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Abstract

Evaluating Amazon EC2 Spot Price Prediction Models Using
Regression Error Characteristic Curve

Batool Alkaddah

Amazon EC2 offers inactive virtual machines (VM) as spot instances at up to

90% discount. In return, the least expensive option requires the customers’ usage to

be tolerated with a low availability level agreement. Thus, many studies proposed

forecasting and prediction mechanisms to assess finding the best set of maximum

prices.

In this research, we study the model’s efficiency in predicting spot EC2 prices by

assessing the performance of forecasting algorithms: RFR, XGBoost, k-NNR, and

SVR. We evaluate the models using six metrics, including MAPE, RMSE, MAE, and

MSE, commonly used in related work, as well as the Regression Error Characteristics

(REC) curve and the Area under the curve (AUC-REC). Our experiments consider

dataset time per year, training window (1-day, 1-week, and 1-month ahead), and

instance location.

The REC curve and AUC-REC are superior performance measurements for eval-

uating models over different accuracy-loss thresholds. Our findings suggest that the

cross-validation technique is unnecessary to improve the models’ accuracy, except for

the SVR model. Our study highlights the limitations of using threshold-based met-

rics, which can be misleading, and the importance of using representative metrics
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such as AUC-REC to evaluate machine learning models.

Our study has limitations, including the choice of algorithms, which may impact

the results. Additionally, our experiments are limited to AWS cloud services, and our

results may not be generalizable to other cloud providers. In future work, we plan to

evaluate other forecasting methods, including deep learning and statistical methods,

and investigate the results of other regions and training windows.
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Chapter 1

INTRODUCTION

1.1 Introduction

In recent years, there has been a significant increase in demand for cloud com-

puting services from a wide range of clients, including large corporations, university

research groups, and individuals. Many cloud providers, such as Amazon Web Ser-

vices (AWS), offer Infrastructure as a Service (IaaS), a cloud computing service that

provides virtualized computing resources, such as servers, storage, and network ca-

pabilities, over the internet. This service allows customers to access and use these

resources on demand without investing in or maintaining their physical infrastructure.

Cloud companies typically use a combination of different pricing models to price their

IaaS resources, including fixed or dynamic pricing plans explained in more detail in

section 2.1. Leasing prices vary depending on the plan type, and different payment

options are available to meet customers’ needs.

Our research focuses on AWS’s dynamic pricing scheme, which offers a special

class of Virtual Machines (VMs) called spot instances at significantly reduced rates.

This pricing option serves as a solution for cloud providers with idle resources by

leasing out short-term instances at a lower cost, providing budget-conscious users
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with a more affordable alternative.

1.1.1 Spot Instances (SI)

Spot or Preemptible instances are virtual machines (VMs) offered at lower pricing

options, with prices generally ranging from 50-90% less than the price of on-demand

VMs [2]. The concept of spot instances originated from the idea of using spare or

unused cloud computing capacity. Spot instances offer significant price reductions of

up to 90% without requiring any long-term commitment from the user or the cloud

provider. This pricing model allows spot users to benefit from a substantial reduction

in hourly costs compared to on-demand standard prices [3].

Empirical evidence suggests that, on average, spot instances are more cost-effective

than on-demand instances for workloads lasting less than approximately two weeks [4].

Spot instances are highly attractive to large-scale applications, and the market for

spot instances is the foundation of the dynamic pricing scheme. This VMs model

serves as a solution for cloud providers with idle resources by leasing out short-term

instances at a lower cost, providing budget-conscious users with a more affordable

alternative [2, 5].

However, the spot model also comes with its own set of challenges. This pricing

model offers a solution for cloud providers with idle resources, enabling them to lease

out short-term instances at a lower cost and provide budget-conscious users with

a more affordable option [2]. These lower prices result in significant disruptions for

cloud users who rely on spot instances. To address the issue of execution interruptions,

cloud users would greatly benefit from a reliable method for predicting spot prices,

enabling them to manage the demand for their instances more effectively [3]. By

predicting spot prices, users can anticipate supply and demand changes, reducing

the mismatch between spot virtual machine supply and user usage and minimizing
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interruptions in instance availability.

1.1.2 Forecasting and Prediction Algorithms

The field of regression analysis has come a long way since its inception. Initially,

regression models relied solely on statistical techniques, such as linear regression [6],

to forecast outcomes. However, with the advent of machine learning algorithms,

regression models have become increasingly sophisticated, offering greater accuracy

and improved performance. Predictive machine learning models, such as Random

Forest Regressor (RFR), k-Nearest Neighbor Regressor (k-NNR), and XGBoost, have

become widely used in regression problems and have proven to be highly effective in

accurately forecasting outcomes [7–10]. These models leverage complex algorithms

and data-driven methods to analyze large amounts of data and generate more accurate

predictions than traditional statistical models. By incorporating the latest machine

learning techniques and advanced algorithms, these models have helped practitioners

in the regression field significantly improve their predictions and better understand

the underlying relationships between variables [11].

While developing spot price prediction models has become increasingly applicable

in recent years, the field remains complex and challenging. An inaccurate prediction

could result in significant financial loss for the user, with a few cents difference some-

times being the deciding factor between success and failure [3]. To address these chal-

lenges, recent studies have proposed a range of different prediction models, utilizing

a variety of forecasting techniques, including statistical forecasting methods [12, 13],

deep learning models [14–16], machine learning algorithms [17–19], and combinations

thereof.
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1.1.3 Performance Metrics in Spot Models

We compare the performance of different classic machine learning algorithms in

forecasting spot instance prices by generating optimal regression models through a

series of steps. First, opt for the ultimate ML algorithms to build regression models

used in the field of SI price prediction, Random Forest Regressor (RFR) [7, 20], k-

Nearest Neighbor Regressor (k-NNR) [8] from related work compared to XGBoost

[10]. Second, validating the models using the cross-validation technique, followed by

tests that focus on tuning the hyper-parameters λ associated with the algorithms for

each training iteration based on window size, instance region, and year of timestamp

data. The final stage is measuring model performance using the most commonly used

evaluation metrics in the field against the Regression Error Characteristic Curve

(RECC) and Area Under the Curve (AUC-RECC) [21].

While not yet widespread in the field, using the RECC and AUC-RECC as visual

assessment metrics can yield results comparable to or surpass those commonly used

metrics (e.g., MAE and MAPE). Noteworthy that RECC is equivalent to the Receiver

Operating Characteristic Curve (ROCC), which is a standard tool for evaluating

overall model performance in classification problems [21,22].

Evaluating the performance of these models is no easy task, as different regression

evaluation metrics are often used, ranging from scale-free percentage measures, such as

the Mean Absolute Percentage Error, to scale-dependent metrics, such as Root Mean

Squared Error, Mean Absolute Error, and Mean Squared Error [23–25]. Determining

the most appropriate metric for a given task and data set can be difficult, with

the choice of metric often dependent on the data’s shape and the forecasting task’s

specifics [26].
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1.2 Motivation

The motivation for this thesis comes from the significant surge in demand for cloud

computing services in recent years. With the rise of cloud computing, companies, and

individuals increasingly rely on virtual computing resources for their market services,

resulting in an increased demand for cloud computing solutions. However, the dy-

namic pricing model used by cloud providers, such as Amazon Web Services (AWS),

comes with challenges, including instance availability and execution interruptions.

The pricing for spot instances is dynamic and fluctuates significantly over time,

leading to multiple interruptions in instance availability. Likewise, it results in sig-

nificant financial loss for users who rely on these instances for their computing needs.

While the demand for cloud computing resources continues to grow, predicting the

fluctuating spot prices of these resources remains a critical problem. Predicting Spot

Instances (SI) prices using proper predictive models is a promising solution, leading

to the more efficient and cost-effective use of cloud computing resources. Utilizing the

best accuracy metrics to achieve optimal prediction results is important. The perfor-

mance metric should be unbiased and suitable for all data groups of distribution.

In this thesis, we aim to build and evaluate the performance of various classic

machine learning models in predicting EC2 spot prices. The study will focus on three

significant contributions, including dataset time’s impact and training window size’s

effect on the model’s effectiveness. More importantly, we focus on evaluating the per-

formance of various models using a new visualizing measurement called the Regression

Error Characteristic Curve (RECC). Also, the Area under the Curve (AUC-REC) is

used as a single-point accuracy metric.

We aim to provide a better understanding of the factors that affect the accuracy

of machine learning models in predicting spot prices and to contribute to the ongoing

efforts to optimize resource allocation and reduce costs in cloud computing.
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1.3 Problem Statements

The main objective of the thesis is to evaluate the effectiveness of machine learn-

ing models in predicting the price of Spot Instances (SI) in cloud computing. The

problem statement of the thesis is centered around this objective, and the research

questions aim to address the key challenges to evaluating the accuracy and efficiency

of these models. Ultimately, the thesis seeks to contribute to developing more effec-

tive and efficient machine learning models for price prediction of Spot Instances in

cloud computing.

This thesis firstly aims to dive into the issue of visualizing the performance of SI-

trained models across different data distributions. While current assessment metrics,

such as MAE, MSE, RMSE, and MAPE, only evaluate the model outcomes at a

specific threshold of data distribution, comparing the performance of different models

accurately becomes a challenge. It is difficult to claim that model A outperforms

model B with a particular data distribution because the data distribution type directly

impacts the model’s performance [21, 26, 27]. Furthermore, by gaining more insight

into the data distribution point where SI model performance begins to improve or

deteriorate, we can better understand the strengths and limitations of these models

and thus improve their effectiveness in real-world applications.

Secondly, we explore whether machine learning techniques need to retrain the

model with new hyperparameters and identify the optimal time to do so.

An additional aspect to consider in our research is our models’ optimal training

window size. Following 2017, the price changed and became smoother. The window

size, measured in days, weeks, or months, is a critical variable affecting predictions’

accuracy [17, 18]. It is important to examine this factor thoroughly when evaluating

our models to ensure that our predictions are as precise as possible. Our research

aims to explore this area thoroughly and provide valuable insights into the influence
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of training window size on the performance of our models.

The fourth research question aims to investigate whether the timing of the col-

lected data affects the model’s price prediction accuracy, even after the price change’s

smoothness in 2017.

Overall, this study aims to contribute to developing more accurate and efficient

machine learning models for SI price prediction in cloud computing.

1.4 Objectives

This thesis aims to investigate the performance of machine learning models in pre-

dicting the prices of spot instances in the EC2 cloud computing market. We use a new

visualizing measurement called the Regression Error Characteristic Curve (RECC)

[21] to assess the performance of price-prediction models for the spot price. Also, we

investigate the potential of using machine learning models for price-prediction models

of SI to achieve simpler and more accurate models. This is done by analyzing train-

ing time’s impact on the performance of price-prediction models for SI. In addition,

this thesis assesses the effect of training window size on performance, considering the

smooth change of prices. Moreover, the need for changing the model hyperparameters

over time is investigated, and the best time to identify the best time to retrain the

model with new parameters for accurate predictions of spot prices is identified.

1.5 Thesis Contributions

This thesis significantly contributes to cloud computing and EC2 Spot price pre-

diction. The following are the key contributions of this research:

(1) Study of Machine Learning Regressors: This thesis compares the performance of
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several classic machine learning algorithms, including eXtreme Gradient Boost-

ing (XGBoost), Random Forest Regressor (RFR), k-Nearest Neighbor Regressor

(k-NNR), and Support Vector Regressor, in predicting EC2 Spot prices. The

study aims to identify the most effective algorithm for spot price prediction.

(2) Tuning of hyperparameters: We investigate the effects of the hyper-tuning of

the four models hyperparameters using k-fold cross-validation and Randomized

search.

(3) Time Effect: The research evaluates the effect of new fluctuations on the models

across the years by using the data after the smooth change of prices in 2017.

This allows the study to understand the impact of timing on the performance

of the prediction models.

(4) Window Size Training Effect: The study explores the training window size and

its effect on the performance of machine learning models. It uses four training

window sizes and tunes the ML models’ hyper-parameters based on each size. As

a result, 180 models are built in the study, making it a comprehensive analysis

of the training window size effect.

(5) Evaluation Metrics: This thesis makes a significant contribution by evaluating

the overall performance of the models using a new visualizing measurement

called the Regression Error Characteristic Curve (RECC) and the Area Under

the Curve (AUC-RECC). The evaluation results are compared with the com-

monly used metrics in the field, including MAPE, RMSE, MAE, and MSE. The

study concludes that using RECC outperforms these traditional metrics and

provides an easier interpretation of the results.

Our research concludes that the training window size and timing are crucial fac-

tors in achieving optimum results. At the same time, using RECC as an evaluation
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metric is an innovative approach that provides a comprehensive and straightforward

visualization of the performance of the models.

1.6 Thesis Organization

The rest of the thesis is structured as follows. Chapter 2 is about Background and

Related work. This chapter will discuss the background and related work correlated

to the thesis topic. The first section overviews the fixed and dynamic pricing strate-

gies used in EC2 SI’s. We include a discussion of market trends, particularly the

shift towards using EC2 Spot instances in 2017 and its impact on price fluctuations.

The second section reviews recent studies addressing the EC2 Spot price prediction.

We go over the various studies in this field of predictions, organizing them based

on their forecasting technique. We include reviewing statistical, deep learning, and

classical machine learning algorithms. Chapter 3 shows our approach to solving the

price prediction problem and evaluates the models’ performance regardless of data

distribution. We discuss the terms and definitions used while analyzing the data set

concerning its properties. We continue by stating the ML algorithms used in building

the algorithms, followed by the evaluation metrics used to assess the performance and

accuracies of the models.

Chapter 4 describes the experimental framework used to implement the method-

ology, followed by a presentation of the data preparation phase. We discuss the

techniques we used for training and validation, followed by the results of the evalua-

tion techniques. Chapter 5 summarizes the contributions of this thesis and provides

insights into potential areas for future research.
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Chapter 2

BACKGROUND AND RELATED

WORK

This chapter of our thesis provides a foundation for the study by presenting the

existing knowledge on the cloud pricing of IaaS and highlighting the research objec-

tives. In particular, we demonstrate the difference between static and dynamic pricing

schema, including the on-demand, reserved, and spot instance pricing models. Since

2009, AWS has provided spot instances with pricing based on market auctions with

users’ bids, leading to significant price fluctuations [3, 28]. However, in 2017, AWS

shifted the pricing mechanism to retail control, where customers set the maximum

price they are willing to pay per hour [2, 4]. Although this change emerged, spot

instances remain in high demand because they provide a cost-effective option con-

trary to on-demand instances. Nevertheless, using spot instances carries challenges,

including potential execution interruptions due to the spot price directly affecting

instance availability. Cloud users require a reliable method for predicting spot prices

to manage their instance demand better. Thus, the related work section 2.2 sums

up the proposed forecasting and prediction models as a solution for the spot prices

problems. Additionally, we provide an overview of the shift in the spot price in 2017
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and its impact on the pricing models.

