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Abstract

Path Planning and Control of UAV using Machine Learning and Deep
Reinforcement Learning Techniques

Yintao Zhang, Ph.D.

Concordia University, 2023

Uncrewed Aerial Vehicles (UAVs) are playing an increasingly significant role in mod-

ern life. In the past decades, lots of commercial and scientific communities all over the

world have been developing autonomous techniques of UAV for a broad range of applica-

tions, such as forest fire monitoring, parcel delivery, disaster rescue, natural resource ex-

ploration, and surveillance. This brings a large number of opportunities and challenges for

UAVs to improve their abilities in path planning, motion control and fault-tolerant control

(FTC) directions. Meanwhile, due to the powerful decision-making, adaptive learning and

pattern recognition capabilities of machine learning (ML) and deep reinforcement learning

(DRL), the use of ML and DRL have been developing rapidly and obtain major achieve-

ment in a variety of applications.

However, there is not many researches on the ML and DRl in the field of motion control

and real-time path planning of UAVs. This thesis focuses on the development of ML and

DRL in the path planning, motion control and FTC of UAVs. A number of contributions

pertaining to the state space definition, reward function design and training method im-

provement have been made in this thesis, which improve the effectiveness and efficiency of

applying DRL in UAV motion control problems. In addition to the control problems, this

thesis also presents real-time path planning contributions, including relative state space
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definition and human pedestrian inspired reward function, which provide a reliable and

effective solution of the real-time path planning in a complex environment.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Uncrewed Aerial Vehicles (UAVs)

During the past decades, uncrewed aerial vehicles (UAVs) have been broadly deployed

in wide range of civil applications and military missions such as forest fire detection and

monitoring [1, 2, 3], regional surveillance [4, 5, 6, 7], parcel delivering [8, 9, 10], disaster

rescue [11, 12, 13] and entertainment [14, 15]. Especially in the recent years, with the

fast-developing techniques in guidance, navigation and control (GNC), small-scale UAVs

have received increasing attention of both researchers and engineers. In general, the UAVs

can be categorized into three main types according to their flying power mechanism and

configuration design [16].

(1) Fixed-wing UAV. As shown in Fig. 1.1, it has fixed wings and the flight capabil-

ity is achieved by using wings to generate lift caused by the UAV’s forward speed.

According to the flying mechanism, fixed-wing UAVs have to maintain a certain for-

ward speed and need a long runway to take off and land. Compared to multi-rotor

UAV, fixed-wing UAVs are more energy-efficient and can carry more payload.
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Figure 1.1: A sample of fixed-wing UAV.

(2) Multi-rotor UAV. As shown in Fig. 1.2, multi-rotor UAVs are equipped with several

propellers (three or more). The flying lift is directly generated by the downward

thrust caused by propellers.

Figure 1.2: A sample of multi-rotor UAV.

The most popular multi-rotor UAV is quadrotor UAV, which is shown in Fig.1.3.

Unlike the fixed-wing UAV, multi-rotor UAVs do not have many actuators such as

elevator, aileron and rudder, the motion and attitude are controlled by changing the

angular speed of each propeller. Compared to fixed-wing UAV, multi-rotor UAV is

capable of vertical taking-off and landing (VTOL) and high maneuverability.

(3) Compound UAV. A compound UAV combines the fixed-wing and multi-rotor UAVs.

As shown in Fig.1.4, they have both wings and multiple propellers, which enables the

UAV both abilities of fast forward speed and VTOL. Although the compound UAVs

have extra abilities, their complex structure reduces the safety and stability of flight

and incurs high maintenance cost.
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Figure 1.3: A sample of quadrotor UAV.

Figure 1.4: A sample of compound UAV.

In summary, multi-rotor UAV has attracting more and more attention in both industrial

and academic communities due to its high maneuverability, small size, capability of VTOL,

and both indoor and outdoor flight.

1.1.2 Machine Learning and Deep Reinforcement Learning

Machine learning (ML) techniques have been deeply investigated and used in a wide

applications in the autonomous agents and unmanned systems because of its adaptive learn-

ing ability [17, 18]. Reinforcement learning (RL) is one of the branches of ML, which can

optimize the action policy based on the interactions between agent and environment. Espe-

cially for navigation in complex environment, RL has showed its powerful learning ability

[19, 20].

However, most of the existing RL path planning algorithms are heavily relied on the

3



pre-known information of the map. These algorithms cannot deal with unknown environ-

ment information because it is impossible to train a new Q-table at each time step. It is a

quite challenging issue for RL algorithm if there are dynamic obstacles or unknown static

obstacles in the map. Therefore, this thesis concentrates on the study of application of RL

algorithm in real-time path planning.

During the execution of ML and RL for continuous control problem, several problems

remain unsolved, for instance, the continuous nature of system input and output, the cor-

relation of data experience and the convergence speed of learning [21]. These issues have

been limiting the application of ML and RL in control systems over the past several years.

However, the deep Q-network (DQN) has successfully combined Q-learning and neural

network (NN), which can be used for continuous control problems. [22, 23]. Prior to

DQN, using large, non-linear function approximator to learn value functions is believed

to be difficult and unstable [24]. DQN has unveiled a new page of possibility due to the

following two innovations:

(1) The design of replay buffer. In order to reduce the correlations between data, the

network of DQN is trained off-policy while the training data comes from replay

buffer, an experience sets.

(2) The design of target network. Aiming at breaking the correlation of two networks,

both networks will be trained by two independent target networks in order to maintain

a consistent objective.

Although DQN has been able to solve problem with continuous action space, a dis-

advantage could not be ignored that DQN requires observation in high dimension while

solving problems in low-dimensional action spaces [25]. Aiming at overcoming this short-

coming, based on the idea of DQN, a new approach deep deterministic policy gradient

(DDPG) is proposed in [26]. Compared to DQN, an important feature of DDPG is its

4



simplicity, DDPG requires only an actor-critic framework, making the algorithm easy to

implement and applicable for some complex problems and larger networks [27, 28].

Although DDPG has good performance, it has inevitable drawbacks because DDPG

may overestimate the Q-values in the critic network [29]. These estimation errors may

accumulate and eventually lead to a non-optimal action. Aiming at mitigating the over-

estimation, a twin-delayed DDPG (TD3) was proposed in [27, 30]. The TD3 algorithm

introduces a double deep Q-learning in the DDPG algorithm. Compared to DDPG, TD3

algorithm has better action performance and faster learning speed due to the following

improvements [30, 27, 31].

(1) TD3 has two Q-networks with the same structure instead of one Q-network. TD3

uses the smaller one as the Q-value. As a result, the overestimation problem will be

alleviated.

(2) TD3 reduces the update frequency in order to solve the coupling problem of un-

changed actor-critic networks.

(3) TD3 adds noise to the target action which makes the algorithm more difficult to

exploit Q-function errors and makes the critic smoother.

Currently, the proof of stability is the biggest challenge of DRL while it is used as

controller. Due to the characteristics of NN, it is impossible to give a strict mathematical

proof. However, according to [32], the DRL can ensure a certain gradient descent within a

certain range.
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1.2 Literature Review

1.2.1 Path Planning of UAV

Path planning is one of the essential technologies of UAVs, which designs a safe,

collision-free and least-cost path based on one or more criteria. It has become an indis-

pensable technique in a wide range of problems such as disaster rescue [33, 34, 35], fire

detection [36, 37], self-driving [38, 39], parcel delivery [40, 41] and surveillance [42, 43].

Path Planning Method Classification

According to the mechanism of used algorithm, path planning can be categorized into

five aspects: field-based algorithms, grid-based algorithms, node-based algorithms, sampling-

based algorithms and intelligent algorithms.

A typical example of field-based algorithm is artificial potential field (APF) method

[44, 45]. A sample of APF method is shown in Fig. 1.5. The basic concept behind APF

is to generate several potential fields in the environment. There are two forces caused by

the potential field, obstacles are repelled by repulsive force and the UAV is drawn toward

the objective by attractive force. In the potential field environment, UAV will move from

high-potential area towards low potential area.

Figure 1.5: A sample of artificial potential field path planning method.
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Grid-based algorithm [46, 47] divides the entire map into a number of grid units or

specific areas which reduce the complexity and difficulty to find the optimal path. A sample

of grid-based path planning algorithm is shown in Fig. 1.6. UAV moves from the current

grid to the next one. The objective of grid-based algorithm is to find a continuous sequence

of these grids connecting the start position and goal position.

Figure 1.6: A sample of grid-based path planning method.

Node-based algorithms [48, 49] is usually considered as the simplest technique to find a

path for UAV. It is regarded as an effective and efficient strategy for selecting a proper path

that requires less time and computing complexity. A sample of node-based path planning

algorithm is shown in Fig. 1.7. The main idea of node-based algorithm is to identify a

number of special nodes in the environment, the UAV moves from one node to another

until reaching the target. The path can be easily obtained by connecting the nodes.

Sampling-based algorithms are usually used to solve path planning problem with high-

dimensional systems, especially for those have state and action constraints. A sample of

sampling based path planning algorithm is shown in Fig. 1.8. Rapidly-exploring random

trees (RRT) [50, 51] and probabilistic roadmaps (PRM) [52, 53] are two typical sampling-

based algorithms. The RRT algorithm grows a tree from the initial configuration and then

selecting random samples in the search space. While a sample is drawn, a link is made.

Feasible links will be added to the tree. Repeat the sampling process and expand the exist-

ing state until the goal is reached. The main idea behind PRM is to pick random samples
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Figure 1.7: A sample of node-based path planning method.

from the UAV’s configuration space, check whether they are in the open space, then connect

them to adjacent configurations until the target. There are two phases of PRM, construc-

tion and query phase. In the first phase, a roadmap is generated to approximate the possible

actions that can be taken in the environment. In query phase, the path can be obtained by

connecting the start and goal configurations to the graph.

Figure 1.8: A sample of sampling-based path planning method.

Intelligent algorithms consists of genetic algorithm (GA) [54, 55] and ant colony opti-

mization algorithm (ACO) [56, 57]. A sample of ACO path planning algorithm is shown in

Fig. 1.9. The solution evolves in GA by using the selecting, crossover and mutating calcu-

lators to simulate the process of evolution. The best solution will be obtained after a large
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number of iterations. ACO is inspired by the behaviour of ants and insects, the pheromone

of communication will be enhanced in good choices. The optimal path will be generated

by following the higher level of pheromone.

Figure 1.9: A sample of ACO path planning method.

Path Planning Problem Classification

According to the types of solved problem, path planning can also be divided into two

main categories, one is off-line path planning and the other is on-line path planning. The

main difference is whether the path is generated in advance or during the flight. The off-

line path planning comprehensively considers the global information and then generates an

optimal path from the start position to the terminal prior to the flight. In other words, the

path is fixed and cannot be re-planned during the flight. Since the off-line path planning

method takes consideration of the global information, it is also regarded as global path

planning. On the contrary, on-line path planning can generate the trajectory during the

flight based on local information with a certain range. As a result, on-line path planning is

also named as local path planning. It is obviously that off-line path planning cannot deal

with the problem with dynamic environment. However, along with the fast-developing

artificial intelligence and image processing techniques in recent years, self-navigation and

autonomous driving has become the hot topic. On-line path planning meets lots of new

challenges and reveals a new page. In local path planning, it is necessary to perceives
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the surrounding environment, a combination of LiDAR, GPS, inertial navigation system

and cameras is a powerful positioning tool which can provide precise information of local

environment. This positioning technique is generally called simultaneous localization and

mapping (SLAM), which is shown in Fig. 1.10. With the help of SLAM, UAV will have a

strong perception of the surrounding environment which is crucial to on-line path planning.

Therefore, on-line path planning is a promising research direction and a hot topic in recent

future.

Figure 1.10: An example of SLAM method.

Reinforcement Learning based Path Planning Method

In recent years, RL is becoming a promising approach for solving path planning prob-

lem. Q-learning was first proposed in [58], it can be learned from delayed rewards and

punishments. After that, a number of researchers focus on solving the path planning prob-

lem using RL. In [59, 60], the authors proposed a Q-learning based navigation system for

obstacle avoidance problem. The successful rate is considered to the high and the overall

performance is good. Some literature improved the Q-learning algorithm for navigation

system design. In [61], an extended Q-learning algorithm is investigated, only the best

action of a state will be stored in the Q-table. This design greatly increases the learning
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speed but has poor performance when facing complicated environment. In [62], an im-

proved Q-learning is investigated, which can be considered as the future work of [61]. The

main idea of this algorithm is the definition of locked state. When a state is locked, there

will be no exploration in this state. This mechanism guarantees the fast convergence speed

and good performance at the same time. Some of the researchers have extended RL to a

more complicated environment such as 3-D environment, Aranibar et al. [63] use RL to

solve path planning problem in 3-D environment, both Q-learning and neural Q-learning

are applied in the greedy search algorithm. It should be noted that the reward function used

in Q-learning is the same one used in [59]. Simulation results showed that Q-learning is

more suitable for small and medium size of environment while the neuralQ-learning works

better on the large size of environment. Some algorithms also try to combine RL with other

intelligent methods such as FLS and neural network (NN). A hybrid method combining RL

and fuzzy logic is proposed in [64], the navigation system has two tasks, one is obstacle

avoidance and the other is goal seeking. Compared to other RL algorithm, the major dif-

ference of this method is that two Q-learning algorithm is constructed independently. The

fuzzy rules are designed with the assistant of RL algorithms. Another hybrid approach is

proposed in [65], the designed navigation system has three main functions, the first one is

obstacle avoidance, the second one is goal-seeking and the last one is supervising fuzzy

logic system. The fuzzy supervisor mechanism generate the best action based on the in-

formation from obstacle avoidance module and goal-seeking module. For the problem of

continuous action and state space, Yang et al. [66] proposed a method combining deep

neural network and RL. A multiple layers neural network is utilized to estimate Q-values.

This algorithm can generate path from start position to goal position in a continuous envi-

ronment. It can be inferred that using RL as solution of path planning problem is becoming

a tendency due to the excellent performance of Q-learning algorithm.
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1.2.2 Motion Control of UAV

Motion control of UAV is a broad concept which contains lots of issues such as path

following control [67, 68], formation control [69, 70] and auto-landing control [71, 72]. In

general, all the control problems which enables the system to control the precise speed and

location of UAV can be regarded as motion control.

In this thesis, the motion control of UAV is studied in the following three direction, first

one is path following control of fixed-wing UAV, the second one focuses on the formation

control of a group of fixed-wing UAVs, the last one will study the auto-landing problem of

quadrotor UAV.

Path following control

Figure 1.11: An example of path following control problem.

Traditionally, there is a wide variety of approaches solving path following problem.

Most of these techniques can be considered as a direct application of classic control theories

on a geometry model. The most commonly used methods are pure pursuit [73, 74], line-

of-sight [75, 76], and constant bearing guidance [77].

However, traditional methods have their distinct limitations, such as weak robustness

of model uncertainties, instability under external disturbances and low efficiency in com-

puting. Under this circumstance, ML techniques, as well as RL, has become a promising
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solution since it can overcome most of these limitations. In [78], an actor-critic-based rein-

forcement learning algorithm is proposed, which is adapted to capture the experience dur-

ing the path following trial. Reference [79] investigates the path following control problem

in 3-D environment. To ensure the control adaptability without dependence on an accurate

model, the Q-learning algorithm is directly adopted for learning the action policy.

Formation Control

Figure 1.12: An example of formation control problem.

During the past couple of years, cooperative control of multiple unmanned aerial vehi-

cles (multi-UAVs) has been extensively studied in a number of applications such as disaster

rescue, forest fire detection and surveillance [80, 81, 82, 16]. For the above applications,

multi-UAVs have distinct advantage over an individual UAV [83, 84, 85]. In the coopera-

tive control of multi-UAVs, formation control is one of the most challenging and interesting

topics. Generally, the formation control is to design an appropriate protocol or an algorithm

such that the UAV group can maintain a geometric shape while moving [86].

Among published literature, the following approaches have received considerable at-

tentions in the study of formation control, such as virtual structure [87, 88], behavior-based

method [89, 90], leader-follower structure [91, 92] and potential function-based method

[93, 94]. Leader-follower method is the most popular approach because of its simple struc-

ture. The main idea of leader-follower method is considering the leader as reference of the

followers. Thus, the group behavior can be easily specified by controlling the motion of
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leader.

However, the traditional methods have limitations such as low efficiency in computing,

instability when facing disturbances and weak robustness in model uncertainties [95]. In

order to overcome the above difficulties, ML and RL techniques, have attracted extensive

attention and develops rapidly in recent years. In [96], a distributed optimal control method

using reinforcement learning is proposed to address the UAV formation tracking problem.

The proposed control law contains a distributed observer and a model-free off-policy rein-

forcement learning protocol. The reinforcement learning algorithm is designed to obtain

the optimal control input without any knowledge of the follower’s dynamics.

Auto-Landing Control

Figure 1.13: An example of auto-landing control problem.

The autonomous landing is one of the key topics of UAV applications [97, 98, 99,

100], especially in a long-term missions because of the short duration of battery [101]. In

addition, the use of multiple vehicles has obvious benefit compared to a single one, such

as a combination of UAV. Therefore, there are a plenty of researches focused on the topic

of auto-landing on a moving platform [98, 102, 103, 104, 105]. Compared to landing on a

static platform, landing on a moving one is more complex and difficult [106].
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Generally, the approaches solving autonomous landing problems can be divided into

two main categories, one is based on pose prediction and pose control [98, 102, 107], the

other is based on trajectory generation and motion control [108, 104, 105, 109]. However,

most of the existing researches are model-based approaches, which requires an accurate

model of the landing system. To overcome the limitation of traditional methods, data-

based approaches have attracted the attention of researchers. Reference [110] proposes a

UAV forced landing site detection system which is based on machine learning approaches

including the Gaussian Mixture Model and the Support Vector Machine (SVM). The pro-

posed algorithm has significant improvement in detecting a safe landing area and is more

reliable. Muvva [111] investigates the problem that a UAV is auto-landing on another UAV.

