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Abstract  

Artificial Neural Network Modeling Approach for Elastic 

Plastic Stress and Strain Computation for Notched Components 

Mehrnoosh Kazeruni 

Fatigue assessment of notched components requires knowledge of elastic-plastic 

stress-strain responses at notch areas. Traditional elastic-plastic finite element analysis 

(FEA) is not computationally efficient, and approximation methods are not highly accurate. 

Therefore, the present study uses the integration of an artificial neural network (ANN) and 

finite element (FE) to predict elastic-plastic stress and strains at notch locations on the basis 

of an elastic FEA solution. To this end, two different Finite Element (FE) models were 

developed to generate hypothetical elastic and elastic-plastic stress and strain datasets for 

different hardening materials and load levels. The first FE model was based on an elastic 

deformation state, while the second one was under an elastic-plastic deformation state. The 

elastic stress data obtained from the elastic FE model was used as the input data, and the 

elastic-plastic stress-strain data from the nonlinear elastic-plastic FE model was utilized as 

the output data. Subsequently, the ANN was trained for the dataset to establish a relationship 

between the input and output data. The dataset fed to the ANN model was then divided into 

three groups: training, verification, and testing. The training data was used for the ANN 

learning algorithm to attain the desired accuracy by obtaining the hyperparameters of the 

model. Subsequently, the verification data was employed to evaluate chosen 

hyperparameters and make adjustments of the hyperparameters to determine optimum 
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results, and in the last stage, the generalizability of the model was examined by the testing 

data. The predicted stress-strain results showed that the developed ANN model is able to 

accurately and efficiently predict elastic-plastic stress and strain for the notched body using 

only the elastic FEA solution. The developed ANN-FE methodology could efficiently 

estimate elastic-plastic stresses and strains for notch bodies with varying material hardening 

properties and load levels. 
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Chapter 1  

Introduction 

1.1 Background  

Many mechanical components contain notches due to their design requirements. High 

stress and strain concentrated locally at notches induce local plastic deformations, which can 

lead to fatigue failure. As a result, precise stress and strain estimations in the vicinity of notch 

locations are required for reliable fatigue life analyses of notched components. Many notched 

components are subject to multiaxial loadings (combined tensile and torsional loadings) to 

induce complex elastic-plastic stress and strain responses at notches [1]. Finite Element 

Analysis (FEA) is widely used as a numerical approach to compute stress and strain 

responses for notch components under an elastic-plastic state. However, FEA is considered 

a computationally intensive and time-consuming method for structural components under 

long load histories. Therefore, notch approximation approaches have been developed to 

determine elastic-plastic stress and strain around the notch root [2].  

The Neuber rule is a well-known analytical notch approximation [1]. Based on the 

Neuber rule, the total fictitious strain energy density under an elastic state of the notched root 

is equal to the total strain energy density under an elastic-plastic state, as schematically 

shown in Figure 1(a). The total strain energy includes the strain energy and the 

complementary strain energy density. The formulation of the Neuber rule for a notched body 

under the uniaxial loading can be expressed as Eq. (1) [3]:  
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𝜎𝑒𝜀𝑒 = 𝜎𝑎𝜀𝑎 (1) 

where 𝜎𝑒  and 𝜀𝑒 are stress and strain at the notch root, respectively, assuming that the 

material behavior is hypothetically elastic. 𝜎𝑎 and 𝜀𝑎 are corresponding to actual elastic-

plastic stress and strain. The Neuber rule was extended by Topper et al. [4] to predict stress-

strain for different notched geometries subject to cyclic uniaxial loading. Molski and Glinka 

[5] presented an equivalent strain energy density (ESED) method as formulated in Eq. (2) to 

estimate the elastic-plastic stress and strain at the notch root. The ESED method suggested 

that the strain energy density computed using elastic assumption equals the actual elastic-

plastic strain energy density under the same loading conditions as illustrated in Figure 1(b). 

Glinka [6] later improved the ESED method for cyclic uniaxial loading states.   

  

1

2
𝜎𝑒𝜀𝑒 = ∫ 𝜎𝑎𝑑𝜀𝑎

𝜀𝑎

0

 (2) 
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Figure 1. Graphical representation of (a) the Neuber rule and (b) the ESED method [1] 

Sharpe et al. [7] evaluated the Neuber rule and the ESED method for various notched 

components. The authors suggested that the Neuber rule could be practical for notched 

geometries under a plane stress state. However, in case of a large constraint in the boundary 

condition, the ESED approach should be employed. 

 Hoffmann and Seeger [8] presented a new notch approximation method under 

multiaxial loading conditions by taking equivalent stress and strain into account as expressed 

in Eq. (3).    

 

𝜎𝑒𝑞
𝑒 𝜀𝑒𝑞

𝑒 = 𝜎𝑒𝑞
𝑎 𝜀𝑒𝑞

𝑎  (3) 

 

where 𝜎𝑒𝑞
𝑒  and 𝜀𝑒𝑞

𝑒  are equivalent elastic stress-strain responses and 𝜎𝑒𝑞
𝑎  and 𝜀𝑒𝑞

𝑎  are the 

actual equivalents of elastic-plastic stress and strain.  
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Singh [9] suggested two different methods to calculate the stress and strain of notched 

components under non-proportional loadings based on an incremental elastic-plastic 

relationship of the ESED method and the Neuber rule. Singh assumed that increments of the 

strain energy density of notched components under the elastic-plastic state are equal to 

increments of strain energy under a fictitious elastic state. The author presented estimated 

stress and strain results based on the increments of strain energy and concluded the terms 

were in fair agreement with FEM and experimental data.  

Ye et al. [10] modified the ESED method by taking the stored and heat energy into 

account. In the modified form of the ESED method, the heat energy was regarded as 

dissipation, and the stored energy was defined as a contribution to stress-strain results under 

monotonic and cyclic loading.   

 Later, stress-strain notch approximation methods have been proposed on the basis of 

the notch-plasticity correction approaches in order to predict stress and strain for notched 

components subject to multiaxial loadings [11-14].  Ince and Glinka [15-17] proposed a 

stress-strain notch approximation model using the incremental deviatoric for the modified 

Neuber rule under multiaxial loadings. The predicted results were compared with FEA 

numerical datasets to evaluate the accuracy of the model. The results showed that the 

presented model for determining elastic-plastic data and the fatigue damage parameter were 

in good agreement with the experimental data for notched shafts under proportional and non-

proportional loadings.   

 A number of stress-strain notch approximation models have been proposed in recent 

years as an alternative to the computationally intensive FEA; however, those approximation 

methods have not been proven to be successfully applied for different materials and load 
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cases. Therefore, a more generalizable approach is required to efficiently predict local stress-

strain for notched bodies made of different materials and subject to varying loading 

conditions. The present study proposes a generalizable efficient computational methodology 

based on the integration of FEM and Artificial Neural Networks (ANNs) to accurately 

estimate the elastic-plastic notch stress and strain fields on the basis of the elastic FEA 

solution. However, the proposed approach includes some limitations. The developed ANN 

model can not predict elastic-plastic stresses and strains for the notched component subjected 

to cyclic loadings, additionally, the presented ANN model is not a robust model in case of 

extrapolation.  

1.2 Artificial Neural Network Approach  

      Neural Networks (NNs) are one of the most frequently used algorithms to 

recognize patterns in data. Well-designed NN algorithms including Artificial Neural 

Networks (ANNs), Recurrent Neural Networks (RNN), and Convolutional Neural Networks 

(CNN) are employed to make function approximations and classifications based on the usage 

of data. The ANN is a computational approach inspired by the function of the human brain. 

This approach is mainly beneficial for addressing regression problems and function 

approximations in cases where there are nonlinear relationships in datasets [18]. The CNN 

is an algorithm mainly used for image classification, computer vision, and object recognition 

[19]. CNN is built based on the image-based data, in which image pixels can be considered 

as tensors, and changed to numerical data to maintain the spatial structure of datasets [20]. 

CNN algorithms are comprehensively applied in the field of medicine; however, they have 

received significant attention in various areas outside of medicine as well [21]. The RNN is 

the most advanced type of neural network algorithm, equipped with memory and the capacity 
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for self-learning [22]. In the present study, an ANN approach has been adopted due to the 

regression nature of the problem [23].  