2.1 Background

This section aims to provide a comprehensive reference for understanding the

financial expenses and common characteristics of today’s IaaS cloud computing plat-

forms. As more and more businesses rely on cloud-based infrastructure as a service,

the market for these services is expanding rapidly [29].

The use of Infrastructure as a Service (IaaS) cloud computing platforms is grow-

ing rapidly, and cloud providers are fiercely competing for market share. They use

various pricing methods to compete, including static [30] and dynamic pricing [31–33]

schemes. This study analyzes the pricing methods in the public infrastructure cloud

and focuses on the four IaaS types: On-demand, Reserved, Sustained, and Spot In-

stances.

We gathered data from the top five cloud providers according to Gartner [29],

Amazon Web Services, Microsoft Azure, Google Cloud, Alibaba Cloud, and IBM, and

compared the common price parameters across and within each pricing model. To

demonstrate our analysis parameters, we constructed tables that show the correlation

between cost and service types.

Cloud providers offer services and pricing options for Infrastructure as a Service

(IaaS). To facilitate equitable insight into the IaaS cloud pricing market, this study

focuses on the two IaaS schemes, including four types: On-demand, Reserved, Sus-

tained, and Spot Instances.

Table 2.1 displays the affinity and disparity of standards collected from four mod-

els. The billing criteria used to measure billing related to a specific model include the

price perspective, commitment term, and duration period for both the company and

users. The table compares the price deductions included within the billing, which
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reach their maximum in the spot model and offer a free tier in the reserved model.

The time unit or charge unit charges a defined amount of money per unit of time, such

as minutes, hours, months, or years. Table 2.1 presents prospects under types divided

into three sets for each model. The types are classified into three main groups: Billing,

General, and Change, inherited from the five cloud providers mentioned before.

In the billing section, the price metrics will be classified as Static (S) or Varied

(V) and charged per second (/s), per hour (/h), per month (/m), or per year (/y).

For the general capacity criteria, the table denotes whether the capacity is available,

using a plus sign (+) to indicate that the Spot Request continues to make the launch

request until capacity becomes available automatically. A minus sign (-) indicates

that the request is stopped. Special characteristics are mentioned for some options,

and the table uses symbols such as (|) to show dependency on the service provider

and (‡) to indicate that the capacity is unavailable. The (ICE): Insufficient capacity

error and Ø: No Commitment.

Table 2.1: Summary of Fixed and Dynamic Instance Pricing Schema
Type option/ model On-demand Reserved Sustained Spot

Price Philosophy Pay the most Save money Cost reduction Inexpensive
Free Tier × ✓ × ×
User Commitment × ✓ × ×
Company Commitment ✓ ✓ ✓ ×
Discount 0% (40 – 72) % (25-60) % (50 – 90) %
Time Unit /s /h /m /h /m /y /h /m /y /h

Billing

Hourly price (S or V) S S V ∗ | (S + V )∗
Term Commitment Ø 1 - 3 years Ø Ø
Capacity Request ‡ – ICE Available Available ‡ +General
Launch time Manually Auto Manually/Auto Auto/Manually
Size(resizing)* ✓ ✓ ✓ ×Change Migration* ✓ ✓ ✓ ×

2.1.1 Fixed Pricing Schema

The fixed price scheme in the cloud refers to a pricing model where customers

pay a predetermined price for a set amount of resources or services over a fixed

period. Cloud computing commonly uses this approach to give customers greater
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cost certainty and budget control.

Cloud service providers often use static pricing as a simple and predictable model

for customers. It allows customers to budget and plan their usage of cloud resources

without worrying about unexpected pricing changes. There are three classes worth

highlighting in this schema, on-demand, reserved, and sustained-usage plans [32,33].

For example, in the case of IaaS, customers can pay a fixed price for reserved

instances, allowing them to use specific resources for a set period. This pricing model

can be contrasted with on-demand or pay-as-you-go pricing, which charges customers

for the resources they use as they go, often at an hourly rate. Fixed pricing is typi-

cally offered for longer-term use cases or customers requiring a specific performance

or capacity level. It can be used in pay-as-you-go (PAYG), reserved instances, or

sustained plans allowing users to choose a pricing model that meets their business

needs and budget. First, the on-demand or pay-as-you-go model charges customers

for the resources they use as they go, often at an hourly rate. Fixed pricing is typi-

cally offered for longer-term use cases or customers requiring a specific performance

or capacity level. In contrast, the reserved instances are a pricing model where cus-

tomers commit to using specific cloud resources for a set period, typically one or three

years, in exchange for a significant discount on the hourly rate. This is suitable for

long-term usage requirements.

At the same time, sustained-use instances offer a discount on the hourly rate for

instances that run for a significant portion of the month, regardless of whether they

are reserved. This pricing model is useful for customers with predictable workloads

who do not want to commit to specific resources over a longer period.
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2.1.2 Dynamic Pricing Schema

Dynamic pricing in cloud computing is a flexible pricing strategy involving con-

tinuous price adjustments for virtual machines (VMs). The advent of this pricing

approach has attracted significant attention for its potential to lower costs for orga-

nizations and individuals. Spot instances were first introduced in 2009 to optimize

the utilization of spare compute capacity in the cloud [2]. Spot instances offer users

the chance to attain considerable price reductions of up to 90% in exchange for a

lack of commitment from the cloud provider. This makes cloud computing more

accessible and cost-effective for a broader range of organizations and individuals. Re-

searchers in [3,4] indicate that, on average, spot instances are more cost-efficient than

on-demand instances for workloads shorter than approximately 340 hours or approx-

imately two weeks. Dynamic pricing transformed how organizations and individuals

access and utilize cloud computing resources. By continuously adjusting prices in re-

sponse to changes in demand and supply, this pricing strategy ensures that resources

are utilized optimally and costs are minimal. This, in turn, has the potential to drive

innovation and foster the growth of cloud computing as a whole. Figure 2.1 shows

the spot instance timeline based on the AWS cloud provider. The Spot Instance (SI)

started for the first time in 2009. The spot historical prices of up to three months

were available for all users in 2014. The fluctuations in prices were high from 2009 to

2017. In 2017 AWS announced new pricing standards making the prices more stable

and less fluctuating.

Figure 2.1: The AWS spot instances timeline from 2009 to nowadays.
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Spot Pricing Shift in 2017

Price ambiguity is one of the users’ biggest problems in the spot market. Pricing

criteria were unrevealed [3]; for many years, various studies have proposed extricating

bidding strategies and maximizing revenue from bid price [28]. Rapid changes and

fare biding were the foremost characteristics ruling the spot market. Baughman et

al. [4] critically analyze the effect of the 2017 dynamic change in the AWS Spot

instance market. According to this change, one of the obvious results is its drive-

off implementation of all extensive prior work on the spot market. AWS pricing

criteria introduced the new spot market to refine the user experience for SI [34]. The

presented model largely focuses on supplying users with more stable fare standards

through short intervals such as days or weeks. Before this model, the work of instances

was evicted when the bidding price went up. This continues if the price rises till it

reaches the highest offer. Now, you pay only for the current hour for the instances

you launch.

Therefore, maximum bidding prices are not required anymore. In addition, you

can find the price that’s in effect for the current hour in the EC2 console [2]. The new

system sets the maximum price to the standard on-demand price. However, users still

have control to submit their max price. Furthermore, interruption notably decreased

in the new system due to the separate Spot pool and responded to an interruption

notice by stopping or hibernating rather than terminating instances when capacity is

no longer available.

2.2 Related Work

Since the spot instance market launched, spot pricing has been a significant con-

cern for researchers. Although, before the smooth shift in spot prices [2], many
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prediction models were suggested to find reliable price predictions providing different

evaluation techniques. Hence, a considerable number of researches conducted to fore-

cast spot prices using different approaches, such as statistical approaches, ML models,

and deep learning. We limited our related work to studies implementing Statistical,

ML models, deep learning, and their evaluation measurements.

2.2.1 Statistical Models

As a part of forecasting strategies established earlier in the area of forecasting

Time-Series problems in various fields like (Energy and stock prices, etc.), many stud-

ies investigate the mathematical and statistical techniques for spot price predictions

(e.g., [35–38]).

In their study, Duan et al. (2017) [35] proposed a new prediction method called

HMM-E, which stands for Hidden Markov Model and Expectation. This approach

utilizes Markov processes to model the demand markets and fluctuation degrees of

spot prices as separate hidden states and observations, respectively. The authors

found that this method outperformed existing autoregression-based forecasting meth-

ods (e.g., ARIMA) in predicting spot prices for less than five hours for short forecast

periods. These results suggest that HMM-E could be a promising tool for predicting

spot prices in cloud computing, especially for short-term forecasting.

In 2018 Cai et al. [36] proposed statistical and mathematical models to predict

spot prices using the characteristics of spot prices. They used dynamic ARIMA

(D-ARIMA) and two Markov regime-switching auto-regressive dynamic model-based

forecasting methods (DMRS-AR-L) and (DMRSAR-SW). The dataset used was col-

lected from 144 days of spot instance price history. They deemed they are providing

methods for predicting the prices depending on the prediction length as a regime.

They found that D-ARIMA usually converges too fast on the mean of the total time
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series. Therefore, it is not suitable for long-term prediction. They found that DMRA-

AR-L performed best for forecast periods shorter than 24 hours in most cases, while

DMRA-AR-SW was more effective for longer forecast periods. Their finding depends

on the VM types and application spans. We argue that these models are hard to

implement since they require categorizing techniques like types.

Where Khan et al.(2022) [37] analyze the prices of the GPU spot instances, then

predict their prices using four different statistical models. The work was trained

based on three training windows and used the MAPE as an evaluation metric. The

drawback of using the AR, ARIMA, and ETS models is that they do not predict

sudden fluctuations in data or prices. In contrast, the GARCH model is unsuitable

for predicting the dataset’s seasonality and trend.

In a recent study conducted by Caton et al. (2022) [38], it was argued that

complex machine learning models, such as deep learning models, are unnecessary for

predicting spot market prices after the pricing mechanism shift in 2017. Instead, the

study utilized statistical models such as Holt-Winters, autoregression, and ARIMA.

The authors collected data before and after the pricing change and compared the

performance of these statistical models to that of the LSTM model used in their

previous work [13]. The results showed that the statistical models performed similarly

or better than the LSTM model. However, it is important to note that the new study

did not test the resistance of the proposed models in the face of sudden changes in

the data, and previous data suggests the inferiority of statistical models compared

to machine learning models. Therefore, while the study demonstrates the usefulness

of statistical models in predicting spot market prices, it is still unclear whether they

can withstand sudden changes in the data.
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2.2.2 Machine Learning Models

Khandelwal et al. (2017) [17] proposed a detailed price analysis using the Ran-

dom Forest Regressor (RFR) Algorithm for predicting AWS spot instance prices. The

study aimed to evaluate the accuracy and speed of prediction using various compar-

isons of five machine learning models, including SVM, Multilayer FeedForward NN,

Decision Trees (DT), and Regression Tree Ensembles (RTE). The RFR model was

found to be the most accurate. The study used data collected between April 2015

and March 2016 for 12 months, limiting the dataset to spot prices lower than the

on-demand market. The model’s accuracy was measured using MAPE, Mean Conse-

quential Percentage Error (MCPE), and speed metrics. The study concluded that the

RFR model performs best for prediction periods 1-day and 1-week ahead. However,

this study did not consider the differences in spot instance prices between different

availability zones and day periods. The authors established several de-correlated

trees to overcome this limitation and calculated out-of-bid errors for different leaf

sizes. They determined the optimal leaf size to address the problem of overfitting.

Their proposed method could predict the spot instance prices for the next week or

day in less than one second. Compared to other machine learning methods, the RFR

model was highly robust in price prediction and was easy to implement.

k-nearest neighbors Regressor (k-NNR) was implemented by Liu et al. (2020) [18]

as a predominant algorithm. The model’s performance is evaluated using 88 days

of spot instance prices from 4 regions and 9 instances and is compared with several

other models, including LR, SVR, RF, MLPR, and gcForest. Two prediction window

sizes were used for training, 1-day, and 1-week ahead. The accuracy estimated using

MAPE demonstrates the superior k-NNR performance in both windows, with a slight

enhancement of accuracy with 1-week ahead predictions. Again, the data used in this

study is from before the price change in 2017, in addition to the limitations of the
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k-NNR algorithm in real-world data implementations.

Several previous works on Long/Short-Term Memory (LSTM) recurrent neural

networks were discussed in [13,15,16]. Matt et al. (2018) [13], the LSTM model used

a dataset of one instance type. The data was collected for 8 days in Sept 2016 and

used the difference between on-demand and spot prices as an input of the model.

The model was re-trained as a pre-processing step to minimize the training cost, and

the seasonal regulation was investigated, showing slight improvement in the results.

The accuracy metrics Mean Square Error (MSE) is the main metric in comparison,

in addition to the MAPE, RMSE, and MAE as accuracy metrics. While the model

was well implemented using the LSTM, except that the accuracy metric MSE is not

an appropriate metric to measure the model’s loss or accuracy in this case. Thus, in

2022 [38], the authors criticized their use of these metrics and used the MAPE only

as an evaluation measure for the new work.

Similarly, authors in 2018 [16] used the LSTM neural network with a dataset of 11

months, 90 days from Dec. 2017 to Feb. 2018, and 8 months from Mar. to Sep. 2016.

The K-fold technique was applied to find the best neural network hyperparameters.

The RMSE was employed as an accuracy measure, one of the weakest measures used

in the field of regression according to [23].

Kong et al. (2021) in [19] analyze three months of spot price history data from

August 2018 to November 2018, identifying instance types that still have fluctuations

and analyzing the impact of different Operating Systems and zones on price. A k-

AMSE approach is proposed to evaluate the volatility of price data. They used a basic

GRU network and added two layers. The machine learning prediction algorithms

Random Forest, ExtraTree, and ANN are used for price prediction as a comparison.