The single shot multi-box detector (SSD) network is trained to help the controller land on

another flying UAV. In [112], a new autonomous tracking and landing approach based on

a deep reinforcement learning strategy is proposed with the objective of dealing with the

UAV motion control problem in an unpredictable and harsh environment. The proposed

method combines the DDPG algorithm and heuristic rules and helps the UAV automati-

cally learns the landing maneuver by an end-to-end neural network.

1.2.3 Fault-Tolerant Control of UAV

UAVs are prone to faulty conditions such as malfunctions, actuator degradation, sensor

errors, external disturbances and other faulty issues [113, 114, 115]. These faulty issues

may lead to degraded performance, system instability and even catastrophic results. Ac-

cording to [116], 61% of the flight accidents were caused by the loss of control. Motivated

by the essential requirement of safe flight, researchers have done extensive works on fault-

tolerant control (FTC) of UAVs [117, 118, 115, 119, 120].

FTC is an efficient and effective strategy that improves system robustness or helps sys-

tem to recover when facing faulty situations. The algorithms of FTC can be divided into
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two main directions, one is passive FTC and the other is active FTC [121]. The idea of

passive FTC is to design a reliable controller which is robust enough to maintain system

performance against faults [122]. There is no controller reconfiguration in passive FTC so

these controllers must accommodate both normal and faulty situations [123]. In contrast

to passive FTC, with the help of fault diagnosis and identification (FDI) technique, active

FTC algorithms react to the faulty situations actively [124]. As soon as the fault is de-

tected by the FDI mechanism, the controllers of active FTC can reconfigure themselves to

compensate the negative effect of fault. Then the system performance will be recovered to

healthy conditions.

1.3 Objectives of This Thesis

This thesis aims to design and develop the path planning, motion control and fault-

tolerant control schemes with application to both fixed-wing and multi-rotor UAVs. Partic-

ularly, this thesis is organized based on the following research objectives:

(1) Designing and developing a path planning algorithm based on Q-learning that can be

used in real-time 3-D collision-free path planning mission.

(2) Designing and developing a path following control method that can counteract the

adverse effects from side-slip angle and environment disturbance while successfully

operate the UAV to follow the desired path.

(3) Designing and developing a formation control scheme for a group of fixed-wing to

maintain the formation shape in the operation.

(4) Designing and developing an auto-landing control strategy for multi-rotor UAVs,

which can drive the UAV land on the moving ground platform safely and smoothly.
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(5) Designing and developing a fault-tolerant control method for fixed-wing UAV with-

out an explicit model while considering actuator faults in order to enhance the relia-

bility and safety of the flight.

In summary, the conducted research works in this thesis are primarily expected to syn-

thesize advanced levels of path planning, collision avoidance capability, motion control and

fault tolerant control in UAVs, these in turn can guarantee the satisfactory, reliable and safe

performance in both individual and multiple UAVs levels. Finally, the proposed algorithms

and strategies are verified by a series of simulations on commonly used UAV models and

experimental tests on the QDrone and QCar platform.

1.4 Contributions of This Thesis

The main contributions of this thesis can be summarized as follows:

(1) Real-time path planning.

Design a state space which is based on relative location. This new state space

definition can map the dynamic environment precisely and timely.

Design a new reward function which is inspired by the human pedestrian be-

havior. With the help of this new reward function, the trained algorithm can avoid

obstacles effectively while maintaining the shortest path in a complex environment.

(2) Path following control for fixed-wing UAV.

Design a new framework of DDPG for UAV path following problem.

Design a new training technique, named the double experience replay buffer

(DERB) which improves the learning ability.

(3) Formation control for a group of fixed-wing UAVs.
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Design a new definition of state space which is suitable for the DRL algorithm

to learn and control the UAV group for formation maintenance mission.

Design a new reward function to sensitively and accurately represents the perfor-

mance of an action in the formation control problem.

Design a replay buffer with flexible capacity, which aims at improving the learn-

ing efficiency of the algorithm. In addition, the prioritized sampling methods can

also increase the learning efficiency by replaying the better samples more frequently.

(4) Auto-landing control for multi-rotor UAV.

Design a transfer-imitation learning training (TILT) approach, which can help

TD3 algorithm learning safely and effectively in the real-world applications.

(5) Fault-tolerant control for fixed-wing UAV in the presence of actuator faults.

Develop a model-free fault-tolerant controller based on the state-of-the-art SAC

algorithm. The main advancements of SAC are entropy and double Q-learning. The

concept of entropy helps the algorithm to have a better exploration of the data. And

Double Q-learning also avoids the overestimation of NN.

Design a robust term in the state space, which provides an extra knowledge of

system status. An additional dimension of information can help the algorithm to

generate better decisions, especially in faulty situations.

Design a new reward function for performance of an action in the FTC control

problem, especially under system fault conditions. The design of penalty and bonus

is an accelerator for training process.

1.5 Organization of This Thesis

The rest of this thesis is organized as follows:
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• Chapter 2 provides an overview of some preliminary knowledge used in this thesis.

• Chapter 3 illustrates the problem of 3-D real-time Q-learning path planning problem

in the presence of obstacles. Two Q-learning algorithms are studied, the first one builds a

new environment model that allows machine learning algorithms to be effectively and ef-

ficiently applied in real-time path planning. The second one introduces the idea of human

pedestrian behavior, the algorithm performance in complex environment has been signifi-

cantly improved by learning from pedestrian behavior.

• Chapter 4 introduces the motion control of UAVs in three main directions. First one

is path following control. A deep deterministic gradient policy algorithm is proposed to

drive the UAV follow the desired path with disturbances. The second one refers to the

formation control of a group of fixed-wing UAVs. A leader-follower formation control

methodology is designed based on the twin-delayed deep deterministic gradient policy.

Compared to the original DDPG, the proposed TD3 method has fast response time and

reliable performance. The third one is the auto-landing control of multi-rotor UAVs. A

training method is proposed for the real-world control issues.

• Chapter 5 addresses the FTC problem of fixed-wing UAV. Based on the actor-critic

framework, the SAC algorithm is constructed by introducing two main techniques, the

concept of entropy and clipped double Q-learning. Then, a robust term is defined to help

the algorithm for a better awareness of the system status, which makes it easier to maintain

system performance under system faults. After that, a new reward function is designed to

evaluate the value of each experience even under faulty conditions.

• Chapter 6 presents conclusions of the conducted research works and important find-

ings, and summarizes several predominant ideas for the future developments of the thesis’s

outcomes.
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Chapter 2

Preliminaries

2.1 Modelling of a Quadrotor UAV

The quardrotor UAV, which is shown in Fig. 2.1, is a small-scale UAV with four pro-

pellers evenly placed around the body. The main body contains battery, on-board sensors

and micro-controller. The pitch, yaw and roll motion can be achieved by independently

controlling the rotational speed of each propeller. The front and rear propellers rotate

clockwise, while the left and right ones rotate counter-clockwise (shown in Fig. 2.1 and

Fig. 2.2). Using this configuration, each pair of propellers contributes to the motion along

x-axis and y-axis, respectively.

Before modelling of the quadrotor UAV, the coordinate systems need to be defined in

advance. Two coordinate systems will be used, one is the earth coordinate system Se −

Oexeyeze and the other is the body coordinate system Sb − Obxbybzb. The directions of

xe, ye and ze are North, East and downward (vertical to the North-East surface). While the

directions of xb, yb and zb are pointing to the UAV’s head, UAV’s right wing and downward

(vertical to the xbyb− surface). The position Xe = [xe, ye, ze]
T and attitude Θe = [ϕ, θ, ψ]T

of quadrotor UAV are variables in the earth coordinate system which is also regarded as the

inertial reference frame. The transnational velocity V B = [u, v, w]T and rotational velocity
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Figure 2.1: A typical quadrotor UAV.

Figure 2.2: Configuration of the quadrotor UAV.

ωB = [p, q, r]T are defined in the body frame.

In order to derive the equations of motion, the Newton-Euler formulation needs to be

employed. However, the Newton’s equation of motion is usually derived in the inertial

reference frame, whereas the motion of object is more convenient if described in the body

coordinate system. In addition, the data collected by on-board sensors is respect to the

body-fixed frame. As a result, a transform matrix from body-fixed frame to the inertial

reference frame is necessary. The transform matrix RB→e can be obtained by multiplying
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three rotation matrices of roll, pitch and yaw motion.

RB→e =RψRθRϕ

=


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ



=


cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ

cos θ sinψ sinψ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ

− sin θ sinϕ cos θ cosϕ cos θ


(2.1)

Another transform matrix TB→e can be obtained by resolving the Euler angle rates into

rotational velocities in the body-fixed frame as follows:


p

q

r

 =


ϕ̇

0

0

+Rϕ


0

θ̇

0

+RϕRθ


0

0

ψ̇

 = (TB→e)
−1


ϕ̇

θ̇

ψ̇

 (2.2)

Therefore, the transform matrix is:

TB→e =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 (2.3)

According to the above transform matrices, the kinematic equations can be described

as: Ẋe

Θ̇e

 =

RB→e 03×3

03×3 TB→e


V B

ωB

 (2.4)
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2.2 Markov Decision Process Model

Markov decision process (MDP) is a discrete-time stochastic control process. It is also

a modelling method for decision-making problems where the result can be controlled by

the decision-maker. A typical MDP is a four-element tuple (S,A, P,R).

• S is a set of states, which is generally called state space.

• A refers to a set of actions, normally called action space. As stands for the available

actions at state s.

• P represents the transition probability, which is defined as P (s′|s, a), where s′ is the

next state if agent takes action a at current state s.

• R(s, a) is the immediate reward, it will be received if agent takes action a at state s.

Figure 2.3: A typical MDP model.

As shown in Fig. 2.3, at each time instant, the agent perceives the environment and

obtains the current state st. After that, the decision-making policy π will generate the best

action at. Then, the agent executes the selected action and receives an immediate reward

rt = R(st, at). Finally, the agent will enter the next state st+1.

The goal of MDP is to find a certain good policy π for decision-making. The policy π
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will maximize the value function which is defined below:

V (s) = E[R] = E[
T∑
i=t

γi−tr(si, ai)] (2.5)

where γ ∈ (0, 1] is the discount rate and R refers to the discount accumulated reward

R =
∑∞

0 γiri.

2.3 Basics of Reinforcement Learning

For the reinforcement learning (RL) algorithm used in this thesis, the objective is trying

to maximize the following Q-function:

Qπ(st, at) = Rt + γEst+1 [Vπ(st+1)] (2.6)

where Est+1 [Vπ(st+1)] is the weighted sum which is defined below:

Est+1 [Vπ(st+1)] =
∑
st+1

Pt→t+1Vπ(st+1) (2.7)

where Vπ(st) is the value function defined in (2.5).

π(at|st) is the policy to generate the best action at at state st. To sum up, the goal of

learning in RL is to find the optimal policy π∗.

π∗ = argmaxQπ(st, at) (2.8)

2.4 Deep Neural Network

The deep neural network (DNN) used in this thesis consists of a fully connected net-

work, activation function and regularization.
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As shown in Fig. 2.4, the DNN is constructed with neural units and connections be-

tween neurons. A fully connected network includes an input layer, hidden layers and an

output layer.

Figure 2.4: The structure of deep neural network.

The activation function is attached to every neural unit, and determines whether this unit

is activated or not. If there is no activation function, the neural network is equal to a linear

function and the output is a combination of linear calculations of each input. Therefore,

activation function is essential to the non-linearity of a neural unit. The activation function

can be represented as

Y = Activation(
∑

(weight× input) + bias) (2.9)

However, neural network (NN) is easily to be overfitted. In order to eliminate the over-

fitting, regularization is necessary to be adopted. Regularization has two main directions,

one is L1 regularization and the other is L2 regularization, which are described as

L1 : J1(θ) = [yθ(x)− y]2 + λ1
∑
|θi|

L2 : J2(θ) = [yθ(x)− y]2 + λ2
∑

θ2i

(2.10)

where J1,2(θ) stands for the optimization function, θi is the parameter of NN and λ1,2
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represents the weight of regularization.

The main difference between L1 and L2 regularization is that the L1 regularization tries

to estimate the median value of the data while L2 regularization tries to estimate the average

value of the data.
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Chapter 3

UAV Path Planning based on

Reinforcement Learning

This chapter studies the topics of path planning of multi-rotor UAV based on reinforce-

ment learning algorithms. UAV is trying to find an optimal path from the start position to

destination in the presence of obstacles. Two types of path planning methods are investi-

gated in the subsequence, namely the 3-D real-time path planning and human pedestrian

behavior based path planning method.

3.1 3-D Real-Time Q-Learning Path Planning

Most of the existing RL path planning algorithms are focusing on the off-line path

planning problem. That is because the state space of the algorithm is generally defined as

the absolute location in the environment map. If there are any changes in the environment,

the algorithm needs to be re-trained. As a result, there is a limitation that these algorithms

cannot deal with real-time path planning problem. Therefore, the path planning problem in

dynamic or unknown environment is a quite challenging issue for RL algorithms.

In this section, a new Q-learning algorithm is proposed as the solution of real-time
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path planning. Different from the traditional state definition, the proposed algorithm uses

a relative location to represent the surrounding environment. The main contribution of the

proposed method is a new definition of state space, which can accurately and uniquely

represent the surrounding environment no matter how it changes.

3.1.1 Problem Formulation

The real-time path planning problem considered in this study is shown in Fig. 3.1. A

UAV is flying from the start position S to the destination T in the presence of obstacles.

There are two kinds of obstacles considered, one is fixed obstacle and the other is moving

obstacle. It is assumed that the on-board sensors have a detection range, and the state

information obstacles within the detection range can be obtained. The environment within

detection range is the local environment needs to be considered. The goal of the proposed

path planning algorithm is to plan a safe and short path without collision.

Figure 3.1: The investigated path planning problem.
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3.1.2 Algorithm Design

Environment Model and State Space Definition

As stated in the previous section, the traditional state definition ofQ-learning algorithm

is using the absolute location in the environment. However, the 3-D real-time Q-learning

path planning algorithm studied in this section uses the relative location instead of absolute

location in order to mapping the environment dynamically. At each time step, the UAV

is located in the center of the sensor area. The radius of the sensor range can be evenly

divided into 3 sections, the close section, the middle section and the ranged section. Define

the length of each section as the side length of a cube. Then, a unit cube is obtained. The

local environment within sensor range can be constructed by lining up the unit cubes. As

shown in Fig. 3.2, the sensor range consists of (7× 7× 7 = 343) unit cubes and each unit

has a unique relative location.

Figure 3.2: The sensor range of UAV.
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The state space includes three elements. The first element is the relative location of

obstacle. As shown in Fig. 3.2, there are 343 unit cubes in the detection range. The UAV

location, which is the center of the detection range, should be subtracted. All 342 unit

cubes are labelled as Rcube,1, Rcube,2, ..., Rcube,342. If there is no obstacle detected, use label

Rcube,0.

The second element is the heading direction of moving obstacle. Similar to the ac-

tion space definition, there are 26 moving directions considered. They are combinations

of forward, backward, leftward, rightward, upward and downward, which are labelled as

Dob,1, Dob,2, ..., Dob,26.

The third element is the destination cube, which illustrates the direction of destination.

Connect the UAV location and destination location, as shown in Fig, 3.3. The line will

inevitably pass through several unit cubes within the sensor range. Where the outermost

unit cube, that is, the unit cube closest to the destination, will be regarded as the destination

cube. It must be one of Rcube,1, Rcube,2, ..., Rcube,342.

Action Space

After the state space has been defined, the possible actions at each state should be

addressed. The UAV has 26 moving directions which are labelled as Aac,1, Aac,2, ..., Aac,26.

They are combinations of six primary directions, which are forward, backward, leftward,

rightward, upward and downward.

Specifically, the 26 possible actions can be divided into three parts. First one is up-

moving actions, which is shown in Fig. 3.4. It contains 9 directions, which are upward, up-

forward, up-leftward, up-rightward, up-backward, up-left-forward, up-right-forward, up-

left-backward and up-right-backward.

Second one is the horizontal-moving actions, which is defined in Fig.3.5. The directions

are forward, leftward, rightward, backward, left-forward, right-forward, left-backward and
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Figure 3.3: The destination cube.

right-backward.

The lats one is the down-moving directions, which is illustrated in Fig .3.6. There

are 9 directions in this part, downward, down-forward, down-leftward, down-rightward,

down-backward, down-left-forward, down-right-forward, down-left-backward and down-

right-backward.

Reward Function

Reward function can be regarded as an evaluation which indicates the performance of

the selected action at current state. Generally, the design of reward function leads the direc-

tion of learning. Therefore, a good design can accelerate the learning speed and improve

the overall performance. The reward function used in the proposed algorithm is designed
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Figure 3.4: The up-moving actions.

Figure 3.5: The horizontal-moving actions.

as:
R3d(s, a) =β1(du→t(s− 1)− du→t(s))

+ eβ2(du→o(s−1)−du→o(s))

(3.1)

where β1 and β2 are the weight coefficients. du→t(s) is the distance from location at current

state s to the destination cube of current state s, which is expressed as follows:

du→t(s) =
√

(xu(s)− xt(s))2 + (yu(s)− yt(s))2 + (zu(s)− zt(s))2 (3.2)

where Puav(s) = [xu(s), yu(s), zu(s)] is the location of UAV at state s. Pdes−cube(s) =

[xt(s), yt(s), zt(s)] is the location of UAV at state s. du→t(s−1) refers to the distance from
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Figure 3.6: The down-moving actions.

previous state s− 1 to the destination cube of current state s:

du→t(s− 1) =
√

(xu(s− 1)− xt(s))2 + (yu(s− 1)− yt(s))2 + (zu(s− 1)− zt(s))2

(3.3)

du→o(s) is the distance between detected obstacle and the UAV.

du→o(s) =
√

(xu(s)− xo(s))2 + (yu(s)− yo(s))2 + (zu(s)− zo(s))2 (3.4)

where Pobstacle(s) = [xo(s), yo(s), zo(s)] is the location of obstacle at state s.