The ANN is a robust algorithm for finding complex patterns between numerical input 

and corresponding output data. The schematic view of an ANN model with one input layer, 

two hidden layers, and one output layer is illustrated in Figure 2. Each layer may have a 

different number of neurons (𝑥𝑖) and each neuron in the previous layer is interconnected with 

the neurons of the next layer. Each connection between neurons is assigned a weight (𝑤𝑖𝑗), 

which is a positive value between 0 and 1. Choosing a large value for weight causes high 

activation of the neuron and leads to an increase in the influence of that neuron on output[23]. 

The output of a specific neuron is calculated after multiplying each input with its 

corresponding weight (𝑥𝑖𝑤𝑖𝑗). In the next stage, the sum of activated neurons is added to the 

bias (𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗). Then, the calculated value is fed to the neuron in the first hidden layer as 

the input. The process continues for the next layer(s) to transfer the determined value to the 

output. The initial step in training a model is the preparation of data. All data fed to the ANN 

is normalized to arrange between 0 and 1. Normalization of data avoids the problem of 

dominating the training process with a large dataset value. In the ANN structure, the data is 

divided into three groups: training data, verification data, and testing data. Training data is 

used in the abovementioned process to achieve desired values for hyperparameters (e.g., 

weights and biases). Verification data is employed to determine whether the chosen weights 

and biases can account for verification of data. Subsequently, the generalization of the model 

must be considered using unseen new data (i.e., testing data); in other words, data is not used 

for training or verification of the ANN model.  
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Figure 2. A schematic view of a general multilayer ANN 

Hyperparameters such as the number of neurons, the number of hidden layers, 

activation functions, epochs, and learning rate must be carefully selected to produce a 

well-trained ANN model. Possible activation functions include linear function, 

Rectified Linear Unit (ReLU), sigmoid function, and Tanh. 

 

• Linear function 

A linear function (Eq. (4)) is an inappropriate choice for an ANN model as the ANN 

cannot improve a loss function. This is because the same gradient constant is used in 

each iteration. Linear functions can be used for simple tasks in which there are no 

complex relationships between the input and output data.  

 

𝐹(𝑥) = 𝑎x (4) 

 

• Rectified linear unit function: 
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One of the most popular activation functions is the rectified linear unit (ReLU), created 

from two linear functions. A key feature of ReLU is that a neuron is activated when the 

output of linear transformation is more than zero, and deactivation occurs for a value less 

than zero. 

𝐹(𝑥) = max (0, 𝑥) (5) 

 

• Sigmoid function  

The Sigmoid function is an S-shaped nonlinear function that maps the range of values 

between 0 and 1, as shown in Eq. (6) [24].  

 

𝐹(𝑥) =
1

𝑒−𝑥
 (6) 

 

• Hyperbolic tangent function  

The hyperbolic tangent function (Tanh) is similar to the Sigmoid function as shown in 

Eq. (7); however, the slope is steep, and the output range is between -1 and 1. The Tanh 

function is preferred over the Sigmoid function because negative inputs are transformed into 

negative values [14].   

 

𝐹(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (7) 
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In the present study, ReLU is a chosen activation as it is non-linear and has the solving 

potential in the case of regression problems. ReLU contains a simple formulation that allows 

for less intensive computation and drives it to an efficient activation function. The ANN is 

trained on fed data, and the hyperparameters are adjusted during training; however, the 

accuracy of the model must be evaluated. Accuracy is assessed by calculating the differences 

between the predicted data and the output data with a loss function. Mean square error (MSE) 

is a widespread error function for assessing the performance accuracy of the ANN model, as 

expressed in Eq. (8). 

 

MSE= 
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (8) 

 

 Subsequently, weights and biases are evaluated and updated on the basis of error 

gradients if the calculated MSE is not satisfactory. In other words, adjustment of weights and 

biases is repeated iteratively to minimize MSE function. The learning rate is another 

hyperparameter to control the training speed, and ranges between 0 and 1. If the selected 

learning rate is too low, the ANN model cannot converge to the optimal point, and once it is 

assumed to be a large number, gradient exploding occurs [20,23]. Therefore, the learning 

rate should be chosen carefully.  

 

1.2.1 The application of ANN 

The ANN is an efficient algorithm for extracting complex patterns between inputs and 

outputs and establishing full relationships between nonlinear data. The ANN is employed in 
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different fields such as healthcare, stock market, and defense, in addition to various 

engineering applications. As for solid mechanic applications, Haque and Sudhakar [18] 

employed an ANN to estimate the fracture toughness of micro-alloy steel on the basis of 

experimental data. Kusiak and Kuziak [25] developed an ANN model to predict the 

mechanical properties and microstructure of steel. The model was trained on experimental 

data, and the proposed results were verified with the experimental data to validate the 

accuracy of the model. 

In recent years, the ANN has become one of the most promising machine learning 

algorithms to predict fatigue life. This is attributed to the fact that the ANN is a powerful 

approach to non-linear problems, and nonlinearity is a noticeable fatigue feature. ANN 

models can be developed to predict fatigue parameters in different cases, such as fatigue 

load, fatigue life prediction, and fatigue crack [26]. The ANN model can determine fatigue 

life directly and indirectly [27], which means that fatigue life can be defined as a variable in 

the ANN structure, or it can be calculated using defined fatigue life parameters in the ANN 

structure. Maleki et al. [28] presented an ANN model to predict the fatigue life of carbon 

steel in order to assess the effect of shot peening treatments on fatigue life. Shot peening 

parameters were considered as the input data, and fatigue life was defined as the output 

variable. Yen et al. [29] also directly used the fatigue life in an ANN model structure to 

predict an asphalt mixture fatigue life by defining it as an output variable in the data structure. 

Researchers have also developed ANN models to predict fatigue life indirectly based on the 

defined parameters in the ANN data structure. Genel [30] investigated the ANN model to 

indirectly estimate the fatigue life of steel by employing material properties.  
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    Fatigue crack is another  subset of fatigue that can be calculated by employing ANN 

algorithms. Researchers [31-32] developed ANN models to estimate the opening load in a 

crack. Mortazavi and Ince [23,33-34] used the ANN approach to obtain fatigue crack growth 

rates in short and long cracks. The authors also determined the J-integral by developing a 

robust ANN model. Actual elastic-plastic stress and strain were predicted around the crack 

under monotonic loading, and subsequently, J-integral was calculated by extracting data 

from the predicted results.  

The ANN approach is also used in predicting the fatigue life of composite material. 

Bezazi et al. [35] employed an ANN to predict the fatigue life of a sandwich composite, and 

obtained the accuracy of the model by employing unseen data. El Kadi and Al-Assaf [36] 

used strain energy in input data to predict the fatigue life of a component made of composite. 

The authors evaluated the accuracy of the approach by comparing the predicted results with 

another ANN model in which strain energy was calculated indirectly based on the defined 

variables in the ANN model.   Results were more accurate when the strain energy was used 

as the variable in the model.  

 

1.3 The neural network limitation 

The ANN is developed to extract the interrelated patterns between input and output 

data; however, it has certain limitations. Depending on the problem to be solved, its 

limitations can influence the predicted results [37]. Poor extrapolation, overfitting, and data-

hungriness are examples of such limitations [22].  
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 The ANN is an effective method in the case of interpolation within the training data. 

However, extrapolation implementation is inefficient outside the fed data [38]. Mortazavi 

and Ince [23] presented poor extrapolation capability of the ANN model to predict short 

fatigue crack propagations. Other researchers have also reported that the ANN model 

performs weakly outside the training range [39-42]. However, the ANN estimation can be 

improved through utilizing a large number of experimental data in the structure of datasets. 

In a study conducted by Christiansen et al. [38], the training data was determined to include 

a wide range of data. This extraction of input and output data assures that they represent 

quantifying nonlinearity. Another approach to enhance the extrapolation prediction 

capability of ANN models is the integration of a physics-based model and numerical data 

[42]. In order to do so, both experimental and analytical data are used to obtain a well-

structured dataset [43-44].  

