
Generative Models Based on the Bounded Asymmetric
Student’s t-Distribution

Ons BOUARADA

A Thesis in The

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Quality Systems Engineering) at

Concordia University
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Abstract

Generative Models Based on the Bounded Asymmetric Student’s t-Distribution

Ons BOUARADA

Gaussian mixture models (GMMs) are a very useful and widely popular approach for clustering,

but they have several limitations, such as low outliers tolerance and assumption of data normality.

Another problem in relation to finite mixture models in general is the inference of an optimal num-

ber of mixture components. An excellent approach to solve this problem is model selection, which

is the process of choosing the optimal number of mixture components that ensures the best clus-

tering performance. In this thesis, we attempt to tackle both aforementioned issues: we propose

using minimum message length (MML) as a model selection criterion for multivariate bounded

asymmetric Student’s t-mixture model (BASMM). In fact, BASMM is chosen as an alternative to

improve the GMM’s limitations, as it provides a better fit for the real-world data irregularities. We

formulate the definition of MML and the BASMM, and we test their performance through multiple

experiments with different problem settings.

Hidden Markov models (HMMs) are popular methods for continuous sequential data model-

ing and classification tasks. In such applications, the observation emission densities of the HMM

hidden states are typically modeled by elliptically contoured distributions, namely Gaussians or

Student’s t-distributions. In this context, this thesis proposes BAMMHMM: a novel HMM with

Bounded Asymmetric Student’s t-Mixture Model (BASMM) emissions. This HMM is destined to

sufficiently fit skewed and outlier-heavy observations, which are typical in many fields, such as fi-

nancial or signal processing-related datasets. We demonstrate the improved robustness of our model

by presenting the results of different real-world applications.
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Chapter 1

Introduction

1.1 Introduction

The ever-growing presence of technology and software in our daily lives continues to produce

a large abundance of data in all its shapes and forms, and new sets of data-related problems. It

is necessary to analyze these data to gain insights and make better decisions, or to train machine

learning models on it to make predictions or automate tasks. However, the greater part of these data

is often unlabeled, which calls for the importance of unsupervised learning methods to analyze and

model it. In this regard, clustering [1] is one of the most popular techniques to discover and classify

unlabeled data.

Mixture models [2], a notable range of clustering approaches, provide statistical inference on sub-

populations of various random phenomena [3]. Mixture models represent the data as an ensemble

of clusters following the same probability distribution, with a different set of parameters per clus-

ter. One important characteristic of mixture model-based clustering is that it is a soft clustering

approach: it fits a set of probabilistic models to the data and assigns each data vector a probability

of belonging to each component. This gives us a quantification of the probability of each vector

belonging to each cluster. Thanks to their high flexibility and their capacity to model complex data

distributions, mixture models are the subject of an increasing attention and have considered various

distributions [4, 5, 6], such as the Gaussian distribution, which is the basis for GMMs [7].
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The choice of the mixture components’ probability distribution is a determinant factor in the qual-

ity of the clustering. This choice assumes a certain shape and distribution about the data, which

might or might not be accurate. As an example, the aforementioned GMMs are very convenient and

widely used in multiple clustering tasks and research works [8, 9, 10], but they may not always be

the optimal choice. Specifically, many datasets are not naturally distributed in a Gaussian-like way,

and GMMs are not a suitable clustering method in this case. Furthermore, the symmetry and the un-

bounded support of the Gaussian distribution prevents it from fitting optimally to real-world datasets

that are generally asymmetric and bounded. Some research works have overcome these issues by

using the generalized Gaussian distribution [11] for the mixture model (GGMM) [12, 13, 14] or

by introducing asymmetry and/or bounded support to the GMMs [15] and GGMMs [16, 17, 18].

However, even with these added properties, one limitation persists, and that is the low tolerance to

outliers. In fact, outliers are often present in datasets generated by real-world applications. In this

case, GMMs require excessively big sizes of the available training datasets to capture the outliers

and guarantee the dependability of the model fitting procedure.

On a different note, the performance of mixture model clustering can be sensitive to several other

factors, such as the number of mixture components and the initial parameter estimates. In fact,

tuning the number of clusters/mixture components for the best fit to the data representation is a task

as crucial as the clustering itself. Too many components lead to overfitting the data, and too few

components result in a very simplistic model that fails to capture the complexity of the data.

1.1.1 Bounded Asymmetric Student’s t-Mixture Model (BASMM)

To address the GMM’s limitations, the Student’s t-distribution is the basis of the mixture model

used in this work. By its definition, the Student’s t-distribution is more heavily tailed than the

Gaussian distribution, thus the Student’s t-mixture model (SMM) is more robust to outliers than

the Gaussian mixture model (GMM) [19]. In real-world data, the values are usually concentrated

within bounds and distributed in a non-symmetric way. Therefore, it is suitable to introduce bounded

support and asymmetry [20] to every component of the mixture model, which allows more flexibility

and better fitting to the different shapes of the data. The multivariate Student’s-t mixture model has a

small number of parameters: mean, covariance matrix, degrees of freedom and mixing parameter for

2



each component of the mixture. When fitting the SMM to a dataset for clustering, these parameters

can be estimated in an iterative fashion using the Expectation Maximization (EM) algorithm [21].

In this thesis, we use the multivariate bounded asymmetric Student’s t-mixture model (BASMM)

as our main clustering approach. We develop the mathematical background for this model and

for its related EM algorithm. We also employ BASMM for different experiments and establish a

performance comparison with other benchmark model selection approaches.

1.1.2 Model Selection Criterion for BASMM

In unsupervised learning, the number of mixture components is often unknown and needs to be

provided before proceeding to the learning phase. Choosing the number of components has a sig-

nificant effect on the clustering performance. In fact, too many components can result in overfitting,

and too few components reduce the model’s flexibility and prevent us from learning the real data

representation.

Model selection [22] is introduced to overcome this issue, and it is the process of choosing the op-

timal number of clusters based on the data and the clustering model at hand.Various strategies have

been presented to identify the best number of components for mixture models [23]: an important

range of these can be Bayesian and/or information theory-based criteria. The Bayesian approaches

take into account the prior probability of the model and the likelihood of the data given the model.

Very popular examples of these approaches include the Bayesian information criterion (BIC) [24]

or the Laplace empirical criterion (LEC) [25]. Other Bayesian criteria that are based on information

theory rely on seeking optimal encoding of the data given the mixture model and its likelihood.

These methods include Akaike’s information criterion (AIC) [24] and the minimum description

range of criteria like minimum description length (MDL) criterion [26] or the mixture minimum

description length (MMDL) [27].

Within this same range of criteria, we also cite the minimum message length (MML) [28]. This is an

approach that finds the model with a minimal length of a message composed of the prior information

and the encoding of the model fitted to the data. MML has been used in many recent works involv-

ing different variants of multivariate mixture models [29, 30, 31] and produced excellent results.

It has also performed a better model selection than AIC and MDL according to [32]. This makes

3



MML an interesting model selection criterion to explore with BASMM clustering. In this thesis,

we propose MML as a primary method to estimate the optimal number of mixture components for

the BASMM. We lay out the mathematical definition for the MML and we test its performance in

different data experiments.

1.1.3 Hidden Markov Models

HMMs [33] are a simple, yet powerful, tool to represent and predict sequential events [34] and

are widely used in many types of data-driven tasks. The concept of HMMs is primarily based on

Markov Chains [35, 36] (proposed by Andrey Markov in the early 20th century) but was formally de-

veloped later in many works. The key idea of HMMs is that a latent variable or state variable evolves

according to a discrete, first-order Markov process. More specifically, the modeled process/data is

a sequence of states or values that are unknown (hidden), where each hidden state depends on the

past hidden state in the sequence. This Markov Chain of hidden states is associated with an equal

sequence of known values (observations). Every hidden state emits an observation that follows a

well-defined probability distribution in the space of observations, and each observation is condition-

ally independent of every other observation, given the value of its associated hidden state. By their

structure, HMMs are generally able to solve a variety of tasks mainly with three main functionalities

[37, 38]: evaluation, decoding (inference), and learning. The evaluation is the computation of the

probability of an observation sequence given an HMM. Decoding is the task of inferring the most

probable sequence of hidden states given a defined HMM and a sequence of known observations.

As for learning, it is the search for the best parameters of the HMM (learning the HMM) given an

observation sequence and the set of possible hidden states in the model.

By their definition, HMMs are an excellent choice to tackle data tasks that involve non-observable

sequential values, as their structure allows inferring these latent values from the observable signals

or even predicting their future trends. This high flexibility makes HMMs a strong candidate to deal

with a variety of applications such as genetics and biomedical engineering [39, 40], climate model-

ing [41], signal processing [42], stock market prediction [43], speech [44], video recognition [45],

and information retrieval systems [46], to name a few. The observation emission, i.e., the formula-

tion of the conditional dependence between the observations and the hidden states of the HMM is
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generally a deciding factor for the behaviour of the model, and is also among our areas of interest

in this thesis.

1.1.4 BASMM emissions for HMMs

When modeling continuous data with HMMs, the observation emission probability distributions

associated with the hidden states often have a specific form from a parametric class such as Gaus-

sian, Gamma, or Poisson. In this regard, multiple works have further explored the emission distri-

butions and introduced the mixture models as an alternative [47]. This has led to some very useful

variants of HMMs [48], perhaps the most popular one being the Gaussian mixture model HMM

(GMMHMM). This prevalence of the GMMHMMs stems from the convenience of the GMM, as it

provides a natural way to cluster the data and has relatively simple implementations and parameters.

However, as discussed earlier, Gaussian-based distributions do not account for the outliers [49], data

asymmetry, nor its specific location in space. Ergo, HMMs with Gaussian-based emissions can be

limited when dealing with outlier-heavy, or significantly asymmetric data, which is often the case.

Some of these issues have been tackled in [50] by introducing a bounded asymmetric Gaussian

mixture [16] as an emission distribution for the HMM, but the low outlier tolerance of the Gaussian

distribution remains a problem. On this matter, the Student’s t-distribution [51] is an excellent alter-

native to the Gaussian when fitting skewed or heavy-tailed populations, thus, the multivariate finite

Student’s t-Mixture Model (SMM) [52] can provide a more robust fit than the GMM in the presence

of significant proportions of outliers in the data.

Multiple articles have explored the potential of the HMMs with SMM emissions as in [53, 54, 55],

but the idea of customizing this model within the HMM to better fit the real-world data has not

been examined yet. In fact, while SMMs are an excellent solution for handling outliers, they as-

sume, by their mathematical definition, that the examined data is symmetric and spans over an

unbounded range, which is not a realistic depiction of most datasets. This motivates us to introduce

BASMMHMM: a HMM with BASMM as an observation emission distribution. This model is an

amelioration of the drawbacks observed in the previously proposed HMMs, as the emissions’ dis-

tributions will not only fit observed data outliers (with heavy distribution tails), but also tolerate the

natural imperfections of the data (with asymmetry) and account for its finite aspect. We train our
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BASMMHMM using the Baum-Welch Expectation Maximization (EM) algorithm, and we apply it

on a selection of popular real-world tasks, where the HMMs are a very efficient recourse: occupancy

estimation [56], stock price prediction and human activity recognition [57].

