

Integrated Framework of Web-based Urban Simulation Support System for

Communities and Cities

Maher Albettar

A Thesis

 in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

 November 2022

© Maher Albettar, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Maher Albettar

Entitled: Integrated Framework of Web-based Urban Simulation Support System for

Communities and Cities

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 Chair

Dr. Chunyan Lai

 Examiner

Dr. Andreas Athienitis

 Examiner

Dr. Chunyan Lai

 Thesis Supervisor(s)

Dr. Yong Zeng

 Thesis Supervisor(s)

Dr. Liangzhu Wang

Approved by:

 Dr. Yousef R. Shayan, Chair of Department or Graduate Program Director

Dr. Mourad Debbabi Dean the Gina Cody School of Engineering and

Computer Science

 iii

ABSTRACT

Integrated Framework of Web-based Urban Simulation Support System for Communities and

Cities

Maher Albettar

One of the most important agendas that urban planners and researchers face in the coming

decades is to establish new designs that improve the sustainability and resilience of cities. Under

the rapid development of Geographic Information System (GIS) technology and the Internet of

Things (IoT), these technologies empower urban planners to enhance visibility into data and

monitor fluctuations over time, evaluating the feasibility of proposed projects and predicting the

effects on the environment, providing a better understanding a city as a multi-scale and multilayer

complex system, scenario-testing, and strategic planning, collecting important aggregated data

regarding building construction, energy consumption, and occupant wellbeings. However, many

of these technologies generate vast amounts of data on some levels that are not detailed enough

and are available at different scales, in various formats, and structured and unstructured forms.

Usually, urban planners require a large amount of complex data to perform systematic dynamic

simulations of many buildings. This adds difficulties to urban planners regarding data aggregation

and real-time data management. This leads to an integrative solution for solving offline and online

data processing and visualizing tasks and integrating data normalization and filtering techniques.

Such solutions are needed to provide researchers with an integrative framework to reduce

complexity and improve availability, accuracy, diversity, scalability, and integration efficiency. In

this thesis, by analyzing the problems encountered and related requirements, the study leveraged

the Niagara IoT framework and GIS integrations to build an integrated framework. The thesis work

developed several modules for data preparation, creation, visualization, and integration. These

modules simplify the data integration process and make it easier to prepare these data. The

visualization and data integration requirements can be simplified with the help of GIS and an easy-

to-use integrated framework to provide a real-time sensing system, geographic information system,

and database integration system.

iv

Acknowledgments

All praise be to Allah, the Almighty, for having made everything possible by giving me the strength

and courage to do this work.

I wish to express gratitude to my supervisor prof. Liangzhu Wang and Prof. Yong Zeng for their

enthusiastic, support, and timely guidance during the long research process, and their assistance,

comments, and encouragement will always be greatly appreciated.

I am thankful to the members of the Department of Electrical and Computer Engineering at

Concordia University for their valuable assistance and support.

I would like to thank Dr. Khaldoon Albitar for his valuable comments through his professional

counsel and guidance; I have acquired a wealth of knowledge previously unknown to me.

Especially, I would like to thank him for his patience with me during my study period and his

tireless efforts to correct me and guide me through this journey. My profound gratitude goes to my

lab partners for their assistance in translating, research, and even moral support. They provided a

very comfortable and welcoming learning environment for me. I was fortunate to meet and work

with Dr.Danlin Hou, Shujie Yan, Dongxue Zhan, Jiwei Zou Senwen Yang, and Eslam Ali. It was

a pleasure to learn from them.

Last but not least a heartfelt thank you to my family back home for their prayers and immense

support, it has been a guiding light for me to this day. I am also grateful for all the support, love,

and encouragement from my mother and father, my brother, sisters, and friends have all provided

overwhelming support and encouragement to finish this thesis and I am deeply thankful for them

as well.

To my mom, I will be forever grateful for the many sacrifices she has made so that this goal was

attained.

It is not possible in this limited piece of paper to list all the names of those people who helped or

supported me to get my Master's degree. To those whom I did not mention their names, deep in my

heart, I am grateful to all.

v

Table of Contents

List of Figures .. vii

List of Tables .. xi

1. Introduction .. 1

1.1 Motivations ... 1

1.2 Research Problem and Objective .. 2

1.3 Thesis Structure .. 3

2. Literature Review ... 5

2.1 Review on Major Components. ... 5

2.1.1 Internet of Things (IoT) .. 5

2.1.2 Geospatial Information System (GIS) .. 8

2.1.3 Urban Simulations .. 11

2.2 Review on Major Frameworks.. 14

2.2.1 IoT Niagara Framework ... 14

2.2.2 Vuejs Framework ... 16

2.2.3 CMC Weather Forecasting Framework. .. 17

2.3 Summary ... 19

3. System Software Design ... 20

3.1 System Architecture ... 20

3.2 Integrated Framework ... 21

3.2.1 Dashboard Design .. 23

3.2.2 Data Collection Processing .. 26

3.2.3 Urban Modeling Data Input Generation Support Module ... 40

3.2.4 Urban Modeling Visualization Environment Support Modules 43

3.2.5 Application Module - City Reduced Probability of Infection (CityRPI) 50

3.2.6 Application Module - Fatima-CFD Workflow and Design Architecture 57

3.3 Real-time Weather Station Data Integration ... 64

3.4 Canadian Metrological Centre Weather Forecasting Framework Integration 67

3.5 Automated Forecasting System Integration .. 69

vi

3.5.1 Preparing Weather Input Data Process ... 73

3.5.2 Synchronizing Input Data with Supercomputer Process. ... 75

3.5.3 Synchronizing the Output with the Online Server Process: ... 77

3.5.4 Sending Notifying Emails Process ... 79

3.6 Application Programming Interface (API) Integration Module 80

4. Performance Evaluation .. 84

4.1 Data Input Generation Speed Performance .. 84

4.2 City-Scale Visualization Performance .. 86

4.3 Scalability Evaluation Summary .. 87

4.3.1 System Functions Scalability, from Development Viewpoint. 87

4.3.2 Geographic Usages and Applications Scalability the Use Viewpoint 89

5. Conclusion and Future Work.. 90

5.1 Conclusion ... 90

5.2 Contributions .. 91

5.1 Future Work and limitations .. 92

REFERENCES ... 93

 vii

List of Figures

Figure 2-1 Architecture of Internet of Things .. 7

Figure 2-2 GIS Components .. 8

Figure 2-3 GIS Application in Urban planning [12] .. 10

Figure 2-4 GIS and Urban Planning [12] ... 11

Figure 2-5 Preprocessing and Data Collection Generation in CityFFD Simulation.[22] 14

Figure 2-6 Integration Architecture for Niagara Framework [25]. ... 16

Figure 2-7 Vue Framework Components [28] ... 17

Figure 2-8 CMC Weather Forecasting Framework Supported Continental Domains [29]. 18

Figure 3-1 System Architecture Design ... 21

Figure 3-2 Niagara Software Subsystems .. 22

Figure 3-3 Dashboard Modules Layers .. 23

Figure 3-4 Dashboard- Supported Map Style Sytems .. 24

Figure 3-5 Map Styles .. 24

Figure 3-6 Dashboard- Files Conversion Modules .. 25

Figure 3-7 Supported Layers System ... 25

Figure 3-8 Data Integration- Default Data Sources ... 26

Figure 3-9 Sample of GeoJSON Structure [32] ... 27

Figure 3-10 Example of GeoJSON Supported Geometries [32] .. 28

Figure 3-11 Converting Shp to GeoJSON UI. ... 29

Figure 3-12 Default SHP Data Source Building Attributes ... 30

Figure 3-13 Overall SHP Data Source Buildings Layout. ... 30

Figure 3-14 Example of 12 Nodes for a Building Representation OSM File 31

Figure 3-15 Example of Valid Polygons [36] .. 32

Figure 3-16 Example of Invalid Polygons [36] .. 32

Figure 3-17 Example for 12 Points Building Layout. .. 32

Figure 3-18 Example for 12 Points after Conversion to GeoJSON Data Structure. 32

Figure 3-19 Converting OSM to GeoJSON UI. ... 33

Figure 3-20 Example of Turfjs Polygons Intersection ... 33

file:///G:/Other%20computers/My%20Mac%20mini/Thesis/Albettar_MASc_S2023.docx%23_Toc123036086

viii

Figure 3-21 Mind Map of Supported Conversion Extensions ... 34

Figure 3-22 Converting GeoJSON to STL Workflow ... 36

Figure 3-23 Merging Phases of the Terrain Spatial Data. .. 37

Figure 3-24 Integrating the Terrain Spatial Data with 3D Model STL Workflow 38

Figure 3-25 3D Model Coordinate Plane ... 39

Figure 3-26 Customize the 3D Model Coordination Origin .. 39

Figure 3-27 Pre-defined Backup Sectional Data Collection. ... 39

Figure 3-28 Dashboard, BES, and CFD Data Collection Generation Module UI 41

Figure 3-29 Dashboard, Customize the Bounding Box Selection UI. ... 41

Figure 3-30 Example of Two Custom Selection Points (Top Left, Bottom Right) 41

Figure 3-31 Dashboard, Customize the Building Information UI. .. 42

Figure 3-32 Example of Building Information Data Collection Result ... 42

Figure 3-33 Dashboard, Supported Legends Colors. ... 43

Figure 3-34 Example of BES Result for 12500 Buildings ... 44

Figure 3-35 BES Data Output Collection File Structure.. 45

Figure 3-36 BES Visualization Control Module UI ... 45

Figure 3-37 BES Visualization Module, Variable, and Timestamp. .. 46

Figure 3-38 BES Legend .. 46

Figure 3-39 BES- Trend Variables Analysis .. 46

Figure 3-40 City-scale Interactive 3D Map BES Data Collection Output Visualization 47

Figure 3-41 City-scale Interactive 2D Map BES Data Collection Output Visualization 47

Figure 3-42 VTK Standard Data Structure, Mesh Size (202, 73, 206) .. 48

Figure 3-43 Example of CFD Simulation Result for Mesh Size (202, 73, 206) 48

Figure 3-44 Dashboard CFD Visualization Module UI ... 49

Figure 3-45 CFD Visualization XZ side .. 49

Figure 3-46 CFD Visualization XY side .. 49

Figure 3-47 Application Module - CityRPI Dashboard ... 51

Figure 3-48 Third-Party API and Map-based Data Integration Workflow 52

Figure 3-49 Quebec Province GeoJSON Layout ... 53

Figure 3-50 Example of a Dictionary Creation. ... 53

Figure 3-51 The Geometric Layout of North America .. 54

ix

Figure 3-52 Map Provider Support the Value-Color Transformation .. 55

Figure 3-53 Application Module- CityRPI, Real-time Model Calculation Reporting. 55

Figure 3-54 Application Module- CityRPI North America Real-time Monitoring 56

Figure 3-55 Application Module- CityRPI General User Input for North America 56

Figure 3-56 Application Module- CityRPI, Highest Daily Cases and Prevalence Rate. 57

Figure 3-57 CityRPI Filtering Control UI ... 57

Figure 3-58 Application Module- Fatima-CFD Dashboard ... 59

Figure 3-59 Boundary Condition Input Section. .. 60

Figure 3-60 Fatima-CFD Mesh and Import Model Visualization .. 60

Figure 3-61 Plane Parallel to XY Plane at Z = 1.5 ... 61

Figure 3-62 FaTIMA-CFD Applications in the Same Place with the Input Files 62

Figure 3-63 Result Generator & Final Results Files. ... 63

Figure 3-64 Hiding a Component in the Geometry. ... 63

Figure 3-65 Model Representation Option. .. 64

Figure 3-66 HOBO RX3000 Station .. 65

Figure 3-67 Example of Sensors Data History UI ... 65

Figure 3-68 Weather Stations Driver Hierarchy .. 65

Figure 3-69 New Driver Device Configurations .. 65

Figure 3-70 New Driver Weather Sensors Data Points .. 66

Figure 3-71 Real-time Sensors Monitoring .. 66

Figure 3-72 Sample of Track Sensor's History, Rain Sensor ... 66

Figure 3-73 Real-time Weather Stations Monitoring ... 66

Figure 3-74 Example of 2.5 Km Points Grid ... 67

Figure 3-75 CMC Driver Hierarchy .. 68

Figure 3-76 CMC New Driver Device Configurations .. 68

Figure 3-77 CMC Device Driver Configurations. ... 68

Figure 3-78 Sample of Model HRDPS URL Path, Girb2 Files ... 69

Figure 3-79 Forecasted Regional Map -Montreal .. 69

Figure 3-80 Automatic Forecasting Module Design .. 70

Figure 3-81 Schedule New Case Automatic Forecasting Workflow. .. 71

Figure 3-82 Middleware CMC Server Settings UI .. 72

x

Figure 3-83 Middleware SSH Settings UI ... 72

Figure 3-84 Middleware Upload Settings UI ... 73

Figure 3-85 CMC Bounding Box Points .. 73

Figure 3-86 Preparing Weather Data Input Collection Workflow. .. 74

Figure 3-87 Weather Data Input Collected from CMC GRIB2 ... 75

Figure 3-88 Automatic Forecasting System Integration, Building_info.txt 76

Figure 3-89 Workflow of Synchronizing Data Input Collection with Backend Server 76

Figure 3-90 Automatic Forecasting System Integration Result. .. 77

Figure 3-91 Synchronizing the Output Files with Online Server ... 78

Figure 3-92 Data Result with Colors Information Representation for Result Values 78

Figure 3-93 Online Monitoring the Forecasting of New Cases Simulation 79

Figure 3-94 Middleware SMTP Settings UI .. 80

Figure 3-95 Sending Notification Email Workflow ... 80

Figure 3-96 Example of API's Response Message, Covid New Cases in Canada 81

Figure 3-97 API Integration Module UI. ... 81

Figure 3-98 API Integration Module, Link Configuration 1 .. 82

Figure 3-99 API Integration Module, Link Configuration 2 .. 82

Figure 3-100 API Integration, Points Settings ... 82

Figure 3-101 API Integration Module Result .. 83

Figure 4-1 The Generated Data Files List .. 85

Figure 4-2 Extending North America Data Source Development. .. 88

Figure 4-3 3D Model Generation and Visualization Functions of Annual Energy Performance

Application, Marina District, Qatar. ... 89

xi

List of Tables

Table 1 Attribute Variables Description [30] ... 30

Table 2 Geometric Data Layout and Third-party API Integration Dictionary Definition. 53

Table 3 PC and Connection Characteristics. .. 84

Table 4 Speed Test Result for Three Cases of Data Input Generation. ... 85

Table 5 Generated Data Files Description. .. 85

Table 6 Visualization and Data Processing Test for Three Use Cases. ... 86

1

Chapter 1

1.Introduction

1.1 Motivations

Urban modeling simulations are vital in optimizing buildings during the pre-design, commission,

and operation phases [35]. In building engineering, Building Energy Simulation (BES) and

Computational Fluid Dynamics simulation (CFD) are examples of urban modeling simulations that

provide more detailed and high-resolution information at a lower cost than laboratory experiments

and field tests. This information is essential as it allows designers to investigate internal and

external conditions before a building is built, allowing them to test options and select the most

effective solutions.