Updating Q-table

The initial value of Q-table is set to be zero. With the training phase, Q-table will be

full-filled with Q-values updated by the following equation:

Q3d(s, a) = R3d(s, a) + γMax(Q3d(st+1, at+1)) (3.5)

3.1.3 Algorithm Training and Executing

The training process will be realized by exploring the map and then reach the destina-

tion. Each success trial will be considered as an episode. The structure of the proposed
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Q-learning training process is shown in Fig. 3.7.

Figure 3.7: The flowchart of training the proposed Q-learning algorithm.

After the proposed Q-learning algorithm has been well trained, the collision-free path

can be generated by the updated Q-table. Specific steps are shown in Algorithm 1.

3.1.4 Simulation Results

Success Rate

Success rate or miss rate is considered to be an important evaluation factor of the train-

ing effect in learning algorithm design. During training phase, if the UAV hits obstacle

or the UAV cannot reach the terminal point within the maximum iterations, this episode

is considered to be unsuccessful. Generally, for all the learning algorithm, it is expected
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Algorithm 1: 3-D path planning algorithm.
Initialization
Starting state S3d,start and destination state T3d
The well trained Q-table Q3d

Planning the path
Define the UAV current state: S3d,current = S3d,start

While (S3d,current ̸= T3d)
If(There is only one obstacle or no obstacle detected)

Find the best action at current state using Q3d

Q(S3d,current, abest) = Max[Q3d(S3d,current, a)]
Execute the best action and obtain the next state

End If
If(There is more than one obstacle in sensor range)

Label the obstacles from OB1 to OBn (n is the number of obstacles)
Generate a new composite Q-table Q3d,com

For each possible action ai at current state S3d,current,
Q3d,com(S3d,current, ai) =

∑n
j=1Q3d(S3d,current, ai)(OBj)

Find the max value of Q3d,com,the corresponding action ai is the best action
Execute the best action and obtain the next state

End If
Define the current state as the executed next state

End While
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Table 3.1: Training effect on successful rate
Training episodes Successful episodes Successful rate

100 65 65%
200 142 71%
300 231 77%
400 325 81.3%
500 422 84.4%
600 518 86.3%
700 616 88%
800 715 89.4%

that with more training episodes, the performance will be better and the successful rate is

greater. The successful rate of the training process is sampled every 100 episodes. During

the training phase, the number of successful episodes is counted and then successful rate

can be calculated. The training effect on successful rate is presented in Table 3.1 and Fig.

3.8. In Table 3.1, the successful rate increases as the episodes goes up. When the train-

ing just started, there is only 100 training episodes, the successful rate is 65%. After that,

the algorithm has been trained hundreds of times until 800 training episodes was reached,

where the successful rate is increased to almost 90%, which is considered to be a high

successful rate.

Fig. 3.8 shows the successful rate of every 100 episodes. The successful rate increases

fast at the beginning and maintains in a high level after 500 episodes.

Performance Testing in Simulation

Since the investigated UAV is a multi-rotor UAV, the operating area of it is small and the

altitude is low. The simulation test environment in this section has 100(m) width, 100(m)

length and 50(m) height. The detection range is 10 meters. S and T denote start point and

the terminal point.

The following three figures show the performance in three different scenarios with both

fixed and moving obstacles. In Fig. 3.9, the environment is the least complex. The planned
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Figure 3.8: The successful rate of every 100 episodes.

path can effectively avoid obstacles and reach the destination. More moving obstacles are

considered in Fig. 3.10, the proposed algorithm finds a safe path when passing through all

the obstacles. In Fig. 3.11, the environment is obviously more complicated, the algorithm

follows the strategy of staying away from all obstacles. Although the total length is longer,

it is guaranteed a collision-free path.

Figure 3.9: The testing scenario 1.

39



Figure 3.10: The testing scenario 2.

3.2 3-D Real-Time Path Planning based on Human Pedes-

trian Behavior

The path planning algorithm proposed in this paper is inspired by the human pedestrian

behavior. It can be observed that pedestrians seldom collide each other, even in crowded

places, such as metro stations and famous tourist sites. If the behavior of pedestrians can

be applied to uncrewed robots (UGV and UAV), the obstacle avoidance ability of robots

will be greatly improved.

Let us consider how a pedestrian tries to avoid collision in a crowded place. First,

pedestrian will focus on the surrounding environment and take less care about the environ-

ment which is far away until it comes closer. Second, pedestrian will never be too close

to another pedestrian, instead, he or she will keep distance from other pedestrians in ad-

vance. Third, for fixed obstacles, such as walls and benches, pedestrians will walk as close

as possible to these objects. Because doing like this can reduce the collision risk from the

side of fixed objects. This is a wise and safe strategy. Fourth, if the walking directions

of two pedestrians will not cross, then these two pedestrians can be very close since there

is no risk of collision. For example, two friends are walking along the street, they can be
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Figure 3.11: The testing scenario 3.

shoulder to shoulder. Therefore, moving direction is a very important factor in pedestrian

behavior. In fact, researchers have noticed the behavior of pedestrians as early as the 1990s.

Helbing [125] investigates the pedestrian dynamics and established a mathematics model

of pedestrian. Inspired by the above ideas, the specific steps of the proposed path planning

method is described below.

It should be noted that the state and action spaces definition remain the same with the

3-D real-time Q-learning path planning algorithm.

3.2.1 Reward Function

Reward function can be considered as the most significant component in a Q-learning

algorithm. Because it gives feedback for the action and leads the learning direction of the

algorithm. In other words, the reward function indicates how good or how bad an action

is. A good design of reward function can result in a fast-learning speed and an outstanding

overall performance.

In this study, the reward function is inspired by human pedestrian behavior. Due to

[125], the pedestrian behavior can be formulated as a social force model. The model can
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be simplified as follows:

F (t) = fD(t) + fαβ(t) + fαB(t) (3.6)

where F (t) is the total force at time instant t. There are 3 main factors that influences

the motion of a pedestrian. The first one is destination factor fD(t), pedestrian is always

willing to reach destination as comfortable as possible. Therefore, they usually choose the

shortest way if there is no obstacles.

fD(t) =
e⃗α(t)− d⃗α(t)

τ(t)
(3.7)

where e⃗α(t) is the destination direction, d⃗α(t) refers to the actual moving direction of pedes-

trian α and τ(t) is a parameter related to the moving speed.

The second factor is caused by other pedestrians fαβ(t), a walking person α will keep

a certain safe distance from other pedestrians β and this distance depends on the moving

direction and speed of other pedestrians.

fαβ = Vαβ(b) (3.8)

where Vαβ(b) is a repulsive potential field with time-varying parameter b.

The third one is stationary object factor fαB, a pedestrian will naturally keep a certain

distance from fixed obstacles to avoid collisions. If the fixed obstacle is quite close, the

force will be considerable strong and if the obstacle is far away, the force will be quite

weak.

fαB = UαB (3.9)

where UαB is a repulsive and monotonic decreasing potential field.
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Besides the above three main factors, in the algorithm design, bonus and penalty strate-

gies also needs to be considered in the reward function. Once the goal is reached, a positive

reward value will be given to reinforce good actions. However, if a collision occurs, a huge

negative value will be assigned. Therefore, the reward function Rpath in this paper consists

of five terms in total.

Rpath = rattract + rmoving + rfixed + rbonus + rpenalty (3.10)

The first term rattract is an evaluation of the current flying direction. rattract will receive

a positive value while UAV is flying closer to the destination. And a negative value is

assigned if the flying direction is opposite to the destination direction.

rattract = ω1 cos γc→d (3.11)

where ω1 is the weight parameter and γc→d stands for the angle between current moving

direction and the destination direction.

The second term rmoving is defined below:

rmoving = −ω2(
1

dt,c→o

+
1

3 · dt+1,c→o

+
1

9 · dt+2,c→o

) (3.12)

where ω2 is the weight parameter. dt,c→o represents the distance from UAV to moving

obstacle at current time instant t and dt+1,c→o is the distance at next time instant t + 1 if

UAV and obstacle continues their movement along the current direction. The design of

rmoving is imitating the pedestrian behavior, a pedestrian always make predictions to avoid

obstacles in advance. Therefore, rmoving not only considers the current situation, but also

takes the future risks into account.

Although UAV needs to avoid both fixed and moving obstacles, the reward functions,
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rfixed and rmoving, are quite different. The fixed obstacle is not necessarily to be considered

if the UAV is far from it. An activation range is applied in the rfixed design. Due to

the distance definition, the activation range contains close zone, middle zone and ranged

zone. If the fixed obstacle is located within the activation range, UAV will receive negative

feedback. While the fixed obstacle is located beyond the activation range, a small positive

value is rewarded to the UAV. Therefore, the reward function is defined as:

rfixed =

 −ω3(ln dt,c→f + ln dt+1,c→f ), Obstacle located in the activation range.

1, Otherwise.
(3.13)

where ω3 is the weight parameter and dt,c→f stands for the distance between UAV and fixed

obstacle at current time instant t.

The last two term rbonus and rpenalty are designed as follows:

rbonus =

 100, If UAV reaches destination.

0, Otherwise.
(3.14)

rpenalty =

 −1000, If UAV collides with an obstacle.

0, Otherwise.
(3.15)

3.2.2 Q-table Updating and Algorithm Training

Initially, the values in Q-table will be set to zero. With the exploration and exploitation

in the training phase, the values in Q-table will be updated by the following equation:

Q(st, at) = Q(st, at) + αlearningRpath,t + γMax(Q(st+1, aall)) (3.16)

where αlearning is the learning rate and γ refers to the discount rate. aall represents all

the actions at a state. Max(Q(st+1, aall)) stands for the maximum Q-value among all the
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possible actions at the next time instant.

In order to ensure the diversity of training data, the obstacle position and speed are

randomly distributed in each episode. A training episode will end and start a new episode

when the following conditions occurred. First, the UAV reaches destination. Second, the

UAV collides with obstacles. Third, the training steps exceed the maximum limit. The

design of maximum limit aims at preventing internal dead loops, which means the UAV

keeps going back and forth along a certain loop. If this condition occurs, the UAV is

unable to reach the destination and trapped in a local optimal solution.

The algorithm train phase will be divided into three training steps: phase 1, only fixed

obstacles are considered. phase 2, only moving obstacles are considered. phase 3, both

fixed and moving obstacles are considered. The mechanism of the first two steps aims at

reinforcing the training effect and the last step is to guarantee a good performance in a

comprehensive environment.

3.2.3 Planning the Path

After the training phase, the collision-free path can be generated with the help of the

well-trained algorithm. As stated in the section 4.3, the state definition only considers one

obstacle within the detection range. If there are more than one obstacles, the action with

the highest Qtotal(s, a) will be selected. The Qtotal(s, a) is the sum of Q-values of different

obstacle cases.

Qtotal(s, a) = Qob1(s, a)+Qob2(s, a)+ · · ·+Qobn(s, a), {ob1, ob2, · · · , obn} ∈ OB (3.17)

where OB is the collection of obstacles within the detection range.

The pseudo-code of the proposed path planning algorithm is shown in Algorithm 2.
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Algorithm 2: Human Pedestrian Path Planning Algorithm
Initialization:
UAV starting position and destination
The unknown environment and trained Q-table
Real-time planning:
while Destination is not reached

Observe the surrounding environment within the detection range
Obtain the state information scur and the number of obstacles n
for action i = [1, 26] do
Qtotal(scur, ai) =

∑n
j=1Qobj(scur, ai)

end for
Find the best action amax who has the maximum value of Qtotal(scur, amax)
Execute the selected action amax

End While

3.2.4 Simulation and Experiment Results

Training Results and Analysis

The miss rate and average reward are two key factors of evaluating training effect.

Miss rate, as the name indicates, is the ratio of failed and total training episodes. A failed

episode means the UAV collides with an obstacle or the total training steps during one

episode exceeded the maximum number. Due to the stochastic exploration strategy, UAV

will inevitably collide with obstacles as the number of training episode grows. And the

UAV may be trapped in local loops since the algorithm is not well trained. As shown in

Table 2, the miss rate is a little high at the beginning. As the number of training episode

increases, the miss rate drops rapidly and finally converges to a small value.

Simulation Results

Since the investigated UAV is a multi-rotor UAV, the operating area of it is small and the

altitude is low. The simulation test environment in this section has 100(m) width, 100(m)

length and 50(m) height. The detection range is 10 meters. Fig. 3.12, Fig. 3.13 and

Fig. 3.14 illustrate the performance in three different scenarios with both fixed and moving
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Total episode Failed episode Miss rate(%)

Fixed
First1× 104 3073 15.4%

Second 1× 104 1092 5.5%
Third 1× 104 556 2.8%

Moving
First 1× 104 2285 11.4%

Second 1× 104 1170 5.8%
Third 1× 104 464 2.3%

Mixed
First 1× 104 651 3.3%

Second 1× 104 318 1.6%
Third 1× 104 107 0.5%

Table 3.2: The miss rate during different training phases.

obstacles.

Figure 3.12: Simulation testing scenario 1.

In Fig. 3.12, the environment is less complicated compared to the other two scenarios.

The UAV can effectively avoid all obstacles and reach the destination. In the simulation

environment of Fig. 3.13, more moving obstacles are considered. The planned path does

not collide moving obstacle, nor keep far away from them. It finds a safe and short path

when passing through obstacles. From Fig. 3.14, the simulation environment of scenario

3 is obviously more complicated, the moving obstacles are closer to the fixed ones, which

increases the difficulty to plan a safe and short path. With the mechanism of imitating
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Figure 3.13: Simulation testing scenario 2.

pedestrian behavior, the UAV does not avoid the multi-obstacle zone flies along the edge of

fixed obstacles and successfully pass through the multi-obstacle zone without collision. In

summary, the path generated by the proposed algorithm leads the UAV to destination with

a safe and shortest trajectory.

Comparison of Simulation Results

The comparison of the 3-D real-timeQ-learning path planning algorithm and the human

pedestrian behavior based real-time path planning algorithm are illustrated in the following

three figures. Although both two algorithms can reach the destination without collision,

however, the path length is not the same. As shown in Fig. 3.15, Fig. 3.16, and Fig. 3.17,

yellow line stands for the human pedestrian behavior-based algorithm and the cyan line

refers to the 3-D real-time Q-learning path planning algorithm. The length of two paths is

shown in Table 3.2.4. It obviously that the pedestrian behavior-based algorithm path length

is always shorter than the one of Q-learning path planning algorithm. In addition, from the

errors between two paths, the more complicated the environment is, the bigger the errors

is.
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Figure 3.14: Simulation testing scenario 3.

Q-learning (m) Pedestrian behavior (m) Errors (m)

Scenario 1 146.2 140.7 5.5
Scenario 2 158.4 148.2 10.2
Scenario 3 165.1 150.8 14.3

Table 3.3: The comparison of path lengths between two path planning algorithms.

Real Flight Tests

The real flight test is carried out on the QDrone and Qcar platform in the NAVL Lab at

Concordia University. Testing video has been uploaded to the YouTube, which is available

at https://www.youtube.com/watch?v=FGp2LhPuVk0&t=1s. The following figures (Fig.

35) illustrate the effectiveness of the proposed algorithm in real flight test.
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Figure 3.15: Comparison of two path planning algorithm in simulation testing scenario 1.

Figure 3.16: Comparison of two path planning algorithm in simulation testing scenario 2.
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Figure 3.17: Comparison of two path planning algorithm in simulation testing scenario 3.

Figure 3.18: The proposed algorithm is validated in real flight test. (Video link:
https://www.youtube.com/watch?v=FGp2LhPuVk0&t=1s)
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Chapter 4

Motion Control of UAV

In this chapter, the investigation of using DRL in UAV motion control will be conducted

in three specific directions: path following control, formation control and auto-landing

control.

4.1 Path Following Control of Fixed-Wing UAV

This section proposes an improved deep deterministic policy gradient (DDPG) algo-

rithm for path following control problem of fixed-wing UAV. A specific reward function

is designed for minimizing the cross-track error of the path following problem. In the

training phase, a double experience replay buffer (DERB) is used to increase the learning

efficiency and accelerate the convergence speed. Simulation results are carried out to show

the effectiveness of the proposed DERB-DDPG method.

In DDPG algorithm, the experience replay buffer is an important component mech-

anism because it can break the data correlation and accelerate the convergence speed in

the training phase [22]. Generally, the replay buffer is used to store the experiences and

a batch of samples will be extracted from replay buffer during training phase. In order to

accelerate the training speed, some researchers proposed a prioritized experience replay
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buffer (PERB) [126], which guarantees the samples with larger values to be selected more

frequently. However, repeating a limited number of experiences may be lack of data diver-

sity and easily lead the algorithm converging to a local optimization [127]. Based on the

ideas of prioritized experience replay buffer, a double experience replay buffer (DERB) is

proposed in this section, which successfully inherits the advantage of PERB but avoids the

disadvantage of it. As the name indicates, DERB has two experience replay buffers. One

is working as ordinary replay buffer and the other only stores the experiences with high

temporal difference (TD) values. In the training process, the two replay buffers are work-

ing individually. Part of the samples are extracted from the ordinary one and the rest are

from the one with high TD values. Another mechanism is that the proportion of two replay

buffers is dynamically changing. If the training process is just started, more samples will

be selected from the one with high TD values, which aims at speeding up training. When

the algorithm has been trained and already has a good performance, more samples will be

extracted from the ordinary one in order to guarantee the diversity of training data.