1.2 Contributions

(1) Model Selection Criterion For Multivariate Asymmetric Student’s-t Mixture Model With

Bounded Support Data:

In this contribution, we propose the use minimum message length (MML) as a model se-

lection criterion on top of the multivariate bounded asymmetric Student’s t-mixture model

(BASMM) clustering. We test our clustering method and model selection with three different

experiments. The results of these experiments are discussed and compared with other model

selection criteria and clustering algorithms to demonstrate the merits of our contribution. This

work has been submitted as a journal paper to Advances in Data Analysis and Classification.

(2) Hidden Markov Models with Multivariate Bounded Asymmetric Student’s t-Mixture

Model Emissions:

In this contribution, We propose BASMMHMM: a new variant of hidden Markov models

where the observation emissions are modeled in a multivariate bounded asymmetric Student’s

t-mixture model. This work allows us to explore the effectiveness and the improved robust-

ness of BASMMs when integrated in an HMM framework. We test our proposed model in

multiple experiments from different problem settings. The results of these experiments are

discussed and compared with other variants of HMM based on other popular mixture models.

This contribution has been submitted as a journal paper to the Journal of Pattern Analysis and

Applications.

1.3 Thesis Overview

• In chapter 1, we introduce the general scope and set the motivations of this thesis. We also

briefly review the existing related works and we describe our contributions.
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• In chapter 2, we present the multivariate bounded asymmetric Student’s t-mixture model

(BASMM) and we lay out the mathematical background for this model’s learning process

with the EM algorithm. Then, we derivate of the model selection criterion for BASMM us-

ing minimum message length (MML) in detail. We also validate our work using multiple

experiments from real-world applications.

• In Chapter 3, we integrate BASMM into the framework of hidden Markov models. We pro-

vide the mathematical description of the model in detail, and we test it on different appli-

cations: occupancy estimation, human activity recognition, and stock price prediction. We

compare the results of these applications with other mixture model-based HMMs.

• In Chapter 4, we briefly summarize the contributions of this thesis and lay out some potential

paths of improvement for our work.

7



Chapter 2

Multivariate Bounded support

asymmetric Student’s t-Mixture Model

with Model Selection using Minimum

Message Length

In this chapter, we consider the task of modeling multidimensional data by a multivariate

bounded asymmetric Student’s t-mixture model (BASMM) without knowing the prior number of

clusters. We then propose minimum message length (MML) as a model selection criterion on top

of the BASMM clustering. We test our resulting model with three different experiments: house-

hold electricity consumption profiles clustering, head pose estimation from drivers’ images, and

leukemia detection from genetic expression. The results of BASMM and MML in these experi-

ments are discussed and compared with other model selection criteria and clustering algorithms to

demonstrate the merits of our contribution.

8



2.1 Multivariate Bounded Asymmetric Student’s-t Mixture Model

Being based on the multivariate Student’s t-distribution, the BASMM, and SMM are more ro-

bust than other popular mixture models like the GMM. In fact, compared to the Gaussian density

function, the Student’s t-density function has an additional parameter: the degrees of freedom ν,

which is a robustness tuning parameter. When ν increases, the t-pdf tends to have thinner tails

and becomes closer to the Gaussian pdf (see Fig. 2.1). As a result, the t-distribution provides a

heavy-tailed alternative to the Gaussian distribution for potential outliers in the data and therefore,

the SMM is a more outlier-tolerant clustering approach than the GMM.

Figure 2.1: PDFs of a Gaussian distribution and four t-distributions with different degrees of free-
dom

In this section, we lay out the mathematical definitions for the bounded asymmetric Student’s t-

distribution and mixture model, along with its EM algorithm. It is worth mentioning that throughout

this chapter, we consider all algorithms for multivariate data. So, X⃗i, which is often the notation of

a data point in this chapter, is a vector of two dimensions or more. This choice is explained by the

fact that most formats of real-world data are multivariate. Hence, it is more convenient to consider

mixture modeling for multivariate data.
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2.1.1 Bounded Asymmetric Student’s-t Distribution

The BASMM is a generalized format of the SMM where the specific location of the modeled

data in the space (bounded support) and its natural asymmetry are taken into consideration. Fig. 2.2

shows a comparison between the density functions of the Gaussian, the Student’s t, and the bounded

asymmetric Student’s t-distribution. The mean and standard deviation are the same for all three pdfs,

and the degrees of freedom are the same for the t and the bounded asymmetric t. Note that in Fig.

2.2, the forms of the t-based pdfs are more tailed than the Gaussian, and the bounded asymmetric

t-pdf has the most irregular shape. While these pdfs are plotted for univariate populations, they are

a good representation of these distributions’ behaviour for multivariate data.

Figure 2.2: PDFs of three different distributions: Gaussian, Student’s t, and bounded asymmetric
Student’s t

Let s be a multivariate Student’s-t [58] probability density function with the following param-

eters: a mean µ⃗ = [µ1, . . . , µd], a covariance matrix Σ and ν degrees of freedom. For a random

vector X⃗ = [x1, . . . , xd] of dimension d and given the aforementioned parameters, s can be written

as follows:

s(X⃗|µ⃗,Σ, ν) =
Γ(ν+d

2 )|Σ|−1/2(νπ)−d/2

Γ(ν/2)[1 + ν−1∆(X⃗, µ⃗; Σ)](ν+d)/2
(1)

10



where Γ is the Gamma function and ∆(X⃗, µ⃗; Σ) is the squared Mahalanobis distance. Both func-

tions have the following definitions, respectively:

Γ(y) =

∫︂ ∞

0
uy−1e−u du ; y > 0 (2)

∆(X⃗, µ⃗; Σ) = (X⃗ − µ⃗)TΣ−1(X⃗ − µ⃗) (3)

The asymmetry is added by introducing two different covariance matrices in the parameters of

the distribution: covariance on the left Σl and covariance on the right Σr. So, if we let S be the

multivariate asymmetric Student’s t-density function given the parameters θ = {µ⃗,Σl,Σr, ν}, S

will be defined as follows:

S(X⃗|θk) =

⎧⎪⎪⎨⎪⎪⎩
s(X⃗|µ⃗,Σl, ν) if X⃗ < µ⃗

s(X⃗|µ⃗,Σr, ν) if X⃗ ≥ µ⃗

(4)

Let P be the multivariate asymmetric Student’s-t probability density function with bounded

support. We define a support region Ω for the distribution, and an indicator function as:

χ(X⃗|Ω) =

⎧⎪⎪⎨⎪⎪⎩
1 if X⃗ ∈ Ω

0 otherwise
(5)

The bounded support here is defined by multiplying S by the indicator function χ. The division

by the integral of S over the support region Ω normalizes the bounded function P by the share of

S(X⃗|µ⃗,Σl,Σr, ν) that belongs to the support region Ω for the kth distribution [19]. Then, P is

defined as follows:

P (X⃗|θ) = χ(X⃗|Ω)× S(X⃗|µ⃗,Σl,Σr, ν)∫︁
Ω S(Y⃗ |µ⃗,Σl,Σr, ν) dY⃗

(6)

where θ = {µ⃗,Σl,Σr, ν,Ω} denotes the set of distribution parameters.
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2.1.2 Relation to the Multivariate Gaussian Distribution

According to [58, 59], the multivariate t-distribution is conditionally related to the normal dis-

tribution: if the random multivariate variable x⃗ follows multivariate t-distribution with a mean µ⃗, a

covariance matrix Σ, and ν degrees of freedom, then given a precision parameter ϕ, X⃗ follows a

multivariate Gaussian distribution n with mean µ⃗ and covariance Σ
ϕ and where the parameter ϕ is

a Gamma-distributed variable with both scale and shape parameters equal to ν
2 : ϕ ∼ G(ν2 ,

ν
2 ) (See

equation (7)).

X⃗ ∼ s(µ⃗,Σ, ν) ⇐⇒ X⃗|ϕ ∼ n(µ⃗,
Σ

ϕ
) and ϕ ∼ G(ν

2
,
ν

2
) (7)

By applying Bayes’ theorem, we find that the multivariate t-density function is the product of the

Gaussian distribution and the Gamma distribution with the parameters explained above, which gives

us equation (8).

s(X⃗|µ⃗,Σ, ν) = n
(︂
X⃗|µ⃗, Σ

ϕ

)︂
× G(ϕ) (8)

where G is the Gamma probability density function with both scale and shape parameters equal to

ν
2 :

G(ϕ) =
(ϕν2 )

ν
2 exp (−ϕν

2 )

ϕΓ(ν2 )
(9)

As for the multivariate Gaussian distribution with a mean vector µ⃗ and a covariance matrix Σ, the

probability density function is:

n(X⃗|µ⃗,Σ) =
exp

(︂
− 1

2(X⃗ − µ⃗)TΣ−1(X⃗ − µ⃗)
)︂

√︁
(2π)k|Σ|

(10)

Suppose we want to add bounded support and asymmetry to this definition of the multivariate Stu-

dent’s t. In that case, we can base it on an asymmetric multivariate Gaussian density function,

then multiply it by the indicator function χ (see equation (5)) and divide it by the integral over the

bounded support region Ω. This yields another definition of the multivariate bounded asymmetric

t-distribution P :

P (X⃗|θ) =
N
(︂
X⃗|µ⃗, Σl

ϕ ,
Σr
ϕ

)︂
× G(ϕ)× χ(X⃗,Ω)∫︁

ΩN (Y⃗ |µ⃗, Σl
ϕ ,

Σr
ϕ )× G(ϕ) dY⃗

(11)
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where N is the asymmetric multivariate Gaussian density function, which takes as parameters a

mean vector, a left covariance matrix, and a right covariance matrix. In order to define this density

function, we follow the same approach stated in section 2.1.1 for the multivariate asymmetric t:

N (X⃗|µ⃗,Σl,Σr) =

⎧⎪⎪⎨⎪⎪⎩
n(X⃗|µ⃗,Σl) if X⃗ ≤ 0

n(X⃗|µ⃗,Σr) otherwise
(12)

2.1.3 Bounded Asymmetric Student’s-t Mixture Model (BASMM)

In many applications, the data is very complex and does not fit in one simple probability distri-

bution. For instance, it might be multimodal. This means that there are several different modes, or

regions of high probability mass, and regions of smaller probability mass in between. In this case, it

is rigorous to model the data with a mixture model, i.e., a weighted mixture of components, where

each component is a parametric probability distribution (Gaussian, Bernouilli, etc.). For example,

Fig. 2.3 shows a histogram plot of what a BASMM-shaped population looks like. This model has

three different mixture components and is plotted for univariate data for the ease of display. The

behaviour of the BASMM is the same as in Fig. 2.3 for each dimension of a multivariate population.

Figure 2.3: Example of a population distributed as a bounded asymmetric t-mixture

This section lays out the mathematical definition for the multivariate bounded asymmetric
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Student’s-t mixture model, as well as its learning process.

