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ABSTRACT  

  

On Neuromorphic Computing:  

A Case Study on Radio Resource Allocation with LAVA Software Framework  

  

Ajay Kumar Lakshmipura Vijaykumar  

   

  Neuromorphic computing is a neuro-inspired computing gaining traction because of its 

ability to perform complex calculations faster, with greater energy efficiency, and on a smaller 

footprint compared to traditional Von Neumann architectures. Due to how fundamentally different 

their architecture is from the Von Neumann architecture, there are currently significant 

uncertainties over how we program and use neuromorphic chips. When neuromorphic chip 

implementation is linked with the implementations employing emerging device technologies, 

additional challenges related to programming devices are introduced. 

To address these issues, neuromorphic frameworks with the abstractions and tools to 

develop applications might prove beneficial. Lava framework is an open-source neuromorphic 

framework designed by Intel Labs to build applications that fully exploit the principles of neural 

computation and map them to neuromorphic hardware. The Lava framework includes high-level 

libraries for deep learning, dynamic neural fields, and constrained optimization for productive 

algorithm development. It also consists of tools to map those algorithms to different types of 

hardware architectures. Lava is the only existing neuromorphic framework that comes with 

specifically designed optimization solvers. Therefore, we have selected the Lava framework for 

our resource allocation problem implementation. 
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This thesis aims to conduct a case study on the use of Lava neuromorphic framework for 

radio resource allocation. First, we design and formulate the problem as an integer linear program 

(ILP). Then, it is reduced to a quadratic unconstrained binary optimization (QUBO), a format that 

can be solved using Lava. To evaluate the performance of the proposed Lava-based approach, we 

compare our results to the ones obtained with classical CPU-based solvers. Solving problems on 

Lava requires several hyperparameters as inputs. Currently, tuning the hyperparameters is a tedious 

task. Determining the optimal set of hyperparameters is even more difficult for large problem 

instances. We believe that improving the Solver-Tuner utility for hyperparameter tuning can help 

solve large problems.  
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Chapter 1 

1. Introduction 

This chapter starts with the definitions of the key concepts which are related to this thesis. 

These definitions are then followed by a description of the motivation and problem statement, and 

the contributions of this thesis. The last section of this chapter consists of a summary of how this 

thesis is organized. 

1.1 Definition  

The terms defined in this section are Neuromorphic computing, Lava, OFDMA (orthogonal 

frequency-division multiple access), Optimization- ILP (integer linear programming) and QUBO 

(quadratic unconstrained binary optimization). These terms are the ones that are most important to 

this thesis. 

1.1.1 Neuromorphic Computing 

Neuromorphic computing has come to refer to a “variety of brain-inspired computers, 

devices, and models that contrast the pervasive Von Neumann computer architecture” [1]. 

Neuromorphic computing is a neuro-inspired computing paradigm. Its driving force is its ability 

to achieve orders of magnitude gains in energy efficiency and performance compared to 

conventional architectures such as the Von Neumann model [2]. Carver Mead first used the term 

neuromorphic computing in 1990 [1]. Mead at the time referred to "neuromorphic" systems as very 

large-scale integration (VLSI) with analog components that resembled biological neural systems 

[1]. In more recent times, the phrase has expanded to include implementations based 
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on biologically inspired or artificial neural networks in or using non-Von Neumann architectures. 

These neuromorphic architectures stand out for their high degree of connectivity and parallelism, 

low power requirements, and integration of memory and processing [1].  

1.1.2 Lava Framework 

“Lava is a Software framework to develop applications for neuromorphic hardware 

architectures” [3]. Lava is an open-source library that has been developed by Intel Labs [3]. The 

Lava software framework satisfies the demand for a standard software framework in the field of 

neuromorphic research. Lava, which is an open, modular, and extensible framework, will enable 

academics and application developers to build on one another's advancements and come up with a 

shared set of tools, processes, and libraries. To encourage wider adoption of neuromorphic 

technologies, the Lava software framework combines micro and macro-scale architectural 

components in a coherent, approachable, and effective manner [3]. 

1.1.3 OFDMA:  

Orthogonal Frequency Division Multiplexing (OFDM) is a “multiplexing technique that 

subdivides the available bandwidth into multiple orthogonal frequency sub-carriers” [4]. OFDM 

has been widely used for wideband communication standards because of its efficiency and 

robustness to multipath propagations. OFDM combines the benefits of different modulation 

techniques namely Quadrature Amplitude Modulation (QAM), Time Division Multiplexing 

(TDM) and Frequency Division Multiplexing (FDM) to produce a high data-rate communication 

system. Orthogonal frequency division multiple access (OFDMA) is an extension of OFDM digital 

modulation technology into a multiuser environment. OFDMA is a “multiple access/ multiplexing 
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scheme that provides multiplexing operation of user data streams onto the downlink sub-channels 

and uplink multiple access by means of uplink sub-channels” [4].  

1.1.4 Optimization:  

The goal of optimization is to select the optimal solution out of all feasible solutions. 

According to a more comprehensive perspective, an optimization problem involves either 

maximization or minimization of a real function by systematically selecting input values from 

within an allowed set and determining the value of the function. A significant field of applied 

mathematics is the extension of optimization theory and methods to new formulations. In a broader 

sense, optimization entails determining the "best available" values of an objective function given 

a specified domain (or input), considering a wide range of different types of objective functions 

and different types of domains [5]. 

1.1.4.1 Integer Linear Programming 

An integer programming problem is a mathematical optimization program in which some 

or all the variables are restricted to integers. Integer programming is frequently used in conjunction 

with integer linear programming (ILP), in which the objective function and all other constraints 

(aside from the integer constraints) are linear [6].  

An integer linear program in the canonical form is expressed as 

Maximize/ minimize: 𝑐𝑇𝒙 

Subject to   A𝒙 ≤ 𝑏, 

   𝒙 ≥ 0, 

 and   𝒙 ∈ ℤ𝒏 
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1.1.4.2 Quadratic Unconstrained Binary Optimization 

In recent years, an unprecedented range of significant Combinatorial Optimization 

problems has been embraced by a mathematical formulation known as QUBO, an acronym for a 

Quadratic Unconstrained Binary Optimization problem. The QUBO model has become a focus of 

research in neuromorphic computing and has developed as a foundation for the quantum 

computing field known as quantum annealing and Fujitsu's digital annealing [7].  

QUBO model is expressed by the optimization problem: 

minimize/maximize  𝒙𝑻Q𝒙 

where x is a vector of binary decision variables and Q is a square matrix of constants. 

1.2 Motivation and Problem Statement 

In this section, we present the motivation and problem statement of this thesis. 

1.2.1 Motivation 

Some problems, such as resource allocation problems (e.g., scheduling problems) that 

occur in wireless communication systems, are highly complex due to the dynamic and uncertain 

nature of the wireless environment and the size of the considered systems. Solving these problems 

on traditional computer architectures is becoming increasingly challenging. This is particularly 

demanding when it comes to satisfying the real-time constraints of these systems such as the 

transmission time interval (TTI) of 1 millisecond or less. Neuromorphic computing offers a 

promising alternative approach to address these complex problems. It is inspired by both the 

structure and the function of the human brain. Neuromorphic architectures have the potential to 
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achieve orders of magnitude gains in energy efficiency and performance compared to traditional 

architectures. This makes them well-suited for solving computationally complex problems. 

There is a growing interest in using neuromorphic computation frameworks for wireless 

communication problems, and research in this area is ongoing. However, previous works did not 

investigate the potential benefits and limitations of using neuromorphic software frameworks to 

solve radio resource allocation problems. This thesis aims to fill this gap by investigating the use 

of the Lava neuromorphic framework for radio resource allocation and evaluating its performance 

in comparison to traditional approaches. This thesis aims to contribute to the understanding of the 

potential of neuromorphic computing software to solve optimization problems.  In addition, this 

thesis provides insights into the use of neuromorphic computing framework to solve practical 

optimization problems related to wireless communication systems by highlighting the advantages 

of using the Lava framework to solve such problems, as well as the challenges that still remain to 

be solved.  

1.2.2 Problem Statement 

The main objective of this thesis is to investigate the potential of using the Lava 

neuromorphic framework for radio resource allocation problems in OFDMA systems. Specifically, 

the thesis focuses on the design of a radio resource allocation problem and its formulation as an 

optimization problem. The formulated problem is then solved using Lava’s QUBO solver. To 

evaluate the performance of the Lava-based solution, the obtained performance results are 

compared to the ones obtained using traditional solvers. 
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The research question that this thesis aims to answer is: Can the Lava neuromorphic 

framework offer a more practical and efficient solution with gains in performance for radio 

resource allocation in wireless communication systems? 

To answer this query, the thesis performs a case study on radio resource allocation in 

OFDMA systems using the Lava neuromorphic framework and assess its performance against 

classical solvers. The results of the case study will provide insights into the potential of the Lava 

neuromorphic framework for radio resource allocation in OFDMA systems and will guide future 

research in this field. 

1.3 Thesis Contributions 

The contributions made by this thesis are as follows: 

• Review of state of art works on Neuromorphic software frameworks and radio resource 

allocation in the OFDMA system. 

• Design and formulation of radio resource allocation problem as an ILP optimization 

problem in OFDMA system. 

• Implementation and execution of the formulated ILP problem on MATLAB.  

• Conversion of the resource allocation problem from ILP to QUBO Formulation. 

• QUBO problem implementation and execution on both Classical QUBO solvers and Lava 

QUBO optimization solver.  

• Performance evaluation on MATLAB, classical solvers, and Lava QUBO solver. 

1.4 Thesis Organization 

The remainder of this paper is organized as follows: 
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Chapter 2 provides a brief background on Neuromorphic Computing and its Software Platforms. 

Chapter 3 presents the related works on Neuromorphic Computing Software and OFDMA 

Resource Allocation. 

Chapter 4 presents the System model, Problem Formulation and Evaluation.  

Chapter 5 Concludes the paper and presents Future Research Avenues.  
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Chapter 2 

2. Neuromorphic Computing and its Software Platforms 

The background concepts pertinent to the thesis's research domain are presented in this 

chapter. First, we present an overview of neuromorphic computing. This is followed by a detailed 

description of the Lava Software framework because it is the framework which is used in the thesis. 

Then, we present other neuromorphic software platforms and summarize the differences between 

them and Lava framework. Finally, we summarize the chapter. 

2.1 Neuromorphic Computing  

In this section, we present an overview of neuromorphic computing. First, we present a 

general definition and history of neuromorphic computing. This is followed by a presentation of 

the architecture and the different types of neuromorphic systems. 

