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ABSTRACT 

Integrated Framework of Web-based Urban Simulation Support System for Communities and 

Cities 

Maher Albettar 

One of the most important agendas that urban planners and researchers face in the coming 

decades is to establish new designs that improve the sustainability and resilience of cities. Under 

the rapid development of Geographic Information System (GIS) technology and the Internet of 

Things (IoT), these technologies empower urban planners to enhance visibility into data and 

monitor fluctuations over time, evaluating the feasibility of proposed projects and predicting the 

effects on the environment, providing a better understanding a city as a multi-scale and multilayer 

complex system, scenario-testing, and strategic planning, collecting important aggregated data 

regarding building construction, energy consumption, and occupant wellbeings. However, many 

of these technologies generate vast amounts of data on some levels that are not detailed enough 

and are available at different scales, in various formats, and structured and unstructured forms. 

Usually, urban planners require a large amount of complex data to perform systematic dynamic 

simulations of many buildings. This adds difficulties to urban planners regarding data aggregation 

and real-time data management. This leads to an integrative solution for solving offline and online 

data processing and visualizing tasks and integrating data normalization and filtering techniques. 

Such solutions are needed to provide researchers with an integrative framework to reduce 

complexity and improve availability, accuracy, diversity, scalability, and integration efficiency. In 

this thesis, by analyzing the problems encountered and related requirements, the study leveraged 

the Niagara IoT framework and GIS integrations to build an integrated framework. The thesis work 

developed several modules for data preparation, creation, visualization, and integration. These 

modules simplify the data integration process and make it easier to prepare these data. The 

visualization and data integration requirements can be simplified with the help of GIS and an easy-

to-use integrated framework to provide a real-time sensing system, geographic information system, 

and database integration system.  
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Chapter 1  

 

1.Introduction  

 

1.1 Motivations  

Urban modeling simulations are vital in optimizing buildings during the pre-design, commission, 

and operation phases [35]. In building engineering, Building Energy Simulation (BES) and 

Computational Fluid Dynamics simulation (CFD) are examples of urban modeling simulations that 

provide more detailed and high-resolution information at a lower cost than laboratory experiments 

and field tests. This information is essential as it allows designers to investigate internal and 

external conditions before a building is built, allowing them to test options and select the most 

effective solutions. 

Urban modeling simulations require a high level of user expertise and expert knowledge of using 

different software and tools for many inputs parameters preparation. Different tools also require 

different input detail levels; hence the parametrization process highly influences the quality of the 

simulation results [35]. Moreover, input parameter simulation preparation is usually error-prone 

and expensive [37].  

For instance, the BES applications allow the detailed calculation of the energy consumption to 

maintain specified building performance criteria. The BES inputs include outdoor climate, 

occupancy, lighting, and equipment loads [36]. Some main BES tools are DOE-2 [37] Energy Plus, 

TRNSYS, and EPS-r. IDA ICE.  

At the same time, the CFD simulation is typically used to model the movement and temperature of 

the air within spaces. The complexity in CFD simulation data preparation, presented in modeling 

an urban-scale CFD problem and the simulation, can be divided into three main sections: data input 

model preparation, model simulation, and result visualization; preparing the 3D model of the city 

for the simulation is the most crucial step in model preparation; the CFD data inputs include 
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geometrical data, building footprint, heights, number of floors, orientation, and other necessary 

data. Furthermore, the data collection preparation process of the 3D model of the city requires using 

software such as ArcGIS, OpenStreetMap, and Rhino, all together. 

The prior knowledge and skill to learn how to use a variety of software and tools spend much time 

doing it. So the preparation process can be an expensive solution. Therefore, developing an easy-

to-use and efficient method to prepare geometry would be constructive for many users. 

 

Driven by the importance of urban simulations in supporting healthy communities, sustainable 

buildings, and green planning, there is no denying that the IoT significantly impacts urban 

modeling applications. That provides a way of sensing and collecting environmental and societal 

data, both automatically, remotely, and with increasing levels of spatial and temporal detail. 

However, it is not as simple as connecting all devices or integrating data sets. It is about making 

sure that data is being collected efficiently and that it can be accessed by relevant stakeholders 

when it needs to be accessed. 

Urban simulations will likely be much more data-focused in the future, and data integration will 

become more challenging because of the diversity in data types and sources from geographical 

data, weather forecasting, and other APIs data sources. There are clear advantages to embracing 

the importance of integrating the Internet of Things (IoT) and Geographic Information Systems 

(GIS). Moreover, the integration can open up new data preparation and visualization potentials. 

Additionally, merging IoT and GIS data offers the opportunity to take a creative step toward saving 

lives and money. It gives decision-makers more authority by verifying the veracity of the 

information they receive on the highest level of applicability for multiple purposes. 

1.2 Research Problem and Objective  

This study aims to introduce and implement an integrated framework that integrates different 

frameworks to support urban modeling simulations and solve data interoperability. In summary, 

this study will achieve the following:  

• Support urban modeling simulations by leveraging the IoT Niagara framework  and GIS tools 

to support environmental sensing. 

• Provide a clear system architecture for measuring and controlling environmental systems. 

• Provide a solution for preprocessing heterogeneous data for multi-scale urban modeling 

simulations. 
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• Provide a user guide illustrating the functionalities of the proposed integrated framework. 

• Provide an integrated, scalable, extendable framework as a development approach for future 

development. 

Depending on the discussion of the objectives, this study aims to answer the coming questions: 

• How can GIS enable efficient IoT usages to support multi-scale urban modeling simulations, 

and How it simplify the data collection preparation (pre-process stage) and visualization (post-

process stage)? 

• How do we build a reusable, extendable, integrated framework that supports urban applications 

and enables future functionalities? 

1.3 Thesis Structure 

In the following chapters, this thesis introduces the following contents: 

• In Chapter 2: we have reviewed the relevant research on GIS and IoT concepts and IoT-GIS 

integration-related solutions; the relevant content is divided into two parts for discussion. The 

First part has provided a better understanding and addressed the significant components. In 

contrast, the second part surveyed the major relevant frameworks and detailed related research 

of the platform design process, which used and improved our solution. 

• In Chapter 3: we have introduced the implementation approach for data processing and data 

visualization in the system, which is illustrated by the system architecture design; the system 

architecture takes the Integrated framework as the core and expands around the system and data 

sources, modules, and components. The proposed system illustrates that implementation 

development plays two roles, the first role is a platform, and the second is the implementation 

development approach framework. Then we presented the framework components and their 

importance in supporting urban modeling applications. we illustrated the additional modules, 

such as a 3D modeling module, integration with the Canadian meteorological weather 

forecasting framework, automated short-term forecasting system, and real-time weather 

monitoring. In summary, in this chapter, the overall system offers monitoring tools and 

information systems to urban planners, politicians, and city leaders to improve areas like 

scenario testing and strategic planning. The system is an integrated framework with modules 

for data preparation, creation, and integration, a real-time sensing system, a geographic 

information system, and a database. The 3D modeling module allows the import and merging 
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of various data sources such as files ( *.OSM, *.SHP, *.OBJ, *.STL, and *.GeoJSON ), which 

presents a solution to data interoperability. 

• In Chapter 4: In this chapter, we evaluated the system and its operating status, evaluating the 

data input generation speed for a few urban-scale cases, visualization processing and rendering 

performance, and scalability of the system. The evaluation test was performed on a PC with 

specific characteristics and described the platform functions. 

• In Chapter 5: We summarized the overall advantages of the proposed integrated framework in 

supporting the urban simulations, illustrated the contributions and the limitations that it faces, 

and we discussed the future direction of the work 

 

 

 

  



 

5 
 

Chapter 2  

 

2.Literature Review 

This chapter reviews the relevant research on GIS and IoT concepts and IoT-GIS integration-

related solutions; the relevant content is divided into two parts for discussion. The First part 

provides a better understanding and addresses the significant components. In contrast, the second 

part surveys the major relevant frameworks and detail related research of the platform design 

process, which used and improved our solution. 

2.1 Review on Major Components. 

2.1.1 Internet of Things (IoT) 

IoT is a system of entities (including cyber-physical devices, information resources, and people) 

that exchange information and interact with the physical world by sensing and processing 

information[1]. The Internet of Things (IoT) focuses on facilitating communication between 

Things. It is a wide-area network that uses standard communication protocols. Things are any 

computing equipment and physical items. They are linked to the Internet and can transfer data 

through a network without needing human-to-human or human-to-computer interaction. The things 

in this network would act as consumers or suppliers of the data sent over the network; each sensor 

generates data and transmits it to them to inform consumers of the current situation. It is anticipated 

that there will be over 21 billion IoT devices by 2025[2]. IoT environmental monitoring sensors 

and connectivity provide an effective, efficient way to monitor and support a healthy environment, 

providing the tools for analysis, preventative detection of contaminants, and energy conservation 

to reduce our carbon footprint. The IoT can potentially be used to positively impact the 

environment and lead to more sustainable business practices. IoT sensors can be used to cut down 

on energy use and track carbon emissions and waste.  

2.1.1.1 Fundamental IoT Characteristics 

The following are IoT fundamental characteristics [3]: 
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• Interconnectivity: anything can be interconnected with the global information and 

communication infrastructure. 

• Heterogeneity: The devices in the IoT are heterogeneous based on different hardware 

platforms and networks. They can interact with other devices on different networks. 

• Dynamic changes: The state of devices changes dynamically, e.g., sleeping and waking up, 

connected and disconnected as well as the context of devices including location and speed. 

Moreover, the number of devices can change dynamically. 

• Enormous scale: The number of devices that need to be managed and communicate with each 

other will be at least an order of magnitude larger than the devices connected to the current 

Internet. 

• Safety:  As both the creators and recipients of the IoT, well-being. Securing the must design 

for safety. The benefit includes the safety of our data and physical good endpoints, the 

networks, and the data moving across. All of it means creating a security paradigm that will 

scale. 

• Connectivity: Connectivity enables network accessibility and compatibility. Accessibility is 

getting on a network, while compatibility provides the standard ability to consume and produce 

data. 

2.1.1.2 IoT Architecture 

The Internet of Things has advanced significantly over the past few years, and various architectural 

designs have been put out by researchers [4]–[6]. Early in those studies, a three-layer design was 

devised, consisting of the Perception layer, Network layer, and Application layer. According to [7], 

[8], a five-layer architecture is also used. This design suggests the perception, transport, processing, 
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application, and business layers. Our study takes into account the five-layer IoT architecture shown 

in Figure 2-1 

 

Figure 2-1 Architecture of Internet of Things 

▪ Perception Layer: 

The foundation of IoT architecture is this layer. Numerous sensors and actuators are utilized at the 

perception layer to collect essential data such as temperature, moisture content, intruder detection, 

and sounds. The primary purpose of the perception layer is to gather data from the environment 

and transmit it to another layer so that actions can be taken depending on that data. 

▪ Transport Layer  

As its name implies, it serves as the connecting layer between the Perception and Processing layers. 

Using networking technologies like 3G, 4G, UTMS, WiFI, and infrared., it receives data from the 

Perception layer and sends it to the Processing layer. Because it facilitates communication between 

the Processing and Perception layers, this layer is known as the communication layer. Data is 

always transferred securely, maintaining the collected information's privacy. 

▪ Processing Layer  

Advanced functions, including storage, computing, processing, and the ability to take action, are 

available in the Processing layer. It maintains all data sets and sends the necessary data to each 

device depending on its address and name. Additionally, it can make decisions based on 

calculations made from sensor data sets. 
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▪ Application Layer 

Based on information collected from the Processing layer, the Application layer controls every 

aspect of the application process. Sending emails, turning on alarms, and security systems, turning 

devices on or off, using smartwatches, smart agriculture, and other functions are all included in this 

application. 

▪ Business Layer 

Any device's success depends not just on the technologies it uses but also on how it is distributed 

to its users. For the device, the business layer does these responsibilities. It entails creating graphs, 

flowcharts, outcomes analysis, and how the device can be improved, among other things. 