Urban modeling simulations require a high level of user expertise and expert knowledge of using

different software and tools for many inputs parameters preparation. Different tools also require

different input detail levels; hence the parametrization process highly influences the quality of the

simulation results [35]. Moreover, input parameter simulation preparation is usually error-prone

and expensive [37].

For instance, the BES applications allow the detailed calculation of the energy consumption to

maintain specified building performance criteria. The BES inputs include outdoor climate,

occupancy, lighting, and equipment loads [36]. Some main BES tools are DOE-2 [37] Energy Plus,

TRNSYS, and EPS-r. IDA ICE.

At the same time, the CFD simulation is typically used to model the movement and temperature of

the air within spaces. The complexity in CFD simulation data preparation, presented in modeling

an urban-scale CFD problem and the simulation, can be divided into three main sections: data input

model preparation, model simulation, and result visualization; preparing the 3D model of the city

for the simulation is the most crucial step in model preparation; the CFD data inputs include

2

geometrical data, building footprint, heights, number of floors, orientation, and other necessary

data. Furthermore, the data collection preparation process of the 3D model of the city requires using

software such as ArcGIS, OpenStreetMap, and Rhino, all together.

The prior knowledge and skill to learn how to use a variety of software and tools spend much time

doing it. So the preparation process can be an expensive solution. Therefore, developing an easy-

to-use and efficient method to prepare geometry would be constructive for many users.

Driven by the importance of urban simulations in supporting healthy communities, sustainable

buildings, and green planning, there is no denying that the IoT significantly impacts urban

modeling applications. That provides a way of sensing and collecting environmental and societal

data, both automatically, remotely, and with increasing levels of spatial and temporal detail.

However, it is not as simple as connecting all devices or integrating data sets. It is about making

sure that data is being collected efficiently and that it can be accessed by relevant stakeholders

when it needs to be accessed.

Urban simulations will likely be much more data-focused in the future, and data integration will

become more challenging because of the diversity in data types and sources from geographical

data, weather forecasting, and other APIs data sources. There are clear advantages to embracing

the importance of integrating the Internet of Things (IoT) and Geographic Information Systems

(GIS). Moreover, the integration can open up new data preparation and visualization potentials.

Additionally, merging IoT and GIS data offers the opportunity to take a creative step toward saving

lives and money. It gives decision-makers more authority by verifying the veracity of the

information they receive on the highest level of applicability for multiple purposes.

1.2 Research Problem and Objective

This study aims to introduce and implement an integrated framework that integrates different

frameworks to support urban modeling simulations and solve data interoperability. In summary,

this study will achieve the following:

• Support urban modeling simulations by leveraging the IoT Niagara framework and GIS tools

to support environmental sensing.

• Provide a clear system architecture for measuring and controlling environmental systems.

• Provide a solution for preprocessing heterogeneous data for multi-scale urban modeling

simulations.

3

• Provide a user guide illustrating the functionalities of the proposed integrated framework.

• Provide an integrated, scalable, extendable framework as a development approach for future

development.

Depending on the discussion of the objectives, this study aims to answer the coming questions:

• How can GIS enable efficient IoT usages to support multi-scale urban modeling simulations,

and How it simplify the data collection preparation (pre-process stage) and visualization (post-

process stage)?

• How do we build a reusable, extendable, integrated framework that supports urban applications

and enables future functionalities?

1.3 Thesis Structure

In the following chapters, this thesis introduces the following contents:

• In Chapter 2: we have reviewed the relevant research on GIS and IoT concepts and IoT-GIS

integration-related solutions; the relevant content is divided into two parts for discussion. The

First part has provided a better understanding and addressed the significant components. In

contrast, the second part surveyed the major relevant frameworks and detailed related research

of the platform design process, which used and improved our solution.

• In Chapter 3: we have introduced the implementation approach for data processing and data

visualization in the system, which is illustrated by the system architecture design; the system

architecture takes the Integrated framework as the core and expands around the system and data

sources, modules, and components. The proposed system illustrates that implementation

development plays two roles, the first role is a platform, and the second is the implementation

development approach framework. Then we presented the framework components and their

importance in supporting urban modeling applications. we illustrated the additional modules,

such as a 3D modeling module, integration with the Canadian meteorological weather

forecasting framework, automated short-term forecasting system, and real-time weather

monitoring. In summary, in this chapter, the overall system offers monitoring tools and

information systems to urban planners, politicians, and city leaders to improve areas like

scenario testing and strategic planning. The system is an integrated framework with modules

for data preparation, creation, and integration, a real-time sensing system, a geographic

information system, and a database. The 3D modeling module allows the import and merging

4

of various data sources such as files (*.OSM, *.SHP, *.OBJ, *.STL, and *.GeoJSON), which

presents a solution to data interoperability.

• In Chapter 4: In this chapter, we evaluated the system and its operating status, evaluating the

data input generation speed for a few urban-scale cases, visualization processing and rendering

performance, and scalability of the system. The evaluation test was performed on a PC with

specific characteristics and described the platform functions.

• In Chapter 5: We summarized the overall advantages of the proposed integrated framework in

supporting the urban simulations, illustrated the contributions and the limitations that it faces,

and we discussed the future direction of the work

5

Chapter 2

2.Literature Review

This chapter reviews the relevant research on GIS and IoT concepts and IoT-GIS integration-

related solutions; the relevant content is divided into two parts for discussion. The First part

provides a better understanding and addresses the significant components. In contrast, the second

part surveys the major relevant frameworks and detail related research of the platform design

process, which used and improved our solution.

2.1 Review on Major Components.

2.1.1 Internet of Things (IoT)

IoT is a system of entities (including cyber-physical devices, information resources, and people)

that exchange information and interact with the physical world by sensing and processing

information[1]. The Internet of Things (IoT) focuses on facilitating communication between

Things. It is a wide-area network that uses standard communication protocols. Things are any

computing equipment and physical items. They are linked to the Internet and can transfer data

through a network without needing human-to-human or human-to-computer interaction. The things

in this network would act as consumers or suppliers of the data sent over the network; each sensor

generates data and transmits it to them to inform consumers of the current situation. It is anticipated

that there will be over 21 billion IoT devices by 2025[2]. IoT environmental monitoring sensors

and connectivity provide an effective, efficient way to monitor and support a healthy environment,

providing the tools for analysis, preventative detection of contaminants, and energy conservation

to reduce our carbon footprint. The IoT can potentially be used to positively impact the

environment and lead to more sustainable business practices. IoT sensors can be used to cut down

on energy use and track carbon emissions and waste.

2.1.1.1 Fundamental IoT Characteristics

The following are IoT fundamental characteristics [3]:

6

• Interconnectivity: anything can be interconnected with the global information and

communication infrastructure.

• Heterogeneity: The devices in the IoT are heterogeneous based on different hardware

platforms and networks. They can interact with other devices on different networks.

• Dynamic changes: The state of devices changes dynamically, e.g., sleeping and waking up,

connected and disconnected as well as the context of devices including location and speed.

Moreover, the number of devices can change dynamically.

• Enormous scale: The number of devices that need to be managed and communicate with each

other will be at least an order of magnitude larger than the devices connected to the current

Internet.

• Safety: As both the creators and recipients of the IoT, well-being. Securing the must design

for safety. The benefit includes the safety of our data and physical good endpoints, the

networks, and the data moving across. All of it means creating a security paradigm that will

scale.

• Connectivity: Connectivity enables network accessibility and compatibility. Accessibility is

getting on a network, while compatibility provides the standard ability to consume and produce

data.

2.1.1.2 IoT Architecture

The Internet of Things has advanced significantly over the past few years, and various architectural

designs have been put out by researchers [4]–[6]. Early in those studies, a three-layer design was

devised, consisting of the Perception layer, Network layer, and Application layer. According to [7],

[8], a five-layer architecture is also used. This design suggests the perception, transport, processing,

7

application, and business layers. Our study takes into account the five-layer IoT architecture shown

in Figure 2-1

Figure 2-1 Architecture of Internet of Things

▪ Perception Layer:

The foundation of IoT architecture is this layer. Numerous sensors and actuators are utilized at the

perception layer to collect essential data such as temperature, moisture content, intruder detection,

and sounds. The primary purpose of the perception layer is to gather data from the environment

and transmit it to another layer so that actions can be taken depending on that data.

▪ Transport Layer

As its name implies, it serves as the connecting layer between the Perception and Processing layers.

Using networking technologies like 3G, 4G, UTMS, WiFI, and infrared., it receives data from the

Perception layer and sends it to the Processing layer. Because it facilitates communication between

the Processing and Perception layers, this layer is known as the communication layer. Data is

always transferred securely, maintaining the collected information's privacy.

▪ Processing Layer

Advanced functions, including storage, computing, processing, and the ability to take action, are

available in the Processing layer. It maintains all data sets and sends the necessary data to each

device depending on its address and name. Additionally, it can make decisions based on

calculations made from sensor data sets.

8

▪ Application Layer

Based on information collected from the Processing layer, the Application layer controls every

aspect of the application process. Sending emails, turning on alarms, and security systems, turning

devices on or off, using smartwatches, smart agriculture, and other functions are all included in this

application.

▪ Business Layer

Any device's success depends not just on the technologies it uses but also on how it is distributed

to its users. For the device, the business layer does these responsibilities. It entails creating graphs,

flowcharts, outcomes analysis, and how the device can be improved, among other things.

2.1.2 Geospatial Information System (GIS)

2.1.2.1 Definition

A Geographic Information System (GIS) is an organized activity by which people measure and

represent geographic phenomena and then transform these representations into other forms while

interacting with social structures[9]. Digital mapping is just one application of GIS's power; layers

can also be used for data integration, analysis, management of natural resources, and decision-

making are all aided by it [10].

A GIS may result from integrating data, software, hardware, processes, and people, as shown in

Figure 2-2.

Figure 2-2 GIS Components

9

GIS can offer data storage and management facilities and provide priceless geospatial data. The

Data can be viewed as the essential component of a functioning GIS. If geospatial data is present,

any data can be used in GIS. The Software is a collection of tools to store, process, and present

data. Key software elements include a graphical user interface, a database management system,

and tools like ArcMap's Toolbox. The Hardware refers to the device on which GIS can be used.

Nowadays, diverse groups of devices on a network with various architectures or topologies might

serve as hardware[2].

2.1.2.2 GIS in Urban Planning

Urban planning focuses on how spaces function effectively to improve people's lives in an urban

area. Moreover, the plan for an urban area must achieve the objectives and the needs of the people

under study. These achievements are strongly linked with economic, environmental, and social

factors as key elements for sustainable development. The urban area is a region surrounding a city.

Most inhabitants of urban areas. Urban areas are very developed, meaning human structures such

as houses, commercial buildings, roads, bridges, and railways are dense. "Urban area" can refer to

towns, cities, and suburbs. An urban area includes the city itself, as well as the surrounding areas.

Urban areas are systems of tremendous, ever-evolving complexity; responsibly guiding an area's

development requires spatial information that's robust, nuanced, and constantly updated. This

challenge has made geographic information science and technology (GIST) invaluable to urban

simulations and has put geographic data analytics and technical innovation at the center of urban

modeling simulations. GIS empowers urban planners to enhance visibility into data and monitor

fluctuations over time, evaluating the feasibility of proposed projects and predicting the effects on

the environment, providing a better understanding of a city as a multi-scale and multilayer complex

system, scenario-testing, and strategic planning, collecting important aggregated data regarding

building construction, energy consumption, and occupant wellbeings.

Figure 2-3 gives us knowledge about GIS applications in urban area planning [11] GIS in urban

planning enables spatial analysis and modeling, contributing to many crucial urban planning tasks.

These tasks include site selection, land suitability analysis, land use and transport modeling, the

identification of planning action areas, and impact assessments[12]. GIS applications cover

significant areas of urban arranging and advancement: Infrastructure management (transport,

public utilities, and stormwater/waste), regional planning, resource management, environmental

assessment, socio-economic development, emergency management, and education. The benefits of

10

using GIS in urban planning include increasing efficiency, saving time/money, and supporting

decision-making. Improve accuracy, manage resources, automate tasks, increase government

access, increase public involvement, and promote more extensive public agency collaboration.

Figure 2-3 GIS Application in Urban planning [12]

2.1.2.3 GIS Application in City Urban Planning

GIS technologies have increased over the past few decades, and now GIS has provided a wide

range of data execution and dissection tools; the typical GIS applications include:

• Review and analysis of development plans.

• Regional planning beyond the borders of a city or town.

• Review of environmental impact.

• Disaster risk management and mitigation.

• Mapping the delivery of utilities and planning for service interruptions.

• Preservation of historical sites.

• Checks on regulatory compliance.

11

Another significant move was the relevance of GIS, remote sensing methods such as satellite

images, light detection and ranging, and data generation, which authoritatively remotely sensed

data[11]. Figure 2-4 shows how GIS can support urban planning. Using GIS in city development

can detect environmental problems or natural disasters, estimate and compare urban planning

scenarios, predict, prevent transportation congestion, and even analyze employment and social

services. On the one hand, cities are showing considerable opportunities for development in the

coming long period, while on the other hand, they are also offering different challenges [13].

Figure 2-4 GIS and Urban Planning [12]

GIS can store information in a database and represent it visually in the form of mapped data. GIS

technology assesses urban development and its extension path and finds suitable urban planning

locations. There are also many GIS applications; Nowadays. GIS tools assist urban planners in

inspecting problems more quickly and thoroughly and formulating solutions. Many arranging

divisions that had gotten mapping frameworks in the past have moved to GIS[11].

Implementing innovative technologies in urban areas increases efficiency and sustainability and

improves people's quality of life. More cities are striving to become cities by implementing

innovative technologies, and GIS is an essential technology for collecting, analyzing, and

presenting intelligent data.

