
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Table 4.2: Comparison of DualNet with state-of-the-art methods on ModelNet40.

Points PointMLP DualNet Improvement

64 90.92 93.07 2.15

128 91.78 93.31 1.53

256 92.14 93.31 1.17

512 92.67 93.72 1.05

1024 92.91 93.44 0.53

Sensitivity and Ablation study on DualNet Architecture

There are two main components of the proposed DualNet architecture: (1) the number of input

points in SparseNet and DenseNet, and (2) the lateral connection. Here, we show an in-depth

analysis of them with the ModelNet40 dataset.

Performance for a different number of input points. We show the effect of different numbers

of inputs to the SparseNet and DenseNet in Table 4.3. Although we show a direct comparison to

PointMLP for different input points to SparseNet, we further show the effects of different numbers

of points on the DenseNet in this experiment. We fix the input point to the SparsNet and show the

results for different values (higher than the input to SparseNet) for DenseNet. Overall, we observe

that, with the increment of input points in DenseNet, the accuracy of DualNet increases. Note that

the computational cost does not increase significantly as long as the input point to SparseNet is

the same. This trend continues up to 1024 points. However, With the further increment of points

(e.g. 2048), the accuracy of the model declines in most of the cases except that for 128 input points

in SparseNet. The highest accuracy of 93.72% is obtained from 512 and 1024 input points for

SparseNet and DenseNet, respectively.

Ablation study on lateral connection. In table 4.4, we do a detailed ablation study on different

types of lateral connections on the last layer of DualNet to show the effect of lateral connections on

the performance of DualNet. We test the model with 3 types of lateral connections: concatenation,

multiply, and addition. We also show another study without any lateral connection on the last layer,

represented by ºnoneº. Similar to the previous experiment, here, ’points’ indicate the input to the

SparseNet. For 64, 256, and 512 input points, the ºadditionº type of lateral connection provides

higher accuracy. For 128 input points, we get the highest accuracy without any lateral connection

at the last layer. However, the accuracy for ’addition’ is also very close for this setting. It can
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Table 4.3: Accuracy with more points on DenseNet

SparseNet DenseNet Accuracy (%)

64 128 91.01

64 256 91.73

64 512 92.42

64 1024 92.87

64 2048 91.98

128 256 91.65

128 512 92.91

128 1024 93.07

128 2048 93.31

256 512 92.26

256 1024 93.23

256 2048 92.18

512 1024 93.72

512 2048 92.83

1024 2048 91.05

Table 4.4: Ablation study on different connection on last layer

Points Concatenation Multiply Addition None

64 92.63 92.42 92.87 92.59

128 93.03 92.87 93.07 93.11

256 92.46 92.95 93.23 93.19

512 91.73 93.03 93.72 92.30

be concluded that for the ModelNet40 dataset, the ºadditionº type of lateral connection shows a

promising result.

4.3.3 Results on ScanObjectNN

In this section, we present a similar set of experiments to that of ModelNet40 for the ScanOb-

jectNN. Since this is a more complex and real-world dataset, it shows a difference in observations

from that of the previous section.
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Table 4.5: Classification result on ScanOjectNN dataset

Method Parameter Accuracy

PointNet [31] - 63.0

PointNet++ [33] 1.4M 77.9

SpiderCNN [48] - 68.2

PointCNN [19] - 78.1

DGCNN [30] - 78.1

DRNet [34] - 80.3

PRANet [3] - 82.1

MVTN [12] - 82.8

PointMLP[26] 13.2M 85.9

DualNet (ours) 14.3M 86.4

Table 4.6: Comparison of DualNet with state of the art

Points PointMLP DualNet Improvement

64 75.95 84.94 8.99

128 81.09 86.36 5.27

256 82.62 86.36 3.74

512 84.91 85.67 0.76

Comparison to SOTA methods

In table 4.5, we present the results for the DualNet and its comparison to previous methods over

the ScanObjectNN dataset. As we see from this table, DualNet beats the state-of-the-art (PointMLP)

by 0.5%. As shown before, the previous SOTA, PointMLP had 13.2 million parameters, and Dual-

Net achieved the SOTA of 86.4% accuracy with the parameters slightly increased to 14.3 million.