 

2.1.2 Geospatial Information System (GIS) 

2.1.2.1 Definition 

A Geographic Information System (GIS) is an organized activity by which people measure and 

represent geographic phenomena and then transform these representations into other forms while 

interacting with social structures[9]. Digital mapping is just one application of GIS's power; layers 

can also be used for data integration, analysis, management of natural resources, and decision-

making are all aided by it [10]. 

A GIS may result from integrating data, software, hardware, processes, and people, as shown in 

Figure 2-2. 

 

Figure 2-2 GIS Components 
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GIS can offer data storage and management facilities and provide priceless geospatial data. The 

Data can be viewed as the essential component of a functioning GIS. If geospatial data is present, 

any data can be used in GIS. The Software is a collection of tools to store, process, and present 

data. Key software elements include a graphical user interface, a database management system, 

and tools like ArcMap's Toolbox. The Hardware refers to the device on which GIS can be used. 

Nowadays, diverse groups of devices on a network with various architectures or topologies might 

serve as hardware[2]. 

2.1.2.2 GIS in Urban Planning 

Urban planning focuses on how spaces function effectively to improve people's lives in an urban 

area. Moreover, the plan for an urban area must achieve the objectives and the needs of the people 

under study. These achievements are strongly linked with economic, environmental, and social 

factors as key elements for sustainable development. The urban area is a region surrounding a city. 

Most inhabitants of urban areas. Urban areas are very developed, meaning human structures such 

as houses, commercial buildings, roads, bridges, and railways are dense. "Urban area" can refer to 

towns, cities, and suburbs. An urban area includes the city itself, as well as the surrounding areas. 

Urban areas are systems of tremendous, ever-evolving complexity; responsibly guiding an area's 

development requires spatial information that's robust, nuanced, and constantly updated. This 

challenge has made geographic information science and technology (GIST) invaluable to urban 

simulations and has put geographic data analytics and technical innovation at the center of urban 

modeling simulations. GIS empowers urban planners to enhance visibility into data and monitor 

fluctuations over time, evaluating the feasibility of proposed projects and predicting the effects on 

the environment, providing a better understanding of a city as a multi-scale and multilayer complex 

system, scenario-testing, and strategic planning, collecting important aggregated data regarding 

building construction, energy consumption, and occupant wellbeings. 

Figure 2-3 gives us knowledge about GIS applications in urban area planning [11] GIS in urban 

planning enables spatial analysis and modeling, contributing to many crucial urban planning tasks. 

These tasks include site selection, land suitability analysis, land use and transport modeling, the 

identification of planning action areas, and impact assessments[12]. GIS applications cover 

significant areas of urban arranging and advancement: Infrastructure management (transport, 

public utilities, and stormwater/waste), regional planning, resource management, environmental 

assessment, socio-economic development, emergency management, and education. The benefits of 
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using GIS in urban planning include increasing efficiency, saving time/money, and supporting 

decision-making. Improve accuracy, manage resources, automate tasks, increase government 

access, increase public involvement, and promote more extensive public agency collaboration. 

 

 

Figure 2-3 GIS Application in Urban planning [12] 

2.1.2.3 GIS Application in City Urban Planning 

GIS technologies have increased over the past few decades, and now GIS has provided a wide 

range of data execution and dissection tools; the typical GIS applications include: 

• Review and analysis of development plans. 

• Regional planning beyond the borders of a city or town. 

• Review of environmental impact. 

• Disaster risk management and mitigation. 

• Mapping the delivery of utilities and planning for service interruptions. 

• Preservation of historical sites. 

• Checks on regulatory compliance. 
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Another significant move was the relevance of GIS, remote sensing methods such as satellite 

images, light detection and ranging, and data generation, which authoritatively remotely sensed 

data[11]. Figure 2-4 shows how GIS can support urban planning. Using GIS in city development 

can detect environmental problems or natural disasters, estimate and compare urban planning 

scenarios, predict, prevent transportation congestion, and even analyze employment and social 

services. On the one hand, cities are showing considerable opportunities for development in the 

coming long period, while on the other hand, they are also offering different challenges [13]. 

 

Figure 2-4 GIS and Urban Planning [12] 

GIS can store information in a database and represent it visually in the form of mapped data. GIS 

technology assesses urban development and its extension path and finds suitable urban planning 

locations. There are also many GIS applications; Nowadays. GIS tools assist urban planners in 

inspecting problems more quickly and thoroughly and formulating solutions. Many arranging 

divisions that had gotten mapping frameworks in the past have moved to GIS[11].  

Implementing innovative technologies in urban areas increases efficiency and sustainability and 

improves people's quality of life. More cities are striving to become cities by implementing 

innovative technologies, and GIS is an essential technology for collecting, analyzing, and 

presenting intelligent data. 

2.1.3 Urban Simulations  

With the increased energy prices and global warming crisis in the last century, the requirement for 

more sustainable cities and buildings has increased significantly. According to the international 

energy agency, Buildings are responsible for 27% of total energy sector emissions and consume 

30% of the final global energy. To address these needs, Urban simulation was used to solve and 

predict multiple problems before they could happen. Urban simulation provides comprehensive 
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thermal environment modeling that affects pedestrians' health and thermal comfort.   Moreover, it 

provides urban pollutant and contaminants dispersion which has gained more interest in the last 

three years due to the Covid -19 pandemic. The urban simulations applications include urban 

building energy simulation, urban energy system sizing, urban wind/temperature field analysis, 

outdoor/indoor thermal comfort, airflow, and pollutant dissemination. 

As stated earlier, urban simulation has many applications due to its importance. Researchers have 

summarized these applications into two main categories (Single-objective simulation & multi-

objective simulation).  A summary of these simulations will be provided below: 

• Single Objective Simulation: As the name implies, a Single objective means that only one parameter 

will be studied (airflow, pollutant, or thermal simulation). It analyzes the interaction between a building 

or a group of buildings and the surrounding environment, including air. 

• Multi-Objective Simulation: Multi-simulation is focused on more than one parameter. It can include all 

types of CFD simulation and more as daylight and solar simulation. Of course, these simulations are 

challenging due to lots of uncertainty and complexity. It also requires a lot of computing power, time, 

and capability, which is not easily found to this date despite the significant advancement in computing 

technology in the last century. 

2.1.3.1 Building Energy Simulation (BES) 

Urban simulation studies are necessary for urban building energy simulation/urban energy system 

sizing. The building interacts with other buildings and the surrounding natural environment, 

significantly influencing building energy consumption. Urban simulation is crucial when the 

traditional building simulation is scaled up to urban scenarios, as many properties well-known on 

individual buildings become unreliable when considering large-scale. Building Energy Simulation 

(BES) simulations are vital in optimizing the buildings during the pre-design, commission, and 

operation phases[35]. The urban building energy model's reliable input parameters include 

geometrical data, envelope properties, HAVC system, and occupancy behavior. Besides, the 

correct meteorological data is crucial to urban building energy consumption assessment as the 

outdoor boundary condition. Whole BES tools allow the detailed calculation of the energy 

consumption to maintain specified building performance criteria. The inputs include outdoor 

climate, occupancy, lighting, and equipment loads, and These calculations are generally performed 

over an entire year [36]. Some main BES tools are DOE-2 [37] Energy Plus, TRNSYS, and EPS-

r. IDA ICE. Their application requires a high level of user expertise and expert knowledge of many 
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input parameters. Different tools require different levels of input detail, which often do not match 

with available data; hence the parametrization process highly influences the quality of the 

simulation results [35]. However, simulation preparation of input parameters (e.g., building 

geometry and material properties) is usually error-prone and expensive [37]. The potential overall 

error in performance predictions is a function of the degree of estimation of uncertain input 

parameters; however, preparing digital design models for BES typically requires tedious manual 

alteration. Previous studies show how this input preparation is complicated; determining the effect 

input data may have on BES is a complex task, as it deals with a variety of physical and stochastic 

phenomena: weather conditions, thermal heat transfer through building structures, radiative heat 

exchange between windows, walls, solar radiation, occupancy behavior, HVAC system and electric 

equipment  [38]. 

2.1.3.2 Computational Fluid Dynamics (CFD) 

CFD is a subfield of fluid mechanics that analyses and resolves fluid flow problems using 

numerical analysis and data structures. CFD is a widely used approach to solving wind and 

temperature studies by providing more detailed high-resolution information at a lower cost than 

laboratory experiments and field tests. The idea of CFD simulation is that it relies on numerical 

computation and approximation. There is no exact mathematical solution to these governing 

equations. The domain is then discretized to get a solution, and the equations are approximated 

numerically over this domain. This requires a lot of computing power, especially for larger 

problems such as urban simulation. Another problem also is that numerical simulation requires a 

set of boundary conditions to be known before starting the problem. This can be easy to acquire 

for smaller cases, but for larger cases, there are a lot of uncertainty and difficulties in getting these 

data. City fast fluid dynamics (CityFFD) is a fast and stable numerical model suitable for modeling 

large-scale airflow problems. CFD simulation, commonly idealized building geometry, will be 

used to simulate the wind and thermal field of urban areas under various climatic conditions, such 

as the single building[14]–[16], building block [17], [18], or mixed high-rise and low-rise buildings 

[19], [20]. However, these buildings or urban geometries are all artificial and cannot be used to 

simulate actual conditions. Thus, for better predicting the microclimate of the urban area, it is of 

great importance to have a system helping export the geometry of real-world buildings for both 

CFD and urban energy simulation[21]. 



 

14 
 

For instance, the complexity in CFD simulation data preparation, shown in modeling an urban-

scale CFD problem, can be divided into two main sections: model preparation and model 

simulation. Preparing the 3D model of the city for the simulation is the most crucial step in model 

preparation. The geometrical data include building footprint, heights, number of floors, orientation, 

and other necessary data. It is often better to create geometry specifically for each CFD simulation. 

Currently, the preparation process and creation of the 3D model of the city requires using much 

software, such as ArcGIS, OpenStreetMap, and Rhino. Using this software requires prior 

knowledge and skill to learn how to use it and spend much time doing it. So the preparation process 

can be an expensive solution. Therefore, developing an easy-to-use and efficient method to prepare 

geometry would be constructive for many users. The flowchart below shows the CityFFD 

implementation workflow in the [32], which shows preprocessing and input data files. 

 

 

Figure 2-5 Preprocessing and Data Collection Generation in CityFFD Simulation.[22] 

 

2.2 Review on Major Frameworks. 

2.2.1 IoT Niagara Framework 

The Niagara Framework is a Java software framework for integrating disparate building 

automation systems into a single, manageable interface that can run on multiple hardware 

platforms. The framework uses the Java Virtual Machine (JVM) as a common runtime environment 
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across various operating systems and hardware platforms. The core framework scales from small, 

embedded controllers to high-end servers[23]. 

Heterogeneous system integration Niagara is designed from the ground up to assume that there will 

never be anyone standard network protocol, distributed architecture, or Fieldbus. Instead, the 

framework integrates cleanly with all networks and protocols, standardizing the box's contents. 

The framework also scales to highly distributed systems composed of thousands of nodes running 

the framework software. Systems of this size span many network topologies and usually 

communicate over unreliable Internet connections. The framework is designed to provide an 

infrastructure for managing systems of this scale. Component software Framework architecture is 

centered on component-oriented development[24], [25]. Components are pieces of self-describing 

software that can be assembled like building blocks to create new applications. This component-

centric architecture solves many problems:  

(1) Components normalize the data and features of heterogeneous protocols and networks to 

integrate them seamlessly.  

(2) Components and graphical tools provided by the framework allow applications to be assembled 

without requiring a Java developer. 

(3) Components provide unsurpassed visibility into applications. Since they are self-describing, 

tools can quickly interrogate how an application is assembled, configured, and occurring at any 

time—these aid debugging and application maintenance. 

(4) Components enable software reuse. 