2.1.3 Urban Simulations

With the increased energy prices and global warming crisis in the last century, the requirement for

more sustainable cities and buildings has increased significantly. According to the international

energy agency, Buildings are responsible for 27% of total energy sector emissions and consume

30% of the final global energy. To address these needs, Urban simulation was used to solve and

predict multiple problems before they could happen. Urban simulation provides comprehensive

12

thermal environment modeling that affects pedestrians' health and thermal comfort. Moreover, it

provides urban pollutant and contaminants dispersion which has gained more interest in the last

three years due to the Covid -19 pandemic. The urban simulations applications include urban

building energy simulation, urban energy system sizing, urban wind/temperature field analysis,

outdoor/indoor thermal comfort, airflow, and pollutant dissemination.

As stated earlier, urban simulation has many applications due to its importance. Researchers have

summarized these applications into two main categories (Single-objective simulation & multi-

objective simulation). A summary of these simulations will be provided below:

• Single Objective Simulation: As the name implies, a Single objective means that only one parameter

will be studied (airflow, pollutant, or thermal simulation). It analyzes the interaction between a building

or a group of buildings and the surrounding environment, including air.

• Multi-Objective Simulation: Multi-simulation is focused on more than one parameter. It can include all

types of CFD simulation and more as daylight and solar simulation. Of course, these simulations are

challenging due to lots of uncertainty and complexity. It also requires a lot of computing power, time,

and capability, which is not easily found to this date despite the significant advancement in computing

technology in the last century.

2.1.3.1 Building Energy Simulation (BES)

Urban simulation studies are necessary for urban building energy simulation/urban energy system

sizing. The building interacts with other buildings and the surrounding natural environment,

significantly influencing building energy consumption. Urban simulation is crucial when the

traditional building simulation is scaled up to urban scenarios, as many properties well-known on

individual buildings become unreliable when considering large-scale. Building Energy Simulation

(BES) simulations are vital in optimizing the buildings during the pre-design, commission, and

operation phases[35]. The urban building energy model's reliable input parameters include

geometrical data, envelope properties, HAVC system, and occupancy behavior. Besides, the

correct meteorological data is crucial to urban building energy consumption assessment as the

outdoor boundary condition. Whole BES tools allow the detailed calculation of the energy

consumption to maintain specified building performance criteria. The inputs include outdoor

climate, occupancy, lighting, and equipment loads, and These calculations are generally performed

over an entire year [36]. Some main BES tools are DOE-2 [37] Energy Plus, TRNSYS, and EPS-

r. IDA ICE. Their application requires a high level of user expertise and expert knowledge of many

13

input parameters. Different tools require different levels of input detail, which often do not match

with available data; hence the parametrization process highly influences the quality of the

simulation results [35]. However, simulation preparation of input parameters (e.g., building

geometry and material properties) is usually error-prone and expensive [37]. The potential overall

error in performance predictions is a function of the degree of estimation of uncertain input

parameters; however, preparing digital design models for BES typically requires tedious manual

alteration. Previous studies show how this input preparation is complicated; determining the effect

input data may have on BES is a complex task, as it deals with a variety of physical and stochastic

phenomena: weather conditions, thermal heat transfer through building structures, radiative heat

exchange between windows, walls, solar radiation, occupancy behavior, HVAC system and electric

equipment [38].

2.1.3.2 Computational Fluid Dynamics (CFD)

CFD is a subfield of fluid mechanics that analyses and resolves fluid flow problems using

numerical analysis and data structures. CFD is a widely used approach to solving wind and

temperature studies by providing more detailed high-resolution information at a lower cost than

laboratory experiments and field tests. The idea of CFD simulation is that it relies on numerical

computation and approximation. There is no exact mathematical solution to these governing

equations. The domain is then discretized to get a solution, and the equations are approximated

numerically over this domain. This requires a lot of computing power, especially for larger

problems such as urban simulation. Another problem also is that numerical simulation requires a

set of boundary conditions to be known before starting the problem. This can be easy to acquire

for smaller cases, but for larger cases, there are a lot of uncertainty and difficulties in getting these

data. City fast fluid dynamics (CityFFD) is a fast and stable numerical model suitable for modeling

large-scale airflow problems. CFD simulation, commonly idealized building geometry, will be

used to simulate the wind and thermal field of urban areas under various climatic conditions, such

as the single building[14]–[16], building block [17], [18], or mixed high-rise and low-rise buildings

[19], [20]. However, these buildings or urban geometries are all artificial and cannot be used to

simulate actual conditions. Thus, for better predicting the microclimate of the urban area, it is of

great importance to have a system helping export the geometry of real-world buildings for both

CFD and urban energy simulation[21].

14

For instance, the complexity in CFD simulation data preparation, shown in modeling an urban-

scale CFD problem, can be divided into two main sections: model preparation and model

simulation. Preparing the 3D model of the city for the simulation is the most crucial step in model

preparation. The geometrical data include building footprint, heights, number of floors, orientation,

and other necessary data. It is often better to create geometry specifically for each CFD simulation.

Currently, the preparation process and creation of the 3D model of the city requires using much

software, such as ArcGIS, OpenStreetMap, and Rhino. Using this software requires prior

knowledge and skill to learn how to use it and spend much time doing it. So the preparation process

can be an expensive solution. Therefore, developing an easy-to-use and efficient method to prepare

geometry would be constructive for many users. The flowchart below shows the CityFFD

implementation workflow in the [32], which shows preprocessing and input data files.

Figure 2-5 Preprocessing and Data Collection Generation in CityFFD Simulation.[22]

2.2 Review on Major Frameworks.

2.2.1 IoT Niagara Framework

The Niagara Framework is a Java software framework for integrating disparate building

automation systems into a single, manageable interface that can run on multiple hardware

platforms. The framework uses the Java Virtual Machine (JVM) as a common runtime environment

15

across various operating systems and hardware platforms. The core framework scales from small,

embedded controllers to high-end servers[23].

Heterogeneous system integration Niagara is designed from the ground up to assume that there will

never be anyone standard network protocol, distributed architecture, or Fieldbus. Instead, the

framework integrates cleanly with all networks and protocols, standardizing the box's contents.

The framework also scales to highly distributed systems composed of thousands of nodes running

the framework software. Systems of this size span many network topologies and usually

communicate over unreliable Internet connections. The framework is designed to provide an

infrastructure for managing systems of this scale. Component software Framework architecture is

centered on component-oriented development[24], [25]. Components are pieces of self-describing

software that can be assembled like building blocks to create new applications. This component-

centric architecture solves many problems:

(1) Components normalize the data and features of heterogeneous protocols and networks to

integrate them seamlessly.

(2) Components and graphical tools provided by the framework allow applications to be assembled

without requiring a Java developer.

(3) Components provide unsurpassed visibility into applications. Since they are self-describing,

tools can quickly interrogate how an application is assembled, configured, and occurring at any

time—these aid debugging and application maintenance.

(4) Components enable software reuse.

Building automation systems automate many services required to successfully operate and manage

facilities, including environmental control, fire and life safety, lighting, energy management, and

security access control. These services have traditionally been provided as independent, standalone

systems by multiple, proprietary vendors as independent, standalone systems by multiple,

proprietary vendors. It is widespread for a single hospital facility to have 2-5 independent

automation systems, while a national chain might have ten or more systems throughout the country.

Figure 2-6. While improvements in systems integration have occurred over the past ten years, only

recently has it become cost-effective and, in some cases, technically possible for a user to deploy

an easily portable and fully integrated facility management solution. The Niagara software suite

implements a highly efficient adaptation of the JavaBean component software model and internet

16

technologies to provide customers with true interoperability across a wide range of automation

products. As a subset of the complete framework, the Niagara object model can integrate a wide

range of physical devices, controllers, and primitive control applications, including BACnet®,

Lonworks®, Modbus®, and oBIX objects, and legacy control points. The architecture supports

future enhancements by allowing legacy systems to be brought forward[25].

2.2.2 Vuejs Framework

Vue is an open-source, progressive JavaScript framework used to create user interfaces. Vue's

progressive adoption strategy simplifies integrating into projects that use other JavaScript libraries.

Additionally, Vue can serve as a web application framework that powers sophisticated single-page

applications[26]. It consists of an approachable core library that focuses on the view layer only and

an ecosystem of supporting libraries that helps to tackle complexity in large Single-Page

Applications [27].

Figure 2-6 Integration Architecture for Niagara Framework [25].

17

Web Components is an umbrella term for web-native APIs that allow developers to create reusable

custom elements. In the Vue framework centered on component-oriented development, the

components allow us to split the UI into independent and reusable pieces and think about each

piece in isolation [28]. It is common for an app in the Vue framework to be organized into a tree

of nested components and encapsulate custom content and logic in each component, as in Figure

2-7.

The component-based design produces inherent efficiencies for designers and developers. It solves

the challenges associated with duplication and inconsistency in applying themes while driving the

development of better quality, reusable components. Components allow for far more possibilities

in terms of product design and can be configured to provide optimal performance for the target

application. - Cost control: Starting from the sensor gives manufacturers control over final camera

costs. Usually, a component provides a particular function or group of related parts. In

programming design, a system is divided into components that are made up of modules.

Component testing means testing all related modules that form a component as a group to ensure

they work together.

Figure 2-7 Vue Framework Components [28]

Vue has excellent support for both consuming and creating custom elements. Whether for

integrating custom elements into an existing Vue application or using Vue to build and distribute

custom elements.

2.2.3 CMC Weather Forecasting Framework.

In November 2014, the experimental 2.5-km pan-Canadian High-Resolution Deterministic

Prediction System (HRDPS) was introduced, with 48-h integrations run four times per day [29].

The center services provide an online High-Resolution Deterministic Prediction System or

HRDPS. The HRDPS is operational except for the northern domain, which remains experimental.

https://developer.mozilla.org/en-US/docs/Web/Web_Components

18

The fields in the HRDPS high-resolution GRIB2 dataset are made available four times a day for

the Pan-Canadian domain for a 48-hour forecast period (except for the northern domain).

The High-Resolution Deterministic Prediction System (HRDPS) carries out physics calculations

to arrive at deterministic predictions of atmospheric elements from the current day to 48 hours into

the future. Atmospheric elements include temperature, precipitation, cloud cover, wind speed and

direction, and humidity; this product contains raw numerical results of these calculations.

Geographical coverage of the system is most of Canada. Data is available at a horizontal resolution

of 2.5 km. Data is available for 28 vertical levels. Predictions are performed up to four times a day.

CMC supports six domains continental, north, experimental, east, prairies, west, and maritimes[30].

Figure 2-8 CMC Weather Forecasting Framework Supported Continental Domains [29].

19

Users benefit most from using these new data with a detailed forecast of 39 data variables for

different environmental applications. Significantly during the change of seasons and in wintertime,

when rapid changes in temperature and winds cause phase transitions of precipitation (freezing rain

to snow to rain, for example), 2.5 km forecasts could add much value. Also, in the case of short-

term forecasts in the presence of complex terrain or along shores, the influence of changes in

altitude, topography, and nature of the terrain will be better described for phenomena at this scale

(lake or sea breezes, local valley flows, and phase changes.). Even over less rugged terrain or water

away from shore, these more precise forecasts could be helpful repeatedly over a long period. As

well, for hydrological forecasts on smaller basins, the HRDPS should be considered [31].

Summarizing all weather data variables supported by CMC HRDPS as follows:

Absolute vorticity, Air Density, Albedo, Average surface relative humidity, Convective Available

Potential Energy, Deep soil temperature, Dew point depression, Dew Point temperature,

Downward incident solar flux (Accumulated), Geopotential Height, Helicity, Ice fraction,

Incoming I.R. accumulated flux, Incoming visible accumulated flux, Land cover, Lifted Index,

Mean Sea Level Pressure, Outgoing infrared energy exiting the atmosphere, Precipitable water,

Showalter Index, Snow Depth, Soil moisture, Soil temperature near the surface, Specific humidity,

Surface accumulated net I.R. flux, Surface Pressure, Temperature, Thickness between two isobaric

levels, Total Cloud, U Wind Component, Upward surface latent heat flux, Upward surface sensible

heat flux, V Wind Component, Vertical Velocity, Visible flux absorbed at the surface –

Accumulated Visible solar flux leaving the atmosphere, Water temperature, Wind direction, and

Wind speed – Module.

2.3 Summary

To support urban simulations, this chapter did a comprehensive review of current urban simulation

tools, highlighting their importance and application requirements. Moreover, the relevant research

on GIS and IoT concepts and IoT-GIS integration-related solutions; the relevant content is divided

into two parts for discussion. The first part provides a better understanding and addresses the

significant components. In contrast, the second part investigates surveys of the major main relevant

frameworks and detail related research of the platform design process, which was used to improve

our solution.

20

Chapter 3

3.System Software Design

In this chapter, we have illustrated the system architecture design; The system is an integrated

framework with modules for data preparation, creation, and integration, a real-time sensing system,

a geographic information system integration, and a database. The Integrated framework plays as

the core and expands around the system and data sources, and modules. we have illustrated the

implementation development approach for data processing and data visualization modules, and

then we presented the framework components and their importance in supporting urban modeling

applications. We illustrated the integration with the Canadian meteorological weather forecasting

framework, automated short-term forecasting system, and real-time weather monitoring. In

summary, in this chapter, the overall system offers monitoring tools and information systems to

support urban planners, researchers, politicians, and city leaders to improve areas like scenario

testing and strategic planning. The system plays two roles, the first role is as a platform, and the

second is as a development approach framework.

3.1 System Architecture

The system is an integrated framework with modules for data preparation, creation, and integration,

a real-time sensing system, a geographic information system, and a database; The Integrated

framework plays as the core and expands around the system and data sources, modules, and

components. The system architecture design is shown in Figure 3-1. The core unit is composed of

five main parts. The Integrated framework's core unit builds on the IoT Niagara and Vuejs

framework, providing high scalability. The core unit is integrated with several systems.

21

Figure 3-1 System Architecture Design

The system has been designed to provide additional services such as a 3D modeling, integration

module particularly for integrate with the Canadian Meteorological Center (CMC) weather

forecasting framework and providing a short-term forecasting service, and real-time weather

monitoring, additionally provide a 3D modeling module, that allows importing and merging of

various data sources such as files (*.OSM, *.SHP, *.OBJ, *.STL, and *.GeoJSON).

3.2 Integrated Framework

This framework is built on the Niagara and Vuejs framework; in this study, we extended the

functionality of the Niagara framework and integrated it with Canadian Metrological Centre (CMC)

weather forecasting framework, a real-time weather station, application programming interface

APIs integration module, an automated forecasting system solution, the provided integrated

framework playing a container for other system components.

Firstly, summarizing the advantage of using the Niagara framework in our system integration:

• Niagara framework allows connecting devices on traditional communications media.