2.1.1 General Definition and History 

Neuromorphic computing is a neuro-inspired computing paradigm. It refers to a "variety 

of brain-inspired computers, devices, and models that contrast with the ubiquitous Von Neumann 

computer architecture" [1]. The driving force behind neuromorphic computing is its ability to 

achieve orders of magnitude gains in energy efficiency and performance over conventional 

architectures such as the Von Neumann model [2]. Neuromorphic computing aims to design chips 

that are closely inspired by the structure and functioning of biological neural circuits [2]. These 

chips will thus be able to process new information, adapt, behave, and learn in real-time while 

consuming less energy [2]. Recently, neuromorphic computing has emerged as an alternative 
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architecture to Von Neumann computers. The term "neuromorphic computing" was first coined by 

Carver Mead in 1990 [1]. At the time, Mead referred to "neuromorphic" systems as very large-

scale integration (VLSI) systems with analog components that resembled biological neural systems 

[1]. The term was later expanded to include implementations based on artificial or biologically 

inspired neural networks in or using non-Von Neumann architectures. These neuromorphic 

architectures are distinguished by their high degree of connectivity and parallelism, low power 

requirements, and integration of memory and processing. Although fascinating, neuromorphic 

designs have attracted more attention due to the impending end of Moore's Law, increasing power 

requirements due to Dennard scaling, and the Von Neumann bottleneck, or low bandwidth between 

the central processing unit (CPU) and memory [1]. Compared to conventional Von Neumann 

designs, neuromorphic computers can perform complex computations faster, more energy 

efficient, and with a smaller physical footprint.  

2.1.2 Architecture: 

In this sub-section, we first present the architecture of traditional computers, i.e., Von Neumann's 

architecture. Secondly, we will briefly discuss both ideal and practical neuromorphic computing 

architectures. Finally, we summarize the comparison between these architectures.  

2.1.2.1 Von Neumann Architecture: 

Modern general-purpose computers are based on the Von Neumann architecture in which 

computation and storage are physically separated. It is shown in Figure 1. CPU, memory, and 

input/output (I/O) devices make up the majority of Von Neumann architectures. Bus systems are 

used to connect various devices. Data and programs are successively fetched from memory by the 

CPU. Such an architecture experiences the well-known Von Neumann bottleneck, in which the 
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speed of data transfer between the CPU and memory limits the system's performance. The massive 

concurrency and parallelism found in biological neural systems cannot be provided by Von 

Neumann's architecture. Even though Von Neumann's architecture offers considerable flexibility, 

it still makes it unsuitable for neuromorphic computing [8]. 

 

Figure 1 Von Neumann Architecture [8] 

 

2.1.2.2 Ideal Neuromorphic Computing Architecture 

An ideal neuromorphic architecture maintains one processing unit for each neuron, similar to the 

biological system. The ideal architecture is not scalable for large neural networks and causes large 

circuit overhead [8]. Each neuron and synapse in a biological system has its unique state, which 

may be characterized by a collection of parameters and variables in software/algorithm models. 

These parameters or variables are concurrently updated locally and are not shared among different 

neurons or synapses. The communication between the neurons is also a parallel process through a 

massive number of synapses. According to the above observations, an ideal design should provide 

1) Local and dedicated data storage, 2) Massive concurrency, and 3) High connection density. 

Based on the aforementioned specifications, Figure 2 depicts the ideal architecture of digital 

neuromorphic hardware, where each processing unit and its local memory serve to represent a 
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single neuron, and the local arithmetic/logic unit (ALU) is in charge of updating neuron status. 

Distributed memory facilitates parallel computation, while close-to-memory computing lowers the 

latency of data retrieval. The number of synaptic operations per second, a crucial indicator of the 

performance of neuromorphic technology, is maximized by this ideal architecture [8]. 

 

Figure 2 Ideal Neuromorphic Architecture [8] 

  

2.1.2.3 Practical Multi-Core Neuromorphic Computing 

Architecture 

In practical neuromorphic architecture, multiple neurons are grouped into a single unit called a 

core, unlike the ideal neuromorphic architecture [8]. When the neural network's scale grows, the 

ideal neuromorphic architecture, which retains one processing unit for each neuron, is not scalable. 

For large-scale SNNs, the significant circuit overhead caused by an ALU assigned to each neuron 
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and hardwiring the neurons to one another is highly impractical. As demonstrated in Figure 3, a 

practical solution is to group several neurons into a core [8].  

 

Figure 3 Practical Neuromorphic Architecture [8] 

 

Although these neurons share the same data channel to update neuron and synapse status, they 

each have their own local data. This results in a considerable reduction of the effective circuit area 

per neuron as compared to the ideal neuromorphic architecture. The cores also allow the neurons 

to share common parameters for more efficient memory use. However, the same ALU updates the 

status of the neurons and synapses associated with a core using time multiplexing. Since only one 

neuron may use the ALU at a time, this lowers parallelism. Furthermore, this adds spike delays (or 

delays in neuron update) that may cause errors in neuronal encoding.  
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2.1.2.4 Comparison Between Different Architectures 

In this sub-section, we consider three important factors such as scalability, cost, and 

performance to compare between above discussed architectures. The definitions of these three 

factors are as follows. Scalability is defined as the capacity of a system to support growth and 

manage increasing workloads over time. The financial resources needed to implement, run, and 

maintain a system are referred to as its cost. Performance is the efficiency and responsiveness of a 

system, and it may be assessed using metrics like response time, throughput, and resource use. 

Table 1 displays comparison between the aforementioned three architectures [8]. In the 

case of Von Neumann architecture, scalability is high, and cost is low. However, the system's 

performance is very low because of Von Neumann bottleneck. With ideal neuromorphic 

architecture, the system can achieve very high performance. However, the manufacturing cost is 

high, and scalability is low for the ideal neuromorphic architecture. In the case of practical 

neuromorphic architecture, we can achieve high scalability with moderate manufacturing cost. In 

addition, it outperforms the Von Neumann architecture. On the other hand, its performance is 

lower than ideal neuromorphic architecture. 

Table 1. Comparison Between Different Architectures [8] 

Comparison Between Different Architectures 

Architecture Scalability Cost Performance 

Von Neumann High Low Very low 

Ideal Low High Very High 

Practical High Moderate High 
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2.1.3 Types of Neuromorphic Systems: 

In this sub-section, we present the types of neuromorphic systems.  

Neuromorphic systems can be classified into three categories based on their implementation 

choices, (1) digital, (2) analog, or (3) mixed-signal platform [8]. 

2.1.3.1 Digital Neuromorphic Systems 

The implementations of digital neuromorphic systems can be further broken down into 

CPU-based, application-specific integrated circuit (ASIC)-based, and field-programmable gate 

array (FPGA)-based ones. SpiNNaker is an illustration of CPU-based implementation. SpiNNaker 

is a massively parallel, entirely digital Advanced RISC Machine (ARM)-based system. It has a 

unique interconnect communication system optimized for spike-based network communication, 

consisting of thousands of ARM cores. The processor unit itself is not customized for 

neuromorphic functions and is general-purpose. IBM’s TrueNorth and Intel’s Loihi are well-

known examples of fully custom ASIC implementation of neuromorphic systems. The use of 

FPGA is frequently employed in implementations as a stop-gap measure before a specific chip 

implementation [8]. 

2.1.3.2 Analog Neuromorphic Systems 

We divide analog systems into programmable and custom chip implementations, just to how digital 

systems are broken down. Field programmable analog arrays (FPAAs) are similar to FPGAs for 

digital systems. FPAAs have been used for analog neuromorphic implementations for many of the 

same reasons as FPGAs have. In addition, there have been specialized FPAAs created for 

neuromorphic systems, such as the NeuroFPAA and the Field Programmable Neural Array 
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(FPNA). These circuits are not broader FPAAs for general analog circuit design but feature 

programmable components for neurons, synapses, and other components [8].    

2.1.3.3 Mixed Analog/Digital Neuromorphic Systems 

The best way to get around some inherent restrictions of analog implementation is typically 

through mixed analog and digital implementation. In many analog neuromorphic systems, synaptic 

weights are typically stored in digital memory for reliability and longer duration. Digital 

communication is used either within the chip or between neuromorphic chips in some analog 

neuromorphic systems. Typically, these communications occur in the form of digital spikes. It is 

also common to use digital components for programming or learning mechanisms. The mixed 

analog and digital family of projects includes Neurogrid and BrainScaleS [8]. 

2.2. Lava software framework 

In this section, we present an overview of the Lava software framework. First, we present 

a general definition and the key attributes. This is followed by a presentation of detailed 

information on the Lava software framework. 

2.2.1 General Definition and Key Attributes 

Lava is an open-source software framework used to build applications for neuromorphic 

hardware. It provides developers with the tools and concepts needed to build distributed, massively 

parallel applications. These can be used on a variety of system architectures, ranging from ordinary 

processors to event-driven neuromorphic chips. Lava provides libraries for deep learning and 

constrained optimization, which facilitates the creation of algorithms. In addition, it includes tools 

to adapt these algorithms to different types of hardware [3]. 
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The key attributes of the Lava Software framework are listed in the following: 

1. Asynchronous parallelism - Lava software framework supports asynchronous event-based 

processing for heterogeneous, distributed, neuromorphic, and massively parallel hardware 

platforms. It can be used for edge and cloud-based systems [3].  

2. Refinement - The Lava framework facilitates an iterative approach to software development. 

This is accomplished by enabling the transformation of abstract processes into architecture-

specific implementations. As a result, applications can be developed using high-level behavioural 

models, which can be progressively decomposed into lower-level models optimized for different 

platforms [3]. 

3. Cross-platform - Lava supports cross-platform execution of computational processes on 

neuromorphic Intel Loihi architectures, as well as conventional CPU/GPU architectures. It is 

flexible in the dual sense that the same computational processes can be executed on different 

platforms, and different processes can be executed and interacted across architectures through 

message passing [3]. 

4. Extensible – Since Lava is open-source, it can be extended to accommodate an expanding range 

of use cases over time. It can also connect with other frameworks like TensorFlow, ROS, and Brian 

[3]. 

5. Trainable - Lava comes with powerful training algorithms that can be used to train models 

offline as well as online (i.e., in real-time) in the future [3].  

6. Accessible - Lava offers a Python API, making it easy to build and execute models on distributed 

parallel systems [3]. 
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2.2.2 Detailed information on LAVA framework 

The LAVA software stack is shown in Figure 4. 

 

Figure 4 LAVA Software stack [3] 

The fundamental components of the Lava software stack consist of the Communicating 

Sequential Process API, the compiler, and the runtime, as depicted in Figure 4. When combined, 

these components form the Magma layer of Lava. Lava offers the ability to compile and execute 

processes on various backends, including neuromorphic hardware, using the Magma layer's low-

level interface. The Magma layer serves as the basis for the development of new processes and 

process models. The Lava process library offers generic, low-level, and reusable processes that 

can be used in creating higher-level algorithm and application libraries [3]. 

Lava offers several libraries for deep learning, optimization, and dynamic neural fields, 

with plans to release future libraries supporting symbolic vector architectures and evolutionary 
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optimization. In addition, Lava provides several utilities for application profiling, automatic float-

to-fixed-point model conversion, and network visualization [3]. 