Overfitting and underfitting are regarded as challenging problems for the development 

of ANN models [45]. When overfitting occurs, the model predicts well for the training data, 

but a poor estimation performance is provided for the test data. Poor generalization causes 

overfitting and underfitting [46]. In other words, Overfitting happens when the difference 

between the training and test errors is too high. Figure 3 shows three training cases in which 

cases one and two are related to poor learning, while case three illustrates a well-trained 

model.  
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Figure 3. Visual demonstration of underfitting, overfitting, and ideal balance [47] 

One method to avoid overfitting in the ANN model is dividing data into training, 

verification, and testing data sets [48-51]. The MSE function is then employed to assess 

training and verification of data accurately. The value of MSE for training and verification 

data should decrease to avoid overfitting.  

 

Figure 4. Schematic view of a dataset divided into training, verification, and testing data 

sets  

Another method used to avoid overfitting is cross-validation. It involves dividing the 

data into groups and repeating the training phase, with each group serving as a validation set. 

The best hyperparameter combination is determined by averaging the results of all trainings. 

Cross-validation is an effective method for small datasets, but it is rarely used in deep 

learning due to its high computation complexity[20]. 
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Figure 5. A visual example of cross-validation  

1.4 Outline 

This research hypothesized that the ANN is a powerful developer in finding nonlinear 

patterns between elastic stress data and elastic-plastic stress-strain data subject to multiaxial 

loadings. This approach is inspired by the Neuber rule to predict nonlinearity behavior at the 

notch root solely based on the elastic stress state. However, in the Neuber rule, both elastic 

stress and strain were used to estimate elastic-plastic stress and strain.  

In the present study, the integration of FE-ANN is used for predicting the local stress-

strain of a notched component subject to multiaxial loadings. The ANN is employed to 

develop a function that can predict the stress and strain at the notch surface. The ANN is a 

data-based approach that requires adequate data for finding algorithms in order to map elastic 

stress data to elastic-plastic stress-strain responses. Therefore, two different FEMs are 

defined to feed the ANN model. The FEM package of ANSYS APDL is employed to extract 

FE data.  The first FE model is under elastic deformation state, and the second FE model is 

subject to elastic-plastic deformation state. Elastic stress data is extracted from the first 

model and fed to the inputs of the ANN model. Subsequently, elastic-plastic data obtained 

from the second FE model is used as the output. The data is split into three groups: training, 

verification, and testing data. The ANN model is trained on the training data to obtain the 
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desired combination of hyperparameters for the ANN model. The verification data is 

employed to ensure that the combination of hyperparameters is correctly chosen. In the last 

stage, the model is tested with unseen data to assess the model for generalization. Three test 

configurations defined for the test data involve materials with different hardenings and 

various loadings on the basis of interpolation and extrapolation of data. The predicted results 

for three configurations are compared with the elastic-plastic FE data under the elastic-plastic 

state.  

1.5 Thesis layout  

This thesis is investigated in manuscript style in accordance with “Thesis Preparation 

and Thesis Examination Regulations (version-2022) for Manuscript-based Thesis” published 

by the Concordia University School of Graduate Studies. 

Chapter 1 introduces the problem, including background, literature review, and problem 

definition.  

Chapter 2 includes the Artificial Neural Network Modeling Approach for Elastic-Plastic 

Stress and Strain Computation for Notched Components.  

Chapter 3 discusses the conclusion of the study and proposes future research.  
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Chapter 2  

Artificial Neural Network Modeling Approach for Elastic 

Plastic Stress and Strain Computation for Notched Components 

2.1 Introduction 

Fatigue failure is one of the most common failures encountered in many different industries, 

such as automotive, aerospace, defense, and construction industries [52]. Stress and strain 

determination is essential to assessing fatigue performance and residual life of structural 

components under service loading conditions. Additionally, various notch shapes emerge in 

the geometry of engineering components due to different design features and applications. 

Those components are mainly subjected to cyclic multiaxial loadings. Notched components 

under multiaxial loading experience complex stress and strain responses at those locations. 

Subsequently, local plastic deformation could occur due to high stress concentration at the 

notch area. Therefore, the non-linear elastic-plastic stress and strain responses of components 

at the notch area and its vicinity need to be determined so as to assess the structural integrity 

of notched components. The Finite Element Method (FEM) can be a strong numerical 

method for calculating elastic-plastic stress and strain of notch components. However, the 

FEM is an inefficient approach for complicated engineering problems in case of long time 

histories, load sequences, and design complexity. Accordingly, practical approximation 

methods are required to calculate stresses and strains at the notch area. [1].  
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The Neuber rule is a well-known approximation method for calculating elastic stresses 

and strains of notch components under uniaxial loading [1]. Based on the Neuber rule, the 

total strain energy density of the elastic-plastic component is equal to the total strain energy 

density of components in which the behavior of the material remains elastic beyond the yield 

point [3]. The Neuber rule was extended by Topper et al. [4], and the modified approach 

supports various notch geometries under cyclic uniaxial loadings. The equivalent strain 

energy density (ESED) method was proposed by Glinka and Molski [5]. Based on the ESED 

method, the actual elastic-plastic strain energy and pseudo strain energy are equal. Later, the 

ESED method was extended by Glinka [6] to account for cyclic uniaxial loadings. The 

Neuber rule was compared with the ESED method by Sharpe et al. [7]. Based on the 

comparison, the Neuber rule is efficient if there is plane stress, and the ESED method is 

efficient if there are considerable constraints in boundary conditions. Hoffman and Seeger 

[8,53] suggested using the equivalent stress in the Neuber rule to be applicable for multiaxial 

proportional loadings. Barkey [54] employed anisotropic plasticity theory to suggest a 

structural yield surface method for a notched bar under proportional and nonproportional 

multiaxial loading. A structural yield surface method was later improved by Koettgen et al. 

[55] by integrating the assessment of material governing equations in their calculation. Singh 

[9] proposed modifying the Neuber rule and the ESED method based on an incremental 

relationship between the strain energy of the elastic-plastic component and the strain energy 

of the fictitious elastic component under monotonic nonproportional loadings. Moftakhar 

[56] improved the Neuber rule and the ESED method for proportional loading by 

determining the upper limitation. A good agreement was observed for predicted strains and 

stresses with experimental and FEM data at the root of the notch. Researchers also used a 
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deviatoric interpretation of the Neuber rule to increase the accuracy of predicted results.  Ince 

and Glinka [15-17] suggested a stress-strain notch approximation model based on the 

incremental deviatoric for the modified Neuber rule for notched shafts under proportional 

and non-proportional loadings. Predicted results were compared to FEA numerical datasets, 

revealing that the presented model for determining elastic-plastic data and the fatigue 

damage parameter agree well with experimental data. 

Artificial Neural Networks (ANNs) are computational machine learning algorithms. 

Relationships among nonlinear datasets are established by developing ANNs. ANNs have 

been applied by researchers in diverse fields, including stock market estimation, healthcare, 

material science [57-58,30], fracture mechanics, and fatigue failure. ANNs were employed 

to predict mechanical material properties [59] and the stress-strain curve of materials [60] in 

the field of material science. Anijdan et al. [61] used the integration of ANN and genetic 

algorithms to investigate the optimal model of Al-Si casting alloy with the minimum porosity 

percentage. Hajializadeh and Ince [62] used an ANN to predict the residual stress field of 

additively manufactured components.  

ANNs were used in various subsets of fatigue failure [63-68]. Artymiak et al. [58] 

employed the ANN approach to predict the S-N curve which determines a number of cycles 

to failure. Eventually, the authors estimated the fatigue limit of materials using the ANN 

approach. In their approach, the ANN model was trained with efficient data from a large 

assortment of materials. Genel [30] proposed an ANN model to predict strain life fatigue 

properties using fatigue parameters. The author used a wide range of materials to obtain a 

well-structured dataset. Mortazavi et al. [33-34] developed ANN models to predict fatigue 

crack growth rates for short and long-crack regimes. Also, Mortazavi and Ince [23] 
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developed an ANN model to predict elastic-plastic stress, strain, and deformation fields 

around the crack tip in order to calculate the J-integral. El Kadi and Al-Assaf [36] proposed 

an ANN model to predict the fatigue life of composite laminates in different conditions, such 

as various stress ratios and angles of laminated composite.   

