
Energy Efficient Application Provisioning in Virtualized
Internet of Things

Vahid Maleki Raee

A Thesis

In

The Concordia Institute

For

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

March 2023

© Vahid Maleki Raee, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Vahid Maleki Raee

Entitled: Energy Efficient Application Provisioning in Virtualized Internet of Things

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to originality and qual-

ity.

Signed by the Final Examining Committee:

Chair
Dr. Ahmed Soliman

External Examiner
Dr. Michael A. Bauer

External to Program
Dr. Juergen Rilling

Examiner
Dr. Chadi Assi

Examiner
Dr. Jamal Bentahar

Supervisor
Dr. Roch Glitho

Approved by
Dr. Abdessamad Ben Hamza
Chair of Department or Graduate Program Director

Date of Defence: February 20, 2023
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Energy Efficient Application Provisioning in Virtualized Internet of Things

Vahid Maleki Raee, Ph.D.

Concordia University, 2023

The Internet of Things is a new paradigm that allows an enormous number of devices i.e., sensors, actuators,

RFID tags, etc. to cooperate to reach a common goal. The wireless sensor networks as the key components of the

IoT are extensively being used in various domains and applications. However, in traditional WSNs, applications are

embedded into the sensor, precluding them from being re-used by other applications. Therefore, the sensor become

application-specific and task-oriented devices with increased deployment and maintenance costs. To cope with these

issues, a viable approach is to apply virtualization to WSNs. Virtualization abstracts the physical sensing capabilities

of the sensors into logical units, allowing them to be reused by multiple applications. WSN virtualization can be

done at either node- and/or network-level. However, virtualization challenges the energy consumption in WSNs. Thus,

inefficient application provisioning can have a drastic impact on the energy consumption of the WSNs, leading to faster

depletion of sensor nodes’ batteries. This thesis proposes algorithmic approaches to tackle the key challenges related

to energy consumption in virtualized IoT-based networks.

The first challenge faced by virtualized IoT networks is the energy efficiency in dynamic task assignment con-

sidering node-level virtualization. Addressing this challenge is critical for energy efficiency. Considering that the IoT

devices (e.g., sensors) need to interact and exchange messages, the second challenge is the problem of energy efficiency

in dynamic network embedding in virtualized IoT networks considering both node- and network-level virtualization.

Yet, another challenge is energy-efficient distributed task assignment in virtualized IoT networks. The IoT nodes are

constrained devices with limited available energy and processing capabilities. Thus, it is not always feasible to have

powerful nodes in the network to execute the algorithms.

To tackle the first challenge, we modeled the problem using integer linear programming and proposed a heuristic

to solve the problem. For the second challenge, after modeling the problem using ILP, we proposed our Dynamic

Network Embedding heuristic to solve the problem in an energy efficient manner. When it comes to the third challenge,

we modeled the problem using non-cooperative game theory and proposed an energy-efficient heuristic to solve the

problem.

iii

Acknowledgments

I would like to begin the acknowledgments with a quote from my supervisor that I was told during the first term of

my Ph.D. studies:

”The research is all about patience. You need to be patient. There are no shortcuts, no rush, and no turnovers. It’s

a journey. We know the objective, and we know we want to get there, but we don’t know how. We should try and find

the way to it.”

At the outset, it is my obligation to extend my sincere appreciation to my Ph.D. supervisor, Prof. Roch Glitho,

and express profound thanks to him for his patience, great support, continuous guidance, constructive feedback, and

encouragement. Surely, this challenging yet exciting and interesting journey would have not been completed without

him, and I would have not been stood where I am today.

I gratefully acknowledge my thesis committee members, Prof. Chadi Assi, Prof. Jamal Bentahar, Prof. Juergen

Rilling, Prof. Ferhat Khendek, and Prof. Michael A. Bauer for their time, insightful comments, encouragement, and

the questions that had immense impacts to enhance the quality of this dissertation in various aspects.

I would also like to take this opportunity and thank my collaborators Prof. Diala Naboulsi, Dr. Amin Ebrahimzadeh,

and Dr. Zoubeir Mlika for the time they dedicated, and for all their support and contributions. Collaborating and

working with them has been nothing but joy, honor, pleasure, and reward.

Moreover, I reserve my appreciation to Telecommunication Service Engineering (TSE) research lab members, col-

leagues, and friends for their support and encouragement. Thanks to Milad Zaheri, Mohammad Nazmul Alam, Sasan

Sabour, Aida Rangy, Razieh (Raha) Abbasi, Nasim Rahmani, Carla Mouradian, Abbas Soltanian, and Nattakorn Prom-

wongsa for all their support. It was a great pleasure to know them, and the interesting conversations we always had.

Many thanks to Saeed Sarencheh for his mentorship and guidance. Appreciations to Matt Naslcheraghi for about three

years of collaboration at IEEE Young Professionals (YP) Montréal Section. My special thanks to Marsa Rayani and

Sepideh Malektaji for all the insightful discussions we have always had, for their kind supports, encouragement, and

motivation before the deadlines, and of course, for all the fun and coffee breaks during those memorable days in the

research lab, since the beginning of our Ph.D. journey till the end.

iv

I also would like to appreciate our department’s graduate program directors and administrative staff, Mireille

Wahba, Silvie Pasquarelli, and Kim Adams for their help and support.

Last but not least, I would like to extend my sincere gratitude and appreciation to my parents and brothers for their

support, care, and love throughout my Ph.D. journey. No words can describe or express my gratitude and love for you.

Certainly, none of my achievements and dreams would have become true without you all.

Finally, I would like to conclude the acknowledgments with a quote from my supervisor:

”Have you seen a kid? When he grows up, at first, he starts crawling. A while later, he starts walking slowly, then

he can walk with no help, then he starts running. You as a researcher are simply similar to that kid. At first, you have

to start learning to crawl, then stand up and walk, then only start running. If you are too good and exceptional, you

will be like Usain Bolt! Don’t jump to conclusions so quickly.”

Hope I have made it through, and learned to run.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Contributions . 2

1.2.1 Energy Efficient Task Assignment in Virtualized Wireless Sensor Networks [1, 2] 3

1.2.2 Energy Efficient Network Embedding in Virtualized Wireless Sensor Networks [3, 4] 3

1.2.3 Energy Efficient Distributed Task Assignment for Virtualized Internet of Things [5] 3

1.3 Background Information . 4

1.3.1 Internet of Things . 4

1.3.2 Wireless Sensor Networks . 4

1.3.3 Virtualization . 4

1.3.4 IoT Virtualization . 5

1.3.5 Virtual Network Embedding . 9

1.3.6 Distributed System . 10

1.4 Thesis Outline . 12

2 Related Work 13

2.1 Motivating Use Case Scenarios . 13

2.2 Requirements . 14

2.2.1 General Requirements . 14

2.2.2 Requirements Specific to Task Assignment . 14

2.2.3 Requirements Specific to Network Embedding . 15

2.2.4 Requirements Specific to Distributed Task Assignment . 15

vi

2.3 Related Work . 15

2.3.1 Task Assignment in WSNs . 15

2.3.2 Network Embedding in WSNs . 18

2.3.3 Distributed Task Assignment in IoT . 21

2.4 Conclusions . 23

3 Energy Efficient Dynamic Task Assignment in Virtualized Wireless Sensor Networks 25

3.1 Introduction . 25

3.2 Dynamic Sensing Task Assignment Problem . 26

3.2.1 Problem Formulation . 27

3.2.2 Problem Analysis . 32

3.2.3 DTA: A Heuristic for Dynamic Task Assignment in Virtualized WSN 34

3.2.4 Complexity Analysis . 40

3.3 Performance Evaluation . 40

3.3.1 Evaluation Scenarios . 40

3.3.2 Evaluation Results . 41

3.4 Conclusions . 49

4 Energy Efficient Dynamic Network Embedding in Virtualized Wireless Sensor Networks 51

4.1 Introduction . 51

4.2 Dynamic Virtual Network Embedding: System Model and Problem Formulation 52

4.2.1 System Model . 52

4.2.2 Problem Formulation . 54

4.3 DNE: A Heuristic for Dynamic Network Embedding in Virtualized WSNs 59

4.3.1 Problem Analysis . 59

4.3.2 DNE: Dynamic Network Embedding . 60

4.3.3 Complexity Analysis . 64

4.4 Results . 64

4.4.1 Evaluation Scenarios . 64

4.4.2 Evaluation Results . 65

4.5 Conclusions . 74

5 Energy Efficient Distributed Task Assignment in Virtualized Internet of Things 75

5.1 Introduction . 75

vii

5.2 System Model and Game Formulation . 76

5.2.1 System Model . 76

5.2.2 Game Definition . 77

5.2.3 Energy Model and Constraints . 78

5.2.4 Nash Equilibrium Analysis . 82

5.3 E2M: Energy Efficient Matching . 85

5.4 Performance Evaluation . 87

5.4.1 Evaluation Scenarios . 87

5.4.2 Results . 88

5.5 Conclusions . 93

6 Conclusions and Future Works 94

6.1 Conclusions . 94

6.2 Future Works . 95

6.2.1 Task Assignment in Virtualized WSNs . 95

6.2.2 Network Embedding in Virtualized WSNs . 95

6.2.3 Distributed Task Assignment in Virtualized IoT . 96

Bibliography 97

viii

List of Figures

Figure 1.1 Node-level virtualization overview. 6

Figure 1.2 Node-level virtualization solutions. [6]. 7

Figure 1.3 Network-level virtualization solutions. [6]. 7

Figure 1.4 VNE in traditional WSNs vs. VNE in virtualized WSNs. 10

Figure 1.5 Task assignment in (a) centralized traditional non-virtualized IoT, (b) decentralized traditional

non-virtualized IoT, (c) distributed traditional non-virtualized IoT, (d) distributed virtualized IoT. . . . 11

Figure 3.1 High-level system model. 26

Figure 3.2 Illustration of different phases of our proposed DTA algoritm: (a) Sensor-sink distance, (b)

Sensor-task density, and (c) Task selection and assignment. 36

Figure 3.3 Total energy consumption for different assignment methods under study. 43

Figure 3.4 Average energy per task vs. virtualization overhead energy. 44

Figure 3.5 Task Executed (%) vs. delay for different assignment methods under study under three evalua-

tion scenarios. 46

Figure 3.6 Successful task execution rate for different assignment methods under study under three evalu-

ation scenarios. 48

Figure 3.7 (a) Successful task execution rate (%) and (b) Total energy consumption vs. total number of

tasks for 10 and 20 sensor nodes. 49

Figure 4.1 High-level system model. 53

Figure 4.2 High-level flowchart of the proposed solution. 63

Figure 4.3 (a) Total energy consumption and (b) average energy consumption per task for different algo-

rithms under study (homogeneous network setting, small-scale scenario). 67

Figure 4.4 Total energy consumption vs. virtualization overhead energy (small-scale scenario). 67

Figure 4.5 Total energy consumption with (a) transmission energies selected from [17, 31] µj per sensor

node and (b) wireless communication link energies selected from [7, 21] µj per link (heterogeneous

network setting, small-scale scenario). 69

ix

Figure 4.6 Total energy consumption in a heterogeneous network setting (large-scale scenario). 69

Figure 4.7 Total energy consumption with virtualizable and non-virtualizable sensors (large-scale scenario). 70

Figure 4.8 Total energy consumption vs. number of sensor nodes (with 500 tasks). 71

Figure 4.9 (a) Total energy consumption vs. bandwidth requirement and (b) acceptance rate vs. bandwidth

requirement. 72

Figure 4.10 (a) Total energy consumption vs. delay requirement and (b) acceptance rate vs. delay requirement. 73

Figure 4.11 Execution time vs. total number of tasks (large-scale scenario). 73

Figure 5.1 Total energy consumption. 88

Figure 5.2 Average energy consumption per task vs. virtualization overhead. 89

Figure 5.3 Admission rate. 90

Figure 5.4 Admission rate vs. assignment delay. 90

Figure 5.5 Total energy consumption vs. total number of tasks. 91

Figure 5.6 Admission rate vs. total number of tasks. 91

Figure 5.7 Total energy consumption vs. ratio β. 91

Figure 5.8 Admission rate vs. ratio β. 92

Figure 5.9 Execution time vs. total number of tasks. 93

x

List of Tables

Table 2.1 Related work evaluation. (met!, not met ✗) . 24

Table 3.1 General notations of the problem. 28

Table 3.2 Problem inputs. 28

Table 3.3 Evaluation scenarios. 41

Table 3.4 Execution time. 49

Table 4.1 General notations of the problem. 55

Table 4.2 Problem inputs. 55

Table 4.3 Evaluation scenarios. 65

Table 5.1 General notations of the problem. 78

Table 5.2 Problem inputs. 79

xi

Chapter 1

Introduction

1.1. Overview

Internet of Things (IoT) is centered around machine-to-machine (M2M) communications with a focus on smart

devices (e.g., sensors and actuators) [7]. These connected devices enable sensors, actuators, radio-Frequency IDen-

tification (RFID) tags, and mobile phones to interact with each other and cooperate with their neighbors to reach a

common goal [8]. According to Cisco, it is anticipated to have over 500 billion connected devices by 2030 [9]. Wire-

less Sensor Networks (WSNs), as the main enabling technology to realize the IoT, comprise distributed devices, which

gather ambient information by sensing, processing, and communicating wirelessly. They are widely being used in

various application domains ranging from smart home, smart city, and smart disaster management to e-healthcare [10].

In traditional WSNs, applications are embedded in sensor nodes, thus hindering them from being re-used by other ap-

plications [6]. This raises critical issues, including the redundant deployment of WSNs, leading to inefficient resource

utilization and potentially drastic impacts on maintenance and energy costs [6]. To address this issue, WSN virtualiza-

tion is known as a promising technology, which enables abstracting the physical sensing capabilities of sensor nodes

into logical sensing capabilities, turning them from application-specific, task-oriented devices into multi-purpose de-

vices. The virtualization can be applied at node- and/or network-level. [6]. Despite all the benefits that virtualization

may offer, it comes at a cost in terms of energy consumption and delay [11, 12]. This is important as virtualization

is intrinsically advantageous, however, there is always virtualization instantiation (node-level virtualization) overhead.

These two factors become critical, especially given that sensor nodes typically operate on batteries with limited avail-

able energy. Also, increased delays could be detrimental to delay-sensitive WSN applications, such as firefighting ap-

plications, flood and earthquake detection, and medical alert responses, among others. It is therefore crucial to design

an energy efficient mechanism to allocate resources in virtualized WSNs while meeting the given QoS requirements.

1

Besides, energy-efficient dynamic network embedding is another interesting aspect that requires further investi-

gation in virtualized WSNs (vWSN). Unlike the previous challenge where the application’s sensing tasks are solely

executed on the sensor nodes without any cooperation between the sensor nodes, in this problem, the physical and

virtual sensor nodes may require to collaborate and interact with each other to address the application’s sensing task

requests. The main challenge is to create customized Virtual Sensor Networks (VSNs) per application request over

deployed vWSN infrastructure [13]. This is commonly known as Virtual Network Embedding (VNE) problem [14].

In VNE, the applications send Virtual Network Requests (VNRs). Each VNR comprises a group of virtual nodes,

which are connected by virtual links, forming the so-called Virtual Network (VN). The VNs then must be mapped onto

the physical substrate network [13]. However, there are a few challenges associated with this problem. Firstly, the

complexity of the substrate network is higher than those of traditional WSNs with no virtualization. This is because

the substrate network is constructed from both non-virtualizable sensor nodes and those sensor nodes with virtualiza-

tion mode enabled. Hence, an inappropriate assignment of the sensing task to this infrastructure challenges energy

efficiency. Secondly, considering that the sensor nodes do need to interact with each other, therefore, the SLAs (e.g.

end-to-end latency requirements set by the applications) become important especially if there are mission-critical ap-

plications such as fire contour applications. Thus, it is critical to have an energy-efficient network embedding algorithm

to map these VNs to the pool of physical and virtual sensors while meeting the required QoS.

With the growth of the Internet of Things and massive machine-to-machine communications in these networks, a

transformation from centralized systems to fully distributed systems from architectures to technologies is necessary.

This is mainly because it is not always feasible to have a resource-rich device inside the WSN to execute the algo-

rithms in a centralized manner, especially in large-scale scenarios such as fire-fighting applications. However, energy

efficiency in these networks remains a challenge, given that the WSN sensor nodes as part of the IoT network are

resource-constrained devices with limited available energy and computing capabilities. The issue becomes more criti-

cal and challenging when dealing with virtualized WSNs as virtualization challenges the energy in terms of overhead.

Thus, it is important to design and model a distributed and energy-efficient algorithm in WSNs to assign the sensing

tasks to the physical and virtual sensors while satisfying the required QoS parameters.

1.2. Thesis Contributions

Unfortunately, the current solutions proposed thus far do not fully address all these challenges. This Ph.D. thesis

proposes algorithmic solutions to tackle the challenges related to application provisioning in virtualized IoT networks.

There are three main contributions that are presented as follows. Each of our contributions corresponds to a challenge

addressed by this thesis.

2

1.2.1 Energy Efficient Task Assignment in Virtualized Wireless Sensor Networks [1, 2]

Traditional non-virtualized Wireless Sensor Networks (WSNs) suffer from high deployment and maintenance costs,

mainly because their applications are embedded in sensor nodes, making them task-oriented, application-specific de-

vices, leading to redundant physical network deployment per application. Virtualization technologies address these

challenges by allowing multiple sensing tasks from different applications to run over the same deployed WSN infras-

tructure. However, virtualization comes at an energy-delay cost, making it both essential and challenging to allocate

physical and/or virtual resources efficiently to applications with different sensing tasks, especially for delay-sensitive

applications. As our first contribution, we tackle the problem of energy-efficiency in dynamic task assignment in virtu-

alized WSNs while meeting the given task deadlines. After formulating the problem as an Integer Linear Programming

(ILP), we propose a scalable heuristic. We evaluate the performance of our proposed heuristic in different scenarios and

compare it with the optimal solution as well as recent work from the literature. The results indicate that our proposed

heuristic leads to close-to-optimal solutions with good performance in terms of execution time. It also shows that the

proposed heuristic cannot only improve the execution time in the large-scale scenario but also outperforms the existing

benchmarks in terms of successful task execution rate.

1.2.2 Energy Efficient Network Embedding in Virtualized Wireless Sensor Networks [3, 4]

The second contribution is focused on energy-efficiency for dynamic network embedding in virtualized WSNs.

Considering that there is a wide range of applications deployed in WSNs, some of these applications (e.g. fire con-

tour) may require the sensor nodes to interact with each other and exchange messages to address the application’s

requirement. This is however in contrast with some other applications (e.g. firefighting) where sensor nodes may not

necessarily require to cooperate. This becomes even more critical when we are dealing with virtualized WSNs as the

underlying infrastructure is constructed from both virtualizable and non-virtualizable sensor nodes. We address the

problem of dynamic network embedding in virtualized WSNs, aiming at minimizing the overall energy consumption

while considering the end-to-end latency and bandwidth consumption as the Service Level Agreement (SLA) con-

straints. We formulate the problem using ILP and propose our Dynamic Network Embedding (DNE) heuristic for

large-scale problem instances. The results reveal that our proposed heuristic achieved close-to-optimal results while

outperforming the existing solutions in terms of energy consumption.

1.2.3 Energy Efficient Distributed Task Assignment for Virtualized Internet of Things [5]

With the emergence of disruptive applications and their immense demands with stringent requirements, decentral-

ization plays a vital role in dense Internet of Things (IoT) networks. Efficient resource utilization is critical given that

the IoT nodes are resource-constrained devices. Unlike the previous contributions where the centralized approaches

3

were considered, in the third contribution we investigate the problem of energy-efficiency in distributed task assignment

for optimal utilization of resources as well as the enhanced admission rate in virtualized IoT networks. After modeling

the problem as a distributed non-cooperative game, we design a matching algorithm to solve the problem while con-

sidering dynamicity, end-to-end latency, bandwidth, and task deadline constraints. The obtained results demonstrate

the feasibility of the proposed solution in large-scale scenarios and its superior performance over a scheme without any

virtualization and recent work from the literature.

1.3. Background Information

This subsection presents the background information that is relevant to our research domain. The background

information covers the Internet of Things, Wireless Sensor Networks, virtualization, IoT virtualization, Virtual Network

Embedding, and distributed system.

1.3.1 Internet of Things

Internet of Things (IoT) is centered around machine-to-machine (M2M) communications with a focus on smart

devices (e.g., sensors and actuators) [7]. These connected devices enable sensors, actuators, radio-Frequency IDen-

tification (RFID) tags, and mobile phones to interact with each other and cooperate with their neighbors to reach a

common goal [8].

1.3.2 Wireless Sensor Networks

There are several enabling technologies to realize the IoT. As an example, Wireless Sensor Networks (WSNs)

consist of distributed autonomous devices that gather ambient information by sensing, processing and communicating

wirelessly. The applications’ sensing tasks are executed over these devices. These tasks are non-divisible execution

units of the requested applications. The sensor nodes execute the tasks to collect information about the surround-

ings such as a space (location, velocity), an environment (luminosity, level of noise), or physiology (blood pressure,

heartbeat) [10].

1.3.3 Virtualization

Virtualization as the enabling technology of cloud computing has been applied in various domains including the

IoT. Virtualization in general refers to creating an abstraction layer on top of the physical computer so that its resources

(computing, storage, memory) can be divided into multiple virtual computers called Virtual Machines (VMs). Each

4

of these VMs can run its own Operating System (OS) independently. This results in resource utilization efficiency

enhancements [15].

1.3.4 IoT Virtualization

The traditional WSNs are domain-specific and task-oriented, allowing them to support only a single application,

once deployed. This causes inefficient resource utilization and leads to redundant WSN deployment once a new

application is contemplated. By integrating the virtualization technology with WSNs, it abstracts the physical sensing

capabilities into logical units, allowing the WSNs to be shared among different users and applications [6]. Virtualization

can be applied both at the node- and network-level. Next, we will discuss each approach in detail and its difference

from middleware-based (cloud-based) solutions.

A) Node-level Virtualization

The main concept of node-level virtualization is to allow multiple application tasks to be executed over a single

sensor node concurrently. Each task is run by a virtual sensor instantiated on top of the physical sensor node. Figure

1.1 depicts the high-level view of node-level virtualization with applications requesting sensing tasks. Each task is then

executed by the virtual sensors instantiated on top of the physical sensor nodes, allowing multiple tasks to co-exist and

reside over the same deployed sensor node simultaneously.

From the implementation perspective, to achieve node-level virtualization, the execution must be done either se-

quentially or simultaneously. Sequential execution means that the application tasks’ execution happens in series while

simultaneous execution refers to executing the tasks in a time-sliced fashion by rapid context switching among the

tasks. Sequential execution is simple to implement; however, it implies that application tasks have to wait in a queue.

The simultaneous execution implies less delay for an application task, as it will not be blocked by other tasks with

longer running time; however, it is more complex to implement [6].

The node-level virtualization approaches are categorized into Operating System (OS) based solutions and Virtual

Machine/Middleware-based (VM/M) solutions. In OS-based solutions, virtualization is part of the sensor OS. In VM/M

approach, the virtualization functionality is implemented on top of the underlying sensor OS. If a physical sensor can

only run one type of sensing task (e.g., temperature), each virtual sensor running on top of the physical sensor will sense

temperature, but at the frequency set by the application that created it. It is therefore not a data-sharing sensor, since in

data sharing the data is sensed once at a given frequency and then shared by the applications. If a physical sensor can

run several sensing tasks (e.g., temperature + humidity), each virtual sensor instantiated on top of it will sense either

temperature or humidity, but only at the frequency set by the application that created it. Several commercial products

are now available for node-level virtualization. Two examples are the Advanticsys kit [16], which is an OS-based

5

Figure 1.1: Node-level virtualization overview.

approach, and the Virtenio kit [17], which follows a VM/Middleware-based approach. The Advanticsys sensor nodes

run the Contiki OS [18] and virtualization is performed by modifying it while the Virtenio sensor nodes are virtualized

through Java Virtual Machine (JVM). These sensors allow the creation of Virtual Sensors (VS) on top of them. These

VSs can execute different independent applications’ sensing tasks concurrently over the very same physical sensor

node. Figure 1.2 illustrates different node-level virtualization approaches in detail.

B) Network-level Virtualization

In network-level virtualization, a subset of WSN nodes is dedicated to one application at a given time, giving

way to the so-called Virtual Sensor Networks (VSNs) [19]. Network-level virtualization can be realized by either

creating multiple VSNs over the same underlying WSN infrastructure or creating a single VSN over different inde-

pendent WSNs. The first approach partitions the sensor nodes where multiple sensor nodes are grouped (sensors can

be part of different groups). The sensor nodes within each group then collaborate to address an application. In the

second approach, logical networks are created on top of the physical WSNs. These logical networks enable the data

6

Figure 1.2: Node-level virtualization solutions. [6].

Figure 1.3: Network-level virtualization solutions. [6].

exchange between different sensor nodes even if they are located in different administrative domains [6]. Therefore,

the network-level virtualization approaches can be categorized into two groups: Virtual Network/Overlay-based solu-

tions and Cluster-based solutions. Yet, there is a possibility to have both approaches applied together in a network.

Virtual Network/Overlay-based solutions are logical networks created on top of a physical network(s). Depending on

the application requirements, several virtual networks can be created and embedded onto the physical deployed WSN

infrastructure. On the other hand, in a cluster-based solution, the nodes in a physical WSN are grouped to collaborate,

which is called clusters. Figure 1.3 shows different solutions to network-level virtualization.

7

C) Middleware-based Solutions

In a middleware-based solution, the concept of cloud-based WSNs is introduced [20–23]. The middleware-based

solutions mainly include creating an instance of the physical sensor nodes in an interface such as VMs which are

located in the cloud. These VMs are being managed by Virtual Machine Managers (VMMs)/hypervisors. Then, the

data collected by these instances are shared among multiple applications [24].

D) Node-level Virtualization vs. Network-level Virtualization vs. Middleware-based Solutions

Initially, let’s consider the node- and network-level virtualization. There are a few points that they have in common.

First, both aspects prevent redundant deployment of WSNs and hence reduce the deployment and maintenance cost.

Second, they are both scalable which allows them to support a higher number of applications simultaneously. Third,

they both support elasticity since the creation and deletion of the virtual sensors over the physical sensor nodes and

the composition and decomposition of virtual sensor networks can be done dynamically based on the application

tasks. However, the key difference between node- and network-level virtualization is that in node-level virtualization,

the capabilities of the sensor nodes are used to execute multiple independent tasks [6], whereas, in network-level

virtualization, a subset of the sensor nodes within a WSN is used to cooperate and execute one application while

the remaining sensor nodes may be used to run another application [6, 25]. The main advantage of using node-level

virtualization is its ability to fully exploit the capabilities of sensor nodes to run various applications’ sensing tasks

simultaneously, thereby leading to increased efficiency in resource utilization.

Besides, there are key points that distinguish node-level virtualization from middleware-based solutions. In node-

level virtualization, the sensing capabilities of the physical sensor nodes are shared among multiple applications

whereas, middleware-based solutions share the collected data among the applications. There are multiple advantages

that node-level virtualization has as compared to the middleware-based solution. First, in a middleware-based solution,

the collected sensed data by the underlying deployed WSNs are being reported at a fixed interval rate while the data

might not have been requested by any application. Second, as an example, let’s assume that the sensor nodes are pro-

grammed to report an event at every 30sec time interval, but the application requires the data every second, therefore,

the middleware either has to provide staled data or it can’t provide the data at all. Hence, the application requirement is

limited to the features exposed by the middleware, even if the requirement can be fulfilled by the IoT device. However,

in node-level virtualization, a virtual sensor can be instantiated on top of the sensor node, on-demand as per application

request. Finally, all the sensor node’s capabilities need to be reported to the middleware even though it is not used by

any application. The reason is that if any application requests that capability, then there will be no way to provide it

other than reprogramming the underlying IoT device, which may lead to downtime for other applications that rely on it.

8

So, the middleware solutions are less efficient in terms of cost, energy, and resource utilization than the node-level vir-

tualization solutions [11]. Similarly, what differentiates network-level virtualization from middleware-based solutions

is the fact that in network-level virtualization, multiple tasks can coexist simultaneously in the same deployed WSN.

In contrast, in middleware-based solutions, the sensor nodes have to report the gathered data at a fixed time interval,

otherwise reprogramming of the sensor nodes is required which can cause an interruption in the information they de-

liver. Moreover, the application is constrained to the features that are exposed by the WSN without the possibility of

receiving what is required.