Let X = {X1
⃗ , . . . ,XN⃗} denotes an observed sample of N multivariate vectors of dimension d

each. Modeling X as Student’s-t mixture with K components implies that for every vector Xi
⃗ =

[xi1, . . . , xid], the marginal probability distribution of X⃗i is written as follows:

f(Xi
⃗ |Θ) =

K∑︂
k=1

πkP (Xi
⃗ |θk) (13)

where πk and θk are respectively the mixing proportion and the set of parameters for the kth mixture

component, and finally Θ = {θ1, . . . , θK ;π1, . . . , πK}. πk is the mixing proportion and represents

the prior probability that xi belongs to the kth component, thus satisfies:

πk ≥ 0 and
K∑︂
k=1

πk = 1 (14)

It is worth mentioning that when Σk,l = Σk,r for k ∈ {1, . . . ,K}, we get the BSMM, bounded

symmetric Student’s t-mixture model as a special case of our algorithm. Also if Ωk is infinite for

k ∈ {1, . . . ,K}, our model becomes an unbounded asymmetric Student’s-t mixture model. With

both these conditions combined, we get the regular SMM: Student’s t-mixture model [4]. This

shows the generality and robustness of BASMM.

2.1.4 Fitting the Mixture Model

Expectation step

Now that we defined the base distribution for the BASMM, we proceed to the expectation step

of the EM algorithm [60, 61]. Here, at the iteration t of the EM algorithm, we define by τik the

posterior probability that the vector Xi
⃗ belongs to the kth component for i ∈ {1, . . . , N} and

k ∈ {1, . . . ,K}. These posterior probabilities are calculated as follows:

τ
(t)
ik =

π
(t)
k P (Xi

⃗ |θ(t)k )∑︁K
j=1 π

(t)
j P (Xi

⃗ |θ(t)j )
(15)
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The estimation step includes also calculating the log-likelihood of the model L(X|Θ) at the current

iteration t:

L(X|Θ) = log
(︂ N∏︂

i=1

f(Xi
⃗ |Θ)

)︂
=

N∑︂
i=1

log
(︂ K∑︂

k=1

πkP (Xi
⃗ |θk)

)︂
(16)

where Θ = {θ1, . . . , θK ;π1, . . . , πK} and θk = {µ⃗k,Σk,l,Σk,r, νk} for 1 ≤ k ≤ K.

Maximization step

The goal of the maximization step in the EM algorithm is to update the model parameters in

a way that maximizes the previously calculated log-likelihood function [62]. As the logarithm

is monotonically increasing, it is more suitable to minimize the negative log-likelihood function

J (X|Θ) = −L(X|Θ).

By applying the Jensen inequality, we find that at the tth iteration:

J (X|Θ) ≤ −
N∑︂
i=1

K∑︂
k=1

τ
(t)
ik

[︂
log πk + logS(Xi

⃗ |θk)− log

∫︂
Ωk

S(Y⃗ |θk) dY⃗
]︂

(17)

Thus, minimizing J (X|Θ) becomes equivalent to minimizing E(X|Θ), where:

E(X|Θ) = −
N∑︂
i=1

K∑︂
k=1

τ
(t)
ik

[︂
log πk + logS(Xi

⃗ |θk)− log

∫︂
Ωk

S(Y⃗ |θk) dY⃗
]︂

(18)

In this case, E(X|Θ) is regarded as an error function that needs to be minimized [19] to obtain an

optimal fit to the data. Therefore, in each iteration t, the updates for the different parameters of the

BASMM are calculated in a way that minimizes E(X|Θ):

Θ(t+1) = argmin
Θ

(E(X|Θ)) (19)

Mean vector estimation The update of the mean vector of the kth mixture component is the

solution to the equation:
∂E(X|Θ)

∂µ⃗k
= 0 (20)
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This yields the following definition for µk⃗(t+1):

µ⃗
(t+1)
k =

∑︁N
i=1 τ

(t)
ik (h(X⃗i|µ⃗(t)k ,Σ

(t)
k,l, ν

(t)
k )X⃗i −Ak)∑︁N

i=1 τ
(t)
ik h(X⃗i|µ⃗(t)k ,Σ

(t)
k,l, v

(t)
k )

(21)

where:

h(X⃗|µ⃗,Σ, ν) = ν + d

ν + (X⃗ − µ⃗)TΣ−1(X⃗ − µ⃗)
(22)

and where:

Ak =

∑︁M
m=1(y⃗km − µ⃗

(t)
k )× h(y⃗km|µ⃗(t)k ,Σ

(t)
k,l, ν

(t)
k )× χ(y⃗km|Ωk)∑︁M

m=1 y⃗km|Ωk)
(23)

where (y⃗km)Mm=1 is a generated sample of M vectors from the asymmetric Student’s-t distribution

S with the parameters θk = {µ⃗k,Σk,l,Σk,r, νk}, where M is an integer chosen large enough to

approximate the integral of the asymmetric t-density function.

Note that in (21), (23), and (22), either the left or the right covariance matrix can be used, as both

of them are among the parameters of two symmetric t-distributions with the same mean µ⃗(t)k and

degrees of freedom ν
(t)
k .

Left covariance estimation Following the same logic, the update of the left covariance matrix of

the kth mixture component is the solution to the equation:

∂E(X|Θ)

∂Σlk
= 0 (24)

After calculations, Σ(t+1)
kl has the following definition:

Σ
(t+1)
kl =

∑︁N
i=1 τ

(t)
ik h(X⃗i|µ⃗(t)k ,Σ

(t)
k,l, ν

(t)
k )(X⃗i − µ⃗

(t)
k )(X⃗i − µ⃗

(t)
k )T∑︁N

i=1 τ
(t)
ik

− Bkl (25)

where:

Bkl =
1∑︁M

m=1 χ(y⃗km|Ωk)
×

M∑︂
m=1

(︂
Σ
(t)
kl − (y⃗km − µ⃗

(t)
k )

×(y⃗km − µ⃗
(t)
k )Th(y⃗km|µ⃗(t)k ,Σ

(t)
kl , ν

(t)
k )
)︂
χ(y⃗km|Ωk)

(26)
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Right covariance estimation Following the same logic, the update of the right covariance matrix

of the kth mixture component is the solution to the equation:

∂E(X|Θ)

∂Σrk
= 0 (27)

After calculations, Σ(t+1)
kr has the following definition:

Σ
(t+1)
kr =

∑︁N
i=1 τ

(t)
ik h(X⃗i|µ⃗(t)k ,Σ

(t)
k,r, ν

(t)
k )(X⃗i − µ⃗

(t)
k )(X⃗i − µ⃗

(t)
k )T∑︁N

i=1 τ
(t)
ik

− Bkr (28)

where:

Bkr =
1∑︁M

m=1 χ(y⃗km|Ωk)
×

M∑︂
m=1

(︂
Σ
(t)
kr − (y⃗km − µ⃗

(t)
k )

×(y⃗km − µ⃗
(t)
k )Th(y⃗km|µ⃗(t)k ,Σ

(t)
kr , ν

(t)
k )
)︂
χ(y⃗km|Ωk)

(29)

Degrees of freedom estimation Finally, the update of the degrees of freedom for the kth compo-

nent ν(t+1)
k is a solution to the equation:

∂E(X|Θ)

∂Σrk
= 0 (30)

which is equivalent to:

1∑︁N
i=1 τ

(t)
ik

×
N∑︂
i=1

τ
(t)
ik δ(X⃗i|µ⃗k,Σk, νk)− ψ(

νk
2
)

+ ψ(
νk +D

2
) + log (

νk
νk +D

) + 1− Ck = 0

(31)

where:

δ(X⃗|µ⃗,Σ, ν) = log(h(X⃗|µ⃗,Σ, ν))− h(X⃗|µ⃗,Σ, ν) (32)
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and where:

Ck =
M∑︂

m=1

[︂(︂
δ(y⃗km|µ⃗(t)k ,Σ

(t)
k , ν

(t)
k )− ψ(

νk
2
) + ψ(

νk +D

2
)

+ log (
νk

νk +D
) + 1

)︂
× χ(y⃗km|Ωk)

]︂
× 1∑︁M

m=1 χ(y⃗km|Ωk)

(33)

The equation (31) has no closed-form solution. In this case, we use the Newton Raphson method to

calculate an approximation to ν(t+1)
k .

2.2 Model Selection using Minimum Message Length for Bounded

Asymmetric Student’s-t Mixture Model

As its name suggests, the minimum message length (MML) [29, 30] method is based on com-

pressing a message that contains the data clustered by the evaluated mixture model [3, 63]. The

better fit is the model, the greater is its capacity to compress. This approach suggests modeling the

observed data X = {X1
⃗ , . . . ,XN⃗} by a mixture of distributions with different numbers of compo-

nents K, and calculating the message length (i.e., the amount of measured information after data

compression) for each value of K. Then, the mixture that has the optimal number of clusters (Kopt)

is the one that scores the minimum message length:

Kopt = argmin
K

(MessLen(K)) (34)

where MessLen denotes the message length for a BASMM with K mixture components and a set

of parameters ΘK . It is defined as follows:

MessLen(K) ≃ − log (p(ΘK))− L(X|ΘK)

+
1

2
log |F (ΘK)|+ Np

2
(1 + log(

1

12
))

(35)

where p(ΘK) is the prior probability, L(X|ΘK) is the log-likelihood of the BASMM (defined in

the equation (16)), |F (ΘK)| is the determinant of the mixture model’s Fisher information matrix,

and Np is the number of free parameters in the mixture model. In the case of BASMM, Np =

K(d2 + 2d + 2). The prior probability and the Fisher information matrix of the BASMM will be
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calculated in the following paragraphs.

2.2.1 Fisher Information Matrix Calculation

The Fisher matrix is used in the message length formula to measure the amount of information

contained in the evaluated mixture model. For a random multivariate vector X⃗ that follows a distri-

bution f around a parameter θ, the Fisher information F (θ) describes how sensitive f is to changes

in the parameter θ [63].

The Fisher information matrix is the expected value of the Hessian matrix, and for a multivariate

mixture model, calculating it can be a complex task. To get over this difficulty, we approximate

F (ΘK) by the the block diagonal of the complete data Fisher information matrices of the separate

mixture components [28, 3, 30, 64]. Following this approximation, the determinant of the Fisher

information matrix |F (ΘK)| is the product of all information matrices for all mixture components.

This yields the following definition of |F (ΘK)|:

|F (ΘK)|≃ |F (π)|
K∏︂
k=1

|F (µ⃗k)||F (Σlk)||F (Σrk)||F (νk)| (36)

where for k ∈ {1, . . . ,K}:

|F (π)|= NK−1∑︁K
k=1 πk

(37)

F (µ⃗k) =
∂2L(X|θK)

∂2µ⃗k
(38)

F (Σkl) =
∂2L(X|θK)

∂2Σkl
(39)

F (Σkr) =
∂2L(X|θK)

∂2Σkr
(40)

F (νk) =
∂2L(X|θK)

∂2νk
(41)

The complete derivation of the Fisher information for the different BASMM parameters is detailed

in appendix .1.
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2.2.2 Prior Probability Calculation

Assuming that all the parameters of the BASMM are independent from each other, the mixture

model’s prior probability will be in the following format:

p(ΘK) = p(µ⃗)p(Σl)p(Σr)p(ν)p(π) (42)

where p(µ⃗), p(Σl), p(Σr), p(ν), and p(π) represent the prior probability weights corresponding

to the parameters µ⃗, Σl, Σr, ν and π, respectively.