Building automation systems automate many services required to successfully operate and manage 

facilities, including environmental control, fire and life safety, lighting, energy management, and 

security access control. These services have traditionally been provided as independent, standalone 

systems by multiple, proprietary vendors as independent, standalone systems by multiple, 

proprietary vendors. It is widespread for a single hospital facility to have 2-5 independent 

automation systems, while a national chain might have ten or more systems throughout the country. 

Figure 2-6. While improvements in systems integration have occurred over the past ten years, only 

recently has it become cost-effective and, in some cases, technically possible for a user to deploy 

an easily portable and fully integrated facility management solution. The Niagara software suite 

implements a highly efficient adaptation of the JavaBean component software model and internet 
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technologies to provide customers with true interoperability across a wide range of automation 

products. As a subset of the complete framework, the Niagara object model can integrate a wide 

range of physical devices, controllers, and primitive control applications, including BACnet®, 

Lonworks®, Modbus®, and oBIX objects, and legacy control points. The architecture supports 

future enhancements by allowing legacy systems to be brought forward[25]. 

 

 

 

2.2.2 Vuejs Framework  

Vue is an open-source, progressive JavaScript framework used to create user interfaces. Vue's 

progressive adoption strategy simplifies integrating into projects that use other JavaScript libraries. 

Additionally, Vue can serve as a web application framework that powers sophisticated single-page 

applications[26]. It consists of an approachable core library that focuses on the view layer only and 

an ecosystem of supporting libraries that helps to tackle complexity in large Single-Page 

Applications [27]. 

Figure 2-6  Integration Architecture for Niagara Framework [25]. 
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Web Components is an umbrella term for web-native APIs that allow developers to create reusable 

custom elements. In the Vue framework centered on component-oriented development, the 

components allow us to split the UI into independent and reusable pieces and think about each 

piece in isolation [28]. It is common for an app in the Vue framework to be organized into a tree 

of nested components and encapsulate custom content and logic in each component, as in Figure 

2-7. 

The component-based design produces inherent efficiencies for designers and developers. It solves 

the challenges associated with duplication and inconsistency in applying themes while driving the 

development of better quality, reusable components. Components allow for far more possibilities 

in terms of product design and can be configured to provide optimal performance for the target 

application. - Cost control: Starting from the sensor gives manufacturers control over final camera 

costs. Usually, a component provides a particular function or group of related parts. In 

programming design, a system is divided into components that are made up of modules. 

Component testing means testing all related modules that form a component as a group to ensure 

they work together. 

 

Figure 2-7 Vue Framework Components [28] 

Vue has excellent support for both consuming and creating custom elements. Whether for 

integrating custom elements into an existing Vue application or using Vue to build and distribute 

custom elements. 

2.2.3 CMC Weather Forecasting Framework. 

In November 2014, the experimental 2.5-km pan-Canadian High-Resolution Deterministic 

Prediction System (HRDPS) was introduced, with 48-h integrations run four times per day [29]. 

The center services provide an online High-Resolution Deterministic Prediction System or 

HRDPS. The HRDPS is operational except for the northern domain, which remains experimental. 

https://developer.mozilla.org/en-US/docs/Web/Web_Components
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The fields in the HRDPS high-resolution GRIB2 dataset are made available four times a day for 

the Pan-Canadian domain for a 48-hour forecast period (except for the northern domain). 

The High-Resolution Deterministic Prediction System (HRDPS) carries out physics calculations 

to arrive at deterministic predictions of atmospheric elements from the current day to 48 hours into 

the future. Atmospheric elements include temperature, precipitation, cloud cover, wind speed and 

direction, and humidity; this product contains raw numerical results of these calculations. 

Geographical coverage of the system is most of Canada. Data is available at a horizontal resolution 

of 2.5 km. Data is available for 28 vertical levels. Predictions are performed up to four times a day. 

CMC supports six domains continental, north, experimental, east, prairies, west, and maritimes[30]. 

 
 

  

  

Figure 2-8 CMC Weather Forecasting Framework Supported Continental Domains [29]. 
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Users benefit most from using these new data with a detailed forecast of 39 data variables for 

different environmental applications. Significantly during the change of seasons and in wintertime, 

when rapid changes in temperature and winds cause phase transitions of precipitation (freezing rain 

to snow to rain, for example), 2.5 km forecasts could add much value. Also, in the case of short-

term forecasts in the presence of complex terrain or along shores, the influence of changes in 

altitude, topography, and nature of the terrain will be better described for phenomena at this scale 

(lake or sea breezes, local valley flows, and phase changes.). Even over less rugged terrain or water 

away from shore, these more precise forecasts could be helpful repeatedly over a long period. As 

well, for hydrological forecasts on smaller basins, the HRDPS should be considered [31]. 

Summarizing all weather data variables supported by CMC HRDPS as follows:   

Absolute vorticity, Air Density, Albedo, Average surface relative humidity, Convective Available 

Potential Energy, Deep soil temperature, Dew point depression, Dew Point temperature, 

Downward incident solar flux (Accumulated), Geopotential Height, Helicity, Ice fraction, 

Incoming I.R. accumulated flux, Incoming visible accumulated flux, Land cover, Lifted Index, 

Mean Sea Level Pressure, Outgoing infrared energy exiting the atmosphere, Precipitable water, 

Showalter Index, Snow Depth, Soil moisture, Soil temperature near the surface, Specific humidity, 

Surface accumulated net I.R. flux, Surface Pressure, Temperature, Thickness between two isobaric 

levels, Total Cloud, U Wind Component, Upward surface latent heat flux, Upward surface sensible 

heat flux, V Wind Component, Vertical Velocity, Visible flux absorbed at the surface – 

Accumulated Visible solar flux leaving the atmosphere, Water temperature, Wind direction, and 

Wind speed – Module. 

2.3 Summary 

To support urban simulations, this chapter did a comprehensive review of current urban simulation 

tools, highlighting their importance and application requirements. Moreover, the relevant research 

on GIS and IoT concepts and IoT-GIS integration-related solutions; the relevant content is divided 

into two parts for discussion. The first part provides a better understanding and addresses the 

significant components. In contrast, the second part investigates surveys of the major main relevant 

frameworks and detail related research of the platform design process, which was used to improve 

our solution. 
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Chapter 3 

 

3.System Software Design  

In this chapter, we have illustrated the system architecture design; The system is an integrated 

framework with modules for data preparation, creation, and integration, a real-time sensing system, 

a geographic information system integration, and a database. The Integrated framework plays as 

the core and expands around the system and data sources, and modules. we have illustrated the 

implementation development approach for data processing and data visualization modules, and 

then we presented the framework components and their importance in supporting urban modeling 

applications. We illustrated the integration with the Canadian meteorological weather forecasting 

framework, automated short-term forecasting system, and real-time weather monitoring. In 

summary, in this chapter, the overall system offers monitoring tools and information systems to 

support urban planners, researchers, politicians, and city leaders to improve areas like scenario 

testing and strategic planning. The system plays two roles, the first role is as a platform, and the 

second is as a development approach framework. 

3.1 System Architecture  

The system is an integrated framework with modules for data preparation, creation, and integration, 

a real-time sensing system, a geographic information system, and a database; The Integrated 

framework plays as the core and expands around the system and data sources, modules, and 

components. The system architecture design is shown in Figure 3-1.  The core unit is composed of 

five main parts. The Integrated framework's core unit builds on the IoT Niagara and Vuejs 

framework, providing high scalability. The core unit is integrated with several systems. 
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Figure 3-1 System Architecture Design 

 

The system has been designed to provide additional services such as a 3D modeling, integration 

module particularly for integrate with the Canadian Meteorological Center (CMC) weather 

forecasting framework and providing a short-term forecasting service, and real-time weather 

monitoring, additionally provide a 3D modeling module, that allows importing and merging of 

various data sources such as files ( *.OSM, *.SHP, *.OBJ, *.STL, and *.GeoJSON ). 

3.2 Integrated Framework 

This framework is built on the Niagara and Vuejs framework; in this study, we extended the 

functionality of the Niagara framework and integrated it with Canadian Metrological Centre (CMC) 

weather forecasting framework, a real-time weather station, application programming interface 

APIs integration module, an automated forecasting system solution, the provided integrated 

framework playing a container for other system components.  

Firstly, summarizing the advantage of using the Niagara framework in our system integration: 

• Niagara framework allows connecting devices on traditional communications media. 

• Allow modeling of those devices in software. 

• Programming applications to use the information in those devices. 

Before a device, such as a temperature sensor, can be used, the information from those devices 

must be pulled into the system software. then models those devices and their data types in software 

through the standard object model. This usually entails simplifying the device’s data types to make 
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them easier to manipulate and control through the software. The Niagara common object model is 

then used to build applications, with the goal being to provide nonprogrammers with a means to 

program the system easily without developing raw code. The Niagara common object model is 

similar to a programming language in that a few key concepts are used. However, the real power 

is in the reusable libraries of applications and collections of objects that are available once the users 

understand the key concepts and put them to work, and use the objects to build control system 

solutions quickly and efficiently. 

The Niagara common object model allows the framework to: 

• Provide secure two-way communication between devices and the Internet. 

• Send real-time device information across the Internet 

• Control devices in real-time across the Internet. 

The following figure illustrates the Niagara software subsystems and the software processes and 

protocols, respectively.  

 

Figure 3-2 Niagara Software Subsystems 

In addition to IoT Niagara framework built-in features, we have developed and improved several 

modules and integration drivers, that are used on the Niagara framework and support urban 
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simulation applications. The frontend component is built on the Vuejs framework, providing 

several modules such as visualization using an interactive map, data integration tool, files extension 

converter, and real-time monitoring.  

3.2.1 Dashboard Design 

This section explains the dashboard design and the applications module used. The dashboard web 

application is divided into four application modules the Main dashboard, CityRPI, Fatima-CFD, 

and Fatima-CFD (WebGPU). The core application includes several functionalities such as real-

time monitoring, mapping functions, a visualization module, and a data integration support module. 

CityRPI is an application module for monitoring and mitigating indoor airborne COVID-19 

transmission risks at the city scale, and the Fatima-CFD application module is for supporting input 

generation and indoor CFD simulation visualization, while the Fatima-CFD (WebGPU) is an 

upgraded version of Fatima-CFD that is leveraging the WebGPU API to run CFD offline 

simulation on the individual browser. The implementation of these applications uses the same 

design approach, data sources, map provider, and implementation frameworks. 

 

Figure 3-3 Dashboard Modules Layers 

Figure 3-3 presents the main dashboard user interfaces and main menus. Each item in the layers 

and controllers menu represents a functionality or a data integration control method, that can be 

imported as a layer to the map, then can be exported in other data forms, the map component plays 

an essential role in our system, by mapping the real-time monitoring data, visualization data. and 

data integration support modules, by providing a valuable ground for data integration in the system, 
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data processing is an essential part of this integrated framework, which is also implemented for 

each of the previous web applications. as shown in Figure 3-7.  

The main dashboard is built using the Vue JavaScript framework, as we have explained in the first 

section of chapter 2. Vue is an open-source, progressive JavaScript framework used to create user 

interfaces. Vue's progressive adoption strategy makes it simple to integrate into projects and 

implements web components as an umbrella term for a set of web-native APIs. Vue allows us to 

create reusable custom components. The components allow us to split the UI into independent and 

reusable pieces and think about each piece in isolation, this adds a high level of extendibility, and 

the layers can interact together.  

 

Figure 3-4 Dashboard- Supported Map Style Sytems 

The Styles menu provides an easy switching of map styles, map style is a set of customizations 

associated with a map, referenced in app code to display the customized map. The Map component 

supports six map styles and the ability to change the fonts, colors, and icons on a map style through 

the visual interface of the map provider studio. 

 
Figure 3-5 Map Styles 

Data conversion and data preprocessing modules are essential for any academic and research 

project, particularly in urban modeling application data preparation; it is an integral part of data 
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analysis and GIS mapping. The Tools menu focuses on the 3D modeling modules, that allow 

converting and manipulating various data sources such as files ( *.OSM, *.SHP, *.OBJ, *.STL, 

and *.GeoJSON ). 