At the same time, the GRU network is found to have higher accuracy than other

prediction methods, with RMSE used as the evaluation parameter. However, no
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details about the classical ML models used or any other evaluation metrics rather

than RMSE were investigated.

Al-Theiabat et al. (2018) in [15] proposed a deep learning approach using RNN-

LSTM with data of 90 days collected between Dec 2017 and March 2018. The accu-

racy metrics were the RMSE, MAPE, and the Mean Absolute Scaled Error (MASE).

The MASE is used as a new measurement to evaluate performance in the field eval-

uating spot prediction. They used two approaches for prediction, the deep learning

model (LSTM) and a statistical model AutoRegressive Integrated Moving Average

(ARIMA). The LSTM outperforms the ARIMA demonstrated by both MAPE and

MASE.

Baughman et al. (2018) [4] train RNNs (Recurrent Neural Networks) with the

historical prices from all regions, availability zones, and instance types to predict the

prices of one instance type. They consider the LSTM (Long/Short-Term Memory)

characteristics that can identify and re-member potential features in uncertain periods

and regard it as the main component of RNN. Their experiments show that the

network structure that can obtain the best prediction results is a five-layer network

(i.e., one LSTM layer, two dense layers, one LSTM layer, and a final dense layer).

Two preprocessing steps are adopted to reduce the overhead of training the model,

which can adjust the price and consider the seasonality. Their prediction model can

reduce training error by as much as 95 % and adapts to the old and new pricing

models.

Authors in 2022 [39] proposed a deep learning method of predicting Amazon

EC2 spot price using the Temporal convolution network and improving it with an

attention mechanism so it could catch the historical features most relevant to the

predicted price from the historical sequence. Then, they deemed that they performed

extensive experiments to determine if their approach’s accuracy was higher than any
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other baseline models: LGB, LSTM, CNN, and LSTM-xfea. The MAE, RMSE, and

MAPE were adopted as evaluation metrics of the models. Their work is unreliable

since they provided data for 1 year and made a tremendous mistake in processing

the features of ML models. They used the TimeStamp feature as it does not show

trustworthy results about how they processed the data hourly.

In [40], the authors proposed a modified gated recurrent unit (MGRU) model

and compared its performance to five other statistical and deep learning methods:

ARIMA, RNN, LSTM, GRU, and Transformer. To evaluate the performance of each

method, the authors used a grid search to assess all varieties of hyperparameters for

each model, and the best combination of them was selected for each model. The

prediction accuracy of all models was evaluated using RMSE, MAE, the coefficient of

determination (R2), and MAPE. The data used in the study was collected from one

region for three instances, with a duration of 90 days from March 7 to June 7, 2016.

However, it is worth noting that the data used in this study is outdated, and since

the research was conducted in 2022, AWS has already changed its pricing strategy,

making prices more stable since 2017. Therefore, the comparison made in this study

may not reflect the current state of AWS spot pricing challenges.

Table 2.2 presents the models utilized in the related studies. The models are

classified into statistical and deep/machine learning. An asterisk (*) is used to indi-

cate the models preferred by the authors. The remaining columns indicate the data

specifications used in the studies.

21



Table 2.2: Related work models and other important features of used data

Authors Names Statistical Model Machine/ Deep
learning Model Data length Region/Zone Operating System Instances Types

Song et al. (2022) None TCN*, LGB, LSTM
LSTM xfea, CNN 2019 14 regions Not determined

All OS Systems Not determined

Khan et al. (2022) ARIMA, AR,
ETS, GARCH None May 2019 - Jul. 2019 7 Zones Linux/UNIX GPU spot instance

Caton et al. (2022) Holt-Winters, AR,
univariate LR, ARIMA None

Jul–Sep 2017
Jan–Mar 2018

Dec 21 - Feb 22

us-east-1,us-east-2,
us-west-1, and us-west-2 Linux/UNIX 70 instances

AWS spot instance types

Seyed et al. (2022) ARIMA MGRU*, RNN, LSTM,
GRU, and Transformer March 7 to June 7, 2016 Oregon region Not determined

3 instances
C3.2xlarge, M3.2xlarge,

M3.medium

Alkaddah and Agarwal
(2022) None RFR, SVR,

k-NNR, XGBoost 2019, 2020 5 regions

Linux/UNIX,
SUSE LINUX,

Windows,
RED HAT

10 instances
Compute Optimized (C3,C4)

c3.large,.., c3.8xlarge
c4.large,.., c4.8xlarge

Kong et al. (2021) None LSTM*
RF, ExtraTree, ANN

90 days
2018-08-28 to 2018-11-24 us-east-1

Linux/UNIX,
SUSE LINUX,

Windows,
RED HAT

All instances

Liu et al. (2020) None k-NNR*, LR, SVR, RF,
MLPR, gcForest 88 days

4 regions
us-east-2a, ap-northeast-2a,
ap-south-1a, ca-central-1a

Linux/UNIX

9 instances
c4.large, c4.xlarge,

c4.2xlarge m4.large,
m4.xlarge, m4.2xlarge, r4.large,

r4xlarge, r4.2xlarge

Khandewal et al. (2017) None RFR*, SVM,
MFF-NN, DT, RTE

Apr., 2015 –
Mar., 2016
simulation

eu-central, us-west
EU, US, Asia Pacific

Canada regions

Linux/UNIX,
Windows

10 instances
Compute Optimized (C3,C4)

c3.large,.., c3.8xlarge
c4.large,.., c4.8xlarge

Cai et al. (2018) D-ARIMA,DMRS-AR-L
DMRSAR-SW None Between period from

April, 2016 to May,2016 us-east Linux/UNIX All instance types

Al-thiabat et al. (2018) ARIMA CNN-LSTM* 90 days
Dec 2017 to March 2018

us-west-1c, us-west-1c,
ap-southeast-1a, us-east-1a Linux/UNIX

4 instances
c3.2xlarge, c1.xlarge,
m4.large, c3.4xlarge

Baughman et al. (2018) ARIMA CNN-LSTM* 8 days
Spet. 2016 us-east-1b Linux/UNIX 1 instance

c3.2xlarge

Sarah et al. (2018) ARIMA, AR, MA LSTM-kfold*, LSTM Dec. 2017 to Feb. 2018
Mar. to Sep. 2016 10 regions Not determined Not determined

Duan et al. (2017) D-ARIMA, HMM-E None Apr. , 2016 to
Jul. , 2016 us-east-b/c Linux/UNIX 2 instances

Agarwal et a. (2017) None CNN-LSTM* 90 days us-west-1, ap-southeast-1,
ap-southeast-2, us-west-2 Not determined 7 instances
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2.2.3 Measurements of Evaluation

Several regression metrics are used to assess the forecasting model’s performance.

Table 2.3 lists the most current related work with the evaluation metrics used to

measure their prediction model accuracy. While there are 7 distinct measurements

utilized, they are not all appropriate to measure the loss in the predicted results. The

most used metrics are in the order of MAPE, RMSE, and MAE.

First, The MAE is a metric used to describe the average magnitude of errors

between predicted and true values. It is calculated as the average of the absolute

differences between the predicted and true values without regard to the direction of

the errors. While it can be useful for evaluating overall accuracy and comparing

different models, it only provides information on the average magnitude of the errors

and not their variability, distribution, or frequency. Therefore, it may be necessary

to use additional error metrics to obtain a complete understanding of the accuracy of

the predictions.

RMSE is a popular error metric in many fields, such as engineering, statistics,

and data science. It is calculated as the square root of the mean of the squared

errors between the predicted and true values. It provides a measure of the average

magnitude of the errors and considers the direction of the errors, unlike the MAE. One

issue with RMSE is that outliers can heavily influence the metric in the data, leading

to bias in favor of models that perform better on the majority of the data but worse

on outliers. Additionally, RMSE is sensitive to differences in the scale of the data,

making it harder to compare the magnitude of the errors to the magnitude of the

data. Armstrong in [41] argued that using RMSE is untrustworthy and inappropriate

for comparing accuracy across time-series predictions. Therefore, it is important to

consider the limitations of RMSE, such as its sensitivity to outliers and differences

in data scale. It may not always be the best choice, depending on the data’s specific
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characteristics and the analysis’s goals.

MAPE is a percentage-based error metric that measures the average percentage

difference between the predicted and true values. It is useful when the data has a

strong seasonality or when the absolute magnitude of the errors is more important

than their direction. However, MAPE has some limitations [41], such as being sensi-

tive to small denominators and having infinite values for actual values equal to zero.

Also, it is asymmetric, meaning that the error for an overestimation may be weighted

differently than for an underestimation. This biased evaluation of the forecasting

model might not reflect the price change due to the lower values of the spot prices.

Table 2.3: Related work metrics

Name/ Metric R2 MAE MSE RMSE MASE MCPE MAPE REC Curve
Song et al. (2022) [39] ✓ ✓ ✓
Khan et al. (2022) [37] ✓
Caton et al. (2022) [38] ✓
Nezamdoust et al. (2022) [40] ✓ ✓ ✓ ✓
Alkaddah and Agarwal (2022) ✓ ✓ ✓ ✓ ✓
Kong et al. (2021) [19] ✓ ✓ ✓ ✓
Liu et al. (2020) [18] ✓
Khandewal et al. (2017) [17] ✓ ✓
Cai et al. (2018) [36] ✓
Al-thiabat et al. (2018) [15] ✓ ✓ ✓
Baughman et al. (2018) [13] ✓ ✓ ✓ ✓
Sarah et al. (2018) [16] ✓
Duan et al. (2017) [35] ✓
Agarwal et a. (2017) [14] ✓

2.2.4 Review Summary

The data used in previous related work on predicting spot instance prices have

been divided into two periods: one before the smooth price change in November 2017

and another after this change with less fluctuation and stable prices. This shift in

data distribution has made predicting spot instance prices less complicated, as the

data is more stable and has fewer spikes [4, 38,42].

A literature review reveals that previous works have used various statistical and
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Machine Learning (ML) approaches, including deep learning models and classical ML

regression algorithms. Many researchers have compared their proposed approaches

with baseline models, often using ARIMA (e.g., [13,15,36]) or other statistical meth-

ods (e.g., [13, 38]). Other researchers have compared their results with classical ma-

chine learning models (e.g., [17, 18]).

However, the deep learning approaches used in previous work have had weaknesses.

Their data was outdated and required pre-processing techniques like normalization

to fit the complexity of the deep learning training task. Similarly, statistical methods

performed poorly in most cases before the price change compared to machine learning

and deep learning techniques [13,15,36].

The debate was on implementing the SI price prediction task based on the deeper

learning approach. Despite this debate, recent work by Caton et al. [38] has shown

that statistical models are becoming more effective in predicting spot instance prices

due to the change in the data distribution. They demonstrated this by objecting

to their previous work, which used LSTM models [13] and instead implemented sta-

tistical models in the new data version. They used no classical ML algorithms to

prove the same deep learning vision. Thus, we investigate the efficiency of using the

machine learning models after the price Shift in 2017.

Measuring the accuracy and errors in regression problems is crucial in understand-

ing the performance of machine learning models. Accurate predictions are essential

for making informed decisions, and poor accuracy can result in significant financial

losses or harm to individuals. Therefore, it is necessary to evaluate the accuracy of

regression models before deploying them in the real world.

Measuring the accuracy of regression models allows us to quantify the difference

between the actual and predicted values. This can help us identify the strengths
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and weaknesses of different models and make informed decisions on which model to

use for a specific problem. The evaluation metrics in the related work were mostly

about using the dependent scale or dependent-free metrics. In [24], Botchkarev high-

lights that regression errors are random variables and could only be measured using

the probability density function if exit. Thus, we aimed to measure cumulative dis-

tribution function (CDF) as an Area Under the REC Curve (AUC-REC) based on

the visualization metric proposed by Bi [21], Regression Error Characteristics Curve

(REC Curve). Our work is concerned with finding the best evaluation metric by

considering the most utilized ones in the related work alongside two new metrics in

this field.

Our research focuses on predicting spot EC2 prices using classical machine learning

algorithms. We chose to evaluate the data after 2017, including two conservative

years. We preprocessed the data to ensemble it into hourly series based on the

instance, region, and operating system. Then, we used two tests to check if the

data was stationary. Our main concern was about evaluating the performance of the

non-parametric ML regression algorithms and proving their effectiveness in solving

this time-series problem. We used six evaluation metrics, including the Regression

Error Characteristics (REC) curve and the Area under the curve (AUC-REC), which

are superior to conventional metrics. While building the models, we also considered

three aspects: dataset time per year, training window as 1-day, 1-week, and 1-month

ahead, and instances location. Our findings suggest that classical machine learning

algorithms can effectively predict spot instance prices and that the REC curve and

AUC-REC are useful metrics for evaluating the performance of these models.
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Chapter 3

METHODOLOGY AND MODELS

This chapter describes the methodology and models employed in our study of

evaluating price prediction models. Our research focused on exploring the impact of

various factors on the performance of the models, such as data time, data location,

and training window effect (e.g., 1-day, 1-week, 1-month). In addition, we seek to find

a precise assessment measurement to estimate both the accuracy and the loss of the

used models. Therefore, we utilized multiple supervised ML techniques and statistical

analyses to achieve this. For model evaluation, we used selected performance metrics,

including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), AUC-REC and

REC Curve.

We employed non-parametric ML algorithms for modeling, which are , Random

Forest Regressor (RFR), Support Vector Regressor (SVR), and XGBoost to capture

the complex relationships between input and output variables in our data. These

non-parametric models are flexible and can capture complex relationships that may

not be apparent in the data [6]. This makes them ideal for our study, where we

explore the impact of various data factors on model performance.
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Before training the models, we conducted a set of data preprocessing steps, in-

cluding data cleaning, unit root test, series generating, and feature extracting. The

features were selected based on the related work [17, 18] to identify the most signifi-

cant features previously used to train the models. Also, the unit root test was con-

ducted to check the stationarity of the data using Augmented Dickey-Fuller (ADF)

and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Tests [43, 44]. Moreover, to ensure

that the models were well-tuned and optimized, we tuned the hyperparameters for

each model using a combination of randomized search and cross-validation [1, 45],

selecting the optimal set of parameters that maximized the model’s performance on

the evaluation metrics.