• Allow modeling of those devices in software.

• Programming applications to use the information in those devices.

Before a device, such as a temperature sensor, can be used, the information from those devices

must be pulled into the system software. then models those devices and their data types in software

through the standard object model. This usually entails simplifying the device’s data types to make

22

them easier to manipulate and control through the software. The Niagara common object model is

then used to build applications, with the goal being to provide nonprogrammers with a means to

program the system easily without developing raw code. The Niagara common object model is

similar to a programming language in that a few key concepts are used. However, the real power

is in the reusable libraries of applications and collections of objects that are available once the users

understand the key concepts and put them to work, and use the objects to build control system

solutions quickly and efficiently.

The Niagara common object model allows the framework to:

• Provide secure two-way communication between devices and the Internet.

• Send real-time device information across the Internet

• Control devices in real-time across the Internet.

The following figure illustrates the Niagara software subsystems and the software processes and

protocols, respectively.

Figure 3-2 Niagara Software Subsystems

In addition to IoT Niagara framework built-in features, we have developed and improved several

modules and integration drivers, that are used on the Niagara framework and support urban

23

simulation applications. The frontend component is built on the Vuejs framework, providing

several modules such as visualization using an interactive map, data integration tool, files extension

converter, and real-time monitoring.

3.2.1 Dashboard Design

This section explains the dashboard design and the applications module used. The dashboard web

application is divided into four application modules the Main dashboard, CityRPI, Fatima-CFD,

and Fatima-CFD (WebGPU). The core application includes several functionalities such as real-

time monitoring, mapping functions, a visualization module, and a data integration support module.

CityRPI is an application module for monitoring and mitigating indoor airborne COVID-19

transmission risks at the city scale, and the Fatima-CFD application module is for supporting input

generation and indoor CFD simulation visualization, while the Fatima-CFD (WebGPU) is an

upgraded version of Fatima-CFD that is leveraging the WebGPU API to run CFD offline

simulation on the individual browser. The implementation of these applications uses the same

design approach, data sources, map provider, and implementation frameworks.

Figure 3-3 Dashboard Modules Layers

Figure 3-3 presents the main dashboard user interfaces and main menus. Each item in the layers

and controllers menu represents a functionality or a data integration control method, that can be

imported as a layer to the map, then can be exported in other data forms, the map component plays

an essential role in our system, by mapping the real-time monitoring data, visualization data. and

data integration support modules, by providing a valuable ground for data integration in the system,

24

data processing is an essential part of this integrated framework, which is also implemented for

each of the previous web applications. as shown in Figure 3-7.

The main dashboard is built using the Vue JavaScript framework, as we have explained in the first

section of chapter 2. Vue is an open-source, progressive JavaScript framework used to create user

interfaces. Vue's progressive adoption strategy makes it simple to integrate into projects and

implements web components as an umbrella term for a set of web-native APIs. Vue allows us to

create reusable custom components. The components allow us to split the UI into independent and

reusable pieces and think about each piece in isolation, this adds a high level of extendibility, and

the layers can interact together.

Figure 3-4 Dashboard- Supported Map Style Sytems

The Styles menu provides an easy switching of map styles, map style is a set of customizations

associated with a map, referenced in app code to display the customized map. The Map component

supports six map styles and the ability to change the fonts, colors, and icons on a map style through

the visual interface of the map provider studio.

Figure 3-5 Map Styles

Data conversion and data preprocessing modules are essential for any academic and research

project, particularly in urban modeling application data preparation; it is an integral part of data

25

analysis and GIS mapping. The Tools menu focuses on the 3D modeling modules, that allow

converting and manipulating various data sources such as files (*.OSM, *.SHP, *.OBJ, *.STL,

and *.GeoJSON).

Figure 3-6 Dashboard- Files Conversion Modules

They allow users to transform data formats and merge data sets more easily and quickly. The data

collection processing section discusses these tools' purposes and advantages in detail.

Figure 3-7 Supported Layers System

As mentioned previously the map plays playing an essential role in the dashboard, mainly is that

providing high flexibility in combing multiple data sources together, such as geometric data, terrain

data, external three-dimensional models, sensors data, and external APIs data, and provides the

ability to export integrated data as data input for other urban simulation models. The system

arranges all the data sources as a set of layers. Each layer comprehensively introduces a data source

for various educational services and applications, mapping, visualization, and research. Various

26

data sources can be beneficial to improve visualization, planning processes, evaluation of plans

and decision-making, and extract useful information for other purposes, such as generating insights

into sustainable scenario-testing and strategic planning. The following section will explain the data

processing phase in detail.

3.2.2 Data Collection Processing

3.2.2.1 Default System Dataset Preparation and Deployment

In this section, we explain how the system dataset is prepared and deployed to be the default dataset

for Montreal city, which became one of the integrated framework data sources after the deployment.

The default system dataset combines two primary data sources—building layout and buildings

characteristics dataset. The first dataset is extracted from OpenStreetMap, and its primary purpose

is to provide building outlines, heights, and other essential information about buildings in the city.

The second dataset is a collection of attributes about buildings from the City of Montreal open data

portal. It includes information such as the construction year of the building type of construction

material used for buildings. These datasets are combined to create a better and more accurate

representation of Montreal's urban environment concerning the number of buildings in it and their

general shape and characteristics. Figure 3-8.

Figure 3-8 Data Integration- Default Data Sources

Before we explain the data sources, we summarize each source's file data structure below. Many

standards have been invented that guide how to handle and transmit a massive volume of data. One

of these data-interchange formats, easily readable for humans and parable for machines, is the very

well-known JSON (JavaScript Object Notation). The JSON format, briefly summed up, consists

of key-value pairs that can contain any kind of information if typed with a keyboard, from text to

numbers and data sets. These values can also be more key-value pairs and so on. At the same time,

27

geospatial data is a kind of unique data related to a physical part of a map. In the geospatial data,

many formats can be used (Shapefile, OSM, GeoJSON, among many others).

• GeoJSON file format

GeoJSON, as its name implies, is JSON data with a specific structure specifically designed to treat

geospatial information. The following explains the basics of this standard and how to use it. a

GeoJSON is simply a JSON consisting of a list of key-value pairs. However, it must follow a

specific structure.

Figure 3-9 Sample of GeoJSON Structure [32]

Attributes Description

Type This property indicates whether the data consists of a single element (“Feature”) or

a set of elements (“FeatureCollection”).

Geometry The geometry attribute indicates what type of geometry is represented by the

GeoJSON. It comprises two properties: “type” which indicates the type of

geometry being defined, and “coordinates”, which consist of the numerical

description of the points that define the geometry. Since the example above consists

of a single point, there are just two elements: latitude and longitude. GeoJSON

supports the following geometries:

• Point: Consists of a single point in space.

• LineString: Represents a line in a map.

• Polygon: Displays a polygonal shape.

• MultiPoint: Set of points.

• MultiLineString: Set of line strings.

• MultiPolygon: Set of polygons.

• GeometryCollection: Set of mixed geometries (points, line strings & polygons).

28

Properties The properties attribute is made up of metadata about the geospatial data being

represented. It can be anything if the data is representable with textual characters

(from a simple name to the population being contained in a polygon or even the

longitude of a line string in the real world).

Figure 3-10 Example of GeoJSON Supported Geometries [32]

• OpenStreetMap OSM file format

OSM is being used in industry and by government agencies worldwide and has a wide range of

applications, including Web-based mapping, Web GIS, data analysis, routing and navigation, and

data extraction. Leading companies in this domain include Mapbox, MapQuest, Stamen, Mapzen,

CampToCamp, and Geofabrik. Most of these companies also provide OSM services to the user

community, including OSM data extracts, web-map layers for online mapping, and specialist

visualization. The OpenStreetMap (OSM) project was founded in 2004 and has now positioned

itself as the most famous example of Volunteered Geographic Information (VGI) on the Internet.

[33]. The OSM data model is very straightforward to understand. There are three primitive data

types or objects: nodes, ways (polygons and polylines), and relations (logical collections of ways

and nodes). A way comprises at least two nodes (for polylines) or three nodes (for closed polygons).

A node represents a geographic point feature, and its coordinate is usually expressed as latitude

and longitude. Within OSM, every object must have at least one attribute or tag (a key/value pair)

assigned to it to describe its characteristics.

• SHP file format

Shapefile is a vector data format for storing geographical data and associated attribute information.

It is developed and regulated by Esri as an open specification for data interoperability among Esri

and other GIS software products. Shapefile can be a point, line, or polygon feature such as:

Point Features: Well, Post Office, Temple, Hospital, Mosque, School.

29

Linear Features: Road, River, Highways, Rail track, Street, coastlines.

Areal Features: Pond, Soil Type, Lake, Reserved Forest, political boundaries, state or county

boundaries, climate zones. Shapefile consists of several supporting files. There are three essential

files, i.e., the main file that contains the feature geometry (.shp), an index file that stores the index

of the feature geometry (.shx), and a dBASE table (.dbf) that stores the attribute information of

features.

The aim of this transformation and merging is for deployment to obtain one data source that any

GIS map provider can support; both data sources OSM and SHP are converted to GeoJSON.

3.2.2.1.1 Converting the SHP dataset to GeoJSON.

Converting the SHP to GeoJSON is necessary to generate the default system dataset. Utilizing the

open-source third-party JavaScript-based library, we can convert from Shapefile to GeoJSON in

just a few simple steps. The library we used is called ShpJS and can be found in the source code.

The library collects the building's layout features from the *.shp file in Figure 3-13, the attribute

information of features from the *.dbf file in Figure 3-12, and the data map projection settings from

the *.prj file to create the GeoJSON.The GeoJSON file can then be saved as a workspace to be

used to merge in the final stage of data pre-processing.

The dashboard provides a user-friendly tool interface for converting Shp to GeoJSON. Using the

prepared data can also be done manually if preferred for later data upgrades; when more building

geometries are provided, the user can follow the same data pre-processing approach. Once we have

our Shapefile in GeoJSON format, the next stage is converting the OSM to GeoJSON.

Figure 3-11 Converting Shp to GeoJSON UI.

The data source of the SHP file represented the characteristics of the building, which is provided

by Property Assessment from Montreal.ca [34]

30

Figure 3-12 Default SHP Data Source

Building Attributes

Figure 3-13 Overall SHP Data Source

Buildings Layout.

The meaning of each of the building characteristics is as follows:

Table 1 Attribute Variables Description [30]

Attribute Name Description

NOM_RUE Street name

ANNEE_CONSTRUCTION Year of construction

CATEGORIE_UEF Evaluation unit category (Regular or Condominium)

ETAGE_HORS_SOL Maximum number of floors

3.2.2.1.2 Converting the OSM dataset to GeoJSON

The second data source is the OSM dataset, generated using google by the previous study [35]

There are many reasons to convert an OpenStreetMap (OSM) dataset into GeoJSON. OSM is an

excellent dataset for mapping, but its lack of structure makes it challenging to work with it.

GeoJSON is a JSON-based format that is more suited for storing spatial data. First, we need to

clean up the data. and we can remove duplicates and unnecessary objects by using the clean

function.

Next, we convert the data into a spatial format. The easiest way to do this is to extract the layout

and attributes of the building, and based on the OSM specification, the building element is

implemented as a "way" XML element. As shown in the following figure, each "way" element

31

includes the "nd" element and the "tag" element. The "nd" represents the point (latitude, longitude).

In contrast, the "tag" elements represent the attribute name and value associated with the feature.

In the example below Figure 3-14 of building representation in OSM file, it includes 12 “nd”

elements, as mentioned before, it indicates the point geometry (latitude, longitude), and includes 3

“tags” representing the key and value attribute for the building feature.

The first and the last “nd” is identical, and the criteria for valid polygons are defined in the OGC's

Simple Feature standards document [36] and adhered to by the majority of GIS software and spatial

databases. The reason for requiring the start points and end points to match is likely to relate to the

topological concept of a closed set.

Figure 3-14 Example of 12 Nodes for a Building Representation OSM File

The rules for a valid polygon are [36]:

• Polygons are topologically closed

• The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior

boundaries.

• No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect

at a Point but only as a tangent.

• A Polygon may not have cut lines, spikes, or punctures.

• The interior of every Polygon is a connected point set.

• The exterior of a Polygon with one or more holes is not connected. Each hole defines a

connected component of the exterior.

32

• The exterior of a Polygon with one or more holes is not connected. Each hole defines a

connected component of the exterior.

Figure 3-15 Example of Valid Polygons [36]

Figure 3-16 Example of Invalid Polygons [36]

The following figures, Figure 3-17 and Figure 3-18 show the result of converting the OSM building

to the GeoJSON polygon feature.

Figure 3-17 Example for 12 Points Building

Layout.

Figure 3-18 Example for 12 Points after

Conversion to GeoJSON Data Structure.

Similar to converting Shp to GeoJSON, The dashboard provides a user-friendly interface to convert

the OSM to GeoJSON. Moreover, if it is preferred for later data upgrades; when more building

33

geometries are provided, data preparation can also be done manually; the user can follow the same

data pre-processing approach. Once we have our OSM in GeoJSON format, the next stage is

merging the GeoJSON files.

Figure 3-19 Converting OSM to GeoJSON UI.

3.2.2.1.3 Merging the GeoJSON files

Building layouts and building characteristics datasets have been merged to create the default

system dataset for Montreal. This dataset is based on the OpenStreetMap data and includes building

outlines, heights, and other essential information about buildings in Montreal. The Buildings

Characteristics dataset was collected by the City of Montreal from property owners and developers

to merge the GeoJSON files of the OpenStreetMap and Buildings Characteristics dataset. Using

Turfjs, Turfjs is a JavaScript library for spatial analysis. It includes traditional spatial operations,

helper functions for creating GeoJSON data, and data classification and statistics tools. One of the

most powerful features of Turfjs is its ability to merge GeoJSON features. The user can easily

combine different data types into a single feature. For example, the user can merge a point feature

with a line feature to create a polygon. After merging the GeoJSON file data with scanned data,

Using the map provider CLI we have deployed it to the map provider database, The CLI to

manipulate, create and publish the tile set and use the map database.