E) Virtual Sensor vs. Virtual Machine

The similarity between a VM and a VS at an abstract level is that both provide a mechanism to decouple physical

resources from their underlying infrastructure to be utilized by multiple users [26]. However, there are several key

differences. First, the VM is a logical unit that enables sharing of the resources (e.g. computing and storage) of the

host machines by dividing them into several dedicated execution environments. Each of the VMs has a guest OS that

can access underlying hardware/infrastructure. On the other hand, a VS is a logical representation of the physical sensor

node that enables the sharing of the sensor node’s sensing capabilities (e.g., temperature, humidity) among multiple

applications concurrently. Second, multiple VMs can be deployed on the host machine simultaneously and each may

have a different OS. However, the VSs on the other hand are tightly dependent on the sensor nodes’ OS/middleware.

This implies that a sensor node cannot have two OS (e.g. Contiki and Tiny OS) at the same time. Third, there is a

standard for VM addressing which allows every VM to be recognized by an IP address, however, there is no standard

mechanism for VS addressing. The VS are mainly being addressed by local IDs. Fourth, VMs may not encounter

power/energy-related issues, however, the creation of the VSs is highly dependent on the available energy of the host

sensor node [26].

1.3.5 Virtual Network Embedding

The primary concept in Virtual Network Embedding (VNE) is the mapping of virtual nodes and links onto physical

resources. Virtual nodes are interconnected by a set of virtual network links, forming a Virtual Network (VN) on top

of the Substrate Network (SN) [13].

The main idea of network embedding is to create customized Virtual Sensor Networks (VSNs) per application

request over deployed WSN infrastructure [13]. In VNE, the applications send Virtual Network Requests (VNRs).

Each VNR comprises a group of virtual nodes, which are connected by virtual links, forming the so-called Virtual

Network (VN). The VNs then must be mapped onto the physical substrate network [13].

Unlike wired networks and traditional non-virtualized WSNs, in virtualized WSNs the substrate network consists

9

Figure 1.4: VNE in traditional WSNs vs. VNE in virtualized WSNs.

of both physical and virtual sensors which can be assigned to the application sensing tasks. Figure 1.4 illustrates

a generic schematic of substrate networks in traditional non-virtualizable WSNs vs. virtualized WSNs. As shown in

Fig. 1.4 (a), the substrate network in traditional WSNs consists of non-virtualizable sensor nodes (e.g., Waspmote [27]),

which can only execute one sensing task at a time. By contrast, multiple virtual sensors can be instantiated on top of

the virtualizable sensor nodes (e.g., Advanticsys [16] and Virtenio [17]), thus allowing for executing multiple sensing

tasks of different applications concurrently (see Fig. 1.4 b).

1.3.6 Distributed System

By definition, “a distributed system is a collection of independent entities that cooperate to solve a problem that

cannot be individually solved” [28]. Given that the WSNs are intrinsically distributed, hence, it is not always feasible

to execute an algorithm by a single entity within the WSN. On the other hand, considering the energy limitations

of the sensor nodes, different nodes (e.g. sink nodes) within a WSN may require to execute different processes of

an algorithm and cooperate to accomplish a given application request. Therefore, a distributed algorithm in such

systems is needed. The key difference between a centralized algorithm and a distributed one is that in a centralized

algorithm, a resourceful entity (e.g. base station) or a sink node outside of the network is responsible to execute the

algorithm without any necessity for possible cooperation with other sensor nodes and devices inside the network. It is

critical to note that there are differences between distributed computing and parallel computing and concurrency. As

described earlier, in a distributed system, different entities may process a different function of a defined algorithm and

then cooperate to complete a given application request, while in parallel computing, a given task may be divided into

several sub-tasks and each sub-task to be completed by a different CPU [29]. On the other hand, concurrency mainly

refers to the completion of multiple computations simultaneously on a shared CPU [30].

Figure 1.5 illustrates a generic schematic of centralized vs. decentralized vs. distributed traditional non-virtualized

10

Figure 1.5: Task assignment in (a) centralized traditional non-virtualized IoT, (b) decentralized traditional non-
virtualized IoT, (c) distributed traditional non-virtualized IoT, (d) distributed virtualized IoT.

IoT vs. distributed virtualized IoT. As shown in Fig. 1.5 (a), in centralized traditional non-virtualized IoT there exists a

scheduler deployed at a resource-rich node (e.g., base station), which is located outside of the deployed network. The

scheduler holds global knowledge about the deployed network and runs the assignment algorithm in a centralized man-

ner. In the decentralized task assignment shown in Fig. 1.5 (b), the scheduler has partial knowledge of the underlying

networking infrastructure. There are several aggregators inside the network, each holding a scheduler. The aggregators

are communicating with the base station and the underlying deployed infrastructure within their network in parallel

without any collaboration with other aggregators. The results are then forwarded to the base station. Figure 1.5 (c)

depicts the distributed task assignment in a traditional non-virtualized IoT, where each sensor has the knowledge of its

neighboring nodes. Each node along with its neighbors cooperate with each other to assign and execute the sensing

tasks. As shown in Figs. 1.5 (a-c), the deployed IoT network consists of non-virtualizable sensor nodes (e.g., Wasp-

mote [27]), which can only execute one sensing task at a time. In addition, the scheme shown in Fig. 1.5 (a) suffers

from the centralized execution of the assignment. This problem has been partially solved in decentralized algorithms

shown in Fig. 1.5 (b), though it depends on the decision made by the schedulers located at the base station and aggre-

gators, which execute the applications in parallel without any cooperation. The distributed task assignment shown in

Fig. 1.5 (c) has overcome the above issues, yet it is subject to non-virtualized sensor nodes that can execute only one

task at a time. By contrast, in a distributed virtualized IoT scheme shown in Fig. 1.5 (d), multiple virtual sensors can

be instantiated on top of the virtualizable sensor nodes, allowing for simultaneous execution of multiple sensing tasks.

11

1.4. Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the motivating use case scenarios, and re-

quirements, and provides a critical review of the state-of-the-art. We organize the thesis based on the algorithmic

contributions. Accordingly, Chapter 3 presents the energy efficient dynamic task assignment in virtualized wireless

sensor networks. Chapter 4 presents the proposed solution for energy efficient dynamic network embedding in virtu-

alized wireless sensor networks. In Chapter 5, we present energy efficient distributed task assignment in virtualized

Internet of Things. Finally, we conclude this manuscript in Chapter 6 and provide future directions for this research

work.

12

Chapter 2

Related Work

In this chapter, we first present motivating use case scenarios. Then, we present a set of requirements derived from

the scenarios. Finally, we review the state-of-the-art in light of these requirements.

2.1. Motivating Use Case Scenarios

There are several motivating use case scenarios that can be considered. As an illustration of the problems at hand,

let us consider a disaster management system in an earthquake zone close to the ocean where there is a possibility

of destructive tsunamis. Sensor nodes with multiple sensing capabilities (sensors with multiple functions) could be

deployed, both on the sea and in the coastal city next to it. These sensors could measure water pressure to detect

seismic waves [31], as well as the changes in the gravity for earthquake detection, using gravity sensors [32]. In

addition, temperature and air humidity sensors could be used to detect possible fire incidents after an earthquake.

Some examples of applications that may assign tasks to sensors in such an environment are fire detection, earthquake

prediction, and earthquake detection.

Another example could be a smart heritage monitoring system, where sensor nodes with multiple sensing capabil-

ities (e.g., temperature and humidity) are deployed. Some examples of applications that may assign tasks to sensors in

such an environment are fire contour, humidity expansion map, and heating and ventilation air conditioning fault detec-

tion. The sensing tasks of such applications may require to use same physical sensor nodes to address the applications’

requirements. Thus, the deployed WSN substrate network is required to execute the sensing tasks of such applications

simultaneously, while exchanging messages between the sensor nodes.

13

2.2. Requirements

Considering the above motivating use case scenarios, different requirements are derived. We categorize the re-

quirements into four main categories: general requirements that apply to all contributions, requirements specific to task

assignment in virtualized WSNs, requirements specific to network embedding in virtualized WSNs, and requirements

specific to distributed task assignment virtualized IoT.

2.2.1 General Requirements

We define the following requirements that are applied to all contributions.

i. It is critical to avoid redundant WSN deployment. Therefore, the system should support WSN virtualization to

allow the co-existence of both physical and virtual sensors. This leads to the first general requirement that is

concurrent execution of tasks.

ii. Considering that the sensor nodes are battery powered and need to be active and functional for a long period of

time, thus, the proposed model should satisfy the energy efficiency requirement. In this thesis, we assume that

all of the sensors are battery-powered with no access to any powerful source of energy.

iii. The third requirement that can be applied to all contributions is dynamicity. The dynamicity can be considered

from both application and substrate network perspectives. Any new application deployed in the environment

should be able to assign tasks, and any previously deployed application should also be able to assign new tasks

if necessary. Therefore, tasks cannot be assigned statically in such an environment where they are known in

advance. In other words, the applications’ tasks may arrive at random time instants (rather than being periodic

or predictable). On the other hand, from a substrate network perspective, a virtual network needs to be created

dynamically as per application requests. This implies that the substrate network should not be pre-set/-configured

in advance.

2.2.2 Requirements Specific to Task Assignment

i. The system should be scalable to cope with a large number of tasks. Hence, the first requirement is to satisfy

scalability that is defined in terms of the number of tasks assigned to the sensor nodes.

ii. Different tasks may hold different deadlines. This is critical as it specifies the priorities of the tasks. Thus, the

second requirement is task deadline which must be satisfied to avoid a task to be dropped. The task deadline is

defined as the maximum time a task can wait in a queue upon its arrival and before it can be executed.

14

2.2.3 Requirements Specific to Network Embedding

i. Given that the IoT network operates on wireless communications with limited bandwidth, it is important to

satisfy the application’s bandwidth requirements.

ii. Similarly, it is also necessary to meet the given end-to-end (E2E) latency constraints. Essentially, each applica-

tion may have a specific latency requirement from the source to the destination node which needs to be met.

2.2.4 Requirements Specific to Distributed Task Assignment

i. The IoT networks are intrinsically distributed with limited capacity and computing capabilities. Moreover, it

is highly unlikely to always have a resource-rich (in terms of energy and computing) node available in the

network to run the computation-intensive algorithms. Therefore, this leads to satisfying the message exchange

requirements in which the sensor nodes do require to communicate with each other to address the requirements

of the application through in-network processing. Therefore, it is necessary to have a distributed model for

task assignment which needs to be satisfied. In addition, task deadline, bandwidth, and E2E latency are other

requirements specific to distributed task assignment which were defined earlier in Sections 2.2.2 and 2.2.3,

respectively.

2.3. Related Work

This section presents the state-of-the-art for this research that is presented in three parts. The first part discusses

task assignment approaches in WSNs. The second part reviews the works focused on network embedding in WSNs.

In the third part, the algorithmic solutions for distributed task assignment in IoT are reviewed.

2.3.1 Task Assignment in WSNs

In this sub-section, we review the algorithmic solutions for task assignment in WSNs. It covers three main cate-

gories. The first category is focused on single-objective-based solutions, while the second category discusses multi-

objective-based approaches. In the third category, the algorithmic solutions that consider the static aspect of task

assignment in addition to the dynamic aspects are discussed.

A) Single-Objective-based Solutions

The single objective targeted by all the works discussed in this sub-section is the minimization of energy con-

sumption. However, none of these works meets all our requirements. A Software-Defined Sensor Network (SDSN)

is proposed in [33]. It was formulated as a Mixed Integer with Quadratic Constraints Programming (MIQP) problem,

15

which was then re-formulated to a Mixed Integer Linear Programming (MILP) problem. Although the authors con-

sidered software-defined sensor nodes, allowing multiple tasks to run over the same sensor node, the overhead that is

induced by sensor node softwarization is ignored. This is important, as it significantly affects decision-making when

assigning tasks. In addition, they did not address the scalability requirement.

Price-based adaptive task allocation for WSNs is proposed in [34]. The authors studied the problem of fair energy

balance among sensor nodes while considering the task deadlines. The authors extended their work in [35] by proposing

a combinatorial auction-based task assignment algorithm. However, neither of these works considers the node-level

virtualization and scalability requirements. The work in [36] studied the problem of task assignment, in which the

sensor nodes may be shared among multiple similar tasks. Refs. [37–40] introduced the concept of a sensor-cloud

where an instance of the sensor is created in the cloud and referred to as a virtual sensor and thereby shared among

multiple applications. However, none of these works meet the node-level virtualization, scalability, and task deadline

requirements.

The authors of [41–43] considered creating multiple WSNs on top of the deployed WSN using different techniques.

For example, in [41] they used the concept of the overlay. The authors modeled the applications as a Directed Acyclic

Graph (DAG) where the nodes represent the tasks and the edges represent the dependencies between tasks. The authors

of [42] used network slicing and proposed a heuristic to solve the problem of task assignment. In [43], researchers pro-

posed a multi-agent clustering model using Adaptive Distributed Artificial Intelligence (ADAI) for cluster formation

and Adaptive Particle Swarm Optimization to solve the resource allocation problem. However, none of these works

consider sensor node-level virtualization or task deadlines. Furthermore, the authors of [44] considered a WSN with

amplified-and-forward (AF) relay and energy harvesting (EH) sensor nodes. They formulated the problem as Markov

Decision Problem (MDP) and used reinforcement learning (RL) to find an approximate transmission strategy. Al-

though energy efficiency was considered in their proposed model, the concurrent execution of tasks was not satisfied.

Moreover, Ref. [44] did not discuss task deadlines or scalability.

B) Multi-Objective-based Solutions

Besides single-objective-based solutions, several works have solved the problem by considering multi-objectives

in their approaches. The work in [45] aimed at maximizing the profit while considering energy consumption. The

authors proposed an analytical model and a distributed heuristic for task assignment in WSNs with energy harvesting

capabilities. However, they did not cover node-level virtualization, scalability, or task deadline requirements. In [46],

the authors allowed for the creation of multiple Virtual Sensor Networks (VSNs) on top of the deployed physical

WSN, aiming to maximize both the residual energy of the network and the residual energy of the sensor node with the

lowest available energy. They also considered the weighted sum of the first two objectives. Although virtualization

is considered, the virtualization overhead is ignored. This is critical as the virtualization overhead may impact the

16

decision-making process. Moreover, the scalability and task deadline requirements are not met.

In [47], the objective was to minimize energy consumption and satisfy the delay-sensitive applications’ require-

ments. The authors showed that their system is scalable. However, their work does not satisfy the node-level virtualiza-

tion requirement. An algorithm for resource allocation in WSNs was proposed in [48], in which the sensor nodes are

pooled. Virtual sensor networks could then be built through network slicing. These researchers aimed at minimizing

the overall energy consumption of the network while considering the sensors’ energy harvesting. However, they did

not address the scalability, or task deadline requirements. In addition, the virtualization overhead was also ignored.

These factors have enormous impacts on assignment strategies. An energy-efficient task offloading (EETO) was pro-

posed in [49], which aimed at minimizing energy by jointly optimizing task scheduling and offloading in real-time

IoT applications. The authors of [50] proposed a multi-hop cooperative caching to improve both energy efficiency and

data fetching delay, where sensor nodes frequently and periodically execute sensing tasks and generate related data.

However, none of these works considered node-level virtualization and scalability requirements. Moreover, our task

deadline requirements were not satisfied by Ref. [50].

C) Solutions with Static and Dynamic Aspects

There are some works that focused solely on the static aspects of the problem (e.g., [51–55]). We do not discuss

these works in detail here, because they do not meet the dynamicity requirement, which is key to our work. Instead,

we concisely review those works that considered node-level virtualization. The authors of [53] aimed at maximizing

the revenue while minimizing the number of active sensor nodes. However, as discussed, this work only solved the

problem in its static settings. In addition, Ref. [53] ignored the virtualization overhead and did not discuss scalability.

That work also did not address the task deadline requirement and instead focused on sensor nodes’ storage and band-

width requirements. The authors of [54] tackled the problem of task assignment in static settings while considering

node-level virtualization. They proposed a non-linear weight discrete particle swarm optimization (NWDPSO) to solve

the problem. Similarly, the virtualization overhead factor was ignored and there was no discussion on scalability or

task deadline requirements. The authors of [55] proposed both short- and long-term solutions for the task assignment

problem while considering node-level virtualization. While they considered virtualization overhead and task deadlines,

they only solved the problem in its static settings and targeted maximizing the revenue for the operator as their main

objective. In addition to the above-mentioned works, there are some works that do not meet the scalability require-

ment [56, 57], while others do not meet the energy efficiency requirement [58]. Some do not meet the task deadline

requirement [59, 60].

There are several studies that consider the dynamicity aspect of the problem in addition to the static aspects.

In [61], the static setting of the problem is analyzed first. The task assignment problem is formulated to maximize

the profit, where the profit is the amount of task demands satisfied. The authors then considered dynamic settings

17

with the same objectives as their static settings and proposed an energy-aware algorithm for extending the network’s

lifetime. Similarly, in [62] the problem is first studied for resource conservation. The authors defined a budget for the

maximum resources that can be utilized by an application to avoid overtaxing an application’s resources. The authors

in [62] also considered dynamic settings in addition to their static settings. They defined the budget for the dynamic

settings in terms of the battery life of the sensor nodes. This was accomplished by evaluating the trade-offs between

the expected profit and the value of the task assignments. While these works evaluated the energy consumption, the

other requirements such as tasks’ deadlines, scalability, and node-level virtualization are not covered by their model.

2.3.2 Network Embedding in WSNs

This sub-section reviews the algorithmic solutions for network embedding in WSNs. At first, we review the virtual

network embedding solutions in conventional (wired) networks. Then, we cover the works that focused on virtual

network embedding in WSNs.

A) VNE in Conventional Networks

The works that are discussed in this subsection satisfy the energy efficiency and bandwidth requirements. Yet, some

works solve the problem in static settings only. For example, the authors of [63] proposed their so-called VNE-Energy-

Aware (VNE-EA) method, aiming at minimizing energy by allocating virtual network requests to the reduced group of

physical network infrastructure using Mixed Integer Programming (MIP). Although they considered energy efficiency

and bandwidth requirements, they did not meet requirements on mixed virtualizable and non-virtualizable sensor nodes,

dynamicity, and E2E latency. Ref. [64] aimed at minimizing energy consumption considering the minimal product

of energy cost per CPU that is allocated from virtual nodes to substrate nodes in the physical network. In [65],

the authors proposed Energy-Aware Virtual Optical Network Embedding (EA-VONE) in Elastic Optical Networks

(EONs) and modeled the problem using Integer Linear Programming (ILP). The main objective was to switch off as

many active resources (nodes and links) as possible. They solved the problem in the static mode, where the assumption

was that all virtual network requests are known in advance. Then, they released this assumption and tackled the

problem in the dynamic mode. Ref. [66] applied Bacterial Foraging Optimization (BFO) and proposed Energy-driven

BFO (EBFO) algorithm for efficient resource utilization with energy consumption at a minimal cost. In this work,

they followed the information interaction between bacteria in the foraging stage to design an energy-efficient network

embedding algorithm. Ref. [67] proposed a Greedy Randomized Adaptive Search Procedure (GRASP) algorithm,

aiming at minimizing energy by switching off the unused nodes and links. However, while Refs. [64–67] cover the

energy efficiency, dynamicity, and bandwidth requirements, none of them address the E2E latency, nor did they cover

the mixed substrate network requirements.

18

Alternatively, some works focused on objective functions other than energy efficiency in VNE, e.g., [68–78]. We

do not discuss them in detail as they did not cover energy efficiency, which is the main focus of this work. For example,

Refs. [68–70] focused on cost minimization of VNE in conventional networks, while others [71–74] considered the

acceptance rate ratio. Ref. [75] studied the VNE problem in conventional networks considering multiple objectives,

namely, maximizing profit and minimizing cost as the first objective, and minimizing energy and maximizing the profit

as the second objective. Other works [76, 77] tackled the problem of maximizing the profit, whereas [78] solved the

problem of minimizing the delay by partitioning the network into multiple smaller networks.

B) VNE in WSNs

There are several works that aim to solve the problem of virtual network embedding in WSNs. Some works

solely focused on the static settings of the problem, where the application requests are known in advance and the

time factor is eliminated. These works do not meet our dynamicity requirement. The authors of [79, 80] proposed a

Mixed Integer Linear Programming (MILP)-based framework for service embedding in IoT, aiming at minimizing the

energy consumption while accounting for the traffic demands in a static setting. However, none of the Refs. [79, 80]

addressed the latency, dynamicity, or bandwidth requirements. In addition, they only considered the substrate network

with physical sensors. There are works [81] that solved the problem considering multiple objectives in dynamic

settings. Ref. [81] proposed an MILP framework to solve the multi-objective problem of joint optimization of latency,

processing, and network energy consumption while considering resiliency. As for resiliency, they proposed an approach

in which the traffic from the source node to the destination node is split into two paths. Each path handles only half

of the traffic. In case of a failure in any of the paths during transmission, the traffic will be re-routed through the other

path. Although Ref. [81] considered energy efficiency, dynamicity, and latency, they did not satisfy the bandwidth

requirement. In addition, they did not cover the virtualization requirement, which is to allow the co-existence of both

physical and virtual sensors in the substrate network.

Alternatively, some works have applied the concept of network slicing in solving the resource allocation problem

in WSNs [42, 48, 54], while others tackled the problem using clustering [43]. The authors of [42] solved the joint

problem of admission control and resource allocation to dynamically optimize resource utilization in terms of energy

efficiency. They proposed their so-called Application Admission Control-Sensor Network Slicing framework (AAC-

SNS), where it is first decided whether to admit an application. Then, multiple applications are allowed to share the

deployed infrastructure concurrently using network slicing. In [54], the authors proposed a Software-Defined Wireless

Sensor Network (SDWSN) framework that applies network slicing to have multiple applications co-exist over the same

deployed WSNs. Then, they proposed Non-linear Weight Discrete Particle Swarm (NWDPSO) algorithm to map the

virtual networks (slices) to the physical substrate network. In [54], sensor nodes can be part of different coalitions at the

same time to address multiple tasks, though they are shared among the tasks that require a particular sensing capability.

19

Although Refs. [42,54] addressed the energy efficiency and bandwidth requirements, they did not consider the latency.

Moreover, substrate network with mixed physical and virtual sensors is not addressed by [42], while the dynamicity

requirement is not met in [54]. In [48], the authors proposed a strategy in which the sensor nodes are virtualized and

then, virtual sensor networks are created through network slicing for resource allocation. They aimed at minimizing

the energy consumption of sensing and transmission while accounting for the energy gained through wireless channels

(energy harvesting). However, Ref. [48] did not address our latency requirement. The authors of [43] proposed

a multi-agent clustering technique using Adaptive Distributed Artificial Intelligence (ADAI) for resource allocation

in WSNs. They used DAI for inter-cluster communications while for the intra-communications, Adaptive Particle

Swarm Optimization (APSO) was applied. Although Ref. [43] considered energy efficiency and dynamicity, the other

requirements are not met.

Moreover, there are some works that focused on other objectives without touching on energy efficiency require-

ments. For example, Refs. [82–85] worked on minimizing the latency. Others proposed multi-objective solutions,

Ref. [86] considered latency and fault tolerance in virtualized wireless sensor networks, while Ref. [55] considered

reward maximization for the operators calculated by the difference between the revenue gained from the buyers and

the cost paid to the suppliers. In [87], the authors aimed at maximizing the profit and minimizing the resource usage

(link capacity). Alternatively, Refs. [88,89] focused on minimizing the cost (load on links) and at the same time maxi-

mizing the acceptance rate. The concept of sensor-cloud was introduced in [22, 23] in which an instance of the sensor

node is created in the cloud and referred to as a virtual sensor. Then, the collected data by these instances are shared

among multiple applications (data sharing). Refs. [1, 2, 33] solved the problem of energy efficiency in task assignment

considering node-level virtualization only.

In addition, Refs. [90–92] introduced the concept of Virtual Network Function (VNF) placement in IoT networks.

In [90], the authors addressed the problem of VNF placement across geographically distributed clouds considering

application requirements and locations, while Ref. [91] studied the problem of VNF placement on three pre-defined

layers: (i) resource-constrained IoT nodes layer to host VNFs such as data aggregations and relay, (ii) IoT gateway

layer, which has higher processing and storage capabilities, and (iii) cloud layer that consists of powerful nodes in

terms of computing, storage, and networking, and therefore the simple and complex VNFs can be deployed on cloud

nodes if needed. In [92], the authors investigated the problem of VNF placement in the cloud and Multi-Access

Edge Computing (MEC) infrastructure, aiming at minimizing the end-to-end communication delay and reduction of

operational and capital expenses. However, all of these works [90–92] differ from ours in various aspects. Specifically,

they do not consider virtualized IoT infrastructure, thus not fully exploiting the capabilities of sensor nodes. In addition,

in these works, the VNFs receive the sensing data from the IoT infrastructure, and then these VNFs are shared among

multiple applications.

20

2.3.3 Distributed Task Assignment in IoT

This sub-section reviews the algorithmic solutions for distributed task assignments in IoT. Initially, we review the

centralized algorithmic approaches followed by the decentralized algorithmic works. Finally, we cover the distributed

algorithmic solutions in task assignments in IoT.

A) Centralized Task Assignment Approaches

Several works solved the problem of task assignment in IoT in a centralized manner. All of the works discussed

in this subsection satisfy our energy efficiency and dynamicity requirements. In all of these works, it is assumed that

there exists a centralized entity (e.g., scheduler) that can run the algorithms and manage the IoT network. The authors

of [48] studied the problem of resource allocation in WSNs aiming at minimizing the energy consumption of sensing

and transmission of the sensors. Assuming that all sensors are virtualized, virtual sensor networks are built through

network slicing. However, they did not consider task deadlines, E2E latency, and bandwidth requirements, nor did

they consider the virtualization overhead. In [2], the authors solved the problem of task assignment in virtualized

WSNs in a dynamic manner while considering energy efficiency and task deadlines. However, they did not cover

the other requirements. The authors in [81, 93] investigated the problem of virtual network embedding in IoT using

a multi-objective model. In [93], the authors focused on minimizing the energy consumption, and average traffic

latency, aiming to realize a trade-off between these objectives. In [81], a mixed integer linear programming (MILP)

framework was proposed to solve the joint optimization of latency, processing, and network energy consumption while

considering resiliency. Although Refs. [81, 93] satisfied the energy efficiency, dynamicity, and latency requirements,

the other requirements are not met.

Some works focused on the static version of the problem, e.g., [1, 3, 53–55]. We do not discuss them in detail

as they do not satisfy our dynamicity requirement. The authors of [22, 23] introduced the concept of sensor-cloud

wherein an instance of the sensors is instantiated in virtual machines in the cloud that are referred to as virtual sensors.

These instances collect the data from the sensors and share them among multiple identical applications (data sharing).

However, these works are different from ours as they do not fully exploit the capabilities of the sensors. Thus, they do

not satisfy the requirement of concurrent execution of sensing tasks over the same WSN.

B) Decentralized Task Assignment Approaches

There are some papers that attempted to solve the task assignment problem in a decentralized manner. The works

discussed in this subsection satisfy our dynamicity requirement. Some works [94, 95] proposed both centralized and

decentralized approaches. In [94] the authors investigated the problem of efficient transmission of information and

power from the access-points to the IoT devices while satisfying the bandwidth QoS requirements. Initially, they

21

solved the problem in a centralized manner and static environment by using the Lyapunov optimization. Then, they

proposed a decentralized approach in which the access point determines the resource scheduling process in a centralized

manner, while the IoT devices schedule their tasks based on harvested energy from the signals and the QoS criteria in

a decentralized manner. In [95], the authors first studied the problem of task scheduling in a static environment and a

centralized manner. They modeled the problem as Binary Integer Linear Programming (BILP) aiming at maximizing

the network lifetime while accounting for task deadlines and bandwidth requirements. Also, they solved the problem

in a dynamic and decentralized way by breaking the centralized approach into multiple small-sized sub-problems using

Dantzig Wolf decomposition optimization. Therefore, each sensor executes one task (i.e., sub-problem) independently.

Although these works [94, 95] considered energy efficiency and bandwidth consumption, they do not satisfy the other

requirements.

Reference [43] focused on task assignment in WSNs, aiming at minimizing energy consumption. They modeled the

system as a multi-agent clustering WSN and proposed Adaptive Distributed Artificial Intelligence (ADAI) technique to

solve the problem in a decentralized manner. In their work, the clusters are pre-set and cluster heads communicate with

each other to decide which cluster may execute an application. Then, the clusters run the application independently.