All of Lava's features and libraries are available through Python, and the software is open 

for extension to third-party frameworks such as TensorFlow, ROS, or Nengo. Lava also welcomes 

open-source contributions to its future libraries and utilities. The low-level interface also supports 

mapping neural networks onto neuromorphic hardware and asynchronous message passing. The 

software is available for free use under BSD-3 licensing at GitHub [3]. Lava has lower-level 

components that are responsible for mapping algorithms to various hardware backends. These 

components are licensed under the LGPL-2.1 license, which aims to prevent commercial 

proprietary forks. However, some specific components that support architectures, such as Intel 

Loihi, may not be publicly available. Intel shares them only as extensions with eligible users. Loihi 

is a neuromorphic chip designed by Intel Labs that uses an asynchronous spiking neural network 

(SNN) to implement adaptive self-modifying event-driven fine-grained parallel computations [1]. 

Loihi was succeeded by Loihi 2 in late 2021.  

2.2.2.1 LAVA Constrained Optimization Library  

The Lava framework offers a set of optimization solvers that leverages Intel Loihi 

neuromorphic hardware for constrained optimization [3]. Constrained optimization is a common 

problem in various fields where the goal is to minimize or maximize an objective function while 

subject to a set of constraints. Neuromorphic computing is a promising approach to address 

constrained optimization problems because it aligns well with the dynamics of spiking neural 

networks. In this approach, individual neurons represent different states of variables, and the 

neuronal connections can encode constraints between the variables. Recurrent inhibitory synapses 

connect neurons representing mutually exclusive variable states, while recurrent excitatory 
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synapses link neurons representing reinforcing states. By implementing this on neuromorphic 

hardware, a spiking neural network can evaluate conflicts and cost functions involving many 

variables, leading to a fast convergence towards an optimal state. In addition, the precise timing of 

individual spikes that occur within the SNNs allows them to readily escape from local minima [3]. 

At the time of writing this thesis, the Lava repository offered only quadratic programming 

(QP) and quadratic unconstrained binary optimization (QUBO) to solve optimization problems on 

both conventional central processing unit (CPU) and Loihi 2 backends. The development team 

plans to add support for other relevant constrained optimization problems. The order of 

development will build on the capabilities of existing solvers and includes Constraint Satisfaction 

Problems (CSP), Integer Linear Programming (ILP), Mixed-Integer Linear Programming (MILP), 

Mixed-Integer Quadratic Programming (MIQP), and Linear Programming (LP) [3]. 

The library's general architecture is illustrated in Figure 5.  

 

Figure 5 General architecture of LAVA Constrained Optimization Library [3] 
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The OptimizationProblem instances are created by combining the Constraints, Variables, 

and Cost classes, which describe the characteristics of each subproblem class, based on the general 

definition of constraint optimization problems. QP problems are defined by linear equality and 

inequality constraints with continuous domain variables and a quadratic function. While CSPs are 

defined by discrete constraints, consisting of variable subsets and a binary relation that describes 

the mutually permitted values for such discrete variables, and have a constant cost function that 

aims solely to fulfil the constraints [3]. 

For each problem class, an API can be built by inheriting from OptimizationSolver and 

combining specific flavours of Constraints, Variables, and Cost. To instantiate the generic 

OptimizationSolver class, an instance of an Optimization problem is required. By doing so, the 

interface of the OptimizationSolver remains constant, while the OptimizationProblem allows for 

more flexibility in creating new APIs. The OptimizationSolver understands the composite 

structure of the OptimizationProblem and composes the required solver components and Lava 

processes behind the scenes [3]. 

2.3 Other Neuromorphic Software Platforms: 

This sub-section presents several neuromorphic software platforms. First, we present software 

platforms by grouping them into frameworks, simulators, and neuromorphic supporting software. 

Then, the main differences between these neuromorphic software platforms are summarized. 

2.3.1 Neuromorphic Frameworks 

Frameworks are general-purpose tools that provide a set of libraries and algorithms for 

building, training, and deploying neuromorphic systems. These frameworks include tools for 



21 
 

building and training neural networks, as well as for deploying these networks on real-world 

systems. 

2.3.1.1 NxSDK 

Intel's Loihi neuromorphic platform comes with its own set of programming abstractions, 

compilers, and firmware. The set of these software tools is referred to as NxSDK. The NxSDK 

supports a runtime for the lower layers and interfacing with various third-party frameworks at both 

the development and runtime levels [9]. The NxSDK offers various levels of abstraction for 

network specification. At the lowest level, users can manage each neuron's parameters. At the 

highest level, users can use pre-packaged modules to carry out specific tasks without managing 

individual neuron parameters. NxSDK acts as a backend for various external frameworks, allowing 

users to create networks using the programming language of their preference [2]. Furthermore, it 

provides interfaces for the Robot Operating System (ROS).  

ROS (Robot Operating System) is a collection of software libraries and tools for creating 

robot applications. It is open-source software that aims to promote code reuse in robotics research 

and development. ROS is a system that consists of multiple processes that work together, allowing 

separate components to be created and connected at runtime. It offers typical operating system 

services, including hardware abstraction, low-level device control, standard functionality 

implementation, communication between processes, and package management. ROS also provides 

resources for acquiring, constructing, writing, and executing code on multiple computers [10]. 
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2.3.2 Neuromorphic Simulators 

Simulators are software tools used to simulate the behaviour of neuromorphic systems. 

These simulators allow users to model and test the performance of neural networks in a controlled 

environment. 

2.3.2.1 BRIAN 

BRIAN is a “simulator for spiking neural networks in Python” [11]. It is a user-friendly and 

incredibly adaptable tool for quickly creating new models, particularly networks of single-

compartment neuron models. Users may define models by expressing arbitrary differential 

equations in regular mathematical notation in addition to using standard types of neuron models. 

Modeling and data analysis may both be done using scientific modules in Python. Despite the 

overheads of an interpreted language, effective simulations are possible because of vectorization 

techniques. BRIAN will be especially helpful when working with non-standard neuron models that 

are difficult to cover by current software and when looking for an alternative to MATLAB or C 

for simulations. BRIAN is also ideal for teaching computational neuroscience because of its simple 

and clear grammar [11]. 

2.3.2.2 Nengo 

“Nengo is a neural simulator based on a theoretical framework called the Neural Engineering 

Framework (NEF). The NEF is a large-scale modelling approach that can leverage single neuron 

models to build neural networks with demonstrable cognitive abilities” [12]. Nengo is a python 

library for creating and modelling extensive neural networks. Nengo can produce complex spiking 

and non-spiking neural simulations with reasonable defaults in just a few lines of code. Nengo, 

however, is highly extensible and flexible. We can define our own neuron types and learning rules, 
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receive input directly from hardware, design and operate deep neural networks, control robots, and 

even mimic your model on a different neural simulator or neuromorphic hardware [13]. 

2.3.2.3 NEST 

“The neural simulation tool NEST is designed for large networks of simple spiking model neurons 

“ [14]. NEST offers high-level instructions to build spatially structured networks and includes a 

wide range of neuron and synapse types. Parallel simulation is supported by NEST, which has a 

Python-based user interface. The GNU Public License governs NEST, which is accessible through 

www.nest-initiative.org. NEST is best suited for neural networks whose subthreshold dynamics 

are well captured by a small number of differential equations. NEST simulations run on a set time 

grid by default. NEST, however, also offers precisely timed spikes, combining the accuracy of 

event-driven simulators with the effectiveness of grid-based modelling [14]. PyNEST, which 

combines NEST simulations with Python programming and data analysis, is the most popular user 

interface for NEST [14]. 

2.3.3 Neuromorphic Supporting Softwares 

In the field of neuromorphic computing, TensorFlow and PyTorch are two popular deep-learning 

libraries used. They offer a variety of tools and interfaces for constructing and training neural 

networks and can be utilized for various tasks such as image recognition, natural language 

processing, and predictive analysis. These libraries simplify the process for developers to utilize 

neuromorphic hardware, allowing them to create and implement deep learning models on these 

platforms quickly. Furthermore, PyNN is a python package that provides a common programming 

interface to multiple neuromorphic simulators. 
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2.3.3.1 PyTorch  

PyTorch is an open-source machine learning framework created by the Meta AI research team. It 

is designed for constructing and educating neural networks, emphasizing versatility and quickness. 

PyTorch provides a user-friendly interface for constructing deep learning models and a low-level 

interface for manipulating tensors and executing tensor operations. This framework is widely 

utilized in computer vision, natural language processing, and various AI and machine learning 

fields. PyTorch is recognized for its simplicity, dynamic computation graphs, and capability for 

training across multiple devices [15].  

2.3.3.2 TensorFlow  

TensorFlow is an open-source platform created by Google's research team for executing machine 

learning, deep learning, and other statistical and predictive analytics tasks. It offers both a user-

friendly high-level application programming interface (API) for creating and training neural 

networks and a low-level API for writing efficient custom operations. TensorFlow comes equipped 

with visualization and debugging tools for the training process, as well as a vast library of pre-

trained models and tutorials [16]. 

The SNN Conversion Toolbox [17] helps convert Artificial Neural Networks from popular 

frameworks like TensorFlow and PyTorch. This tool takes in the networks and changes them into 

a format compatible with the Loihi hardware. Finally, the tool maps the converted networks onto 

Loihi using NxTF [2]. NxTF is an API and compiler for developing deep spiking neural networks 

on Intel Loihi. 
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2.3.3.3 PyNN 

PyNN is a simulator-independent python package for building neuronal network models [18]. 

PyNN provides a common programming interface to multiple simulators to reduce or eliminate 

the problems of simulator diversity while retaining the benefits [18]. PyNN improves neural 

network modelling efficiency by offering high-level abstraction, encouraging code sharing and 

reuse, and serving as a platform for simulator-independent analysis, visualization, and data-

management tools. PyNN makes it simpler to compare results across different simulators, 

improving the reliability of modelling research. The website http://neuralensemble.org/PyNN 

hosts PyNN, which is open-source software. 

2.3.4 Differences Between Neuromorphic Software Platforms 

Table 2 presents the differences between neuromorphic software platforms. In this table, a 

‘✓’ means that the feature is supported by the particular neuromorphic software platform, whereas 

a ‘×’ means that the feature is not supported by the neuromorphic software platforms.  

Asynchronous message passing, where the exchange of information takes place in an 

asynchronous manner, is supported only by ROS and Lava software frameworks. Hardware 

acceleration is not supported by BRIAN and ROS platforms. While others listed in the table 

support hardware acceleration. Direct backpropagation, an algorithm for supervised learning of 

neural networks, is supported only in TensorFlow, PyTorch, and Lava software platforms. 

Behavioural abstraction is present only in the Nengo and Lava software platforms. Machine 

learning can be incorporated into neuromorphic computing through spiking neural networks. Thus, 

all the software platforms mentioned in the table except PyTorch and TensorFlow are optimized 

to support SNNs.  
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Table 2. Difference Between Neuromorphic Software Platforms [19] 

 TensorFlow PyTorch Nengo PyNN NxSDK BRIAN ROS Lava 

Asynchronous 

message 

passing 

        

HW 

acceleration 
        

Direct 

Backprop 
        

Behavioural 

abstraction 
        

Spiking 

neuron 

modelling 

        

 

2.4 Chapter Summary 

In this chapter, we have discussed the background concepts that are crucial to this thesis. 