The main contributions of the proposed method include the following aspects: 1) a new

framework of DDPG for UAV path following is established; 2) a new reward function is

designed for UAV path following problem; 3) a new training technique, called the DERB,

is proposed to improve the learning ability.

4.1.1 Problem Formulation

UAV Modelling

Modelling the UAV in path following problem requires two coordinate systems: one is

earth-surface inertial reference frame Sg−Ogxgygzg and the other is aircraft-body reference

frame Sb − Obxbybzb. For earth-fixed reference frame, the velocity of UAV can be defined

as [ẋg, ẏg, −ḣ]T . While in body-fixed reference frame, the velocity of UAV is [u, v, w]T .

53



The translational kinematic equations of UAV could be defined as:



ẋg =ucosθcosψ + v(sinϕsinθcosψ − cosϕsinψ)+

w(sinϕsinψ + cosψsinθcosψ)

ẏg =ucosθsinψ + v(sinϕsinθsinψ + cosϕcosψ)+

w(−sinϕcosψ + cosϕsinθsinψ)

ḣ =usinθ − vsinϕcosθ − wcosϕcosθ

(4.1)

where ϕ, ψ, θ, are the roll, yaw and pitch angle, respectively.

The angular kinematic equations could be expressed as:


ϕ̇ =p+ (rcosϕ+ qsinϕ)tanθ

θ̇ =qcosϕ− rsinϕ

ψ̇ =1/cosθ(rcosϕ+ qsinϕ)

(4.2)

where p, q, r are the roll, pitch, and yaw rate, respectively.

It is assumed that the UAV has a constant speed and flies at a constant altitude. There-

fore, the kinematic equations could be simplified as:

ẋg =ucosψ − vsinψ

ẏg =usinψ + vcosψ

ψ̇ =r

(4.3)

From (4.3), it is obvious that the yaw angle ψ is the key of motion control. Therefore,

the goal of the path following algorithm is to generate a proper value of yaw angle ψd,

which can guarantee the UAV fly on the desired path. Due to the physical limitations of a

fixed-wing UAV, the yaw angle is restricted to the range from −30◦ to 30◦.

In actual flight, the general idea for solving UAV path following problem is placing a
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Figure 4.1: The geometry of path following problem

series of waypoints on the planned path [128]. After that, the guidance algorithm steers the

UAV to follow these waypoints sequentially. The geometry of the path following problem

is shown in Fig. 4.1. A 2-D path Ppath is considered as the desired path, where a set of

successive waypoints (xk, yk) is placed on the target path. ϵ stands for the cross-track error,

which is defined as the shortest distance between the UAV and desired path. Course angle

χd is the sum of side-slip angle β and desired yaw angle ψd.

χd = ψd + β (4.4)

where side-slip angle β refers to the influence of negative effects including internal uncer-

tainties and external disturbances. The side-slip angle is generally considered to be un-

known in the research of path following problem. In other words, path following controller

should be designed to compensate for the negative effects of side-slip angle.

State and Action Specification

In the application of RL algorithm, the formulation of the problem is decisive for the

convergence of algorithm. The state space of the proposed method Spf is defined as:

Spf = {ϵ, χd, Dn, Bpf} (4.5)
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where ϵ is cross track error, refers to the distance between UAV and path tangential line,

which is shown in Fig. 4.1. χd stands for the desired course angle. Dn refers to the distance

between UAV current location and the next waypoint. The last one is Bpf , a binary flag

variable. If the UAV position has been on the desired path and UAV flying direction is

pointing to the next waypoint (ϵ = 0 and χd = 0), that is perfect tracking, the value of flag

variable Bpf = 1, otherwise Bpf = 0.

The action space of the proposed method Apf is given by:

Apf = {ψd} (4.6)

where ψd is the desired yaw angle.

When algorithm is learning directly from the data of physical observations (for exam-

ple, distances, velocities and angles), the ranges of these variables may differ a lot. This

greatly decreases the effectiveness and efficiency of the algorithm. One effective approach

is to scale the variable values, make them in the same range. Therefore, the state and ac-

tion spaces are designed in 4 dimensions and 1 dimension respectively with normalized

variables scaling from −1 to +1.

Reward Shaping

Generally, with respect to the RL algorithm, the reward function is considered as the

most important component. A proper design of the function can result in a good perfor-

mance and fast convergence speed. Therefore, the reward function Rpf (t)(st, at) is defined

by (4.7) and (4.8):

shapingt =−
√
ψ2
dt
+ ψ2

dt−1
−
√
χ2
dt
+ χ2

dt−1

− 10
√
ϵ2t + ϵ2t−1 + 10BDn

(4.7)
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Rpf (t) = shapingt − shapingt−1 (4.8)

It can be concluded from (4.7) and (4.8) that the reward function explicitly emphasizes

the importance of minimizing the cross-track error. The requirement of smooth flight is also

considered in reward function. Following this idea, the UAV is able to learn minimizing the

distance between desired path and generated smooth yaw angle references, which results

in a less aggressive motion.

4.1.2 DERB-DDPG for UAV Path Following Control

Actor-Critic Framework

DDPG is known as a policy-based RL method which aims at solving problem with

continuous space in states and actions [129]. Facing the continuous nature of actions and

states, DDPG algorithm utilizes two neural networks in the actor-critic framework in order

to estimate the deterministic policy and the Q-function [27].

The DDPG framework for path following control problem is shown in Fig. 4.2. The

desired yaw angle ψd is provided by DDPG algorithm, then the control signals [δa, δr]

are generated by PID controller. With the control inputs, the UAV current state informa-

tion [β, p, r, ψ] will be given to the path following environment and PID controller. Af-

ter that, the UAV current state information will be transferred to DDPG algorithm state

[ϵ, χd, Dn, B] for further calculation.

In the DDPG mechanism, two networks, actor and critic, are included. The actor net-

work generates the action based on state information. While, the critic network evaluates

the executed action, then updates the actor network. During the training phase, experiences

are stored in the replay buffer. When updating the network, samples will be extracted from

the replay buffer to break the inter-correlations between experiences and make the training
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phase easier to converge. During the execution phase, the critic network and replay buffer

will not be involved. The actor network works individually to calculate the action based on

observed state.

Figure 4.2: The framework of DDPG for path following control

For the actor network policy πpf , the value function V πpf regarding to accumulated

discount reward Rpf (t) is defined below

V π
pf (st) = E[Rof (s)|st, at = πpf (st)] (4.9)

For every action-state pair, the value function could be expressed by the recursive rela-

tionship, which is known as the Bellman equation as following

Qπ
pf (st, at) = E[Rpf (st, at) + γ

∑
st+1

p(st+1|st, at)Q
πpf
pf (st+1, at+1)] (4.10)

The optimal policy π∗ is the one with maximum value of the function V π
pf (orQπ

pf ). The

optimal policy π∗ can be described as a function µ since it is a deterministic policy. The

Q-function (4.10) will be learned using the reactions from environment using a stochastic
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policy µ′, where µ′ is the exploration policy.

Qµ
pf (st, at) = E[Rpf (st, at) + γQµ

pf (st+1, µ(st+1))] (4.11)

The function approximator, which is parameterized by θQpf , is used to approximate the

Q-function. The optimization could be obtained by minimizing the loss

L(θQpf ) = E[(Qpf (st, at|θQpf )− ypf (t))2] (4.12)

where ypf (t) = Rpf (st, at) + γQpf (st+1, µ(st+1)|θQpf ).

The critic Q-function is updated using the Bellman equation as in a standard RL al-

gorithm. The actor network is learned by following and applying the chain rule to the

expected return from the start distribution J with respect to the actor parameters.

▽θµ J ≈ E[▽θµQpf (st, µ(st|θµ)|θQpf )] (4.13)

There will be a challenge if using neural network for reinforcement learning: the train-

ing data are not identically distributed and might be correlated since they are generated

from exploration sequentially. As a result, it is necessary to use mini-batches, which are

extracted from replay buffer. During each time episode, the actor and critic networks will

be learned by a mini-batch. After that, the tuple (st, at, Rpf (t), st+1) will be added into

the experience replay buffer. In order to break the correlation between samples, the replay

buffer should be large enough.

The two target networks in this algorithm will be updated using soft rules. Initially,

target networks are assigned the same parameter values with the actor and critic networks,

π′
pf (s|θπ

′
) and Q′

pf (s, a|θQ
′
). Then, the weights of them will be updated by softly tracking
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the learned networks

θ′ ← τθ + (1− τ)θ′ (4.14)

where τ ≪ 1. This may slow the learning speed due to the fact that (4.14) will slow

down the propagation of value approximation. However, it greatly improves the stability

of learning, target networks π′
pf and Q′

pf will be trained without divergence.

Exploration Law

The exploration in DDPG algorithm is independent from learning. The exploration

action apf (t) is constructed by adding a random noise Nt from an Ornstein-Uhlenbeck

(OU) process to the exploration policy µ′(st).

at = µ′(st) +Nt (4.15)

where the exploration policy is µ′(st) = µ(st|θµt ), the noise is sampled from OU process

Nt ∼ OU(ν, ϑ, ς). Since (4.15) is a random exploration law, the training is easily to fail if

apf (t) is too small or too large. As a result, in order to reduce the failure rate of training, the

exploration action apf (t) should be limited within [amin, amax]. The effect of exploration

varies due to the selected values of parameters (ν, ϑ, ς). For example, a larger value of ς

will lead to a broaden range of actions. As a result, the noise Nt is suitable for redesigning

which could be adjusted to achieve a fast learning ability.

Double Experience Replay Buffer Design

For each time step, the TD value will be calculated to partially reflect the performance

of this action, which is defined as:

TD = Rpf (st, at) + γQ′
pf (st+1, µ(st+1))−Qpf (st, at) (4.16)
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The main idea behind DERB is to repeat the experiences with greater TD values more

frequently in order to accelerate the training speed. In the proposed method, two expe-

rience replay buffers RB1 and RB2 are designed to store the experiences, where RB1 is

the ordinary replay buffer which stores all the experiences and RB2 is used to store the

experiences with high TD values. Obviously, RB2 has a much smaller size compared to

RB1.

While extracting samples from replay buffer, theRB1 andRB2 are working at the same

time. The majority of extracted samples are randomly selected from RB1 and the others

are randomly selected from RB2. When the learning process just started, the experiences

with high TD values are apparently better. However, with the training process goes on, the

algorithm will evolve and generate better performance. The experiences with higher TD

values may not be the best choice anymore. As a result, the percentage of experiences from

RB2 should be reduced. The probability pRB stands for the percentage of RB2 during the

learning process. pRB is defined as follows:

pRB =
ϵavg
ϵcon

(4.17)

where ϵavg denotes the average cross-track error during the current training episode. ϵcon

refers to a constant value which aims at balancing the percentage of RB2.

If the average cross-track error increases, the pRB will also increase. On the contrary, if

the average cross-track error is relatively low, the pRB will decrease. Specifically, pRB will

be relatively high at the starting period and eventually approaches to 0.

This mechanism is quite important for the convergence of training process because

always learning from some successful experiences will lead to a weak robustness and the

lack of flexibility. To sum up, the DERB is used at the beginning to speed up the learning

process and eventually becomes dispensable when the algorithm approaches convergence.

The specific steps of the proposed DERB-DDPG algorithm is displayed in Algorithm
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3.

Algorithm 3: DERB-DDPG algorithm
Step. 1 Initialization
Randomly initialize actor network πpf (s|θπ) and critic network Qpf (s, a|θQ) with
weights θπ and θQ

Copy the weights to target network π′
pf and Q′

pf , θπ
′
pf ← θπpf , θQ

′
pf ← θQpf

Initialize replay buffer DERB
Step. 2 Exploration
for episode = [1,m]
Initialize the noise process N ∼ OU for exploration
for t = [1, T ]
Generate action apf (t) = µ(st|θπpf ) +Nt based on the current actor policy and
exploration noise
Execute action apf (t), then receive reward Rpf (t) and obtain the new state st+1

Store transition (st, at, rt, st+1) into DERB
Step. 3 Update
Extract a mini-batch of n transitions (si, ai, Rpf (i), si+1) from replay buffer DERB
Calculate ypf (i) = Rpf (si, ai) + γQpf (si+1, µ(si+1)|θQpf )
Update critic network by minimizing the loss L = 1

n

∑
i(ypf (i)−Qpf (si, ai|θQpf ))2

Update the actor policy by using the policy gradient
▽θµJ ≈ 1

n

∑
i▽aQpf (s, a|θQpf )|s=si,a=µ(si)▽θµ µ(s|θµ)|si

Update the target networks
θπ

′
pf ← τθπpf + (1− τ)θπ′

pf

θQ
′
pf ← τθQpf + (1− τ)θQ′

pf

end
end

4.1.3 Simulation and Analysis

UAV Model

Since the UAV is assumed to maintain a constant altitude. Therefore, only the lateral

motion needs to be considered. The linearized lateral model of fixed-wing UAV can be

expressed as:

ẋ =Ax+Bu

y =Cx+Du

(4.18)
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where x = [β, p, r, ψ]T , u = [δr, δa]
T , and δr, δa are rudder and aileron deflection angles,

respectively.

The matrices A,B,C and D are given by:

A =



−0.732 0.0143 −0.996 0.0706

−893 −9.059 2.044 0

101.673 0.0186 −1.283 0

0 0 1 0


(4.19)

B =



0 0.244

328.653 308.498

47.528 102.891

0 0


(4.20)

C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, D =



0 0

0 0

0 0

0 0


(4.21)

In the simulations, the PID controllers are applied in the inner loop to achieve the yaw

stability. The control signals u = [δa δr]
T are given based on ψd and ψ, where ψd is

generated by the proposed DDPG algorithm.

Training Settings

Choosing suitable hyper parameters for the proposed SAC controllers can significantly

improve training efficiency. Specifically, the learning rate is 1× 10− 3, the discount factor

is 0.98, the smooth parameter ρ is 3 × 10−3. The deep neural network has three hidden

layers and each layer has 32 units.
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During the training phase, there are three kinds of training paths, which are shown in

Fig. 4.3. The first one is a circle path, which aims at training the soft turning ability. The

second one is a rectangular path, which aims at training sharp turning ability. The third one

is a sine or cosine curve path generated by trigonometric functions, which aims at training

the comprehensive turning ability. Since the shape of training paths has been determined,

in order to guarantee the diversity of the training data, the size and magnitude of training

path differ in each training episode.

(a) Circle path (b) Rectangular path

(c) Sine path

Figure 4.3: Three training paths

For each training episode, it consists of three training missions which stands for the

three training paths. Training efficiency is an important measurement, which illustrates

the learning ability of algorithm, which could be defined as the ratio between effective

episodes and total episodes. The effective episode refers to the episode which UAV has

completed all three training missions and reach the terminal of the training path. Due to

the exploration law, the UAV may go too far from the reference path and could not reach

the terminal. Failure of arrival or stay too far from the reference could not be counted
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as effective episode. The learning algorithm reacts to the surrounding environment at a

frequency of 10 Hz. The size of mini-batch is 20.

Performance Comparison

To demonstrate the effectiveness and improvement of the proposed DERB-DDPG al-

gorithm, comparisons of three DRL algorithms have been carried out. The first one is deep

Q-network (DQN). The second one is the original DDPG algorithm. The third one is the

advanced DERB-DDPG algorithm. While the simulation settings, reward function and pa-

rameters of these three algorithms remain the same. To measure the performance of the

above algorithms, three quantitative evaluations are carried out. They are successful rate,

accumulated reward and average cross-track error, respectively.

During the entire training phase, the successful rate of the three methods are shown in

Fig. 4.4. From Fig. 4.4, the DERB-DDPG uses 1,500 episodes to achieve a success rate

over 80%, while the original DDPG uses 500 more episodes to achieve the same rate. How-

ever, the DQN remains low success rate within 2,000 training episodes. This is because the

technique of DERB, it accelerates the learning speed to achieve fast convergence.

Figure 4.4: Successful rates of DQN, original DDPG and DERB-DDPG (with moving
window of 10 episodes).
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The accumulated rewards of the three algorithms are displayed in Fig. 4.5. The accumu-

lated reward of all three algorithms goes up as the episode increases, and finally converges

to a constant value. Although the DERB-DDPG has a lower value at the first 100 episodes,

it converges faster and achieve a higher steady-state value within the least episodes.

Figure 4.5: Accumulated reward of DQN, original DDPG and DERB-DDPG (with moving
window of 10 episodes).

The average cross-track error is illustrated in Fig. 4.6, which is obtained by calculating

the average value of the cross-track error at each time step. The cross-track errors of all

three algorithms keep decreasing with training episode increasing. Such a phenomenon

proves the effectiveness of the reward function. By using the designed reward function, all

the algorithms can minimize the cross-track error. It is obviously that the DERB-DDPG

has smaller cross-track error than the DQN and original DDPG at all times.

Comprehensively considering Figs. 4.4, 4.5 and 4.6, the DERB-DDPG has a higher

successful rate, faster convergence speed and smaller cross-track error than DQN and orig-

inal DDPG.

Fig. 4.7 depicts the overall performances of the DQN, original DDPG and DERB-

DDPG in a specific path following mission. The black line demonstrates the reference

curved path, the blue line stands for the proposed DERB-DDPG algorithm, green dotted
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Figure 4.6: Average cross-track error of DQN, original DDPG and DERB-DDPG (with
moving window of 10 episodes).

line refers to the original DDPG algorithm and red dotted line represents the DQN al-

gorithm. From Fig. 4.7, it is obvious that the blue line, which illustrates the proposed

DERB-DDPG algorithm, is closer to the reference path. Such a phenomenon proves that

the proposed DERB-DDPG algorithm not only has good performance in the training paths,

but also has strong adaptability when facing new paths.