They applied Distributed Artificial Intelligence (DAI) for inter-cluster communications and Adaptive Particle Swarm

Optimization (APSO) for intra-cluster communications. While they covered energy efficiency and dynamicity, the

other requirements are not discussed. Moreover, other works focused on other objectives e.g. minimizing latency.

The authors in [96] proposed a greedy algorithm for task scheduling considering task deadlines, E2E latency, and

bandwidth requirements. Their algorithm consists of task dispatching and task scheduling steps. In task dispatching

the end device may offload the task to a nearby edge server or a remote cloud to execute the task. Task scheduling

includes the decision-making on the start time of task execution considering the defined requirements. In Ref. [96], the

dynamicity, task deadline, E2E latency, and bandwidth requirements are satisfied, but the other requirements related to

energy efficiency, message exchanges between sensors, and concurrent task execution are not met.

C) Distributed Task Assignment Approaches

Despite the centralized and decentralized approaches, there are works that solved the task assignment problem in

IoT in a distributed manner. Reference [97] designed a 6G-enabled massive IoT architecture to solve the dynamic

resource allocation problem. Accordingly, AI-driven collaborative dynamic resource allocation (ACDRA) algorithm

was proposed based on a nested neural network and further combined with Markov Decision Process (MDP) to address

resource allocation optimization in real-time. The tasks were executed by devices collaboratively. They considered

minimization of delay as their objective function followed by E2E latency as a QoS metric. However, energy efficiency,

task deadline, bandwidth, and concurrent execution of tasks were not discussed in this work. The authors of [98]

proposed a scheme for minimization of energy and delay by sharing the IoT resources with nearby nodes as per

22

application requirements. They considered a visual camera monitoring system as their illustrative scenario, where each

camera may execute a specific function. The cooperation of the camera nodes completes the application requirements.

In their proposed scheme, each node determines which task it executes considering the latency QoS requirements,

while maximizing the resource utilization. Although the virtualization, energy efficiency, dynamicity, latency, and

message exchange requirements are satisfied, the other requirements such as bandwidth and task deadline constraints

are not met.

Reference [99] proposed the so-called Distributed Optimal On-line Task Allocation (DOOTA) algorithm to balance

the workload among the sensors efficiently to maximize network lifetime. In their model, the network is partitioned

into multiple clusters, and the slave nodes complete the task in collaboration with the cluster-head. More specifically,

the salve node sends the raw data to the cluster-head with/out pre-processing it. Then, the cluster-head may further

process it to accomplish the task accordingly. The authors of [100] aimed at minimizing the cost in terms of the required

energy for transmission, and proposed a greedy algorithm to solve the resource allocation problem. They considered

a set of cameras and the cameras may join the coalition to address an application requirement based on their utility

function which is the energy required for communication and processing. Although Refs. [99, 100] considered energy

efficiency, dynamicity, and sensors message exchange, they did not cover any other requirements. Further, some other

works aim to solve the problem in conventional wired networks, e.g., [101, 102], but we do not discuss them in detail

as they are different from ours, mainly because they do not address the limitations of wireless networks. In addition,

there exist some other works that solved the problem in a distributed manner, e.g., [103, 104], though they differ from

ours as their primary focus was on mobile crowdsensing [103] and mobile offloading [104]. These works are heavily

dependent on mobility and the users that may join/leave the network over time under certain constraints, e.g., location

and mobility patterns.

2.4. Conclusions

In this chapter, we first presented potential motivating use case scenarios, from which we derived a set of algorith-

mic requirements. After that, we surveyed the related work. Table 2.1 provides a summary of the reviewed algorithmic

papers. It should be noted that the following acronyms are used in the table 2.1: Concurrent Execution of Tasks

(Con. Exe. Tas.), Energy Efficiency (En. Eff.), Dynamicity (Dynam.), Scalability (Scalab.), Task Deadline (Task DL.),

Bandwidth (Bandw.), E2E Latency (E2E Lat.), and Message Exchange (Msg. Exch.). For each paper, we show the

requirements which are met and the ones which are not met. As it can be seen, none of the reviewed works satisfy all

our requirements.

23

Table 2.1: Related work evaluation.
(met!, not met ✗)

Related Works
Requirements Con. Exe. Tas. En. Eff. Dynam. Scalab. Task DL. Bandw. E2E Lat. Msg. Exch.

Task Assignment in Virtualized WSNs
Zeng et al. [33] ! ! ! ✗ ✗

Edalat et al. [34] ✗ ! ✗ ✗ !

Edalat et al. [35] ✗ ! ! ✗ ✗

Le et al. [36] ✗ ! ! ✗ ✗

Zhao and Zhao [44] ✗ ! ! ✗ ✗

Porta et al. [45] ✗ ! ! ✗ ✗

Delgado et al. [46] ✗ ! ! ✗ ✗

Santos et al. [47] ✗ ! ! ! !

Hazra et al. [49] ✗ ! ! ✗ !

Yang and Song, [50] ✗ ! ! ✗ ✗

Rowaihy et al. [61] ✗ ! ! ✗ !

Johnson et al. [62] ✗ ! ! ✗ ✗

Network Embedding in Virtualized WSNs
Delgado et al. [42] ✗ ! ! ! ✗

Li and Zhong [48] ! ! ! ! ✗

Chen et al. [54] ! ! ✗ ! ✗

Botero et al. [63] ✗ ! ✗ ! ✗

Chen et al. [64] ✗ ! ! ! ✗

Zhu et al. [65] ✗ ! ! ! ✗

Xu et al. [66] ✗ ! ! ! ✗

Lira et al. [67] ✗ ! ! ! ✗

Al-Shammari et al. [79] ✗ ! ✗ ✗ ✗

Al-Shammari et al. [80] ✗ ! ✗ ✗ ✗

Al-Shammari et al. [81] ✗ ! ! ✗ !
Distributed Task Assignment in Virtualized IoT

Mukherjee et al. [43] ✗ ! ! ✗ ✗ ✗ ✗

Zhong et al. [55] ! ✗ ✗ ✗ ! ! ✗

Al-Shammari et al. [93] ✗ ! ! ✗ ✗ ! ✗

Lee and Lee [94] ✗ ! ! ✗ ! ✗ ✗

Yu et al. [95] ✗ ! ! ! ! ✗ ✗

Meng et al. [96] ✗ ✗ ! ! ! ! ✗

Lin et al. [97] ✗ ✗ ! ✗ ✗ ! !

Avasalcai et al. [98] ! ! ! ✗ ✗ ! !

Yu et al. [99] ✗ ! ! ✗ ✗ ✗ !

SanMiguel and Cavallaro [100] ✗ ! ! ✗ ✗ ✗ !

24

Chapter 3

Energy Efficient Dynamic Task Assignment

in Virtualized Wireless Sensor Networks 1

3.1. Introduction

Wireless sensor networks as a key enabler technology of the Internet of Things are widely being used in various

application domains [8]. Energy consumption has always been a bottleneck in these networks. This is mainly be-

cause, in traditional WSNs, the applications are embedded into the sensor nodes, preventing them from being re-used

and possibly shared by other applications. Therefore, it results in inefficient resource utilization and redundant WSN

deployment, leading to increased maintenance, deployment, and energy costs [6]. To cope with this issue, WSN virtu-

alization is introduced. WSN Virtualization allows multiple applications’ sensing tasks to be executed over the same

WSN infrastructure concurrently [6]. However, there is additional energy and delay associated with the virtualiza-

tion in terms of the virtualization overhead [11, 12]. This is critical considering that the sensor nodes are constrained

devices with limited available energy. Also, an increase in delay may have drastic impacts on delay-sensitive applica-

tions. Therefore, designing and modeling a mechanism for the efficient allocation of these virtualized resources to the

applications’ sensing tasks becomes a challenge. In this chapter, we tackle these issues.

The rest of the chapter is organized as follows. At first, we present a high-level system model and problem defini-

tion. Next, we put forward a mathematical formulation, followed by the proposed heuristic that considers the virtualized

WSN infrastructure and the given QoS (i.e. task deadline) requirement. Then, we present the performance evaluation,

and finally, We conclude the chapter in the last subsection.

1This chapter is based on two published papers: [1] V. M. Raee, D. Naboulsi, and R. Glitho, “Energy efficient task assignment in virtualized
wireless sensor networks,” in Proc. IEEE Symposium on Computers and Communications (ISCC), pp. 00976–00979, 2018, and [2] V. M. Raee, A.
Ebrahimzadeh, R. H. Glitho, and H. Elbiaze, “Ensuring energy efficiency when dynamically assigning tasks in virtualized wireless sensor networks,”
IEEE Transactions on Green Communications and Networking, 2021.

25

Figure 3.1: High-level system model.

3.2. Dynamic Sensing Task Assignment Problem

This section presents our system model, wherein the problem definition is elaborated, followed by the problem

formulation. Our developed formulation leads to an ILP formulation of the problem, given that we use a linear objective

function along with linear constraints with integer decision variables, to be explained in technically great detail in

Section 3.2.1.

A high-level view of our system model is depicted in Fig. 3.1, where we consider a WSN with node-level virtual-

ization capability. The WSN includes a set of deployed sensor nodes that execute sensing tasks assigned to them. The

applications (e.g., fire detection) generate the set of sensing tasks (e.g., temperature and humidity). The task scheduler

receives the sensing task requests from the application layer (see Fig. 3.1). The scheduler is responsible for managing

the sensing tasks and assigning them to the sensor nodes. Once the tasks are executed by the sensor nodes, the results

of the readings will be sent back to the scheduler to address the applications’ requests. The system includes a set of

time slots during which the tasks arrive in batches and are queued at the beginning of each time slot. The number of

time slots has been selected such that a statistical stability is achieved. The scheduler runs the assignment algorithm

and manages the application sensing tasks accordingly, assigning them to physical and virtual sensor nodes. If there

are application sensing tasks that cannot be assigned at their arrival time slot, they will be scheduled for the next time

slot together with the queue of the new incoming tasks.

26

We aim at minimizing the WSN’s overall energy consumption while respecting the deadlines. Once a sensing task

is assigned to a sensor node (physical or virtual), it will be executed immediately. As it was discussed earlier, when a

task is assigned to a physical sensor the virtualization functionality of the physical sensor is disabled.

Given that time is discretized as T = {Tn, n ∈ N}, where time slot Tn ∈ T corresponds to the total task

assignment time frame and T is the total observation time, we model the overall energy consumption of the virtualized

WSN considering the given constraints i.e., the sensing task deadline, set by the application. We consider a virtualized

WSN composed of a set I = {1, 2, ..., k} of sensor nodes. Each sensor node i ∈ I is placed in a location with

multiple functions, allowing it to execute specific tasks within its proximity. Each application sensing task (e.g.,

temperature, humidity) requires reading from a sensor node [105]. This is different from computing tasks, where

additional processing may be required by servers or the IoT nodes prior to transmission of the results. In this work,

we assume that the tasks are uniform and they require similar amount of energy for transmission and have similar

transmission delay. We define a matrix L accordingly, such that Li,j = 1 if task j ∈ J is in the proximity of the sensor

node i ∈ I . Otherwise Li,j = 0. An application sensing task is considered to be in proximity of the sensor node if it

is within the sensor node’s sensing range.

Tasks are generated by applications according to a general process and then served by the scheduler in batches at

the beginning of each time slot Tn. Let Tn be the nth inter-arrival time of the group of tasks and αn be the size of the

nth group of tasks. Variables Tn and αn are supposed to be independent (i.e. their distributions do not depend on n).

Let aTn
j be the arrival time of task j at time Tn and dTn

j its deadline respectively. The task deadline is defined as the

time instant by which a task execution result needs to be delivered to the sink node and it is set by the application. In

this work, we assume that all the application sensing tasks will execute immediately after being assigned to the physical

and virtual sensors. Tables 3.1 and 3.2 summarize the main notations and problem inputs, respectively.

3.2.1 Problem Formulation

The problem aims at dynamically assigning sensing tasks to sensor nodes for their execution at the lowest energy

consumption with respect to their deadlines. A task can be executed in two ways: i) directly on a Physical Sensor (PS),

so that just one task can execute on a sensor node; or ii) on a Virtual Sensor (VS) on top of the sensor node, with the

possibility to run more than one task on a single sensor node.

At time Tn, the problem considers all tasks in the WSN that are not yet executed including i) tasks j ∈ J arriving

at time aTn
j and ii) tasks arriving at time aTm

j , such that Tm < Tn, and are not executed yet. In case (i) the problem

makes an assignment decision for a newly arriving task j at Tn. In case (ii), the problem allows an assignment decision

to be made for a task j that arrived during a previous time slot Tm (m < n) and to assign it to a PS or VS, at time

Tn. We formulate the dynamic sensing task assignment problem as an ILP problem and define the decision variables

27

Table 3.1: General notations of the problem.

Notation Definition
I The set of sensor nodes
J The set of tasks where j represents a single task within set: j ∈ J
T Total observation time
Tn Total task assignment frame time
αn The size of each group of tasks at Tn

aTn
j The arrival of task j at time Tn

dTn
j The deadline of task j at time Tn

Li,j A matrix specifying that the task j is within the sensing range of the
sensor node i

wi,i′,j,Tn Routing energy consumption of the task j that is assigned to sensor node
i at time Tn passing through sensor node i

′

M The maximum number of virtual sensor nodes over a physical sensor
node

h The number of intermediary sensor nodes along the routing path
Ei

Tn
The available energy of sensor node i at time Tn

Etr Forwarding energy consumption
Ere Receiving energy consumption
Eov Virtual sensor node creation energy consumption
Dpr Transmission delay
Dov Virtual sensor node creation delay

Table 3.2: Problem inputs.

Input Definition
PS A physical sensor node
V S A virtual sensor node
ETn Total energy of assignment at time Tn

EP
Tn

Energy consumption of a physical sensor node i at time Tn

EV
Tn

Energy consumption of a virtual sensor node i at time Tn

ER
Tn

Energy consumption of routing from sensor node i at time Tn

DP
Tn

Delay of a physical sensor node i at time Tn

DV
Tn

Delay of a virtual sensor node i at time Tn

DR
Tn

Delay of routing from sensor node i at time Tn

28

accordingly, as follows.

xi,j,Tn
=

1, if task j is assigned to sensor i at Tn in its physical mode,

0, otherwise.
(3.1)

yi,Tn =

1, if sensor i is virtualized at Tn,

0, otherwise.
(3.2)

and,

zi,j,Tn
=

1, if task j is assigned to sensor i at Tn in its virtualized mode,

0, otherwise.
(3.3)

We model the energy consumption and the delay of the WSN in the following. Then, we define the objective

function and constraints.

A) Energy Consumption

When solving the problem at time Tn ∈ T , we consider the total energy consumption, which can be divided into

three components as follows.

• PS Energy Consumption (EP
Tn

): We define EP
Tn

as the energy consumption resulting from assigning sensing

tasks to physical sensors at time Tn as follows:

EP
Tn

=
∑
i∈I

∑
j∈J

xi,j,Tn Li,j E
tr, (3.4)

where, Etr is the energy consumption for running one sensor node. EP
Tn

includes the energy consumption for all task

executions on the PSs at time Tn, both the current decisions concerning upcoming task executions on PSs and those

that arrive in previous time slots but have not yet been executed.

• VS Energy Consumption (EV
Tn

): The VS energy consumption at each time Tn represents the energy con-

sumption resulting from assigning sensing tasks on VSs over sensor nodes. It covers the energy consumption

for running the physical sensor nodes in addition to a virtualization overhead for each VS. EV
Tn

is obtained as

follows:

EV
Tn

=
∑
i∈I

yi,Tn E
tr +

∑
i∈I

∑
j∈J

zi,j,Tn Li,j E
ov, (3.5)

where Eov is the energy consumption overhead incurred by creating a VS over a physical sensor node [11].

29

• Routing Energy Consumption (ER
Tn

): The routing energy consumption includes the total energy consumed by

routing data from sensor nodes that are executing the tasks, as the source, to the sink node as the destination,

at time Tn. We assume the shortest path routing protocol is used. For one task execution, all the intermediary

sensor nodes between the source and the sink node will consume energy due to the reception and transmission

of data. The energy consumption of the network due to routing is obtained as follows:

ER
Tn

=
∑
i∈I

∑
i′∈I

∑
j∈J

wi,i′,j,Tn hi,i′ E
tr re, (3.6)

where, Etr re is the energy consumed for both the transmission and reception of data on one sensor node. For

every sensor node i, we define set Ii. This set includes all sensor node’s whose path to the sink node crosses

sensor node i. hi,i′ represents the number of hops between sensor node i and sensor node i′ ∈ Ii, and i ̸= i′.

Accordingly, for every i ∈ I , considering i′ ∈ Ii we define:

wi,i′,j,Tn
= xi,i′,j,Tn

+ zi,i′,j,Tn
(3.7)

where wi,i′,j,Tn
= 1 if task j is assigned to sensor node i′ at Tn and has to route the packet from i.

• Total Energy Consumption (ETn): The total energy consumed in the WSN at a time Tn is calculated as given

by:

ETn = EP
Tn

+ EV
Tn

+ ER
Tn

. (3.8)

B) Delay

When solving the problem at time Tn ∈ T , we consider the total delay factors, which can be divided into three

components as follows.

• PS Delay (DP
Tn

): At time Tn, we define DP
Tn

as the delay (in milliseconds) resulting from transmission of a task

from the sensor nodes in its physical mode, obtained as follows:

DP
Tn

=
∑
i∈I

∑
j∈J

xi,j,Tn Li,j D
pr, (3.9)

where Dpr is the transmission delay of running a task on a sensor node.

• VS Delay (DV
Tn

): The VS delay at each time Tn represents the time (in milliseconds) spent by the sensor node

to transmit a task from a the sensor node when it is on its virtualized mode. It covers the delay for running the

30

physical sensor node in addition to a virtualization overhead for each VS, and is obtained as follows:

DV
Tn

=
∑
i∈I

yi,Tn D
pr +

∑
i∈I

∑
j∈J

zi,j,Tn Li,j D
ov, (3.10)

where Dov is the delay overhead incurred by creating a VS over a physical sensor node [11, 12].

• Routing Delay (DR
Tn

): The routing delay reflects the total delay (in milliseconds) for data transmission in the

network from the source sensor nodes to the sink node at time Tn, considering the shortest path-to-destination

routing protocol. There will be a transmission time for all the intermediary nodes between the source and the

sink nodes. The network delay cost is obtained as follows:

DR
Tn

=
∑
i∈I

∑
i′∈I

∑
j∈J

wi,i′,j,Tn hi,i′ D
pr. (3.11)

C) Objective Function and Constraints

In our problem, we seek to offer sensing task assignment decisions at the lowest energy consumption while re-

specting the task deadline’s requirements in the constraints. Accordingly, q is the total number of time slots. Thus, we

define our objective function as follows:

min

Tn=q∑
Tn=0

(EP
Tn

+ EV
Tn

+ ER
Tn

) (3.12)

Constraints: We consider the following constraints in our problem. Each task should be assigned to either a PS or

a VS at only one time slot, as indicated in Eq. (3.13):

∑
i∈I

∑
Tn∈[0,dTn

j]

xi,j,Tn Li,j +
∑
i∈I

∑
Tn∈[0,dTn

j]

zi,j,Tn Li,j = 1 ∀ j ∈ J . (3.13)

Moreover, a task cannot be assigned to a PS or a VS before its arrival time, as shown in Eq. (3.14) and Eq. (3.15),

respectively: ∑
i∈I

∑
Tn∈[0,aTn

j)

xi,j,Tn Li,j = 0 ∀ j ∈ J , (3.14)

∑
i∈I

∑
Tn∈[0,an

j)

zi,j,Tn Li,j = 0 ∀ j ∈ J . (3.15)

A sensor node can operate in a physical mode or in a virtualized mode. If a sensor node operates in a virtualized mode,

no task should be assigned to it on a PS. However, if a sensor node is operating in a physical mode, it can support a

31

maximum of one task on its PS. We enforce these conditions using Eq. (3.16):

∑
j∈J

xi,j,Tn Li,j ≤ 1− yi,Tn
∀ i ∈ I, Tn ∈ T . (3.16)

Further, a sensor node can support a maximum number of VSs, referred to as M . We enforce this condition with Eq.

(3.17): ∑
j∈J

zi,j,Tn Li,j ≤Myi,Tn
∀ i ∈ I, Tn ∈ T . (3.17)

A task should not be assigned to a sensor node at a certain time if the sensor node does not have enough energy. This

condition is specified by Eqs. (3.18) and (3.19):

xi,j,TnE
tr ≤ Ei

Tn
∀ i ∈ I, j ∈ J , Tn ∈ T , (3.18)

yi,Tn
Etr +

∑
j∈J

zi,j,Tn
Eov ≤ Ei

Tn
∀ i ∈ I, Tn ∈ T , (3.19)

where Ei
Tn

refers to the available energy of sensor node i at time slot Tn, which is obtained using a recursive model,

as follows:

E
i
Tn

= Ei
Tn−1

− EP
i,Tn
− EV

i,Tn
− ER

i,Tn
, (3.20)

where Ei
Tn−1

represents the available energy on sensor node i, at time slot Tn−1. For every task j, it should be ensured

that it will be executed by the sensor node i before the task’s deadline. This constraint is enforced by Eq. (3.21) and

Eq. (3.22):

∑
i∈I

∑
Tn∈[aTn

j ,dTn
j]

xi,j,Tn Li,j +
∑
i∈I

∑
Tn∈[aTn

j ,dTn
j]

zi,j,Tn Li,j = 1 ∀ j ∈ J . (3.21)

∑
Tn∈T

(DP
Tn

+DV
Tn

+DR
Tn

) ≤ dTn
j ∀ i ∈ I, j ∈ J . (3.22)

3.2.2 Problem Analysis

Theorem 1. The dynamic application sensing task assignment problem in Virtualized WSNs is an NP-hard problem

and is at least as hard to approximate as a Dynamic Generalized Assignment Problem (DGAP).

Proof. The problem can be proven to be NP-hard by a reduction to show that our application task assignment

problem in virtualized WSNs can be expressed as a known NP-hard problem. We use a Dynamic Generalized Assign-

ment Problem (DGAP) that is known to be an NP-hard problem [106] as our reference problem. The proof is based on

mapping our problem to the DGAP, thereby showing that they are identical.

32

The Dynamic Generalized Assignment Problem (DGAP) is known as NP-hard in combinatorial optimization prob-

lems [106]. There is a set T of time where T = {1,. . . , t̄} and a set K where K = {1,. . . , k̄} is the number of tasks to

be assigned to the storage locations during this time horizon. Set M indicates storage locations where M = {1,. . . , m̄}.

The set K can correspond to the set of tasks J in our work. There are also two parameters namely task arrival time

and departure time that are defined as ak ∈ T and bk ∈ T , respectively. These parameters can fairly correspond to

our task arrival time of aTn
j and task deadline dTn

j , respectively. In addition, for the sake of notational convenience, the

authors in [106] defined the following sets: T (k) = {t ∈ T : ak ≤ t ≤ bk} ∀k ∈ K which shows the stay of task k;

the set T−(k) = {t ∈ T : ak ≤ t ≤ bk − 1} ∀k ∈ K that indicates the stay of the task k before its reallocation; and

the set K(t) = {k ∈ K : t ∈ T (k)}, ∀t ∈ T , which represents the tasks that are in the system at time t.

The task space requirements and the task positions upon their arrival and departure are also considered. In addition,

the problem considers the reallocation and the maximum travel time of each task between its arrival position and its

first storage position. These parameters are shown via the variables qk, ok, dk, rk, cka and ckb . Furthermore, the DGAP

uses a binary decision variable, zklt, which is equal to 1 if task k is assigned to position l in period t, and 0 otherwise,

and a decision variable, αk
lmt, that is equal to 1 if task k is assigned to position l in period t and to position m in period

t+ 1, otherwise it is equal to 0. The objective is to minimize the overall handling cost for each task k ∈ K, including

the handling from the last position to the departure position, and all the re-allocations during the planning horizon T .

There are a few constraints associated with the DGAP. The first constraint confirms that each task is assigned to one

position at a time. The second constraint ensures that the task’s required space does not exceed the location’s available

space. The DGAP also considers the arrival and departure of the tasks, followed by the reallocation possibilities in the

other time slots shown in their last constraint.

min
∑
k∈K

{
∑
l∈M

(cokl z
k
lak + cldkzklbk) +

∑
l∈M

∑
m∈M

∑
t∈T−(k)

clmαk
lmt}

s.t.

∑
l∈M

zklt = 1 ∀ k ∈ K, t ∈ T (k),

∑
k∈K(t)

qkzklt ≤ Ql ∀ l ∈M, t ∈ T,

∑
l∈M

cokl z
k
lak ≤ cka ∀ k ∈ K,

33

∑
l∈M

cldkzklbk ≤ ckb ∀ k ∈ K,

zklt + zkm(t+1) − aklmt ≤ 1 ∀ k ∈ K, l ∈M, t ∈ T−(k).

Let us now consider an instance of the dynamic application sensing task problem in a virtualized WSN to show that

the DGAP reduces to our dynamic task assignment problem. Considering the objective function defined in Eq. (3.12)

followed by its constraints, it is evident that we are trying to minimize the overall energy consumption that occurs

due to task assignment to the physical or virtual sensors over time, with routing energy consumption being considered

as well. Our constraints (3.13) to (3.16) are fairly matched with the first constraint defined in the DGAP, as we are

concerned about all the tasks being assigned to either a physical or a virtual sensor at a given time, as a task cannot

be assigned to both a physical sensor and a virtual sensor simultaneously. Furthermore, by considering that a sensor

node can accept a maximum number of virtual sensors over it, our constraint (3.17) is matched with what is shown

in the second constraint in the DGAP. This can also be applied to the case of energy as well. As in our constraints

(3.18) to (3.20), the task should not be assigned to a physical or virtual sensor if that node does not have enough energy

available. The third and fourth constraints in the DGAP restrict the maximum travel time between the arrival position

of a task and its first location, and the task’s departure position and its last position. These constraints are mapped to our

constraint (3.21) that states all the tasks must be assigned before their deadline. In other words, the maximum time that

a task can wait in a queue before being assigned to a PS or a VS. Also, given that our model allows the assignment of

those tasks that arrived in previous time slots and have not yet been executed, this can be mapped to the last constraint

shown in the DGAP. Clearly, our developed formulation matches the DGAP problem, which is known as an NP-hard

problem. Therefore, our dynamic task assignment problem in a virtualized WSN is also an NP-hard problem.

3.2.3 DTA: A Heuristic for Dynamic Task Assignment in Virtualized WSN

According to the proposed mathematical model, obtaining the solution for large-scale scenarios in a timely manner

is rather complex. Hence, we propose the DTA heuristic, as described in Algorithms 3.1 to 3.3, to solve the problem

for large-scale scenarios in an appropriate time-frame. The DTA heuristic seeks to determine the assignment of the

sensing tasks to the physical and virtual sensor nodes. The main goal is to minimize the overall energy consumption

while respecting the QoS constraints, i.e., the task deadlines, set by the application, and it specifies the maximum time

a task may wait before it can be executed. We considered the constants shown in Table 3.1 as the inputs of the DTA

heuristic. We also considered a set of sensor nodes (i.e. I), a set of tasks (i.e. J), and a sink node (SN). The output

of the DTA is sets x and z of senor-task assignments. Our proposed DTA algorithm consists of three main phases, as

34

Algorithm 3.1 DTA Heuristic
Input: I,J , T , SN
Output: x, z /* sets of assignment decisions */

1: for Tn ∈ T do
2: D= {dist(i,SN) / i ∈ I}; /* distance from the SN */

3: Ds=D.sort(); /* sort D in ascending order */

4: D̂s= {Den(i) / i ∈ Ds}; /* task density over nodes */

5: i=1;
6: while i < Ds.size() do
7: if Ds(i) = Ds(i+ 1) then
8: if D̂s(i) = D̂s(i+ 1) then
9: if E(D̂s(i)) > E(D̂s(i+ 1)) then

10: select sensor i;
11: else
12: select sensor i+1;
13: end if
14: else
15: select sensor i;
16: end if
17: else
18: select sensor i;
19: end if
20: i← i+ 1;
21: end while
22: TS(i, Tn); /* Task Selection for sensor node i at time slot Tn */

23: CstVerf (i); /* Constraints Verification and Assignment for selected sensor node i */

24: end for

shown in Fig. 3.2. The first phase is sensor selection. As specified in Algorithm 3.1, our proposed heuristic iterates

over a set T of time slots. Next, the DTA finds the distance between each sensor node and the sink node. This part

is performed by function dist(), which is responsible for finding the distance of each sensor node to the sink node.