First, the general definition and history of neuromorphic computing are presented. It was followed 

by a brief overview of architecture and types of neuromorphic systems. Finally, we discussed on 

LAVA software framework and examined different neuromorphic software platforms. 
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Chapter 3 

3. Related Work 

In this chapter, we first review the existing works on neuromorphic computing software. 

Then, we review the relevant literature on resource allocation problems in OFDMA systems. To 

the best of our knowledge, our work is the only one that studies the use of the Lava neuromorphic 

framework to solve resource allocation problem in wireless networks. In the end, we summarize 

the chapter. 

3.1. Works on Neuromorphic Computing Software   

This section presents the works on neuromorphic computing software. First, we present the 

works on neuromorphic software platforms for different neuromorphic hardware. This is followed 

by the presentation of Works on Neuromorphic computing simulators.  

However, all these enumerated works did not consider radio resource allocation problems 

in wireless networks. In addition, these works do not perform evaluations on the Lava framework.  

3.1.1 Works on Neuromorphic software platforms for different 

neuromorphic hardware. 

This sub-section presents works on neuromorphic software platforms for various 

neuromorphic hardware. 

Several case studies on neuromorphic hardware platforms and their respective architecture 

and software ecosystems are presented in [8]. The purpose of this survey was to provide an 

overview of the current state of neuromorphic computing systems. The survey began by 
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introducing the neuron and synapse models that were central to neuromorphic computing, and then 

went on to discuss how these models impacted the design of hardware platforms. To provide a 

more detailed understanding of these systems, the survey also included case studies of several 

representative hardware platforms like SpiNNaker, TrueNorth, Loihi, BrainScaleS, and Tianjic. 

For each platform, the survey described its architecture, as well as the software ecosystem that 

supported it. By examining these platforms in detail, the survey aimed to provide readers with a 

deeper understanding of the current state of the art on neuromorphic computing. Although 

interesting, this survey did not cover the Lava framework for Loihi.  

The performance of the TrueNorth neuromorphic chip in solving different types of graph 

problems has been evaluated in [20]. This work presented the implementation of QUBO problems 

by scripting in MATLAB, utilizing the corelet programming integrated development environment 

for IBM's Neurosynaptic system. The implementation of the model was supported by two 

platforms - the first being the Neurosynaptic Simulator for Corelet System (NSCS) simulation 

platform, while the other platform was IBM TrueNorth Neurosynaptic hardware. The authors of 

this study carried out practical applications of the Quadratic Unconstrained Binary Optimization 

(QUBO) problem as a potential solution for various graph-related problems. They also explored 

how QUBO can be implemented on IBM TrueNorth Neurosynaptic hardware. The proposed 

system was implemented using recurrent neural networks (RNNs). Furthermore, this paper 

discussed various potential problems that can be addressed using the graph problem approach 

based on QUBO. These findings provide valuable insights into the practical applications of QUBO 

in solving complex problems in different fields. 

3.1.2 Works on Neuromorphic computing simulators. 

This sub-section presents works on various neuromorphic computing simulators. 
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The work in [21] aimed to assess the performance of several publicly available SNN 

simulators, such as NEST, Brian2, Brian2GeNN, BindsNET, and Nengo, in terms of speed, 

flexibility, and scalability with respect to non-computational neuroscience workloads. In addition, 

their performance was evaluated using a common front-end neuromorphic TENNLab framework. 

The software architecture of the TENNLab framework is described in [22]. The authors also 

provided a set of recommendations on the suitability of employing these simulators for different 

tasks and scales of operations, as well as the characteristics for a future generic ideal SNN 

simulator for different neuromorphic computing workloads. Developing and testing computer 

models of brain function and analyzing and interpreting large-scale neuroimaging data sets are 

several examples of Computational neuroscience workloads. Although there were several openly 

available SNN simulation packages developed by various research groups, these simulators mostly 

focus on computational neuroscience simulations, and a few targets small-scale machine learning 

tasks with SNNs. Comparisons of these simulators have also mostly targeted computational 

neuroscience-style workloads. Therefore, the authors in this work aimed to address the lack of 

flexible and easy-to-use SNN simulators by evaluating their performance for non-computational 

neuroscience workloads and providing recommendations for their use. 

Reference [23] presented the principles of the neural engineering framework (NEF) and a 

number of its extensions which provide additional methods and techniques for analyzing and 

leveraging spiking dynamical computations. In addition, it presented a review of several recent 

applications that use Nengo to build models for neuromorphic hardware. In this work, the authors 

introduced the NEF and showcased some illustrations of how it can be used to create new recurrent 

neural networks (RNNs) and map them onto various neuromorphic hardware. Although this work 

covered only a few examples of NEF applications, they endeavored to explain its fundamental 



30 
 

concepts both formally and through practical illustrations. By comparing it to other techniques, 

this work shows that the NEF provides certain efficiency and accuracy benefits, which are essential 

for low-power neuromorphic applications. When combined with the Nengo software, the NEF 

offers both theoretical and practical tools for designing a diverse array of spiking networks across 

a broad range of hardware platforms. Finally, the authors expect that the NEF will be utilized in 

innovative and unforeseen manners as it continues to evolve. 

 Reference [1] provided a review of a spiking neural network and a neuromorphic 

architecture. Moreover, it covered communication frameworks and supporting software that is 

designed for various neuromorphic systems. Furthermore, the article discussed multiple factors 

that should be considered when selecting algorithms such as Backpropagation, Evolutionary 

algorithm, Hebbian learning, and spike-timing-dependent plasticity (STDP) for neuromorphic 

implementation. This reference paper's research offered a comprehensive analysis of the research 

and justifications that have supported neuromorphic computing throughout its history. The authors' 

review started with a 35-year examination of the reasons and stimuli behind neuromorphic 

computing. This was followed by an examination of the main research domains in Neuromorphic 

computing. These domains consisted of neuro-inspired models, algorithms, learning techniques, 

hardware, and devices, supporting systems, and, ultimately, applications. The objectives of this 

reference paper study are to provide a thorough summary of the research performed in 

neuromorphic computing from its origins and to inspire further research by highlighting the gaps 

in the field that necessitate new investigations. 

3.2 Works on OFDMA Resource Allocation   

In this section, we present background information on OFDMA systems and related works 

on radio resource allocation in OFDMA systems. 
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3.2.1 Background Information on OFDMA System 

 In this sub-section, we present an overview of the OFDMA system. First, the fundamentals of 

OFDMA are explained. Then, its advantages and disadvantages are detailed. Finally, the main 

applications of OFDMA are provided. 

3.2.1.1 Fundamentals 

Orthogonal frequency division multiple access (OFDMA) is an extension of OFDM digital 

modulation technology into a multiuser environment. The main idea of OFDM is to divide the high-

rate data stream into many low-rate streams transmitted simultaneously over their subcarrier. The 

subcarriers are spaced from one another by an amount that makes them orthogonal to one another. 

To provide a high data-rate communication system, OFDM combines the advantages of several 

modulation techniques, including Quadrature Amplitude Modulation (QAM), Time Division 

Multiplexing (TDM), and Frequency Division Multiplexing (FDM). In addition, OFDM is one of 

the 5G fundamentals [21]. OFDMA inherits from OFDM the capacity to correct channel distortions 

in the frequency domain without the requirement for computationally demanding time-domain 

equalizers. In addition, the system is given significant resource management flexibility by using a 

dynamic subcarrier assignment approach and the inherent protection against multiple access 

interference (MAI) provided by subcarrier orthogonality [24]. OFDMA is essential for real-time 

applications since it enables several Wi-Fi stations to transmit or receive data simultaneously. It 

also allows allocating resource units for several Wi-Fi stations to transmit without collisions and 

defines uplink OFDMA-based random access. Thus, OFDMA is a promising solution for low-

latency data transmission from numerous stations to an access point [25]. 

In the following, the fundamentals of OFDMA are described:  
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Orthogonality: Subcarriers in OFDMA are orthogonal to one another, preventing 

interference between the subcarriers. This makes it possible for multiple users to simultaneously 

share the same frequency band without causing interference. 

Frequency Division: OFDMA divides the overall frequency band into multiple subcarriers. 

Each subcarrier can be assigned to a separate user. As a result, the frequency spectrum can be used 

more effectively, and more users can efficiently share a single channel.  

Communication through the OFDMA system is illustrated in the simplified block diagram 

depicted in Figure 6.  

 

Figure 6 Diagram of OFDMA system [26]. 

 

In the OFDMA system, the overall bandwidth is divided into N sub-carriers, and information can 

be sent over these subcarriers from and to multiple users simultaneously. In Figure 6, k and n 
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denote the number of users and sub-carriers, respectively. In the downlink OFDMA system, the 

base station simultaneously transmits data to k users. First, the channel state information (CSI) 

from all k users is collected, then the resource allocation algorithm is applied based on this 

information. According to this algorithm, the k users’ data is divided, modulated, and fed into the 

N orthogonal sub-carriers simultaneously. At the receiver side, all data from N subcarriers are 

demodulated. The allocation information is sent to the corresponding users so that they can extract 

their data via a designated control channel. The uplink OFDMA is similar to the downlink OFDMA 

but in the reverse direction, i.e., from multiple users to the base station. 

3.2.1.2 Advantages 

The key advantages of OFDMA are explained briefly in this sub-section. 

1. Scalability 

One of the most significant benefits of OFDMA is its scalability. The number of subcarriers used, 

and the size of each subcarrier can be adjusted to accommodate different bandwidth requirements. 

Therefore, OFDMA can handle a wide variety of bandwidth requirements by using its flexible 

subcarrier structure to allocate bandwidth in an efficient and adaptable manner. Fast Fourier 

Transform (FFT) transforms data from the time to the frequency domain. Scalability is made 

possible by adopting the FFT size to the channel bandwidth while maintaining a fixed sub-carrier 

frequency spacing. It is possible to determine the physical (time and frequency) resource unit by 

adjusting the subcarrier spacing and symbol duration. Scalability has several direct benefits, such 

as deployment flexibility. OFDMA systems can be implemented in various frequency band 

intervals with no change to the air interface to adapt to diverse spectrum allocation and usage 

model requirements. However, other multiple access schemes like Time Division Multiple Access 
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(TDMA) do not naturally offer such flexibility [4]. TDMA divides the available bandwidth into 

multiple time slots.  

2. Robustness to Multipath 

Subchannels in OFDMA systems maintain the orthogonality in multi-path channels. Multi-path 

interference occurs when the signal is reflected and arrives at the receiver at different times. The 

cyclic prefix window mitigates this interference by adding a portion of each symbol ending at the 

beginning of the same symbol. Suppose the length of the cyclic prefix window is long enough to 

contain all of the multi-path components of the signal. In that case, the signal can be accurately 

reconstructed at the receiver without interference. Therefore, the system's performance is not 

limited by the number of multi-path components as long as they are contained within the cyclic 

prefix window. As a result, OFDMA systems are resistant to multi-path effects. The subchannel 

orthogonality within the cyclic prefix window further eliminates the requirement for time 

synchronization [4]. 