Figure 3-20 Example of Turfjs Polygons Intersection

34

3.2.2.2 Data Conversion and Preparation modules

Data conversion and data preparation modules are essential for any academic and research project;

It is an integral part of data analysis and GIS mapping. They allow users to transform data formats

and merge data sets more easily and quickly. There are many different types of data conversion

and GIS data preparation modules available, and the most common are QGIS, ArcGIS, and

GeoTools. Our system provides a versatile and powerful data conversion module that can be used

to transform different types of files and convert them to other formats and export data to a

geodatabase. The module is easy to use and provides many features, including support for different

data types, map projections, and coordinate systems. That allows users to easily prepare data as

input datasets for some analysis simulation model applications and create meaningful maps that

can be easily interpreted and analyzed by all stakeholders. The module can also convert multiple

datasets into a single data set to simplify the workflow and enable the user to save time and effort.

In our study, the GeoJSON is the main file extension for geographic data and the most commonly

used file format for geographic data. Moreover, the GeoJSON file format is widely accepted as the

most standardized and effective way to store geographic data. The system provides converting from

SHP, OSM, and CSV to GeoJSON file format and from GeoJSON to SHP and STL file format.

Figure 3-21 Mind Map of Supported Conversion Extensions

The modules’ purpose is to decrease the complexity of data conversion, improve geographic data

management efficiency, and further data manipulation and analysis. One of the most critical issues

is the converting process between file formats. Most scholars and urban researchers spend much

more time studying and configuring the software tools for each specific data format; with the tools

implemented in our framework, they can convert their data in one step without any effort.

For instance, the CityFFD simulation and CityBEM simulation workflow shows that the data

preparation is focused on the spatial data, so in our framework, we try to automate most of the data

preparation tasks, including converting between different file formats and adding or merging

35

geographic features. As input for simulation and modeling applications. The following section

explains generating the 3D model approach, which is achieved by converting the spatial data to

STL.

• Converting the spatial data to STL

The STL file format is a 3D model representation and is essential for CFD and BES urban

simulations. However, generating a city-scale 3D model is not easy. Merge a group of files

representing vegetation, people, bridges, buildings, and terrain and export a unified 3D urban

geometry in STL. In our study, we proposed and implemented an efficient way for 3D model

generation. By merging different layers representing vegetation, people, and other geographical

features into a single 3D model and enriching the building information data collection, we could

create a more accurate representation of the urban environment.

In the previous section, we have shown the importance of the GeoJSON file format. The figure

below shows our study's general applied workflow for converting the GeoJSON data set to the STL

3D model format. The GeoJSON data set is first read, and the necessary geometries information is

extracted. These geometries are then used to create a vertex in the 3D model format by converting

the data geometric to metric and applying the triangulation process. The triangulation process is

implemented using a third-party JavaScript library called Ear clipping [37]fter triangulating the

data metric for all GeoJSON features, we can generate STL facets to build the STL solid.

36

Figure 3-22 Converting GeoJSON to STL Workflow

Integrating the terrain data in the 3D model STL process starts with receiving four points from the

user input and then using Turfjs to calculate the bounding box from these four points [38]. These

four points are used to query and collect the buildings' features as GeoJSON data structure by query

and collect the features from the Map component. In our case, we are using Mapbox as a map

provider [39] The map provider supports the buildings querying feature that receives the bounding

box as input and returns all the features in the bounding box. Then the system must know the

elevations of all grid points, so we created a grid point for this purpose, and the default cell width

for the grid points is 250 meters. We can query and collect the elevation data using the same map

provider querying feature API. Next, taking the coordinates of the grid points and the elevation of

each point, we can generate a triangles mesh; the triangles mesh is generated using Turfjs, then

updating the building elevation is based on the intersection with the triangles.

Figure 3-23 shows the 3D model with terrain generated from a spatial dataset collected from the

GIS map provider.

37

Figure 3-23 Merging Phases of the Terrain Spatial Data.

38

Figure 3-24 Integrating the Terrain Spatial Data with 3D Model STL Workflow

The default final STL file center coordinate is (0,0,0),

39

Figure 3-25 3D Model Coordinate Plane

The dashboard provides functionality for the user to be able to customize the center of coordinates

as shown below.

Figure 3-26 Customize the 3D Model Coordination Origin

As part of increasing the availability of the dataset and not depending on the map provider for all

extraction time, the dashboard provides a sectional pre-defined data for download, with the terrain

layer included.

Figure 3-27 Pre-defined Backup Sectional Data Collection.

40

3.2.3 Urban Modeling Data Input Generation Support Module

The system has implemented an additional module that also makes it possible to extract and

generate the data input collection for feeding the BES and CFD simulation; two groups of input

data are considered for BES simulation: buildings geometry [5], i.e., external wall area, net volume,

building height. The geometries can be extracted from GIS (Geographic Information Systems）

[40],[41] CityGML[42], BIM (Building Information Modeling)[43], CAD (Computer Aided

Design) [44] [45], or digital images[46][47]. Moreover, the second is the building information

construction year and building type, envelope material thermal properties, and schedule. At the

same time, the CFD input data generation module is where complex CFD models are converted

into ready-to-use input datasets. The process allows fast and easy simulation, helping export the

geometry of real-world buildings, and extracting the building geometry of urban-scale simulation.

The CFD simulation is not only for urban scale but also for building performance simulation.

The system can help users to automate the process of data collection, which helps to save time and

increase accuracy. The system provides pre-defined data collection as an internal resource (the

default system data collection) and an external resource as user-defined input layers. The

generation process of simulation input starts by selecting the bounding box of buildings '

boundaries (box width and length). The boundary calculation is based on the input elevation and

building footprint, which defines the desired area for each output layer; it is typically a rectangle

surrounding the study area (e.g., a city block).

The bounding box was used for the extraction of external and internal building geometry in the

selected study area. The internal resource is the default system data, and the building information

is collected from it. In contrast, the external resource is user-predefined layers (for example, the

external GeoJSON, STL, OSM, and Terrain) Figure 3-28.

41

Figure 3-28 Dashboard, BES, and CFD Data Collection Generation Module UI

The dashboard allows users to customize the bounding selection settings instead of the polygon

selection tool. Figure 3-29

Figure 3-29 Dashboard, Customize the Bounding Box Selection UI.

Figure 3-30 Example of Two Custom Selection Points (Top Left, Bottom Right)

For the BES input group, the dashboard provides functionality for users to select from the available

building information to be extracted from the system layers.

42

For example, the collected building information from external resources Figure 3-32. As shown in

the example, the building information file includes additional columns: “Building_stl” and

“Building_osm”. The “Building_stl” refers to the solid name in the generated 3D model STL.

Figure 3-31 Dashboard, Customize the Building Information UI.

Figure 3-32 Example of Building Information Data Collection Result

While the “Building_osm” refers to the geometric building data feature index, the system, by

default, will export a GeoJSON file representing the geometric buildings data features, including

an id matching the Building_osm id used for visualization purposes once the simulation result is

ready.

Similarly, CFD data collection generation is part of the tool functions with selecting an area that

defines the target area's bounding box. Once the target area is defined, the user can gather the

necessary 3D model data for CFD simulation.

The system provides two types of CFD data input preparation modules; the first is for indoor

(building or room-scale) using the Fatima-CFD web application, and the second is for outdoor

(urban and landscape scale) using the core web application; the user can choose the appropriate

tool for their data set.

43

The original CFD model includes input files for boundary conditions, mesh, particle information,

and geometrical objects. The first data collection tool using a core web application (outdoor) can

export the geometry, domain settings, and other parameters as CFD simulation Figure 3-28. The

second data collection generation tool using the Fatima-CFD web application (indoor), the Fatima-

CFD web application is explained in detail below.

3.2.4 Urban Modeling Visualization Environment Support Modules

This section will discuss the dashboard visualization modules for BES and CFD result data output;

it is a powerful module for analyzing. City-scale visualization. It is well-known that city-scale

monitoring and visualization are essential to managing urban simulations, mainly the dashboard

uses the Mapbox GL for building web maps, visualizing and animating geographic data, querying

and filtering features on a map, dynamically displaying and styling custom client-side data on a

map, 3D data visualizations and animations, adding markers and popups to maps programmatically.

3.2.4.1 BES Data Visualization Module.

Building energy simulation (BES) is a computer modeling technique used to evaluate the effects

of building design and operation on energy use. BES data can be used to improve building

efficiency and occupant comfort. Our framework provides a powerful and intuitive way to analyze

BES data. By mapping the simulation at the city-scale level, we can compare the impacts of

different design strategies or building characteristics at the community level using graphical

depictions of building footprints and annual energy consumption. Our visualization support module

allows users to explore and analyze BES data in various ways and to explore data and make

inferences. With about 36 color legend schemes to choose from, the user can easily find the best

color scheme for data applications Figure 3-33.

Figure 3-33 Dashboard, Supported Legends Colors.

44

Figure 3-36 shows the BES visualization control panel and an example of an imported user, BES

simulation result for about 12500 buildings Figure 3-34. Suppose the simulation is for the

external area (not in the default system data region “Montreal”). In this case, the user can import

the GeoJSON file pre-generated during the data input generation stage.

Figure 3-34 Example of BES Result for 12500 Buildings

In the analyzing data output, the tool follows the CityBEM result custom file structure, composed

of three major parts (header, time loops, and data) Figure 3-35.

45

Figure 3-35 BES Data Output Collection File Structure

Figure 3-36 BES Visualization Control Module UI

Once the user uploads the resulting output file, the system analysis the result file and dynamically

loads the data variables list and timestamp list Figure 3-37. Moreover, the data's maximum and

minimum values are in the block of the selected variable at the specific timestamp. The tools

46

allow the user to change the minimum and maximum for discarding the outliers on the custom

range.

Figure 3-37 BES Visualization Module, Variable, and Timestamp.

The Color legend is generated after loading and parsing the result file, depending on the

minimum and maximum values in the result file.

Figure 3-38 BES Legend

The module also provides trend analysis for all the variables defined in the loaded BES data output

file.

Figure 3-39 BES- Trend Variables Analysis

47

Figure 3-40 City-scale Interactive 3D Map BES Data Collection Output Visualization

Figure 3-41 City-scale Interactive 2D Map BES Data Collection Output Visualization

3.2.4.2 CFD Data Visualization Module

As mentioned previously, CFD is a powerful technique used to study the flow of air, water, or other

fluid substances. It can be used to simulate the movement of these substances in a controlled and

realistic environment. To visualize CFD data, we use different types of charts and graphs. The

48

streamlined graph is a standard chart used to visualize CFD data. The streamlined graph comprises

a set of curves (which represent the fluid flow) connecting two fixed points.

The second type uses a 3D fluid particle rendering system and streamlines data with different

colors. Moreover, the last step is to use volume rendering to show the result of the CFD simulation.

The tools support the standard ASCII *.vtk file structure Figure 3-42.

Figure 3-42 VTK Standard Data Structure, Mesh Size (202, 73, 206)

Figure 3-43 Example of CFD Simulation Result for Mesh Size (202, 73, 206)

49

The user begins visualization by importing the vtk data result and the position setting file. The

position setting file is one of the files generated during the data input preparation and refers to the

center of the selected simulation domain.

Figure 3-44 Dashboard CFD Visualization

Module UI

Figure 3-45 CFD Visualization XZ side

The tool provides different viewpoints in 2D and 3D, an interactive tool to visualize all supported

levels based on the vtk source file, adjust the particles' size and speed factor, and provide the

functionality to visualize the contour lines for that selected data level.

Figure 3-46 CFD Visualization XY side

50

3.2.5 Application Module - City Reduced Probability of Infection (CityRPI)

This section introduces the City Reduced Probability of Infection (CityRPI) application module

implementation and structure design. The CityRPI is a real-time interactive application module for

the public, it is to compare various strategies to curb indoor airborne transmission of COVID-19

in different archetype buildings at a city scale. The RPI Model is developed by other of our

laboratory members and motivated to address the building-specific problem, such as the impact of

mitigation strategies should be studied separately for each building to find the best strategy

depending on the building condition. Also, to update the current ventilation standards, the required

minimum ventilation rate to control the airborne infection risk should be investigated for each

building type; however, many of the required input data for this model is provided and processed

using this web application, and leveraging of implementing this model on this dashboard the

building owner, manager, and engineer with providing the required information about their

building, they can use the CityRPI to assess the infection risk and evaluate the mitigation strategies

specific to his/her building [48]. The CityRPI application module can help identify high-risk areas,

assess the impact of potential mitigation measures, and optimize the implementation of targeted

interventions. The CityRPI application module can also be used to monitor the impact of

interventions over time so that cumulative risks and benefits. The data input preparation steps are

intended to be carried out by model developers and experts with intimate knowledge of their local

context. The model input parameters are often related to cities, buildings, and occupancies, e.g.,

lockdown dates and rates, occupancy levels, age, sex, and exposure time. Building system-specific

parameters are also important, including floor area or room size, outdoor air ventilation,

recirculation rates, duct filter types, with/without air cleaners and their capacities, and mask types.

51

Figure 3-47 Application Module - CityRPI Dashboard

The following flowchart shows the third-party API and Map-based data integration steps; it begins

by finding or generating the geospatial data layout such as GeoJSON, then finding or generating a

relationship between the layout and the API query response data. The GeoJSON can have an

attribute that is a good match with one of the API response attributes, for example, city name. in

case there is no identical attribute. Hence, a dictionary must be defined as a link between the

geospatial data and the API response. This way, we can have a relation and integrated output

between the geospatial data with third-party API data input; this integration can feed any

calculation model internally on the web application side or externally by exporting them as CSV

data collection. The layout supports the visualization process through the map supporting result

value-color translation. In general, most web applications rely on input from users. In the CityRPI,

we integrated the pre-defined geospatial and API data that provide the daily Covid-19 new cases

and historical data set. The inputs were also collected from the user. All these features were under

the client's control and can be accessed from a front-end user interface.

52

Figure 3-48 Third-Party API and Map-based Data Integration Workflow

The primary purpose of this integration is to create an API for querying covid-19 new cases and

historical data integrated with geospatial data as input to feed the CityRPI model.

The following table shows the relationship or the link between the geometric layout and the API

response, this example for the Quebec geometric layout Figure 3-49, the “CA-QC” in the

GeoJSON properties used as an index in the dictionary to get the attribute that matches the API

State attribute.

53

Table 2 Geometric Data Layout and Third-party API Integration Dictionary Definition.

Layout Properties

(GeoJSON)

Dictionary declaration (JavaScript) API data response

(JSON Response)

Figure 3-49 Quebec

Province GeoJSON

Layout

Figure 3-50 shows that In the same way, we can apply that to all of North America's provinces

Figure 3-51.

Figure 3-50 Example of a Dictionary Creation.

54

Figure 3-51 The Geometric Layout of North America

We have added a dynamic layer restful API for other client model calculation applications that

require the same integration with third-party API in the core web application. The section

“Application Programming Interface (API) Integration” explains the implementation detail. While

for server model calculation applications, the framework also provided backend third-party API

integration to feed calculation models.