3.1 Regression Problems

Regression analysis is a statistical method widely used in various fields, such

as economics, engineering, and social sciences, to model the relationship between a

dependent variable and one or more independent variables [46]. In machine learning,

regression is a supervised learning problem that predicts a continuous output variable

based on input variables [11]. Mathematically, regression aims to learn a function

that maps the input variables to the output variable, given a set of labeled training

examples [47].

More formally, let X be a n x p matrix representing (n rows and p columns)

of the input variables, where each row of X corresponds to a data point, and let y be

an n-dimensional vector representing the output variable. The goal of regression is

to learn a function f(X) that maps X to y, such that:

y = f(X) + ε
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where y is the output variable, X is the input variable, f(X) is the function that

maps the input variable to the output variable, and ε is the error term or residual,

which represents the difference between the actual value of y and the predicted value

of y. The regression equation can be written as follows:

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn + ε (1)

where Y is the dependent variable, X1, X2, . . . , Xn are the independent variables, b0

is the intercept, b1, b2, . . . , bn are the coefficients that determine the slope of the line of

best fit, and ε is the residual term [48]. Supervised machine learning algorithms can

solve regression problems by learning a function that approximates the relationship

between the input and output variables based on the labeled training examples. This

learned function can predict the output variable for new, unseen input samples. The

idea behind fitting the function is that each machine learning regression algorithm

tries to minimize the residuals in different ways to predict the next output [48].

Residuals

The importance of residuals in evaluating the accuracy and performance of ma-

chine learning models cannot be overstated. In a regression function [1], the residual

term (ε) is the difference between the target variable and the predicted value. In

essence, the residual represents the discrepancy between the actual and predicted

values of the dependent variable. An effective model should predict the dependent

variable with minimal error or residual; therefore, the smaller the residual, the more

accurate the model is [48, 49].

Residuals are a crucial measure of model performance because they reflect the

errors made by the model in predicting the outcome variable. Large residuals suggest
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that the model is inaccurate in predicting the outcome variable and requires improve-

ment, while small residuals indicate a higher accuracy. Additionally, residuals can be

useful in detecting outliers or influential points that could adversely impact model

performance.

Analyzing the residuals can help identify trends or patterns in the data that the

model is not capturing, which can aid in improving the model. Thus, residuals play a

crucial role in evaluating model performance and identifying areas for improvement.

As an example, the RFR employs an ensemble of decision trees, where each tree

predicts the output value. The final prediction is obtained by averaging the pre-

dictions of all the decision trees. In the case of RFR, the residual is the difference

between the actual and predicted values, and the algorithm aims to minimize the

MSE of the residuals [7].

3.2 Parametric and Non-parametric ML Algorithms

Determining between parametric and non-parametric machine learning models is

an important consideration in any research project involving data analysis. Para-

metric models are often preferred when the underlying distribution of the data is

well-understood and fits the model’s assumptions. They tend to have a smaller num-

ber of parameters, which can make them more efficient to train and easier to interpret.

However, parametric models can be overly restrictive when the underlying distribu-

tion of the data is complex or unknown, leading to poor performance and inaccurate

predictions [11, 50].

Non-parametric models, on the other hand, are more flexible and can capture

complex patterns in the data without making assumptions about the underlying dis-

tribution [6]. They are often preferred when the data is highly variable and does

not fit the assumptions of a parametric model. However, non-parametric models can
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be more computationally intensive and require more data to train, and their large

number of parameters can make them difficult to interpret.

Our research considered the trade-offs between parametric and non-parametric

models to select the best approach for our data analysis needs. We ultimately chose

non-parametric models such as K Nearest Neighbor Regressor (k-NNR) [8], RFR [7],

SVR [9], and XGBoost [10], as they were well-suited to the complex patterns in our

data and offered high predictive accuracy. By leveraging the flexibility and power of

non-parametric machine learning models, we could create robust and accurate models

that captured the complex relationships between input and output variables in our

data, whether before or after the smooth change in the distribution.

3.2.1 Models Hyperparameters

Hyperparameters in machine learning are parameters that are not learned from

the training data but are set before the training begins. They are used to control

the learning process and can have a significant impact on the performance of a ML

model. Examples of hyperparameters include the learning rate in gradient descent

optimization, the number of hidden layers in a neural network, the regularization

parameter in a linear regression model, and the kernel function and its associated

parameters in a support vector machine.

Finding the optimal hyperparameters is an important step in building a model

that can perform well on new, unseen data. This process is often referred to as

hyperparameter tuning or hyperparameter optimization. It involves searching over a

range of hyperparameters to find the values that produce the best performance on a

validation set.
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3.3 Machine Learning Prediction Algorithms

Many recent studies have proposed the utilization of various machine learning

algorithms, such as RFR, Decision Tree (DT), k-NNR, SVR, Logistic Regression (LR),

and gC forest [17–19]. Additionally, deep learning approaches such as Long Short-

Term Memory (LSTM) have been employed to predict prices over time [13,15,16,19].

Our research methodology focuses on four supervised machine learning algorithms:

SVR, k-NNR, RFR, and Extreme Gradient Boosting Regression (XGBoost) to predict

accurate AWS spot instance prices over time.

3.3.1 Support Vector Regression (SVR)

Support Vector Machine (SVM) is a supervised machine learning technique that

requires labeled data to train and build knowledge [9]. The labeled data is used dur-

ing the training phase to discover the decision boundaries of different target classes.

These boundaries separate data on multiple dimensions (hyper-planes) rather than a

single dimension like the linear regression algorithm (See Figure 3.1). The SVM also

supports various kernels, including linear, polynomial, radial basis function (RBF),

and sigmoid [1]. These different kernel levels provide adequate flexibility in recogniz-

ing nonlinear boundaries that divide data into groups.

Similarly, SVR works for discrete values. SVR finds a hyperplane that best fits the

data by minimizing the error between predicted and actual values [51]. The algorithm

uses training data to learn the relationship between the input features and the target

values and then applies the learned function to make predictions on new data. SVR’s

performance largely depends on its hyperparameters, especially the C and gamma

hyperparameters. The C parameter determines the trade-off between achieving a low

training error and a low testing error. In contrast, the gamma parameter defines the

influence of a single training example and can greatly affect the shape of the decision
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boundary [1]. The tuning of these hyperparameters is crucial to ensure the optimal

performance of the SVR model.

Figure 3.1: Support Vector Regression (Linear Kernel)

In Figure 3.1, the SVR is trained on the preprocessed data. The training process

involves finding the hyperplane that maximizes the margin, the distance between the

hyperplane, and the closest data points. Then, it uses two hyperparameters: the

regularization parameter C and the kernel function. The regularization parameter

controls the trade-off between the margin and the error. At the same time, the kernel

function transforms the input features into a higher-dimensional space to make them

more separable.

3.3.2 k-Nearest Neighbors Regression (k-NNR)

k-NNR (k-Nearest Neighbors Regression) is a non-parametric algorithm for regres-

sion problems. It searches for the k-nearest training data points to a new test point

based on a distance metric such as Euclidean distance. As distance measurements,

we select Minkowski distance because it represents the generalized formula of both

(Manhattan and Euclidean) distances [52]. The predicted output value is the average

of the output values of the k-nearest neighbors. The value of k is chosen based on
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Figure 3.2: Example of regression using nearest neighbor [1]

the data and the problem being analyzed.

We tuned the n neighbours parameter to find the optimal number of neighbors for

the algorithm to consider when making a prediction. A smaller n neighbours makes

the model more sensitive to noise, while a larger value makes the model smoother but

may miss important patterns [53].

The algorithm parameter specifies the nearest neighbor algorithm used to compute

distances. The brute-force algorithm is computationally expensive for large datasets,

while ball tree and KD tree algorithms use tree-based structures for efficient compu-

tation. We tuned this parameter to find the optimal algorithm that maximizes the

model’s performance. See Figure 3.2.

k-NNR is a type of instance-based learning which memorizes the training data

for prediction. In other terms is called the lazy model. This makes it suitable for

complex nonlinear relationships between input features and output targets. However,
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k-NNR has limitations, including sensitivity to distance metric choice, the need for

large training data, and high computational costs for large datasets.

3.3.3 Random Forest Regression (RFR)

Random Forest Regression (RFR) is an ensemble learning method that uses mul-

tiple decision trees to predict the output variable, as shown in Figure 3.3. First, the

RFR uses an ensembling technique called bootstrapping to take a sample of data with

a replacement for each tree. The trees randomly sample the training data subsets and

input features to reduce overfitting [7]. Each decision tree is constructed by recur-

sively splitting the data to minimize variance until the specified maximum depth is

reached. To make a final prediction, RFR averages the predictions of all the decision

trees (Result 1, Result 2,.., etc.) to improve accuracy.

To optimize the RFR model’s performance, we tuned the maximum depth of the

tree and the number of features used for each split. The maximum depth determines

the number of splits allowed in each decision tree, capturing more complex relation-

ships but risking overfitting [54]. The number of features determines the number of

input features randomly selected for each decision tree, reducing overfitting but may

result in lower accuracy. These hyperparameters can be adjusted to find the optimal

values for a given dataset and problem.
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Figure 3.3: Random Forest Regressor Bagging Trees

3.3.4 Extreme Gradient Boosting Regression (XGBoost)

XGBoost is a machine learning algorithm for classification and regression prob-

lems. It works by constructing a series of decision trees, where each tree tries to

correct the errors made by the previous tree. It optimizes the regularized loss func-

tion by applying the second-order Taylor series approximations within the context

of gradient descent boosting [27]. During training, XGBoost selects the best-split

points for the data based on how well the trees perform. It then adds new trees to

the ensemble by continuously splitting features to fit the residual of the previous pre-

diction. Once all the trees are built, XGBoost predicts a numerical value by summing

up the predictions of each individual tree. The final output is a weighted sum of the

predictions from all the trees, where the weight for each tree is determined by how
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well it performed during the training phase [10].

Figure 3.4 shows how XGBoost works: It starts with Tree 1 by finding the best-

split point for the entire dataset. Then, the XGBoost algorithm continually calculates

the loss at each decision tree node and selects the leaf node with the largest loss

reduction. The algorithm then adds a new tree to the ensemble, each tree learning a

new function fm(X, θm) that fits the residual of the previous prediction, where X is

the subset of features and θm is the gradient boosting tree structure.

After training, the XGBoost model has a number of decision trees M , and each

prediction sample corresponds to a leaf node in each tree, corresponding to a score.

The scores of each tree are combined to produce the final prediction value for the

sample.

In summary, XGBoost builds an ensemble of decision trees by continuously split-

ting features to fit the previous prediction’s residual and combines each tree’s scores

to make a final prediction. The diagram of the XGBoost algorithm is shown in Figure

3.4.

We used a set of parameters while implementing the model to enhance its perfor-

mance. The studied parameters include the colsample bytree to identify the percent-

age of features used per tree, eta to prevent the model over-fitting, and max depth of

the gradient trees. The mean squared errors (MSE) are the loss function that reduces

the preceding tree’s residuals.

37



Figure 3.4: XGBoost Regressor Boosting Trees

3.4 Data Collection, Analysis, and Processing

In the spot model, if the price changes, then the SI prices will change hourly. The

hourly preprocessing was done previously in most related works (e.g., [13, 16–18]).

Hourly data may be necessary to capture the underlying patterns and fluctuations

that occur over short periods of time. In financial forecasting, hourly data may be

used to capture short-term trends and fluctuations in market conditions, which in our

scenario is applicable over the spot price change of data.

3.4.1 Data Collection

The dataset used in this study consists of the historical spot price data of Amazon

EC2 instances in various regions from 2019 to 2020. This data was collected as

archived files by Ardi Calvin [55] from the University of Southern California; the

data was collected daily based on the event level. Each instance was categorized

based on its unique operating system data to prepare the data for analysis. The time
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stamps were grouped into days, with hourly unit records generated for each day. The

resulting dataset is organized in ascending order as a time series, with approximately

350,400 records per year. Given that this is a time-series problem, the model was

trained using past data to forecast future data [56]. For instance, when the model

was trained using a one-month window, the training data from January was used to

predict the testing data in February. The study investigated the models’ performance

using three different time window sizes: day, week, and month. Previous research by

Khandelwal et al. [17] and Liu et al. [18] suggested that the 1-week ahead prediction

interval yielded the best results. However, the findings of this study indicate that

the 1-day ahead window actually yields the best results, while the 1-month window

yields the worst results.

3.4.2 Data Preprocessing

In our research, we encountered the challenge of processing training data initially

provided at a detailed event level. Each event corresponded to a specific virtual

machine instance running on a cloud platform. However, to use this data effectively

in machine learning models, we needed to aggregate it hourly. Each hour record

would represent a synopsis of the events during that hour. This conversion allowed

us to create 200 unique time series, each representing a unique scenario of instance

type, region of instance location, and operating system. To perform this conversion,

we used the ’.ffill’ function from the popular scikit-learn library in Python [1], which

allowed us to fill in any missing data values in the hourly data by forward-filling the

previous value. This resulted in a complete and consistent dataset that we could

use for further analysis and modeling. In Figure 3.5. This study chooses 5 regions

and 10 featured instances, and 4 operating systems as shown in Table 3.1. These

instances were selected previously in [17] from the Compute-Optimized family with
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two generations C3 and C4. The preprocessing flow diagram in Figure 3.5 shows

how we processed the data in each region to generate 40 series as a dataset, and we

have the R1 as an example. We started by considering each region separately, then

looped over every OS. A filter for each instance is applied before start aggregating

the event-level data to convert it into hourly. The output series was saved and then

combined to produce each region dataset.