The Euclidean Distance function is applied to explore the tasks in proximity of the sensor nodes and shortest-path-to-

destination is used find the distances between the sensor nodes and the sink node (see Fig. 3.2(a)). For example, as

shown in Fig. 3.2(a), sensor nodes I5, I6 and I7 are the closest sensor nodes to the sink node, sensor nodes I1, I3 and

I4 are equi-distant from the sink node, and sensor node I2 is the node furthest from the sink node.

Once the distance of each sensor from the sink node has been found, they are sorted in ascending order, from the

closest to the furthest from the sink node, using the sort() function (see line 3 in Algorithm 3.1). It is important to note

that all the sort functions used in this work are found in Dual-Pivot Quicksort [107]. The first sensor node from the

sorted list is selected as the initial point for the task assignment, as depicted in Fig. 3.2(a). If there are more than two

sensor nodes with the same distance from the sink node, the list of candidate tasks for each sensor node will be derived

from the Den() function as shown in Algorithm 3.4. Figure 3.2(b) illustrates an overview of the task density around

each sensor node. Sensor nodes are surrounded by a set of candidate tasks, i.e., those tasks that are within the sensing

range (or proximity) of a sensor node. Let us consider the example shown in Fig. 3.2(b), where sensor nodes I1, I3,

and I4 are located at an equal distance (i.e., two hops away) from the sink node. After obtaining the task densities,

we notice that sensor node I3 is surrounded by tasks J1 to J5, among which task J5 is in the sensing range of sensor

node I4 as well. Given that the task density of each sensor node is calculated independently, task J5 is counted for

35

(a) Sensor-sink distance.

(b) Sensor-task density.

(c) Task selection and assignment.

Figure 3.2: Illustration of different phases of our proposed DTA algoritm: (a) Sensor-sink distance, (b) Sensor-task
density, and (c) Task selection and assignment.

36

Algorithm 3.2 Task Selection (TS)

1: TS(i, Tn)
2: D̂s = {Den(i) / i ∈ Ds};
3: DT = {Dlt(j) / j ∈ D̂s}; /* deadline time of each task */

4: D̂T =DT .sort(); /* sort DT in ascending order */

5: j=1;
6: while j < D̂T .size() do
7: if (D̂T (j)) > (D̂T (j + 1)) then
8: select task j+1;
9: else

10: select task j;
11: end if
12: j ← j + 1;
13: end while

both sensor nodes I3 and I4. At this point, the sensor node with the highest task density will be selected after applying

the sort() function that sorts the list of sensor-task densities obtained by the Den() function. This helps maximize

the sensor node’s resource utilization, leading to a smaller number of sensors activated in the network. The heuristic

also considers the situation in which multiple sensor nodes are the same distance from the sink node and same task

densities. In this case, we select the sensor node with the highest available energy (lines 7-19 in Algorithm 3.1).

Algorithm 3.1 depicts the pseudo-code of the main part of our proposed sensor selection method. It should be

noted that Algorithms 3.2 and 3.3 are the sub-algorithms of the main Algorithm 3.1, and they are part of the main loop

initiated by block for Tn ∈ T as in line 1. We have indicated them in separate algorithms for the sake of readability.

The second phase of the DTA heuristic is the TS() function. Once the sensor node is selected, the next step is to select

the task that should be assigned from the list of available tasks within the sensing range of the sensor. When the task

selection has been completed, the last phase of the algorithm is the constraint verification and assignment function

CstVer(i).

The task selection process is essential, as knowing which task should be selected first to be assigned to the physical

or virtual sensor node is a crucial step. As described, in the second phase of the algorithm, the TS() function shown

in Algorithm 3.2 is responsible for the task selection. For completeness, we depict the task selection phase of our

proposed DTA in Fig. 3.2(c). Initially, the list of candidate tasks around each sensor node needs to be discovered. After

determining the list of candidate tasks for each sensor node, their deadlines are retrieved, and then, the tasks are sorted

based on their deadlines in an ascending order using the Dlt() and sort() functions, respectively (see lines 2-4 in

Algorithm 3.2). As discussed earlier, all the sort functions in this work follow the Dual-Pivot Quicksort function [107].

Tasks with shorter deadlines have a higher priority than those with longer deadlines, emphasizing the importance

of deciding which tasks should be selected first to be assigned to the sensor node. The task with the shortest deadline

will be the one selected by the heuristic. As shown in Fig. 3.2(b), various tasks need to be assigned to the physical

and virtual sensor nodes. To better distinguish between the tasks that hold shorter deadlines and those with longer

37

Algorithm 3.3 CstVerf (i): Constraints Verification for node i

Input: I,J , T , SN
Output: CstVerf (i),x,z /* CstVerf(i): boolean */

/* x : sets of assignment decisions on PS i */

/* z : sets of assignment decisions on VS i */

1: C = {cap(i)/i ∈ I}; /* sensor capacity: max. VSs that can be created on a sensor */

2: E = {e(i)/i ∈ I}; /* sensor node energies */

3: Ê = {e(i′)/i′ ∈ I}; /* relay sensor nodes energies */

4: D= {dist(i,SN) / i ∈ I}; /* distance from the SN */

5: Ds=D.sort(); /* sort D in ascending order */

6: D̂s= {Den(i) / i ∈ Ds}; /* task density around nodes */

7: if C(i) ≤M and C(i) > 0 then
8: if Etr ≤ Ei

Tn
then

9: if h×Dpr < dnj then
10: if D̂s(i) == 1 then
11: CstVerf (i)← true;
12: xi,j,Tn=1;
13: Ei′

Tn
= Ei′

Tn
− Etr re ;/* update relay nodes’ energies */

14: Ei
Tn

= Ei
Tn
− Etr;/* update the sensors’ energies */

15: else
16: CstVerf (i)← true;
17: zi,j,Tn=1;
18: Ei′

Tn
= Ei′

Tn
− Etr re;/* update relay nodes’ energies */

19: Ei
Tn

= Ei
Tn
− Etr;/* update the sensors’ energies */

20: M = M - 1;/* update capacity */

21: end if
22: else
23: CstVerf (i)← False;
24: end if
25: else
26: CstVerf (i)← False;
27: end if
28: end if
29: Tn+1.add(j); /* Task j goes to Tn+1; */

30: return CstVerf (i), x, z;

deadlines, they are shown in different colors. Tasks with shorter deadlines hold higher priorities requiring the sensor

nodes to execute them immediately. For example, in Fig. 3.2(b), tasks J2, J6, J8, J10, J11, J13 and J14 have short

deadlines while the rest of the tasks have longer deadlines.

CstVer(i) function (Algorithm 3.3) is the third phase of the algorithm. Once the sensor is selected, the defined

constraints in the model must be satisfied. The heuristic checks if the selected sensor node has enough capacity to

accept new tasks. If the sensor node is virtualized it can accept M number of virtual sensors to be created on top of it,

but if it has been used as a physical sensor, then M = 0. If this constraint is satisfied, the DTA verifies if the selected

sensor node has enough energy to execute a new task. This minimum required energy is defined as the minimum

energy required for transmission. With this constraint satisfied, the last criterion checked by the heuristic is the delay

constraint. The sensor node processes the delay time; the routing delay to send the task execution result to the sink node

38

Algorithm 3.4 Den(): Task density around each sensor

Input: I, J , SR /* Sensing Range */

Output: D̂s

1: L[][]; /* A matrix showing if a task is in the proximity of the sensor */

2: D̂s[][];s /* A matrix that stores the sensor and the number of the tasks around it */

3: for i ∈ I do
4: for j ∈ J do
5: EuDist =

√
(ix − jx)2 + (iy − jy)

2

6: if EuDist ≤ SR then
7: L[i][j] = 1
8: else
9: L[i][j] = 0

10: end if
11: end for
12: if L[i][j] = 1 then
13: D̂s.add((i).get(j))
14: end if
15: end for
16: return D̂s

must not exceed the task’s deadline. If all these conditions are met, the heuristic will make the assignment decisions.

A task is assigned to a PS if it is the only task in the candidate list of the sensor, otherwise, it is assigned to a VS.

To highlight the importance of the task density calculation phase, we take a closer look at Fig. 3.2(b) and Fig.

3.2(c), where sensor node I3 has a higher task density than sensor nodes I1 and I4. Even though tasks J1 and J2 reside

in the proximity of both sensor nodes I1 and I3, we select sensor node I3, as it has a higher task density compared to

sensor node I1. Essentially, sensor node I3 will serve all its surrounding tasks, including tasks J1 and J2. As a result,

sensor node I1 will remain unused, thus preserving its energy.

Once a decision has been made, the sensor node’s energy is updated, as well as the energy of the intermediary

sensor nodes that are affected because of the routing. If the task is assigned to a VS, the capacity of the sensor node

will be updated accordingly. If any of the defined constraints are not satisfied, the heuristic checks for the next available

sensor node that can satisfy all the constraints. If no sensor node is available, the heuristic schedules the task to be

assigned to sensor nodes in future time slots. Our proposed DTA algorithm is instrumental in improving the energy

efficiency of WSNs due to the following three reasons. First, in our sensor selection strategy, we select the sensors

that are in close proximity to the sink node, thus reducing the energy consumption due to transmission. Second, in

the calculation of sensor-task density, selecting the sensor node with the highest task density can reduce the number of

active sensor nodes, thereby reducing the number of transmissions. Third, when there is only one task in the proximity

of a sensor node, the sensor node will be used with its virtualization mode disabled, thereby preventing the excessive

overhead induced by virtualization.

39

3.2.4 Complexity Analysis

In the following, we present the complexity analysis of our proposed DTA heuristic. The DTA algorithm consists of

two main nested loops, three sorting operations using Dual-Pivot Quicksort [107], and verification of a series of linear

constraints. The first loop goes through the set I of sensor nodes for i = 1, . . . ,m, while the second one explores in

the set J of tasks for j = 1, . . . , n. The time complexity of running through these nested loops is O(m × n), which

reduces to complexity O(n2) given that n > m. The time complexity of the sorting operation is O(A · n · log n),

where A is a constant associated with the Dual-Pivot Quicksort scheme [108]. Verification of the given constraints and

updating of the sensor-related parameters (e.g., remaining energy) runs at a worse-case complexity O(n). Therefore,

given that the complexity of the nested loops dominates the other operations, the overall complexity of the proposed

DTA algorithm reduces to O(n2). For comparison, we present the complexity analysis of the SDSN method proposed

in [33], where it is evident that three main nested loops have been used. The first loop runs over the set S of sensor

nodes s = 1, . . . , p, followed by the second loop that checks the set T of tasks, t = 1, . . . , q, and the last loop that

goes through the set Gt of sensing targets g = 1, . . . , r. Given that p > r > q, the time complexity of the SDSN

algorithm [33] is O(p× q × r), which reduces to complexity O(p3).

3.3. Performance Evaluation

In the following, we present our evaluation scenarios followed by the obtained results.

3.3.1 Evaluation Scenarios

We conducted our evaluations over various scenarios. Different numbers of sensor nodes and tasks were considered,

creating both small- and large-scale scenarios. Also, the impacts of virtualization overhead and task densities on energy

consumption have been examined. Table 3.3 summarizes our simulation scenarios. The sensor nodes are scattered

in different geographical areas. The tasks arrive in batches at the beginning of each time slot, with five time slots

considered in each scenario. Each task has a geographical location and a deadline dTn
j in each scenario. We follow the

definitions of small- and large-scale scenarios given by Ref. [109], where small- and large-scale scenarios are defined

as any scenario with <100 and >100 sensor nodes, respectively.

We ran several simulations with different parameter settings considering both the delay-tolerant and delay-sensitive

status of the network. In the delay-tolerant setting, we set the task deadlines relatively long enough to allow the system

to execute as many tasks as possible without dropping them. By contrast, in the delay-sensitive setting, the task

deadlines must strictly be met; otherwise, the task has to be dropped. Our smallest scenario is 100 m × 100 m with 10

sensor nodes and a total of 250 tasks. The second small-scale scenario consists of 25 sensor nodes and a total of 500

40

Table 3.3: Evaluation scenarios.

Small-scale Scenarios Large-scale Scenario
Scenario 1 Scenario 2 Scenario 3

Area (Meter2) 100 × 100 250 × 250 1000 × 1000
Total Number of Sensor Nodes 10 25 500

Total Number of Time Slots 5 5 5
Total Number of Tasks 250 500 15500

Sensing Range 30 m 30 m 30 m
Transmission Range 59 m 59 m 59 m

Sensor Node’s Initial Energy 2.9 J - 3.4 J 2.9 J - 3.4 J 2.9 J - 3.4 J

tasks across a 250 m× 250 m of area. Finally, our large-scale scenario involves 500 sensor nodes in a 1000 m× 1000 m

of an area with a total of 15500 tasks.

In all three scenarios, we consider a sensing range of 30 m [52] and a maximum transmission range of 59 m [60]

for the sensor nodes. In addition, for each sensor node, we consider random initial energy between 2.9 J and 3.4 J [35].

Also, we set the energy consumption of a sensor node while operating as a physical sensor to 0.017 mJ, which is the

energy required for sensing and transmission [35]. The energy consumption overhead due to the creation of a virtual

sensor over a physical sensor is set to 0.005 mJ [11]. Finally, we set the data reception energy at a sensor node to

0.031 mJ [35]. The energy consumption of CPU usage and storage is negligible. The transmission delay and virtual

sensor creation overhead delay are set to 0.02 s and 0.06 s, respectively [11].

3.3.2 Evaluation Results

We present the optimal solution results obtained from CPLEX [110] and those obtained from our proposed DTA

heuristic. We compare the performance of our proposed DTA algorithm with that of the SDSN algorithm [33] as our

benchmark. It is important to note that in the SDSN algorithm [33], all the tasks should run at their arrival time without

the possibility of being scheduled for the next time slots, even if the deadline allows. For a fair comparison, we relaxed

this particular constraint of the SDSN algorithm to accommodate a larger number of tasks that can be assigned to the

physical and virtual sensor nodes. We refer to this non-dropping version of the SDSN algorithm SDSN-i. In small-

scale scenarios (i.e., scenarios 1 and 2) we derived the results from CPLEX, DTA, SDSN, and SDSN-i. However, for

the large-scale deployment, the results are only obtained from the DTA, SDSN, and the SDSN-i, as it was not possible

to obtain the results from the CPLEX engine in a feasible timeframe.

The mathematical model was implemented using CPLEX libraries in JAVA and the heuristics were implemented

in JAVA. The tests were run on a machine with 64-bit OS Windows 10 Pro installed, 2.67 GHz Intel ® Xeon ® CPU

E5640, and 32 GB of memory.

41

A) Energy Consumption

Figures 3.3(a), 3.3(b), and 3.3(c) illustrate the energy consumption records in three different scenarios for CPLEX,

DTA, SDSN [33] and SDSN-i [33]. Figures 3.3(a) and 3.3(b) depict the energy consumption for the small-scale

scenarios. Figure 3.3(a) reveals that the SDSN algorithm has the smallest energy consumption. This happens because

the SDSN algorithm assigns a smaller number of tasks compared to the other methods. More specifically, if there

are not enough resources available, the SDSN algorithm drops a given task, even though the task could have been

considered for the next timeslot with respect to its deadline. This condition of moving a task to the next timeslot as

needed is considered in the CPLEX, DTA, and SDSN-i.

In addition, it can be observed that the DTA has outperformed the SDSN-i in terms of energy consumption and

has performed efficiently as compared to the optimal solution. The CPLEX has a slightly higher energy consumption

than the other algorithms. This is because the sensor-task ratio in our first scenario (i.e., Fig. 3.3(a)) is about 25, which

indicates that on average, one sensor exists per 25 tasks. In this case, there is high competition among the tasks for

the available resources. Considering that the model requires the system to run as many tasks as soon as possible, it

consumes a little more energy but runs all the possible tasks immediately with no delays. However, the DTA and

SDSN-i algorithms tend to have more delays in running the tasks, and they run a smaller portion of the given tasks with

no delays as compared to the CPLEX. In scenario 2, the sensor-task density ratio is reduced to 20. In this case, there

is less competition between the tasks, and the results show that the CPLEX has a lower energy consumption than the

DTA and the SDSN-i (see Fig. 3.3(b)). Similar to the first scenario shown in Fig. 3.3(a), our proposed DTA algorithm

outperforms the SDSN-i algorithm. According to Fig. 3.3(c), which depicts the energy consumption in a large-scale

scenario, the SDSN algorithm has the lowest energy consumption. As explained above, this happens due to its failure

to run all the tasks. We also notice that our proposed DTA algorithm performs better than the SDSN-i algorithm in

terms of total energy consumption.

Next, we evaluate the energy efficiency of our proposed DTA algorithm for different values of virtualization over-

head. Figure 3.4 illustrates the average energy consumption per task vs. virtualization overhead energy for three

different scenarios under consideration. As it can be observed from Figs. 3.4(a) and (b), in two small-scale scenarios,

the average energy consumption increases as virtualization overhead energy grows. Clearly, our proposed DTA algo-

rithm achieves a near-optimal solution, outperforming both SDSN and SDSN-i algorithms. In the large-scale scenario,

it is also evident that our proposed DTA algorithm outperforms both SDSN and SDSN-i algorithms. As virtualization

overhead energy increases, the average energy consumption per task for SDSN-i grows dramatically. This is because

of the difference in the algorithms in their assignment strategy to select the starting point. In DTA, the task assignment

starts from the sensor nodes that are closest to the sink node, thus reducing the communication energy consumption.

By contrast, in SDSN and SDSN-i algorithms, the task assignment starts from the sensor node with the highest task

42

(a) Scenario 1.

(b) Scenario 2.

(c) Scenario 3.

Figure 3.3: Total energy consumption for different assignment methods under study.

43

(a) Scenario 1.

(b) Scenario 2.

(c) Scenario 3.

Figure 3.4: Average energy per task vs. virtualization overhead energy.

44

density. Although the SDSN algorithm shows comparable average energy consumption in the large-scale scenario, it

is not capable of executing 100% of the given tasks, as discussed earlier.

B) Number of Executed Tasks vs. Delay

QoS is one of the key factors in delay-sensitive use cases, e.g., for disaster management as analyzed in this work.

As described earlier, the QoS parameters here reflect the deadline constraints of the sensing tasks, as well as the

requirement to run as many tasks as possible as soon as possible with relatively minimal delay. Accordingly, Figs 3.5(a),

3.5(b), and 3.5(c) show the number of executed tasks vs. delay in different scenarios. The results indicate that the

CPLEX managed to assign tasks to the physical and virtual sensors with mainly no delays. That means all the tasks

were assigned to the sensor nodes (PS/VS) at the time they arrived, with a minimal number of re-scheduling decisions

required.

Accordingly, in small-scale scenarios as depicted in Figs. 3.5(a) and 3.5(b), our proposed DTA algorithm managed

to assign 82% and 98% of the tasks with no delays to the physical and virtual sensors, respectively. On the other hand,

for the first small-scale scenario shown in Fig. 3.5(a), the SDSN algorithm could run 88% of the tasks with no delays,

while failing to run 12% of the tasks. In the second small-scale scenario shown in Fig. 3.5(b), the SDSN algorithm

runs 96% of the given tasks, but still 4% of the tasks were dropped. On the other hand, the SDSN-i algorithm ran

80% of the tasks with no delays in our first scenario shown in Fig. 3.5(a). This percentage increased to 95% in the

second scenario (see Fig. 3.5(b)). The DTA algorithm outperformed both SDSN and SDSN-i in small-scale scenarios

by running a larger portion of the given tasks without dropping any of them. As for the large-scale scenario, Fig. 3.5(c)

shows that our proposed DTA algorithm can assign 77% of the tasks to the physical or virtual sensors with no delays.

On the other hand, the SDSN-i algorithm is only capable of assigning 73% of the tasks to the sensor nodes (PS/VS).

Although SDSN can assign a larger portion of the tasks, 89% with no delays, it cannot run 11% of the tasks and drops

them.

C) Successful Task Execution

Successful task execution rate is another important factor to be evaluated. Figures 3.6(a), 3.6(b), and 3.6(c) depict

the successful task execution rate in different scenarios. It can be observed that in all the scenarios, 100% of the

tasks can be executed by CPLEX, DTA, and SDSN-i. However, in the first scenario depicted in Fig. 3.6(a), the

SDSN algorithm can only execute 88% of the tasks, which increases to 96% in the second small-scale scenario (see

Fig. 3.6(b)). In large-scale scenario, the successful task execution ratio drops to 89% (see Fig. 3.6(c)). It is evident

that our proposed DTA algorithm outperforms the SDSN algorithm in terms of successful task execution rate by 4% to

12% in various scenarios.

Furthermore, we have conducted simulations under different task load densities with different numbers of sensor

45

(a) Scenario 1.

(b) Scenario 2.

(c) Scenario 3.

Figure 3.5: Task Executed (%) vs. delay for different assignment methods under study under three evaluation scenarios.

46

nodes. Figure 3.7(a) shows the successful task execution rate vs. total number of tasks. The simulations were run

with 10 and 20 sensor nodes for both DTA and SDSN algorithms. We can observe from Fig. 3.7(a) that both DTA

and SDSN algorithms managed to successfully execute 100% of the tasks for small task densities. The successful task

execution decreases as the task density increases. Under the heaviest load with 3000 tasks and 10 sensor nodes, the

successful task execution rate of our proposed DTA algorithm and SDSN algorithm is 21% and 11%, respectively.

It can be observed from Fig. 3.7(a) that for 20 sensor nodes, the successful task execution rate of the proposed DTA

algorithm is 29.8%, which is a significant improvement compared to the 15.5% of the SDSN algorithm. For 20 sensor

nodes and 4500 tasks, the proposed DTA algorithm managed to successfully execute ∼30% of the tasks, while the

SDSN algorithm only runs ∼15% of the tasks successfully. Figure 3.7(b) shows the total energy consumption vs.

total number of tasks for 10 and 20 sensor nodes. According to Fig. 3.7(b), the DTA algorithm has a higher energy

consumption compared to the SDSN algorithm. This was expected because our proposed DTA algorithm is associated

with a higher successful task execution rate compared to its SDSN counterpart (see also Fig. 3.7(a)). Figure 3.7(b)

indicates that the total energy consumption of proposed DTA and SDSN algorithms increases as the number of tasks

grows. We note, however, that the energy consumption of both algorithms hits a plateau when the number of tasks

reaches a certain amount (e.g., ∼1000 tasks for 10 sensor nodes). This happens because once the maximum sensor

capacities are reached and a certain number of tasks are executed at each time slot, there will be no new assignment

and therefore the energy consumption will not change.

D) Execution Time

The execution times of the optimal, DTA, SDSN, and SDSN-i solutions are illustrated in Table 3.4 for the small-

and large-scale scenarios. In the small-scale scenarios, where we had a very small set of sensors and a small number

of tasks, DTA, SDSN, and SDSN-i performed quite similarly without much difference. DTA and the SDSN-i solved

the problem in 21ms, while the SDSN solved the problem in 17ms. Similarly, the results for the second small-scale

scenario indicate that the SDSN solved the problem 2 ms faster than both DTA and the SDSN-i. Although the SDSN

performed 4 ms faster than DTA and SDSN-i in the first small-scale test and 2 ms faster in the second small-scale

scenario, it ran a smaller percentage of the tasks, as explained earlier in figures 3.6(a) and 3.6(b), respectively. On the

other hand, for the large-scale scenario where a scenario closer to the real world was defined with a denser network and

thousands of tasks, DTA outperformed both the SDSN and SDSN-i. DTA solved the problem in 561 seconds whereas

SDSN and SDSN-i solved the problem in 591 seconds and 651 seconds, respectively.

47

(a) Scenario 1.

(b) Scenario 2.

(c) Scenario 3.

Figure 3.6: Successful task execution rate for different assignment methods under study under three evaluation scenar-
ios.

48

(a) Successful task execution rate (%).

(b) Total energy consumption vs. total number of tasks.

Figure 3.7: (a) Successful task execution rate (%) and (b) Total energy consumption vs. total number of tasks for 10
and 20 sensor nodes.

Table 3.4: Execution time.

CPLEX DTA SDSN SDSN-i
100m × 100m 750 ms 21 ms 17 ms 21 ms
250m × 250m 782 ms 63 ms 61 ms 63 ms

1000m × 1000m —– 561 sec 591 sec 651 sec

3.4. Conclusions

This chapter addresses the problem of dynamic sensing task assignment in virtualized wireless sensor networks

by considering node-level virtualization. We model the problem as an ILP to assign sensing tasks to the pool of

49

physical and virtual sensors at the lowest energy consumption with the possibility of re-scheduling. We consider the

forwarding, receiving, and routing impacts as well as the virtual sensor instantiation overhead as part of the energy

factors. Furthermore, we define the QoS constraint: meeting the specific task deadlines and propose our heuristic

to solve it in polynomial time. We conducted extensive simulations to evaluate our proposed heuristic against the

optimal (CPLEX) solution and a solution from the literature (SDSN). The evaluations were conducted over three

different scenarios in both small- and large-scale environments. Our results indicate that the proposed DTA heuristic

can perform at a near-optimal level in terms of energy consumption while respecting the task deadline requirements

and constraints. It outperforms the SDSN in execution time, task execution successful rate, and delay.

50

Chapter 4

Energy Efficient Dynamic Network

Embedding in Virtualized Wireless Sensor

Networks 1

4.1. Introduction

Wireless Sensor Network virtualization [6] research has become an interesting, yet challenging research domain.

Virtualization in WSNs can be applied at the node- and/or network-level. The node-level virtualization enables ab-

stracting the sensing capabilities of the sensor nodes, into logical sensing capabilities, allowing multiple sensing tasks

to be executed over the same sensor node concurrently. On the other hand, network-level virtualization allows the

creation of multiple Virtual Sensor Networks (VSNs) over the same deployed WSN infrastructure [6] that each VSN

is dedicated to one application. However, considering that the WSN sensor nodes are mainly battery-powered, it is

crucial to allocate the pool of physical and virtual sensors at the substrate WSN network to the applications in an

energy-efficient manner. Therefore, customized VSNs must be created on top of the deployed WSN, while satisfy-

ing the given Service Level Agreements (SLAs) requirements (i.e. E2E latency and Bandwidth) constraints. This is

commonly known as network embedding problem [14]. This chapter attempts to address the aforementioned challenge.

The rest of the chapter is organized as follows. We first introduce a high-level system model along with problem

formulation that includes both substrate network and virtual network. We then present the proposed heuristic that

1This chapter is based on a published paper and a submitted IEEE Transaction journal: [3] V. M. Raee, A. Ebrahimzadeh, M. Rayani, R. Glitho,
M. El Barachi, and F. Belqasmi, “Energy efficient virtual network embedding in virtualized wireless sensor networks,” in Proc. IEEE Consumer
Communications & Networking Conference (CCNC), pp. 187–192, 2022. and [4] V. M. Raee, A. Ebrahimzadeh, R. H. Glitho, M. El Barachi, and
F. Belqasmi, “E2DNE: Energy efficient Dynamic Network Embedding in Virtualized Wireless Sensor Networks,” submitted to IEEE Transactions
on Green Communications and Networking, 2022 (Under Review).

51

considers the virtualized substrate WSN network and the given SLA (i.e. E2E latency and bandwidth) requirements.

Next, we present the performance evaluation, and finally, we conclude this chapter in the last subsection.

4.2. Dynamic Virtual Network Embedding: System Model and Problem For-

mulation

In this section, we present our system model that covers the problem definition, followed by the problem formula-

tion and problem analysis. The developed formulation is an ILP formulation of the problem where a linear objective

function and series of linear constraints are used with integer decision variables that are explained in-depth technically

in Section 4.2.2.

4.2.1 System Model

We consider a WSN with both node- and network-level virtualization capabilities, as shown in Fig. 4.1. The

main substrate network consists of mixed-physical/-virtual sensors, meaning that the substrate network with both

non-virtualizable and virtualizable sensors coexist. This substrate network offers enough flexibility to the applica-

tion provider to utilize the available resources based on the desired objectives (e.g., energy efficiency). Therefore,

depending on the application type and its requirements, a substrate of all-physical, all-virtual, and mixed-physical/-

virtual sensors may get utilized. The system includes a set of time slots during which the applications’ requests arrive

in batches and are queued at the beginning of each time slot. Applications (e.g., fire contour and humidity expansion

map, etc.) send the sensing tasks to the same substrate network to be executed simultaneously in a distributed manner.