In the urban-scale model calculation, the client-side integration is more efficient in feeding real-

time monitoring than the server-side integration.

CityRPI web user interfaces:

55

Figure 3-52 Map Provider Support the Value-Color Transformation

Figure 3-53 Application Module- CityRPI, Real-time Model Calculation Reporting.

56

Figure 3-54 Application Module- CityRPI North America Real-time Monitoring

Figure 3-55 Application Module- CityRPI General User Input for North America

57

Figure 3-56 Application Module- CityRPI, Highest Daily Cases and Prevalence Rate.

Figure 3-57 CityRPI Filtering Control UI

3.2.6 Application Module - Fatima-CFD Workflow and Design Architecture

The Fatima-CFD application module is for supporting the model of fate and transport of indoor

microbiological aerosols, like the CityRPI, other laboratory members developed the computational

58

model for it. The application module supports data preparation and visualization; the CFD model

includes inputs for particle information, general settings, CFD0 settings, boundary conditions, and

slice settings. It solves room airflow, heat transfer, and trace contaminant concentrations with the

drift-flux model for modeling particles.

Like the Core and other web applications, this application has been developed using a front-end

Vue JavaScript framework and built on Paraview Glance. This general-purpose standalone web

application can be used to visualize many data types. It is also a portal for building custom viewers

on the web, which can involve remote services. It is an open-source JavaScript visualization

application created by Kitware, based on Visualization Toolkit (VTK), and intended to serve as a

lightweight companion to Paraview. It is a part of the Paraview Web suite of tools[49].

It provides user-friendly interfaces supporting input generation and simulation visualization with

plenty of utilities. For example, a new interface to generate meshes similar to the CFD0 Editor is

added. The CFD-0 Setting is a dynamic tool to generate a uniform and non-uniform domain and

subdomain as CFD0 Editor does. Boundary Condition – selecting a 3D model geometry *.STL file,

the application automatically analyzes the contents as multi-solids. Each solid has a set of boundary

conditions. By default, an STL model should be ready without holes/cracks for a CFD analysis.

The module can be used to provide CFD simulations of a contaminant source with known

properties under different air condition systems. The module mainly consists of 9 different sections

Figure 3-58 is presented as follows:

• Particle Information: To define the particle properties, including (Diameter, Density, Air- Mean

Length, and Deposition Factor).

• General Settings: To define the general settings for the calculations like any CFD Model,

including (Model scale, The number of steps required for the calculations, and the time step

value)

• CFD00 Settings: This is used to define the mesh settings in every direction by defining the

mesh planes and every plan setting. Multiple planes could be created to control the mesh.

• Boundary Conditions: This is where the input room geometry is inserted as a .stl file having

the geometry of the inlets and outlets separated from the model as different solids, and the

boundary and initial conditions are defined as shown in Figure 3-59.

• Slices Settings: This is the part where the user defines the desired output data, which slices

extract by defining different planes to view results.

59

• Exporting the Inputs: after finishing the setup, the inputs are downloaded to the device for the

simulation application to read.

• Simulation Application: an application should be run to simulate the previously downloaded

input files.

• Result Generator: an application should be run to view the .vtk results file to show the results

of the Fatima-CFD simulation.

• Visualization: The section where the model can be hidden, and the representation and color

settings can be edited Figure 3-60.

Figure 3-58 Application Module- Fatima-CFD Dashboard

60

Figure 3-59 Boundary Condition Input Section.

Figure 3-60 Fatima-CFD Mesh and Import Model Visualization

61

• Slices Settings Slices are orthogonal planes that the user can define to view the results. The

user can add more than one slice to view the results. Slices are usually defined by the origin

and the normal planes where the user inputs values for x, y, and z. For instance, if the user

wants to create a certain plane at Z = 1.5 and parallel to the XY plane, then the user will need

to define the origin plane to have the values of (0,0,1.5) and the normal plane to be (0,0,1). For

more details.

Figure 3-61 Plane Parallel to XY Plane at Z = 1.5

• Exporting Inputs: after setting up the case and defining all the required information to start the

calculation, inputs shall be downloaded to the user’s computer as the simulation is conducted

using CPU or GPU devices. Inputs are downloaded as a compressed .zip file. It is highly

recommended to create a separate empty folder for the project’s files. The user should then

extract the compressed file which is extracted into 6 files (BC, Domain, Geometry, Params,

“Particle_info”, Untitled. CFD). These 6 items contain the project information, as the name

suggests. For instance, the BC file contains information about the velocities and temperatures

defined in the Boundary Conditions section.

• Simulation Application: same as exporting the inputs, a compressed file should be defined,

which then is extracted to have two folders (Indoor FFD & MACOSX). then simply need to

copy the Fatima-CFD file to be with the extracted input files in the same place as it reads the

files available in the same folder as shown in Figure 3-62. Then need to run the file, which opens

a black window until the calculations are finished, and newer files are generated. The user

62

should stop the application after the time steps pass the pre-defined time steps and the result

file is generated. Once the simulation is done, the .vtk file is generated and named after the

number of output steps the user defined in the general settings. This file must be renamed to

Result. vtk as the result generator application will search for a file with this name.

Figure 3-62 FaTIMA-CFD Applications in the Same Place with the Input Files

• Result Generator Once the simulation is done, the result file is generated. The user needs to

download the result generator compressed file. The file needs to be extracted in the same place

where the result file is like the simulation application, as shown in Figure 3-63. The user should

run the result generator application and wait for it to finish. Once finished, the

“Final_Results.vtkjs” file will be created having all the simulation results. This file can be

inserted into the ParaView application or the online web app to visualize the results. The user

can always refer to the ParaView tutorials (Paraview, n.d.) for more help with the ParaView

settings.

63

Figure 3-63 Result Generator & Final Results Files.

• Visualization This part discusses how to use the visualization settings inside the tool. Multiple

settings are available and will be briefly discussed below: Hiding a Component, the user can

hide the room or the mesh, or any of the components in the model by clicking on the eye can,

which makes the component disappear in the drawing layout as shown in Figure 3-64.

Figure 3-64 Hiding a Component in the Geometry.

• Representation: in the representation part, the user can change the way the component is by

selecting the display type from four types (Surface, Surface with edges, Wireframe, and Points).

The user can also choose to control the opacity of the model and the point size if the user

chooses the point type display, as shown in Figure 3-65.

64

Figure 3-65 Model Representation Option.

The user has two choices to change the color of the model. The first one is to choose the solid color

option and select a color from a set of pre-defined colors. The second option is to choose the

normals option and select the filter for the colors.

The current application module contributes to collecting and manipulating the data input for the

Fatima-CFD model in one phase and another, providing a web-based CFD result visualization tool.

3.3 Real-time Weather Station Data Integration

Real-time weather station integration monitors selected buildings' indoor and outdoor thermal and

exterior climatic conditions to assess risks of summertime overheating. Many typical facilities

housing vulnerable populations, including hospitals, schools, senior homes, and multi-unit

residential social housing, are monitored during the summertime, especially during “heat waves.”

the users can access the weather data and provide high-resolution microclimate information.

The system allows us to view the indoor and outdoor weather data (rain, solar radiation, wind

speed, gust speed, wind direction, temperature, RH, dew point) in real-time tracking of the

environment and observe the cycles and forecast variations; we have developed a Hobolink weather

station connection driver, this driver provides a solution to easily integrate with weather stations

that providing public access[50], the public access allows us to share the device page with others,

the driver will grant this access to collect the points data, the driver not only for the station provided

by HOBO RX3000 Station Figure 3-66 but also it can be used for any HTTP public access pages

based.

65

The following figures show the driver hierarchy; the driver consists of a network and devices; the devices

represent the weather station, and each device has several properties, such as the path property, which refers

to the HTTP URL for the public page of the device. Moreover, based on the “Poll Scheduler property”, the

time poll frequency in Figure 3-69 shows 10 seconds, which means that every 10 seconds, the system will

query the latest update from the link.

Figure 3-68 Weather Stations

Driver Hierarchy

Figure 3-69 New Driver Device Configurations

Each device consists of a point container, referring to the collected sensor points Figure 3-70.

Figure 3-71 and Figure 3-73 show the user interface on the front-end monitoring dashboard.

Figure 3-66 HOBO RX3000 Station

Figure 3-67 Example of Sensors Data

History UI

66

Figure 3-70 New Driver Weather Sensors Data

Points

Figure 3-71 Real-time Sensors

Monitoring

The system also provides history tracking functionality; monitoring sensor points Figure 3-72

Figure 3-72 Sample of Track Sensor's

History, Rain Sensor

Figure 3-73 Real-time Weather Stations

Monitoring

67

3.4 Canadian Metrological Centre Weather Forecasting Framework Integration

The Canadian Metrological Centre (CMC) provides an online High-Resolution Deterministic

Prediction System or HRDPS. The HRDPS carries out physics calculations to arrive at

deterministic predictions of atmospheric elements from the current day to 48 hours into the future.

The atmospheric elements include temperature, precipitation, cloud cover, wind speed and

direction, humidity, and others. The data is available at a horizontal resolution of 2.5 km.

Predictions are performed up to four times a day. Figure 3-74 below shows a points grid for the 2.5

km cell width distance.

Figure 3-74 Example of 2.5 Km Points Grid

While weather stations provide discrete real-time weather data for measuring weather effects in the

city, regional forecasted 48-hour weather data are retrieved and visualized on the system by

integrating with the Canadian Meteorological Centre (CMC). These forecasted weathers are

updated automatically and available in real-time on the front-end user interface to show more

specific weather conditions of the city than those available from regular weather services. The

forecasted CMC data are also used as the input boundary conditions for the urban microclimate

analysis through CityFFD and CityBEM. We have created a CMC connection driver; this driver

provides a solution to integrate with the CMC server and provide a data flow control input for

CityFFD and CityBEM simulations.

The features of this driver are the following:

• It can be extracted from a region point using its bounding box, Figure 3-76. (lon1, lat1, lon2,

lat2)

• It can be extracted from one location using its latitude and longitude Figure 3-77.

68

• Can be visualized the extracted point or region of points on an interactive map Figure 3-79

• It can be used in any backend logic model since it became a data point.

Figure 3-75 CMC Driver

Hierarchy

Figure 3-76 CMC New Driver Device Configurations

Figure 3-77 below shows the device configurations, which collect the sensor data points from

specific CMC HTTP URLs and for a specific location (latitude, longitude).

Figure 3-77 CMC Device Driver Configurations.

69

The path link, for instance, “https://dd.weather.gc.ca/model_hrdps/east/grib2/12/“. Contains about

39 girb2 files, each file holding the 2.5 km gird points for one data variable such as temperature

and wind speed.

Figure 3-78 Sample of Model HRDPS URL Path, Girb2 Files

Figure 3-79 Forecasted Regional Map -Montreal

3.5 Automated Forecasting System Integration

A short-term forecasting service is an automatic large-scale short-term forecasting integrated with

the Canadian Meteorological Centre. The simulation runs on a back-end server, and the website is

updated every 48h providing many forecasting items for weather conditions, energy consumption,

and thermal load. This integration consists of four components, a CMC server to collect the weather

70

forecasting, the integrated framework (Niagara framework based), a middleware, and the

supercomputer server to run simulations.

Figure 3-80 Automatic Forecasting Module Design

This section focuses on middleware implementation and its working mechanism; Middleware

is the software layer between the operating system and the applications on each side of a distributed

computer network. Typically, it supports complex, distributed software applications.

In our system, the middleware service starts working once it is run and with “run region” start

status, periodically scheduling a new forecasting task case.

71

Figure 3-81 Schedule New Case Automatic Forecasting Workflow.

As shown in the chart Figure 3-81, scheduling a new case process starts by initializing a log system;

the purpose of this log system is to manage, maintain, and troubleshoot the middleware system by

tracking and logging all of the procedures in the local and remote systems after that will start the

preparing data input process, which is mainly for collecting all the input files used in the forecasting

simulations such as the weather data.

72

Figure 3-82 Middleware CMC Server Settings UI

By synchronizing collected input files and simulation application files with the local

supercomputer using FileUtils, the FileUtils provides a method for manipulatives like moving,

opening, checking existence, and reading of files [51]hen initializing the command manager,

which is based on JSch implementation of SSH. The SSH provides support for secure remote login,

secure file transfer, and secure TCP/IP and X11 forwarding. It can automatically encrypt,

authenticate, and compress transmitted data [52], so we can integrate its functionality into

middleware programs.

Figure 3-83 Middleware SSH Settings UI

73

After running the simulations remotely, the system will wait until the simulation is ready by

waiting for the “done” signal from the remote server. It was then synchronized back to the output

and deployed, making the result available online and sending notification emails to subscribers.

Figure 3-84 Middleware Upload Settings UI

3.5.1 Preparing Weather Input Data Process

Figure 3-82 is shown the initial configuration for the CMC server, including the bounding box,

which is the bounding of the targeted domain simulation and is defined by two points, the top left

and bottom right point, as shown in Figure 3-85.

Figure 3-85 CMC Bounding Box Points

The weather data inputs are collected from several URL paths, mainly derived from one main path

such as Figure 3-78. After loading the domain set and generating and downloading all sub-paths,

we have a set of girb2 files representing the forecasting weather input data. Afterward, we used the

NetCDF Java library to extract and use GIRB2 files. The NetCDF implements the Common Data

Model (CDM) to interface netCDF files to a variety of data formats (e.g., netCDF, HDF, GRIB)

74

and provides a higher-level interface to geoscience-specific features of datasets, in particular,

providing geolocation and data subsetting in coordinate space [53]. Based on the selected domain,

extract the data points from the grib2 files and generate WeatherData.txt as shown in Figure 3-87.

Figure 3-86 Preparing Weather Data Input Collection Workflow.

75

Figure 3-87 Weather Data Input Collected from CMC GRIB2

3.5.2 Synchronizing Input Data with Supercomputer Process.

In this process, as Figure 3-89 shows, the first step is loading the connection configuration, which

is saved locally in the middleware. After that, using the connection configuration to initialize the

SSH session, then copying the input files to the server after, the input files sample shown in Figure

3-88 is worth mentioning that the building_info.txt file maps the buildings by using the

“building_osm” id, which is a unique id for each building, after that initialize the case individual

log file on both remote servers and the local middleware device, as we mentioned previously that

the library that middleware using is JSch implementation of SSH. This SSH provides support for

secure remote login, secure file transfer, and secure TCP/IP and X11 forwarding; the X11

forwarding is a mechanism that allows a middleware to start up remote applications and then

forward the application display to the local middleware machine. So in this way, we can also

forward the display of the ongoing simulation case to the log file. The middleware every minute

will check if the simulation is completed or not; this checking is achieved by listening to the log

and waiting for a display from the remote server referring to the end of the simulation.