 

Figure 3-6 Dashboard- Files Conversion Modules 

They allow users to transform data formats and merge data sets more easily and quickly. The data 

collection processing section discusses these tools' purposes and advantages in detail.  

 

 

Figure 3-7 Supported Layers System 

As mentioned previously the map plays playing an essential role in the dashboard, mainly is that 

providing high flexibility in combing multiple data sources together, such as geometric data, terrain 

data, external three-dimensional models, sensors data, and external APIs data, and provides the 

ability to export integrated data as data input for other urban simulation models. The system 

arranges all the data sources as a set of layers. Each layer comprehensively introduces a data source 

for various educational services and applications, mapping, visualization, and research. Various 
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data sources can be beneficial to improve visualization, planning processes, evaluation of plans 

and decision-making, and extract useful information for other purposes, such as generating insights 

into sustainable scenario-testing and strategic planning. The following section will explain the data 

processing phase in detail. 

3.2.2 Data Collection Processing 

3.2.2.1 Default System Dataset Preparation and Deployment 

In this section, we explain how the system dataset is prepared and deployed to be the default dataset 

for Montreal city, which became one of the integrated framework data sources after the deployment. 

The default system dataset combines two primary data sources—building layout and buildings 

characteristics dataset. The first dataset is extracted from OpenStreetMap, and its primary purpose 

is to provide building outlines, heights, and other essential information about buildings in the city. 

The second dataset is a collection of attributes about buildings from the City of Montreal open data 

portal. It includes information such as the construction year of the building type of construction 

material used for buildings. These datasets are combined to create a better and more accurate 

representation of Montreal's urban environment concerning the number of buildings in it and their 

general shape and characteristics. Figure 3-8.  

 

Figure 3-8 Data Integration- Default Data Sources 

Before we explain the data sources, we summarize each source's file data structure below. Many 

standards have been invented that guide how to handle and transmit a massive volume of data. One 

of these data-interchange formats, easily readable for humans and parable for machines, is the very 

well-known JSON (JavaScript Object Notation). The JSON format, briefly summed up, consists 

of key-value pairs that can contain any kind of information if typed with a keyboard, from text to 

numbers and data sets. These values can also be more key-value pairs and so on. At the same time, 
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geospatial data is a kind of unique data related to a physical part of a map. In the geospatial data, 

many formats can be used (Shapefile, OSM, GeoJSON, among many others). 

• GeoJSON file format 

GeoJSON, as its name implies, is JSON data with a specific structure specifically designed to treat 

geospatial information. The following explains the basics of this standard and how to use it. a 

GeoJSON is simply a JSON consisting of a list of key-value pairs. However, it must follow a 

specific structure.  

 

Figure 3-9 Sample of GeoJSON Structure [32] 

Attributes Description 

Type This property indicates whether the data consists of a single element (“Feature”) or 

a set of elements (“FeatureCollection”). 

Geometry The geometry attribute indicates what type of geometry is represented by the 

GeoJSON. It comprises two properties: “type” which indicates the type of 

geometry being defined, and “coordinates”, which consist of the numerical 

description of the points that define the geometry. Since the example above consists 

of a single point, there are just two elements: latitude and longitude. GeoJSON 

supports the following geometries: 

• Point: Consists of a single point in space. 

• LineString: Represents a line in a map. 

• Polygon: Displays a polygonal shape. 

• MultiPoint: Set of points. 

• MultiLineString: Set of line strings. 

• MultiPolygon: Set of polygons. 

• GeometryCollection: Set of mixed geometries (points, line strings & polygons).  
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Properties The properties attribute is made up of metadata about the geospatial data being 

represented. It can be anything if the data is representable with textual characters 

(from a simple name to the population being contained in a polygon or even the 

longitude of a line string in the real world). 

 

 

Figure 3-10 Example of GeoJSON Supported Geometries [32] 

• OpenStreetMap OSM file format 

OSM is being used in industry and by government agencies worldwide and has a wide range of 

applications, including Web-based mapping, Web GIS, data analysis, routing and navigation, and 

data extraction. Leading companies in this domain include Mapbox, MapQuest, Stamen, Mapzen, 

CampToCamp, and Geofabrik. Most of these companies also provide OSM services to the user 

community, including OSM data extracts, web-map layers for online mapping, and specialist 

visualization. The OpenStreetMap (OSM) project was founded in 2004 and has now positioned 

itself as the most famous example of Volunteered Geographic Information (VGI) on the Internet. 

[33]. The OSM data model is very straightforward to understand. There are three primitive data 

types or objects: nodes, ways (polygons and polylines), and relations (logical collections of ways 

and nodes). A way comprises at least two nodes (for polylines) or three nodes (for closed polygons). 

A node represents a geographic point feature, and its coordinate is usually expressed as latitude 

and longitude. Within OSM, every object must have at least one attribute or tag (a key/value pair) 

assigned to it to describe its characteristics. 

• SHP file format 

Shapefile is a vector data format for storing geographical data and associated attribute information. 

It is developed and regulated by Esri as an open specification for data interoperability among Esri 

and other GIS software products. Shapefile can be a point, line, or polygon feature such as: 

Point Features: Well, Post Office, Temple, Hospital, Mosque, School. 
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Linear Features: Road, River, Highways, Rail track, Street, coastlines. 

Areal Features: Pond, Soil Type, Lake, Reserved Forest, political boundaries, state or county 

boundaries, climate zones. Shapefile consists of several supporting files. There are three essential 

files, i.e., the main file that contains the feature geometry (.shp), an index file that stores the index 

of the feature geometry (.shx), and a dBASE table (.dbf) that stores the attribute information of 

features. 

The aim of this transformation and merging is for deployment to obtain one data source that any 

GIS map provider can support; both data sources OSM and SHP are converted to GeoJSON. 

3.2.2.1.1 Converting the SHP dataset to GeoJSON. 

Converting the SHP to GeoJSON is necessary to generate the default system dataset. Utilizing the 

open-source third-party JavaScript-based library, we can convert from Shapefile to GeoJSON in 

just a few simple steps. The library we used is called ShpJS and can be found in the source code. 

The library collects the building's layout features from the *.shp file in Figure 3-13, the attribute 

information of features from the *.dbf file in Figure 3-12, and the data map projection settings from 

the *.prj file to create the GeoJSON.The GeoJSON file can then be saved as a workspace to be 

used to merge in the final stage of data pre-processing.  

The dashboard provides a user-friendly tool interface  for converting Shp to GeoJSON. Using the 

prepared data can also be done manually if preferred for later data upgrades; when more building 

geometries are provided, the user can follow the same data pre-processing approach. Once we have 

our Shapefile in GeoJSON format, the next stage is converting the OSM to GeoJSON. 

 

Figure 3-11 Converting Shp to GeoJSON UI. 

 

The data source of the SHP file represented the characteristics of the building, which is provided 

by Property Assessment from Montreal.ca [34] 
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Figure 3-12 Default SHP Data Source 

Building Attributes 

 

Figure 3-13 Overall SHP Data Source 

Buildings Layout. 

The meaning of each of the building characteristics is as follows: 

Table 1 Attribute Variables Description [30] 

Attribute Name Description  

NOM_RUE Street name 

ANNEE_CONSTRUCTION Year of construction 

CATEGORIE_UEF Evaluation unit category (Regular or Condominium) 

ETAGE_HORS_SOL Maximum number of floors 

 

3.2.2.1.2 Converting the OSM dataset to GeoJSON   

The second data source is the OSM dataset, generated using google by the previous study [35] 

There are many reasons to convert an OpenStreetMap (OSM) dataset into GeoJSON. OSM is an 

excellent dataset for mapping, but its lack of structure makes it challenging to work with it. 

GeoJSON is a JSON-based format that is more suited for storing spatial data. First, we need to 

clean up the data. and we can remove duplicates and unnecessary objects by using the clean 

function.  

Next, we convert the data into a spatial format. The easiest way to do this is to extract the layout 

and attributes of the building, and based on the OSM specification, the building element is 

implemented as a "way" XML element. As shown in the following figure, each "way" element 
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includes the "nd" element and the "tag" element. The "nd" represents the point (latitude, longitude). 

In contrast, the "tag" elements represent the attribute name and value associated with the feature.  

In the example below Figure 3-14 of building representation in OSM file, it includes 12 “nd” 

elements, as mentioned before, it indicates the point geometry (latitude, longitude), and includes 3  

“tags” representing the key and value attribute for the building feature. 

The first and the last “nd” is identical, and the criteria for valid polygons are defined in the OGC's 

Simple Feature standards document [36] and adhered to by the majority of GIS software and spatial 

databases. The reason for requiring the start points and end points to match is likely to relate to the 

topological concept of a closed set. 

 

 

Figure 3-14 Example of 12 Nodes for a Building Representation OSM File 

The rules for a valid polygon are [36]: 

• Polygons are topologically closed 

• The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior 

boundaries. 

• No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect 

at a Point but only as a tangent. 

• A Polygon may not have cut lines, spikes, or punctures. 

• The interior of every Polygon is a connected point set. 

• The exterior of a Polygon with one or more holes is not connected. Each hole defines a 

connected component of the exterior. 
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• The exterior of a Polygon with one or more holes is not connected. Each hole defines a 

connected component of the exterior. 

 

Figure 3-15 Example of Valid Polygons [36] 

 

Figure 3-16 Example of Invalid Polygons [36] 

The following figures, Figure 3-17 and Figure 3-18 show the result of converting the OSM building 

to the GeoJSON polygon feature.  

 

Figure 3-17 Example for 12 Points Building 

Layout. 

 

 

Figure 3-18 Example for 12 Points after 

Conversion to GeoJSON Data Structure. 

 

Similar to converting Shp to GeoJSON, The dashboard provides a user-friendly interface to convert 

the OSM to GeoJSON. Moreover, if it is preferred for later data upgrades; when more building 
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geometries are provided, data preparation can also be done manually; the user can follow the same 

data pre-processing approach. Once we have our OSM in GeoJSON format, the next stage is 

merging the GeoJSON files. 

 

Figure 3-19 Converting OSM to GeoJSON UI. 

3.2.2.1.3 Merging the GeoJSON files  

Building layouts and building characteristics datasets have been merged to create the default 

system dataset for Montreal. This dataset is based on the OpenStreetMap data and includes building 

outlines, heights, and other essential information about buildings in Montreal. The Buildings 

Characteristics dataset was collected by the City of Montreal from property owners and developers 

to merge the GeoJSON files of the OpenStreetMap and Buildings Characteristics dataset. Using 

Turfjs, Turfjs is a JavaScript library for spatial analysis. It includes traditional spatial operations, 

helper functions for creating GeoJSON data, and data classification and statistics tools. One of the 

most powerful features of Turfjs is its ability to merge GeoJSON features. The user can easily 

combine different data types into a single feature. For example, the user can merge a point feature 

with a line feature to create a polygon. After merging the GeoJSON file data with scanned data, 

Using the map provider CLI we have deployed it to the map provider database, The CLI to 

manipulate, create and publish the tile set and use the map database.   

 

Figure 3-20 Example of Turfjs Polygons Intersection 
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3.2.2.2 Data Conversion and Preparation modules  

Data conversion and data preparation modules are essential for any academic and research project; 

It is an integral part of data analysis and GIS mapping. They allow users to transform data formats 

and merge data sets more easily and quickly. There are many different types of data conversion 

and GIS data preparation modules available, and the most common are QGIS, ArcGIS, and 

GeoTools. Our system provides a versatile and powerful data conversion module that can be used 

to transform different types of files and convert them to other formats and export data to a 

geodatabase. The module is easy to use and provides many features, including support for different 

data types, map projections, and coordinate systems. That allows users to easily prepare data as 

input datasets for some analysis simulation model applications and create meaningful maps that 

can be easily interpreted and analyzed by all stakeholders. The module can also convert multiple 

datasets into a single data set to simplify the workflow and enable the user to save time and effort. 