3. Downlink Multiplexing 

Since OFDMA is orthogonal in nature, downlink transmission may utilize the maximum available 

power without the need for power regulation. In addition, OFDMA has one more dimension of 

flexibility compared to TDMA to allocate power and subchannels to different users in the same 

time slot [4]. 

4. Uplink Multiple Access 

Orthogonal sub-channels are used for OFDMA uplink access. An OFDMA system can provide 

higher reverse-link capacity than a traditional Code-Division Multiple Access (CDMA) systems 
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by removing intra-cell interference. In frequency selective channels, OFDMA uplink can also 

benefit from frequency selectivity in the same way as downlink does by providing the best sub-

channels to the appropriate access users to enhance the entire system's performance further [4]. 

3.2.1.3 Disadvantages 

The disadvantages of OFDMA are: 

1. The whole bandwidth of OFDMA is split into several narrowband subcarriers. OFDMA is more 

susceptible to frequency offset and phase noise since the subcarrier spacing is often relatively 

small. In order to reduce inter-carrier interference, frequency synchronization is crucial. At high 

mobile speeds, the Doppler effect makes the issue much more important [4]. 

2. The main drawback of OFDMA is the high peak-to-average power ratio (PAPR). PAPR is 

defined as the ratio of peak power to the average power of a signal. Indeed, the high PAPR causes 

interference and degrades the system's performance while the OFDM signal passes through the 

amplifier. Several methods may be used to reduce the PAPR. Finally, a successful OFDMA system 

design should carefully consider all these challenges [4]. 

3.2.1.4 Applications: 

OFDMA is widely used in wireless communication systems for efficient radio resource allocation.  

 Because of its effectiveness and robustness to multipath propagations, OFDMA has been 

extensively utilized for wideband communication protocols. Some of the key applications of 

OFDMA systems include:  

1. Cellular Networks: OFDMA is implemented in many technologies and standards, such as 
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3GPP, LTE, 5G and beyond [3]– [5]. Cellular networks use OFDMA to improve system capacity 

and increase user data rates. By allowing several users to share a single channel, OFDMA 

efficiently utilizes the available frequency spectrum. 

2. Wireless Metropolitan Area Networks (WMANs): OFDMA has become part of the IEEE 

802.16 standards for WMANs [24].  

3. Wireless Local Area Networks (WLANs): OFDMA is one of the fundamentals of IEEE 

802.11ax [25].  

4. Satellite Communication: OFDMA is used in mobile satellite communications [27], a 

satellite/terrestrial integrated mobile communication system [28] to increase the amount of data 

transmitted over a satellite communication channel and enable efficient use of the available 

frequency spectrum. 

5. Cognitive Radio Networks: OFDMA is a potential access technique for IEEE 802.22 Wireless 

Regional Area Networks (WRAN), a cognitive radio technology that makes use of white spaces 

in the TV frequency spectrum [29]. 

3.2.2 Related works 

In this section, we present the related works of resource allocation in OFDMA systems. 

First, we present works on RA in OFDMA for 5G mobile networks. This is followed by the 

presentation of works on RA in OFDMA for beyond 5G mobile networks. Then, we present works 

on RA in OFDMA for WiMAX systems. Finally, we present other general works on RA in 

OFDMA.  

Although interesting, the presented solutions designed to solve the resource allocation in 

OFDMA systems were based on standard CPU. While in this work, we focus on a novel 



37 
 

neuromorphic approach. OFDMA systems are used in the implementation of multiple other 

technologies and standards. Therefore, many works have been interested in OFDMA.  

3.2.2.1 Works on RA in OFDMA for 5G mobile networks. 

This sub-section presents works on RA in OFDMA for 5G mobile networks. 

In [30], the authors investigated resource allocation in OFDMA-based 5G networks with 

slicing considerations. Specifically, enhanced Mobile Broadband (eMBB) and ultra-reliable low 

latency communications (URLLC) services were considered. RAN resources were then allocated 

to these different slices according to their requirements. In addition, the authors presented an 

adaptive modulation and coding (AMC) resource allocation method that allowed simultaneous 

transmission of eMBB and URLLC users on the same RAN infrastructure. The resource allocation 

problem was formulated as a sum-rate maximization problem while satisfying the orthogonality 

constraint (i.e., service isolation), the URLLC users' latency constraint, and the minimum rate 

constraint of eMBB users. However, solving the problem mathematically was intractable due to 

the complexity introduced by the AMC scheme and binary constraints. To overcome this issue, 

the authors used two approximation functions and a penalized formulation to transform the initial 

stepwise optimization problem into a continuous linear problem. In addition, a heuristic scheduling 

algorithm was proposed to address complexity, time consumption, and feasibility issues. The 

performance of the proposed schemes was evaluated and compared using extensive simulations to 

illustrate their ability to allocate resources dynamically for different services while satisfying their 

reliability, latency, and minimum rate requirements. 

In [31], a proactive downlink transmission framework (PDF) based on wireless network 

unit association and frequency division multiplexing (FDM) was proposed to manage both user 
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association and radio resource allocation. The developed framework decomposed the proactive 

task data transmission problem into three sub-problems. The system model consists of anchor 

nodes and several access points (APs). The anchor node forwards the task data to multiple APs 

and manages radio resource allocation among and under the APs. Three low-complexity 

optimization algorithms were designed to optimize the size of wireless network units, the FDM 

allocation among APs, and the radio resource allocation for individual AP transmission. The 

second-phase frequency division algorithm was geolocation-based to ensure the radio resource 

allocation fits the forwarding task distribution. In the third phase, a reinforcement learning-based 

algorithm is proposed to manage the link Radio Resource Units (RRUs) allocation under a non-

cooperative mode of a single AP. The framework's performance is evaluated using simulations to 

demonstrate its ability to allocate resources while dynamically satisfying reliability, latency, and 

minimum rate requirements. 

This work focused on OFDMA adaptation for physical layer transmission in wireless 

communication. The wireless spectrum was divided into Radio Resource Units (RRUs) that consist 

of a fixed number of subcarriers and symbols per time slot. These RRUs are then combined to 

form Radio Blocks (RBs), which are used as the primary scheduling unit for transmitting data 

packets. The growth of the Intelligent Industrial Internet of Things is attributed to advanced 

sensing, data analysis, and communication methods, which have also enhanced 5G networks. For 

the URLLC scenario, a low-complexity algorithm is needed to ensure reliable transmission and 

prompt radio resource allocation. Therefore, the objective of the designed scheme was to achieve 

ultra-low latency and stable downlink transmission. 

Reference [32] studied the OFDMA-based downlink resource allocation problem in 5G 

new radio (NR) mobile networks. The main objective of the considered resource allocation 
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problem aimed to optimize the average throughput of the mobile network. One of the distinctive 

features of 5G mobile networks was the utilization of antenna arrays, which enabled beams to be 

formed in a particular direction, allowing for data transmission to multiple users simultaneously 

during the same transmission time interval (TTI) via the same carrier or resource block (RB). 

Typically, antenna arrays include up to 64 single antennas. This work modelled the data 

transmission process from the cell to the user equipment (UE). In addition, the authors formulated 

a mathematical abstraction of the resource allocation problem and proposed a lightweight 

algorithm that uses a proportional fair metric. The proposed algorithm utilized calculation 

procedures that were not resource-intensive, and these procedures are based on the conjugation 

matrix of the related graph. When this algorithm was compared to the modified round-robin 

algorithm, it was found that they have similar performance in terms of average throughput. 

However, the proposed algorithm was more resource-efficient and consumed fewer resources at 

each step. Therefore, the authors suggested that adjusting the algorithm parameters can further 

improve its performance. 

Reference [33] presented subcarrier allocation in dual-band OFDMA as a potential choice 

for future passive optical network (PON) systems because OFDMA can provide high spectral 

efficiency that can meet the requirements of 5G mobile fronthaul and backhaul. The backhaul 

refers to the connection between a mobile network and a wired network, whereas the fronthaul 

refers to the network architecture that connects the remote cell sites to the Baseband Unit. In this 

work, the authors proposed a two-step algorithm for dynamic subcarrier allocation in dual-band 

OFDMA-PON. The first step involved an exhaustive search in determining the initial subcarrier 

allocation and the frequency band for each remote terminal. In the second step, the algorithm 

monitored the traffic of the associated services during a monitoring window and adjusted the 
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subcarrier allocations if necessary. The simulation results of this work demonstrated that the 

proposed algorithm achieved high bandwidth utilization while meeting the QoS requirements of 

fronthaul and backhaul services in 5G mobile networks. 

3.2.2.2 Works on RA in OFDMA for beyond 5G mobile networks. 

This sub-section presents works on RA in OFDMA for beyond 5G mobile networks. 

The authors of [34] presented a reliable OFDMA-based media access control (MAC) 

protocol for terahertz wireless communication in vehicular 6G networks. Under a fading 

environment, severe transmission errors were unavoidable when two mobile nodes or stations 

around a cell boundary were far away or in a bad channel. In such cases, the authors claimed that 

the proposed protocol could be used to ensure the reliability of the data transmission between the 

source and destination nodes. Moreover, [35] considered spectrum assignment and access schemes 

in non-contiguous OFDMA for Beyond 5G and 6G mobile networks. 

3.2.2.3 Works on RA in OFDMA for WiMAX systems. 

This sub-section presents works on RA in OFDMA for WiMAX systems. 

In [36], fair radio resource allocation in downlink OFDMA was investigated. This work 

focused on fair resource allocation in downlink OFDMA-based WiMAX systems. Specifically, a 

sub-carrier allocation algorithm was proposed to maximize the sum of logarithmic user data rates. 

The data rate was arranged among the users in order to schedule the best channel for achieving 

fairness in resource allocation. Simulation results indicated that the proposed algorithm was 20% 

more efficient than the existing algorithms. 
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3.2.2.4 Other general works on RA in OFDMA. 

This sub-section presents other general works on RA in OFDMA. 

Reference [37] dealt with the radio resource allocation in New Generation Radio Mobile 

Networks (NGN) utilizing OFDMA. In this work, the main objective of the designed resource 

allocation algorithm was to optimize the total cell capacity and enhance the satisfaction level of 

the network users. The simulation results of this work demonstrated that the proposed algorithm 

outperforms other algorithms while maintaining the same level of complexity. 

The work in [38] examined a single-cell multi-user network that utilizes OFDMA and 

includes an unmanned aerial vehicle (UAV) acting as an amplify-and-forward relay to enhance the 

quality-of-service (QoS) for user equipment (UE) at the cell edge. This work aimed to increase 

throughput while maintaining user fairness by jointly optimizing the communication mode, the 

subchannel allocation, the power allocation, and the UAV trajectory. The problem has been 

demonstrated to be NP-hard. Therefore, to optimize both the UAV trajectory and the resource 

allocation efficiently, the problem was decomposed into three subproblems which were (i) mode 

selection and subchannel allocation, (ii) trajectory optimization, and (iii) power allocation. These 

subproblems were then solved iteratively. The simulation results of the proposed algorithm 

demonstrated better performance than the random algorithm and cellular scheme.   