Furthermore, Convolutional Neural Network (CNN) algorithms have received 

remarkable attention as machine learning algorithms. CNNs are precisely used for image 

recognition and processing pixel data [69], which means that CNNs are employed mainly 

when images serve as the input and output data. These images are analyzed and transformed 

into a numerical format using robust CNN algorithms. CNNs are, therefore, quite useful in 

various fields of solid mechanics. Zhan et al. [70] developed a model of life component 

prediction under three different conditions: creep, fatigue, and creep-fatigue. Deep CNN was 

also employed by Kamiyama et al. [71] to predict the microscopic image of fatigue cracks 

after low-cycle fatigue. A Recurrent Neural Network (RNN) is another machine learning 

algorithm in which sequential data is used in the structure of a dataset. RNN is mainly used 

when problems are affected by the time [25]. It means that the RNN performance depends 

on the time histories of variables in order to determine the relationships among inputs at any 

given time. Subsequently, nonlinear relationships are established between input and output 

data sequences [39]. In the present study, an ANN is selected as a potential machine learning 

algorithm for numerical input and output data. However, a CNN could be used in future 

studies by changing the form of data to stress and strain distribution contour images in the 

vicinity of the notch.  RNN can also be employed in future studies by changing monotonic 

loading to cyclic loading.      
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This paper proposes a new notch elastic-plastic stress and strain approximation method 

by integrating the FEM and ANN models on the basis of the linear elastic FE solution. The 

integrated FE-ANN methodology is developed to find a relationship between elastic and 

elastic-plastic responses of a notched shaft under multiaxial loadings. Based on the results of 

the present study, the fictitious stress of elastic components and material properties can be 

employed as variables in the input data structure to efficiently predict the actual stress and 

strain of elastic-plastic components. Therefore, two different FE models are developed under 

elastic and elastic-plastic solution states. Stress and stress-strain data obtained from the 

elastic and elastic-plastic FE models, respectively are fed into the ANN to predict actual 

stress-strain components. The presented approach is able to predict stress-strain results for 

notched components with various material hardenings and varying loadings.  

 

2.2 Modeling Methodology  

In the present project, an ANN approach can be used as a prediction function to 

determine the relationship between elastic and elastic-plastic solutions of the FE models as 

expressed in Eq. (9) [2]. The ANN model will use both FE elastic stresses at notch root and 

material properties as input data to predict elastic-plastic stresses and strains at notch area. 

Vector M in Eq. (9) involves material properties for the elastic-plastic material.  

[𝜎𝑒𝑙,𝑝𝑙 𝜀𝑒𝑙,𝑝𝑙] = 𝑓(𝜎𝑒𝑙, 𝑀) (9) 
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Neuber considered a notched component subject to shear stress to determine whether 

the total strain energy density of a notched component under an elastic-plastic state is equal 

to the total energy of the same component under an elastic state [3]: 

𝜎𝑒𝑙,𝑝𝑙 𝜀𝑒𝑙,𝑝𝑙 = 𝜎𝑒𝑙, 𝜀𝑒𝑙 (10) 

Comparing Eq. (9) and Eq. (10) illustrates that the Neuber rule can be defined by Eq. 

(9). The presented ANN model can predict elastic-plastic stress-strain results of a notched 

component under varying multiaxial loadings based on elastic stress data. Using material 

properties in variables of the presented study improves the ANN model applications; 

however, the Neuber rule is limited to one material and case of loading. The proposed ANN 

model is inspired by notch approximation methods, while it is not limited to a specific 

loading and material.   

Figure 6 illustrates the schematic view of transforming elastic data to elastic-plastic 

data. The ANN is able to find algorithms between elastic data and elastic-plastic data. 

Therefore, the ANN is trained on data to predict elastic-plastic stress-strain data based on 

elastic solutions.  

Two discrete FE models are developed in the initial step to generate stress and strain 

data under elastic and elastic-plastic states. Subsequently, stress-strain analysis data from the 

notch area is extracted to obtain the input and output data of the ANN model. The FEA 

datasets are generated under different loading conditions and various material hardening 

cases to provide sufficient datasets for the development of the generalized ANN model to 

account for the variation of multiaxial loads and material properties. In the next step, the 

dataset is split into training, verification, and testing data. Training data and verification data 
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are used to train the model and achieve the desired combination of hyperparameters in the 

ANN model. Testing data, on the other hand, is employed to examine the proposed ANN 

model in case of generalization and accuracy of predicted elastic-plastic stresses and strains.   

The obtained stress data (𝜎𝑒𝑙) of the elastic FE model and vector (M) are fed into the 

ANN model as inputs. Stress-strain data (𝜎𝑒𝑙,𝑝𝑙 𝜀𝑒𝑙,𝑝𝑙) under an elastic-plastic state are used 

as outputs. Vector M contains two variables of  𝑘′ and 𝑛′ extracted from the Ramberg-

Osgood equation:  

𝜀𝑒𝑙,𝑝𝑙 =
𝜎𝑒𝑙,𝑝𝑙

𝐸
+  (

𝜎𝑒𝑙,𝑝𝑙

𝐾′
)𝑛′

 
(11) 

 

where 𝑘′ and 𝑛′ are the cyclic hardening coefficient and cyclic hardening exponent, 

respectively, and E is Young’s modulus [72]. 

    The ANN model is trained, and eventually, the generalizability of the model is found 

by using verification and testing data. In the last step, the predicted elastic-plastic stresses 

and strains are compared with elastic-plastic FE data to examine the accuracy of the ANN 

model.   
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Figure 6. Mapping elastic data to elastic-plastic data 

 

 

2.2.1 Finite Element modeling 

 ANSYS Parametric Design Language (APDL) is employed to extract elastic and 

elastic-plastic stress-strain analysis data around the notch area in order to feed the ANN 

model. APDL codes are used to create FE models, run FE analyses, and extract data for the 

ANN model. The code files include design parameters such as geometrical dimensions, mesh 

size, material properties, and loading information. The codes involve post-processing coding 

to extract stress and strain data around the notch root.  

A notched shaft made of SAE 1045 steel under monotonic multiaxial loading is 

modeled. Two different types of loading are applied to the notched component: tension force 

and torque. In the first FE model, the material has a linear behavior based on Hook’s law 
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[73], whereas, in the elastic-plastic FE model, the material obeys Ramberg-Osgood’s law. 

M-2 is the material chosen to determine stress and strain, as illustrated in Figure 9. 

3-D 8-node solid elements were used to mesh the notched shaft. Additionally, fixed 

support was selected for the boundary condition. The dimensions of the model, boundary 

condition, loadings, and generated mesh are shown in Figure 7. The radius of notch is 2 mm 

and the diameter of the shaft is 20 mm. The most common type of notch size is selected[16-

17]. The size of mesh in the body of the shaft is 1 mm however it decreased to 0.125 mm at 

the surface of the notch to improve the accuracy of FEM results.  
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Figure 7. (a) Schematic geometry of the notched bar FE model subject to tension and 

torsion loadings; (b) FE model mesh 

 

The notched shaft has a 2D stress state under multiaxial applied loadings. Plane stress 

is present owing to the traction-free surface at the notch shown in Figure 8. Accordingly, 

there are three stress components and four strain components on the notch surface. The stress 

state includes two normal stresses and one shear stress. Subsequently, the strain state 

involves three normal strains and one shear strain [1].  
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Figure 8. Multiaxial stress and strain state at the notch root for the component under 

multiaxial loading 

In the present study, SAE 1045 was used as a base material (M-2) to build the FE 

model as illustrated in Figure 9. Then, Ramberg-Osgood constants ( 𝑘′ and 𝑛′ ) of the base 

material (M-2) were varied to obtain different hardening behaviors of synthetic materials. 

Nine fictitious materials were defined in the present study based on Eq. (11). In order to do 

so, 𝑘′ (1258 MPa) and 𝑛′ (0.3) of (M-2) were transformed to new values to generate sufficient 
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materials to feed the ANN model. The mechanical properties of generated materials were 

used in the elastic-plastic FE model to determine the output data of the ANN model. 

Materials obtained by Eq. (10) are shown in Figure 9, and their respective mechanical 

properties are illustrated in Table 1.  

 

Figure 9. Cyclic σ-ε curve of materials based on Ramberg-Osgood law 
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Table 1. Monotonic and cyclic material properties of synthetic materials. 