In our study, the GeoJSON is the main file extension for geographic data and the most commonly 

used file format for geographic data. Moreover, the GeoJSON file format is widely accepted as the 

most standardized and effective way to store geographic data. The system provides converting from 

SHP, OSM, and CSV to GeoJSON file format and from GeoJSON to SHP and STL file format. 

 

 

Figure 3-21 Mind Map of Supported Conversion Extensions 

The modules’ purpose is to decrease the complexity of data conversion, improve geographic data 

management efficiency, and further data manipulation and analysis. One of the most critical issues 

is the converting process between file formats. Most scholars and urban researchers spend much 

more time studying and configuring the software tools for each specific data format; with the tools 

implemented in our framework, they can convert their data in one step without any effort.  

For instance, the CityFFD simulation and CityBEM simulation workflow shows that the data 

preparation is focused on the spatial data, so in our framework, we try to automate most of the data 

preparation tasks, including converting between different file formats and adding or merging 
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geographic features. As input for simulation and modeling applications. The following section 

explains generating the 3D model approach, which is achieved by converting the spatial data to 

STL. 

• Converting the spatial data to STL 

The STL file format is a 3D model representation and is essential for CFD and BES urban 

simulations. However, generating a city-scale 3D model is not easy. Merge a group of files 

representing vegetation, people, bridges, buildings, and terrain and export a unified 3D urban 

geometry in STL. In our study, we proposed and implemented an efficient way for 3D model 

generation. By merging different layers representing vegetation, people, and other geographical 

features into a single 3D model and enriching the building information data collection, we could 

create a more accurate representation of the urban environment. 

In the previous section, we have shown the importance of the GeoJSON file format. The figure 

below shows our study's general applied workflow for converting the GeoJSON data set to the STL 

3D model format. The GeoJSON data set is first read, and the necessary geometries information is 

extracted. These geometries are then used to create a vertex in the 3D model format by converting 

the data geometric to metric and applying the triangulation process. The triangulation process is 

implemented using a third-party JavaScript library called Ear clipping [37]fter triangulating the 

data metric for all GeoJSON features, we can generate STL facets to build the STL solid.    
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Figure 3-22 Converting GeoJSON to STL Workflow 

Integrating the terrain data in the 3D model STL process starts with receiving four points from the 

user input and then using Turfjs to calculate the bounding box from these four points [38]. These 

four points are used to query and collect the buildings' features as GeoJSON data structure by query 

and collect the features from the Map component. In our case, we are using Mapbox as a map 

provider [39] The map provider supports the buildings querying feature that receives the bounding 

box as input and returns all the features in the bounding box. Then the system must know the 

elevations of all grid points, so we created a grid point for this purpose, and the default cell width 

for the grid points is 250 meters. We can query and collect the elevation data using the same map 

provider querying feature API. Next, taking the coordinates of the grid points and the elevation of 

each point, we can generate a triangles mesh; the triangles mesh is generated using Turfjs, then 

updating the building elevation is based on the intersection with the triangles. 

Figure 3-23 shows the 3D model with terrain generated from a spatial dataset collected from the 

GIS map provider. 
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Figure 3-23 Merging Phases of the Terrain Spatial Data. 
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Figure 3-24 Integrating the Terrain Spatial Data with 3D Model STL Workflow 

 

The default final STL file center coordinate is (0,0,0), 
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Figure 3-25 3D Model Coordinate Plane  

The dashboard provides functionality for the user to be able to customize the center of coordinates 

as shown below.   

 

 

Figure 3-26 Customize the 3D Model Coordination Origin 

 

As part of increasing the availability of the dataset and not depending on the map provider for all 

extraction time, the dashboard provides a sectional pre-defined data for download, with the terrain 

layer included. 

 

Figure 3-27 Pre-defined Backup Sectional Data Collection. 
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3.2.3 Urban Modeling Data Input Generation Support Module  

The system has implemented an additional module that also makes it possible to extract and 

generate the data input collection for feeding the BES and CFD simulation; two groups of input 

data are considered for BES simulation: buildings geometry [5], i.e., external wall area, net volume, 

building height. The geometries can be extracted from GIS (Geographic Information Systems）

[40],[41] CityGML[42], BIM (Building Information Modeling)[43], CAD (Computer Aided 

Design)  [44] [45], or digital images[46][47]. Moreover, the second is the building information 

construction year and building type, envelope material thermal properties, and schedule. At the 

same time, the CFD input data generation module is where complex CFD models are converted 

into ready-to-use input datasets. The process allows fast and easy simulation, helping export the 

geometry of real-world buildings, and extracting the building geometry of urban-scale simulation. 

The CFD simulation is not only for urban scale but also for building performance simulation.  

The system can help users to automate the process of data collection, which helps to save time and 

increase accuracy. The system provides pre-defined data collection as an internal resource (the 

default system data collection) and an external resource as user-defined input layers. The 

generation process of simulation input starts by selecting the bounding box of buildings ' 

boundaries (box width and length). The boundary calculation is based on the input elevation and 

building footprint, which defines the desired area for each output layer; it is typically a rectangle 

surrounding the study area (e.g., a city block). 

The bounding box was used for the extraction of external and internal building geometry in the 

selected study area. The internal resource is the default system data, and the building information 

is collected from it. In contrast, the external resource is user-predefined layers (for example, the 

external GeoJSON, STL, OSM, and Terrain) Figure 3-28. 
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Figure 3-28 Dashboard, BES, and CFD Data Collection Generation Module UI 

The dashboard allows users to customize the bounding selection settings instead of the polygon 

selection tool. Figure 3-29  

 

Figure 3-29 Dashboard, Customize the Bounding Box Selection UI. 

 

Figure 3-30 Example of Two Custom Selection Points (Top Left, Bottom Right) 

For the BES input group, the dashboard provides functionality for users to select from the available 

building information to be extracted from the system layers. 
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For example, the collected building information from external resources Figure 3-32. As shown in 

the example, the building information file includes additional columns: “Building_stl” and 

“Building_osm”. The “Building_stl” refers to the solid name in the generated 3D model STL. 

 

Figure 3-31 Dashboard, Customize the Building Information UI. 

 

Figure 3-32 Example of Building Information Data Collection Result 

While the “Building_osm” refers to the geometric building data feature index, the system, by 

default, will export a GeoJSON file representing the geometric buildings data features, including 

an id matching the Building_osm id used for visualization purposes once the simulation result is 

ready. 

Similarly, CFD data collection generation is part of the tool functions with selecting an area that 

defines the target area's bounding box. Once the target area is defined, the user can gather the 

necessary 3D model data for CFD simulation.  

The system provides two types of CFD data input preparation modules; the first is for indoor 

(building or room-scale) using the Fatima-CFD web application, and the second is for outdoor 

(urban and landscape scale) using the core web application; the user can choose the appropriate 

tool for their data set. 
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The original CFD model includes input files for boundary conditions, mesh, particle information, 

and geometrical objects. The first data collection tool using a core web application (outdoor) can 

export the geometry, domain settings, and other parameters as CFD simulation Figure 3-28. The 

second data collection generation tool using the Fatima-CFD web application (indoor), the Fatima-

CFD web application is explained in detail below. 

3.2.4 Urban Modeling Visualization Environment Support Modules 

This section will discuss the dashboard visualization modules for BES and CFD result data output; 

it is a powerful module for analyzing. City-scale visualization.  It is well-known that city-scale 

monitoring and visualization are essential to managing urban simulations, mainly the dashboard 

uses the Mapbox GL for building web maps, visualizing and animating geographic data, querying 

and filtering features on a map,  dynamically displaying and styling custom client-side data on a 

map, 3D data visualizations and animations, adding markers and popups to maps programmatically. 

3.2.4.1 BES Data Visualization Module.  

Building energy simulation (BES) is a computer modeling technique used to evaluate the effects 

of building design and operation on energy use. BES data can be used to improve building 

efficiency and occupant comfort. Our framework provides a powerful and intuitive way to analyze 

BES data. By mapping the simulation at the city-scale level, we can compare the impacts of 

different design strategies or building characteristics at the community level using graphical 

depictions of building footprints and annual energy consumption. Our visualization support module 

allows users to explore and analyze BES data in various ways and to explore data and make 

inferences. With about 36 color legend schemes to choose from, the user can easily find the best 

color scheme for data applications Figure 3-33.  

  

Figure 3-33 Dashboard, Supported Legends Colors. 



 

44 
 

Figure 3-36 shows the BES visualization control panel and an example of an imported user, BES 

simulation result for about 12500 buildings Figure 3-34. Suppose the simulation is for the 

external area (not in the default system data region “Montreal” ). In this case, the user can import 

the GeoJSON file pre-generated during the data input generation stage. 

 

Figure 3-34 Example of BES Result for 12500 Buildings 

In the analyzing data output, the tool follows the CityBEM result custom file structure, composed 

of three major parts (header, time loops, and data) Figure 3-35. 
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Figure 3-35 BES Data Output Collection File Structure 

 

Figure 3-36 BES Visualization Control Module UI 

Once the user uploads the resulting output file, the system analysis the result file and dynamically 

loads the data variables list and timestamp list Figure 3-37. Moreover, the data's maximum and 

minimum values are in the block of the selected variable at the specific timestamp. The tools 
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allow the user to change the minimum and maximum for discarding the outliers on the custom 

range. 

 

Figure 3-37  BES Visualization Module, Variable, and Timestamp. 

The Color legend is generated after loading and parsing the result file, depending on the 

minimum and maximum values in the result file. 

 

Figure 3-38 BES Legend 

The module also provides trend analysis for all the variables defined in the loaded BES data output 

file.  

 

Figure 3-39 BES- Trend Variables Analysis 
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Figure 3-40 City-scale Interactive 3D Map BES Data Collection Output Visualization 

 

Figure 3-41 City-scale Interactive 2D Map BES Data Collection Output Visualization 

3.2.4.2 CFD Data Visualization Module  

As mentioned previously, CFD is a powerful technique used to study the flow of air, water, or other 

fluid substances. It can be used to simulate the movement of these substances in a controlled and 

realistic environment. To visualize CFD data, we use different types of charts and graphs. The 
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streamlined graph is a standard chart used to visualize CFD data. The streamlined graph comprises 

a set of curves (which represent the fluid flow) connecting two fixed points. 

The second type uses a 3D fluid particle rendering system and streamlines data with different 

colors. Moreover, the last step is to use volume rendering to show the result of the CFD simulation. 

The tools support the standard ASCII *.vtk file structure Figure 3-42. 

 

Figure 3-42 VTK Standard Data Structure, Mesh Size (202, 73, 206) 

 
Figure 3-43 Example of CFD Simulation Result for Mesh Size (202, 73, 206) 
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The user begins visualization by importing the vtk data result and the position setting file. The 

position setting file is one of the files generated during the data input preparation and refers to the 

center of the selected simulation domain.  

 

Figure 3-44 Dashboard CFD Visualization 

Module UI 

 

Figure 3-45 CFD Visualization XZ side 

 

The tool provides different viewpoints in 2D and 3D, an interactive tool to visualize all supported 

levels based on the vtk source file, adjust the particles' size and speed factor, and provide the 

functionality to visualize the contour lines for that selected data level. 