Reference [39] studied the resource allocation for optimizing the energy efficiency (EE) in 

OFDMA-Enabled wireless powered communication network (WPCN). The energy-limited device 

used harvested energy to transmit independent signals to multiple IoT users via OFDMA. In order 

to attain the objective of maximizing the EE of the system, a joint optimization of the duration of 

energy harvesting, subcarrier allocation, and power allocation was carried out. The problem 
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formulation falls under the challenging category of MINLP, which was arduous to solve directly. 

Therefore, an iterative algorithm was developed using the Dinkelbach method. The numerical 

results showed that the proposed algorithm achieved fast convergence and outperformed baseline 

algorithms. These results also emphasized the significance of the power source transmitting its 

maximum allowable power to achieve optimal EE performance. 

3.3 Chapter Summary 

In this chapter, we presented the state of art works on neuromorphic computing software. 

This was followed by the presentation of background information on OFDMA systems and state 

of art works related to resource allocation in OFDMA systems. Finally, we concluded that none of 

the existing works in the state-of-the-art considers radio resource allocation problems in wireless 

networks and performs evaluations on the Lava framework.  
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Chapter 4 

4. System Model, Formulations and Evaluation 

In this chapter, we present the system model, problem formulations, and evaluation. In the end, 

we summarize the chapter. 

In this work, we consider using the Lava framework to solve a resource allocation problem in 

an OFDMA system. First, the problem is formulated as an ILP to be solved optimally using off-

the-shelf functions and solvers such as CPLEX and MATLAB. Then, since the Lava QP solver 

does not support binary variables, the ILP is converted into a QUBO form to be solved using Lava 

neuromorphic constraint optimization library. To evaluate the performance of the proposed Lava-

based approach, we compare our results to the ones obtained with classical solvers. Finally, we 

highlight the advantages of using the Lava framework to solve practical QUBO optimization 

problems, as well as the challenges that still remain to be solved. 

4.1 System Model 

In this section, we consider a downlink OFDMA system consisting of one base station (BS) 

that serves multiple users, as shown in Figure 7.  



44 
 

 

Figure 7 System Model 

 

The number of users is denoted by k, while the number of sub-carriers is denoted by n. For 

every user, the base station (i) determines over which sub-carrier’s data will be transmitted and (ii) 

decides how much data will be transmitted to that user over the selected sub-carrier. Let Rk,n be the 

maximum achievable data rate if data is sent from the BS to user k on sub-carrier n and Ck be the 

amount of data that the BS must transmit to user k. The expression of Rk,n is given as follows: 

  

 

 

Where dk is the distance between user k and the BS, Hk,n is the channel gain between user k 

and the BS, Nk,n is the noise variance, β is the pathloss exponent, and Pk,n is the transmit power of 

𝑅𝑘,𝑛 = log2 (1 +
𝑝𝑘,𝑛|𝐻𝑘,𝑛|

2

𝑑𝑘
β

𝑁𝑘,𝑛Γ
)    (1) 
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the BS used to transmit data to user k on sub-carrier n while Γ is a pathloss factor relative to a 

reference distance and it is set to 1 without loss of generality [40] [41]. 

The summary of notations used in the system model and for the problem formulation of 

the OFDMA downlink system model are defined in Table 3.  

Table 3. Summary of Notations 

Symbol Definition 

k Total number of users present in the system. 

n Total number of available sub-carriers in the system. 

Rk,n The maximum achievable data rate if data is sent from the BS to 

user k on sub-carrier n. 

xk,n  

 

It is a binary variable that takes the value 1 if the sub-carrier n is 

assigned to user k. Otherwise, its value is 0. 

rk,n  It is a continuous variable that returns the data amount sent to user 

k through sub-carrier n. 

Ck The amount of data that the BS must transmit to user k. 

dk The distance between user k and the BS. 

Hk,n The channel gain between user k and the BS. 

β The pathloss exponent. 

Pk,n  The transmit power of the BS used to transmit data to user k on 

sub-carrier n. 
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Γ Pathloss factor relative to a reference distance, and it is set to 1 

without loss of generality [40] [41]. 

Nk,n The noise variance. 

 

4.2. Problem Formulation 

In this section, we present the radio resource allocation problem formulation for a downlink 

OFDMA system. The objective of the considered joint sub-carrier selection and rate allocation is 

to maximize the sum-rate over all subcarriers and for all users under channel fading conditions. 

First, in section 4.2.1, the problem is formulated as an ILP. Then, in section 4.2.2, we transform it 

into a QUBO problem to be implemented and solved by the LQS. 

4.2.1. ILP Formulation 

In this sub-section, the considered radio resource allocation problem is formulated as an 

ILP where the objective is to maximize the sum-rate in a downlink OFDMA system. To formulate 

the problem, we need to define the following variables: 

• xk,n is a binary variable that takes the value 1 if the sub-carrier n is assigned to user k. 

Otherwise, xk,n = 0. 

• rk,n is a continuous variable that returns the data amount sent to user k through sub-carrier 

n. For binary expansion purposes, as part of the QUBO formulation and following [42], rk,n 

is assumed to take integer values in the rest of the paper. 

The ILP formulation of the problem is depicted in (P1). 
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Maximize ∑ ∑ 𝑟𝑘,𝑛

𝑁

𝑛=1

𝐾

𝑘=1

 

 

(P1a) 

 

Subject to ∑ 𝑥𝑘,𝑛

𝐾

𝑘=1

≤ 1, ∀𝑛 

 

(P1b) 

 

𝑟𝑘,𝑛 ≤ 𝑅𝑘,𝑛 ⋅ 𝑥𝑘,𝑛,  ∀𝑘, n 

 

(P1c) 

 

∑ 𝑟𝑘,𝑛

𝑁

𝑛=1

≤ 𝐶𝑘, ∀𝑘 

 

(P1d) 

 

 

𝑟𝑘,𝑛 ≥ 0, 𝑥𝑘,𝑛 ∈ {0,1}, ∀𝑘, n (P1e) 

 

In the following, we explain the objective function and the constraints that are considered in our 

problem. 

The objective function in (P1a) aims to maximize the total system throughput. Indeed, the sum-

rate maximization is achieved by maximizing the individual user allocation rate in such a way that 

the total system throughput is increased. 

• Constraint (P1b) means that each sub-carrier must be assigned to at most one user. In other 

words, two or more users cannot be served simultaneously on a single subcarrier. However, 

it should be noted that a user can be served by one or more sub-carriers. 

• Constraint(P1c) means that the data rate assigned to user k on sub-carrier n, denoted rk,n, 

cannot exceed the maximum achievable data rate Rk,n. 

• Constraint (P1d) means that the total data rate transmitted on all sub-carriers should not 

exceed the data amount the base station should transmit to user k. 

• Constraint (P1e) defines the domain of the optimization variables. 
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4.2.2. QUBO Formulation 

In this sub-section, the problem formulated as an ILP in (P1) is converted into a QUBO 

formulation in order to be mapped in the neuromorphic domain using the Lava framework. The 

following steps are used to convert the resource allocation problem into an appropriate QUBO 

form: 

1) Perform the binary expansion of all integer variables. That is, all non-binary variables are 

written as a linear combination of binary variables so that the objective function and the 

constraints contain only binary variables. Since the LQS does not support real variables, 

the rate variables rk,n are assumed to take integer values in the rest of this paper. 

2) Transform all present constraints which are present in the form of linear inequalities into 

general form of matrix equation Ax = b, by inserting slack variables in the appropriate 

places. Where A is a matrix containing the coefficients of the binary variables in the column 

vector x, and b is a column vector containing the constants of the system of linear 

equations. Since the binary expansion has already been performed, the system Ax = b can 

be converted to a suitable quadratic penalty function defined as (Ax−b)2. After adding slack 

variables, (P1) is given as follows: 

Maximize ∑ ∑ 𝑟𝑘,𝑛

𝑁

𝑛=1

𝐾

𝑘=1

 

 

 

(P2a) 

 

subject to ∑ 𝑥𝑘,𝑛

𝐾

𝑘=1

+ 𝑎𝑛 = 1, ∀𝑛 

 

(P2b) 

 

 

𝑟𝑘,𝑛 + 𝑏𝑘,𝑛 = 𝑅𝑘,𝑛 ⋅ 𝑥𝑘,𝑛, ∀𝑘, n (P2c) 
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∑ 𝑟𝑘,𝑛

𝑁

𝑛=1

+ 𝑑𝑘 = 𝐶𝑘, ∀𝑘 

 

(P2d) 

 

 

𝑎𝑛 ∈ {0,1}, ∀𝑛, 𝑑𝑘 ∈ 𝑁, ∀𝑘, 
 

 

(P2e) 

 

𝑏𝑘,𝑛 ∈ 𝑁, 𝑟𝑘,𝑛 ∈ 𝑁, 𝑥𝑘,𝑛 ∈ {0,1}, ∀𝑘, n (P2f) 

 

 Since 𝑥𝑘,𝑛 variables are already binary, and their summation over k is at most equal to 1, by 

definition, 𝑎𝑛are binary variables. Therefore, only slack variables 𝑏𝑘,𝑛, 𝑑𝑘 and rate variables 𝑟𝑘,𝑛 

need to be expanded into binary variables. Hence, the total number of positive integer slack 

variables added to the problem is equal to K + N + K × N. The binary expansion of the 

aforementioned variables is given as follows: 

 

 

 

 

 

 

where 𝑠𝑘𝑛𝑗 ∈ {0,1} ,  𝑤𝑘𝑗 ∈ {0,1} and 𝑞𝑘𝑛𝑗 ∈ {0,1} 

The total number of binary variables resulted from converting the integer variables into binary  

 

variables are equal to 

  

K ×  N + N + ∑ (⌊ 𝑙𝑜𝑔2(𝐶𝑘) ⌋ + 1)𝐾
𝑘=1 + ∑ ∑ (⌊ 𝑙𝑜𝑔2(𝑅𝑘,𝑛 − 1) ⌋ + 1)𝑁

𝑛=1
𝐾
𝑘=1 .  

 

 

𝑏𝑘,𝑛 = ∑ 2𝑗

⌊log(𝑅𝑘,𝑛−1)⌋

𝑗=0

𝑠𝑘𝑛𝑗 , (2) 

𝑑𝑘 = ∑ 2𝑗

⌊log(𝐶𝑘)⌋

𝑗=0

𝑤𝑘𝑗, (3) 

𝑟𝑘,𝑛 = ∑ 2𝑗

⌊log(𝑅𝑘,𝑛)⌋

𝑗=0

𝑞𝑘𝑛𝑗 , (4) 
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3) Move the problem constraints into the objective function by converting them to an 

appropriate quadratic penalty to form a single quadratic expression equivalent to the form 

𝒙𝑻𝑸𝒙 as follows. 