 Young’s modulus, 

E (MPa) 

Poisson’s ratio, 

𝜐 

Cyclic strength 

coefficient, 𝐾′(MPa) 

Cyclic hardening 

exponent, 𝑛′ 

M-1 202,000 0.3 1383 0.22 

M-2 202,000 0.3 1258 0.20 

M-3 202,000 0.3 1069 0.17 

M-4 202,000 0.3 1006 0.16 

M-5 202,000 0.3 943 0.15 

M-6 202,000 0.3 880 0.14 

M-7 202,000 0.3 817 0.13 

M-8 202,000 0.3 725 0.12 

M-9 202,000 0.3 691 0.11 

M-10 202,000 0.3 629 0.10 

 

Nine load cases (force and torque) were defined based on monotonic loads, as shown 

in Table 2. The assumption to select loadings was that around 30% of equivalent stresses 

exceed the yield point under applied loadings in FE models.   
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Table 2. Load cases 

 

 

The elastic stress and elastic-plastic stress-strain data were extracted from FE models. The 

integration of FEM and ANN was used to predict actual stress-strain at the notch surface. 

Therefore, FE data of the notch region was extracted from a quarter of the notch surface 

because of a symmetric geometry used in the study (Figure 10).  

loading 

Load 

case 1 

Load 

case 2 

Load 

case 3 

Load 

case 4 

Load 

case 5 

Load 

case 6 

Load 

case 7 

Load 

case 8 

Load 

case 9 

Force 

(N) 

40000 41600 43200 44800 46400 48000 49600 40800 51200 

Torque 

(N.mm) 

150000 156000 162000 168000 174000 180000 186000 153000 192000 
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Figure 10. A quarter of the notch surface 

 

 

2.2.2 The Artificial Neural Network Structure  

ANN is developed to establish nonlinear relationships between the input data of 

hypothetical elastic stresses and the output data of actual elastic-plastic stresses and strains 

for different materials and various multiaxial load levels. Well-structured datasets are 

required to feed the ANN model in order to accurately determine the relationships among 

given data. The schematic view of the ANN model with one input layer, two hidden layers, 

and one output layer is shown in Figure 11. 
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Figure 11. Structure of ANN  

 

The training process begins by feeding the input layer with prepared input data. 

Assuming that the input data is introduced as 𝑥𝑗, the input layer contains n neurons which 

are multiplied by a particular weight (𝑤𝑖𝑗). Weights are numbers ranging from 0 to 1. A 

higher weight value indicates that a specific neuron is highly activated and significantly 

affects the output. Bias ( 𝑏𝑖
ℎ𝑖𝑑 ) is added to the summation of  𝑤𝑖𝑗𝑥𝑗  to modify generated 

values on the basis of Eq. (12). Each layer has an activation function and is chosen based on 

the proposed problem. The final output of each layer is activated with the new weight, and 

the process continues for each hidden layer to transfer data to the output layer. 
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𝑦𝑖 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑗 +  𝑏𝑖
ℎ𝑖𝑑

𝑛

𝑗=1

) (12) 

 

 In the present paper, input layer contains five variables therefore there are five neurons 

in the input layer: three elastic stress components (𝜎𝑦𝑦
𝑒𝑙  , 𝜎𝑧𝑧

𝑒𝑙, and  𝜎𝑦𝑧
𝑒𝑙 ) and two materials 

properties (𝑘′ and 𝑛′)  extracted from Eq. (11) 

𝑥𝑗 = (𝜎𝑦𝑦
𝑒𝑙 , 𝜎𝑧𝑧

𝑒𝑙 , 𝜎𝑦𝑧
𝑒𝑙 , 𝑘′, 𝑛′) (13) 

 

Subsequently, each neuron (𝑦𝑖) in the output layer has seven variables: three elastic-

plastic stress components (𝜎𝑦𝑦
𝑎  , 𝜎𝑧𝑧  

𝑎 , and 𝜎𝑦𝑧
𝑎 ) and four elastic-plastic strain components (𝜀𝑦𝑦

𝑎 ,

𝜀𝑧𝑧
𝑎 ,  𝜀𝑥𝑥

𝑎   , and 𝜀𝑦𝑧
𝑎 ).         

 

    𝑦𝑗 = (𝜎𝑦𝑦
𝑎 , 𝜎𝑧𝑧

𝑎 , 𝜎𝑦𝑧
𝑎 , 𝜀𝑦𝑦

𝑎 , 𝜀𝑧𝑧
𝑎 , 𝜀𝑦𝑧

𝑎 , 𝜀𝑥𝑥
𝑎 )  (14) 

 Prior to starting the training of the model, it is necessary to normalize the data to 

account for multivariables with different ranges [23]. The variables with a larger scale 

potentially dominate the algorithm and negatively affect the learning performance of the 

ANN model. Therefore, data should be normalized to omit any potential problems. “Min-

Max” normalization is the common method for scaling datasets between 0 and 1. The Min-

Max function is shown in Eq. (15). 
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𝑥 − 𝑥𝑚𝑎𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

(15) 

 

where  𝑥 is the data,  𝑥𝑚𝑖𝑛 is the minimum magnitude, and 𝑥𝑚𝑎𝑥 is the maximum 

magnitude [74].  

Hyperparameters that define the ANN structure should be chosen to build an 

appropriate ANN model [23]. Hyperparameters include weight, bias, the number of hidden 

layers, the number of neurons in each hidden layer, activation functions, and epochs. The 

rectified linear activation unit (ReLU) is the activation function used in hidden layers in the 

present study. For positive values, ReLU responds as a linear function, while deactivating 

neurons with negative values [24]. Therefore, ReLU can model nonlinear behavior, while 

remaining close to linearity, therefore allowing networks to retain some properties of linear 

functions that make the training process more manageable [20]. This feature makes ReLU a 

practical activation function for the ANN model.   

Mean square error (MSE) is used to check the accuracy of the prediction. MSE is the 

basic and the most commonly employed loss function, and is defined as the mean or average 

of the square of the difference between actual and predicted results [75]. The gradient descent 

approach with backpropagation is employed to obtain the loss function accordingly to 

weights and biases. Then, weights and biases are updated based on the loss gradient 

(calculated by the backpropagation) and a  hyperparameter called "learning rate."  In the first 

step, the initial values of weights and biases are obtained. Following that, the inputs are fed 

in a forward direction. Subsequently, the outputs are computed based on the forward 
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propagation of the inputs. The MSE is employed to obtain the error, and the backward pass 

is performed by using backpropagation while modifying weights and biases. The process 

will repeat by passing a new forward propagation so as to improve and update 

hyperparameters to attain the required accuracy[20]. Eventually, an integration of 

hyperparameters is examined by inserting verification data. The hyperparameter 

combination must change if the MSE is acceptable for the training data but not for the 

verification data. In the last stage, the proposed ANN model must be examined by testing 

data to evaluate the generalization of the model. In order to do so, a new set of data that is 

not used to train and verify the approach is introduced to the model. Taylor expansion is 

employed to determine the gradient descent[76].  

𝑓(�⃗� + ℎ𝑠) =  𝑓(�⃗�) +  (∇𝑓)𝑇𝑠ℎ + 𝑜(ℎ2) 

𝑑𝑓 =   𝑓(�⃗� + ℎ𝑠) − 𝑓(�⃗�) ≈ (∇𝑓)𝑇𝑠ℎ 

𝑠 = ∇𝑓 as the optimal step direction 

(16) 

 

The loss function is represented by 𝑓 , ℎ shows the learning rate, and 𝑠 is the derivative of 

the loss function with respect to the input data. 

 In the present paper, the ANN model was generated by Keras with TensorFlow, and 

the ANN code was written in Python.  

In order to present the matrices of data,  𝜎𝑟𝑠,𝑡
𝑘,𝑚,𝑛,𝑜

  ,  𝜀𝑟𝑠,𝑡
𝑘,𝑚,𝑛,𝑜

  and  𝑀𝑘 were chosen as 

notations. Both "𝑟" and "𝑠" show stress-strain component locations in the stress and strain 

tensor, and the subscript "𝑡" shows elastic and actual (elastic-plastic) states. Subsequently, 

"𝑚" and "𝑛" refer to the number of loading case and time increments, respectively. The 

superscript "𝑜" shows the number of nodes on the surface of the notch. The notched shaft 

surface is symmetric. Therefore, the elastic and elastic-plastic FEM responses are extracted 
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from a quarter of the notch surface, which contains 357 nodes as shown in Figure 10.The 

component 𝑀𝑘 represents the material and "𝑘" indicates the number of the material. In total, 

eight materials, seven loading sets, and 25 load increments are used. Each load case is divided 

into 25 load segments to account for the non-linear effect and the FE analysis convergence. 