 

Figure 3-46 CFD Visualization XY side 
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3.2.5 Application Module - City Reduced Probability of Infection (CityRPI) 

This section introduces the City Reduced Probability of Infection (CityRPI) application module 

implementation and structure design. The CityRPI is a real-time interactive application module for 

the public, it is to compare various strategies to curb indoor airborne transmission of COVID-19 

in different archetype buildings at a city scale. The RPI Model is developed by other of our 

laboratory members and motivated to address the building-specific problem, such as the impact of 

mitigation strategies should be studied separately for each building to find the best strategy 

depending on the building condition. Also, to update the current ventilation standards, the required 

minimum ventilation rate to control the airborne infection risk should be investigated for each 

building type; however, many of the required input data for this model is provided and processed 

using this web application, and leveraging of implementing this model on this dashboard the 

building owner, manager, and engineer with providing the required information about their 

building, they can use the CityRPI to assess the infection risk and evaluate the mitigation strategies 

specific to his/her building [48]. The CityRPI application module can help identify high-risk areas, 

assess the impact of potential mitigation measures, and optimize the implementation of targeted 

interventions. The CityRPI application module can also be used to monitor the impact of 

interventions over time so that cumulative risks and benefits. The data input preparation steps are 

intended to be carried out by model developers and experts with intimate knowledge of their local 

context. The model input parameters are often related to cities, buildings, and occupancies, e.g., 

lockdown dates and rates, occupancy levels, age, sex, and exposure time. Building system-specific 

parameters are also important, including floor area or room size, outdoor air ventilation, 

recirculation rates, duct filter types, with/without air cleaners and their capacities, and mask types. 
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Figure 3-47 Application Module - CityRPI Dashboard 

The following flowchart shows the third-party API and Map-based data integration steps; it begins 

by finding or generating the geospatial data layout such as GeoJSON, then finding or generating a 

relationship between the layout and the API query response data. The GeoJSON can have an 

attribute that is a good match with one of the API response attributes, for example, city name. in 

case there is no identical attribute. Hence, a dictionary must be defined as a link between the 

geospatial data and the API response. This way, we can have a relation and integrated output 

between the geospatial data with third-party API data input; this integration can feed any 

calculation model internally on the web application side or externally by exporting them as CSV 

data collection. The layout supports the visualization process through the map supporting result 

value-color translation. In general, most web applications rely on input from users. In the CityRPI, 

we integrated the pre-defined geospatial and API data that provide the daily Covid-19 new cases 

and historical data set. The inputs were also collected from the user. All these features were under 

the client's control and can be accessed from a front-end user interface.  
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Figure 3-48 Third-Party API and Map-based Data Integration Workflow 

The primary purpose of this integration is to create an API for querying covid-19 new cases and 

historical data integrated with geospatial data as input to feed the CityRPI model. 

The following table shows the relationship or the link between the geometric layout and the API 

response, this example for the Quebec geometric layout  Figure 3-49,  the  “CA-QC” in the 

GeoJSON properties used as an index in the dictionary to get the attribute that matches the API 

State attribute. 
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Table 2 Geometric Data Layout and Third-party API Integration Dictionary Definition. 

Layout Properties 

(GeoJSON) 

Dictionary declaration (JavaScript) API data response 

(JSON Response) 

 

 
Figure 3-49 Quebec 

Province GeoJSON 

Layout 

 

 

 

Figure 3-50 shows that In the same way, we can apply that to all of North America's provinces 

Figure 3-51. 

 
Figure 3-50 Example of a Dictionary Creation. 
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Figure 3-51 The Geometric Layout of North America 

We have added a dynamic layer restful API for other client model calculation applications that 

require the same integration with third-party API in the core web application. The section 

“Application Programming Interface (API) Integration” explains the implementation detail. While 

for server model calculation applications, the framework also provided backend third-party API 

integration to feed calculation models. 

In the urban-scale model calculation, the client-side integration is more efficient in feeding real-

time monitoring than the server-side integration.  

CityRPI web user interfaces:  
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Figure 3-52 Map Provider Support the Value-Color Transformation 

 

 

Figure 3-53 Application Module- CityRPI, Real-time Model Calculation Reporting. 
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Figure 3-54 Application Module- CityRPI North America Real-time Monitoring 

 

Figure 3-55 Application Module- CityRPI General User Input for North America 
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Figure 3-56 Application Module- CityRPI, Highest Daily Cases and Prevalence Rate. 

 

Figure 3-57  CityRPI Filtering Control UI 

3.2.6 Application Module - Fatima-CFD Workflow and Design Architecture 

The Fatima-CFD application module is for supporting the model of fate and transport of indoor 

microbiological aerosols, like the CityRPI, other laboratory members developed the computational 
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model for it. The application module supports data preparation and visualization; the CFD model 

includes inputs for particle information, general settings, CFD0 settings, boundary conditions, and 

slice settings. It solves room airflow, heat transfer, and trace contaminant concentrations with the 

drift-flux model for modeling particles.  

Like the Core and other web applications, this application has been developed using a front-end 

Vue JavaScript framework and built on Paraview Glance. This general-purpose standalone web 

application can be used to visualize many data types. It is also a portal for building custom viewers 

on the web, which can involve remote services. It is an open-source JavaScript visualization 

application created by Kitware, based on Visualization Toolkit (VTK), and intended to serve as a 

lightweight companion to Paraview. It is a part of the Paraview Web suite of tools[49].  

It provides user-friendly interfaces supporting input generation and simulation visualization with 

plenty of utilities. For example, a new interface to generate meshes similar to the CFD0 Editor is 

added. The CFD-0 Setting is a dynamic tool to generate a uniform and non-uniform domain and 

subdomain as CFD0 Editor does. Boundary Condition – selecting a 3D model geometry *.STL file, 

the application automatically analyzes the contents as multi-solids. Each solid has a set of boundary 

conditions. By default, an STL model should be ready without holes/cracks for a CFD analysis. 

The module can be used to provide CFD simulations of a contaminant source with known 

properties under different air condition systems. The module mainly consists of 9 different sections 

Figure 3-58 is presented as follows: 

• Particle Information: To define the particle properties, including (Diameter, Density, Air- Mean 

Length, and Deposition Factor). 

• General Settings:  To define the general settings for the calculations like any CFD Model, 

including (Model scale, The number of steps required for the calculations, and the time step 

value)  

• CFD00 Settings: This is used to define the mesh settings in every direction by defining the 

mesh planes and every plan setting. Multiple planes could be created to control the mesh. 

• Boundary Conditions: This is where the input room geometry is inserted as a .stl file having 

the geometry of the inlets and outlets separated from the model as different solids, and the 

boundary and initial conditions are defined as shown in Figure 3-59. 

• Slices Settings: This is the part where the user defines the desired output data, which slices 

extract by defining different planes to view results. 
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• Exporting the Inputs: after finishing the setup, the inputs are downloaded to the device for the 

simulation application to read. 

• Simulation Application: an application should be run to simulate the previously downloaded 

input files. 

• Result Generator: an application should be run to view the .vtk results file to show the results 

of the Fatima-CFD simulation. 

• Visualization: The section where the model can be hidden, and the representation and color 

settings can be edited Figure 3-60. 

 

Figure 3-58 Application Module- Fatima-CFD Dashboard 
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Figure 3-59 Boundary Condition Input Section. 

 

Figure 3-60 Fatima-CFD Mesh and Import Model Visualization 
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• Slices Settings Slices are orthogonal planes that the user can define to view the results. The 

user can add more than one slice to view the results. Slices are usually defined by the origin 

and the normal planes where the user inputs values for x, y, and z. For instance, if the user 

wants to create a certain plane at Z = 1.5 and parallel to the XY plane, then the user will need 

to define the origin plane to have the values of (0,0,1.5) and the normal plane to be (0,0,1). For 

more details. 

 

Figure 3-61 Plane Parallel to XY Plane at Z = 1.5 

• Exporting Inputs: after setting up the case and defining all the required information to start the 

calculation, inputs shall be downloaded to the user’s computer as the simulation is conducted 

using CPU or GPU devices. Inputs are downloaded as a compressed .zip file. It is highly 

recommended to create a separate empty folder for the project’s files. The user should then 

extract the compressed file which is extracted into 6 files (BC, Domain, Geometry, Params, 

“Particle_info”, Untitled. CFD). These 6 items contain the project information, as the name 

suggests. For instance, the BC file contains information about the velocities and temperatures 

defined in the Boundary Conditions section. 

• Simulation Application: same as exporting the inputs, a compressed file should be defined, 

which then is extracted to have two folders (Indoor FFD & MACOSX). then simply need to 

copy the Fatima-CFD file to be with the extracted input files in the same place as it reads the 

files available in the same folder as shown in Figure 3-62. Then need to run the file, which opens 

a black window until the calculations are finished, and newer files are generated. The user 
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should stop the application after the time steps pass the pre-defined time steps and the result 

file is generated. Once the simulation is done, the .vtk file is generated and named after the 

number of output steps the user defined in the general settings. This file must be renamed to 

Result. vtk as the result generator application will search for a file with this name.  

 

Figure 3-62 FaTIMA-CFD Applications in the Same Place with the Input Files 

• Result Generator Once the simulation is done, the result file is generated. The user needs to 

download the result generator compressed file. The file needs to be extracted in the same place 

where the result file is like the simulation application, as shown in Figure 3-63. The user should 

run the result generator application and wait for it to finish. Once finished, the 

“Final_Results.vtkjs” file will be created having all the simulation results. This file can be 

inserted into the ParaView application or the online web app to visualize the results. The user 

can always refer to the ParaView tutorials (Paraview, n.d.) for more help with the ParaView 

settings. 
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Figure 3-63 Result Generator & Final Results Files. 

 

• Visualization This part discusses how to use the visualization settings inside the tool. Multiple 

settings are available and will be briefly discussed below: Hiding a Component, the user can 

hide the room or the mesh, or any of the components in the model by clicking on the eye can, 

which makes the component disappear in the drawing layout as shown in Figure 3-64. 

 

Figure 3-64 Hiding a Component in the Geometry. 

• Representation: in the representation part, the user can change the way the component is by 

selecting the display type from four types (Surface, Surface with edges, Wireframe, and Points). 

The user can also choose to control the opacity of the model and the point size if the user 

chooses the point type display, as shown in Figure 3-65. 
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Figure 3-65 Model Representation Option. 

The user has two choices to change the color of the model. The first one is to choose the solid color 

option and select a color from a set of pre-defined colors. The second option is to choose the 

normals option and select the filter for the colors. 

The current application module contributes to collecting and manipulating the data input for the 

Fatima-CFD model in one phase and another, providing a web-based CFD result visualization tool. 

3.3 Real-time Weather Station Data Integration 

Real-time weather station integration monitors selected buildings' indoor and outdoor thermal and 

exterior climatic conditions to assess risks of summertime overheating. Many typical facilities 

housing vulnerable populations, including hospitals, schools, senior homes, and multi-unit 

residential social housing, are monitored during the summertime, especially during “heat waves.” 

the users can access the weather data and provide high-resolution microclimate information. 

The system allows us to view the indoor and outdoor weather data (rain, solar radiation, wind 

speed, gust speed, wind direction, temperature, RH, dew point) in real-time tracking of the 

environment and observe the cycles and forecast variations; we have developed a Hobolink weather 

station connection driver, this driver provides a solution to easily integrate with weather stations 

that providing public access[50], the public access allows us to share the device page with others, 

the driver will grant this access to collect the points data, the driver not only for the station provided 

by HOBO RX3000 Station Figure 3-66 but also it can be used for any HTTP public access pages 

based. 
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The following figures show the driver hierarchy; the driver consists of a network and devices; the devices 

represent the weather station, and each device has several properties, such as the path property, which refers 

to the HTTP URL for the public page of the device. Moreover, based on the “Poll Scheduler property”, the 

time poll frequency in Figure 3-69 shows 10 seconds, which means that every 10 seconds, the system will 

query the latest update from the link.  

 

Figure 3-68 Weather Stations 

Driver Hierarchy 

 

Figure 3-69 New Driver Device Configurations 

 

Each device consists of a point container, referring to the collected sensor points Figure 3-70. 

Figure 3-71 and Figure 3-73 show the user interface on the front-end monitoring dashboard. 