Table 3.1: Regions, Instances types and Operating System (Abbreviations and names)

Region Instance Operatig System
R# Zone name I# Type I# Type O# Names
R1 us-east-1a I1 c3.large I6 c4.large O1 Linux/Unix
R2 us-west-1a I2 c3.xlarge I7 c4.xlarge O2 Windows
R3 us-west-2a I3 c3.2xlarge I8 c4.2xlarge O3 SUSE Linux
R4 eu-west-1a I4 c3.4xlarge I9 c4.4xlarge

O4 RedHat Linux
R5 ap-northeast-1a I5 c3.8xlrge I10 c4.8xlarge

3.4.3 Data Analysis

Stationarity is a key assumption in many technical analysis models, as it implies

that the statistical properties of the time series, such as the mean and variance, do

not change over time [23]. It is important to know whether the data is stationary

because the statistical properties of a time series can change over time if the time

series is non-stationary. A non-stationary time series can exhibit trends, cycles, and

other patterns that make it difficult to model, forecast, and make inferences about

the data. For example, if a time series is non-stationary, it may exhibit a trend over

time [44, 49]. This trend can make detecting other patterns or changes in the time

series difficult; Figure ?? shows the different distributions of the series from regions R1

and R3. Similarly, if a time series is non-stationary, it may exhibit seasonal variations

that can mask the underlying patterns in the data. We can use appropriate prediction

40



Figure 3.5: Processing steps of series in each region (e.g., R1 region)
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techniques to model, analyze, and forecast the data by identifying whether the time

series is stationary.

To check whether our data are stationary or non-stationary, we choose two tests to

assess our data and the proper models to use. The First test is the Augmented Dickey-

Fuller test (ADF) [43] and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test [44]. The

ADF test checks whether the data has a unit root, indicating that the series is non-

stationary. In contrast, the KPSS test checks whether the data has a trend, indicating

non-stationarity. Authors in [38] used those tests to check the stationarity of the

data. Also, Hyndman and Athanasopoulos’ in their book Forecasting: Principles and

Practice [49], recommended them as a time series stationarity test.
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Figure 3.6: Series Distribution Examples in region R1 and R3.
43



Augmented Dickey-Fuller test

We use this statistical test to check for data stationarity. The Augmented Dickey-

Fuller (ADF) test null hypothesis is that the time series has a unit root, which means

that the time series is non-stationary. The alternative hypothesis is that the time

series is stationary [43].

To check the null hypothesis in the ADF test, the p-value is considered. Suppose

the p-value and test statistics are less than your chosen significance level (usually

0.05). In this case, the null hypothesis is rejected and it is concluded that the time

series is stationary. If the p-value exceeds the significance level, the null hypothesis

cannot be rejected, and the time series is non-stationary.

• Null Hypothesis: The time series has a unit root and is non-stationary.

• Alternative Hypothesis: The time series is stationary and has no unit root.

We applied this test to all the series scenarios we obtained from processing the

data, and we found most of the series are non-stationary. The table of the ADF tests,

including the p-values for each series are attached in Appendix A, Table A.2. The

table concludes if each is stationary in region R1 as an example.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

The KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test is a statistical test used in

technical analysis to determine whether a time series is stationary. The KPSS test

works by comparing between the actual values and the estimated trend of the time

series. If the p-value of the test is below a certain significance level, typically 0.05,

then the null hypothesis of stationarity is rejected, indicating that the time series is

non-stationary. On the other hand, if the p-value is above the significance level, then

the null hypothesis is not rejected, suggesting that the time series is stationary and
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can be analyzed using various technical analysis techniques. The table of the KPSS

tests, including the p-values for each series attached in Appendix A, Table A.1. The

table concludes if each is stationary in region R1 as an example.

• Null Hypothesis: The time series is stationary around a deterministic trend.

• Alternative Hypothesis: The time series is non-stationary, meaning it has a

unit root or a stochastic trend.

3.5 Training, Validation, and Testing

When testing and training the spot data, we adopted two distinct approaches to

ensure the robustness and accuracy of the models. The first approach employed was

the fixed rolling window method, which involves partitioning the data into fixed-size

windows based on time, each consisting of a specified number of consecutive time

intervals. In our study, we used window sizes of one day, one week, two weeks,

and one month for training, with the models trained to forecast the next day, week,

two weeks, and month’s spot prices. This method is advantageous in capturing any

time-dependent patterns or trends in the data.

The second approach we used is the randomized search cross-validation technique,

which involves exploring the hyperparameters of the ML models. By investigating

the most effective hyperparameters for each model, we aimed to achieve optimal

performance and minimize the error rate of the models. This approach enables us to

train the models on various data subsets and assess their performance using k-fold

cross-validation in the training phase.

The fixed rolling window method and randomized search k-fold cross-validation

approach offer a comprehensive and robust framework for testing and training spot

data. These approaches allowed us to develop more generalized models to accurately
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predict future spot prices and be applied to different regions and timeframes.

The training and testing phases were executed in three steps. We split the data

into fixed rolling windows based on time for both training and testing. It is important

to note that the training set always consisted of past data to predict future observa-

tions in the testing set. During the training phase, we utilized either default or tuned

hyperparameters, with the latter requiring investigation using an appropriate test of

the model validity. In the hyper-tuning process, we employed k-fold cross-validation,

which involves splitting the training data into train and validate sets. This approach

ensures that the models are not overfitting to the data and can generalize well to

new, unseen data. By testing the model on a separate validation set, we can assess

its performance on data it has not been trained on, providing a more accurate mea-

sure of its generalization ability. We employed the randomized search approach [45]

with five folds (K= 5) for each model tuning procedure to ensure robustness and

avoid bias. This technique enabled the model to learn from diverse data distributions

and construct optimal decision boundaries, as demonstrated in previous studies. For

each fold, the data is divided into five splits; four of these are used for model training,

and one of the splits is reserved for validation. As illustrated in Figure 3.8, the cross-

validation process disregards time since the model is tested with future data (which

was held out during the data splitting phase). This approach enables the model to

learn from diverse data distributions to construct optimal decision boundaries [6].

Finally, after constructing the best model, we evaluated the models’ performance on

the testing data.
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Training and Testing Datasets

In time series problems, fixed testing and training window sizes of 24 hours for

each (1-day ahead) mean that the dataset is divided into consecutive windows, where

each window is 24 hours long. The model is trained on the data in one window and

tested on the data in the next window, which is also 24 hours long.

For example, in our work, if we have a time series dataset with hourly data over

a period of one year, we can divide the data into contiguous 24-hour windows . Each

window will contain 24 hourly observations, and we can train a model on the first 24

hours of data and test it on the next 24 hours of data for 40 series in each region.

We continue this process for the entire dataset length, where each window overlaps

with the previous window by 24 hours since we used the sliding window approach to

create training and testing sets. This approach is illustrated in Figure 3.7

Figure 3.7: One-day ahead testing and training sliding window technique.

Randomized Search Cross-Validation

Randomized search cross-validation is a technique used to explore the hyperpa-

rameters of machine learning models to improve their performance. Hyperparameters

are settings that can be tuned to optimize the model’s performance. The randomized

search involves randomly sampling the hyperparameters of a model within specified
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ranges rather than exhaustively trying all possible combinations. This allows for a

more efficient search of the hyperparameter space [45].

During the randomized search process, the data is partitioned into k subsets or

”folds”. The model is trained on k-1 folds and validated on the remaining folds. This

process is repeated k times, with a different fold used for validation each time. The

model’s performance is evaluated by averaging the results from the k-fold validation.

In our case, we used 5 K-folds to achieve our best performance.

The randomized search approach can help identify the most effective hyperpa-

rameters for a given model and dataset by exploring different hyperparameters and

evaluating their performance through cross-validation. This can ultimately lead to

better performance and more accurate predictions.

Figure 3.8: Cross-validation Splitting Approach
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3.5.1 Hyper-tuning Parameters

The primary aim of hyper-parameter optimization is to attain the best possible

performance for a specific algorithm. Since the distribution of data samples can be

unpredictable and inevitable, it is necessary for researchers and scientists to contin-

uously explore the hyper-parameters, particularly the hyper-parameter λ associated

with the implemented algorithms (i.e., RFR), to reduce model error loss rates. In

our study, we used the Randomized Search proposed by James and Benjio [45] to

determine the optimal λ for each region yearly.

Although hyper-tuning is widely known for reducing errors and improving accu-

racy, our five-fold cross-validation in hyper-tuning parameters for all models showed

no significant improvements except for the SVR model. Table 3.2 describes our mod-

els’ hyperparameters and whether it affects results improvement in the predicted

prices.

Table 3.2: Tuned Hyperparameters in the Trained Models

Model Hyperparamter Description Default Affect results?

RFR max depth maximum depth of the tree None No

max features Number of features to consider when
looking for the best split 1 No

k-NNR n neighbors (k) Number of neighbors to use by default 5 No
algorithm Algorithm used to compute the nearest neighbors auto No

XGBoost
colsample bytree Subsample ratio of columns when

constructing each tree. 1 No

eta Boosting learning rate 0.3 No
max depth Maximum tree depth for base learners 6 No

SVR
gamma Kernel coefficient scale Yes
kernel kernel type to be used in the algorithm rbf Yes

C Regularization parameter. The strength of the
regularization is inversely proportional to C 1 Yes

In this study, we conducted a hyper-tuning process for the SVR model to optimize

its performance by adjusting the parameters C and gamma. We found that the RBF

kernel was the optimal choice for the SVR model, and we focused on tuning C and
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gamma to enhance its performance. It is worth noting that the tuning process must be

carefully conducted to avoid degradation in model performance, which would require

repeating the search process.

The tuning results, presented in Table 3.3, demonstrate the impact of the hyper-

tuning process on the SVR model’s performance based on the year and region. In par-

ticular, we observed that adjusting C and gamma resulted in improved performance,

as indicated by lower RMSE and MAPE values, which are shown and discussed in

Chapter 4. We also found that different regions and years required different values of

C and gamma, highlighting the importance of tuning the parameters for each dataset.

While hyper-tuning improved the performance of the SVR model, it is worth

noting that other models, such as RFR, k-NNR, and XGBoost, are more stable and

do not require tuning of their parameters. Therefore, the cost of hyper-tuning can

be reduced when using these models. Our study demonstrates the importance of

carefully selecting and tuning parameters to optimize model performance and achieve

accurate results.

Table 3.3: SVR Hyper-parameters changes in R1 and R5 (2019-2020)

Region metrics 2019 2020

R1
Kernel rbf rbf
gamma 1 1
C 1 2

R5
Kernel rbf rbf
gamma 10 1
C 1 2

The Algorithm 1 shows the training and testing used in our development process.

This algorithm describes a process for training, validating, and testing spot price

prediction models. Here is a step-by-step explanation of the algorithm:
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The input data is sorted by time using the function ”Sort by time”. A list of years

(2019 and 2020) and a list of regions (R1, R2, ..., R5) are defined. A list of time

windows (day, week, and month) is defined. For each region in the list of regions:

(1) The input data is filtered by region using the function ”Filter by”.

(2) For each year in the list of years:

• The filtered data is further filtered by year using the function ”Filter by”.

• For each time window in the list of time windows:

◦ The filtered data is split into training and testing sets using the func-

tion ”Split data byTime”.

◦ A model with default parameters is trained on the training set using

the function ”Train Model”.

◦ A model is tuned using Randomized Search Cross Validation with 5

folds on the training set using the function ”Randomized Search CV”.

(3) A report is generated using the testing set using the function ”Generate report”.

Our process is designed to iterate over all possible combinations of region, year,

and time window and generate a report on the performance of the models on each

combination. The Randomized Search Cross Validation approach is used to find the

optimal hyperparameters for the model, and the testing set is used to evaluate the

performance of the final model.
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Algorithm 1: Process of training, validation, and testing of spot price pre-

diction models
Data: DataRegion,Y ear

Result: Results

1 Data← Sort by time(DataRegion,Y ear)

2 Y ears← {2019, 2020}

3 Regions← {R1, R2, ..., R5}

/* The Time Window can be day, week, or month. */

4 Time Windows← {day, week, month}

5 foreach R ∈ Regions do

6 Datar ← FilterBy(Datay, R)

7 foreach Y ear ∈ Y ears do

8 Datay ← FilterBy(Data, Y ear)

9 foreach Window ∈ Time Windows do

10 DataT rain, DataT est ← Split data byT ime(Datar, Window)

11 Modeldefault ← Train Model(DataT rain, Defaultparameters)

/* Five folds cross-validation is applied using the

Random Search approach. */

12 Modeltuned ← Randomized Search CV (DataT rain, K − folds = 5)

13 Results← Generate report(DataT est)

3.6 Experimental Design

In order to train all of the machine learning models, a specific set of features was

selected and considered. These features considered in training the models have listed

in Table 3.4

By incorporating these features into the training process, the models could better
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Table 3.4: Features used to train the models

Feature Description
Month 12 months as January, Febraury, . . . ., December
Days 7 days as Monday, Tueday,. . . ., etc.
Instance 10 instances (I1,I2,. . . ..,I10)
Operating System 4 operating systems (OS1, OS2,. . . , etc.)

understand the relationship between these variables and the target variable (the AWS

spot instance price), thus improving their predictive capabilities. We build models

based on year, window time size, and region, resulting in 160 scenarios for evaluation

(2 years x 4-time windows x 5 regions x 4 models). We aim to compare and measure

the performance of these models; see Figure 3.9.

3.6.1 Experiment Setup

The study was implemented in Python 3.6, and the code, dataset, and results

are freely available as an Eval-EC2Spot-REC in Github1. We believe that allowing

the source code of our research represents reliable research and allows the bigger

community to enhance cloud technologies for our society. Different python libraries

were used, including scikit-learn, matplotlib, and slickML, to implement the REC

Curve [1,57,58]. The device specifications are Intel Xeon(R) CPU @ 3.60GHz, RAM

of 32 GB, and Windows 10 Enterprise.
1https://github.com/BatoolKad/Eval-EC2Spot-REC.git
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Figure 3.9: The Flowchart of the experiments
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3.7 Tuned and Default Models

We compared the performance of default models, which use the pre-set hyperpa-

rameters provided by the algorithm developers, to that of tuned models, which have

parameters specifically adjusted to suit the data distribution. We used the random-

ized cross-validation technique to tune the hyperparameters of our machine learning

models, which allowed us to search the hyperparameter space efficiently and identify

optimal parameter values.

After training and tuning our models, we found that k-NNR, RFR, and XGBoost

performed similarly with either default or tuned parameters. However, the SVR model

showed a slight performance improvement when its parameters were tuned, depending

on the region and timing of the data. This suggests that the SVR algorithm is more

sensitive to the hyperparameters than the other algorithms.

Overall, our proposed machine learning algorithms are simple and can handle data

fluctuations and changes in price patterns. Tuning the hyperparameters can provide

a small performance boost for some models, but it is not always necessary. Default

parameters may be sufficient when data is limited or training time is a concern.

However, tuning the hyperparameters is recommended for more complex problems or

when maximum performance is desired.