The scheduler receives the virtual network requests from the application layer and runs the embedding algorithm to

map the sensing tasks to the underlying virtualized WSN network. Once the tasks are executed by the sensor nodes,

the results of the readings will be sent back to the scheduler to address the applications’ requests. The objective is to

map these virtual networks to the available substrate network at minimal energy consumption. Once a sensing task is

assigned to a sensor node (physical or virtual), it will be executed immediately. Sensor nodes may operate in either

physical or virtual mode, meaning that if a sensor node operates on physical mode, its virtualization functionality is

disabled2.

We view time as discretized set T = {t1, t2, ..., ts} of time slots, where time slot ts ∈ T corresponds to the

network embedding at ts. Virtual network requests are generated by applications randomly and then served by the

scheduler in batches at the end of each time slot ts. Let ts represent the time slot s and αs be the set of the virtual

network requests at ts. We model the network embedding in virtualized WSNs with the given bandwidth and latency

2This assumption is compliant with widely used sensors such as Advanticsys [16] and Virtenio [17]), which may operate in either physical or
virtual mode.

52

Figure 4.1: High-level system model.

constraints. Similar to [111], we assume that the synchronization error is small. Our system model can be viewed from

the following aspects: substrate network and virtual network.

A) Substrate Network

We represent the virtualized WSN (vWSN) substrate network as a weighted undirected graph G = (V, E), where

G = Gp ∪ Gq . We note that Gp = (Vp, Ep) and Gq = (Vq, Eq) represent the weighted undirected graphs of physical

sensors and the virtual sensors, respectively. Vp and Ep denote the physical sensors and their associated physical links,

while Vq and Eq denote the virtual sensors instantiated on top of the physical sensors and their logical connections to

the physical sensors, respectively. Accordingly, V = Vp ∪ Vq = {v1, . . . , vM} is the set of sensor nodes, with each

sensor node v ∈ V representing a physical sensor or a virtual sensor instantiated on top of the physical sensor with

xvi
and yvi

representing the sensor node’s coordination in a grid. Set E = {e1, . . . , eM ′} represents the set of edges

between the sensor nodes, where E = Ep ∪ Eq . Edge (vi, vi′) ∈ E | vi ̸= vi′ , represents the communication link

between sensor nodes vi and vi′ . Also, let Dg(vi, vi′) and Bg(vi, vi′) represent the latency and bandwidth associated

with edge (vi, vi′), respectively.

B) Virtual Network

Let A = {a1, . . . , ak} be the set of Virtual Networks (VNs) that need to be mapped to the substrate network.

We build a weighted directed graph H = (N ,L) to represent a given VN. N is the set of virtual nodes defined as

N = {n1, . . . , nR} and L = {l1, . . . , lR′} denotes the logical links between virtual nodes nj and nj′ in the VN, where

(nj , nj′) ∈ L | nj ̸= nj′ . Let x′
nj

and y′nj
denote the requested virtual node’s coordination in a grid. Each VN is

53

associated with latency and bandwidth requirements Dh(nj , nj′) and Bh(nj , nj′), respectively.

Tables 4.1 and 4.2 summarize the problem main notations and problem inputs, respectively.

4.2.2 Problem Formulation

In this paper, we study the problem of dynamic virtual network embedding in virtualized wireless sensor networks.

We aim to embed the applications’ VNs to the substrate network at a minimal energy consumption while respecting

the given latency and bandwidth requirements. The problem can be defined as f : H → G, which is a function that

describes the mapping of graph H over graph G. In the following, we formulate the dynamic vWSN virtual network

embedding problem as an ILP by defining the following decision variables:

Xvi,nj ,ts =

1, if node nj ∈ N is mapped to the physical sensor vi ∈ V at time ts,

0, otherwise.

(4.1)

Yvi,ts =

1, if sensor node vi ∈ V is virtualized at time ts,

0, otherwise.

(4.2)

Zvi,nj ,ts =

1, if node nj ∈ N is mapped to the virtual sensor vi ∈ V at time ts,

0, otherwise.

(4.3)

and,

U
nj ,nj′
vi,vi′ ,ts

=

1, if (nj , nj′) ∈ N is mapped to (vi, vi′) ∈ E at time ts,

0, otherwise.

(4.4)

In the following, after explaining our energy and delay model, we present the objective function of our ILP followed

by the constraints.

A) Energy Consumption

Overall energy consumption can be divided into the following three components.

54

Table 4.1: General notations of the problem.

Notation Definition
G = (V, E) Substrate network graph with nodes V and edges E linking them
Gp = (Vp, Ep) Substrate network graph with physical sensor nodes Vp and edges Ep

linking them
Gq = (Vq, Eq) Substrate network graph with virtual sensors Vq and logical links Eq

linking them to physical sensor nodes which they instantiated over
vi ∈ V A sensor node (physical/virtual) in V
xvi

, yvi
sensor node’s vi coordination in a grid

Evi
ts Current available energy of sensor node vi at ts

(vi, vi′) ∈ E An edge in E
Dg(vi, vi′) Latency associated with edge (vi, vi′)
Bg(vi, vi′) Bandwidth associated with edge (vi, vi′)
H = (N ,L) Virtual network graph with virtual nodes N and logical links L linking

them
nj ∈ N A virtual node in N
(nj , nj′) ∈ L A logical link in L
x′
nj

, y′nj
virtual node’s nj coordination in a grid

Dh(nj , nj′) Latency associated with edge (nj , nj′)
Bh(nj , nj′) Bandwidth associated with edge (nj , nj′)
T Total number of time slots
ts Total virtual network embedding frame time
αs Size of each group of virtual network request
Cvi

Capacity of sensor node vi
Etr

vi
Forwarding energy consumption of sensor node vi

ECPU
vi

CPU energy consumption of sensor node vi
Eov Virtual sensor creation energy consumption
El

vi
Wireless link energy consumption

Dtr
vi

Transmission delay
Dov Virtual sensor creation delay
α The relative degree (in percentage) of connectivity of the network with

respect to a complete graph
β The ratio (in percentage) of the virtualizable sensors to the total number

of sensors

Table 4.2: Problem inputs.

Input Definition
Etot

ts Overall energy consumption of embedding at time ts
EP

ts Energy consumption of physical sensor vi at time ts
EV

ts Energy consumption of virtual sensor vi at time ts
Ecomm

ts Energy consumption of wireless communication at time ts
DP

ts Delay of physical sensor vi at time ts
DV

ts Delay of virtual sensor vi at time ts

55

• Physical substrate execution energy (EP
ts): EP

ts represents the execution energy consumption of mapping

virtual node nj ∈ N to the physical sensor at time ts in the substrate network. We calculate EP
ts as follows:

EP
ts =

∑
nj∈N

∑
vi∈V

Xvi,nj ,ts (E
tr
vi

+ ECPU
vi

), (4.5)

where Etr
vi

and ECPU
vi

are transmission and CPU energy consumption of a sensor vi, respectively.

• Virtual substrate execution energy (EV
ts): E

V
ts account for the execution energy consumption of mapping the

virtual node nj ∈ N to the virtual sensors instantiated over the physical sensors in the substrate network at time

ts. It takes into account the energy consumption of transmission, CPU, and virtualization overhead. We obtain

EV
ts as follows:

EV
ts =

∑
vi∈V

Yvi,ts E
tr
vi

+
∑

nj∈N

∑
vi∈V

Zvi,nj ,ts (E
ov + ECPU

vi
), (4.6)

where, Eov is virtualization energy overhead which is incurred due to virtual sensor instantiation on a physical

sensor node.

• Energy consumption (Ecomm
ts) of wireless communication links: Ecomm

ts includes the energy consumption

of the wireless links of the substrate network by mapping the logical communication link (nj , nj′) ∈ L to the

wireless link (vi, vi′) ∈ E at time ts. We obtain Ecomm
ts as follows:

Ecomm
ts =

∑
(nj ,nj′)∈L

∑
(vi,vi′)∈E

El
vi
U

njnj′
vivi′ ,ts

, (4.7)

where, El
vi

is the wireless link energy consumption of sensor vi.

• Overall energy (Etot
tS): Overall energy (Etot

ts) is the summation of the above mentioned three energy compo-

nents, given by:

Etot
ts = EP

ts + EV
ts + Ecomm

ts . (4.8)

B) Delay

We consider the following two different execution delay components, which are the delay factors affecting the

WSN:

56

• Physical substrate execution delay (DP
ts): D

P
ts is the execution delay incurred by mapping virtual node nj ∈ N

to the physical sensor in the substrate network at time ts. We estimate DP
ts as follows:

DP
ts =

∑
nj∈N

∑
vi∈V

Xvi,nj ,ts D
tr
vi
, (4.9)

where, Dtr
vi

is the transmission delay of sensor vi.

• Virtual substrate execution delay (DV
ts): D

V
ts represents the execution delay of mapping virtual node nj ∈ N

to virtual sensor in the substrate network at time ts. We estimate DV
ts as follows:

DV
ts =

∑
vi∈V

Yvi,ts D
tr
vi
+

∑
nj∈N

∑
vi∈V

Zvi,nj ,ts (D
ov). (4.10)

where, Dov is the virtualization delay overhead.

C) Objective Function and Constraints

In our problem, we strive for providing the decision on embedding the virtual networks onto the virtualized WSN

substrate network at the lowest energy consumption while respecting the latency and bandwidth SLA-related con-

straints. Towards this end, let R be the total number of sensor nodes. We define our objective function as follows:

min

T∑
ts=0

(EP
ts + EV

ts + Ecomm
ts), (4.11)

which aims to minimize the summation of energies consumed by physical sensors, virtual sensors, and communi-

cation links.

Constraints: First, all VN nodes must be mapped to a node from a substrate node:

∑
vi∈V

Xvi,nj ,ts +
∑
vi∈V

Zvi,nj ,ts = 1; ∀ nj ∈ N , ts ∈ T . (4.12)

A sensor node can operate in physical or virtualized mode. If a sensor node operates in a virtualized mode, no

task should be assigned to it in the physical mode. However, if a sensor node is operating in the physical mode, it can

support a maximum of one task. These constraints are realized as follows:

∑
nj∈N

Xvi,nj ,ts ≤ 1− Yvi,ts ∀ vi ∈ V , ts ∈ T . (4.13)

Further, a sensor node can support a maximum of Cvi
virtual sensors. Thus, the capacity of each sensor node

57

should not be exceeded: ∑
nj∈N

Zvi,nj ,ts ≤ Cvi
Yvi,ts ∀ vi ∈ V , ts ∈ T . (4.14)

A task should not be assigned to a sensor node if the sensor node does not have enough energy:

Xvi,nj ,ts(E
tr
vi

+ ECPU
vi

) ≤ Evi
ts ∀ vi ∈ V , nj ∈ N , ts ∈ T , (4.15)

and

Yvi,tsE
tr
vi

+
∑

nj∈N
Zvi,nj ,ts(E

ov + ECPU
vi

) ≤ Evi
ts ∀ vi ∈ V , ts ∈ T , (4.16)

where, Evi
ts refers to the available energy of the sensor node vi at time ts, which is achieved by using a recursive model.

The available energy at time ts is equal to the available energy at time slot ts−1 minus the energy consumption at time

slot ts:

E
vi
ts = Evi

ts−1
− EP

ts − EV
ts − Ecomm

ts , (4.17)

where, Evi
ts−1

represents the initial available energy on sensor node vi, at time slot ts−1.

In addition, we must ensure that the neighboring virtual nodes in the VN are also connected at the substrate WSN

network:

U
njnj′
vivi′ ,ts

= Xvi,nj ,tsXvi′ ,nj′ ,ts +Zvi,nj ,tsZvi′ ,nj′ ,ts ; ∀ (nj , nj′) ∈ L, (vi, vi′) ∈ E , ts ∈ T . (4.18)

Given that Constraint (4.18) is not linear, we linearize it as follows3:

∑
(vi,vi′)∈E

U
njnj′ ,ts
vivi′ ,ts

= 1; ∀ (nj , nj′) ∈ L, ts ∈ T . (4.19)

U
njnj′ ,ts
vivi′ ,ts

≥ Zvi,nj ,ts + Zvi′ ,nj′ ,ts −1; ∀ (nj , nj′) ∈ L, (vi, vi′) ∈ E , ts ∈ T . (4.20)

Finally, we ensure that the bandwidth capacity and the maximum latency requirements of the substrate network

imposed by the VNs are not exceeded. Thus, we define H′ = (N ′
h,L′

h) such that H′ ⊂ H, ∴ N ′
h ⊂ N , L′

h ⊂ L

and (nj , nj′) ∈ L′
h | nj ∈ N ′

h and nj′ ∈ N ′
h. The bandwidth and latency requirements are met using the following

constraints:
3Eq. (4.18) is a nonlinear equation. In this work we have considered a virtualizable substrate network. Accordingly, the virtual links in VNRs

mapped to the physical sensors are linearized using Eq. (4.19) which enforces the links to be mapped, regardless of the type of the sensor (physical
or virtual), this results in elimination of X , and Eq. (4.20) is applied to linearize those nodes’ links in VNRs that are mapped to virtual sensors,
avoiding redundant and duplicate mapping of the links.

58

∑
(nj ,nj′)∈L′

h

Bh(nj , nj′)U
njnj′
vivi′ ,ts

≤ min(Bg(vi, vi′)) ∀ (vi, vi′) ∈ E , ts ∈ T , (4.21)

and ∑
(nj ,nj′)∈L′

h

∑
(vi,vi′)∈E

Dg(vi, vi′)U
njnj′
vivi′ ,ts

≤ Dh(nj , nj′) ∀ ts ∈ T , (4.22)

where, Dg(vi, vi′) is given by:

Dg(vi, vi′) = Dp +Dv. (4.23)

4.3. DNE: A Heuristic for Dynamic Network Embedding in Virtualized WSNs

In this section, after presenting the problem analysis, we explain our proposed solution.

4.3.1 Problem Analysis

Theorem 1. The dynamic network embedding problem in Virtualized WSNs is an NP-hard problem and is at least

as hard to approximate as a Maximum Stable Set Problem (MSSP).

Proof. The problem can be proven to be NP-hard by a reduction to show that our network embedding problem in

virtualized WSNs can be expressed as a known NP-hard problem. We use a Maximum Stable Set Problem (MSSP)

that is known to be an NP-hard problem [112] under the assumption that the node deployment is given, as our reference

problem. The proof is based on mapping our problem to the MSSP.

A stable set in a graph G is defined as “a subset of pairwise non-adjacent vertices of G and the Maximum Stable

Set Problem (MSSP) is to find a stable set of G with maximum cardinality” [113]. In MSSP, the substrate network is

defined as an undirected graph G0 = (V 0, E0). V 0 and E0 denote the substrate physical nodes and their corresponding

links, respectively. Also, Bi, i ∈ V 0 and Kij , {i, j} ∈ E0 represent the substrate physical node and link capacities,

respectively [112]. Every virtual network request r ∈ R is represented by an undirected graph Gr = (V r, Er) too,

where v ∈ V r and {v, w} ∈ Er represent the virtual nodes and the virtual links, respectively. trv denotes the node

demand and drvw represents the traffic demand. A positive integer k is defined to show whether G contains a stable set

of cardinality as small as k [112]. It is stated that the virtual network request of Gr corresponding to physical node

i ∈ V 0 at the substrate network is isomorphic, that is a star graph with 1 + |σ(i)| nodes that the central virtual node

corresponds to the i ∈ V 0 and |σ(i)| represents the virtual leaf nodes. Given the node and link capacity constraints, and

under extreme locality constraints (the central virtual node v ∈ V r can only be mapped to the corresponding substrate

node i ∈ V 0), if a central node in a VN is mapped to the corresponding i ∈ V 0, no other VN r′ ∈ R with the similar

central node can be admitted. Thus, k VNs are simultaneously admitted [112].

59

Let us now consider an instance of the dynamic network embedding problem in a virtualized WSN to show that our

problem can be reduced to MSSP. Considering our objective function defined in Eq. (4.11), we aim at minimizing the

overall energy consumption while taking into account the energy consumption of transmission, CPU, wireless links,

and the virtualization overhead. Our constraints on sensor node’s capacities and available energy (given by Eqs. (4.14,

4.15, 4.16)) can be mapped to the constraint defined in MSSP concerning the node capacity. Moreover, our defined

constraints on link bandwidth and delay (given by Eqs. (4.21, 4.22)) can also be mapped to the respective link capacity

constraints defined in MSSP. It is evident that our developed formulation matches the MSSP problem, which is known

as an NP-hard problem. Therefore, our network embedding problem in a virtualized WSN is an NP-hard problem.

4.3.2 DNE: Dynamic Network Embedding

Given the NP-hardness of the problem, we propose our so-called Dynamic Network Embedding (DNE) heuristic to

solve the problem for large-scale scenarios in a reasonable execution time. The proposed DNE heuristic aims to deter-

mine the embedding of the virtual networks onto the physical and virtual sensors and their associated communication

links at the substrate WSN network. The main objective is to minimize the overall energy consumption while meeting

the given SLAs (i.e., end-to-end latency and bandwidth requirements). The output of the proposed DNE heuristic is

sets X , Z, and U of the obtained node/link assignments.

Algorithms 4.1 to 4.3 illustrate the pseudo-code of our proposed DNE heuristic, which comprises two main phases.

In the first phase, which is referred to as the node mapping phase (Algorithm 4.1), we determine the assignment of the

virtual nodes to the physical and virtual sensors. As specified in Algorithm 4.1, our proposed heuristic iterates over

the set T of time slots followed by iterations over the set of substrate sensors and virtual nodes in VN (lines 3 to 5) 4.

Then, the heuristic explores the list of candidate virtual nodes within the sensing range of the sensors at the substrate

network using Dense() function shown in Algorithm 4.2. Next, the sensors are sorted in a descending order based on

the density of the virtual nodes in their sensing range (see lines 6 and 7 of Algorithm 4.1) using the TimSort [114]

function. Similar to [115–117] we use the Euclidean Distance to create the list of candidate virtual nodes within the

sensing range of the sensor nodes (see Algorithm 4.2). If there are multiple sensors with similar ”virtual node” density,

the algorithm checks the sensors’ energies and selects the sensor with the highest available energy (see lines 10 to

14). Then, the heuristic assigns the virtual node to the physical sensor, if there is only one virtual node in the sensing

range of the selected sensor, considering that the selected sensor complies with both capacity and energy constraints

(lines 15 to 18) using Eq. (4.15). Next, the capacity of the sensor will be updated accordingly (line 19). If there is

an unsatisfied condition, the next available sensor node will be selected (lines 20 to 22). If the condition in line (15)

is not met and there are multiple virtual nodes within the sensing range of the sensor, the sensor will be used in its

4It should be noted that Algorithms 4.2 and 4.3 are the sub-algorithms of the main Algorithm 4.1, and they are part of the main loop initiated by
block for ts ∈ T as in line 3. We have indicated them in separate algorithms for better readability.

60

Algorithm 4.1 DNE Heuristic
Input: V, E,N ,L, T
Output: X,Z,U /* sets of assignment decisions */

1: C̄= {cap(vi) / vi ∈ V}; /* sensor node capacity */

2: E
vi
ts

= {e(vi) / vi ∈ V}; /* sensor node energy */

3: for ts ∈ T do
4: for v ∈ V do
5: for n ∈ N do
6: F̂= {Dens(v, n)}; /* Algorithm 2: find candidate virtual nodes */

7: F̂s = F̂ .sort();
8: v = 1;
9: while v < F̂s.size() do

10: if (F̂s(v) = F̂s(v + 1)) & (E(F̂s(v)) > E(F̂s(v + 1))) then
11: select sensor v;
12: else
13: select sensor v + 1;
14: end if
15: if (F̂s(v) == 1) & (C(v) > 0) then
16: if Eq. (4.15) holds then
17: Xvi,nj ,ts=1;
18: Calculate consumed energy using Eq. (4.5)
19: C(v) = C − 1; /* update capacity */

20: else
21: v ← v + 1
22: end if
23: else
24: if Eq. (4.14) holds then
25: if Eq. (4.16) holds then
26: Zvi,nj ,ts=1;
27: calculate consumed energy using Eq. (4.6)
28: C(v) = C − 1;
29: else
30: v ← v + 1
31: end if
32: else
33: v ← v + 1
34: end if
35: end if
36: v ← v + 1;
37: end while
38: end for
39: end for
40: return X, Z;
41: lmcc(vivi′ , njnj′); /* Algorithm 3: link mapping */

42: end for

Algorithm 4.2 Dens(): Task density around each sensor
Input: V,N
Output: F̂ /* sets of assignment decisions */

1: F [][]; /* A matrix showing if a task is in the proximity of the sensor */

2: F̂ [][]; /* A matrix that stores the sensor and the number of the tasks around it */

3: for v ∈ V do
4: for n ∈ N do
5: EuDist =

√
(xvi − xnj)

2 + (yvi − ynj)
2

6: if EuDist ≤ SR then
7: F [vi][nj] = 1

8: F̂ .add((vi).get(nj))
9: else

10: F [vi][nj] = 0
11: end if
12: end for
13: end for
14: return F̂

61

Algorithm 4.3 Link Mapping
1: lmcc(v, n);
2: P1, P2, ..., PK = KSS(vi, vi′); /* k-shortest simple paths between (vi, vi′) ∈ E */

3: P̂ = KSS(nj , nj′); /* k-shortest simple paths between (nj , nj′) ∈ L */

4: Dg(vi, vi′); /* link latency of (vi, vi′) ∈ E */

5: Dh(nj , nj′); /* link latency of (nj , nj′) ∈ L */

6: Bg(vi, vi′); /* link bandwidth of (vi, vi′) ∈ E */

7: Bh(nj , nj′); /* link bandwidth of (nj , nj′) ∈ L */

8: while P̂(nj , nj′) == 1 do
9: if PK(vi, vi′) > 1 then

10: if Dg(vi, vi′)(P1) < Dh(nj , nj′)(P̂) and Dg(vi, vi′)(P2) < Dh(nj , nj′)(P̂) (Eq. (4.22)) then
11: if Bg(vi, vi′)(P1) > Bh(nj , nj′)(P̂) and Bg(vi, vi′)(P2) > Bh(nj , nj′)(P̂) (Eq. (4.21)) then
12: Calculate communication energy using Eq. (4.7)
13: if Ecomm(P1) < Ecomm(P2) then
14: U

njnj′
vivi′

(P1) = 1;
15: update sensors energies using Eq. (4.17)
16: else
17: U

njnj′
vivi′

(P2) = 1;
18: update sensors energies using Eq. (4.17)
19: end if
20: else
21: if Bg(vi, vi′)(P1) > Bh(nj , nj′)(P̂) and Bg(vi, vi′)(P2) < Bh(nj , nj′)(P̂) then
22: U

njnj′
vivi′

(P1) = 1;
23: update sensors energies
24: else
25: U

njnj′
vivi′

(P2) = 1;
26: update sensors energies
27: end if
28: end if
29: else
30: if Dg(vi, vi′)(P1) < Dh(nj , nj′)(P̂) and Dg(vi, vi′)(P2) > Dh(nj , nj′)(P̂) then
31: if Bg(vi, vi′)(P1) > Bh(nj , nj′)(P̂) then
32: U

njnj′
vivi′

(P1) = 1;
33: update sensors energies
34: else
35: U

njnj′
vivi′

(P1) = 0;
36: end if
37: else
38: U

njnj′
vivi′

(P1) = 0;
39: end if
40: end if
41: else
42: if Dg(vi, vi′)(P1) < Dh(nj , nj′)(P̂) and Bg(vi, vi′)(P1) > Bh(nj , nj′)(P̂) then
43: U

njnj′
vivi′

(P1) = 1;
44: update sensors energies
45: else
46: U

njnj′
vivi′

(P1) = 0;
47: end if
48: end if
49: end while
50: return U;

virtualized mode provided that it has sufficient capacity and energy (lines 24 to 27). If there is an unmet condition,

the heuristic evaluates the next available sensor that can satisfy the requirements and then returns the list of selected

physical and virtual sensors accordingly (lines 30 to 40). Given that WSNs are desired to operate for a long period

of time, it is important to increase its lifetime. Although the main objective of the proposed algorithm is to minimize

the total energy consumption at a given time slot, it implicitly takes into account the dynamics of the network (e.g.,

some sensor nodes run out of energy) by favoring the nodes with larger available energy in its allocation process, thus

62

Figure 4.2: High-level flowchart of the proposed solution.

increasing the lifetime of the network.

The second phase of our proposed algorithm is called link mapping, which is shown in Algorithm 4.3. In this phase,

the virtual links in the virtual network are mapped onto the physical links in the substrate WSN network. At first, the

algorithm checks if the virtual nodes in the VN are connected. To this end, it checks to find k shortest paths at the

substrate network for their connection (after being mapped considering the node-mapping phase). This is done using

function KSS(v1, v2), which calculates K shortest paths P1, P2, ..., PK between nodes v1 and v2 (see lines 2 and 3

of Algorithm 4.3). Among the available k paths, if multiple paths comply with both end-to-end latency and bandwidth

requirements, the heuristic calculates the consumed communication energy of each path using Eq. (4.7). Then, the path

with the lowest energy consumption will be selected (see lines 9 to 19). Next, the sensors’ energies will be updated

63

accordingly based on Eq. (4.17). If any of the explored paths violates either latency or bandwidth requirements, the

heuristic selects the next available path (see lines 21 to 40). Finally, if there is only one available path between two

sensors, the heuristic checks if that path complies with the required latency and bandwidth SLAs (see lines 42 to 48).

It is worthwhile to mention that although our dynamic embedding problem is developed and solved for each time

slot (see Eq. (4.11)), different time slots are not completely independent, because the allocation decision made at a

given time slot has a direct impact on the next time slot (see lines 9 to 19 in Algorithm 4.3). Given that our proposed

DNE heuristic takes the remaining energy of the sensors as its input (according to Eq. (4.17)), it implicitly considers

the integration between different time slots. For illustration, Fig. 4.2 depicts the high-level flowchart of the proposed

algorithm.

4.3.3 Complexity Analysis

In the following, we present the complexity analysis of our proposed DNE heuristic. The proposed DNE heuristic

consists of two main nested loops, a sorting operation using TimSort algorithm [114], k-shortest path algorithm [118]

for path exploration, and verification of a series of linear constraints. The first nested loop goes through the set

V = {v1, . . . , vM} of sensors, while the second one explores in the set N = {n1, . . . , nR}. The time complexity of

running through these nested loops is O(M × R), which reduces to complexity O(R2) given that R > M . The time

complexity of the sorting operation isO(M · logM) [114], and the k-shortest-simple-path algorithm is associated with

a time complexity ofO(kM · (M ′+M logM)). Verification of the given constraints and updating of the sensor-related

parameters (e.g., remaining energy) runs at a worse-case complexity of O(n). Therefore, given that the complexity

of the nested loops dominates the other operations and the complexity of the routing algorithm dominates the sorting

function, the overall complexity of the proposed DNE heuristic reduces to O(R2) +O(kM · (M ′ +M logM)).

4.4. Results

In the following, we present our evaluation scenarios followed by the obtained results.

4.4.1 Evaluation Scenarios

We conducted our evaluations over various scenarios. Different numbers of sensors and tasks were considered, cre-

ating both small- and large-scale problem instances. Also, the system was examined under different values of virtual-

ization overhead, transmission, and link energy consumption values forming both a homogeneous and a heterogeneous

network. Table 4.3 summarizes our simulation scenarios. The sensor nodes are scattered in different geographical

areas. The virtual network requests are generated by applications and served at the end of each time slot. We consider

64

Table 4.3: Evaluation scenarios.

Small-scale Scenario Large-scale Scenario
Area (m2) 150 × 150 1000 × 1000

Total Number of Sensor Nodes 15 500
Total Number of Time Slots 5 5

Total Number of Tasks 300 10000
Sensing Range 30 m 30 m

Sensor Node’s Initial Energy 2.9 J - 3.4 J 2.9 J - 3.4 J

a total of five time slots in each scenario. The number of time slots has been selected such that a statistical stability is

achieved. Each task has a geographical location with specific latency and bandwidth requirements in each scenario. We

follow the definitions of small- and large-scale scenarios given by Ref. [109], where small- and large-scale scenarios

involve <100 and >100 sensor nodes, respectively.