This accuracy is significantly higher than all other methods in this table.

For analyzing the performance of DualNet on the ScanObjectNN dataset, we do a direct com-

parison of DualNet with the SOTA in table 4.6. Similar to previous experiments, we report the

number of input points only for the SparseNet due to the negligible computation cost of DenseNet.

We can see that a significant improvement of 8.99% is achieved by DualNet over the PointMLP

for 64 input points in the SparseNet. For 128 and 256, the improvement of DualNet over SOTA is

5.27% and 3.74%, respectively. The lowest improvement is achieved from 512 input points which

41



are 0.76%. Hence, similar to the observation from ModelNet40, it can be concluded that DualNet

can achieve better improvement over the SOTA with fewer input points in the SparseNet. Moreover,

the highest accuracy of the DualNet over ScanObjectNN dataset of 86.36% is achieved for both 128

and 256 input points in the SparseNet. However, we can say the performance of DualNet for 128

input points on SparseNet is more significant than 256 as the computation cost with the former point

is lower. More specifically, the run-time for 128 input points is 18.2 hours compared with 256 input

points which is 22.9 hours.

Sensitivity and Ablation study on DualNet Architecture

Similar to the previous ablation and sensitivity study on ModelNet40, we perform the study

on (1) the sensitivity toward the number of input points on SparseNet and DenseNet, and (2) the

ablation study on the lateral connection of the last layer of DualNet.

Performance for a different number of input points.

In table 4.7, we show the performance of DualNet on different numbers of input points on

the DenseNet. Previously we showed the performance of DualNet on a different number of input

points on the SparseNet only. Here, we fix the number of input points for the SparseNet and show

the accuracy of varying the input points for DenseNet. As we can see from this table, DualNet

achieves the highest accuracy of 86.36% for both 128 and 256 input points in the SparseNet. In

both cases, the number of input points in DenseNet is 2048. The second highest accuracy of 85.67%

is achieved for 512 input points in the SparseNet and 2048 input points in the DenseNet. So, it can

be concluded that DualNet shows higher performance for many input points in DenseNet. As we

mentioned before, DenseNet is a lightweight network with less number of parameters. Using a

higher number of points as input does not increase the computational cost of DualNet. Therefore,

DualNet enjoys the advantage of a higher number of input points.

Ablation study on lateral connection.

In table 4.8, we compare the performance of DualNet for different types of lateral connections

on the last layer for the ScanObjectNN dataset. As before, We consider 3 different types of lateral

connections: (1) concatenation, (2) multiply, and (3) addition. We also perform another analysis by

removing all the lateral connections at the last layer, described as ºnoneº. As we observe from this
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Table 4.7: Accuracy with more points on DenseNet

SparseNet DenseNet Accuracy (%)

64 128 75.75

64 256 78.77

64 512 82.55

64 1024 84.25

64 2048 84.94

128 256 79.11

128 512 82.27

128 1024 83.94

128 2048 86.36

256 512 83.03

256 1024 84.53

256 2048 86.36

512 1024 84.63

512 2048 85.67

1024 2048 84.94

table, the performance varies with the changes in the number of input points. The highest accuracy

86.36% is achieved for both multiply and concatenation types of lateral connection. Note that,

for the ºmultiplyº type of lateral connection, this accuracy is achieved for only 128 input points.

The concatenation type of lateral connection requires 256 input points to achieve this accuracy. The

second highest accuracy 85.81% is achieved with the ºadditionº type of lateral connection at the last

layer. This study shows that the performance of ScanObjectNN with lateral connection is sensitive

to the number of points. We suspect that the variance and distortion present in the ScanObjectNN

dataset are responsible for such deviation in the results compared to ModelNet40 (where ’addition’

was the best lateral connection).