3.8 Summary

In this chapter, we present the methodology used in our research, which involves

the application of non-parametric supervised machine learning algorithms to address

the spot price as a regression problem by minimizing the model’s loss errors while

training. We also discuss the pre-processing of the data used in our study and assess

its stationarity using the ADF and KPSS tests. Then, the experimental design of this
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study is presented, including the training, validation, and testing phases. The ran-

domized cross-validation technique is utilized to tune the hyperparameters, and the

rolling window method is employed during training and testing to ensure the robust-

ness and accuracy of the models. This chapter provides a comprehensive overview of

the methodology employed in our research, except for the evaluation step, which is

covered in the next chapter.

In this chapter, we present the methodology we used in our research to pre-

dict spot prices using non-parametric supervised machine learning algorithms. The

main objective is to minimize the errors in the model’s predictions during train-

ing by applying different techniques. First, we pre-process the data and evaluate

its stationarity using two statistical tests: Augmented Dickey-Fuller (ADF) and

Kwiatkowski–Phillips–Schmidt–Shin (KPSS).

Then, the experimental design includes three main phases: training, validation,

and testing. During training, we use the rolling window method, which involves

training the model on a fixed number of historical data points and then moving the

window forward to predict the next data point. This method ensures that the model

is robust and accurate in time-series forecasting. Lastly, we tune the hyperparameters

while training using a randomized search cross-validation technique, randomly select-

ing data subsets to train the model and validate its performance. This technique

helps prevent overfitting, where the model becomes too specialized to the training

data and does not perform well on new data. A final training using default and tuned

hyperparameters attractively was done to compare between them.

Overall, this chapter provides a comprehensive overview of the methodology used

in the research. However, the evaluation of the model’s performance is covered in the

next chapter, which will provide more insight into the effectiveness of our approach.
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Chapter 4

PERFORMANCE EVALUATION

The process of evaluating prediction models is crucial in both classification and

regression tasks. This study assesses the performance of ML regression models. We

developed and evaluated 4 models (XGBoost, RFR, k-NNR, and SVR) in the context

of SI price predictions. Our models consider various factors that affect the nature of

the spot data, including the time for 2 years of observed data, the location of launched

instances (e.g., R1:us-east-1a, R3:u-west-2a), and time window size (e.g., day, week,

and month). The total number of built and evaluated models is 120 (4 models, 5

regions, 2 years, and 3 window sizes). We use new metrics to evaluate these models

that study the trade-off between deviation and accuracy compared to the previous

studies that did not consider these factors.

To evaluate the accuracy of our predictions, we need to estimate the forecast

error using an appropriate evaluation metric. It involves calculating the difference

between the predicted and actual price points, with the predicted value being the

output of the trained model [11,41,49]. It means the error should always be positive

since it is the distance between two points, except if we want to know the direction of

the error, as negative or positive, to optimize the working models. Various methods

can be used to measure forecast error, broadly classified as either scale-dependent
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or scale-free metrics [25]. We consider using both types of metrics, as well as the

scaled error metric [23]. In addition, we consider the usage for the REC Curve and

the area under the REC (AUC-REC) as newly utilized metrics in the field of SI price

predictions.

4.1 Forecast Error Metrics Types

Estimating the forecast errors accurately of Spot Instances (SI) price predictions

is crucial since it can cause delays in customer work. Choosing the right error metric

is vital in indicating forecast prices accurately. In our study, we focus on measuring

forecast errors, regardless of their magnitude or distribution, since any error in bidding

or setting the maximum price for the spot instance can cause work to fail. The

distribution of the errors also affects the evaluation metrics, and squared error, for

instance, always penalizes large errors, making them positive. However, it is not

useful when errors are small, less than, or equal to 1. Several methods measure this

error, largely divided into scale-dependent and scale-free metrics [24, 25] to assess

model performance. We consider the usage of both of them. We also use the REC

metric, a visualization tool that helps experts study model performance insights. The

REC metric and area under the REC Curve (AUC-REC) are newly utilized metrics

in SI price predictions and provide a unique perspective on model performance.

4.1.1 Scale Dependent and Scale-free Error Metrics

Scale-dependent errors are metrics affected by the predicted data’s scale or data

unit (e.g., US dollars, Celsius, and Fahrenheit) [23,59]. A range of evaluation metrics

is considered from this type of metric, including MAE, MSE, and RMSE. These

metrics give equal weight to each observation, regardless of the magnitude of the
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prediction error. They are useful for evaluating the accuracy of predictions when the

scale of the data is important, such as in physical measurements, financial forecasting,

or stock price prediction [25]. In this research, the scale of the data is important, but

these metrics did not give the right insight in the end due to their limitations and the

way they estimate the forecast errors. A detailed explanation of these errors metric

is discussed in section 4.2.

On the other hand, scale-free errors are metrics not affected by the scale of the

predicted data. Examples of scale-free error metrics include mean absolute percent-

age error (MAPE) and symmetric mean absolute percentage error (SMAPE). These

metrics give more weight to smaller prediction errors and less weight to larger pre-

diction errors. They are useful for evaluating the accuracy of predictions when the

scale of the data is less important, such as in predicting proportions or rates of sports

outcome prediction [23,49].

The main difference between scale-dependent and scale-free error metrics is their

sensitivity to the magnitude of prediction errors. Scale-dependent metrics are more

sensitive to large errors, while scale-free metrics are more sensitive to small errors

[23,60].

4.1.2 Single and Multi-point Accuracy Metrics

Single-point accuracy metrics for regression problems are used to evaluate the

performance of regression models as a single averaged value [23, 25, 60]. The most

common single-point accuracy metric is Mean Absolute Error (MAE), which measures

the average absolute difference between the actual and predicted values [59]. Another

popular single-point accuracy metric is Root Mean Squared Error (RMSE), which

measures the average magnitude of the error [41]. These metrics can provide valuable

information about the accuracy of a regression model for a specific prediction. It can
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be used with overall accuracy metrics, such as R-squared, to get a complete picture

of a model’s performance.

Multi-point accuracy metrics are evaluation metrics used in regression problems to

measure the accuracy of predictions across all points of the target variable concerning

their error threshold [21]. Unlike single-point metrics, multi-point metrics compre-

hensively evaluate model performance by considering the overall distribution of errors

across multiple points in the target variable and visualizing it. The regression error

characteristic curve (RECC) plots the cumulative distribution of errors between the

predicted and actual values, providing a visual representation of how the errors are

distributed across the target variable. This can help to identify areas of weakness

in the model, as well as to identify potential biases in the predictions. In general,

multi-point accuracy metrics provide a more comprehensive evaluation of model per-

formance than single-point metrics. They can help identify areas of weakness in the

model and inform the decision-making process for model selection and optimization.

4.2 Model Performance Evaluation Metrics

We evaluate the price predictions of 120 ML models using the four algorithms

XGBoost, RFR, k-NNR, and SVR. We consider the same criteria of development in

the evaluation process. The considered data criteria were location and time effects.

At the same time, the training measures are considered as the training window,

hyperparameters tuning effects. We applied the most used evaluation metrics from

the related work: MAE, MSE [13], RMSE [19], and MAPE [17, 38, 52]. In addition,

we used the REC Curve and AUC-REC as the primary metrics in evaluating the

prediction models.

To understand how each metric works or how to calculate errors using a specific

60



metric, we explain the operational principle and the mathematical formula that ex-

plains each metric. Thus, the explanation of each metric is provided below to help

understand how it measures forecast errors and its strengths and limitations. Conse-

quently, use it for evaluating the SI price prediction models.

4.2.1 Mean Absolute Error

The Mean Absolute Error (MAE) is a popular evaluation metric employed in

regression models to assess the accuracy of predictions [41]. It is defined as the

average of absolute differences between the predicted and actual values, making it a

simple and easy-to-interpret error measure. The mathematical formula is shown in

the equation 2 below:

MAE =
∑n

i=1 |yi − ŷi|
n

(2)

where n is the number of observations, yi is the true value of the ith observation,

and ŷi is the predicted value for the ith observation. The absolute value function ||

ensures the errors are positive.

Despite its simplicity, MAE has a drawback in that it lacks information about the

direction of the error [59,61]. This can result in an imperfect evaluation of the model’s

performance, particularly when forecast errors are relatively small. Averaging small

values can change their interpretation by masking important information in the data.

For instance, if we have a set of errors where most of the values are large and a few

values are small, then averaging all the values together can hide the fact that a few

small values may be significant in some way.
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4.2.2 Mean Squared Error

The Mean Squared Error (MSE) is a widely used metric in regression models to

evaluate the accuracy of predictions. It measures the average of the squared differ-

ences between the predicted values and the actual values. The main advantage of

using MSE is its mathematical properties, which provide a more comprehensive anal-

ysis of the error between the predicted and actual values. However, this advantage

has a drawback: MSE is sensitive to data distribution [23]. When the target variable

has a high proportion of large values, MSE tends to heavily penalize large errors,

which can result in a distorted evaluation of model performance [62]. This sensitivity

to data distribution can make MSE less suitable for modeling certain problems, such

as skewed or non-normal data distributions, where outliers can significantly impact

the MSE value. The equation of MSE is listed below:

MSE =
∑n

i=1(yi − ŷi)2

n
(3)

where n is the total number of samples, yi is the actual value, and ŷi is the predicted

value.

4.2.3 Root Mean Squared Error

The Root Mean Squared Error (RMSE) is a widely used evaluation metric for

regression models. However, it has a major weakness: it is highly sensitive to data

distribution [23, 62]. RMSE estimates the difference between the predicted and ac-

tual values and calculates the average of these differences. This makes it vulnerable

to outliers, which can significantly impact the overall score and make it difficult to

compare different [49]. Additionally, RMSE does not provide information about the
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direction of the errors, making it difficult to identify patterns or biases in the predic-

tions [59,61]. As a result, it is important to consider the distribution of the data and

the presence of outliers when using RMSE as an evaluation metric. Furthermore, us-

ing other metrics, such as mean absolute error or median absolute error, is advisable,

which are less sensitive to the data distribution and provide a more comprehensive

view of the model’s performance.

RMSE =
√√√√√∑n

i=1(yi − ŷi)2

n
(4)

where n is the total number of samples, yi is the actual value, and ŷi is the

predicted value. Note: the equation under the root is the MSE equation. See equation

(3).

4.2.4 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a favored measurement utilized

in regression models described in the related work Chapter 2, section 2.2 to determine

the precision of predictions. It calculates the percentage difference between the actual

and predicted values and takes the average of the absolute values of these differences

[63]. However, MAPE has a considerable drawback as it is prone to be impacted by

data distribution. When the target variable has a high proportion of zero or near-zero

values, the percentage error becomes undefined or extremely large [23], leading to a

distorted evaluation of the model’s performance, as the metric fails to consider the
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actual size of the error.

MAPE = 1
n
∗

n∑
i=1
|yi − ŷi

yi
| ∗ 100% (5)

4.2.5 REC Curve and AUC-REC

The Regression Error Characteristic Curve (REC Curve) is a technique for visual-

izing and comparing regression results, such as the Receiver Operating Characteristic

(ROC) Curve for classification models. While the AUC-REC is a single scalar rep-

resenting the performance associated with every point on the REC curve, it gives a

comprehensive understanding of the accuracy along each error tolerance rate [21].

The ROC is an evaluation metric that is used to visualize classifier performance

based on true positive rate (TPR on the y-axis) versus false positive rate (FPR on the

x-axis) [22]. Researchers utilize the ROC curve to evaluate model performance at var-

ious thresholds providing visualization of the detector performance and the selection

of optimum operating points without committing to a single decision threshold [22].

However, the ROC is not adapted to visualize the performance of regression models

because the regression results are continuous values. Bi and Bennett [21] proposed

REC as a visualization metric for regression models.

The REC curve is drawn with points based on 2 values (absolute deviation on

the x-axis and accuracy on the y-axis) as shown in Figure 4.1. The range of the

y-axis is between [0, 1] intervals, while the x-axis range could be modified based

on the problem. We adopted absolute deviation error as the optimal loss function

[21] to determine the deviation on the x-axis, with a threshold of 1 for the highest

approximated error. On the contrary, the y-axis represents the proportion of points

that fit inside the error tolerance known as accuracy. The value is optimal until the

top left corner approaches 1 for accuracy and 0 for deviation. At this point, the REC
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curve attains its highest accuracy and lowest deviation. In comparison, the bottom

right corner achieves 0 accuracy’s and 1 absolute deviation, which means the worst

value on the REC curve [22]. The diagonal line in the middle represents the 0.50 for

each point values of deviation and accuracy (also known as a random model).

Figure 4.1: Regression Error Characteristic (REC) interpretation

As a result, the best model performance is the one that draws the nearest point

to the upper left corner of the REC curve. Finally, we calculate the area under the

curve to represent all these points from the REC curve as a single value called the

model’s accuracy (AUC-REC). Equation 6 used the Simpson method as an integral

method implemented in [64] to estimate the cumulative distribution function of the

error as a curve [21].

AUC =
∫ ϵ

0
F0(x)f1(x) dx (6)
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The AUC is a single statistic that measures expected performance as accuracy

with well-understood statistical meaning.

4.2.6 Summary of Evaluation Metrics

The error metrics discussed earlier are designed to estimate errors by aggregat-

ing them using an average of all errors, including MSE, MAE, RMSE, MAPE, and

AUC-REC. However, one error is associated with each predicted point calculated in

all metrics: the deviation or distance between the actual price point yi and the pre-

dicted value ŷi [23, 25, 60]. Therefore, relying on the overall errors based on a single

point can be unreliable and open to debate, as noted in previous studies [25, 41, 61].

To address this issue, the REC Curve visualizes the trade-off between errors for each

prediction [21,65]. This allows a more accurate estimation of the prices and their as-

sociated errors. The REC Curve is a corresponding metric of the Receiving Operating

Characteristics Curve (ROCC) used in classification.

4.3 Evaluation Metrics Insights

The metrics’ efficiency required an investigation of all metrics outcomes using their

error distribution and how it reflected in determining the models’ performance. Thus,

we used the Boxplot [57] as an illustration tool to analyze the prediction forecast errors

using exploratory data analysis, providing a visual representation of the distribution of

forecast errors using all utilized metrics and allowing for the identification of potential

outliers and comparisons between datasets.