 

Figure 3-66 HOBO RX3000 Station  

Figure 3-67 Example of Sensors Data 

History UI 
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Figure 3-70 New Driver Weather Sensors Data 

Points 

 

Figure 3-71 Real-time Sensors 

Monitoring 

The system also provides history tracking functionality; monitoring sensor points Figure 3-72 

 

Figure 3-72 Sample of Track Sensor's 

History, Rain Sensor 

 

Figure 3-73 Real-time Weather Stations 

Monitoring  
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3.4 Canadian Metrological Centre Weather Forecasting Framework Integration 

The Canadian Metrological Centre (CMC) provides an online High-Resolution Deterministic 

Prediction System or HRDPS. The HRDPS carries out physics calculations to arrive at 

deterministic predictions of atmospheric elements from the current day to 48 hours into the future. 

The atmospheric elements include temperature, precipitation, cloud cover, wind speed and 

direction, humidity, and others. The data is available at a horizontal resolution of 2.5 km. 

Predictions are performed up to four times a day. Figure 3-74 below shows a points grid for the 2.5 

km cell width distance.  

 

Figure 3-74 Example of 2.5 Km Points Grid 

While weather stations provide discrete real-time weather data for measuring weather effects in the 

city, regional forecasted 48-hour weather data are retrieved and visualized on the system by 

integrating with the Canadian Meteorological Centre (CMC). These forecasted weathers are 

updated automatically and available in real-time on the front-end user interface to show more 

specific weather conditions of the city than those available from regular weather services. The 

forecasted CMC data are also used as the input boundary conditions for the urban microclimate 

analysis through CityFFD and CityBEM. We have created a CMC connection driver; this driver 

provides a solution to integrate with the CMC server and provide a data flow control input for 

CityFFD and CityBEM simulations. 

The features of this driver are the following: 

• It can be extracted from a region point using its bounding box, Figure 3-76. (lon1, lat1, lon2, 

lat2)  

• It can be extracted from one location using its latitude and longitude  Figure 3-77. 
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• Can be visualized the extracted point or region of points on an interactive map Figure 3-79 

• It can be used in any backend logic model since it became a data point. 

 

Figure 3-75  CMC Driver 

Hierarchy 

 
 

Figure 3-76 CMC New Driver Device Configurations 

 

Figure 3-77 below shows the device configurations, which collect the sensor data points from 

specific CMC HTTP URLs and for a specific location (latitude, longitude). 

 

 

Figure 3-77 CMC Device Driver Configurations. 
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The path link, for instance, “https://dd.weather.gc.ca/model_hrdps/east/grib2/12/“. Contains about 

39 girb2 files, each file holding the 2.5 km gird points for one data variable such as temperature 

and wind speed. 

 

Figure 3-78 Sample of Model HRDPS URL Path, Girb2 Files 

 

Figure 3-79 Forecasted Regional Map -Montreal 

3.5 Automated Forecasting System Integration 

A short-term forecasting service is an automatic large-scale short-term forecasting integrated with 

the Canadian Meteorological Centre. The simulation runs on a back-end server, and the website is 

updated every 48h providing many forecasting items for weather conditions, energy consumption, 

and thermal load. This integration consists of four components, a CMC server to collect the weather 
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forecasting, the integrated framework (Niagara framework based), a middleware, and the 

supercomputer server to run simulations. 

 

 

Figure 3-80 Automatic Forecasting Module Design 

This section focuses on middleware implementation and its working mechanism; Middleware 

is the software layer between the operating system and the applications on each side of a distributed 

computer network. Typically, it supports complex, distributed software applications.  

In our system, the middleware service starts working once it is run and with   “run region” start 

status, periodically scheduling a new forecasting task case. 
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Figure 3-81 Schedule New Case Automatic Forecasting Workflow. 

As shown in the chart Figure 3-81, scheduling a new case process starts by initializing a log system; 

the purpose of this log system is to manage, maintain, and troubleshoot the middleware system by 

tracking and logging all of the procedures in the local and remote systems after that will start the 

preparing data input process, which is mainly for collecting all the input files used in the forecasting 

simulations such as the weather data. 
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Figure 3-82 Middleware CMC Server Settings UI 

By synchronizing collected input files and simulation application files with the local 

supercomputer using FileUtils, the  FileUtils provides a method for manipulatives like moving, 

opening, checking existence, and reading of files [51]hen initializing the command manager, 

which is based on JSch implementation of SSH.  The SSH provides support for secure remote login, 

secure file transfer, and secure TCP/IP and X11 forwarding. It can automatically encrypt, 

authenticate, and compress transmitted data [52], so we can integrate its functionality into 

middleware programs. 

 

Figure 3-83 Middleware SSH Settings UI 
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After running the simulations remotely, the system will wait until the simulation is ready by 

waiting for the “done” signal from the remote server. It was then synchronized back to the output 

and deployed, making the result available online and sending notification emails to subscribers. 

 

Figure 3-84 Middleware Upload Settings UI 

3.5.1 Preparing Weather Input Data Process 

Figure 3-82 is shown the initial configuration for the CMC server, including the bounding box, 

which is the bounding of the targeted domain simulation and is defined by two points, the top left 

and bottom right point, as shown in Figure 3-85.  

 

Figure 3-85 CMC Bounding Box Points 

The weather data inputs are collected from several URL paths, mainly derived from one main path 

such as Figure 3-78. After loading the domain set and generating and downloading all sub-paths, 

we have a set of girb2 files representing the forecasting weather input data. Afterward, we used the 

NetCDF Java library to extract and use GIRB2 files. The NetCDF implements the Common Data 

Model (CDM) to interface netCDF files to a variety of data formats (e.g., netCDF, HDF, GRIB) 
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and provides a higher-level interface to geoscience-specific features of datasets, in particular, 

providing geolocation and data subsetting in coordinate space [53]. Based on the selected domain, 

extract the data points from the grib2 files and generate WeatherData.txt as shown in Figure 3-87. 

 

Figure 3-86 Preparing Weather Data Input Collection Workflow. 



 

75 
 

 

Figure 3-87 Weather Data Input Collected from CMC GRIB2 

3.5.2 Synchronizing Input Data with Supercomputer Process. 

In this process, as Figure 3-89 shows, the first step is loading the connection configuration, which 

is saved locally in the middleware. After that, using the connection configuration to initialize the 

SSH session, then copying the input files to the server after, the input files sample shown in Figure 

3-88 is worth mentioning that the building_info.txt file maps the buildings by using the 

“building_osm” id, which is a unique id for each building, after that initialize the case individual 

log file on both remote servers and the local middleware device, as we mentioned previously that 

the library that middleware using is JSch implementation of SSH.  This SSH provides support for 

secure remote login, secure file transfer, and secure TCP/IP and X11 forwarding; the X11 

forwarding is a mechanism that allows a middleware to start up remote applications and then 

forward the application display to the local middleware machine. So in this way, we can also 

forward the display of the ongoing simulation case to the log file. The middleware every minute 

will check if the simulation is completed or not; this checking is achieved by listening to the log 

and waiting for a display from the remote server referring to the end of the simulation. 



 

76 
 

 

Figure 3-88 Automatic Forecasting System Integration, Building_info.txt 

 

 

Figure 3-89 Workflow of Synchronizing Data Input Collection with Backend Server 
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3.5.3 Synchronizing the Output with the Online Server Process: 

After the simulation is completed, synchronizing the output and deploying process start by copying 

the data result from the server to the local middleware device, then processing this result to generate 

the corresponding GeoJSON file. We have experimented with two solutions for the data result 

processing to get the most efficient result. 

The first solution was to analyze the data result and map between each row and the corresponding 

geometric building feature by using the “Building_osm_id” as a matching factor, to generate the 

GeoJSON file by converting result data values into color information, then save it in the database 

as result history as shown in Figure 3-92. In this solution, we have used Mapbox as a map provider; 

the final step is converting the GeoJSON file to a Mapbox tileset and using Mapbox CLI to deploy 

the tileset to the map provider. 

The second solution to process the result is generating the GeoJSON file without calculating the 

color information and processing the color information to the front-end implementation. The 

implementation of converting data result values to color information is discussed in Chapter 6. the 

second solution shows lower processing time and effective use of resources. 

 

Figure 3-90 Automatic Forecasting System Integration Result. 
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Figure 3-91 Synchronizing the Output Files with Online Server 

 

 

Figure 3-92 Data Result with Colors Information Representation for Result Values 

The real-time forecasting simulation result visualization can be uploaded directly to the dashboard.  

The visualization environment provides users with various tools to visualize real-time forecasting 

simulation results. The environment includes a real-time map. The map allows users to see how 
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events affect different regions of the world and provides users with information about the status of 

events. Figure 3-93 shows monitoring the result of the forecasting system on an interactive map; 

on the right side shows a “New Cases” tree; this tree represents the latest cases results; by clicking 

on any of the cases, the map navigates the view to the simulation target area and load the result 

variable and the time loop list.   

 

Figure 3-93 Online Monitoring the Forecasting of New Cases Simulation 

3.5.4 Sending Notifying Emails Process 

After processing and deploying the result and making the result available online, the automated 

forecasting system will send an acknowledgment of completion simulation for all the 

preconfigured emails, the Figure 3-94 below shows the Simple Mail Transfer Protocol 

configuration, with an email template and receiver emails list. 
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Figure 3-94 Middleware SMTP Settings UI 

 

Figure 3-95 Sending Notification Email Workflow 

3.6 Application Programming Interface (API) Integration Module 

 API integration is the connection between two or more applications. To perform a designed 

function built around sharing data and executing pre-defined processes via their APIs, that lets 

those systems exchange data. Through open standards, users can freely and quickly access 

thousands of real-time and archived weather, climate, and water datasets and integrate them into 

their domain-specific applications and decision support systems. The API integration module is 

providing an easy-to-use module in which the users can integrate and engage third-party API data 

sources and create interactive web maps and display and animate them. Many third-party APIs 

such as GeoMet-OGC-API provide public access to the Meteorological Service of Canada (MSC) 

and Environment and Climate Change Canada (ECCC) data and enable on-demand raw data 
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clipping and reprojection, on-demand format conversion, and custom visualization. The system 

provides an APIs Integration tool to import APIs data to the Map to enrich the data input and 

consider more resources, for example, to query the latest covid new cases and link it with a specific 

location in Figure 3-96 below the system querying from https://kustom.radio-canada.ca/covid-

19/canada. 

 

Figure 3-96 Example of API's Response Message, Covid New Cases in Canada 

The system supports integration with multi-API sources; each source represents by one link  

 

Figure 3-97 API Integration Module UI. 

The following figures show the configuration of linking with the radio Canada API request and 

summarize the configuration steps: 

https://kustom.radio-canada.ca/covid-19/canada
https://kustom.radio-canada.ca/covid-19/canada
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• Set the URL Link Figure 3-98 

• Set the Point latitude, longitude, and value attribute in the result tree. Figure 3-99 

In this way, added one point from one link to the system, and this point can be used as part of data 

preparation applications. 

 

Figure 3-98 API Integration Module, Link 

Configuration 1 

 

 

Figure 3-99 API Integration Module, Link 

Configuration 2 

The tool supports collecting multi points from one link and collecting multi-links from multi-API 

sources. 

 

Figure 3-100 API Integration, Points Settings 

The figure shows that after importing one data point from an external API to the map it becomes 

part of the system data source. 
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Figure 3-101 API Integration Module Result 

In Figure 3-98, we added a frequency update time; this feature is for future improvement to support 

real-time APIs Integration.  
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Chapter 4 

 

4.Performance Evaluation 

 

This chapter aims at evaluating the system platform and its operating status, and it focuses on 

evaluating the data input generation speed for a few urban-scale cases, visualization processing and 

rendering performance, and scalability of the system. The evaluation test performs on a PC with 

the following characteristics. 

Table 3 PC and Connection Characteristics. 