76

Figure 3-88 Automatic Forecasting System Integration, Building_info.txt

Figure 3-89 Workflow of Synchronizing Data Input Collection with Backend Server

77

3.5.3 Synchronizing the Output with the Online Server Process:

After the simulation is completed, synchronizing the output and deploying process start by copying

the data result from the server to the local middleware device, then processing this result to generate

the corresponding GeoJSON file. We have experimented with two solutions for the data result

processing to get the most efficient result.

The first solution was to analyze the data result and map between each row and the corresponding

geometric building feature by using the “Building_osm_id” as a matching factor, to generate the

GeoJSON file by converting result data values into color information, then save it in the database

as result history as shown in Figure 3-92. In this solution, we have used Mapbox as a map provider;

the final step is converting the GeoJSON file to a Mapbox tileset and using Mapbox CLI to deploy

the tileset to the map provider.

The second solution to process the result is generating the GeoJSON file without calculating the

color information and processing the color information to the front-end implementation. The

implementation of converting data result values to color information is discussed in Chapter 6. the

second solution shows lower processing time and effective use of resources.

Figure 3-90 Automatic Forecasting System Integration Result.

78

Figure 3-91 Synchronizing the Output Files with Online Server

Figure 3-92 Data Result with Colors Information Representation for Result Values

The real-time forecasting simulation result visualization can be uploaded directly to the dashboard.

The visualization environment provides users with various tools to visualize real-time forecasting

simulation results. The environment includes a real-time map. The map allows users to see how

79

events affect different regions of the world and provides users with information about the status of

events. Figure 3-93 shows monitoring the result of the forecasting system on an interactive map;

on the right side shows a “New Cases” tree; this tree represents the latest cases results; by clicking

on any of the cases, the map navigates the view to the simulation target area and load the result

variable and the time loop list.

Figure 3-93 Online Monitoring the Forecasting of New Cases Simulation

3.5.4 Sending Notifying Emails Process

After processing and deploying the result and making the result available online, the automated

forecasting system will send an acknowledgment of completion simulation for all the

preconfigured emails, the Figure 3-94 below shows the Simple Mail Transfer Protocol

configuration, with an email template and receiver emails list.

80

Figure 3-94 Middleware SMTP Settings UI

Figure 3-95 Sending Notification Email Workflow

3.6 Application Programming Interface (API) Integration Module

 API integration is the connection between two or more applications. To perform a designed

function built around sharing data and executing pre-defined processes via their APIs, that lets

those systems exchange data. Through open standards, users can freely and quickly access

thousands of real-time and archived weather, climate, and water datasets and integrate them into

their domain-specific applications and decision support systems. The API integration module is

providing an easy-to-use module in which the users can integrate and engage third-party API data

sources and create interactive web maps and display and animate them. Many third-party APIs

such as GeoMet-OGC-API provide public access to the Meteorological Service of Canada (MSC)

and Environment and Climate Change Canada (ECCC) data and enable on-demand raw data

81

clipping and reprojection, on-demand format conversion, and custom visualization. The system

provides an APIs Integration tool to import APIs data to the Map to enrich the data input and

consider more resources, for example, to query the latest covid new cases and link it with a specific

location in Figure 3-96 below the system querying from https://kustom.radio-canada.ca/covid-

19/canada.

Figure 3-96 Example of API's Response Message, Covid New Cases in Canada

The system supports integration with multi-API sources; each source represents by one link

Figure 3-97 API Integration Module UI.

The following figures show the configuration of linking with the radio Canada API request and

summarize the configuration steps:

https://kustom.radio-canada.ca/covid-19/canada
https://kustom.radio-canada.ca/covid-19/canada

82

• Set the URL Link Figure 3-98

• Set the Point latitude, longitude, and value attribute in the result tree. Figure 3-99

In this way, added one point from one link to the system, and this point can be used as part of data

preparation applications.

Figure 3-98 API Integration Module, Link

Configuration 1

Figure 3-99 API Integration Module, Link

Configuration 2

The tool supports collecting multi points from one link and collecting multi-links from multi-API

sources.

Figure 3-100 API Integration, Points Settings

The figure shows that after importing one data point from an external API to the map it becomes

part of the system data source.

83

Figure 3-101 API Integration Module Result

In Figure 3-98, we added a frequency update time; this feature is for future improvement to support

real-time APIs Integration.

84

Chapter 4

4.Performance Evaluation

This chapter aims at evaluating the system platform and its operating status, and it focuses on

evaluating the data input generation speed for a few urban-scale cases, visualization processing and

rendering performance, and scalability of the system. The evaluation test performs on a PC with

the following characteristics.

Table 3 PC and Connection Characteristics.

Processor Intel Core i7 8500U

RAM 8 G

GPU NVIDIA GeForce MX 150, 2Gbyte

Internet Bandwidth Download Speed 30 Mpbs, Upload 10 Mpbs

4.1 Data Input Generation Speed Performance

Using the modules explained in chapter 3, we can visualize two data sources: Imported GeoJSON-

based data source and map provider tile set-based data source. We evaluated generating the data

input and 3D model on four huge city-scale area cases. The first case is in San Francisco city, which

used an external GeoJSON data source, the second two cases are for Montreal city for both external

GeoJSON and internal Tile set data sources, and the third is for Kingston city.

The evaluation summary includes the following:

• The total number of buildings is the total number of features extracted from the geometric

data source and represents the layout of the building.

• The extraction process is the map time response of querying the building features, and

extracting the data from the map is the first step in the data input generation.

85

• The data generation speed is the time to process the dataset and generate the final set of files

(building information file, domain settings file, geo features data file, 3D model file, and

position setting file) Figure 4-1.

Table 4 Speed Test Result for Three Cases of Data Input Generation.

Case Montreal Montreal San Francisco Kingston

Total buildings 314,237 314,237 208,663 32,503

Extraction

process

1 sec 3.15 sec 1 sec 1 sec

Generation speed 36.13 sec 35.91 sec 36 sec 4 sec

Data size 1.31Gb 1.31Gb 875 Mb 127 Mb

Area (m2) 2,710,701,087 2,710,701,087 270,531,291 384,204,956

Data source Imported as

GeoJSON

Map provider

tiles set

Imported as

GeoJSON

Imported as

GeoJSON

As shown in the evaluation result, importing the GeoJSON data set locally is much faster than

using the map provider tile set in extracting, processing, and generating the data files.

Figure 4-1 The Generated Data Files List

Table 5 Generated Data Files Description.

We customized building information data input for the BES

simulation.

86

Domain settings. Data input for the CFD simulation.

Geospatial data for the extracted buildings were used in the BES

visualization phase.

3D model, Data input for CFD and BES simulation.

The bounding box settings for the extracted area and used in CFD in

the visualization phase.

4.2 City-Scale Visualization Performance

Using our system visualization support module to test the visualization performance for two cases,

one for Montreal city and another one for Kingston City. In the visualization evaluation process,

we used two processing color solutions. The first one uses Mapbox paint properties with a custom

linear interpolation color range and is applied to the external GeoJSON data. At the same time, the

second solution is Mapbox paint properties with prior calculating colors for each of the buildings

in the layer data and getting the actual calculated color value without any interpolation for the tile

set. The paint properties define how data for that data layer is styled, and the Mapbox Graphics

Library (GL) applies these properties later in the rendering process for both painting solutions.

The table below summarizes the performance testing result

Table 6 Visualization and Data Processing Test for Three Use Cases.

City Montreal Montreal Kingston

Rendering system Mapbox GL,

pre-calculated

colors.

Mapbox GL,

linear

interpolation

colors range

based

Mapbox GL,

linear

interpolation

colors range

based

Total buildings 314,237 314,237 32,503

Parsing and colors

processing

~ 4 h 48 sec 5 sec

Rendering process 1 sec 6 sec 1.5 sec

87

The table shows a significant time cost for parsing and processing colors and deploying the result

to the map provider to be used as a tile set. The processing and deployment cost around four hours.

This solution is suitable for static result visualization. In the visualization performance evaluation,

we found that using Map provider paint properties with the range-based color linear interpolation

and GeoJSON dataset is much faster than using the map provider tile with pre-calculated color in

parsing and processing the colors-values sets. While in the rendering process, using the pre-defined

colors illustrates faster rendering.

4.3 Scalability Evaluation Summary

This section summarizes the two scalability viewpoints that our system supports. The first is for

the system developer who will extend system functionalities, and the second is for the system user.

4.3.1 System Functions Scalability, from Development Viewpoint.

The development scalability measures a system's ability to increase or decrease performance and

cost in response to changes in application and system processing demands. Functional scalability

is the ability to enhance the system by adding new functionality without disrupting existing

activities. Our system is scalable on two levels, the back and front end.

• Backend data source scalability: Two levels of data sources, the first one is provided by the

Map provider, and the other one is from the IoT Niagara framework service that integrates with

an external SQL database if required in a future upgrade.

The example case studies below show the scalable data source in one of our system applications

extended from continental countries, provinces and territories, cities, districts, and building scales.

Alternatively, extending from a fewer details application to more details one. Case 1- Application

for extending the USA to North America

88

Figure 4-2 Extending North America Data Source Development.

• Backend services and devices integrations scalability: IoT Niagara framework as a

development platform includes hardware and software. Niagara allows developers to extend

many hardware modules by developing drivers through the Java language. It can also be paired

with other industrial hardware and has control capabilities with the hardware. The strong

compatibility of the Niagara platform is to provide the ability to integrate with different devices,

sensors, and subsystems. Niagara's design aim is to integrate with all networks and protocols, so

Niagara implements many protocols and communication methods for integration with other systems

like oBix, MQTT, LDAP, SNMP, NTP, Modbus, BacNet, Cloud, and LonWorks.

• Front-end data source layers scalability: The front. is represented by the Vuejs framework

component-based; moreover, it is flexible and scalable, and it can be used for vast, modular

SPA (Single Page Apps), interactive parts to be integrated using a different technology. The

system comprises one component and a sub-control panel with interfaces linked to the map

system. A single-page application is an app that does not need to reload the page during its use

and works within a browser such as Facebook, Google Maps, Gmail, Twitter, Google Drive,

or even GitHub. All these are examples of a SPA. Vue is Web-components based, and the

components are framework agnostic, which helps reuse and utilize components in projects based

on different applications. This system has the power to standardize the development and

consolidate a consistent and happy visual and functional experience for the users of applications.

Components and widgets built on the Web Component standards will work across modern

browsers and can be used with any JavaScript library or framework that works with HTML.

This means more reuse, better stability, abstraction and standardization, less work, and

everything else that comes with better modularity.

89

4.3.2 Geographic Usages and Applications Scalability the Use Viewpoint

Geographic scalability is the ability to maintain effectiveness during expansion from a local area

to a larger region. and reflects the ability the grow with the user's demands. The system can be used

in a local area (city, town, suburb) or a more extensive region, such as a state, province, or country

(statewide, regional/county-wide, national). Moreover, it provides indoor and outdoor urban-scale

support solutions, allowing users to extend the studying cases, the locations, and the applications.

The system shows data integration feasibility, visualization efficiency, and diversity in processing

several data types for more significant support in environmental applications, different cases, and

locations, such as Qatar, Kingston, Montreal, and San Francisco. For example, possible user

scenarios. The user can import/export in various ways for different applications. For example case

study it was an application for district-scale wind and temperature field and district-level annual

building energy simulation for Marina district, the southern district of Lusail City in Qatar, for

encountering significant urbanization.

Figure 4-3 3D Model Generation and Visualization Functions of Annual Energy Performance

Application, Marina District, Qatar.

90

Chapter 5

5.Conclusion and Future Work

5.1 Conclusion

Here the problems that remained to be solved, problems encountered, and related requirements are

summarized as follows:

(1) The future of urban planning is inextricably linked to the future of the Internet of Things. At

the same time, cities are complex systems with many moving parts - from geography to

infrastructure; this makes data integration more challenging than ever before.

(2) Urban modeling applications are complex fields requiring many data sources. The visualization

and data integration requirements play an essential role in the success of these simulations.

(3) Urban modeling applications require a high level of user knowledge to prepare data as input

using different expert software.

(4) At the city-scale level, Urban modeling applications are complex engineering calculations

requiring much data to be processed. This data can be stored in different formats, which makes

it difficult for the user to prepare it as input for the simulations.

The research questions addressed in this thesis are as follows:

(1) How can GIS enable efficient IoT usages to support multi-scale urban modeling applications

and simplify the data collection preparation (pre-process stage) and visualization (post-process

stage)?

(2) How do we build a reusable, extendable, integrated framework that supports urban applications

and enables future functionalities?

In this thesis, by analyzing the problems encountered and related requirements, we leveraged the

Niagara IoT framework and GIS integrations to build an integrated framework and developed many

modules. These modules are for data preparation, creation, visualization, and integration, moreover

91

the real-time sensing systems, geographic information systems, and databases. These modules

simplify the data integration process and make it easier to prepare. The visualization and data

integration requirements can be simplified with the help of GIS and an easy-to-use integrated

framework.

5.2 Contributions

We leveraged the scalable development frameworks IoT Niagara and VueJS to build this integrated

framework; the system supports a high level of scalability, and to clarify the theoretical and

practical importance, we categorize the contributions as follows:

As Practical contributions, we provided Integration and implementation solutions for the

following:

• Implemented an automatic large-scale short-term forecasting BES service and integrated it with

the Canadian Meteorological Centre (CMC) weather forecasting framework.

• Weather station integration, which provided discrete real-time weather data for monitoring.

• Provided an APIs Integration module to import APIs data to enrich the data input and consider

more resources.

• Implemented an urban simulations data generation support module.

• Implemented additional support modules that enable extraction and generation of the input data

for feeding the urban model applications.

As theoretical contributions, we provided new solutions for old issues that are solved differently:

• Solutions provided a clear scalable system architecture for measuring and controlling

environmental systems.

• Solutions helped to improve areas like scenario testing and strategic planning for urban

planners and policymakers.

• Solutions helped reduce the complexity of data input generation by exploring and solving data

heterogeneity.

• Solutions allowed the researcher to view the indoor and outdoor weather data (rain, solar

radiation, wind speed, gust speed, wind direction, temperature, RH, dew point) in real-time

tracking of the environment.