4.3.4 Run Time Analysis

We present a run time analysis in Table 4.9. This table shows the training time for PointMLP

and DualNet on the ScanObjectNN dataset. This particular instance shows the runtime of PointMLP

with 1024 points, which is 25.1 hours. While the proposed ScanObjectNN with 2048 points to
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Table 4.8: Ablation study on different connection on last layer

Points Concatenation Multiply Addition None

64 84.49 84.11 84.87 84.94

128 85.29 86.36 84.84 84.56

256 86.36 84.66 85.81 84.35

512 84.70 84.84 85.29 85.67

Table 4.9: Run time comparison on ScanObjectNN dataset

Method Input Accuracy (%) Runtime (hr)

PointMLP 1024 85.91 25.1

DualNet 128/2048 86.36 18.2

DenseNet and 128 points on SparseNet takes only 18.2 hours to train to make it 38% faster than

PointMLP. At the same time, DualNet achieves 0.45% improvements over PointMLP. This shows

both the effectiveness and improvements of the DualNet over PointMLP.

4.3.5 Hyper-parameter Sensitivity Analysis

In this section, we present the hyper-parameters study on different important parameters for

training the models, including (a) the total number of training epochs, (b) learning rate, (c) weight-

decay, and (d) batch size (figure 4.3). The findings from this study are summarized below:

Performance for different training epochs. Figure 4.3a presents the results for the accuracy

against the different number of epochs. As we observe from this table, for both ModelNet40 and

ScanObjectNN datasets, the best accuracy is observed for 300 epochs. Training lower than 300

lacks does not learn and generalize well. However, training longer also shows reduced accuracy.

This is caused by over-fitting to the training set. Other observations from this figure indicate that

ScanObjectNN is more sensitive to the number of epochs than ModelNet40. More specifically,

ModelNet40 has about 1% deviation with different numbers of epochs, while the ScanObjectNN

can have up to almost 6% deviation. For the rest of the experiments in this paper, we set 300 epochs

as the default for training.

Performance for different learning rate Figure 4.3b demonstrates the performance of DualNet

for different learning rate values. As we observe from this figure, ModelNet40 is comparatively
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Table 4.10: Accuracy for different batch size on ModelNet40 and ScanObjectNN

Batch size ModelNet40 ScanObjectNN

8 13.21 85.5

16 92.18 85.64

32 93.72 86.36

64 92.67 84.07

weight decay to train the DualNet in figure 4.3c. The best accuracy for ModelNet40 and ScanOb-

jectNN is achieved at 0.002. Overall we observe that both ModelNet40 and ScanObjectNN are

sensitive to the value of weight decay. For instance, using larger values than 0.002 hurts the per-

formance significantly. For ScanObjectNN, the accuracy drop from 86.36% to 44.41% and on

ModelNet40, it drops from 93.73% to 11.18%. These trends continue for even higher values where

the model almost learns nothing, and accuracy drops to 13.52% and 4.05% for ScanObjectNN and

ModelNet40, respectively. We also do not benefit from reducing the learning rate from 0.002.

Performance for different batch-size. Finally, we present the sensitivity study for different

batch-size for both datasets in table 4.10. We immediately observe that the best accuracy for both

datasets is obtained at the batch size of 32. Both increasing and reducing the batch size has a large

shift in the accuracy. For instance, with a learning rate of 8, the accuracy of ModelNet40 dropped

significantly (only 13.21%). Also, note that batch-size larger than 64 did not fit in our GPU.

Overall, the sensitivity study from this section shows that the DualNet is somewhat hyper-

parameter sensitive. However, a good set of parameters can achieve good results. We can also

conclude that the parameters are not dataset sensitive, as both datasets got the best results for the

same parameter setting in all the studies above.

4.4 Discussion and Conclusion

In this chapter, we proposed DualNet, a novel architecture for point cloud data analysis. Du-

alNet is a simple residual MLP-based model with the fusion of two sub-networks: SparseNet and

DenseNet. This model solves one important limitation of the existing literature where the input
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number of points to the network is not scalable. That means, increasing the number of points lin-

early increases the computational cost and can not take advantage of more points available in most

of the point cloud data. DualNet provides three major contributions to the 3D point cloud data lit-

erature: (1) It can grasp the benefit of a large number of points as input from the point cloud data

without a significant increase in computational complexity; (2) DualNet is faster than the existing

method resulting in better accuracy with less training time. (3) It sets a new SOTA accuracy on two

benchmark datasets (ModelNet40 and ScanObjectNN) for point cloud data classification. The com-

parison of Dualnet with existing literature in table 4.1 depicts the efficiency and improvement of our

model. DualNet achieves 0.81% improvement over the SOTA method with only 512 and 1024 input

points for DenseNet and SparseNet on the ModelNet40 dataset. For the ScanObjectNN dataset, Du-

alNet achieves 0.45% improvement over the SOTA for only 128 input points in the DenseNet (table