Starting with the p(π), knowing that the mixing weights are defined on the simplex {(π1, . . . , πk) :∑︁K
k=1 πk = 1}, we can say that p(π) follows a Dirichlet distribution [65]:

p(π) =
Γ(
∑︁K

k=1 αk)∏︁K
k=1 Γ(αk)

×
K∏︂
k=1

παk−1
k (43)

where: α1 = α2 = · · · = αK = 1. Setting these parameters to 1 in the Dirichlet distribution leads

to having:

p(π) = Γ(K) = (K − 1)! (44)

For the mean parameter µ⃗, we assume that all prior means follow a uniform distribution within Σall

from the mean of the whole population µ⃗all. So, we have:

p(µ⃗) =
K∏︂
k=1

p(µ⃗k) =
K∏︂
k=1

d∏︂
i=1

1

2σi
=

d∏︂
i=1

1

(2σi)K
(45)

For the left and right covariance matrices, we have:

p(Σ) =
K∏︂
k=1

p(Σk) (46)

In the light of lacking prior information about the mixture parameters, we take Σ1 = Σ2 = · · · =

ΣK = Σall, where Σall is the covariance matrix of the whole population. Let σ1, σ2, . . . , σd be the

respective variances of each dimension of the population. These variances are independent from

20



each other. Following this, we get:

p(Σl) =

K∏︂
k=1

p(Σl,all) =

K∏︂
k=1

d∏︂
i=1

1

σli
=

d∏︂
i=1

1

σKli
(47)

p(Σr) =
K∏︂
k=1

p(Σr,all) =
K∏︂
k=1

d∏︂
i=1

1

σri
=

d∏︂
i=1

1

σKri
(48)

Regarding the prior degrees of freedom p(ν), we assume again the uniform distribution U [0, h] for

these parameters, where h is chosen to be sufficiently large. So, we get the following:

p(ν) =

K∏︂
k=1

p(νk) =

K∏︂
k=1

1

h
=

1

hK
(49)

Combining the above results, we get the following equation for the prior information p(Θ):

p(Θ) =
(K − 1)!

2dKhK
×

d∏︂
i=1

1

σ2Ki
(50)

2.3 Experiments and Results

In this section, we test the BASMM’s performance as well as the MML model selection through

three different experiments: clustering hourly energy consumption profiles at households, head pose

estimation from driving faces images, and leukemia detection from genetic expression data. Every

experiment includes a clustering phase and a model selection phase, and the model selection is

performed for multiple data scenarios in order to validate the MML’s performance. In the following

paragraphs, we present the clustering performance metrics and model selection criteria, as well as

the benchmark algorithms for comparison. Then, we proceed to the experiments.

2.3.1 Clustering Metrics

In order to evaluate the model selection along with the EM algorithm for our mixture model,

we selected a few metrics and reference algorithms to be compared with our BASMM + MML. The

evaluation is made in two main steps:
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(1) Evaluate the model selection process by comparing MML and other techniques.

(2) For a fixed number of clusters, evaluate the clustering by comparing between BASMM and

other algorithms

The reference clustering methods used for comparison are:

• Gaussian mixture model (GMM)

• Bounded asymmetric Gaussian mixture model (BAGMM)

• Student mixture model (SMM)

• Bounded student mixture model (BSMM)

Here is a breakdown of the metrics that will be used for the evaluation:

• Dunn index: The Dunn index is an internal clustering validation measure, introduced by J.C.

Dunn [66]. Let us denote by dmin the minimal distance between points of different clusters

and dmax the largest distance between 2 points within the same cluster. The Dunn index is

defined as the ratio of dmin to dmax:

dunn =
dmin

dmax

For a given assignment of clusters, a higher Dunn index indicates a better clustering.

• Silhouette score: This is another technique used to measure the goodness of clustering, its

value ranges from −1 to 1. a silhouette score of 1 means clusters are well apart from each

other and well distinguished, while a score of 0 indicates that clusters are indifferent, or we

can say that the distance between clusters is not significant. −1 Means clusters are assigned

in the wrong way. We use the silhouette score to compare the model selection techniques, and

find which number of clusters gives the best distinction between them.

• Calinski-Harabasz score: Also known as the variance ratio criterion, the Calinski-Harabasz

score is intended to measure how dense and well separated clusters are. Mathematically, it is

22



the ratio of the sum of between-clusters dispersion and inter-cluster dispersion for all clusters.

Higher score values indicate better clustering.

• Specificity score: This metric quantifies the model’s ability to avoid false positives. For

experiments that have ground truth labels, the specificity score is easily obtainable from the

confusion matrix and, it can be averaged on the different clusters. The specificity score SP

is calculated as follows:

Specificity =
TN

TN + FP

where TN is the number of true negatives and FP is the number of false positives. This

score ranges from 0 to 1, and the closer it is to 1, the better the model’s performance.

• Sensitivity score: As opposed to the specificity score, the sensitivity score calculates the

model’s ability to avoid false negatives. It is defined by the following ratio:

Sensitivity =
TP

TP + FN

where TP is the number of true positives and FN is the number of false negatives. This

score ranges from 0 to 1, and the closer it is to 1, the better the model’s performance.

• Davies-Bouldin index score: This score is defined as the average similarity measure of each

cluster with its most similar cluster, where similarity is the ratio of within-cluster distances to

between-cluster distances. Thus, clusters that are farther apart and less dispersed will result

in a better score. The minimum score is 0, with lower values indicating better clustering.

• Matthews correlation coefficient (MCC): MCC [67] takes into account true and false pos-

itives and negatives and is generally regarded as a balanced measure that can be used when

the data is imbalanced. The MCC is, in essence, a correlation coefficient value between −1

and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction

and −1 an inverse prediction. The statistic is also known as the phi coefficient.
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2.3.2 Model Selection Criteria

For the model selection, we use MML as well as a list of other popular criteria to estimate the

right number of clusters in every experiment. To establish a comparison, we use AIC, BIC, MDL,

and MMDL, which are defined as follows, respectively:

AIC(K) = −L(X|ΘK) +
Np

2
(51)

BIC(K) = −2L(X|ΘK) +Np logN (52)

MDL(K) = −L(X|ΘK) +
Np

2
logN (53)

MMDL(K) = −2L(X|ΘK) +
Np

2
logN +

c

2

K∑︂
j=1

log πj (54)

where in the equation (54), c is the number of parameters in each mixture component, which equals

(d2 + 2d+ 2) in the case of our model.

2.3.3 Experiment 1: Clustering Hourly Energy Consumption Profiles at Households

In the field of smart buildings, the discovery and analysis of electricity consumption patterns

can provide valuable insights for energy companies and city management organisms. These entities

can use the electricity consumption data (ECD) for many purposes, namely to monitor energy con-

sumption, target high demand with a better supply, improve energy utilization efficiency, etc. In this

regard, clustering is very useful for detecting electricity consumption profiles (ECP) from ECD, and

has been employed in many research works [68, 69, 70]. In this experiment, we attempt to cluster

the daily profiles of electricity consumption in households using BASMM. We also perform the

model selection with MML criterion to determine the optimal number of ECPs.

Data and Preprocessing

For this experiment, we use UCI’s individual household electric power consumption data [71].

It contains 2075259 measurements gathered between December 2006 and November 2010 (47

months). These measurements are taken every minute, which makes the data quite heavy. For
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ease of manipulation, we preprocess the data by only keeping the hourly information, so we obtain

24 variables per day for 47 months. We also pivot the dataset by transforming it from a sequence of

measures into vectors of a day’s hourly measures of electricity. Finally, after performing min-max

scaling, the preprocessed data is composed of 1456 vectors of dimension d = 24 each. Fig. 2.4

shows a plot of all the hourly measures for every day (vector) in the dataset.

Figure 2.4: Household electricity consumption

Clustering

According to Fig. 2.4, we can notice two distinct patterns/profiles of electricity consumption.

One that spikes in the morning hours of the day (peak around 7 am), and another one that presents a

peak of consumption in the late night. This provide us an insight about the trends of this household

consumption. For example, there are days where more electric appliances are used in the morning

(laundry days), while other days present more consumption at prime time (watching television or

gaming).

This experiment is purely unsupervised, as we do not have ground truth information or labels

beforehand to validate the clustering. Hence, we identify the best clustering and the optimal number

of clusters (ECPs) based on different clustering validity indices [72]. We perform the clustering on

the preprocessed data by using BASMM with different numbers of mixture components, and based

25



on the silhouette analysis, K = 2 is the optimal number of ECPs (see Fig. 2.5).

Figure 2.5: Silhouette score for different numbers of mixture components (BASMM clustering)

Figure 2.6: Household electricity consumption: BASMM clustering with two ECPs

Results

We run the BASMM, SMM, BAGMM, and GMM algorithms on the data using a k-means

initialization and two mixture components. We iterate the EM algorithm for all the models until

we reach a stable log-likelihood at less than ±10−6. Fig. 2.6 shows the two ECPs produced by the

BASMM clustering, and Table 2.1 presents the findings in terms of clustering performance metrics

for BASMM and the rest of the models.
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Table 2.1: Results and comparisons: electricity consumption profiles clustering

Model Dunn Silhouette Davies-Bouldin Calinski-Harabasz

BASMM 0.089 0.21 1.860 343.762
SMM 0.091 0.161 2.095 293.430
BAGMM 0.061 0.101 2.392 206.796
GMM 0.068 0.09 2.573 183.024

According to Table 2.1, BASMM presents a superior performance compared to the rest of the

algorithms. In regards to cluster separation, BASMM scored the best Calinski-Harabasz (343.762)

and Davies-Bouldin (1.86) scores among the four mixture models used for the experiment. BASMM

has also produced the best silhouette score at 0.2 and the second best Dunn index at 0.089. Overall,

the four mixture models generated close clustering results, with Gaussian-based models performing

slightly less than Student-based models. As we notice from Fig. 2.4, outliers are present in the form

of days with sporadic peaks of electricity consumption (mainly in the afternoon). The higher clus-

tering validity scores produced by BASMM prove a better absorption of these outliers, as despite

their presence, the ECPs are better separated and defined. The Dunn index values are low in general

(ranging from 0.068 to 0.091). This is explained by the nature of the data, as the daily trends of

electricity consumption are similar in value ranges. This translates into a relatively small variance

between ECPs.

Model Selection

We perform the model selection on top of BASMM for three different sets of two-folds of the

data: A, B, and C, which gives us six different subsets to experiment on: A1, A2, B1, B2, C1, C2.

The results are the numbers of ECPs determined by model selection criteria, presented in Table 2.2.