Processor Intel Core i7 8500U 

RAM 8 G 

GPU NVIDIA GeForce MX 150, 2Gbyte  

Internet Bandwidth  Download Speed 30 Mpbs, Upload 10 Mpbs  

 

4.1 Data Input Generation Speed Performance 

Using the modules explained in chapter 3, we can visualize two data sources: Imported GeoJSON-

based data source and map provider tile set-based data source. We evaluated generating the data 

input and 3D model on four huge city-scale area cases. The first case is in San Francisco city, which 

used an external GeoJSON data source, the second two cases are for Montreal city for both external 

GeoJSON and internal Tile set data sources, and the third is for Kingston city.  

The evaluation summary includes the following: 

• The total number of buildings is the total number of features extracted from the geometric 

data source and represents the layout of the building. 

• The extraction process is the map time response of querying the building features, and 

extracting the data from the map is the first step in the data input generation. 
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• The data generation speed is the time to process the dataset and generate the final set of files 

( building information file, domain settings file, geo features data file, 3D model file, and 

position setting file) Figure 4-1. 

 

Table 4 Speed Test Result for Three Cases of Data Input Generation.  

Case Montreal Montreal San Francisco Kingston 

Total buildings 314,237 314,237 208,663 32,503 

Extraction 

process 

1 sec 3.15 sec 1 sec 1 sec 

Generation speed 36.13 sec 35.91 sec 36 sec 4 sec 

Data size 1.31Gb 1.31Gb 875 Mb 127 Mb 

Area (m2) 2,710,701,087 2,710,701,087 270,531,291 384,204,956 

Data source Imported as 

GeoJSON 

Map provider 

tiles set 

Imported as 

GeoJSON 

Imported as 

GeoJSON 

 

    

 

As shown in the evaluation result, importing the GeoJSON data set locally is much faster than 

using the map provider tile set in extracting, processing, and generating the data files.  

 

Figure 4-1 The Generated Data Files List 

Table 5 Generated Data Files Description. 

 
We customized building information data input for the BES 

simulation. 
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Domain settings. Data input for the CFD simulation. 

 
Geospatial data for the extracted buildings were used in the BES 

visualization phase. 

 
3D model, Data input for CFD and BES simulation. 

 
The bounding box settings for the extracted area and used in CFD in 

the visualization phase. 

 

4.2 City-Scale Visualization Performance   

Using our system visualization support module to test the visualization performance for two cases, 

one for Montreal city and another one for Kingston City. In the visualization evaluation process, 

we used two processing color solutions. The first one uses Mapbox paint properties with a custom 

linear interpolation color range and is applied to the external GeoJSON data. At the same time, the 

second solution is Mapbox paint properties with prior calculating colors for each of the buildings 

in the layer data and getting the actual calculated color value without any interpolation for the tile 

set. The paint properties define how data for that data layer is styled, and the Mapbox Graphics 

Library (GL) applies these properties later in the rendering process for both painting solutions. 

The table below summarizes the performance testing result 

Table 6 Visualization and Data Processing Test for Three Use Cases. 

City Montreal Montreal Kingston 

Rendering system Mapbox GL, 

pre-calculated 

colors. 

Mapbox GL, 

linear 

interpolation 

colors range 

based 

Mapbox GL, 

linear 

interpolation 

colors range 

based 

Total buildings 314,237 314,237 32,503 

Parsing and colors 

processing 

~ 4 h 48 sec 5 sec 

Rendering process 1 sec 6 sec 1.5 sec 
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The table shows a significant time cost for parsing and processing colors and deploying the result 

to the map provider to be used as a tile set. The processing and deployment cost around four hours. 

This solution is suitable for static result visualization. In the visualization performance evaluation, 

we found that using Map provider paint properties with the range-based color linear interpolation 

and GeoJSON dataset is much faster than using the map provider tile with pre-calculated color in 

parsing and processing the colors-values sets. While in the rendering process, using the pre-defined 

colors illustrates faster rendering. 

4.3 Scalability Evaluation Summary  

This section summarizes the two scalability viewpoints that our system supports. The first is for 

the system developer who will extend system functionalities, and the second is for the system user.  

4.3.1 System Functions Scalability, from Development Viewpoint. 

The development scalability measures a system's ability to increase or decrease performance and 

cost in response to changes in application and system processing demands. Functional scalability 

is the ability to enhance the system by adding new functionality without disrupting existing 

activities. Our system is scalable on two levels, the back and front end. 

• Backend data source scalability: Two levels of data sources, the first one is provided by the 

Map provider, and the other one is from the IoT Niagara framework service that integrates with 

an external SQL database if required in a future upgrade. 

The example case studies below show the scalable data source in one of our system applications 

extended from continental countries, provinces and territories, cities, districts, and building scales. 

Alternatively, extending from a fewer details application to more details one. Case 1- Application 

for extending the USA to North America 
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Figure 4-2 Extending North America Data Source Development. 

• Backend services and devices integrations scalability: IoT Niagara framework as a 

development platform includes hardware and software. Niagara allows developers to extend 

many hardware modules by developing drivers through the Java language. It can also be paired 

with other industrial hardware and has control capabilities with the hardware. The strong 

compatibility of the Niagara platform is to provide the ability to integrate with different devices, 

sensors, and subsystems. Niagara's design aim is to integrate with all networks and protocols, so 

Niagara implements many protocols and communication methods for integration with other systems 

like oBix, MQTT, LDAP, SNMP, NTP, Modbus, BacNet, Cloud, and LonWorks. 

• Front-end data source layers scalability:  The front. is represented by the Vuejs framework 

component-based; moreover, it is flexible and scalable, and it can be used for vast, modular 

SPA (Single Page Apps), interactive parts to be integrated using a different technology. The 

system comprises one component and a sub-control panel with interfaces linked to the map 

system. A single-page application is an app that does not need to reload the page during its use 

and works within a browser such as Facebook, Google Maps, Gmail, Twitter, Google Drive, 

or even GitHub. All these are examples of a SPA. Vue is Web-components based, and the 

components are framework agnostic, which helps reuse and utilize components in projects based 

on different applications. This system has the power to standardize the development and 

consolidate a consistent and happy visual and functional experience for the users of applications.  

Components and widgets built on the Web Component standards will work across modern 

browsers and can be used with any JavaScript library or framework that works with HTML. 

This means more reuse, better stability, abstraction and standardization, less work, and 

everything else that comes with better modularity. 
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4.3.2 Geographic Usages and Applications Scalability the Use Viewpoint 

Geographic scalability is the ability to maintain effectiveness during expansion from a local area 

to a larger region. and reflects the ability the grow with the user's demands. The system can be used 

in a local area (city, town, suburb) or a more extensive region, such as a state, province, or country 

(statewide, regional/county-wide, national). Moreover, it provides indoor and outdoor urban-scale 

support solutions, allowing users to extend the studying cases, the locations, and the applications. 

The system shows data integration feasibility, visualization efficiency, and diversity in processing 

several data types for more significant support in environmental applications, different cases, and 

locations, such as Qatar, Kingston, Montreal, and San Francisco. For example, possible user 

scenarios. The user can import/export in various ways for different applications. For example case 

study it was an application for district-scale wind and temperature field and district-level annual 

building energy simulation for Marina district, the southern district of Lusail City in Qatar, for 

encountering significant urbanization. 

 
Figure 4-3 3D Model Generation and Visualization Functions of Annual Energy Performance 

Application, Marina District, Qatar. 
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Chapter 5 

 

5.Conclusion and Future Work 

5.1 Conclusion 

 

Here the problems that remained to be solved, problems encountered, and related requirements are 

summarized as follows: 

(1) The future of urban planning is inextricably linked to the future of the Internet of Things. At 

the same time, cities are complex systems with many moving parts - from geography to 

infrastructure; this makes data integration more challenging than ever before. 

(2) Urban modeling applications are complex fields requiring many data sources. The visualization 

and data integration requirements play an essential role in the success of these simulations. 

(3) Urban modeling applications require a high level of user knowledge to prepare data as input 

using different expert software. 

(4) At the city-scale level, Urban modeling applications are complex engineering calculations 

requiring much data to be processed. This data can be stored in different formats, which makes 

it difficult for the user to prepare it as input for the simulations.  

The research questions addressed in this thesis are as follows: 

(1) How can GIS enable efficient IoT usages to support multi-scale urban modeling applications 

and simplify the data collection preparation (pre-process stage) and visualization (post-process 

stage)? 

(2) How do we build a reusable, extendable, integrated framework that supports urban applications 

and enables future functionalities? 

In this thesis, by analyzing the problems encountered and related requirements, we leveraged the 

Niagara IoT framework and GIS integrations to build an integrated framework and developed many 

modules. These modules are for data preparation, creation, visualization, and integration, moreover 
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the real-time sensing systems, geographic information systems, and databases. These modules 

simplify the data integration process and make it easier to prepare. The visualization and data 

integration requirements can be simplified with the help of GIS and an easy-to-use integrated 

framework. 

5.2 Contributions 

We leveraged the scalable development frameworks IoT Niagara and VueJS to build this integrated 

framework; the system supports a high level of scalability, and to clarify the theoretical and 

practical importance, we categorize the contributions as follows: 

As Practical contributions, we provided Integration and implementation solutions for the 

following: 

• Implemented an automatic large-scale short-term forecasting BES service and integrated it with 

the Canadian Meteorological Centre (CMC) weather forecasting framework.  

• Weather station integration, which provided discrete real-time weather data for monitoring. 

• Provided an APIs Integration module to import APIs data to enrich the data input and consider 

more resources. 

• Implemented an urban simulations data generation support module. 

• Implemented additional support modules that enable extraction and generation of the input data 

for feeding the urban model applications. 

As theoretical contributions, we provided new solutions for old issues that are solved differently: 

• Solutions provided a clear scalable system architecture for measuring and controlling 

environmental systems. 

• Solutions helped to improve areas like scenario testing and strategic planning for urban 

planners and policymakers. 

• Solutions helped reduce the complexity of data input generation by exploring and solving data 

heterogeneity. 

• Solutions allowed the researcher to view the indoor and outdoor weather data (rain, solar 

radiation, wind speed, gust speed, wind direction, temperature, RH, dew point) in real-time 

tracking of the environment. 

• Solutions supported the environmental urban simulations applications, for example, supporting 

the response to known and unknowable risks, assessing the environmental consequences and 
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conditions of buildings, and enabling more effective management of urban-scale applications 

and simulation of environmental events. 

 

5.1 Future Work and limitations  

In this thesis, we primarily discussed supporting the applications of urban simulations at a multi-

scale, from indoor to the outdoor environment, from building-scale to city-scale as a whole, and 

from energy to health applications, concentrating on the pre-processing and post-processing stages 

of urban modeling. Including but not limited to the framework. 

1. This study does not delve into the different types of urban simulations, therefore more research 

and development are required to involve more stakeholders in supporting urban applications. 

2. Automated forecasting system even if a system works reliably today, that does not mean it will 

work reliably in the future. One common reason for degradation is increased load: perhaps the 

system has grown from 10,000 concurrent users to 100,000 concurrent users or from 1 million 

to 10 million. Perhaps it is processing much larger volumes of data than it did before. 

3. The system depends on the third-party map provider hosting the spatial data collection using 

the Mapbox processing tile CLI, the uploading and processing cost more money in larger cases. 

4. The system can still be improved in related software functions for supporting urban simulation, 

such as adding more data analysis methods and introducing more mathematical calculations by 

utilizing features of reusable and component-oriented development of this integrated 

framework. 

5. In the backend service and during processing the default system data collection, we got failures 

of processing tiles at the map provider service, which is the cause  because the size of the tileset  

("Job exceeded max allocated time"), so for larger cases we suggested decreasing the amount 

of the layer in each dataset file, that can make processing time shorter. 

6. The integrated framework can be used for real-time feeding input and the base for building 

WebGPU computing modules; WebGPU exposes an API for performing operations, such as 

rendering and computation, on a Graphics Processing Unit. Specifically, the GPU Compute has 

contributed significantly to the recent machine learning boom, as convolution neural networks 

and other models can take advantage of the architecture to run more efficiently on GPUs, so 

It’s highly suggested to engage the WebGPU API in future development. 
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