Figure 4.7: Path following performance comparison.

To further validating performance of the proposed method, a more complicated sim-

ulation path is carried out in Fig. 4.8. From this figure, the DERB-DDPG still has the

best overall performance. Although the original DDPG and DQN may perform better than
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DERB-DDPG in some waypoints, however, their performances are not stable, especially in

a complicated case. This proves the robustness and stability of the proposed DERB-DDPG

algorithm.

Figure 4.8: Path following performances on another example.

4.2 Formation Control of Multiple Fixed-Wing UAVs

This section investigates the formation control of multi-UAVs using a twin-delayed

deep deterministic policy gradient (TD3) approach. The proposed TD3 algorithm combines

the deep deterministic policy gradient (DDPG) algorithm and double Q-learning technique

to construct a continuous controller for formation tracking of multi-UAVs. Different from

DDPG, the TD3 has two Q-networks which explore the environment independently. The

smaller Q-value will be selected to compute targets and then update the Q-functions. In

addition, the target action policy is clipped to lie in valid action range and the update is

delayed to avoid exploiting error experiences. At last, a prioritized experience replay buffer

with flexible capacity is introduced to increase the convergence speed. Simulation results

in different scenarios show the effectiveness of the proposed method.

As investigated in the previous section, the DDPG algorithm has good performance,

however, it has inevitable drawbacks because DDPG may overestimate the Q-values in
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the critic network [29]. These estimation errors may accumulate and eventually lead to a

non-optimal action. Aiming at mitigating the overestimation, a twin-delayed DDPG (TD3)

was proposed in [27, 30]. The TD3 algorithm introduces a double deep Q-learning in the

DDPG algorithm. Compared to DDPG, TD3 algorithm has better action performance and

faster learning speed due to the following improvements [30, 27, 31].

(1) TD3 has twoQ-networks with the same structure instead of a singleQ-network. TD3

uses the smaller one as the Q-value. As a result, the overestimation problem will be

alleviated.

(2) TD3 reduces the update frequency in order to solve the coupling problem of un-

changed actor-critic networks.

(3) TD3 adds noise to the target action which makes the algorithm harder to exploit

errors from Q-function and makes the critic smoother.

Based on the idea of TD3, this section proposes an advanced TD3 controller for the

multi-UAVs formation control problem. Firstly, the kinematic model of follower UAV is

derived and the formation control will be realized by follower UAV tracking the leader UAV.

Secondly, the actor-critic networks are constructed to build a framework of the proposed

TD3 algorithm. After that, a double Q-learning mechanism is utilized to replace the single

Q-learning in order to avoid overestimation of the Q-function. Then, the action policy is

clipped to ensure the generated action lies in a valid range. Next, the policy and target

networks are updated less frequency than the Q-functions in order to prevent the negative

impact of volatility, which is quite common in DDPG. Finally, the capacity of replay buffer

is flexible to better meet the requirement of data diversity.

The main contributions of the proposed TD3 algorithm are outlined as follows:

(1) State and action space definition for formation control. This section proposes a new
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definition of state and action spaces which is suitable for the DRL algorithm to learn

and control the UAV group for formation maintenance mission.

(2) Reward function. A new reward function is designed to sensitively and accurately

represents the performance of an action in the formation control problem.

(3) Replay buffer. The replay buffer used in this section has a flexible capacity, which

aims at improving the learning efficiency of the algorithm. In addition, the prioritized

sampling methods can also increase the learning efficiency by replaying the better

samples more frequently.

4.2.1 Problem Formulation and Formation Kinematic Model

The formation control problem of multi-UAVs can be considered as a leader-follower

tracking problem of the relative distance and angle between followers and the leader. Fol-

lowing this idea, a kinematic formulation of the follower UAV is derived. After that, the

state space representation of the leader and follower system will be presented.

Modelling the Follower UAV

The kinematics of a follower UAV is depicted in Fig. 4.9, dl stands for the relative

distance between leader and follower, ψFL and θFL are the relative yaw and pitch angles,

respectively.

Three coordinate systems will be used in the studied formation control problem. They

are inertial frame SI −OIxIyIzI , follower body frame SB −OBxByBzB, and line-of-sight

(LOS) frame SL −OLxLyLzL.

The follower velocity vector Vf in follower body coordinate frame SB is considered as
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Figure 4.9: The leader-follower kinematics.

V B
f = [vf 0 0]

T . While in inertial coordinate system, the follower velocity vector is:

V I
f = CB→IV

B
f =


vf cos θ

I
f cosψ

I
f

vf cos θ
I
f sinψ

I
f

−vf sin θIf

 (4.22)

where vf is the speed of follower, CB→I stands for the transfer matrix from body frame to

inertial frame. θIf and ψIf are the pitch and yaw angles of follower with respect to inertial

reference system.

Define ωB = [wxB wyB wzB]
T as the angular velocity of body frame. Therefore, the
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follower’s acceleration in body frame ABf = [axB ayB azB] can be expressed as:

ABf =


axB

ayB

azB

 = V̇ B
f + ωB × V B

f

=


v̇f

0

0

+


wxB

wyB

wzB

×

vf

0

0



=


v̇f

wzBvf

−wyBvf



(4.23)

The follower’s motion equations are:



ẋf = vf cosψ
I
f cos θ

I
f

ẏf = vf sinψ
I
f cos θ

I
f

żf = −vf sin θIf

v̇f = axB

wxB = 0

wyB =
ayB
vf

wzB = −azB
vf

(4.24)

where (xf , yf , zf ) stands for the follower’s position in inertial frame.

df is defined as the distance from the position of follower to the desired position, which

is calculated based on the leader’s position in order to maintain the shape of the formation.
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Df = [df 0 0]
T is considered as the distance vector. So, the velocity vector is:

V L
f = Ḋf + ΩL ×Df =


ḋf

wzLdf

wyLdf

 (4.25)

The acceleration vector AL can be obtained by taking derivative of (4.25):

ALf =


axL

ayL

azL

 = V̇ L
f + ΩL × V L

f

=


d̈f − df (w2

yL + w2
zL)

2ḋfwzL + df ẇzL + dfwxLwyL

−2ḋfwyL − df ẇyL + dfwxLwzL


(4.26)

According to (4.26), the kinematic equation can be described as:



d̈f = df (w
2
yL + w2

zL) + axL

ẇzL =
ayL − 2ḋfwzL − dfwxLwyL

df

ẇyL =
−azL − 2ḋfwyL + dfwxLwzL

df

(4.27)

In addition, the angular velocity is expressed as:


wxL

wyL

wzL

 =


wyB sinψLf cos θ

L
f − wzB sin θLf − ψ̇Lf sin θLf

wyB cosψLf + θ̇Lf

wyB sinψLf sin θ
L
f + wzB cos θLf + ψ̇Lf cos θ

L
f

 (4.28)

It should be noted that (4.28) is obtained under the assumption of wxB = 0.
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State-Space Representation

There are 7 state variables in the kinematic model of follower UAV. Specifically, df is

the distance between the follower UAV and its corresponding desired position. ḋf is the

time derivative of the above distance. wzL is the angular velocity along z-axis and wyL is

the angular velocity along y-axis. ψIf and θIf are the yaw angle and pitch angle. vf is the

velocity of the follower UAV. 

x1 = df

x2 = ḋf

x3 = wzL

x4 = wyL

x5 = ψIf

x6 = θIf

x7 = vf

(4.29)

The above state variables can be either measured by on-board sensors or calculated

based on sensor measurements. Combining (4.29), the state space representation of the

kinematic model can be expressed as follows:



ẋ1 = x2

ẋ2 = −x1x23 − x1x24 − axL

ẋ3 =
ayL
x1
− x4wxL

ẋ4 = −
azL
x1

+ x3wxL

ẋ5 =
x3

cosx6
− ayB

x7
+
azB
x7

sinx5 tanx6

ẋ6 = x4 +
azB
x7

cosx5

ẋ7 = axB

(4.30)
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The acceleration vector of follower UAV ALf can be expressed as:

ALf =


axL

ayL

azL

 =


axl

ayl

azl

−

axf

ayf

azf

 (4.31)

The acceleration vector of follower ALf = [axf ayf azf ]
T can be obtained using the

following equation:


axf

ayf

azf

 =


cosψBIf cos θBIf sinψBIf cos θBIf − sin θBIf

− sinψBIf cosψBIf 0

cosψBIf sin θBIf sinψBIf sin θBIf cos θBIf



+


axB

ayB

azB


(4.32)
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Based on the above equations, the state space representation can be rewrote as:



ẋ1 =x2

ẋ2 =− x1x23 − x1x24 − axl + axB cosx5 cosx6

+ ayB sinx5 cosx6 − azB sinx6

ẋ3 =
axB sinx5

x1
− ayB cosx4

x1
+
ayl
x1

+
x4

cosx6
(
azB
x7

sinx5 + x3 sinx6)

ẋ4 =
axB cosx5 sinx6

x1
+
ayB sinx5 sinx6

x1

+
azB cosx6

x1
− azl
x1

+ x3wxL

ẋ5 =
x3

cosx6
− ayB

x7
+
azB
x7

sinx5 tanx6

ẋ6 =x4 +
azB
x7

cosx5

ẋ7 =axB

(4.33)

where axB, ayB and azB are considered as the control inputs while axl, ayl and azl are

considered to be known.

The control objective of the formation control problem is that the UAV group can form

a specific shape and maintain this formation shape while moving. Based on the above

equations, the formation maintenance will be achieved by giving follower UAV a proper

value of the accelerations on three axes.

4.2.2 The Proposed TD3 Algorithm

Although DDPG has good performance in the continuous control problem, an obvious

shortcoming can not be ignored, which is the trained Q-function sometimes overestimates

the Q-values dramatically. As a result, this will lead to failure because the algorithm starts
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exploiting the overestimation errors in the Q-function. Therefore, a TD3 algorithm is pro-

posed to address the above limitation by introducing the following three major improve-

ment.

Improvement 1: Clipped Double Q-learning

TD3 simultaneously learns two Q-functions (Qϕ1 and Qϕ2) in the same way as DDPG

learns a single one. The two Q-functions share a single target, and the smaller value will

be used in the target function:

ymin(r, s
′, d) = r + γ(1− d) min

i=1,2
Qϕi,targ(s

′, a′(s′)) (4.34)

After that, bothQ-functions will be updated by regressing to the above target ymin(r, s′, d).

L(ϕ1) = E[(Qϕ1(s, a)− ymin(r, s′, d))2]

L(ϕ2) = E[(Qϕ2(s, a)− ymin(r, s′, d))2]
(4.35)

The main idea of improvement 1 is using the smaller Q-value in the target function and

then two Q-functions regress towards that target. In this way, the overestimation in the

Q-function will be decreased greatly.

Improvement 2: Delayed Policy Update

In the proposed TD3 algorithm, the policy and target networks are updated in a less

frequency than the updates of Q-function. The policy is updated by maximizing the Q-

function max
θ
E[Qϕ(s, µθ(s))]. Specifically, the proposed TD3 algorithm updates the policy

only once when the Q-functions update twice. This aims at reducing the negative impact

of volatility, which is normally appears in DDPG.
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Improvement 3: Target Policy Smoothing

In order to avoid learning from Q-function overestimation errors, noise is added in the

target action.

In DDPG, action used in the target function are generated by the target policy µ1θtarg.

a′(s′) = µ1θtarg(s
′) (4.36)

While in TD3, action is generated with a clipped noise added on the action.

a′(s′) = clip(µθtarg(s
′) + clip(ϵ,−c, c), amin, amax) (4.37)

where ϵ ∼ N(0, σ).

The range of target action lies from amin to amax. Target policy smoothing is important

because it avoids a failure mode which may happen in DDPG. If the Q-function estimator

develops a sharp peak for some actions (which is considered to be incorrect estimation),

the policy will exploit that peak value and then learns an incorrect behavior.

Pseudo-Code of the Proposed TD3 Algorithm

The pseudo-code of the proposed TD3 is shown in the Algorithm 4.

4.2.3 Formation Controller Design

State and Action Specification

In actual application of DRL algorithm, the definition of state space and reward function

is decisive for the overall performance of the algorithm. A proper design of state and reward

function can lead to a fast convergence speed and small steady-state error. This section

proposes a new state space definition which is suitable for the formation control problem.
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Algorithm 4: The proposed TD3 algorithm
Randomly initialize policy π and Q-functions ϕ1 and ϕ2

Copy the weights to target network θtarg ← θ, ϕtarg,1 ← ϕ1 and ϕtarg,2 ← ϕ2

Empty replay buffer D, set update counter j = 0 and set policy update frequency
delay parameter = 2
for Episode = [1,m] do

for Time step = [1, T ] do
Observe the current state st and generate the action
at = clip(µθ(st) + ϵ, amin, ahigh), ϵ ∼ N
Execute the action at and the agent reach the next state st+1

Observe the next state st+1 and obtain the immediate reward rt
Store the transition (st, at, rt, st+1) into the replay buffer D
if The replay buffer has enough transitions to update then

Randomly sample a batch of n transitions from replay buffer D
Compute target actions
a′(s′) = clip(µθtarg(s′) + clip(ϵ,−c, c), amin, amax), ϵ ∼ N(0, σ)
Compute targets
ymin(r, s

′) = r + γ min
i=1,2

Qϕi,targ(s
′, a′(s′))

Update Q-functions by gradient descent and add 1 to the update counter
j = j + 1
▽ϕi

1
n

∑
(Qϕi(s, a)− y(r, s′))2 where i = 1, 2

if j mod delay parameter = 0 then
Update policy by gradient ascent
▽θ

1
n

∑
Qϕi(s, µθ(s)), where i = 1, 2

Update target networks
ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi, where i = 1, 2
θtarg ← ρθtarg + (1− ρ)θ

end if
end if

end for
end for
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The action space of the proposed TD3 algorithm are the accelerations along x, y and z

axis, axB, ayB and azB.

A = {axB, ayB, azB} (4.38)

The definition of state space needs to uniquely determine a specific and accurate situ-

ation of agent. Whenever the agent reaches a state, the same action applied will lead to a

unique consequence. It should be noted that a redundancy in state space is not acceptable

because it will inevitably increase the calculation difficulty, reduce the learning efficiency

and degrade the overall performance. Therefore, the definition of the state space needs to

illustrate the agent’s situation concisely and accurately.

In the problem of leader-follower formation control, the state information of the fol-

lower UAV includes the translational variables and the angular variables.

State information = {df , vf , af ,︸ ︷︷ ︸
translational

ψf , θf , wzL, wyL︸ ︷︷ ︸
angular

} (4.39)

where df represents the distance between follower UAV and desired position. vf and af

stand for the velocity and acceleration of the UAV. ψf and θf refer to the yaw angle and

pitch angle. wzL and wyL are the angular velocity of yaw motion and pitch motion respec-

tively.

Some papers directly use the above observed state information as the state space of the

algorithm [130, 131, 132]. This is acceptable, however, directly using observed informa-

tion as the state space in MDP may increase the learning difficulty and computing burden.

As a result, the convergence speed may be slowed and the overall performance may be de-

graded. Therefore, the state space needs to be specialized for the learning objective, which

is approximating Q-functions and generating the best actions. Since the variables in action

space are sub-divided to each axis, the state space needs to do the same sub-division for the
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convenience of learning. The state space is defined as:

S = {dfx, dfy, dfz, vfx, vfy, vfz, afx, afy, afz,

ψf , θf , Bflag}
(4.40)

where the distances to desired position dfx, dfy, dfz determines the current position of the

agent. The velocities vfx, vfy, vfz and accelerations afx, afy, afz describe the current trans-

lational information. The two angles ψf , θf illustrate the current attitude of the agent. Bflag

is a binary flag variable, which indicates whether the follower UAV is perfect-tracking.

If the position of follower UAV is exactly located on the desired position, this is called

perfect-tracking. And the value of flag variable Bflag = 1, otherwise Bflag = 0.

The above state and action spaces consist of physical observations (distance, angles,

and velocities), however, the ranges of these variables may differ a lot. If the algorithm is

learning from the original values, the effectiveness and efficiency will be greatly decreased.

It is necessary to scale the values of these variables. Therefore, during the learning process,

the values of state and action variables will be normalized from −1 to +1.

Reward Function

Generally, the reward function is considered to be one of the most important component

in a RL algorithm because reward function evaluates how good or how bad the action is.

Furthermore, reward function also determines the learning direction and the overall per-

formance. The reward function is composed with five parts: distance reward rt,d, velocity

reward rt,v, angle reward rt,a, penalty rt,p and bonus rt,b.

The distance reward rt,d is defined as:

rt,d = −µ1
(dt+1,f − dt,error)2

dpar
(4.41)
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where µ1 is a positive constant parameter, dt+1,f denotes the distance between the current

position and the estimated next position after taking action at. dt,error refers to the distance

between the current position and the desired position. dpar is a positive constant parameter

to normalized the distance reward. From (4.41), the follower UAV will receive a larger

value of distance reward while it is closer to the desired position. On the contrary, the

distance reward will decrease when UAV is moving far away from the desired position.

Second, rt,v is the velocity reward.

rt,v = µ2
Vvelo
|Vvelo|

· 1

Vvelo − 1
(4.42)

where µ2 is a positive constant parameter. Vvelo refers to a time-varying parameter which is

defined below:

Vvelo =
2dt,error

(vt,f + vt+1,f ) · T
+

(vt,f + vt+1,f ) · T
2dt,error

(4.43)

where vt,f and vt+1,f are the velocities of follower UAV at current time instant t and the next

time instant t+ 1. T stands for the time interval during each time instant. The idea behind

equation (4.42) includes two main issues. First, the distance reward will be a negative value

when the velocity and the desired position are in the opposite direction. While the velocity

and desired position are in the same direction, the distance reward will be positive. Second,

the follower UAV will receive a larger reward if the estimated position is closer to the the

desired position.