 

𝒙𝑻𝑪𝒙 + 𝑷(𝑨𝒙 − 𝒃)𝑇(𝑨𝒙 − 𝒃) 
(5) 

 

= 𝒙𝑻𝑪𝒙 + 𝒙𝑻𝑫𝒙 + 𝑪 
(6) 

 

     = 𝒙𝑻𝑸𝒙 + 𝑪 (7) 

 

where P is the penalty scalar, the matrix D, and the additive constant c result directly from the 

matrix multiplication indicated above. The suitable penalty scalar P is chosen such that the optimal 

solution to QUBO is the optimal solution to the original constrained problem. 

4) Finally, the maximization problem is transformed into a minimization problem since the 

LQS finds the minimum of objective function. This can be done by negating all the 

coefficients of the objective function. Dropping the additive constant C in (7), the 

equivalent unconstrained version of the constrained problem becomes: 

 minimize − 𝒙𝑻𝑸𝒙          (8) 

4.3 Evaluation 

In this section, the performance of the LQS to solve the joint sub-carrier selection and rate 

allocation problem defined in section 4.2 is evaluated. Our LQS results are compared to the 

solutions obtained by solving the ILP and QUBO problems using ILP and Classical QUBO solvers 

executed on conventional CPUs. 
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4.3.1 Benchmark Solutions 

In this sub-section, we benchmark the solutions. First, we present the classical QUBO solvers 

in detail. The presentation of the simulation setup and simulation results follows this. 

The ILP problem has been solved using intlinprog function on MATLAB. The QUBO problem 

has been solved using four different algorithms: 

• Qbsolv - D-Wave’s Simulated Annealing (DSA): Qbsolv is a classical CPU-based 

decomposing solver that divides a large QUBO problem into sub-problems to find the 

minimum value [43]. The sub-problems are solved using DSA or TS. DSA implements the 

simulated annealing algorithm, which is based on the technique of cooling metal from a 

high temperature to improve its structure (i.e., annealing) [44]. 

• Qbsolv - Tabu Search (TS): TS is based on a tabu search algorithm which is selected as the 

default by Qbsolv. 

• Qubovert’s Simulated Annealing (QSA): Qubovert is a single package for formulating, 

simulating, and solving boolean and spin problems [45]. 

• Lava QUBO solver (LQS): LQS is a solver for QUBO optimization problems supported 

by the Lava framework. 

4.3.1.1 Classical QUBO Solvers: 

In this sub-section, we discuss the classical CPU-based solvers which are used for the 

execution of QUBO problems to evaluate the performance of the Lava QUBO solver. First, we 

present the QBSolv- D-Wave’s Simulated Annealing and Tabu Search. Then we present the 

Qubovert’s Simulated Annealing. 
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1. QBSolv:  

Qbsolv is a classical CPU-based decomposing solver that divides a large QUBO problem 

into sub-problems to find the minimum value [43]. The sub-problems are solved using DSA or TS. 

DSA implements the simulated annealing algorithm, which is based on the technique of cooling 

metal from a high temperature to improve its structure (i.e., annealing) [44]. Tabu Search (TS) is 

based on a tabu search algorithm which is selected as the default by Qbsolv. 

1.A Tabu Search:  

F. Glover introduced the Tabu Search algorithm in 1986, a global optimization algorithm 

step by step. First, the current solution must be created randomly before being followed by a search 

for several of its neighbors, and lastly, the best of those neighbors must be selected as a new current 

solution. In order to avoid repeatedly searching for the local optimal solution and to arrive at the 

problem's global optimal solution during the Tabu Search, some historical information pertaining 

to the search's evolution should be kept, and this information will be used to direct the movement 

from one solution to the next while avoiding cycling. As a result, TSA keeps track of the most 

recently searched local optimum solutions using a taboo list [46]. 

Neighborhood taboo list, taboo length, candidate set aspiration criterion, and termination criterion 

are all components of the TS algorithm process. The taboo list is one of the key factors determining 

a TS algorithm's quality. The recently visited solutions, or the moves to a solution to escape from 

local optima and reach the global satisfactory solution, make up the most popular taboo list. As 

the candidate solution set, we can choose a number of the current solution's neighbors. When all 

candidate solutions are taboo, or a candidate solution superior to the currently optimal solution is 

taboo, the aspiration criterion will ensure the search process can release a specific solution and 
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enable an effective global optimization search. The computation will end according to the 

termination criterion after evolving through a predetermined number of steps [46]. Figure 8 depicts 

the TS procedure as follows. 

 

Figure 8 Tabu search framework [46] 

 

1.B Simulated Annealing: 
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The name Simulated Annealing and its inspiration come from the metallurgical process of 

annealing. An increase in crystal size and a decrease in crystal flaws are achieved through the 

controlled heating and cooling processes of annealing. A stable state will be present in the system 

with large crystals that can regularly form next to one another, have minimal energy, and satisfy 

our needs if the temperature decreases very slowly. If the temperature decreases quickly, the 

crystals will not have enough time to form regular and stable structures due to their high energy, 

and they cannot reach a stable state. SA gradually lowers the temperature while considering the 

neighboring state at each temperature. If the energy of the neighbor is greater than the present state, 

SA moves the system to the neighbor state. However, if the energy of the neighbor is lower than 

the current state, SA applies an acceptance function to determine whether or not to move to the 

neighbor state. Since the system may currently enter a local minimum state and this movement 

requires voiding the local minimum state, SA will occasionally employ a bad state based on the 

acceptance function to reach the final state in the future [47].  

Three factors should be determined before applying SA. 

(1) A starting point is a location in the search space where searching begins. 

(2) Neighbor state generation, the generation of neighbor states. 

(3) Annealing schedules with those parameters include instructions on how to lower the 

temperature. 

Figure 9 illustrates the steps of SA algorithm. 

2. Qubovert  

Qubovert is a single package for formulating, simulating, and solving boolean and spin 

problems [45]. Qubovert’s anneal_qubo function executes a simulated annealing algorithm to 
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determine the minimum of the QUBO given by Q. The general definition of anneal_qubo function 

is as shown below: 

anneal_qubo(Q, num_anneals, anneal_duration, initial_state, temperature_range, schedule, 

in_order, seed) 

 

Figure 9 Simulated Annealing Algorithm [47] 

 

The parameters of the anneal_qubo function are explained as follows, 
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• Q – (type- dictionary)- defines a QUBO dictionary that maps the Boolean labels to their 

values in the objective function. The utility function matrix_to_qubo can be used to convert 

the Q matrix to a QUBO dictionary. 

• num_anneals (type- int>1)– defines the number of times the simulated annealing algorithm 

is executed. The default value is one. 

• anneal_duration (type- int>1)– defines the total number of updates to the simulation during 

the anneal. This is related to the amount of time spent in the cooling schedule. The 

anneal_duration will not be considered if an explicit schedule is given. Default value is 

1000. 

• initial_state (type- dictionary)– The initial state to begin the anneal process. The default 

value is None. when initial_state is None, a random state will be selected to begin each 

anneal. Else, initial_state will be the beginning state for all of the anneals. 

• temperature_range (type - tuple)- defines the temperature to begin and end the anneal at. 

Default values is taken as None. 

• schedule (type- str or iterable of tuple)– defines the cooling schedule to be used. Examples 

are linear and geometric. When the schedule is linear, then the cooling schedule will be a 

linear interpolation between the values in temperature_range. If the schedule is geometric, 

then the cooling schedule will be a geometric interpolation between the values in 

temperature_range. The default value is 'geometric'. 

• in_order(type - bool) – During the update step, whether the variables should be iterated in 

order or random is defined by in_order parameter. The simulation is more physically 

realistic if in_order value is False. Else, when using the simulation for annealing, the value 

is set to True for better results. The default value is set to True. 
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• Seed(type-int) – Used to set Python’s built-in random module seed. If the value is None, 

random.seed will not be called. The default value is set to True. 

 

In order to estimate the execution time on Loihi hardware, we relied on [48], in which a series 

of experiments is presented using a random walk algorithm, with an execution time of around 7.5-

million-time steps over 42 seconds. In other words, Loihi spends 5.6µs per time step. Thus, using 

this time proportion per time step and the number of time steps resulting from solving problem 

instances listed in Table 4 on LQS with CPU as the backend, the corresponding estimated 

execution times on Loihi are computed. As a lower bound estimation on the Loihi 2 hardware, we 

also use 199 ns per time step based on Intel’s document [49]. We note that this is only a rough 

estimation, as the actual runtime heavily depends on the complexity of the actual spiking neural 

network and its embedding onto the hardware. 

4.3.2. Simulation Setup 

In this sub-section, we present the simulation setup implementing the QUBO problem in 

the Lava framework. 

Implementing the QUBO problem in the Lava framework involves the following three steps: 

1) Define the QUBO workload (i.e., the optimization problem), 

2) Provide a set of hyperparameters, and  

3) Execute the Lava solver. 

In the Lava framework, the QUBO problem is encoded in the form of a QUBO matrix. Once 

the problem has been encoded, it is then provided to Lava’s Optimization Solver, which is a generic 

solver for constraint optimization problems. As input for each optimization problem, the solver   
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Table 4. Execution Results 

Problem Instance 

Problem 

Size 

(Binary 

variables) 

Execution Time (in ms) 

(MATLAB and 

Classical QUBO 

Solvers) 

Lava QUBO Solver (LQS) 

P1  • MATLAB: ILP = 

187.1 ms 
• CPU = 288.45 ms (sts-57) 

K = 2 20 
• Classical QUBO 

Solvers: 

• Estimation on Loihi = 0.31920 

ms 

N = 2  • DSA = 25.43 ms 
• Estimation on Loihi 2 = 0.01083 

ms 

Rk,n = [2 1; 1 2] 

Ck = [2, 2] 
 

• Tabu = 30.28 ms 

• QSA= 39.32 ms 
• Hyperparameters = 24, 80, 4, 

seed=1 

P2  • MATLAB: ILP = 

205.7 ms 
• CPU = 3496 ms (sts-4614) 

K = 2 25 
• Classical QUBO 

Solvers: 

• Estimation on Loihi = 25.83840 

ms 

N = 2  • DSA = 28.84 ms 
• Estimation on Loihi 2 = 0.87666 

ms 

Rk,n = [3 1; 1 4] 

Ck = [4, 4] 
 

• Tabu = 27.86 ms 

• QSA= 61.16 ms 
• Hyperparameters = 34, 74, 4, 

seed=323 

P3  • MATLAB: ILP = 

209.1 ms 
• CPU = 7389.8 ms (sts-8810) 

K = 2 28 
• Classical QUBO 

Solvers: 

• Estimation on Loihi = 49.33600 

ms 

N = 3  • DSA = 29.14 ms 
• Estimation on Loihi 2 = 1.67390 

ms 

Rk,n = [2 1 2; 1 2 1] 

 

Ck = [3, 2] 

 
• Tabu = 25.66 ms 

• QSA= 134.8 ms 
• Hyperparameters = 42, 46, 4, 

seed=173 

P4  • MATLAB: ILP = 

219.9 ms 
• CPU = 36009 ms (sts-63098) 

K = 3 39 
• Classical QUBO 

Solvers: 

• Estimation on Loihi = 353.3488 

ms 

N = 3  • DSA = 37.44 ms 
• Estimation on Loihi 2 = 11.9886 

ms 

Rk,n = [2 1 1; 1 1 2; 1 2 1] 

Ck = [2, 3, 2] 
 

• Tabu = 62.5 ms 

• QSA= 187.15 ms 
• Hyperparameters = 52, 51, 3, 

seed=42 
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requires (i) two stopping conditions (i.e., timeout and target cost), (ii) a backend, and (iii) four 

hyperparameters. The solver keeps running until one of the stopping conditions is reached. Once 

the execution is completed, both the solution to the QUBO optimization problem and the number 

of time steps needed to reach that solution are obtained. Lava’s optimization solver 

hyperparameters are provided in the form of dictionary type and are described as follows: 

• The steps to fire hyperparameter give the number of time steps it requires a neuron to fire 

in the absence of noise. 