Input and output structures are shown in Figures 12-13.  
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Figure 12. Input data in the ANN approach 
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Figure 13. Output data in the ANN approach 
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The total number of input data is 8 × 7 × 25 × 357 × 5 (number of materials ×

number of load cases × number of load increments × number of nodes ×

features ) = 2,499,000, of which 72% is used as training data and the remainder as 

verification data. In outputs, there are three stress and four strain components. Then, the size 

of output data is 8 × 7 × 25 × 357 × 7 = 3,498,600. The percentage of training data in the 

initial split of datasets was 80%, then decreases to 72% to improve the accuracy of predicted 

data for the verification data. Since the ANN model requires the same level of accuracy for 

the training data and the verification data.  

Hyperparameters defining the number of hidden layers, the number of neurons, epochs, 

the number of variables, and activation function are shown in Table 3. There are two hidden 

layers in the present study. A trial and error process is applied to obtain the number of 

neurons and hidden layers [20].  The initial number of neurons obtained was 8 in each layer; 

then the accuracy of predicted results was obtained. After that, the number of neurons 

increased to 256 and 128 in the first and second layers, respectively to achieve an acceptable 

accuracy for the predicted results. During the optimization algorithm, the learning rate is 

utilized as a tuning hyperparameter that specifies the step size at each epoch, while 

attempting to minimize the loss function. Using a large number as the learning rate causes 

an increase in the learning time. The learning rate is set between 0 and 1 [23], and the learning 

rate selected is 1E-5. 
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Table 3. Hyperparameters used to train the ANN model 

Number of hidden layers  2 

Number of neurons in the first hidden layer  256 

Number of neurons in the second hidden layer 128 

Epochs 300-350 

Learning rate 1e-5 

 

2.3 Results and discussion  

Data is divided into training and verification data so that overfitting and underfitting 

issues can be assessed. The performance of the ANN can be determined by comparing the 

error function and the accuracy for the training and verification. Although overfitting 

problem occurs when the error functions for the training reduce, the error function for the 

validation does not decrease at the same level. Figure 14 shows that the ANN model is not 

overfitted, and the number of epochs is selected correctly. 
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Figure 14. (a) The accuracy trend for training and verification of data (b) MSE 

for training and verification of data 
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The generalizability of the ANN model has been tested in respect of its interpolation 

and extrapolation prediction capability. The ANN is trained and verified based on a set of 

data limited to a data range called the interpolation zone, while all data outside this range is 

defined as an extrapolation zone. Figure 15 and Table 5 present the configurations of loading 

and material to be used for training, verification, and testing data. (M-5), (M-7), and (M-9) 

corresponding FE data are split into two groups to be used for training and verification data. 

Three configurations are considered to evaluate the generalization of the ANN model, as 

shown in Table 4. Generalizability refers to the ability of the ANN model to achieve the 

desired accuracy for unseen data based on the defined hyperparameters used to train the 

model. 

 

Table 4. test configuration for examining the ANN model 

 
Material          Load Case  

Test Configuration 1   M-3  Load Case 8 

Test Configuration 2   M-6 Load Case 8 

Test Configuration 3   M-1 Load Case 9 

 

Predicted data of three nodal points are used to assess the accuracy of predicted 

elastic-plastic results and to compare full stress and strain curves between ANN and FEA. 

The nodes selected are located at the notched surface as shown in Figure 16, and their 

corresponding coordinates are presented in Table 6. Nodal points of  𝛼, 𝛽 , and 𝛾 have been 

defined as high, intermediate, and low stress points in the notch area. ANN predicted 
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stress-strain curves for 25 load increments are compared against the elastic-plastic 

FEA results to assess the ANN prediction performance. The stress contour of the elastic-

plastic FE model, ANN model, and error percentage contour are shown for all nodal 

points of quarter surface area. The error percentage is defined based on Eq. (17).  

 

 

Figure 15. Material used to test the ANN model 
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Table 5. Material and loadings used for training, verification, and testing data 

  Material  

  M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10 

L
o

ad
in

g 

Load case1 - T T T T - T T T T 

Load case 2 - T T T T - T T T T 

Load case 3 - T T T T/V - T/V T T/V T 

Load case 4 - T T T T/V - T/V T T/V T 

Load case 5 - T T T T/V - T/V T T/V T 

Load case 6 - T T T T/V - T/V T T/V T 

Load case 7 - T T T T/V - T/V T T/V T 

Load case 8 - - Testing - - Testing - - - - 

Load case 9 Testing - - - - - - - - - 

*T = training, V = verification 

 

Error percentage = 
𝜎𝐹𝐸𝑀−𝜎𝐴𝑁𝑁

𝜎𝐹𝐸𝑀
× 100 (17) 
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Figure 16. Locations of points at the notch root 

Table 6. Node coordinates at the notch root 

Node Y(mm) Z(mm) 

𝛼 8 0 

𝛽 8.0979 0.62 

𝛾 8.218 0.9 
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• Test Configuration 1 (Interpolation) 

The first case is an interpolation because the load case and material are obtained based 

on the interpolating of the training data. The values of 𝐾′ and 𝑛′ are 1069 MPa and 0.17, 

respectively. Load case 8 is applied on the notched shaft. As shown in Figures 17-19, the 

ANN model accurately predicts stress and strain values at 𝛼, 𝛽, and 𝛾 nodal points.  

  

Figure 17(a) illustrates that the stress-strain curve of point 𝛼  based on the ANN model 

agrees well with the stress-strain curve on the basis of the FE model, however, overpredicting 

can be seen in the last time increments. In order to evaluate the normal stress-strain results 

in the Z direction (𝜎𝑧  and 𝜀𝑧)  for the corresponding time increments, the maximum FE 

elastic-plastic stress values in the datasets are compared to predicted stress-strain results. 

Based on the FE model, the maximum value for 𝜎𝑧 is 298 MPa while the predicted 𝜎𝑧  is 290 

MPa. In other words, the overpredicted value for 𝜎𝑧 is less than the maximum stress 

magnitude used in datasets; therefore, the predicted result for 𝜎𝑧 is acceptable.  Additionally, 

the error of  𝜀𝑧 in the last time increment is 3% for point 𝛼. Figure 17(b) illustrates that 

predicted results agree well with the FEM data.  Figure 17(c) shows that the predicted results 

for shear stress (𝜎𝑦𝑧) are under-predicted. The error percentages for the predicted strain and 

stress (𝜎𝑦𝑧 and 𝜀𝑦𝑧) in the last time increment are only 5.5% and 6%, respectively. Figures 

18-19 illustrate that the ANN approach can predict elastic-plastic stress-strain results 

accurately.  
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Figure 17. The σ-ε curve of α stress point for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 18. The σ-ε curve of stress point β for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 19. The σ-ε curve stress of point γ for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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  Figure 20(a-b) shows the stress contour for normal stress (𝜎𝑧) for all nodal points at 

the notch surface based on the FE model and the ANN model, respectively. The error 

percentage of 𝜎𝑧 changes between 0 and 10%, and the maximum error values belong to nodes 

around the edge of the notch as shown in Figure 20(c). Based on Figure 20(b), the value of 

𝜎𝑧 is less than 50 MPa at the edge of the notch; therefore, a 10% error is insignificant. The 

normal stress in the Y (𝜎𝑦) direction changes between -50 and 100 MPa. The error percentage 

contour shows that the majority of points have a 5% error at the notch vicinity, while at the 

edge, it increases to 25%, as illustrated in Figure 21(c). The error percentage for shear stress 

(𝜎𝑦𝑧) at the root of the notch is 1%, and it rises to 3% at the edges, as shown in Figure 22.  
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Figure 20. Test configuration 1: (a) FEM stress, (b) predicted ANN stress, and (c) 

error percentage counters of 𝜎𝑧 
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Figure 21. Test configuration 1: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage of 𝜎𝑦 
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Figure 22. Test configuration 1: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑦𝑧 

 

• Test Configuration 2 (Interpolation) 