• Solutions supported the environmental urban simulations applications, for example, supporting

the response to known and unknowable risks, assessing the environmental consequences and

92

conditions of buildings, and enabling more effective management of urban-scale applications

and simulation of environmental events.

5.1 Future Work and limitations

In this thesis, we primarily discussed supporting the applications of urban simulations at a multi-

scale, from indoor to the outdoor environment, from building-scale to city-scale as a whole, and

from energy to health applications, concentrating on the pre-processing and post-processing stages

of urban modeling. Including but not limited to the framework.

1. This study does not delve into the different types of urban simulations, therefore more research

and development are required to involve more stakeholders in supporting urban applications.

2. Automated forecasting system even if a system works reliably today, that does not mean it will

work reliably in the future. One common reason for degradation is increased load: perhaps the

system has grown from 10,000 concurrent users to 100,000 concurrent users or from 1 million

to 10 million. Perhaps it is processing much larger volumes of data than it did before.

3. The system depends on the third-party map provider hosting the spatial data collection using

the Mapbox processing tile CLI, the uploading and processing cost more money in larger cases.

4. The system can still be improved in related software functions for supporting urban simulation,

such as adding more data analysis methods and introducing more mathematical calculations by

utilizing features of reusable and component-oriented development of this integrated

framework.

5. In the backend service and during processing the default system data collection, we got failures

of processing tiles at the map provider service, which is the cause because the size of the tileset

("Job exceeded max allocated time"), so for larger cases we suggested decreasing the amount

of the layer in each dataset file, that can make processing time shorter.

6. The integrated framework can be used for real-time feeding input and the base for building

WebGPU computing modules; WebGPU exposes an API for performing operations, such as

rendering and computation, on a Graphics Processing Unit. Specifically, the GPU Compute has

contributed significantly to the recent machine learning boom, as convolution neural networks

and other models can take advantage of the architecture to run more efficiently on GPUs, so

It’s highly suggested to engage the WebGPU API in future development.

93

REFERENCES

[1] “2413-2019 - IEEE Standard for an Architectural Framework for the Internet of Things

(IoT),” 2020.

[2] J. S. Bazargani, A. Sadeghi-Niaraki, and S. M. Choi, “A Survey of GIS and IoT

Integration: Applications and Architecture,” Applied Sciences 2021, Vol. 11, Page 10365,

vol. 11, no. 21, p. 10365, Nov. 2021, doi: 10.3390/APP112110365.

[3] K. K. Patel, S. M. Patel, and P. G. Scholar, “Internet of Things-IOT: Definition,

Characteristics, Architecture, Enabling Technologies, Application & Future Challenges,”

International Journal of Engineering Science and Computing, vol. 6, no. 5, 2016, doi:

10.4010/2016.1482.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE

Communications Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376, Oct. 2015, doi:

10.1109/COMST.2015.2444095.

[5] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and

Applications,” Journal of Electrical and Computer Engineering, vol. 2017, 2017, doi:

10.1155/2017/9324035.

[6] M. U.Farooq, M. Waseem, S. Mazhar, A. Khairi, and T. Kamal, “A Review on Internet of

Things (IoT),” Int J Comput Appl, vol. 113, no. 1, pp. 1–7, Mar. 2015, doi:

10.5120/19787-1571.

[7] R. Zaheer and S. Khan, “Future Internet: The Internet of Things Architecture, Possible

Applications and Key Challenges,” in 10th International Conference on Frontiers of

Information Technology (FIT): Proceedings, 2012, pp. 257–260. doi:

10.1109/FIT.2012.53.

[8] D. Bandyopadhyay and J. Sen, “Internet of Things: Applications and Challenges in

Technology and Standardization,” Wireless Personal Communications 2011 58:1, vol. 58,

no. 1, pp. 49–69, Apr. 2011, doi: 10.1007/S11277-011-0288-5.

[9] N. R. Chrisman, “What Does ‘GIS’ Mean?,” Transactions in GIS, vol. 3, no. 2, pp. 175–

186, Mar. 1999, doi: 10.1111/1467-9671.00014.

[10] L. Miloudi and K. Rezeg, “LEVERAGING the POWER of INTEGRATED SOLUTIONS

of IoT and GIS,” Proceedings - PAIS 2018: International Conference on Pattern Analysis

and Intelligent Systems, Dec. 2018, doi: 10.1109/PAIS.2018.8598500.

[11] S. Banerjee, C. Chakraborty, and D. Das, “An Approach towards GIS Application in

Smart City Urban Planning,” Internet of Things and Secure Smart Environments, pp. 71–

110, Nov. 2020, doi: 10.1201/9780367276706-2.

[12] “Importance of GIS in planning,” Mar. 03, 2018. https://grindgis.com/gis/importance-of-

gis-in-planning (accessed Jul. 03, 2022).

[13] S. Xhafa and A. Kosovrasti, “Geographic Information Systems (GIS) in Urban Planning,”

European Journal of Interdisciplinary Studies, vol. 1, no. 1, pp. 85–92, Apr. 2015, doi:

10.26417/EJIS.V1I1.P85-92.

[14] J. Liu, J. Niu, Y. Du, C. M. Mak, and Y. Zhang, “LES for pedestrian level wind around an

idealized building array—Assessment of sensitivity to influencing parameters,” Sustain

Cities Soc, vol. 44, pp. 406–415, Jan. 2019, doi: 10.1016/J.SCS.2018.10.034.

94

[15] J. Liu and J. Niu, “CFD simulation of the wind environment around an isolated high-rise

building: An evaluation of SRANS, LES and DES models,” Build Environ, vol. 96, pp.

91–106, Feb. 2016, doi: 10.1016/J.BUILDENV.2015.11.007.

[16] S. Gilham, D. M. Deaves, R. P. Hoxey, C. R. Boon, and A. Mercer, “Gas build-up within a

single building volume — comparison of measurements with both CFD and simple zone

modelling,” J Hazard Mater, vol. 53, no. 1–3, pp. 93–114, May 1997, doi: 10.1016/S0304-

3894(96)01836-5.

[17] D. J. Kim, D. il Lee, J. J. Kim, M. S. Park, and S. H. Lee, “Development of a Building-

Scale Meteorological Prediction System Including a Realistic Surface Heating,”

Atmosphere 2020, Vol. 11, Page 67, vol. 11, no. 1, p. 67, Jan. 2020, doi:

10.3390/ATMOS11010067.

[18] K. Javanroodi, M. Mahdavinejad, and V. M. Nik, “Impacts of urban morphology on

reducing cooling load and increasing ventilation potential in hot-arid climate,” Appl

Energy, vol. 231, pp. 714–746, Dec. 2018, doi: 10.1016/J.APENERGY.2018.09.116.

[19] I. Lun, A. Mochida, and R. Ooka, “Progress in Numerical Modelling for Urban Thermal

Environment Studies,” http://dx.doi.org/10.3763/aber.2009.0306, vol. 3, no. 1, pp. 147–

188, 2011, doi: 10.3763/ABER.2009.0306.

[20] R. Yoshie et al., “Cooperative project for CFD prediction of pedestrian wind environment

in the Architectural Institute of Japan,” Journal of Wind Engineering and Industrial

Aerodynamics, vol. 95, no. 9–11, pp. 1551–1578, Oct. 2007, doi:

10.1016/J.JWEIA.2007.02.023.

[21] H. H. Hu, “Computational Fluid Dynamics,” Fluid Mechanics, pp. 421–472, 2012, doi:

10.1016/B978-0-12-382100-3.10010-1.

[22] M. Mortezazadeh, L. L. Wang, M. Albettar, and S. Yang, “CityFFD – City fast fluid

dynamics for urban microclimate simulations on graphics processing units,” Urban Clim,

vol. 41, p. 101063, Jan. 2022, doi: 10.1016/J.UCLIM.2021.101063.

[23] Tridium Inc, Niagara 4 Platform Guide , 1st ed. 2018.

[24] “Tridium Inc - Company Profile and News - Bloomberg Markets.”

https://www.bloomberg.com/profile/company/63395Z:US (accessed Jul. 03, 2022).

[25] M. Albettar, “Evaluation and assessment of cyber security based on Niagara framework: a

review,” https://doi.org/10.1080/23742917.2019.1627699, vol. 3, no. 3, pp. 125–136, Jul.

2019, doi: 10.1080/23742917.2019.1627699.

[26] K. Kyoreva, “ State of the Art JavaScript Application Development with Vue.js,” in 7 TH

INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND

COMMUNICATION TECHNOLOGY AND STATISTICS IN ECONOMY, Nov. 2017.

[27] “vue - npm.” https://www.npmjs.com/package/vue (accessed Jul. 01, 2022).

[28] “Components Basics | Vue.js.” https://vuejs.org/guide/essentials/component-basics.html

(accessed Jul. 01, 2022).

[29] J. A. Milbrandt, S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, “The Pan-

Canadian High Resolution (2.5 km) Deterministic Prediction System,” Weather Forecast,

vol. 31, no. 6, pp. 1791–1816, Dec. 2016, doi: 10.1175/WAF-D-16-0035.1.

[30] “HRDPS data in GRIB2 format.” https://weather.gc.ca/grib/grib2_HRDPS_HR_e.html

(accessed Jul. 11, 2022).

[31] MSC Open Data / Données ouvertes du SMC, “High Resolution Deterministic Prediction

System (HRDPS) data in GRIB2 format,” MSC Open Data / Données ouvertes du SMC.

https://eccc-msc.github.io/open-data/msc-data/nwp_hrdps/readme_hrdps-datamart_en/

(accessed Jul. 11, 2022).

95

[32] “GeoJSON.” https://geojson.org/ (accessed Jul. 24, 2022).

[33] J. Jokar Arsanjani, A. Zipf, P. Mooney, and M. Helbich, “An Introduction to

OpenStreetMap in Geographic Information Science: Experiences, Research, and

Applications,” Lecture Notes in Geoinformation and Cartography, vol. 0, no.

9783319142791, pp. 1–15, 2015, doi: 10.1007/978-3-319-14280-7_1/FIGURES/6.

[34] “Property Assessment Units - Dataset, Montreal Data.” https://donnees.montreal.ca/ville-

de-montreal/unites-evaluation-fonciere (accessed Jul. 14, 2022).

[35] A. Katal, “Development of Multi-Scale City Building Energy Model for Urban Climate

Resilience,” Concordia university, Montreal, 2020. Accessed: Jul. 05, 2022. [Online].

Available: https://spectrum.library.concordia.ca/id/eprint/987739/

[36] John R. Herring, “OpenGIS® Implementation Standard for Geographic information -

Simple feature access - Part 1: Common architecture ,” 2011, pp. 26–28. Accessed: Jul. 29,

2022. [Online]. Available: https://www.ogc.org/standards/sfa

[37] D. Eberly, Triangulation by Ear Clipping. Mountain View, CA, 2002. Accessed: Jul. 14,

2022. [Online]. Available: https://www.geometrictools.com/

[38] “Turf.js | Advanced geospatial analysis.” https://turfjs.org/ (accessed Jul. 29, 2022).

[39] “Find elevations with the Tilequery API | Help | Mapbox.”

https://docs.mapbox.com/help/tutorials/find-elevations-with-tilequery-api/ (accessed Jul.

29, 2022).

[40] A. Mastrucci, O. Baume, F. Stazi, S. Salvucci, and U. Leopold, “A GIS-BASED

APPROACH TO ESTIMATE ENERGY SAVINGS AND INDOOR THERMAL

COMFORT FOR URBAN HOUSING STOCK RETROFITTING,” in Fifth German-

Austrian IBPSA Conference , 2014.

[41] A. Alhamwi, W. Medjroubi, T. Vogt, and C. Agert, “GIS-based urban energy systems

models and tools: Introducing a model for the optimisation of flexibilisation technologies

in urban areas,” Appl Energy, vol. 191, pp. 1–9, Apr. 2017, doi:

10.1016/J.APENERGY.2017.01.048.

[42] R. Kaden, T. H. Kolbe, R. Kaden, and T. H. Kolbe, “City-Wide Total Energy Demand

Estimation of Buildings Using Semantic 3d City Models and Statistical Data,” ISPAn, vol.

II2, no. 2W1, pp. 163–171, Sep. 2013, doi: 10.5194/ISPRSANNALS-II-2-W1-163-2013.

[43] C. Cerezo, T. Dogan, and C. Reinhart, “TOWARDS STANDARIZED BUILDING

PROPERTIES TEMPLATE FILES FOR EARLY DESIGN ENERGY MODEL

GENERATION,” in Building Simulation Conference , 2014.

[44] C. M. Rose and V. Bazjanac, “An algorithm to generate space boundaries for building

energy simulation,” Eng Comput, vol. 31, no. 2, pp. 271–280, Apr. 2015, doi:

10.1007/S00366-013-0347-5/TABLES/1.

[45] T. Dogan and C. Reinhart, “AUTOMATED CONVERSION OF ARCHITECTURAL

MASSING MODELS INTO THERMAL ‘SHOEBOX’ MODELS,” in 13th Conference of

International Building Performance Simulation Association.

[46] “Streamlining Energy Analysis of Existing Buildings with Rapid Energy Modeling,”

Building Performance Analysis, 2013.

[47] A. I. Nutkiewicz, “INTEGRATING PHYSICAL AND DATA-DRIVEN PERSPECTIVES

ON BUILDING ENERGY PERFORMANCE: A TALE OF TWO CITIES A

DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND

ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE

STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY,” Stanford

96

University , 2021. Accessed: Jul. 29, 2022. [Online]. Available:

https://purl.stanford.edu/nm585pw3295

[48] M. Albettar, L. (Leon) Wang, and A. Katal, “A real-time web tool for monitoring and

mitigating indoor airborne COVID-19 transmission risks at city scale,” Sustain Cities Soc,

vol. 80, May 2022, doi: 10.1016/J.SCS.2022.103810.

[49] A. Razoumov, “Web-based 3D scientific visualization,” 2020. Accessed: Jul. 31, 2022.

[Online]. Available: https://bit.ly/vispages

[50] O. Computer Corporation, HOBOlink® User’s Guide. 2014. Accessed: Jul. 18, 2022.

[Online]. Available: www.onsetcomp.com

[51] “FileUtils (Apache Commons IO 2.5 API).”

https://commons.apache.org/proper/commons-io/javadocs/api-

2.5/org/apache/commons/io/FileUtils.html (accessed Jul. 17, 2022).

[52] “JSch - Java Secure Channel.” http://www.jcraft.com/jsch/ (accessed Jul. 17, 2022).

[53] “Unidata | NetCDF Java.” https://www.unidata.ucar.edu/software/netcdf-java/ (accessed

Jul. 17, 2022).