We ran several simulations with different parameter settings considering both homogeneous and heterogeneous

networks. In the homogeneous network, the deployed sensor network consists of sensors of the same type, each sensor

consuming a fixed amount of energy for transmission, CPU, reception, and link. By contrast, in the heterogeneous

network, the sensors are associated with different amounts of energy for different parameters. In addition, we also

consider a heterogeneous network in terms of the number of virtualizable and non-virtualizable sensors. Our small-

scale scenario is 150 m × 150 m with 15 sensors and a total of 300 tasks and our large-scale scenario involves 500

sensors in a 1000 m × 1000 m of area with a total of 10000 tasks.

In all scenarios, for each sensor, we consider a sensing range of 30 m [52] and a random initial energy between

1.9 J and 3.4 J [34]. Also, we set the energy consumption of a sensor while operating as a physical sensor to 0.017 mJ,

which is the energy required for transmission [34]. The energy consumption overhead due to the creation of a virtual

sensor over a physical sensor is set to 0.005 mJ [11]. Finally, we set the data reception energy at a sensor node to

0.031 mJ [34]. The energy consumption of CPU usage and wireless communication link are set to 0.005 mJ [79] and

0.007 mJ [119], respectively. The task’s required data volume and link bandwidth are set to [100-200] bps and [200-

400] kbps, respectively [48]. The energy consumption for storage and sensing is negligible. The transmission delay

and virtual sensor creation overhead delay are set to 0.02 s and 0.06 s, respectively [11].

4.4.2 Evaluation Results

We present the optimal results obtained from CPLEX [110] and those obtained from our proposed DNE heuristic.

We compare the performance of our proposed DNE algorithm with that of the RAS algorithm [48] as our benchmark.

We selected the RAS [48] algorithm because (i) it is the only existing work in the literature that has considered virtu-

alized WSN and (ii) similar to our work, it aims to optimize the overall energy consumption while considering CPU

and transmission power of sensor nodes. Despite these commonalities, which make the RAS algorithm a suitable

65

benchmark for this work, there are a few differences between this work and ours. For example, in [48], the authors

considered energy harvesting as part of their objective function. Also, this work has used the so-called Leach algorithm

for solving the routing sub-problem, while in our work, we use the k-shortest path algorithm. Nevertheless, we have

adjusted the energy models and routing algorithms for a fair comparison.

In a small-scale scenario (i.e., scenario 1) we derive the results from CPLEX, the proposed DNE heuristic, and the

RAS algorithm. However, for the large-scale problem, the results are only obtained from the proposed DNE heuristic

and the RAS algorithm. This is mainly due to the large number of variables that are generated by the CPLEX engine.

To better see this, we note that for 5 sensors and 25 tasks, the number of variables becomes ∼4500. As the number

of nodes is increased to 10 and 15, the number of variables becomes ∼15000 and ∼30000, respectively. It is evident

that the number of variables increases exponentially with response to the growing problem size, thus preventing the

CPLEX to return the results in a computationally efficient manner. The mathematical model was implemented using

IBM ILOG CPLEX IDE and the heuristics were implemented in Python. The simulations were run on a machine with

64-bit OS Windows 10 Pro, 3.20 GHz Intel ® Corei7-8700 ® CPU, and 16 GB of memory5.

A) Energy Consumption in Small-Scale Scenario

First, we evaluate the energy efficiency performance of all algorithms under consideration in a small-scale scenario,

comparing it to the RAS algorithm [48]. We consider both virtualized and non-virtualized variants of the algorithms.

Figures 4.3(a) and 4.3(b) depict the total energy consumption and average energy consumption per task in a homo-

geneous network setting in our small-scale scenario, respectively. According to Fig. 4.3(a), the non-virtualized DNE

and non-virtualized RAS benchmarks achieve smaller energy consumption compared to their virtualized counterparts.

This was expected since in the non-virtualized solutions, the sensors are only capable of executing a single task at a

time, dropping the rest of the tasks in the queue. The figure also reveals that the proposed DNE heuristic can achieve

a near-optimal solution with an optimality gap of ∼18%, outperforming the RAS algorithm with 207% gap with the

optimal solution. This happens mainly because of three main reasons. First, the RAS algorithm does not consider the

virtualization overhead energy consumption. This is critical as the virtualization comes with an overhead, which defi-

nitely affects the total energy consumption, and therefore should be taken into account in the decision making process.

Secondly, the mapping of the tasks to the sensors is critical. An inappropriate mapping of the tasks to the sensors may

require activating new sensors in the substrate network, and consequently can lead to an inefficient resource utilization

and excessive energy consumption. Third, unlike our proposed DNE heuristic, which selects the path with lowest

energy consumption among k available shortest paths, in the RAS algorithm, a multi-hop routing is applied without

explicitly considering the energy consumption.

5It is important to note that the existing network simulators (e.g. NS3) are not best suited for the implementation and validation of this work as
they do not support virtualized WSN.

66

(a)

(b)

Figure 4.3: (a) Total energy consumption and (b) average energy consumption per task for different algorithms under
study (homogeneous network setting, small-scale scenario).

Figure 4.4: Total energy consumption vs. virtualization overhead energy (small-scale scenario).

67

To further evaluate the energy performance in this scenario, we depict the average energy consumption per task

in Fig. 4.3(b), where it is observed that the proposed DNE heuristic achieves an optimality gap of 19.7%. We also

observe that the proposed DNE algorithm outperforms the RAS algorithm in terms of the average energy consumption

per task in both virtualized and non-virtualized scenarios. Moreover, the virtualized DNE algorithm achieves 30%

smaller average energy consumption per task compared to the non-virtualized DNE algorithm. This highlights the

effectiveness of virtualization over a non-virtualized scenario. Given that the non-virtualized variants of both DNE and

RAS algorithms perform relatively poorly, we will not include their results in the subsequent figures.

Figure 4.4 illustrates the average energy consumption per task vs. virtualization overhead energy in the small-scale

scenario. Clearly, our proposed DNE heuristic achieves a near-optimal solution, outperforming the RAS algorithm.

When the virtualization overhead energy becomes as high as 31µj, the proposed DNE heuristic and RAS algorithm

achieve an optimality gap of 8.6% and 83.2%, respectively. Also, the proposed DNE heuristic outperforms the RAS

algorithm for any given virtualization overhead energy. As virtualization overhead energy increases, the average energy

consumption per task for the RAS algorithm increases linearly. This is because of the differences in assignment

strategies of the proposed heuristic and the RAS algorithm to select the starting point. In the proposed DNE heuristic,

the task assignment starts from the sensor with highest task density in its sensing range, thus maximizing the sensors’

resource utilization and minimizing the communication energy consumption. By contrast, in the RAS algorithm, the

task assignment and routing starts from the first available sensor and path.

Next, we evaluate the energy efficiency of the deployed sensors in a heterogeneous substrate network, where the

sensors consume different amounts of energy for transmission and wireless communication link. We assess the energy

efficiency of the proposed DNE heuristic in comparison with the CPLEX and RAS algorithm in those scenarios.

Figures 4.5(a) and 4.5(b) depict the total energy consumption in the small-scale scenario for different algorithms under

consideration with a random transmission energy consumption (selected between 17 µj and 31 µj for each sensor)

and a random wireless communication link energy consumption (selected between 7 µj to 21 µj for each link). As

shown in Fig. 4.5(a), the proposed DNE heuristic achieves a near-optimal solution with an optimality gap of ∼19%

and outperforms the RAS algorithm by ∼59%. Similarly, according to the total energy consumption with different

wireless communication link energies shown in Fig. 4.5(b), we notice that the proposed DNE heuristic achieves a near

optimal result, outperforming the RAS algorithm by ∼58%. This is mainly due to the fact that in the RAS algorithm,

the critical impact of the transmission energy is neglected, thus leading to a higher energy consumption. According to

Fig. 4.5(b), the proposed solution achieves a ∼36% gap with respect to the global optimal solution, compared to the

RAS algorithm with 228% gap.

68

(a)

(b)

Figure 4.5: Total energy consumption with (a) transmission energies selected from [17, 31] µj per sensor node and
(b) wireless communication link energies selected from [7, 21] µj per link (heterogeneous network setting, small-scale
scenario).

Figure 4.6: Total energy consumption in a heterogeneous network setting (large-scale scenario).

69

Figure 4.7: Total energy consumption with virtualizable and non-virtualizable sensors (large-scale scenario).

B) Energy Consumption in Large-Scale Scenarios

In the following, we evaluate the energy efficiency of the proposed DNE heuristic in a large-scale scenario and

compare the obtained results with that of the RAS algorithm as shown in Figure 4.6. We define a parameter called

α to denote the relative degree (in percentage) of connectivity of the network with respect to a complete graph. For

example, α = 20% represents a graph with 20% connectivity compared to a complete graph. The results indicate

that by increasing the connectivity ratio α, the DNE heuristic outperforms the RAS algorithm in terms of energy

consumption between ∼20% (α = 20%) and ∼58% (α = 100%), respectively. We also observe from the figure that

the total energy consumption in our proposed DNE heuristic decreases at a higher rate for an increasing connectivity

ratio α compared to the RAS algorithm. This is because increasing the network connectivity gives the proposed DNE

heuristic more chance to find low-energy paths. To further evaluate the effectiveness of the proposed DNE heuristic,

let us define a parameter called β to denote the ratio (in percentage) of the virtualizable sensors to the total number

of sensors. Accordingly, β = 30 specifies that 30% of the sensors are non-virtualizable, which can only be used

in the physical mode without the capability to create virtual sensors on top of them. Figure 4.7 depicts the total

energy consumption vs. β. We observe from the figure that the energy consumption of both algorithms reduces as β

increases. This was expected because of two main reasons. First, when there are more virtualizable sensors deployed,

the possibility of having a larger number of tasks to be executed increases, thus leading to higher energy consumption.

Second, virtualizing the sensors comes with an additional virtualization overhead energy, which may affect the total

energy consumption.

70

Figure 4.8: Total energy consumption vs. number of sensor nodes (with 500 tasks).

C) Energy Consumption for Different Application Network Parameters

In the following, we assess the energy performance of the proposed DNE heuristic for different network parameters,

including the number of sensors, bandwidth, and delay. Figure 4.8 depicts the total energy consumption vs. number

of sensor nodes. We observe from the figure that when there are 5 sensor nodes, both proposed DNE heuristic and

the RAS algorithm have a very small energy consumption. This happens because the number of sensors (i.e., 5) is too

small compared to the number of tasks (i.e, 500). Clearly, the proposed DNE heuristic outperforms the RAS algorithm

for any given number of sensors.

Next, we evaluate the impacts of bandwidth requirements on energy performance. Figure 4.9(a) depicts the total

energy vs. bandwidth requirement. We observe from Fig. 4.9(a) that the total energy consumption of both DNE

and RAS algorithms decrease as the bandwidth requirement increases. This is because increasing the bandwidth

requirement leads to a decreased acceptance rate, which is shown in Fig. 4.9(b). According to Fig. 4.9(a), our proposed

DNE heuristic outperforms the RAS algorithm in terms of total energy consumptin for bandwidth requirements < 150

bps. Even though the total energy consumption of the DNE heuristic becomes slightly more than the RAS algorithm for

bandwidth requirements > 150 bps, its acceptance rate is significantly more than the RAS algorithm, see Fig. 4.9(b).

According to Fig. 4.9(b), the DNE heuristic outperforms the RAS algorithm for any given bandwidth requirement.

Next, we examine the impact of delay requirement on the energy performance in Figure 4.10. According to

Fig. 4.10(a), the total energy increases for both algorithms for an increasing delay requirement. The reason is that

when the delay requirement increases, more requests are accepted, which require more energy. Importantly, we ob-

serve that the proposed DNE heuristic outperform the RAS algorithm in terms of total energy consumption for delay

requirements > 120 ms. Relaxing the delay requirement leads to an increase of the acceptance rate in both algorithms

under consideration, as shown in Fig. 4.10(b), but it is clear that the proposed DNE heuristic outperforms the RAS

71

(a)

(b)

Figure 4.9: (a) Total energy consumption vs. bandwidth requirement and (b) acceptance rate vs. bandwidth require-
ment.

algorithm in terms of acceptance rate for any given delay requirement.

D) Execution Time

In the small-scale scenario, where there is a very small number of sensors/tasks, both the proposed DNE heuristic

and the RAS algorithm perform quite similarly without much difference. More specifically, the proposed DNE heuristic

and the RAS algorithm solve the problem in 31 ms and 36 ms, respectively, both outperforming the CPLEX solver,

which solves the problem in 1300 ms. Although the RAS algorithm performs 5 ms faster than the proposed DNE

heuristic, its achieved energy consumption is notably higher, as explained earlier in Figs. 4.3-4.7.

Finally, the execution time for the large-scale scenario comprises a denser network with thousands of tasks. Fig-

ure 4.11 depicts the execution time vs. the total number of tasks for both the proposed DNE heuristic and the RAS

72

(a)

(b)

Figure 4.10: (a) Total energy consumption vs. delay requirement and (b) acceptance rate vs. delay requirement.

Figure 4.11: Execution time vs. total number of tasks (large-scale scenario).

73

algorithms. We observe from the figure that the RAS algorithm has a faster execution time compared to the proposed

DNE heuristic, although both algorithms perform close to each other when the number of tasks is 1000 and 2000. The

execution time for both algorithms increases gradually as the number of tasks increases. Clearly, the RAS algorithm

solves the problem faster especially when the number of tasks is large (>8000 tasks). This demonstrates that the com-

putational complexity of our proposed DNE heuristic is slightly larger than that of the RAS algorithm, as explained

earlier in Section 4.3.3. Interestingly, the difference between the execution time of the proposed DNE heuristic and the

RAS algorithm does not exceed 25%, which happens when the number of tasks is as high as 15000. Nevertheless, we

note that the slight increase of the proposed DNE heuristic is outweighed by its beneficial impacts in terms of energy

consumption in both small- and large-scale scenarios.

4.5. Conclusions

In this chapter, the problem of dynamic virtual network embedding in virtualized wireless sensor networks by

considering both node- and network-level virtualization. We modeled the problem as an ILP to allocate the pool of

physical and virtual sensors to the requested applications at the minimum energy consumption. We considered the

energy consumption of transmission (forwarding), CPU, wireless communication links, and virtual sensor instantiation

overhead as part of the total energy consumption. Furthermore, we defined the SLA constraints, including meeting

the given latency and bandwidth requirements. Also, we proposed our heuristic to solve the problem. We conducted

extensive simulations to evaluate our proposed heuristic against the optimal (CPLEX) solution and also a solution from

the literature (RAS). The evaluations were conducted over both small- and large-scale scenarios. Our results indicate

that the proposed DNE heuristic can achieve a near-optimal solution in terms of energy consumption while respecting

the given SLA requirements.

74

Chapter 5

Energy Efficient Distributed Task

Assignment in Virtualized Internet of

Things 1

5.1. Introduction

Concerning the relevant constraints of the WSNs, many of the proposed solutions run in a centralized manner at a

resource-rich node outside of the WSN. The main advantage is that it does not induce any additional energy consump-

tion on the sensor nodes, especially given that it does not involve any communication and processing inside the WSN.

However, the downside is that there might be no resource-rich node available outside of the network in scenarios such

as disaster management. This limitation can be partially overcome by having a fixed node carried by a relief vehi-

cle [120] for discovering and connecting to the working base stations. Nevertheless, having a distributed mechanism

in WSNs remains a challenge. Unlike the centralized algorithm, the distributed algorithm needs to be executed inside

the WSN over the sensor nodes, eventually requiring the WSN network and interacting modules dedicated to each

sensor. Hence, designing a distributed mechanism to assign the sensing tasks to the physical and virtual sensors while

satisfying the required QoS (i.e., E2E latency, bandwidth, and task deadlines) becomes critical. This challenge gets

more complicated considering that the WSN/IoT nodes are resource-constrained devices with limited available energy.

The rest of this chapter is organized as follows. First, it presents the system model, followed by the description

of the game definition and the problem formulations. Then, it discusses the designed heuristic which considers a

1This chapter is based on a paper under revise for possible publication at IEEE TNSM: [5] V. M. Raee, A. Ebrahimzadeh, Z. Mlika, and R. Glitho,
“Energy efficient distributed task assignment for virtualized internet of things,” under revise for submission to IEEE Transactions on Network and
Service Management (TNSM), 2023.

75

virtualized IoT network and the required QoS parameters. After that, it presents the simulation parameters and settings

followed by the validation results. We will conclude this chapter at the end.

5.2. System Model and Game Formulation

In this section, we present our system model that covers the problem definition, followed by the game definition and

formulation. We develop our formulation by applying non-cooperative game theory and defining the players, actions,

and utility function that are explained in-depth technically in Section 5.2.1.

5.2.1 System Model

We consider an IoT network with node-level virtualization capabilities enabled, i.e., a WSN infrastructure deployed

with both virtualizable and non-virtualizable sensor nodes. The physical sensors with virtualization capabilities allow

the creation of virtual sensors as per application sensing task request, having multiple applications’ sensing tasks be

executed on top of the same physical sensor concurrently. It is important to note that applications’ sensing tasks

(e.g., temperature, humidity) require reading from a sensor node [105]. This is different from computing tasks, where

additional processing may be required by the IoT nodes prior to transmission of the results. Virtualizable sensors may

operate in either physical or virtual mode. If a virtualizable sensor node operates in the physical mode, its virtualization

functionality is disabled. Yet, the non-virtualizable physical sensors (i.e., sensors with no virtualization capabilities)

execute a single task at a time. The system includes a set of time slots. Application requests arrive in batches at the

beginning of each time slot. Applications (e.g., fire contour) send the sensing tasks to the IoT network to be executed in

a distributed manner. The objective is to assign the requested sensing tasks to the available IoT infrastructure network

at minimal energy consumption. Once a sensing task is assigned to a sensor node (physical or virtual), it will be

executed immediately.

Let T = {t1, t2, ..., tk} denote the set of time slots, where each time slot tk ∈ T corresponds to the task assignment

time frame at tk. The sensing task requests are generated by applications randomly and then served by the physical

and virtual sensors at the end of each time slot tk. Let αk be the size of the sensing task request’s set at time slot

tk. We model the task assignment in vIoT infrastructure as a non-cooperative game with the given bandwidth, E2E

latency, and task deadline constraints. The main motivation behind applying game theory is that it allows for modeling

the interactions between the sensor nodes mathematically. Accordingly, based on those interactions, the sensor nodes

may do decision-making to optimize their performance (i.e., energy consumption in our study) considering the network

utility function. In addition, there may exist conflicts between the sensor nodes in executing the application sensing

tasks. This becomes more critical when dealing with a network with limited energy, capacity and computing resources

and having application sensing tasks with stringent bandwidth and latency requirements. Therefore, a game-based

76

modeling can help design distributed solutions where players make decisions that are made interdependently from each

other. First, we define the game by introducing the following aspects: (i) players, (ii) actions, (iii) vIoT infrastructure

network model, and (iv) application sensing task model. Then, we define the utility function of the game.

5.2.2 Game Definition

A) Players

Each sensor is considered a player. The players are divided into two disjoint subsets: the set of physical players

(i.e., non-virtualizable sensors) and the set of virtual players (i.e., virtualizable sensors). We denote the set of players

by P = Pp ∪ Pq , where Pp and Pq represent the set of physical and virtual players, respectively.

B) Actions

An action profile a = (api
,ap−i

), is a tuple where action api
is the action of player pi and ap−i

is the actions of all

other players. Let us assume thatF is the set of application sensing tasks. The action set for player pi isApi = 2F (i.e.,

all subsets of the tasks in F). If the player pi ∈ Pp, then for each api
∈ Api

, we have |api
|≤ 1 (i.e., non-virtualizable

sensors can choose either one task or none). When necessary, we add a superscript tk to each action a to denote that

the action is taken at time slot tk.

C) vIoT Networking Infrastructure Model

Let G = (P, E) be a weighted undirected graph representing the vIoT networking infrastructure, where G = Gp∪Gq .

The players represent the physical and virtual sensors. Accordingly, Gp = (Pp, Ep) and Gq = (Pq, Eq) represent the

weighted undirected graphs of physical and the virtual players, respectively. Let Pp and Ep denote the physical players

and their associated physical links. Also, the virtual players instantiated on top of the physical players, and their logical

connections to the physical players are denoted byPq and Eq , respectively. Accordingly, P = Pp∪Pq = {p1, . . . , pM}

is the set of players, with each player p ∈ P representing a physical or a virtual player instantiated on top of the physical

player with xpi and ypi representing the player’s coordination in the grid. Set E = {e1, . . . , eM ′} represents the set

of edges between the players, where E = Ep ∪ Eq . Edge (pi, pi′) ∈ E | pi ̸= pi′ , represents the communication link

between players pi and pi′ . Also, let Dg(pi, pi′) and Bg(pi, pi′) represent the latency and bandwidth associated with

edge (pi, pi′), respectively.

D) Application Sensing Task Model

Let F = {f1, . . . , ff ′} be the set of application sensing tasks, which needs to be assigned. We let the weighted

directed graphH = (N ,L) represent a given sensing task. N is the set of tasks defined asN = {n1, . . . , nR} and L =

77

Table 5.1: General notations of the problem.

Notation Definition
G = (P, E) vIoT infrastructure network graph with players P and edges E linking

them
Gp = (Pp, Ep) vIoT infrastructure network graph with physical players Vp and edges

Ep linking them
Gq = (Pq, Eq) vIoT infrastructure network graph with virtual players Vq and logical

links Eq linking them to physical players which they instantiated over
p ∈ P A player (physical/virtual) in P
xpi

, ypi
Player pi coordination in a grid

Epi

tk
Current available energy of player pi at tk

(pi, pi′) ∈ E An edge in E
Dg(pi, pi′) Latency associated with edge (pi, pi′)
Bg(pi, pi′) Bandwidth associated with edge (pi, pi′)
H = (N ,L) Application sensing task graph with tasksN and logical links L linking

them
n ∈ N A task in N
(nj , nj′) ∈ L A logical link in L
x′
nj

, y′nj
Task nj coordination in a grid

Dh(nj , nj′) Latency associated with logical link (nj , nj′)
Bh(nj , nj′) Bandwidth associated with logical link (nj , nj′)
arrtknj

Task nj arrival time
dlttknj

Task nj deadline
T Total number of time slots
tk Task assignment frame time
αk Size of each group of sensing task request
Cpi

Capacity of player pi
Etr

pi
Forwarding energy consumption of player pi

ECPU
pi

CPU energy consumption of player pi
Eov Virtual player creation energy consumption
El

pi
Wireless link energy consumption

Dtr
pi

Transmission delay
Dov Virtual player creation delay
F Set of application sensing tasks

{l1, . . . , lR′} denotes the logical links between tasks nj and nj′ in the application set, where (nj , nj′) ∈ L | nj ̸= nj′ .

Let x′
nj

, y′nj
, and arrtknj

denote the requested sensing task’s coordination in the grid and its arrival time, respectively.

The given QoS requirements include latency Dh(nj , nj′), bandwidth Bh(nj , nj′), and task deadline dlttknj
.

Tables 5.1 and 5.2 summarize the problem main notations and problem inputs, respectively.

5.2.3 Energy Model and Constraints

In the following, we formulate the energy model to use in the game formulation. Based on that, we define the

utility function and associated constraints for the dynamic distributed vIoT task assignment problem using the non-

cooperative game model. Accordingly, the player selects its strategy to minimize the overall energy while respecting

the delay and bandwidth constraints.

78

Table 5.2: Problem inputs.

Input Definition
U tk
pi

Overall energy consumption of task assignment at time tk
EP

pi,tk
Energy consumption of physical player pi at time tk

EV
pi,tk

Energy consumption of virtual player pi at time tk
Ecomm

tk
Energy consumption of wireless communication at time tk

DP
pi,tk

Delay of physical player pi at time tk
DV

pi,tk
Delay of virtual player pi at time tk

A) Energy Model

The overall energy consumption is achieved by three components:

• Physical Player Energy (EP
pi,tk

): It represents the energy consumption of executing task nj ∈ N on physical

player pi ∈ Pp at time tk. When player pi chooses action atkpi
at time slot tk, its energy consumption is calculated

as:

EP
pi,tk

(atkpi
) =

∑
nj∈a

tk
pi

(Etr
pi

+ ECPU
pi

), (5.1)

and the energy consumption of all physical players is given by:

EP
tk
(atk) =

∑
pi∈P

EP
pi,tk

(atkpi
), (5.2)

where Etr
pi

and ECPU
pi

are transmission and CPU energy consumption of player pi, respectively.

• Virtual Player Energy (EV
pi,tk

): It accounts for the energy consumption of executing task nj ∈ N on the

virtual player pi ∈ Pq instantiated over the physical player at time tk, considering the energy consumption of

transmission, CPU, and virtualization overhead. When player pi ∈ Pq chooses action atkpi
, then we have two

cases: either the player has chosen to be virtualized (i.e., |atkpi
|> 1) or not (i.e., |atkpi

|≤ 1). Depending on the

action chosen by the virtual player at time tk, the energy consumption is obtained as follows:

EV
pi,tk

(atkpi
) = 1{|atk

pi
|>1}

[
Etr

pi
+

∑
nj∈a

tk
pi

(Eov + ECPU
pi

)
]
+ 1{|atk

pi
|≤1}

[∑
nj∈a

tk
pi

(Etr
pi

+ ECPU
pi

)
]
, (5.3)

and the energy consumption of all virtual players is given by:

EV
tk
(atk) =

∑
pi∈P

EV
pi,tk

(atkpi
), (5.4)

where, Eov is virtualization energy overhead.

• Energy Consumption of Wireless Communication Links (Ecomm
tk

): It includes the energy consumption of

79

the wireless links of the infrastructure network by mapping the logical communication link (nj , nj′) ∈ L to the

wireless link (pi, pi′) ∈ E at time tk:

Ecomm
tk

(atk) =
∑

(pi,pi′)∈E

∑
(nj ,nj′)∈L

nj∈a
tk
pi

,nj′∈a
tk
p
i′

El
pi,pi′

, (5.5)

where, El
pi,pi′

is the wireless link energy consumption of player pi.

B) Delay Model

Before describing the problem constraints, in the following, we define the delay parameters. We consider the

following two different delay components.

• Physical Player Delay (DP
pi,tk

): It is the delay incurred by executing task nj ∈ N on the physical player

pi ∈ Pp at time tk. Considering that player pi ∈ Pp chooses action atkpi
at time slot tk, the delay is calculated as:

DP
pi,tk

(atkpi
) =

∑
nj∈a

tk
pi

Dtr
pi
, (5.6)

and the delay of all physical players is given by:

DP
tk
(atk) =

∑
pi∈P

DP
pi,tk

(atkpi
), (5.7)

where Dtr
pi

is the transmission delay of player pi.

• Virtual Player Delay (DV
pi,tk

): It represents the delay of executing the task nj ∈ N on the virtual player

pi ∈ Pq instantiated over the physical player at time tk. It can be calculated as follows:

DV
pi,tk

(atkpi
) = 1{|atk

pi
|>1}

[
Dtr

pi
+

∑
nj∈a

tk
pi

Dov
]
+ 1{|atk

pi
|≤1}

[∑
nj∈a

tk
pi

Dtr
pi

]
, (5.8)

and the delay of all virtual players is given by:

DV
tk
(atk) =

∑
pi∈P

DV
pi,tk

(atkpi
), (5.9)

where, Dov is virtualization delay overhead.

80

C) Constraints

Next, we define the constraints of our problem. First, we have to ensure that the players will not take similar

actions. In other words, a task must only be executed once:

(atkpi
) ∩ (atkpi′

) = ∅, ∀ pi, pi′ ∈ P , tk ∈ T . (5.10)

A task should not be assigned to a physical or virtualized player before its arrival time. We enforce this constraint

as follows:

atkpi
= ∅, tk < arrtknj

, ∀ pi ∈ P, nj ∈ N , tk ∈ T . (5.11)

Furthermore, a virtualized player can support a maximum of Cvi
tasks:

|atkpi
| ≤ Cpi

, ∀ pi ∈ P , tk ∈ T . (5.12)

A task must not be assigned to a player if the player does not have enough available energy as shown in Eq.