• The step size hyperparameter denotes the value added in each time step to the state variable. 

• The noise amplitude hyperparameter is the multiplicative factor to upscale the stochastic 

noise in the network. 

• The init value is a vector providing an initial value for the variables defining the problem. 

The quality of the solution (i.e., optimal or sub-optimal) and the execution time of the LQS 

highly depend on the choice of the hyperparameters values. Figure 10 describes the impact of the 

hyperparameter values on the problem instance P3 defined in Table 4. We can see that the number 

of steps needed to obtain a solution has drastically decreased from 568197 to 26028, when the 

hyperparameters are set to optimal values. Once this process of tuning the hyperparameters is 

performed, the solve method of Lava’s optimization solver is called to tackle the provided 

workload. To conduct performance evaluation, we use CPU as the backend. Although CPU is used, 

Lava’s solver mimics the algorithm developed for Loihi 2 by default. Changing the backend to 

“Loihi2” will execute the problem on Loihi 2 neuromorphic chip if hardware access is available. 

The results are obtained by running LQS on an AMD EPYC 7702 virtual machine configured with 

30 vCPU cores out of 64 cores. Moreover, the version of the Lava framework on which we ran the 

problem is Lava Optimization 0.2.2. We also considered updates on it until 2022 November 14. 
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Figure 10 Impact of the Hyperparameters on the Number of Steps Needed to Reach an Optimal 

Solution. 

 

4.3.3 Simulation Results 

In this sub-section, the performance results are presented for different problem instances, 

as shown in Table 4. For comparison, we have considered four different problem instances P1-P4. 

P1 and P2 are composed of two users and two sub-carriers, while P3 and P4 have two users, three 

subcarriers, and three users and three sub-carriers, respectively. From Table 4, it is observed that 

problem instances P1 to P4 executed on DSA show around 6-7 factors gain against MATLAB, 

while TS shows a minimum of 3 to a maximum of 8 factors, and QSA shows approximately 1-5 

times faster than MATLAB. However, the same problem is executed on LQS with CPU as the 

backend does not show any gains against other solvers. The estimated execution time on Loihi 

shows a maximum gain of 586x against P1 executed on MATLAB, while the least gain on P1 was 

against DSA with slightly below 80x gain. The least gain on Loihi 2 was against the P4 run on 

DSA, showing slightly above three orders of magnitude faster. While a maximum gain of more 

than 17000x was observed against P1 executed on MATLAB. 
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Our results show that executing optimization problems on the Lava framework with CPU 

as the backend does not offer any gains on performance. This can be explained as follows. First, 

Lava currently implements a spiking version of a Boltzmann machine inspired by the work of 

Jonke et al. [25], which is suitable for the asynchronous computing architecture of neuromorphic 

hardware but is not suitable for the CPU backend. In addition, this can be explained by the 

exponentially increased number of optimization variables resulting from the conversion of the ILP 

to a QUBO problem. 

4.3.4 Discussion 

The execution time of the algorithms is highly impacted by the computer’s underlying 

architecture. While we are already executing our problem on a 30-CPU core machine, we believe 

that adding even more cores would not provide the necessary speedup of the algorithms. The 

classical algorithms slow down more as the problem size increases. The real benefit of 

neuromorphic chips will be clear for large-scale problems, as they perform thousands of times 

faster and can easily outperform their classical counterparts [50]. Lava’s QUBO optimization 

framework is undergoing continuous development to improve the performance of the QUBO 

solver. Currently, the Solver-Tuner utility function is used to optimize hyperparameters by random 

search. The solutions on Loihi 2 may differ due to slightly different noise models. The noise 

parameter value in the Lava CPU model for the stochastic integrate and fire process is set to the 

noise amplitude value multiplied by a randomly generated value. Thus, the number of timesteps 

required to reach solutions for the same input of hyperparameters is different for different random 

generation seed values. Therefore, finding the best hyperparameters values implies selecting the 

best seed values along with hyperparameters to obtain optimal solutions. The timesteps needed to 

reach solutions considering hyperparameters tuning are as listed in Table 4. Currently, tuning the 
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hyperparameters is a tedious task. Determining the optimal set of hyperparameters is even more 

difficult for large problem instances. Thus, we believe that improving the Solver- Tuner utility for 

hyperparameter tuning can help solve large problems and achieve performance gains, which is 

beyond the scope of this work.  

The power consumption of Loihi for a wide range of applications is reported to be under 

1W [49]. However, the default power consumption of the used AMD EPYC 7702 CPU is 200W, 

which is a typical power consumption of a server CPU these days. Thus, significant gains in power 

consumption are expected in addition to those in execution times when the execution is performed 

on Loihi and Loihi 2 chips. 

4.3.5. Chapter Summary 

In this chapter, we discussed the case study of radio resource allocation using QUBO 

optimization solvers. We explained the downlink OFDMA system model and formulated the 

resource allocation problem for the downlink OFDMA system as an ILP optimization problem 

which maximizes the total system throughput. Then, we reduced the ILP formulation to QUBO 

form to solve it on the Lava QUBO optimization solver. Next, we evaluate the performance of the 

LQS to solve the joint sub-carrier selection and rate allocation problem. The results are compared 

to the solutions obtained by solving the ILP and QUBO problems using ILP and other standard 

QUBO solvers executed on conventional CPUs. Currently, tuning the hyperparameters is a tedious 

task. Determining the optimal set of hyperparameters is even more difficult for large problem 

instances. Thus, we believe that improving the Solver-Tuner utility for hyperparameter tuning can 

help solve large problems. Also, our results show that executing optimization problems on the 

Lava framework with CPU as the backend does not offer any gains on performance. However, 
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significant gains are observed for estimated execution times on neuromorphic chips Loihi and 

Loihi 2. 
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5. Conclusion 

In this chapter, we begin with a brief overview of the thesis' contribution and then discuss 

the potential directions for future research. 

5.1 Contribution Summary 

Solving resource allocation problems in wireless communication systems on traditional 

computer architectures is becoming increasingly challenging. In addition, meeting the real-time 

requirements of these systems, such as the transmission time interval (TTI) of one millisecond or 

less, is particularly difficult in this case. Neuromorphic computing offers a promising alternative 

approach to address these complex problems. It draws inspiration from the design and operation 

of the human brain. In comparison to conventional systems, neuromorphic architectures have the 

potential to achieve orders of magnitude increases in energy efficiency and performance. 

Therefore, there is a need to investigate the potential benefits and limitations of using 

neuromorphic software frameworks to solve radio resource allocation problems. 

To address this need, we presented a motivation for investigating the use of the Lava 

neuromorphic framework for radio resource allocation and evaluating its performance in 

comparison to traditional approaches. The use of neuromorphic computing frameworks for 

wireless communication issues is gaining popularity, and research is ongoing in this field. We 

review state-of-the-art works on neuromorphic software frameworks and resource allocation in the 

OFDMA system. The possible advantages and disadvantages of adopting neuromorphic software 

frameworks to address radio resource allocation issues, however, have not been examined in earlier 

research works. 
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Next, we design and formulate a radio resource allocation problem as an ILP optimization 

problem in the downlink OFDMA system. The objective of the resource allocation problem aims 

to maximize the total system throughput. Indeed, the sum-rate maximization is achieved by 

maximizing the individual user allocation rate in such a way that the total system throughput is 

increased. This is then solved optimally on MATLAB integer linear programming solver. Then, 

the ILP problem is converted into a QUBO problem to map the problem in the neuromorphic 

domain using the Lava framework.  

This was followed by the implementation of the QUBO problem on other standard QUBO 

solvers executed on conventional CPUs. These classical solvers include Qbsolv - D-Wave’s 

Simulated Annealing, Qbsolv - Tabu Search, and Qubovert’s Simulated Annealing. For 

evaluations, we have considered four different problem instances P1-P4 where P1 and P2 are 

composed of two users and two sub-carriers. At the same time, P3 and P4 have two users, three 

subcarriers, and three users and three sub-carriers, respectively. 

Finally, the results of the Lava QUBO solver are compared to the solutions obtained by 

solving the ILP and QUBO problems using ILP and other standard QUBO solvers executed on a 

conventional CPU. In addition, we also estimate the execution time on Loihi and Loihi 2 hardware. 

It should be noted that the estimated runtime is only an approximate value, as the actual duration 

is highly dependent on the complexity of the spiking neural network and its embedding on the 

hardware. Solving problems on Lava requires several hyperparameters as inputs. However, the 

current hyperparameters tuning process is very challenging for the execution of large problems 

since it is performed manually. Our results show that executing optimization problems on the Lava 

framework with CPU as the backend does not offer any gains on performance. However, 
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significant gains are observed for estimated execution times on neuromorphic chips Loihi and 

Loihi 2. 

5.2 Future Work 

In this work, we conducted experiments on small-scale resource allocation problems to 

demonstrate the efficiency of the LQS approach. However, to evaluate the practical applicability 

of the proposed approach, it is necessary to extend these experiments to large-scale problems. 

Therefore, the future works can extend the case study experiments to large-scale resource 

allocation problems once hyperparameters tuning is automated.  

In addition, the work in this thesis did not include execution on neuromorphic hardware 

chip. We can execute the problem on a neuromorphic hardware chip Loihi 2 from the Lava 

framework in future works. One of the significant advantages of the LQS approach is its potential 

for implementation on neuromorphic hardware Loihi 2. Therefore, executing the proposed 

approach on the Loihi 2 chip from the Lava framework can demonstrate the feasibility of 

implementing the approach in real-world scenarios. 

Moreover, with the emergence of several computing paradigms, such as quantum 

computing, it is crucial to compare the performance of neuromorphic computing with these 

emerging paradigms. The formulated QUBO problem can be executed on D-wave Quantum 

computers. Therefore, in future works, we aim to compare the performance of LQS with quantum 

computing approaches in solving resource allocation problems. This will provide valuable insights 

into the strengths and limitations of different computing paradigms in solving resource allocation 

problems and help identify the most effective approach for different problem scenarios. 



67 
 

In conclusion, the future work proposed in this section aims to extend this work and 

provides new insights into the potential of neuromorphic computing for solving resource allocation 

problems. 
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