The angle reward is defined as:

rt,a = µ3

√
(ψt+1,f − ψt+1,L)2 + (θt+1,f − θt+1,L)2 (4.44)

where µ3 is a positive constant parameter. ψt,f and ψt,L are the yaw angles of follower and

leader. θt,f and θt,L are the pitch angles of follower and leader. The design of angle reward

aims at eliminating the oscillations while follower UAV is close to the desired position.
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The penalty is defined as rt,p. The follower UAV will receive a huge negative value

when the pitch angle or the yaw angle changes greatly, which aims at preventing sharp

turning maneuver.

rt,p =



−100, |ψt+1,f − ψt,f | ≥ π
6

−100, |θt+1,f − θt,f | ≥ π
6

0, |ψt+1,f − ψt,f | < π
6

0, |θt+1,f − θt,f | < π
6

(4.45)

The bonus is defined as rt,b. Bonus can be considered as an extra reward which is not

included in the expected reward. Bonus can help the agent exploiting the good experiences

and accelerating convergence speed. In this section, if the UAV position is matched with

the desired position (while there is little error between follower UAV and desired position),

the follower UAV will receive a huge bonus to enhance this good action.

rt,b =


10, UAV matches the desired position

0, otherwise
(4.46)

In summary, the reward function can be constructed by combining the above five value

functions.

Rfc(t) = rt,d + rt,v + rt,a + rt,p + rt,b (4.47)

Replay Buffer Design

The experience replay buffer is used to break data correlation. However, in many ap-

plications, especially for the algorithms with advanced learning ability, the fixed capacity

of replay buffer can not meet the requirement of data diversity. As a result, the learn-

ing efficiency will be reduced. In terms of the above limitation, a dynamic capacity re-

play buffer (DCRB) is proposed to dynamically adjust the capacity of the experience pool

83



during the training phase. Learning curve theory is introduced to realize the dynamic ad-

justment. Learning curve is a dynamic evaluation technique which describes a learning

process that the learner continuously improves its performance using the accumulation ex-

perience [133]. Among the literature concerning learning curve theory [133, 134, 135], the

Wright learning curve (WLC) is the most widely used method. The WLC equation can be

expressed as follows.

TP (n) = knα (4.48)

where n represents the number of explorations, TP (n) refers to the time period of the n-th

episode. k is a parameter stands for the learning effect. α is the learning coefficient which

is defined as follows

α =
lg s

lg 2
(4.49)

where s is the decreasing rate. According to (4.48) and (4.49), the learning efficiency

equation can be constructed as

η(x) =
1

k
n−β1 (4.50)

where η(x) stands for the learning efficiency of the x-th episode. β1 is the learning coeffi-

cient which is defined as

β1 =
lg γ

lg 2
(4.51)

where γ is the reward discount rate ranged from 0 to 1.

In order to adjust the capacity of experience replay buffer as the number of training

episodes increases, the learning efficiency equation (4.50) and (4.51) will be combined to

construct the replay buffer capacity change function.

N = N
1

k
(i)−

lg γ
lg 2 (4.52)

where N refers to the capacity of the replay buffer and i is the number of explorations.

84



During the training phase, a batch of experience samples will be extracted from replay

buffer. Generally, all the samples in the replay buffer have equal chance to be extracted.

In other words, this sampling method ignores the significance of each experience. Aiming

at addressing the importance of different experiences, a prioritized sampling method is

introduced here.

The main idea of prioritized sampling method is to adjust the extracting distribution,

the better experiences will be learned more frequently. For each experience in the replay

buffer, the corresponding temporal difference (TD) error will be calculated to reflect the

performance of this sample, which is defined as follows.

TDi = r(st, at) + γQ′(st+1, µ(st+1))−Q(st, at) (4.53)

If the value of TD error increases, this experience will have a higher probability to

be replayed. The extracting probability Pi is determined by the priority value of each

experience in the current replay buffer. The priority value can be obtained by

vpi = (|TDi|+ σ)β2 (4.54)

where σ is a constant with small positive value which guarantees the priority value will

not be zero. β2 refers to a weight constant. After that, the extracting probability of each

experience is

Pi =
vpi∑N
1 pN

(4.55)

where N refers to the capacity of the current replay buffer. Since vpi must be a positive

value, as a result, Pi will not be zero. In other words, all experiences have chance to be

replayed.
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Figure 4.10: The desired formation of the UAV group.

4.2.4 Simulation and Analysis

The performance of the proposed TD3 algorithm will be evaluated in several scenarios.

In the simulation, a group of five UAVs is considered. In the UAV team, UAV #1 is set

to be the leader and the others UAV #2, UAV #3, UAV #4 and UAV #5 are followers.

Leader UAV can receive the control command and follower UAV can only receive the state

information of the leader. As shown in Fig. 4.10, a triangle formation is given to the UAV

team and the goal of the follower UAV is to maintain this formation.

Training Settings

The training procedure of the proposed algorithm is implemented in the virtual envi-

ronment. In order to ensure the variety of training samples and reduce the negative effect

of overfitting, the algorithm will be trained in three cases. In the first case, the leader will

fly along a circle-shaped or sine-wave shaped trajectory. However, the size of the trajectory

keeps changing between different episodes to broaden the training samples. In the second

case, the leader will fly in 2-D environment and the leader is softly changing the attitude,

velocity and acceleration at each time instant, which means the trajectory of the leader

may not follow a specific shape. This case aims at avoiding overfitting of a circle-shape or
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sine-wave shape. In the third case, the leader will fly a 3-D trajectory with softly changing

attitude, velocity, altitude and acceleration at each time instant. The lateral motion has been

well training in the above two cases, the third case is designed for training the longitudinal

motion and reinforce the performance in lateral motion. This training method can broaden

the training samples, avoid overfitting and break the coupling between different motions.

Training Analysis

Success rate or miss rate is considered as an important evaluation issue of the training

effect in RL algorithm design. For the formation control problem in this section, a suc-

cessful episode means the UAV can follow the leader’s trajectory or stay close to it. If the

follower UAV is located too far from the desired trajectory, this episode will be considered

as a failure and there is no need to learn from this bad experience. Saving this experience

will ruin the experience pool of the replay buffer. Therefore, this training episode will be

seized immediately and start a new training episode.

The successful rates of the three training cases are shown in Table 4.1. Table 4.1 not

only lists the total successful rate, but also lists the recent successful rate, which means

the successful rate within the most recent 200 training episodes. The total successful rate

presents the integral learning ability while the recent successful rate illustrates the real-time

learning ability during the training process. Case 1 will be trained firstly and then Case 2.

Case 3 will be trained lastly. Each case is assigned 2000 training episodes to guarantee the

convergence of the algorithm.

From Table 4.1, the successful rate of Case 1 is comparative low because the initial

parameters of the proposed algorithm are selected randomly, the algorithm needs more

episodes to learn. Although the total successful rate is growing slowly, however, the recent

successful rate is increasing quickly and approaches over 90%. This proves a fact that the

algorithm can reach a high-effective training process in a short time. To better illustrate the
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Table 4.1: The successful rates during the training process
Leader
case

Training
episodes

Total suc-
cessful
episodes

Total suc-
cessful rate

Recent success-
ful episodes

Recent success-
ful rate

Case 1

200 64 32% 64 32%
400 149 37.3% 85 42.5%
600 271 45.2% 122 61%
800 427 53.4% 156 78%
1000 569 56.9% 142 71%
1200 765 63.8% 196 98%
1400 959 68.5% 194 97%
1600 1143 71.4% 184 92%
1800 1336 74.2% 193 96.5%
2000 1531 76.6% 195 97.5%

Case 2

200 142 71% 142 71%
400 295 73.8% 153 76.5%
600 474 79% 179 89.5%
800 667 83.4% 193 96.5%
1000 855 85.5% 188 94%
1200 1049 87.4% 194 97%
1400 1249 89.2% 200 100%
1600 1445 90.3% 196 98%
1800 1642 91.2% 197 98.5%
2000 1838 91.6% 196 98%

Case 3

200 159 79.5% 159 79.5%
400 332 83% 173 86.5%
600 513 85.5% 181 90.5%
800 703 87.9% 190 95%
1000 892 89.2% 189 94.5%
1200 1086 90.5% 196 98%
1400 1282 91.6% 196 98%
1600 1474 92.1% 192 96%
1800 1667 92.6% 193 96.5%
2000 1862 93.1% 195 97.5%
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Table 4.2: Initial conditions of scenario 1
Aircraft Position

(x,y)(m)
Velocity

(m/s)

Attitude
ψ(rad)

Leader (1, 3) 14 1.2
Follower 1 (0, 2) 10 1
Follower 2 (1, 1) 8 1.4
Follower 3 (−2, 2) 12 1.1
Follower 4 (1, 0) 9 0.9

training efficiency, Fig. 4.11 draws the total successful rate and recent successful rate in

one figure.

Formation Control Performance

• Scenario 1

The first test example is illustrated in Fig. 4.12, the leader UAV is flying in a sine

wave trajectory and maintains a constant altitude. Therefore, the pitch angle θ and the

acceleration on z-axis az will remain zero. The initial conditions of the UAVs are listed in

Table 4.2.

Fig. 4.12 shows the top view of the UAV group’s trajectory. It can be observed that the

desired formation configuration is achieved quickly and then the UAV team maintains this

formation. Fig. 4.13 illustrates the positions of the UAV group in x and y coordinate axes.

Fig. 4.14 demonstrates the steady-state errors of the follower UAVs with respect to time

history. From Fig. 4.14, it can be seen that the steady-state error is approaching zero in a

short time. Since the altitude remains the same in the testing scenario 1, only the yaw angle

ψ needs to be studied. Fig. 4.15 depicts the yaw angles with respect to time history. The

yaw angle oscillated at the beginning and then approach to the reference value from leader

UAV. Fig. 4.16 shows the actions (control inputs) generated by the proposed TD3 algorithm

with respect to time history. It is obviously that the control inputs have constrained within

the range of [−4, 4] due to the clip mechanism of TD3 algorithm.

• Scenario 2 The second testing example is shown in Fig. 4.17, the leader UAV is flying
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(a) Successful rates of Case 1

(b) Successful rates of Case 2

(c) Successful rates of Case 3

Figure 4.11: The total successful rate and recent successful rate of three training cases.
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Figure 4.12: The trajectories of the UAV group in scenario 1.

(a) Positions of the UAV group in X-axis (b) Positions of the UAV group in Y -axis

Figure 4.13: The positions of the leader and followers in X-axis and Y -axis.

Figure 4.14: The position errors of the UAV group in scenario 1.
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Figure 4.15: The yaw angle ψ of the leader and followers in scenario 1.

(a) The control input ax of the UAV group

(b) The control input ay of the UAV group

Figure 4.16: The control inputs of the leader and followers in scenario 1.
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Table 4.3: Initial conditions of scenario 2
Aircraft Position

(x,y,z)(m)
Velocity

(m/s)

Attitude
(θ,ψ)(rad)

Leader (0, 100, 0) 26 (0.07,0.01)
Follower 1 (−2, 98,−1) 20 (0,0)
Follower 2 (6, 96, 1) 18 (0,0)
Follower 3 (−4, 95, 0) 23 (0,0)
Follower 4 (12, 95,−2) 22 (0,0)

Figure 4.17: The 3-D trajectories of the UAV group in scenario 2.

along a continuous growing circle trajectory in 3-D environment. The position, velocity,

attitude and accelerations of the leader UAV keeps changing during the testing. The initial

conditions of the UAVs are listed in Table 4.3.

Fig. 4.17 shows the trajectories of the UAV group. The desired formation configuration

is achieved within a short time and then the formation maintains. Fig. 4.18 illustrates the

positions of the UAV group in x, y and z coordinate axes. Fig. 4.19 demonstrates the

steady-state errors of the follower UAVs with respect to time history. From Fig. 4.19, it

can be seen that the steady-state error is approaching to zero in a short time. Fig. 4.20

depicts the pitch angles and yaw angles of the UAV group with respect to time history. The

yaw angle oscillated at the beginning and then approach to the reference value from leader

UAV. Fig. 4.21 shows the actions (control inputs) generated by the proposed algorithm

with respect to time history. It is obviously that the control inputs have constrained within
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(a) Positions of the UAV group in X-axis

(b) Positions of the UAV group in Y -axis

(c) Positions of the UAV group in Z-axis

Figure 4.18: The positions of the leader and followers in X-axis, Y -axis and Z-axis.
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Figure 4.19: The position errors of the UAV group in scenario 2.

(a) The pitch angle θ of the UAV group

(b) The yaw angle ψ of the UAV group

Figure 4.20: The pitch angle θ and yaw angle ψ of the leader and followers in scenario 2.
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(a) The control input ax of the UAV group

(b) The control input ay of the UAV group

(c) The control input az of the UAV group

Figure 4.21: The control inputs of the leader and followers in scenario 2.
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a certain range due to the clip mechanism of the proposed algorithm.

4.3 Auto-Landing Control of Quadrotor UAV

An autonomous landing problem of quadrotor UAV is studied in this section. Unlike

the above investigated motion control problems, path following and formation control, the

proposed auto-landing controller will be validated in real flight tests with QDrone quadro-

tor platform. While applying DRL algorithm to a real-world control problem, the biggest

challenge is the algorithm training and learning. That is because the training cost is consid-

erably lower in the simulation flight than in the real-world flight. In the real-world training,

it is impossible to repeat the training episode millions of times. In addition, a failure trial

may cause UAV crash and irreversible damage to component. Therefore, the traditional

training method may not be applicable in real-world applications. Aiming at this issue,

a transfer-imitation learning training (TILT) method is proposed to help DRL algorithm

learning safely and effectively. The DRL algorithm used in this section is also TD3 al-

gorithm, the main research direction focuses on the training method of real-world control

problem. Therefore, the specific steps of TD3 algorithm will not be repeatedly described.

4.3.1 Problem Formulation

The UAV autonomous landing problem can be described as follows. Given a continuous

moving platform on the ground, such as a truck or a car. A quadrotor UAV in the air which

can detect or receive the motion and position of the moving platform. The goal of the UAV

is trying to land on the moving platform accurately and safely. The autonomous landing

system is shown in Fig. 4.22. It is assumed that the UAV is aware of its own location

[xuav, yuav, zuav] and the location of moving platform [xmp, ymp, zmp].

Fig. 4.23 describes the autonomous landing system in a MDP model. It consists of
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Figure 4.22: UAV autonomous landing system.

Figure 4.23: MDP model of autonomous landing system.

three parts, observation, decision making and action execution. During each time instant,

the position information of UAV and moving platform is observed at the first place. Based

on the observed data, the decision-making mechanism will generate an optimal action for

the UAV. Then, the generated action will be executed. After that, both the UAV and moving

platform will reach a new state. Repeat the above process until UAV has landed on the

platform.

4.3.2 State and Action Definition for Autonomous Landing

In the context of RL, the formulation of the investigated problem plays a decisive role

in the training efficiency and algorithm performance. There are plenty of possible designs

of state and action spaces, as well as the definitions of reward function. Although various
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designs may lead to the same result, however, the convergence speed and training effec-

tiveness differ a lot. A good design should minimize the input information, reduce the

calculation burden, improve efficiency of training data and prevent divergence. The state

space is defined by:

S = {px,land, py,land, pz,land, vx,land, vy,land, vz,land, ex,land, ey,land, ez,land} (4.56)

where px,land, py,land and pz,land are the position of UAV. vx,land, vy,land, and vz,land are the

velocities of UAV along x, y, and z axis. ex,land, ey,land, and ez,land are the distance errors

between UAV and the center of ground platform.

The action space consists of the accelerations along x, y and z axis, which is defined as

follows:

A = {ax,land, ay,land, az,land} (4.57)

where ax, ay, az are the accelerations along x-axis, y-axis and z-axis. And they need to

be bounded ax,land ∈ [axmin,land, axmax,land], ay,land ∈ [aymin,land, aymax,land], az,land ∈

[azmin,land, azmax,land] in order to meet the dynamic constraints of UAV and reduce the

failure during training. The above state and action spaces also need to be normalized from

−1 to +1 to reduce the difference in values.

4.3.3 Reward Function Design

The reward function of the auto-landing TD3 algorithm consists of parts: distance re-

ward rt,d,land, velocity reward rt,v,land, penalty rt,p,land and bonus rt,b,land.

The distance reward rt,d,land is defined as:

rt,d,land = −ω1,land(dist − dist−1) (4.58)
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where ω1,land is a positive constant parameter. dist is the distance between UAV and the

center of ground platform at time instant t, which is calculated by:

dist =
√
e2t,x,land + e2t,y,land + e2t,z,land (4.59)

The velocity reward rt,v,land is defined as:

rt,v,land =ω2,land(
1

(vt,x,land − vt−1,x,land)2
+

1

(vt,y,land − vt−1,y,land)2
+

1

(vt,z,land − vt−1,z,land)2
)

+ ω3,land(
vt,x,land
et,x,land

+
vt,y,land
et,y,land

+
vt,z,land
et,z,land

)

(4.60)

where ω2,land and ω3,land are positive constant parameters.

The penalty and bonus are designed to give extra values in order to reinforce the good

actions or punish terrible operations. The penalty and bonus only works when the UAV al-

titude equals to the ground platform altitude, ez,land ≈ 0 Therefore, the rt,p,land and rt,b,land

are defined as:

rt,p,land =

 −10× dist, When ez,land ≈ 0.