(5.13) and Eq. (5.14):

EP
pi,tk

(atkpi
) ≤ Epi

tk
, ∀ pi ∈ P, tk ∈ T . (5.13)

EV
pi,tk

(atkpi
) ≤ Epi

tk
, ∀ pi ∈ P, tk ∈ T . (5.14)

Epi

tk
= Epi

tk−1
− EP

pi,tk
(atkpi

)− EV
pi,tk

(atkpi
)− Ecomm

tk
(atkpi

). (5.15)

where Epi

tk−1
denote the available energy and of the player pi, at time slot tk−1. Also, the tasks should be

executed by their defined deadlines, as follows:

arrtknj
≤ tk < dlttknj

, ∀ pi ∈ P , nj ∈ atkpi
, tk ∈ T . (5.16)

Finally, we have to ensure that the bandwidth and E2E latency requirements are satisfied. We define H′ =

(N ′
h,L′

h) such thatH′ ⊂ H, ∴ N ′
h ⊂ N , L′

h ⊂ L and (nj , nj′) ∈ L′
h | nj ∈ N ′

h and nj′ ∈ N ′
h. We enforce the

bandwidth and latency requirements as follows:

∑
(nj ,nj′)∈L′

h
nj∈api

,nj′∈ap
i′

Bh(nj , nj′) ≤ min(Bg(pi, pi′)) ∀ (pi, pi′) ∈ E , tk ∈ T . (5.17)

81

and ∑
(nj ,nj′)∈L′

h
nj∈api

,nj′∈ap
i′

Dh(nj , nj′) ≥ Dg(pi, pi′) ∀ (pi, pi′) ∈ E , tk ∈ T . (5.18)

where Dg(pi, pi′) is given by:

Dg(pi, pi′) = DP
tk
(atk) +DV

tk
(atk). (5.19)

D) Total Energy and Utility Function

It represents the payoff of each player pi (common-payoff) which calculates the total energy consumption for player

pi. It is given by the summation of the above-mentioned three energy components as follows:

U
tk
pi
(atk) =

EP

tk
(atk) + EV

tk
(atk) + Ecomm

tk
(atk), if no violation,

λ, otherwise, violation.
(5.20)

In our problem, we strive for providing the decision to assign the sensing tasks on the vIoT infrastructure network

at the lowest energy consumption while respecting the task deadline, end-to-end latency, and bandwidth requirements.

The overall utility function is given as follows:

∀pi ∈ P, minU tk
pi
(atk) = minU tk

pi
(atkpi

,atkp−i
), (5.21)

which aims to minimize the summation of energies consumed by physical players, virtual players, and communication

links. In this work, the payoff function depends on the action of each player. If the player pi violates any of the defined

constraints or takes an action ai which may degrades the U tk
pi
(atkpi

), we can associate a large number λ as a penalty

to the player pi. Otherwise, the action ai for player pi leads to the payoff given in (5.20), which is a common-payoff

function for all other players.

5.2.4 Nash Equilibrium Analysis

In this section we analyze the existence of pure Nash Equilibrium.

Definition 1. Pure Nash Equilibrium (PNE). A PNE can be defined as an action profile a∗ = (a∗pi
,a∗p−i

) such that

for all a′pi
in the action set of the player pi, we have Upi

(a∗pi
,a∗p−i

) ≥ Upi
(a′pi

,a∗p−i
) [121].

Definition 2. Best Response (BR). The best response can be defined as an action profile that produces the most

favorable outcome for a player, given other players’ actions [121].

82

Theorem 1. The derived game theory formulation discussed in Sec. 5.2.3 (part C) can be formulated as a dis-

tributed ILP problem that admits at least one solution. Hence, the derived game admits at least one Nash Equilibrium.

Proof. The problem in Sec. 5.2.3 (part C) describes the minimization of overall energy consumption of a set of

players in the game while meeting the E2E latency, bandwidth, and task deadline constraints. In addition, each player’s

decision or strategy is dependent on the strategy/decision taken by the other players in its communication proximity. To

prove the theorem, We reformulate the problem as an Integer Linear Programming (ILP) problem to show its convexity

and demonstrate the existence of at least one solution in the proposed optimization formulation. Accordingly, we

define four decision variables: Xpi,nj ,tk is equal 1, if the task nj is assigned to the player pi on its physical mode and

0, otherwise. Ypi,tk equals to 1 specifies that if the player pi is virtualized at time tk, and 0, otherwise. Zpi,nj ,tk is equal

1, indicates that if the task nj is assigned to the player pi on its virtualized mode, and 0, otherwise. Finally, O
nj ,nj′
pi,pi′ ,tk

equals to 1 if the players pi and pi′ are linked together, and 0 otherwise. We also define a utility function U(pi, tk)

for each player pi that can evaluate its utility in accordance to the objective function. The player’s utility is evaluated

depending on the player’s energy consumption of its physical mode, virtualized mode, and the communication links,

that is equivalent to EP
pi,tk

, EV
pi,tk

, and Ecomm
tk

, respectively. Therefore, the model can be expressed as a distributed

optimization problem as follows:

Etot = min
∑
pi∈P

∑
nj∈N

∑
tk∈T

(
Xpi,nj ,tk Upi,tk + Zpi,nj ,tk Upi,tk

)
+

∑
(pi,pi′)∈E

∑
(nj ,nj′)∈L

∑
tk∈T

O
nj ,nj′
pi,pi′ ,tk U

nj ,nj′
pi,pi′ ,tk

,

(5.22)

Given that the utility function is expressed as total energy consumption of players and communication links, there-

fore, the above equation (5.22) can be re-written in terms of energy consumption of players in physical mode, virtual-

ized mode, and the communication links as follows:

83

Etot = min
M∑

pi=1

T∑
tk=1

(
Xpi,nj ,tk E

P
pi,tk

+ Zpi,nj ,tk E
V
pi,tk

+O
nj ,nj′
pi,pi′ ,tk

Ecomm
tk

)
,

∀ nj ∈ N , (pi, pi′) ∈ E , (nj , nj′) ∈ L.

s.t.

C1 :
∑
pi∈P

Xpi,nj ,tk +
∑
pi∈P

Zpi,nj ,tk = 1, ∀ nj ∈ N , tk ∈ T .,

C2 :
∑

nj∈N
Xpi,nj ,tk ≤ 1− Ypi,tk , ∀ pi ∈ P , tk ∈ T .,

C3 :
∑
pi∈P

∑
tk∈[0,arr

tk
nj

)

(
Xpi,nj ,tk +Zpi,nj ,tk

)
= 0, ∀ nj ∈ N .,

C4 :
∑
pi∈P

∑
tk∈[arr

tk
nj

,dlt
tk
nj

]

(
Xpi,nj ,tk +Zpi,nj ,tk

)
= 1, ∀ nj ∈ N .,

C5 :
∑
pi∈P

Zpi,nj ,tk ≤ Cpi Ypi,tk , ∀ nj ∈ N , tk ∈ T .,

C6 : Xpi,nj ,tk E
P
pi,tk

≤ Epi

tk
, ∀ pi ∈ P , nj ∈ N , tk ∈ T .,

C7 :
∑

nj∈N
Zpi,nj ,tk E

V
pi,tk

≤ Epi

tk
, ∀ pi ∈ P , tk ∈ T .,

C8 :
∑

(nj ,nj′)∈L′
h

O
nj ,nj′
pi,pi′ ,tk

Bh(nj , nj′) ≤ min(Bg(pi, pi′)), ∀ (pi, pi′) ∈ E , tk ∈ T .,

C9 :
∑

(nj ,nj′)∈L′
h

∑
(pi,pi′)∈E

Dh(nj , nj′) ≥ Dg(pi, pi′), ∀ tk ∈ T . (5.23)

The constraints (C1) and (C2) ensure that the task is only executed by one player at a time and the player can only

execute a task in physical or virtual mode. The constraints (C3) and (C4) ensure that a task is executed after its arrival

and before its deadline. Also, the constraints (C5), (C6), and (C7) ensure that the players have sufficient capacity

and energy for executing a task. Finally, constraints (C8) and (C9) guarantee the bandwidth and end-to-end latency

requirements are satisfied. The problem described in (5.23) discusses the minimization of energy between all players,

while meeting the defined SLAs and constraints. Accordingly, we notice that the problem discussed above is a linear

model with a linear objective function, that leads to be a convex problem [122].

Theorem 2. The derived utility function of the proposed game theory formulation is monotone. The monotonicity

of the proposed utility function will demonstrate that it continuously decreases/increases (based on the utility function)

over the variables, and by evolution of the formulation (additional variables/constraints) the overall network behaviour

remains consistent [123].

Proof. To show the monotonicity of the derived formulation, we have to show its derivative always produces a

84

non-negative result over the set of feasible solutions of player (pi). Let us consider the linear objective function defined

in (5.23). We therefore have:

f(Etk
tot) =

tk=T∑
tk=1

(
Xpi,nj ,tk E

P
pi,tk

+ Zpi,nj ,tk E
V
pi,tk

+O
nj ,nj′
pi,pi′ ,tk

Ecomm
tk

)
,

while tk = 1,

f(Etk
tot) = Xpi,nj ,tk E

P
pi,tk

+ Zpi,nj ,tk E
V
pi,tk

+O
nj ,nj′
pi,pi′ ,tk

Ecomm
tk

,

df(Etk
tot)

d(Etk
tot)

= f ′(Etk
tot) = EP

pi,tk
+ EV

pi,tk
+ Ecomm

tk
> 0,

∴ f ′(Etk
tot) > 0 (5.24)

It is evident in Eq. (5.24), that the derived function f(Etk
tot) is always non-negative and it is monotone. Therefore,

given that the derived non-cooperative game model is both convex and continuous, any solution of the defined utility

function f over (Etk
tot) of the player (pi) is a Pure Nash Equilibrium.

5.3. E2M: Energy Efficient Matching

In this section, we propose our distributed dynamic Energy Efficient Matching (E2M) heuristic to solve the problem

in a computationally efficient manner. Our proposed E2M heuristic aims to minimize the overall energy consumption

of executing the tasks over the physical and virtual players over time while meeting the given QoS requirements (i.e.,

task deadlines, end-to-end latency, and bandwidth requirements). The expected output of the proposed E2M heuristic

is the set of action profile a = (api
,ap−i

) performed by players pi ∈ P . The pseudo-code of our proposed E2M

heuristic is illustrated in Algorithm 5.1.

Initially, the sets of players and their associated capacity and energy sets are defined, followed by the variables

linked to the given requirements. As specified in Algorithm 5.1, our proposed heuristic iterates over the set T of time

slots followed by iterations over the set of players and tasks (lines 8 to 10 of Algorithm 5.1). Then, the heuristic applies

the Dense() function that uses the Euclidean distance algorithm to explore the application sensing tasks in sensing

range (proximity) of each player. The heuristic also derives the deadlines of each task and sorts the collected list using

the Timsort function [114] (lines 11 to 13). Next, the player determines its action set. The action set is all the possible

subsets of the tasks in the sensing range of the player. Once each player realizes its action set, it compares it with

the neighboring players, and the player with the largest action set initiates the execution of the tasks using its largest

available subset of tasks in its action set. In this case, considering that there is more than one action available for the

player, it will decide to be virtualized and execute the tasks over the virtual players. If there are multiple players with

85

Algorithm 5.1 Energy Efficient Matching (E2M) Heuristic
Input: P, E,N ,L, T
Output: pi ∈ P,a = (api ,ap−i) /* set of players and their action profile */

1: Cpi= {cap(pi) / pi ∈ P}; /* player’s capacity */

2: E
pi
tk

= {e(pi) / pi ∈ P}; /* player’s available energy */

3: K,K′ = KSP(pi, pi′); /* k-shortest simple paths between (pi, pi′) ∈ E */

4: D,D′ = Dg(pi, pi′); /* link latency of (pi, pi′) ∈ E */

5: D̂ = Dh(nj , nj′); /* latency requirements of (nj , nj′) ∈ L */

6: B,B′ = Bg(pi, pi′); /* bandwidth of (pi, pi′) ∈ E */

7: B̂ = Bh(nj , nj′); /* bandwidth requirement of (nj , nj′) ∈ L */

8: for tk ∈ T do
9: for p ∈ P do

10: for n ∈ N do
11: F̂= {Dense(pi, nj)}; /* discover the set of tasks */

12: DT = {dltnj (F̂)}; /* set of deadlines of tasks in F̂ */

13: D̂T = DT .sort();
14: while pi < F̂ .size() do
15: if ((|api |> |api′ |> 1) or ((|api |= |api′ |> 1) and (E(F̂pi) > E(F̂pi′)))) then
16: select player pi;
17: check capacity and energy constraints using Eqs. (5.12) and (5.14)
18: check task deadlines nj ∈ (a

tk
pi) ≤ dlt

tk
nj

using Eq. (5.16);
19: (api) = max((|api |) | |api |∈ Api);
20: update action profile of players pi and pi′ using Eq. (5.10);
21: apply Eq. (5.3) and Eq. (5.15) on player pi;
22: else
23: select player pi′ ;
24: apply Eq. (5.3) and Eq. (5.15) on player pi′ ;
25: end if
26: if ((|api |≤ 1) or (Cpi == 1)) then
27: check capacity and energy constraints using Eqs. (5.12) and (5.13);
28: check task deadlines nj ∈ (a

tk
pi) ≤ dlt

tk
nj

using Eq. (5.16);
29: (api) = (|api |) | |api |∈ Api);
30: update action profile of players pi and pi′ using Eq. (5.10)
31: apply Eq. (5.1) and Eq. (5.15) on player pi;
32: end if
33: pi ← pi + 1;
34: end while
35: while (nj , nj′) == 1 do
36: explore k-shortest paths between pi and pi′
37: if K(pi, pi′) > 1 then
38: if ((D(K) < D(K′) < D̂(K̂))) (Eq. (5.18)) and ((B(K) > B(K′) > B̂(K̂))) (Eq. (5.17)) then
39: calculate communication link energy using Eq. (5.5)
40: select min(E(K), E(K′))
41: else
42: if (E(K) == E(K′)) then
43: select min(D(K), D(K′))
44: end if
45: end if
46: end if
47: end while
48: end for
49: end for
50: Tk+1.add(nj′ ∈ api); /* Task nj′ goes to Tk+1 */

51: end for
52: return p, a;

86

the same number of subsets of actions, the player with the highest available energy will be selected to execute the

tasks given the available energy, capacity, and task deadline requirements. Accordingly, the other players will update

their action set and remove the subset tasks that were already selected for execution. This, as a result, avoids redundant

execution of tasks. Next, the heuristic calculates the consumed energy based on the action taken by the player, followed

by the updates applied to players’ available energy (lines 14 to 21). If any of the constraints defined are not satisfied,

the next available player will start executing its action set (lines 23 to 25). If there is a single available action in the

action set of the player, it will execute the given task in its physical mode provided that the capacity, energy, and task

deadline requirements are all met. Accordingly, the action set of other players will be updated to remove that particular

action from their action set. Then, the player’s energy will be updated and the consumed energy will be determined.

This process will be repeated for all the players and their respective actions (lines 26 to 33). Once the players make

their actions over the tasks, the logical communication links between the tasks and their respective allocations over

the physical network need to be considered. We use the k-shortest path algorithm, exploring the k paths between

the players. If a path does not comply with the end-to-end latency or bandwidth constraints, it will be eliminated.

Meanwhile, if there are multiple paths that satisfy both latency and bandwidth requirements, the path with the lowest

communication energy will be selected. In case the discovered paths hold equal communication energy consumption,

the path with minimum delay will be selected (lines 35 to 43). At this point, given that the tasks in the action set of the

players are sorted in ascending order of their deadlines, if there are any tasks in the action set that are left out, they will

be moved to the next time-slot for re-consideration for execution as long as their deadline constraints are not violated

(line 50). Consequently, the heuristic returns the list of players with their action sets (line 52).

5.4. Performance Evaluation

In this section, we explain our evaluation scenarios and then present the obtained results.

5.4.1 Evaluation Scenarios

We ran extensive simulations on large-scale networks. The system was examined under different values of vir-

tualization overhead, transmission, and link energy consumption values. We considered 1000 sensors in an area of

1000 m × 1000 m with a total of 20000 tasks. We also tested our system with 500 sensors and various task loads

ranging from 1000 to 16000. In all scenarios, we consider the following settings for the sensors: a sensing range of

30 m [52], random initial energy selected from the range [1.9 − 3.4] J [34], and transmission energy and reception

energy of 0.017 mJ and 0.031 mJ [34], respectively. The virtualization overhead is set to 0.005 mJ [11], while the

energy consumption of CPU and wireless link is set to 0.005 mJ [79] and [0.007 − 0.021] mJ [93], respectively. The

required data volume and link bandwidth are set to [100 − 200] bps and [200 − 400] kbps, respectively [48]. The

87

Figure 5.1: Total energy consumption.

transmission delay and virtual sensor creation overhead delay are set to [0.02− 0.06] s and 0.06 s, respectively [11].

5.4.2 Results

We present the results obtained from our proposed E2M heuristic and compared them with those of the MSDS

algorithm [98] and a scenario without any virtualization. The tests were implemented using Python and run on a

machine with 64-bit OS Windows 10 Pro, 3.20 GHz Intel ® Corei7-8700 ® CPU, and 16 GB of memory.

A) Energy Consumption

Figure 5.1 illustrates the energy efficiency of the proposed E2M heuristic, MSDS algorithm [98], and non-virtualized

solution. We observe from the figure that the non-virtualized solution achieves the smallest energy consumption. This

is due to the fact that in a non-virtualized solution, sensors can execute only one sensing task at a time. Thus, fewer

number of tasks are executed, thus leading to smaller energy consumption. In addition, the results show that the pro-

posed E2M heuristic outperforms the MSDS algorithm [98] by 8%. This happens because the MSDS algorithm [98]

does not take into account the virtualization overhead energy consumption nor does it consider the impacts of routing

in its assignment. Figure 5.2 depicts the average energy consumption per task vs. virtualization overhead energy. The

results reveal that by increasing the virtualization overhead, the average energy consumption increases, which was

expected. We also observe that our proposed E2M heuristic outperforms the MSDS algorithm, showing up to a 24%

reduction of energy consumption per task. On the other hand, the energy consumption per task in the non-virtualized

solution remains constant for different values of virtualization overhead.

88

Figure 5.2: Average energy consumption per task vs. virtualization overhead.

B) Admission Rate

Figure 5.3 illustrates the overall admission rate for different assignment schemes under consideration. We observe

from the figure that our proposed E2M heuristic outperforms the MSDS algorithm [98] and non-virtualized solution

by 14% and 53%, respectively. The main reason is that in our proposed heuristic, the tasks are executed with respect to

their deadline requirements. Therefore, if a task cannot be executed upon its arrival, it may be executed in the upcoming

time-slots, if the deadline allows. To better see this, we plot the admission rate vs. assignment delay in Fig. 5.4, which

reveals more details on the breakdown of the admission rate for different solutions under study. We observe from the

figure that even though the MSDS [98] algorithm managed to execute 81% of the tasks at their arriving time-slot, it

drops 19% of the tasks. By contrast, our proposed E2M heuristic drops only 5% of the tasks, mainly because it tries to

execute as many requests as possible in the subsequent time-slots too. More importantly, the non-virtualized solution

has successfully executed 18% but dropped 58% of the tasks.

C) Scalability

Next, we evaluate the scalability performance of our proposed algorithm for a large number of tasks ranging from

1000 to 16000 over 500 sensors. Figure 5.5 illustrates the total energy consumption vs. number of tasks. We observe

that the non-virtualized solution achieves the smallest total energy consumption, mainly because it executes only a

small portion of the incoming tasks. On the other hand, the proposed E2M heuristic outperforms the MSDS [98]

algorithm by up to 34%, which happens when the number of tasks is large. In addition, we observe in Fig. 5.6 that all

three solutions under study have a very high admission rate (∼100%) for < 2000 tasks. By increasing the number of

tasks to 4000, the admission rate of the MSDS [98] algorithm and the non-virtualized solution starts to drop to 89%

and 85%, respectively, while the admission rate of the proposed E2M heuristic remains at ∼99%. There is also a sharp

89

Figure 5.3: Admission rate.

Figure 5.4: Admission rate vs. assignment delay.

decline in the admission rate when the number of tasks increases to 16000. According to Fig. 5.6, the admission rate

of the non-virtualized solution and MSDS algorithm is 27% and 31%, respectively, compared to the proposed E2M

heuristic with an admission rate of 52%.

D) Virtualizable to non-Virtualizable Ratio

Let β denote the ratio of the number of non-virtualizable sensors to the total number of sensors. Hence, β = 20

indicates that 20% of the sensors are non-virtualizable, and it is not possible to instantiate virtual sensors on top of them.

Figure 5.7 depicts the total energy consumption vs. β. We observe that the energy consumption of both algorithms

reduces monotonically as β increases. This is evident because as the number of virtualizable sensors grows larger, a

larger number of tasks can be executed, thus leading to higher energy consumption. Besides, virtualization introduces

additional virtualization overhead energy, which may have impacts on the total energy consumption. Figure 5.8 depicts

90

Figure 5.5: Total energy consumption vs. total number of tasks.

Figure 5.6: Admission rate vs. total number of tasks.

Figure 5.7: Total energy consumption vs. ratio β.

91

Figure 5.8: Admission rate vs. ratio β.

admission rate vs. ratio β. As shown in the figure, by increasing the ratio β, the admission rate drops in both the

proposed E2M heuristic and MSDS algorithm. The main reason is that non-virtualizable sensors cannot execute more

than one task at a time. Thus, when the number of non-virtualizable nodes increases, the number of dropped tasks

increases as a result. The obtained results reveal that the proposed E2M heuristic outperforms the MSDS algorithm by

up to 17% and 32% in terms of energy consumption and admission rate, respectively.

E) Execution Time

Finally, we investigated the execution time and the end-to-end latency performance of the proposed algorithm. We

illustrate the execution time (in seconds) vs. the total number of tasks in Fig. 5.9. We observe that by increasing the

total number of tasks, the execution time increases for all the solutions under study. When there are 1000 to 4000

tasks, the execution time of the proposed E2M heuristic, MSDS [98] algorithm, and the non-virtualized solution is

almost the same with 1 to 3 seconds difference. However, by increasing the number of tasks from 4000 to 16000, the

execution time of all three solutions increases. More specifically, the non-virtualized solution has the highest execution

time. This is because in a non-virtualized network, a very limited amount of resources is available and tasks need to be

selected from a pool of tasks. Therefore, the solution takes a considerable amount of time to select the set of tasks to be

executed. On the other hand, the MSDS [98] algorithm has the lowest execution time. It performs 1-2 seconds better

than our proposed heuristic when there are 1000-4000 tasks and it performs ∼10 seconds faster than our proposed

heuristic when there are 16000 tasks. This happens because of two reasons. First, our algorithm seeks to select the path

with the lowest energy consumption. Secondly, it prioritizes the tasks and shifts the tasks forward to the next time-slot

for execution, if possible, in order to improve the admission rate and energy consumption, as discussed above.

92

Figure 5.9: Execution time vs. total number of tasks.

5.5. Conclusions

We studied the problem of task assignment for distributed vIoT. We modeled the problem as a non-cooperative

game, aiming at minimizing energy consumption while meeting end-to-end latency, bandwidth, and task deadline QoS

metrics. We proposed a heuristic to solve the problem and evaluated it in terms of energy consumption, admission rate,

scalability, and execution time. The results indicate that the proposed heuristic can achieve smaller energy consumption

while increasing the admission rate in different large-scale tests, as compared to the benchmarks. The simulation results

indicate that the proposed heuristic can achieve an improvement in the energy consumption and admission rate of up

to 24% and 14%, respectively, compared to an existing benchmark.

93

Chapter 6

Conclusions and Future Works

6.1. Conclusions

The Internet of Things and Wireless Sensor Networks are widely being used in various application domains ranging

from smart home, smart city, smart manufacture, to e-healthcare, smart disaster management, etc. Accordingly, based

on Cisco’s anticipation, it is expected to have over 500 billion connected devices by 2030 [9]. Considering that the

WSN nodes are mainly constrained devices with limited available resources in terms of energy, computing, and storage,

hence, inefficient resource utilization of these constrained devices results in faster depletion of their energy, making

them inaccessible. Virtualization technology is applied to address this issue. However, virtualization challenges energy

consumption due to the additional energy consumed by virtualization overhead. In this Ph.D. thesis, we addressed the

algorithmic challenges related to the task assignment in virtualized WSNs in chapter 3. We aimed at minimizing the

overall energy consumption of the WSN while considering task deadlines as the QoS requirement. It was observed

that the proposed solution enhances energy consumption and it has a lower execution time as compared to the optimal

solution and the literature.

Several applications such as fire contour require the WSN nodes to interact and collaborate to address an applica-

tion’s request. The second challenge is to address dynamic network embedding in virtualized wireless sensor networks

in an energy-efficient manner. Therefore, it is critical to have a mechanism that enables multiple virtual networks to

co-exist over the same deployed virtualized WSN substrate network. We addressed this challenge in chapter 4. The

objective of the proposed solution was to minimize overall energy consumption. In addition, it considered the E2E

latency and bandwidth as SLAs. The effectiveness of the proposed solution was tested over both small- and large-scale

scenarios in different tests and the results were compared and analyzed with those obtained from the optimal solution

and a related work.

Considering that the WSNs are intrinsically distributed, it is not always feasible to have a resource-rich node

94

outside of the WSN. Therefore, it is crucial to design a distributed mechanism that can be executed over the resource-

constrained nodes inside of the WsN with interacting modules dedicated to each sensor node. We addressed this

challenge in chapter 5 by modeling the problem of distributed task assignment in virtualized WSNs and proposing a

solution to solve the problem. We aimed at minimizing the overall energy consumption while satisfying the given QoS

criteria of E2E latency, bandwidth, and task deadline. The solution was implemented and its results were compared

with a work from the literature and a scenario without virtualization. The results reveal that the proposed solution can

enhance energy efficiency and admission rate in different tests.

6.2. Future Works

This thesis presented significant contributions towards energy efficiency in virtualized IoT networks by addressing

the related challenges in task assignment, network embedding, and distributed task assignment. Yet, there exist several

research directions for the future.

6.2.1 Task Assignment in Virtualized WSNs

There are several possible approaches to further continue and improve this work. Mobility is an interesting aspect to

consider. In this work, it is assumed that all of the sensor nodes are stationary. In other words, t is assumed that they are

static with no mobility and movement. It would be interesting to investigate the problem considering a mobile network.

In addition, Mobile Crowdsensing is another research aspect that can be considered. By increasing the number of IoT

nodes, it is still a challenge to design, model, and implement algorithms to assign sensing tasks to IoT devices in an

energy-efficient manner.

6.2.2 Network Embedding in Virtualized WSNs

One interesting research direction to follow for the solution proposed is to take advantage of applications of Edge

Computing. While embedding the virtual networks onto the virtualized IoT substrate network, modeling an algorithm

that can assist in the decision-making process on which nodes (on the virtualized substrate network or at the edge of the

network) to be used will be helpful. This process is heavily dependent on the stringency of the QoS requirements of the

applications that request the resources. Furthermore, Resource Preservation is another interesting research direction.

Considering that a lot of applications with diverse requirements need to be deployed on the IoT nodes, it will be

useful to have a predictive mechanism that can estimate the volume of incoming applications’ requests. This will help

to solve the problem of resource allocation and resource preservation in virtualized WSNs based on those estimated

values obtained by applying machine learning techniques.

95

6.2.3 Distributed Task Assignment in Virtualized IoT

There are number of ways to contribute to expand and continue the research in distributed task assignments in

virtualized IoT. As a future work, we aim to determine the Price of Anarchy (PoA) and Price of Stability (PoS). To find

the PNE experimentally, the SAGE Tools [124] can be used while the Gambit Tools [125] can be applied to explore

the PoA and the PoS. By analyzing the existence of PNE, it will be possible to determine if the proposed game model

has a stable solution. The existence of PNE indicates that all players prefer to follow the pure strategy in which no

player achieves a higher payoff by deviating from its strategy given all strategies of other players. On the other hand,

the PoA is defined as ”the ratio between the worst equilibrium and the optimal solution whereas the PoS is the ratio

between the best equilibrium and the optimal solution” [121]. The optimal solution can be obtained by re-formulating

the problem as ILP/MILP and solved using optimization engines to get the results. These two ratios can quantify how

well a PNE is compared to the optimal solution. In addition to the above, another interesting future work is to design

and implement a machine learning techniques such as reinforcement learning (RL) and deep RL that eventually learns

the game to solve the problem.

96

Bibliography

[1] Raee, Vahid Maleki, D. Naboulsi, and R. Glitho, “Energy efficient task assignment in virtualized wireless

sensor networks,” in Proc. IEEE Symposium on Computers and Communications (ISCC), pp. 00976–00979,

2018.