Case two includes the elastic input data of the notched bar under new loadings (Load 

case-8), and Ramberg-Osgood constants of a new material (M-6) obtained based on 

interpolating. Figures 23-25 show stress-strain curves based on the FE model and the ANN 

model for nodal points 𝛼, 𝛽 and 𝛾. The predicted stress-strain results before the yield point 

involve high accuracy.  The error percentage of normal stress (𝜎𝑧) in the last increment is 

6%. The predicted 𝜎𝑧 in the last time increment is 254 MPa, while corresponding FEM 

elastic-plastic stress for node 𝛼  equals 274 MPA, as represented in Figure 23(a). 
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Additionally, the error percentage for 𝜎𝑦 in the last increment for node 𝛼 is 5%.  Figure 24(a) 

illustrates that the predicted normal stress (𝜎𝑧) for point 𝛽 is 227 MPa, and corresponding 

FEM value is 242 MPa, which shows only 6% percentage error.   
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Figure 23. The σ-ε curve of stress point α for (a) normal Stress in the Z direction, (b) 

normal Stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 24. The σ-ε curve of stress point β for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 25. The σ-ε curve of stress point γ for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 26(c) shows that, the error percentage for 𝜎𝑧 is less than 4% however, for limited 

nodal points located at the edge of the notch it increases to 12%. Subsequently, the error 

percentage for 𝜎𝑦 is less than 10% and for the minority of nodes is 40% which the elastic-

plastic stress of the corresponding error percentage is 50 MPa as shown in Figure 27. The 

error percentage for shear stress (𝜎𝑦𝑧) is between 1 and 6 %, which means that the ANN 

model accurately predicts elastic-plastic results (Figure 28).  

  

  

  

Figure 26. Test configuration 2: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑧 
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Figure 27. Test configuration 2: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑦 
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Figure 28. Test configuration 2: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑦𝑧 

• Test Configuration 3 (Extrapolation) 

An artificial neural network is not a strong approach in the case of extrapolation. 

Therefore, choosing materials’ hardening and loading for test data in case of extrapolation 

requires more consideration. In the present study, the values obtained for the extrapolation 

case are slightly higher than the values in the interpolation zone. M-1 and load case 9 are 

employed for the test configuration 3. 𝜎𝑦  changes between 0 and 60 MPa approximately 

before the yield point in the datasets, while it changes between 0 and 80 MPa for test 

configuration 3 (Figures 29–31(b)) based on the employed loadings and material. Therefore, 

the ANN results are not highly accurate before the yield point because of the configuration 
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of inputs and outputs. It can be seen that the maximum error percentage of  𝜎𝑧  and 𝜎𝑦𝑧   has 

increased to 20% (Figures 32 and 33), while for interpolation cases, the maximum error 

percentage of 𝜎𝑧 is 12%, and shear stress error percentage is less than 6%.  

 

 

 

 

 

 

Figure 29. The σ-ε curve of stress point α for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 30. The σ-ε curve of stress point β for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 31. The σ-ε curve of stress point 𝛾 for (a) normal stress in the Z direction, (b) 

normal stress in the Y direction, and (c) shear stress in the YZ direction 
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Figure 32. Test configuration 3: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑧 . 
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Figure 33. Test configuration 3: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑦. 
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Figure 34. Test configuration 3: (a) FEM stress, (b) predicted ANN stress, and (c) error 

percentage contours of 𝜎𝑦𝑧 . 
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Figure 35 presents the normal stress (𝜎𝑧 ) of nodes located at x=0 for three test 

configurations. It is evident that the predicted ANN results for test configuration 1 are highly 

accurate, while in test configuration 2, the accuracy decreases. The accuracy of predicted 

stress of test configuration 2 for the point located at Y=2 mm is 92%, whereas, for test 

configuration 1, it is 99%.  
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Figure 35. Predicted and FEM stress values for points located in X=0 (a) test 

configuration 1, (b) test configuration 2, and (c) test configuration3 
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2.4 Conclusion  

In this paper, an ANN model was developed based on two FE models to predict stresses 

and strains at the surface of a notched shaft under monotonic multiaxial loading. The ANN 

is a data-based modeling approach; therefore, sufficient data need to be generated to achieve 

the desired accuracy for the approached model. Nine fictitious materials were defined based 

on the Ramberg-Osgood law, and the elastic-plastic FE model generated sufficient data for 

various loadings. The generalizability of the model was evaluated by examining the model 

with the testing data not used in the training and verification stages. The accuracy of the 

predicted results for the testing stage was taken into account by comparing results with 

elastic-plastic stress and strain generated by the elastic-plastic FE model.  

 The results show that the ANN approach can accurately determine elastic-plastic stress 

and strain fields based on linear elastic stress fields. In addition, using an ANN to predict 

elastic-plastic behavior provides significant savings in computational time over complex 

non-linear FEM methods. Generalizing the model by interpolating the input data is possible, 

and the ANN model is robust. However, although the ANN model accurately predicted the 

results for extrapolation cases, it cannot be used vastly. 
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Chapter 3  

Conclusion and Future Research 

3.1 Conclusion 

In this thesis, based on the FE model, an ANN model was developed to predict the 

stress and strain states of a notched shaft subject to multiaxial loading. In order to do so, two 

different FE models were defined to feed the ANN model. Well-structured data is required 

to establish a relationship between stress FE analysis data under the elastic state and elastic-

plastic stress-strain FE data. Therefore, adequate inputs and outputs were obtained to train 

and verify the ANN model. The model was tested with a new dataset and the predicted results 

were verified by stress-strain FE analysis data under an elastic-plastic state. As a result, the 

predicted results are in fair agreement with elastic-plastic FEM data. The error percentage of 

predicted results is less than 5% for the majority of nodal stresses. The error percentage 

increased for limited nodal stresses in Y direction. The reason is the low range of stress in Y 

direction.   The proposed approach for estimating elastic-plastic results for a notched model 

under multiaxial loading is simpler in comparison to FE and analytical methods. The FE 

method is considered computationally expensive for complex models in the case of 

geometry, and the analytical solution is not generalizable. However, the proposed ANN 

model is able to predict elastic-plastic stress-strain results for notch components made of 

different materials and subject to various loadings. Notably, ANN is not a robust approach 

in the case of extrapolating data. The main reason is that the ANN approach is data-based; 

therefore, predicting results for extrapolated inputs can be complex for the ANN model. In 
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addition, there are limitations to the proposed model. The developed ANN approach is not 

able to predict results for a notched component under cyclic stress because the ANN model 

is trained on the FE data under monotonic loading.  

3.2 Future research 

In the future, the proposed ANN model can be improved in several ways. Adding 

efficient variables to the structure of inputs and outputs significantly impacts the 

generalization of the proposed model. Geometry features can be considered and added to 

variables in order to be able to predict results for different notch sizes and shapes such as 

semicircular and V-shapes. 

 In addition, cyclic loading is an important issue in different engineering industries 

with respect to fatigue life. Therefore, the model can be updated by determining cyclic 

loading; however, the data structure must change to predict results for cyclic loading.  
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Appendix A : Developed Ansys Parametric Design Language scrips  

FINISH 

/CLEAR,NOSTART 

! start the preprocessor 

/prep7 

NOM_R=10  

NOM_L=40   

NOTCH_R=2  

TOLL=0.01   

TOTAL_L=NOTCH_R+NOM_L  

! Meshing size parameters 

DIV_NM_R=16   

DIV_NM_C=10   

DIV_NM_L=24   

DIV_CS_L=16   

k,1,0,0     

k,2,0,NOM_R-NOTCH_R   

k,3,0,NOM_R    
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k,4,NOTCH_R,NOM_R   

k,5,NOTCH_R+NOM_L,NOM_R   

k,6,NOTCH_R+NOM_L,0   

k,7,NOTCH_R+NOTCH_R,0    

l,1,2 !1 

larc,2,4,3,NOTCH_R !2 

l,4,5 !3 

l,5,6 !4 

l,6,7 !5 

l,7,4 !6 

l,7,1 !7 

allsel 

al,1,2,6,7 !1 

al,6,3,4,5 !2 

lsel,s,,,1 

lesize,all,,,DIV_CS_L,1.0/8.0, 

lsel,s,,,6 

lesize,all,,,DIV_CS_L,1.0/1.0, 

lsel,s,,,4 
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lesize,all,,,DIV_CS_L,1, 

lsel,all,all 

lsel,s,,,2 

lesize,all,,,DIV_NM_C,1, 

lsel,all,all 

lsel,s,,,7 

lesize,all,,,DIV_NM_C,1, 

lsel,all,all 

lsel,s,,,3 

lsel,a,,,5 

lesize,all,,,DIV_NM_L,1, 

allsel 

ARSYM,X,1,2 ,1 , ,0,0 

NUMMRG,KP,0.001, , ,LOW    

vrotat,all,,,,,,1,6,360,, 

ET,1,SOLID45   

TYPE,  1 $ REAL,1 $ MAT,1 

vmesh,all 

!!ET,1,SOLID45 
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!TYPE,  1 $ REAL,1 $ MAT,1 