According to Table 2.2, most of the model selection criteria have converged on determining two

ECPs (mixture components) for all the data folds, with the exception of some cases where three

ECPs were determined. We notice that MML has consistently elected two clusters in all samples,

MDL and MMDL made a nearly similar decision, and AIC/BIC have mostly determined three

ECPs.
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Table 2.2: Number of ECPs determined by different model selection criteria

Data K1
Model selection criteria

MML MDL MMDL AIC BIC

A1 2 2 2 2 3 2
A2 2 2 2 2 2 3
B1 2 2 3 2 2 3
B2 2 2 2 2 3 3
C2 2 2 2 2 3 2
C2 2 2 3 3 2 2
1Real number of ECPs

2.3.4 Experiment 2: Head Pose Estimation From Driving Faces Images

Upper body and head pose estimation is an important task for monitoring human behaviour and

attention during activities such as driving. In this experiment, we cluster images of faces of people

in the driving seat of a car. For this, we use the DrivFace dataset [73] which contains 606 images of

four different individuals (two men and two women) in the driver’s seat of a car. From the data, we

are looking to learn the directions at which the driver is looking and they are mainly three: looking

left, looking right, and looking to the front.

Preprocessing

For this experiment, the preprocessing consists of extracting meaningful features from the 2D

images that constitute the dataset. We start by converting the images to grayscale and cropping

the region of interest which contains the face of the driver in the image to eliminate unnecessary

information. We then proceed to extract the keypoint descriptors of the cropped image. SIFT (Scale

Invariant Feature Transform) is a popular method that achieves this extraction, but in the case of head

pose estimation, it has limited performance. In fact, face images do not have many textures, thus

SIFT fails to produce enough descriptors for the detailed landmarks of the face. As an alternative,

Dense SIFT (DSIFT) [74] collects more features at each location and scale in an image, increasing

recognition accuracy accordingly. Therefore, we use DSIFT to detect the keypoint descriptors of

the faces in our dataset. A Gabor filter [75] is also used to detect more features from the images

[76]. The fusion between the flattened DSIFT descriptors and the Gabor features [77] produces a
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Figure 2.7: Samples of faces looking in different directions

high-dimension feature vector for each image, that is 186368 features.

As the combination of DSIFT keypoint extraction and Gabor filter produces a high-dimensional

feature set from the images, we proceed with dimensionality reduction using PCA while keeping a

high variance. This gives us a preprocessed dataset of 92 features and 606 instances.

Figure 2.8: Data preprocessing block diagram
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Results

We perform the clustering on the preprocessed data using BASMM, SMM, and GMM. We

iterate the EM algorithm for all the models until reaching a stable log-likelihood at ±10−6 or less.

The results generated by the different mixture models are presented in Table 2.3

Table 2.3: Results and comparisons: head pose estimation from driving faces

Model Accuracy F1 score Specificity Sensitivity MCC

BASMM 0.8679 0.8679 0.9184 0.8679 0.5640
SMM 0.8481 0.8481 0.8724 0.8481 0.5092
GMM 0.83 0.83 0.8418 0.83 0.4550

According to the findings in Table 2.3, all mixture models performed well overall, with accura-

cies and F1 scores higher than 0.83. However, BASMM stands out and achieves a more accurate

estimation than SMM, which in turn performs better than GMM. The robustness of our model

is displayed through an accuracy and F1 score of 0.8679, compared to SMM and GMM scoring

0.8481 and 0.83, respectively. We also observe better specificity and sensitivity scored by BASMM

(0.9184 and 0.8679, respectively) in comparison to the other two mixture models, and this shows

our model’s better capacity of finding the optimal boundary between the three classes/clusters in

this dataset. This capacity is confirmed by the confusion matrix in Fig. 2.9, where the three head

positions were predicted correctly at 81% or more. As for the MCC values, they are overall good

and close for all three models, with BASMM having a slight edge at 0.564 compared to SMM and

GMM (0.5092 and 0.4550, respectively).

Model Selection

As for the model selection phase, we apply different criteria on top of the BASMM clustering

to determine the best number of mixture components. This is performed on four distinct parts of the

dataset, containing images of four different drivers:

• W1: composed of the images of woman 1

• W2: composed of the images of woman 2
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• M1: composed of the images of man 1

• M2: composed of the images of man 2

Table 2.4 illustrates the results of the model selection generated by MML and several other criteria.

Table 2.4: Number of clusters determined by different model selection criteria with different subsets
of the dirvers’ faces data

Data K1
Model selection criteria

MML MDL MMDL AIC BIC

W1 3 3 3 3 3 3
W2 3 3 2 3 2 2
M1 3 3 3 2 3 3
M2 3 3 3 2 2 2
1Real number of data clusters

According to Table 2.4, all criteria predicted the number of clusters correctly in most cases.

MML is only criterion that selected the exact number of clusters in all datasets, whereas other

criteria predicted some incorrect numbers of clusters mostly for M2 and W2 sets. In all cases of

inaccurate model selection, two clusters were determined by these criteria instead of three.

2.3.5 Experiment 3: Leukemia Detection from Genetic Expression

Leukemia is a form of blood cancer that develops when the human body’s bone marrow contains

too many white blood cells. This medical condition affects adults and is considered a prevalent form

of cancer in children. An early diagnosis of Leukemia is very important to start the treatment process

for the patient and avoid complications of the disease. In this context, multiple research works

[78, 79] focus on analyzing the medical data in its different forms to detect signs of malignant cells

that can help doctors get an early diagnosis. In this experiment, we consider the task of clustering

the genetic information data to learn the disease that affects each patient, leukemia being one of

these diseases. We use the dataset collected from [80] to perform the experiment.
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Dataset and Preprocessing

The data at hand is a high dimensional dataset of genetic expression, collected from the bone

marrow cells of human patients. It contains 14208 attributes for 12029 records (data points) and is

labelled by the type of disease of each patient. The data description is demonstrated in detail in Fig.

2.10.

The diseases present in these records are most predominantly acute myeloid leukemia (AML)

with 4573 occurences and acute lymphocytic leukemia with 3764 occurences. The dataset presents

also other types of leukemia and diabetes with less prevalence in the data, as there are also 578

healthy records. There are other diseases that represent a very small fraction of the dataset and are

not very relevant to our experiment, hence will be dropped in the preprocessing.

The preprocessing here consists of reducing the dimension of the dataset while keeping a high

variance, and regrouping the labels (clusters) in a way that helps detect the main diseases of interest

in our experiment. First, we reduce the labels by grouping Diabetes I and Diabetes II together and

dropping the data points related to very low-prevalence diseases: chronic myeloid leukemia (CML),

clinically isolated syndrome, MDS, DS transient myeloproliferative disorder. Second, we drop the

attributes with low variance (below 0.3) and we scale the data using the z-score. Finally, we apply

the principal component analysis to further drop the dimensionality. This provides us a preprocessed

dataset of 11633 data points and 50 features. The ground truth labels of the preprocessed dataset

are presented in Fig. 2.11

Clustering Process and Results

We perform the clustering on the data using the BASMM, the SMM, the BAGMM and the

GMM. For seven mixture components, which is the true number of clusters in our experiment, the

obtained results for the different algorithms are presented in Table 2.5.

According to the results in Table 2.5, BASMM clustering showed a great performance with

an accuracy and an F1 score around the range of 0.92, higher than BAGMM’s metrics (0.8833

and 0.8792, respectively). In comparison the SMM and GMM produced a slightly lower accuracy

(0.8427 and 0.8289, respectively) and F1 score (0.8334 and 0.8257, respectively). Regarding the
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Figure 2.9: Head pose estimation: confusion matrix of BASMM clustering

Figure 2.10: Pie chart of different diseases in the dataset
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Figure 2.11: Pie chart of different diseases in the dataset after preprocessing

Table 2.5: Results and comparisons: Acute myeloid leukemia detection

Model Accuracy F1 score Specificity Sensitivity Davies-Bouldin MCC

BASMM 0.9255 0.9194 0.9746 0.8823 0.6028 0.8666
BAGMM 0.8833 0.8792 0.9274 0.8367 0.7203 0.8165
SMM 0.8427 0.8334 0.8836 0.7945 0.7569 0.7832
GMM 0.8289 0.8257 0.8647 0.8826 0.7389 0.7102

cluster validity, we observe a slightly smaller Davies-Bouldin index produced by BASMM at around

0.6 in comparison to the rest of the models that generated a Davies-Bouldin index of 0.72 and higher.

This indicates a superior cluster separation for BASMM. We also observe that BASMM handled the

data imbalance in the best way through the MCC metric. In fact, BASMM also scored the best value,

at 0.8666, compared to BAGMM, SMM, AND GMM (which scored 0.8165, 0.7832, and 0.7102,

respectively).

Model Selection Results

To determine the optimal number of clusters/mixture components for the dataset at hand, we

take multiple subsets of the original data with different numbers of clusters, thus we obtain the

following subsets:

• S1: complete dataset (7 clusters)
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• S2: subset composed of the original dataset excluding healthy patients (6 clusters)

• S3: subset composed of the original dataset excluding diabetes and infection patients (5

clusters)

• S4: subset composed of data from AML, ALL, CLL, and AMKL patients (4 clusters)

• S5: subset composed of data from AML, ALL, and CLL patients (3 clusters)

We apply the MML model selection criterion on the different clustering models. To validate the

MML’s performance, we use other criteria and we compare their findings with the MML findings.

The results presented in Table 2.6 demonstrate the MML’s precision in predicting the correct number

Table 2.6: Number of clusters determined by different model selection criteria with different subsets
of the data

Data K1
Model selection criteria

MML MDL MMDL AIC BIC

S1 7 7 6 7 7 6
S2 6 6 7 7 6 6
S3 5 5 5 6 5 5
S4 4 4 4 4 3 3
S5 3 3 4 3 3 3
1Real number of data clusters

of clusters for all the different subsets. In comparison, other model selection criteria did determine

the correct number of clusters for some subsets and failed to do so for other subsets. For instance,

we notice that the AIC criteria performed an accurate model selection for all subsets but S4, where it

determined 3 clusters instead of 4. BIC criteria gave near-similar results to AIC, with the exception

of 6 clusters determined instead of 7 for S1. We notice more mixed results for the MMDL and

MDL criteria, as the model selection was accurate in some subsets like S4, and inaccurate in others

like S2.
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Chapter 3

Hidden Markov Models with

Multivariate Bounded Asymmetric

Student’s t-Mixture Model Emissions

This chapter proposes BASMMHMM: a novel HMM with multivariate bounded asymmetric

Student’s t-mixture model (BASMM) emissions. Our model is introduced in the light of the added

robustness guaranteed by the BASMM in comparison to other popular emission distributions such

as the Gaussian Mixture Model (GMM). In fact, the merits of the BASMM (presented in the previ-

ous chapter) can add more flexibility to the HMMs when dealing with skewed observations, which

are typical in many fields, such as financial or signal processing-related datasets. In this chapter, we

present the necessary mathematical background for the BASMMHMM and we apply it in three dif-

ferent experiments: occupancy estimation, stock price prediction, and human activity recognition.

The experimental results are discussed and compared with other Gaussian and t-based HMMs.

3.1 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models that are widely used for modeling tem-

poral or sequential data, where the underlying state of a system is not directly observable but can
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be inferred from observed data. HMMs have applications in various fields, including speech recog-

nition, natural language processing, bioinformatics, finance, and many more. They are particularly

useful for problems that involve pattern recognition in time-series data, where the underlying state

is not directly observable, but can be inferred from the observed data.