[2] Raee, Vahid Maleki, A. Ebrahimzadeh, R. H. Glitho, and H. Elbiaze, “Ensuring energy efficiency when dynam-

ically assigning tasks in virtualized wireless sensor networks,” IEEE Transactions on Green Communications

and Networking (TGCN), vol. 6, no. 1, pp. 613–628, 2021.

[3] Raee, Vahid Maleki, A. Ebrahimzadeh, M. Rayani, R. Glitho, M. El Barachi, and F. Belqasmi, “Energy efficient

virtual network embedding in virtualized wireless sensor networks,” in Proc. IEEE Consumer Communications

& Networking Conference (CCNC), pp. 187–192, 2022.

[4] Raee, Vahid Maleki, A. Ebrahimzadeh, R. H. Glitho, M. El Barachi, and F. Belqasmi, “E2dne: Energy efficient

dynamic network embedding in virtualized wireless sensor networks,” submitted to IEEE Transactions on Green

Communications and Networking (TGCN), 2022 (Under Review).

[5] Raee, Vahid Maleki, A. Ebrahimzadeh, Z. Mlika, and R. Glitho, “Energy efficient distributed task assign-

ment for virtualized Internet of Things,” submitted to IEEE Transactions on Network and Service Management

(TNSM), 2023 (Under Review).

[6] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless sensor network virtualization:

A survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 553–576, 2015.

[7] M. Series, “Minimum requirements related to technical performance for IMT-2020 radio interface (s),” Report,

pp. 2410–0, 2017.

[8] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Elsevier Computer networks, vol. 54,

no. 15, pp. 2787–2805, 2010.

97

[9] “Dsi achieves cisco Internet of Things authorization.” https://dsitech.com/about/news/2020/

dsi-achieves-cisco-internet-of-things-iot-authorization.html, year=2020, note =

Accessed: March 31, 2023.

[10] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. H. Hanzo, “A survey of network lifetime maximization tech-

niques in wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 828–854,

2017.

[11] M. N. Alam and R. H. Glitho, “An infrastructure as a service for the Internet of Things,” in Proc. IEEE Interna-

tional Conference on Cloud Networking (CloudNet), pp. 1–7, 2018.

[12] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless sensor network virtualization:

early architecture and research perspectives,” IEEE Network, vol. 29, no. 3, pp. 104–112, 2015.

[13] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: A survey,”

IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[14] R. Gomes, D. Vieira, Y. Ghamri-Doudane, and M. F. de Castro, “Network slicing for massive machine type

communication in IoT-5G scenario,” in Proc. IEEE Vehicular Technology Conference (VTC2021-Spring), pp. 1–

7, 2021.

[15] “Virtualization.” https://www.ibm.com/cloud/learn/virtualization-a-complete-guide,

2019. Accessed: March 31, 2023.

[16] “Advanticsys.” https://www.advanticsys.com/shop/industrial-iot-gateways-c-8/.

Accessed: March 31, 2023.

[17] “Virtenio.” https://www.virtenio.com/en/. Accessed: March 31, 2023.

[18] “Contiki os.” http://www.contiki-os.org/. Accessed: March 31, 2023.

[19] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual sensor networks-a resource efficient approach for

concurrent applications,” in Proc. IEEE International Conference on Information Technology (ITNG), pp. 111–

115, 2007.

[20] S. Bose and N. Mukherjee, “Sensiaas: A sensor-cloud infrastructure with sensor virtualization,” in Proc. IEEE

Conference on Cyber Security and Cloud Computing (CSCloud), pp. 232–239, 2016.

[21] S. Bose, N. Mukherjee, and S. Mistry, “Environment monitoring in smart cities using virtual sensors,” in Proc.

IEEE Conference on Future Internet of Things and Cloud (FiCloud), pp. 399–404, 2016.

98

https://dsitech.com/about/news/2020/dsi-achieves-cisco-internet-of-things-iot-authorization.html
https://dsitech.com/about/news/2020/dsi-achieves-cisco-internet-of-things-iot-authorization.html
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.advanticsys.com/shop/industrial-iot-gateways-c-8/
https://www.virtenio.com/en/
http://www.contiki-os.org/

[22] D. Rajavel, A. Chakraborty, and S. Misra, “QoS-aware sensor virtualization for provisioning green sensors-as-

a-service,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 3, pp. 1128–1137, 2021.

[23] S. Misra, R. Schober, and A. Chakraborty, “Race: Qoi-aware strategic resource allocation for provisioning

se-aas,” IEEE Transactions on Services Computing, vol. 15, no. 3, pp. 1540–1550, 2020.

[24] K. S. Dar, A. Taherkordi, and F. Eliassen, “Enhancing dependability of cloud-based iot services through virtu-

alization,” in Proc. IEEE Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 106–116,

2016.

[25] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architecture for wireless sensor network virtual-

ization,” in Proc. IFIP/IEEE Wireless and Mobile Networking Conference (WMNC), pp. 1–4, 2013.

[26] I. Khan, F. Z. Errounda, S. Yangui, R. Glitho, and N. Crespi, “Getting virtualized wireless sensor networks’ IaaS

ready for PaaS,” in Proc. IEEE Conference on Distributed Computing in Sensor Systems, pp. 224–229, 2015.

[27] “Waspmote.” https://www.libelium.com/iot-products/waspmote/, note = Accessed: March

31, 2023.

[28] A. D. Kshemkalyani and M. Singhal, Distributed computing: principles, algorithms, and systems. Cambridge

University Press, 2011.

[29] “Introduction to parallel computing tutorial.” https://hpc.llnl.gov/documentation/

tutorials/introduction-parallel-computing-tutorial, note = Accessed: March 31,

2023.

[30] “Concurrency.” https://web.mit.edu/6.005/www/fa14/classes/17-concurrency/, note =

Accessed: March 31, 2023.

[31] “Deep ocean tsunami detection buoys.” http://www.bom.gov.au/tsunami/about/detection_

buoys.shtml. Accessed: March 31, 2023.

[32] J.-P. Montagner, K. Juhel, M. Barsuglia, J. P. Ampuero, E. Chassande-Mottin, J. Harms, B. Whiting, P. Bernard,

E. Clévédé, and P. Lognonné, “Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake,” Nature

Communications, vol. 7, no. 1, pp. 1–7, 2016.

[33] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy minimization in multi-task software-defined

sensor networks,” IEEE Transactions on Computers, vol. 64, no. 11, pp. 3128–3139, 2015.

99

https://www.libelium.com/iot-products/waspmote/
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://web.mit.edu/6.005/www/fa14/classes/17-concurrency/
http://www.bom.gov.au/tsunami/about/detection_buoys.shtml
http://www.bom.gov.au/tsunami/about/detection_buoys.shtml

[34] N. Edalat, W. Xiao, C.-K. Tham, E. Keikha, and L.-L. Ong, “A price-based adaptive task allocation for wireless

sensor network,” in Proc. IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 888–893,

2009.

[35] N. Edalat, W. Xiao, N. Roy, S. K. Das, and M. Motani, “Combinatorial auction-based task allocation in multi-

application wireless sensor networks,” in Proc. IFIP/IEEE International Conference on Embedded and Ubiqui-

tous Computing, pp. 174–181, 2011.

[36] T. Le, T. J. Norman, and W. Vasconcelos, “Agent-based sensor-mission assignment for tasks sharing assets,” in

Proc. Third International Workshop on Agent Technology for Sensor Networks, 2009.

[37] S. Misra and A. Chakraborty, “QoS-aware dispersed dynamic mapping of virtual sensors in sensor-cloud,” IEEE

Transactions on Services Computing, vol. 14, no. 6, pp. 1970–1980, 2019.

[38] M. Lemos, R. Rabelo, D. Mendes, C. Carvalho, and R. Holanda, “An approach for provisioning virtual sensors

in sensor clouds,” Wiley International Journal of Network Management, vol. 29, no. 2, p. e2062, 2019.

[39] T. Ojha, S. Misra, N. S. Raghuwanshi, and H. Poddar, “DVSP: Dynamic virtual sensor provisioning in sensor–

cloud-based Internet of Things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5265–5272, 2019.

[40] M.-Z. Zhang, L.-M. Wang, and S.-M. Xiong, “Using machine learning methods to provision virtual sensors in

sensor-cloud,” Sensors, vol. 20, no. 7, p. 1836, 2020.

[41] C. M. de Farias, L. Pirmez, F. C. Delicato, W. Li, A. Y. Zomaya, and J. N. de Souza, “A scheduling algorithm

for shared sensor and actuator networks,” in Proc. IEEE International Conference on Information Networking

(ICOIN), pp. 648–653, 2013.

[42] C. Delgado, M. Canales, J. Ortı́n, J. R. Gállego, A. Redondi, S. Bousnina, and M. Cesana, “Joint application

admission control and network slicing in virtual sensor networks,” IEEE Internet of Things Journal, vol. 5, no. 1,

pp. 28–43, 2017.

[43] A. Mukherjee, P. Goswami, Z. Yan, L. Yang, and J. J. Rodrigues, “ADAI and adaptive PSO-based resource

allocation for wireless sensor networks,” IEEE Access, vol. 7, pp. 131163–131171, 2019.

[44] B. Zhao and X. Zhao, “Deep reinforcement learning resource allocation in wireless sensor networks with energy

harvesting and relay,” IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2330–2345, 2021.

[45] T. L. Porta, C. Petrioli, C. Phillips, and D. Spenza, “Sensor mission assignment in rechargeable wireless sensor

networks,” ACM Transactions on Sensor Networks (TOSN), vol. 10, no. 4, pp. 1–39, 2014.

100

[46] C. Delgado, M. Canales, J. Ortı́n, J. R. Gállego, A. Redondi, S. Bousnina, and M. Cesana, “Energy-aware

dynamic resource allocation in virtual sensor networks,” in Proc. IEEE Annual Consumer Communications &

Networking Conference (CCNC), pp. 264–267, 2017.

[47] I. L. Santos, L. Pirmez, F. C. Delicato, G. M. Oliveira, C. M. Farias, S. U. Khan, and A. Y. Zomaya, “Zeus: A

resource allocation algorithm for the cloud of sensors,” Elsevier Future Generation Computer Systems, vol. 92,

pp. 564–581, 2019.

[48] Z. Li and A. Zhong, “Resource allocation in wireless powered virtualized sensor networks,” IEEE Access, vol. 8,

pp. 40327–40336, 2020.

[49] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Joint computation offloading and scheduling optimiza-

tion of IoT applications in fog networks,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,

pp. 3266–3278, 2020.

[50] Y. Yang and T. Song, “Energy-efficient cooperative caching for information-centric wireless sensor networking,”

IEEE Internet of Things Journal, vol. 9, no. 2, pp. 846–857, 2021.

[51] D. Pizzocaro, M. P. Johnson, H. Rowaihy, S. Chalmers, A. Preece, A. Bar-Noy, and T. La Porta, “A knapsack

approach to sensor-mission assignment with uncertain demands,” in Unmanned/Unattended Sensors and Sensor

Networks V, vol. 7112, p. 711205, International Society for Optics and Photonics, 2008.

[52] H. Rowaihy, M. P. Johnson, O. Liu, A. Bar-Noy, T. Brown, and T. L. Porta, “Sensor-mission assignment in

wireless sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 6, no. 4, pp. 1–33, 2010.

[53] C. Delgado, J. R. Gállego, M. Canales, J. Ortı́n, S. Bousnina, and M. Cesana, “On optimal resource allocation

in virtual sensor networks,” Elsevier Ad Hoc Networks, vol. 50, pp. 23–40, 2016.

[54] L. Chen, D. Wu, and Z. Li, “Multi-task mapping and resource allocation mechanism in software defined sen-

sor networks,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing

(WCSP), pp. 32–37, 2020.

[55] A. Zhong, Z. Li, D. Wu, R. Wang, A. Fedotov, and V. Badenko, “Reward maximization strategy in virtualized

wireless sensor networks,” in Proc. IEEE International Conference on Wireless Communications and Signal

Processing (WCSP), pp. 38–43, 2020.

[56] S. Bharti and K. K. Pattanaik, “Task requirement aware pre-processing and scheduling for IoT sensory environ-

ments,” Ad Hoc Networks, vol. 50, pp. 102–114, 2016.

101

[57] C.-C. Lin, D.-J. Deng, and L.-Y. Lu, “Many-objective sensor selection in IoT systems,” IEEE Wireless Commu-

nications, vol. 24, no. 3, pp. 40–47, 2017.

[58] A. Prasanth, J. A. George, and P. Surendram, “Optimal resource and task scheduling for IoT,” in Proc. IEEE

International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT),

pp. 1–4, 2019.

[59] E. A. Khalil, S. Ozdemir, and S. Tosun, “Evolutionary task allocation in Internet of Things-based application

domains,” Elsevier Future Generation Computer Systems, vol. 86, pp. 121–133, 2018.

[60] S. Bousnina, M. Cesana, J. Ortı́n, C. Delgado, J. R. Gállego, and M. Canales, “A greedy approach for resource

allocation in virtual sensor networks,” in Proc. IEEE Wireless Days, pp. 15–20, 2017.

[61] H. Rowaihy, M. Johnson, A. Bar-Noy, T. Brown, and T. La Porta, “Assigning sensors to competing missions,”

in Proc. IEEE Global Telecommunications (GLOBECOM) Conference, pp. 1–6, 2008.

[62] M. P. Johnson, H. Rowaihy, D. Pizzocaro, A. Bar-Noy, S. Chalmers, T. La Porta, and A. Preece, “Sensor-mission

assignment in constrained environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 21,

no. 11, pp. 1692–1705, 2010.

[63] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. De Meer, “Energy efficient virtual

network embedding,” IEEE Communications Letters, vol. 16, no. 5, pp. 756–759, 2012.

[64] X. Chen, C. Li, and Y. Jiang, “Optimization model and algorithm for energy efficient virtual node embedding,”

IEEE Communications Letters, vol. 19, no. 8, pp. 1327–1330, 2015.

[65] M. Zhu, Q. Sun, S. Zhang, P. Gao, B. Chen, and J. Gu, “Energy-aware virtual optical network embedding in

sliceable-transponder-enabled elastic optical networks,” IEEE Access, vol. 7, pp. 41897–41912, 2019.

[66] Z. Xu, L. Zhuang, S. Tian, M. He, S. Yang, Y. Song, and L. Ma, “Energy-driven virtual network embedding

algorithm based on enhanced bacterial foraging optimization,” IEEE Access, vol. 8, pp. 76069–76081, 2020.

[67] V. Lira, E. Tavares, and M. Oliveira, “An approach for reducing energy consumption in dependable virtual

network embedding,” in Proc. IEEE International Conference on Computer Communication and Networks (IC-

CCN), pp. 1–9, 2017.

[68] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on computing, network, and storage resource

constraints,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3298–3304, 2017.

102

[69] C. Aguilar-Fuster, M. Zangiabady, J. Zapata-Lara, and J. Rubio-Loyola, “Online virtual network embedding

based on virtual links’ rate requirements,” IEEE Transactions on Network and Service Management, vol. 15,

no. 4, pp. 1630–1644, 2018.

[70] P. Zhang, X. Pang, G. Kibalya, N. Kumar, S. He, and B. Zhao, “GCMD: Genetic correlation multi-domain

virtual network embedding algorithm,” IEEE Access, vol. 9, pp. 67167–67175, 2021.

[71] C. K. Dehury and P. K. Sahoo, “DYVINE: Fitness-based dynamic virtual network embedding in cloud comput-

ing,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1029–1045, 2019.

[72] S. Zhang, “Reliable virtual network mapping algorithm with network characteristics and associations,” IEEE

Access, vol. 9, pp. 48121–48130, 2021.

[73] I. Ullah, H.-K. Lim, and Y.-H. Han, “Ego network-based virtual network embedding scheme for revenue maxi-

mization,” in Proc. IEEE International Conference on Artificial Intelligence in Information and Communication

(ICAIIC), pp. 155–160, 2021.

[74] F. Habibi, M. Dolati, A. Khonsari, and M. Ghaderi, “Accelerating virtual network embedding with graph neural

networks,” in Proc. IEEE International Conference on Network and Service Management (CNSM), pp. 1–9,

2020.

[75] L. Nonde, T. E. Elgorashi, and J. M. Elmirghani, “Cloud virtual network embedding: Profit, power and accep-

tance,” in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2015.

[76] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network embedding: A deep reinforcement learning

approach with graph convolutional networks,” IEEE Journal on Selected Areas in Communications, vol. 38,

no. 6, pp. 1040–1057, 2020.

[77] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu, “Dynamic virtual network embedding algorithm based on

graph convolution neural network and reinforcement learning,” IEEE Internet of Things Journal, 2021.

[78] A. A. Nasiri, F. Derakhshan, and S. S. Heydari, “Distributed virtual network embedding for software-defined

networks using multiagent systems,” IEEE Access, vol. 9, pp. 12027–12043, 2021.

[79] H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, “Energy efficient service embedding in IoT

networks,” in Proc. IEEE Wireless and Optical Communication Conference (WOCC), pp. 1–5, 2018.

[80] H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, “Energy efficient service embedding in IoT

over PON,” in Proc. IEEE International Conference on Transparent Optical Networks (ICTON), pp. 1–5, 2019.

103

[81] H. Q. Al-Shammari, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, “Resilient service embedding in IoT

networks,” IEEE Access, vol. 8, pp. 123571–123584, 2020.

[82] P. Zhang, X. Pang, Y. Bi, H. Yao, H. Pan, and N. Kumar, “DSCD: Delay sensitive cross-domain virtual network

embedding algorithm,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 2913–2925,

2020.

[83] H. Afifi and H. Karl, “Reinforcement learning for virtual network embedding in wireless sensor networks,” in

Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob), pp. 123–128, 2020.

[84] H. Afifi, K. Horbach, and H. Karl, “A genetic algorithm framework for solving wireless virtual network embed-

ding,” in Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communi-

cations (WiMob), pp. 1–6, 2019.

[85] H. Afifi and H. Karl, “An approximate power control algorithm for a multi-cast wireless virtual network embed-

ding,” in Proc. IEEE/IFIP Wireless and Mobile Networking Conference (WMNC), pp. 95–102, 2019.

[86] O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah, M. Prasad, and S. Prakash, “Virtual-

ization in wireless sensor networks: Fault tolerant embedding for Internet of Things,” IEEE Internet of Things

Journal, vol. 5, no. 2, pp. 571–580, 2017.

[87] V. Cionca, R. Marfievici, R. Katona, and D. Pesch, “JudiShare: Judicious resource allocation for QoS-based

services in shared wireless sensor networks,” in Proc. IEEE wireless communications and networking conference

(WCNC), pp. 1–6, 2018.

[88] R. Katona, V. Cionca, D. O’Shea, and D. Pesch, “Virtual network embedding for wireless sensor networks

time-efficient QoS/QoI-aware approach,” IEEE Internet of Things Journal, vol. 8, no. 2, pp. 916–926, 2020.

[89] Y. Li, Z. Zhang, S. Xia, and H.-H. Chen, “A load-balanced re-embedding scheme for wireless network virtual-

ization,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3761–3772, 2021.

[90] D. T. Nguyen, C. Pham, K. K. Nguyen, and M. Cheriet, “Virtual network function placement in IoT network,”

in Proc. IEEE International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 1166–

1171, 2019.

[91] R. Kouah, A. Alleg, A. Laraba, and T. Ahmed, “Energy-aware placement for IoT-service function chain,” in

Proc. IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), pp. 1–7, 2018.

104

[92] A. Leivadeas, M. Falkner, I. Lambadaris, M. Ibnkahla, and G. Kesidis, “Balancing delay and cost in virtual

network function placement and chaining,” in Proc. IEEE Conference on Network Softwarization and Workshops

(NetSoft), pp. 433–440, 2018.

[93] H. Q. Al-Shammari, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, “Service embedding in IoT networks,”

IEEE Access, vol. 8, pp. 2948–2962, 2019.

[94] H.-S. Lee and J.-W. Lee, “Resource and task scheduling for SWIPT IoT systems with renewable energy sources,”

IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2729–2748, 2018.

[95] W. Yu, Y. Huang, and A. Garcia-Ortiz, “Optimal task allocation algorithms for energy constrained multihop

wireless networks,” IEEE Sensors Journal, vol. 19, no. 17, pp. 7744–7754, 2019.

[96] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online task dispatching and scheduling with band-

width constraint in edge computing,” in Proc. IEEE Conference on Computer Communications (INFOCOM),

pp. 2287–2295, 2019.

[97] K. Lin, Y. Li, Q. Zhang, and G. Fortino, “AI-driven collaborative resource allocation for task execution in

6G-enabled massive IoT,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5264–5273, 2021.

[98] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Resource management for latency-sensitive IoT applications with

satisfiability,” IEEE Transactions on Services Computing, vol. 15, no. 5, pp. 2982–2993, 2021.

[99] W. Yu, Y. Huang, and A. Garcia-Ortiz, “Distributed optimal on-line task allocation algorithm for wireless sensor

networks,” IEEE Sensors Journal, vol. 18, no. 1, pp. 446–458, 2017.

[100] J. C. SanMiguel and A. Cavallaro, “Cost-aware coalitions for collaborative tracking in resource-constrained

camera networks,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2657–2668, 2014.

[101] S. Wu, X. Peng, and G. Tian, “Decentralized max-min resource allocation for monotonic utility functions,” in

PRoc. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–6, 2021.

[102] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Resource allocation for blockchain-enabled distributed network

function virtualization (NFV) with mobile edge cloud (MEC),” in Proc. IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), pp. 1–6, 2019.

[103] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in crowdsensing with location awareness

and location diversity,” in Proc. IEEE Conference on Computer Communications (INFOCOM), pp. 2420–2428,

2018.

105

[104] X. Wang, X. Chen, and W. Wu, “Towards truthful auction mechanisms for task assignment in mobile device

clouds,” in Proc. IEEE Conference on Computer Communications (INFOCOM), pp. 1–9, 2017.

[105] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. Sunderam, “Participant privacy in mobile crowd sensing task

management: A survey of methods and challenges,” ACM Sigmod Record, vol. 44, no. 4, pp. 23–34, 2016.

[106] L. Moccia, J.-F. Cordeau, M. F. Monaco, and M. Sammarra, “A column generation heuristic for a dynamic

generalized assignment problem,” Elsevier Computers & Operations Research, vol. 36, no. 9, pp. 2670–2681,

2009.

[107] “Dual-pivot quicksort.” https://docs.oracle.com/javase/7/docs/api/java/util/

Arrays.html#sort(int[]). Accessed: March 31, 2023.

[108] V. Yaroslavskiy, “Dual-pivot quicksort,” Research Disclosure, 2009.

[109] H. Kim, W.-K. Hong, J. Yoo, and S.-e. Yoo, “Experimental research testbeds for large-scale WSNs: A survey

from the architectural perspective,” International Journal of Distributed Sensor Networks, vol. 11, no. 3, pp. 1–

18, 2015.

[110] “IBM ILOG CPLEX optimization studio.” https://www.ibm.com/ca-en/products/

ilog-cplex-optimization-studio. Accessed: March 31, 2023.

[111] E. Mortazavi, R. Javidan, M. J. Dehghani, and V. Kavoosi, “A robust method for underwater wireless sensor

joint localization and synchronization,” Ocean Engineering, vol. 137, pp. 276–286, 2017.

[112] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computational complexity of the virtual network

embedding problem,” Electronic Notes in Discrete Mathematics, vol. 52, pp. 213–220, 2016.

[113] R. Mosca, “Polynomial algorithms for the maximum stable set problem on particular classes of P5-free graphs,”

Information processing letters, vol. 61, no. 3, pp. 137–143, 1997.

[114] N. Auger, C. Nicaud, and C. Pivoteau, “Merge strategies: from merge sort to timsort,” [Online] (Accessed:

March 31, 2023) https:https://hal-upec-upem.archives-ouvertes.fr/hal-01212839v2, 2015.

[115] D. Yan, X. Yang, and L. Cuthbert, “Regression-based k nearest neighbours for resource allocation in network

slicing,” in Proc. IEEE Wireless Telecommunications Symposium (WTS), pp. 1–6, 2022.

[116] Y. Han, D. Niyato, C. Leung, C. Miao, and D. I. Kim, “A dynamic resource allocation framework for synchro-

nizing metaverse with iot service and data,” in Proc. IEEE International Conference on Communications (ICC),

pp. 1196–1201, 2022.

106

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(int[])
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(int[])
https://www.ibm.com/ca-en/products/ilog-cplex-optimization-studio
https://www.ibm.com/ca-en/products/ilog-cplex-optimization-studio

[117] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation algorithm for multivehicle systems with non-

holonomic constraints,” IEEE Transactions on Automation Science and Engineering, vol. 4, no. 1, pp. 98–104,

2007.

[118] J. Hershberger, S. Suri, and A. Bhosle, “On the difficulty of some shortest path problems,” ACM Transactions

on Algorithms (TALG), vol. 3, no. 1, pp. 1–15, 2007.

[119] A. Moschitta and I. Neri, “Power consumption assessment in wireless sensor networks,” in ICT-energy-concepts

towards zero-power information and communication technology, IntechOpen, 2014.

[120] C. Mouradian, N. T. Jahromi, and R. H. Glitho, “NFV and SDN-based distributed IoT gateway for large-scale

disaster management,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4119–4131, 2018.

[121] Z. Mlika, E. Driouch, and W. Ajib, “A fully distributed algorithm for user-base station association in hetnets,”

Elsevier Computer Communications, vol. 105, pp. 66–78, 2017.

[122] D. Bertsekas, Convex optimization theory, vol. 1. Athena Scientific, 2009.

[123] A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “A framework for globally optimal energy-efficient

resource allocation in wireless networks,” in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 3616–3620, 2016.

[124] “Sage tool for game theory.” https://doc.sagemath.org/html/en/reference/game_theory/

index.html, note = Accessed: March 31, 2023.

[125] “Gambit tools for game theory.” http://www.gambit-project.org/, note = Accessed: March 31,

2023.

107

https://doc.sagemath.org/html/en/reference/game_theory/index.html
https://doc.sagemath.org/html/en/reference/game_theory/index.html
http://www.gambit-project.org/

	List of Figures
	List of Tables
	Introduction
	Overview
	Thesis Contributions
	Energy Efficient Task Assignment in Virtualized Wireless Sensor Networks VahidConference, TGCN1
	Energy Efficient Network Embedding in Virtualized Wireless Sensor Networks VahidConf2, TGCN2
	Energy Efficient Distributed Task Assignment for Virtualized Internet of Things VahidConf3

	Background Information
	Internet of Things
	Wireless Sensor Networks
	Virtualization
	IoT Virtualization
	Virtual Network Embedding
	Distributed System

	Thesis Outline

	Related Work
	Motivating Use Case Scenarios
	Requirements
	General Requirements
	Requirements Specific to Task Assignment
	Requirements Specific to Network Embedding
	Requirements Specific to Distributed Task Assignment

	Related Work
	Task Assignment in WSNs
	Network Embedding in WSNs
	Distributed Task Assignment in IoT

	Conclusions

	Energy Efficient Dynamic Task Assignment in Virtualized Wireless Sensor Networks
	Introduction
	Dynamic Sensing Task Assignment Problem
	Problem Formulation
	Problem Analysis
	DTA: A Heuristic for Dynamic Task Assignment in Virtualized WSN
	Complexity Analysis

	Performance Evaluation
	Evaluation Scenarios
	Evaluation Results

	Conclusions

	Energy Efficient Dynamic Network Embedding in Virtualized Wireless Sensor Networks
	Introduction
	Dynamic Virtual Network Embedding: System Model and Problem Formulation
	System Model
	Problem Formulation

	DNE: A Heuristic for Dynamic Network Embedding in Virtualized WSNs
	Problem Analysis
	DNE: Dynamic Network Embedding
	Complexity Analysis

	Results
	Evaluation Scenarios
	Evaluation Results

	Conclusions

	Energy Efficient Distributed Task Assignment in Virtualized Internet of Things
	Introduction
	System Model and Game Formulation
	System Model
	Game Definition
	Energy Model and Constraints
	Nash Equilibrium Analysis

	E2M: Energy Efficient Matching
	Performance Evaluation
	Evaluation Scenarios
	Results

	Conclusions

	Conclusions and Future Works
	Conclusions
	Future Works
	Task Assignment in Virtualized WSNs
	Network Embedding in Virtualized WSNs
	Distributed Task Assignment in Virtualized IoT

	Bibliography