4.5). To analyze the computational cost of DualNet, we perform runtime analysis on the ScanOb-

jectNN dataset in table 4.9. For 128 and 2048 input points in Densenet and SparseNet, respectively

DualNet 86.36% accuracy in only 18.2, making it 38% faster than the SOTA. Therefore, it proves

the computational efficacy of DualNet while taking the benefit of a larger number of input points.
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Chapter 5

Conclusion

5.1 Research Summary and Contribution

This chapter presents a summary and discussion on the future research direction of our research.

We have generally focused on 3D point cloud data classification from the architectural improvement

and computational efficiency point of view. The overall research can be summarized as follows:

• In chapter 2, we have done an extensive literature review on existing point cloud data classi-

fication literature and pointed out the research gap, which worked as our research motivation.

We have also described three popular point cloud benchmark datasets: ModelNet10, Model-

Net40 and ScanObjectNN, commonly used for training and evaluating the models. In chapter

3 and chapter 4, we presented our proposed solution to deal with two of the research problem

described in this chapter.

• In chapter 3, we propose an improved training protocol for the point cloud data classifica-

tion model [31] and show that there is still room for improvement in PointNet classification

accuracy. The baseline accuracy of PointNet was 86.01%, on which we show considerable

improvement. We also show an extensive hyper-parameter study and explore different model

variants, such as 1D CNN with different strides and kernel sizes, and variants of RNNs e.g.

LSTM, GRU and Vanilla RNN. Three different loss functions have been explored. Among

them, the categorical cross-entropy achieved the highest accuracy of 87.11%. Our sensitivity
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study includes training parameters, including learning rate, batch size, dropout, weight decay

and epoch. Finally, The highest accuracy, 91.52%, came from augmentation without z-axis

rotation. Overall, our proposed training protocol achieved a 6.10% improvement over the

PointNet baseline.

• In chapter 4, we proposed DualNet, a novel two-stream fusion network for point cloud data

classification. DualNet is a residual MLP-based model which is lightweight, computationally

efficient and can enjoy the benefit from large point cloud data input points. DualNet is com-

posed of two parallel networks, SparseNet and DenseNet. The difference between the two

parallel networks is the number of input points and channels. The combination of SparseNet

and DenseNet makes the DualNet lightweight. We described the proposed training protocol

in chapter 3 along with its default training protocol for DualNet. The model is tested on two

point cloud benchmark datasets: MdelNet40 and ScanObjectNN. We did an extensive study

on different numbers of input points on both of the datasets, where DualNet achieves better

accuracy than SOTA. Also, a detailed ablation study on the lateral connection of the last layer

shows that the model’s performance is data-dependent. Finally, we do a run-time analysis of

DualNet which depicts the computational efficiency of the model. DualNet is 40% faster than

SOTA. While being computationally efficient DualNet increases the SOTA for ModelNet40

and ScanObjectNN by 0.81% and 0.45%. DualNet is also scalable to the number of input

points, making it a feasible choice for high-density point clouds.

5.2 Limitation and Future Work

The improved training protocol for 3D point cloud data classification was proposed in chapter

3. One limitation and future work lie in the fact that the hyper-parameters and other ablation studies

are done on one component at a time. Due to the time and computational requirements, all possible

combinations are not explored, which has the potential to further improve the result.

In chapter 4, the use of residual MLP as the building block of DualNet provides a simple and

generic structure making it feasible to use in other applications of computer vision and pattern

recognition tasks. Such an efficient model will also be helpful for future research on point cloud
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data, including object detection, segmentation, pose detection, and so on. Since the irregular data

format and large dataset size make point cloud data analysis challenging, our work focuses on

making a lightweight, faster model yet gaining the benefit of a larger number of input points. We did

not explore the effectiveness of this model in other applications (e.g. object detection, or semantic

segmentation). Future work can also extend the model for other point cloud data-related domains.
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