WPROTA,0,-90,0 

CSWPLA,11,CYLIN 

CSYS,11 

VGEN,2,All,,,0,90,0,,0,1 

CSYS,1 

WPCSYS,1,1 

NROTAT, All    

ALLSEL 

NSEL,ALL 

NSEL,R,LOC,Z,+TOTAL_L-TOLL,+TOTAL_L+TOLL 

CM,FNODES,NODE 

ALLSEL 

LSEL,S, , , 27 

LSEL,A, , , 41  

LSEL,A, , , 55 

LSEL,A, , , 60 

NSLL,S,1 

CM,TNODES,NODE 
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/TITLE, SAE1045 NOTCHED BAR LINEAR ANALYSIS 

/PREP7 

ALLSEL 

MP,EX,1,202E3    ! Elastic 

MP,NUXY,1,0.3  ! poisson 

MAT,1 

TB,KINH,1,1,20,0 

TBPT,,0.000940,190 

TBPT,,0.0011,220 

TBPT,,0.0013,240 

TBPT,,0.0015,260 

TBPT,,0.0017,280 

TBPT,,0.0020,300 

TBPT,,0.0023,320 

TBPT,,0.0028,340 

TBPT,,0.0034,360 
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TBPT,,0.0042,380 

TBPT,,0.0053,400 

TBPT,,0.0066,420 

TBPT,,0.0084,440 

TBPT,,0.0106,460 

TBPT,,0.0134,480 

TBPT,,0.0170,500 

TBPT,,0.0214,520 

TBPT,,0.0269,540 

TBPT,,0.0336,560 

TBPT,,0.0519,600 

/PREP7   

*DIM,FORCE,TABLE,1,1,1, , ,  

*DIM,TORQUE,TABLE,1,1,1, , ,   

!*   

*SET,FORCE(0,1,1) , 1 

*SET,TORQUE(0,1,1) , 1   

*TREAD,FORCE,'force','dat' 

*TREAD,TORQUE,'torque','dat' 
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*SET,FORCE(0,1,1) , 1   

*VEDIT,,1 

*SET,TORQUE(0,1,1) , 1  

*VEDIT,,1  

/PREP7   

/SOLU 

! Elast0-plastic FEA 

! enter the solver, apply contraints and loads 

! apply the fixed contraint 

ALLSEL 

NSEL,R,LOC,Z,-TOTAL_L-TOLL,-TOTAL_L+TOLL 

D,ALL,ALL 

ALLSEL 

!ANTYPE,TRANS 

!TRNOPT,FULL    

!NLGEOM,ON   

!SSTIF,ON                 

!EQSLV,PCG,1E-8 

!TIMINT,ON               
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!  Nonlinear Options: 

!CNVTOL,F, ,0.1,2, ,    

!NEQIT=20    

!NCNV,,,...               

PRED,ON                  

NS=25      

NT=1    

TM_ST=1    

TM_END=1   

TM_INC=1    

*DO,TM,TM_ST,TM_END,TM_INC 

! AXIAL LOADING... 

CMSEL,S,FNODES,NODE   

*GET,NODECNT1,NODE,,COUNT 

F,ALL,FZ,FORCE(TM)/NODECNT1 

! ALLSEL 

! TORQUE LOADING 

CMSEL,S,TNODES,NODE 

*GET,NODECNT2,NODE,,COUNT 
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F,ALL,FY,TORQUE(TM)/NODECNT2 

!ALLSEL 

OUTPR,ALL,ALL   

OUTRES,ALL,ALL   

TIME,TM    

NSUBST,NS,25,25  

CUTCONTROL,PLSLIMIT,10 

ALLSEL 

NSEL,ALL 

SOLVE 

*ENDDO 

/POST1 

/GRAPHICS, FULL 

ALLSEL 

RSYS,1 

AllSEL 

NSEL,ALL 

ASEL,s,,,6 !Select the area you want (e.g. area or 45 ) 

ASEL,a,,,13 
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NSLA,s,1 !Select nodes associated to this area 

CM,NNODE,NODE 

/POST1 

SET,1,1 

ALLSEL 

CMSEL,S,NNODE,NODE 

*VGET,NODELIST,NODE,NNODE,NLIST,,,,4 

!*VGET,NODELIST,NODE,1,NSEL 

!Count number of nodes selected 

*GET,QtyNodes,NODE,0,COUNT 

         *DIM,Stress,TABLE,QtyNodes,4 

SET,1,1,,,1 

!Stress Results 

*Do,J,1,QtyNodes,1 

Stress(J,1) = NODELIST(J) 

*GET,Stress(J,2),NODE,NODELIST(J),S,Y 

*GET,Stress(J,3),NODE,NODELIST(J),S,Z 

*GET,Stress(J,4),NODE,NODELIST(J),S,YZ 

*ENDDO 
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Appendix B : Develeoped Python-based scripts 

 import os 

import numpy as np 

import pandas as pd 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Activation, Dense 

from tensorflow.keras import layers 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

 

import matplotlib.pyplot as plt 

print('Done') 

INPUT = pd.read_csv() 

OUTPUT = pd.read_csv() 

from sklearn.preprocessing import MinMaxScaler 

sc=MinMaxScaler() 

X=sc.fit_transform(INPUT) 

X=pd.DataFrame(X) 

from sklearn.preprocessing import MinMaxScaler 

sc=MinMaxScaler() 

Y=sc.fit_transform(OUTPUT) 

Y=pd.DataFrame(Y) 
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X_trn = X.loc[] 

frame_1= [] 

X_trn= pd.concat(frame_1)  

 

X_tst=X.loc[] 

 

Y_trn_1 = Y.loc[] 

Y_tst=Y.loc[] 

--------------------------------------------------------------------------------------------------------------

- 

model  = Sequential() 

model .add(layers.Dense(256, activation="relu", name="layer1")) 

model .add(layers.Dense(128, activation="relu", name="layer2")) 

model .add(layers.Dense(7 , activation="linear" ,name="layer3")) #We use a sigmoid on 

the output layer to ensure our network output is between 0 and 1 and easy to map 

model.layers 

model.compile(optimizer='adam', loss='mse',metrics=['accuracy']) 

keras.optimizers.Adam(lr=0.00001) 

ann_history=model.fit(X_trn,Y_trn,validation_data=(X_tst,Y_tst), 

epochs=350,batch_size=100) 

fig, ax = plt.subplots(1, 1, figsize=(10,6)) 

ax.plot((ann_history.history['loss']), 'r', label='train') 

ax.plot((ann_history.history['val_loss']), 'b' ,label='val') 

ax.set_xlabel(r'Epoch', fontsize=20) 

ax.set_ylabel(r'Loss', fontsize=20) 

ax.legend() 

ax.tick_params(labelsize=20) 

 

Ypredict_tst=model.predict(X_test_data,batch_size=10) 
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Ypredict_tst=pd.DataFrame(Ypredict_tst) 

Ypredict_tst 

fig, ax = plt.subplots(1, 1, figsize=(10,6)) 

ax.plot((ann_history.history['accuracy']), 'r', label='train') 

ax.plot((ann_history.history['val_accuracy']), 'b' ,label='val') 

ax.axis([-5, 350, 0.92, 1]) # [xmin, xmax, ymin, ymax] 

ax.set_xlabel(r'Epoch', fontsize=20) 

ax.set_ylabel(r'ACCURACY', fontsize=20) 

ax.legend() 

ax.tick_params(labelsize=25) 

 