0, Otherwise.
(4.61)

rt,b,land =

 100, When ez,land ≈ 0 and dist ≈ 0.

0, Otherwise.
(4.62)

Along with the algorithm training process, the value of penalty and bonus will not only

restrict to the land action, but also transmit to previous actions. As a result, good actions

will be enhanced and receive larger values in reward function.

The total reward Rland(t) is the sum of the above four reward functions:

Rland(t) = rt,d,land + rt,v,land + rt,p,land + rt,b,land (4.63)
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4.3.4 Algorithm Training

Compared to other problems using DRL, the control problem is more sensitive and

requires more accurate control signals due to the nature of control systems. Specifically,

improper control signal, which is equivalent to exploration action in DRL algorithm, can

easily result in system failure. A small change between two actions can lead to a big

difference in results. However, the most common used exploration method is stochastic

exploring policy. The strategy of random exploration may perform well in other problems,

but facing control problems, the algorithm will be difficult to find optimal actions and re-

quire considerable training time to converge. That is because good control signal always

lies in a narrow range. As a result, most of the exploring actions will receive a consid-

erable low reward value and these actions can not be used to train a better performance.

Consequently, the training efficiency of stochastic exploring policy is unacceptable low in

control problems and it is of great importance to develop a new exploring strategy with

higher efficiency and faster converge speed.

Aiming at the requirements above, a transfer-imitation learning training approach (TILT)

is proposed. The idea behind TILT is inspired from the transfer learning and imitation learn-

ing. Imitation learning can improve the algorithm performance quickly while the algorithm

has minimal knowledge of a complex task. For the control problem in this section, imita-

tion learning will help the algorithm skip through the initial exploration phase and avoid a

large amount of useless and ineffective explorations. An acceptable performance will be

achieved after imitation learning.

Transfer learning can store the gained knowledge of one problem and apply it to another

one, which is an outstanding solution for training real-world control problem solvers. For

the auto-landing problem studied in this section, it is impractical to be directly trained on

the drone-vehicle system due to the following reasons. First, the training process needs a

huge amount of flight data, and it takes almost 10 minutes for one complete trial. The time
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cost of training is too high to afford. Second, it is quite normal to cause system failure while

training. Once the drone crashes, the training process has to be suspended. In addition, the

repair cost is inevitable increasing.

The TILT includes three main sequential steps, the first two steps are trained in simula-

tion environment and the last one is trained on real-world drone-vehicle platform.

(1) Imitation learning Behaviour cloning is used in the proposed method to achieve im-

itation learning. Prior to the training phase, a system model of the drone-vehicle

landing platform is established in the simulation environment. After that, a PID con-

troller is designed to accomplish the landing mission. Then, the algorithm can focus

on learning the PID controller’s policy with the help of supervised learning.

(2) Polishing learning Although the algorithm obtained a good performance from imi-

tation learning, it is still necessary to seek better performance. Polish learning will

use the training method based on exploration and exploitation to improve the overall

performance in simulation environment.

(3) Transfer learning The transfer learning method used in the proposed method is the

simplest one, inductive transfer learning because the source and target domains re-

mains the same. The algorithm applies the knowledge from the source model to

optimize the target task. The pre-trained model is starting from a better position than

if we were to train it from scratch because it already has knowledge of the features.

The pseudo-code and detailed steps of the proposed training method is shown in Algo-

rithm 5.
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Algorithm 5: Proposed transfer-imitation learning training (TILT) method
STEP 1. Imitation learning
Collect the demonstrations from PID controller
Treat the collected demonstrations as action-state pairs (spid,t, apid,t)
Learn πpid policy with supervised learning by minimizing the loss function
L(ϕpid) = E[(Q(spid,t, apid,t)− yt)2]
STEP 2. Polishing learning
Copy policy πpid to πsimu
Randomly initialize Q-functions ϕsimu,1 and ϕsimu,2
Empty replay buffer Dsimu, use the TD3 training method described in Algorithm 4
STEP 3. Transfer learning
Transfer the policy and weights from simulation training to the real-world training
πsimu to πreal, ϕsimu,1 to ϕreal,1 and ϕsimu,2 to ϕreal,2
Empty replay buffer Dreal, and use the same training method in Algorithm 4

4.3.5 Results and Analysis

Experimental Setup

The investigated auto-landing system consists of two vehicles, a flying UAV and a

ground vehicle with landing platform (see Fig. 4.24(a)). The selected UAV platform is

a QDrone from Quanser because it has small size, robust system and good manoeuvrabil-

ity. The selected ground vehicle platform is a QCar which is shown in Fig. 4.24(b). The

QDrone UAV platform has an on-board autopilot and can be communicated within a wire-

less WiFi channel. Both the UAV and ground vehicle can be located with the help of an

OptiTrack system.

The starting position of the UAV in x− y plane is randomly located within 2 meters of

the ground vehicle. Due to the limitation of OptiTrack system, the starting altitude of UAV

is constantly 1.5 meters.

Training Results

The algorithm training consists of two phases, simulation and real-world. The sim-

ulation training phase include imitation learning and polishing learning. While transfer
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(a) Auto-landing platform (b) QDrone and QCar

Figure 4.24: Test platform with a UAV and a ground vehicle.

learning belongs to the real-world training phase.

In the training phase, the entire landing maneuver has been carried out 10,000 episodes

(which contains over 1.5 million training iterations) in simulation environment. A training

trial finishes if the UAV lands on the moving platform or the altitude is lower than the mov-

ing platform. The experiment will be repeated under a large variety of situations and the

training data will provide a wide range of experiences for the algorithm to learn. Fig. 4.25

illustrates the changes of average accumulated reward during simulation training phase.

The imitation learning is executed at the first place, the average reward increases rapidly

while learning from the PID controller. When the reward approaches a steady value, the

algorithm training will switch to the next step, polishing learning. With the stochastic ex-

ploration strategy, the algorithm can achieve a better performance in spite of fluctuations.

For the training in real-world experiment, the total training episodes cannot be as many

as it in simulation training. Because it will take 3-5 minutes to complete one training trial.

And a fully charged battery can only last for 30 minutes. Therefore, it is necessary to choose

good experiment and abandon the ones which fails to land on moving platform. As a result,

173 episodes has been selected as the training data, and the total training experiment has

been carried out over 250 times within 16 hours. Based on the selected training data, the
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Figure 4.25: Average reward for the simulation training phase.

Figure 4.26: Average reward for the real flight training phase.

algorithm has been trained over 50,000 training iterations to achieve a better performance.

With increasing training iterations, the trend of average reward is shown in Fig. 4.26.

To validate the effectiveness of the auto-landing controller proposed in this section,

landing success rate is introduced as an evaluation indicator of the performance. Two

kinds of success landing are considered, one is platform landing and the other is center

landing. A center landing refers to the landing trial when the horizontal distance between

the UAV and the center of the moving platform is less than the pre-defined threshold. If

the horizontal distance is beyond this threshold but less than the platform range, this trial is
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called a platform landing. While the UAV fails to land on the platform, it is regarded as an

unsuccessful trial.

(a) Center landing (b) Platform landing

(c) Unsuccessful landing

Figure 4.27: Definitions of different landing trials

Fig. 4.28 shows the landing success rate comparison between different training stages

in simulation environment. Results are based on 100 times landing test episodes. The PID

controller, which is the imitating target, has a good performance in the simulated landing

mission. After the imitation learning, the trained algorithm can perform very close the PID

controller. Finally, with the help of polishing learning, the trained algorithm has the highest

landing success rate in simulation environment.

In real flight test, the comparison of different training stages is illustrated in Fig. 4.29.

Due to the time-consuming issue of real-world test, results are based on 10 times landing

test trials. Although the trained algorithm performs very well in simulation, it has poor per-

formance in the real flight tests due to some inevitable factors, such as model uncertainties

and sensor inaccuracy. After the optimization of transfer learning, the overall performance
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Figure 4.28: Landing success rates of different training stages based on simulation tests.

Figure 4.29: Landing success rates of different training stages based on real-world trials.

has improved greatly.

Real Flight Test Results

After algorithm has been well trained by the proposed ITLT method, two cases of flight

tests will be carried out to validate the effectiveness and performance of the proposed algo-

rithm.

Case 1: The moving platform performs a shuttle movement

Fig. 4.30 shows the trajectories of the UAV and moving platform in a shuttle movement
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Figure 4.30: Trajectories of QDrone and QCar in a landing mission with shuttle movement.

test. The red line illustrates the trajectory of UAV (QDrone) while the blue dotted represents

the movement of the ground platform (QCar).

The objective of the auto-landing algorithm is to drive the UAV landing at the center

of the platform. Therefore, the distance error between the UAV and the center point is an

important evaluation factor of the algorithm. The distance error in the xy plane is shown

in Fig. 4.31(a). From the graph, it is obviously that distance error remains at a low level

and finally converges too zero before landed. The altitude error along z-axis is displayed in

Fig. 4.31(b). The altitude drops smoothly and eventually landed on the platform at altitude

0.2m.

The velocities are demonstrated in Fig. 4.32.

Fig. 68 illustrates the real flight test of auto-landing on a shuttle movement platform.

The videos are available at https://www.youtube.com/watch?v=6tzH4PcijeI.

Case 2: The moving platform performs a circular movement

Compared to the above shuttle movement test, the following test with a circular move-

ment is more complicated. The trajectories of the UAV and moving platform are shown in

Fig. 4.34. Although there is a little shaking at the beginning, the UAV eventually landed

on the moving platform smoothly and successfully.
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(a) Distance errors in xy plane (b) Distance errors along z-axis

Figure 4.31: Distance errors between UAV and the center of ground platform (shuttle move-
ment).

Figure 4.32: Velocities of the UAV in a landing mission with shuttle movement.
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Figure 4.33: Validation in real flight test with a shuttle movement platform. (Video link:
https://www.youtube.com/watch?v=6tzH4PcijeI)

Figure 4.34: Trajectories of QDrone and QCar in a landing mission with shuttle movement.
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The distance errors are shown in Fig. 61.

(a) Distance errors in xy plane (b) Distance errors along z-axis

Figure 4.35: Distance errors between UAV and the center of ground platform (circular
movement).

The velocities are demonstrated in Fig. 4.36.

Fig. 72 illustrates the real flight test of auto-landing on a circular movement platform.

The videos are available at https://www.youtube.com/watch?v=6tzH4PcijeI.

4.4 Conclusions

This section proposed three DRL algorithm aiming at different motion control prob-

lems. Firstly, a learning-based controller is constructed with the DDPG framework and

trained by the DERB technique to solve the path following problem of fixed-wing UAV. A

Figure 4.36: Velocities of the UAV in a landing mission with circular movement.
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Figure 4.37: Validation in real flight test with a circular movement platform. (Video link:
https://www.youtube.com/watch?v=6tzH4PcijeI)
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series of simulation results showed the effectiveness, efficiency and adaptability of the pro-

posed method. The comparison of DQN, original DDPG and DERB-DDPG proves that the

DERB-DDPG can provide a better performance in the UAV path following problem under

the given simulation settings. The second one investigated the problem of formation con-

trol for a leader-follower UAV team. The state-of-art deep reinforcement learning algorithm

TD3 is studied in this section. First, the follower UAV kinematic model is derived. Then,

the twin-delayed DDPG is proposed by introducing a double Q-learning and delayed up-

dates. Finally, the TD3 algorithm is trained with the assistance of prioritized replay buffer

with flexible capacity. Two scenarios of the simulation examples are carried out to validate

the effectiveness of the proposed method. The third one studies the autonomous landing

problem of multi-rotor UAV. A new training method is proposed to address the problem

that traditional training approaches cannot be applied to real-world control problems. The

proposed ITLT method can efficiently and effectively complete the training.
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Chapter 5

Fault-Tolerant Control of Fixed-Wing

UAV

This chapter investigates the fault-tolerant control (FTC) of fixed-wing uncrewed aerial

vehicle (UAV) using a soft actor-critic (SAC) approach. The proposed SAC combines the

algorithm of deep reinforcement learning , the concept of entropy and the mechanism of

double Q-learning to construct a passive fault-tolerant controller for fixed-wing UAVs. A

special robust term and a new reward function are designed to help the controller improve

robustness against system fault. Simulation results in both faulty and non-faulty situations

show the feasibility of using SAC in fault-tolerant control and the effectiveness of the pro-

posed SAC algorithm.

Currently, the state-of-the-art DRL algorithms are twin-delayed deep deterministic pol-

icy gradient (TD3) and soft actor-critic (SAC). Both TD3 and SAC aim at minimizing the

overestimation in DDPG by using double clipped Q-learning. However, SAC showed bet-

ter learning efficiency in most control applications. Reference [136] also uses SAC as the

passive fault-tolerant controller, but it does not include any additional robust mechanism,

relying only on the robustness of the DRL algorithm itself. There is still room for improve-

ment on SAC controller.
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Inspired by the idea of SAC, this chapter proposes a robust SAC fault-tolerant controller

for fixed-wing UAVs. Firstly, based on the actor-critic framework, the SAC algorithm is

constructed by introducing two main techniques, the concept of entropy and clipped dou-

ble Q-learning. Then, a robust term is defined to help the algorithm for a better awareness

of the system status, which makes it easier to maintain system performance under system

faults. After that, a new reward function is designed to evaluate the value of each experi-

ence even under faulty conditions. This is critical to the algorithm performance because

reward function leads the direction of learning. Finally, the SAC robust controller is built

by combining the robust term and the new reward function.

The main contributions of this chapter are outlined as follows:

(1) SAC framework for fault-tolerant control. A model-free fault-tolerant controller is

developed based on the state-of-the-art SAC algorithm. The main advancements of

SAC are entropy and double Q-learning. The concept of entropy helps the algorithm

to have a better exploration of the data. And Double Q-learning also avoids the

overestimation of NN.

(2) Robust term. Besides the measured state from sensors, the definition of robust term

provides an extra knowledge of system status. An additional dimension of informa-

tion can help the algorithm to generate better decisions, especially in faulty situations.

(3) Reward function. A new reward function is designed for sensitively and accurately

representing the performance of an action in the flight control problem, especially

under system fault conditions. The design of penalty and bonus is an accelerator for

training process.
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5.1 The Proposed Soft Actor-Critic Algorithm

This section introduces the detailed SAC algorithm and the actor-critic learning frame-

work. Different from DDPG and its extension TD3, SAC uses a stochastic policy instead of

deterministic policy to improve the exploration efficiency. Although SAC also has clipped

double Q-learning, however, the concept of entropy still makes it a completely new idea.

5.1.1 The Concept of Entropy

The main idea of SAC is entropy regulation. This technique will motivate the policy

to increase exploration efficiency and accelerate the learning speed. An entropy term H is

added in the optimal policy π∗
sac to measure the randomness of the policy.

π∗
sac = argmaxEπ[

N∑
i=0

γi(Rsac(st+i, at+i)

+ αsacH(πsac(at+i|st+i)))]

(5.1)

where αsac > 0 refers to the temperature parameter and the entropy term H can be obtained

by the following equation:

H(πsac(at|st)) = E[− log πsac(at)|st] (5.2)

The value function also needs to be slightly changed to a new one with entropy term:

Vπsac(st) = E[
T∑
i=t

γi−tRsac(si, ai) + αsacH(πsac(at|st))] (5.3)

To sum up briefly, the use of entropy will lead the algorithm favors not only the highest

reward but also the most randomly distributed policy. In addition, it can also avoid the

policy from converging to a local optimal one. At the same time, a broad range of actions
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offers the algorithm with more selections when facing faulty conditions and improves the

robustness against faults.

The actor and critic networks are deep neural network (DNN) with parameter θsac and

ksac, respectively. For every state-action pair, the critic Q-function can be expressed by

recursive relationship, the Bellman equation also needs to be modified.

Qksac(st, at) = E[Rsac(st, at) + γ(Qksac(st+1, at+1)

− αsac log πθ,sac(at+1|st+1))]

(5.4)

5.1.2 SAC Algorithm Updating

For the training section or parameter updating phase of the proposed SAC algorithm,

there remains a problem that the training data generated by MDP are not identically dis-

tributed. These data are easily to be correlated because they are obtained sequentially from

exploration. Therefore, instead of using consequent samples, a replay buffer or memory

pool is established to store the experience samples. At each time step, a mini-batch of

samples will be extracted from the replay buffer. Then, the actor and critic networks are

updated using mini-batch samples. After that, a transition sample of the current time instant

(st, at, Rsac(t), st+1) will be stored into the replay buffer.

The Q-function in equation (5.4) will be estimated by a function approximator. By

minimizing the loss, the function approximator can be updated with the extracted samples

(st, at, Rsac(t), st+1):

LQ(k) = E[(Qk,sac(st, at)− yt,sac))2] (5.5)

where yt,sac refers to the Q-function target which is defined as:

yt,sac =Rsac(st, at) + γ(Qk,sac(st+1, at+1)

− αsac log πθ,sac(at+1|st+1))

(5.6)
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There are two Q-functions, Q1,sac and Q2,sac, in the SAC. These two Q-functions share

one target function which is defined with the smaller Q-value:

ymin,sac = Rsac(st, at) + γ( min
i=1,2

Qki,sac(st+1, at+1)

− αsac log πθ,sac(at+1|st+1))

(5.7)

Both two Q-functions will be updated by regressing to the target ymin,sac:

LQ(k1, sac) =E[(Qk1,sac(st, at)

− (Rsac(st, at) + γ(min
i=1,2

Qki,sac(st+1, at+1)

− αsac log πθ,sac(at+1|st+1)))))
2]

(5.8)

LQ(k2, sac) =E[(Qk2,sac(st, at)

− (Rsac(st, at) + γ(min
i=1,2

Qki,sac(st+1, at+1)

− αsac log πθ,sac(at+1|st+1)))))
2]

(5.9)

The design of double Q-functions aims at reducing the overestimation of Q-function,

which is considered to be a major drawback of DDPG.