An HMM consists of two main components: a hidden state sequence (qt)
t=T
t=1 and an observ-

able symbol sequence (yt)
t=T
t=1 . The hidden states are generally sampled from a specific range

{S1, S2, . . . , SN}, and their sequence satisfies the Markov property. In fact, at a timestamp t, given

the value of qt−1, the current state qt is independent of all the states of the sequence prior to the

timestamp t − 1. As for the observations, they are generated from the hidden states at each times-

tamp according to a probability distribution p over the symbols for each state. This is the emission

distribution, and it is the object of our focus for this chapter.

Hidden Markov models (see Fig. 3.1) are fully defined with five elements:

• State space: a set of hidden states that the model can transition between.

• Observation space: the observations generated based on the current hidden state. These ob-

servations can be discrete or continuous and can have any number of dimensions.

• Transition probabilities: they determine the probability of transitioning from one hidden state

to another. These probabilities are often represented in a transition matrix.

• Emission probabilities: they are the probabilities of generating a particular observation given

the current hidden state. These probabilities are often represented in an emission matrix (in

discrete HMMs)

• Initial state probabilities: HMMs use initial state probabilities to determine the probability of

starting in a particular hidden state.

In this chapter, we focus on continuous HMMs, where the observations are sampled from continuous

distributions. The BASMM [81] is the basis of our contribution in this chapter, as we intend to use

it for modeling the observation emissions of our proposed HMM. The full mathematical definition

of this mixture model are presented in 2.1 in the second chapter. The notations of the mathematical

variables used for the rest of this chapter are detailed in Table 3.1.
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Figure 3.1: concept of a hidden Markov model

3.2 Bounded Asymmetric Student’s-t Mixture Model Hidden Markov

Model (BASMMHMM)

Here we present the main contribution of our model, which is the observation emission strategy.

As discussed in the introduction, we aim to produce an HMM with emissions that are more robust

to the observable data’s outliers. In this context, the Student’s t-distribution has been employed in

modified versions as a non-Gaussian emission in [54, 82]. We build on these works by exploring

asymmetry and bounded support along with the t-mixture for the emission. For this particular type

of HMM, we consider that at the time t, the probability of observing yt given a hidden state si fol-

lows a probability distribution formed by a mixture of bounded asymmetric Student’s t-distributions

withK components. We also consider that for all the hidden states of the HMM, the number of mix-

ture components is the same. As a result, the probability of emitting the observation yt from the

hidden state si is defined in the following equation:

P (yt|Θi) =
K∑︂
k=1

cik × S(yt|θik) =
K∑︂
k=1

cik × S(yt|µik,Σl
ik,Σ

r
ik, νik,Ωik) (55)

With the definition of the multivariate t given in equation (1), it is hard and computationally
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Table 3.1: BASMMHMM notations

Notation Definition
BASMMHMM Bounded Asymmetric Student’s-t Mixture Model Hid-

den Markov Model
M = {λt0i , λij , sj , yt}

N,N,L
i,j,t=1 Full definition of a BASMMHMM M

N Number of hidden states
L Length of the Markov chain / observation sequence
K Number of t-mixture components for every hidden state

emission
S Student’s t-density function
Y = {yt}Lt=1 Set of observations
si = {αik, µik,Σik, νik}Kk=1 Parameters of the kth component ith hidden state’s t-

mixture for k ∈ {1, . . . ,K}
λ = (λij)1≤i,j≤N N × N matrix, where λij is the transition probability

from state si to sj
λt0 = (λt0i )1≤i≤N Vector of initial probabilities of hidden states at t = 0

ψi(yt) Emission function of the observation yt by the state sj

costly to run the EM algorithm when fitting the HMM. In this case, we employ the definition based

on the bounded asymmetric Gaussian stated in 2.1.2. As a result, the probability of emitting the tth

observation yt by the hidden state si (which corresponds to the emission mixture model Θi with the

set of parameters
(︂
θik = {µik,Σlik,Σrik νik,Ωik}

)︂K
k=1

) is the following:

P (yt|si) =
K∑︂
k=1

cik ×N
(︂
yt|µik, Σlik

ϕik
, Σrik

ϕik

)︂
× G(ϕik)× h(yt,Ωik)∫︁

Ωik
T (y|µik,Σlik,Σrik, νik) dy

(56)

where ϕik is a precision parameter and ϕik ∼ G(ν2 ,
ν
2 ) (see section 2.1.2). We define also the

observation indicators (δit)
i=I,t=L
i=t=1 by:

δit =

⎧⎪⎪⎨⎪⎪⎩
1 if the observation yt is emitted from the hidden state si

0 otherwise
(57)

Also, given δit = 1, we define the state-conditional mixture component indicators (ηikt)
K
k=1 as
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follows:

ηikt =

⎧⎪⎪⎨⎪⎪⎩
1 if yt is emitted from the kth mixture component of the hidden state si

0 otherwise
(58)

These indicators are latent variables that give information about the mixture component that

each data point belongs to. We don’t have this information, but defining it mathematically gives us

a complete data representation: yc, thus simplifying the equations, i.e., the complete data probability

density function of each emission mixture:

P (yc|si) =
K∏︂
k=1

[︄
cik ×N

(︂
y|µik,

Σlik

ϕik
,
Σrik

ϕik

)︂
× G(ϕik)× h(y,Ωik)∫︁

Ωik
T (y|µik,Σlik,Σrik, νik) dy

]︄ηikt (59)

After calculations, the log-likelihood of the emission mixture for the ith hidden state is given by:

logP (yc|si) = log
[︂ K∏︂
k=1

cik × S(y|θik)ηikt
]︂

=

K∑︂
k=1

ηikt ×

[︄
− log Γ(

νik
2
) +

νik
2

(︂
log (

νik
2
)− ϕik + log ϕik

)︂
− 1

2

(︂
log |Σik|+ d log(2π) + ϕik∆(y, µik; Σik)

)︂
− log

∫︂
Ωik

T (y|µik,Σlik,Σrik, νik) dy

]︄
(60)

where Σik can be the left or the right covariance matrix based on whether y ≤ 0 or otherwise.
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3.2.1 Defining the Log-Likelihood of the BASMMHMM

The likelihood of the BASMMHMM E(M) defines how well the model fits the data (set of

observations). Thus, E(M) is obtained by calculating the joint emission probabilities of the obser-

vation sequence Y = {yt}Lt=1 by every hidden state’s BASMM:

E(M) =

(︄
N∏︂
i=1

λδi1i

)︄
×

(︄
N∏︂
i=1

N∏︂
j=1

L−1∏︂
t=1

λ
δit×δjt+1

ij

)︄
×

(︄
N∏︂
j=1

L∏︂
t=1

P (yct |sj)δjt
)︄

(61)

Following this, the log likelihood of the BASMMHMM is given by:

L(M) = log (E(M))

=

N∑︂
i=1

(︂
δi1 log λi +

N∑︂
j=1

L−1∑︂
t=1

δitδjt+1 log λij

)︂
+

N∑︂
j=1

L∑︂
t=1

δjt logP (y
c
t |sj)

(62)

3.2.2 Training the BASMMHMM

The goal of training the Bounded Asymmetric Student’s-t Hidden Markov Model is to find

the optimal set of model parameters {λi, λi,j , sj}N,N
i,j=1 that best fits the sequence of observations

Y = (yt)
L
t=1. This is done by maximizing the likelihood (see equation (62)) in an EM algorithm.

let ρit and ρijt be the posterior emission probabilities defined as follows:

ρit = P (δit = 1|yt) (63)

ρijt = P (δjt+1 = 1, δit = 1|yt) (64)

To perform the training, we use the Baum-Welch algorithm. Our purpose here is to tune the pa-

rameters of the HMM, namely the state transition matrix, the emission matrix, and the initial state

distribution, such that the model is maximally like the observed data. In short, Baum-Welch is a

sort of EM algorithm, where the E-step consists of forward and backward phases [83].
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Baum-Welch: Expectation

(1) Calculate the forward value α, where αt(i) is the probability of being in the ith state after the

first t observations of the model, given the set of properties Θ.

(2) Calculate the backward value β, where βt(i) is the probability of being in the ith state at the

tth timestamp and seeing the observations from timestamp t+1 until the end of the sequence,

given the set of properties Θ.

(3) Calculate the posterior transition probabilities ρijt: the probability of being in state i at time

t then being in state j at time t+ 1. ρijt is calculated using the forward and backward values

as follows:

ρijt =
αt(i)× λijP (yt+1|sj)× βt+1(j)

P (Y |Θ)

=
αt(i)× λijP (yt+1|sj)× βt+1(j)∑︁N

i=1

∑︁N
j=1 [αt(i)× λijP (yt+1|sj)× βt+1(j)]

(65)

(4) Calculate the posterior emission values ρit, i.e., the probability of being in the ith state at

the time t, given the observations Y and the model Θ. We get the emission posteriors by

summing over the ρijt values for all states:

ρi,t =
N∑︂
j=1

ρijt (66)

(5) Calculate Q(M), the expectation of the log-likelihood of the BASMMHMM:

Q(M) = E(L(M))

=
N∑︂
i=1

(︂
ρi1 log λi +

N∑︂
j=1

L−1∑︂
t=1

ρijt log λij

)︂
+

N∑︂
j=1

L∑︂
t=1

ρjtE( logP (yct |sj)) (67)

Baum-Welch: Maximization

In maximization, we use the variables calculated in the expectation step to update the HMM

properties: prior weights and emission mixtures for each hidden state. We proceed in the following

steps:
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(1) Update the initial hidden state probabilities (λt0i )
N
i=0 by using the γ values:

ˆ︂λt0i = ρit0 ; i ∈ {1, 2, . . . , N} (68)

(2) Update the state transition probabilities:

ˆ︂λij = number of transitions from si to sj
number of transitions from si

=

∑︁L−1
t=1 ρijt∑︁L
t=1 ρit

(69)

(3) Update the properties of the BASMM for each hidden state of the model: the means (µik)
i=N,k=K
i=k=1 ,

the covariances, the mixing weights and the degrees of freedom.