Boxplots, also known as box-and-whisker plots, are useful data visualization tools

for displaying the distribution of a dataset. They are particularly useful for identifying

outliers and comparing multiple datasets’ distribution.
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Earlier in section 4.2, we outlined the metrics used to evaluate the Spot price

predictions. We ordered the metrics with the lowest insight to the highest based on

their forecasted error distribution in the four utilized models: MSE, MAE, RMSE,

MAPE, AUC-REC, and REC Curve.

4.3.1 MSE Evaluation Insights

Figure 4.2 displays the errors estimated using MSE for three different training

windows in one region for 2019. It can be observed that all models perform similarly,

except for SVR, which has outliers when predicting with a 1-day window. However,

MSE is not a good metric for evaluating the performance of models in SI price predic-

tions. The MSE errors for models XGBoost, RFR, and k-NNR are underestimated,

with a median and quintile of zero for the Boxplots. These models reflect errors based

on the squared specialty, but when the loss is less than 1, the loss exponentially de-

cays until it reaches zero. The same issue is in Figure 4.3 for data from 2020. The

MSE shows that all models are performed with low error rates.

Figure 4.2: The distribution of MSE errors in region R1 (2019).
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Figure 4.3: The distribution of MSE errors in region R1 (2020).

Figure 4.4: The distribution of MSE errors in region R3 (2019).
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Figure 4.5: The distribution of MSE errors in region R3 (2020).

4.3.2 MAE Evaluation Insights

The MAE results for the four models in R1 and R3 regions for 2019 and 2020 are

presented in Figures 4.6, 4.7, 4.8, and 4.9. MAE in 2019 4.6 and 4.8 show the four

prediction models: XGBoost, RFR, and k-NNR with an error rate less than 0.2 and

0.4, respectively, except for k-NNR in 1-day has one outlier in the year. At the same

time, errors illustrated in figures 4.6 and 4.7 shows the same for the aforementioned

models with an MAE less than 0.1.

Except for the SVR, the MAE boxplot figures do not show a significant difference

between the training window sizes for the aforementioned models, as noted in the

MSE results. The SVR is sensitive to the distribution and density of the data, which

makes them produce bad results, especially when the training window is small. The

model cannot generalize or learn the data to generate accurate results.
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Figure 4.6: The distribution of MAE errors in region R1 (2019).

Figure 4.7: The distribution of MAE errors in region R1 (2020).
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Figure 4.8: The distribution of MAE errors in region R3 (2019).

Figure 4.9: The distribution of MAE errors in region R3 (2020).

4.3.3 RMSE Evaluation Insights

Figures 4.10, 4.11, 4.12 and 4.13 depict the errors in RMSE for regions R1 and R3.

RMSE is considered a superior metric to MSE in assessing the model performance.

The findings of the RMSE are similar to those of MAE, as discussed in section 4.3.2.
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The models XGBoost, RFR, and k-NNR demonstrate the best performance, with

a few more outliers observed for the k-NNR model. Conversely, the three figures of

RMSE show the SVR model has the poorest performance, like MSE and MAE insight.

Figure 4.10: The distribution of RMSE errors in region R1 (2019).

Figure 4.11: The distribution of RMSE errors in region R1 (2020).
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Figure 4.12: The distribution of RMSE errors in region R3 (2019).

Figure 4.13: The distribution of RMSE errors in region R3 (2020).

4.3.4 MAPE Evaluation Insights

Figure 4.14, 4.15, 4.16, and 4.17, illustrate the percentage of errors observed in

2019 and 2020, R1 and R3 respectively. In 2019, the first three models in the figures

depicted an MAPE that is less than or equal to 2%, except for the k-NNR model,
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which shows an MAPE of less than or equal to 7%. However, the SVR model

continues to exhibit the poorest performance, with the best results observed in the

1-week ahead window. Moreover, in Figure 4.16, which relates to the R3 region,

the k-NNR model displays a significant proportion of high outliers, with an MAPE

greater than 40%. On the other hand, the XGBoost model shows the most reliable

and consistent performance.

Figure 4.14: The distribution of MAPE errors in region R1 (2019).
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Figure 4.15: The distribution of MAPE errors in region R1 (2020).

Figure 4.16: The distribution of MAPE errors in region R3 (2019).
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Figure 4.17: The distribution of MAPE errors in region R3 (2020).

4.3.5 AUC and REC Curve Evaluation Insights

The AUC-REC metric calculates the area under the REC curve, whereas the REC

curve gives us more insight into the model performance. As indicated previously, the

REC visualizes accuracy with different loss thresholds. Figures 4.18a, 4.18a 4.18a

visualize the REC curve of 4 models based on the window size (day, week, and month,

respectively) for the year 2019 and region R1. Also, Figures 4.19a, 4.19b and 4.19c

display the REC of 4 models of the year 2020. The model performance is better with a

window size of 1-day for all models except SVR when we used the 1-day time window

in both years (2019 and 2020). On the other side, the performance of models (RFR,

k-NNR, and XGBoost) is degraded by 1% of AUC-REC when we used a 1-month

window size to train the models. The AUC-REC increased by 14% for SVR when

trained using 1-month. All the REC curves are plotted using a series of accuracy and

deviations. We can easily represent these values as a single curve to compare models’

performance.
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(a) REC Curve of 1-day time window (R1/2019)

(b) REC Curve of 1-week time window (R1/2019)

(c) REC Curve of 1-month time window (R1/2019)

Figure 4.18: The REC visualization of 2019 (R1)
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(a) REC Curve of 1-day time window (R1/2020)

(b) REC Curve of 1-week time window (R1/2020)

(c) REC Curve of 1-month time window (R1/2020).

Figure 4.19: The REC visualization of 2020 (R1)
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To this end, we illustrated the AUC-REC accuracy of all models using the Box-

plots. Figures 4.20 and 4.22 pictured the AUC-REC of 4 models in 2019. The top

three models achieve the best AUC-REC with slight variance in XGBoost, while the

performance of RFR and k-NNR exhibited high variance with AUC less than 0.6 for

some points. In comparison, the SVR model has a median of 55% to 74% with a high

variance of results meaning that the model is not confident about the results. The

results of 2020 give the same insight with more robust performance. Figures 4.21 and

4.23 show top models with the finest accuracy for a 1-day training window.

Figure 4.20: The distribution of results for AUC-REC metric of region R1 (2019).
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Figure 4.21: The distribution of results for AUC-REC metric of region R1 (2020).

Figure 4.22: The distribution of results for AUC-REC metric of region R3 (2019).
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Figure 4.23: The distribution of results for AUC-REC metric of region R3 (2020).

4.3.6 Summary

As shown previously, the MAPE is a widely used metric that has been used for

measuring the percentage of errors in regression problems [62]. However, it can not be

used if the results contain zeros or values close to zero because it can result in infinite

or undefined values; the range is between [0,∞) [23, 66]. As shown in Figures 4.15

and 4.17, the range of results has zero values for all models except SVR. Moreover,

the results of the SVR model contain a high rate of outliers. This issue occurs because

the MAPE metric puts a higher penalty on negative errors [26]. As a result, using

MAPE is critical when we move the trained model to production. Producing infinite

or undefined results can raise an exception (e.g., memory overflow) and problematic

understanding of the model results.

Figures 4.2, 4.6, and 4.10 show the overall statistics of RMSE, MAE, and RMSE

errors, respectively. The MSE is the worst metric for evaluating errors. The intuition

given using the MSE directed by the squared unit used while prediction means the

MSE values interpreted in our study as squared US dollars which is not comparable
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to the real price values in US dollars. Figure 4.3 illustrated the errors of the year

2020. Since the SVR model is sensitive to the data distribution, it has more outliers.

Both MAE and RMSE are used to evaluate the price prediction model accuracy.

Again, the range of these metrics lies within the range [0,∞). As a result, interpreting

the model predictions is not an easy task for normal users. The MAE has more reliable

results, as shown in Figure (4.6, 4.7, 4.9 and 4.8), are displaying the SVR as the worst

model. The main issue of MAE is confidence in predictions. The variance of results

of SVR in Figure 4.6 is smaller, which means that the SVR model has high confidence

to predict price accurately, but this is incorrect. Different data distributions hinder

the performance of the SVR model, which has the lowest performance.

Nevertheless, Figure 4.2 presents that all models have the same performance mea-

sured by MSE, while the SVR has lower accuracy than the other models. All prior

metrics depend on the data’s dimensions except for MAPE, a scale-free metric [23].

REC is an independent metric used to evaluate predictions with different thresholds

regardless of the type of distributions [21]. In addition, the AUC-REC is an accuracy

metric used to evaluate the performance with a range between [0,1], making it the

only employed metric with a predefined range that could be interpreted efficiently by

anyone.

4.4 Location and Timing Effect

In this section, we limit our discussion to location and timing as factors that affect

the forecast error regardless of the features used while training. Each value in this

table is related directly to one prediction point, respecting both instance type and

operating system features. First, we will discuss the timing effect concerning the

training window based on the MinMax Table 4.1; the location along timing effect

is observed based on the Boxplot from section 4.2. Line plot of average prices and
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predictions provided in the previous section 4.4.

Table 4.1 shows the minimum and maximum AUC-REC values of 2 years (2019

and 2020) of overall trained models in region R1. The rows represent the AUC-REC

based on years, while the columns display results based on time windows (1-day, 1-

window, and 1-month). These values are associated with one observation of the test

predictions. Mostly in three training window sizes, the highest AUC-REC in both

years is 0.986, recorded by XGBoost, RFR, and k-NNR. In k-NNR, the minimum

value was the lowest, 0.125, for these models in 2019. While in 2020, the minimum

was observed for 1-month in RFR as 0.564. Overall the results were more stable, with

a minimum value of 0.875 in the top three models, in a 1-day training window. The

SVR model recorded the worst results, achieving the lowest AUC-REC value of zero

in 2020.

Table 4.1: The Min-Max mean Values of AUC-REC in R1 (us-east-1a)

Window AUC-REC 2019 2020
XGBoost RFR k-NNR SVR XGBoost RFR k-NNR SVR

1-day Min 0.735 0.355 0.125 0.055 0.875 0.875 0.875 0.055
Max 0.986 0.986 0.986 0.935 0.986 0.986 0.986 0.945

1-week Min 0.735 0.335 0.403 0.000 0.702 0.728 0.716 0.000
Max 0.986 0.986 0.986 0.986 0.983 0.986 0.986 0.986

1-month Min 0.735 0.355 0.493 0.055 0.570 0.564 0.620 0.084
Max 0.986 0.986 0.983 0.945 0.983 0.986 0.986 0.938

The location effect is evident when comparing the results of R1 and R3 regions

for all evaluation metrics. Where the location effect has its effect while tuning the

hyperparameters of the SVR, see Chapter 3 section 3.5.1. We found the price tended

to fluctuate less in the 5 regions in 2020. The timing effect pertains to the variation in

forecast errors across different years or time periods. While Figures 4.6 and 4.7 show a

slight difference in MAE forecast errors between 2019 and 2020, the figures for Region

R3, i.e., Figures 4.8 and 4.9, demonstrate the impact of location on forecast errors.

Specifically, when comparing Figures 4.6 and 4.8 for the year 2019, the performance
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of the models is inferior in Region R3 due to the presence of noisy data. Furthermore,

the analysis indicates that the XGBoost model is top-performing when considering

the 3-window training.

4.5 Training Windows Results

All figures in the discussion section studied the effect of the training window in

predicting results. The overall conclusion from the metrics insight, especially the

AUC-REC, indicated that using different training windows affects the model’s per-

formance differently. In addition, figures of the real price plot vs. the prediction in

the location and timing section 4.4 demonstrated how the training window size affects

the models’ performance. Figures 4.24 and 4.25 display the average of real prices and

predictions for all models with windows day, week, and month, respectively.

4.5.1 One-day ahead

Figures 4.24a and 4.25a show the prices and predictions of all models using a

1-day time window in regions R1 and R3. The models XGBoost, RFR, and k-NNR

have the lowest error rates on their predictions compared to the real price in 2019

and 2020. Conversely, SVR could not identify the proper bounds for predicting the

actual price with a minimal error rate. In contrast, the SVR shows the worst results

when using the 1-day window, with almost random prediction behavior as shown in

Figures 4.24a and 4.25a.

4.5.2 One-week ahead

Figures 4.24b and 4.25b visualize the model’s predictions and actual prices in

regions R1 and R3. The performance of XGBoost, RFR, and k-NNR decreased,
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producing more errors with the actual prices. On the other hand, the SVR model

performs better than the 1-day and 1-month window sizes. The SVR overlaps on

the months (of June (2019) and December (2020), scoring the highest accuracy of

AUC-REC at 0.986, see table 4.1.

4.5.3 One-month ahead

Figures 4.24c and 4.25c show the prices and predictions with all models trained

using a 1-month time window. The forecast error increases for all models with larger

time windows. Although, this difference between real prices and predictions is fairly

small in XGBoost, RFR, and k-NNR models. They perform better than SVR in all

window sizes, including the 1-month ahead. On the other hand, the SVR model has

a better average prediction compared to the 1-day ahead. The best SVR fitting is

between the period of June 2019 to July 2019. These results can be recognized in

Table 4.1, where the maximum AUC-REC 0.945 is in 2019 using 1-month.

We conclude that studying window sizes directly affects the model’s performance.

The 1-day ahead window is the best, with predictions reaching 0.986 AUC-REC

accuracy, in three models, where the 1-week is the best for the SVR model with 0.986

as the highest AUC-REC accuracy.
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(a) 1-day window predictions vs. actual prices

(b) 1-week window predictions vs. actual prices

(c) 1-month window predictions vs. actual prices

Figure 4.24: The average window predictions vs. actual prices in R1 region (2019-
2020)
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(a) 1-day window predictions vs. actual prices

(b) 1-week window predictions vs. actual prices

(c) 1-month window predictions vs. actual prices

Figure 4.25: The average window predictions vs. actual prices in R3 region (2019-
2020)

87



4.6 Hyper tuning Effect

One of the research aims is to study the effect of the hyper-tuning of hyperpa-

rameters for the four ML models. The investigation was done using the randomized

search cross-validation with k= 5. We found that the XGBoost, RFR, and k-NNR

do not require tuning to achieve high performance, whereas the tuning affected the

SVR results in the three training windows. In section 3.5.1 (Chapter 3), Table 3.3,

we indicated how the hyperparameters were affected, especially the gamma and C.