In SAC, a dimensional multivariate Gaussian distribution with a diagonal covariance

matrix is used to model the actor network. In this chapter, SAC is designed to construct

a fault-tolerant controller, as a result, the generated actions of the actor network should

be bounded. The actions are going to pass a tanh squashing function to guarantee a finite

range. The DNN with parameter θ are approximating the mean vector µθ,sac and the covari-

ance matrix σ2
θ,sac. Different from deterministic policy of DDPG, SAC introduces a special

trick to re-parameterize the network [137], which is described in (5.10). The exploration

action is obtained by applying the squashing function to a combination of the known mean

118



and standard deviation of stochastic policy.

aθ,sac(s, ξ) = tanh(µθ(s) + σθ,sac(s)⊙ ξ), ξ ∼ N (0, 1) (5.10)

The actor network is updated by following and applying the chain rule to the expected

future rewards and entropy with respect to the network parameters θsac and ksac. The

objective function Jπ,sac(θ) is defined as:

Jπ(θ) = E[ min
i=1,2

Qki,sac(st, aθ(st, ξ))

− αsac log πθ,sac(aθ,sac(st, ξ)|st)]
(5.11)

With the increasing number of training steps, the demand for exploring is expected to

diminish, hence the optimal entropy is also changing throughout training. As a result, the

temperature parameter needs to be obtained as the training steps increase. The loss function

Lsac(α) is designed to dynamically calculate the best temperature parameter.

L(α) = E[−αsac log πθ,sac(at|st)− αsacH] (5.12)

Besides all the above mechanism, a target network is introduced at the last place. The

target network is a copy of Qk1,2,sac and it is designed for soft updating. At each time

instant, after Qk1,2,sac and πθ,sac have been updated, the target network will be updated by

the following equation:

ϕtar,i ← ρϕtar,i + (1− ρ)ϕi, i = 1, 2 (5.13)

where ρ≪ 1. The mechanism of target network greatly reduces the negative effect of bad

experiences and improves the stability of learning.
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Figure 5.1: Framework of the proposed SAC algorithm.

5.1.3 The SAC Framework and Pseudo-Code

The block diagram of the proposed SAC algorithm is shown in Fig. 5.1. It consists of

two cycles, an execution cycle and an update cycle. Generally, the actor network belongs to

the execution cycle and makes decisions. While the critic network lies in the update cycle

and updates the networks using experience samples from replay buffer. Specifically, at

each time instant, the actor network generates an optimal action based on state information.

Then, this action will be executed. A reward will be received from the environment and the

whole system will enter the next state. The above process is a complete execution cycle.

After that, the update cycle is activated. At first place, the critic network will update the

double Q-function based on the samples from replay buffer and temperature loss. Then, a

Q-value will be returned to the objective function to update the actor network.

Detailed steps of implementing the algorithm and its pseudo-code are introduced in the

Algorithm 6.
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Algorithm 6: Proposed SAC algorithm
1 h

Randomly initialize the parameters of θsac, k1,sac and k2,sac for πθ,sac and Qk1,2,sac

Copy the weights to target network ϕtar,i ← ki,sac, i = 1, 2
Empty replay buffer and mini-batch. Initialize constant parameters.
for Episode = [1,m] do

for Time step = [1, T ] do
Observe the current state st and generate the action at ∼ πθ,sac(at|st)
Execute the action at.
Observe the next state st+1 and obtain the reward Rsac(t)
Store the transition (st, at, Rsac(t), st+1) into the replay buffer.
if The replay buffer has enough transitions to update then

Sample a mini-batch Bsac of transitions from replay buffer.
Compute targets
ymin,sac = Rsac(st, at) + γ(min

i=1,2
Qki,sac(st+1, at+1)− αsac log πθ,sac(at+1|st+1))

Update Q-functions.
▽ki,sac

1
|Bsac|

∑
((st,at,Rsac(t),st+1)∈Bsac)(Qki,sac(st, at)− ymin,sac)2, for i = 1, 2

Update policy by gradient ascent
▽θ,sac

1
|Bsac|

∑
st∈Bsac

(min
i=1,2

Qki,sac(st, at)− αsac log πθ,sac(at|st)), for i = 1, 2

Update target networks
ϕtar,i ← ρϕtar,i + (1− ρ)ϕi, for i = 1, 2

end if
end for

end for
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5.2 Fault-Tolerant Controller Design

5.2.1 UAV Model

The state space model of a fixed-wing UAV can be described as follows:

ẋ = Ax+Bu

y = Cx+Du

(5.14)

where A, B, C, and D are system parameter matrices, y is the system output vector. x and

u are the system state vector and control input vector, respectively.

x = [p, q, r, θ, ϕ, ψ, αattack, β, Vspeed, Haltitude]
T (5.15)

u = [δe, δa, δr, δt]
T (5.16)

where the above parameters have normal meanings. It should be noted that the speed and

throttle channel is controlled independently. The objective of the designed controller is to

track the desired reference signal Dref = [ψd, ϕd, hd]T . The corresponding measured states

are Dmr = [ψm, ϕm, hm]
T .

For the convenience of the controller design, the motion of UAV is divided into longi-

tudinal motion and lateral motion. Specifically, the longitudinal motion and lateral motion

are [p, θ, α, aattack, Vspeed, Haltitude, δe, δt] and [q, r, ϕ, ψ, β, Vspeed, δa, δr].

5.2.2 Fault-Tolerant SAC Controller Design

Applying SAC in a fault-tolerant controller needs to re-formulate the control problem

in a MDP model. The formulation contains the definition of state-action spaces and the

design of reward function, and this is critical for the algorithm’s performance and learning
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speed. There are two independent SAC algorithms in the SAC controller, one is designed

for longitudinal motion and the other is for lateral motion. As stated above, the control

input vectors are ulon and ulat. Therefore, the action spaces of both longitudinal SAC and

lateral SAC are the same as these control inputs.

Alon = {δe}

Alat = {δa, δr}
(5.17)

The definition of state space must be unique in both time dimension and location di-

mension. Specifically, a state presentation such as st only leads to one position in the

environment. And whenever the UAV reaches this state st, the same action at applied will

result in an unique consequence. It should be noted that any redundancy in the state space

is not acceptable because this will inevitably increase the calculation burden, decrease the

learning efficiency and result in overall performance degradation. Therefore, the state def-

inition must be accurately and concisely.

For the longitudinal motion, the state space is defined as:

Slon = {Dref , Dmr, p, Eh, ηe} (5.18)

where Eh is the error between desired altitude hd and current measured altitude hm. ηe is a

time-varying variable which is defined as follows:

ηe = eΩh − (Ωh − 1)2 (5.19)

where Ωh is defined as:

Ωh =
hdt − hdt−1

hm,t − hm,t−1

(5.20)
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For the lateral motion, the state space is defined as:

Slat = {Dref , Dmr, q, r, Eψ, Eϕ, ηa, ηr} (5.21)

where Eψ and Eϕ are the error between measured and desired angles. ηa and ηr are defined

as follows:
ηr = eΩψ − (Ωψ − 1)2

ηa = τ1(e
Ωϕ − (Ωϕ − 1)2) + τ2ηr

(5.22)

where τ1 and τ2 are the parameters and τ1 ≫ τ2. Ωψ and Ωϕ are defined as:

Ωψ =
ψdt − ψdt−1

ψm,t − ψm,t−1

Ωϕ =
ϕdt − ϕdt−1

ϕm,t − ϕm,t−1

(5.23)

where ηa, ηe and ηr are the robust terms help to maintain system performance under faulty

conditions.

There are several physical observations included in the above defined state and action

spaces, such as heights, angles and velocities. However, the range of these observations

may differ a lot, this may decrease the learning efficiency. One common approach is to

normalize these physically observed variables from −1 to +1.

Reward function is generally considered as the most crucial part in DRL algorithms.

A well-designed reward function helps to improve the overall performance greatly. The

reward function is defined as follows, which consists of three parts:

Rtotal = ract + rpenalty + rbonus (5.24)

where rpenalty and rbonus are the penalty and bonus. In this chapter, the actuators are as-

sumed to have saturation limits. If the generated actions ulon or ulat is beyond this limit,
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the reward function will receive a huge negative value.

rpenalty =


−100, beyond limits

0, otherwise
(5.25)

On the contrary, rbonus will provide an extra positive reward while the error between

reference and measured state is almost zero (Dref − Dmr ≈ 0). The bonus can help

algorithm to have a better exploitation on good actions and accelerate the learning speed.

rbonus =


10, Dref −Dmr ≈ 0

0, otherwise
(5.26)

The third term in reward function (5.24) is action reward ract, which is an evaluation

to judge how good or how bad the generated action is. For the longitudinal motion, action

reward ract,lon is defined as:

ract,lon = −µ1(|Eh|+ 1)2 − µ2ηe + µ3
1

p2
(5.27)

For the lateral motion, action reward ract,lat is defined as:

ract,lat =− µ4(|Eϕ|+ 1)2 − µ5(|Eψ|+ 1)2

− µ6ηa − µ7ηr + µ8
1

q2
+ µ9

1

r2

(5.28)

where µi (i = 1, ..., 9) are weight parameters to balance or emphasize the importance of

terms in the reward function.
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5.3 Simulation Results and Analysis

5.3.1 Simulation Setup and Training

The proposed SAC fault-tolerant controller is validated in a fixed-wing UAV model.

The longitudinal model can be given as:

ẋlon = Alonxlon +Blonulon

ylon = Clonxlon +Dlonulon

(5.29)

The system state and control input vector are defined as:

xlon = [△ u,w, q,△ θ,△ Haltitude]
T

ulon = [δe, δt]
T

(5.30)

where u andw are the velocity along x-axis and z-axis. δt is the throttle control input which

is controlled independently. The system and control matrices are given as:

Alon =



−0.0069 0.0139 0 −9.81 0.0706

−0.0905 −0.3149 235.89 0 0

0.0004 −0.0034 −0.4281 0 0

0 0 1 0 0

0 1 0 −235.89 0


(5.31)
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Blon =



−0.000057 2.943

−5.4714 0

−1.159 0

0 0

0 0


, Clon =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, Dlon =



0 0

0 0

0 0

0 0

0 0


(5.32)

The lateral model can be given as:

ẋlat = Alatxlat +Blatulat

ylat = Clatxlat +Dlatulat

(5.33)

xlat = [v, p, r, ϕ, ψ]T

ulat = [δa, δr]
T

(5.34)

The system and control matrices are given as

Alat =



−0.0558 0 −235.9 9.81 0

−0.0127 −0.4349 0.4142 0 0

0.0036 −0.0061 −0.1458 0 0

0 1 0 0 0

0 0 1 0 0


(5.35)
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Blat =



0 1.7188

−0.1433 0.1146

0.0038 −0.4859

0 0

0 0


, Clat =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, Dlat =



0 0

0 0

0 0

0 0

0 0


(5.36)

Choosing suitable hyper parameters for the proposed SAC controllers can significantly

improve training efficiency. Specifically, the learning rate is 1× 10− 3, the discount factor

is 0.98, the smooth parameter ρ is 3 × 10−3. The deep neural network has three hidden

layers and each layer has 32 units.

The SAC algorithm will be trained twice. The first time is trained on the healthy system

to obtain a good control performance and provide a reasonable training base for faulty

condition. In the second time, SAC is trained under actuator faults to get a strong robustness

against faults.

The SAC algorithm will be trained one episode by another. Each episode is an indepen-

dent training process and it contains 1,000 training steps. Since the control of aircraft is a

consequent decision process, the error in previous steps will be accumulated. As a result,

the aircraft may be too far away from the reference, especially in faulty conditions. Explor-

ing in these situations is kind of useless and exploiting this experience may cause negative

effect on learning performance. Therefore, the design of training episode can effectively

eliminate cumulative errors and interrupt the training data from deteriorating.

Fig. 5.2 shows the curve of average reward with training episode increases. The blue

line refers to the healthy system while the red line represents the faulty system. From the

curves it is obviously that the average reward keeps increasing which means the perfor-

mance of SAC algorithm is becoming better.
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Figure 5.2: Average reward of training episodes.

5.3.2 Non-Faulty Condition

Since the proposed SAC controller is passive FTC, the performance on healthy sys-

tem is also one important goal. As the Fig. 5.3 shows, the SAC controller is trying

to minimize the overall errors and tracks the reference well. Blue lines are references

Dref = [ψd, ϕd, hd]T and red lines are measured states Dmr = [ψm, ϕm, hm]
T .

5.3.3 Loss of Effectiveness Condition

The loss of effectiveness is considered as the actuator fault in the simulation. As shown

in Fig. 5.4, 75% reduction of aileron, 80% reduction of elevator and 70% reduction of

rudder are applied at time = 10s. Initially, the aircraft’s altitude drops a bit. The situation

is even worse in ϕ and ψ. But soon, the aircraft keeps up with reference. Although it is not

as perfect as the healthy system, the overall performance of the SAC controller is within

acceptable limits.
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Figure 5.3: Tracking responses of the proposed SAC algorithm and system behavior under
non-faulty condition.

Figure 5.4: Tracking responses of the proposed SAC algorithm and system behavior under
faulty condition (loss of effectiveness).
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Figure 5.5: Tracking responses of the proposed SAC algorithm and system behavior under
faulty condition (rudder stuck).

5.3.4 Rudder Stuck Condition

Besides the loss of effectiveness, rudder stuck is considered as another actuator fault.

At time = 10s, the rudder is stuck at 5◦ and the system response is shown in Fig. 5.5.

Despite the severe actuator fault, the system remains stable and robust. The errors in yaw

and roll motion are inevitably turned to be big but they recover to normal eventually.

5.3.5 Comparison Between Traditional PID Controller and the Pro-

posed SAC Controller

To further validate the effectiveness of the proposed SAC controller, a comparison be-

tween a PID controller with fine-tuned parameters is carried out.

Fig. 5.6 shows the system responses of two controllers under loss of effectiveness faulty

conditions. The well-tuned PID controller is black line. It is obviously both two controllers

have good reliability against loss of effectiveness fault. However, the performances differs.

When fault occurs, the performance of PID controller degrades a lot while the performance

of proposed SAC controller is less fluctuating. But after a while, the performance of PID
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Figure 5.6: System responses of both controllers under faulty condition (loss of effective-
ness).

controller is obviously better than the SAC controller. In summary, these two algorithms

have their own advantages and disadvantages.

5.4 Conclusion

In this chapter, a new fault-tolerant controller based on deep reinforcement learning

algorithm is proposed for a fixed-wing UAV in the presence of partial loss of effectiveness

and stuck fault situations. The new SAC controller is constructed by applying the concept

of entropy in an actor-critic framework. Besides, the design of reward function and the

definition of robust term help the SAC controller to maintain system performance under

the considered actuator faults. Numerical simulation results prove that the proposed SAC

controller has a strong robustness against loss of effectiveness and rudder stuck faults.

Compared to other existing literature which is also using SAC as passive fault-tolerant

controller, the one proposed in this chapter has faster recovering time and less tracking

errors.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, several uncrewed aerial vehicle (UAV) issues related to real-time path

planning, motion control and fault-tolerant control (FTC) are well studied, which includes:

• Comprehensive literature reviews on path planning, motion control and FTC are pro-

vided.

• Two real-time path planning algorithm are designed. The first one proposes a new

state space definition method which breaks the gap betweenQ-learning algorithm and real-

time path planning. The second one designs a new reward function inspired by the human

pedestrian behavior. With the help of the proposed reward function, the trained algorithm

can plan a safe and shortest path in a complex environment.

• A new learning-based controller is constructed with the deep deterministic policy

gradient (DDPG) framework and trained by the double experience replay buffer (DERB)

technique to solve the path following problem of fixed-wing UAV. A series of simulation

results showed the effectiveness, efficiency and adaptability of the proposed method. The

comparison of DQN, original DDPG and DERB-DDPG proves that the DERB-DDPG can

provide a better performance in the UAV path following problem under the given simulation
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settings.

• A new DRL algorithm twin-delayed DDPG (TD3) is designed for the UAV formation

control problem. The TD3 algorithm is proposed by introducing a double Q-learning and

delayed updates. Then, the algorithm is trained with the assistance of prioritized replay

buffer with flexible capacity. Two scenarios of the simulation examples are carried out to

validate the effectiveness of the proposed method.

• A new DRL training method named imitate-transfer learning training (ITLT) is de-

signed for training DRL algorithms in real-world control applications. The ITLT is vali-

dated in the auto-landing control problem and the experimental results show the effective-

ness of the proposed training method.

• A new fault-tolerant controller based on soft actor-critic (SAC) algorithm is proposed

for a fixed-wing UAV in the presence of partial loss of effectiveness and stuck fault situ-

ations. The new SAC controller is constructed by applying the concept of entropy in an

actor-critic framework. Besides, the design of reward function and the definition of robust

term help the SAC controller to maintain system performance under the considered actua-

tor faults. Numerical simulation results prove that the proposed SAC controller has a strong

robustness against loss of effectiveness and rudder stuck faults.

6.2 Future Works

Following the current research in this thesis, the following future directions are out-

lined:

•Most of the developed methods in this thesis is validated in simulation, more experi-

mental tests are needed in the future.

• Add SLAM and vision processing technologies in the path planning algorithm to

make it a more intelligent and broaden its application in our daily life.
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• The leader-follower formation control problem is well investigated, while more com-

plicated and challenging issues, such as distributed control, are expected to be studied in

the future.

• The faults considered in this thesis only occur in actuators, while the sensor and

communication faults are not included, though they are of significance for safety critical

control system design as well.
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