ˆ︂µik =

∑︁L
t=1 ξikt(uik(yt)yt −Aik)∑︁L

t=1 ξiktuik(yt)
; (70)

where ξikt is the ith state’s mixture component membership posterior, i.e., the probability that

the observation yt is emitted from the kth component of the ith hidden state:

ξikt =
ρitcikS(yt|sik)∑︁K
j=1 cijS(yt|sij)

(71)

And where Aik is defined by using a sample of data points (Sm)m=M
m=1 that is drawn from the

kth component of the ith hidden state’s mixture:

Aik =

∑︁M
m=1(Sm − µik)uik(Sm)h(Sm,Ωik)∑︁M

l=1 h(Sl,Ωik)
(72)

And uikt is the precision function for an observation yt of dimension d:

uik(yt) =
d+ νik

νik +∆(yt, µik; Σik)
(73)

The mixing weights (cik)
i=N,k=K
i=k=1 are updated by dividing the probability of emission from

the kth mixture component of the ith hidden state by the total probability of being in that ith

43



state at any timestamp in the Markov chain:

ˆ︂cik =

∑︁L
t=1 ξikt∑︁L

t=1

∑︁K
l=1 ξilt

=

∑︁L
t=1 ξikt∑︁L
t=1 ρit

(74)

The covariances (Σik)
i=N,k=K
i=k=1 are updated as follows:

ˆ︃Σik =

∑︁L
t=1 ξiktuikt × (yt − µik)(yt − µik)

T∑︁L
t=1 ξikt

−Bik (75)

where Bik is given by:

Bik =

∑︁M
m=1 (Σik − (Sm − µik)(Sm − µik)

Tuik(Sm))h(Sm,Ωik)∑︁M
m=1 h(Sm,Ωik)

(76)

Next, the update of the degrees of freedom for each hidden state’s mixture component is the

solution to the equation below:

g(νik, d) + 1 +
1∑︁L

t=1 ξikt

L∑︂
t=1

ξikt

(︂
log uik(yt)− uik(yt)

)︂
− 1∑︁M

m=1 h(Sm,Ωik)

M∑︂
m=1

(︂
g(νik, d) + 1 + log uik(Sm)− uik(Sm)

)︂
= 0 (77)

where ψ is the digamma function and g(ν, d) is defined as:

g(ν, d) = −ψ(ν
2
) + log (

ν

2
) + ψ(

ν + d

2
)− log (

ν + d

2
) (78)

There is no closed-form solution to the equation (77), so we use the Newton Raphson method

[84] to derive the optimal update of νi,k. Finally, we update the bounds of each hidden state’s

mixture model by fetching the minimums and maximums among the observations that were

attributed to each mixture component in the expectation step.
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3.3 Experiments and Results

In this section, we select a few popular sequential data-based applications where we attempt

to employ the BASMMHMM, then evaluate its performance in comparison with baseline models

among the following:

• Gaussian Hidden Markov Model (GHMM)

• Gaussian Mixture Hidden Markov Model (GMMHMM)

• Student Mixture Hidden Markov Model (SMMHMM)

• Student Hidden Markov Model (SHMM)

Our approach is to measure how much the Bounded Asymmetric Student’s t-Mixture emissions can

elevate the HMM’s performance. That is why the baseline models mentioned above are all variants

of HMM with different emission distributions.

3.3.1 Occupancy Estimation

In the field of smart buildings, occupancy estimation [85, 86, 87] is a frequently performed

operation as it is useful for many tasks, namely energy saving, consumption tracking, and employee

presence monitoring for companies. Therefore, we find that many works have extensively tackled

this subject, like [88, 89]. So in this experiment, we also attempt to estimate the number of occupants

in one room using signals from non-intrusive sensors.

Data

The dataset [90] that we used for this experiment comprises signals obtained from seven non-

intrusive sensors of five different types: temperature, illumination, sound, CO2, and passive infrared

(PIR). As Fig. 3.2 shows, sensor nodes S1-S4 were deployed at the desks (referred to as desk nodes).

These desk nodes have temperature, light, and sound sensors only. Node S5 has a CO2 sensor kept

in the middle to get the best possible measure in the room. Nodes S6 and S7 only contain PIR

sensors and are put on the ceiling at an angle that maximizes the sensor’s field of view for motion

detection.
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Figure 3.2: Sensors’ layout in the room

The obtained data from these nodes spans 21 days (from 22 December 2017 to 11 January 2018)

and has been recorded every 30 seconds, which gives us a time series of 10129 timestamps. As for

the ground truth room occupancy, it varies between 0 and 3. We model this information as the

hidden state of our HMM, which would give us 4 hidden states. The observations are the signals

sent by sensors, in the case of this experiment, these observations would be vectors of a dimension

d = 16 as there are 16 distinct records taken from the sensors in total.

Preprocessing

When we observe the labels (number of occupants over time), we find a clear imbalance, as for

most of the recording time, there’s no one in the room, thus, the number of occupants is zero.

We cope with the imbalance by oversampling the minority classes. For that, we use the SMOTE

technique [91]. However, we don’t make the classes equally partitioned, and this is to keep some

outliers and the overall occupancy sequence patterns. The results of oversampling are shown in the

Fig. 3.3.

After oversampling, we scale the data using the MinMax method. We then perform a PCA to re-

duce the number of features and the computation complexity. The number of principal components
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Figure 3.3: Original data versus resampled data

is chosen in a way that keeps the variance of the data above 0.95. Based on Fig. 3.4, we choose

eight principal components.

Results

We run the BASMMHMM and a selection of other benchmark models (SMMHMM, SHMM,

GMMHMM, GHMM) on the preprocessed data, taking the room occupancy numbers as hidden

states. When fitting the models, we run the EM algorithm for a number of iterations ranging from 1

to 100, and we take the number of iterations that gives the best result for each model. After multiple

experiments with the different mixture-based HMMs on the data, we take K = 3 as the number

of mixture components, as it produces the best fit for the data-set. The weighted averages of the

accuracy, precision, recall, and F-1 score are presented in the following Table 3.2.

According to the results above, the BASMMHMM clearly performed better than the rest, as it

produced the highest accuracy and F1-score of 0.86, where the second best results were an accuracy
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Figure 3.4: Data variance depending on the number of principal components

Table 3.2: Occupancy estimation: accuracy and F1 score weighted averages for different models

Algorithm Accuracy Precision Recall Average F1

BASMMHMM 0.86 0.87 0.86 0.86
SMMHMM 0.82 0.82 0.82 0.82
SHMM 0.77 0.77 0.77 0.77
GMMHMM 0.74 0.73 0.74 0.73
GHMM 0.71 0.84 0.71 0.69

and an F1-score of 0.82 for the SMMHMM. The models based on Student’s-t emissions gave better

metrics than those based on the Gaussian emissions. This is mainly due to a bad prediction of the

outliers (hidden states 1, 2 and 3) by the Gaussian-based models because as mentioned earlier, there

is a dominant label in the time series (0 occupants most of the time). What is common between all

the models is that they performed well with the majority hidden state 0. The confusion matrix in

Fig. 3.5 shows that the BASMMHMM predicts well all the classes/hidden states of the data, despite

their imbalance (class 0 is more occurrent than the rest). In comparison, the confusion matrices of

the other models show in Fig. 3.6 show a limited prediction of the non-majority classes.
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Figure 3.5: Occupancy estimation: confusion matrix of BASMMHMM

3.3.2 Stock Price Prediction

The stock market is an important indicator that reflects economic growth: when the economy

grows, this typically translates into an upward trend in stock prices. In contrast, when the economy

slows, stock prices tend to be more mixed. For traders, it is important to predict the behaviour of

these numbers (stock prices) to take the appropriate action and achieve profit. But this prediction

task is not easy, as several uncertain parameters like economic conditions, policy changes, supply

and demand between investors, etc, determine the price trend. These parameters vary, thus making

stock markets volatile.

Data and Preprocessing

We use the stock price time-series made available by Yahoo Finance API. This API contains

records of multiple companies’ stock prices spanning long periods of time. For our experiment,

we select three different companies’ datasets: Amazon (AMZN), Apple (AAPL), and Google

(GOOGL). For each of these three companies, the time-series that we used spans over the 12 years

from 1 January 2010 to 1 January 2022 and is multivariate with four variables: opening price, high
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Figure 3.6: Occupancy estimation: confusion matrices of other HMMs

price, low price, and closing price. As for the preprocessing, we perform a MinMax scaling on the

data before passing it to the HMM. After the forecasting, we unscale the results produced by the

model, and we compare them to the unscaled ground-truth data to view the model’s performance.

Forecasting Approach

Our task is to predict the stock prices for a given day t. To do this, we adopt the following

method: First, we fit the BASMMHMM to the data (the time-series of the until the day t− 1), then

we proceed to predict based on sliding time windows Wj of fixed length q (where Wj is the data of

last q-day sequence ending with the day j ): we calculate the log-likelihood1 of each sliding window,

take the window with the closest log-likelihood to Wt and calculate the day t+ 1 predictions based

on that chosen window. The adopted approach is further explained in Fig. 3.7 and Fig. 3.8 below.
1The log-likelihood of a sequence of observations given the BASMMHMM that we trained on the data
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Figure 3.7: Forecasting the t+1 stock prices based on a sliding window of past k days

Figure 3.8: Predicted time-series calculation
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Results

After performing the forecasting, we established a comparison between BASMMHMM and a

selection of other models using the two following performance metrics:

• MAPE: Short for Mean Absolute Percentage Error, is the average absolute error between the

actual and predicted stock values in percentage. The formula is:

MAPE =
1

n

n∑︂
i=1

yi − xi
xi

× 100 (79)

where n is the length of the time-series, and for i ∈ {1, 2, . . . , n}, yi is the predicted value

and xi is the actual value.

• RMSE: The Root Mean Square Error is the square root of the mean of the square of all of

the errors between the actual and the predicted data. The RMSE is widely used, and it is

considered an excellent general purpose error metric for numerical predictions. Considering

the notations used in equation (79), the RMSE formula is the following:

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(yi − xi)2 (80)

Tables 3.3, 3.4, 3.5 indicate the metrics found after the forecasting of the stock prices of Amazon,

Apple, and Google, respectively. The prediction on multivariate stock price data with four variables:

Open, High, Low, and Close prices, but in the tables, we focus mainly on the High price variable.

The BASMMHMM has been run with a custom number of hidden statesN and sliding window size

q. The BASMMHMM with the combination {N, q} that gives the best performance is elected. As

for the number of mixture components of the emissions, it is selected using the Minimum Message

Length criterion [61]. In this experiment, the BASMMHMM is compared to the SMMHMM and

GMMHMM.

According to the tables above, BASMMHMM generally performed better than SMMHMM and

GMMHMM. This is mainly explained by the outliers and the local minima/maxima being better

predicted by the BASMMHMM. It is also worth mentioning that the models based on Student’s
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Table 3.3: AMZN stock price prediction: performance metrics for different models

BASMMHMM SMMHMM GMMHMM

Parameter MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00889 0.41951 0.01292 0.67489 0.01594 0.81723
High price 0.00615 0.06994 0.01054 0.15782 0.01382 0.20840
Low price 0.00951 0.31669 0.01429 0.43916 0.01396 0.39053
Close price 0.00751 0.12392 0.01276 0.27641 0.01520 0.30048

Table 3.4: AAPL stock price prediction: performance metrics for different models

BASMMHMM SMMHMM GMMHMM

Parameter MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00720 0.01989 0.01135 0.05712 0.01300 0.06293
High price 0.00728 0.15320 0.01027 0.30822 0.00982 0.21833
Low price 0.00925 0.19009 0.01263 0.35702 0.01392 0.29666
Close price 0.00862 0.10429 0.01304 0.23833 0.01328 0.27142

t-mixture emissions (BASMMHMM, SMMHMM) performed better than the GMMHMM, which is

based on Gaussian mixture emissions. We can see the graphs in Fig. 3.9, 3.10 and 3.11 a more clear

picture of the predicted versus the actual stock prices.

3.3.3 Human Activity Recognition

Human Activity Recognition (HAR) is a popular scientific application that enables machines

to recognize human body behaviours. HAR [92] is useful for many real-world tasks, such as fall

detection in elderly healthcare monitoring or physical exercise measuring and tracking in sport

science. In this experiment, we use the dataset provided by UCI [93], which is popularly used in

many research works.