Table 4.2 reflects the improvement of region R1 results by using the tuned models

reflected in the five metrics we examined earlier. The table below shows each train-

ing window’s average error or accuracy values. The readings of AUC-REC show the

highest enhancement in the results of 1-week, with approximately a 0.072 increase.

At the same time, the 1-month has a slight improvement of 0.027 as the lowest en-

hancement. The same applies to the rest of the error metrics, considering the lower

errors are better. For example, the MAE lowered by 0.091 for 1-week in the tuned

model. In contrast, the 1-day ahead shows nearly no improvement. At the same time,

the 1-month has slight improvements, around 0.059 error reduction.

Table 4.2: SVR overall metrics results in default and hyper tuning of parameters in
R1

Metric Default Tuned
1-day 1-week 1-month 1-day 1-week 1-month

MAE 0.216 0.185 0.171 0.215 0.094 0.112
MSE 0.159 0.099 0.086 0.141 0.011 0.020
RMSE 0.282 0.186 0.173 0.216 0.097 0.128
MAPE 1.924 0.889 0.836 0.871 0.674 0.827
AUC-REC 0.530 0.610 0.640 0.589 0.682 0.667

The highest values of AUC-REC mean better performance, while the higher values of
other metrics (MAE, MSE, RMSE, MAPE) means worst performance.
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4.7 Discussion and Findings

In this section, we discuss and explore our findings in this research. Firstly,

4 machine learning models predict the SI prices over 2 years (2019 and 2020) for

five regions. We found interesting points that need to be considered when machine

learning is used in this area, listed in the following:

(1) In this research, we found models such as XGBoost, RFR, and k-NNR are more

stable and resistant to data changes over time. The k-NNR uses the lazy process

to predict the price by comparing the new observation with stored data from

the training set. In contrast, both XGBoost and RFR built the decision trees

during training, which takes less time to provide the prediction. Thus, these

models are better to be used in the future as live prediction models.

(2) Also, we found that tuning model hyperparameters are required for models

such as SVR. The SVR is affected directly by data size and distribution. Thus,

we must investigate and update some new data’s SVR parameters. While XG-

Boost, RFR, and k-NNR do not need to hyper-tune their parameters because

the tuned and default models have the same performance. As a result, using

XGBoost, RFR, and k-NNR reduce the time and complexity of investigation

for experts.

(3) The time of the data measured in years shows that the spot data predictions

exhibited different trends and changes after the smooth change of the spot data

in 2017. The study of the changes is out of the scoop of our study. Studies [42,67]

analyzed the effect of the new change in the distribution and the data price over

time and locations. We found the models had better results in the year (2020)

when the prices were more stable.
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(4) The training window size affects the predictions; 1-day is the best of the

top three models XGBoost, RFR, and k-NNR. The SVR has the 1-week as the

best training window. The 1-day is the best means that the prices have more

variance when it exceeds the 24 hours of predictions.

(5) The effect of the location was obvious since the distribution of the series differs

based on the regions. We limit the study of the location effect to its effect

on the behavior of the model’s predictions. Although the data distribution

differs between regions, the regions have the same behavior when treated as

an ML problem. This means the 1-day training window size is always the

best regardless of our study region. Additionally, the time effect, whether the

predictions have more accuracy and fewer errors generalized for all locations we

studied.

(6) We utilized the REC Curve and the AUC-REC in the area of the spot price

predictions for the first time to measure the accuracy of the models against their

error tolerance. To compare the significance of this RECC, we used the most

utilized error metrics in the related work to measure the forecast errors of the

four ML models. We found that no metric reflects the accuracy precisely like

AUC-REC with a value between [0,1]. Instead, all metrics were used before to

measure the errors with an error range of [0, ∞). The AUC-REC estimates the

model’s accuracy by finding the area under the REC Curve. While the RECC

provides the model’s accuracy based on each error threshold. We ranked the

evaluation metrics from the lowest to highest insight in the investigation. The

ranking is as follows: MSE, MAE, RMSE, MAPE, AUC-REC, and RECC.

To this end, we find the metrics used in the related work did not reflect the

difference in the model’s performance using different window training sizes, except for
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a few outliers in some models. The SVR evaluation using previous metrics indicates

how the performance changes through window size due to large prediction errors.

This results from the evaluation of the small errors using non-insightful metrics.

First, The MSE errors are determined based on the squared feature. When the

point yi has a loss of less than 1, the lossi value exponentially decays until it reaches

zero at the end. Conversely, large errors receive a high weight to penalize models

with high error rates. Although MSE is a scale-dependent metric, the squared unit

directs the intuition given using the MSE. The forecast error conveys the MSE values

interpreted in our study as squared US dollars which is not comparable to the real

price values in US dollars. In the insight, we saw how the

While the MAE estimates the absolute errors, then finds and averages them,

maintaining the unit of the predicted. It treats all errors equally and assigns them

the same magnitude. However, when averaging small errors, their values may be

rounded to zero due to insufficient precision or a limited number of decimal places

used to calculate the average.

The RMSE has almost the same insight as MAE, except when there is a big error,

it gives more weight before finding its root. The problem of finishing values when

squaring small errors arises again. Using the root of MSE is the same as using the

MSE when we apply it in the context of small errors, but the root value reflects an

estimation of the real unit of prediction (US Dollars). To this end, all the metrics

used are scale-dependent, which reflects the change in errors based on the unit of the

predicted value.

The last and most utilized metric in related work is the MAPE, a free-dependent

scale that gave an overall insight into the models’ percentage errors. It has the

problem of converging to zero when the errors are small and might have infinity and

negative values. In our work, the percentage errors did not reveal how the error

91



changes between the training window size or the regions.

The RECC and AUC-REC indicate how the model’s performance changed when

studying all the effects. It uses the absolute deviation as an error threshold.
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Chapter 5

CONCLUSION AND FUTURE

DIRECTIONS

5.1 Conclusion

Predicting spot prices is challenging due to their dynamic and unpredictable na-

ture. The inherent volatility and variability of spot prices emphasize the importance

of employing effective metrics to evaluate the accuracy and efficacy of spot price

prediction models. This research evaluated the performance of four supervised and

non-parametric machine learning models using six distinct loss measurements. Our

primary focus was on the Regression Error Characteristic (REC) curve and the Area

Under the Curve (AUC-REC) as novel metrics for evaluating predicted prices.

We investigated the impact of various factors, such as data time, location, and

training window size. We found that XGBoost, RFR, and k-NNR are more stable and

resistant to data changes over time, making them suitable as live prediction models.

Additionally, we used hyperparameter tuning during training. We found that the

tuned models did not show improvement for the top three models, as mentioned

earlier, unlike SVR, which improved in the three training windows.
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Furthermore, the results of our study indicate that the REC curves and AUC-

REC are the most reliable metrics for measuring the output quality from the machine

learning models used for EC2 spot price prediction. Specifically, the AUC-REC metric

estimates the model’s accuracy across all error tolerance thresholds. In addition,

the REC curve clearly explains the trade-off between error tolerance and expected

accuracy at any prediction point. These metrics allow customers in the spot market

to make informed decisions based on their specific needs and tolerance for prediction

errors.

We also found that other metrics, such as Mean Absolute Percentage Error (MAPE),

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Squared

Error (MSE), can also provide helpful insights into the performance of the models.

However, these metrics provide a different level of precision than the REC and AUC-

REC curves.

Our study highlights the importance of choosing the right evaluation metric to

minimize work interruptions and reduce costs during the operating time of spot in-

stances. Using the right evaluation metric enables customers to make informed deci-

sions about the maximum price that ensure the spot prices are successfully predicted.

The precision of predicting prices is important, especially in the spot market, where

incorrect predictions can lead to significant financial losses.

To this end, our research provides new insights into evaluating spot price predic-

tions and lays the foundation for future studies that further improve the accuracy

of spot price predictions. The REC curves and AUC-REC can be valuable tools for

evaluating the accuracy and efficacy of machine learning models used for EC2 spot

price prediction. The other metrics we studied can provide additional insights into

the performance of the models.

The outcome of our research is a paper titled: ”Evaluating Amazon EC2 Spot Price
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Prediction Models Using Regression Error Characteristic Curve”, published in a peer-

reviewed conference: “The Seventh International Conference on Fog and Mobile Edge

Computing (FMEC2022), Dec 2022”1.

5.2 Future Work

This section discusses the limitations of our study and proposes suggestions for

future research.

We employed four supervised regression machine learning algorithms that have

been extensively researched in the literature and followed the standard training, val-

idation, and testing procedure. To evaluate the performance of the regression algo-

rithms, we used the RECC and AUC-REC as the evaluation metric, which we argued

is more representative than other metrics like MAPE, RMSE, MAE, and MSE. How-

ever, it is worth noting that many other error metrics are proposed as an alternative

to the one we used. In future studies, we recommend investigating the relative errors

and scaled error metrics [23,24].

Also, the RECC could use different error functions like squared errors instead of

absolute ones. We encourage the usage of the RECC along different functions and

apply it in various forecasting fields.

One potential limitation of our study is that we used only supervised regression

machine learning models. Although we employed efficient algorithms known for their

performance in various regression tasks and research domains, the choice of algorithms

may still be a limitation. However, we believe that selecting well-known algorithms

partially alleviates this limitation.

It is important to note that we experimented with EC2 AWS spot instances prices

for two years. Therefore, we cannot generalize our results to all other cloud providers,
1https://ieeexplore.ieee.org/document/10062720
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such as Azure, industrial, and other cloud vendors to which we could not access their

preemptible history.

For future work, we intend to evaluate how other forecasting methods, such as deep

learning and statistical methods, could affect the prediction based on the REC Curve

and AUC-REC compared with supervised machine learning methods. Additionally,

we only studied the results of five regions and three training time windows in this

research. Therefore, the results of other regions and training windows require further

investigation, analysis, and discussion on a yearly basis.
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Appendix A

Table A.1: KPSS Test in region R1

Time Series KPSS Statistic p-value Is Stationary (KPSS)
c3.large-Red Hat Enterprise Linux 49.33856807 0.01 FALSE
c3.xlarge-Red Hat Enterprise Linux 10.12768256 0.01 FALSE
c3.2xlarge-Red Hat Enterprise Linux 8.126634919 0.01 FALSE
c3.4xlarge-Red Hat Enterprise Linux 3.825770838 0.01 FALSE
c3.8xlarge-Red Hat Enterprise Linux 3.209581884 0.01 FALSE
c4.large-Red Hat Enterprise Linux 48.85372244 0.01 FALSE
c4.xlarge-Red Hat Enterprise Linux 6.078708957 0.01 FALSE
c4.2xlarge-Red Hat Enterprise Linux 9.615312506 0.01 FALSE
c4.4xlarge-Red Hat Enterprise Linux 8.955150278 0.01 FALSE
c4.8xlarge-Red Hat Enterprise Linux 1.921527817 0.01 FALSE
c3.xlarge-SUSE Linux 9.891446213 0.01 FALSE
c3.2xlarge-SUSE Linux 10.54303433 0.01 FALSE
c3.4xlarge-SUSE Linux 6.595452651 0.01 FALSE
c3.8xlarge-SUSE Linux 4.690580699 0.01 FALSE
c4.xlarge-SUSE Linux 9.354523074 0.01 FALSE
c4.2xlarge-SUSE Linux 13.74967376 0.01 FALSE
c4.4xlarge-SUSE Linux 4.534041711 0.01 FALSE
c4.8xlarge-SUSE Linux 4.735641376 0.01 FALSE
c3.large-Linux 76.96647754 0.01 FALSE
c3.xlarge-Linux 9.951165103 0.01 FALSE
c3.2xlarge-Linux 10.55803218 0.01 FALSE
c3.4xlarge-Linux 6.48136545 0.01 FALSE
c3.8xlarge-Linux 4.5060962 0.01 FALSE
c4.large-Linux 76.96647754 0.01 FALSE
c4.xlarge-Linux 8.436511817 0.01 FALSE
c4.2xlarge-Linux 13.69085179 0.01 FALSE
c4.4xlarge-Linux 4.592851492 0.01 FALSE
c4.8xlarge-Linux 4.608498934 0.01 FALSE

97



Table A.2: ADF Test in region R1

Time Series ADF Statistic p-value Is Stationary (ADF)
c3.xlarge-Red Hat Enterprise Linux -0.913549063 0.783477777 FALSE
c3.2xlarge-Red Hat Enterprise Linux -0.62914955 0.864258464 FALSE
c3.4xlarge-Red Hat Enterprise Linux -1.100695951 0.714794288 FALSE
c3.8xlarge-Red Hat Enterprise Linux -1.817071118 0.372019897 FALSE
c4.xlarge-Red Hat Enterprise Linux -1.796865614 0.382018936 FALSE
c4.2xlarge-Red Hat Enterprise Linux -0.677402149 0.852516387 FALSE
c4.4xlarge-Red Hat Enterprise Linux -0.799991617 0.81912453 FALSE
c4.8xlarge-Red Hat Enterprise Linux -0.940770436 0.774249902 FALSE
c3.xlarge-SUSE Linux -1.492464217 0.537235834 FALSE
c3.2xlarge-SUSE Linux -0.818693845 0.813569127 FALSE
c3.4xlarge-SUSE Linux -1.372995577 0.595151744 FALSE
c3.8xlarge-SUSE Linux -1.984363 0.293471185 FALSE
c4.xlarge-SUSE Linux -2.090901938 0.24818868 FALSE
c4.2xlarge-SUSE Linux -1.091959319 0.718267761 FALSE
c4.4xlarge-SUSE Linux -1.239885291 0.656207161 FALSE
c4.8xlarge-SUSE Linux -1.464796122 0.550848801 FALSE
c3.xlarge-Linux -1.343820332 0.608893803 FALSE
c3.2xlarge-Linux -0.944142164 0.773088564 FALSE
c3.4xlarge-Linux -2.067219375 0.257898444 FALSE
c3.8xlarge-Linux -2.616270596 0.089680877 FALSE
c4.xlarge-Linux -2.176698468 0.550848801 FALSE
c4.2xlarge-Linux -1.240886731 0.655764747 FALSE
c4.4xlarge-Linux -1.716416799 0.422674514 FALSE
c4.8xlarge-Linux -1.942069819 0.530848801 FALSE
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