Dataset and preprocessing

The data at hand consists of 10299 records, each record having 561 features (features are signals

received from smartphone sensors). The labels of the data are the different activities performed at

the time of recording, and they are mainly six: Walking, Walking Upstairs, Walking Downstairs,
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Table 3.5: GOOGL stock price prediction: performance metrics for different models

BASMMHMM SMMHMM GMMHMM

Parameter MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00674 0.30320 0.01248 0.42088 0.01298 0.48512
High price 0.00602 0.14920 0.02015 0.32612 0.01602 0.37298
Low price 0.00749 0.08447 0.01894 0.31086 0.01978 0.29172
Close price 0.00740 0.03534 0.02381 0.10664 0.02146 0.15840

Figure 3.9: Amazon stock prices: BASMMHMM prediction versus ground truth

Sitting, Standing, and Laying.

The preprocessing consists of MinMax scaling and then reducing the features with the Principal

Component Analysis method. We perform the PCA in a way that keeps the variance of the data

above 0.95, which gives us 69 principal components.

In this experiment, we use a training sample of 7352 observations and a testing sample of 2947

observations. We create one HMM for every activity, which gives us six HMMs in total. The

parameters of each HMM are learned from the corresponding activity’s training set with the Baum-

Welch algorithm. In the testing phase, for each part of the test set, we calculate all six trained

HMMs’ likelihood to have generated the observations, and the correspondant activity to the HMM

with the highest likelihood is selected as the prediction label. for all six HMMs, we choose 2 hidden
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Figure 3.10: Apple stock prices: BASMMHMM prediction versus ground truth

Figure 3.11: Google stock prices: BASMMHMM prediction versus ground truth

states and K = 2 mixture components per hidden state. The Fig. 3.12 summarizes the pipeline of

the modeling in this experiment.
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Figure 3.12: Human activity recognition: BASMMHMM framework

Results

Upon performing the prediction of the human activities, we calculate the weighted averages of

the accuracy, precision, recall, and F1 score of the predicted labels. These weighted-averages are

calculated by taking the mean of all per-class metrics while considering each class’s support. Sup-

port refers to the number of actual occurrences of the class in the dataset. The ‘weight’ essentially

refers to the proportion of each class’s support relative to the sum of all support values.

The BASMMHMM did a better performance than the rest of the models, as shown in Table

3.6. The accuracy and the F1 score are close to 0.8, which is an improvement compared to the

SMMHMM, which gave about 0.7. It is also worth mentioning that the models with emissions based

on the Student’s t-mixture and distribution performed slightly better than the ones with emissions

based on the Gaussian mixture and distribution.

Table 3.6: HAR: Accuracy and F1 score weighted averages for different models

Algorithm Accuracy Precision Recall Average F1

BASMMHMM 0.79 0.79 0.79 0.79
SMMHMM 0.71 0.71 0.71 0.71
SHMM 0.68 0.69 0.68 0.68
GMMHMM 0.67 0.67 0.67 0.66
GHMM 0.61 0.62 0.61 0.6
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Chapter 4

Conclusion

In this thesis, we proposed the use of minimum message length as a model selection criterion

for the multivariate bounded asymmetric Student’s t-mixture model (BASMM). This combination

of BASMM clustering and MML model selection provides solutions for several limitations that

were observed in other well-known mixture models and model selection criteria. On one hand,

BASMM produces a better fit for the data with bounded support. Also, thanks to the heavy tails of

the Student’s t-distribution, BASMM is more robust to natural outliers in real-world datasets than

the commonly-used GMM. Moreover, the asymmetry of BASMM offers a more realistic simulation

to the data, as it is naturally asymmetric in most cases. On the other hand, the MML criterion is

founded on the principle that the best model is the one that provides the most compact and efficient

description of the data. This contrasts with other approaches that rely on heuristics or assumptions

that may not always hold. In the light of these improvements offered by our model, we developed

the detailed mathematical formulation for the EM algorithm and the MML model selection.

We explored the potential of BASMM+MML through three different experiments: electricity con-

sumption profiles clustering, head pose estimation from images of drivers’ faces, and acute leukemia

detection from genetic expression data. All three experiments were validated by a wide range

of performance metrics, and model selection was performed on multiple samples of the datasets.

Throughout all experiments, the BASMM+MML demonstrated higher performance than other mix-

ture models, namely GMM and SMM. This was accompanied by an overall more accurate model

selection by MML compared to other criteria like MDL, AIC, BIC.
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Furthermore, we used BASMMs as the observation emission densities of continuous HMMs to offer

a more robust methodology for sequential data modeling. We presented the mathematical formu-

lation of our model, and backed it up by results of different experiments. Applications such as

occupancy estimation, stock price prediction and human activity recognition showed a better per-

formance for the BASMMHMM in comparison to other Student’s t and Gaussian mixture-based

HMMs. The data anomalies are taken into consideration, thus making the BASMMHMM a very

useful tool while tackling real world datasets. This also can save us the extra preprocessing that

removes the outliers and might often end up altering the data, hence making its modeling ”isolated”

from the real information/experiment.

While this thesis provided robust variants for mixture modeling, model selection strategy, and

HMMs, it is important to address any persisting limitations and identify potential areas of further

research and improvement. Concerning the first contribution, the MML application on the fitted

mixture model to high dimensional data has been computationally costly. In this regard, some opti-

mizations (in the mathematical definition of MML or in the data fed to the algorithm) can be useful

for the future. Also, the possibility of training the BASMM on a real-time stream of data has not

been explored. Hence, it would be interesting to see how the clustering (BASMM) and the model

selection (MML) can adapt to constantly incoming flows of data. In terms of experiments, we can

further expand the existent applications in this contribution. For example, the drivers’ head pose

estimation can be performed from videos rather than images, and the electricity consumption pro-

files clustering can be extrapolated on different scales (hourly instead of daily consumption profiles

and/or a city’s consumption instead of one household).

As for the second contribution, there is room to improve the proposed model (BASMMHMM) and

expand the work on many aspects. For instance, the number of emission mixture components is an

important parameter to tune for the HMM to ensure optimal fit to the data. Introducing a model se-

lection [23] approach before training the HMM can fulfill this tuning. This gives us the opportunity

to merge the two contributions of this thesis and include MML as a model selection criterion for the

BASMMHMM. Furthermore, in the case of high dimensional observations [94, 95], it is rigorous

to implement a feature selection strategy [96, 97, 98] to avoid high computational complexity and

to elect the parameters that represent the data in the most efficient way.
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.1 Appendix: Fisher information calculation

Considering the relation between the multivariate Student’s t-distribution and the Gaussian dis-

tribution discussed in 2.1.2, and based on the Fisher information for the Gaussian-based mixture

models demonstrated in [64, 29], we define the determinant of the Fisher information matrices for

the mean, the left and right covariance matrices, and the degrees of freedom in this appendix. For

k ∈ {1, . . . ,K}, the Fisher information for the mean µk⃗ of the kth mixture component is defined as

follows:

|F (µ⃗k)|=
D∏︂

d=1

[︄
N∑︂
i=1

xi<µ⃗k

[︂
Σ−1
lk

(︂Σ−1
lk (

∑︁M
m=1(lkm − µ⃗k)h(lkm|θk)χ(lkm|Ωk))

2

(
∑︁M

m=1 χ(lkm|Ωk))
2

−
∑︁M

m=1 h(ykm|θk)χ(rkm|Ωk)(rkm − µ⃗k)Σ
−1
lk (ykm − µ⃗k)

T∑︁M
m=1 χ(lkm|Ωk)

− 1
)︂]︂

+
N∑︂
i=1

xi≥µ⃗k

[︂
Σ−1
rk

(︂Σ−1
rk (

∑︁M
m=1(rkm − µ⃗k)h(rkm|θk)χ(rkm|Ωk))

2

(
∑︁M

m=1 χ(rkm|Ωk))
2

−
∑︁M

m=1 h(rkm|θk)χ(rkm|Ωk)(rkm − µ⃗k)Σ
−1
rk (rkm − µ⃗k)

T∑︁M
m=1 χ(rkm|Ωk)

− 1
)︂]︂]︄

(81)

where (lkm)Mm=1 and (rkm)Mm=1 are two datasets sampled from the multivariate t-distributions with

parameter sets {µ⃗k,Σlk, νk} {µ⃗k,Σrk, νk}, respectively.

For k ∈ {1, . . . ,K}, the Fisher information for the left covariance matrix Σlk of the kth mixture
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component is defined as follows:

|F (Σlk)|= −
N∑︂
i=1

xi<µ⃗k

3Σ−1
lk (xi − µ⃗k)Σ

−1
lk (xi − µ⃗k)

Th(xi|θk)2

+

N∑︂
i=1

xi<µ⃗k

2Σ−1
lk

(︂∑︁M
m=1((lkm − µ⃗k)Σ

−1
rk (lkm − µ⃗k)

Th(lkm|θk)2χ(lkm|Ωk)∑︁M
m=1 χ(lkm|Ωk)

)︂

−
N∑︂
i=1

xi<µ⃗k

Σ−1
lk

(︂∑︁M
m=1((lkm − µ⃗k)Σ

−1
rk (lkm − µ⃗k)

T )2h(lkm|θk)4χ(lkm|Ωk)∑︁M
m=1 χ(lkm|Ωk)

)︂

+
N∑︂
i=1

xi<µ⃗k

3
(︂∑︁M

m=1(lkm − µ⃗k)Σ
−1
lk (lkm − µ⃗k)

Th(lkm|θk)2χ(lkm|Ωk)∑︁M
m=1 χ(lkm|Ωk)

)︂

−
N∑︂
i=1

xi<µ⃗k

Σ−1
lk

(︂∑︁M
m=1(lkm − µ⃗k)Σ

−1
lk (lkm − µ⃗k)

Th(lkm|θk)2χ(lkm|Ωk)∑︁M
m=1 χ(lkm|Ωk)

)︂2

(82)

For k ∈ {1, . . . ,K}, the Fisher information for the right covariance matrix Σrk of the kth mixture

component is defined as follows:

|F (Σrk)|= −
N∑︂
i=1

xi<µ⃗k

3Σ−1
rk (xi − µ⃗k)Σ

−1
rk (xi − µ⃗k)

Th(xi|θk)2

+
N∑︂
i=1

xi<µ⃗k

2Σ−1
rk

(︂∑︁M
m=1((rkm − µ⃗k)Σ

−1
rk (rkm − µ⃗k)
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)︂

−
N∑︂
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Σ−1
rk
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−1
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(83)

Finally, for k ∈ {1, . . . ,K}, the Fisher information for the degrees of freedom νk of the kth
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mixture component is defined as follows:

|F (νk)|=
N∑︂
i=1

πk
∂

∂νk

(︂ ∂
∂νk

P (Xi
⃗ |θk)∑︁K

j=1 πjP (Xi
⃗ |θj)

)︂
(84)

where for i ∈ {1, . . . , N}:

∂

∂νk
P (Xi

⃗ |θk) =
χ(Xi
⃗ |Ωk)∫︁

Ω S(Y⃗ |µ⃗,Σlk,Σrk, νk) dY⃗
× ∂

∂νk
S(Xi

⃗ |µk⃗,Σlk,Σrk, νk) (85)
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